

“00-FM-SA272” 18/9/2008 page iv

Academic Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper. !⃝
Copyright © 2009, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopy, recording, or any information storage and retrieval system, without
permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com.
You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by
selecting “Support & Contact” then “Copyright and Permission”and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-272-0

For information on all Academic Press publications
visit our Web site at www.books.elsevier.com

Printed in the United States of America
09 10 11 12 13 14 15 16 5 4 3 2 1

“02-Preface-SA272” 17/9/2008 page xv

Preface

This book is the outgrowth of our teaching advanced undergraduate and graduate
courses over the past 20 years. These courses have been taught to different
audiences, including students in electrical and electronics engineering, computer
engineering, computer science, and informatics, as well as to an interdisciplinary
audience of a graduate course on automation. This experience led us to make
the book as self-contained as possible and to address students with different back-
grounds. As prerequisitive knowledge, the reader requires only basic calculus,
elementary linear algebra, and some probability theory basics. A number of mathe-
matical tools, such as probability and statistics as well as constrained optimization,
needed by various chapters,are treated in fourAppendices. The book is designed to
serve as a text for advanced undergraduate and graduate students,and it can be used
for either a one- or a two-semester course. Furthermore,it is intended to be used as a
self-study and reference book for research and for the practicing scientist/engineer.
This latter audience was also our second incentive for writing this book, due to the
involvement of our group in a number of projects related to pattern recognition.

SCOPE AND APPROACH
The goal of the book is to present in a unified way the most widely used tech-
niques and methodologies for pattern recognition tasks. Pattern recognition is
in the center of a number of application areas, including image analysis, speech
and audio recognition, biometrics, bioinformatics, data mining, and information
retrieval. Despite their differences, these areas share, to a large extent, a corpus
of techniques that can be used in extracting, from the available data, information
related to data categories, important“hidden”patterns, and trends. The emphasis in
this book is on the most generic of the methods that are currently available. Hav-
ing acquired the basic knowledge and understanding, the reader can subsequently
move on to more specialized application-dependent techniques, which have been
developed and reported in a vast number of research papers.

Each chapter of the book starts with the basics and moves, progressively, to
more advanced topics’and reviews up-to-date techniques. We have made an effort
to keep a balance between mathematical and descriptive presentation. This is not
always an easy task. However, we strongly believe that in a topic such as pattern
recognition, trying to bypass mathematics deprives the reader of understanding the
essentials behind the methods and also the potential of developing new techniques,
which fit the needs of the problem at hand that he or she has to tackle. In pattern
recognition, the final adoption of an appropriate technique and algorithm is very
much a problem-dependent task. Moreover, according to our experience, teaching
pattern recognition is also a good “excuse” for the students to refresh and solidify xv

“02-Preface-SA272” 17/9/2008 page xvi

xvi Preface

some of the mathematical basics they have been taught in earlier years. “Repetitio
est mater studiosum.”

NEW TO THIS EDITION
The new features of the fourth edition include the following.

■ MATLAB codes and computer experiments are given at the end of most
chapters.

■ More examples and a number of new figures have been included to enhance
the readability and pedagogic aspects of the book.

■ New sections on some important topics of high current interest have been
added, including:
• Nonlinear dimensionality reduction

• Nonnegative matrix factorization

• Relevance feedback

• Robust regression

• Semi-supervised learning

• Spectral clustering

• Clustering combination techniques

Also, a number of sections have been rewritten in the context of more recent
applications in mind.

SUPPLEMENTS TO THE TEXT
Demonstrations based on MATLAB are available for download from the book Web
site, www.elsevierdirect.com/9781597492720. Also available are electronic figures
from the text and (for instructors only) a solutions manual for the end-of-chapter
problems and exercises. The interested reader can download detailed proofs,
which in the book necessarily, are sometimes, slightly condensed. PowerPoint
presentations are also available covering all chapters of the book.

Our intention is to update the site regularly with more and/or improved versions
of the MATLAB demonstrations. Suggestions are always welcome. Also at this Web
site a page will be available for typos, which are unavoidable, despite frequent
careful reading. The authors would appreciate readers notifying them about any
typos found.

“02-Preface-SA272” 17/9/2008 page xvii

Preface xvii

ACKNOWLEDGMENTS
This book would have not been written without the constant support and help
from a number of colleagues and students throughout the years. We are espe-
cially indebted to Kostas Berberidis, Velissaris Gezerlis, Xaris Georgion, Kristina
Georgoulakis, Leyteris Kofidis, Thanassis Liavas, Michalis Mavroforakis, Aggelos
Pikrakis,Thanassis Rontogiannis, Margaritis Sdralis, Kostas Slavakis, and Theodoros
Yiannakoponlos. The constant support provided by Yannis Kopsinis and Kostas
Thernelis from the early stages up to the final stage, with those long nights, has
been invaluable. The book improved a great deal after the careful reading and
the serious comments and suggestions of Alexandros Bölnn. Dionissis Cavouras,
Vassilis Digalakis, Vassilis Drakopoulos, Nikos Galatsanos, George Glentis, Spiros
Hatzispyros, Evagelos Karkaletsis, Elias Koutsoupias, Aristides Likas, Gerassimos
Mileounis, George Monstakides, George Paliouras, Stavros Perantonis, Takis Stam-
atoponlos, Nikos Vassilas, Manolis Zervakis, and Vassilis Zissimopoulos.

The book has greatly gained and improved thanks to the comments of a number
of people who provided feedback on the revision plan and/or comments on revised
chapters:

TulayAdali,University of Maryland;Mehniet Celenk,Ohio University;Rama Chel-
lappa, University of Maryland; Mark Clements, Georgia Institute of Technology;
Robert Duin,Delft University of Technology;Miguel Figneroa,Villanueva University
of Puerto Rico; Dimitris Gunopoulos, University of Athens; Mathias Kolsch, Naval
Postgraduate School;Adam Krzyzak, Concordia University; Baoxiu Li,Arizona State
University; David Miller, Pennsylvania State University; Bernhard Schölkopf, Max
Planck Institute; Hari Sundaram, Arizona State University; Harry Wechsler, George
Mason University; and Alexander Zien, Max Planck Institute.

We are greatly indebted to these colleagues for their time and their constructive
criticisms. Our collaboration and friendship with Nikos Kalouptsidis have been
a source of constant inspiration for all these years. We are both deeply indebted
to him.

Last but not least, K. Koutroumbas would like to thank Sophia, Dimitris-
Marios, and Valentini-Theodora for their tolerance and support and
S.Theodoridis would like to thank Despina, Eva, and Eleni, his joyful and
supportive “harem.”

“03-Ch01-SA272” 17/9/2008 page 1

CHAPTER

1Introduction

1.1 IS PATTERN RECOGNITION IMPORTANT?
Pattern recognition is the scientific discipline whose goal is the classification of
objects into a number of categories or classes. Depending on the application, these
objects can be images or signal waveforms or any type of measurements that need
to be classified. We will refer to these objects using the generic term patterns.
Pattern recognition has a long history,but before the 1960s it was mostly the output
of theoretical research in the area of statistics. As with everything else, the advent
of computers increased the demand for practical applications of pattern recogni-
tion, which in turn set new demands for further theoretical developments. As our
society evolves from the industrial to its postindustrial phase, automation in indus-
trial production and the need for information handling and retrieval are becoming
increasingly important. This trend has pushed pattern recognition to the high edge
of today’s engineering applications and research. Pattern recognition is an integral
part of most machine intelligence systems built for decision making.

Machine vision is an area in which pattern recognition is of importance.
A machine vision system captures images via a camera and analyzes them to produce
descriptions of what is imaged. A typical application of a machine vision system is
in the manufacturing industry,either for automated visual inspection or for automa-
tion in the assembly line. For example, in inspection, manufactured objects on a
moving conveyor may pass the inspection station, where the camera stands, and it
has to be ascertained whether there is a defect. Thus, images have to be analyzed
online, and a pattern recognition system has to classify the objects into the“defect”
or“nondefect”class. After that,an action has to be taken,such as to reject the offend-
ing parts. In an assembly line, different objects must be located and “recognized,”
that is, classified in one of a number of classes known a priori. Examples are the
“screwdriver class,” the “German key class,” and so forth in a tools’ manufacturing
unit. Then a robot arm can move the objects in the right place.

Character (letter or number) recognition is another important area of pattern
recognition,with major implications in automation and information handling. Opti-
cal character recognition (OCR) systems are already commercially available and
more or less familiar to all of us. An OCR system has a“front-end”device consisting
of a light source,a scan lens,a document transport,and a detector. At the output of 1

“03-Ch01-SA272” 17/9/2008 page 2

2 CHAPTER 1 Introduction

the light-sensitive detector, light-intensity variation is translated into “numbers”and
an image array is formed. In the sequel, a series of image processing techniques are
applied leading to line and character segmentation. The pattern recognition soft-
ware then takes over to recognize the characters—that is, to classify each character
in the correct“letter,number,punctuation”class. Storing the recognized document
has a twofold advantage over storing its scanned image. First, further electronic
processing, if needed, is easy via a word processor, and second, it is much more
efficient to store ASCII characters than a document image. Besides the printed
character recognition systems, there is a great deal of interest invested in systems
that recognize handwriting. A typical commercial application of such a system is
in the machine reading of bank checks. The machine must be able to recognize
the amounts in figures and digits and match them. Furthermore, it could check
whether the payee corresponds to the account to be credited. Even if only half of
the checks are manipulated correctly by such a machine, much labor can be saved
from a tedious job. Another application is in automatic mail-sorting machines for
postal code identification in post offices. Online handwriting recognition systems
are another area of great commercial interest. Such systems will accompany pen
computers, with which the entry of data will be done not via the keyboard but by
writing. This complies with today’s tendency to develop machines and computers
with interfaces acquiring human-like skills.

Computer-aided diagnosis is another important application of pattern recogni-
tion, aiming at assisting doctors in making diagnostic decisions. The final diagnosis
is, of course, made by the doctor. Computer-assisted diagnosis has been applied to
and is of interest for a variety of medical data,such as X-rays,computed tomographic
images, ultrasound images, electrocardiograms (ECGs), and electroencephalograms
(EEGs). The need for a computer-aided diagnosis stems from the fact that medi-
cal data are often not easily interpretable, and the interpretation can depend very
much on the skill of the doctor. Let us take for example X-ray mammography
for the detection of breast cancer. Although mammography is currently the best
method for detecting breast cancer,10 to 30% of women who have the disease and
undergo mammography have negative mammograms. In approximately two thirds
of these cases with false results the radiologist failed to detect the cancer, which
was evident retrospectively. This may be due to poor image quality, eye fatigue
of the radiologist, or the subtle nature of the findings. The percentage of correct
classifications improves at a second reading by another radiologist. Thus, one can
aim to develop a pattern recognition system in order to assist radiologists with a
“second” opinion. Increasing confidence in the diagnosis based on mammograms
would, in turn, decrease the number of patients with suspected breast cancer who
have to undergo surgical breast biopsy, with its associated complications.

Speech recognition is another area in which a great deal of research and devel-
opment effort has been invested. Speech is the most natural means by which
humans communicate and exchange information. Thus, the goal of building intelli-
gent machines that recognize spoken information has been a long-standing one for
scientists and engineers as well as science fiction writers. Potential applications of
such machines are numerous. They can be used, for example, to improve efficiency

“03-Ch01-SA272” 17/9/2008 page 3

1.1 Is Pattern Recognition Important? 3

in a manufacturing environment, to control machines in hazardous environments
remotely, and to help handicapped people to control machines by talking to them.
A major effort, which has already had considerable success, is to enter data into
a computer via a microphone. Software, built around a pattern (spoken sounds
in this case) recognition system, recognizes the spoken text and translates it into
ASCII characters,which are shown on the screen and can be stored in the memory.
Entering information by“talking”to a computer is twice as fast as entry by a skilled
typist. Furthermore, this can enhance our ability to communicate with deaf and
dumb people.

Data mining and knowledge discovery in databases is another key application
area of pattern recognition. Data mining is of intense interest in a wide range of
applications such as medicine and biology, market and financial analysis, business
management, science exploration, image and music retrieval. Its popularity stems
from the fact that in the age of information and knowledge society there is an ever
increasing demand for retrieving information and turning it into knowledge. More-
over,this information exists in huge amounts of data in various forms including,text,
images, audio and video, stored in different places distributed all over the world.
The traditional way of searching information in databases was the description-based
model where object retrieval was based on keyword description and subsequent
word matching. However, this type of searching presupposes that a manual anno-
tation of the stored information has previously been performed by a human. This
is a very time-consuming job and, although feasible when the size of the stored
information is limited, it is not possible when the amount of the available informa-
tion becomes large. Moreover, the task of manual annotation becomes problematic
when the stored information is widely distributed and shared by a heterogeneous
“mixture”of sites and users. Content-based retrieval systems are becoming more and
more popular where information is sought based on“similarity”between an object,
which is presented into the system, and objects stored in sites all over the world.
In a content-based image retrieval CBIR (system) an image is presented to an input
device (e.g.,scanner). The system returns“similar”images based on a measured“sig-
nature,” which can encode, for example, information related to color, texture and
shape. In a music content-based retrieval system, an example (i.e., an extract from
a music piece), is presented to a microphone input device and the system returns
“similar” music pieces. In this case, similarity is based on certain (automatically)
measured cues that characterize a music piece, such as the music meter, the music
tempo, and the location of certain repeated patterns.

Mining for biomedical and DNA data analysis has enjoyed an explosive growth
since the mid-1990s. All DNA sequences comprise four basic building elements;
the nucleotides: adenine (A), cytosine (C), guanine (G) and thymine (T). Like the
letters in our alphabets and the seven notes in music, these four nucleotides are
combined to form long sequences in a twisted ladder form. Genes consist of,usually,
hundreds of nucleotides arranged in a particular order. Specific gene-sequence
patterns are related to particular diseases and play an important role in medicine.
To this end,pattern recognition is a key area that offers a wealth of developed tools
for similarity search and comparison between DNA sequences. Such comparisons

“03-Ch01-SA272” 17/9/2008 page 4

4 CHAPTER 1 Introduction

between healthy and diseased tissues are very important in medicine to identify
critical differences between these two classes.

The foregoing are only five examples from a much larger number of possible
applications. Typically, we refer to fingerprint identification, signature authentica-
tion, text retrieval, and face and gesture recognition. The last applications have
recently attracted much research interest and investment in an attempt to facil-
itate human–machine interaction and further enhance the role of computers in
office automation, automatic personalization of environments, and so forth. Just to
provoke imagination, it is worth pointing out that the MPEG-7 standard includes
a provision for content-based video information retrieval from digital libraries of
the type: search and find all video scenes in a digital library showing person “X”
laughing. Of course, to achieve the final goals in all of these applications, pattern
recognition is closely linked with other scientific disciplines, such as linguistics,
computer graphics, machine vision, and database design.

Having aroused the reader’s curiosity about pattern recognition, we will next
sketch the basic philosophy and methodological directions in which the various
pattern recognition approaches have evolved and developed.

1.2 FEATURES, FEATURE VECTORS, AND CLASSIFIERS
Let us first simulate a simplified case “mimicking” a medical image classification
task. Figure 1.1 shows two images, each having a distinct region inside it. The
two regions are also themselves visually different. We could say that the region of
Figure 1.1a results from a benign lesion, class A, and that of Figure 1.1b from a
malignant one (cancer), class B. We will further assume that these are not the only
patterns (images) that are available to us, but we have access to an image database

(a) (b)

FIGURE 1.1
Examples of image regions corresponding to (a) class A and (b) class B.

“03-Ch01-SA272” 17/9/2008 page 5

1.2 Features, Feature Vectors, and Classifiers 5

!

"

!!
!

!
! ! !

!

FIGURE 1.2
Plot of the mean value versus the standard deviation for a number of different images originating
from class A (⃝) and class B (!). In this case, a straight line separates the two classes.

with a number of patterns, some of which are known to originate from class A and
some from class B.

The first step is to identify the measurable quantities that make these two regions
distinct from each other. Figure 1.2 shows a plot of the mean value of the inten-
sity in each region of interest versus the corresponding standard deviation around
this mean. Each point corresponds to a different image from the available database.
It turns out that class A patterns tend to spread in a different area from class B pat-
terns. The straight line seems to be a good candidate for separating the two classes.
Let us now assume that we are given a new image with a region in it and that we
do not know to which class it belongs. It is reasonable to say that we measure the
mean intensity and standard deviation in the region of interest and we plot the cor-
responding point. This is shown by the asterisk (∗) in Figure 1.2. Then it is sensible
to assume that the unknown pattern is more likely to belong to classA than class B.

The preceding artificial classification task has outlined the rationale behind a
large class of pattern recognition problems. The measurements used for the classifi-
cation,the mean value and the standard deviation in this case,are known as features.
In the more general case l features xi , i " 1, 2, . . . , l, are used, and they form the
feature vector

x " [x1, x2, . . . , xl]T

where T denotes transposition. Each of the feature vectors identifies uniquely
a single pattern (object). Throughout this book features and feature vectors will
be treated as random variables and vectors, respectively. This is natural, as the
measurements resulting from different patterns exhibit a random variation. This
is due partly to the measurement noise of the measuring devices and partly to

“03-Ch01-SA272” 17/9/2008 page 6

6 CHAPTER 1 Introduction

the distinct characteristics of each pattern. For example, in X-ray imaging large
variations are expected because of the differences in physiology among individuals.
This is the reason for the scattering of the points in each class shown in Figure 1.1.

The straight line in Figure 1.2 is known as the decision line, and it constitutes
the classifier whose role is to divide the feature space into regions that correspond
to either class A or class B. If a feature vector x, corresponding to an unknown
pattern, falls in the class A region, it is classified as class A, otherwise as class B.
This does not necessarily mean that the decision is correct. If it is not correct,
a misclassification has occurred. In order to draw the straight line in Figure 1.2
we exploited the fact that we knew the labels (class A or B) for each point of
the figure. The patterns (feature vectors) whose true class is known and which
are used for the design of the classifier are known as training patterns (training
feature vectors).

Having outlined the definitions and the rationale, let us point out the basic
questions arising in a classification task.

■ How are the features generated? In the preceding example, we used the
mean and the standard deviation,because we knew how the images had been
generated. In practice,this is far from obvious. It is problem dependent,and it
concerns the feature generation stage of the design of a classification system
that performs a given pattern recognition task.

■ What is the best number l of features to use? This is also a very important
task and it concerns the feature selection stage of the classification system.
In practice,a larger than necessary number of feature candidates is generated,
and then the “best”of them is adopted.

■ Having adopted the appropriate, for the specific task, features, how does one
design the classifier? In the preceding example the straight line was drawn
empirically, just to please the eye. In practice, this cannot be the case, and
the line should be drawn optimally, with respect to an optimality criterion.
Furthermore,problems for which a linear classifier (straight line or hyperplane
in the l-dimensional space) can result in acceptable performance are not the
rule. In general, the surfaces dividing the space in the various class regions
are nonlinear. What type of nonlinearity must one adopt, and what type of
optimizing criterion must be used in order to locate a surface in the right place
in the l-dimensional feature space? These questions concern the classifier
design stage.

■ Finally, once the classifier has been designed, how can one assess the perfor-
mance of the designed classifier? That is,what is the classification error rate?
This is the task of the system evaluation stage.

Figure 1.3 shows the various stages followed for the design of a classification
system. As is apparent from the feedback arrows, these stages are not independent.
On the contrary,they are interrelated and,depending on the results,one may go back

Leandro Bezerra Marinho

“03-Ch01-SA272” 17/9/2008 page 7

1.3 Supervised, Unsupervised, and Semi-Supervised Learning 7

feature
selection

classifier
design

system
evaluation

feature
generationsensor

patterns

FIGURE 1.3
The basic stages involved in the design of a classification system.

to redesign earlier stages in order to improve the overall performance. Furthermore,
there are some methods that combine stages, for example, the feature selection and
the classifier design stage, in a common optimization task.

Although the reader has already been exposed to a number of basic problems
at the heart of the design of a classification system, there are still a few things to
be said.

1.3 SUPERVISED, UNSUPERVISED, AND SEMI-SUPERVISED
LEARNING

In the example of Figure 1.1, we assumed that a set of training data were available,
and the classifier was designed by exploiting this a priori known information. This
is known as supervised pattern recognition or in the more general context of
machine learning as supervised learning. However, this is not always the case, and
there is another type of pattern recognition tasks for which training data,of known
class labels, are not available. In this type of problem, we are given a set of feature
vectors x and the goal is to unravel the underlying similarities and cluster (group)
“similar” vectors together. This is known as unsupervised pattern recognition or
unsupervised learning or clustering. Such tasks arise in many applications in social
sciences and engineering, such as remote sensing, image segmentation, and image
and speech coding. Let us pick two such problems.

In multispectral remote sensing, the electromagnetic energy emanating from
the earth’s surface is measured by sensitive scanners located aboard a satellite, an
aircraft,or a space station. This energy may be reflected solar energy (passive) or the
reflected part of the energy transmitted from the vehicle (active) in order to “inter-
rogate” the earth’s surface. The scanners are sensitive to a number of wavelength
bands of the electromagnetic radiation. Different properties of the earth’s surface
contribute to the reflection of the energy in the different bands. For example, in the
visible–infrared range properties such as the mineral and moisture contents of soils,
the sedimentation of water, and the moisture content of vegetation are the main
contributors to the reflected energy. In contrast, at the thermal end of the infrared,
it is the thermal capacity and thermal properties of the surface and near subsurface
that contribute to the reflection. Thus, each band measures different properties

“03-Ch01-SA272” 17/9/2008 page 8

8 CHAPTER 1 Introduction

of the same patch of the earth’s surface. In this way, images of the earth’s surface
corresponding to the spatial distribution of the reflected energy in each band can
be created. The task now is to exploit this information in order to identify the
various ground cover types, that is, built-up land, agricultural land, forest, fire burn,
water, and diseased crop. To this end, one feature vector x for each cell from the
“sensed”earth’s surface is formed. The elements xi , i " 1, 2, . . . , l, of the vector are
the corresponding image pixel intensities in the various spectral bands. In practice,
the number of spectral bands varies.

A clustering algorithm can be employed to reveal the groups in which feature
vectors are clustered in the l-dimensional feature space. Points that correspond to
the same ground cover type, such as water, are expected to cluster together and
form groups. Once this is done, the analyst can identify the type of each cluster by
associating a sample of points in each group with available reference ground data,
that is, maps or visits. Figure 1.4 demonstrates the procedure.

Clustering is also widely used in the social sciences in order to study and correlate
survey and statistical data and draw useful conclusions,which will then lead to the
right actions. Let us again resort to a simplified example and assume that we
are interested in studying whether there is any relation between a country’s gross
national product (GNP) and the level of people’s illiteracy, on the one hand, and
children’s mortality rate on the other. In this case, each country is represented by
a three-dimensional feature vector whose coordinates are indices measuring the
quantities of interest. A clustering algorithm will then reveal a rather compact
cluster corresponding to countries that exhibit low GNPs,high illiteracy levels, and
high children’s mortality expressed as a population percentage.

forest

soil water

forest

vegetation
water

soil

vegetation
forest

x1

x2

soil

(a) (b)

FIGURE 1.4
(a) An illustration of various types of ground cover and (b) clustering of the respective features
for multispectral imaging using two bands.

“03-Ch01-SA272” 17/9/2008 page 9

1.5 MATLAB Programs 9

A major issue in unsupervised pattern recognition is that of defining the
“similarity” between two feature vectors and choosing an appropriate measure
for it. Another issue of importance is choosing an algorithmic scheme that will
cluster (group) the vectors on the basis of the adopted similarity measure. In gen-
eral, different algorithmic schemes may lead to different results, which the expert
has to interpret.

Semi-supervised learning/pattern recognition for designing a classification sys-
tem shares the same goals as the supervised case, however now, the designer has
at his or her disposal a set of patterns of unknown class origin, in addition to the
training patterns,whose true class is known. We usually refer to the former ones as
unlabeled and the latter as labeled data. Semi-supervised pattern recognition can
be of importance when the system designer has access to a rather limited number
of labeled data. In such cases, recovering additional information from the unla-
beled samples, related to the general structure of the data at hand, can be useful in
improving the system design. Semi-supervised learning finds its way also to cluster-
ing tasks. In this case, labeled data are used as constraints in the form of must-links
and cannot-links. In other words, the clustering task is constrained to assign cer-
tain points in the same cluster or to exclude certain points of being assigned in the
same cluster. From this perspective, semi-supervised learning provides an a priori
knowledge that the clustering algorithm has to respect.

1.4 MATLAB PROGRAMS
At the end of most of the chapters there is a number of MATLAB programs and
computer experiments. The MATLAB codes provided are not intended to form part
of a software package, but they are to serve a purely pedagogical goal. Most of
these codes are given to our students who are asked to play with and discover the
“secrets”associated with the corresponding methods. This is also the reason that for
most of the cases the data used are simulated data around the Gaussian distribution.
They have been produced carefully in order to guide the students in understanding
the basic concepts. This is also the reason that the provided codes correspond to
those of the techniques and algorithms that, to our opinion,comprise the backbone
of each chapter and the student has to understand in a first reading. Whenever
the required MATLAB code was available (at the time this book was prepared) in
a MATLAB toolbox, we chose to use the associated MATLAB function and explain
how to use its arguments. No doubt,each instructor has his or her own preferences,
experiences,and unique way of viewing teaching. The provided routines are written
in a way that can run on other data sets as well. In a separate accompanying book
we provide a more complete list of MATLAB codes embedded in a user-friendly
Graphical User Interface (GUI) and also involving more realistic examples using
real images and audio signals.

Leandro Bezerra Marinho

“03-Ch01-SA272” 17/9/2008 page 10

10 CHAPTER 1 Introduction

1.5 OUTLINE OF THE BOOK
Chapters 2–10 deal with supervised pattern recognition and Chapters 11–16 deal
with the unsupervised case. Semi-supervised learning is introduced in Chapter 10.
The goal of each chapter is to start with the basics,definitions, and approaches, and
move progressively to more advanced issues and recent techniques. To what extent
the various topics covered in the book will be presented in a first course on pattern
recognition depends very much on the course’s focus,on the students’background,
and, of course, on the lecturer. In the following outline of the chapters, we give
our view and the topics that we cover in a first course on pattern recognition. No
doubt, other views do exist and may be better suited to different audiences. At the
end of each chapter, a number of problems and computer exercises are provided.

Chapter 2 is focused on Bayesian classification and techniques for estimating
unknown probability density functions. In a first course on pattern recognition,the
sections related to Bayesian inference, the maximum entropy, and the expectation
maximization (EM) algorithm are omitted. Special focus is put on the Bayesian clas-
sification,the minimum distance (Euclidean and Mahalanobis), the nearest neighbor
classifiers, and the naive Bayes classifier. Bayesian networks are briefly introduced.

Chapter 3 deals with the design of linear classifiers. The sections dealing with the
probability estimation property of the mean square solution as well as the bias vari-
ance dilemma are only briefly mentioned in our first course. The basic philosophy
underlying the support vector machines can also be explained, although a deeper
treatment requires mathematical tools (summarized inAppendix C) that most of the
students are not familiar with during a first course class. On the contrary,emphasis is
put on the linear separability issue, the perceptron algorithm, and the mean square
and least squares solutions. After all, these topics have a much broader horizon
and applicability. Support vector machines are briefly introduced. The geometric
interpretation offers students a better understanding of the SVM theory.

Chapter 4 deals with the design of nonlinear classifiers. The section dealing with
exact classification is bypassed in a first course. The proof of the backpropagation
algorithm is usually very boring for most of the students and we bypass its details.
A description of its rationale is given, and the students experiment with it using
MATLAB. The issues related to cost functions are bypassed. Pruning is discussed
with an emphasis on generalization issues. Emphasis is also given to Cover’s theorem
and radial basis function (RBF) networks. The nonlinear support vector machines,
decision trees, and combining classifiers are only briefly touched via a discussion
on the basic philosophy behind their rationale.

Chapter 5 deals with the feature selection stage, and we have made an effort
to present most of the well-known techniques. In a first course we put emphasis
on the t -test. This is because hypothesis testing also has a broad horizon, and at
the same time it is easy for the students to apply it in computer exercises. Then,
depending on time constraints, divergence, Bhattacharrya distance, and scattered
matrices are presented and commented on, although their more detailed treatment

“03-Ch01-SA272” 17/9/2008 page 11

1.5 Outline of The Book 11

is for a more advanced course. Emphasis is given to Fisher’s linear discriminant
method (LDA) for the two-class case.

Chapter 6 deals with the feature generation stage using transformations. The
Karhunen–Loève transform and the singular value decomposition are first intro-
duced as dimensionality reduction techniques. Both methods are briefly covered in
the second semester. In the sequel the independent component analysis (ICA),non-
negative matrix factorization and nonlinear dimensionality reduction techniques
are presented. Then the discrete Fourier transform (DFT), discrete cosine trans-
form (DCT), discrete sine transform (DST), Hadamard, and Haar transforms are
defined. The rest of the chapter focuses on the discrete time wavelet transform.
The incentive is to give all the necessary information so that a newcomer in the
wavelet field can grasp the basics and be able to develop software, based on
filter banks, in order to generate features. All these techniques are bypassed in
a first course.

Chapter 7 deals with feature generation focused on image and audio classifica-
tion. The sections concerning local linear transforms,moments,parametric models,
and fractals are not covered in a first course. Emphasis is placed on first- and second-
order statistics features as well as the run-length method. The chain code for shape
description is also taught. Computer exercises are then offered to generate these
features and use them for classification for some case studies. In a one-semester
course there is no time to cover more topics.

Chapter 8 deals with template matching. Dynamic programming (DP) and the
Viterbi algorithm are presented and then applied to speech recognition. In a
two-semester course, emphasis is given to the DP and the Viterbi algorithm.
The edit distance seems to be a good case for the students to grasp the basics. Cor-
relation matching is taught and the basic philosophy behind deformable template
matching can also be presented.

Chapter 9 deals with context-dependent classification. Hidden Markov mod-
els are introduced and applied to communications and speech recognition. This
chapter is bypassed in a first course.

Chapter 10 deals with system evaluation and semi-supervised learning. The
various error rate estimation techniques are discussed, and a case study with real
data is treated. The leave-one-out method and the resubstitution methods are
emphasized in the second semester,and students practice with computer exercises.
Semi-supervised learning is bypassed in a first course.

Chapter 11 deals with the basic concepts of clustering. It focuses on definitions
as well as on the major stages involved in a clustering task. The various types of
data encountered in clustering applications are reviewed, and the most commonly
used proximity measures are provided. In a first course, only the most widely used
proximity measures are covered (e.g., lp norms, inner product,Hamming distance).

Chapter 12 deals with sequential clustering algorithms. These include some
of the simplest clustering schemes, and they are well suited for a first course to
introduce students to the basics of clustering and allow them to experiment with

“03-Ch01-SA272” 17/9/2008 page 12

12 CHAPTER 1 Introduction

the computer. The sections related to estimation of the number of clusters and
neural network implementations are bypassed.

Chapter 13 deals with hierarchical clustering algorithms. In a first course, only
the general agglomerative scheme is considered with an emphasis on single link
and complete link algorithms, based on matrix theory. Agglomerative algorithms
based on graph theory concepts as well as the divisive schemes are bypassed.

Chapter 14 deals with clustering algorithms based on cost function optimization,
using tools from differential calculus. Hard clustering and fuzzy and possibilistic
schemes are considered,based on various types of cluster representatives, including
point representatives,hyperplane representatives,and shell-shaped representatives.
In a first course, most of these algorithms are bypassed, and emphasis is given to
the isodata algorithm.

Chapter 15 features a high degree of modularity. It deals with clustering algo-
rithms based on different ideas,which cannot be grouped under a single philosophy.
Spectral clustering, competitive learning, branch and bound, simulated annealing,
and genetic algorithms are some of the schemes treated in this chapter. These are
bypassed in a first course.

Chapter 16 deals with the clustering validity stage of a clustering procedure. It
contains rather advanced concepts and is omitted in a first course. Emphasis is given
to the definitions of internal,external,and relative criteria and the random hypothe-
ses used in each case. Indices, adopted in the framework of external and internal
criteria,are presented,and examples are provided showing the use of these indices.

Syntactic pattern recognition methods are not treated in this book. Syntactic
pattern recognition methods differ in philosophy from the methods discussed in
this book and, in general, are applicable to different types of problems. In syntactic
pattern recognition, the structure of the patterns is of paramount importance, and
pattern recognition is performed on the basis of a set of pattern primitives, a set
of rules in the form of a grammar, and a recognizer called automaton. Thus, we
were faced with a dilemma: either to increase the size of the book substantially, or
to provide a short overview (which, however, exists in a number of other books),
or to omit it. The last option seemed to be the most sensible choice.

“04-Ch02-SA272” 18/9/2008 page 13

CHAPTER

2Classifiers Based on
Bayes Decision Theory

2.1 INTRODUCTION
This is the first chapter, out of three, dealing with the design of the classifier in a
pattern recognition system. The approach to be followed builds upon probabilistic
arguments stemming from the statistical nature of the generated features. As has
already been pointed out in the introductory chapter, this is due to the statistical
variation of the patterns as well as to the noise in the measuring sensors. Adopting
this reasoning as our kickoff point,we will design classifiers that classify an unknown
pattern in the most probable of the classes. Thus, our task now becomes that of
defining what “most probable”means.

Given a classification task of M classes,!1, !2, . . . , !M ,and an unknown pattern,
which is represented by a feature vector x,we form the M conditional probabilities
P(!i|x), i ! 1, 2, . . . , M . Sometimes, these are also referred to as a posteriori
probabilities. In words, each of them represents the probability that the unknown
pattern belongs to the respective class !i , given that the corresponding feature
vector takes the value x. Who could then argue that these conditional probabilities
are not sensible choices to quantify the term most probable? Indeed, the classifiers
to be considered in this chapter compute either the maximum of these M values
or, equivalently, the maximum of an appropriately defined function of them. The
unknown pattern is then assigned to the class corresponding to this maximum.

The first task we are faced with is the computation of the conditional proba-
bilities. The Bayes rule will once more prove its usefulness! A major effort in this
chapter will be devoted to techniques for estimating probability density functions
(pdf), based on the available experimental evidence, that is, the feature vectors
corresponding to the patterns of the training set.

2.2 BAYES DECISION THEORY
We will initially focus on the two-class case. Let !1, !2 be the two classes in which
our patterns belong. In the sequel, we assume that the a priori probabilities 13

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 14

14 CHAPTER 2 Classifiers Based on Bayes Decision Theory

P(!1), P(!2) are known. This is a very reasonable assumption, because even if
they are not known, they can easily be estimated from the available training feature
vectors. Indeed, if N is the total number of available training patterns, and N1, N2
of them belong to !1 and !2, respectively, then P(!1) ≈ N1/N and P(!2) ≈ N2/N .

The other statistical quantities assumed to be known are the class-conditional
probability density functions p(x|!i), i ! 1, 2, describing the distribution of the
feature vectors in each of the classes. If these are not known, they can also be
estimated from the available training data,as we will discuss later on in this chapter.
The pdf p(x|!i) is sometimes referred to as the likelihood function of !i with
respect to x. Here we should stress the fact that an implicit assumption has been
made. That is, the feature vectors can take any value in the l-dimensional feature
space. In the case that feature vectors can take only discrete values,density functions
p(x|!i) become probabilities and will be denoted by P(x|!i).

We now have all the ingredients to compute our conditional probabilities, as
stated in the introduction. To this end, let us recall from our probability course
basics the Bayes rule (Appendix A)

P(!i|x) !
p(x|!i)P(!i)

p(x)
(2.1)

where p(x) is the pdf of x and for which we have (Appendix A)

p(x) !
2∑

i!1

p(x|!i)P(!i) (2.2)

The Bayes classification rule can now be stated as

If P(!1|x) " P(!2|x), x is classified to !1

If P(!1|x) # P(!2|x), x is classified to !2 (2.3)

The case of equality is detrimental and the pattern can be assigned to either of the
two classes. Using (2.1), the decision can equivalently be based on the inequalities

p(x|!1)P(!1) ≷ p(x|!2)P(!2) (2.4)

p(x) is not taken into account, because it is the same for all classes and it does
not affect the decision. Furthermore, if the a priori probabilities are equal, that is,
P(!1) ! P(!2) ! 1/2, Eq. (2.4) becomes

p(x|!1) ≷ p(x|!2) (2.5)

Thus, the search for the maximum now rests on the values of the conditional pdfs
evaluated at x. Figure 2.1 presents an example of two equiprobable classes and
shows the variations of p(x|!i), i ! 1, 2, as functions of x for the simple case of a
single feature (l ! 1). The dotted line at x0 is a threshold partitioning the feature
space into two regions,R1 and R2. According to the Bayes decision rule,for all values
of x in R1 the classifier decides !1 and for all values in R2 it decides !2. However,
it is obvious from the figure that decision errors are unavoidable. Indeed, there is

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 15

2.2 Bayes Decision Theory 15

R1

p(x|!) p(x|!1)

p(x|!2)

x0 x
R2

FIGURE 2.1
Example of the two regions R1 and R2 formed by the Bayesian classifier for the case of two
equiprobable classes.

a finite probability for an x to lie in the R2 region and at the same time to belong
in class !1. Then our decision is in error. The same is true for points originating
from class !2. It does not take much thought to see that the total probability, Pe, of
committing a decision error for the case of two equiprobable classes, is given by

Pe !
1
2

x0∫

$%

p(x|!2) dx &
1
2

&%∫

x0

p(x|!1) dx (2.6)

which is equal to the total shaded area under the curves in Figure 2.1. We have now
touched on a very important issue. Our starting point to arrive at the Bayes classifi-
cation rule was rather empirical, via our interpretation of the term most probable.
We will now see that this classification test, though simple in its formulation, has a
sounder mathematical interpretation.

Minimizing the Classification Error Probability
We will show that the Bayesian classifier is optimal with respect to minimizing the
classification error probability. Indeed, the reader can easily verify, as an exercise,
that moving the threshold away from x0, in Figure 2.1, always increases the corre-
sponding shaded area under the curves. Let us now proceed with a more formal
proof.

Proof. Let R1 be the region of the feature space in which we decide in favor of
!1 and R2 be the corresponding region for !2. Then an error is made if x ∈ R1,
although it belongs to !2 or if x ∈ R2, although it belongs to !1. That is,

Pe ! P(x ∈ R2, !1) & P(x ∈ R1, !2) (2.7)

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 16

16 CHAPTER 2 Classifiers Based on Bayes Decision Theory

where P(·, ·) is the joint probability of two events. Recalling, once more, our
probability basics (Appendix A), this becomes

Pe ! P(x ∈ R2|!1)P(!1) & P(x ∈ R1|!2)P(!2)

! P(!1)
∫

R2

p(x|!1) dx & P(!2)
∫

R1

p(x|!2) dx (2.8)

or using the Bayes rule

Pe !

∫

R2

P(!1|x)p(x) dx &

∫

R1

P(!2|x)p(x) dx (2.9)

It is now easy to see that the error is minimized if the partitioning regions R1 and
R2 of the feature space are chosen so that

R1: P(!1|x) " P(!2|x)

R2: P(!2|x) " P(!1|x) (2.10)

Indeed,since the union of the regions R1, R2 covers all the space,from the definition
of a probability density function we have that

∫

R1

P(!1|x)p(x) dx &

∫

R2

P(!1|x)p(x) dx ! P(!1) (2.11)

Combining Eqs. (2.9) and (2.11), we get

Pe ! P(!1) $

∫

R1

(P(!1|x) $ P(!2|x)) p(x) dx (2.12)

This suggests that the probability of error is minimized if R1 is the region of space in
which P(!1|x) " P(!2|x). Then,R2 becomes the region where the reverse is true.

So far, we have dealt with the simple case of two classes. Generalizations to
the multiclass case are straightforward. In a classification task with M classes,
!1, !2, . . . , !M ,an unknown pattern,represented by the feature vector x,is assigned
to class !i if

P(!i |x) " P(!j |x) 'j ̸! i (2.13)

It turns out that such a choice also minimizes the classification error probability
(Problem 2.1).

Minimizing the Average Risk
The classification error probability is not always the best criterion to be adopted for
minimization. This is because it assigns the same importance to all errors. However,
there are cases in which some wrong decisions may have more serious implications
than others. For example, it is much more serious for a doctor to make a wrong
decision and a malignant tumor to be diagnosed as a benign one, than the other
way round. If a benign tumor is diagnosed as a malignant one, the wrong decision
will be cleared out during subsequent clinical examinations. However, the results

“04-Ch02-SA272” 18/9/2008 page 17

2.2 Bayes Decision Theory 17

from the wrong decision concerning a malignant tumor may be fatal. Thus, in such
cases it is more appropriate to assign a penalty term to weigh each error. For our
example, let us denote by !1 the class of malignant tumors and as !2 the class of the
benign ones. Let, also, R1, R2 be the regions in the feature space where we decide
in favor of !1 and !2, respectively. The error probability Pe is given by Eq. (2.8).
Instead of selecting R1 and R2 so that Pe is minimized,we will now try to minimize
a modified version of it, that is,

r ! "12P(!1)
∫

R2

p(x|!1)dx & "21P(!2)
∫

R1

p(x|!2)dx (2.14)

where each of the two terms that contributes to the overall error probability is
weighted according to its significance. For our case, the reasonable choice would
be to have "12 " "21. Thus errors due to the assignment of patterns originating from
class !1 to class !2 will have a larger effect on the cost function than the errors
associated with the second term in the summation.

Let us now consider an M -class problem and let Rj , j ! 1, 2, . . . , M ,be the regions
of the feature space assigned to classes !j , respectively. Assume now that a feature
vector x that belongs to class !k lies in Ri , i ̸! k. Then this vector is misclassified in
!i and an error is committed. A penalty term "ki, known as loss, is associated with
this wrong decision. The matrix L,which has at its (k, i) location the corresponding
penalty term, is known as the loss matrix.1 Observe that in contrast to the philoso-
phy behind Eq. (2.14),we have now allowed weights across the diagonal of the loss
matrix ("kk), which correspond to correct decisions. In practice, these are usually
set equal to zero,although we have considered them here for the sake of generality.
The risk or loss associated with !k is defined as

rk !
M∑

i!1

"ki

∫

Ri

p(x|!k) dx (2.15)

Observe that the integral is the overall probability of a feature vector from class !k
being classified in !i. This probability is weighted by "ki . Our goal now is to choose
the partitioning regions Rj so that the average risk

r !
M∑

k!1

rkP(!k)

!
M∑

i!1

∫

Ri

(
M∑

k!1

"ki p(x|!k)P(!k)

)

dx (2.16)

is minimized. This is achieved if each of the integrals is minimized, which is
equivalent to selecting partitioning regions so that

x ∈ Ri if li ≡
M∑

k!1

"ki p(x|!k)P(!k) # lj ≡
M∑

k!1

"kj p(x|!k)P(!k) 'j ̸! i (2.17)

1 The terminology comes from the general decision theory.

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 18

18 CHAPTER 2 Classifiers Based on Bayes Decision Theory

It is obvious that if "ki ! 1 $ #ki, where #ki is Kronecker’s delta (0 if k ̸! i and
1 if k ! i), then minimizing the average risk becomes equivalent to minimizing the
classification error probability.

The two-class case. For this specific case we obtain

l1 ! "11 p(x|!1)P(!1) & "21 p(x|!2)P(!2)

l2 ! "12 p(x|!1)P(!1) & "22 p(x|!2)P(!2) (2.18)

We assign x to !1 if l1 # l2, that is,

("21 $ "22)p(x|!2)P(!2) # ("12 $ "11)p(x|!1)P(!1) (2.19)

It is natural to assume that "ij " "ii (correct decisions are penalized much less than
wrong ones). Adopting this assumption, the decision rule (2.17) for the two-class
case now becomes

x ∈ !1(!2) if l12 ≡ p(x|!1)
p(x|!2)

" (#)
P(!2)
P(!1)

"21 $ "22

"12 $ "11
(2.20)

The ratio l12 is known as the likelihood ratio and the preceding test as the likeli-
hood ratio test. Let us now investigate Eq. (2.20) a little further and consider the
case of Figure 2.1. Assume that the loss matrix is of the form

L !

[
0 "12

"21 0

]

If misclassification of patterns that come from !2 is considered to have serious
consequences, then we must choose "21 " "12. Thus, patterns are assigned to
class !2 if

p(x|!2) " p(x|!1)
"12

"21

where P(!1) ! P(!2) ! 1/2 has been assumed. That is, p(x|!1) is multiplied by
a factor less than 1 and the effect of this is to move the threshold in Figure 2.1 to
the left of x0. In other words, region R2 is increased while R1 is decreased. The
opposite would be true if "21 # "12.

An alternative cost that sometimes is used for two class problems is the Neyman-
Pearson criterion. The error for one of the classes is now constrained to be fixed
and equal to a chosen value (Problem 2.6). Such a decision rule has been used,
for example, in radar detection problems. The task there is to detect a target in
the presence of noise. One type of error is the so-called false alarm—that is, to
mistake the noise for a signal (target) present. Of course, the other type of error
is to miss the signal and to decide in favor of the noise (missed detection). In
many cases the error probability of false alarm is set equal to a predetermined
threshold.

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 19

2.3 Discriminant Functions and Decision Surfaces 19

Example 2.1
In a two-class problem with a single feature x the pdfs are Gaussians with variance $2 ! 1/2
for both classes and mean values 0 and 1, respectively, that is,

p(x|!1) !
1√
%

exp($x2)

p(x|!2) !
1√
%

exp($(x $ 1)2)

If P(!1) ! P(!2) ! 1/2, compute the threshold value x0 (a) for minimum error probability and
(b) for minimum risk if the loss matrix is

L !

[
0 0.5

1.0 0

]

Taking into account the shape of the Gaussian function graph (Appendix A), the threshold for
the minimum probability case will be

x0 : exp($x2) ! exp($(x $ 1)2)

Taking the logarithm of both sides, we end up with x0 ! 1/2. In the minimum risk case we get

x0 : exp($x2) ! 2 exp($(x $ 1)2)

or x0 ! (1 $ ln 2)/2 # 1/2; that is, the threshold moves to the left of 1/2. If the two classes are
not equiprobable, then it is easily verified that if P(!1) " (#) P(!2) the threshold moves to
the right (left). That is, we expand the region in which we decide in favor of the most probable
class, since it is better to make fewer errors for the most probable class.

2.3 DISCRIMINANT FUNCTIONS AND DECISION SURFACES
It is by now clear that minimizing either the risk or the error probability or the
Neyman-Pearson criterion is equivalent to partitioning the feature space into M
regions, for a task with M classes. If regions Ri , Rj happen to be contiguous, then
they are separated by a decision surface in the multidimensional feature space. For
the minimum error probability case, this is described by the equation

P(!i|x) $ P(!j |x) ! 0 (2.21)

From the one side of the surface this difference is positive, and from the other
it is negative. Sometimes, instead of working directly with probabilities (or risk
functions), it may be more convenient, from a mathematical point of view, to work
with an equivalent function of them, for example,gi(x) ≡ f (P(!i|x)),where f (·) is
a monotonically increasing function. gi(x) is known as a discriminant function.
The decision test (2.13) is now stated as

classify x in !i if gi(x) " gj(x) 'j ̸! i (2.22)

The decision surfaces, separating contiguous regions, are described by

gij(x) ≡ gi(x) $ gj(x) ! 0, i, j ! 1, 2, . . . , M , i ̸! j (2.23)

“04-Ch02-SA272” 18/9/2008 page 20

20 CHAPTER 2 Classifiers Based on Bayes Decision Theory

So far,we have approached the classification problem via Bayesian probabilistic argu-
ments and the goal was to minimize the classification error probability or the risk.
However, as we will soon see, not all problems are well suited to such approaches.
For example, in many cases the involved pdfs are complicated and their estimation
is not an easy task. In such cases, it may be preferable to compute decision surfaces
directly by means of alternative costs, and this will be our focus in Chapters 3 and
4. Such approaches give rise to discriminant functions and decision surfaces,which
are entities with no (necessary) relation to Bayesian classification, and they are, in
general, suboptimal with respect to Bayesian classifiers.

In the following we will focus on a particular family of decision surfaces asso-
ciated with the Bayesian classification for the specific case of Gaussian density
functions.

2.4 BAYESIAN CLASSIFICATION FOR NORMAL DISTRIBUTIONS
2.4.1 The Gaussian Probability Density Function
One of the most commonly encountered probability density functions in practice
is the Gaussian or normal probability density function. The major reasons for its
popularity are its computational tractability and the fact that it models adequately
a large number of cases. One of the most celebrated theorems in statistics is the
central limit theorem. The theorem states that if a random variable is the outcome of
a summation of a number of independent random variables, its pdf approaches the
Gaussian function as the number of summands tends to infinity (seeAppendixA). In
practice,it is most common to assume that the sum of random variables is distributed
according to a Gaussian pdf, for a sufficiently large number of summing terms.

The one-dimensional or the univariate Gaussian, as it is sometimes called, is
defined by

p(x) !
1√
2%$

exp
(

$
(x $ &)2

2$2

)
(2.24)

The parameters & and $2 turn out to have a specific meaning. The mean value of
the random variable x is equal to &, that is,

& ! E[x] ≡
&%∫

$%

xp(x)dx (2.25)

where E[·] denotes the mean (or expected) value of a random variable. The
parameter $2 is equal to the variance of x, that is,

$2 ! E[(x $ &)2] ≡
&%∫

$%

(x $ &)2p(x)dx (2.26)

“04-Ch02-SA272” 18/9/2008 page 21

2.4 Bayesian Classification for Normal Distributions 21

x x

1

100
(a) (b)

1

p(x) p(x)

FIGURE 2.2

Graphs for the one-dimensional Gaussian pdf. (a) Mean value & ! 0, $2 ! 1, (b) & ! 1 and
$2 ! 0.2. The larger the variance the broader the graph is. The graphs are symmetric, and they
are centered at the respective mean value.

Figure 2.2a shows the graph of the Gaussian function for & ! 0 and $2 ! 1, and
Figure 2.2b the case for & ! 1 and $2 ! 0.2. The larger the variance the broader the
graph,which is symmetric, and it is always centered at & (see Appendix A, for some
more properties).

The multivariate generalization of a Gaussian pdf in the l-dimensional space is
given by

p(x) !
1

(2%)l/2|(|1/2 exp
(

$
1
2

(x $!)T ($1(x $!)
)

(2.27)

where ! ! E[x] is the mean value and (is the l) l covariance matrix (Appendix
A) defined as

(! E[(x $!)(x $!)T] (2.28)

where |(| denotes the determinant of (. It is readily seen that for l ! 1 the
multivariate Gaussian coincides with the univariate one. Sometimes, the symbol
N (!, () is used to denote a Gaussian pdf with mean value ! and covariance (.

To get a better feeling on what the multivariate Gaussian looks like, let us focus
on some cases in the two-dimensional space, where nature allows us the luxury of
visualization. For this case we have

(! E

[[
x1 $ &1

x2 $ &2

] [
x1 $ &1, x2 $ &2

]]

(2.29)

!

[
$2

1 $12

$12 $2
2

]

(2.30)

where E[xi] ! &i , i ! 1, 2,and by definition $12 ! E[(x1 $&1)(x2 $&2)],which is
known as the covariance between the random variables x1 and x2 and it is a measure

“04-Ch02-SA272” 18/9/2008 page 22

22 CHAPTER 2 Classifiers Based on Bayes Decision Theory

of their mutual statistical correlation. If the variables are statistically independent,
their covariance is zero (AppendixA). Obviously, the diagonal elements of ! are the
variances of the respective elements of the random vector.

Figures 2.3–2.6 show the graphs for four instances of a two-dimensional Gaussian
probability density function. Figure 2.3a corresponds to a Gaussian with a diagonal
covariance matrix

! "

[
3 0
0 3

]

(a) (b)

x2

x2

x1

x1

p(x)

FIGURE 2.3
(a) The graph of a two-dimensional Gaussian pdf and (b) the corresponding isovalue curves for
a diagonal ! with !2

1 " !2
2 . The graph has a spherical symmetry showing no preference in any

direction.

(a) (b)

x2

x2

x1

x1

p(x)

FIGURE 2.4
(a) The graph of a two-dimensional Gaussian pdf and (b) the corresponding isovalue curves for
a diagonal ! with !2

1 ## !2
2 . The graph is elongated along the x1 direction.

Leandro Bezerra Marinho

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 23

2.4 Bayesian Classification for Normal Distributions 23

p(x)

(a) (b)

x2

x2

x1

x1

FIGURE 2.5
(a) The graph of a two-dimensional Gaussian pdf and (b) the corresponding isovalue curves for
a diagonal ! with !2

1 $$!2
2 . The graph is elongated along the x2 direction.

(a) (b)

x2

p(x)

x1

x1

x2

FIGURE 2.6
(a) The graph of a two-dimensional Gaussian pdf and (b) the corresponding isovalue curves for
a case of a nondiagonal !. Playing with the values of the elements of ! one can achieve different
shapes and orientations.

that is, both features, x1, x2 have variance equal to 3 and their covariance is zero.
The graph of the Gaussian is symmetric. For this case the isovalue curves (i.e.,
curves of equal probability density values) are circles (hyperspheres in the general
l-dimensional space) and are shown in Figure 2.3b. The case shown in Figure 2.4a
corresponds to the covariance matrix

! "

[
!2

1 0
0 !2

2

]

with !2
1 " 15 ## !2

2 " 3. The graph of the Gaussian is now elongated along the
x1-axis, which is the direction of the larger variance. The isovalue curves, shown

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 24

24 CHAPTER 2 Classifiers Based on Bayes Decision Theory

in Figure 2.4b, are ellipses. Figures 2.5a and 2.5b correspond to the case with
$2

1 ! 3 ## $2
2 ! 15. Figures 2.6a and 2.6b correspond to the more general case

where

(!

[
$2

1 $12

$12 $2
2

]

and $2
1 ! 15, $2

2 ! 3, $12 ! 6. Playing with $2
1, $2

2 and $12 one can achieve different
shapes and different orientations.

The isovalue curves are ellipses of different orientations and with different ratios
of major to minor axis lengths. Let us consider, as an example, the case of a zero
mean random vector with a diagonal covariance matrix. To compute the isovalue
curves is equivalent to computing the curves of constant values for the exponent,
that is,

xT ($1x ! [x1, x2]

⎡

⎣
1

$2
1

0

0 1
$2

2

⎤

⎦
[

x1

x2

]

! C (2.31)

or

x2
1

$2
1

&
x2

2

$2
2

! C (2.32)

for some constant C . This is the equation of an ellipse whose axes are determined
by the the variances of the involved features. As we will soon see,the principal axes
of the ellipses are controlled by the eigenvectors/eigenvalues of the covariance
matrix. As we know from linear algebra (and it is easily checked), the eigenvalues of
a diagonal matrix, which was the case for our example, are equal to the respective
elements across its diagonal.

2.4.2 The Bayesian Classifier for Normally Distributed Classes
Our goal in this section is to study the optimal Bayesian classifier when the involved
pdfs, p(x|!i), i ! 1, 2, . . . , M (likelihood functions of !i with respect to x),
describing the data distribution in each one of the classes, are multivariate normal
distributions, that is, N (!i , (i), i ! 1, 2, . . . , M . Because of the exponential form
of the involved densities, it is preferable to work with the following discriminant
functions, which involve the (monotonic) logarithmic function ln(·):

gi(x) ! ln(p(x|!i)P(!i)) ! ln p(x|!i) & ln P(!i) (2.33)

or

gi(x) ! $
1
2

(x $!i)
T ($1

i (x $!i) & ln P(!i) & ci (2.34)

where ci is a constant equal to $(l/2) ln 2% $ (1/2) ln|(i|. Expanding, we obtain

gi(x) ! $
1
2

xT ($1
i x &

1
2

xT ($1
i !i $

1
2

!T
i ($1

i !i &
1
2

!T
i ($1

i x & ln P(!i) & ci (2.35)

Leandro Bezerra Marinho

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 25

2.4 Bayesian Classification for Normal Distributions 25

In general, this is a nonlinear quadratic form. Take, for example, the case of l ! 2
and assume that

(i !

[
$2

i 0

0 $2
i

]

Then (2.35) becomes

gi(x) ! $
1

2$2
i

(
x2

1 & x2
2
)

&
1

$2
i

(&i1x1 & &i2x2) $
1

2$2
i

(
&2

i1 & &2
i2

)
& ln P(!i) & ci (2.36)

and obviously the associated decision curves gi(x) $ gj(x) ! 0 are quadrics (i.e.,
ellipsoids, parabolas, hyperbolas, pairs of lines). That is, in such cases, the Bayesian
classifier is a quadratic classifier, in the sense that the partition of the feature
space is performed via quadric decision surfaces. For l " 2 the decision sur-
faces are hyperquadrics. Figure 2.7a shows the decision curve corresponding to
P(!1) ! P(!2), !1 ! [0, 0]T and !2 ! [4, 0]T . The covariance matrices for the two
classes are

(1 !

[
0.3 0.0
0.0 0.35

]

, (2 !

[
1.2 0.0
0.0 1.85

]

For the case of Figure 2.7b the classes are also equiprobable with !1 ! [0, 0]T ,
!2 ! [3.2, 0]T and covariance matrices

(1 !

[
0.1 0.0
0.0 0.75

]

, (2 !

[
0.75 0.0
0.0 0.1

]

Figure 2.8 shows the two pdfs for the case of Figure 2.7a. The red color is used
for class !1 and indicates the points where p(x|!1) " p(x|!2). The gray color
is similarly used for class !2. It is readily observed that the decision curve is an
ellipse, as shown in Figure 2.7a. The setup corresponding to Figure 2.7b is shown
in Figure 2.9. In this case, the decision curve is a hyperbola.

(a) (b)

!1

!2

!1

!2

!1

x2 x2

x1

3 4

1

$2

$5
$10 $5 0 5

0

$3

x1$3 $2 $1 0

FIGURE 2.7
Examples of quadric decision curves. Playing with the covariance matrices of the Gaussian
functions, different decision curves result, that is, ellipsoids, parabolas, hyperbolas, pairs of lines.

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 26

26 CHAPTER 2 Classifiers Based on Bayes Decision Theory

0.25

0.2

0.15

0.1

0.05

0
8

6

4

2

0

86420

22

22

24

24
26

2628 28

FIGURE 2.8
An example of the pdfs of two equiprobable classes in the two-dimensional space. The feature
vectors in both classes are normally distributed with different covariance matrices. In this case,
the decision curve is an ellipse and it is shown in Figure 2.7a. The coloring indicates the areas
where the value of the respective pdf is larger.

Decision Hyperplanes
The only quadratic contribution in (2.35) comes from the term xT ($1

i x. If we
now assume that the covariance matrix is the same in all classes, that is, (i ! (, the
quadratic term will be the same in all discriminant functions. Hence, it does not
enter into the comparisons for computing the maximum, and it cancels out in the
decision surface equations. The same is true for the constants ci . Thus, they can be
omitted and we may redefine gi(x) as

gi(x) ! wT
i x & wi0 (2.37)

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 27

2.4 Bayesian Classification for Normal Distributions 27

FIGURE 2.9
An example of the pdfs of two equiprobable classes in the two-dimensional space. The feature
vectors in both classes are normally distributed with different covariance matrices. In this case,
the decision curve is a hyperbola and it is shown in Figure 2.7b.

where

wi ! ($1!i (2.38)

and

wi0 ! ln P(!i) $
1
2

!T
i ($1!i (2.39)

Hence gi(x) is a linear function of x and the respective decision surfaces are
hyperplanes. Let us investigate this a bit more.

“04-Ch02-SA272” 18/9/2008 page 28

28 CHAPTER 2 Classifiers Based on Bayes Decision Theory

■ Diagonal covariance matrix with equal elements:Assume that the individual
features, constituting the feature vector, are mutually uncorrelated and of
the same variance (E[(xi $ &i)(xj $ &j)] ! $2#ij). Then, as discussed in
Appendix A, (! $2I , where I is the l-dimensional identity matrix, and (2.37)
becomes

gi(x) !
1

$2 !T
i x & wi0 (2.40)

Thus, the corresponding decision hyperplanes can now be written as
(verify it)

gij(x) ≡ gi(x) $ gj(x) ! wT (x $ x0) ! 0 (2.41)

where

w ! !i $!j (2.42)

and

x0 !
1
2

(!i & !j) $ $2 ln
(

P(!i)
P(!j)

)
!i $!j

∥!i $!j∥2 (2.43)

where ∥x∥ !
√

x2
1 & x2

2 & · · · & x2
l denotes the Euclidean norm of x. Thus,

the decision surface is a hyperplane passing through the point x0. Obviously,
if P(!i) ! P(!j), then x0 ! 1

2 (!i & !j), and the hyperplane passes through
the average of !i , !j , that is, the middle point of the segment joining the mean
values. On the other hand, if P(!j) " P(!i) (P(!i) " P(!j)) the hyperplane
is located closer to !i(!j). In other words, the area of the region where we
decide in favor of the more probable of the two classes is increased.

The geometry is illustrated in Figure 2.10 for the two-dimensional case
and for two cases, that is, P(!j) ! P(!i) (black line) and P(!j) " P(!i) (red
line). We observe that for both cases the decision hyperplane (straight line) is
orthogonal to !i$!j . Indeed,for any point x lying on the decision hyperplane,
the vector x $ x0 also lies on the hyperplane and

gij(x) ! 0 ⇒ wT (x $ x0) ! (!i $!j)
T (x $ x0) ! 0

That is,!i $!j is orthogonal to the decision hyperplane. Furthermore, if $2 is
small with respect to ∥!i $!j∥, the location of the hyperplane is rather insen-
sitive to the values of P(!i), P(!j). This is expected, because small variance
indicates that the random vectors are clustered within a small radius around
their mean values. Thus a small shift of the decision hyperplane has a small
effect on the result.

Figure 2.11 illustrates this. For each class, the circles around the
means indicate regions where samples have a high probability, say 98%,

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 29

2.4 Bayesian Classification for Normal Distributions 29

x2

x1

x0

!i

!j

!i! !j

FIGURE 2.10

Decision lines for normally distributed vectors with (! $2I . The black line corresponds to the
case of P(!j) ! P(!i) and it passes through the middle point of the line segment joining the
mean values of the two classes. The red line corresponds to the case of P(!j) " P(!i) and it is
closer to !i , leaving more “room” to the more probable of the two classes. If we had assumed
P(!j) # P(!i), the decision line would have moved closer to !j .

(a) (b)

x2 x2

x1 x1

!i
!j !i !j

FIGURE 2.11
Decision line (a) for compact and (b) for noncompact classes. When classes are compact around
their mean values, the location of the hyperplane is rather insensitive to the values of P(!1) and
P(!2). This is not the case for noncompact classes, where a small movement of the hyperplane
to the right or to the left may be more critical.

of being found. The case of Figure 2.11a corresponds to small variance,
and that of Figure 2.11b to large variance. No doubt the location of the
decision hyperplane in Figure 2.11b is much more critical than that in
Figure 2.11a.

“04-Ch02-SA272” 18/9/2008 page 30

30 CHAPTER 2 Classifiers Based on Bayes Decision Theory

■ Nondiagonal covariance matrix: Following algebraic arguments similar to
those used before, we end up with hyperplanes described by

gij(x) ! wT (x $ x0) ! 0 (2.44)

where

w ! ($1(!i $!j) (2.45)

and

x0 !
1
2

(!i & !j) $ ln
(

P(!i)
P(!j)

)
!i $!j

∥!i $!j∥2
($1

(2.46)

where ∥x∥($1 ≡ (xT ($1x)1/2 denotes the so-called ($1 norm of x. The
comments made before for the case of the diagonal covariance matrix are still
valid, with one exception. The decision hyperplane is no longer orthogonal
to the vector !i $!j but to its linear transformation ($1(!i $!j).

Figure 2.12 shows two Gaussian pdfs with equal covariance matrices, describing
the data distribution of two equiprobable classes. In both classes, the data are dis-
tributed around their mean values in exactly the same way and the optimal decision
curve is a straight line.

Minimum Distance Classifiers
We will now view the task from a slightly different angle. Assuming equiprobable
classes with the same covariance matrix, gi(x) in (2.34) is simplified to

gi(x) ! $
1
2

(x $!i)
T ($1(x $!i) (2.47)

where constants have been neglected.

■ (! $2I : In this case maximum gi(x) implies minimum

Euclidean distance: d' ! ∥x $!i∥ (2.48)

Thus, feature vectors are assigned to classes according to their Euclidean
distance from the respective mean points. Can you verify that this result ties
in with the geometry of the hyperplanes discussed before?

Figure 2.13a shows curves of equal distance d' ! c from the mean points
of each class. They are obviously circles of radius c (hyperspheres in the
general case).

■ Nondiagonal (: For this case maximizing gi(x) is equivalent to minimizing
the ($1 norm, known as the

Mahalanobis distance: dm !
(

(x $!i)
T ($1(x $!i)

)1/2
(2.49)

In this case, the constant distance dm ! c curves are ellipses (hyperellipses).
Indeed, the covariance matrix is symmetric and, as discussed in Appendix B,
it can always be diagonalized by a unitary transform

(! *+*T (2.50)

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 31

2.4 Bayesian Classification for Normal Distributions 31

0.014

0.012

0.008

0.006

0.004

0.002

0
40

40
30

30
20

20
10

10
$10

$10$20
$20$30 $30

$40 $40

0
0

0.01

FIGURE 2.12
An example of two Gaussian pdfs with the same covariance matrix in the two-dimensional space.
Each one of them is associated with one of two equiprobable classes. In this case, the decision
curve is a straight line.

where *T !*$1 and + is the diagonal matrix whose elements are the eigen-
values of (. * has as its columns the corresponding (orthonormal)
eigenvectors of (

* ! [v1, v2, . . . , vl] (2.51)

Combining (2.49) and (2.50), we obtain

(x $!i)
T *+$1*T (x $!i) ! c2 (2.52)

Define x, ! *T x. The coordinates of x, are equal to vT
k x, k ! 1, 2, . . . , l, that

is, the projections of x onto the eigenvectors. In other words, they are the
coordinates of x with respect to a new coordinate system whose axes are
determined by vk, k ! 1, 2, . . . , l. Equation (2.52) can now be written as

(x1, $ &i1,)2

"1
& · · · &

(xl, $ &il,)2

"l
! c2 (2.53)

Leandro Bezerra Marinho

Leandro Bezerra Marinho

“04-Ch02-SA272” 18/9/2008 page 32

32 CHAPTER 2 Classifiers Based on Bayes Decision Theory

!W
x2 x2

x1 x1(a) (b)

22 !2cv2

!W22 !1cv1

!1

!2

FIGURE 2.13
Curves of (a) equal Euclidean distance and (b) equal Mahalanobis distance from the mean points
of each class. In the two-dimensional space, they are circles in the case of Euclidean distance
and ellipses in the case of Mahalanobis distance. Observe that in the latter case the decision
line is no longer orthogonal to the line segment joining the mean values. It turns according to
the shape of the ellipses.

This is the equation of a hyperellipsoid in the new coordinate system.
Figure 2.13b shows the l ! 2 case. The center of mass of the ellipse is at !i ,and
the principal axes are aligned with the corresponding eigenvectors and have
lengths 2

√
"kc, respectively. Thus, all points having the same Mahalanobis

distance from a specific point are located on an ellipse.

Example 2.2
In a two-class, two-dimensional classification task, the feature vectors are generated by two
normal distributions sharing the same covariance matrix

(!

[
1.1 0.3
0.3 1.9

]

and the mean vectors are !1 ! [0, 0]T , !2 ! [3, 3]T , respectively.
(a) Classify the vector [1.0, 2.2]T according to the Bayesian classifier.
It suffices to compute the Mahalanobis distance of [1.0, 2.2]T from the two mean vectors.
Thus,

d2
m(!1, x) ! (x $!1)T ($1(x $!1)

! [1.0, 2.2]

[
0.95 $0.15

$0.15 0.55

] [
1.0
2.2

]

! 2.952

Similarly,

d2
m(!2, x) ! [$2.0, $0.8]

[
0.95 $0.15

$0.15 0.55

] [
$2.0
$0.8

]

! 3.672 (2.54)

Thus, the vector is assigned to the class with mean vector [0, 0]T . Notice that the given vector
[1.0, 2.2]T is closer to [3, 3]T with respect to the Euclidean distance.

“04-Ch02-SA272” 18/9/2008 page 33

2.4 Bayesian Classification for Normal Distributions 33

(b) Compute the principal axes of the ellipse centered at [0, 0]T that corresponds to a constant
Mahalanobis distance dm !

√
2.952 from the center.

To this end, we first calculate the eigenvalues of (.

det

([
1.1 $ " 0.3

0.3 1.9 $ "

])

! "2 $ 3" & 2 ! 0

or "1 ! 1 and "2 ! 2. To compute the eigenvectors we substitute these values into the equation

(($ "I)v ! 0

and we obtain the unit norm eigenvectors

v1 !

⎡

⎣
3√
10

$ 1√
10

⎤

⎦ , v2 !

⎡

⎣
1√
10
3√
10

⎤

⎦

It can easily be seen that they are mutually orthogonal. The principal axes of the ellipse are
parallel to v1 and v2 and have lengths 3.436 and 4.859, respectively.

Remarks

■ In practice, it is quite common to assume that the data in each class are ade-
quately described by a Gaussian distribution. As a consequence,the associated
Bayesian classifier is either linear or quadratic in nature, depending on the
adopted assumptions concerning the covariance matrices. That is, if they
are all equal or different. In statistics, this approach to the classification task
is known as linear discriminant analysis (LDA) or quadratic discriminant
analysis (QDA), respectively. Maximum likelihood is usually the method
mobilized for the estimation of the unknown parameters that define the mean
values and the covariance matrices (see Section 2.5 and Problem 2.19).

■ A major problem associated with LDA and even more with QDA is the large
number of the unknown parameters that have to be estimated in the case
of high-dimensional spaces. For example, there are l parameters in each of
the mean vectors and approximately l2/2 in each (symmetric) covariance
matrix. Besides the high demand for computational resources,obtaining good
estimates of a large number of parameters dictates a large number of training
points, N . This is a major issue that also embraces the design of other types
of classifiers, for most of the cases, and we will come to it in greater detail in
Chapter 5. In an effort to reduce the number of parameters to be estimated,
a number of approximate techniques have been suggested over the years,
including [Kimu 87, Hoff 96, Frie 89, Liu 04]. Linear discrimination will be
approached from a different perspective in Section 5.8.

■ LDA and QDA exhibit good performance in a large set of diverse applications
and are considered to be among the most popular classifiers. No doubt, it
is hard to accept that in all these cases the Gaussian assumption provides a
reasonable modeling for the data statistics. The secret of the success seems

“04-Ch02-SA272” 18/9/2008 page 34

34 CHAPTER 2 Classifiers Based on Bayes Decision Theory

to lie in the fact that linear or quadratic decision surfaces offer a reasonably
good partition of the space, from the classification point of view. Moreover,as
pointed out in [Hast 01], the estimates associated with Gaussian models have
some good statistical properties (i.e., bias variance trade-off, Section 3.5.3)
compared to other techniques.

2.5 ESTIMATION OF UNKNOWN PROBABILITY
DENSITY FUNCTIONS

So far,we have assumed that the probability density functions are known. However,
this is not the most common case. In many problems, the underlying pdf has to be
estimated from the available data. There are various ways to approach the problem.
Sometimes we may know the type of the pdf (e.g.,Gaussian,Rayleigh),but we do not
know certain parameters, such as the mean values or the variances. In contrast, in
other cases we may not have information about the type of the pdf but we may know
certain statistical parameters, such as the mean value and the variance. Depending
on the available information,different approaches can be adopted. This will be our
focus in the next subsections.

2.5.1 Maximum Likelihood Parameter Estimation
Let us consider an M -class problem with feature vectors distributed according to
p(x|!i), i ! 1, 2, . . . , M . We assume that these likelihood functions are given in a
parametric form and that the corresponding parameters form the vectors "i which
are unknown. To show the dependence on "i we write p(x|!i; "i). Our goal is
to estimate the unknown parameters using a set of known feature vectors in each
class. If we further assume that data from one class do not affect the parameter
estimation of the others,we can formulate the problem independent of classes and
simplify our notation. At the end, one has to solve one such problem for each class
independently.

Let x1, x2, . . . , xN be random samples drawn from pdf p(x; "). We form the
joint pdf p(X; "), where X ! {x1, . . . , xN } is the set of the samples. Assuming
statistical independence between the different samples, we have

p(X; ") ≡ p(x1, x2, . . . , xN ; ") !
N∏

k!1

p(xk; ") (2.55)

This is a function of ", and it is also known as the likelihood function of " with
respect to X . The maximum likelihood (ML) method estimates " so that the
likelihood function takes its maximum value, that is,

"̂ML ! arg max
"

N∏

k!1

p(xk; ") (2.56)

“04-Ch02-SA272” 18/9/2008 page 35

2.5 Estimation of Unknown Probability Density Functions 35

A necessary condition that "̂ML must satisfy in order to be a maximum is the gradient
of the likelihood function with respect to " to be zero, that is

(
∏N

k!1 p(xk; ")
("

! 0 (2.57)

Because of the monotonicity of the logarithmic function, we define the log-
likelihood function as

L(") ≡ ln
N∏

k!1

p(xk; ") (2.58)

and (2.57) is equivalent to

(L(")
("

!
N∑

k!1

(ln p(xk; ")
("

!
N∑

k!1

1
p(xk; ")

(p(xk; ")
("

! 0 (2.59)

Figure 2.14 illustrates the method for the single unknown parameter case. The ML
estimate corresponds to the peak of the log-likelihood function.

Maximum likelihood estimation has some very desirable properties. If "0 is
the true value of the unknown parameter in p(x; "), it can be shown that under
generally valid conditions the following are true [Papo 91].

■ The ML estimate is asymptotically unbiased, which by definition means that

lim
N→%

E["̂ML] ! "0 (2.60)

Alternatively,we say that the estimate converges in the mean to the true value.
The meaning of this is as follows. The estimate "̂ML is itself a random vector,
because for different sample sets X different estimates will result. An estimate
is called unbiased if its mean is the true value of the unknown parameter. In
the ML case this is true only asymptotically (N → %).

p(X;))

)ML)

FIGURE 2.14
The maximum likelihood estimator)ML corresponds to the peak of p(X;)).

“04-Ch02-SA272” 18/9/2008 page 36

36 CHAPTER 2 Classifiers Based on Bayes Decision Theory

■ The ML estimate is asymptotically consistent, that is, it satisfies

lim
N→%

prob{∥"̂ML $ "0∥ - '} ! 1 (2.61)

where ' is arbitrarily small. Alternatively,we say that the estimate converges in
probability. In other words, for large N it is highly probable that the resulting
estimate will be arbitrarily close to the true value. A stronger condition for
consistency is also true:

lim
N→%

E[∥"̂ML $ "0∥2] ! 0 (2.62)

In such cases we say that the estimate converges in the mean square. In
words, for large N , the variance of the ML estimates tends to zero.

Consistency is very important for an estimator,because it may be unbiased,
but the resulting estimates exhibit large variations around the mean. In such
cases we have little confidence in the result obtained from a single set X .

■ The ML estimate is asymptotically efficient; that is, it achieves the Cramer–Rao
lower bound (Appendix A). This is the lowest value of variance, which any
estimate can achieve.

■ The pdf of the ML estimate as N → % approaches the Gaussian distribution
with mean "0 [Cram 46]. This property is an offspring of (a) the central
limit theorem (Appendix A) and (b) the fact that the ML estimate is related to
the sum of random variables, that is, (ln(p(xk; "))/(" (Problem 2.16).

In summary, the ML estimator is unbiased, is normally distributed, and has the
minimum possible variance. However, all these nice properties are valid only for
large values of N .

Example 2.3
Assume that N data points, x1, x2, . . . , xN , have been generated by a one-dimensional
Gaussian pdf of known mean, &, but of unknown variance. Derive the ML estimate of the
variance.
The log-likelihood function for this case is given by

L($2) ! ln
N∏

k!1

p(xk; $2) ! ln
N∏

k!1

1√
2%

√
$2

exp
(

$
(xk $ &)2

2$2

)

or

L($2) ! $
N
2

ln(2%$2) $
1

2$2

N∑

k!1

(xk $ &)2

Taking the derivative of the above with respect to $2 and equating to zero, we obtain

$
N

2$2 &
1

2$4

N∑

k!1

(xk $ &)2 ! 0

“04-Ch02-SA272” 18/9/2008 page 37

2.5 Estimation of Unknown Probability Density Functions 37

and finally the ML estimate of $2 results as the solution of the above,

$̂2
ML !

1
N

N∑

k!1

(xk $ &)2 (2.63)

Observe that, for finite N , $̂2
ML in Eq. (2.63) is a biased estimate of the variance. Indeed,

E[$̂2
ML] !

1
N

N∑

k!1

E[(xk $ &)2] !
N $ 1

N
$2

where $2 is the true variance of the Gaussian pdf. However, for large values of N , we
have

E[$̂2
ML] ! (1 $

1
N

)$2 ≈ $2

which is in line with the theoretical result of asymptotic consistency of the ML estimator.

Example 2.4
Let x1, x2, . . . , xN be vectors stemmed from a normal distribution with known covariance
matrix and unknown mean, that is,

p(xk; !) !
1

(2%)l/2|(|1/2 exp
(

$
1
2

(xk $!)T ($1(xk $!)
)

Obtain the ML estimate of the unknown mean vector.
For N available samples we have

L(!) ≡ ln
N∏

k!1

p(xk; !) ! $
N
2

ln((2%)l |(|) $
1
2

N∑

k!1

(xk $!)T ($1(xk $!) (2.64)

Taking the gradient with respect to !, we obtain

(L (!)
(!

≡

⎡

⎢⎢⎢⎢⎢⎢⎣

(L
(&1

(L
(&2

...
(L

(&l

⎤

⎥⎥⎥⎥⎥⎥⎦
!

N∑

k!1

($1(xk $!) ! 0 (2.65)

or

!̂ML !
1
N

N∑

k!1

xk (2.66)

That is, the ML estimate of the mean, for Gaussian densities, is the sample mean. However,
this very “natural approximation” is not necessarily ML optimal for non-Gaussian density
functions.

“04-Ch02-SA272” 18/9/2008 page 38

38 CHAPTER 2 Classifiers Based on Bayes Decision Theory

(a) (b)

p(X|)) p(X|))

p())

p())

))

FIGURE 2.15
ML and MAP estimates of) will be approximately the same in (a) and different in (b).

2.5.2 Maximum a Posteriori Probability Estimation
For the derivation of the maximum likelihood estimate, we considered " as an
unknown parameter. In this subsection we will consider it as a random vector, and
we will estimate its value on the condition that samples x1, . . . , xN have occurred.
Let X ! {x1, . . . , xN }. Our starting point is p("|X). From our familiar Bayes theorem
we have

p(")p(X |") ! p(X)p("|X) (2.67)

or

p("|X) !
p(")p(X |")

p(X)
(2.68)

The maximum a posteriori probability (MAP) estimate "̂MAP is defined at the point
where p("|X) becomes maximum,

"̂MAP : (

("
p("|X) ! 0 or

(

("
(p(")p(X |")) ! 0 (2.69)

Note that p(X) is not involved since it is independent of ". The difference
between the ML and the MAP estimates lies in the involvement of p(") in the latter
case. If we assume that this obeys the uniform distribution, that is, is constant
for all ", both estimates yield identical results. This is also approximately true if
p(") exhibits small variation. However, in the general case, the two methods yield
different results. Figures 2.15a and 2.15b illustrate the two cases.

Example 2.5
Let us assume that in Example 2.4 the unknown mean vector ! is known to be normally
distributed as

p(!) !
1

(2%)l/2$l
&

exp

(

$
1
2

∥! $!0∥2

$2
&

)

“04-Ch02-SA272” 18/9/2008 page 39

2.5 Estimation of Unknown Probability Density Functions 39

The MAP estimate is given by the solution of

(

(!
ln

(
N∏

k!1

p(xk|!)p(!)

)

! 0

or, for (! $2I ,
N∑

k!1

1
$2 (xk $!̂) $

1
$2

&
(!̂ $!0) ! 0 ⇒

!̂MAP !
!0 &

$2
&

$2

∑N
k!1 xk

1 &
$2

&

$2 N

We observe that if
$2

&

$2 "" 1, that is, the variance $2
& is very large and the corresponding

Gaussian is very wide with little variation over the range of interest, then

!̂MAP ≈ !̂ML !
1
N

N∑

k!1

xk

Furthermore, observe that this is also the case for N→%, regardless of the values of the
variances. Thus, the MAP estimate tends asymptotically to the ML one. This is a more
general result. For large values of N , the likelihood term

∏N
k!1 p(xk|!) becomes sharply

peaked around the true value (of the unknown parameter) and is the term that basically
determines where the maximum occurs. This can be better understood by mobilizing the
properties of the ML estimate given before.

2.5.3 Bayesian Inference
Both methods considered in the preceding subsections compute a specific estimate
of the unknown parameter vector ". In the current method, a different path is
adopted. Given the set X of the N training vectors and the a priori information
about the pdf p("), the goal is to compute the conditional pdf p(x|X). After all,
this is what we actually need to know. To this end, and making use of known
identities from our statistics basics, we have the following set of relations at our
disposal:

p(x|X) !

∫
p(x|")p("|X) d" (2.70)

with

p("|X) !
p(X |")p(")

p(X)
!

p(X |")p(")∫
p(X |")p(") d"

(2.71)

p(X |") !
N∏

k!1

p(xk|") (2.72)

“04-Ch02-SA272” 18/9/2008 page 40

40 CHAPTER 2 Classifiers Based on Bayes Decision Theory

The conditional density p("|X) is also known as the a posteriori pdf estimate, since
it is updated“knowledge”about the statistical properties of ", after having observed
the data set X . Once more,Eq. (2.72) presupposes statistical independence among
the training samples.

In general, the computation of p(x|X) requires the integration in the right-hand
side of (2.70). However, analytical solutions are feasible only for very special forms
of the involved functions. For most of the cases, analytical solutions for (2.70), as
well as for the denominator in (2.71), are not possible, and one has to resort to
numerical approximations. To this end, a large research effort has been invested in
developing efficient techniques for the numerical computation of such statistical
quantities. Although a detailed presentation of such approximation schemes is
beyond the scope of this book, we will attempt to highlight the main philosophy
behind these techniques in relation to our own problem.

Looking more carefully at (2.70) and assuming that p("|X) is known,then p(x|X)
is nothing but the average of p(x|") with respect to ", that is,

p(x|X) ! E"
[
p(x|")

]

If we assume that a large enough number of samples "i , i ! 1, 2 . . . , L, of the
random vector " are available, one can compute the corresponding values p(x|"i)
and then approximate the expectation as the mean value

p(x|X) ≈ 1
L

L∑

i!1

p(x|"i)

The problem now becomes that of generating a set of samples, "i, i ! 1, 2 . . . , L.
For example,if p("|X) were a Gaussian pdf,one could use a Gaussian pseudorandom
generator to generate the L samples. The difficulty in our case is that, in general, the
exact form of p("|X) is not known,and its computation presupposes the numerical
integration of the normalizing constant in the denominator of (2.71). This difficulty
is bypassed by a set of methods known as Markov chain Monte Carlo (MCMC)
techniques. The main rationale behind these techniques is that one can generate
samples from (2.71) in a sequential manner that asymptotically follow the distri-
bution p("|X), even without knowing the normalizing factor. The Gibbs sampler
and the Metropolis-Hastings algorithms are two of the most popular schemes of this
type. For more details on such techniques, the interested reader may consult, for
example, [Bish 06].

Further insight into the Bayesian methods can be gained by focusing on the
Gaussian one-dimensional case.

Example 2.6
Let p(x|&) be a univariate Gaussian N (&, $2) with unknown parameter the mean, which is
also assumed to follow a Gaussian N (&0, $2

0). From the theory exposed before we have

p(&|X) !
p(X |&)p(&)

p(X)
!

1
*

N∏

k!1

p(xk|&)p(&)

“04-Ch02-SA272” 18/9/2008 page 41

2.5 Estimation of Unknown Probability Density Functions 41

where for a given training data set, X , p(X) is a constant denoted as *, or

p(&|X) !
1
*

N∏

k!1

1√
2%$

exp
(

$
(xk $ &)2

$2

)
1√

2%$0
exp

(
$

(& $ &0)2

2$2
0

)

It is a matter of some algebra (Problem 2.25) to show that, given a number of samples, N ,
p(&|X) turns out to be also Gaussian, that is,

p(&|X) !
1√

2%$N
exp

(
$

(& $ &N)2

2$2
N

)
(2.73)

with mean value

&N !
N$2

0 x̄N & $2&0

N$2
0 & $2

(2.74)

and variance

$2
N !

$2$2
0

N$2
0 & $2

(2.75)

where x̄N ! 1
N

∑N
k!1 xk. Letting N vary from 1 to %, we generate a sequence of Gaussians

N (&N , $2
N), whose mean values move away from &0 and tend, in the limit, to the sample

mean, which, asymptotically, becomes equal to the true mean value. Furthermore, their
variance keeps decreasing at the rate $2/N for large N . Hence, for large values of N , p(&|X)
becomes sharply peaked around the sample mean. Recall that the latter is the ML estimate
of the mean value.

Once p(&|X) has been computed, it can be shown, by substituting (2.73) into (2.70)
(problem 2.25), that

p(x|X) !
1

√
2%($2 & $2

N)
exp

(
$

1
2

(x $ &N)2

$2 & $2
N

)

which is a Gaussian pdf with mean value &N and variance $2 & $2
N .

Observe that as N tends to infinity, the unknown mean value of the Gaussian tends to the
ML estimate x̄N (and asymptotically to the true mean) and the variance to the true value $2.
For finite values of N , the variance is larger than $2 to account for our extra uncertainty about
x due to the unknown value of the mean &. Figure 2.16 shows the posterior pdf estimate
p(&|X) obtained for different sizes of the training data set. Data were generated using a
pseudorandom number generator following a Gaussian pdf with mean value equal to & ! 2
and variance $2 ! 4. The mean value was assumed to be unknown, and the prior pdf was
adopted to be Gaussian with &0 ! 0 and $2

0 ! 8. We observe that as N increases p(&|X) gets
narrower (in accordance to (2.75)). The respective mean value estimate (Eq. (2.74)) depends
on N and x̄N . For small values of N , the ML estimate of the mean, x̄N , can vary a lot, which
has a direct effect in moving around the centers of the Gaussians. However, as N increases,
x̄N tends to the true value of the mean (& ! 2) with a decreasing variance.

It can be shown (Problem 2.27) that the results of this example can be generalized for the
case of multivariate Gaussians. More specifically, one can show that Eqs. (2.74) and (2.75)
are generalized to the following

p(!|X) ∼ N (!N , (N) (2.76)

“04-Ch02-SA272” 18/9/2008 page 42

42 CHAPTER 2 Classifiers Based on Bayes Decision Theory

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

N 5 400

N 5 200

N 5 100N 5 50

N 5 10

p(&|X)

&

FIGURE 2.16
A sequence of the posterior pdf estimates (Eq. (2.73)), for the case of Example 2.6. As the num-
ber of training points increases, the posterior pdf becomes more spiky (the ambiguity decreases)
and its center moves toward the true mean value of the data.

where

!N ! N(0[N(0 & (]$1x̄N & ([N(0 & (]$1!0 (2.77)
and

(N ! (0[N(0 & (]$1((2.78)
and also

p(x|X) ∼ N (!N , (& (N) (2.79)

Remarks

■ If p("|X) in Eq. (2.71) is sharply peaked at a "̂ and we treat it as a delta
function, Eq. (2.70) becomes p(x|X) ≈ p(x|"̂); that is, the parameter estimate
is approximately equal to the MAP estimate. This happens, for example, if
p(X |") is concentrated around a sharp peak and p(") is broad enough around
this peak. Then the resulting estimate approximates the ML one. The latter
was also verified by our previous example. This is a more general property
valid for most of the pdfs used in practice, for which the posterior probability
of the unknown parameter vector p("|X) tends to a delta function as N tends
to &%. Thus, all three methods considered so far result, asymptotically, in
the same estimate. However, the results are different for small numbers N
of training samples.

■ An obvious question concerns the choice of the prior p("). In practice, the
choice depends on the form of the likelihood function p(x|"), so that the
posterior pdf p("|X) can be of a tractable form. The set of prior distributions

“04-Ch02-SA272” 18/9/2008 page 43

2.5 Estimation of Unknown Probability Density Functions 43

for which the adopted model p(x|") is of the same functional form as the
posterior distribution p("|X) is known as conjugate with respect to the model.
Some commonly used forms of the conjugate priors are discussed,for example,
in [Bern 94].

■ For data sets of limited length,ML and MAP estimators are simpler to use, and
they result in a single estimate of the unknown parameters vector,which is the
outcome of a maximization procedure. On the other hand,Bayesian methods
make use of more information and, provided that this information is reliable,
these techniques are expected to give better results, albeit at the expense of
higher complexity. Due to the advances in computer technology, Bayesian
methods have gained a lot of popularity over the recent years.

2.5.4 Maximum Entropy Estimation
The concept of entropy is known from Shannon’s information theory. It is a measure
of the uncertainty concerning an event and, from another viewpoint, a measure of
randomness of the messages (feature vectors in our case) occurring at the output
of a system. If p(x) is the density function, the associated entropy H is given by

H ! $

∫

x

p(x) ln p(x) dx (2.80)

Assume now that p(x) is unknown but we know a number of related constraints
(mean value, variance, etc.). The maximum entropy estimate of the unknown pdf
is the one that maximizes the entropy,subject to the given constraints. According to
the principle of maximum entropy, stated by Jaynes [Jayn 82], such an estimate cor-
responds to the distribution that exhibits the highest possible randomness, subject
to the available constraints.

Example 2.7
The random variable x is nonzero for x1 - x - x2 and zero otherwise. Compute the maximum
entropy estimate of its pdf.

We have to maximize (2.80) subject to the constraint
x2∫

x1

p(x) dx ! 1 (2.81)

Using Lagrange multipliers (Appendix C), this is equivalent to maximizing

HL ! $

x2∫

x1

p(x)(ln p(x) $ ") dx (2.82)

Taking the derivative with respect to p(x), we obtain

(HL

(p(x)
! $

x2∫

x1

{(
ln p(x) $ "

)
& 1

}
dx (2.83)

“04-Ch02-SA272” 18/9/2008 page 44

44 CHAPTER 2 Classifiers Based on Bayes Decision Theory

Equating to zero, we obtain

p̂(x) ! exp(" $ 1) (2.84)

To compute ", we substitute this into the constraint equation (2.81), and we get exp(" $ 1) !
1

x2$x1
. Thus

p̂(x) !

⎧
⎨

⎩

1
x2$x1

if x1 - x - x2

0 otherwise
(2.85)

That is, the maximum entropy estimate of the unknown pdf is the uniform distribution. This
is within the maximum entropy spirit. Since we have imposed no other constraint but the
obvious one, the resulting estimate is the one that maximizes randomness and all points are
equally probable. It turns out that if the mean value and the variance are given as the second
and third constraints, the resulting maximum entropy estimate of the pdf, for $% # x # &%,
is the Gaussian (Problem 2.30).

2.5.5 Mixture Models
An alternative way to model an unknown p(x) is via a linear combination of density
functions in the form of

p(x) !

J∑

j!1

p(x|j)Pj (2.86)

where
J∑

j!1

Pj ! 1,
∫

x

p(x|j) dx ! 1 (2.87)

In other words, it is assumed that J distributions contribute to the formation of
p(x). Thus, this modeling implicitly assumes that each point x may be “drawn”
from any of the J model distributions with probability Pj , j ! 1, 2, . . . , J . It can be
shown that this modeling can approximate arbitrarily closely any continuous density
function for a sufficient number of mixtures J and appropriate model parameters.
The first step of the procedure involves the choice of the set of density compo-
nents p(x|j) in parametric form, that is, p(x|j; "), and then the computation of
the unknown parameters, " and Pj , j ! 1, 2, . . . , J , based on the set of the available
training samples xk. There are various ways to achieve this. A typical maximum like-
lihood formulation, maximizing the likelihood function

∏
k p(xk; ", P1, P2, . . . , PJ)

with respect to " and the Pj ’s,is a first thought. The difficulty here arises from the fact
that the unknown parameters enter the maximization task in a nonlinear fashion;
thus,nonlinear optimization iterative techniques have to be adopted (Appendix C).A
review of related techniques is given in [Redn 84]. The source of this complication
is the lack of information concerning the labels of the available training samples,
that is, the specific mixture from which each sample is contributed. This is the issue
that makes the current problem different from the ML case treated in Section 2.5.1.
There, the class labels were known, and this led to a separate ML problem for each

“04-Ch02-SA272” 18/9/2008 page 45

2.5 Estimation of Unknown Probability Density Functions 45

of the classes. In the same way, if the mixture labels were known, we could collect
all data from the same mixture and carry out J separate ML tasks. The missing label
information makes our current problem a typical task with an incomplete data set.

In the sequel,we will focus on the so-called EM algorithm,which has attracted a
great deal of interest over the past few years in a wide range of applications involving
tasks with incomplete data sets.

The Expectation Maximization (EM) Algorithm
This algorithm is ideally suited for cases in which the available data set is incom-
plete. Let us first state the problem in more general terms and then apply it to our
specific task. Let us denote by y the complete data samples, with y ∈ Y ⊆ Rm,
and let the corresponding pdf be py(y; "), where " is an unknown parameter
vector. The samples y, however, cannot be directly observed. What we observe
instead are samples x ! g(y) ∈ Xob ⊆ Rl , l # m. We denote the corresponding
pdf px(x; "). This is a many-to-one mapping. Let Y (x) ⊆ Y be the subset of
all the y’s corresponding to a specific x. Then the pdf of the incomplete data
is given by

px(x; ") !

∫

Y (x)

py(y; ") dy (2.88)

As we already know, the maximum likelihood estimate of " is given by

"̂ML:
∑

k

(ln(py(yk; "))

("
! 0 (2.89)

However, the y’s are not available. So, the EM algorithm maximizes the expecta-
tion of the log-likelihood function, conditioned on the observed samples and the
current iteration estimate of ". The two steps of the algorithm are:

■ E-step: At the (t & 1)th step of the iteration, where "(t) is available, compute
the expected value of

Q("; "(t)) ≡ E

[
∑

k

ln(py(yk; "|X; "(t))

]

(2.90)

This is the so-called expectation step of the algorithm.

■ M-step: Compute the next (t & 1)th estimate of " by maximizing Q("; "(t)),
that is,

"(t & 1):(Q("; "(t))
("

! 0 (2.91)

This is the maximization step, where, obviously, differentiability has been
assumed.

To apply the EM algorithm, we start from an initial estimate "(0), and iterations
are terminated if ∥"(t & 1) $ "(t)∥ - ' for an appropriately chosen vector norm
and '.

“04-Ch02-SA272” 18/9/2008 page 46

46 CHAPTER 2 Classifiers Based on Bayes Decision Theory

Remark

■ It can be shown that the successive estimates "(t) never decrease the
likelihood function. The likelihood function keeps increasing until a maxi-
mum (local or global) is reached and the EM algorithm converges. The con-
vergence proof can be found in the seminal paper [Demp 77] and further
discussions in [Wu 83, Boyl 83]. Theoretical results as well as practical
experimentation confirm that the convergence is slower than the quadratic
convergence of Newton-type searching algorithms (Appendix C), although
near the optimum a speedup may be possible. However, the great advantage
of the algorithm is that its convergence is smooth and is not vulnerable to
instabilities. Furthermore, it is computationally more attractive than Newton-
like methods,which require the computation of the Hessian matrix. The keen
reader may obtain more information on the EM algorithm and some of its
applications from [McLa 88, Titt 85, Moon 96].

Application to the Mixture Modeling Problem
In this case, the complete data set consists of the joint events (xk, jk), k !
1, 2, . . . , N ,and jk takes integer values in the interval [1, J],and it denotes the mixture
from which xk is generated. Employing our familiar rule, we obtain

p(xk, jk; ") ! p(xk|jk; ")Pjk (2.92)

Assuming mutual independence among samples of the data set, the log-likelihood
function becomes

L(") !
N∑

k!1

ln
(
p(xk|jk; ")Pjk

)
(2.93)

Let P ! [P1, P2, . . . , PJ]T . In the current framework,the unknown parameter vector
is QT ! ["T , PT]T . Taking the expectation over the unobserved data, conditioned
on the training samples and the current estimates,Q(t),of the unknown parameters,
we have

E-step: Q(Q;Q(t)) ! E

[
N∑

k!1

ln(p(xk| jk; ")Pjk)

]

!
N∑

k!1

E[ln(p(xk| jk; ")Pjk)] (2.94)

!
N∑

k!1

J∑

jk!1

P(jk|xk;Q(t)) ln(p(xk| jk; ")Pjk) (2.95)

The notation can now be simplified by dropping the index k from jk. This is because,
for each k,we sum up over all possible J values of jk and these are the same for all k.
We will demonstrate the algorithm for the case of Gaussian mixtures with diagonal

“04-Ch02-SA272” 18/9/2008 page 47

2.5 Estimation of Unknown Probability Density Functions 47

covariance matrices of the form (j ! $2
j I , that is,

p(xk|j; ") !
1

(
2%$2

j

)l/2 exp

(

$
∥xk $!j∥2

2$2
j

)

(2.96)

Assume that besides the prior probabilities, Pj , the respective mean values !j as
well as the variances $2

j , j ! 1, 2, . . . , J , of the Gaussians are also unknown. Thus,
" is a J (l & 1)-dimensional vector. Combining Eqs. (2.95) and (2.96) and omitting
constants, we get

E-step:

Q(Q;Q(t)) !
N∑

k!1

J∑

j!1

P(j|xk;Q(t))

(

$
l
2

ln $2
j $

1

2$2
j
∥xk $!j∥2 & ln Pj

)

(2.97)

M-step: Maximizing the above with respect to !j , $2
j , and Pj results in (Pro-

blem 2.31)

!j(t & 1) !

∑N
k!1 P(j|xk;Q(t))xk∑N

k!1 P(j|xk;Q(t))
(2.98)

$2
j (t & 1) !

∑N
k!1 P(j|xk;Q(t))∥xk $!j(t & 1)∥2

l
∑N

k!1 P(j|xk;Q(t))
(2.99)

Pj(t & 1) !
1
N

N∑

k!1

P(j|xk;Q(t)) (2.100)

For the iterations to be complete we need only to compute P(j|xk;Q(t)). This is
easily obtained from

P(j|xk;Q(t)) !
p(xk|j; "(t))Pj(t)

p(xk;Q(t))
(2.101)

p(xk;Q(t)) !

J∑

j!1

p(xk|j; "(t))Pj(t) (2.102)

Equations (2.98)–(2.102) constitute the EM algorithm for the estimation of the
unknown parameters of the Gaussian mixtures in (2.86). The algorithm starts with
valid initial guesses for the unknown parameters. Valid means that probabilities
must add to one.

Remark

■ Modeling unknown probability density functions via a mixture of Gaussian
components and the EM algorithm has been very popular in a number of appli-
cations. Besides some convergence issues associated with the EM algorithm,

“04-Ch02-SA272” 18/9/2008 page 48

48 CHAPTER 2 Classifiers Based on Bayes Decision Theory

as previously discussed, another difficulty may arise in deciding about the
exact number of components, J . In the context of supervised learning, one
may use different values and choose the model that results in the best error
probability. The latter can be computed by employing an error estimation
technique (Chapter 10).

Example 2.8
Figure 2.17a shows N ! 100 points in the two-dimensional space, which have been drawn
from a multimodal distribution. The samples were generated using two Gaussian random
generators N (!1, (1), N (!2, (2), with

!1 !

[
1.0
1.0

]

, !2 !

[
2.0
2.0

]

and covariance matrices

(1 ! (2 !

[
0.1 0.0
0.0 0.1

]

respectively. Each time a sample xk, k ! 1, 2, . . . , N , is to be generated a coin is tossed. The
corresponding probabilities for heads or tails are P(H) ≡ P ! 0.8, P(T) ! 1 $ P ! 0.2, respec-
tively. If the outcome of the coin flip is heads, the sample xk is generated from N (!1, (1).
Otherwise, it is drawn from N (!2, (2). This is the reason that in Figure 2.17a the space
around the point [1.0, 1.0]T is more densely populated. The pdf of the data set can obviously
be written as

p(x) ! g(x; !1, $2
1)P & g(x; !2, $2

2)(1 $ P) (2.103)

where g(·; !, $2) denotes the Gaussian pdf with parameters the mean value ! and
a diagonal covariance matrix, (! diag{$2}, having $2 across the diagonal and zeros

0 10 20
$500

$400

$300

$200

Iterations

Lo
g-

lik
el

ih
oo

d

0 3
0

1

2

3
x2

x1

(a) (b)

1 2

FIGURE 2.17
(a) The data set of Example 2.8 and (b) the log-likelihood as a function of the number of iteration
steps.

“04-Ch02-SA272” 18/9/2008 page 49

2.5 Estimation of Unknown Probability Density Functions 49

elsewhere. Equation (2.103) is a special case of the more general formulation given in
(2.86). The goal is to compute the maximum likelihood estimate of the unknown parameters
vector

QT ! [P, !T
1 , $2

1 , !T
2 , $2

2]

based on the available N ! 100 points. The full training data set consists of the sample pairs
(xk, jk), k ! 1, 2, . . . , N , where jk ∈ {1, 2}, and it indicates the origin of each observed
sample. However, only the points xk are at our disposal, with the “label” information being
hidden from us. To understand this issue better and gain more insight into the rationale
behind the EM methodology, it may be useful to arrive at Eq. (2.95) from a slightly different
route. Each of the random vectors, xk, can be thought of as the result of a linear combination
of two other random vectors; namely,

xk ! *kx1
k & (1 $ *k)x2

k

where x1
k is drawn from N (!1, (1) and x2

k from N (!2, (2). The binary coefficients *k ∈
{0, 1} are randomly chosen with probabilities P(1) ! P ! 0.8, P(0) ! 0.2. If the values of
the *ks, k ! 1, 2, . . . , N , were known to us, the log-likelihood function in (2.93) would be
written as

L(Q; *) !
N∑

k!1

*k ln
{
g(xk; !1, $2

1)P
}

&
N∑

k!1

(1 $ *k) ln
{
g(xk; !2, $2

2)(1 $ P)
}

(2.104)

since we can split the summation in two parts, depending on the origin of each sample xk.
However, this is just an “illusion” since the *ks are unknown to us. Motivated by the spirit
behind the EM algorithm, we substitute in (2.104) the respective mean values E[*k|xk; Q̂],
given an estimate, Q̂, of the unknown parameter vector. For the needs of our example we
have

E[*k|xk; Q̂] ! 1) P(1|xk; Q̂) & 0) (1 $ P(1|xk; Q̂)) ! P(1|xk; Q̂) (2.105)

Substitution of (2.105) into (2.104) results in (2.95) for the case of J ! 2.
We are now ready to apply the EM algorithm [Eqs. (2.98)–(2.102)] to the needs of our

example. The initial values were chosen to be

!1(0) ! [1.37, 1.20]T , !2(0) ! [1.81, 1.62]T , $2
1 ! $2

2 ! 0.44, P ! 0.5

Figure 2.17b shows the log-likelihood as a function of the number of iterations. After
convergence, the obtained estimates for the unknown parameters are

!1 ! [1.05, 1.03]T , !2 ! [1.90, 2.08]T , $2
1 ! 0.10, $2

2 ! 0.06, P ! 0.844 (2.106)

2.5.6 Nonparametric Estimation
So far in our discussion a pdf parametric modeling has been incorporated, in one
way or another, and the associated unknown parameters have been estimated. In

“04-Ch02-SA272” 18/9/2008 page 50

50 CHAPTER 2 Classifiers Based on Bayes Decision Theory

the current subsection we will deal with nonparametric techniques. These are
basically variations of the histogram approximation of an unknown pdf, which is
familiar to us from our statistics basics. Let us take, for example, the simple one-
dimensional case. Figure 2.18 shows two examples of a pdf and its approximation
by the histogram method. That is, the x-axis (one-dimensional space) is first
divided into successive bins of length h. Then the probability of a sample x being
located in a bin is estimated for each of the bins. If N is the total number of
samples and kN of these are located inside a bin, the corresponding probability is
approximated by the frequency ratio

P ≈ kN /N (2.107)

This approximation converges to the true P as N → % (Problem 2.32). The corre-
sponding pdf value is assumed constant throughout the bin and is approximated by

p̂(x) ≡ p̂(x̂) ≈ 1
h

kN

N
, |x $ x̂| -

h
2

(2.108)

where x̂ is the midpoint of the bin. This determines the amplitude of the histogram
curve over the bin. This is a reasonable approximation for continuous p(x) and
small enough h so that the assumption of constant p(x) in the bin is sensible. It can
be shown that p̂(x) converges to the true value p(x) as N → % provided:

■ hN → 0

■ kN → %

■
kN
N → 0

where hN is used to show the dependence on N . These conditions can be under-
stood from simple reasoning, without having to resort to mathematical details. The
first has already been discussed. The other two show the way that kN must grow

p(x) p(x)

(a)
x x

(b)

FIGURE 2.18
Probability density function approximation by the histogram method with (a) small and
(b) large-size intervals (bins).

“04-Ch02-SA272” 18/9/2008 page 51

2.5 Estimation of Unknown Probability Density Functions 51

to guarantee convergence. Indeed, at all points where p(x) ̸! 0 fixing the size hN ,
however small, the probability P of points occurring in this bin is finite. Hence,
kN ≈ PN and kN tends to infinity as N grows to infinity. On the other hand, as the
size hN of the bin tends to zero, the corresponding probability also goes to zero,
justifying the last condition. In practice, the number N of data points is finite. The
preceding conditions indicate the way that the various parameters must be chosen.
N must be “large enough,” hN “small enough,” and the number of points falling in
each bin “large enough” too. How small and how large depend on the type of the
pdf function and the degree of approximation one is satisfied with. Two popular
approaches used in practice are described next.

Parzen Windows
In the multidimensional case, instead of bins of size h, the l-dimensional space is
divided into hypercubes with length of side h and volume hl . Let xi, i ! 1, 2, . . . , N ,
be the available feature vectors. Define the function +(x) so that

+(xi) !

⎧
⎨

⎩
1 for |xij | - 1/2

0 otherwise
(2.109)

where xij , j ! 1, . . . , l, are the components of xi . In words, the function is equal to
1 for all points inside the unit side hypercube centered at the origin and 0 outside it.
This is shown in Figure 2.19(a). Then (2.108) can be “rephrased”as

p̂(x) !
1
hl

(
1
N

N∑

i!1

+
(xi $ x

h

))

(2.110)

The interpretation of this is straightforward. We consider a hypercube with length
of side h centered at x, the point where the pdf is to be estimated. This is illustrated
in Figure 2.19(b) for the two-dimensional space. The summation equals kN , that is,
the number of points falling inside this hypercube. Then the pdf estimate results
from dividing kN by N and the respective hypercube volume hl . However, viewing
Eq. (2.110) from a slightly different perspective,we see that we try to approximate a
continuous function p(x) via an expansion in terms of discontinuous step functions
+(·). Thus,the resulting estimate will suffer from this“ancestor’s sin.”This led Parzen
[Parz 62] to generalize (2.110) by using smooth functions in the place of +(·).
It can be shown that, provided

+(x) . 0 and (2.111)
∫

x

+(x) dx ! 1 (2.112)

the resulting estimate is a legitimate pdf. Such smooth functions are known as ker-
nels or potential functions or Parzen windows. A typical example is the Gaussian
N (0, I), kernel. For such a choice, the approximate expansion of the unknown

“04-Ch02-SA272” 18/9/2008 page 52

52 CHAPTER 2 Classifiers Based on Bayes Decision Theory

(a) (b)

x1

0.5

0.5

20.5

20.5

x2

x
x2

x210.5h

x220.5h

x120.5h x110.5hx1

FIGURE 2.19
In the two-dimensional space (a) the function +(xi) is equal to one for every point, xi , inside
the square of unit side length, centered at the origin and equal to zero for every point outside it.
(b) The function +

(xi$x
h

)
is equal to unity for every point xi inside the square with side length

equal to h, centered at x and zero for all the other points.

p(x) will be

p̂(x) !
1
N

N∑

i!1

1

(2%)
l
2 hl

exp
(

$
(x $ xi)T (x $ xi)

2h2

)

In other words,the unknown pdf is approximated as an average of N Gaussians,each
one centered at a different point of the training set. Recall that as the parameter h
becomes smaller, the shape of the Gaussians becomes narrower and more “spiky”
(Appendix A) and the influence of each individual Gaussian is more localized in
the feature space around the area of its mean value. On the other hand, the larger
the value of h, the broader their shape becomes and more global in space their
influence is. The expansion of a pdf in a sum of Gaussians was also used in 2.5.5.
However, here, the number of Gaussians coincides with the number of points, and
the unknown parameter,h, is chosen by the user. In the EM algorithm concept, the
number of Gaussians is chosen independently of the number of training points, and
the involved parameters are computed via an optimization procedure.

In the sequel, we will examine the limiting behavior of the approximation. To
this end, let us take the mean value of (2.110)

E[p̂(x)] !
1
hl

(
1
N

N∑

i!1

E
[
+

(xi $ x
h

)])

≡
∫

x,

1
hl +

(
x, $ x

h

)
p(x,) dx, (2.113)

“04-Ch02-SA272” 18/9/2008 page 53

2.5 Estimation of Unknown Probability Density Functions 53

Thus, the mean value is a smoothed version of the true pdf p(x). However as

h→0 the function 1
hl +

(
x,$x

h

)
tends to the delta function #(x, $ x). Indeed,

its amplitude goes to infinity, its width tends to zero, and its integral from (2.112)
remains equal to one. Thus, in this limiting case and for well-behaved continuous
pdfs, p̂(x) is an unbiased estimate of p(x). Note that this is independent of the
size N of the data set. Concerning the variance of the estimate (Problem 2.38), the
following remarks are valid:

■ For fixed N , the smaller the h the higher the variance, and this is indicated by
the noisy appearance of the resulting pdf estimate, for example,Figures 2.20a
and 2.21a as well as Figures 2.22c and 2.22d. This is because p(x) is approxi-
mated by a finite sum of #-like spiky functions,centered at the training sample
points. Thus, as one moves x in space the response of p̂(x) will be very
high near the training points, and it will decrease very rapidly as one moves
away, leading to this noiselike appearance. Large values of h smooth out local
variations in density.

■ For a fixed h, the variance decreases as the number of sample points
N increases. This is illustrated in Figures 2.20a and 2.20b as well as in
Figures 2.22b and 2.22c. This is because the space becomes dense in points,
and the spiky functions are closely located. Furthermore, for a large enough
number of samples, the smaller the h the better the accuracy of the resulting
estimate, for example, Figures 2.20b and 2.21b.

■ It can be shown, for example, [Parz 62, Fuku 90] that,under some mild condi-
tions imposed on +(·),which are valid for most density functions, if h tends to
zero but in such a way that hN → %, the resulting estimate is both unbiased
and asymptotically consistent.

p(x)

0.12

0.06

0
0 10 20

(a)
x

p(x)

0.12

0.06

0
0 10 20

(b)
x

FIGURE 2.20
Approximation (full-black line) of a pdf (dotted-red line) via Parzen windows, using Gaussian
kernels with (a) h ! 0.1 and 1,000 training samples and (b) h ! 0.1 and 20,000 samples. Observe
the influence of the number of samples on the smoothness of the resulting estimate.

“04-Ch02-SA272” 18/9/2008 page 54

54 CHAPTER 2 Classifiers Based on Bayes Decision Theory

p(x)

0.12

0.06

0
0 10 20

(a)
x

p(x)

0.12

0.06

0
0 10 20

(b)
x

FIGURE 2.21
Approximation (full-black line) of a pdf (dotted-red line) via Parzen windows, using Gaussian
kernels with (a) h " 0.8 and 1,000 training samples and (b) h " 0.8 and 20,000 samples. Observe
that, in this case, increasing the number of samples has little influence on the smoothness as
well as the approximation accuracy of the resulting estimate.

(a)

(c)

(b)

(d)

%4 %2 0 2 4 6%4
1

6
0

0.04

0.08

0.12

%4 %2 0 2 4 6%4
1

6
0

0.04

0.08

0.12

%4 %2 0 2 4 6%4
1

6
0

0.04

0.08

0.12

%4 %2 0 2 4 6%4
1

6
0

0.04

0.08

0.12

FIGURE 2.22
Approximation of a two-dimensional pdf, shown in (a), via Parzen windows, using two-
dimensional Gaussian kernels with (b) h " 0.05 and N " 1000 samples, (c) h " 0.05 and
N " 20000 samples and (d) h " 0.8 and N " 20000 samples. Large values of h lead to smooth
estimates, but the approximation accuracy is low (the estimate is highly biased), as one can
observe by comparing (a) with (d). For small values of h, the estimate is more noisy in appear-
ance, but it becomes smoother as the number of samples increases, (b) and (c). The smaller
the h and the larger the N , the better the approximation accuracy.

“04-Ch02-SA272” 18/9/2008 page 55

2.5 Estimation of Unknown Probability Density Functions 55

Remarks

■ In practice, where only a finite number of samples is possible, a compromise
between h and N must be made. The choice of suitable values for h is crucial,
and several approaches have been proposed in the literature, for example,
[Wand 95]. A straightforward way is to start with an initial estimate of h and
then modify it iteratively to minimize the resulting misclassification error. The
latter can be estimated by appropriate manipulation of the training set. For
example, the set can be split into two subsets, one for training and one for
testing. We will say more on this in Chapter 10.

■ Usually,a large N is necessary for acceptable performance. This number grows
exponentially with the dimensionality l. If a one-dimensional interval needs,
say, N equidistant points to be considered as a densely populated one, the
corresponding two-dimensional square will need N2, the three-dimensional
cube N3,and so on. We usually refer to this as the curse of dimensionality. To
our knowledge, this term was first used by Bellman in the context of Control
theory [Bell 61]. To get a better feeling about the curse of dimensionality
problem, let us consider the l-dimensional unit hypercube and let us fill it
randomly with N points drawn from a uniform distribution. It can be shown
([Frie 89]) that the average Euclidean distance between a point and its nearest
neighbor is given by

d(l, N) ! 2
(

l/(l/2)

2%
l
2 N

)1
l

where /(·) is the gamma function (AppendixA). In words,the average distance
to locate the nearest neighbor to a point, for fixed l, shrinks as N$ 1

l . To
get a more quantitative feeling, let us fix N to the value N ! 1010. Then for
l ! 2, 10, 20 and 40,d(l, N) becomes 10$5, 0.18, 0.76, and 1.83, respectively.
Figure 2.23a shows 50 points lying within the unit-length segment in the
one-dimensional space. The points were randomly generated by the uniform
distribution. Figure 2.23b shows the same number of points lying in the unit-
length square. These points were also generated by a uniform distribution
in the two-dimensional space. It is readily seen that the points in the one-
dimensional segment are, on average, more closely located compared to the
same number of points in the two-dimensional square.

The large number of data points required for a relatively high-dimensional
feature space to be sufficiently covered puts a significant burden on complexity
requirements, since one has to consider one Gaussian centered at each point.
To this end,some techniques have been suggested that attempt to approximate
the unknown pdf by using a reduced number of kernels, see, for example,
[Babi 96].

Another difficulty associated with high-dimensional spaces is that, in prac-
tice, due to the lack of enough training data points, some regions in the
feature space may be sparsely represented in the data set. To cope with

“04-Ch02-SA272” 18/9/2008 page 56

56 CHAPTER 2 Classifiers Based on Bayes Decision Theory

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x2

0 0.2 0.4 0.6 0.8 1 x

FIGURE 2.23
Fifty points generated by a uniform distribution lying in the (a) one-dimensional unit-length
segment and (b) the unit-length square. In the two-dimensional space the points are more
spread compared to the same number of points in the one-dimensional space.

such scenarios, some authors have adopted a variable value for h. In regions
where data are sparse, a large value of h is used, while in more densely
populated areas a smaller value is employed. To this end, a number of mech-
anisms for adjusting the value of h have been adopted, see, for example,
[Brei 77, Krzy 83, Terr 92, Jone 96].

Application to classification: On the reception of a feature vector x the likelihood
test in (2.20) becomes

assign x to !1(!2) if l12 ≈

⎛

⎝
1

N1hl

∑N1
i!1 +

(xi$x
h

)

1
N2hl

∑N2
i!1 +

(xi$x
h

)

⎞

⎠ " (#)
P(!2)
P(!1)

"21 $ "22

"12 $ "11
(2.114)

where N1, N2 are the training vectors in class !1, !2, respectively. The risk-related
terms are ignored when the Bayesian minimum error probability classifier is used.
For large N1, N2 this computation is a very demanding job, in both processing time
and memory requirements.

k Nearest Neighbor Density Estimation
In the Parzen estimation of the pdf in (2.110), the volume around the points x was
considered fixed (hl) and the number of points kN , falling inside the volume, was
left to vary randomly from point to point. Here we will reverse the roles. The
number of points kN ! k will be fixed, and the size of the volume around x will
be adjusted each time, to include k points. Thus, in low-density areas the volume
will be large and in high-density areas it will be small. We can also consider
more general types of regions, besides the hypercube. The estimator can now be

“04-Ch02-SA272” 18/9/2008 page 57

2.5 Estimation of Unknown Probability Density Functions 57

written as

p̂(x) !
k

NV (x)
(2.115)

where the dependence of the volume V (x) on x is explicitly shown. Again it can
be shown [Fuku 90] that asymptotically (lim k ! &%, lim N ! &%, lim(k/N) ! 0)
this is an unbiased and consistent estimate of the true pdf, and it is known as
the k Nearest Neighbor (kNN) density estimate. Results concerning the finite k, N
case have also been derived; see [Fuku 90, Butu 93]. A selection of seminal papers
concerning NN classification techniques can be found in [Dasa 91].

From a practical point of view, at the reception of an unknown feature vector
x, we compute its distance d, for example, Euclidean, from all the training vectors
of the various classes, for example, !1, !2. Let r1 be the radius of the hypersphere,
centered at x, that contains k points from !1 and r2 the corresponding radius of
the hypersphere containing k points from class !2 (k may not necessarily be the
same for all classes). If we denote by V1, V2 the respective hypersphere volumes,
the likelihood ratio test becomes

assign x to !1(!2) if l12 ≈ kN2V2

kN1V1
" (#)

P(!2)
P(!1)

"21 $ "22

"12 $ "11

V2

V1
" (#)

N1

N2

P(!2)
P(!1)

"21 $ "22

"12 $ "11
(2.116)

If the Mahalanobis distance is alternatively adopted,we will have hyperellipsoids in
the place of the hyperspheres.

The volume of a hyperellipsoid,corresponding to Mahalanobis distance equal to
r, is given by ([Fuku 90])

V ! V0|(| 1
2 rl (2.117)

where V0 is the volume of the hypersphere of unit radius given by

V0 !

⎧
⎨

⎩
%

l
2 /(l/2)!, l even

2l%
l$1

2 (l$1
2)!/l!, l odd

(2.118)

Verify that Eq. (2.117) results to 4%r3/3 for the volume of a sphere of radius r in the
three-dimensional space.

Remark

■ The nonparametric probability density function estimation techniques, dis-
cussed in this section,are among the techniques that are still in use in practical
applications. It is interesting to note that, although the performance of the
methods, as density estimators, degrades in high-dimensional spaces due to
the lack of sufficient data, their performance as classifiers may be sufficiently
good. After all, lack of enough training data points affects, in one way or
another, all the methods.

“04-Ch02-SA272” 18/9/2008 page 58

58 CHAPTER 2 Classifiers Based on Bayes Decision Theory

More recently, the so-called probabilistic neural networks have been
suggested as efficient implementations for the computation of the classifier
given in (2.114), by exploiting the intrinsic parallelism of the neural network
architectures and will be discussed in Chapter 4.

Example 2.9
The points shown in Figure 2.24 belong to either of two equiprobable classes. Black points
belong to class !1 and red points belong to class !2. For the needs of the example we
assume that all points are located at the nodes of a grid. We are given the point denoted by
a “star”, with coordinates (0.7, 0.6), which is to be classified in one of the two classes. The
Bayesian (minimum error probability) classifier and the k-nearest neighbor density estimation
technique, for k ! 5, will be employed.

Adopting the Euclidean distance, we find the five nearest neighbors to the unknown
point (0.7, 0.6) from all the points in class !2. These are the points (0.8, 0.6), (0.7, 0.7),
(0.6, 0.5), (0.6, 0.6), (0.6, 0.7). The full line circle encircles the five nearest neighbors, and
its radius is equal to the distance of the point that is furthest from (0.7, 0.6), that is,
, !

√
0.12 & 0.12 ! 0.1

√
2. In the sequel, we repeat the procedure for the points in

class !1. The nearest points are the ones with coordinates (0.7, 0.5), (0.8, 0.4), (0.8, 0.7),

0.3

0.6

0.9

1.3

0
0 0.4 0.7 1 1.4

x2

x1

FIGURE 2.24
The setup for the example 2.9. The point denoted by a “star” is classified to the class !2 of the
red points. The k ! 5 nearest neighbors from this class lie within a smaller area compared to
the five nearest neighbors coming from the other class.

“04-Ch02-SA272” 18/9/2008 page 59

2.5 Estimation of Unknown Probability Density Functions 59

(0.9, 0.6), (0.9, 0.8). The dotted circle is the one that encircles all five points, and its radius
is equal to

√
0.22 & 0.22 ! 0.2

√
2 ! 2,.

There are N1 ! 59 points in class !1 and N2 ! 61 in class !2. The areas (volumes) of the
two circles are V1 ! 4%,2 and V2 ! %,2, respectively, for the two classes. Hence, according
to Eq. (2.116) and ignoring the risk related terms, we have

V2

V1
!

%,2

4%,2 ! 0.25

and since 0.25 is less than 59/61 and the classes are equiprobable, the point (0.7, 0.6) is
classified to class !2.

2.5.7 The Naive-Bayes Classifier
The goal in this section, so far, was to present various techniques for the estimation
of the probability density functions p(x|!i), i ! 1, 2, . . . , M , required by the Bayes
classification rule, based on the available training set, X . As we have already stated,
in order to safeguard good estimates of the pdfs the number of training samples,
N , must be large enough. To this end, the demand for data increases exponentially
fast with the dimension, l, of the feature space. Crudely speaking, if N could be
regarded as a good number of training data points for obtaining sufficiently accurate
estimates of a pdf in an one-dimensional space, then Nl points would be required
for an l-dimensional space. Thus, large values of l make the accurate estimation of
a multidimensional pdf a bit of an “illusion”since in practice data is hard to obtain.
Loosely speaking, data can be considered to be something like money. It is never
enough! Accepting this reality, one has to make concessions about the degree of
accuracy that is expected from the pdf estimates. One widely used approach is
to assume that individual features xj , j ! 1, 2, . . . , l, are statistically independent.
Under this assumption, we can write

p(x|!i) !
l∏

j!1

p(xj |!i), i ! 1, 2, . . . , M

The scenario is now different. To estimate l one-dimensional pdfs, for each of the
classes, lN data points would be enough in order to obtain good estimates, instead
of Nl . This leads to the so-called naive-Bayes classifier, which assigns an unknown
sample x ! [x1, x2, . . . , xl]T to the class

!m ! arg max
!i

l∏

j!1

p(xj |!i), i ! 1, 2, . . . , M

It turns out that the naive-Bayes classifier can be very robust to violations of its
independence assumption, and it has been reported to perform well for many real-
world data sets. See, for example, [Domi 97].

“04-Ch02-SA272” 18/9/2008 page 60

60 CHAPTER 2 Classifiers Based on Bayes Decision Theory

Example 2.10
The discrete features case: In Section 2.2, it was stated that in the case of discrete-valued
features the only required change in the Bayesian classification rule is to replace probability
density functions with probabilities. In this example, we will see how the associated with the
naive Bayes classifier assumption of statistical independence among the features simplifies
the Bayesian classification rule.

Consider the feature vector x ! [x1, x2, . . . , xl]T with binary features, that is, xi ∈ {0, 1},
i ! 1, 2, . . . , l. Also let the respective class-conditional probabilities be P(xi ! 1|!1) ! pi and
P(xi ! 1|!2) ! qi . According to the Bayesian rule, given the value of x, its class is decided
according to the value of the likelihood ratio

P(!1)P(x|!1)
P(!2)P(x|!2)

" (#)1
(2.119)

for the minimum probability error rule (the minimum risk rule could also be used).
The number of values that x can take, for all possible combinations of xi , amounts to 2l .

If we do not adopt the independence assumption, then one must have enough training data
in order to obtain probability estimates for each one of these values (probabilities add to one,
thus 2l $ 1 estimates are required). However, adopting statistical independence among the
features, we can write

P(x|!1) !
l∏

i!1

pxi
i (1 $ pi)1$xi

and

P(x|!2) !
l∏

i!1

qxi
i (1 $ qi)1$xi

Hence, the number of required probability estimates is now 2l, that is, the pi ’s and qi ’s. It
is interesting to note that, taking the logarithm of both sides in (2.119), one ends up with a
linear discriminant function similar to the hyperplane classifier of Section 2.4, that is,

g(x) !
l∑

i!1

(
xi ln

pi

qi
& (1 $ xi) ln

1 $ pi

1 $ qi

)
& ln

P(!1)
P(!2)

(2.120)

which can easily be brought into the form of

g(x) ! wT x & w0 (2.121)

where

w !

[
ln

p1(1 $ q1)
q1(1 $ p1)

, . . . , ln
pl(1 $ ql)
ql(1 $ pl)

]T

and

w0 !
l∑

i!1

ln
1 $ pi

1 $ qi
& ln

P(!1)
P(!2)

“04-Ch02-SA272” 18/9/2008 page 61

2.6 The Nearest Neighbor Rule 61

Binary features are used in a number of applications where one has to decide based on
the presence or not of certain attributes. For example, in medical diagnosis, 1 can represent
a normal value in a medical test and a 0 an abnormal one.

2.6 THE NEAREST NEIGHBOR RULE
A variation of the kNN density estimation technique results in a suboptimal, yet
popular in practice, nonlinear classifier. Although this does not fall in the Bayesian
framework, it fits nicely at this point. In a way, this section could be considered as
a bridge with Chapter 4. The algorithm for the so-called nearest neighbor rule is
summarized as follows. Given an unknown feature vector x and a distance measure,
then:

■ Out of the N training vectors, identify the k nearest neighbors, regardless of
class label. k is chosen to be odd for a two class problem, and in general not
to be a multiple of the number of classes M .

■ Out of these k samples, identify the number of vectors,ki , that belong to class
!i , i ! 1, 2, . . . , M . Obviously,

∑
i ki ! k.

■ Assign x to the class !i with the maximum number ki of samples.

Figure 2.25 illustrates the k-NN rule for the case of k!11. Various distance measures
can be used, including the Euclidean and Mahalanobis distance.

The simplest version of the algorithm is for k ! 1,known as the nearest neighbor
(NN) rule. In other words, a feature vector x is assigned to the class of its nearest
neighbor! Provided that the number of training samples is large enough,this simple

FIGURE 2.25
Using the 11-NN rule, the point denoted by a “star” is classified to the class of the red points.
Out of the eleven nearest neighbors seven are red and four are black. The circle indicates the
area within which the eleven nearest neighbors lie.

“04-Ch02-SA272” 18/9/2008 page 62

62 CHAPTER 2 Classifiers Based on Bayes Decision Theory

rule exhibits good performance. This is also substantiated by theoretical findings. It
can be shown [Duda 73, Devr 96] that, as N→%, the classification error probability,
for the NN rule, PNN , is bounded by

PB - PNN - PB

(
2 $

M
M $ 1

PB

)
- 2PB (2.122)

where PB is the optimal Bayesian error. Thus, the error committed by the NN classi-
fier is (asymptotically) at most twice that of the optimal classifier. The asymptotic
performance of the kNN is better than that of the NN, and a number of interesting
bounds have been derived. For example, for the two-class case it can be shown, for
example, [Devr 96] that

PB - PkNN - PB &
1√
ke

or PB - PkNN - PB &

√
2PNN

k
(2.123)

Both of these suggest that as k → % the performance of the kNN tends to the optimal
one. Furthermore,for small values of Bayesian errors, the following approximations
are valid [Devr 96]:

PNN ≈ 2PB (2.124)

P3NN ≈ PB & 3(PB)2 (2.125)

Thus, for large N and small Bayesian errors, we expect the 3NN classifier to give
performance almost identical to that of the Bayesian classifier. As an example, let
us say that the error probability of the Bayesian classifier is of the order of 1%; then
the error resulting from a 3NN classifier will be of the order of 1.03%! The approxi-
mation improves for higher values of k. A little thought can provide justification for
this without too much mathematics. Under the assumption of large N , the radius
of the hypersphere (Euclidean distance) centered at x and containing its k nearest
neighbors tends to zero [Devr 96]. This is natural, because for very large N we
expect the space to be densely filled with samples. Thus, the k (a very small portion
of N) neighbors of x will be located very close to it, and the conditional class prob-
abilities, at all points inside the hypersphere around x,will be approximately equal
to P(!i|x) (assuming continuity). Furthermore, for large k (yet an infinitesimally
small fraction of N), the majority of the points in the region will belong to the class
corresponding to the maximum conditional probability. Thus,the kNN rule tends to
the Bayesian classifier. Of course,all these are true asymptotically. In the finite sam-
ple case there are even counterexamples (Problem 2.34) where the kNN results in
higher error probabilities than the NN. However, in conclusion, it can be stated that
the nearest neighbor techniques are among the serious candidates to be adopted as
classifiers in a number of applications. A comparative study of the various statistical
classifiers, considered in this chapter as well as others, can be found in [Aebe 94].

Remarks

■ A serious drawback associated with (k)NN techniques is the complexity in
search of the nearest neighbor(s) among the N available training samples.

“04-Ch02-SA272” 18/9/2008 page 63

2.6 The Nearest Neighbor Rule 63

Brute-force searching amounts to operations proportional to kN (O(kN)).2

The problem becomes particularly severe in high-dimensional feature spaces.
To reduce the computational burden,a number of efficient searching schemes
have been suggested; see, for example, [Fuku 75, Dasa 91, Brod 90, Djou 97,
Nene 97, Hatt 00, Kris 00, Same 08]. In [Vida 94, Mico 94] a preprocessing
stage is suggested that computes a number of base prototypes that are in some
sense maximally separated from among the set of training feature vectors. A
summary of efficient searching techniques and a comparative study is given
in [McNa 01].

■ Although, due to its asymptotic error performance, the kNN rule achieves
good results when the data set is large (compared to the dimension of the
feature space), the performance of the classifier may degrade dramatically
when the value of N is relatively small [Devr 96]. Also, in practice, one may
have to reduce the number of training patterns due to the constraints imposed
by limited computer resources. To this end, a number of techniques, also
known as prototype editing or condensing, have been proposed. The idea
is to reduce the number of training points in a way that a cost related to the
error performance is optimized; see, for example, [Yan 93, Huan 02, Pare 06a]
and the references therein. Besides computational savings, reducing the size
of a finite set appropriately may offer performance improvement advantages,
by making the classifier less sensitive to outliers. A simple method, which
also makes transparent the reason for such a potential improvement,has been
suggested in [Wils 72]. This editing procedure tests a sample using a kNN rule
against the rest of the data. The sample is discarded if it is misclassified. The
edited data set is then used for a NN classification of unknown samples.

A direction to cope with the performance degradation associated with
small values of N is to employ distance measures that are optimized on the
available training set. The goal is to find a data-adaptive distance metric that
leads to an optimal performance, according to an adopted cost. Such trained
metrics can be global ones (i.e., the same at every point), class-dependent
(i.e., shared by all points of the same class), and/or locally dependent (i.e., the
metric varies according to the position in the feature space); see, for example,
[Hast 96, Dome 05, Pare 06] and the references therein. An in depth treatment
of the topic is given in [Frie 94].

■ When the k ! 1 nearest neighbor rule is used, the training feature vectors
xi, i!1, 2, . . . , N , define a partition of the l-dimensional space into N regions,
Ri . Each of these regions is defined by

Ri ! {x: d(x, xi) # d(x, xj), i ̸! j} (2.126)

that is, Ri contains all points in space that are closer to xi than any other
point of the training set, with respect to the distance d. This partition of the

2 O(n) denotes order of n calculations.

“04-Ch02-SA272” 18/9/2008 page 64

64 CHAPTER 2 Classifiers Based on Bayes Decision Theory

FIGURE 2.26
An example of Voronoi tessellation in the two-dimensional space and for Euclidean distance.

feature space is known as Voronoi tessellation. Figure 2.26 is an example
of the resulting Voronoi tessellation for the case of l ! 2 and the Euclidean
distance.

2.7 BAYESIAN NETWORKS
In Section 2.5.7 the naive-Bayes classifier was introduced as a means of coping with
the curse of dimensionality and to exploiting more efficiently the available training
data set. However,by adopting the naive-Bayes classifier,one goes from one extreme
(fully dependent features) to another (features mutually independent). Common
sense drives us to search for approximations that lie between these two extremes.

The essence of the current section is to introduce a methodology that allows
one to develop models that can accommodate built-in independence assumptions
with respect to the features xi , i ! 1, 2, . . . , l. Recall the well-known probability
chain rule [Papo 91, p. 192]

p(x1, x2, . . . , xl) ! p(xl |xl$1, . . . , x1)p(xl$1|xl$2 . . . , x1) . . . , p(x2|x1)p(x1) (2.127)

This rule applies always and does not depend on the order in which features are pre-
sented. The rule states that the joint probability density function can be expressed
in terms of the product of conditional pdfs and a marginal one (p(x1)).3 This impor-
tant and elegant rule opens the gate through which assumptions will infiltrate the
problem. The conditional dependence for each feature,xi ,will be limited into a sub-
set of the features appearing in each term in the product. Under this assumption,

3 In the study of several random variables, the statistics of each are called marginal.

“04-Ch02-SA272” 18/9/2008 page 65

2.7 Bayesian Networks 65

Eq. (2.127) can now be written as

p(x) ! p(x1)
l∏

i!2

p(xi|Ai) (2.128)

where

Ai ⊆ {xi$1, xi$2, . . . , x1} (2.129)

For example, let l ! 6 and

p(x6|x5, . . . , x1) ! p(x6|x5, x4) (2.130)

p(x5|x4, . . . , x1) ! p(x5|x4) (2.131)

p(x4|x3, x2, x1) ! p(x4|x2, x1) (2.132)

p(x3|x2, x1) ! p(x3|x2) (2.133)

p(x2|x1) ! p(x2) (2.134)

Then,

A6 ! {x5, x4}, A5 ! {x4}, A4 ! {x2, x1}, A3 ! {x2}, A2 ! ∅

where ∅ denotes the empty set. These assumptions are represented graphically in
Figure 2.27. Nodes correspond to features. The parents of a feature, xi , are those
features with directed links toward xi and are the members of the set Ai. In other
words, xi is conditionally independent of any combination of its nondescendants,
given its parents. There is a subtle point concerning conditional independence.
Take, for example, that p(x3|x2, x1) ! p(x3|x2). This does not necessarily mean that
x3 and x1 are independent. They may be dependent while x2 is unknown, but
they become independent once the value of x2 is disclosed to us. This is not
surprising since by measuring the value of a random variable part of the randomness
is removed.

Under the previous assumptions, the problem of estimating the joint pdf has
broken into the product of simpler terms. Each of them involves, in general, a
much smaller number of features compared to the original number. For example,

x1 x2

x4 x3

x5

x6

FIGURE 2.27
Graphical model illustrating conditional dependencies.

“04-Ch02-SA272” 18/9/2008 page 66

66 CHAPTER 2 Classifiers Based on Bayes Decision Theory

for the case of Eqs. (2.130)–(2.134) none of the products involves more than three
features. Hence, the estimation of each pdf term in the product takes place in a
low-dimensional space and the problems arising from the curse of dimensionality
can be handled easier. To get a feeling for the computational size reduction implied
by the independence assumptions, encoded in the graphical model of Figure 2.27,
let us assume that variables xi , i ! 1, 2, . . . , 6, are binary. Then the pdfs in (2.127)–
(2.134) become probabilities. Complete knowledge of P(x1, . . . , x6) requires the
estimation of 63 (2l $ 1) probability values. It is 63 and not 64 due to the constraint
that probabilities must add to one. This is also suggested by the right-hand side of
Eq. (2.127). The number of the required probability values is 2l$1 &2l$2 &· · ·&1 !
2l $ 1. In contrast to that, the assumptions in (2.130)–(2.134) reduce the number
of the required probability values to be estimated to 13 (Why?). For large values of
l, such a saving can be very significant.

The naive-Bayes classifier is a special case for which Ai ! ∅, i ! 2, . . . , l, and the
product in (2.128) becomes a product of marginal pdfs. Examples of classifiers that
exploit the idea of conditional independence with respect to a subset of features
are given in, for example, [Frie 97, Webb 05, Roos 05].

Although our original goal was to seek for ways for the approximate estimation of
a joint pdf,it turns out that the adopted assumptions (nicely condensed in a graphical
representation such as in Figure 2.27), have much more interesting consequences.
For the rest of the section and for the sake of simplicity, we will assume that the
features can only take values from a discrete set. Thus, pdfs give their place to
probabilities.

Definition: A Bayesian network is a directed acyclic graph (DAG) where the
nodes correspond to random variables (features). Each node is associated with a
set of conditional probabilities, P(xi|Ai), where xi is the variable associated with
the specific node and Ai is the set of its parents in the graph.

Acyclic means that there are no cycles in the graph. For example, the graph
in Figure 2.27 is an acyclic one, and it will cease to be so if one draws an arc
directed from x6 to, say, x1. The complete specification of a Bayesian network
requires knowledge of (a) the marginal probabilities of the root nodes (those without
a parent) and (b) the conditional probabilities of the nonroot nodes, given their
parents for all possible combinations of their values. The joint probability of the
variables can now be obtained by multiplying all conditional probabilities with the
prior probabilities of the root nodes. All that is needed is to perform a topological
sorting of the random variables;that is,to order the variables such that every variable
comes before its descendants in the related graph.

Bayesian networks have been used in a variety of applications. The network
in Figure 2.28 corresponds to an example inspired by the discipline of medi-
cal diagnosis, a scientific area where Bayesian networks have been very popular.
S stands for smokers, C for lung cancer, and H for heart disease. H1 and H2 are
heart disease medical tests, and C1 and C2 are cancer medical tests. The table of
the root node shows the population percentage (probability) of smokers (True) and

“04-Ch02-SA272” 18/9/2008 page 67

2.7 Bayesian Networks 67

P(H1|H)
True
0.95
0.01

False
0.05
0.99

H
True
False

P(H2|H)
True False
0.98
0.05

0.02
0.95

H
True
False

P(C1|C)
True False
0.99
0.10

0.01
0.90

C
True
False

P(C2|C)
True False
0.98
0.05

0.02
0.95

C
True
False

P(C|S)
True False
0.20
0.11

0.80
0.89

S
True
False

P(H|S)
True False
0.40
0.15

0.60
0.85

S
True
False

P(S)
True False
0.40 0.60

S

H C

H1

H2

C1

C2

FIGURE 2.28
Bayesian network modeling conditional dependencies for an example concerning smokers (S),
tendencies to develop cancer (C), and heart disease (H), together with variables corresponding
to heart (H1, H2) and cancer (C1, C2) medical tests.

nonsmokers (False). The tables along the nodes of the tree are the respective con-
ditional probabilities. For example, P(C : True|S : True) ! 0.20 is the probability of
a smoker (True) to develop cancer (True). (The probabilities used in Figure 2.28
may not correspond to true values having resulted from statistical studies.)

Once a DAG has been constructed, the Bayesian network allows one to cal-
culate efficiently the conditional probability of any node in the graph, given that
the values of some other nodes have been observed. Such questions arise in the
field of artificial intelligence closely related to pattern recognition. The compu-
tational efficiency stems from the existing probability relations encoded in the
graph. A detailed treatment of the topic is beyond the scope of this book; the
interested reader may consult more specialized texts, such as [Neap 04]. The
remainder of this section aims at providing the reader with a flavor of the related
theory.

Probability Inference: This is the most common task that Bayesian networks
help us to solve efficiently. Given the values of some of the variables, known as
evidence, the goal is to compute the conditional probabilities for some (or all) of
the other variables in the graph, given the evidence.

“04-Ch02-SA272” 18/9/2008 page 68

68 CHAPTER 2 Classifiers Based on Bayes Decision Theory

Example 2.11
Let us take the simple Bayesian network of Figure 2.29. For notational simplicity we avoid
subscripts, and the involved variables are denoted by x, y, z, w. Each variable is assumed to
be binary. We also use the symbol x1 instead of x ! 1 and x0 instead of x ! 0, and similarly for
the rest of the variables. The Bayesian network is fully specified by the marginal probabilities
of the root node (x) and the conditional probabilities shown in Figure 2.29. Note that only the
values above the graph need to be specified. Those below the graph can be derived. Take,
for example, the y node.

P(y1) ! P(y1|x1)P(x1) & P(y1|x0)P(x0) ! (0.4)(0.6) & (0.3)(0.4) ! 0.36

P(y0) ! 1 $ P(y1) ! 0.64

Also,

P(y0|x1) ! 1 $ P(y1|x1)

The rest are similarly derived. Note that all of these parameters should be available prior to
performing probability inference. Suppose now that:

(a) x is measured and let its value be x1 (the evidence). We seek to compute P(z1|x1)
and P(w0|x1).

(b) w is measured and let its value be w1. We seek to compute P(x0|w1) and P(z1|w1).

To answer (a), the following calculations are in order.

P(z1|x1) ! P(z1|y1, x1)P(y1|x1) & P(z1|y0, x1)P(y0|x1)

! P(z1|y1)P(y1|x1) & P(z1|y0)P(y0|x1)

! (0.25)(0.4) & (0.6)(0.6) ! 0.46 (2.135)

Though not explicitly required, P(z0|x1) must also be evaluated, as we will soon realize.

P(z0|x1) ! 1 $ P(z1|x1) ! 0.54 (2.136)

P(x1) 5 0.60

P(x0)5 0.40

P(y 1|x 1) 5 0.40 P(z 1|y 1) 5 0.25

P(z 1|y 0) 5 0.60

P(w 1|z 1) 5 0.45

P(w 1|z 0) 5 0.30

P(y 0|x 1) 5 0.60 P(z 0|y 1) 5 0.75

P(z 0|y 0) 5 0.40

P(z 0) 5 0.53

P(z 1) 5 0.47

P(w 0|z 1) 5 0.55

P(w 0|z 0) 5 0.70

P(w 1) 5 0.37

P(w 0) 5 0.63

P(y 0|x 0) 5 0.70

P(y 1) 5 0.36

P(y 0) 5 0.64

P(y 1|x 0) 5 0.30

FIGURE 2.29
A simple Bayesian network where conditional dependencies are restricted to a single variable.

“04-Ch02-SA272” 18/9/2008 page 69

2.7 Bayesian Networks 69

In a similar way, we obtain

P(w0|x1) ! P(w0|z1, x1)P(z1|x1) & P(w0|z0, x1)P(z0|x1)

! P(w0|z1)P(z1|x1) & P(w0|z0)P(z0|x1)

! (0.55)(0.46) & (0.7)(0.54) ! 0.63 (2.137)

We can think of the algorithm as a process that passes messages (i.e., probabilities) downward
from one node to the next. The first two computations, (2.135) and (2.136), “are performed
in node z” and then “passed” to the last node, where (2.137) is performed.

To answer (b), the direction of “message propagation” is reversed since, now, the evidence
is provided from node w and the required information, P(x0|w1), P(z1|w1) concerns nodes
x and z, respectively.

P(z1|w1) !
P(w1|z1)P(z1)

P(w1)
!

(0.45)(0.47)
0.37

! 0.57

The activity is then passed to node y, where the following needs to be performed.

P(y1|w1) !
P(w1|y1)P(y1)

P(w1)

P(w1|y1) is unknown and can be computed as discussed in the “downward” message
propagation. That is,

P(w1|y1) ! P(w1|z1, y1)P(z1|y1) & P(w1|z0, y1)P(z0|y1)

! P(w1|z1)P(z1|y1) & P(w1|z0)P(z0|y1)

! (0.45)(0.25) & (0.3)(0.75) ! 0.34

In a similar way, P(w1|y0) ! 0.39 is obtained. These values are then “passed” over to node
x, and it is left as an exercise to show that P(x0|w1) ! 0.4.

This idea can be carried out to any net of any size of the form given in Figure 2.29.

For Bayesian networks that have a tree structure,probability inference is achieved
via a combination of downward and upward computations propagated through
the tree. A number of algorithms have been proposed for the general case of
Bayesian networks based on this “message-passing” philosophy. See, for example,
[Pear 88, Laur 96]. For the case of singly connected graphs, these algorithms have
complexity that is linear in the number of nodes. A singly connected graph is one
that has no more than one path between any two nodes. For example, the graph in
Figure 2.27 is not singly connected since there are two paths connecting x1 and x6.
An alternative approach to derive efficient algorithms for probability inference,
which exploits the structure of the DAG, has been taken in [Li 94]. Although it is
beyond our scope to focus on algorithmic details, it is quite instructive to highlight
the basic idea around which this type of algorithm evolves.

Let us take as an example the DAG shown in Figure 2.30,with nodes correspond-
ing to the variables s, u, v, x, y, w, z with the joint probability P(s, u, v, x, y, w, z).
This can be obtained, as we have already stated, as the product of all conditional

“04-Ch02-SA272” 18/9/2008 page 70

70 CHAPTER 2 Classifiers Based on Bayes Decision Theory

x

yu

s

v

z

w

FIGURE 2.30
A Bayesian network with a tree structure.

probabilities defining the network. Suppose one wishes to compute the conditional
probability P(s|z ! z0), where z ! z0 is the evidence. From the Bayes rule we
have

P(s|z ! z0) !
P(s, z ! z0)
P(z ! z0)

!
P(s, z ! z0)∑
s P(s, z ! z0)

(2.138)

To obtain P(s, z ! z0), one has to marginalize (Appendix A) the joint probability
over all possible values of u, v, x, y, w; that is,

P(s, z ! z0) !
∑

u,v,x,y,w

P(s, u, v, x, y, w, z ! z0) (2.139)

Assuming, for simplicity, that each of the discrete variables can take, say, L values,
the complexity of the previous computations amounts to L5 operations. For more
variables and a large number of values, L, this can be a prohibitively large number.
Let us now exploit the structure of the Bayesian network in order to reduce this
computational burden. Taking into account the relations implied by the topology of
the graph shown in Figure 2.30 and the Bayes chain rule in (2.128) (for probabilities),
we obtain

∑

u,v,x,y,w

P(s, u, v, x, y, w, z ! z0) !

∑

u,v,x,y,w

P(s)P(u|s)P(v|s)P(w|v)P(x|u)P(y|u)P(z ! z0|y) !

P(s)
∑

u,v

P(u|s)P(v|s)
∑

w

P(w|v)

︸ ︷︷ ︸
v

∑

x

P(x|u)

︸ ︷︷ ︸
u

∑

y

P(y|u)P(z ! z0|y)

︸ ︷︷ ︸
u︸ ︷︷ ︸

s

(2.140)

or
∑

u,v,x,y,w

P(s, u, v, x, y, w, z ! z0) ! P(s)
∑

u,v

P(u|s)P(v|s)+1(v)+2(u)+3(u)
(2.141)

“04-Ch02-SA272” 18/9/2008 page 71

2.8 Problems 71

where the definitions of +i(·), i ! 1, 2, 3, are readily understood by inspection.
Underbraces indicate what variable the result of each summation depends on. To
obtain +3(u) for each value of u, one needs to perform L operations (products and
summations). Hence, a total number of L2 operations is needed to compute +3(u)
for all possible values of u. This is also true for the +2(u), +1(v). Thus, the total
number of operations required to compute (2.141) is, after the factorization, of the
order of L2, instead of the order of L5 demanded for the brute-force computation
in (2.139). This procedure could be viewed as an effort to decompose a “global”
sum into products of “local” sums to make computations tractable. Each summa-
tion can be viewed as a processing stage that removes a variable and provides as
output a function. The essence of the algorithm given in [Li 94] is to search for
the factorization that requires the minimal number of operations. This algorithm
also has linear complexity in the number of nodes for singly connected networks.
In general, for multiply connected networks the probability inference problem is
NP-hard [Coop 90]. In light of this result, one tries to seek approximate solutions,
as in [Dagu 93].

Training: Training of a Bayesian network consists of two parts. The first is to
learn the network topology. The topology can either be fixed by an expert who can
provide knowledge about dependencies or by use of optimization techniques based
on the training set. Once the topology has been fixed, the unknown parameters
(i.e., conditional probabilities and marginal probabilities) are estimated from the
available training data points. For example, the fraction (frequency) of the number
of instances that an event occurs over the total number of trials performed is a way
to approximate probabilities. In Bayesian networks, other refined techniques are
usually encountered. A review of learning procedures can be found in [Heck 95].
For the reader who wishes to delve further into the exciting world of Bayesian
networks, the books of [Pear 88, Neap 04, Jens 01] will prove indispensable tools.

2.8 PROBLEMS
2.1 Show that in a multiclass classification task, the Bayes decision rule minimizes

the error probability.

Hint: It is easier to work with the probability of correct decision.

2.2 In a two-class one-dimensional problem, the pdfs are the Gaussians N (0, $2)
and N (1, $2) for the two classes, respectively. Show that the threshold x0
minimizing the average risk is equal to

x0 ! 1/2 $ $2 ln
"21P(!2)
"12P(!1)

where "11 ! "22 ! 0 has been assumed.

2.3 Consider a two equiprobable class problem with a loss matrix L. Show that
if '1 is the probability of error corresponding to feature vectors from class !1

“04-Ch02-SA272” 18/9/2008 page 72

72 CHAPTER 2 Classifiers Based on Bayes Decision Theory

and '2 for those from class !2, then the average risk r is given by

r ! P(!1)"11 & P(!2)"22 & P(!1)("12 $ "11)'1 & P(!2)("21 $ "22)'2

2.4 Show that in a multiclass problem with M classes the probability of classifica-
tion error for the optimum classifier is bounded by

Pe -
M $ 1

M
Hint: Show first that for each x the maximum of P(!i|x), i ! 1, 2, . . . , M , is
greater than or equal to 1/M . Equality holds if all P(!i|x) are equal.

2.5 Consider a two (equiprobable) class, one-dimensional problem with samples
distributed according to the Rayleigh pdf in each class, that is,

p(x|!i) !

⎧
⎪⎨

⎪⎩

x
$2

i
exp

(
$x2

2$2
i

)
x . 0

0 x # 0

Compute the decision boundary point g(x) ! 0.

2.6 In a two-class classification task, we constrain the error probability for one of
the classes to be fixed, that is, '1 ! '. Then show that minimizing the error
probability of the other class results in the likelihood test

decide x in !1 if
P(!1|x)
P(!2|x)

")

where) is chosen so that the constraint is fulfilled. This is known as the
Neyman–Pearson test, and it is similar to the Bayesian minimum risk rule.

Hint: Use a Lagrange multiplier to show that this problem is equivalent to mini-
mizing the quantity

q !)('1 $ ') & '2

2.7 In a three-class, two-dimensional problem the feature vectors in each class are
normally distributed with covariance matrix

(!

[
1.2 0.4
0.4 1.8

]

The mean vectors for each class are [0.1, 0.1]T , [2.1, 1.9]T , [$1.5, 2.0]T .
Assuming that the classes are equiprobable, (a) classify the feature vec-
tor [1.6, 1.5]T according to the Bayes minimum error probability classifier;
(b) draw the curves of equal Mahalanobis distance from [2.1, 1.9]T .

2.8 In a two-class, three-dimensional classification problem, the feature vectors in
each class are normally distributed with covariance matrix

(!

⎡

⎢⎣
0.3 0.1 0.1
0.1 0.3 $0.1
0.1 $0.1 0.3

⎤

⎥⎦

“04-Ch02-SA272” 18/9/2008 page 73

2.8 Problems 73

The respective mean vectors are [0, 0, 0]T and [0.5, 0.5, 0.5]T . Derive the
corresponding linear discriminant functions and the equation describing the
decision surface.

2.9 In a two equiprobable class classification problem, the feature vectors in each
class are normally distributed with covariance matrix (,and the corresponding
mean vectors are !1, !2. Show that for the Bayesian minimum error classifier,
the error probability is given by

PB !

&%∫

(1/2)dm

1√
2%

exp($z2/2) dz

where dm is the Mahalanobis distance between the mean vectors. Observe
that this is a decreasing function of dm.
Hint: Compute the log-likelihood ratio u ! ln p(x|!1) $ ln p(x|!2). Observe
that u is also a random variable normally distributed as N ((1/2)d2

m, d2
m) if

x ∈ !1 and as N ($(1/2)d2
m, d2

m) if x ∈ !2. Use this information to compute
the error probability.

2.10 Show that in the case in which the feature vectors follow Gaussian pdfs, the
likelihood ratio test in (2.20)

x ∈ !1(!2) if l12 ≡ p(x|!1)
p(x|!2)

" (#))

is equivalent to

d2
m(!1, x|(1) $ d2

m(!2, x|(2) & ln
|(1|
|(2| # (") $ 2 ln)

where dm(!i, x|(i) is the Mahalanobis distance between !i and x with
respect to the ($1

i norm.

2.11 If (1 ! (2 ! (, show that the criterion of the previous problem becomes

(!1 $!2)T ($1x " (#)0

where

0 ! ln) & 1/2(∥!1∥($1 $ ∥!2∥($1)

2.12 Consider a two-class, two-dimensional classification task, where the feature
vectors in each of the classes !1, !2 are distributed according to

p(x|!1) !
1

(√
2%$2

1

)2 exp
(

$
1

2$2
1

(x $!1)T (x $!1)
)

p(x|!2) !
1

(√
2%$2

2

)2 exp
(

$
1

2$2
2

(x $!2)T (x $!2)
)

“04-Ch02-SA272” 18/9/2008 page 74

74 CHAPTER 2 Classifiers Based on Bayes Decision Theory

with

!1 ! [1, 1]T , !2 ! [1.5, 1.5]T , $2
1 ! $2

2 ! 0.2

Assume that P(!1) ! P(!2) and design a Bayesian classifier
(a) that minimizes the error probability
(b) that minimizes the average risk with loss matrix

+ !

[
0 1
0.5 0

]

Using a pseudorandom number generator, produce 100 feature vectors from
each class, according to the preceding pdfs. Use the classifiers designed to
classify the generated vectors. What is the percentage error for each case?
Repeat the experiments for !2 ! [3.0, 3.0]T .

2.13 Repeat the preceding experiment if the feature vectors are distributed
according to

p(x|!i) !
1

2%|(|1/2 exp
(

$
1
2

(x $!i)
T ($1(x $!i)

)

with

(!

[
1.01 0.2
0.2 1.01

]

and !1 ! [1, 1]T , !2 ! [1.5, 1.5]T .
Hint:To generate the vectors, recall from [Papo 91, p. 144] that a linear trans-
formation of Gaussian random vectors also results in Gaussian vectors. Note
also that

[
1.01 0.2
0.2 1.01

]

!

[
1 0.1
0.1 1

] [
1 0.1
0.1 1

]

2.14 Consider a two-class problem with normally distributed vectors with the same
(in both classes. Show that the decision hyperplane at the point x0,Eq. (2.46),
is tangent to the constant Mahalanobis distance hyperellipsoids.
Hint: (a) Compute the gradient of Mahalanobis distance with respect to x. (b)
Recall from vector analysis that (f (x)

(x is normal to the tangent of the surface
f (x) ! constant.

2.15 Consider a two-class, one-dimensional problem with p(x|!1) being N (&, $2)
and p(x|!2) a uniform distribution between a and b. Show that the Bayesian

error probability is bounded by G
(

b$&
$

)
$ G

(a$&
$

)
, where G(x) ≡ P(y - x)

and y is N (0, 1).

2.16 Show that the mean value of the random vector (ln(p(x:"))
(" is zero.

“04-Ch02-SA272” 18/9/2008 page 75

2.8 Problems 75

2.17 In a heads or tails coin-tossing experiment the probability of occurrence of
a head (1) is q and that of a tail (0) is 1 $ q. Let xi, i ! 1, 2, . . . , N , be the
resulting experimental outcomes, xi ∈ {0, 1}. Show that the ML estimate
of q is

qML !
1
N

N∑

i!1

xi

Hint:The likelihood function is

P(X : q) !
N∏

i!1

qxi (1 $ q)(1$xi)

Then show that the ML results from the solution of the equation

q
∑

i xi (1 $ q)(N$
∑

i xi)
(∑

i xi

q
$

N $
∑

i xi

1 $ q

)
! 0

2.18 The random variable x is normally distributed N (&, $2),where & is considered
unknown. Given N measurements of the variable, compute the Cramer–Rao

bound $E
[(2L(&)

(2&

]
(Appendix A). Compare the bound with the variance of

the resulting ML estimate of &. Repeat this if the unknown parameter is the
variance $2. Comment on the results.

2.19 Show that if the likelihood function is Gaussian with unknowns the mean !
as well as the covariance matrix (, then the ML estimates are given by

!̂ !
1
N

N∑

k!1

xk

(̂ !
1
N

N∑

k!1

(xk $!̂)(xk $!̂)T

2.20 Prove that the covariance estimate

(̂ !
1

N $ 1

N∑

k!1

(xk $!̂)(xk $!̂)T

is an unbiased one, where

!̂ !
1
N

N∑

k!1

xk

2.21 Prove that the ML estimates of the mean value and the covariance matrix
(Problem 2.19) can be computed recursively, that is,

!̂N&1 ! !̂N &
1

N & 1
(xN&1 $!̂N)

“04-Ch02-SA272” 18/9/2008 page 76

76 CHAPTER 2 Classifiers Based on Bayes Decision Theory

and

(̂N&1 !
N

N & 1
(̂N &

N
(N & 1)2 (xN&1 $!̂N)(xN&1 $!̂N)T

where the subscript in the notation of the estimates, !̂N , (̂N indicates the
number of samples used for their computation.

2.22 The random variable x follows the Erlang pdf

p(x;)) !)2x exp($)x)u(x)

where u(x) is the unit-step function,

u(x) !

{
1 if x " 0

0 if x # 0

Show that the maximum likelihood estimate of), given N measurements,
x1, . . . , xN , of x, is

)̂ML !
2N

∑N
k!1 xk

2.23 In the ML estimation, the zero of the derivative of the log pdf derivative was
computed. Using a multivariate Gaussian pdf, show that this corresponds to
a maximum and not to a minimum.

2.24 Prove that the sum z ! x & y of two independent random variables, x and y,
where x ∼ N (&x , $2

x) and y ∼ N (&y, $2
y), is also a Gaussian one with mean

value and variance equal to &x & &y and $2
x & $2

y , respectively.

2.25 Show relations (2.74) and (2.75). Then show that p(x|X) is also normal with
mean &N and variance $2 & $2

N . Comment on the result.

2.26 Show that the posterior pdf estimate in the Bayesian inference task, for
independent variables, can be computed recursively, that is,

p("|x1, . . . , xN) !
p(xN |")p("|x1, . . . , xN$1)

p(xN |x1, . . . , xN$1)

2.27 Show Eqs. (2.76)–(2.79).

2.28 The random variable x is normally distributed as N (&, $2), with & being the
unknown parameter described by the Rayleigh pdf

p(&) !
& exp($&2/2$2

&)

$2
&

Show that the maximum a posteriori probability estimate of & is given by

&̂MAP !
Z
2R

(

1 &

√
1 &

4R
Z2

)

“04-Ch02-SA272” 18/9/2008 page 77

2.8 Problems 77

where

Z !
1

$2

N∑

k!1

xk, R !
N
$2 &

1
$2

&

2.29 Show that for the lognormal distribution

p(x) !
1

$x
√

2%
exp

(
$

(ln x $ ")2

2$2

)
, x " 0

the ML estimate is given by

)̂ML !
1
N

N∑

k!1

ln xk

2.30 Show that if the mean value and the variance of a random variable are known,
that is,

& !

&%∫

$%

xp(x) dx, $2 !

&%∫

$%

(x $ &)2p(x) dx

the maximum entropy estimate of the pdf is the Gaussian N (&, $2).

2.31 Show Eqs. (2.98), (2.99), and (2.100).
Hint: For the latter, note that the probabilities add to one; thus a Lagrangian
multiplier must be used.

2.32 Let P be the probability of a random point x being located in a certain interval
h. Given N of these points, the probability of having k of them inside h is
given by the binomial distribution

prob{k} !
N !

k!(N $ k)!P
k(1 $ P)N$k

Show that E[k/N] ! P and that the variance around the mean is $2 ! E[(k/N$
P)2] ! P(1 $ P)/N . That is, the probability estimator P ! k/N is unbiased
and asymptotically consistent.

2.33 Consider three Gaussian pdfs: N (1.0, 0.1), N (3.0, 0.1), and N (2.0, 0.2).
Generate 500 samples according to the following rule. The first two sam-
ples are generated from the second Gaussian, the third sample from the first
one, and the fourth sample from the last Gaussian. This rule repeats until all
500 samples have been generated. The pdf underlying the random samples is
modeled as a mixture

3∑

i!1

N (&i , $2
i)Pi

Use the EM algorithm and the generated samples to estimate the unknown
parameters &i, $2

i , Pi.

“04-Ch02-SA272” 18/9/2008 page 78

78 CHAPTER 2 Classifiers Based on Bayes Decision Theory

2.34 Consider two classes !1, !2 in the two-dimensional space. The data from
class !1 are uniformly distributed inside a circle of radius r. The data of
class !2 are also uniformly distributed inside another circle of radius r. The
distance between the centers of the circles is greater than 4r. Let N be
the number of the available training samples. Show that the probability
of error of the NN classifier is always smaller than that of the kNN, for
any k . 3.

2.35 Generate 50 feature vectors for each of the two classes of Problem 2.12, and
use them as training points. In the sequel, generate 100 vectors from each
class and classify them according to the NN and 3NN rules. Compute the
classification error percentages.

2.36 The pdf of a random variable is given by

p(x) !

⎧
⎨

⎩

1
2 for 0 # x # 2

0 otherwise

Use the Parzen window method to approximate it using as the kernel function
the Gaussian N (0, 1). Choose the smoothing parameter to be (a) h ! 0.05 and
(b) h ! 0.2. For each case,plot the approximation based on N ! 32,N ! 256,
and N ! 5000 points, which are generated from a pseudorandom generator
according to p(x).

2.37 Repeat the preceding problem by generating N ! 5000 points and using k
nearest neighbor estimation with k ! 32, 64, and 256, respectively.

2.38 Show that the variance $2
N (x) of the pdf estimate, given by Eq. (2.110), is

upper bounded by:

$2
N (x) -

sup(+)E[p̂(x)]
Nhl

where sup(·) is the supremum of the associated function. Observe that for
large values of h the variance is small. On the other hand, we can make the
variance small for small values of h, provided N tends to infinity and if, also,
the product Nhl tends to infinity.

2.39 Recall Equation (2.128)

p(x) ! p(x1)
l∏

i!2

p(xi |Ai)

Assume l ! 6 and

p(x6|x5, . . . , x1) ! p(x6|x5, x1) (2.142)

p(x5|x4, . . . , x1) ! p(x5|x4, x3) (2.143)

p(x4|x3, x2, x1) ! p(x4|x3, x2, x1) (2.144)

p(x3|x2, x1) ! p(x3) (2.145)

“04-Ch02-SA272” 18/9/2008 page 79

MATLAB Programs and Exercises 79

p(x2|x1) ! p(x2) (2.146)

Write the respective sets Ai , i ! 1, 2, . . . , 6, and construct the corresponding
DAG.

2.40 In the DAG defined in Figure 2.29, assume that the variable z is measured to
be z0. Compute P(x1|z0) and P(w0|z0).

2.41 In the example associated with the tree-structured DAG of Figure 2.28,assume
that the patient undergoes the medical test H1 and that this turns out to be
positive (True). Based on this test, compute the probability that the patient
has developed cancer. In other words, compute the conditional probability
P(C ! True|H1 ! True).

MATLAB PROGRAMS AND EXERCISES
Computer Exercises

A number of MATLAB functions are provided,which will help the interested reader to
experiment on some of the most important issues discussed in the present chapter.
Needless to say that there may be other implementations of these functions. Short
comments are also given along with the code. In addition,we have used the symbols
m and S to denote the mean vector (given as a column vector) and the covariance
matrix, respectively, instead of the symbols ! and (, which are used in the text.
In the following, unless otherwise stated, each class is represented by an integer in
{1, . . . , c} where c is the number of classes.

2.1 Gaussian generator. Generate N l-dimensional vectors from a Gaussian dis-
tribution with mean m and covariance matrix S, using the mvnrnd MATLAB
function.

Solution

Just type

mvnrnd(m,S,N)

2.2 Gaussian function evaluation. Write a MATLAB function that computes the
value of the Gaussian distribution N (m, S), at a given vector x.

Solution
function z=comp_gauss_dens_val(m,S,x)
[l,q]=size(m); % l=dimensionality
z=(1/((2*pi)^ (l/2)*det(S)^ 0.5))...

exp(-0.5(x-m)'*inv(S)*(x-m));

“04-Ch02-SA272” 18/9/2008 page 80

80 CHAPTER 2 Classifiers Based on Bayes Decision Theory

2.3 Data set generation from Gaussian classes. Write a MATLAB function that
generates a data set of Nl-dimensional vectors that stem from c different
Gaussian distributions N (mi, Si), with corresponding a priori probabilities
Pi, i ! 1, . . . , c.

Solution

In the sequel:
■ m is an l) c matrix, the i-th column of which is the mean vector of the

i-th class distribution.

■ S is an l) l) c (three-dimensional) matrix,whose ith two-dimensional
l) l component is the covariance of the distribution of the ith class.
In MATLAB S(:, :, i) denotes the i-th two-dimensional l) l matrix of S.

■ P is the c dimensional vector that contains the a priori probabilities of
the classes. mi , Si , Pi , and c are provided as inputs.

The following function returns:
■ A matrix X with (approximately) N columns, each column of which is

an l-dimensional data vector.

■ A row vector y whose ith entry denotes the class from which the ith
data vector stems.

function [X,y]=generate_gauss_classes(m,S,P,N)
[l,c]=size(m);
X=[];
y=[];
for j=1:c
% Generating the [p(j)*N)] vectors from each distribution
t=mvnrnd(m(:,j),S(:,:,j),fix(P(j)*N));
% The total number of points may be slightly less than N
% due to the fix operator
X=[X t];
y=[y ones(1,fix(P(j)*N))*j];

end

2.4 Plot of data.Write a MATLAB function that takes as inputs: (a) a matrix X and
a vector y defined as in the previous function, (b) the mean vectors of c class
distributions. It plots: (a) the data vectors of X using a different color for each
class, (b) the mean vectors of the class distributions. It is assumed that the data
live in the two-dimensional space.

Solution
% CAUTION: This function can handle up to
% six different classes

“04-Ch02-SA272” 18/9/2008 page 81

MATLAB Programs and Exercises 81

function plot_data(X,y,m)
[l,N]=size(X); % N=no. of data vectors, l=dimensionality
[l,c]=size(m); % c=no. of classes
if(l ~ =2)
fprintf('NO PLOT CAN BE GENERATED\n')
return

else
pale=['r.'; 'g.'; 'b.'; 'y.'; 'm.'; 'c.'];
figure(1)
% Plot of the data vectors
hold on
for i=1:N
plot(X(1,i),X(2,i),pale(y(i),:))

end
% Plot of the class means
for j=1:c
plot(m(1,j),m(2,j),'k+')
end

end

2.5 Bayesian classifier (for Gaussian Processes). Write a MATLAB function that
will take as inputs: (a) the mean vectors, (b) the covariance matrices of the
class distributions of a c-class problem, (c) the a priori probabilities of the c
classes,and (d) a matrix X containing column vectors that stem from the above
classes. It will give as output an N -dimensional vector whose ith component
contains the class where the corresponding vector is assigned,according to the
Bayesian classification rule.

Solution

Caution: While inserting the following function, do not type the labels (A),
(B) and (C). They are used to serve as references, as we will see later on.

(A) function z=bayes_classifier(m,S,P,X)
[l,c]=size(m); % l=dimensionality, c=no. of classes
[l,N]=size(X); % N=no. of vectors
for i=1:N
for j=1:c
(B) t(j)=P(j)*comp_gauss_dens_val(m(:,j),...

S(:,:,j),X(:,i));
end
% Determining the maximum quantity Pi*p(x|wi)
(C) [num,z(i)]=max(t);

end

“04-Ch02-SA272” 18/9/2008 page 82

82 CHAPTER 2 Classifiers Based on Bayes Decision Theory

2.6 Euclidean distance classifier.Write a MATLAB function that will take as inputs:
(a) the mean vectors, and (b) a matrix X containing column vectors that stem
from the above classes. It will give as output an N -dimensional vector whose
ith component contains the class where the corresponding vector is assigned,
according to the minimum Euclidean distance classifier.

Solution

The requested function may be obtained by the bayes_classifier function by
replacing (A), (B), and (C) with

■ function z=euclidean_classifier(m,X)

■ t(j)=sqrt((X(:,i)-m(:,j))'*(X(:,i)-m(:,j)));

(computation of the Euclidean distances from all class representatives)

■ [num,z(i)]=min(t);

(determination of the closest class mean),
respectively.

2.7 Mahalanobis distance classifier. Write a MATLAB function that will take as
inputs: (a) the mean vectors,(b) the covariance matrix of the class distributions
of a c-class problem, and (c) a matrix X containing column vectors that stem
from the above classes. It will give as output an N -dimensional vector whose
ith component contains the class where the corresponding vector is assigned
according to the minimum Mahalanobis distance classifier.

Solution

The requested function may be obtained by the bayes_classifier function by
replacing (A), (B) and (C) with

■ function z=mahalanobis_classifier(m,S,X)

■ t(j)=sqrt((X(:,i)-m(:,j))'*inv(S(:,:,j))*...
(X(:,i)-m(:,j)));

(computation of the Mahalanobis distances from all class representatives)

■ [num,z(i)]=min(t);

(determination of the closest class mean), respectively.

2.8 k-nearest neighbor classifier. Write a MATLAB function that takes as inputs:
(a) a set of N1 vectors packed as columns of a matrix Z , (b) an N1-dimensional
vector containing the classes where each vector in Z belongs, (c) the value for
the parameter k of the classifier,(d) a set of N vectors packed as columns in the

“04-Ch02-SA272” 18/9/2008 page 83

MATLAB Programs and Exercises 83

matrix X . It returns an N -dimensional vector whose ith component contains
the class where the corresponding vector of X is assigned, according to the
k-nearest neighbor classifier.

Solution
function z=k_nn_classifier(Z,v,k,X)
[l,N1]=size(Z);
[l,N]=size(X);
c=max(v); % The number of classes
% Computation of the (squared) Euclidean distance
% of a point from each reference vector
for i=1:N
dist=sum((X(:,i)*ones(1,N1)-Z).^ 2);
%Sorting the above distances in ascending order
[sorted,nearest]=sort(dist);
% Counting the class occurrences among the k-closest
% reference vectors Z(:,i)
refe=zeros(1,c); %Counting the reference vectors per class
for q=1:k
class=v(nearest(q));
refe(class)=refe(class)+1;

end
[val,z(i)]=max(refe);

end

2.9 Classification error evaluation. Write a MATLAB function that will take
as inputs: (a) an N -dimensional vector, each component of which contains
the class where the corresponding data vector belongs and (b) a similar N -
dimensional vector each component of which contains the class where the
corresponding data vector is assigned from a certain classifier. Its output
will be the percentage of the places where the two vectors differ (i.e., the
classification error of the classifier).

Solution
function clas_error=compute_error(y,y_est)
[q,N]=size(y); % N= no. of vectors
c=max(y); % Determining the number of classes
clas_error=0; % Counting the misclassified vectors
for i=1:N
if(y(i)~ =y_est(i))
clas_error=clas_error+1;

end
end

“04-Ch02-SA272” 18/9/2008 page 84

84 CHAPTER 2 Classifiers Based on Bayes Decision Theory

% Computing the classification error
clas_error=clas_error/N;

Computer Experiments

Notes: In the sequel, it is advisable to use the command

randn(‘seed’,0)

before generating the data sets, in order to initialize the Gaussian random number
generator to 0 (or any other fixed number). This is important for the reproducibility
of the results.

2.1 a. Generate and plot a data set of N ! 1,000 two-dimensional vectors that
stem from three equiprobable classes modeled by normal distributions
with mean vectors m1 ! [1, 1]T , m2 ! [7, 7]T , m3 ! [15, 1]T and

covariance matrices S1 !

[
12 0
0 1

]
, S2 !

[
8 3
3 2

]
, S3 !

[
2 0
0 2

]
.

b. Repeat (a) when the a priori probabilities of the classes are given by the
vector P ! [0.6, 0.3, 0.1]T .

Solution

Figure (2.31)a–b display the vectors from each class. Note the “shape” of
the clusters formed by the vectors of each class. This is directly affected by
the corresponding covariance matrix. Also note that, in the first case, each
class has roughly the same number of the vectors, while in the latter case,

(a)
$5 0 5 10 15

$6

$2

2

6

10

14

x2

x1
(b)

$5 0 5 10 15
$6

$2

2

6

10

14

x2

x1

FIGURE 2.31
(a) The equiprobable classes case. (b) The case where the a-priori probabilities differ.

“04-Ch02-SA272” 18/9/2008 page 85

MATLAB Programs and Exercises 85

the leftmost and the rightmost classes are more “dense” and more “sparse”
compared to the previous case, respectively.

2.2 a. Generate a data set X1 of N ! 1,000 two-dimensional vectors that stem
from three equiprobable classes modeled by normal distributions with
mean vectors m1 ! [1, 1]T , m2 ! [12, 8]T , m3 ! [16,1]T and covariance
matrices S1 ! S2 ! S3 ! 4I , where I is the 2) 2 identity matrix.

b. Apply the Bayesian, the Euclidean, and the Mahalanobis classifiers on X1.

c. Compute the classification error for each classifier.

2.3 a. Generate a data set X2 of N ! 1,000 two-dimensional vectors that stem
from three equiprobable classes modeled by normal distributions with
mean vectors m1 ! [1, 1]T , m2 ! [14, 7]T , m3 ! [16, 1]T and covariance

matrices S1 ! S2 ! S3 !

[
5 3
3 4

]
.

(b)–(c) Repeat steps b) and (c) of experiment 2.2, for X2.

2.4 a. Generate a data set X3 of N ! 1,000 two-dimensional vectors that stem
from three equiprobable classes modeled by normal distributions with
mean vectors m1 ! [1, 1]T , m2 ! [8, 6]T , m3 ! [13, 1]T and covariance
matrices S1 ! S2 ! S3 ! 6I , where I is the 2) 2 identity matrix.

(b)–(c) Repeat (b) and (c) from experiment 2.2, for X3.

2.5 a. Generate a data set X4 of N ! 1,000 two-dimensional vectors that stem
from three equiprobable classes modeled by normal distributions with
mean vectors m1 ! [1, 1]T ,m2 ! [10, 5]T ,m3 ! [11, 1]T and covariance

matrices S1 ! S2 ! S3 !

[
7 4
4 5

]
.

(b)–(c) Repeat steps (b) and (c) of experiment 2.2, for X4.

2.6 Study carefully the results obtained by experiments (2.2)–(2.5) and draw your
conclusions.

2.7 a. Generate two data sets X5 and X ,
5 of N ! 1,000 two-dimensional vectors

each that stem from three classes modeled by normal distributions with
mean vectors m1 ! [1, 1]T , m2 ! [4, 4]T , m3 ! [8, 1]T and covariance
matrices S1 ! S2 ! S3 ! 2I . In the generation of X5, the classes are
assumed to be equiprobable, while in the generation of X ,

5, the a priori
probabilities of the classes are given by the vector P ! [0.8, 0.1, 0.1]T .

b. Apply the Bayesian and the Euclidean classifiers on both X5 and X ,
5.

c. Compute the classification error for each classifier for both data sets and
draw your conclusions.

“04-Ch02-SA272” 18/9/2008 page 86

86 CHAPTER 2 Classifiers Based on Bayes Decision Theory

2.8 Consider the data set X3 (from experiment (2.4)). Using the same settings,
generate a data set Z , where the class from which a data vector stems is
known. Apply the k nearest neighbor classifier on X3 for k ! 1 and k ! 11
using Z as the training set and draw your conclusions.

REFERENCES
[Aebe 94] Aeberhard S., Coomans D., Devel O. “Comparative analysis of statistical pattern recog-

nition methods in high dimensional setting,” Pattern Recognition,Vol. 27(8), pp. 1065–1077,
1994.

[Babi 96] Babich G.A., Camps O.I. “Weighted Parzen windows for pattern classification,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 18(5), pp. 567–570,
1996.

[Bell 61] Bellman R. Adaptive Control Processes: A Guided Tour, Princeton University Press,
1961.

[Bern 94] Bernardo J.M., Smith A.F.M Bayesian Theory, John Wiley, 1994.

[Bish 06] Bishop C.M. Pattern Recognition and Machine Learning, Springer, 2006.

[Boyl 83] Boyles R.A.“On the convergence of the EM algorithm,”J.Royal Statistical Society B,Vol.
45(1), pp. 47–55, 1983.

[Brei 77] Breiman L., Meisel W., Purcell E. “Variable kernel estimates of multivariate densities,”
Technometrics,Vol. 19(2), pp. 135–144, 1977.

[Brod 90] Broder A. “Strategies for efficient incremental nearest neighbor search,” Pattern
Recognition,Vol. 23, pp. 171–178, 1990.

[Butu 93] Buturovic L.J. “Improving k-nearest neighbor density and error estimates,” Pattern
Recognition,Vol. 26(4), pp. 611–616, 1993.

[Coop 90] Cooper G.F. “The computational complexity of probabilistic inference using Bayesian
belief networks,”Artifical Intelligence,Vol. 42, pp. 393–405, 1990.

[Cram 46] Cramer H. Mathematical Methods of Statistics, Princeton University Press, 1941.

[Dagu 93] Dagum P., Chavez R.M. “Approximating probabilistic inference in Bayesian belief
networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15(3),
pp. 246–255, 1993.

[Dasa 91] Dasarasthy B. Nearest Neighbor Pattern Classification Techniques, IEEE Computer
Society Press, 1991.

[Demp 77] Dempster A.P., Laird N.M., Rubin D.B. “Maximum likelihood from incomplete data
via the EM algorithm,” J. Royal Statistical Society,Vol. 39(1), pp. 1–38, 1977.

[Devr 96] Devroye L.,Gyorfi L.,Lugosi G.A Probabilistic Theory of Pattern Recognition,Springer-
Verlag, 1996.

[Djou 97] Djouadi A., Bouktache E. “A fast algorithm for the nearest neighbor classifier,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19(3), pp. 277–282,
1997.

[Dome 05] Domeniconi C., Gunopoulos D., Peng J. “Large margin nearest neighbor classifiers,”
IEEE Transactions on Neural Networks,Vol. 16(4), pp. 899–909, 2005.

“04-Ch02-SA272” 18/9/2008 page 87

References 87

[Domi 97] Domingos P., Pazzani M. “Beyond independence: Conditions for the optimality of the
simple Bayesian classifier,”Machine Learning,Vol. 29, pp. 103–130, 1997.

[Duda 73] Duda R.,Hart P.E. Pattern Classification and Scene Analysis, John Wiley & Sons,1973.

[Frie 94] Friedman J.H.“Flexible metric nearest neighbor classification,”Technical Report, Depart-
ment of Statistics, Stanford University, 1994.

[Frie 89] Friedman J.H. “Regularized discriminant analysis,” Journal of American Statistical
Association,Vol. 84(405), pp. 165–175, 1989.

[Frie 97] Friedman N.,Geiger D.,Goldszmidt M.“Bayesian network classifiers,”Machine Learning,
Vol. 29, pp. 131–163, 1997.

[Fuku 75] Fukunaga F., Narendra P.M. “A branch and bound algorithm for computing k-nearest
neighbors,” IEEE Transactions on Computers,Vol. 24, pp. 750–753, 1975.

[Fuku 90] Fukunaga F. Introduction to Statistical Pattern Recognition, 2nd ed.,Academic Press,
1990.

[Hast 96] Hastie T., Tibshirani R. “Discriminant adaptive nearest neighbor classification,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18(6), pp. 607–616,
1996.

[Hast 01] Hastie T.,Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining,
Inference and Prediction, Springer, 2001.

[Hatt 00] Hattori K.,Takahashi M.“A new edited k-nearest neighbor rule in the pattern classification
problem,”Pattern Recognition,Vol. 33, pp. 521–528, 2000.

[Heck 95] Heckerman D. “A tutorial on learning Bayesian networks,”Technical Report #MSR-TR-
95-06, Microsoft Research, Redmond,Washington, 1995.

[Hoff 96] Hoffbeck J.P., Landgrebe D.A. “Covariance matrix estimation and classification with
limited training data,”IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 18(7), pp. 763–767, 1996.

[Huan 02] Huang Y.S., Chiang C.C., Shieh J.W., Grimson E. “Prototype optimization for nearest-
neighbor classification,”Pattern Recognition,Vol. 35, pp. 1237–1245, 2002.

[Jayn 82] Jaynes E.T. “On the rationale of the maximum entropy methods,” Proceedings of the
IEEE,Vol. 70(9), pp. 939–952, 1982.

[Jens 01] Jensen F.V. Bayesian Networks and Decision Graphs, Springer, 2001.

[Jone 96] Jones M.C., Marron J.S., Seather S.J. “A brief survey of bandwidth selection for density
estimation,” Journal of the American Statistical Association,Vol. 91, pp. 401–407, 1996.

[Kimu 87] Kimura F.,Takashina K.,Tsuruoka S., Miyake Y. “Modified quadratic discriminant func-
tions and the application to Chinese character recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 9(1), pp. 149–153, 1987.

[Kris 00] Krishna K.,Thathachar M.A.L., Ramakrishnan K.R. “Voronoi networks and their proba-
bility of misclassification,”IEEE Transactions on Neural Networks,Vol. 11(6), pp. 1361–1372,
2000.

[Krzy 83] Krzyzak A. “Classification procedures using multivariate variable kernel density esti-
mate,”Pattern Recognition Letters,Vol. 1, pp. 293–298, 1983.

[Laur 96] Lauritzen S.L. Graphical Models, Oxford University Press, 1996.

[Li 94] Li Z., D’Abrosio B. “Efficient inference in Bayes’ networks as a combinatorial optimization
problem,” International Journal of Approximate Inference,Vol. 11, 1994.

“04-Ch02-SA272” 18/9/2008 page 88

88 CHAPTER 2 Classifiers Based on Bayes Decision Theory

[Liu 04] Liu C.-L., Sako H., Fusisawa H. “Discriminative learning quadratic discriminant
function for handwriting recognition,” IEEE Transactions on Neural Networks, Vol. 15(2),
pp. 430–444, 2004.

[McLa 88] McLachlan G.J.,Basford K.A. Mixture Models: Inference andApplications to Clustering,
Marcel Dekker, 1988.

[McNa 01] McNames J. “A Fast nearest neighbor algorithm based on principal axis search tree,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23(9), pp. 964–976,
2001.

[Mico 94] Mico M.L., Oncina J., Vidal E. “A new version of the nearest neighbor approximating
and eliminating search algorithm (AESA) with linear preprocessing time and memory
requirements,”Pattern Recognition Letters,Vol. 15, pp. 9–17, 1994.

[Moon 96] Moon T. “The expectation maximization algorithm,” Signal Processing Magazine,
Vol. 13(6), pp. 47–60, 1996.

[Neap 04] Neapolitan R.D. Learning Bayesian Networks, Prentice Hall, 2004.

[Nene 97] Nene S.A., Nayar S.K. “A simple algorithm for nearest neighbor search in high
dimensions,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19(9),
pp. 989–1003, 1997.

[Papo 91] Papoulis A. Probability Random Variables and Stochastic Processes, 3rd ed.,McGraw-
Hill 1991.

[Pare 06] Paredes R., Vidal E. “Learning weighted metrics to minimize nearest neighbor classifi-
cation error,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28(7),
pp. 1100–1111, 2006.

[Pare 06a] Paredes R., Vidal E. “Learning prototypes and distances: A prototype reduction
technique based on nearest neighbor error minimization,” Pattern Recognition, Vol. 39,
pp. 180–188, 2006.

[Parz 62] Parzen E. “On the estimation of a probability density function and mode,” Ann. Math.
Stat.Vol. 33, pp. 1065–1076, 1962.

[Pear 88] Pearl J. Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, 1988.

[Redn 84] Redner R.A.,Walker H.F.“Mixture densities,maximum likelihood and the EM algorithm,”
SIAM Review,Vol. 26(2), pp. 195–239, 1984.

[Roos 05] Roos T., Wettig H., Grunwald P., Myllymaki P., Tirri H. “On discriminative
Bayesian network classifiers and logistic regression,”Machine Learning,Vol. 59, pp. 267–296,
2005.

[Same 08] Samet H. “k-Nearest neighbor finding using MaxNearestDist,” IEEE Transactions on
Pattern Analysis and Machine Intelligence,Vol. 30(2), pp. 243–252, 2008.

[Terr 92] Terrell G.R., Scott D.W. “Variable kernel density estimation,” Annals of Statistics, Vol.
20(3), pp. 1236–1265, 1992.

[Titt 85] Titterington D.M., Smith A.F.M., Makov U.A. Statistical Analysis of Finite Mixture
Distributions, John Wiley & Sons, 1985.

[Vida 94] Vidal E. “New formulation and improvements of the nearest neighbor approximating
and eliminating search algorithm (AESA),” Pattern Recognition Letters, Vol. 15, pp. 1–7,
1994.

[Wand 95] Wand M., Jones M. Kernel Smoothing, Chapman & Hall, London, 1995.

[Webb 05] Webb G.I., Boughton J.R.,Wang Z. “Not so naive Bayes: Aggregating one dependence
estimators,”Machine Learning,Vol. 58, pp. 5–24, 2005.

“04-Ch02-SA272” 18/9/2008 page 89

References 89

[Wils 72] Wilson D.L. “Asymptotic properties of NN rules using edited data,” IEEE Transactions
on Systems, Man, and Cybernetics,Vol. 2, pp. 408–421, 1972.

[Wu 83] Wu C. “On the convergence properties of the EM algorithm,” Annals of Statistics,
Vol. 11(1), pp. 95–103, 1983.

[Yan 93] Yan H. “Prototype optimization for nearest neighbor classifiers using a two layer
perceptron,”Pattern Recognition,Vol. 26(2), pp. 317–324, 1993.

“05-Ch03-SA272” 17/9/2008 page 91

CHAPTER

3Linear Classifiers

3.1 INTRODUCTION
Our major concern in Chapter 2 was to design classifiers based on probability
density or probability functions. In some cases,we saw that the resulting classifiers
were equivalent to a set of linear discriminant functions. In this chapter, we will
focus on the design of linear classifiers, regardless of the underlying distributions
describing the training data. The major advantage of linear classifiers is their sim-
plicity and computational attractiveness. The chapter starts with the assumption
that all feature vectors from the available classes can be classified correctly using a
linear classifier, and we will develop techniques for the computation of the corre-
sponding linear functions. In the sequel we will focus on a more general problem,
in which a linear classifier cannot correctly classify all vectors, yet we will seek
ways to design an optimal linear classifier by adopting an appropriate optimality
criterion.

3.2 LINEAR DISCRIMINANT FUNCTIONS
AND DECISION HYPERPLANES

Let us once more focus on the two-class case and consider linear discriminant
functions. Then the respective decision hypersurface in the l-dimensional feature
space is a hyperplane, that is

g(x) ! wT x " w0 ! 0 (3.1)

where w ! [w1, w2, . . . , wl]T is known as the weight vector and w0 as the thresh-
old. If x1, x2 are two points on the decision hyperplane, then the following is
valid

0 ! wT x1 " w0 ! wT x2 " w0 ⇒
wT (x1 # x2) ! 0 (3.2) 91

“05-Ch03-SA272” 17/9/2008 page 92

92 CHAPTER 3 Linear Classifiers

Since the difference vector x1 # x2 obviously lies on the decision hyperplane (for
any x1, x2), it is apparent from Eq. (3.2) that the vector w is orthogonal to the
decision hyperplane.

Figure 3.1 shows the corresponding geometry (for w1 $ 0, w2 $ 0, w0 % 0).
Recalling our high school math, it is easy to see that the quantities entering in the
figure are given by

d !
|w0|

√
w2

1 " w2
2

(3.3)

and

z !
|g(x)|

√
w2

1 " w2
2

(3.4)

In other words, |g(x)| is a measure of the Euclidean distance of the point x from
the decision hyperplane. On one side of the plane g(x) takes positive values and
on the other negative. In the special case that w0 ! 0,the hyperplane passes through
the origin.

x2

x1

x

z

w

d

wT5[w1 , w2]
w0

w2
2

w0

w1
2

2 1

FIGURE 3.1
Geometry for the decision line. On one side of the line it is g(x) $ 0(") and on the other
g(x) % 0(#).

“05-Ch03-SA272” 17/9/2008 page 93

3.3 The Perceptron Algorithm 93

3.3 THE PERCEPTRON ALGORITHM
Our major concern now is to compute the unknown parameters wi , i ! 0, . . . , l,
defining the decision hyperplane. In this section, we assume that the two classes
!1, !2 are linearly separable. In other words, we assume that there exists a
hyperplane, defined by w∗T x ! 0, such that

w∗T x $ 0 &x ∈ !1

w∗T x % 0 &x ∈ !2

(3.5)

The formulation above also covers the case of a hyperplane not crossing the origin,
that is,w∗T x " w∗

0 ! 0, since this can be brought into the previous formulation by
defining the extended (l " 1)-dimensional vectors x' ≡ [xT , 1]T , w' ≡ [w∗T , w∗

0]T .
Then w∗T x " w∗

0 ! w'T x'.
We will approach the problem as a typical optimization task (Appendix C).Thus

we need to adopt (a) an appropriate cost function and (b) an algorithmic scheme
to optimize it. To this end, we choose the perceptron cost defined as

J (w) !
∑

x∈Y

("xwT x) (3.6)

where Y is the subset of the training vectors, which are misclassified by the
hyperplane defined by the weight vector w. The variable "x is chosen so that
"x ! #1 if x ∈ !1 and "x ! "1 if x ∈ !2. Obviously, the sum in (3.6) is always
positive, and it becomes zero when Y becomes the empty set, that is, if there
are not misclassified vectors x. Indeed, if x ∈ !1 and it is misclassified, then
wT x % 0 and "x % 0, and the product is positive. The result is the same for vec-
tors originating from class !2. When the cost function takes its minimum value,
0, a solution has been obtained, since all training feature vectors are correctly
classified.

The perceptron cost function in (3.6) is continuous and piecewise linear.
Indeed, if we change the weight vector smoothly, the cost J (w) changes linearly
until the point at which there is a change in the number of misclassified vectors
(Problem 3.1). At these points the gradient is not defined,and the gradient function
is discontinuous.

To derive the algorithm for the iterative minimization of the cost function,
we will adopt an iterative scheme in the spirit of the gradient descent method
(Appendix C), that is,

w(t " 1) ! w(t) # #t
$J (w)

$w

∣∣∣
w!w(t)

(3.7)

where w(t) is the weight vector estimate at the tth iteration step and #t is a seq-
uence of positive real numbers. However, we must be careful here. This is not

“05-Ch03-SA272” 17/9/2008 page 94

94 CHAPTER 3 Linear Classifiers

defined at the points of discontinuity. From the definition in (3.6),and at the points
where this is valid, we get

$J (w)
$w

!
∑

x∈Y

"xx (3.8)

Substituting (3.8) into (3.7), we obtain

w(t " 1) ! w(t) # #t

∑

x∈Y

"xx (3.9)

The algorithm is known as the perceptron algorithm and is quite simple in its struc-
ture. Note that Eq. (3.9) is defined at all points. The algorithm is initialized from
an arbitrary weight vector w(0), and the correction vector

∑
x∈Y "xx is formed

using the misclassified features. The weight vector is then corrected according to
the preceding rule. This is repeated until the algorithm converges to a solution, that
is, all features are correctly classified. A pseudocode for the perceptron algorithm
is given below.

The Perceptron Algorithm

■ Choose w(0) randomly

■ Choose #0

■ t ! 0

■ Repeat

• Y ! ∅

• For i ! 1 to N
⃝ If "xi w(t)T xi (0 then Y ! Y ∪ {xi}

• End {For}

• w(t " 1) ! w(t) # #t
∑

x∈Y "xx

• Adjust #t

• t ! t " 1

■ Until Y ! ∅

Figure 3.2 provides a geometric interpretation of the algorithm. It has been
assumed that at step t there is only one misclassified sample, x, and #t ! 1. The
perceptron algorithm corrects the weight vector in the direction of x. Its effect
is to turn the corresponding hyperplane so that x is classified in the correct
class !1. Note that in order to achieve this, it may take more than one iteration
step, depending on the value(s) of #t . No doubt, this sequence is critical for
the convergence. We will now show that the perceptron algorithm converges

“05-Ch03-SA272” 17/9/2008 page 95

3.3 The Perceptron Algorithm 95

x2

x

w(t 1 1)

w*

w(t)

w1

w2

x1

FIGURE 3.2
Geometric interpretation of the perceptron algorithm. The update of the weight vector is in the
direction of x in order to turn the decision hyperplane to include x in the correct class.

to a solution in a finite number of iteration steps, provided that the sequence
#t is properly chosen. The solution is not unique, because there are more than
one hyperplanes separating two linearly separable classes. The convergence proof
is necessary because the algorithm is not a true gradient descent algorithm and
the general tools for the convergence of gradient descent schemes cannot be
applied.

Proof of the Perceptron Algorithm Convergence
Let % be a positive real number and w∗ a solution. Then from (3.9) we have

w(t " 1) # %w∗ ! w(t) # %w∗ # #t

∑

x∈Y

"xx (3.10)

Squaring the Euclidean norm of both sides results in

∥w(t " 1) # %w∗∥2 ! ∥w(t) # %w∗∥2 " #2
t ∥

∑

x∈Y

"xx∥2

2#t

∑

x∈Y

"x(w(t) # %w∗)T x (3.11)

“05-Ch03-SA272” 17/9/2008 page 96

96 CHAPTER 3 Linear Classifiers

But #
∑

x∈Y "xwT (t) x % 0. Hence

∥w(t " 1) # %w∗∥2) ∥w(t) # %w∗∥2 " #2
t ∥

∑

x∈Y

"xx∥2

" 2#t %
∑

x∈Y

"xw∗T x (3.12)

Define

&2 ! max
Ỹ ⊆ !1 ∪ !2

∥
∑

x∈Ỹ

"xx∥2 (3.13)

That is, &2 is the maximum value that the involved vector norm can take by con-
sidering all possible (nonempty) subsets of the available training feature vectors.
Similarly, let

' ! max
Ỹ ⊆!1 ∪ !2

∑

x∈Ỹ

"xw∗T x (3.14)

Recall that the summation in this equation is negative; thus, its maximum value over
all possible subsets of x’s will also be a negative number. Hence, (3.12) can now be
written as

∥w(t " 1) # %w∗∥2) ∥w(t) # %w∗∥2 " #2
t &2 # 2#t%|'| (3.15)

Choose % ! &2

2|'| and apply (3.15) successively for steps t , t # 1, . . . , 0. Then

∥w(t " 1) # %w∗∥2) ∥w(0) # %w∗∥2 " &2

(
t∑

k!0

#2
k #

t∑

k!0

#k

)

(3.16)

If the sequence #t is chosen to satisfy the following two conditions:

lim
t→*

t∑

k!0

#k ! * (3.17)

lim
t→*

t∑

k!0

#2
k % * (3.18)

then there will be a constant t0 such that the right-hand side of (3.16) becomes
nonpositive. Thus

0) ∥w(t0 " 1) # %w∗∥) 0 (3.19)

“05-Ch03-SA272” 17/9/2008 page 97

3.3 The Perceptron Algorithm 97

or

w(t0 " 1) ! %w∗ (3.20)

That is, the algorithm converges to a solution in a finite number of steps. An
example of a sequence satisfying conditions (3.17), (3.18) is #t ! c/t , where c
is a constant. In other words, the corrections become increasingly small. What
these conditions basically state is that #t should vanish as t→* [Eq. (3.18)] but on
the other hand should not go to zero very fast [Eq. (3.17)]. Following arguments
similar to those used before, it is easy to show that the algorithm also converges
for constant #t ! #, provided # is properly bounded (Problem 3.2). In practice,
the proper choice of the sequence #t is vital for the convergence speed of the
algorithm.

Example 3.1
Figure 3.3 shows the dashed line

x1 " x2 # 0.5 ! 0

corresponding to the weight vector [1, 1, #0.5]T , which has been computed from the latest
iteration step of the perceptron algorithm (3.9), with #t ! # ! 0.7. The line classifies correctly

20.5 0 0.5 1

x2

x1

0.5

0

20.5

1

FIGURE 3.3
An example of the perceptron algorithm. After the update of the weight vector, the hyperplane is
turned from its initial location (dotted line) to the new one (full line), and all points are correctly
classified.

“05-Ch03-SA272” 17/9/2008 page 98

98 CHAPTER 3 Linear Classifiers

all the vectors except [0.4, 0.05]T and [#0.20, 0.75]T . According to the algorithm, the next
weight vector will be

w(t " 1) !

⎡

⎢⎣
1

1

#0.5

⎤

⎥⎦ # 0.7(#1)

⎡

⎢⎣
0.4

0.05

1

⎤

⎥⎦ # 0.7("1)

⎡

⎢⎣
#0.2
0.75

1

⎤

⎥⎦

or

w(t " 1) !

⎡

⎢⎣
1.42

0.51

#0.5

⎤

⎥⎦

The resulting new (solid) line 1.42x1 " 0.51x2 # 0.5 ! 0 classifies all vectors correctly, and
the algorithm is terminated.

Variants of the Perceptron Algorithm
The algorithm we have presented is just one form of a number of variants that have
been proposed for the training of a linear classifier in the case of linearly separable
classes. We will now state another simpler and also popular form. The N training
vectors enter the algorithm cyclically, one after the other. If the algorithm has
not converged after the presentation of all the samples once, then the procedure
keeps repeating until convergence is achieved—that is, when all training samples
have been classified correctly. Let w(t) be the weight vector estimate and x(t) the
corresponding feature vector, presented at the tth iteration step. The algorithm is
stated as follows:

w(t " 1) ! w(t) " #x(t) if x(t) ∈ !1 and wT (t)x(t)) 0 (3.21)

w(t " 1) ! w(t) # #x(t) if x(t) ∈ !2 and wT (t)x(t) ≥ 0 (3.22)

w(t " 1) ! w(t) otherwise (3.23)

In other words, if the current training sample is classified correctly, no action is
taken. Otherwise, if the sample is misclassified, the weight vector is corrected by
adding (subtracting) an amount proportional to x(t). The algorithm belongs to a
more general algorithmic family known as reward and punishment schemes. If the
classification is correct, the reward is that no action is taken. If the current vector
is misclassified, the punishment is the cost of correction. It can be shown that this
form of the perceptron algorithm also converges in a finite number of iteration steps
(Problem 3.3).

The perceptron algorithm was originally proposed by Rosenblatt in the late
1950s. The algorithm was developed for training the perceptron, the basic unit
used for modeling neurons of the brain. This was considered central in developing
powerful models for machine learning [Rose 58, Min 88].

“05-Ch03-SA272” 17/9/2008 page 99

3.3 The Perceptron Algorithm 99

Example 3.2
Figure 3.4 shows four points in the two-dimensional space. Points (#1, 0), (0, 1) belong
to class !1, and points (0, #1), (1, 0) belong to class !2. The goal of this example is
to design a linear classifier using the perceptron algorithm in its reward and punishment
form. The parameter # is set equal to one, and the initial weight vector is chosen as w(0) !

[0, 0, 0]T in the extended three-dimensional space. According to (3.21)–(3.23), the following
computations are in order:

Step 1.

wT (0)

⎡

⎢⎣
#1

0
1

⎤

⎥⎦ ! 0, w(1) ! w(0) "

⎡

⎢⎣
#1

0
1

⎤

⎥⎦ !

⎡

⎢⎣
#1

0
1

⎤

⎥⎦

Step 2.

wT (1)

⎡

⎢⎣
0
1
1

⎤

⎥⎦ ! 1 $ 0, w(2) ! w(1)

Step 3.

wT (2)

⎡

⎢⎣
0

#1
1

⎤

⎥⎦ ! 1 $ 0, w(3) ! w(2) #

⎡

⎢⎣
0

#1
1

⎤

⎥⎦ !

⎡

⎢⎣
#1

1
0

⎤

⎥⎦

Step 4.

wT (3)

⎡

⎢⎣
1
0
1

⎤

⎥⎦ ! #1 % 0, w(4) ! w(3)

1 x1

x2

21

21

1

FIGURE 3.4
The setup for Example 3.2. The line x1 ! x2 is the resulting solution.

“05-Ch03-SA272” 17/9/2008 page 100

100 CHAPTER 3 Linear Classifiers

Step 5.

wT (4)

⎡

⎢⎣
#1

0
1

⎤

⎥⎦ ! 1 $ 0, w(5) ! w(4)

Step 6.

wT (5)

⎡

⎢⎣
0
1
1

⎤

⎥⎦ ! 1 $ 0, w(6) ! w(5)

Step 7.

wT (6)

⎡

⎢⎣
0

#1
1

⎤

⎥⎦ ! #1 % 0, w(7) ! w(6)

Since for four consecutive steps no correction is needed, all points are correctly classified
and the algorithm terminates. The solution is w ! [#1, 1, 0]T . That is, the resulting linear
classifier is #x1 " x2 ! 0, and it is the line passing through the origin shown in Figure 3.4.

The Perceptron
Once the perceptron algorithm has converged to a weight vector w and a threshold
w0, our next goal is the classification of an unknown feature vector to either of the
two classes. Classification is achieved via the simple rule

If wT x " w0 $ 0 assign x to !1

If wT x " w0 % 0 assign x to !2 (3.24)

A basic network unit that implements the operation is shown in Figure 3.5a.

(a)

x1

x2

w0

fΣ

xl

wl

w2

w1

(b)

x1

x2

w0
wl

w2

w1

xl

FIGURE 3.5
The basic perceptron model. (a) A linear combiner is followed by the activation function.
(b) The combiner and the activation function are merged together.

“05-Ch03-SA272” 17/9/2008 page 101

3.3 The Perceptron Algorithm 101

The elements of the feature vector x1, x2, . . . , xl are applied to the input
nodes of the network. Then each one is multiplied by the corresponding weights
wi, i ! 1, 2, . . . , l. These are known as synaptic weights or simply synapses. The
products are summed up together with the threshold value w0. The result then goes
through a nonlinear device, which implements the so-called activation function.
A common choice is a hard limiter; that is, f (·) is the step function [f (x) ! #1 if
x %0 and f (x) ! 1 if x $0]. The corresponding feature vector is classified in one of
the classes depending on the sign of the output. Besides "1 and #1, other values
(class labels) for the hard limiter are also possible. Another popular choice is 1 and
0, and it is achieved by choosing the two levels of the step function appropriately.
This basic network is known as a perceptron or neuron. Perceptrons are simple
examples of the so-called learning machines—that is, structures whose free para-
meters are updated by a learning algorithm, such as the perceptron algorithm, in
order to “learn”a specific task, based on a set of training data. Later on we will use
the perceptron as the basic building element for more complex learning networks.
Figure 3.5b is a simplified graph of the neuron where the summer and nonlinear
device have been merged for notational simplification. Sometimes a neuron with
a hard limiter device is referred to as a McCulloch–Pitts neuron. Other types of
neurons will be considered in Chapter 4.

The Pocket Algorithm
A basic requirement for the convergence of the perceptron algorithm is the linear
separability of the classes. If this is not true, as is usually the case in practice, the
perceptron algorithm does not converge. A variant of the perceptron algorithm was
suggested in [Gal 90] that converges to an optimal solution even if the linear sep-
arability condition is not fulfilled. The algorithm is known as the pocket algorithm
and consists of the following two steps

■ Initialize the weight vector w(0) randomly. Define a stored (in the pocket!)
vector ws. Set a history counter hs of the ws to zero.

■ At the tth iteration step compute the update w(t " 1), according to the
perceptron rule. Use the updated weight vector to test the number h of train-
ing vectors that are classified correctly. If h $ hs replace ws with w(t " 1)
and hs with h. Continue the iterations.

It can be shown that this algorithm converges with probability one to the optimal
solution, that is, the one that produces the minimum number of misclassifications
[Gal 90, Muse 97]. Other related algorithms that find reasonably good solutions
when the classes are not linearly separable are the thermal perceptron algo-
rithm [Frea 92], the loss minimization algorithm [Hryc 92], and the barycentric
correction procedure [Poul 95].

Kesler’s Construction
So far we have dealt with the two-class case. The generalization to an M-class task
is straightforward. A linear discriminant function wi, i ! 1, 2, . . . , M , is defined for

“05-Ch03-SA272” 17/9/2008 page 102

102 CHAPTER 3 Linear Classifiers

each of the classes. A feature vector x (in the (l " 1)-dimensional space to account
for the threshold) is classified in class !i if

wT
i x $ wT

j x, &j ̸! i (3.25)

This condition leads to the so-called Kesler’s construction. For each of
the training vectors from class !i , i !1, 2, . . . , M , we construct M#1 vectors
xij ! [0T , 0T , . . . , xT , . . . , #xT , . . . , 0T]T of dimension (l " 1)M + 1. That is, they
are block vectors having zeros everywhere except at the ith and jth block posi-
tions, where they have x and #x, respectively, for j ̸! i. We also construct the
block vector w ! [wT

1 , . . . , wT
M]T . If x ∈ !i, this imposes the requirement that

wT xij $ 0, &j ! 1, 2, . . . , M , j ̸! i. The task now is to design a linear classifier, in
the extended (l " 1)M-dimensional space, so that each of the (M # 1)N training
vectors lies in its positive side. The perceptron algorithm will have no difficulty
in solving this problem for us, provided that such a solution is possible—that is, if
all the training vectors can be correctly classified using a set of linear discriminant
functions.

Example 3.3
Let us consider a three-class problem in the two-dimensional space. The training vectors for
each of the classes are the following:

!1: [1, 1]T , [2, 2]T , [2, 1]T

!2: [1, #1]T , [1, #2]T , [2, #2]T

!3: [#1, 1]T , [#1, 2]T , [#2, 1]T

This is obviously a linearly separable problem, since the vectors of different classes lie in
different quadrants.

To compute the linear discriminant functions, we first extend the vectors to the three-
dimensional space, and then we use Kesler’s construction. For example,

For [1, 1]T we get [1, 1, 1, #1, #1, #1, 0, 0, 0]T and

[1, 1, 1, 0, 0, 0, #1, #1, #1]T

For [1, #2]T we get [#1, 2, #1, 1, #2, 1, 0, 0, 0]T and

[0, 0, 0, 1, #2, 1, #1, 2, #1]T

For [#2, 1]T we get [2, #1, #1, 0, 0, 0, #2, 1, 1]T and

[0, 0, 0, 2, #1, #1, #2, 1, 1]T

Similarly, we obtain the other twelve vectors. To obtain the corresponding weight vectors

w1 ! [w11, w12, w10]T

w2 ! [w21, w22, w20]T

w3 ! [w31, w32, w30]T

“05-Ch03-SA272” 17/9/2008 page 103

3.4 Least Squares Methods 103

we can run the perceptron algorithm by requiring wT x $ 0, w ! [wT
1 , wT

2 , wT
3]T , for each

of the eighteen 9-dimensional vectors. That is, we require all the vectors to lie on the same
side of the decision hyperplane. The initial vector of the algorithm w(0) is computed using
the uniform pseudorandom sequence generator in [0, 1]. The learning sequence #t was
chosen to be constant and equal to 0.5. The algorithm converges after four iterations and
gives

w1 ! [5.13, 3.60, 1.00]T

w2 ! [#0.05, #3.16, #0.41]T

w3 ! [#3.84, 1.28, 0.69]T

3.4 LEAST SQUARES METHODS
As we have already pointed out, the attractiveness of linear classifiers lies in their
simplicity. Thus, in many cases, although we know that the classes are not linearly
separable,we still wish to adopt a linear classifier,despite the fact that this will lead
to suboptimal performance from the classification error probability point of view.
The goal now is to compute the corresponding weight vector under a suitable
optimality criterion. The least squares methods are familiar to us, in one way or
another, from our early college courses. Let us then build upon them.

3.4.1 Mean Square Error Estimation
Let us once more focus on the two-class problem. In the previous section, we saw
that the perceptron output was ,1, depending on the class ownership of x. Since
the classes were linearly separable, these outputs were correct for all the training
feature vectors, after, of course, the perceptron algorithm’s convergence. In this
section we will attempt to design a linear classifier so that its desired output is again
,1, depending on the class ownership of the input vector. However, we will have
to live with errors; that is, the true output will not always be equal to the desired
one. Given a vector x, the output of the classifier will be wT x (thresholds can
be accommodated by vector extensions). The desired output will be denoted as
y(x) ≡ y !,1. The weight vector will be computed so as to minimize the mean
square error (MSE) between the desired and true outputs, that is,

J (w) ! E[|y # xT w|2] (3.26)

ŵ ! arg min
w

J (w) (3.27)

The reader can easily check that J (w) is equal to

J (w) ! P(!1)
∫

(1 # xT w)2p(x|!1) dx " P(!2)
∫

(1 " xT w)2p(x|!2) dx (3.28)

“05-Ch03-SA272” 17/9/2008 page 104

104 CHAPTER 3 Linear Classifiers

Minimizing (3.27) easily results in

$J (w)
$w

! 2E[x(y # xT w)] ! 0 (3.29)

Then

ŵ ! R#1
x E[xy] (3.30)

where

Rx ≡ E[xxT] !

⎡

⎢⎢⎢⎢⎣

E[x1x1] · · · E[x1xl]
E[x2x1] · · · E[x2xl]

...
...

...
E[xlx1] · · · E[xlxl]

⎤

⎥⎥⎥⎥⎦
(3.31)

is known as the correlation or autocorrelation matrix and is equal to the covariance
matrix, introduced in the previous chapter, if the respective mean values are zero.
The vector

E[xy] ! E

⎡

⎢⎢⎣

⎡

⎢⎢⎣

x1y
...

xly

⎤

⎥⎥⎦

⎤

⎥⎥⎦ (3.32)

is known as the cross-correlation between the desired output and the (input) fea-
ture vectors. Thus, the mean square optimal weight vector results as the solution
of a linear set of equations, provided, of course, that the correlation matrix is
invertible.

It is interesting to point out that there is a geometrical interpretation of this
solution. Random variables can be considered as points in a vector space. It is
straightforward to see that the expectation operation E[xy] between two random
variables satisfies the properties of the inner product. Indeed, E[x2] (0, E[xy] !
E[yx], E[x(c1y " c2z)] ! c1E[xy] " c2E[xz]. In such a vector space wT x !
w1x1 " · · · " wlxl is a linear combination of vectors,and thus it lies in the subspace
defined by the xi’s.

This is illustrated by an example in Figure 3.6. Then, if we want to approx-
imate y by this linear combination, the resulting error is y # wT x. Equation
(3.29) states that the minimum mean square error solution results if the error is
orthogonal to each xi ; thus it is orthogonal to the vector subspace spanned by
xi, i ! 1, 2, . . . , l—in other words,if y is approximated by its orthogonal projection
on the subspace (Figure 3.6). Equation (3.29) is also known as the orthogonality
condition.

Multiclass Generalization
In the multiclass case, the task is to design the M linear discriminant functions
gi(x) ! wT

i x according to the MSE criterion. The corresponding desired out-
put responses (i.e., class labels) are chosen so that yi ! 1 if x ∈ !i and yi ! 0
otherwise. This is in agreement with the two-class case. Indeed, for such

“05-Ch03-SA272” 17/9/2008 page 105

3.4 Least Squares Methods 105

y

y 2 wTx

wTx

x1

x2

FIGURE 3.6
Interpretation of the MSE estimate as an orthogonal projection on the input vector elements’
subspace.

a choice and if M ! 2, the design of the decision hyperplane wT x ≡ (w1 #
w2)T x corresponds to ,1 desired responses, depending on the respective class
ownership.

Let us now define yT ! [y1, . . . , yM], for a given vector x, and W ! [w1, . . . ,
wM]. That is,matrix W has as columns the weight vectors wi . The MSE criterion in
(3.27) can now be generalized to minimize the norm of the error vector y # W T x,
that is,

Ŵ ! arg min
W

E[∥y # W T x∥2] ! arg min
W

E

[
M∑

i!1

(
yi # wT

i x
)2

]

(3.33)

This is equivalent to M MSE independent minimization problems of the (3.27) type,
with scalar desired responses. In other words, in order to design the MSE optimal
linear discriminant functions, it suffices to design each one of them so that its
desired output is 1 for vectors belonging to the corresponding class and 0 for all
the others.

3.4.2 Stochastic Approximation and the LMS Algorithm
The solution of (3.30) requires the computation of the correlation matrix and cross-
correlation vector. This presupposes knowledge of the underlying distributions,
which in general are not known. After all, if they were known, why not then use

“05-Ch03-SA272” 17/9/2008 page 106

106 CHAPTER 3 Linear Classifiers

Bayesian classifiers? Thus, our major goal now becomes to see if it is possible to
solve (3.29) without having this statistical information available. The answer has
been provided by Robbins and Monro [Robb 51] in the more general context of
stochastic approximation theory. Consider an equation of the form E[F(xk, w)] ! 0,
where xk, k ! 1, 2, . . . , is a sequence of random vectors from the same distribution,
F(·, ·) a function, and w the vector of the unknown parameters. Then adopt the
iterative scheme

ŵ(k) ! ŵ(k # 1) " #kF(xk, ŵ(k # 1)) (3.34)

In other words,the place of the mean value (which cannot be computed due to lack
of information) is taken by the samples of the random variables resulting from the
experiments. It turns out that under mild conditions the iterative scheme converges
in probability to the solution w of the original equation,provided that the sequence
#k satisfies the two conditions

*∑

k!1

#k → * (3.35)

*∑

k!1

#2
k % * (3.36)

and which implies that

#k → 0 (3.37)

That is,

lim
k→*

prob{ŵ(k) ! w} ! 1 (3.38)

The stronger, in the mean square sense, convergence is also true

lim
k→*

E[∥ŵ(k) # w∥2] ! 0 (3.39)

Conditions (3.35), (3.36) have already been met before and guarantee that the
corrections of the estimates in the iterations tend to zero. Thus, for large values of
k (in theory at infinity) iterations freeze. However, this must not happen too early
(first condition) to make sure that the iterations do not stop away from the solution.
The second condition guarantees that the accumulated noise, due to the stochastic
nature of the variables, remains finite and the algorithm can cope with it [Fuku 90].
The proof is beyond the scope of the present text. However, we will demonstrate
its validity via an example.

Let us consider the simple equation E[xk # w] ! 0. For #k ! 1/k the iteration
becomes

ŵ(k) ! ŵ(k # 1) "
1
k

[xk # ŵ(k # 1)] !
(k # 1)

k
ŵ(k # 1) "

1
k

xk

“05-Ch03-SA272” 17/9/2008 page 107

3.4 Least Squares Methods 107

For large values of k it is easy to see that

ŵ(k) !
1
k

k∑

r!1

xr

That is, the solution is the sample mean of the measurements. Most natural!
Let us now return to our original problem and apply the iteration to solve (3.29).

Then (3.34) becomes

ŵ(k) ! ŵ(k # 1) " #kxk
(
yk # xT

k ŵ(k # 1)
)

(3.40)

where (yk, xk) are the desired output (,1)–input training sample pairs,successively
presented to the algorithm. The algorithm is known as the least mean squares
(LMS) or Widrow–Hoff algorithm, after those who suggested it in the early 1960s
[Widr 60, Widr 90]. The algorithm converges asymptotically to the MSE solution.

A number of variants of the LMS algorithm have been suggested and used. The
interested reader may consult, for example,[Hayk 96, Kalou 93]. A common variant
is to use a constant # in the place of #k. However, in this case the algorithm does
not converge to the MSE solution. It can be shown, for example, [Hayk 96], that if
0 % # % 2/trace{Rx} then

E[ŵ(k)] → wMSE and E[∥ŵ(k) # wMSE∥2] → constant (3.41)

where wMSE denotes the MSE optimal estimate and trace{·} the trace of the matrix.
That is, the mean value of the LMS estimate is equal to the MSE solution,and also the
corresponding variance remains finite. It turns out that the smaller the #,the smaller
the variance around the desired MSE solution. However,the smaller the #,the slower
the convergence of the LMS algorithm. The reason for using Constant # in place
of a vanishing sequence is to keep the algorithm “alert” to track variations when
the statistics are not stationary but are slowly varying, that is, when the underlying
distributions are time dependent.

Remarks

■ Observe that in the case of the LMS, the parameters’ update iteration step,
k, coincides with the index of the current input sample xk. In case k is
a time index, LMS is a time-adaptive scheme, which adapts to the solution
as successive samples become available to the system.

■ Observe that Eq. (3.40) can be seen as the training algorithm of a linear
neuron, that is, a neuron without the nonlinear activation function. This type
of training, which neglects the nonlinearity during training and applies the
desired response just after the adder of the linear combiner part of the neuron
(Figure 3.5a),was used byWidrow and Hoff. The resulting neuron architecture

“05-Ch03-SA272” 17/9/2008 page 108

108 CHAPTER 3 Linear Classifiers

is known as adaline (adaptive linear element). After training and once the
weights have been fixed, the model is the same as in Figure 3.5,with the hard
limiter following the linear combiner. In other words, the adaline is a neuron
that is trained according to the LMS instead of the perceptron algorithm.

3.4.3 Sum of Error Squares Estimation
A criterion closely related to the MSE is the sum of error squares or simply the least
squares (LS) criterion defined as

J (w) !
N∑

i!1

(
yi # xT

i w
)2 ≡

N∑

i!1

e2
i (3.42)

In other words, the errors between the desired output of the classifier (,1 in the
two-class case) and the true output are summed up over all the available training
feature vectors, instead of averaging them out. In this way, we overcome the need
for explicit knowledge of the underlying pdfs. Minimizing (3.42) with respect to w
results in

N∑

i!1

xi
(

yi # xT
i ŵ

)
! 0 ⇒

(
N∑

i!1

xixT
i

)

ŵ !
N∑

i!1

(xiyi) (3.43)

For the sake of mathematical formulation let us define

X !

⎡

⎢⎢⎢⎢⎣

xT
1

xT
2
...

xT
N

⎤

⎥⎥⎥⎥⎦
!

⎡

⎢⎢⎢⎢⎣

x11 x12 . . . x1l

x21 x22 . . . x2l
...

...
. . .

...
xN1 xN2 . . . xNl

⎤

⎥⎥⎥⎥⎦
, y !

⎡

⎢⎢⎢⎢⎣

y1

y2
...

yN

⎤

⎥⎥⎥⎥⎦
(3.44)

That is, X is an N + l matrix whose rows are the available training feature vec-
tors, and y is a vector consisting of the corresponding desired responses. Then∑N

i!1 xixT
i ! XT X and also

∑N
i!1 xiyi ! XT y. Hence, (3.43) can now be

written as

(XT X)ŵ ! XT y ⇒ ŵ ! (XT X)#1XT y (3.45)

Thus, the optimal weight vector is again provided as the solution of a linear set
of equations. Matrix XT X is known as the sample correlation matrix. Matrix
X" ≡ (XT X)#1XT is known as the pseudoinverse of X , and it is meaningful only if
XT X is invertible, that is, X is of rank l. X" is a generalization of the inverse of an

“05-Ch03-SA272” 17/9/2008 page 109

3.4 Least Squares Methods 109

invertible square matrix. Indeed, if X is an l + l square and invertible matrix, then
it is straightforward to see that X" ! X#1. In such a case the estimated weight
vector is the solution of the linear system Xŵ ! y. If, however, there are more
equations than unknowns, N $ l, as is the usual case in pattern recognition, there
is not, in general, a solution. The solution obtained by the pseudoinverse is the
vector that minimizes the sum of error squares. It is easy to show that (under mild
assumptions) the sum of error squares tends to the MSE solution for large values of
N (Problem 3.8).

Remarks

■ So far we have restricted the desired output values to be ,1. Of course, this
is not necessary. All we actually need is a desired response positive for !1
and negative for !2. Thus, in place of ,1 in the y vector we could have any
positive (negative) values. Obviously, all we have said so far is still applicable.
However, the interesting aspect of this generalization would be to compute
these desired values in an optimal way,in order to obtain a better solution. The
Ho–Kashyap algorithm is such a scheme solving for both the optimal w and
optimal desired values yi . The interested reader may consult [Ho 65, Tou 74].

■ Generalization to the multi-class case follows the same concept as that intro-
duced for the MSE cost, and it is easily shown that it reduces to M equivalent
problems of scalar desired responses, one for each discriminant function
(Problem 3.10).

Example 3.4
Class !1 consists of the two-dimensional vectors [0.2, 0.7]T , [0.3, 0.3]T , [0.4, 0.5]T , [0.6,
0.5]T , [0.1, 0.4]T and class !2 of [0.4, 0.6]T , [0.6, 0.2]T , [0.7, 0.4]T , [0.8, 0.6]T , [0.7,
0.5]T . Design the sum of error squares optimal linear classifier w1x1 " w2x2 " w0 ! 0.

We first extend the given vectors by using 1 as their third dimension and form the 10 + 3
matrix X , which has as rows the transposes of these vectors. The resulting sample correlation
3 + 3 matrix XT X is equal to

XT X !

⎡

⎢⎣
2.8 2.24 4.8
2.24 2.41 4.7
4.8 4.7 10

⎤

⎥⎦

The corresponding y consists of five 1’s and then five #1’s and

XT y !

⎡

⎢⎣
#1.6

0.1
0.0

⎤

⎥⎦

“05-Ch03-SA272” 17/9/2008 page 110

110 CHAPTER 3 Linear Classifiers

1

0.5

0
0 0.5 1x1

x2

!1 !2

FIGURE 3.7
Least sum of error squares linear classifier. The task is not linearly separable. The linear LS
classifier classifies some of the points in the wrong class. However, the resulting sum of error
squares is minimum.

Solving the corresponding set of equations results in [w1, w2, w0] ! [#3.218, 0.241, 1.431].
Figure 3.7 shows the resulting geometry.

3.5 MEAN SQUARE ESTIMATION REVISITED
3.5.1 Mean Square Error Regression
In this subsection, we will approach the MSE task from a slightly different
perspective and in a more general framework.

Let y, x be two random vector variables of dimensions M + 1 and l + 1, respec-
tively, and assume that they are described by the joint pdf p(y, x). The task of
interest is to estimate the value of y, given the value of x that is obtained from an
experiment. No doubt the classification task falls under this more general formu-
lation. For example, when we are given a feature vector x, our goal is to estimate
the value of the class label y, which is ,1 in the two-class case. In a more general
setting, the values of y may not be discrete. Take, as an example, the case where
y ∈ R is generated by an unknown rule, i.e.,

y ! f (x) " (

where f (·) is some unknown function and (is a noise source. The task now is to
estimate (predict) the value of y, given the value of x. Once more, this is a problem

“05-Ch03-SA272” 17/9/2008 page 111

3.5 Mean Square Estimation Revisited 111

of designing a function g(x), based on a set of training data points (yi , xi), i !
1, 2, . . . , N , so that the predicted value

ŷ ! g(x)

to be as close as possible to the true value y in some optimal sense. This type of
problem is known as a regression task. One of the most popular optimality criteria
for regression is the mean square error (MSE). In this section, we will focus on the
MSE regression and highlight some of its properties.

The mean square estimate ŷ of the random vector y, given the value x, is
defined as

ŷ ! arg min
ỹ

E[∥y # ỹ∥2] (3.46)

Note that the mean value here is with respect to the conditional pdf p(y|x). We
will show that the optimal estimate is the mean value of y, that is,

ŷ ! E[y|x] ≡
∫ *

#*
yp(y|x) dy (3.47)

Proof. Let ỹ be another estimate. It will be shown that it results in higher mean
square error. Indeed,

E[∥y # ỹ∥2] ! E[∥y # ŷ " ŷ # ỹ∥2] ! E[∥y # ŷ∥2]

" E[∥ŷ # ỹ∥2] " 2E[(y # ŷ)T (ŷ # ỹ)] (3.48)

where the dependence on x has been omitted for notational convenience. Note
now that ŷ # ỹ is a constant. Thus,

E[∥y # ỹ∥2] (E[∥y # ŷ∥2] " 2E[(y # ŷ)T](ŷ # ỹ) (3.49)

and from the definition of ŷ ! E[y] it follows that

E[∥y # ỹ∥2] (E[∥y # ŷ∥2] (3.50)

Remark

■ This is a very elegant result. Given a measured value of x, the best (in the MSE
sense) estimate of y is given by the function y(x) ≡ E[y|x]. In general,this is
a nonlinear vector-valued function of x (i.e.,g(·) ≡ [g1(·), . . . , gM (·)]T),and it
is known as the regression of y conditioned on x. It can be shown (Problem
3.11) that if (y, x) are jointly Gaussian, then the MSE optimal regressor is a
linear function.

“05-Ch03-SA272” 17/9/2008 page 112

112 CHAPTER 3 Linear Classifiers

3.5.2 MSE Estimates Posterior Class Probabilities
In the beginning of the chapter we promised to “emancipate” ourselves from the
Bayesian classification. However, the nice surprise is that a Bayesian flavor still
remains, although in a disguised form. Let us reveal it—it can only be beneficial.

We will consider the multiclass case. Given x, we want to estimate its class
label. Let gi(x) be the discriminant functions to be designed. The cost function in
Eq. (3.33) now becomes

J ! E

[
M∑

i!1

(gi(x) # yi)2

]

≡ E[∥g(x) # y∥2] (3.51)

where the vector y consists of zeros and a single 1 at the appropriate place. Note
that each gi(x) depends only on x,whereas the yi’s depend on the specific class to
which x belongs. Let p(x, !i) be the joint probability density of the feature vector
belonging to the ith class. Then (3.51) is written as

J !

∫ "*

#*

M∑

j!1

{
M∑

i!1

(gi(x) # yi)2

}

p(x, !j) dx (3.52)

Taking into account that p(x, !j) ! P(!j |x)p(x), (3.52) becomes

J !

∫ *

#*

⎧
⎨

⎩

M∑

j!1

M∑

i!1

(
gi(x) # yi

)2 P(!j |x)

⎫
⎬

⎭p(x) dx

! E

⎡

⎣
M∑

j!1

M∑

i!1

(
gi(x) # yi

)2 P(!j |x)

⎤

⎦ (3.53)

where the mean is taken with respect to x. Expanding this, we get

J ! E

⎡

⎣
M∑

j!1

M∑

i!1

(
g2

i (x)P(!j |x) # 2gi(x)yiP(!j |x) " y2
i P(!j |x)

)
⎤

⎦ (3.54)

Exploiting the fact that gi(x) is a function of x only and
∑M

j!1 P(!j |x) ! 1, (3.54)
becomes

J ! E

⎡

⎣
M∑

i!1

(
g2

i (x) # 2gi(x)
M∑

j!1

yiP(!j |x) "
M∑

j!1

y2
i P(!j |x)

)
⎤

⎦

! E

[
M∑

i!1

(
g2

i (x) # 2gi(x)E[yi |x] " E
[
y2

i |x
])

]

(3.55)

“05-Ch03-SA272” 17/9/2008 page 113

3.5 Mean Square Estimation Revisited 113

where E[yi|x] and E[y2
i |x] are the respective mean values conditioned on x.

Adding and subtracting (E[yi|x])2, Eq. (3.55) becomes

J ! E

[
M∑

i!1

(
gi(x) # E[yi |x]

)2

]

" E

[
M∑

i!1

(
E
[

y2
i |x

]
(E[yi |x])2)

]

(3.56)

The second term in (3.56) does not depend on the functions gi(x), i ! 1, 2, . . . , M .
Thus, minimization of J with respect to (the parameters of) gi(·) affects only the
first of the two terms. Let us concentrate and look at it more carefully. Each of
the M summands involves two terms: the unknown discriminant function gi(·) and
the conditional mean of the corresponding desired response. Let us now write
gi(·) ! gi(·; wi), to state explicitly that the functions are defined in terms of a
set of parameters, to be determined optimally during training. Minimizing J with
respect to wi , i ! 1, 2, . . . , M ,results in the mean square estimates of the unknown
parameters, ŵi , so that the discriminant functions approximate optimally the
corresponding conditional means—that is, the regressions of yi conditioned on x.
Moreover, for the M-class problem and the preceding definitions we have

E[yi|x] ≡
M∑

j!1

yiP(!j |x) (3.57)

However yi ! 1(0) if x ∈ !i(x ∈ !j , j ̸! i). Hence

gi(x, ŵi) is the MSE estimate of P(!i |x) (3.58)

This is an important result. Training the discriminant functions gi with desired
outputs 1 or 0 in the MSE sense, Eq. (3.51) is equivalent to obtaining the MSE
estimates of the class posterior probabilities, without using any statistical infor-
mation or pdf modeling! It suffices to say that these estimates may in turn be
used for Bayesian classification. An important issue here is to assess how good
the resulting estimates are. It all depends on how well the adopted functions
gi(·; wi) can model the desired (in general) nonlinear functions P(!i|x). If, for
example, we adopt linear models, as was the case in Eq. (3.33), and P(!i|x) is
highly nonlinear, the resulting MSE optimal approximation will be a bad one. Our
focus in the next chapter will be on developing modeling techniques for nonlinear
functions.

Finally, it must be emphasized that the conclusion above is an implication of
the cost function itself and not of the specific model function used. The latter
plays its part when the approximation accuracy issue comes into the scene. MSE
cost is just one of the costs that have this important property. Other cost functions
share this property too, see, for example, [Rich 91, Bish 95, Pear 90, Cid 99]. In
[Guer 04] a procedure is developed to design cost functions that provide more
accurate estimates of the probability values, taking into account the characteristics
of each classification problem.

“05-Ch03-SA272” 17/9/2008 page 114

114 CHAPTER 3 Linear Classifiers

3.5.3 The Bias–Variance Dilemma
So far we have touched on some very important issues concerning the interpretation
of the output of an optimally designed classifier. Also, we saw that a regressor or
a classifier can be viewed as learning machines realizing a function or a set of
functions g(x), which attempt to estimate the corresponding value or class label y
and make a decision based on these estimates. In practice, the functions g(·) are
estimated using a finite training data set D ! {(yi, xi), i ! 1, 2, . . . , N } and a suitable
methodology (e.g., mean square error, sum of error squares, LMS). To emphasize
the explicit dependence on D, we write g(x; D). This subsection focuses on the
capabilities of g(x; D) to approximate the MSE optimal regressor E[y|x] and on
how this is affected by the finite size, N , of the training data set.

The key factor here is the dependence of the approximation on D. The approx-
imation may be very good for a specific training data set but very bad for another.
The effectiveness of an estimator can be evaluated by computing its mean square
deviation from the desired optimal value. This is achieved by averaging over all
possible sets D of size N , that is,

ED
[(

g(x; D) # E[y|x]
)2

]
(3.59)

If we add and subtract ED[g(x; D)] and follow a procedure similar to that in the
proof of (3.47), we easily obtain

ED
[(

g(x; D) # E[y|x]
)2

]
! (ED[g(x; D)] # E[y|x])2

" ED
[
(g(x; D) # ED[g(x; D)])2]

(3.60)

The first term is the contribution of the bias and the second that of the variance.
In other words, even if the estimator is unbiased, it can still result in a large mean
square error due to a large variance term. For a finite data set, it turns out that there
is a trade-off between these two terms. Increasing the bias decreases the variance
and vice versa. This is known as the bias–variance dilemma. This behavior is
reasonable. The problem at hand is similar to that of a curve fitting through a given
data set. If, for example, the adopted model is complex (many parameters involved)
with respect to the number N , the model will fit the idiosyncrasies of the specific
data set. Thus, it will result in low bias but will yield high variance, as we change
from one data set to another. The major issue now is to seek ways to make both
bias and variance low at the same time. It turns out that this may be possible
only asymptotically, as the number N grows to infinity. Moreover, N has to grow
in such a way as to allow more complex models, g, to be fitted (which reduces
bias) and at the same time to ensure low variance. However, in practice N is
finite, and one should aim at the best compromise. If, on the other hand, some
a priori knowledge is available, this must be exploited in the form of constraints
that the classifier/regressor has to satisfy. This can lead to lower values of both the

“05-Ch03-SA272” 17/9/2008 page 115

3.5 Mean Square Estimation Revisited 115

variance and the bias, compared with a more general type of classifier/regressor.
This is natural, because one takes advantage of the available information and helps
the optimization process.

Let us now use two simplified“extreme”example cases,which will help us grasp
the meaning of the bias–variance dilemma using common-sense reasoning. Let us
assume that our data are generated by the following mechanism

y ! f (x) " (

where f (·) is an unknown function and (a noise source of zero mean and known
variance equal to, say,)2

(. Obviously, for any x, the optimum MSE regressor is
E[y|x] ! f (x). To make our point easier to understand, let us further assume that
the randomness in the different training sets,D, is due to the yi’s (whose values are
affected by the noise),while the respective points,xi,are fixed. Such an assumption
is not an unreasonable one. Since our goal is to obtain an estimate of f (·),it is sensible
for one to divide the interval [x1, x2], in which x lies, in equally spaced points. For
example, one can choose xi ! x1 " x2#x1

N#1 (i # 1), i ! 1, 2, . . . , N .

■ Case 1. Choose the estimate of f (x), g(x; D), to be independent of D, for
example,

g(x) ! w1x " w0

for some fixed values of w1 and w0. Figure 3.8 illustrates this setup showing a
line g(x) and N ! 11 training pairs (yi, xi), which spread around f (x), x ∈
[0, 1]. Since g(x) is fixed and does not change, we have ED[g(x; D)] !
g(x; D) ≡ g(x), and the variance term in (3.60) is zero. On the other hand,
since g(x) has been chosen arbitrarily, in general, one expects the bias term
to be large.

■ Case 2. In contrast to g(x), the function g1(x), shown in Figure 3.8, corre-
sponds to a polynomial of high degree and with a large enough number of
free parameters so that,for each one of the different training sets D,the respec-
tive graphs of g1(x) pass through the training points (yi , xi), i ! 1, 2, . . . , 11.
For this case, due to the zero mean of the noise source, we have that
ED[g1(x; D)] ! f (x) ! E[y|x], for any x ! xi . That is, at the training points,
the bias is zero. Due to the continuity of f (x) and g1(x), one expects similar
behavior and at the points that lie in the vicinity of the training points xi . Thus,
if N is large enough we can expect the bias to be small for all the points in
the interval [0, 1]. However,now the variance increases. Indeed, for this case
we have that

ED
[(

g1(x; D) # ED[g1(x; D)]
)2

]
! ED

[(
f (x) " (# f (x)

)2
]

!)2
(, for x ! xi , i ! 1, 2, . . . , N

In other words,the bias becomes zero (or approximately zero) but the variance
is now equal to the variance of the noise source.

“05-Ch03-SA272” 17/9/2008 page 116

116 CHAPTER 3 Linear Classifiers

0 0.5 1

g1(x)g(x)

f(x)

x

y

FIGURE 3.8
The data points are spread around the f (x) curve. The line g(x) ! 0 exhibits zero variance but
high bias. The high degree polynomial curve, g1(x) ! 0, always passes through the training
points and leads to low bias (zero bias at the training points) but to high variance.

The reader will notice that everything that has been said so far applies to both
the regression and the classification tasks. The reason that we talked only for
regression is that the mean square error is not the best criterion to validate the
performance of a classifier. After all, we may have a classifier that results in high
mean square error, yet its error performance can be very good. Take, as an exam-
ple, the case of a classifier g(x) resulting in relatively high mean square error, but
predicts the correct class label y for most of the values of x. That is, for all points
originating from class !1 (!2) the predicted values lie, for most of the cases, on
the correct side of the classifier, albeit with a lot of variation (for the different
training sets) and away from the desired values of ,1. From the classification
point of view,such a designed classifier would be perfectly acceptable. Concerning
the preceding theory, in order to get more meaningful results, for the classifica-
tion task, one has to rework the previous theory in terms of the probability of
error. However,now the algebra gets a bit more involved,and some further assump-
tions need to be adopted (e.g., Gaussian data), in order to make the algebra more
tractable. We will not delve into that, since more recent and elegant theories are

“05-Ch03-SA272” 17/9/2008 page 117

3.6 Logistic Discrimination 117

now available, which study the trade-off between model complexity and the accu-
racy of the resulting classifier for finite data sets in a generalized framework (see
Chapter 5).

A simple and excellent treatment of the bias–variance dilemma task can be found
in [Gema 92]. As for ourselves, this was only the beginning. We will come to the
finite data set issue and its implications many times throughout this book and from
different points of view.

3.6 LOGISTIC DISCRIMINATION
In logistic discrimination the logarithm of the likelihood ratios [Eq. (2.20)] is
modeled via linear functions. That is,

ln
P(!i|x)
P(!M |x)

! wi,0 " wT
i x, i ! 1, 2, . . . , M # 1 (3.61)

In the denominator,any class other than !M can also be used. The unknown param-
eters,wi,0, wi , i ! 1, 2, . . . , M # 1,must be chosen to ensure that probabilities add
to one. That is,

M∑

i!1

P(!i |x) ! 1 (3.62)

Combining (3.61) and (3.62), it is straightforward to see that this type of linear
modeling is equivalent to an exponential modeling of the a posteriori probabilities

P(!M |x) !
1

1 "
∑M#1

i!1 exp
(
wi,0 " wT

i x
) (3.63)

P(!i |x) !
exp

(
wi,0 " wT

i x
)

1 "
∑M#1

i!1 exp
(
wi,0 " wT

i x
) , i ! 1, 2, . . . M # 1 (3.64)

For the two-class case, the previous equations are simplified to

P(!2|x) !
1

1 " exp(w0 " wT x)
(3.65)

P(!1|x) !
exp(w0 " wT x)

1 " exp(w0 " wT x)
(3.66)

To estimate the set of the unknown parameters, a maximum likelihood approach
is usually employed. Optimization is performed with respect to all parame-
ters, which we can think of as the components of a parameter vector !. Let
xk, k ! 1, 2, . . . , N , be the training feature vectors with known class labels. Let

“05-Ch03-SA272” 17/9/2008 page 118

118 CHAPTER 3 Linear Classifiers

us denote by x(m)
k , k ! 1, 2, . . . , Nm, the vectors originating from class m !

1, 2, . . . , M . Obviously,
∑

m Nm ! N . The log-likelihood function to be optimized is
given by

L(!) ! ln

{ N1∏

k!1

p(x(1)
k |!1; !)

N2∏

k!1

p(x(2)
k |!2; !) . . .

NM∏

k!1

p(x(M)
k |!M ; !)

}

(3.67)

Taking into account that

p(x(m)
k |!m; !) !

p(x(m)
k)P(!m|x(m)

k ; !)

P(!m)
(3.68)

(3.67) becomes

L(!) !
N1∑

k!1

ln P(!1|x(1)
k) "

N2∑

k!1

ln P(!2|x(2)
k) " . . . "

NM∑

k!1

ln P(!M |x(M)
k) " C (3.69)

where the explicit dependence on ! has been suppressed for notational simplicity
and C is a parameter independent on ! equal to

C ! ln

∏N
k!1 p(xk)

∏M
m!1 P(!m)Nm

(3.70)

Inserting Eqs. (3.63) and (3.64) in (3.69), any optimization algorithm can then be
used to perform the required maximization (Appendix C). More on the optimiza-
tion task and the properties of the obtained solution can be found in, for example,
[Ande 82, McLa 92].

There is a close relationship between the method of logistic discrimination and
the LDA method, discussed in Chapter 2. It does not take much thought to realize
that under the Gaussian assumption and for equal covariance matrices across all
classes the following holds true.

ln
P(!1|x)
P(!2|x)

!
1
2

("T
2 -#1"2 # "1-#1"1) " ("1 # "2)T -#1x

≡ w0 " wT x

Here, the equiprobable two-class case was considered for simplicity. However,LDA
and logistic discrimination are not identical methods. Their (subtle) difference lies
in the way the unknown parameters are estimated. In LDA, the class probability
densities are assumed to be Gaussian and the unknown parameters are, basically,
estimated by maximizing (3.67) directly. In this maximization, the marginal prob-
ability densities (p(xk)) play their own part, since they enter implicitly into the
game. However, in the case of logistic discrimination,marginal densities contribute
to C and do not affect the solution. Thus, if the Gaussian assumption is a reasonable
one for the problem at hand, LDA is the natural approach since it exploits all avail-
able information. On the other hand, if this is not a good assumption, then logistic

“05-Ch03-SA272” 17/9/2008 page 119

3.7 Support Vector Machines 119

discrimination seems to be a better candidate, since it relies on fewer assumptions.
However, in practice it has been reported [Hast 01] that there is little difference
between the results obtained by the two methods. Generalizations of the logistic
discrimination method to include nonlinear models have also been suggested. See,
for example, [Yee 96, Hast 01].

3.7 SUPPORT VECTOR MACHINES
3.7.1 Separable Classes
In this section,an alternative rationale for designing linear classifiers will be adopted.
We will start with the two-class linearly separable task, and then we will extend the
method to more general cases where data are not separable.

Let xi , i ! 1, 2, . . . , N ,be the feature vectors of the training set,X . These belong
to either of two classes, !1, !2, which are assumed to be linearly separable. The
goal, once more, is to design a hyperplane

g(x) ! wT x " w0 ! 0 (3.71)

that classifies correctly all the training vectors. As we have already discussed
in Section 3.3, such a hyperplane is not unique. The perceptron algorithm may
converge to any one of the possible solutions. Having gained in experience, this
time we will be more demanding. Figure 3.9 illustrates the classification task with

x2

x1

FIGURE 3.9
An example of a linearly separable two-class problem with two possible linear classifiers.

“05-Ch03-SA272” 17/9/2008 page 120

120 CHAPTER 3 Linear Classifiers

two possible hyperplane1 solutions. Both hyperplanes do the job for the training
set. However, which one of the two would any sensible engineer choose as the
classifier for operation in practice, where data outside the training set will be fed
to it? No doubt the answer is: the full-line one. The reason is that this hyperplane
leaves more “room”on either side, so that data in both classes can move a bit more
freely, with less risk of causing an error. Thus such a hyperplane can be trusted
more, when it is faced with the challenge of operating with unknown data. Here
we have touched a very important issue in the classifier design stage. It is known
as the generalization performance of the classifier. This refers to the capability of
the classifier,designed using the training data set, to operate satisfactorily with data
outside this set. We will come to this issue over and over again.

After the above brief discussion, we are ready to accept that a very sensible
choice for the hyperplane classifier would be the one that leaves the maximum
margin from both classes. Later on, at the end of Chapter 5, we will see that this
sensible choice has a deeper justification, springing from the elegant mathematical
formulation that Vapnik and Chervonenkis have offered to us.

Let us now quantify the term margin that a hyperplane leaves from both classes.
Every hyperplane is characterized by its direction (determined by w) and its exact
position in space (determined by w0). Since we want to give no preference to
either of the classes,then it is reasonable for each direction to select that hyperplane
which has the same distance from the respective nearest points in !1 and !2. This
is illustrated in Figure 3.10. The hyperplanes shown with dark lines are the selected
ones from the infinite set in the respective direction. The margin for direction
“1” is 2z1, and the margin for direction “2” is 2z2. Our goal is to search for the
direction that gives the maximum possible margin. However, each hyperplane is
determined within a scaling factor. We will free ourselves from it, by appropriate
scaling of all the candidate hyperplanes. Recall from Section 3.2 that the distance
of a point from a hyperplane is given by

z !
|g(x)|
∥w∥

We can now scale w, w0 so that the value of g(x), at the nearest points in !1, !2
(circled in Figure 3.10), is equal to 1 for !1 and, thus, equal to #1 for !2. This is
equivalent with

1. Having a margin of 1
∥w∥ " 1

∥w∥ ! 2
∥w∥

2. Requiring that

wT x " w0 (1, &x ∈ !1

wT x " w0) #1, &x ∈ !2

1 We will refer to lines as hyperplanes to cover the general case.

“05-Ch03-SA272” 17/9/2008 page 121

3.7 Support Vector Machines 121

x2

x1

z2

z2

z1
z1

direction 2

direction 1

FIGURE 3.10
An example of a linearly separable two-class problem with two possible linear classifiers.

We have now reached the point where mathematics will take over. For each xi ,we
denote the corresponding class indicator by yi ("1 for !1,#1 for !2.) Our task can
now be summarized as: Compute the parameters w, w0 of the hyperplane so that
to:

minimize J (w, w0) ≡ 1
2
∥w∥2 (3.72)

subject to yi(wT xi " w0) (1, i ! 1, 2, . . . , N (3.73)

Obviously, minimizing the norm makes the margin maximum. This is a nonlinear
(quadratic) optimization task subject to a set of linear inequality constraints. The
Karush–Kuhn–Tucker (KKT) conditions (Appendix C) that the minimizer of (3.72),
(3.73) has to satisfy are

$

$w
L(w, w0, #) ! 0 (3.74)

$

$w0
L(w, w0, #) ! 0 (3.75)

*i (0, i ! 1, 2, . . . , N (3.76)

*i[yi(wT xi " w0) # 1] ! 0, i ! 1, 2, . . . , N (3.77)

“05-Ch03-SA272” 17/9/2008 page 122

122 CHAPTER 3 Linear Classifiers

where # is the vector of the Lagrange multipliers, *i, and L(w, w0, #) is the
Lagrangian function defined as

L(w, w0, #) !
1
2

wT w #
N∑

i!1

*i[yi(wT xi " w0) # 1] (3.78)

Combining (3.78) with (3.74) and (3.75) results in

w !
N∑

i!1

*iyixi (3.79)

N∑

i!1

*iyi ! 0 (3.80)

Remarks

■ The Lagrange multipliers can be either zero or positive (Appendix C).Thus,the
vector parameter w of the optimal solution is a linear combination of Ns) N
feature vectors that are associated with *i ̸! 0. That is,

w !
Ns∑

i!1

*iyixi (3.81)

These are known as support vectors and the optimum hyperplane classifier as
a support vector machine (SVM).As it is pointed out inAppendix C,a nonzero
Lagrange multiplier corresponds to a so called active constraint. Hence,as the
set of constraints in (3.77) suggests for *i ̸! 0, the support vectors lie on
either of the two hyperplanes, that is,

wT x " w0 ! ,1 (3.82)

In other words, they are the training vectors that are closest to the linear
classifier,and they constitute the critical elements of the training set. Feature
vectors corresponding to *i ! 0 can either lie outside the “class separation
band,”defined as the region between the two hyperplanes given in (3.82), or
they can also lie on one of these hyperplanes (degenerate case,Appendix C).
The resulting hyperplane classifier is insensitive to the number and position
of such feature vectors,provided they do not cross the class separation band.

■ Although w is explicitly given, w0 can be implicitly obtained by any of the
(complementary slackness) conditions (3.77), satisfying strict complemen-
tarity (i.e., *i ̸! 0, Appendix C). In practice, w0 is computed as an average
value obtained using all conditions of this type.

“05-Ch03-SA272” 17/9/2008 page 123

3.7 Support Vector Machines 123

■ The cost function in (3.72) is a strict convex one (Appendix C),a property that
is guaranteed by the fact that the corresponding Hessian matrix is positive
definite [Flet 87]. Furthermore, the inequality constraints consist of linear
functions. As discussed in Appendix C, these two conditions guarantee that
any local minimum is also global and unique. This is most welcome. The
optimal hyperplane classifier of a support vector machine is unique.

Having stated all these very interesting properties of the optimal hyperplane
of a support vector machine, we next need to compute the involved parameters.
From a computational point of view this is not always an easy task,and a number of
algorithms exist, for example, [Baza 79]. We will move to a path,which is suggested
to us by the special nature of our optimization task, given in (3.72) and (3.73). It
belongs to the convex programming family of problems, since the cost function is
convex and the constraints are linear and define a convex set of feasible solutions.
As we discuss in Appendix C, such problems can be solved by considering the so-
called Lagrangian duality. The problem can be stated equivalently by its Wolfe
dual representation form, that is,

maximize L(w, w0, #) (3.83)

subject to w !
N∑

i!1

*iyixi (3.84)

N∑

i!1

*iyi ! 0 (3.85)

(0 (3.86)

The two equality constraints are the result of equating to zero the gradient of the
Lagrangian,with respect to w, w0. We have already gained something. The training
feature vectors enter into the problem via equality constraints and not inequality
ones, which can be easier to handle. Substituting (3.84) and (3.85) into (3.83) and
after a bit of algebra we end up with the equivalent optimization task

max
#

⎛

⎝
N∑

i!1

*i #
1
2

∑

i,j

*i*jyiyjxT
i xj

⎞

⎠ (3.87)

subject to
N∑

i!1

*iyi ! 0 (3.88)

(0 (3.89)

“05-Ch03-SA272” 17/9/2008 page 124

124 CHAPTER 3 Linear Classifiers

Once the optimal Lagrange multipliers have been computed,by maximizing (3.87),
the optimal hyperplane is obtained via (3.84), and w0 via the complementary
slackness conditions, as before.

Remarks

■ Besides the more attractive setting of the involved constraints in (3.87),(3.88),
there is another important reason that makes this formulation popular. The
training vectors enter into the game in pairs, in the form of inner products.
This is most interesting. The cost function does not depend explicitly on
the dimensionality of the input space! This property allows for efficient
generalizations in the case of nonlinearly separable classes. We will return to
this at the end of Chapter 4.

■ Although the resulting optimal hyperplane is unique, there is no guarantee
about the uniqueness of the associated Lagrange multipliers *i . In words,
the expansion of w in terms of support vectors in (3.84) may not be unique,
although the final result is unique (Example 3.5).

3.7.2 Nonseparable Classes
When the classes are not separable, the above setup is no longer valid. Figure 3.11
illustrates the case in which the two classes are not separable. Any attempt
to draw a hyperplane will never end up with a class separation band with no

x2

x2

FIGURE 3.11
In the nonseparable class case, points fall inside the class separation band.

“05-Ch03-SA272” 17/9/2008 page 125

3.7 Support Vector Machines 125

data points inside it, as was the case in the linearly separable task. Recall that
the margin is defined as the distance between the pair of parallel hyperplanes
described by

wT x " w0 !, 1

The training feature vectors now belong to one of the following three categories:

■ Vectors that fall outside the band and are correctly classified. These vectors
comply with the constraints in (3.73).

■ Vectors falling inside the band and are correctly classified. These are the points
placed in squares in Figure 3.11, and they satisfy the inequality

0) yi(wT x " w0) % 1

■ Vectors that are misclassified. They are enclosed by circles and obey the
inequality

yi(wT x " w0) % 0

All three cases can be treated under a single type of constraints by introducing
a new set of variables, namely,

yi[wT x " w0] (1 # +i (3.90)

The first category of data corresponds to +i ! 0, the second to 0 % +i) 1, and the
third to +i $ 1. The variables +i are known as slack variables. The optimizing task
becomes more involved,yet it falls under the same rationale as before. The goal now
is to make the margin as large as possible but at the same time to keep the number
of points with + $ 0 as small as possible. In mathematical terms, this is equivalent
to adopting to minimize the cost function

J (w, w0, $) !
1
2
∥w∥2 " C

N∑

i!1

I(+i) (3.91)

where $ is the vector of the parameters +i and

I(+i) !

{
1 +i $ 0
0 +i ! 0

(3.92)

The parameter C is a positive constant that controls the relative influence of the two
competing terms. However,optimization of the above is difficult since it involves a

“05-Ch03-SA272” 17/9/2008 page 126

126 CHAPTER 3 Linear Classifiers

discontinuous function I(·). As it is common in such cases, we choose to optimize
a closely related cost function, and the goal becomes

minimize J (w, w0, $) !
1
2
∥w∥2 " C

N∑

i!1

+i (3.93)

subject to yi[wT xi " w0] (1 # +i , i ! 1, 2, . . . , N (3.94)

+i (0, i ! 1, 2, . . . , N (3.95)

The problem is again a convex programming one,and the corresponding Lagrangian
is given by

L(w, w0, $, #, ") !
1
2
∥w∥2 " C

N∑

i!1

+i #
N∑

i!1

,i+i

#
N∑

i!1

*i[yi(wT xi " w0) # 1 " +i] (3.96)

The corresponding Karush–Kuhn–Tucker conditions are

$L
$w

! 0 or w !
N∑

i!1

*iyixi (3.97)

$L
$w0

! 0 or
N∑

i!1

*iyi ! 0 (3.98)

$L
$+i

! 0 or C # ,i # *i ! 0, i ! 1, 2, . . . , N (3.99)

*i[yi(wT xi " w0) # 1 " +i] ! 0, i ! 1, 2, . . . , N (3.100)

,i+i ! 0, i ! 1, 2, . . . , N (3.101)

,i (0, *i (0, i ! 1, 2, . . . , N (3.102)

The associated Wolfe dual representation now becomes

maximize L(w, w0, #, $, ")

subject to w !
N∑

i!1

*iyixi

N∑

i!1

*iyi ! 0

C # ,i # *i ! 0, i ! 1, 2, . . . , N

*i (0, ,i (0, i ! 1, 2, . . . , N

“05-Ch03-SA272” 17/9/2008 page 127

3.7 Support Vector Machines 127

Substituting the above equality constraints into the Lagrangian, we end up with

max
#

⎛

⎝
N∑

i!1

*i #
1
2

∑

i,j

*i*jyiyjxT
i xj

⎞

⎠ (3.103)

subject to 0) *i) C , i ! 1, 2, . . . , N (3.104)

N∑

i!1

*iyi ! 0 (3.105)

Note that the Lagrange multipliers corresponding to the points residing either within
the margin or on the wrong side of the classifier, that is, +i $ 0, are all equal to the
maximum allowable value C . Indeed,at the solution, for +i ̸! 0 the KKT conditions
give ,i ! 0 leading to *i ! C . In other words,these points have the largest possible
“share” in the final solution w.

3.7.3 The Multiclass Case
In all our discussions, so far,we have been involved with the two-class classification
task. In an M -class problem, a straightforward extension is to consider it as a set
of M two-class problems (one-against-all). For each one of the classes, we seek
to design an optimal discriminant function, gi(x), i ! 1, 2, . . . , M , so that gi(x) $
gj(x), &j ̸! i, if x ∈ !i . Adopting the SVM methodology, we can design the
discriminant functions so that gi(x) ! 0 to be the optimal hyperplane separating
class !i from all the others. Thus, each classifier is designed to give gi(x) $ 0 for
x ∈ !i and gi(x) % 0 otherwise. Classification is then achieved according to the
following rule:

assign x in !i if i ! arg max
k

{gk(x)}

This technique, however, may lead to indeterminate regions, where more than one
gi(x) is positive (Problem 3.15). Another drawback of the technique is that each
binary classifier deals with a rather asymmetric problem in the sense that training is
carried out with many more negative than positive examples. This becomes more
serious when the number of classes is relatively large.

An alternative technique is the one-against-one. In this case,M(M # 1)/2 binary
classifiers are trained and each classifier separates a pair of classes. The decision is
made on the basis of a majority vote. The obvious disadvantage of the technique is
that a relatively large number of binary classifiers has to be trained. In [Plat 00] a
methodology is suggested that may speed up the procedure.

A different and very interesting rationale has been adopted in [Diet 95]. The
multiclass task is treated in the context of error correcting coding, inspired by the
coding schemes used in communications. For a M -class problem a number of, say,
L binary classifiers are used, where L is appropriately chosen by the designer. Each
class is now represented by a binary code word of length L. During training, for

“05-Ch03-SA272” 17/9/2008 page 128

128 CHAPTER 3 Linear Classifiers

the ith classifier, i !1, 2, . . . , L, the desired labels, y, for each class are chosen to be
either "1 or #1. For each class, the desired labels may be different for the various
classifiers. This is equivalent to constructing a matrix M + L of desired labels. For
example, if M ! 4 and L ! 6, such a matrix can be

⎡

⎢⎢⎢⎣

#1 #1 #1 "1 #1 "1
"1 #1 "1 "1 #1 #1
"1 "1 #1 #1 #1 "1
#1 #1 "1 #1 "1 "1

⎤

⎥⎥⎥⎦
(3.106)

In words, during training, the first classifier (corresponding to the first column of
the previous matrix) is designed in order to respond (#1,"1,"1,#1) for patterns
originating from classes !1, !2, !3, !4, respectively. The second classifier will
be trained to respond (#1,#1,"1,#1), and so on. The procedure is equivalent to
grouping the classes into L different pairs, and, for each pair, we train a binary
classifier accordingly. For the case of our example and for the first binary classifier,
class !1 has been grouped together with !4 and class !2 with class !3. Each row
must be distinct and corresponds to a class. For our example, and in the absence
of errors, the outputs of the L classifiers for a pattern from class !1 will result in
the code word (#1,#1,#1,"1,#1,"1), and so on. When an unknown pattern is
presented, the output of each one of the binary classifiers is recorded, resulting in a
code word. Then, the Hamming distance (number of places where two code words
differ) of this code word is measured against the M code words, and the pattern is
classified to the class corresponding to the smallest distance.

Here in lies the power of the technique. If the code words are designed so
that the minimum Hamming distance between any pair of them is, say, d, then a
correct decision will still be reached even if the decisions of at most

⌊d#1
2

⌋
, out

of the L, classifiers are wrong, where ⌊·⌋ is the floor operation. For the matrix
in (3.106) the minimum Hamming distance, between any pair, is equal to three.
In [Diet 95], the method has been applied for numerical digit classification, and
the grouping of the ten classes is done in such a way as to be meaningful. For
example, one grouping is based on the existence in the numeric digits of a hor-
izontal line (e.g., “4” and “2”), or the existence of a vertical line (e.g., “1” and
“4”), and so on. An extension of this method, which is proposed in [Allw 00],
takes into consideration the resulting values of the margin (when an SVM or
another type of margin classifier, e.g., boosting classifiers discussed in Chapter 4,
is used). In [Zhou 08], the composition of the individual binary problems and
their number (code word length, L) is the result of a data-adaptive procedure
that designs the code words by taking into account the inherent structure of the
training data.

All previous techniques are appropriate for any classifier. Another alterna-
tive, specific for SVMs, is to extentd the two class SVM mathematical formulation
to the M -class problem, see, for example, [Vapn 98, Liu 06]. Comparative stud-
ies of the various methods for multiclass SVM classification can be found in
[Rifk 04, Hsu 02, Fei 06].

“05-Ch03-SA272” 17/9/2008 page 129

3.7 Support Vector Machines 129

Remarks

■ The only difference between the linearly separable and nonseparable cases lies
in the fact that for the latter one the Lagrange multipliers need to be bounded
above by C . The linearly separable case corresponds to C→*, see Eqs. (3.104)
and (3.89). The slack variables,+i ,and their associated Lagrange multipliers,,i,
do not enter into the problem explicitly. Their presence is indirectly reflected
through C .

■ A major limitation of support vector machines is the high computational
burden required, both during training and in the test phase. A naive
implementation of a quadratic programming (QP) solver takes O(N3) oper-
ations, and its memory requirements are of the order of O(N2). For
problems with a relatively small number of training data, any general
purpose optimization algorithm can be used. However, for a large num-
ber of training points (e.g., of the order of a few thousands), a naive
QP implementation does not scale up well, and a special treatment is
required. Training of SVM is usually performed in batch mode. For
large problems this sets high demands on computer memory requirements.
To attack such problems, a number of procedures have been devised.
Their philosophy relies on the decomposition, in one way or another, of
the optimization problem into a sequence of smaller ones, for example,
[Bose 92, Osun 97, Chan 00]. The main rationale behind such algorithms
is to start with an arbitrary data subset (chunk of data, working set) that
can fit in the computer memory. Optimization is, then, performed on this
subset via a general optimizer. Support vectors remain in the working set
while others are replaced by new ones, outside the current working set,
that violate severely the KKT conditions. It can be shown that this itera-
tive procedure guarantees that the cost function is decreasing at each itera-
tion step.

In [Plat 99, Matt 99], the so called Sequential Minimal Optimization
(SMO) algorithm is proposed where the idea of decomposition is pushed
to its extreme and each working set consists of only two points. Its
great advantage is that the optimization can now be performed analyti-
cally. In [Keer 01], a set of heuristics is used for the choice of the pair
of points that constitute the working set. To this end, it is suggested that
the use of two thresholded parameters can lead to considerable speed-
ups. As suggested in [Plat 99, Platt 98], efficient implementations of such a
scheme have an empirical training time complexity that scales between O(N)
and O(N2.3).

Theoretical issues related to the algorithm, such as convergence, are
addressed in [Chen 06] and the references therein. The parallel imple-
mentation of the algorithm is considered in [Cao 06]. In [Joac 98] the
working set is the result of a search for the steepest feasible direction.
More recently, [Dong 05] suggested a technique to quickly remove most of

“05-Ch03-SA272” 17/9/2008 page 130

130 CHAPTER 3 Linear Classifiers

the nonsupport vectors, using a parallel optimization step, and the original
problem can be split into many subproblems that can be solved more effi-
ciently. In [Mavr 06], the geometric interpretation of SVMs (Section 3.7.5)
is exploited, and the optimization task is treated as a minimum distance
points search between convex sets. It is reported that substantial computa-
tional savings can be obtained compared to the SMO algorithm. A sequential
algorithm, which operates on the primal problem formulation, has been
proposed in [Navi 01], where an iterative reweighted least squares proce-
dure is employed and alternates weight optimization with constraint forcing.
An advantage of the latter technique is that it naturally leads to online
implementations. Another trend is to employ an algorithm that aims at an
approximate solution to the problem. In [Fine 01] a low-rank approximation
is used in place of the the so-called kernel matrix, which is involved in the
computations. In [Tsan 06, Hush 06] the issues of complexity and accuracy
of the approximation are considered together. For example, in [Hush 06]
polynomial-time algorithms are derived that produce approximate solutions
with a guaranteed accuracy for a class of QP problems that include the SVM
classifiers.

For large problems, the test phase can also be quite demanding, if the
number of support vectors is excessively high. Methods that speed up
computations have also been suggested, for example, [Burg 97, Nguy 06].

Example 3.5
Consider the two-class classification task that consists of the following points:

w1: [1, 1]T , [1, #1]T

w2: [#1, 1]T , [#1, #1]

Using the SVM approach, we will demonstrate that the optimal separating hyperplane (line)
is x1 ! 0 and that this is obtained via different sets of Lagrange multipliers.

The points lie on the corners of a square, as shown in Figure 3.12. The sim-
ple geometry of the problem allows for a straightforward computation of the SVM lin-
ear classifier. Indeed, a careful observation of Figure 3.12 suggests that the optimal
line

g(x) ! w1x1 " w2x2 " w0 ! 0

is obtained for w2 ! w0 ! 0 and w1 ! 1, that is,

g(x) ! x1 ! 0

Hence for this case, all four points become support vectors, and the margin of the separating
line from both classes is equal to 1. For any other direction, e.g., g1(x) ! 0, the margin is
smaller. It must be pointed out that the same solution is obtained if one solves the associated
KKT conditions (Problem 3.16.)

“05-Ch03-SA272” 17/9/2008 page 131

3.7 Support Vector Machines 131

x2

x1

1

1

21

g(x) 5 0 g1(x) 5 0

21

FIGURE 3.12
In this example all four points are support vectors. The margin associated with g1(x) ! 0 is
smaller compared to the margin defined by the optimal g(x) ! 0.

Let us now consider the mathematical formulation of our problem. The linear inequality
constraints are

w1 " w2 " w0 # 1 (0

w1 # w2 " w0 # 1 (0

w1 # w2 # w0 # 1 (0

w1 " w2 # w0 # 1 (0

and the associated Lagrangian function becomes

L(w2, w1, w0, #) !
w2

1 " w2
2

2
*1(w1 " w2 " w0 # 1)

*2(w1 # w2 " w0 # 1)

*3(w1 # w2 # w0 # 1)

*4(w1 " w2 # w0 # 1)

The KKT conditions are given by
$L

$w1
! 0 ⇒ w1 ! *1 " *2 " *3 " *4 (3.107)

$L
$w2

! 0 ⇒ w2 ! *1 " *4 # *2 # *3 (3.108)

$L
$w0

! 0 ⇒ *1 " *2 # *3 # *4 ! 0 (3.109)

“05-Ch03-SA272” 17/9/2008 page 132

132 CHAPTER 3 Linear Classifiers

*1(w1 " w2 " w0 # 1) ! 0 (3.110)

*2(w1 # w2 " w0 # 1) ! 0 (3.111)

*3(w1 # w2 # w0 # 1) ! 0 (3.112)

*4(w1 " w2 # w0 # 1) ! 0 (3.113)

*1, *2, *3, *4 (0 (3.114)

Since we know that the solution for w, w0 is unique, we can substitute the solution
w1 ! 1, w2 ! w0 ! 0 into the above equations. Then we are left with a linear system of
three equations with four unknowns, that is,

*1 " *2 " *3 " *4 ! 1 (3.115)

*1 " *4 # *2 # *3 ! 0 (3.116)

*1 " *2 # *3 # *4 ! 0 (3.117)

which obviously has more than one solution. However, all of them lead to the unique optimal
separating line.

Example 3.6
Figure 3.13 shows a set of training data points residing in the two-dimensional space and
divided into two nonseparable classes. The full line in Figure 3.13a is the resulting hyperplane
using Platt’s algorithm and corresponds to the value C ! 0.2. Dotted lines meet the conditions
given in (3.82) and define the margin that separates the two classes, for those points with

(a) (b)
23 22 121 0 1 2 3 4 5

22

21

0

1

2

3

4

5
x2

x1
23 22 21 0 1 3 4 5 x1

22

21

0

1

2

3

4

5
x2

2

FIGURE 3.13
An example of two nonseparable classes and the resulting SVM linear classifier (full line) with
the associated margin (dotted lines) for the values (a) C ! 0.2 and (b) C ! 1000. In the latter
case, the location and direction of the classifier as well as the width of the margin have changed
in order to include a smaller number of points inside the margin.

“05-Ch03-SA272” 17/9/2008 page 133

3.7 Support Vector Machines 133

+i !0. The setting in Figure 3.13b corresponds to C !1000 and has been obtained with the
same algorithm and the same set of trimming parameters (e.g., stopping criteria).

It is readily observed that the margin associated with the classifier corresponding to the
larger value of C is smaller. This is because the second term in (3.91) has now more influence
in the cost, and the optimization process tries to satisfy this demand by reducing the margin
and consequently the number of points with +i $ 0. In other words, the width of the margin
does not depend entirely on the data distribution, as was the case with the separable class
case, but is heavily affected by the choice of C. This is the reason SVM classifiers, defined by
(3.91), are also known as soft margin classifiers.

3.7.4 --SVM
Example 3.6 demonstrated the close relation that exists between the parameter
C and the width of the margin obtained as a result of the optimization pro-
cess. However, since the margin is such an important entity in the design of
SVM (after all, the essence of the SVM methodology is to maximize it), a natural
question that arises is why not involve it in a more direct way in the cost func-
tion, instead of leaving its control to a parameter (i.e., C) whose relation with the
margin, although strong, is not transparent to us. To this end, in [Scho 00] a vari-
ant of the soft margin SVM was introduced. The margin is defined by the pair of
hyperplanes

wT x " w0 ! , # (3.118)

and # (0 is left as a free variable to be optimized. Under this new setting,the primal
problem given in (3.93)–(3.95) can now be cast as

minimize J (w, w0, $, #) !
1
2
∥w∥2 # -# "

1
N

N∑

i!1

+i (3.119)

subject to yi[wT xi " w0] (# # +i , i ! 1, 2, . . . , N (3.120)

+i (0, i ! 1, 2, . . . , N (3.121)

(0 (3.122)

To understand the role of #, note that for +i ! 0 the constraints in (3.120) state that
the margin separating the two classes is equal to 2#

∥w∥ . In the previous formulation,
also known as --SVM, we simply count and average the number of points with
+i $ 0, whose number is now controlled by the margin variable #. The larger the #
the wider the margin and the higher the number of points within the margin, for
a specific direction w. The parameter - controls the influence of the second term
in the cost function, and its value lies in the range [0, 1]. (We will revisit this issue
later on.)

“05-Ch03-SA272” 17/9/2008 page 134

134 CHAPTER 3 Linear Classifiers

The Lagrangian function associated with the task (3.119)–(3.122) is given by

L(w, w0, #, $, ", #, ") !
1
2
∥w∥2 # -# "

1
N

N∑

i!1

+i #
N∑

i!1

,i+i

#
N∑

i!1

*i

[
yi(wT xi " w0) # # " +i

]
"# (3.123)

Adopting similar steps as in Section 3.7.2, the following KKT conditions result:

w !
N∑

i!1

*i yixi (3.124)

N∑

i!1

*i yi ! 0 (3.125)

,i " *i !
1
N

, i ! 1, 2, . . . , N (3.126)

N∑

i!1

*i # " ! - (3.127)

*i

[
yi(wT xi " w0) # # " +i

]
! 0, i ! 1, 2, . . . , N (3.128)

,i+i ! 0, i ! 1, 2, . . . , N (3.129)

"# ! 0 (3.130)

,i (0, *i (0, " (0, i ! 1, 2, . . . , N (3.131)

The associated Wolfe dual representation is easily shown to be

maximize L(w, w0, #, $, ", ") (3.132)

subject to w !
N∑

i!1

*i yixi (3.133)

N∑

i!1

*i yi ! 0 (3.134)

,i " *i !
1
N

, i ! 1, 2, . . . , N (3.135)

N∑

i!1

*i # " ! - (3.136)

*i (0, ,i (0, " (0, i ! 1, 2, . . . , N (3.137)

“05-Ch03-SA272” 17/9/2008 page 135

3.7 Support Vector Machines 135

If we substitute the equality constraints (3.133)–(3.136) in the Lagrangian, the dual
problem becomes equivalent to (Problem 3.17)

max
#

⎛

⎝#
1
2

∑

i, j

*i*jyiyjxT
i xj

⎞

⎠ (3.138)

subject to 0) *i)
1
N

, i ! 1, 2, . . . , N (3.139)

N∑

i!1

*i yi ! 0 (3.140)

N∑

i!1

*i (- (3.141)

Once more, only the Lagrange multipliers # enter into the problem explicitly, and #
and the slack variables, +i, make their presence felt through the bounds appearing
in the constraints. Observe that in contrast to (3.103) the cost function is now
quadratically homogeneous and the linear term

∑N
i!1 *i is not present. Also, the

new formulation has an extra constraint.

Remarks

■ [Chan 01] shows that the --SVM and the more standard SVM formulation
[(3.103)–(3.105)], sometimes referred to as C -SVM, lead to the same solution
for appropriate values of C and -. Also, it is shown that in order for the
optimization problem to be feasible, the constant - must lie in a range 0)
-min) -) -max) 1.

■ Although both SVM formulations result in the same solution, for appropri-
ate choices of - and C the --SVM offers certain advantages to the designer.
As we will see in the next section, it leads to a geometric interpreta-
tion of the SVM task for nonseparable classes. Furthermore, the constant
-, controlled by the designer, offers itself to serve two important bounds
concerning (a) the error rate and (b) the number of the resulting support
vectors.

At the solution, the points lying either within the margin or outside it
but on the wrong side of the separating hyperplane correspond to +i $ 0
and hence to ,i ! 0 [Eq. (3.129)], forcing the respective Lagrange multipli-
ers to be *i ! 1

N [Eq. (3.126)]. Also, since at the solution, for # $ 0, " ! 0
[Eq. (3.130)], it turns out that

∑N
i!1 *i ! - [Eq. (3.127)]. Combining these

and taking into account that all points that lie in the wrong side of
the classifier correspond to +i $ 0, the total number of errors can, at

“05-Ch03-SA272” 17/9/2008 page 136

136 CHAPTER 3 Linear Classifiers

most, be equal to N-. Thus, the error rate, Pe, on the training set is
upper-bounded as

Pe) -. (3.142)

Also, at the solution, from the constraints (3.127) and (3.126) we have that

- !
N∑

i!1

*i !
Ns∑

i!1

*i)
Ns∑

i!1

1
N

(3.143)

or

N-) Ns (3.144)

Thus,the designer,by controlling the value of -,may have a feeling for both the
error rate on the training set and the number of the support vectors to result
from the optimization process. The number of the support vectors,Ns, is very
important for the performance of the classifier in practice. First, as we have
already commented, it directly affects the computational load, since large Ns
means that a large number of inner products are to be computed for classifying
an unknown pattern. Second,as we will see at the end of Section 5.10,a large
number of support vectors can limit the error performance of the SVM classi-
fier when it is fed with data outside the training set (this is also known as the
generalization performance of the classifier). For more on the --SVM,the inter-
ested reader can consult [Scho 00, Chan 01, Chen 03],where implementation
issues are also discussed.

3.7.5 Support Vector Machines: A Geometric Viewpoint
In this section, we will close the circle around the SVM design task via a path that
is very close to what we call common sense. Figure 3.14a illustrates the case of
two separable data classes together with their respective convex hulls. The convex
hull of a data set X is denoted as conv{X} and is defined as the intersection of all
convex sets (see Appendix C.4) containing X . It can be shown (e.g., [Luen 69])
that conv{X} consists of all the convex combinations of the N elements of X .
That is,

conv{X} !

{

y : y !
N∑

i!1

*ixi : xi ∈ X ,

N∑

i!1

*i ! 1, 0) *i) 1, i ! 1, 2, . . . , N

}

(3.145)

“05-Ch03-SA272” 17/9/2008 page 137

3.7 Support Vector Machines 137

(a)
23 22 21 0 1 2 3 4 5 6 7

23

22

21

0

1

2

3
x2

x1

23

22

21

0

1

2

3

(b)

23 22 21 0 1 2 3 4 5 6 7 x1

x2

FIGURE 3.14
(a) A data set for two separable classes with the respective convex hulls. (b) The SVM optimal
hyperplane bisects the segment joining the two nearest points between the convex hulls.

It turns out that solving the dual optimization problem in (3.87)–(3.89) for the lin-
early separable task results in the hyperplane that bisects the linear segment joining
two nearest points between the convex hulls of the data classes [Figure 3.14b].
In other words, searching for the maximum margin hyperplane is equivalent to
searching for two nearest points between the corresponding convex hulls! Let us
investigate this a bit further.

Denote the convex hull of the vectors in class !1 as conv{X"} and the convex
hull corresponding to class !2 as conv{X#}. Following our familiar notation, any
point in conv{X"}, being a convex combination of all the points in !1, can be
written as

∑
i:yi!1 *ixi, and any point in conv{X#} as

∑
i:yi!#1 *ixi , provided that

*i fulfill the convexity constraints in (3.145). Searching for the closest points, it
suffices to find the specific values of *i , i ! 1, 2, . . . N , such that

min
#

∥
∑

i:yi!1

*ixi #
∑

i:yi!#1

*ixi∥2 (3.146)

subject to
∑

i:yi!1

*i ! 1,
∑

i:yi!#1

*i ! 1 (3.147)

*i (0, i ! 1, 2, . . . N (3.148)

Elaborating the norm in (3.146) and reshaping the constraints in (3.147), we end
up with the following equivalent formulation.

minimize
∑

i,j

yiyj*i*jxT
i xj (3.149)

subject to
N∑

i!1

yi*i ! 0,
N∑

i!1

*i ! 2 (3.150)

*i (0, i ! 1, 2, . . . N (3.151)

“05-Ch03-SA272” 17/9/2008 page 138

138 CHAPTER 3 Linear Classifiers

It takes a few lines of algebra to show that the optimization task in (3.87)–(3.89)
results in the same solution as the task given in (3.149)–(3.151) ([Keer 00] and Prob-
lem 3.18). Having established the geometric interpretation of the SVM optimization
task, any algorithm that has been developed to search for nearest points between
convex hulls (e.g., [Gilb 66, Mitc 74, Fran 03]) can now, in principle, be mobilized
to compute the maximum margin linear classifier.

It is now the turn of the nonseparable class problem to enter into the game,
which,at this point becomes more exciting. Let us return to the --SVM formulation
and reparameterize the primal problem in (3.119)–(3.122) by dividing the cost
function by -2

2 and the set of constraints by - ([Crisp 99]). Obviously, this has no
effect on the solution. The optimization task now becomes

minimize J (w, w0, $, #) ! ∥w∥2 # 2# " ,
N∑

i!1

+i (3.152)

subject to yi[wT xi " w0] (# # +i , i ! 1, 2, . . . , N (3.153)

+i (0, i ! 1, 2, . . . , N (3.154)

(0 (3.155)

where , ! 2
-N and we have kept, for economy, the same notation, although the

parameters in (3.152)–(3.155) are scaled versions of those in (3.119)–(3.122). That
is, w → w

- , w0 → w0
- , # → #

- , +i → +i
- . Hence, the solution obtained via (3.152)–

(3.155) is a scaled version of the solution resulting via (3.119)–(3.122). The Wolfe
dual representation of the primal problem in (3.152)–(3.155) is easily shown to be
equivalent to

minimize
∑

i,j

yiyj*i*jxT
i xj (3.156)

subject to
∑

i

yi*i ! 0,
∑

i

*i ! 2 (3.157)

0) *i) ,, i ! 1, 2, . . . N (3.158)

This set of relations is almost the same as those defining the nearest points between
the convex hulls in the separable class case, (3.149)–(3.151), with a small, yet sig-
nificant, difference. The Lagrange multipliers are bounded by ,, and for , % 1 they
are not permitted to span their entire allowable range (i.e., [0, 1]).

3.7.6 Reduced Convex Hulls
The reduced convex hull (RCH) of a (finite) vector set,X , is denoted as R(X , ,) and
is defined as the convex set

“05-Ch03-SA272” 17/9/2008 page 139

3.7 Support Vector Machines 139

R(X , ,) !

{

y : y !
N∑

i!1

*ixi : xi ∈ X ,

N∑

i!1

*i ! 1, 0) *i) ,, i ! 1, 2, . . . , N

}

(3.159)

It is apparent from the previous definition that R(X , 1) ≡ conv{X} and that

R(X , ,) ⊆ conv{X} (3.160)

Figure 3.15a shows the respective convex hulls for the case of two intersecting
data classes. In Figure 3.15b, full lines indicate the convex hulls, conv{X"} and
conv{X#}, and the dotted lines the reduced convex hulls R(X", ,), R(X#, ,), for
two different values of , ! 0.4 and , ! 0.1, respectively. It is readily apparent
that the smaller the value of ,, the smaller the size of the reduced convex hull. For
small enough values of ,, one can make R(X", ,) and R(X#, ,) nonintersecting.
Adopting a procedure similar to the one that led to (3.149)–(3.151), it is not difficult
to see that finding two nearest points between R(X", ,) and R(X#, ,) results in
the --SVM dual optimization task given in (3.156)–(3.158). Observe that the only
difference between the latter and the task for the separable case,defined in (3.149)–
(3.151), lies in the range in which the Lagrange multipliers are allowed to be. In the
separable class case,the constraints (3.150) and (3.151) imply that 0)*i)1,which
in its geometric interpretation means that the full convex hulls are searched for the
nearest points. In contrast, in the nonseparable class case a lower upper bound (i.e.,

(a) (b)

0 1 2 3 4 5
0

1

2

3

4

5
x2

x1
0 1 2 3 4 5

0

1

2

3

4

5
x2

x1

FIGURE 3.15
(a) Example of a data set with two intersecting classes and their respective convex hulls. (b) The
convex hulls (indicated by full lines) and the resulting reduced convex hulls (indicated by dotted
lines) corresponding to , ! 0.4 and , ! 0.1, respectively, for each class. The smaller the value
of , the smaller the RCH size.

“05-Ch03-SA272” 17/9/2008 page 140

140 CHAPTER 3 Linear Classifiers

,) 1) is imposed for the Lagrange multipliers. From the geometry point of view,
this means that the search for the nearest points is limited within the respective
reduced convex hulls.

Having established the geometric interpretation of the --SVM dual repre-
sentation form,let us follow pure geometric arguments to draw the separating hyper-
plane. It is natural to choose it as the one bisecting the line segment joining two
nearest points between the reduced convex hulls. Let x" and x# be two nearest
points, with x" ∈ R(X", ,) and x# ∈ R(X#, ,). Also, let *i , i ! 1, 2, . . . , N , be
the optimal set of multipliers resulting from the optimization task. Then, as can be
deduced from Figure 3.16,

w ! x" # x# !
∑

i:yi!1

*ixi #
∑

i:yi!#1

*ixi (3.161)

!
N∑

i!1

*iyixi (3.162)

This is the same (within a scaling factor) as the w obtained from the KKT condi-
tions associated with the --SVM task [Eq. (3.124)]. Thus, both approaches result
in a separating hyperplane pointing in the same direction (recall from Section 3.2
that w defines the direction of the hyperplane). However, it is early to say that
the two solutions are exactly the same. The hyperplane bisecting the line segment

10 2 3 4 5
0

1

2

3

4

5
x2

x1

x1

x2
x*

w

FIGURE 3.16
The optimal linear classifier resulting as the bisector of the segment joining the two closest
points between the reduced convex hulls of the classes, for the case of the data set shown in
Figure 3.15 and for , ! 0.1.

“05-Ch03-SA272” 17/9/2008 page 141

3.7 Support Vector Machines 141

joining the nearest points crosses the middle of this segment; that is, the point
x∗ ! 1

2 (x" " x#). Thus,

wT x∗ " w0 ! 0 (3.163)

from which we get

w0 ! #
1
2

wT

⎛

⎝
∑

i:yi!1

*ixi "
∑

i:yi!#1

*ixi

⎞

⎠ (3.164)

This value for w0 is, in general, different from the value resulting from the KKT
conditions in (3.128). In conclusion, the geometric approach in the case of the
nonseparable problem is equivalent to the --SVM formulation only to the extent
that both approaches result in hyperplanes pointing in the same direction. However,
note that the value in Eq. (3.128) can be obtained from that given in Eq. (3.164) in
a trivial way [Crisp 99].

Remarks

■ The choice of , and consequently of - ! 2
,N must guarantee that the feasi-

ble region is nonempty (i.e., a solution exists,Appendix C) and also that the
solution is a nontrivial one (i.e., w ̸! 0). Let N" be the number of points
in X" and N# the number of points in X#, where N" " N# ! N . Let
Nmin ! min{N", N#}. Then it is readily seen from the crucial constraint
0)*i), and the fact that

∑
i *i ! 1, in the definition of the reduced convex

hull, that , (,min ! 1
Nmin

. This readily suggests that - cannot take any value
but must be upper-bounded as

-) -max ! 2
Nmin

N
) 1

Also, if the respective reduced convex hulls intersect, then the distance
between the closest points is zero, leading to the trivial solution (Problem
3.19). Thus, nonintersection is guaranteed for some value ,max such that
,) ,max) 1, which leads to

- (-min !
2

,maxN

From the previous discussion it is easily deduced that for the feasible region
to be nonempty it is required that

R(X", ,min) ∩ R(X#, ,min) ! ∅

If N" ! N# ! N
2 , it is easily checked out that in this case each of the reduced

convex hulls is shrunk to a point,which is the centroid of the respective class

“05-Ch03-SA272” 17/9/2008 page 142

142 CHAPTER 3 Linear Classifiers

(e.g., 2
N

∑
i:yi!1 xi). In other words, a solution is feasible if the centroids of

the two classes do not coincide. Most natural!

■ Computing the nearest points between reduced convex hulls turns out not to
be a straightforward extension of the algorithms that have been developed for
computing nearest points between convex hulls. This is because,for the latter
case,such algorithms rely on the extreme points of the involved convex hulls.
However, in this case,extreme points coincide with points in the original data
sets, that is,X", X#. This is not the case for the reduced convex hulls,where
extreme points are combinations of points of the original data sets. The
lower the value of ,, the higher the number of data samples that contribute
to an extreme point in the respective reduced convex hull. A neat solution
to this problem is given in [Mavr 05, Mavr 06, Mavr 07, Tao 04, Theo 07].
The developed nearest point algorithms are reported to offer computational
savings,which in some cases can be significant,compared to the more classical
algorithms in [Plat 99, Keer 01].

3.8 PROBLEMS
3.1 Explain why the perceptron cost function is a continuous piecewise linear

function.

3.2 Show that if #k ! # in the perceptron algorithm,the algorithm converges after

k0 ! ∥w(0)#%w∗∥
&2#(2##) steps, where % ! &2

|'| and # % 2.

3.3 Show that the reward and punishment form of the perceptron algorithm
converges in a finite number of iteration steps.

3.4 Consider a case in which class !1 consists of the two feature vectors [0, 0]T

and [0, 1]T and class !2 of [1, 0]T and [1, 1]T . Use the perceptron algorithm
in its reward and punishment form, with # ! 1 and w(0) ! [0, 0]T , to design
the line separating the two classes.

3.5 Consider the two-class task of Problem 2.12 of the previous chapter with

"T
1 ! [1, 1], "T

2 ! [0,0],)2
1 !)2

2 ! 0.2

Produce 50 vectors from each class. To guarantee linear separability of the
classes,disregard vectors with x1 " x2 % 1 for the [1, 1] class and vectors with
x1"x2$1 for the [0, 0] class. In the sequel,use these vectors to design a linear
classifier using the perceptron algorithm of (3.21)–(3.23). After convergence,
draw the corresponding decision line.

3.6 Consider once more the classification task of Problem 2.12. Produce 100
samples for each of the classes. Use these data to design a linear classifier via
the LMS algorithm. Once all samples have been presented to the algorithm,

“05-Ch03-SA272” 17/9/2008 page 143

3.8 Problems 143

draw the corresponding hyperplane to which the algorithm has converged.
Use #k ! # ! 0.01.

3.7 Show,using Kesler’s construction, that the tth iteration step of the reward and
punishment form of the perceptron algorithm (3.21)–(3.23), for an x(t) ∈ !i,
becomes

wi(t " 1) ! wi(t) " #x(t) if wT
i (t)x(t)) wT

j (t)x(t), j ̸! i

wj(t " 1) ! wj(t) # #x(t) if wT
i (t)x(t)) wT

j (t)x(t), j ̸! i

wk(t " 1) ! wk(t), &k ̸! j and k ̸! i

3.8 Show that the sum of error squares optimal weight vector tends asymptotically
to the MSE solution.

3.9 Repeat Problem 3.6 and design the classifier using the sum of error squares
criterion.

3.10 Show that the design of an M class linear,sum of error squares optimal,classifier
reduces to M equivalent ones, with scalar desired responses.

3.11 Show that, if x, y are jointly Gaussian, the regression of y on x is given by

E[y|x] !
%)yx

)x
" ,y #

%)y,x

)x
, where - !

[
)2

x %)x)y

%)x)y)2
y

]

(3.165)

3.12 Let an M class classifier be given in the form of parameterized functions
g(x; wk). The goal is to estimate the parameters wk so that the outputs of the
classifier give desired response values, depending on the class of x. Assume
that as x varies randomly in each class, the classifier outputs vary around the
corresponding desired response values,according to a Gaussian distribution of
known variance,assumed to be the same for all outputs. Show that in this case
the sum of error squares criterion and the ML estimation result in identical
estimates.
Hint: Take N training data samples of known class labels. For each of them
form yi ! g(xi; wk)#di

k,where di
k is the desired response for the kth class of

the ith sample. The yi’s are normally distributed with zero mean and variance
)2. Form the likelihood function using the yi’s.

3.13 In a two-class problem, the Bayes optimal decision surface is given by g(x) !
P(!1|x)#P(!2|x)!0. Show that if we train a decision surface f (x; w) in the
MSE so as to give "1(#1) for the two classes, respectively, this is equivalent
to approximating g(·) in terms of f (·; w), in the MSE optimal sense.

3.14 Consider a two-class classification task with jointly Gaussian distributed feature
vectors and with the same variance - in both classes. Design the linear MSE
classifier and show that in this case the Bayesian classifier (Problem 2.11)
and the resulting MSE one differ only in the threshold value. For simplicity,
consider equiprobable classes.

“05-Ch03-SA272” 17/9/2008 page 144

144 CHAPTER 3 Linear Classifiers

Hint: To compute the MSE hyperplane wT x "w0 !0,increase the dimension
of x by one and show that the solution is provided by

[
R E[x]

E[x]T 1

] [
w
w0

]

!

[
1
2 ("1 # "2)

0

]

Then relate R with - and show that the MSE classifier takes the form

("1 # "2)T -#1
(
x #

1
2

("1 " "2)
)

(0

3.15 In an M class classification task, the classes can be linearly separated. Design
M hyperplanes,so that hyperplane gi(x) ! 0 leaves class !i on its positive side
and the rest of the classes on its negative side. Demonstrate via an example,
for example, M ! 3, that the partition of the space using this rule creates
indeterminate regions (where no training data exist) for which more than one
gi(x) is positive or all of them are negative.

3.16 Obtain the optimal line for the task of Example 3.5, via the KKT conditions.
Restrict the search for the optimum among the lines crossing the origin.

3.17 Show that if the equality constraints (3.133)–(3.136) are substituted in the
Lagrangian (3.123), the dual problem is described by the set of relations in
(3.138)–(3.141).

3.18 Show that for the case of two linearly separable classes the hyperplane
obtained as the SVM solution is the same as that bisecting the segment joining
two closest points between the convex hulls of the classes.

3.19 Show that if - in the --SVM is chosen smaller than -min, it leads to the trivial
zero solution.

3.20 Show that if the soft margin SVM cost function is chosen to be

1
2
||w||2 "

C
2

N∑

i!1

+2
i

the task can be transformed into an instance of the class-separable case
problem [Frie 98].

MATLAB PROGRAMS AND EXERCISES
Computer Programs

3.1 Perceptron algorithm.Write a MATLAB function for the perceptron algorithm.
This will take as inputs: (a) a matrix X containing N l-dimensional column
vectors, (b) an N -dimensional row vector y, whose ith component contains

“05-Ch03-SA272” 17/9/2008 page 145

MATLAB Programs and Exercises 145

the class (#1 or "1) where the corresponding vector belongs, and (c) an
initial value vector w_ini for the parameter vector. It returns the estimated
parameter vector.

Solution
function w=perce(X,y,w_ini)
[l,N]=size(X);
max_iter=10000; % Maximum allowable number of iterations
rho=0.05; % Learning rate
w=w_ini; % Initialization of the parameter vector
iter=0; % Iteration counter
mis_clas=N; % Number of misclassified vectors
while (mis_clas>0) && (iter<max_iter)
iter=iter+1;
mis_clas=0;
gradi=zeros(l,1);% Computation of the "gradient"
% term
for i=1:N
if((X(:,i)'*w)*y(i)<0)
mis_clas=mis_clas+1;
gradi=gradi+rho*(-y(i)*X(:,i));

end
end
w=w-rho*gradi; % Updating the parameter vector

end

3.2 Sum of error squares classifier: Write a MATLAB function that implements
the sum of error squares classifier for two classes. This will take as inputs:
(a) a matrix X containing N l-dimensional column vectors, and (b) an
N -dimensional row vector y whose ith component contains the class (#1
or "1) where the corresponding vector belongs. It returns the estimated
parameter vector.

Solution
function w=SSErr(X,y)
w=inv(X*X')*(X*y');

3.3 LMS algorithm. Write a MATLAB function for the LMS algorithm. This will
take as inputs: (a) a matrix X containing N l-dimensional column vectors,
(b) an N -dimensional row vector y whose ith component contains the class
(#1 or "1) where the corresponding vector is assigned,and (c) an initial value
vector w_ini for the parameter vector. It returns the estimated parameter
vector.

“05-Ch03-SA272” 17/9/2008 page 146

146 CHAPTER 3 Linear Classifiers

Solution

function w=LMSalg(X,y,w_ini)
[l,N]=size(X);
rho=0.1; % Learning rate initialization
w=w_ini; % Initialization of the parameter vector
for i=1:N
w=w+(rho/i)*(y(i)-X(:,i)'*w)*X(:,i);

end

Computer Experiments

Note: In the sequel, it is advisable to use the command

randn('seed',0)

before generating the data sets, in order to initialize the Gaussian random number
generator to 0 (or any other fixed number). This is important for the reproducibility
of the results.

3.1 a. Generate two data sets X1 and X '
1 of N ! 200 two-dimensional vectors

each. The first half of the vectors stem from the normal distribution with
m1 ! [#5, 0]T and S1 ! I , while the second half of the vectors stem
from the normal distribution with m1 ! [5, 0]T and S1 ! I ,where I is the
identity 2 + 2 matrix. Append each vector of both X1 and X '

1 by inserting
an additional coordinate, which is set equal to 1.

b. Apply the perceptron algorithm, the sum of error squares classifier, and the
LMS algorithm on the previous data set, using various initial values for the
parameter vector (where necessary).

c. Measure the performance of each one of the above methods on both X1
and X1'.

d. Plot the data sets X1 and X1' as well as the line corresponding to the
parameter vector w.

3.2 Repeat experiment 1 using now the sets X2 and X2' whose first half of their
vectors stem from the normal distribution with m1 ! [#2, 0]T and S1 ! I ,
while the second half of their vectors stem from the normal distribution with
m1! [2, 0]T and S1 ! I .

3.3 Repeat experiment 3.1 using now the sets X3 and X3' whose first half of the
vectors stem from the normal distribution with m1 ! [#1, 0]T and S1 ! I ,
while the second half of the vectors stem from the normal distribution with
m1 ! [1, 0]T and S1 ! I .

3.4 Discuss the results obtained by the previous experiments.

“05-Ch03-SA272” 17/9/2008 page 147

References 147

REFERENCES
[Allw 00] Allwein E.L., Schapire R.E., SingerY. “Reducing multiclass to binary: aunifying approach

for margin classifiers,” Journal of Machine Learning Research,Vol. 1, pp. 113–141, 2000.

[Ande 82] Anderson J.A.“Logistic discrimination,”in Handbook of Statistics (Krishnaiah R.P.,Kanal
L.N., eds.), North Holland, 1982.

[Baza 79] Bazaraa M.S., Shetty C.M. Nonlinear Programming, John Wiley & Sons, 1979.

[Bish 95] Bishop C. Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[Bose 92] Bose B.E., Guyon I.M.,Vapnik,V.N. “A training algorithm for optimal margin classifiers,”
Proceedings of the 5th AnnualWorkshop on Computational Learning Theory,pp. 144–152,
Morgan Kaufman, 1992.

[Burg 97] Burges C.J.C., Schölkoff B. “Improving the accuracy and speed of support vectors
learning machines,” in Advances in Neural Information Processing Systems 9 (Mozer
M. Jordan M., Petsche T., eds.), pp. 375–381, MIT Press, 1997.

[Cao 06] Cao L.J., Keerthi S.S., Ong C.-J., Zhang J.Q., Periyathamby V., Fu X.J., Lee H.P. “Par-
allel sequential minimal optimization for the training of support vector machines,” IEEE
Transactions on Neural Networks,Vol. 17(4), pp. 1039–1049, 2006.

[Chan 00] Chang C.C., Hsu C.W., Lin C.J. “The analysis of decomposition methods for SVM,” IEEE
Transactions on Neural Networks,Vol. 11(4), pp. 1003–1008, 2000.

[Chan 01] Chang C.C., Lin C.J. “Training --support vector classifiers: Theory and algorithms,”
Neural Computation Vol. 13(9), pp. 2119–2147, 2001.

[Chen 06] Chen P.-H., Fan R.-E., Lin C.-J. “A study on SMO-type decomposition for support vector
machines,” IEEE Transactions on Neural Networks,Vol. 17(4), pp. 893–908, 2006.

[Chen 03] Chen P-H., Lin C.J., Schölkopf B. “A tutorial on --support vector machines,” Applied
Stochastic Models in Business and Industry,Vol. 21, pp. 111–136, 2005.

[Cid 99] Cid-Sueiro J.,Arribas J.I., Urban-Munoz S., Figuieras-Vidal A.R. “Cost functions to estimate
a-posteriori probabilities in multi-class problems,”IEEE Transactions on Neural Networks,Vol.
10(3), pp. 645–656, 1999.

[Crisp 99] Crisp D.J., Burges C.J.C. “A geometric interpretation of --SVM classifiers,” Proceedings
of Neural Information Processing,Vol. 12, MIT Press, 1999.

[Diet 95] Dietterich T.G., Bakiri G. “Solving multi-class learning problems via error-correcting
output codes,” Journal of Artificial Intelligence Research,Vol. 2, pp. 263–286, 1995.

[Dong 05] Dong J.X., Krzyzak A., Suen C.Y. “Fast SVM training algorithm with decomposition
on very large data sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 27(4), pp. 603–618, 2005.

[Fei 06] Fei B., Liu J. “Binary tree of SVM: A new fast multi-class training and classification
algorithm,” IEEE Transactions on Neural Networks,Vol. 17(3), pp. 696–704, 2006.

[Fine 01] Fine S., Scheinberg K. “Efficient SVM training using low rank kernel representations,”
Journal of Machine Learning Research,Vol. 2, pp. 243–264, 2001.

[Flet 87] Fletcher R. Practical Methods of Optimization, 2nd ed., John Wiley & Sons, 1987.

[Fran 03] FrancV.,HlaváčV.“An iterative algorithm learning the maximal margin classifier,”Pattern
Recognition,Vol. 36, pp. 1985–1996, 2003.

[Frea 92] Frean M.“A thermal perceptron learning rule,”Neural Computation,Vol. 4,pp. 946–957,
1992.

“05-Ch03-SA272” 17/9/2008 page 148

148 CHAPTER 3 Linear Classifiers

[Frie 98] FriessT.T.“The kernel adatron with bias and soft margin,”Technical Report,The University
of Sheffield, Dept. of Automatic Control, England, 1998.

[Fuku 90] Fukunaga K. Introduction to Statistical Pattern Recognition, 2nd ed.,Academic Press,
1990.

[Gal 90] Gallant S.I. “Perceptron based learning algorithms,” IEEE Transactions on Neural
Networks,Vol. 1(2), pp. 179–191, 1990.

[Gema 92] Geman S.,Bienenstock E.,Doursat R.“Neural networks and the bias/variance dilemma,”
Neural Computation,Vol. 4, pp. 1–58, 1992.

[Gilb 66] Gilbert E.G.“An iterative procedure for computing the minimum of a quadratic form on
a convex set,”SIAM Journal on Control,Vol. 4(1), pp. 61–79, 1966.

[Guer 04] Guerrero-Curieses A., Cid-Sueiro J., Alaiz-Rodriguez R., Figueiras-Vidal A.R. “Local
estimation of posterior class probabilities to minimize classification errors,”IEEE Transactions
on Neural Networks,Vol. 15(2), pp. 309–317, 2004.

[Hast 01] Hastie T.,Tibsharini R., Friedman J. The Elements of Statistical Learning: Data Mining,
Inference and Prediction, Springer, 2001.

[Hayk 96] Haykin S. Adaptive Filter Theory, 3rd ed., Prentice Hall, 1996.

[Ho 65] Ho Y.H., Kashyap R.L. “An algorithm for linear inequalities and its applications,” IEEE
Transactions on Electronic Computers,Vol. 14(5), pp. 683–688, 1965.

[Hsu 02] Hsu C.W., Lin C.J. “A comparison of methods for multi-class SVM,” IEEE Transactions on
Neural Networks,Vol. 13, pp. 415–425, 2002.

[Hryc 92] Hrycej T., Modular Learning in Neural Networks, John Wiley & Sons, 1992.

[Hush 06] Hush D.,Kelly P. Scovel C.,Steinwart I.“QP algorithms with guaranteed accuracy and run
time for support vector machines,”Journal of Machine Learning Research,Vol. 7,pp. 733–769,
2006.

[Joac 98] JoachimsT.“Making large scale support vector machines practical,”inAdvances in Kernel
Methods, (Schölkoph B., Burges C.J.C., Smola A. eds.), MIT Press, 1998.

[Kalou 93] Kalouptsidis N.,Theodoridis S. Adaptive System Identification and Signal Processing
Algorithms, Prentice Hall, 1993.

[Keer 00] Keerthi S.S., Shevade S.K., Bhattacharyya C., Murthy K.R.K. “A fast iterative nearest
point algorithm for support vector machine classifier design,” IEEE Transactions on Neural
Networks,Vol. 11(1), pp. 124–136, 2000.

[Keer 01] Keerthi S.S.,Shevade S.K.,Bhattacharyya C.,Murth K.R.K.“Improvements to Platt’s SMO
algorithm for SVM classifier design,”Neural Computation,Vol. 13, pp. 637–649, 2001.

[Liu 06] Liu Y., You Z., Cao L. “A novel and quick SVM-based multi-class classifier,” Pattern
Recognition,Vol. 39(11), pp. 2258–2264, 2006.

[Luen 69] Luenberger D.G. Optimization byVector Space Methods, JohnWiley & Sons,New York,
1969.

[McLa 92] McLachlan G. J. DiscriminantAnalysis and Statistical Pattern Recognition,JohnWiley
& Sons, 1992.

[Matt 99] Mattera D., Palmieri F., Haykin S. “An explicit algorithm for training support vector
machines,” IEEE Signal Processing Letters,Vol. 6(9), pp. 243–246, 1999.

[Mavr 07] Mavroforakis M., Sdralis M., Theodoridis S. “A geometric nearest point algorithm for
the efficient solution of the SVM classification task,” IEEE Transactions on Neural Networks,
Vol. 18(5), pp. 1545–1550, 2007.

“05-Ch03-SA272” 17/9/2008 page 149

References 149

[Mavr 06] Mavroforakis M., Theodoridis S. “A geometric approach to Support Vector Machine
(SVM) classification,” IEEE Transactions on Neural Networks, Vol. 17(3), pp. 671–682,
2006.

[Mavr 05] Mavroforakis M.,Theodoridis S. “Support Vector Machine classification through geom-
etry,” Proceedings of the XII European Signal Processing Conference (EUSIPCO), Antalya,
Turkey, 2005.

[Mitc 74] Mitchell B.F., Demyanov V.F., Malozemov V.N. “Finding the point of a polyhedron closest
to the origin,”SIAM Journal on Control,Vol. 12, pp. 19–26, 1974.

[Min 88] Minsky M. L., Papert S.A. Perceptrons, expanded edition, MIT Press, MA, 1988.

[Muse 97] Muselli M. “On convergence properties of pocket algorithm,” IEEE Transactions on
Neural Networks,Vol. 8(3), pp. 623–629, 1997.

[Navi 01] Navia-Vasquez A., Perez-Cuz F., Artes-Rodriguez A., Figueiras-Vidal A. “Weighted least
squares training of support vector classifiers leading to compact and adaptive schemes,” IEEE
Transactions on Neural Networks,Vol. 12(5), pp. 1047–1059, 2001.

[Nguy 06] Nguyen D., Ho T. “A bottom-up method for simplifying support vector solutions,” IEEE
Transactions on Neural Networks,Vol. 17(39), pp. 792–796, 2006.

[Osun 97] Osuna E., Freund R., Girosi F., “An improved training algorithm for support vec-
tor machines,” Proceedings of IEEE Workshop on Neural Networks for Signal Processing,
pp. 276–285,Amelia Island, FL, 1997.

[Papo 91] PapoulisA. Probability, RandomVariables and Stochastic Processes,3rd ed.,McGraw-
Hill, 1991.

[Pear 90] Pearlmutter B., Hampshire J. “Equivalence proofs for multilayer perceptron classifiers
and the Bayesian discriminant function,”Proceedings Connectionists Models Summer School,
Morgan Kauffman, 1990.

[Plat 00] Platt J.C., Cristianini N., Shawe-Taylor J. “Large margin DAGs for the multiclass classifica-
tion,”in Advances in Neural Information Processing, (Smola S.A.,LeenT.K.,Müller K.R.,eds.),
Vol. 12, pp. 547–553, MIT Press, 2000.

[Plat 99] Platt J. “Fast training of support vector machines using sequential minimal optimization,”
in Advances in Kernel Methods: Support Vector Learning (Scholkopf B., Burges C.J.C., Smola
A. J., eds), pp. 185–208, MIT Press, 1999.

[Platt 98] Platt J. “Sequential minimal optimization: A fast algorithm for training support vector
machines,”Technical Report, Microsoft Research, MSR-TR-98-14,April 21, 1998.

[Poul 95] Poulard H., “Barycentric correction procedure: A fast method of learning threshold
units,”Proc.WCNN ’95,Vol. 1,Washington, DC, pp. 710–713, July, 1995.

[Rich 91] Richard M.D., Lippmann R.P. “Neural network classifiers estimate Bayesian a posteriori
probabilities,”Neural Computation,Vol. 3, pp. 461–483, 1991.

[Rifk 04] Rifkiy R.,KlautauA.“In defense of one-vs-all classification,”Journal of Machine Learning
Research,Vol. 5, pp. 101–141, 2004.

[Robb 51] Robbins H., Monro S. “A stochastic approximation method,”Annals of Mathematical
Statistics,Vol. 22, pp. 400–407, 1951.

[Rose 58] Rosenblatt F. “The perceptron: only A probabilistic model for information storage and
organization in the brain,”Psychological Review,Vol. 65, pp. 386–408, 1958.

[Scho 00] Schölkoph B., Smola A.J.,Williamson R.C.,Bartlett P.L. “New support vector algorithms,”
Neural Computation,Vol. 12, pp. 1207–1245, 2000.

“05-Ch03-SA272” 17/9/2008 page 150

150 CHAPTER 3 Linear Classifiers

[Tao 04] Tao Q., Wu G.-W., Wang J. “A generalized S-K algorithm for learning --SVM classifiers,”
Pattern Recognition Letters,Vol. 25(10), pp. 1165–1171, 2004.

[Theo 07] Theodoridis S., Mavroforakis M. “Reduced convex hulls: A geometric approach to
support vector machines,” IEEE Signal Processing Magazine,Vol. 24(3), pp. 119–122, 2007.

[Tou 74] Tou J., Gonzalez R.C. Pattern Recognition Principles,Addison-Wesley, 1974.

[Tsan 06] Tsang I.W.-H., Kwok J.T. -Y., Zurada J.M. “Generalized core vector machines,” IEEE
Transactions on Neural Networks,Vol. 17(5), pp. 1126–1140, 2006.

[Vapn 98] Vapnik V.N. Statistical Learning Theory, John Wiley & Sons, 1998.

[Widr 60] Widrow B., Hoff M.E., Jr. “Adaptive switching circuits,” IRE WESCON Convention
Record, pp. 96–104, 1960.

[Widr 90] Widrow B., Lehr M.A. “30 years of adaptive neural networks: Perceptron, madaline, and
backpropagation,”Proceedings of the IEEE,Vol. 78(9), pp. 1415–1442, 1990.

[Yee 96] Yee T., Wild C. “Vector generalized additive models,” Journal of the Royal Statistical
Society, Series B,Vol. 58, pp. 481–493, 1996.

[Zhou 08] Zhou J., Peng H., Suen C.Y. “Data-driven decomposition for multi-class classification,”
Pattern Recognition,Vol. 41, pp. 67–76, 2008.

“06-Ch04-SA272” 18/9/2008 page 151

CHAPTER

4Nonlinear Classifiers

4.1 INTRODUCTION
In the previous chapter we dealt with the design of linear classifiers described by
linear discriminant functions (hyperplanes) g(x). In the simple two-class case, we
saw that the perceptron algorithm computes the weights of the linear function g(x),
provided that the classes are linearly separable. For nonlinearly separable classes,
linear classifiers were optimally designed, for example, by minimizing the squared
error. In this chapter we will deal with problems that are not linearly separable
and for which the design of a linear classifier, even in an optimal way, does not lead
to satisfactory performance. The design of nonlinear classifiers emerges now as an
inescapable necessity.

4.2 THE XOR PROBLEM
To seek nonlinearly separable problems one does not need to go into complicated
situations. The well-known Exclusive OR (XOR) Boolean function is a typical exam-
ple of such a problem. Boolean functions can be interpreted as classification tasks.
Indeed, depending on the values of the input binary data x ! [x1, x2, . . . , xl]T , the
output is either 0 or 1, and x is classified into one of the two classes A(1) or B(0).
The corresponding truth table for the XOR operation is shown in Table 4.1.

Figure 4.1 shows the position of the classes in space. It is apparent from this
figure that no single straight line exists that separates the two classes. In contrast,
the other two Boolean functions, AND and OR, are linearly separable. The corres-
ponding truth tables for the AND and OR operations are given in Table 4.2 and the
respective class positions in the two-dimensional space are shown in Figure 4.2a
and 4.2b. Figure 4.3 shows a perceptron, introduced in the previous chapter, with
synaptic weights computed so as to realize an OR gate (verify).

Our major concern now is first to tackle the XOR problem and then to extend
the procedure to more general cases of nonlinearly separable classes. Our kickoff
point will be geometry. 151

“06-Ch04-SA272” 18/9/2008 page 152

152 CHAPTER 4 Nonlinear Classifiers

Table 4.1 Truth Table
for the XOR Problem

x1 x2 XOR Class

0 0 0 B

0 1 1 A

1 0 1 A

1 1 0 B

x2

x1

A

0 1

1 A

B

B

XOR

FIGURE 4.1
Classes A and B for the XOR problem.

Table 4.2 Truth Table for AND and
OR Problems

x1 x2 AND Class OR Class

0 0 0 B 0 B

0 1 0 B 1 A

1 0 0 B 1 A

1 1 1 A 1 A

“06-Ch04-SA272” 18/9/2008 page 153

4.3 The Two-Layer Perceptron 153

x2

x10 1

1

x2

x10 1

1A A

AB

(a) (b)

B

B

B

A

AND OR

FIGURE 4.2
Classes A and B for (a) the AND and (b) OR problems.

x1
1

1

x2

1
2

2

FIGURE 4.3
A perceptron realizing an OR gate.

4.3 THE TWO-LAYER PERCEPTRON
To separate the two classes A and B in Figure 4.1,a first thought that comes to mind
is to draw two, instead of one, straight lines.

Figure 4.4 shows two such possible lines, g1(x) ! g2(x) ! 0, as well as the
regions in space for which g1(x) ≷ 0, g2(x) ≷ 0. The classes can now be sepa-
rated. Class A is to the right (") of g1(x) and to the left (#) of g2(x). The region
corresponding to class B lies either to the left or to the right of both lines. What
we have really done is to attack the problem in two successive phases. During the
first phase, we calculate the position of a feature vector x with respect to each of
the two decision lines. In the second phase,we combine the results of the previous
phase and we find the position of x with respect to both lines, that is, outside or
inside the shaded area. We will now view this from a slightly different perspective,
which will subsequently lead us easily to generalizations.

“06-Ch04-SA272” 18/9/2008 page 154

154 CHAPTER 4 Nonlinear Classifiers

x1

g2(x)g1(x)

x2

A

B

(0,0) (1,0)

(1,1)(0,1)

B

A

2

2

1

1

2
1

2
1

FIGURE 4.4
Decision lines realized by a two-layer perceptron for the XOR problem.

Table 4.3 Truth Table for the Two
Computation Phases of the XOR
Problem

1st Phase

x1 x2 y1 y2 2nd Phase

0 0 0 (#) 0 (#) B (0)

0 1 1 (") 0 (#) A (1)

1 0 1 (") 0 (#) A (1)

1 1 1 (") 1 (") B (0)

Realization of the two decision lines (hyperplanes), g1(·) and g2(·), during the
first phase of computations is achieved with the adoption of two perceptrons with
inputs x1, x2 and appropriate synaptic weights. The corresponding outputs are
yi ! f (gi(x)), i ! 1, 2,where the activation function f (·) is the step function with
levels 0 and 1. Table 4.3 summarizes the yi values for all possible combinations of
the inputs. These are nothing else than the relative positions of the input vector
x with respect to each of the two lines. From another point of view, the compu-
tations during the first phase perform a mapping of the input vector x to a new

“06-Ch04-SA272” 18/9/2008 page 155

4.3 The Two-Layer Perceptron 155

one y ! [y1, y2]T . The decision during the second phase is now based on the trans-
formed data; that is,our goal is now to separate [y1, y2] ! [0, 0] and [y1, y2] ! [1, 1],
which correspond to class B vectors, from the [y1, y2] ! [1, 0], which corresponds
to class A vectors. As is apparent from Figure 4.5, this is easily achieved by drawing
a third line g(y),which can be realized via a third neuron. In other words, the map-
ping of the first phase transforms the nonlinearly separable problem to a linearly
separable one. We will return to this important issue later on. Figure 4.6 gives a pos-
sible realization of these steps. Each of the three lines is realized via a neuron with
appropriate synaptic weights. The resulting multilayer architecture can be consid-
ered as a generalization of the perceptron,and it is known as a two-layer perceptron

y1

y2

B

(0,0) (1,0)

(1,1)

B

A

2
1

FIGURE 4.5
Decision line formed by the neuron of the second layer for the XOR problem.

x1

x2

1

1
1

1

1
1
2

2

3
2

2

1
2

2

22

FIGURE 4.6
A two-layer perceptron solving the XOR problem.

“06-Ch04-SA272” 18/9/2008 page 156

156 CHAPTER 4 Nonlinear Classifiers

or a two-layer feedforward1 neural network. The two neurons (nodes) of the first
layer perform computations of the first phase and they constitute the so-called hid-
den layer. The single neuron of the second layer performs the computations of
the final phase and constitutes the output layer. In Figure 4.6 the input layer cor-
responds to the (nonprocessing) nodes where input data are applied. Thus, the
number of input layer nodes equals the dimension of the input space. Note that at
the input layer nodes no processing takes place. The lines that are realized by the
two-layer perceptron of the figure are

g1(x) ! x1 " x2 #
1
2

! 0

g2(x) ! x1 " x2 #
3
2

! 0

g(y) ! y1 # y2 #
1
2

! 0

The multilayer perceptron architecture of Figure 4.6 can be generalized to
l-dimensional input vectors and to more than two (one) neurons in the hid-
den (output) layer. We will now turn our attention to the investigation of the
class discriminatory capabilities of such networks for more complicated nonlinear
classification tasks.

4.3.1 Classification Capabilities of the Two-Layer Perceptron
A careful look at the two-layer perceptron of Figure 4.6 reveals that the action of
the neurons of the hidden layer is actually a mapping of the input space x onto the
vertices of a square of unit side length in the two-dimensional space (Figure 4.5).

For the more general case, we will consider input vectors in the l-dimensional
space, that is, x ∈ Rl , and p neurons in the hidden layer (Figure 4.7). For the time
being,we will keep one output neuron, although this can also be easily generalized
to many. Again employing the step activation function, the mapping of the input
space, performed by the hidden layer, is now onto the vertices of the hypercube of
unit side length in the p-dimensional space, denoted by Hp. This is defined as

Hp ! {[y1, . . . , yp]T ∈ Rp, yi ∈ [0, 1], 1 $ i $ p}

The vertices of the hypercube are all the points [y1, . . . , yp]T of Hp with yi ∈ {0, 1},
1 $ i $ p.

The mapping of the input space onto the vertices of the hypercube is achieved
via the creation of p hyperplanes. Each of the hyperplanes is created by a neuron
in the hidden layer, and the output of each neuron is 0 or 1, depending on the
relevant position of the input vector with respect to the corresponding hyperplane.

1 To distinguish it from other related structures where feedback paths from the output back to the
input exist.

“06-Ch04-SA272” 18/9/2008 page 157

4.3 The Two-Layer Perceptron 157

x1

x2

xl

y1

y2

yp

FIGURE 4.7
A two-layer perceptron.

g3

g2

g1

A
001

B
010

A
000

B
100

A
011

B
110

B
111

2
1

2
1

21

FIGURE 4.8
Polyhedra formed by the neurons of the first hidden layer of a multilayer perceptron.

Figure 4.8 is an example of three intersecting hyperplanes (three neurons) in the
two-dimensional space. Each region defined by the intersections of these hyper-
planes corresponds to a vertex of the unit three-dimensional hypercube,depending
on its position with respect to each of these hyperplanes. The ith dimension of
the vertex shows the position of the region with respect to the gi hyperplane. For
example, the 001 vertex corresponds to the region that is in the (#) side of g1,
in the (#) side of g2, and in the (") side of g3. Thus, the conclusion we reach is
that the first layer of neurons divides the input l-dimensional space into polyhe-
dra,2 which are formed by hyperplane intersections. All vectors located within
one of these polyhedral regions are mapped onto a specific vertex of the unit Hp
hypercube. The output neuron subsequently realizes another hyperplane, which
separates the hypercube into two parts,having some of its vertices on one and some

2 A polyhedron or polyhedral set is the finite intersection of closed half-spaces of Rl , which are
defined by a number of hyperplanes.

“06-Ch04-SA272” 18/9/2008 page 158

158 CHAPTER 4 Nonlinear Classifiers

011

010
110

000 100

101
y2 y3

y1

111

001

FIGURE 4.9
The neurons of the first hidden layer map an input vector onto one of the vertices of a unit
(hyper)cube. The output neuron realizes a (hyper)plane to separate vertices according to their
class label.

on the other side. This neuron provides the multilayer perceptron with the potential
to classify vectors into classes consisting of unions of the polyhedral regions. Let
us consider, for example, that class A consists of the union of the regions mapped
onto vertices 000, 001, 011 and class B consists of the rest (Figure 4.8). Figure 4.9
shows the H3 unit (hyper)cube and a (hyper)plane that separates the space R3

into two regions with the (class A) vertices 000, 001, 011 on one side and (class B)
vertices 010, 100, 110, 111 on the other. This is the #y1 # y2 " y3 " 0.5 ! 0 plane,
which is realized by the output neuron. With such a configuration all vectors from
class A result in an output of 1(") and all vectors from class B in 0(#). On the
other hand, if class A consists of the union 000 ∪ 111 ∪ 110 and class B of the rest,
it is not possible to construct a single plane that separates class A from class B ver-
tices. Thus,we can conclude that a two-layer perceptron can separate classes each
consisting of unions of polyhedral regions but not any union of such regions.
It all depends on the relative positions of the vertices of Hp, where the classes are
mapped, and on whether or not these are linearly separable. Before we proceed
further to see ways to overcome this shortcoming, it should be pointed out that
vertex 101 of the cube does not correspond to any of the polyhedral regions. Such
vertices are said to correspond to virtual polyhedra, and they do not influence the
classification task.

4.4 THREE-LAYER PERCEPTRONS
The inability of the two-layer perceptrons to separate classes resulting from any
union of polyhedral regions springs from the fact that the output neuron can realize

“06-Ch04-SA272” 18/9/2008 page 159

4.4 Three-Layer Perceptrons 159

x1

x2

xl

FIGURE 4.10
Architecture of a multilayer perceptron with two hidden layers of neurons and a single output
neuron.

only a single hyperplane. This is the same situation confronting the basic perceptron
when dealing with the XOR problem. The difficulty was overcome by constructing
two lines instead of one. A similar escape path will be adopted here.

Figure 4.10 shows a three-layer perceptron architecture with two layers of hid-
den neurons and one output layer. We will show, constructively, that such an
architecture can separate classes resulting from any union of polyhedral regions.
Indeed, let us assume that all regions of interest are formed by intersections of p
l-dimensional half-spaces defined by the p hyperplanes. These are realized by the
p neurons of the first hidden layer, which also perform the mapping of the input
space onto the vertices of the Hp hypercube of unit side length. In the sequel let us
assume that class A consists of the union of K of the resulting polyhedra and class
B of the rest. We then use K neurons in the second hidden layer. Each of these
neurons realizes a hyperplane in the p-dimensional space. The synaptic weights
for each of the second-layer neurons are chosen so that the realized hyperplane
leaves only one of the Hp vertices on one side and all the rest on the other. For
each neuron a different vertex is isolated, that is, one of the K A class vertices. In
other words, each time an input vector from class A enters the network, one of the
K neurons of the second layer results in a 1 and the remaining K # 1 give 0. In
contrast, for class B vectors all neurons in the second layer output a 0. Classification
is now a straightforward task. Choose the output layer neuron to realize an OR
gate. Its output will be 1 for class A and 0 for class B vectors. The proof is now
complete.

The number of neurons in the second hidden layer can be reduced by exploiting
the geometry that results from each specific problem—for example,whenever two
of the K vertices are located in a way that makes them separable from the rest,using
a single hyperplane. Finally,the multilayer structure can be generalized to more than
two classes. To this end, the output layer neurons are increased in number, realizing
one OR gate for each class. Thus, one of them results in 1 every time a vector from
the respective class enters the network, and all the others give 0. The number of
second-layer neurons is also affected (why?).

“06-Ch04-SA272” 18/9/2008 page 160

160 CHAPTER 4 Nonlinear Classifiers

In summary,we can say that the neurons of the first layer form the hyperplanes,
those of the second layer form the regions, and finally the neurons of the output
layer form the classes.

So far, we have focused on the potential capabilities of a three-layer perceptron
to separate any union of polyhedral regions. To assume that in practice we know the
regions where the data are located and we can compute the respective hyperplane
equations analytically is no doubt wishful thinking, for this is as yet an unrealizable
goal. All we know in practice is a set of training points with the respective class
labels. As was the case with the perceptron,one has to resort to learning algorithms
that learn the synaptic weights from the available training data vectors. We will focus
our attention on two major directions. In one of them the network is constructed
in a way that classifies correctly all the available training data, by building it as a
succession of linear classifiers. The other direction relieves itself of the correct
classification constraint and computes the synaptic weights so as to minimize a
preselected cost function.

4.5 ALGORITHMS BASED ON EXACT CLASSIFICATION OF THE
TRAINING SET

The starting point of these techniques is a small architecture (usually unable to solve
the problem at hand), which is successively augmented until the correct classifica-
tion of all N feature vectors of the training set X is achieved. Different algorithms
follow different ways to augment their architectures. Thus,some algorithms expand
their architectures in terms of the number of layers [Meza 89, Frea 90],whereas oth-
ers use one or two hidden layers and expand them in terms of the number of their
nodes (neurons) [Kout 94, Bose 96]. Moreover, some of these algorithms [Frea 90]
allow connections between nodes of nonsuccessive layers. Others allow connec-
tions between nodes of the same layer [Refe 91]. A general principle adopted by
most of these techniques is the decomposition of the problem into smaller problems
that are easier to handle. For each smaller problem, a single node is employed. Its
parameters are determined either iteratively using appropriate learning algorithms,
such as the pocket algorithm or the LMS algorithm (Chapter 3), or directly via ana-
lytical computations. From the way these algorithms build the network, they are
sometimes referred to as constructive techniques.

The tiling algorithm [Meza 89] constructs architectures with many (usually
more than three) layers. We describe the algorithm for the two-class (A and B) case.
The algorithm starts with a single node, n(X), in the first layer, which is called the
master unit of this layer.

This node is trained using the pocket algorithm (Chapter 3), and, after the com-
pletion of the training, it divides the training data set X into two subsets X" and
X# (line 1 in Figure 4.11). If X" (X#) contains feature vectors from both classes,
we introduce an additional node, n(X") (n(X#)), which is called the ancillary

“06-Ch04-SA272” 18/9/2008 page 161

4.5 Algorithms Based on Exact Classification of the Training Set 161

(a) (b)

1 2 3

1

1

1
2

2

2

1
2

3

FIGURE 4.11
Decision lines and the corresponding architecture resulting from the tiling algorithm. The black
(red) dots correspond to class A (B).

unit. This node is trained using only the feature vectors in X" (X#) (line 2). If
one of the X"", X"# (X#", X##) produced by neuron n(X") (n(X#)) contains
vectors from both classes, more ancillary nodes are added. This procedure stops
after a finite number of steps,since the number of vectors a newly added (ancillary)
unit has to discriminate decreases at each step. Thus, the first layer consists of a
single master unit and, in general, more than one ancillary units. It is easy to show
that in this way we succeed so that no two vectors from different classes give the
same first-layer outputs.

Let X1 ! {y : y ! f1(x), x ∈ X}, where f1 is the mapping implemented by the
first layer. Applying the procedure just described to the set X1 of the transformed y
samples,we construct the second layer of the architecture and so on. In [Meza 89] it
is shown that proper choice of the weights between two adjacent layers ensures that
each newly added master unit classifies correctly all the vectors that are correctly
classified by the master unit of the previous layer,plus at least one more vector. Thus,
the tiling algorithm produces an architecture that classifies correctly all patterns of
X in a finite number of steps.

An interesting observation is that all but the first layer treat binary vectors. This
reminds us of the unit hypercube of the previous section. Mobilizing the same argu-
ments as before, we can show that this algorithm may lead to correct classification
architectures having three layers of nodes at the most.

Another family of constructive algorithms builds on the idea of the nearest
neighbor classification rule, discussed in Chapter 2. The neurons of the first layer
implement the hyperplanes bisecting the line segments that join the training fea-
ture vectors [Murp 90]. The second layer forms the regions, using an appropriate
number of neurons that implement AND gates, and the classes are formed via the
neurons of the last layer, which implement OR gates. The major drawback of this

“06-Ch04-SA272” 18/9/2008 page 162

162 CHAPTER 4 Nonlinear Classifiers

technique is the large number of neurons involved. Techniques that reduce
this number have also been proposed ([Kout 94, Bose 96]).

4.6 THE BACKPROPAGATION ALGORITHM
The other direction we will follow to design a multilayer perceptron is to fix the
architecture and compute its synaptic parameters so as to minimize an appropriate
cost function of its output. This is by far the most popular approach,which not only
overcomes the drawback of the resulting large networks of the previous section
but also makes these networks powerful tools for a number of other applications,
beyond pattern recognition. However, such an approach is soon confronted with
a serious difficulty. This is the discontinuity of the step (activation) function, pro-
hibiting differentiation with respect to the unknown parameters (synaptic weights).
Differentiation enters into the scene as a result of the cost function minimization
procedure. In the sequel we will see how this difficulty can be overcome.

The multilayer perceptron architectures we have considered so far have been
developed around the McCulloch–Pitts neuron,employing as the activation function
the step function

f (x) !

{
1 x % 0

0 x & 0

A popular family of continuous differentiable functions,which approximate the step
function, is the family of sigmoid functions. A typical representative is the logistic
function

f (x) !
1

1 " exp(#ax)
(4.1)

where a is a slope parameter.
Figure 4.12 shows the sigmoid function for different values of a, along with

the step function. Sometimes a variation of the logistic function is employed
that is antisymmetric with respect to the origin, that is, f (#x) ! #f (x). It is
defined as

f (x) !
2

1 " exp(#ax)
1 (4.2)

It varies between 1 and #1, and it belongs to the family of hyperbolic tangent
functions,

f (x) ! c
1 # exp(#ax)
1 " exp(#ax)

! c tanh
(ax

2

)
(4.3)

All these functions are also known as squashing functions since their output is
limited in a finite range of values. In the sequel, we will adopt multilayer neural
architectures like the one in Figure 4.10, and we will assume that the activation

“06-Ch04-SA272” 18/9/2008 page 163

4.6 The Backpropagation Algorithm 163

f(x)

0 x

a3
a1

a2

a3. a2 . a1

1

FIGURE 4.12
The logistic function. The larger the value of the slope parameter, a, the better the approximation
of the unit-step function achieved.

functions are of the form given in (4.1)–(4.3). Our goal is to derive an iterative
training algorithm that computes the synaptic weights of the network so that an
appropriately chosen cost function is minimized. Before going into the derivation
of such a scheme, an important point must be clarified. From the moment we
move away from the step function,all we have said before about mapping the input
vectors onto the vertices of a unit hypercube is no longer valid. It is now the cost
function that takes on the burden for correct classification.

For the sake of generalization, let us assume that the network consists of a fixed
number of L layers of neurons, with k0 nodes in the input layer and kr neurons
in the rth layer, for r ! 1, 2, . . . , L. Obviously, k0 equals l. All the neurons employ
the same sigmoid activation function. As was the case in Section 3.3,we assume that
N training pairs are available (y(i), x(i)), i ! 1, 2, . . . , N .3 Because we have now
assumed kL output neurons, the output is no longer a scalar but a kL-dimensional
vector, y(i) ! [y1(i), . . . , ykL(i)]T . The input (feature) vectors are k0-dimensional
vectors, x(i) ! [x1(i), . . . , xk0(i)]T . During training, when vector x(i) is applied
to the input, the output of the network will be ŷ(i), which is different from the
desired value, y(i). The synaptic weights are computed such that an appropriate
(for each problem) cost function J , which is dependent on the values y(i) and

3 In contrast to other chapters, we use i in parentheses and not as an index. This is because, for the
needs of the chapter, the latter notation can become very cumbersome.

“06-Ch04-SA272” 18/9/2008 page 164

164 CHAPTER 4 Nonlinear Classifiers

S S

S

S

S

r21 r

yk
r21

wj
r
k

vj
r

yj
r

f

S f

S f

S f f

f

f

f

FIGURE 4.13
Definition of variables involved in the backpropagation algorithm.

ŷ(i), i ! 1, 2, . . . , N , is minimized. It is obvious that J depends,through ŷ(i),on the
weights and that this is a nonlinear dependence, due to the nature of the network
itself. Thus, minimization of the cost function can be achieved via iterative tech-
niques. In this section we will adopt the gradient descent scheme (Appendix C),
which is the most widely used approach. Let wr

j be the weight vector (including the
threshold) of the jth neuron in the rth layer,which is a vector of dimension kr#1 "1
and is defined as (Figure 4.13) wr

j ! [wr
j0, wr

j1, . . . , wr
jkr#1

]T . The basic iteration step
will be of the form

wr
j (new) ! wr

j (old) " 'wr
j

with

'wr
j ! #!

"J
"wr

j
(4.4)

where wr
j (old) is the current estimate of the unknown weights and 'wr

j the
corresponding correction to obtain the next estimate wr

j (new).
In Figure 4.13 #r

j is the weighted summation of the inputs to the jth neuron of the
rth layer and yr

j the corresponding output after the activation function. In the sequel
we will focus our attention on cost functions of the form

J !
N∑

i!1

E(i) (4.5)

where E is an appropriately defined function depending on ŷ(i) and y(i), i !
1, 2, . . . , N . In other words, J is expressed as a sum of the N values that function E

“06-Ch04-SA272” 18/9/2008 page 165

4.6 The Backpropagation Algorithm 165

takes for each of the training pairs (y(i), x(i)). For example,we can choose E(i) as
the sum of squared errors in the output neurons

E(i) !
1
2

kL∑

m!1

e2
m(i) ≡ 1

2

kL∑

m!1

(ym(i) # ŷm(i))2, i ! 1, 2, . . . , N (4.6)

For the computation of the correction term in (4.4) the gradient of the cost func-
tion J with respect to the weights is required and, consequently, the evaluation of
"E(i)/"wr

j .

Computation of the Gradients
Let yr#1

k (i) be the output of the kth neuron,k ! 1, 2, . . . , kr#1, in the (r #1)th layer
for the ith training pair and wr

jk the current estimate of the corresponding weight
leading to the jth neuron in the rth layer, with j ! 1, 2, . . . , kr (Figure 4.13). Thus,
the argument of the activation function f (·) of the latter neuron will be

#r
j (i) !

kr#1∑

k!1

wr
jk yr#1

k (i) " wr
jo ≡

kr#1∑

k!0

wr
jk yr#1

k (i) (4.7)

where by definition yr
0(i) ≡ "1, (r, i; so as to include the thresholds in the weights.

For the output layer, we have r ! L, yr
k(i) ! ŷk(i), k ! 1, 2, . . . , kL, that is, the

outputs of the neural network, and for r ! 1, yr#1
k (i) ! xk(i), k ! 1, 2, . . . , k0, that

is, the network inputs.
As is apparent from (4.7), the dependence of E(i) on wr

j passes through #r
j (i).

By the chain rule in differentiation, we have

"E(i)
"wr

j
!

"E(i)
"#r

j (i)

"#r
j (i)

"wr
j

(4.8)

From (4.7) we obtain

"

"wr
j

#r
j (i) ≡

⎡

⎢⎢⎢⎣

"
"wr

j0
#r

j (i)

...
"

"wr
jkr#1

#r
j (i)

⎤

⎥⎥⎥⎦
! yr#1(i) (4.9)

where

yr#1(i) !

⎡

⎢⎢⎢⎢⎣

"1
yr#1

1 (i)
...

yr#1
kr#1

(i)

⎤

⎥⎥⎥⎥⎦
(4.10)

“06-Ch04-SA272” 18/9/2008 page 166

166 CHAPTER 4 Nonlinear Classifiers

Let us define

"E(i)
"#r

j (i)
≡ $r

j (i) (4.11)

Then (4.4) becomes

'wr
j ! #!

N∑

i!1

$r
j (i)yr#1(i) (4.12)

Relation (4.12) is general for any differentiable cost function of the form (4.5).
In the sequel we will compute $r

j (i) for the special case of least squares (4.6).
The procedure is similar for alternative cost function choices.

Computation of $r
j (i) for the Cost Function in (4.6)

The computations start from r ! L and propagate backward for r ! L # 1,
L # 2, . . . , 1. This is why the algorithm that will be derived is known as the
backpropagation algorithm.

1. r ! L

$L
j (i) !

"E(i)

"#L
j (i)

(4.13)

E(i) ≡ 1
2

kL∑

m!1

e2
m(i) ≡ 1

2

kL∑

m!1

(f (#L
m(i)) # ym(i))2 (4.14)

Hence

$L
j (i) ! ej(i)f)(#L

j (i)) (4.15)

where f) is the derivative of f (·). In the last layer, the dependence of E(i)
on #L

j (i) is explicit, and the computation of the derivative is straightforward.
This is not true, however, for the hidden layers, where the computations of
the derivatives need more elaboration.

2. r & L. Due to the successive dependence among the layers, the value of
#r#1

j (i) influences all #r
k(i), k ! 1, 2, . . . , kr , of the next layer. Employing the

chain rule in differentiation once more, we obtain

"E(i)

"#r#1
j (i)

!
kr∑

k!1

"E(i)
"#r

k(i)

"#r
k(i)

"#r#1
j (i)

(4.16)

and from the respective definition (4.11)

$r#1
j (i) !

kr∑

k!1

$r
k(i)

"#r
k(i)

"#r#1
j (i)

(4.17)

“06-Ch04-SA272” 18/9/2008 page 167

4.6 The Backpropagation Algorithm 167

But

"#r
k(i)

"#r#1
j (i)

!
"

[∑kr#1
m!0 wr

km yr#1
m (i)

]

"#r#1
j (i)

(4.18)

with

yr#1
m (i) ! f (#r#1

m (i)) (4.19)

Hence,

"#r
k(i)

"#r#1
j (i)

! wr
kj f)(#r#1

j (i)) (4.20)

From (4.20) and (4.17) the following results:

$r#1
j (i) !

[kr∑

k!1

$r
k(i)wr

kj

]

f)(#r#1
j (i)) (4.21)

and for uniformity with (4.15)

$r#1
j (i) ! er#1

j (i)f)(#r#1
j (i)) (4.22)

where

er#1
j (i) !

kr∑

k!1

$r
k(i)wr

kj (4.23)

Relations (4.15), (4.22), and (4.23) constitute the iterations leading to the
computation of $r

j (i), r ! 1, 2, . . . , L, j ! 1, 2, . . . , kr . The only quantity
that is not yet computed is f)(·). For the function in (4.1) we have

f)(x) ! af (x)(1 # f (x))

The algorithm has now been derived. The algorithmic scheme was first
presented in [Werb 74] in a more general formulation.

The Backpropagation Algorithm
■ Initialization: Initialize all the weights with small random values from a

pseudorandom sequence generator.

■ Forward computations: For each of the training feature vectors x(i), i !
1, 2, . . . , N , compute all the #r

j (i), yr
j (i) ! f (#r

j (i)), j ! 1, 2, . . . , kr , r !
1, 2, . . . , L, from (4.7). Compute the cost function for the current estimate
of weights from (4.5) and (4.14).

“06-Ch04-SA272” 18/9/2008 page 168

168 CHAPTER 4 Nonlinear Classifiers

■ Backward computations: For each i ! 1, 2, . . . , N and j ! 1, 2, . . . , kL com-
pute $L

j (i) from (4.15) and in the sequel compute $r#1
j (i) from (4.22) and

(4.23) for r ! L, L # 1, . . . , 2, and j ! 1, 2, . . . , kr

■ Update the weights: For r ! 1, 2, . . . , L and j ! 1, 2, . . . , kr

wr
j (new) ! wr

j (old) " 'wr
j

'wr
j ! #!

N∑

i!1

$r
j (i)yr#1(i)

Remarks

■ A number of criteria have been suggested for terminating the iterations. In
[Kram 89] it is suggested that we terminate the iterations either when the
cost function J becomes smaller than a certain threshold or when its gradi-
ent with respect to the weights becomes small. Of course, the latter has a
direct effect on the rate of change of the weights between successive iteration
steps.

■ As with all the algorithms that spring from the gradient descent method, the
convergence speed of the backpropagation scheme depends on the value
of the learning constant !. Its value must be sufficiently small to guaran-
tee convergence but not too small, because the convergence speed becomes
very slow. The best choice of ! depends very much on the problem and the
cost function shape in the weight space. Broad minima yield small gradients;
thus large values of ! lead to faster convergence. On the other hand, for
steep and narrow minima small values of ! are required to avoid overshoot-
ing the minimum. As we will soon see, scenarios with adaptive ! are also
possible.

■ The cost function minimization for a multilayer perceptron is a nonlinear min-
imization task. Thus, the existence of local minima in the corresponding
cost function surface is an expected reality. Hence, the backpropagation
algorithm runs the risk of being trapped in a local minimum. If the local
minimum is deep enough, this may still be a good solution. However, in cases
in which this is not true, getting stuck in such a minimum is an undesirable
situation,and the algorithm should be reinitialized from a different set of initial
conditions.

■ The algorithm described in this section updates the weights once all the train-
ing (input–desired output) pairs have appeared in the network. This mode
of operation is known as the batch mode. A variation of this approach is
to update the weights for each of the training pairs. This is known as the
pattern or online mode. This is analogous to the LMS, where, according to

“06-Ch04-SA272” 18/9/2008 page 169

4.7 Variations on the Backpropagation Theme 169

the Robbins–Monro approach, the instantaneous value of the gradient is com-
puted instead of its mean. In the backpropagation case, the sum of $r

j (i) over
all i is substituted with each of them. The algorithm in its pattern mode of
operation then becomes

wr
j (i " 1) ! wr

j (i) # !$r
j (i)yr#1(i)

Compared with the pattern mode, the batch mode is an inherent averaging
process. This leads to a better estimate of the gradient, and thus to more
well-behaved convergence. On the other hand, the pattern mode presents a
higher degree of randomness during training. This may help the algorithm
to avoid being trapped in a local minimum. In [Siet 91] it is suggested that
the beneficial effects that randomness may have on training can be further
emphasized by adding a (small) white noise sequence in the training data.
Another commonly used practice focuses on the way the training data are pre-
sented in the network. During training, the available training vectors are
used in the update equation more than once until the algorithm converges.
One complete presentation of all N training pairs constitutes an epoch. As
successive epochs are applied, it is good practice from the convergence point
of view to randomize the order of presentation of the training pairs. Ran-
domization can again help the pattern mode algorithm to jump out of regions
around local minima, when this occurs. However, the final choice between
the batch and pattern modes of operation depends on the specific problem
[Hert 91, p. 119].

■ Once training of the network has been achieved, the values to which the
synapses and thresholds have converged are frozen, and the network is ready
for classification. This is a much easier task than training. An unknown feature
vector is presented in the input and is classified in the class that is indicated
by the output of the network. The computations performed by the neurons
are of the multiply–add type followed by a nonlinearity. This has led to various
hardware implementations ranging from optical to VLSI chip design. Further-
more,neural networks have a natural built-in parallelism,and computations in
each layer can be performed in parallel. These distinct characteristics of neural
networks have led to the development of special neurocomputers. A number
of those are already commercially available; see, for example, [Koli 97].

4.7 VARIATIONS ON THE BACKPROPAGATION THEME
Both versions of the backpropagation scheme—the batch and the pattern modes—
inherit the disadvantage of all methods built on the gradient descent approach: their
convergence to the cost function minimum is slow. Appendix C discusses the fact
that this trait becomes more prominent if the eigenvalues of the corresponding

“06-Ch04-SA272” 18/9/2008 page 170

170 CHAPTER 4 Nonlinear Classifiers

Hessian matrix exhibit large spread. In such cases, the change of the cost function
gradient between successive iteration steps is not smooth but oscillatory, leading
to slow convergence. One way to overcome this problem is to use a momentum
term that smoothes out the oscillatory behavior and speeds up the convergence.
The backpropagation algorithm with momentum term takes the form

'wr
j (new) ! %'wr

j (old) # !
N∑

i

$r
j (i)yr#1(i) (4.24)

wr
j (new) ! wr

j (old) " 'wr
j (new) (4.25)

Compared with (4.4), we see that the correction vector 'wr
j depends not only on

the gradient term but also on its value in the previous iteration step. The constant
% is called the momentum factor and in practice is chosen between 0.1 and 0.8.
To see the effect of the momentum factor, let us look at the correction term for a
number of successive iteration steps. At the tth iteration step we have

'wr
j (t) ! %'wr

j (t # 1) # !g(t) (4.26)

where the last term denotes the gradient. For a total of T successive iteration steps
we obtain

'wr
j (T) ! #!

T #1∑

t!0

%tg(T # t) " %T 'wr
j (0) (4.27)

Since % & 1, the last term gets close to zero after a few iteration steps and the
smoothing (averaging) effect of the momentum term becomes apparent. Let us
now assume that the algorithm is at a low-curvature point of the cost function
surface in the weight space. We can then assume that the gradient is approximately
constant over a number of iteration steps. Applying this, we can write that

'wr
j (T) ≃ #!(1 " % " %2 " %3 " · · ·)g ! #

!

1 # %
g

In other words, in such cases the effect of the momentum term is to effectively
increase the learning constant. In practice, improvements in converging speed by
a factor of 2 or even more have been reported [Silv 90].

A heuristic variation of the previous technique is to use an adaptive value for
the learning factor !, depending on the cost function values at successive iteration
steps. A possible procedure is the following: Let J (t) be the value of the cost at the
tth iteration step. If J (t) & J (t # 1), then increase the learning rate by a factor of ri .
If,on the other hand, the new value of the cost is larger than the old one by a factor
c, then decrease the learning rate by a factor of rd . Otherwise use the same value. In
summary

J (t)
J (t # 1)

& 1, !(t) ! ri!(t # 1)

“06-Ch04-SA272” 18/9/2008 page 171

4.7 Variations on the Backpropagation Theme 171

J (t)
J (t # 1)

% c, !(t) ! rd!(t # 1)

1 $
J (t)

J (t # 1)
$ c, !(t) ! !(t # 1)

Typical values of the parameters which are adopted in practice are ri ! 1.05, rd !
0.7, c ! 1.04. For iteration steps where the cost increases, it may be advantageous
not only to decrease the learning rate but also to set the momentum term equal to
0. Others suggest that the update of the weighting not to be done at this step.

Another strategy for updating the learning factor ! is followed in the so-called
delta-delta rule and in its modification delta-bar-delta rule [Jaco 88]. The idea here
is to use a different learning factor for each weight and to increase the particular
learning factor if the gradient of the cost function with respect to the correspond-
ing weight has the same sign on two successive iteration steps. Conversely, if the
sign changes, this is an indication of a possible oscillation and the learning factor
should be reduced. A number of alternative techniques for speeding up conver-
gence have also been suggested. In [Cich 93] a more extensive review of such
techniques is provided.

The other option for faster convergence is to free ourselves from the gradient
descent rationale and to adopt alternative searching schemes,usually at the expense
of increased complexity. A number of such algorithmic techniques have appeared
in the related literature. For example, [Kram 89, Barn 92, Joha 92] present
algorithmic schemes based on the conjugate gradient algorithm; [Batt 92, Rico 88,
Barn 92, Watr 88] provide schemes of the Newton family; [Palm 91, Sing 89] pro-
pose algorithms based on the Kalman filtering approach; and [Bish 95] a scheme
based on the Levenberg–Marquardt algorithm. In many of these algorithms, ele-
ments of the Hessian matrix need to be computed, that is, the second derivatives of
the cost function with respect to the weights

"2J

"wq
jk"wr

nm

The computations of the Hessian matrix are performed by adopting,once more, the
backpropagation concept (see also Problems 4.12, 4.13). More on these issues can
be found in [Hayk 99, Zura 92].

A popular scheme that is loosely based on Newton’s method is the quickprop
scheme [Fahl 90]. It is a heuristic method and treats the weights as if they were
quasi-independent. It then approximates the error surface, as a function of each
weight, by a quadratic polynomial. If this has its minimum at a sensible value, the
latter is used as the new weight for the iterations; otherwise a number of heuristics
are used. A usual form of the algorithm, for the weights in the various layers, is

'wij(t) !

⎧
⎨

⎩
%ij(t)'wij(t # 1), if 'wij(t # 1) ̸! 0

! "J
"wij

, if 'wij(t # 1) ! 0
(4.28)

“06-Ch04-SA272” 18/9/2008 page 172

172 CHAPTER 4 Nonlinear Classifiers

where

%ij(t) ! min

⎧
⎨

⎩

"J
"wij

(t)

"J
"wij

(t # 1) # "J
"wij

(t)
, %max

⎫
⎬

⎭ (4.29)

with typical values of the involved variables being 0.01 $! $ 0.6, %max ≈ 1.75
[Cich 93]. An algorithm similar in spirit to quickprop has been proposed in
[Ried 93]. It is reported that it is as fast as quickprop,and it requires less adjustment
of the parameters to be stable.

4.8 THE COST FUNCTION CHOICE
It will not come as a surprise that the least squares cost function in (4.6) is not
the unique choice available to the user. Depending on the specific problem, other
cost functions can lead to better results. Let us look, for example, at the least
squares cost function more carefully. Since all errors in the output nodes are first
squared and summed up, large error values influence the learning process much
more than the small errors. Thus, if the dynamic ranges of the desired outputs are
not all of the same order, the least squares criterion will result in weights that have
“learned”via a process of unfair provision of information. Furthermore, in [Witt 00]
it is shown that for a class of problems, the gradient descent algorithm with the
squared error criterion can be trapped in a local minimum and fail to find a solution,
although (at least) one exists. In the current context, a solution is assumed to be
a classifier that classifies correctly all training samples. In contrast, it is shown that
there is an alternative class of functions, satisfying certain criteria,which guarantee
that the gradient descent algorithm converges to such a solution,provided that one
exists. This class of cost functions is known as well-formed functions. We will now
present a cost function of this type, which is well suited for pattern recognition
tasks.

The multilayer network performs a nonlinear mapping of the input vectors x
to the output values ŷk ! &k(x; w) for each of the output nodes k ! 1, 2, . . . kL,
where the dependence of the mapping on the values of the weights is explic-
itly shown. In Chapter 3 we have seen that, if we adopt the least squares cost
function and the desired outputs yk are binary (belong to or not in class 'k),
then for the optimal values of the weights w∗ the corresponding output of the
network, ŷk, is the least squares optimal estimate of the posterior probability
P('k|x). (The question of how good or bad this estimate is will be of interest to
us soon.) At this point we will adopt this probabilistic interpretation of the real
outputs ŷk as the basis on which our cost function will be built. Let us assume
that the desired output values, yk, are independent binary random variables and
that ŷk are the respective posterior probabilities that these random variables are 1
[Hint 90, Baum 88].

“06-Ch04-SA272” 18/9/2008 page 173

4.8 The Cost Function Choice 173

The cross-entropy cost function is then defined by

J ! #
N∑

i!1

kL∑

k!1

(yk(i) ln ŷk(i) " (1 # yk(i)) ln(1 # ŷk(i))) (4.30)

J takes its minimum value when yk(i) ! ŷk(i), and for binary desired response
values the minimum is zero. There are various interpretations of this cost function
[Hint 90, Baum 88, Gish 90, Rich 91]. Let us consider, for example, the output
vector y(i) when x(i) appears at the input. This consists of a 1 at the true class
node and zero elsewhere. If we take into account that the probability of the kth
node to be 1(0) is ŷk(i)(1 # ŷk(i)) and by considering nodes independently, then

p(y) !
kL∏

k!1

(ŷk)yk (1 # ŷk)1#yk (4.31)

where the dependence on i has been suppressed for notational convenience. Then
it is straightforward to check that J results from the negative log-likelihood of the
training sample pairs. If yk(i) were true probabilities in (0, 1) then subtracting
the minimum value from J (4.30) becomes

J ! #
N∑

i!1

kL∑

k!1

(
yk(i)ln

ŷk(i)
yk(i)

" (1 # yk(i))ln
1 # ŷk(i)
1 # yk(i)

)
(4.32)

For binary valued yks the above is still valid if we use the limiting value 0 ln 0 ! 0.
It is not difficult to show (Problem 4.5) that the cross-entropy cost function

depends on the relative errors and not on the absolute errors, as its least squares
counterpart; thus it gives the same weight to small and large values. Further-
more, it has been shown that it satisfies the conditions of the well-formed functions
[Adal 97]. Finally, it can be shown that adopting the cross-entropy cost function
and binary values for the desired responses, the outputs ŷk corresponding to the
optimal weights w∗ are indeed estimates of P('k|x), as in the least squares case
[Hamp 90].

A major advantage of the cross-entropy cost function is that it diverges if one
of the outputs converges to the wrong extreme, hence the gradient descent reacts
fast. On the other hand, the squared error cost function approaches a constant in
this case, and the gradient descent on the LS will wander on a plateau,even though
the error may not be small. This advantage of the cross-entropy cost function is
demonstrated in the channel equalization context in [Adal 97].

A different cost function results if we treat ŷk(i) and yk(i) as the true and desired
probabilities, respectively. Then a measure of their similarity is given by the cross-
entropy function (Appendix A)

J ! #
N∑

i!1

kL∑

k!1

yk(i)ln
ŷk(i)
yk(i)

(4.33)

“06-Ch04-SA272” 18/9/2008 page 174

174 CHAPTER 4 Nonlinear Classifiers

This is also valid for binary target values (using the limiting form). However,although
we have interpreted the outputs as probabilities,there is no guarantee that they sum
up to unity. This can be imposed onto the network by adopting an alternative acti-
vation function for the output nodes. In [Brid 90] the so-called softmax activation
function was suggested, given by

ŷk !
exp(vL

k)
∑

k) exp(vL
k))

(4.34)

This guarantees that the outputs lie in the interval [0, 1] and that they sum up to
unity (note that in contrast to (4.32) the output probabilities are not considered
independently). It is easy to show, (Problem 4.7) that in this case the quantity $L

j
required by the backpropagation is equal to ŷk # yk.

Besides the cross-entropy cost function in (4.33) a number of alternative cost
functions has been proposed. For example, in [Kara 92] a generalization of the
quadratic error cost function is utilized with the aim of speeding up convergence.
Another direction is to minimize the classification error, which after all is the major
goal in pattern recognition. A number of techniques have been suggested with
this philosophy [Nede 93, Juan 92, Pado 95], which is known as discriminative
learning. The basic potential advantage of discriminative learning is that essentially
it tries to move the decision surfaces so as to reduce classification error. To achieve
this goal, it puts more emphasis on the largest of the class a posteriori probability
estimates. In contrast,the squared error cost function,for example,assigns the same
importance to all posterior probability estimates. In other words, it tries to learn
more than what is necessary for classification, which may limit its performance
for a fixed size network. Most of the discriminative learning techniques use a
smoothed version of the classification error, so as to be able to apply differentiation
in association with gradient descent approaches. This,of course,presents the danger
that the minimization procedure will be trapped in a local minimum. In [Mill 96]
a deterministic annealing procedure is employed to train the networks, with an
enhanced potential to avoid local minima (see Chapter 15).

The final choice of the cost function depends on the specific problem under
consideration. However, as is pointed out in [Rich 91], in a number of practical
situations the use of alternative, to least squares, cost functions did not necessarily
lead to substantial performance improvements.

So far, the task of training multilayer perceptrons has been approached via the
unconstrained optimization route (Appendix C). However, more recent research
has shown that it is often beneficial to incorporate additional knowledge in the
learning rule using constrained optimization. This has been shown to lead to
the formulation of efficient learning algorithms with accelerated learning prop-
erties. The additional knowledge can be encoded in the form of objectives
leading to single- or multi-objective optimization criteria that have to be satisfied
simultaneously, with the demand for a long-term decrease of the cost function
[Pera 00].

“06-Ch04-SA272” 18/9/2008 page 175

4.8 The Cost Function Choice 175

In this approach, an optimization problem is formulated at each epoch of the
learning process. For example, the requirement of partial alignment of current
and previous epoch weight vector updates (respectively denoted by 'w(t) and
'w(t # 1)), which basically underlies the use of the momentum term in the
backpropagation algorithm, is enhanced by requiring maximization of the quan-
tity * ! 'w(t)T 'w(t # 1) and simultaneously allowing for a controlled decrease
of the cost function. This leads to a constrained first-order algorithm, and it has
been reported that it outperforms backpropagation and several of its variants in
different benchmark learning tasks [Pera 95].

Generalizations of the method involving the Hessian matrix have also been
proposed and used successfully in several benchmarks and applications [Ampa 02,
Huan 04]. Under certain conditions, the solution of the problem for each epoch
is provided analytically, leading to a closed formula for the weight update rule
[Pera 03].

A Bayesian Framework for Network Training
All the cost functions considered so far aim at computing a single set of optimal
values for the unknown parameters of the network. An alternative rationale is to
look at the probability distribution function of the unknown weights, w, in the
weight space. The idea behind this approach stems from the Bayesian inference
technique used for the estimating an unknown parametric pdf, as we discussed in
Chapter 2. The basic steps followed for this type of network training, known as
Bayesian learning, are (e.g., [Mack 92a]):

■ Assume a model for the prior distribution p(w) of the weights. This must be
rather broad in shape in order to provide equal chance to a rather large range
of values.

■ Let Y ! { y(i), i ! 1, 2, . . . , N } be the set of the desired output training vec-
tors for a given input data set X ! {x(i), i ! 1, 2, . . . , N }. Assume a model
for the likelihood function p(Y |w), for example, Gaussian.4 This basically
models the error distribution between the true and desired output values,and
it is the stage at which the input training data come into the scene.

■ Using Bayes’s theorem, we obtain

p(w|Y) !
p(Y |w)p(w)

p(Y)
(4.35)

where p(Y) !
∫

p(Y |w)p(w) dw. The resulting posterior pdf will be more
sharply shaped around a value w0, since it has learned from the available
training data.

4 Strictly speaking we should write P(Y |w, X). However, all probabilities and pdf’s are conditioned
on X , and we omit it for notational convenience.

“06-Ch04-SA272” 18/9/2008 page 176

176 CHAPTER 4 Nonlinear Classifiers

■ Interpreting the true outputs of a network, ŷk ! &k(x; w), as the respective
class probabilities, conditioned on the input x and the weight vector
w, the conditional class probability is computed by averaging over all w
[Mack 92b]:

P('k|x; Y) !

∫
&k(x; w)p(w|Y) dw (4.36)

The major computational cost associated with this type of technique is due to
the required integration in the multidimensional space. This is not an easy task,and
various practical implementations have been suggested in the literature. Further
discussion of these issues is beyond the scope of this book. A good introduction
to Bayesian learning, including a discussion of related practical implementations, is
provided in [Bish 95].

4.9 CHOICE OF THE NETWORK SIZE
In the previous sections, we assumed the number of layers and neurons for each
layer to be known and fixed. How one determines the appropriate number of
layers and neurons was not of interest to us. This task will become our major
focus now.

One answer to the problem could be to choose the size of the network large
enough and leave the training to decide about the weights. A little thought reveals
that such an approach is rather naive. Besides the associated computational com-
plexity problems, there is a major reason why the size of the network should be
kept as small as possible. This is imposed by the generalization capabilities that the
network must possess. As has already been pointed out in Section 3.7, the term
generalization refers to the capability of the multilayer neural network (and of any
classifier) to classify correctly feature vectors that were not presented to it during
the training phase—that is,the capability of a network to decide upon data unknown
to it,based on what it has learned from the training set. Taking for granted the finite
(and in many cases small) number N of training pairs, the number of free parame-
ters (synaptic weights) to be estimated should be (a) large enough to learn what
makes “similar” the feature vectors within each class and at the same time what
makes one class different from the other and (b) small enough, with respect to
N, so as not to be able to learn the underlying differences among the data of
the same class. When the number of free parameters is large, the network tends to
adapt to the particular details of the specific training data set. This is known as over-
fitting and leads to poor generalization performance,when the network is called to
operate on feature vectors unknown to it. In conclusion, the network should have
the smallest possible size to adjust its weights to the largest regularities in the data
and ignore the smaller ones,which might also be the result of noisy measurements.
Some theoretical touches concerning the generalization aspects of a classifier will

“06-Ch04-SA272” 18/9/2008 page 177

4.9 Choice of the Network Size 177

Test set

Training set

Er
ro

r

Epochs

FIGURE 4.14
Trend of the output error versus the number of epochs illustrating overtraining of the training set.

be presented in Chapter 5, when we discuss the Vapnik–Chervonenkis dimension.
The bias–variance dilemma, discussed in Chapter 3, is another side of the same
problem.

Adaptation of the free parameters to the peculiarities of the specific training set
may also occur as the result of overtraining (e.g., see [Chau 90]). Let us assume
that we can afford the luxury of having a large set of training data. We divide this
set into two subsets, one for training and one for test. The latter is known as the
validation or test set. Figure 4.14 shows the trend of two curves of the output
error as a function of iteration steps. One corresponds to the training set, and
we observe that the error keeps decreasing as the weights converge. The other
corresponds to the error of the validation set. Initially, the error decreases, but at
some later stage it starts increasing. This is because the weights,computed from the
training set,adapt to the idiosyncrasies of the specific training set, thus affecting the
generalization performance of the network. This behavior could be used in practice
to determine the point where the learning process iterations must terminate. This
is the point where the two curves start departing. However, this methodology
assumes the existence of a large number of data sets, which is not usually the case
in practice.

Besides generalization, other performance factors also demand to keep the size
of a network as small as possible. Small networks are computationally faster and
cheaper to build. Furthermore, their performance is easier to understand, which is
important in some critical applications.

“06-Ch04-SA272” 18/9/2008 page 178

178 CHAPTER 4 Nonlinear Classifiers

In this section we focus on methods that select the appropriate number of free
parameters, under certain criteria and for a given dimension of the input vector
space. The latter is very important, because the input data dimension is no doubt
related to the number of free parameters to be used;thus it also affects generalization
properties. We will come to issues related to input space dimension reduction in
Chapter 5.

The most widely used approaches to selecting the size of a multilayer network
come under one of the following categories:

■ Analytical methods. This category employs algebraic or statistical techniques
to determine the number of its free parameters.

■ Pruning techniques. A large network is initially chosen for training, and
then the number of free parameters is successively reduced, according to
a preselected rule.

■ Constructive techniques. A small network is originally selected, and neu-
rons are successively added, based on an appropriately adopted learning
rule.

Algebraic Estimation of the Number of Free Parameters
We have already discussed in Section 4.3.1 the capabilities of a multilayer percep-
tron, with one hidden layer and units of the McCulloch–Pitts type, to divide the
input l-dimensional space into a number of polyhedral regions. These are the
result of intersections of hyperplanes formed by the neurons. In [Mirc 89] it
is shown that in the l-dimensional space a multilayer perceptron of a single hid-
den layer with K neurons can form a maximum of M polyhedral regions with M
given by

M !
l∑

m!0

(
K
m

)

, where

(
K
m

)

! 0, for K & m (4.37)

and
(

K
m

)

≡ K !
m!(K # m)!

For example, if l ! 2, and K ! 2, this results in M ! 4; thus, the XOR problem, with
M ! 3(& 4), can be solved with two neurons. The disadvantage of this method is
that it is static and does not take into consideration the cost function used as well
as the training procedure.

Pruning Techniques
These techniques start training a sufficiently large network, and then they remove,
in a stepwise procedure, the free parameters that have little influence on the cost
function. There are two major methodological directions:

“06-Ch04-SA272” 18/9/2008 page 179

4.9 Choice of the Network Size 179

Methods Based on Parameter Sensitivity Calculations
Let us take for example the technique suggested in [Lecu 90]. Using a Taylor series
expansion,the variation imposed on the cost function by parameter perturbations is

$J !
∑

i

gi$wi "
1
2

∑

i

hii$w2
i "

1
2

∑

i,j
i ̸!j

hijwiwj

" higher order terms

where

gi !
"J

"wi
, hij !

"2J
"wi"wj

and i, j runs over all the weights. The derivatives can be computed via the back-
propagation methodology (Problem 4.13). In practice,the derivatives are computed
after some initial period of training. This allows us to adopt the assumption that a
point near a minimum has been reached and the first derivatives can be set equal
to zero. A further computational simplification is to assume that the Hessian matrix
is diagonal. Under these assumptions, the cost function sensitivity is approximately
given by

$J !
1
2

∑

i

hii$w2
i (4.38)

and the contribution of each parameter is determined by the saliency value si,given
approximately by

si !
hiiw2

i

2
(4.39)

where we assume that a weight of value wi is changed to zero. Pruning is now
achieved in an iterative fashion according to the following steps:

■ The network is trained using the backpropagation algorithm for a number of
iteration steps so that its cost function is reduced to a sufficient percentage.

■ For the current weight estimates, the respective saliency values are computed
and weights with small salencies are removed.

■ The training process is continued with the remaining weights,and the process
is repeated after some iteration steps. The process is stopped when a chosen
stopping criterion is met.

In [Hass 93] the full Hessian matrix has been employed for the pruning procedure.
It should be stressed that, although the backpropagation concept is present in this
technique, the learning procedure is distinctly different from the backpropagation

“06-Ch04-SA272” 18/9/2008 page 180

180 CHAPTER 4 Nonlinear Classifiers

training algorithm of Section 4.6. There, the number of free parameters was fixed
throughout the training. In contrast, the philosophy here is exactly the opposite.

Methods Based on Cost Function Regularization
These methods achieve the reduction of the originally large size of the network
by including penalty terms in the cost function. The cost function now has the
form

J !
N∑

i!1

E(i) " %Ep(w) (4.40)

The first term is the performance cost function, and it is chosen according to what
we have already discussed (e.g., least squares, cross entropy). The second depends
on the weight vector, and it is chosen to favor small values for the weights. The
constant % is the so-called regularization parameter, and it controls the relative
significance of these two terms. A popular form for the penalty term is

Ep(w) !
K∑

k!1

h(w2
k) (4.41)

with K being the total number of weights in the network and h(·) an appropriately
chosen differentiable function. According to such a choice, weights that do not
contribute significantly in the formation of the network output do not materially
affect much the first term of the cost function. Hence, the existence of the penalty
term drives them to small values. Thus,pruning is achieved. In practice,a threshold
is preselected and weights are compared against it after a number of iteration steps.
Weights that become smaller than it are removed,and the process is continued. This
type of pruning is known as weight elimination. Function h(·) can take various
forms. For example, in [Wein 90] the following is suggested:

h(w2
k) !

w2
k

w2
0 " w2

k
(4.42)

where w0 is a preselected parameter close to unity. Closer observation of this
penalty term reveals that it goes to zero very fast for values wk & w0; thus such
weights become insignificant. In contrast, the penalty term tends to unity for
wk % w0.

A variation of (4.41) is to include in the regularized cost function another penalty
term that favors small values of yr

k, that is, small neuron outputs. Such tech-
niques lead to removal of insignificant neurons as well as weights. A summary
and discussion of various pruning techniques can be found in [Refe 91, Russ 93].

Keeping the size of the weights small is in line with the theoretical results
obtained in [Bart 98]. Assume that a large multilayer perceptron is used as a clas-
sifier and that the learning algorithm finds a network with (a) small weights and
(b) small squared error on the training patterns. Then, it can be shown that the

“06-Ch04-SA272” 18/9/2008 page 181

4.10 A Simulation Example 181

generalization performance depends on the size of the weights rather than the
number of weights. More specifically, for a two-layer perceptron with sigmoid acti-
vation functions if A is an upper bound of the sum of the magnitudes of the weights
associated with each neuron, then the associated classification error probability is
no more than a certain error estimate (related to the output squared error) plus
A3√(log l)/N .

This is a very interesting result indeed. It confronts the generally accepted fact
that the generalization performance is directly related to the number of training
points and the number of free parameters. It also explains why sometimes the
generalization error performance of multilayer perceptrons is good, although the
training has been performed with a relatively small (compared to the size of the net-
work) number of training points. Further discussion concerning the generalization
performance of a classifier and some interesting theoretical results is found at the
end of Chapter 5.

Constructive Techniques
In Section 4.5 we have already discussed such techniques for training neural net-
works. However, the activation function was the unit-step function, and also the
emphasis was put on classifying correctly all input training data and not on the
generalization properties of the resulting network. In [Fahl 90] an alternative con-
structive technique for training neural networks, with a single hidden layer and
sigmoid activation functions, was proposed, known as cascade correlation. The
network starts with input and output units only. Hidden neurons are added one by
one and are connected to the network with two types of weights. The first type
connects the new unit with the input nodes as well as the outputs of previously
added hidden neurons. Each time a new hidden neuron is added in the network,
these weights are trained so as to maximize the correlation between the new unit’s
output and the residual error signal in the network outputs prior to the addition of
the new unit. Once a neuron is added, these weights are computed once and then
they remain fixed. The second type of synaptic weights connects the newly added
neuron with the output nodes. These weights are not fixed and are trained adap-
tively,each time a new neuron is installed,in order to minimize a sum of squares error
cost function. The procedure stops when the performance of the network meets
the prespecified goals. Discussion of constructive techniques with an emphasis on
pattern recognition can be found in [Pare 00].

4.10 A SIMULATION EXAMPLE
This section demonstrates the capability of a multilayer perceptron to classify
nonlinearly separable classes. The classification task consists of two distinct classes,
each being the union of four regions in the two-dimensional space. Each region
consists of normally distributed random vectors with statistically independent

“06-Ch04-SA272” 18/9/2008 page 182

182 CHAPTER 4 Nonlinear Classifiers

components and each with variance (2 ! 0.08. The mean values are different
for each of the regions. Specifically, the regions of the class denoted by red “◦”(see
Figure 4.15) are formed around the mean vectors

[0.4, 0.9]T , [2.0, 1.8]T , [2.3, 2.3]T , [2.6, 1.8]T

and those of the class denoted by black “"”around the values

[1.5, 1.0]T , [1.9, 1.0]T , [1.5, 3.0]T , [3.3, 2.6]T

A total of 400 training vectors were generated,50 from each distribution. A multilayer
perceptron, with three neurons in the first and two neurons in the second hidden
layer,were used,with a single output neuron. The activation function was the logistic
one with a ! 1 and the desired outputs 1 and 0, respectively, for the two classes.
Two different algorithms were used for the training, namely, the momentum and
the adaptive momentum. After some experimentation the algorithmic parameters
employed were (a) for the momentum ! ! 0.05, % ! 0.85 and (b) for the adaptive
momentum ! ! 0.01, % ! 0.85, ri ! 1.05, c ! 1.05, rd ! 0.7. The weights were
initialized by a uniform pseudorandom distribution between 0 and 1. Figure 4.15a
shows the respective output error convergence curves for the two algorithms as
a function of the number of epochs (each epoch consisting of the 400 training
feature vectors). The respective curves can be considered typical and the adaptive
momentum algorithm leads to faster convergence. Both curves correspond to the
batch mode of operation. Figure 4.15b shows the resulting decision surface using

103
x2

3

2

1

0
0 1 x12 3

102

101

100

1021
0 2000 4000 6000

Epochs

(a) (b)

Su
m

-s
qu

ar
es

 e
rr

or

FIGURE 4.15
(a) Error convergence curves for the adaptive momentum (dark line) and the momentum algo-
rithms. Note that the adaptive momentum leads to faster convergence. (b) The decision curve
formed by the multilayer perceptron.

“06-Ch04-SA272” 18/9/2008 page 183

4.11 Networks with Weight Sharing 183

x2

x1

1.5

1

0.5

0
0 0.5 1

(a)
1.5

x2

x1

1.5

1

0.5

0
0 0.5 1

(b)

1.5

FIGURE 4.16
Decision curve (a) before pruning and (b) after pruning.

the weights estimated from the adaptive momentum training. Once the weights of
the network have been estimated, the decision surface can easily be drawn. To this
end, a two-dimensional grid is constructed over the area of interest, and the points
of the grid are given as inputs to the network, row by row. The decision surface is
formed by the points where the output of the network changes from 0 to 1 or vice
versa.

A second experiment was conducted in order to demonstrate the effect of the
pruning. Figure 4.16 shows the resulting decision surfaces separating the samples
of the two classes, denoted by black and red “◦,” respectively. Figure 4.16a corre-
sponds to a multilayer perceptron (MLP),with two hidden layers and 20 neurons in
each of them, amounting to a total of 480 weights. Training was performed via the
backpropagation algorithm. The overfitting nature of the resulting curve is read-
ily observed. Figure 4.16b corresponds to the same MLP trained with a pruning
algorithm. Specifically, the method based on parameter sensitivity was used, testing
the saliency values of the weights every 100 epochs and removing weights with
saliency value below a chosen threshold. Finally, only 25 of the 480 weights were
left, and the curve is simplified to a straight line.

4.11 NETWORKS WITH WEIGHT SHARING
One major issue encountered in many pattern recognition applications is that of
transformation invariance. This means that the pattern recognition system should
classify correctly, independent of transformations performed on the input space,
such as translation, rotation, and scaling. For example, the character “5” should
“look the same”to an optical character recognition system,regardless of its position,

“06-Ch04-SA272” 18/9/2008 page 184

184 CHAPTER 4 Nonlinear Classifiers

orientation, and size. There are a number of ways to approach this problem.
One is to choose appropriate feature vectors, which are invariant under such
transformations. This will be one of our major goals in Chapter 7. Another way is
to make the classifier responsible for it in the form of built-in constraints. Weight
sharing is such a constraint, which forces certain connections in the network to
have the same weights.

One type of network in which the concept of weight sharing has been adopted
is the so-called higher order network. These are multilayer perceptrons with acti-
vation functions acting on nonlinear, instead of linear, combinations of the input
parameters. The outputs of the neurons are now of the form

f (#) ! f
(
w0 "

∑

i

wixi "
∑

jk

wjkxjxk

)

This can be generalized to include higher order products. Let us now assume that
the inputs to the network originate from a two-dimensional grid (image). Each
point of the grid corresponds to a specific xi and each pair (xi , xj) to a line seg-
ment. Invariance to translation is built in by constraining the weights wjk ! wrs,
whenever the respective line segments, defined by the points (xj , xk) and (xr , xs),
are of the same gradient. Invariance to rotation can be built in by sharing weights
corresponding to segments of equal length. Of course, all these are subject to inac-
curacies caused by the resolution coarseness of the grid. Higher order networks
can accommodate more complex transformations [Kana 92, Pera 92, Delo 94].
Because of the weight sharing, the number of free parameters for optimization
is substantially reduced. However, it must be pointed out that, so far, such net-
works have not been widely used in practice. A special type of network called
the circular backpropagation model results if

f (#) ! f
(
w0 "

∑

i

wixi " ws

∑

i

x2
i

)

The increase in the number of parameters is now small, and in [Ride 97] it is
claimed that the involvement of the nonlinear term offers the network increased
representation power without affecting its generalization capabilities.

Besides the higher order networks, weight sharing has been used to impose
invariance on first-order networks used for specific applications [Fuku 82, Rume 86,
Fuku 92, Lecu 89]. The last, for example, is a system for handwritten zip code
recognition. It is a hierarchical structure with three hidden layers and inputs the
gray levels of the image pixels. Nodes in the first two layers form groups of two-
dimensional arrays known as feature maps. Each node in a given map receives
inputs from a specific window area of the previous layer, known as the receptive
field. Translation invariance is imposed by forcing corresponding nodes in the
same map, looking at different receptive fields, to share weights. Thus, if an object
moves from one input receptive field to the other, the network responds in the
same way.

“06-Ch04-SA272” 18/9/2008 page 185

4.12 Generalized Linear Classifiers 185

4.12 GENERALIZED LINEAR CLASSIFIERS
In Section 4.3,dealing with the nonlinearly separable XOR problem,we saw that the
neurons of the hidden layer performed a mapping that transformed the problem to
a linearly separable one. The actual mapping was

x #→y

with

y !

[
y1

y2

]

!

[
f (g1(x))
f (g2(x))

]

(4.43)

where f (·) is the activation function and gi(x), i ! 1, 2, the linear combination
of the inputs performed by each neuron. This will be our kickoff point for this
section.

Let us consider our feature vectors to be in the l-dimensional space Rl and
assume that they belong to either of the two classes A, B, which are nonlinearly
separable. Let f1(·), f2(·), . . . , fk(·) be nonlinear (in the general case) functions

fi : Rl → R, i ! 1, 2, . . . , k

which define the mapping x ∈ Rl → y ∈ Rk

y ≡

⎡

⎢⎢⎢⎢⎣

f1(x)
f2(x)

...
fk(x)

⎤

⎥⎥⎥⎥⎦
(4.44)

Our goal now is to investigate whether there is an appropriate value for k and
functions fi so that classes A, B are linearly separable in the k-dimensional space of
the vectors y. In other words, we investigate whether there exists a k-dimensional
space where we can construct a hyperplane w ∈ Rk so that

w0 " wT y % 0, x ∈ A (4.45)

w0 " wT y & 0, x ∈ B (4.46)

Assuming that in the original space the two classes were separable by a (non-
linear) hypersurface g(x) ! 0, relations (4.45), (4.46) are basically equivalent to
approximating the nonlinear g(x) as a linear combination of fi(x), that is,

g(x) ! w0 "
k∑

i!1

wifi(x) (4.47)

This is a typical problem of function approximation in terms of a preselected class
of interpolation functions fi(·). This is a well-studied task in numerical analysis,

“06-Ch04-SA272” 18/9/2008 page 186

186 CHAPTER 4 Nonlinear Classifiers

x1

x2

xl fk

f2

f1

Σ

yk
wk

w0

w1

w2

y2

y1

FIGURE 4.17
Generalized linear classifier.

and a number of different interpolating functions have been proposed (exponential,
polynomial,Tchebyshev,etc.). In the next sections,we will focus on two such classes
of functions, which have been widely used in pattern recognition.

Once the functions fi have been selected, the problem becomes a typical design
of a linear classifier, that is, to estimate the weights wi in the k-dimensional space.
This justifies the term generalized linear classification. Figure 4.17 shows the
corresponding block diagram. The first layer of computations performs the map-
ping to the y space; the second layer performs the computation of the decision
hyperplane. In other words, (4.47) corresponds to a two-layer network where the
nodes of the hidden layer have different activation functions,fi(·), i ! 1, 2, . . . , k. For
an M -class problem we need to design M such weight vectors wr , r ! 1, 2, . . . , M ,
one for each class, and select the rth class according to the maximum output
wT

r y " wr0.
A similar expression to (4.47) expansion of g(x) is known as projection pursuit,

introduced in [Fried 81], and it is defined as

g(x) !
k∑

i!1

fi(wT
i x)

Observe that the argument in each of the functions fi(·) is not the feature vector x
but its projection on the direction determined by the respective wi. Optimization
with respect to fi and wi , i ! 1, 2, . . . , k, results in the best choice for directions
to project as well as the interpolation functions. If fi(·) are all chosen a priori to
be sigmoid functions, the projection pursuit method becomes identical to a neural
network with a single hidden layer. Projection pursuit models are not members of
the generalized linear models family, and their optimization is carried out iteratively
in a two-stage fashion. Given the functions fi(·), wis are estimated and in the
next stage optimization is performed with respect to the fis. See, for example,
[Fried 81]. Although interesting from a theoretical point of view, it seems that
in practice projection pursuit methods have been superseded by the multilayer
perceptrons.

“06-Ch04-SA272” 18/9/2008 page 187

4.13 The l -Dimensional Space in Linear Dichotomies 187

In the sequel,we will first try to justify our expectations,that by going to a higher
dimensional space the classification task may be transformed into a linear one, and
then study popular alternatives for the choice of functions fi(·) in (4.44).

4.13 CAPACITY OF THE l -DIMENSIONAL SPACE IN LINEAR
DICHOTOMIES

Let us consider N points in the l-dimensional space. We will say that these points
are in general position or well distributed if there is no subset of l " 1 of them that
lie on an (l # 1)-dimensional hyperplane. Such a definition excludes detrimental
cases, such as in the two-dimensional space having three points on a straight line
(a one-dimensional hyperplane). The number O(N , l) of groupings that can be
formed by (l # 1)-dimensional hyperplanes to separate the N points in two classes,
taking all possible combinations, is given by ([Cove 65] and Problem 4.18):

O(N , l) ! 2
l∑

i!0

(
N # 1

i

)

(4.48)

where
(

N # 1
i

)

!
(N # 1)!

(N # 1 # i)!i! (4.49)

Each of these two class groupings is also known as a (linear) dichotomy. From the
properties of the binomial coefficients, it turns out that for N $ l "1,O(N , l) ! 2N .
Figure 4.18 shows two examples of such hyperplanes resulting in O(4, 2) ! 14 and
O(3, 2) ! 8 two-class groupings, respectively. The seven lines of Figure 4.18a form
the following groupings. [(ABCD)], [A,(BCD)], [B,(ACD)], [C,(ABD)], [D,(ABC)],
[(AB),(CD)], and [(AC),(BD)]. Each grouping corresponds to two possibilities. For
example, (ABCD) can belong to either class '1 or '2. Thus, the total number of

(b)

C

A

B

(a)

C

A

B

D

FIGURE 4.18
Number of linear dichotomies (a) for four and (b) for three points.

“06-Ch04-SA272” 18/9/2008 page 188

188 CHAPTER 4 Nonlinear Classifiers

combinations of assigning four points in the two-dimensional space in two linearly
separable classes is 14. This number is obviously smaller than the total number of
combinations of assigning N points in two classes,which is known to be 2N . This is
because the latter also involves nonlinearly separable combinations. In the case of
our example, this is 16,which arises from the two extra possibilities of the grouping
[(AD), (BC)]. We are now ready to write the probability (percentage) of grouping N
points in the l-dimensional space in two linearly separable classes [Cove 65]. This
is given by:

Pl
N !

O(N , l)
2N !

⎧
⎪⎪⎨

⎪⎪⎩

1
2N#1

∑l
i!0

(
N # 1

i

)

N % l " 1

1 N $ l " 1

(4.50)

A practical way to study the dependence of Pl
N on N and l is to assume that

N ! r(l " 1) and investigate the probability for various values of r. The curve
in Figure 4.19 shows the probability of having linearly separable classes for various
values of l. It is readily observed that there are two regions, one to the left of r ! 2,
that is, N ! 2(l " 1), and one to the right. Furthermore, all curves go through the
point (Pl

N , r) ! (1/2, 2), since O(2l " 2, l) ! 22l"1 (Problem 4.19). The transition
from one region to the other becomes sharper as l → +. Thus, for large values of
l and if N & 2(l " 1) the probability of any two groups of the N points being lin-
early separable approaches unity. The opposite is true if N % 2(l " 1). In practice,
where we cannot afford the luxury of very large values of N and l, our findings

P

0 1 2 r

l1 > l2

l1
l 5 `

l2

1
2

FIGURE 4.19
Probability of linearly separable groupings of N ! r (l " 1) points in the l-dimensional space.

“06-Ch04-SA272” 18/9/2008 page 189

4.14 Polynomial Classifiers 189

guarantee that if we are given N points, then mapping into a higher dimensional
space increases the probability of locating them in linearly separable two-class
groupings.

4.14 POLYNOMIAL CLASSIFIERS
In this section we will focus on one of the most popular classes of interpolation
functions fi(x) in (4.47). Function g(x) is approximated in terms of up to order r
polynomials of the x components, for large enough r. For the special case of r ! 2
we have

g(x) ! w0 "
l∑

i!1

wixi "
l#1∑

i!1

l∑

m!i"1

wimxixm "
l∑

i!1

wiix2
i (4.51)

If x ! [x1, x2]T , then the general form of y will be

y ! [x1, x2, x1x2, x2
1 , x2

2]T

and

g(x) ! wT y " w0

wT ! [w1, w2, w12, w11, w22]

The number of free parameters determines the new dimension k. The generalization
of (4.51) for rth-order polynomials is straightforward,and it will contain products of
the form xp1

1 xp2
2 . . . xpl

l where p1 " p2 " · · · " pl $ r. For an rth-order polynomial
and l-dimensional x it can be shown that

k !
(l " r)!

r!l!
For l ! 10 and r ! 10 we obtain k ! 184,756 (!!). That is, even for medium-size
values of the network order and the input space dimensionality the number of free
parameters gets very high.

Let us consider, for example, our familiar nonlinearly separable XOR problem.
Define

y !

⎡

⎢⎣
x1

x2

x1x2

⎤

⎥⎦ (4.52)

The input vectors are mapped onto the vertices of a three-dimensional unit
(hyper) cube, as shown in Figure 4.20a ((00) → (000), (11) → (111), (10) →
(100), (01) → (010)). These vertices are separable by the plane

y1 " y2 # 2y3 #
1
4

! 0

“06-Ch04-SA272” 18/9/2008 page 190

190 CHAPTER 4 Nonlinear Classifiers

(a) (b)

(0,0)

(0,1) (1, 1)

(1, 0)

x2

x1

011 111

101

100

001

y1

y3
y2

110010

000

FIGURE 4.20
The XOR classification task, via the polynomial generalized linear classifier. (a) Decision plane
in the three-dimensional space and (b) decision curves in the original two-dimensional space.

The plane in the three-dimensional space is equivalent to the decision function

g(x) ! #
1
4

" x1 " x2 # 2x1x2
%0 x ∈ A
&0 x ∈ B

in the original two-dimensional space, which is shown in Figure 4.20b.

4.15 RADIAL BASIS FUNCTION NETWORKS
The interpolation functions (kernels) that will be considered in this section are of
the general form

f (∥x # ci∥)

That is, the argument of the function is the Euclidean distance of the input vector x
from a center ci ,which justifies the name radial basis function (RBF). Function f
can take various forms, for example,

f (x) ! exp
(

#
1

2(2
i
∥x # ci∥2

)
(4.53)

f (x) !
(2

(2 " ∥x # ci∥2 (4.54)

The Gaussian form is more widely used. For a large enough value of k, it can be
shown that the function g(x) is sufficiently approximated by [Broo 88, Mood 89]

g(x) ! w0 "
k∑

i!1

wiexp
(

#
(x # ci)T (x # ci)

2(2
i

)
(4.55)

“06-Ch04-SA272” 18/9/2008 page 191

4.15 Radial Basis Function Networks 191

That is, the approximation is achieved via a summation of RBFs, where each is
located on a different point in the space. One can easily observe the close relation
that exists between this and the Parzen approximation method for the probability
density functions of Chapter 2. Note,however, that there the number of the kernels
was chosen to be equal to the number of training points k ! N . In contrast,
in (4.55) k && N . Besides the gains in computational complexity, this reduction in
the number of kernels is beneficial for the generalization capabilities of the resulting
approximation model.

Coming back to Figure 4.17, we can interpret (4.55) as the output of a network
with one hidden layer of RBF activation functions (e.g., (4.53), (4.54)) and a linear
output node. As has already been said in Section 4.12, for an M -class problem there
will be M linear output nodes. At this point, it is important to stress one basic
difference between RBF networks and multilayer perceptrons. In the latter, the
inputs to the activation functions, of the first hidden layer, are linear combinations
of the input feature parameters

(∑
j wjxj

)
. That is, the output of each neuron is

the same for all {x: ∑j wjxj ! c}, where c is a constant. Hence, the output is the
same for all points on a hyperplane. In contrast, in the RBF networks the out-
put of each RBF node, fi(·), is the same for all points having the same Euclidean
distance from the respective center ci and decreases exponentially (for Gaussians)
with the distance. In other words, the activation responses of the nodes are of
a local nature in the RBF and of a global nature in the multilayer perceptron
networks.This intrinsic difference has important repercussions for both the conver-
gence speed and the generalization performance. In general,multilayer perceptrons
learn slower than their RBF counterparts. In contrast,multilayer perceptrons exhibit
improved generalization properties, especially for regions that are not represented
sufficiently in the training set [Lane 91]. Simulation results in [Hart 90] show that,
in order to achieve performance similar to that of multilayer perceptrons, an RBF
network should be of much higher order. This is due to the locality of the RBF
activation functions, which makes it necessary to use a large number of centers
to fill in the space in which g(x) is defined, and this number exhibits an expo-
nential dependence on the dimension of the input space (curse of dimensionality)
[Hart 90].

Let us now come back to our XOR problem and adopt an RBF network to per-
form the mapping to a linearly separable class problem. Choose k ! 2, the centers
c1 ! [1, 1]T , c2 ! [0, 0]T , and f (x) ! exp(#∥x # ci∥2). The corresponding y
resulting from the mapping is

y ! y(x) !

[
exp(#∥x # c1∥2)

exp(#∥x # c2∥2)

]

Hence (0, 0) → (0.135, 1), (1, 1) → (1, 0.135), (1, 0) → (0.368, 0.368), (0, 1) →
(0.368, 0.368). Figure 4.21a shows the resulting class position after the mapping

“06-Ch04-SA272” 18/9/2008 page 192

192 CHAPTER 4 Nonlinear Classifiers

(a) (b)

10

A

B

XOR

B

y1

y2

1

x1

x2

(0, 1)

(0, 0)

(1, 1)

(1, 0)

FIGURE 4.21
Decision curves formed by an RBF generalized linear classifier for the XOR task. The decision
curve is linear in the transformed space (a) and nonlinear in the original space (b).

in the y space. Obviously, the two classes are now linearly separable and the
straight line

g(y) ! y1 " y2 # 1 ! 0

is a possible solution. Figure 4.21b shows the equivalent decision curve,

g(x) ! exp(#∥x # c1∥2) " exp(#∥x # c2∥2) # 1 ! 0

in the input vector space. In our example we selected the centers c1, c2 as [0, 0]T

and [1, 1]T . The question now is, why these specific ones? This is an important
issue for RBF networks. Some basic directions on how to tackle this problem are
given in the following.

Fixed Centers
Although in some cases the nature of the problem suggests a specific choice for
the centers [Theo 95], in the general case these centers can be selected randomly
from the training set. Provided that the training set is distributed in a representative
manner over all the feature vector space,this seems to be a reasonable way to choose
the centers. Having now selected k centers for the RBF functions, the problem has
become a typical linear one in the k-dimensional space of the vectors y,

y !

⎡

⎢⎢⎢⎢⎢⎣

exp
(

#∥x#c1∥2

2(2
1

)

...

exp
(

#∥x#ck∥2

2(2
k

)

⎤

⎥⎥⎥⎥⎥⎦

“06-Ch04-SA272” 18/9/2008 page 193

4.15 Radial Basis Function Networks 193

where the variances are also considered to be known, and

g(x) ! w0 " wT y

All methods described in Chapter 3 can now be recalled to estimate w0 and w.

Training of the Centers
If the centers are not preselected, they have to be estimated during the train-
ing phase along with the weights wi and the variances (2

i , if the latter are also
considered unknown. Let N be the number of input–desired output training
pairs (x(j), y(j), j ! 1, . . . , N). We select an appropriate cost function of the
output error

J !
N∑

j!1

&(e(j))

where &(·) is a differentiable function (e.g., the square of its argument) of the error

e(j) ! y(j) # g(x(j))

Estimation of the weights wi , the centers ci , and the variances (2
i becomes a typical

task of a nonlinear optimization process. For example, if we adopt the gradient
descent approach, the following algorithm results:

wi(t " 1) ! wi(t) # !1
"J

"wi

∣∣∣
t
, i ! 0, 1, . . . , k (4.56)

ci(t " 1) ! ci(t) # !2
"J
"ci

∣∣∣
t
, i ! 1, 2, . . . , k (4.57)

(i(t " 1) ! (i(t) # !3
"J
"(i

∣∣∣
t
, i ! 1, 2, . . . , k (4.58)

where t is the current iteration step. The computational complexity of such
a scheme is prohibitive for a number of practical situations. To overcome this
drawback, alternative techniques have been suggested.

One way is to choose the centers in a manner that is representative of the way
data are distributed in space. This can be achieved by unraveling the clustering
properties of the data and choosing a representative for each cluster as the corre-
sponding center [Mood 89]. This is a typical problem of unsupervised learning,and
algorithms discussed in the relevant chapters later in the book can be employed.
The unknown weights, wi , are then learned via a supervised scheme (i.e., gradi-
ent descent algorithm) to minimize the output error. Thus, such schemes use a
combination of supervised and unsupervised learning procedures.

An alternative strategy is described in [Chen 91]. A large number of candidate
centers is initially chosen from the training vector set. Then,a forward linear regres-
sion technique is employed, such as orthogonal least squares, which leads to a

“06-Ch04-SA272” 18/9/2008 page 194

194 CHAPTER 4 Nonlinear Classifiers

parsimonious set of centers. This technique also provides a way to estimate the order
of the model k. A recursive form of the method, which can lead to computational
savings, is given in [Gomm 00].

Another method has been proposed based on support vector machines. The
idea behind this methodology is to look at the RBF network as a mapping machine,
through the kernels, into a high-dimensional space. Then we design a hyperplane
classifier using the vectors that are closest to the decision boundary. These are the
support vectors and correspond to the centers of the input space. The training
consists of a quadratic programming problem and guarantees a global optimum
[Scho 97]. The nice feature of this algorithm is that it automatically computes all
the unknown parameters including the number of centers. We will return to it later
in this chapter.

In [Plat 91] an approach similar in spirit to the constructive techniques,discussed
for the multilayer perceptrons, has been suggested. The idea is to start training
the RBF network with a few nodes (initially one) and keep growing the network
by allocating new ones, based on the “novelty” in the feature vectors that arrive
sequentially. The novelty of each training input–desired output pair is determined
by two conditions: (a) the input vector to be very far (according to a threshold) from
all already existing centers and (b) the corresponding output error (using the RBF
network trained up to this point) greater than another predetermined threshold.
If both conditions are satisfied, then the new input vector is assigned as the new
center. If not, the input–desired output pair is used to update the parameters of
the network according to the adopted training algorithm, for example, the gradient
descent scheme. A variant of this scheme that allows removal of previously assigned
centers has also been suggested in [Ying 98]. This is basically a combination of the
constructive and pruning philosophies. The procedure suggested in [Kara 97] also
moves along the same direction. However, the assignment of the new centers is
based on a procedure of progressive splitting (according to a splitting criterion)
of the feature space using clustering or learning vector quantization techniques
(Chapter 14). The representatives of the regions are then assigned as the centers of
the RBF’s. As was the case with the aforementioned techniques, network growing
and training is performed concurrently. In [Yang 06] a weight structure is imposed
that binds the weights to a specified probability density function, and estimation is
achieved in the Bayesian framework rationale.

A number of other techniques have also been suggested. For a review see, for
example, [Hush 93]. A comparison of RBF networks with different center selection
strategies versus multilayer perceptrons in the context of speech recognition is
given in [Wett 92]. Reviews involving RBF networks and related applications are
given in [Hayk 96, Mulg 96].

4.16 UNIVERSAL APPROXIMATORS
In this section we provide the basic guidelines concerning the approximation prop-
erties of the nonlinear functions used throughout this chapter—that is, sigmoid,

“06-Ch04-SA272” 18/9/2008 page 195

4.16 Universal Approximators 195

polynomial, and radial basis functions. The theorems that are stated justify the
use of the corresponding networks as decision surface approximators as well as
probability function approximators, depending on how we look at the classifier.

In (4.51) the polynomial expansion was used to approximate the nonlinear func-
tion g(x). This choice for the approximation functions is justified by theWeierstrass
theorem.

Theorem Let g(x) be a continuous function defined in a compact (closed)
subset S ⊂ Rl , and) % 0. Then there are an integer r ! r()) and a polynomial
function &(x) of order r so that

|g(x) # &(x)| &), (x ∈ S

In other words,function g(x) can be approximated arbitrarily closely for sufficiently
large r. A major problem associated with polynomial expansions is that good approx-
imations are usually achieved for large values of r. That is, the convergence to g(x)
is slow. In [Barr 93] it is shown that the approximation error is reduced accord-
ing to an O(1

r2/l) rule, where O(·) denotes order of magnitude. Thus, the error
decreases more slowly with increasing dimension l of the input space, and large
values of r are necessary for a given approximation error. However, large values
of r, besides the computational complexity and generalization issues (due to the
large number of free parameters required), also lead to poor numerical accuracy
behavior in the computations, because of the large number of products involved.
On the other hand, the polynomial expansion can be used effectively for piecewise
approximation, where smaller r’s can be adopted.

The slow decrease of the approximation error with respect to the system order
and the input space dimension is common to all expansions of the form (4.47) with
fixed basis functions fi(·). The scenario becomes different if data-adaptive functions
are chosen,as is the case with the multilayer perceptrons. In the latter,the argument
in the activation functions is f (wT x),with w computed in an optimal fashion from
the available data.

Let us now consider a two-layer perceptron with one hidden layer, having k
nodes with activation functions f (·) and an output node with linear activation. The
output of the network is then given by

&(x) !
k∑

j!1

wo
j f (whT

j x) " wo
o (4.59)

where h refers to the weights, including the thresholds, of the hidden layer and
o to the weights of the output layer. Provided that f (·) is a squashing function,
the following theorem establishes the universal approximation properties of such
a network [Cybe 89, Funa 89, Horn 89, Ito 91, Kalo 97].

Theorem Let g(x) be a continuous function defined in a compact subset S ⊂ Rl

and) % 0. Then there exist k ! k(*) and a two-layer perceptron (4.59) so that

|g(x) # &(x)| &), (x ∈ S

“06-Ch04-SA272” 18/9/2008 page 196

196 CHAPTER 4 Nonlinear Classifiers

In [Barr 93] is shows that, in contrast to the polynomial expansion, the approxima-
tion error decreases according to an O(1

k) rule. In other words, the input space
dimension does not enter explicitly into the scene and the error is inversely pro-
portional to the system order, that is, the number of neurons. Obviously, the price
we pay for it is that the optimization process is now nonlinear, with the associated
disadvantage of the potential for convergence to local minima. The question that
now arises is whether we gain anything by using more than one hidden layer, since
a single one is sufficient for the function approximation. An answer is that using
more than one layer may lead to a more efficient approximation; that is, the same
accuracy is achieved with fewer neurons in the network.

The universal approximation property is also true for the class of RBF functions.
For sufficiently large values of k in (4.55) the resulting expansion can approximate
arbitrarily closely any continuous function in a compact subset S [Park 91, Park 93].

4.17 PROBABILISTIC NEURAL NETWORKS
In Section 2.5.6 we have seen that the Parzen estimate of an unknown pdf, using
a Gaussian kernel, is given by

p̂(x|'i) !
1
Ni

Ni∑

i!1

1

(2+)
l
2 hl

exp
(

#
(x # xi)T (x # xi)

2h2

)
(4.60)

where now we have explicitly included in the notation the class dependence,
since decisions according to the Bayesian rule rely on the maximum value, with
respect to 'i, of P('i)p̂(x|'i). Obviously, in Eq. (4.60) only the training samples,
xi, i ! 1, 2, . . . , Ni , of class 'i are involved.

The objective of this section is to develop an efficient architecture for imple-
menting Eq. (4.60), which is inspired by the multilayer NN rationale. The critical
computation involving the unknown feature vector, x, in Eq. (4.60) is the inner
product norm

(x # xi)T (x # xi) ! ||x||2 " ||xi ||2 # 2xT
i x (4.61)

Let us now normalize all the feature vectors, which are involved in the game, to

unit norm. This is achieved by dividing each vector x by its norm ||x|| !
√∑l

i!1 x2
i .

After normalization, and combining Eqs. (4.61) and (4.60), Bayesian classification
now relies on searching for the maximum of the following discriminant functions

g('i) !
P('i)

Ni

Ni∑

i!1

exp

(
xT

i x # 1

h2

)

(4.62)

where the constant multiplicative weights have been omitted. The above can be
efficiently implemented by the network of Figure 4.22, when parallel processing
resources are available. The input consists of nodes where an unknown feature

“06-Ch04-SA272” 18/9/2008 page 197

4.17 Probabilistic Neural Networks 197

xl
'2xkl

xk2

y1

x2

yk

yk+1

yN

N

k11

k

1

xk1

'1x1

FIGURE 4.22
A probabilistic neural network architecture with N training data points. Each node corresponds
to a training point, and it is numbered accordingly. Only the synaptic weights for the kth node
are drawn. We have assumed that there are two classes and that the first k points originate from
class '1 and the rest from class '2.

vector x ! [x1, x2, . . . , xl]T is applied. The number of hidden layer nodes is equal of
the number of training data,N !

∑M
i!1 Ni ,where M is the number of classes. In the

figure,for the sake of simplicity,we have assumed two classes,although generalizing
to more classes is obvious. The synaptic weights, leading to the kth hidden node,
consist of the components of the respective normalized training feature vector xk,
i.e.,xk,j , j ! 1, 2, . . . , l and k ! 1, 2, . . . , N . In other words, the training of this type
of network is very simple and is directly dictated by the values of the training points.
Hence, the input presented to the activation function of the kth hidden layer node
is given by

inputk !
l∑

j!1

xk, jxj ! xT
k x

Using as activation function for each node the Gaussian kernel, the output of the
kth node is equal to

yk ! exp
(

inputk # 1
h2

)

There are M output nodes, one for each class. Output nodes are linear combin-
ers. Each output node is connected to all hidden layer nodes associated with the
respective class. The output for the mth output node, m ! 1, 2, . . . , M , will be

outputm !
P('m)

Nm

Nm∑

i!1

yi

“06-Ch04-SA272” 18/9/2008 page 198

198 CHAPTER 4 Nonlinear Classifiers

where Nm is the number of hidden layer nodes (number of training points)
associated with the mth class. The unknown vector is classified according to the
class giving the maximum output value. Probabilistic neural network architectures
were introduced in [Spec 90],and they have been used in a number of applications,
for example, [Rome 97, Stre 94, Rutk 04].

4.18 SUPPORT VECTOR MACHINES: THE NONLINEAR CASE
In Chapter 3, we discussed support vector machines (SVM) as an optimal design
methodology of a linear classifier. Let us now assume that there exists a mapping

x ∈ Rl #→y ∈ Rk

from the input feature space into a k-dimensional space, where the classes can
satisfactorily be separated by a hyperplane. Then, in the framework discussed in
Section 4.12, the SVM method can be mobilized for the design of the hyperplane
classifier in the new k-dimensional space. However, there is an elegant property in
the SVM methodology that can be exploited for the development of a more general
approach. This will also allow us for (implicit) mappings in infinite dimensional
spaces, if required.

Recall from Chapter 3 that, in the computations involved in the Wolfe dual rep-
resentation the feature vectors participate in pairs,via the inner product operation.
Also, once the optimal hyperplane (w, w0) has been computed, classification is
performed according to whether the sign of

g(x) ! wT x " w0

!
Ns∑

i!1

,iyixT
i x " w0

is " or #, where Ns is the number of support vectors. Thus, once more, only inner
products enter into the scene. If the design is to take place in the new k-dimensional
space, the only difference is that the involved vectors will be the k-dimensional
mappings of the original input feature vectors. A naive look at it would lead to
the conclusion that now the complexity is much higher, since, usually, k is much
higher than the input space dimensionality l, in order to make the classes linearly
separable. However, there is a nice surprise just waiting for us. Let us start with a
simple example. Assume that

x ∈ R2 #→y !

⎡

⎢⎢⎣

x2
1√

2x1x2

x2
2

⎤

⎥⎥⎦

“06-Ch04-SA272” 18/9/2008 page 199

4.18 Support Vector Machines: The Nonlinear Case 199

Then, it is a matter of simple algebra to show that

yT
i yj !

(
xT

i xj
)2

In words, the inner product of the vectors in the new (higher dimensional) space
has been expressed as a function of the inner product of the corresponding vectors
in the original feature space. Most interesting!

Theorem Mercer’s Theorem. Let x ∈ Rl and a mapping !

x -→ !(x) ∈ H

where H is a Hilbert space.5 The inner product operation has an equivalent
representation

〈
!(x), !(z)

〉
! K(x, z) (4.63)

where ⟨·, ·⟩ denotes the inner product operation in H and K(x, z) is a symmetric
continuous function satisfying the following condition:

∫

C

∫

C
K(x, z)g(x)g(z) dx dz , 0 (4.64)

for any g(x), x ∈ C ⊂ Rl such that
∫

C
g(x)2 dx & "+ (4.65)

where C is a compact (finite) subset of Rl . The opposite is always true; that
is, for any symmetric, continuous function K(x, z) satisfying (4.64) and (4.65)
there exists a space in which K(x, z) defines an inner product! Such functions
are also known as kernels and the space H as Reproducing kernel Hilbert space
(RKHS) (e.g., [Shaw 04, Scho 02]). What Mercer’s theorem does not disclose to
us, however, is how to find this space. That is, we do not have a general tool to
construct the mapping !(·) once we know the inner product of the corresponding
space. Furthermore, we lack the means to know the dimensionality of the space,
which can even be infinite. This is the case, for example, for the radial basis
(Gaussian) kernel ([Burg 99]). For more on these issues, the mathematically
inclined reader is referred to [Cour 53].

Typical examples of kernels used in pattern recognition applications are as
follows:

Polynomials

K(x, z) ! (xT z " 1)q , q % 0 (4.66)

5 A Hilbert space is a complete linear space equipped with an inner product operation. A finite
dimensional Hilbert space is a Euclidean space.

“06-Ch04-SA272” 18/9/2008 page 200

200 CHAPTER 4 Nonlinear Classifiers

Radial Basis Functions

K(x, z) ! exp
(

#
∥x # z∥2

(2

)
(4.67)

Hyperbolic Tangent

K(x, z) ! tanh
(

-xT z " .
)

(4.68)

for appropriate values of - and . so that Mercer’s conditions are satisfied. One
possibility is - ! 2, . ! 1. In [Shaw 04] a unified treatment of kernels is presented,
focusing on their mathematical properties as well as methods for pattern recognition
and regression that have been developed around them.

Once an appropriate kernel has been adopted that implicitly defines a map-
ping into a higher dimensional space (RKHS), the Wolfe dual optimization task
(Eqs. (3.103)–(3.105)) becomes

max
"

⎛

⎝
∑

i

,i #
1
2

∑

i,j

,i,jyiyjK(xi , xj)

⎞

⎠ (4.69)

subject to 0 $,i $ C , i ! 1, 2, . . . , N (4.70)
∑

i

,iyi ! 0 (4.71)

and the resulting linear (in the RKHS) classifier is

assign x in '1('2) if g(x) !
Ns∑

i!1

,iyiK(xi , x) " w0 % (&) 0 (4.72)

Due to the nonlinearity of the kernel function, the resulting classifier is a non-
linear one in the original Rl space. Similar arguments hold true for the /-SVM
formulation.

Figure 4.23 shows the corresponding architecture. This is nothing else than
a special case of the generalized linear classifier of Figure 4.17. The number of
nodes is determined by the number of support vectors Ns. The nodes perform the
inner products between the mapping of x and the corresponding mappings of the
support vectors in the high-dimensional space, via the kernel operation.

Figure 4.24 shows the resulting SVM classifier for two nonlinearly separable
classes, where the Gaussian radial basis function kernel, with (! 1.75, has been
used. Dotted lines mark the margin and circled points the support vectors.

Remarks

■ Notice that if the kernel function is the RBF, then the architecture is the
same as the RBF network architecture of Figure 4.17. However, the approach
followed here is different. In Section 4.15,a mapping in a k-dimensional space

“06-Ch04-SA272” 18/9/2008 page 201

4.18 Support Vector Machines: The Nonlinear Case 201

x1

x2 K(x2 ,x)

K(x1,x)

K(xNS
,x)

,2 y2

, N S
 y N S

,
1 y

1

w0

xl

FIGURE 4.23
The SVM architecture employing kernel functions.

x2

x1

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FIGURE 4.24
Example of a nonlinear SVM classifier for the case of two nonlinearly separable classes. The
Gaussian RBF kernel was used. Dotted lines mark the margin and circled points the support
vectors.

“06-Ch04-SA272” 18/9/2008 page 202

202 CHAPTER 4 Nonlinear Classifiers

was first performed,and the centers of the RBF functions had to be estimated.
In the SVM approach,the number of nodes as well as the centers are the result
of the optimization procedure.

■ The hyperbolic tangent function is a sigmoid one. If it is chosen as a kernel,
the resulting architecture is a special case of a two-layer perceptron. Once
more, the number of nodes is the result of the optimization procedure. This
is important. Although the SVM architecture is the same as that of a two-layer
perceptron, the training procedure is entirely different for the two methods.
The same is true for the RBF networks.

■ A notable characteristic of the support vector machines is that the computa-
tional complexity is independent of the dimensionality of the kernel space,
where the input feature space is mapped. Thus, the curse of dimensionality
is bypassed. In other words,one designs in a high-dimensional space without
having to adopt explicit models using a large number of parameters, as this
would be dictated by the high dimensionality of the space. This also has an
influence on the generalization properties, and indeed, SVMs tend to exhibit
good generalization performance. We will return to this issue at the end of
Chapter 5.

■ A major limitation of the support vector machines is that up to now there has
been no efficient practical method for selecting the best kernel function. This
is still an unsolved, yet challenging, research issue. Once a kernel function
has been adopted, the so-called kernel parameters (e.g., (for the Gaussian
kernel) as well as the smoothing parameter,C , in the cost function are selected
so that the error performance of the resulting classifier can be optimized.
Indeed, this set of parameters, also known as hyperparameters, is crucial for
the generalization capabilities of the classifier (i.e.,its error performance when
it is “confronted”with data outside the training set).

To this end, a number of easily computed bounds, which relate to the
generalization performance of the classifier,have been proposed and used for
the best choice of the hyperparameters. The most common procedure is to
solve the SVM task for different sets of hyperparameters and finally select the
SVM classifier corresponding to the set optimizing the adopted bound. See,
for example, [Bart 02, Lin 02, Duan 03, Angu 03, Lee 04]. [Chap 02] treats
this problem in a minimax framework: maximize the margin over the w and
minimize the bound over the hyperparameters.

A different approach to the task of data-adaptive kernel tuning, with the
same goal of improving the error performance,is to use information geometry
arguments [Amar 99]. The basic idea behind this approach is to introduce a
conformal mapping into the Riemannian geometry induced by the chosen
kernel function, aiming at enhancing the margin. [Burg 99] points out that
the feature vectors, which originally lie in the l-dimensional space, after the
mapping induced by the kernel function lie in an l-dimensional surface, S,

“06-Ch04-SA272” 18/9/2008 page 203

4.19 Beyond the SVM Paradigm 203

in the high-dimensional space. It turns out that (under some very general
assumptions) S is a Riemannian manifold with a metric that can be expressed
solely in terms of the kernel.

■ Support vector machines have been applied to a number of diverse appli-
cations, ranging from handwritten digit recognition ([Cort 95]), to object
recognition ([Blan 96]), person identification ([Ben 99]), spam categoriza-
tion ([Druc 99]), channel equalization ([Seba 00]), and medical imaging
[ElNa 02, Flao 06]. The results from these applications indicate that SVM clas-
sifiers exhibit enhanced generalization performance, which seems to be the
power of support vector machines. An extensive comparative study concern-
ing the performance of SVM against sixteen other popular classifiers, using
twenty-one different data sets, is given in [Meye 03]. The results verify that
SVM classifiers rank at the very top among these classifiers,although there are
cases for which other classifiers gave lower error rates.

4.19 BEYOND THE SVM PARADIGM
One of the most attractive properties of the support vector machines, which has
contributed to their popularity, is that their computational structure allows for the
use of a kernel function, as discussed in the previous section. Sometimes this is
also known as the kernel trick. This powerful tool makes the design of a linear
classifier in the high-dimensional space independent of the dimensionality of this
space. Moreover, due to the implicit nonlinear mapping, dictated by the adopted
kernel function, the designed classifier is a nonlinear one in the original space. The
success of the SVMs in practice has inspired a research effort to extend a number of
linear classifiers to nonlinear ones,by embedding the kernel trick in their structure.
This is possible if all the computations can be expressed in terms of inner product
operations. Let us illustrate the procedure for the case of the classical Euclidean
distance classifier.

Assume two classes '1 and '2,with N1 and N2 training pairs,(yi , xi),respectively,
with yi !-1 being the class label of the ith sample. Let K(·, ·) be a kernel function
associated with an implicit mapping x -→ !(x) from the original Rl space to a
high-dimensional RKHS. Given an unknown x, the Euclidean classifier, in the RKHS,
classifies it to the '2 class if

||!(x) # #1||2 % ||!(x) # #2||2 (4.73)

or, after some basic algebra, if
〈
&(x), (#2 # #1)

〉
%

1
2

(
||#2||2 # ||#1||2

)
≡ 0 (4.74)

where ⟨·, ·⟩ denotes the inner product operation in the RKHS and

#1 !
1

N1

∑

i : yi!"1

!(xi) and #2 !
1

N2

∑

i : yi!#1

!(xi) (4.75)

“06-Ch04-SA272” 18/9/2008 page 204

204 CHAPTER 4 Nonlinear Classifiers

Combining Eqs. (4.74) and (4.75), we conclude that we assign x in '2 if

1
N2

∑

i : yi!#1

K(x, xi) #
1

N1

∑

i : yi!"1

K(x, xi) % 0 (4.76)

where

20 !
1

N2
2

∑

i : yi!#1

∑

j : yj!#1

K(xi , xj) #
1

N2
1

∑

i : yi!"1

∑

j : yj!"1

K(xi , xj)

The left-hand side in formula (4.76) reminds us of the Parzen pdf estimate. Adopting
the Gaussian kernel, the first term can be taken as the pdf estimator associated with
the class '2 and the second one with the '1 one. Besides the Euclidean classifier,
other classical cases, including Fisher’s linear discriminant (Chapter 5), have been
extended to nonlinear ones by employing the kernel trick,see,for example,[Mull 01,
Shaw 04]. Another notable and pedagogically attractive example of a “kernelized”
version of a linear classifier is the kernel perceptron algorithm.

The perceptron rule was introduced in Section 3.3. There it was stated that
the perceptron algorithm converges in a finite number of steps, provided that the
two classes are linearly separable. This drawback has prevented the perceptron
algorithm to be used in realistic practical applications. However, after mapping the
original feature space to a high-dimensional (even of infinite dimensionality) space
and utilizing Cover’s theorem (Section 4.13), one expects the classification task to
be linearly separable, with high probability, in the RKHS space. In this perspective,
the kernelized version of the perceptron rule transcends its historical, theoretical,
and educational role and asserts a more practical value as a candidate for solving
linearly separable tasks in the RKHS. We will choose to work on the perceptron
algorithm in its reward and punishment form, given in Eqs. (3.21)–(3.23).

The heart of the method is the update given by the Eqs. (3.21),and (3.22). These
recursions, take place in the extended RKHS (its dimension is increased by one to
account for the bias term), and they are compactly written as

[
w(t " 1)
w0(t " 1)

]

!

[
w(t)
w0(t)

]

" y(t)

[
!(x(t))

1

]

each time a misclassification occurs—that is, if y(t)(
〈
w(t), !(x(t))

〉
" w0) $ 0,where

the coefficient 1 has been taken to be equal to one. Let %i, i ! 1, 2, . . . , N ,
be a counter corresponding to each one of the training points. The counter
%i is increased by one every time x(t) ! xi , and a misclassification occurs lead-
ing to a respective update of the classifier. If one starts from a zero initial
vector, then the solution, after all points have been correctly classified, can be
written as

w !
N∑

i!1

%iyi!(xi), w0 !
N∑

i!1

%iyi

“06-Ch04-SA272” 18/9/2008 page 205

4.19 Beyond the SVM Paradigm 205

The final resulting nonlinear classifier, in the original feature space, then becomes

g(x) ≡
〈
w, !(x)

〉
" w0 !

N∑

i!1

%iyiK(x, xi) "
N∑

i!1

%iyi

A pseudocode for the kernel perceptron algorithm follows.

The Kernel Perceptron Algorithm

■ Set %i ! 0, i ! 1, 2, . . . , N

■ Repeat

• count_misclas ! 0

• For i ! 1 to N

⃝ If yi

(∑N
j!1 %jyjK(xi , xj) "

∑N
j!1 %jyj

)
$ 0 then

— %i ! %i " 1

— count_misclas ! count_misclas " 1

• End {For}

■ Until count_misclas ! 0

4.19.1 Expansion in Kernel Functions and Model Sparsification
In this subsection, we will briefly discuss classifiers that resemble to (or, even are
inspired by) the SVMs, in an effort to establish bridges among different methodo-
logies. We have already done so in Section 4.18 for the SVM, RBF, and multilayer
neural networks. After all, it is a small world! Using the Gaussian kernel in Eq. (4.72),
we obtain

g(x) !
Ns∑

i!1

ai exp
(

#
||x # xi||2

2(2

)
" w0 (4.77)

where we have used ai ! ,iyi. Equation (4.77) is very similar to the Parzen expan-
sion of a pdf, discussed in Chapter 2. There are a few differences, however. In
contrast to the Parzen expansion, g(x) in (4.77) is not a pdf function; that is, in
general, it does not integrate to unity. Moreover, from the practical point of view,
the most important difference lies in the different number of terms involved in
the summation. In the Parzen expansion all the training samples offer their con-
tribution to the final solution. In contrast, in the solution provided by the SVM
formulation only the support vectors, that is, the points lying either in the margin
or in the wrong side of the resulting classifier, are assigned as the “significant”ones
and are selected to contribute to the solution. In practice, a small fraction of the
training points enter in the summation in Eq. (4.77), that is Ns&& N . In fact, as we

“06-Ch04-SA272” 18/9/2008 page 206

206 CHAPTER 4 Nonlinear Classifiers

will discuss at the end of Section 5.10, if the number of support vectors gets large,
the generalization performance of the classifier is expected to degrade. If Ns&&N ,
we say that the solution is sparse. A sparse solution spends computational resources
only on the most relevant of the training patterns. Besides the computational com-
plexity aspects,having a sparse solution is in line with our desire to avoid overfitting
(see also Section 4.9). In real-world data, the presence of noise in regression and
the overlap of classes in classification, as well as the presence of outliers, imply
that the modeling must be such that to avoid overfitting to the specific training
data set.

A closer look behind the SVM philosophy reveals that the source of sparsity in the
obtained solution is the presence of the margin term in the cost function. Another
way to view the term ∥w∥2 in the cost function in (3.93), that is,

J (w, w0, $) !
1
2
∥w∥2 " C

N∑

i!1

I(2i)

is as a regularization term, whose presence satisfies our will to keep the norm of
the solution as “small” and “simple” as possible, while, at the same time, trying to
minimize the number of margin errors

(∑N
i!1 I(2i)

)
. This implicitly forces most of

the ,is in the solution to be zero, keeping only the most significant of the samples,
that is, the support vectors. In Section 4.9, regularization was also used in order to
keep the size of the neural networks small. For a deeper and an elegant discussion
of the use of regularization in the context of regression/classification the interested
reader can refer to [Vapn 00].

With the sparsification goal in mind, a major effort has been invested to
develop techniques, both for classification and for regression tasks, which lead to
classifiers/regressors of the form

g(x) !
N∑

j!1

ajK(x, xj) (4.78)

for an appropriately chosen kernel function. A bias constant term can also be added,
but it has been omitted for simplicity. The task is to estimate the unknown weights
aj , j ! 1, 2 . . . , N , of the expansion. Functions of the form in (4.78) are justified by
the following theorem ([Kime 71, Scho 02]):

Representer Theorem
Let L(·, ·) : R2 -→ [0, +) be an arbitrary nonnegative loss function, measuring the
deviation between a desired response,y, and the value of g(x). Then the minimizer
g(·) ∈ H , where H is a RKHS defined by a kernel function K(·, ·), of the regularized
cost

N∑

i!1

L(g(xi), yi) " .(||g||) (4.79)

“06-Ch04-SA272” 18/9/2008 page 207

4.19 Beyond the SVM Paradigm 207

admits a representation of the form in (4.78). In (4.79), (yi , xi), i ! 1, 2, . . . , N ,
are the training data, .(·) : [0, +) -→ R is a strictly monotonic increasing function
and || · || is the norm operation in H . For a more mathematical treatment of this
result, the interested reader may refer to, for example, [Scho 02]. For those who are
not familiar with functional analysis and some of the mathematical secrets behind
RKHS, recall that the set of functions Rl -→ R form a linear space, which can be
equipped with an inner product operation to become a Hilbert space. Hence, by
restricting g(·) ∈ H , we limit our search for solutions in (4.79) among the points in
an RKHS (function space) defined by the specific kernel function.

This is an important theorem because it states that, although working in a
high- (even infinite) dimensional space, the optimal solution, minimizing (4.79), is
expressed as a linear combination of only N kernels placed at the training points!
In order to see how this theorem can simplify the search for the optimal solution
in practice, let us consider the following example.

Example 4.1
The kernel least squares solution. Let (yi , xi), i ! 1, 2, . . . , N , be the training points. The
goal is to design the optimal linear least squares classifier (regressor) in a RKHS space, which
is defined by the kernel function K(·, ·).

According to the definition of the least squares cost in Section 3.4.3, we have to minimize,
with respect to g ∈ H , the cost

N∑

i!1

(
yi # g(xi)

)2 (4.80)

According to the Representer Theorem, we can write

g(x) !
N∑

j!1

ajK(x, xj) (4.81)

Substituting (4.81) into (4.80), we get the equivalent task of minimizing with respect to a finite
number of parameters, ai , i ! 1, 2, . . . , N , the cost

J (a) !
N∑

i!1

⎛

⎝yi #
N∑

j!1

ajK(xi , xj)

⎞

⎠
2

(4.82)

The cost in (4.82) can be written in terms of the Euclidean norm in the RN space, that is,

J (a) ! (y # Ka)T (y # Ka) (4.83)

where y ! [y1, y2, . . . , yN]T and K is the N / N matrix known as the Gram matrix, which is
defined as

K(i, j) ≡ K(xi , xj) (4.84)

Expanding (4.83) and taking the gradient with respect to a to be equal to zero, we obtain

a ! K#1y (4.85)

“06-Ch04-SA272” 18/9/2008 page 208

208 CHAPTER 4 Nonlinear Classifiers

provided that the Gram matrix is invertible. Hence, recalling (4.81), the kernel least squares
estimate can be written compactly as

g(x) ! aT p ! yT K#1p (4.86)

where

p ≡ [K(x, x1), . . . , K(x, xN)]T (4.87)

The RepresenterTheorem has been exploited in [Tipp 01] in the context of the
so-called relevance vector machine (RVM) methodology. Based on (4.78), a con-
ditional probability model is built for the desired response (label) given the values
of a. The computation of the unknown weights is carried out in the Bayesian
framework rationale (Chapter 2). Sparsification is achieved by constraining the
unknown weight parameters and imposing an explicit prior probability distribution
over each one of them. It is reported that RVMs lead to sparser solutions compared
to the SVMs, albeit at a higher complexity. Memory requirements scale with the
square, and the required computational resources scale with the cube of the num-
ber of basis functions, which makes the algorithm less practical for large data sets.
In contrast,the amount of memory requirements for the SVMs is linear,and the num-
ber of computations is somewhere between linear and (approximately) quadratic
in the size of the training set ([Plat 99]).

A more recent trend is to obtain solutions of the form in Eq. (4.78) in an online
time-adaptive fashion. That is, the solution is updated each time a new training
pair (yi , xi) is received. This is most important when the statistics of the involved
data are slowly time varying. To this end, in [Kivi 04] a kernelized online LMS-type
algorithm (see Section 3.4.2) is derived that minimizes the cost function

J (gt) !
t∑

i!1

L(gt (xi), yi) " ,||gt ||2 (4.88)

where the index t has been used in gt to denote the time dependence explic-
itly. L(·, ·) is a loss function that quantifies the deviation between the desired
output value, yi , and the true one that is provided by the current estimate, gt (·),
of the unknown function. The summation accounts for the total number of errors
committed on all the samples that have been received up to the time instant t . Spar-
sification is achieved by regularizing the cost function by the square norm ||gt ||2 of
the required solution.

Another way to look at the regularization term and better understand how its
presence beneficially affects the sparsification process is the following. Instead
of minimizing, for example, (4.88) one can choose to work with an alternative
formulation of the optimization task, that is,

minimize
t∑

i!1

L(gt (xi), yi) (4.89)

subject to ||gt ||2 $ s (4.90)

“06-Ch04-SA272” 18/9/2008 page 209

4.19 Beyond the SVM Paradigm 209

The use of Lagrange multipliers leads to minimizing J (gt) in (4.88). It can be
shown (see, e.g., [Vapn 00]) that the two problems are equivalent for appropriate
choices of the parameters s and ,. However, formulating the optimization task as
in (4.89)–(4.90) makes our desire for constraining the size of the solution explicitly
stated.

In [Slav 08] an adaptive solution of the cost in Eq. (4.78) is given based on
projections and convex set arguments. Sparsification is achieved by constraining
the solution to lie within a (hyper)sphere in the RKHS. It is shown that such a
constraint becomes equivalent to imposing a forgetting factor that forces the algo-
rithm to forget data in the remote past and adaptation focuses on the most recent
samples. The algorithm scales linearly with the number of data corresponding to
its effective memory (due to the forgetting factor). An interesting feature of this
algorithmic scheme is that it provides as special cases a number of well-known algo-
rithms,such as the kernelized normalized LMS (NLMS) [Saye 04] and the kernelized
affine projection [Slav 08a] algorithms. Another welcome feature of this metho-
dology is that it can accommodate differentiable as well as nondifferentiable cost
functions, in a unified way,due to the possibility of employing subdifferentials of the
cost function, in place of the gradient in the correction term, in each time-update
recursion.

A different root to the online sparsification is followed in [Enge 04, Slav 08a].
A dictionary of basis functions is adaptively formed. For each received sample, its
dependence on the samples that are already contained in the dictionary is tested,
according to a predefined criterion. If the dependence measure is below a thresh-
old value, the new sample is included in the dictionary whose cardinality is now
increasing by one; otherwise the dictionary remains unaltered. It is shown that the
size of the dictionary does not increase indefinitely and that it remains finite. The
expansion of the solution is carried out by using only the basis functions associated
with the samples in the dictionary. A pitfall of this technique is that the complex-
ity scales with the square of the size of the dictionary, as opposed to the linear
complexity of the two previous adaptive techniques.

In our discussion so far we have assumed the use of a loss function. The choice
of the loss function is user-dependent. Some typical choices that can be used and
have frequently been adopted in classification tasks are as follows:

■ Soft margin loss

L(g(x), y) ! max(0, 1 # yg(x))

where 1 defines the margin parameter. In words, a (margin) error is commit-
ted if yg(x) cannot achieve a value of at least 1. For smaller values, the loss
function becomes positive, and it is also linearly increasing as the value of
yg(x) becomes smaller moving toward negative values. That is, it provides a
measure of how far from the margin the estimate lies. Figure 4.25 shows the
respective graph for 1 ! 0.

“06-Ch04-SA272” 18/9/2008 page 210

210 CHAPTER 4 Nonlinear Classifiers

■ Exponential loss

L(g(x), y) ! exp
(
#yg(x)

)

As shown in Figure 4.25,this loss function penalizes heavily nonpositive values
of yg(x), which lead to wrong decisions. We will use this loss function very
soon in Section 4.22.

■ Logistic loss

L(g(x), y) ! ln
(
1 " exp(#yg(x))

)

The logistic loss function is basically the negative log-likelihood of a logistic-
like probabilistic model, discussed in Section 3.6, operating in the RKHS.
Indeed, interpreting g(x) as a linear function in the RKHS, that is, g(x) !〈
w, !(x)

〉
" w0, and modeling the probability of the class label as

P(y|x) !
1

1 " exp
(
#y(w0 "

〈
w, !(x)

〉
)
)

then the logistic loss is the respective negative log-likelihood function. This
loss function has also been used in the context of support vector machines,
see [Keer 05].

Lo
ss

Soft margin
Exponential
Logistic
Classification error

1

y 2 g(x)

FIGURE 4.25
Typical loss functions used in classification tasks. The margin parameter 1 for the soft margin
loss has been set equal to 0. The logistic loss has been normalized in order to pass through the
[1,0] point, to facilitate the comparison among the different loss functions. The classification
error loss function scores a one if an error is committed and zero otherwise.

“06-Ch04-SA272” 18/9/2008 page 211

4.19 Beyond the SVM Paradigm 211

4.19.2 Robust Statistics Regression
The regression task was introduced in Section 3.5.1. Let y ∈ R, x ∈ Rl be two
statistically dependent random entities. Given a set of training samples (yi, xi), the
goal is to compute a function g(x) that optimally estimates the value of y when
x is measured. In a number of cases, mean square or least squares type of costs
are not the most appropriate ones. For example, in cases where the statistical
distribution of the data has long tails, then using the least squares criterion will lead
to a solution dominated by a small number of points that have very large values
(outliers). A similar situation can occur from incorrectly labeled data. Take, for
example,a single training data point whose target value has been incorrectly labeled
by a large amount. This point will have an unjustifiably (by the true statistics of
the data) strong influence on the solution. Such situations can be handled more
efficiently by using alternative cost functions, which are known as robust statistics
loss functions. Typical examples of such loss functions are:

■ Linear)-insensitive loss

L(g(x), y) ! | y # g(x)|) ≡ max(0, | y # g(x)| #))

■ Quadratic)-insensitive loss

L(g(x), y) ! | y # g(x)|2) ≡ max(0, | y # g(x)|2 #))

■ Huber loss

L(g(x), y) !

{
c | y # g(x)| # c2

2 if | y # g(x)| % c
1
2

(
y # g(x)

)2 if | y # g(x)| $ c

where) and c are user-defined parameters. Huber’s loss function reduces from
quadratic to linear the contributions of samples with absolute error values greater
than c. Such a choice makes the optimization task less sensitive to outliers.
Figure 4.26 shows the curves associated with the previous loss functions. In the
sequel, we will focus on the linear)-insensitive loss.

We are by now experienced enough to solve for the nonlinear g(x) case by
expressing the problem as a linear one in an RKHS. For the linear)-insensitive case,
nonzero contributions to the cost have samples with error values | y # g(x)| larger
than). This setup can be compactly expressed by adopting two slack variables,
2, 2∗, and the optimization task is now cast as

minimize J (w, w0, $, $∗) !
1
2
∥w∥2 " C

(
N∑

i!1

2i "
N∑

i!1

2∗
i

)

(4.91)

subject to yi #
〈
w, !(xi)

〉
w0 $) " 2∗

i , i ! 1, 2, . . . , N (4.92)

“06-Ch04-SA272” 18/9/2008 page 212

212 CHAPTER 4 Nonlinear Classifiers

Lo
ss

Linear
 e-insensitive loss
Quadratic
 e-insensitive loss
Huber loss

Squared error

121 y2g(x)

FIGURE 4.26
Loss functions used for regression tasks. The parameters) and c have been set equal to one.
In Huber’s loss, observe the change from quadratic to linear beyond -c.

〈
w, !(xi)

〉
" w0 # yi $) " 2i , i ! 1, 2, . . . , N (4.93)

2i ≥ 0, 2∗
i ≥ 0, i ! 1, 2, . . . , N (4.94)

The above setup guarantees that 2i , 2∗
i are zero if |yi #

〈
w, !(xi)

〉
w0| $)

and contribution to the cost function occurs if either yi #
〈
w, !(xi)

〉
w0 %) or if

yi #
〈
w, !(xi)

〉
#w0 &#). The presence of the norm ||w|| guards against overfitting,

as has already been discussed. Following similar arguments made in Section 3.7.2,
it turns out that the solution is given by

w !
N∑

i!1

(,∗
i # ,i)!(xi) (4.95)

where ,∗
i , ,i are the Lagrange multipliers associated with the set of constraints in

(4.92)–(4.93), respectively. The corresponding KKT conditions are (in analogy of
(3.98)–(3.102))

,∗
i (yi #

〈
w, !(xi)

〉
w0 #) # 2∗

i) ! 0, i ! 1, 2, . . . , N (4.96)

,i(
〈
w, !(xi)

〉
" w0 # yi #) # 2i) ! 0, i ! 1, 2, . . . , N (4.97)

C # ,i # !i ! 0, C # ,∗
i # !∗

i ! 0, i ! 1, 2, . . . , N (4.98)

“06-Ch04-SA272” 18/9/2008 page 213

4.19 Beyond the SVM Paradigm 213

!i2i ! 0, !∗
i 2∗

i ! 0, i ! 1, 2, . . . , N (4.99)

,i ≥ 0, ,∗
i ≥ 0, !i ≥ 0, !∗

i ≥ 0, i ! 1, 2, . . . , N (4.100)

N∑

i!1

,i !
N∑

i!1

,∗
i (4.101)

2i2
∗
i ! 0, ,i,

∗
i ! 0, i ! 1, 2, . . . , N (4.102)

where !∗
i , !i are the Lagrange multipliers associated with the set of constraints in

(4.94). Note that 2i, 2∗
i cannot be nonzero simultaneously,and the same applies for

the Lagrange multipliers ,∗
i , ,i. Furthermore, a careful look at the KKT conditions

reveals that:

■ The points with absolute error values strictly less than), i.e., | yi #
〈
w, !(xi)

〉
#

w0| &) result in zero Lagrange multipliers,,i , ,∗
i . This is a direct consequence

of (4.96) and (4.97). These points are the counterparts of the points that lie
strictly outside the margin in the SVM classification task.

■ Support vectors are those points satisfying the inequality | yi #
〈
w, !(xi)

〉
#

w0| ≥).

■ The points associated with errors satisfying the strict inequality | yi #〈
w, !(xi)

〉
w0| %) result in either ,i ! C or ,∗

i ! C . This is a consequence
of (4.99) and (4.98) and of the fact that, in this case, 2i (or 2∗

i) is nonzero. For
those of the points that equality holds, that is, |yi #

〈
w, !(xi)

〉
w0| !), the

respective 2i (2∗
i) ! 0 and from (4.97) (or (4.96)) the respective ,i (,∗

i) can be
nonzero. Then from (4.99),(4.100),and (4.98) it turns out that 0 $,i (,∗

i) $ C .

The Lagrange multipliers can be obtained by writing the problem in its equivalent
dual representation form, that is,

maximize
N∑

i!1

yi(,∗
i # ,i) #)

N∑

i!1

(,∗
i " ,i) #

1
2

∑

i, j

(,∗
i # ,i)(,∗

j # ,j)
〈
!(xi), !(xj)

〉
(4.103)

subject to 0 $,i $ C , 0 $,∗
i $ C , i ! 1, 2, . . . , N (4.104)

N∑

i!1

,∗
i !

N∑

i!1

,i (4.105)

where maximization is with respect to the Lagrange multipliers ,i, ,∗
i , i !

1, 2, . . . , N . This optimization task is similar to the problem defined by (3.103)
and (3.105).

“06-Ch04-SA272” 18/9/2008 page 214

214 CHAPTER 4 Nonlinear Classifiers

Once the Lagrange multipliers have been computed, the nonlinear regressor is
obtained as

g(x) ≡
〈

!(x),
N∑

i!1

(,∗
i # ,i)!(xi)

〉

" w0 !
N∑

i!1

(,∗
i # ,i)K(x, xi) " w0

where w0 is computed from the KKT conditions in (4.97) and (4.96) for 0 & ,i &
C , 0 & ,∗

i & C . Sparsification is achieved via the points associated with zero
Lagrange multipliers, that is, points resulting in absolute error values strictly less
than).

If instead of the linear)-insensitive loss one adopts the quadratic)-insensitive
loss or the Huber loss functions,the resulting sets of formulas are similar to the ones
derived here, see, for example, [Vapn 00].

Throughout the derivations in this subsection,we kept referring to the optimiza-
tion of the SVM classification task considered in Section 3.7.2. The similarity is not
accidental. Indeed, it is a matter of a few simple arithmetic manipulations to see
that if we set) ! 0 and yi !- 1, depending on the class origin, our regression
task becomes the same as the problem considered in Section 3.7.2.

Ridge Regression
We will close this section by establishing the connection of the regression task,
which was considered before,with the classical regression problem known as ridge
regression. This concept has been used extensively in statistical learning and has
been rediscovered under different names. If in the quadratic)-insensitive loss we set
) ! 0 and,for simplicity,w0 ! 0,the result is the standard sum of squared errors cost
function. Substituting in the associated constraints the inequalities with equalities
and slightly rephrasing the cost (to bring it in its classical formulation), we end up
with the following

minimize J (w, $) ! C∥w∥2 "
N∑

i!1

22
i (4.106)

subject to yi #
〈
w, !(xi)

〉
! 2i , i ! 1, 2, . . . , N (4.107)

where C ! 1
2C . The task defined in (4.106)–(4.107) is a regularized version of the

least squares cost function expressed in an RKHS. If we work on the dual Wolfe
representation, it turns out that the solution of the kernel ridge regression is
expressed in closed form (see Problem 4.25), that is,

w !
1

2C

N∑

i!1

,i!(xi) (4.108)

[,1, . . . , ,N]T ! 2C (K " CI)#1 y (4.109)

“06-Ch04-SA272” 18/9/2008 page 215

4.20 Decision Trees 215

and

g(x) ≡
〈
w, !(x)

〉
! yT (K " CI)#1p (4.110)

where I is the N / N identity matrix and K is the N / N Gram matrix, defined
in (4.84) and p the N -dimensional vector defined in (4.87). Observe that the
only difference from the kernel least squares solution is the presence of the CI
factor.

An advantage of the (kernel) ridge regression, compared to the robust statistics
regression, is that a neat closed form solution results. However, by having adopted
) ! 0 we have lost in model sparseness. As we have already pointed out for the case
of the linear)-insensitive loss (the same is true for the quadratic version), training
points that result in error with absolute value strictly less than) do not contribute
in the solution. There is no free lunch in real life!

To establish another bridge with Chapter 3, let us employ the linear kernel, that
is, K(xi , xj) ! xT

i xj (which implies that one works in the input low-dimensional
space and no mapping in a high-dimensional RKHS is performed), and solve the
primal instead of the dual task ridge regression task. It is easy to show (Problem
4.26) that the solution becomes

w ! (XT X " CI)#1XT y (4.111)

In other words, the solution is the same as the least squares error solution, given
in (3.45). The only difference lies in the presence of the CI factor. The latter is
the result of the regularization term in the minimized cost function (4.106). In
practice, the term CI is used in the LS solution in cases where XT X has a small
determinant and matrix inversion problems arise. Adding a small positive value
across the diagonal acts beneficially from the numerical stability point of view.

As a last touch on this section, let us comment on (4.111) and (4.108)–(4.109).
For the linear kernel case,the Gram matrix becomes XXT ,and the solution resulting
from the dual formulation is given by

w ! XT (XXT " CI)#1y (4.112)

Since this is a convex programming task,both solutions, in (4.111) and (4.112),must
be the same. This can be verified by simple algebra (Problem 4.27).

4.20 DECISION TREES
In this section we briefly review a large class of nonlinear classifiers known as deci-
sion trees. These are multistage decision systems in which classes are sequentially
rejected until we reach a finally accepted class. To this end, the feature space is
split into unique regions, corresponding to the classes, in a sequential manner.
Upon the arrival of a feature vector, the searching of the region to which the fea-
ture vector will be assigned is achieved via a sequence of decisions along a path of

“06-Ch04-SA272” 18/9/2008 page 216

216 CHAPTER 4 Nonlinear Classifiers

x2

3
4

1
2

'1

'2

'3

'1

'3

'4
1
4

1
4

1
2

3
4

x1

FIGURE 4.27
Decision tree partition of the space.

nodes of an appropriately constructed tree. Such schemes offer advantages when a
large number of classes are involved. The most popular decision trees are those that
split the space into hyperrectangles with sides parallel to the axes. The sequence
of decisions is applied to individual features, and the questions to be answered
are of the form “is feature xi $ %?” where % is a threshold value. Such trees are
known as ordinary binary classification trees (OBCTs). Other types of trees are
also possible that split the space into convex polyhedral cells or into pieces of
spheres.

The basic idea behind an OBCT is demonstrated via the simplified example of
Figure 4.27. By a successive sequential splitting of the space, we have created
regions corresponding to the various classes.

Figure 4.28 shows the respective binary tree with its decision nodes and leaves.
Note that it is possible to reach a decision without having tested all the available
features.

The task illustrated in Figure 4.27 is a simple one in the two-dimensional space.
The thresholds used for the binary splits at each node of the tree in Figure 4.28
were dictated by a simple observation of the geometry of the problem. However,this
is not possible in higher dimensional spaces. Furthermore, we started the queries
by testing x1 against 1

4 . An obvious question is why to consider x1 first and not
another feature. In the general case, in order to develop a binary decision tree,
the designer has to consider the following design elements in the training
phase:

“06-Ch04-SA272” 18/9/2008 page 217

4.20 Decision Trees 217

no

no

'1

'2'4'3

'1

'3

yes

t4

t3t2

t1

t0

yesyes

yes

yes

no

no

no

1
2

x1>

1
2

x2>

3
4

x1>

1
4

x1>

3
4x2>

FIGURE 4.28
Decision tree classification for the case of Figure 4.27.

■ At each node, the set of candidate questions to be asked has to be decided.
Each question corresponds to a specific binary split into two descendant
nodes. Each node, t , is associated with a specific subset Xt of the training
set X . Splitting of a node is equivalent to the split of the subset Xt into two
disjoint descendant subsets, XtY , XtN . The first of the two consists of the
vectors in Xt that correspond to the answer “Yes” of the question and those
of the second to the “No.” The first (root) node of the tree is associated with
the training set X . For every split, the following is true:

XtY

⋂
XtN ! ∅

XtY

⋃
XtN ! Xt

■ A splitting criterion must be adopted according to which the best split from
the set of candidate ones is chosen.

■ A stop-splitting rule is required that controls the growth of the tree,and a node
is declared as a terminal one (leaf).

■ A rule is required that assigns each leaf to a specific class.

We are now experienced enough to understand that more than one method can
be used to approach each of the above design elements.

“06-Ch04-SA272” 18/9/2008 page 218

218 CHAPTER 4 Nonlinear Classifiers

4.20.1 Set of Questions
For the OBCT type of trees, the questions are of the form “Is xk $ %?” For each
feature, every possible value of the threshold % defines a specific split of the subset
Xt . Thus in theory, an infinite set of questions has to be asked if % varies in an
interval Y% ⊆ R. In practice, only a finite set of questions can be considered. For
example, since the number, N , of training points in X is finite, any of the features
xk, k ! 1, . . . , l,can take at most Nt $ N different values,where Nt is the cardinality
of the subset Xt ⊆ X . Thus, for feature xk, one can use %kn, n ! 1, 2, . . . , Ntk
(Ntk $ Nt), where %kn are taken halfway between consecutive distinct values of xk
in the training subset Xt . The same has to be repeated for all features. Thus in such
a case, the total number of candidate questions is

∑l
k!1 Ntk. However, only one of

them has to be chosen to provide the binary split at the current node, t , of the tree.
This is selected to be the one that leads to the best split of the associated subset Xt .
The best split is decided according to a splitting criterion.

4.20.2 Splitting Criterion
Every binary split of a node, t , generates two descendant nodes. Let us denote
them by tY and tN according to the “Yes” or “No” answer to the single question
adopted for the node t , also referred as the ancestor node. As we have already
mentioned, the descendant nodes are associated with two new subsets, that is,
XtY , XtN , respectively. In order for the tree growing methodology, from the
root node down to the leaves, to make sense, every split must generate subsets
that are more “class homogeneous” compared to the ancestor’s subset Xt . This
means that the training feature vectors in each one of the new subsets show a
higher preference for specific class(es), whereas data in Xt are more equally dis-
tributed among the classes. As an example, let us consider a four-class task and
assume that the vectors in subset Xt are distributed among the classes with equal
probability (percentage). If one splits the node so that the points that belong
to '1, '2 classes form the XtY subset, and the points from '3, '4 classes form
the XtN subset, then the new subsets are more homogeneous compared to Xt or
“purer” in the decision tree terminology. The goal, therefore, is to define a mea-
sure that quantifies node impurity and split the node so that the overall impurity
of the descendant nodes is optimally decreased with respect to the ancestor node’s
impurity.

Let P('i|t) denote the probability that a vector in the subset Xt , associated with
a node t , belongs to class 'i , i ! 1, 2, . . . , M . A commonly used definition of node
impurity, denoted as I(t), is given by

I(t) ! #
M∑

i!1

P('i |t) log2 P('i|t) (4.113)

where log2 is the logarithm with base 2. This is nothing else than the entropy
associated with the subset Xt , known from Shannon’s Information Theory. It is not
difficult to show that I(t) takes its maximum value if all probabilities are equal to

“06-Ch04-SA272” 18/9/2008 page 219

4.20 Decision Trees 219

1
M (highest impurity) and it becomes zero (recall that 0 log 0 ! 0) if all data belong to
a single class, that is, if only one of the P('i|t) ! 1 and all the others are zero (least
impurity). In practice, probabilities are estimated by the respective percentages,
Ni

t /Nt , where Ni
t is the number of points in Xt that belong to class 'i. Assume now

that performing a split, NtY points are sent into the “Yes” node (XtY) and NtN into
the “No”node (XtN). The decrease in node impurity is defined as

' I(t) ! I(t) #
NtY

Nt
I(tY) #

NtN

Nt
I(tN) (4.114)

where I(tY), I(tN) are the impurities of the tY and tN nodes, respectively. The goal
now becomes to adopt, from the set of candidate questions, the one that performs
the split leading to the highest decrease of impurity.

4.20.3 Stop-Splitting Rule
The natural question that now arises is when one decides to stop splitting a node
and declares it as a leaf of the tree. A possibility is to adopt a threshold T and
stop splitting if the maximum value of ' I(t), over all possible splits, is less than
T . Other alternatives are to stop splitting either if the cardinality of the subset Xt
is small enough or if Xt is pure, in the sense that all points in it belong to a single
class.

4.20.4 Class Assignment Rule
Once a node is declared to be a leaf,then it has to be given a class label. A commonly
used rule is the majority rule, that is, the leaf is labeled as 'j where

j ! arg max
i

P('i|t)

In words, we assign a leaf, t , to that class to which the majority of the vectors in Xt
belong.

Having discussed the major elements needed for the growth of a decision tree,
we are now ready to summarize the basic algorithmic steps for constructing a binary
decision tree

■ Begin with the root node, that is, Xt ! X

■ For each new node t
• For every feature xk, k ! 1, 2, . . . , l

⃝ For every value %kn, n ! 1, 2, . . . , Ntk

— Generate XtY and XtN according to the answer in the question: is
xk(i) $ %kn, i ! 1, 2, . . . , Nt

— Compute the impurity decrease

⃝ End

⃝ Choose %kn0 leading to the maximum decrease w.r. to xk

“06-Ch04-SA272” 18/9/2008 page 220

220 CHAPTER 4 Nonlinear Classifiers

• End

• Choose xk0 and associated %k0n0 leading to the overall maximum decrease
of impurity

• If the stop-splitting rule is met,declare node t as a leaf and designate it with
a class label

• If not, generate two descendant nodes tY and tN with associated subsets
XtY and XtN , depending on the answer to the question: is xk0 $ %k0n0

■ End

Remarks

■ A variety of node impurity measures can be defined. However, as pointed
out in [Brei 84], the properties of the resulting final tree seem to be rather
insensitive to the choice of the splitting criterion. Nevertheless, this is very
much a problem-dependent task.

■ A critical factor in designing a decision tree is its size. As was the case with
the multilayer perceptrons, the size of a tree must be large enough but not too
large; otherwise it tends to learn the particular details of the training set and
exhibits poor generalization performance. Experience has shown that use of
a threshold value for the impurity decreases as the stop-splitting rule does not
lead to trees of the right size. Many times it stops tree growing either too
early or too late. The most commonly used approach is to grow a tree up to
a large size first and then prune nodes according to a pruning criterion. This
philosophy is similar to that for pruning multilayer perceptrons. A number
of pruning criteria have been suggested in the literature. A commonly used
criterion is to combine an estimate of the error probability with a complexity
measuring term (e.g., number of terminal nodes). For more on this issue the
interested reader may refer to [Brei 84, Ripl 94].

■ A drawback associated with tree classifiers is their high variance. In prac-
tice it is not uncommon for a small change in the training data set to
result in a very different tree. The reason for this lies in the hierarchi-
cal nature of the tree classifiers. An error that occurs in a node high in
the tree propagates all the way down to the leaves below it. Bagging
(bootstrap aggregating) [Brei 96, Gran 04] is a technique that can reduce
variance and improve the generalization error performance. The basic idea
is to create a number of, say, B variants, X1, X2, . . . , XB, of the training set,
X , using bootstrap techniques, by uniformly sampling from X with replace-
ment (see also Section 10.3). For each of the training set variants, Xi,
a tree, Ti, is constructed. The final decision is in favor of the class predicted
by the majority of the subclassifiers, Ti, i ! 1, 2, . . . , B.

“06-Ch04-SA272” 18/9/2008 page 221

4.20 Decision Trees 221

Random forests use the idea of bagging in tandem with random feature
selection [Brei 01]. The difference with bagging lies in the way the decision
trees are constructed. The feature to split in each node is selected as the
best among a set of F randomly chosen features, where F is a user-defined
parameter. This extra introduced randomness is reported to have a substantial
effect in performance improvement.

■ Our discussion so far was focused on the OBCT type of tree. More general par-
tition of the feature space, via hyperplanes not parallel to the axis, is possible
via questions of the type: Is

∑l
k!1 ckxk $ %? This can lead to a better parti-

tion of the space. However, the training now becomes more involved; see, for
example, [Quin 93].

■ Constructions of fuzzy decision trees have also been suggested, by allowing
the possibility of partial membership of a feature vector in the nodes that make
up the tree structure. Fuzzification is achieved by imposing a fuzzy structure
over the basic skeleton of a standard decision tree; see, for example, [Suar 99]
and the references therein.

■ Decision trees have emerged as one of the most popular methods for classi-
fication. An OBCT performs binary splits on single variables, and classifying
a pattern may only require a few tests. Moreover, they can naturally treat
mixtures of numeric and categorical variables. Also, due to their structural
simplicity, they are easily interpretable.

Example 4.2
In a tree classification task, the set Xt , associated with node t, contains Nt ! 10 vectors. Four
of these belong to class '1, four to class '2, and two to class '3, in a three-class classification
task. The node splitting results into two new subsets XtY , with three vectors from '1, and
one from '2, and XtN with one vector from '1, three from '2, and two from '3. The goal is
to compute the decrease in node impurity after splitting.
We have that

I(t) ! #
4

10
log2

4
10

#
4

10
log2

4
10

#
2

10
log2

2
10

! 1.521

I(tY) ! #
3
4

log2
3
4

#
1
4

log2
1
4

! 0.815

I(tN) ! #
1
6

log2
1
6

#
3
6

log2
3
6

#
2
6

log2
2
6

! 1.472

Hence, the impurity decrease after splitting is

'I(t) ! 1.521 #
4

10
(0.815) #

6
10

(1.472) ! 0.315

“06-Ch04-SA272” 18/9/2008 page 222

222 CHAPTER 4 Nonlinear Classifiers

For further information and a deeper study of decision tree classifiers, the
interested reader may consult the seminal book [Brei 84]. A nonexhaustive sam-
ple of later contributions in the area is [Datt 85, Chou 91, Seth 90, Graj 86,
Quin 93]. A comparative guide for a number of well-known techniques is provided
in [Espo 97].

Finally, it must be stated that there are close similarities between the decision
trees and the neural network classifiers. Both aim at forming complex decision
boundaries in the feature space. A major difference lies in the way decisions are
made. Decision trees employ a hierarchically structured decision function in a
sequential fashion. In contrast, neural networks utilize a set of soft (not final)
decisions in a parallel fashion.

Furthermore, their training is performed via different philosophies. However,
despite their differences, it has been shown that linear tree classifiers (with a linear
splitting criterion) can be adequately mapped to a multilayer perceptron structure
[Seth 90, Seth 91, Park 94].

So far, from the performance point of view, comparative studies seem to give
an advantage to the multilayer perceptrons with respect to the classification error,
and an advantage to the decision trees with respect to the required training time
[Brow 93].

4.21 COMBINING CLASSIFIERS
The present chapter is the third one concerning the classifier design phase. Although
we have not exhausted the list (a few more cases will be discussed in the chapters
to follow),we feel that we have presented to the reader the most popular directions
currently used for the design of a classifier.

Another trend that offers more possibilities to the designer is to combine diffe-
rent classifiers. Thus, one can exploit their individual advantages in order to reach
an overall better performance than could be achieved by using each of them sepa-
rately. An important observation that justifies such an approach is the following.
From the different (candidate) classifiers we design in order to choose the one that
fits our needs, one results in the best performance; that is, minimum classification
error rate. However, different classifiers may fail (to classify correctly) on different
patterns. That is, even the “best” classifier can fail on patterns that other classifiers
succeed on.

Combining classifiers aims at exploiting this complementary information that
seems to reside in the various classifiers. This is illustrated in Figure 4.29. Many
interesting design issues have now come onto the scene. What is the strategy that
one has to adopt for combining the individual outputs in order to reach the final
conclusion? Should one combine the results following the product rule, the sum
rule, the min rule, the max rule, or the median rule? Should all classifiers be fed
with the same feature vectors, or must different feature vectors be selected for the
different classifiers? Let us now highlight some of these issues a bit further.

“06-Ch04-SA272” 18/9/2008 page 223

4.21 Combining Classifiers 223

Input
pattern

Classifier
#1

Combiner

Classifier
#2

Classifier
#L

Output

FIGURE 4.29
L classifiers are combined in order to provide the final decision for an input pattern. The individual
classifiers may operate in the same or in different feature spaces.

Assume that we are given a set of L classifiers, which have already been
trained (in one way or another) to provide as outputs the class a posteriori
probabilities. For a classification task of M classes, given an unknown feature
vector x each classifier produces estimates of the a posteriori class probabil-
ities; that is, Pj('i|x), i ! 1, 2, . . . , M , j ! 1, 2, . . . , L. Our goal is to devise a
way to come up with an improved estimate of a “final” a posteriori probabil-
ity P('i|x) based on all the resulting estimates from the individual classifiers,
Pj('i|x), j ! 1, 2, . . . , L. An elegant way is to resort to information theoretic criteria
[Mill 99] by exploiting the Kullback–Leibler (KL) (AppendixA) probability distance
measure.

4.21.1 Geometric Average Rule
According to this rule, one chooses P('i|x) in order to minimize the average KL
distance between probabilities. That is,

Dav !
1
L

L∑

j!1

Dj (4.115)

where

Dj !
M∑

i!1

P('i|x) ln
P('i |x)
Pj('i |x)

(4.116)

“06-Ch04-SA272” 18/9/2008 page 224

224 CHAPTER 4 Nonlinear Classifiers

Taking into account that

M∑

i!1

Pj('i |x) ! 1

and employing Lagrange multipliers,optimization of (4.115) with respect to P('i|x)
results in (Problem 4.23)

P('i|x) !
1
C

L∏

j!1

(Pj('i |x))
1
L (4.117)

where C is a class-independent quantity

C !
M∑

i!1

L∏

j!1

(Pj('i|x))
1
L

All products are raised into the same power 1/L, independently of the class 'i .
Thus,neglecting all the terms common to all classes, the classification rule becomes
equivalent to assigning the unknown pattern to the class maximizing the product.
That is,

max
'i

L∏

j!1

Pj('i|x) (4.118)

4.21.2 Arithmetic Average Rule
As pointed out in Appendix A, the KL probability dissimilarity cost is not a true
distance measure (according to the strict mathematical definition), in the sense
that it is not symmetric. A different (from the product) combination rule results
if we choose to measure the probability distance via the alternative KL distance
formulation. That is,

Dj !
M∑

i!1

Pj('i|x) ln
Pj('i |x)

P('i |x)
(4.119)

Using (4.119) in (4.115), optimization leads to (Problem 4.24)

P('i|x) !
1
L

L∑

j!1

Pj('i|x) (4.120)

There is no theoretical basis for preferring to maximize (4.120) instead of (4.118)
with respect to 'i, and it has been reported (e.g., [Mill 99]), that although the
product rule often produces better results than the sum rule, it may lead to less
reliable results when the outputs of some of the classifiers result in values close
to zero.

“06-Ch04-SA272” 18/9/2008 page 225

4.21 Combining Classifiers 225

4.21.3 Majority Voting Rule
The product and the summation schemes of combining classifiers belong to the
so-called soft type rules. Hard type combination rules are also very popular, owing
to their simplicity and their robust performance. According to the majority vote
scheme, one decides in favor of the class for which there is a consensus, or when
at least lc of the classifiers agree on the class label of the unknown pattern, where

lc !

⎧
⎨

⎩

L
2 " 1, L even

L"1
2 , L odd

(4.121)

Otherwise, the decision is rejection (i.e., no decision is taken). In other words, the
combined decision is correct when the decisions of the majority of classifiers are
correct, and it is wrong when the decisions of the majority of classifiers are wrong
and they agree on the wrong label. A rejection is considered neither correct nor
wrong. Assume now that we are given L individually trained classifiers,as previously,
and in addition

1. The number L is odd.

2. Each classifier has the same probability p of correct classification.

3. The decision of each classifier is taken independently of the others.

Of these three assumptions the third is the strongest. In reality,the decisions cannot
be independent. The other two assumptions can (fairly) easily be relaxed (e.g.,
[Mill 99, Lam 97]).

Let Pc(L) be the probability of correct decision, after the majority vote. Then,
this is given by the binomial distribution (see [Lam 97])

Pc(L) !
L∑

m!lc

(
L
m

)

pm(1 # p)L#m

where lc is defined in (4.121). Assuming L ≥ 3, then the following are true.

■ If p % 0.5, Pc(L) is monotonically increasing in L and Pc(L) → 1 as L → +.

■ If p & 0.5, Pc(L) is monotonically decreasing in L and Pc(L) → 0 as L → +.

■ If p ! 0.5, Pc(L) ! 0.5 for all L.

In other words, using L classifiers combined with the majority vote scheme and
under the assumptions made the probability of correct classification increases
with L and tends to 1,provided p%0.5. This is slightly surprising! Does it mean that
by combining classifiers with the majority vote scheme one can do better than the
optimal Bayesian classifier? The answer is obviously no,and the secret lies in the last
of the three assumptions, which is not valid in practice. On the contrary, one can
deduce that even if this is approximately valid for small values of L as L increases
the independence assumption becomes more and more unrealistic. However,

“06-Ch04-SA272” 18/9/2008 page 226

226 CHAPTER 4 Nonlinear Classifiers

the previously cited analysis provides a theoretical framework that justifies the
general trend observed from experimental studies; that is, increasing the number of
classifiers increases the probability of a correct decision.

In [Kunc 03] it is pointed out that, in the case of combining dependent classi-
fiers, there is no guarantee that a majority vote combination improves performance.
Based on an artificially generated data set,an upper and a lower limit for the accuracy
of the majority vote combiner are derived,in terms of the accuracy p of the individual
classifiers, the number L of the classifiers,and the degree of dependence among the
individual classifiers. Furthermore, it is shown that dependency is not necessarily
detrimental and that training-dependent classifiers with a certain pattern of depen-
dency may be beneficial. Similar results have been obtained in [Nara 05], where
lower and upper bounds for the performance of combining classifiers through the
majority voting rule have been theoretically derived for the binary classification
problem. The analysis involves no assumptions about independence,and the major-
ity voting problem is treated as a constraint optimization task. Other attempts to
extend the theory to deal with dependent voters have also appeared in the literature,
for example,[Berg 93, Bola 89],and some results are available that give performance
predictions closer to the experimental evidence [Mill 99].

In practice, a number of scenarios have been proposed aiming to make the
decisions of the individual classifiers more independent. One approach is to train
individual classifiers using different data points that reside in the same feature
space. This can be done using various resampling techniques from the original
training set, such as bootstrapping. Bagging (Section 4.20) belongs to this family of
methods. These types of combination approaches are most appropriate for unsta-
ble classifiers—that is, classifiers whose output(s) exhibit large variations for small
changes in their input data. Tree classifiers and large (with respect to the number of
training points) neural networks are typical examples of unstable classifiers. Stack-
ing [Wolpe 92] is an alternative attempt toward independence that constructs the
combiner using for its training the outputs of the individual classifiers. However,
these outputs correspond to data points that have been excluded from the train-
ing set, which was used to train the classifiers. This is done in a rotated fashion.
Each time, different points are excluded from the training set and are kept to be
used for testing. The outputs of the classifiers, obtained from these tests, are then
employed to train the combiner. The rationale is basically the same as that behind
the leave-one-out method, discussed in Chapter 10.

An alternative route that takes us closer to independence is to let each classifier
operate in a different feature subspace. That is, each classifier is trained by employ-
ing a different subset from an original set of selected features (e.g., [Ho 98]). The
majority vote scheme needs no modification in operating under such a scenario, in
that all that is required is a counting of hard decisions. In contrast, the situation
is different for the soft-type combination rules considered previously. Now, each
pattern is represented in each classifier by a different input vector, and the result-
ing class posterior probabilities at the outputs of the classifiers can no longer be
considered estimates of the same functional value, as is the case for Eqs. (4.118)

“06-Ch04-SA272” 18/9/2008 page 227

4.21 Combining Classifiers 227

and (4.120). The classifiers operate on different feature spaces. In [Kitt 98],
a Bayesian framework is adopted to justify soft-type combination rules for such
scenarios.

4.21.4 A Bayesian Viewpoint
Let xi , i ! 1, 2, . . . , L, be the feature vector representing the same pattern at
the input of the ith classifier, with xi ∈ Rli , where li is the dimensionality of the
respective feature space, which may not be the same for all feature vectors. The
task is now cast in the Bayesian rationale. Given L measurements,xi, i ! 1, 2, . . . , L,
compute the maximum a posteriori joint probability

P('i|x1, . . . , xL) !
M

max
k!1

P('k|x1, . . . , xL) (4.122)

However,

P('k|x1, . . . , xL) !
P('k)p(x1, . . . , xL|'k)

p(x1, . . . , xL)
(4.123)

For the problem to become tractable, we will once more adopt the statistical
independence assumption, thus

p(x1, . . . , xL|'k) !
L∏

j!1

p(xj |'k) (4.124)

Combining Eqs. (4.122) through (4.124) and dropping out the class-independent
quantities, the classification rule becomes equivalent to

P('i|x1, . . . , xL) !
M

max
k!1

P('k)
L∏

j!1

p(xj |'k) (4.125)

Substituting in the previous the Bayes rule

p(xj |'k) !
P('k|xj)p(xj)

P('k)

and getting rid of the class-independent terms,the classification rule finally becomes
equivalent to searching for

M
max
k!1

(P('k))1#L
L∏

j!1

P('k|xj) (4.126)

If we adopt the assumption that each class posterior probability, P('k|xj), k !
1, 2, . . . , M , is provided (as an estimate) at the output of the respective classifier,
then Eq. (4.126) is,once more,the product rule, this time with a Bayesian“blessing.”
Although such an approach seems to provide the optimal classifier, it is built on two

“06-Ch04-SA272” 18/9/2008 page 228

228 CHAPTER 4 Nonlinear Classifiers

assumptions. The first is that of statistical independence. The second is that the
true P('k|xj) is approximated sufficiently well by the output of the jth classifier.
The accuracy of the final result depends on how good this approximation is. A
sensitivity analysis in [Kitt 98] shows that in many cases the product rule is very
sensitive in such approximation errors. In contrast, the sum rule seems to be more
resilient to errors and in many cases in practice outperforms the product rule. It can
easily be shown that the sum rule can be obtained from Eq. (4.126) by assuming that
P('k|x) ≈ P('k)(1 " $),where $ is a small value. This is a very strong assumption,
since it implies that the a posteriori probability is approximately equal to the a
priori one. This implicitly states that the classification task is very hard and no extra
information about the class label is gained after the value of x becomes available.
No doubt, from a theoretical point of view this is not a very pleasing assumption!

An alternative viewpoint of the summation rule is given in [Tume 95],through the
bias–variance dilemma looking glass. Assuming that the individual classifiers result
in low bias estimates of the a posteriori class probabilities and under the mutual
independence assumption, averaging of the outputs reduces variance, leading to a
reduction in error rate. This point of view tempts one to choose large classifiers
(large number of free parameters) with respect to the number of training data, N ,
since such a choice favors low bias at the expense of high variance (Section 3.5.3),
which is then reduced by the action of averaging. These results have been extended
to include the weighted average case in [Fume 05].

In addition to the product and sum,other combination rules have been suggested
in the literature, such as the max,min,and median rules. These rules are justified by
the valid inequalities

L∏

j!1

P('k|xj) $
L

min
j!1

P('k|xj) $
1
L

L∑

j!1

P('k|xj) $
L

max
j!1

P('k|xj)

and classification is achieved by maximizing the respective bounds instead of the
product or the summation [Kitt 98]. In some cases, the existence of outliers may
lead the sum average value to be very wrong, since the value of the outlier is the
dominant one in the summation. In such cases, the median value is well known to
provide a more robust estimate, and the combination rule decides in favor of the
class that gives the maximum median value. That is,

M
max
k!1

median{P('k|xj)}

In the published literature, a number of variants of the previous methods have
also been suggested, such as in [Kang 03, Lin 03, Ho 94, Levi 02]. The choice of
the specific combination rule is, in general, problem dependent. In [Jain 00], a
set of experiments is reported concerning the results of combining twelve different
classifiers using five different combination rules. For the same data set (handwritten
numerals ∅#9),six different feature sets were generated. Each classifier was trained
separately for each of the six feature sets, resulting in six different variants. Two
types of combinations were performed: (a) all classifiers,trained on the same feature
set,were combined using the five different combiners and (b) the outputs of the six

“06-Ch04-SA272” 18/9/2008 page 229

4.21 Combining Classifiers 229

variants of the same classifier were also combined via the five different combiners.
The results show the following.

1. There is not a single type of combination (e.g.,product rule,majority voting)
that scores best for all cases. Each case seems to “prefer” its own combining
rule.

2. For every case, some, out of the five, combining rules result in a higher error
rate compared to that obtained by the best individual classifier. This means
that combining does not necessarily lead to improved performance.

3. There are cases where none of the combining rules does better than the best
individual classifier.

4. Improvements obtained by combining the variants of the same classifier,each
trained on a different feature set, are substantially better than those obtained
by combining different classifiers but trained on the same set. This seems
to be a more general trend. That is, training each individual classifier on a
different feature set offers the combiner better chances for improvements.

In practice, one tries to combine classifiers that are as “diverse” as possible,
expecting to improve performance by exploiting the complementary information
residing in the outputs of the individual classifiers. Take, for example, the extreme
case where all classifiers agree on their predictions. Any attempt to combine the
classifiers for improving the overall performance would obviously be meaningless.
As there is no formal definition of classifier diversity,a number of different measures
have been suggested to quantify diversity for the purpose of classifier combining.
For example, in [Germ 92] the variance is adopted as a diversity measure. For the
case of hard decisions, let 'i(xj) be the class label predicted by the ith classifier
for pattern xj . Let '̄(xj) also be the respective “mean” class label, computed over
all classifiers. The mean must be defined in a meaningful way. For hard decisions,
one possibility is to adopt as the mean value the most frequent one among all (L)
classifiers. Define

d
(
'i(xj), '̄(xj)

)
!

{
1 if 'i(xj) ̸! '̄(xj)
0 otherwise

The variance of the combined classifiers can be computed as

V !
1

NL

N∑

j!1

L∑

i!1

d
(
'i(xj), '̄(xj)

)

A large variance is taken to be indicative for large diversity. Besides the variance,
other measures have also been suggested and used. For example, in [Kang 00] the
mutual information among the outputs of the classifiers is used, and in [Kunc 03]
the Q statistics test is employed. For a review of diversity measures and comparative
studies see, for example, [Kunc 03a, Akse 06]. In [Rodr 06] the issue of designing

“06-Ch04-SA272” 18/9/2008 page 230

230 CHAPTER 4 Nonlinear Classifiers

diverse classifiers is considered together with the issue of accuracy. A methodology,
called Rotation Forest, is proposed, which aims at designing classifiers that are
both accurate and diverse. The classifiers are then combined to boost the overall
performance.

Experimental comparative studies that demonstrate the performance improve-
ment that may be gained by combining classifiers can be found in [Mill 99, Kitt 98,
Tax 00, Dzer 04]. It seems that the sum average and the majority vote rules are
more popular and used the most frequently. Which of the two is to be adopted
depends on the application. In [Kitt 03], it is shown that for normally distributed
error probabilities the sum rule outperforms the voting rule. In contrast, for heavy
tail error distributions the voting scheme may be better. More theoretical results,
concerning combinations of classifiers, can be found in [Kunc 02] and [Klei 90].
However,it is true that most of the available theoretical results have been developed
under rather restrictive assumptions. More recently, a“fresh”look at the theoretical
study of the performance of combiners has been presented in [Evge 04] and theo-
retical nonasymptotic bounds on the combiner’ s generalization error are derived,
for the case of combining SVM classifiers, via weighted averaging. The so called no
panacea theorem is stated in [Hu 08]. It is shown that if the combination function
is continuous and diverse one can always construct probability density distributions
that describe the data and lead the combination scheme to poor performance. In
other words,this theorem points out that combining classifiers has to be considered
carefully.

The common characteristic of all combination techniques presented so far is that
the individual classifiers are separately trained and the combiner relies on a simple
rule. Besides these techniques, a number of other schemes have been developed,
which rely on optimizing the combiner and in some cases jointly with the individual
classifiers, for example, [Ueda 97, Rose 96, Kunc 01]. The price one pays for such
procedures obviously is complexity, which in some cases can become impractical,
see [Rose 96]. Moreover, there is no guarantee that optimization leads to improved
performance compared to the simpler nonoptimal methods considered previously.
More recently, Bayesian approaches ([Tres 01]) and Bayesian networks ([Garg 02,
Pikr 08]) have been mobilized to construct combiners. A game-theoretic approach
has been adopted in [Geor 06].

The so-called mixture of experts [Jaco 91, Hayk 96, Avni 99] are structures that
share some of the ideas exposed in this section. The rationale behind such models
is to assign different classifiers for different regions in space and then use an extra
“gating”network,which also sees the input feature vector, to decide which classifier
(expert) should be used each time. All classifiers as well as the gating network are
jointly trained.

4.22 THE BOOSTING APPROACH TO COMBINE CLASSIFIERS
Boosting is a general approach to improve the performance of a given classifier and
is one of the most powerful techniques, together with the support vector machines,

“06-Ch04-SA272” 18/9/2008 page 231

4.22 The Boosting Approach to Combine Classifiers 231

that blossomed in the 1990s. Although boosting can be considered an approach
to combine classifiers, it is conceptually different from the techniques presented in
the previous section, and it deserves a separate treatment. The roots of boosting go
back to the original work of Viliant and Kearns [Vali 84, Kear 94], who posed the
question whether a “weak” learning algorithm (i.e., one that performs just slightly
better than a random guessing) can be boosted into a “strong”algorithm with good
error performance. At the heart of a boosting method lies the so-called base clas-
sifier, which is a weak classifier. A series of classifiers is then designed iteratively,
employing each time the base classifier but using a different subset of the train-
ing set, according to an iteratively computed distribution, or a different weighting
over the samples of the training set. At each iteration, the computed weighting
distribution gives emphasis to the “hardest” (incorrectly classified) samples.

The final classifier is obtained as a weighted average of the previously hierarchi-
cally designed classifiers. It turns out that given a sufficient number of iterations
the classification error of the final combination measured on the training set can
become arbitrarily low [Scha 98]. This is very impressive indeed. Using a weak
classifier as the base,one can achieve an arbitrarily low training error rate by appro-
priate manipulation of the training data set in harmony with the performance of
the sequence of the designed classifiers (Problem 4.28). In this section we will
focus on one such algorithm, the so-called AdaBoost (adaptive boosting), which is
sometimes known as the discrete AdaBoost, to emphasize the fact that it returns
a binary discrete label. This is the most popular algorithm of the family and one
that has been extensively studied. The treatment follows the approach introduced
in [Frie 00].

We concentrate on the two-class classification task and let the set of the training
data be {(x1, y1), (x2, y2) . . . , (xN , yN)} with yi ∈ {#1, 1}, i ! 1, 2, . . . , N . The goal
is to construct an optimally designed classifier of the form

f (x) ! sign {F(x)} (4.127)

where

F(x) !
K∑

k!1

%k&(x; %k) (4.128)

where &(x; %) denotes the base classifier that returns a binary class label; that is,
&(x; %) ∈ {#1, 1}. The base classifier is described by the corresponding parameter
vector %, whose value is allowed to be different in each of the summand terms, as
will become apparent soon. The values of the unknown parameters result from the
following optimization.

arg min
%k;%k,k:1,K

N∑

i!1

exp
(
#yiF(xi)

)
(4.129)

This cost function is common in learning theory. It penalizes the samples that are
wrongly classified (yiF(xi) & 0) much more heavily than those correctly classified

“06-Ch04-SA272” 18/9/2008 page 232

232 CHAPTER 4 Nonlinear Classifiers

(yiF(xi) % 0). However, direct optimization of (4.129) is a highly complex task.
A suboptimal method commonly employed in optimization theory for complex
problems is to carry out the optimization in a stage-wise fashion. At each step, a
new parameter is considered and optimization is carried out with respect to this
parameter, leaving unchanged the previously optimized ones. To this end, let us
define Fm(x) to denote the result of the partial sum up to m terms. That is,

Fm(x) !
m∑

k!1

%k&(x; %k), m ! 1, 2, . . . , K (4.130)

Based on the this definition, the following recursion becomes obvious.

Fm(x) ! Fm#1(x) " %m&(x; %m) (4.131)

Let us now employ a stage-wise optimization in our problem. At step m, Fm#1(x)
is the part that has been optimized in the previous step, and the current task is to
compute the optimal values for %m, %m. In other words, the task at step m is to
compute

(%m, %m) ! arg min
%,%

J (%, %)

where the cost function is defined as

J (%, %) !
N∑

i!1

exp
(
#yi(Fm#1(xi) " %&(xi; %))

)
(4.132)

Once more,optimization will be carried out in two steps. First,% will be considered
constant, and the cost will be optimized with respect to the base classifier &(x; %).
That is, the cost to be minimized is now simplified to

%m ! arg min
%

N∑

i!1

w(m)
i exp

(
#yi%&(xi; %)

)
(4.133)

where

w(m)
i ≡ exp

(
#yiFm#1(xi)

)
(4.134)

Since each w(m)
i depends neither on % nor on &(xi; %), it can be regarded as a

weight associated with the sample point xi . Due to the binary nature of the base
classifier (&(x; %) ∈ {#1, 1}), it is easy to see that minimizing (4.133) is equivalent to
designing the optimal classifier &(x; %m) so that the weighted empirical error (the
fraction of the training samples that are wrongly classified) is minimum. That is,

%m ! arg min
%

{

Pm !
N∑

i!1

w(m)
i I(1 # yi&(xi; %))

}

(4.135)

“06-Ch04-SA272” 18/9/2008 page 233

4.22 The Boosting Approach to Combine Classifiers 233

Function I(·) is either 0 or 1, depending on its argument, whether it is zero or
positive, respectively. To guarantee that the value of the weighted empirical error
rate remains in the interval [0, 1], the weights must sum to one. This is easily
achieved by appropriate normalization; that is, dividing each weight by the respec-
tive sum,

∑N
i!1 w(m)

i , which does not affect the optimization and can easily be
incorporated in the final iterative algorithm. Having computed the optimal clas-
sifier at step m, &(x; %m), the following are easily established from the respective
definitions.

∑

yi&(xi;%m)&0

w(m)
i ! Pm (4.136)

∑

yi&(xi;%m)%0

w(m)
i ! 1 # Pm (4.137)

Combining Eqs. (4.137) and (4.136) with (4.134) and (4.132), the optimum value,
%m, results from

%m ! arg min
%

{exp(#%)(1 # Pm) " exp(%)Pm} (4.138)

Taking the derivative with respect to % and equating to zero, we obtain

%m !
1
2

ln
1 # Pm

Pm
(4.139)

Once %m and &(x; %m) have been computed, the weights for the next step are
readily available via the iteration

w(m"1)
i !

exp(#yiFm(xi))
Zm

!
w(m)

i exp
(
#yi%m&(xi; %m)

)

Zm
(4.140)

where Zm is the normalizing factor

Zm ≡
N∑

i!1

w(m)
i exp

(
#yi%m&(xi; %m)

)
(4.141)

Observe that the value of the weight corresponding to sample xi is increased
(decreased) with respect to its value at the previous iteration step if the classi-
fier &(xi ; %m) fails (wins) at the respective point. Moreover, the percentage of
the increase or decrease depends on the value of %m, which also controls the rel-
ative importance of the term &(x ; %m) in building up the final classifier F(x) in
(4.128). Hard examples (i.e., samples that fail to be classified correctly by a number
of successive classifiers) gain an increased importance in the weighted empiri-
cal error rate as they insist on failing! A pseudocode for the AdaBoost algorithm
follows.

“06-Ch04-SA272” 18/9/2008 page 234

234 CHAPTER 4 Nonlinear Classifiers

The AdaBoost Algorithm
■ Initialize: w(1)

i ! 1
N , i ! 1, 2 . . . , N

■ Initialize: m ! 1

■ Repeat

• Compute optimum %m in &(·; %m) by minimizing Pm; (4.135)

• Compute the optimum Pm; (4.135)

• %m ! 1
2 ln 1#Pm

Pm

• Zm ! 0.0

• For i ! 1 to N

⃝ w(m"1)
i ! w(m)

i exp
(
#yi%m&(xi; %m)

)

⃝ Zm ! Zm " w(m"1)
i

• End{For}

• For i ! 1 to N

⃝ w(m"1)
i ! w(m"1)

i /Zm

• End {For}

• K ! m

• m ! m " 1

■ Until a termination criterion is met.

■ f (·) ! sign(
∑K

k!1 %k&(·, %k))

One of the main and very interesting properties of boosting is its relative immu-
nity to overfitting,which was defined in Section 4.9. In practice, it has been verified
that, although the number of terms, K , and consequently the associated number of
parameters can be quite high,the error rate on a test set does not increase but keeps
decreasing and finally levels off at a certain value. It has been observed that the
test error continues to decrease long after the error on the training set has become
zero. A mathematically pleasing explanation is offered in [Scha 98],where an upper
bound for the error probability (also known as generalization error) is derived in
terms of the margins of the training points with respect to the designed classifier.
Note that the test error rate is an estimate of the error probability (more formal
definitions of these quantities are provided in Section 5.9). The bound is indepen-
dent of the number of iterations, K . More specifically, it is shown that with high
probability the generalization error is upper-bounded by the quantity

prob{marginf (x, y) & .} " O

(√
Vc

N.2

)

(4.142)

“06-Ch04-SA272” 18/9/2008 page 235

4.22 The Boosting Approach to Combine Classifiers 235

for . % 0, where Vc is a parameter measuring the complexity of the base classifier
and is known as theVapnic–Chervonenkis dimension (we will discuss it later in the
book). The margin of a training example with respect to a classifier f [Eq. (4.127)]
is defined as

marginf (x, y) !
yF(x)

∑K
k!1 %k

!
y

∑K
k!1 %k&k(x; %k)

∑K
k!1 %k

The margin lies in the interval [#1, 1] and is positive if and only if the respective
pattern is classified correctly.

The bound implies that if (a) the margin probability is small for large values of
margin . and (b) N is large enough with respect to Vc , one expects the general-
ization error to be small, and this does not depend on the number of iterations that
were used to design f (x). The bound suggests that if for most of the training points
the margin is large, the generalization error is expected to be small. This is natural,
since the magnitude of the margin can be interpreted as a measure of confidence
about the decision of the classifier with respect to a sample. Hence, if for a large
training data set the resulting margin for most of the training points is large, it is not
beyond common sense to expect that a low training error rate may also suggest a
low generalization error.

Furthermore, as pointed out in [Maso 00, Scha 98], boosting is particularly
aggressive at improving the margin distribution, since it concentrates on exam-
ples with the smallest margins, as one can readily dig out by looking carefully at
the cost (4.129). From this point of view, there is an affinity with the support vec-
tors machines, which also try to maximize the margin of the training samples from
the decision surface. See,for example,[Scha 98, Rats 02]. The major criticism about
the bound in (4.142) lies in the fact that it is very loose (unless the number,N ,of the
training points is very large; i.e., of the order of tens of thousands!), so it can only
be used as a qualitative rather than as a quantitative explanation of the commonly
encountered experimental evidence.

Another explanation for this overfitting immunity associated with the boost-
ing algorithms could be that parameter optimization is carried out in a stage-wise
fashion, each time with respect to a single parameter. Some very interesting and
enlightening discussions, among leading experts in the field, regarding the overfit-
ting as well as other issues concerning boosting and related algorithmic families can
be found in the papers [Frie 00, Brei 98]. A comparative study of the performance
of boosting and other related algorithms can be found in [Baue 99].

Remarks

■ Obviously,Adaboost is not the only boosting algorithm available. For example,
one can come up with other algorithms by adopting alternatives to (4.129)
cost functions or growing mechanisms to build up the final classifier. In
fact, it has been observed that in difficult tasks corresponding to relatively
high Bayesian error probabilities (i.e., attained by using the optimal Bayesian
classifier), the performance of the AdaBoost can degrade dramatically. An

“06-Ch04-SA272” 18/9/2008 page 236

236 CHAPTER 4 Nonlinear Classifiers

explanation for it is that the exponential cost function over-penalizes “bad”
samples that correspond to large negative margins,and this affects the overall
performance. More on these issues can be obtained from [Hast 01, Frie 00]
and the references therein.

A variant of the AdaBoost has been proposed in [Viol 01] and later gen-
eralized in [Yin 05]. Instead of training a single base classifier, a number
of base classifiers are trained simultaneously, each on a different set of
features. At each iteration step, the classifier &(·) results by combining
these base classifiers. In principle, any of the combination rules can be
used. [Scha 05] presents a modification of the AdaBoost that allows for
incorporation of prior knowledge into boosting as a means of compensat-
ing for insufficient data. The so called AdaBoost∗/ version was introduced
in [Rats 05], where the margin is explicitly brought into the game and the
algorithm maximizes the minimum margin of the training setup. The algo-
rithm incorporates a current estimate of the achievable margin which is
used for computation of the optimal combining coefficients of the base
classifiers.

Multiple additive regression trees (MART) is a possible alternative that
overcomes some of the drawbacks related to AdaBoost. In this case, the addi-
tive model in (4.128) consists of an expansion in a series of classification trees
(CART), and the place of the exponential cost in (4.129) can be taken by any
differentiable function. MART classifiers have been reported to perform well
in a number of real cases, such as in [Hast 01, Meye 03].

■ For the multiclass case problem there are several extensions of AdaBoost. A
straightforward extension is given in [Freu 97, Eibl 06]. However, this exten-
sion fails if the base classifier results in error rates higher than 50%. This
means that the base classifier will not be a weak one, since in the multiclass
case random guessing means a success rate equal to 1

M , where M is the num-
ber of classes. Thus, for large M 50% rate of correct classification can be a
strong requirement. To overcome this difficulty, other (more sophisticated)
extensions have been proposed. See [Scha 99, Diet 95].

Example 4.3
Let us consider a two-class classification task. The data reside in the 20-dimensional
space and obey a Gaussian distribution of unit covariance matrix and mean values
[#a, #a, . . . , #a]T , [a, a, . . . , a]T , respectively, for each class, where a ! 2/

√
20. The

training set consists of 200 points (100 from each class) and the test set of 400 points (200
from each class) independently generated from the points of the training set.

To design a classifier using the AdaBoost algorithm, we chose as a seed the weak classifier
known as stump. This is a very “naive” type of tree, consisting of a single node, and classifi-
cation of a feature vector x is achieved on the basis of the value of only one of its features, say,
xi . Thus, if xi & 0, x is assigned to class A. If xi % 0, it is assigned to class B. The decision

“06-Ch04-SA272” 18/9/2008 page 237

4.23 The Class Imbalance Problem 237

Number of base classifiers

Er
ro

r

Test set

Training set

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

FIGURE 4.30
Training and test error rate curves as functions of the number of iteration steps for the AdaBoost
algorithm, using a stump as the weak base classifier. The test error keeps decreasing even after
the training error becomes zero.

about the choice of the specific feature, xi , to be used in the classifier was randomly made.
Such a classifier results in a training error rate slightly better than 0.5.

The AdaBoost algorithm was run on the training data for 2000 iteration steps. Figure 4.30
verifies the fact that the training error rate converges to zero very fast. The test error rate keeps
decreasing even after the training error rate becomes zero and then levels off at around 0.05.

Figure 4.31 shows the margin distributions, over the training data points, for four different
training iteration steps. It is readily observed that the algorithm is indeed greedy in increasing
the margin. Even when only 40 iteration steps are used for the AdaBoost training, the resulting
classifier classifies the majority of the training samples with large margins. Using 200 iteration
steps, all points are correctly classified (positive margin values), and the majority of them
with large margin values. From then on, more iteration steps further improve the margin
distribution by pushing it to higher values.

4.23 THE CLASS IMBALANCE PROBLEM
In practice there are cases in which one class is represented by a large number
of training points while another by only of few. This is usually referred to as
the class imbalance problem. Such situations occur in a number of applications

“06-Ch04-SA272” 18/9/2008 page 238

238 CHAPTER 4 Nonlinear Classifiers

21 20.8 20.6 20.4 20.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

margin

5 base classifiers

40 base classifiers
200 base classifiers

1000 base classifiers

cu
m

ul
at

iv
e

di
st

ri
bu

ti
on

FIGURE 4.31
Margin distribution for the AdaBoost classifier corresponding to different numbers of training
iteration steps. Even when only 40 iteration steps are used, the resulting classifier classifies the
majority of the training samples with large margins.

such as text classification, diagnosis of rare medical conditions, and detection of
oil spills in satellite imaging. It is by now well established that class imbalances
may severely hinder the performance of a number of standard classifiers, for exam-
ple, decision trees, multilayer neural networks, SVMs, and boosting classifiers. This
does not come as a surprise, since our desire for a good generalization performance
dictates the design of classifiers that are as “simple” as possible. A simple hypoth-
esis, however, will not pay much attention to the rare cases in imbalanced data
sets. A study of the imbalance class problem is given in [Japk 02]. There it is
stated that the class imbalance may not necessarily be a hindrance to the classi-
fication, and it has to be considered in relation to the number of training points
as well as the complexity and the nature of the specific classification task. For
example, a large class imbalance may not be a problem in the case of an easy to
learn task, for example, well separable classes, or in cases where a large training
data set is available. On the other hand, there are cases where a small imbalance
may be very harmful in difficult-to-learn tasks with overlapping classes and/or in
the absence of a sufficient number of training points. To cope with this prob-
lem, a number of approaches have been proposed that evolve along two major
directions.

“06-Ch04-SA272” 18/9/2008 page 239

4.24 Discussion 239

Data-level Approaches
The aim here is to “rebalance” the classes by either oversampling the small class
and/or undersampling the large class. Resampling can be either random or focused.
The focus can be on points that lie close to the boundaries of the decision surfaces
(oversampling) or far away (undersampling); see, for example, [Chaw 02, Zhou 06].
A major problem with this method is how to decide the class distribution given the
data set; see, for example, [Weis 03].

Cost-sensitive Approaches
According to this line of “thought”, standard classifiers are modified appropriately
to account for the unfair data representation in the training set. For example, in
SVMs, one way is to use different parameters C in the cost function for the two
classes, for example, [Lin 02a]. According to the geometric interpretation, given in
Section 3.7.5,this is equivalent to reducing the convex hulls at a different rate paying
more respect to the smaller class, for example, [Mavr 07]. In [Sun 07],cost-sensitive
modifications of the AdaBoost algorithm are proposed,where,during the iterations,
samples from the small class are more heavily weighted than those coming from the
more prevalent class.

Class imbalance is a very important issue in practice. The designer of any classi-
fication system must be aware of the problems that may arise and alert of the ways
to cope with it.

4.24 DISCUSSION
The number of available techniques is large, and the user has to choose what
is more appropriate for the problem at hand. There are no magic recipes. A
large research effort has been focused on comparative studies of various clas-
sifiers in the context of different applications; see also the review in [Jain 00].
One of the most extensive efforts was the Statlog project [Mich 94], in which
a wide range of classifiers was tested using a large number of different data
sets. Furthermore, research effort has been devoted to unraveling relations and
affinities between the different techniques. Many of these techniques have their
origin in different scientific disciplines. Therefore, until a few years ago, they
were considered independently. Recently, researchers have started to recog-
nize underlying similarities among various approaches. For readers who want
to dig a bit deeper into these questions, the discussions and results presented
in [Chen 94, Ripl 94, Ripl 96, Spec 90, Holm 97, Josh 97, Reyn 99] will be quite
enlightening. In [Zhan 00] a survey on applications of neural networks in pattern
recognition is presented,and links between neural and more conventional classifiers
are discussed.

In summary, the only tip that can be given to the designer is that all of
the techniques presented in this book are still serious players in the classifier

“06-Ch04-SA272” 18/9/2008 page 240

240 CHAPTER 4 Nonlinear Classifiers

design game.The final choice depends on the specific task. The proof of the pudding
is in the eating!

4.25 PROBLEMS
4.1 We are given 10 feature vectors that originate from two classes '1 and '2 as

follows

'1: [0.1, #0.2]T , [0.2, 0.1]T , [#0.15, 0.2]T , [1.1, 0.8]T , [1.2, 1.1]T

'2: [1.1, #0.1]T , [1.25, 0.15]T , [0.9, 0.1]T , [0.1, 1.2]T , [0.2, 0.9]T

Check whether these are linearly separable and, if not, design an appropriate
multilayer perceptron with nodes having step function activation to classify
the vectors in the two classes.

4.2 Using the computer, generate four two-dimensional Gaussian random seq-
uences with covariance matrices

0 !

[
0.01 0.0
0.0 0.01

]

and mean values #1 ! [0, 0]T , #2 ! [1, 1]T , #3 ! [0, 1]T , #4 ! [1, 0]T . The
first two form class '1, and the other two class '2. Produce 100 vectors
from each distribution. Use the batch mode backpropagation algorithm of
Section 4.6 to train a two-layer perceptron with two hidden neurons and one
in the output. Let the activation function be the logistic one with a ! 1. Plot
the error curve as a function of iteration steps. Experiment yourselves with
various values of the learning parameter !. Once the algorithm has converged,
produce 50 more vectors from each distribution and try to classify them using
the weights you have obtained. What is the percentage classification error?

4.3 Draw the three lines in the two-dimensional space

x1 " x2 ! 0

x2 !
1
4

x1 # x2 ! 0

For each of the polyhedra that are formed by their intersections, determine
the vertices of the cube into which they will be mapped by the first layer of
a multilayer perceptron, realizing the preceding lines. Combine the regions
into two classes so that (a) a two-layer network is sufficient to classify them
and (b) a three-layer network is necessary. For both cases compute analytically
the corresponding synaptic weights.

4.4 Show that if x1 and x2 are two points in the l-dimensional space, the
hyperplane bisecting the segment with end points x1, x2, leaving x1 at its

“06-Ch04-SA272” 18/9/2008 page 241

4.25 Problems 241

positive side, is given by

(x1 # x2)T x #
1
2
∥x1∥2 "

1
2
∥x2∥2 ! 0

4.5 For the cross-entropy cost function of (4.33)

■ Show that its minimum value for binary desired response values is zero
and it occurs when the true outputs are equal to the desired ones.

■ Show that the cross-entropy cost function depends on the relative output
errors.

4.6 Show that if the cost function, optimized by a multilayer perceptron, is the
cross entropy (4.33) and the activation function is the sigmoid (4.1), then
the gradient $L

j (i) of (4.13) becomes

$L
j (i) ! a(1 # ŷj(i))yj(i)

4.7 Repeat Problem 4.6 for the softmax activation function and show that $L
j (i) !

ŷj(i) # yj(i).

4.8 Show that for the cross-entropy cost function (4.30) the outputs of the net-
work, corresponding to the optimal weights, approximate the conditional
probabilities P('i|x).

4.9 Using formula (4.37), show that if l ≥ K then M ! 2K .

4.10 Develop a program to repeat the simulation example of Section 4.10.

4.11 For the same example start with a network consisting of six neurons in the
first hidden layer and nine neurons in the second. Use a pruning algorithm
to reduce the size of the network.

4.12 Let the sum of error squares

J !
1
2

N∑

i!1

kL∑

m!1

(ŷm(i) # ym(i))2

be the minimized function for a multilayer perceptron. Compute the elements
of the Hessian matrix

"2J

"wr
kj"wr)

k)j)

Show that near a minimum, this can be approximated by

"2J

"wr
kj"wr)

k)j)

!
N∑

i!1

kL∑

m!1

"ŷm(i)
"wr

kj

"ŷm(i)

"wr)

k)j)

“06-Ch04-SA272” 18/9/2008 page 242

242 CHAPTER 4 Nonlinear Classifiers

Thus, the second derivatives can be approximated by products of the
first-order derivatives. Following arguments similar to those used for the
derivation of the backpropagation algorithm, show that

"ŷm(i)
"wr

kj
! $̂r

jm yr#1
k

where

$̂r
jm !

"ŷm(i)
"#r

j (i)

Its computation takes place recursively in the backpropagation philosophy.
This has been used in [Hass 93].

4.13 In Section 4.4 it was pointed out that an approximation to the Hessian matrix,
which is often employed in practice, is to assume that it is diagonal. Prove
that under this assumption

"2E
(
"wr

kj

)2

is propagated via a backpropagation concept according to the formulas:

(1)
"2E

(
"wr

kj

)2 !
"2E

(
"#r

j

)2

(
yr#1

k
)2

(2)
"2E

(
"v Lj

)2 ! f))
(
Lj

)
ej "

(
f)

(
Lj

))2

(3)
"2E

(
"#r#1

j

)2 !
(

f)
(
#r#1

j

))2
kl∑

k!1

(
wr

kj

)2 "2E
(
"#r

j

)2 " f))
(
#r#1

j

) kr∑

k!1

wr
kj$

r
k

where all off-diagonal terms of the Hessian matrix have been neglected and
the dependence on i has been suppressed for notational convenience.

4.14 Derive the full Hessian matrix for a simple two-layer network with two hidden
neurons and an output one. Generalize to the case of more than two hidden
neurons.

4.15 Rederive the backpropagation algorithm of Section 4.6 with activation
function

f (x) ! c tanh(bx)

4.16 In [Dark 91] the following scheme for adaptation of the learning parameter
! has been proposed:

! ! !0
1

1 " t
t0

“06-Ch04-SA272” 18/9/2008 page 243

4.25 Problems 243

Verify that, for large enough values of t0 (e.g., 300 $ t0 $ 500), the learning
parameter is approximately constant for the early stages of training (small
values of iteration step t) and decreases in inverse proportion to t for large
values. The first phase is called search phase and the latter converge phase.
Comment on the rationale of such a procedure.

4.17 Use a two-layer perceptron with a linear output unit to approximate the
function y(x) ! 0.3 " 0.2 cos(2+x), x ∈ [0, 1]. To this end, generate a suf-
ficient number of data points from this function for the training. Use the
backpropagation algorithm in one of its forms to train the network. In the
sequel produce 50 more samples, feed them into the trained network, and
plot the resulting outputs. How does it compare with the original curve?
Repeat the procedure for a different number of hidden units.

4.18 Show Eq. (4.48).

Hint: Show first that the following recursion is true:

O(N " 1, l) ! O(N , l) " O(N , l # 1)

To this end, start with the N points and add an extra one. Then show that
the difference in the dichotomies, as we go from N to N " 1 points, is due to
the dichotomizing hyperplanes (for the N points case) that could have been
drawn via this new point.

4.19 Show that if N ! 2(l " 1) the number of dichotomies is given by 2N#1.

Hint: Use the identity that

J∑

i!0

(
J
i

)

! 2 J

and recall that
(

2n " 1
n # i " 1

)

!

(
2n " 1
n " i

)

4.20 Repeat the experiments of Problem 4.17 using an RBF network. Select the k
centers regularly spaced within [0, 1]. Repeat the experiments with different
numbers of Gaussian functions and (. Estimate the unknown weights using
the least squares method.

4.21 Using your experience from the previous problem, repeat the procedure for
the two-dimensional function

y(x1, x2) ! 0.3 " 0.2 cos(2+x1) cos(2+x2)

4.22 Let the mapping from the input space to a higher dimensional space be

x ∈ R #→y ≡ !(x) ∈ R2k"1

“06-Ch04-SA272” 18/9/2008 page 244

244 CHAPTER 4 Nonlinear Classifiers

where

!(x) !

[
1√
2

, cos x, cos 2x, . . . , cos kx, sin x, sin 2x, . . . , sin kx
]T

Then show that the corresponding inner product kernel is

yT
i yj ! K(xi , xj)

!
sin

((
k " 1

2

) (
xi # xj

))

2 sin
(

xi#xj
2

)

4.23 Show (4.117).

4.24 Show (4.120).

4.25 Prove Eqs. (4.108) and (4.109) for the ridge regression task in its dual
representation form.

4.26 Show that if the linear kernel is used, the primal ridge regression task results
in Eq. (4.111).

4.27 Prove that Eqs. (4.111) and (4.112) are equivalent.

4.28 Prove that the the error rate on the training set corresponding to the final
boosting classifier tends to zero exponentially fast.

MATLAB PROGRAMS AND EXERCISES
Computer Programs

4.1 Data generator. Write a MATLAB function named data_generator that gener-
ates a two-class, two-dimensional data set using four normal distributions,with
covariance matrices Si ! s ∗ I , i ! 1, . . . , 4,where I is the 2 / 2 identity matrix.
The vectors that stem from the first two distributions belong to class "1,while
the vectors originating from the other two distributions belong to class #1.
The inputs for this function are: (a) a 2 / 4 matrix,m,whose ith column is the
mean vector of the ith distribution, (b) the variance parameter s, mentioned
before, and (c) the number of the points, N , which will be generated from
each distribution. The output of the function consists of (a) an array, X , of
dimensionality 2 / 4 ∗ N , whose first group of N vectors stem from the first
distribution, the second group from the second distribution and so on, (b) a
4 ∗ N dimensional row vector y with values "1 or #1, indicating the classes
to which the corresponding data vectors in X belong.

Solution

function [x,y]=data_generator(m,s,n)
S = s*eye(2);

“06-Ch04-SA272” 18/9/2008 page 245

MATLAB Programs and Exercises 245

[l,c] = size(m);
x = []; % Creating the training set
for i = 1:c
x = [x mvnrnd(m(:,i)',S,N)'];

end
y=[ones(1,N) ones(1,N) -ones(1,N) -ones(1,N)];

4.2 Neural network training. Write a MATLAB function, named NN_training,
which uses the least squares criterion to train a two-layer feed-forward neural
network with a single node in the output layer. The activation function for
all the nodes is the hyperbolic tangent one. For training, one may select one
of the following algorithms: a) the standard gradient descent backpropagation
algorithm (code 1), (b) the backpropagation algorithm with momentum (code
2), and (c) the backpropagation algorithm with adaptive learning rate (code
3). The inputs of this function are:

(a) The data set (X , y), where the ith column of the array matrix X is the
data vector and the ith element of the row vector y contains the class
label (#1 or "1), indicating the corresponding class to which the ith
data vector belongs.

(b) The number of first layer nodes.

(c) The code number of the training method to be adopted.

(d) The number of iterations for which the algorithm will run.

(e) A parameter vector that contains the values of the parameters required
for the adopted training method. This has the form

[lr, mc, lr_inc, lr_dec, max_perf _inc]

where lr is the learning rate, mc is the momentum parameter and the remain-
ing three parameters, which are used in the backpropagation algorithm with
variable learning rate, correspond to ri , rd , and c, as defined in Section 4.7,
respectively. For the standard backpropagation algorithm,the last four compo-
nents of the parameter vector are 0, for the momentum variant the last three
parameters are 0, while for the adaptive learning rate case only the second
component is 0.

The output of the network is the object net that corresponds to the trained
neural network. To make the results reproducible for comparison purposes,
ensure that every time this function is called it begins from the same initial
condition.

Solution

function net = NN_training(x,y,k,code,iter,par_vec)
rand('seed',0) % Initialization of the random number
% generators

“06-Ch04-SA272” 18/9/2008 page 246

246 CHAPTER 4 Nonlinear Classifiers

randn('seed',0) % for reproducibility of net initial
% conditions
% List of training methods
methods_list = {'traingd'; 'traingdm'; 'traingda'};
% Limits of the region where data lie
limit = [min(x(:,1)) max(x(:,1)); min(x(:,2)) max(x(:,2))];
% Neural network definition
net = newff(limit,[k 1],{'tansig','tansig'},...
methods_list{code,1});
% Neural network initialization
net = init(net);
% Setting parameters
net.trainParam.epochs = iter;
net.trainParam.lr=par_vec(1);
if(code == 2)
net.trainParam.mc=par_vec(2);

elseif(code == 3)
net.trainParam.lr_inc = par_vec(3);
net.trainParam.lr_dec = par_vec(4);
net.trainParam.max_perf_inc = par_vec(5);

end
% Neural network training
net = train(net,x,y);
%NOTE: During training, the MATLAB shows a plot of the
% MSE vs the number of iterations.

4.3 Write a MATLAB function, named NN_evaluation, which takes as inputs: (a)
a neural network object and (b) a data set (X , y) and returns the probability
of error that this neural network gives when it runs over this data set. The
two-class case (#1 and "1) is considered.

Solution

function pe = NN_evaluation(net,x,y)
y1 = sim(net,x); %Computation of the network outputs
pe=sum(y.*y1<0)/length(y);

4.4 Write a MATLAB function, named plot_dec_regions, that plots the decision
regions produced by a neural network trained on data sets produced by
the data_generator function. The inputs to this function are: (a) a neu-
ral network object, (b) the lower and the upper bounds in the horizontal
and vertical directions (lh, uh, lv, uv, respectively) of the region of space
where the decision regions will be plotted as well as the resolution param-
eters (rh, rv) in both directions (the lower their value the finer the plot)
and (c) the matrix m with the mean vectors of the normal distributions. Its

“06-Ch04-SA272” 18/9/2008 page 247

MATLAB Programs and Exercises 247

output is a decision region plot, where each region is marked with a red
star or with a blue circle according to whether it belongs to class "1 or #1,
respectively.

Solution
For an implementation of this function see in the book website www.
elsevierdirect.com/9781597492720.

4.5 Write a MATLAB function, named SVM_clas, which (i) generates an SVM clas-
sifier that uses RBF kernels, utilizing a given training set and (ii) measures its
performance on both the training set and a given test set. The function takes as
inputs (a) a training set (X1, y1),where each column of X1 is a data vector and
each element of the row vector y1 indicates the category of the correspond-
ing data vector in X1 (#1 or "1 in this case), (b) a similarly defined test set
(X2, y2), (c) a tolerance parameter that is used in the termination condition
of the SVM training procedure, (d) the parameter C in the SVM cost function
(Section 3.7.2), (e) the parameter sigma for the RBF kernels. The function
returns as outputs (a) the structure of the SVM classifier in the SVMstruct
object, (b) the indices of the support vectors in the svIndex vector, (c) the
error probability for the training set pe_tr, and (d) the error probability of the
test set pe_te.

Solution

function [SVMstruct,svIndex,pe_tr,pe_te]=...
SVM_clas(X1,y1,X2,y2,tol,C,sigma)
options = svmsmoset('TolKKT',tol,'Display','iter',...
'MaxIter',20000,'KernelCacheLimit',10000);
%Training and Ploting parameters
[SVMstruct,svIndex]=svmtrain(X1', y1','...
KERNEL_FUNCTION','rbf',...
'RBF_SIGMA',sigma,'BOXCONSTRAINT',C,'showplot',true,...
'Method','SMO','SMO_Opts',options);
%Computation of the error probability
train_res=svmclassify(SVMstruct,X1');
pe_tr=sum(y1'~=train_res)/length(y1);
test_res=svmclassify(SVMstruct,X2');
pe_te=sum(y2'~=test_res)/length(y2);

Computer Experiments

4.1 (a) After initializing the seed of the randn function of MATLAB to, say, 0
(randn(‘seed), 0)), use the data_generator function to create the data

set (X1, y1), with m !

[
#5 "5 "5 #5
"5 #5 "5 #5

]
, s ! 2 and N ! 100.

“06-Ch04-SA272” 18/9/2008 page 248

248 CHAPTER 4 Nonlinear Classifiers

(b) Initialize the seed of randn to,say,10 and repeat (a) to produce the data
set (X2, y2).

(c) Repeat the above two steps using the corresponding seeds for randn
(although this is not necessary), for s ! 5, and produce the (X3, y3)
and (X4, y4) data sets, respectively (m and N are as before).

(d) Plot the data sets.

4.2 (a) Run the standard backpropagation algorithm with lr ! 0.01 and 2, 4,
and 15 first layer nodes, for 1000 iterations, using the data set (X1, y1)
as training set.

(b) Evaluate the performance of the designed neural networks for both
(X1, y1) (training set) and (X2, y2) (test set) and plot the decision
regions (use lh ! lv ! #10, uh ! uv ! 10, rh ! rv ! 0.2).

(c) Comment on the results.

4.3 (a) Run the backpropagation algorithm with 4 first layer nodes with (i)
lr ! 0.01 for 300 iterations, (ii) lr ! 0.001, for 300 iterations, (iii)
lr ! 0.01, for 1000 iterations and (iv) lr ! 0.001, for 1000 iterations,
using the (X1, y1) as training set.

(b) Evaluate the performance of the designed neural networks for both
(X1, y1) (training set) and (X2, y2) (test set) and plot the decision
regions.

(c) Comment on the results.

4.4 (a) Run the adaptive learning rate variation of the backpropagation algo-
rithm with lr ! 0.001, lr_inc ! 1.05, lr_dec ! 0.7, max_perf _inc !
1.04, for 300 iterations.

(b) Evaluate the performance of the designed neural networks for both
(X1, y1) (training set) and (X2, y2) (test set) and plot the decision
regions.

(c) Compare the above results with whose obtained for the standard back-
propagation algorithm with lr ! 0.001, for 300 iterations.

4.5 Repeat 4.2–4.4 using the (X3, y3) and (X4, y4) as training and test sets,
respectively.

4.6 (a) Generate SVM classifiers using (X1, y1) and (X2, y2) defined in 4.1
as training and test sets, respectively, for C ! 1, 100, 1000, sigma !
0.5, 1, 2, 4, and tolerance parameter equal to 0.001.

(b) For each case, evaluate the respective classifier’ s performance on the
training and the test sets.

(c) Comment on the number of support vectors produced in each case.

“06-Ch04-SA272” 18/9/2008 page 249

References 249

4.7 Repeat 4.6 where now (X1, y1), (X2, y2) are replaced by (X3, y3) (X4, y4),
respectively.

REFERENCES
[Adal 97] Adali T., Liu X., Sonmez K. “Conditional distribution learning with neural networks and

its application to channel equalization,” IEEE Transactions on Signal Processing,Vol. 45(4),
pp. 1051–1064, 1997.

[Akse 06] Aksela M.,Laaksonen J. “Using diversity of errors for selecting members of a committee
classifier,”Pattern Recognition,Vol. 39, pp. 608–623, 2006.

[Amar 99] Amari S., Wu S. “Improving support vector machines by modifying kernel functions,”
Neural Networks,Vol. 12(6), pp. 783–789, 1999.

[Ampa 02] Ampazis N., Perantonis S.J. “Two highly efficient second order algorithms for feed-
forward networks,” IEEE Transactions on Neural Networks, Vol. 13(5), pp. 1064–1074,
2002.

[Angu 03] Anguita D.,Ridella S.,Rivieccio F.,Zunino R.“Hyperparameter design criteria for support
vector classifiers,”Neurocomputing,Vol. 55, pp. 109–134, 2003.

[Avni 99] Avnimelech R., Intrator N. “Boosted mixture of experts: An ensemble learning scheme,”
Neural Computation,Vol. 11, pp. 475–490, 1999.

[Barn 92] Barnard E. “Optimization for training neural networks,” IEEE Transactions on Neural
Networks,Vol. 3(2), pp. 232–240, 1992.

[Barr 93] Barron A.R. “Universal approximation bounds for superposition of a sigmoid function,”
IEEE Transactions on Information Theory,Vol. 39(3), pp. 930–945, 1993.

[Bart 02] Bartlett P., Boucherou S., Lugosi G. “Model selection and error estimation,” Machine
Learning,Vol. 48, pp. 85–113, 2002.

[Bart 98] Bartlett P.L. “The sample complexity of pattern classification with neural networks:The
size of the weights is more important than the size of the network,” IEEE Transactions on
Information Theory,Vol. 44(2), pp. 525–536, 1998.

[Batt 92] Battiti R. “First and second order methods for learning: Between steepest descent and
Newton’s method,”Neural Computation,Vol. 4, pp. 141–166, 1992.

[Baue 99] Bauer E., Kohavi R. “An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants,”Machine Learning,Vol. 36, pp. 105–139, 1999.

[Baum 88] Baum E.B.,Wilczek F. “Supervised learning of probability distributions by neural net-
works,” in Neural Information Processing Systems (Anderson D., ed.), pp. 52–61,American
Institute of Physics, New York, 1988.

[Ben 99] Ben-Yakoub S.,Abdeljaoued,Mayoraj E.“Fusion of face and speech data for person identity
verification,” IEEE Transactions on Neural Networks,Vol. 10(5), pp. 1065–1075, 1999.

[Berg 93] Berg S. “Condorcet’s jury theorem, dependency among jurors,” Social Choice Welfare,
Vol. 10, pp. 87–95, 1993.

[Bish 95] Bishop C.M. Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[Blan 96] Blanz V., Schölkopf B., Bülthoff H., Burges C.,Vapnik V., Vetter T. “Comparison of view
based object recognition using realistic 3D models,”Proceedings of International Conference
on Artificial Neural Networks, pp. 251–256, Berlin, 1996.

“06-Ch04-SA272” 18/9/2008 page 250

250 CHAPTER 4 Nonlinear Classifiers

[Bola 89] Boland P.J. “Majority systems and the Condorcet jury theorem,” Statistician, Vol. 38,
pp. 181–189, 1989.

[Bose 96] Bose N.K., Liang P. Neural Network Fundamentals with Graphs, Algorithms and
Applications, McGraw-Hill, 1996.

[Brei 84] Breiman L., Friedman J., Olshen R., Stone C. Classification and Regression Trees,
Wadsworth International, pp. 226–239, Belmont, CA, 1984.

[Brei 96] Breiman L. “Bagging predictors,”Machine Learning,Vol. 24, pp. 123–140, 1996.

[Brei 98] Breiman L. “Arcing classifiers,”The Annals of Statistics,Vol. 26(3), pp. 801–849, 1998.

[Brei 01] Breiman L. “Random Forests,”Machine Learning,Vol. 45, pp. 5–32, 2001.

[Brid 90] Bridle J.S.“Training stochastic model recognition algorithms as networks can lead to max-
imum mutual information estimation parameters,” in Neural Information Processing Systems
2 (Touretzky D.S., ed.), pp. 211–217, Morgan Kaufmann, 1990.

[Broo 88] Broomhead D.S., Lowe D. “Multivariable functional interpolation and adaptive net-
works,”Complex Systems,Vol. 2, pp. 321–355, 1988.

[Brow 93] Brown D.,Corrnble V.,Pittard C.L. “A comparison of decision tree classifiers with back-
propagation neural networks for multimodal classification problems,” Pattern Recognition,
Vol. 26(6), pp. 953–961, 1993.

[Burg 99] Burges C.J.C.“Geometry and invariance in kernel based methods,”inAdvances in Kernel
Methods: Support Vector Learning (Schólkopf B., Burges C.J.C., Smola A.J., eds.), MIT Press,
1999.

[Chap 02] Chapelle O.,VapnikV.,Bousquet O.,Mukherjee S.“Choosing multiple parameters for sup-
port vector machines,”Machine Learning,Vol. 46, pp. 131–159, 2002.

[Chau 90] Chauvin Y. “Generalization performance of overtrained backpropagation networks,” in
Neural Networks, Proc. EURASIP Workshop (Almeida L.B., Wellekens C.J., eds.), pp. 46–55,
1990.

[Chaw 02] Chawla N.V., Bowyer K., Hall L., Kelgemeyer W.P. “SMOTE: Synthetic minority over-
sampling technique,” Journal of Artificial Intelligence Research,Vol. 16, pp. 321–357, 2002.

[Chen 91] Chen S.,Cowan C.F.N.,Grant P.M.“Orthogonal least squares learning algorithm for radial
basis function networks,” IEEE Transactions on Neural Networks,Vol. 2, pp. 302–309, 1991.

[Chen 94] Cheng B.,Titterington D.M. “Neural networks: A review from a statistical perspective,”
Statistical Science,Vol. 9(1), pp. 2–30, 1994.

[Chou 91] Chou P.“Optimal partitioning for classification and regression trees,”IEEE Transactions
on Pattern Analysis and Machine Intelligence,Vol. 13, pp. 340–354, 1991.

[Cich 93] Cichocki A., Unbehauen R. Neural Networks for Optimization and Signal Processing,
John Wiley & Sons, 1993.

[Cort 95] Cortes C., Vapnik V.N. “Support vector networks,” Machine Learning, Vol. 20,
pp. 273–297, 1995.

[Cour 53] Courant R., Hilbert D. Methods of Mathematical Physics, Interscience, 1953.

[Cove 65] CoverT.M.“Geometrical and statistical properties of systems of linear inequalities with
applications in pattern recognition,” IEEE Transactions on Electronic Computers, Vol. 14,
pp. 326–334, 1965.

[Cybe 89] Cybenko G. “Approximation by superpositions of a sigmoidal function,” Mathematics
of Control, Signals and Systems,Vol. 2, pp. 304–314, 1989.

“06-Ch04-SA272” 18/9/2008 page 251

References 251

[Czyz 04] Czyz J.,Kittler J.,Vandendorpe L.“Multiple classifier combination for face-based identity
verification,”Pattern Recognition,Vol. 37, pp. 1459–1469, 2004.

[Dark 91] Darken C., Moody J. “Towards faster stochastic gradient search,” Advances in Neu-
ral Information Processing Systems 4, pp. 1009–1016, Morgan Kaufmann, San Mateo, CA,
1991.

[Datt 85] Dattatreya G.R.,Kanal L.N.“Decision trees in pattern recognition,”in Progress in Pattern
Recognition 2 (Kanal L.N., Rosenfeld A., eds.), North Holland, 1985.

[Delo 94] DelopoulosA.,TirakisA.,Kollias S.“Invariant image classification using triple correlation
based neural networks,” IEEE Transactions on Neural Networks,Vol. 5, pp. 392–408, 1994.

[Diet 95] Dietterich T.G., Bakiri G. “Solving multiclass learning problems via error-correcting
output codes,” Journal of Artificial Intelligence Research,Vol. 2, pp. 263–286, 1995.

[Druc 99] Drucker H.,Wu D.,Vapnik,V.N.“Support vector machines for spam categorization,”IEEE
Transactions on Neural Networks,Vol. 10(5), pp. 1048–1055, 1999.

[Duan 03] Duan K., Keerthi S.S., Poo A.N. “Evaluation of simple performance measures for tuning
SVM hyperparameters,”Neurocomputing,Vol. 51, pp. 41–59, 2003.

[Dzer 04] Džeroski S., Ženko B. “Is combining classifiers with stacking better than selecting the
best one?” Machine Learning,Vol. 54, pp. 255–273, 2004.

[Eibl 06] Eibl G., Pfeifer K.P. “Multiclass boosting for weak classifiers,” Journal of Machine
Learning Research,Vol. 6, pp. 189–210, 2006.

[ElNa 02] El-Naga I.,YangY.,Wernick M.N.,Galatsanos N.“A support vector machine approach for
detection of microcalcifications,” IEEE Transactions on Medical Imaging,Vol. 21, pp. 1552–
1563, 2002.

[Enge 04] Engel Y., Mannor S. “The kernel least-squares algorithm,” IEEE Transactions on Signal
Processing,Vol. 52(8), pp. 2275–2285, 2004.

[Espo 97] Esposito F., Malebra D., Semeraro G. “A comparative analysis of methods for pruning
decision trees,” IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 19(5),
pp. 476–491, 1997.

[Evge 04] Evgeniou T., Pontil M., Elisseeff A. “Leave one out error, stability, and generalization of
voting combinations of classifiers,”Machine Learning,Vol. 55, pp. 71–97, 2004.

[Fahl 90] Fahlman S.E., Lebiere C. “The cascade-correlation learning architecture,” in Advances
in Neural Information Processing Systems 2 (Touretzky D.S., ed.), pp. 524–532, Morgan
Kaufmann, 1990.

[Flao 06] Flaounas I.N., Iakovidis D.K., Marvoulis D.E. “Cascading SVMs as a tool for med-
ical diagnosis using multi-class gene expression data,” International Journal of Artificial
Intelligence Tools.

[Frea 90] Frean M. “The Upstart algorithm: A method for constructing and training feedforward
networks,”Neural Computation,Vol. 2(2), pp. 198–209, 1990.

[Freu 97] Freund Y., Schapire R.E. “A decision theoretic generalization of on-line learning and an
application to boosting,” Journal of Computer and System Sciences,Vol. 55(1), pp. 119–139,
1997.

[Frie 00] Friedman J., Hastie T., Tibshirani R. “Additive logistic regression: A statistical view of
boosting,”The Annals of Statistics,Vol. 28(2), pp. 337–407, 2000.

[Fried 81] Friedman J.,StuetzleW.“Projection pursuit regression,”Journal of American Statistical
Association,Vol. 76, pp. 817–823, 1981.

“06-Ch04-SA272” 18/9/2008 page 252

252 CHAPTER 4 Nonlinear Classifiers

[Fuku 92] Fukumi M.,Omatu S.,Takeda F.,KosakaT.“Rotational invariant neural pattern recognition
system with application to coin recognition,” IEEE Transactions on Neural Networks,Vol. 3,
pp. 272–279, 1992.

[Fuku 82] Fukushima K., Miyake S.,“Neogognitron: A new algorithm for pattern recognition tol-
erant of deformations and shifts in position,” Pattern Recognition, Vol. 15(6), pp. 445–469,
1982.

[Fume 05] Fumera G., Roli F. “A theoretical and experimental analysis of linear combiners for
multiple classifier systems,”IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 27(6), pp. 942–956, 2005.

[Funa 89] Funahashi K. “On the approximate realization of continuous mappings by neural
networks,”Neural Networks,Vol. 2(3), pp. 183–192, 1989.

[Gall 90] Gallant S.I. “Perceptron-based learning algorithms,” IEEE Transactions on Neural
Networks,Vol. 1, pp. 179–191, 1990.

[Garg 02] Garg A., Pavlovic V., Huang T.S. “Bayesian networks as enseble of classifiers,” Proceed-
ings 16th International Conference on Pattern Recognition,Vol. 2, pp. 779–784, 2002.

[Geor 06] Georgion H., Mavroforakis M.,Theodoridis S. “A game theoretic approach to weighted
majority voting for combining SVM classifiers,”in Proceedings of the International Conference
on Artificial Neural Networks, pp. 284–292, LNCS 4131, Springer, 2006.

[Germ 92] German S.,Vienenstock E., Doursat R. “Neural networks and bias/variance dilemma,”
Neural Computation,Vol. 4(1), pp. 1–58, 1992.

[Gibs 90] Gibson G.J.,Cowan C.F.N.“On the decision regions of multilayer perceptrons,”Proceed-
ings of the IEEE,Vol. 78(10), pp. 1590–1594, 1990.

[Gish 90] Gish H. “A probabilistic approach to the understanding and training neural classi-
fiers,” in Proceedings of the IEEE Conference on Acoustics Speech and Signal Processing,
pp. 1361–1364,April 1990.

[Gomm 00] Gomm J.B.,Yu D.L. “Selecting radial basis function network centers with recursive
orthogonal least squares training,”IEEE Transactions on Neural Networks,Vol. 11(2),pp. 306–
314, 2000.

[Graj 86] Grajki K.A. et al. “Classification of EEG spatial patterns with a tree structured method-
ology,” IEEE Transactions on Biomedical Engineering,Vol. 33(12), pp. 1076–1086, 1986.

[Gran 04] Grandvalet Y. “Bagging equalizes influence,” Machine Learning,Vol. 55, pp. 251–270,
2004.

[Hamp 90] Hampshire J.B. II, Perlmutter B.A. “Equivalence proofs for multilayer perceptron
classifiers and the Bayesian discriminant function,” in Proceedings of the 1990 Connectionist
Models Summer School (Touretzky D, et al., eds.), Morgan Kaufmann, 1990.

[Hart 90] Hartman E.J., Keeler J.D., Kowalski J.M. “Layered neural networks with Gaussian hidden
units as universal approximations,”Neural Computations,Vol. 2(2), pp. 210–215, 1990.

[Hass 93] Hassibi B., Stork D.G.,Wolff G.J. “Optimal brain surgeon and general network pruning,”
Proceedings IEEE Conference on Neural Networks,Vol. 1, pp. 293–299, San Francisco, 1993.

[Hast 01] HastieT.,Tibshirani R.,Friedman J. The Elements of Statistical Learning, Springer,2001.

[Hayk 96] Haykin S. “Neural networks expand SP’s horizons,” IEEE Signal Processing Magazine,
Vol. 13(2), pp. 24–49, 1996.

[Hayk 99] Haykin S. Neural Networks: A Comprehensive Foundation,2nd ed.,Prentice Hall,1999.

“06-Ch04-SA272” 18/9/2008 page 253

References 253

[Hert 91] Hertz J., Krogh A., Palmer R.G. Introduction to the Theory of Neural Computation,
Addison-Wesley, 1991.

[Hint 90] Hinton G.E. “Connectionist learning procedures,” in Machine Learning: Paradigms
and Methods (Carbonell J.G., ed.), pp. 185–234, MIT Press, 1990.

[Ho 98] Ho T.K. “The random subspace method for constructing decision forests,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 20(8), pp. 832–844, 1998.

[Ho 94] Ho T.K., Hull J.J., Srihari S.N. “Decision combination in multiple classifier design,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 16(1), pp. 66–75, 1994.

[Holm 97] Holmstrom L., Koistinen P., Laaksonen J., Oja E. “Neural and statistical classifiers—
taxonomy and two case studies,” IEEE Transactions on Neural Networks,Vol. 8(1), pp. 5–17,
1997.

[Horn 89] Hornik K., Stinchcombe M.,White H. “Multilayer feedforward networks are universal
approximators,”Neural Networks,Vol. 2(5), pp. 359–366, 1989.

[Hu 08] Hu R.,Damper R.I.“A no panacea theorem for classifier combination,”Pattern Recognition,
Vol. 41, pp. 2665–2673, 2008.

[Huan 04] Huang D-S., Ip H., Chi Z. “A neural root finder of polynomials based on root moments.”
Neural Computation,Vol. 16, pp. 1721–1762, 2004.

[Hush 93] Hush D.R.,Horne B.G.“Progress in supervised neural networks,”IEEE Signal Processing
Magazine,Vol. 10(1), pp. 8–39, 1993.

[Ito 91] Ito Y. “Representation of functions by superpositions of a step or sigmoid function
and their applications to neural network theory,” Neural Networks, Vol. 4(3), pp. 385–394,
1991.

[Jaco 88] Jacobs R.A.“Increased rates of convergence through learning rate of adaptation,”Neural
Networks,Vol. 2, pp. 359–366, 1988.

[Jaco 91] Jacobs R.A., Jordan M.I., Nowlan S.J., Hinton G.E. “Adaptive mixtures of local experts,”
Neural Computation,Vol. 3, pp. 79–87, 1991.

[Jain 00] Jain A.K., Duin P.W., Mao J. “Statistical pattern recognition: A review,” IEEE Transactions
on Pattern Analysis and Machine Intelligence,Vol. 22(1), pp. 4–37, 2000.

[Japk 02] Japkowicz N., Stephen S. “The class imbalance problem: a systematic study,” Intelligent
Data Analysis Journal,Vol. 6(5), pp. 429–450, 2002.

[Joha 92] Johansson E.M., Dowla F.U., Goodman D.M. “Backpropagation learning for multilayer
feedforward neural networks using conjugate gradient method,” International Journal of
Neural Systems,Vol. 2(4), pp. 291–301, 1992.

[Josh 97] Joshi A., Ramakrishman N., Houstis E.N., Rice J.R. “On neurobiological, neuro-fuzzy,
machine learning, and statistical pattern recognition techniques,” IEEE Transactions on
Neural Networks,Vol. 8(1), pp. 18–31, 1997.

[Juan 92] Juang B.H., Katagiri S. “Discriminative learning for minimum error classification,” IEEE
Transactions on Signal Processing,Vol. 40(12), pp. 3043–3054, 1992.

[Kalo 97] Kalouptsidis N. Signal Processing Systems,Theory and Design,JohnWiley & Sons,1997.

[Kana 92] Kanaoka T., Chellapa R., Yoshitaka M., Tomita S. “A higher order neural network for
distortion invariant pattern recognition,” Pattern Recognition Letters, Vol. 13, pp. 837–841,
1992.

“06-Ch04-SA272” 18/9/2008 page 254

254 CHAPTER 4 Nonlinear Classifiers

[Kang 00] Kang H., Lee S. “An information-theoretic strategy for constructing multiple classifier
systems,”Proceedings of the 15th International Conference on Pattern Recognition (ICPR),
Vol. 2, pp. 483–486, 2000.

[Kang 03] Kang H.J. “Combining multiple classifiers based on third-order dependency for
handwritten numeral recognition,” Pattern Recognition Letters, Vol. 24, pp. 3027–3036,
2003.

[Kara 92] Karayiannis N.B., Venetsanopoulos A.N. “Fast learning algorithm for neural networks,”
IEEE Transactions on Circuits and Systems,Vol. 39, pp. 453–474, 1992.

[Kara 97] Karayiannis N.B., Mi G.W. “Growing radial basis neural networks. Merging supervised
and unsupervised learning with network growth techniques,” IEEE Transactions on Neural
Networks,Vol. 8(6), pp. 1492–1506, 1997.

[Kear 94] Kearns M., Valiant L.G. “Cryptographic limitations on learning Boolean formulae and
finite automata,” Journal of the ACM,Vol. 41(1), pp. 67–95, 1994.

[Keer 05] Keerthi S.S., Duan K.B., Shevade S.K., Poo A.N. “A fast dual algorithm for kernel logistic
regression,”Machine Learning,Vol. 61, pp. 151–165, 2005.

[Kime 71] Kimeldorf G.S.,Wahba G. “Some results on Tchebycheffian spline functions,” Journal
of Mathematical Analysis and Applications,Vol. 33, pp. 88–95, 1971.

[Kitt 03] Kittler J.,Alkoot F.M. “Sum versus vote fusion in multiple classifiers,” IEEE Transactions
on Pattern Analysis and Machine Intelligence,Vol. 25(1), pp. 110–115, 2003.

[Kitt 98] Kittler J., Hatef M., Duin R. Matas J. “On combining classifiers,” IEEE Transactions on
Pattern Analysis and Machine Intelligence,Vol. 20(3), pp. 226–234, 1998.

[Kivi 04] Kivinen J.K., Smola A.L., Williamson R.C. “Online learning with kernels,” IEEE
Transactions on Signal Processing,Vol. 52(8), pp. 2165–2176, 2004.

[Klei 90] Kleinberg R.M. “Stochastic discrimination,” Annals of Mathematics and Artificial
Intelligence,Vol. 1, pp. 207–239, 1990.

[Koli 97] Kolinummi P.,HamalainenT.,Kaski K.“Designing a digital neurocomputer,”IEEE Circuits
and Systems Magazine,Vol. 13(2), pp. 19–27, 1997.

[Kout 94] Koutroumbas K., Kalouptsidis N. “Nearest neighbor pattern classification neural
networks,” Proc. of IEEE World Congress of Computational Intelligence, pp. 2911–2915,
Orlando, FL, July 1994.

[Kram 89] Kramer A.H., Sangiovanni-Vincentelli A. “Efficient parallel learning algorithms for
neural networks,” in Advances in Neural Information Processing Systems 1 (Touretzky D.S.,
ed.), pp. 40–48, Morgan Kaufmann, 1989.

[Kunc 01] Kuncheva L.I., Bezdek J.C., Duin R.P.W. “Decision templates for multiple classifier
fusion: an experimental comparison,”Pattern Recognition,Vol. 34, pp. 299–314, 2001.

[Kunc 02] Kunchera L.I. “A theoretical study on six classifier fusion strategies,” IEEE Transactions
on Pattern Analysis and Machine Intelligence,Vol. 24(2), pp. 281–286, 2002.

[Kunc 03] Kuncheva L.I., Whitaker C.J., Shipp C.A., Duin R.P.W. “Limits on the majority vote
accuracy in classifier fusion,”Pattern Analysis and Applications,Vol. 6, pp. 22–31, 2003.

[Kunc 03a] Kuncheva L.I.,Whitaker C.J. “Measures of diversity in classifier ensembles,” Machine
Learning,Vol. 51, pp. 181–207, 2003.

[Lam 97] Lam L., Suen Y. “Application of majority voting to pattern recognition: An analysis
of its behaviour and performance,” IEEE Transactions on Systems, Man, and Cybernetics
Vol. 27(5), pp. 553–568, 1997.

“06-Ch04-SA272” 18/9/2008 page 255

References 255

[Lane 91] Lane S.H., Flax M.G., Handelman D.A., Gelfand J.J. “Multilayer perceptrons with
B-spline receptive field functions,” in Advances in Neural Information Processing Systems 3
(Lippmann R.P., Moody J.,Touretzky D.S., eds.), pp. 684–692, Morgan Kaufmann, 1991.

[Lecu 89] Le Cun Y., Boser B., Denker J.S., Henderson D., Howard R.E., Hubbard W., Jackel L.D.
“Backpropagation applied to handwritten zip code recognition,” Neural Computation, Vol.
1(4), pp. 541–551, 1989.

[Lecu 90] Le Cun Y., Denker J.S., Solla S.A. “Optimal brain damage,” in Advances in Neural
Information Systems 2 (Touretzky D.S., ed.), pp. 598–605, Morgan Kaufmann, 1990.

[Lee 04] Lee M.S., Keerthi S.S., Ong C.J. “An efficient method for computing Leave-One-Out error
in support vector machines with Gaussian kernels,” IEEE Transactions on Neural Networks,
Vol. 15(3), pp. 750–757, 2004.

[Levi 02] Levitin G. “Evaluating correct classification probability for weighted voting classifiers
with plurality voting,”European Journal of Operational Research,Vol. 141,pp. 596–607,2002.

[Lin 03] Lin X., Yacoub S., Burns J., Simske S. “Performance analysis of pattern classifier
combination by plurality voting,”Pattern Recognition Letters,Vol. 24, pp. 1959–1969, 2003.

[Lin 02] Lin Y.,Wahba G., Zhang H., Lee Y. “Statistical properties and adaptive tuning of support
vector machines,”Machine Learning,Vol. 48, pp. 115–136, 2002.

[Lin 02a] Lin Y., Lee Y., Wahba G. “Support vector machines for classification in nonstandard
situations,”Machine Learning,Vol. 46, pp. 191–202, 2002.

[Lipp 87] Lippmann R.P. “An introduction to computing with neural networks,” IEEE ASSP
Magazine,Vol. 4(2), pp. 4–22, 1987.

[Mack 92a] MacKay D.J.C. “A practical Bayesian framework for backpropagation networks,”
Neural Computation,Vol. 4(3), pp. 448–472, 1992.

[Mack 92b] MacKay D.J.C. “The evidence framework applied to classification networks,” Neural
Computation,Vol. 4(5), pp. 720–736, 1992.

[Maso 00] Mason L., Baxter J., Bartleet P., Frean M. “Boosting algorithms as gradient descent,” in
Neural Information Processing Systems,Vol. 12, 2000.

[Mavr 07] Mavroforakis M., Sdralis M.,Theodoridis S.“A geometric nearest point algorithm for the
efficient solution of the SVM classification task,” IEEE Transactions on Neural Networks,Vol.
18(5), pp. 1545–1550, 2007.

[Meye 03] Meyer D., Leisch F., Hornik K. “The support vector machine under test,”
Neurocomputing,Vol. 55, pp. 169–186, 2003.

[Meza 89] Mezard M., Nadal J.P. “Learning in feedforward layered networks:The tilling algorithm,”
Journal of Physics,Vol. A 22, pp. 2191–2203, 1989.

[Mich 94] Michie D., Spiegelhalter D.J., Taylor C.C., eds. Machine Learning, Neural, and
Statistical Classification, Ellis Horwood Ltd., London, 1994.

[Mill 96] Miller D., Rao A., Rose K., Gersho A. “A global optimization technique for statistical
classifier design,” IEEE Transactions on Signal Processing,Vol. 44(12), pp. 3108–3122, 1996.

[Mill 99] Miller D.J.,Yan L. “Critic-driven ensemble classification,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 47(10), pp. 2833–2844, 1999.

[Mirc 89] Mirchandini G.,CaoW.“On hidden nodes in neural nets,”IEEE Transactions on Circuits
and Systems,Vol. 36(5), pp. 661–664, 1989.

[Mood 89] Moody J., Darken C.J. “Fast learning in networks of locally tuned processing units,”
Neural Computation,Vol. 6(4), pp. 281–294, 1989.

“06-Ch04-SA272” 18/9/2008 page 256

256 CHAPTER 4 Nonlinear Classifiers

[Mulg 96] Mulgrew B. “Applying radial basis functions,” IEEE Signal Processing Magazine, Vol.
13(2), pp. 50–65, 1996.

[Mull 01] Müller R.M., Mika S., Rätsch G.,Tsuda K., Schölkopf B. “An introduction to kernel-based
learning algorithms,” IEEE Transactions on Neural Networks, Vol. 12(2), pp. 181–201,
2001.

[Murp 90] Murphy O.J. “Nearest neighbor pattern classification perceptrons,” Proceedings of the
IEEE,Vol. 78(10), October 1990.

[Nara 05] Narasimhamurthy A. “Theoretical bounds of majority voting performance for a binary
classification problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 27(12), pp. 1988–1995, 2005.

[Nede 93] Nedeljkovic V. “A novel multilayer neural networks training algorithm that minimizes
the probability of classification error,” IEEE Transactions on Neural Networks,Vol. 4(4), pp.
650–659, 1993.

[Pado 95] Pados D.A., Papantoni-Kazakos P. “New non least squares neural network learning
algorithms for hypothesis testing,” IEEE Transactions on Neural Networks, Vol. 6, pp.
596–609, 1995.

[Palm 91] Palmieri F., Datum M., Shah A., Moiseff A. “Sound localization with a neural network
trained with the multiple extended Kalman algorithm,” International Joint Conference on
Neural Networks,Vol. 1, pp. 125–131, Seattle, 1991.

[Pare 00] Parekh R., Yang J., Honavar V. “Constructive neural network learning algorithms for
pattern classification,” IEEE Transactions on Neural Networks,Vol. 11(2),pp. 436–451,2000.

[Park 91] Park J., Sandberg I.W. “Universal approximation using radial basis function networks,”
Neural Computation,Vol. 3(2), pp. 246–257, 1991.

[Park 93] Park J., Sandberg I.W. “Approximation and radial basis function networks,” Neural
Computation,Vol. 5(2), pp. 305–316, 1993.

[Park 94] ParkY.“A comparison of neural net classifiers and linear tree classifiers:Their similarities
and differences,”Pattern Recognition,Vol. 27(11), pp. 1493–1503, 1994.

[Pera 03] Perantonis S.J. “Neural networks: nonlinear optimization for constrained learning and
its applications,” Proceedings of NOLASC 2003, pp. 589–594, Athens, Greece, December
27–29, 2003.

[Pera 00] Perantonis S.J.,Ampazis N.,Virvilis V. “A learning framework for neural networks using
constrained optimization methods,” Annals of Operations Research, Vol. 99, pp. 385–401,
2000.

[Pera 95] Perantonis S.J., Karras D.A. “An efficient learning algorithm with momentum
acceleration,”Neural Networks,Vol. 8, pp. 237–249, 1995.

[Pera 92] Perantonis S.J., Lisboa P.J.G. “Translation, rotation, and scale invariant pattern recogni-
tion by high-order neural networks and moment classifiers,” IEEE Transactions on Neural
Networks,Vol. 3(2), pp. 241–251, 1992.

[Pikr 08] Pikrakis A., Ganakopoulos T., Theodoridis S. “A speech/music discriminator of radio
recordings based on dynamic programming and Bayesian networks. IEEE Transactions
mulitmedia,Vol. 10(5), pp. 846–856, 2008.

[Plat 91] Platt J. “A resource allocating network for function interpolation,”Neural Computation,
Vol. 3, pp. 213–225, 1991.

“06-Ch04-SA272” 18/9/2008 page 257

References 257

[Plat 99] Platt J. “Fast training of support vector machines using sequential minimal optimization,”
in Advances in Kernel Methods: Support Vector Learning (Scholkopf B., Burges C.J.C., Smola
A.J. eds.), pp. 185–208, MIT Press, 1999.

[Quin 93] Quinlan J.R. C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.

[Rats 02] Rätsch G., Mika S., Schölkopf B., Müller K.R. “Constructing boosting algorithms from
SVMS:An application to one class classification,” IEEE Transactions on Pattern Analysis and
Machine Intelligence,Vol. 24(9), pp. 1184–1199, 2002.

[Rats 05] Rätsch G., Warmuth M.K. “Efficient margin maximizing with boosting,” Journal of
Machine Learning Research,Vol. 6, pp. 2131–2152, 2005.

[Refe 91] Refenes A., Chen L. “Analysis of methods for optimal network construction,”University
College London Report, CC30/080:DCN, 1991.

[Reyn 99] Reyneri L. “Unification of neural and wavelet networks and fuzzy systems,” IEEE
Transactions on Neural Networks,Vol. 10(4), pp. 801–814, 1999.

[Rich 91] Richard M., Lippmann R.P. “Neural network classifiers estimate Bayesian a posteriori
probabilities,”Neural Computation,Vol. 3, pp. 461–483, 1991.

[Rico 88] Ricotti L.P., Ragazinni S., Martinelli G. “Learning of word stress in a suboptimal second
order backpropagation neural network,”in Proceedings of the IEEE International Conference
on Neural Networks,Vol. 1, pp. 355–361, San Diego, 1988.

[Ride 97] Ridella S., Rovetta S., Zunino R. “Circular backpropagation networks for classification,”
IEEE Transactions on Neural Networks,Vol. 8(1), pp. 84–97, 1997.

[Ried 93] Riedmiller M., Brau H. “A direct adaptive method for faster backpropagation learning:
The rprop algorithm,”Proceedings of the IEEE Conference on Neural Networks,San Francisco,
1993.

[Ripl 94] Ripley B.D. “Neural networks and related methods for classification,” Journal of Royal
Statistical Society,Vol. B, 56(3), pp. 409–456, 1994.

[Ripl 96] Ripley B.D. Pattern Recognition and Neural Networks, Cambridge University Press,
1996.

[Rodr 06] Rodriguez J.J., Kuncheva L.I., Alonso C.J. “Rotation forests: A new classifier ensemble
method,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28(10),
pp. 1619–1631, 2006.

[Rome 97] Romero R.D., Touretzky D.S., Thibadeau G.H. “Optical character recognition using
probabilistic neural networks,”Pattern Recognition,Vol. 3, pp. 1279–1292, 1997.

[Rose 96] Rosen B.E. “Ensemble learning using decorrelated neural networks,” Connections
Science Vol. 8(3), pp. 373–384, 1996.

[Rume 86] Rumelhart D.E., Hinton G.E.,Williams R.J. “Learning internal representations by error
propagation,” Parallel Distributed Processing: Explorations in the Microstructures of Cog-
nition (Rumelhart D.E., McClelland J.L., eds.),Vol. 1, pp. 318–362, MIT Press, 1986.

[Russ 93] Russell R. “Pruning algorithms. A survey,” IEEE Transactions on Neural Networks,
Vol. 4(5), pp. 740–747, 1993.

[Rutk 04] Rutkowski L. “Adaptive probabilistic neural networks in time-varying environments,”
IEEE Transactions on Neural Networks,Vol. 15, pp. 811–827, 2004.

[Saye 04] Sayed A. Fundamentals of Adaptive Filtering, John. Wiley & Sons, 2003.

[Scha 98] Schapire R.E.,FreundV.,Bartlett P.,LeeW.S.“Boosting the margin: A new explanation for
the effectiveness of voting methods,”The Annals of Statistics,Vol. 26(5),pp. 1651–1686,1998.

“06-Ch04-SA272” 18/9/2008 page 258

258 CHAPTER 4 Nonlinear Classifiers

[Scha 05] Schapire R.E., Rochery M., Rahim M., Gupta N. “Boosting with prior knowledge for call
classification,” IEEE Transactions on Speech and Audio Processing,Vol. 13(2), pp. 174–181,
2005.

[Scha 99] Schapire R.E., Singer Y. “Improved boosting algorithms using confidence-rated
predictions,”Machine Learning,Vol. 37(3), pp. 297–336, 1999.

[Scho 97] Schölkopf B., Sung K.-K., Burges C.J.C., Girosi F., Niyogi P., Poggio T.,Vapnic V. “Compar-
ing support vector machines with Gaussian kernels to RBF classifiers,” IEEE Transactions on
Signal Processing,Vol. 45(11), pp. 2758–2766, 1997.

[Scho 02] Schölkoph B., Smola A.J. Learning with Kernels, MIT Press , 2002.

[Seba 00] Sebald D.J.,Bucklew J.A.“Support vector machine techniques for nonlinear equalization,”
IEEE Transactions on Signal Processing,Vol. 48(11), pp. 3217–3227, 2000.

[Seth 90] Sethi I.K. “Entropy nets: From decision trees to neural networks,” Proceedings of the
IEEE,Vol. 78, pp. 1605–1613, 1990.

[Seth 91] Sethi I.K. “Decision tree performance enhancement using an artificial neural network
interpretation,” in Artificial Neural Networks and Statistical Pattern Recognition (Sethi I.,
Jain A., eds.), Elsevier Science Publishers, 1991.

[Shaw 04] Shawe-Taylor J., Cristianini N. Kernel Methods for Pattern Analysis, Cambridge
University Press, 2004.

[Siet 91] Sietsma J., Dow R.J.F. “Creating artificial neural networks that generalize,” Neural
Networks,Vol. 4, pp. 67–79, 1991.

[Silv 90] Silva F.M., Almeida L.B. “Accelaration technique for the backpropagation algorithm,”
Proceedings of the EURASIP Workshop on Neural Networks (Almeida L.B. et al., eds.),
pp. 110–119, Portugal, 1990.

[Sing 89] Singhal S.,Wu L. “Training feedforward networks with the extended Kalman filter,”Pro-
ceedings of the IEEE International Conference on Acoustics Speech and Signal Processing,
pp. 1187–1190, Glasgow, 1989.

[Slav 08] Slavakis K.,Theodoridis S., I. Yamada “Online Kernel-Based Classification and Adaptive
Projection Algorithms,” IEEE Transactions on Signal Processing, Vol. 56(7), pp. 2781–2797,
2008.

[Slav 08a] Slavakis K., Theodoridis S. “Sliding Window Generalized Kernel Affine Projection
Algorithm using Projection Mappings,”EURASIP Journal on Advances on Signal Processing,
JASP, To appear 2008.

[Spec 90] Specht D. “Probabilistic neural networks,”Neural Networks,Vol. 3, pp. 109–118, 1990.

[Stre 94] Streit R.L.,LuginbuhlT.E.“Maximum likelihood training of probabilistic neural networks,”
IEEE Transactions on Neural Networks,Vol. 5, pp. 764–783, 1994.

[Spec 90] Specht D.F.“Probabilistic neural networks,”Neural Networks,Vol. 3,pp. 109–118,1990.

[Suar 99] Suarez A., Lutsko J.F. “Globally optimal fuzzy decision trees for classification and
regression,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21(12),
pp. 1297–1311, 1999.

[Sun 07] Sun Y., Kamel M.S., Wong A.K.C., Wang T. “Cost-effective boosting for classification of
imbalanced data,”Pattern Recognition,Vol. 40, pp. 3358–3378, 2007.

[Tax 00] Tax D.M.J., Breukelen M., Duin R.P.W., Kittler J. “Combining multiple classifiers by
averaging or by multiplying?” Pattern Recognition,Vol. 33, pp. 1475–1485, 2000.

“06-Ch04-SA272” 18/9/2008 page 259

References 259

[Theo 95] Theodoridis S., Cowan C.F.N., Callender C., Lee C.M.S. “Schemes for equalization in
communication channels with nonlinear impairments,”IEE Proceedings on Communications,
Vol. 61(3), pp. 268–278, 1995.

[Tipp 01] Tipping M.E. “Sparse Bayesiay learning and the relevance vector machine,” Journal of
Machine Learning Research,Vol. 1, pp. 211–244, 2001.

[Tres 01] Tresp V. “Committee Machines,” in Handbook for Neural Network Signal Processing
(Hu Y.H., Hwang J.N., eds), CRC Press, 2001.

[Tume 95] Tumer K., Ghosh J. “Analysis of decision boundaries in linearly combined classifiers,”
Pattern Recognition,Vol. 29(2), pp. 341–348, 1995.

[Ueda 97] Ueda N. “Optimal linear combination of neural networks for improving classification
performance,” IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 22(2),
pp. 207–215, 2000.

[Vali 84] Valiant L.G. “A theory of the learnable,” Communications of the ACM,Vol. 27(11), pp.
1134–1142, 1984.

[Vapn 00] Vapnik V.N. The Nature of Statistical Learning Theory, Springer Verlag, 2000.

[Viol 01] Viola P., Jones M. “Robust real-time object detection,” Proceedings IEEE Workshop on
Statistical and Computational Theories of Vision,Vancouver, Canada, 2001.

[Watr 88] Watrous R.L. “Learning algorithms for connectionist networks: Applied gradient
methods of nonlinear optimization,” in Proceedings of the IEEE International Conference
on Neural Networks,Vol. 2, pp. 619–627, San Diego, 1988.

[Wein 90] Weigend A.S., Rumelhart D.E., Huberman B.A. “Backpropagation, weight elimination
and time series prediction,” in Proceedings of the Connectionist Models Summer School
(Touretzky D., Elman J., Sejnowski T., Hinton G., eds.), pp. 105–116, 1990.

[Weis 03] Weiss G, Provost F. “Learning when training data are costly: the effect of class distri-
bution on tree induction,” Journal of Artificial Intelligence Research, Vol. 19, pp. 315–354,
2003.

[Werb 74] Werbos P.J. “Beyond regression: New tools for prediction and analysis in the behavioral
sciences,”Ph.D. Thesis, Harvard University, Cambridge, MA, 1974.

[Wett 92] Wettschereck D., Dietterich T. “Improving the performance of radial basis function net-
works by learning center locations,” in Advances in Neural Information Processing Systems,
4th ed. (Moody J.E.,Hanson S.J.,Lippmann R.P.,eds.),pp. 1133–1140,Morgan Kaufmann,1992.

[Witt 00] Witten I., Frank E. Data Mining: Practical Machine Learning Tools and Techniques
with JAVA Implementations, Morgan Kaufmann, 2000.

[Wolpe 92] Wolpet D.H. “Stacked generalization,”Neural Networks,Vol. 5(2), pp. 241–260, 1992.

[Yang 06] Yang Z.R. “A novel radial basis function neural network for discriminant analysis,” IEEE
Transactions on Neural Networks,Vol. 17(3), pp. 604–612, 2006.

[Yin 05] Yin X.C., Liu C.P., Han Z. “Feature combination using boosting,” Pattern Recognition
Letters,Vol. 25(14), pp. 2195–2205, 2005.

[Ying 98] Yingwei L., Sundararajan N., Saratihandran P. “Performance evaluation of a sequential
minimal RBF neural network learning algorithm,” IEEE Transactions on Neural Networks,
Vol. 9(2), pp. 308–318, 1998.

“06-Ch04-SA272” 18/9/2008 page 260

260 CHAPTER 4 Nonlinear Classifiers

[Zhan 00] Zhang G.P. “Neural networks for classification: A survey,” IEEE Transactions on Sys-
tems Man and Cybernetics – Part C,Vol. 30(4), pp. 451–462, 2000.

[Zhou 06] Zhou Z.H., Liu X.Y. “Training cost sensitive neural networks with methods addressing
the class imbalance problem,” IEEE Transactions on Knowledge Data Engineering, Vol.
18(1), pp. 63–77, 2006.

[Zura 92] Zurada J. Introduction to Artificial Neural Networks, West Publishing Company, St.
Paul, MN., 1992.

“07-Ch05-SA272” 17/9/2008 page 261

CHAPTER

5Feature Selection

5.1 INTRODUCTION
In all previous chapters, we considered the features that should be available prior
to the design of the classifier. The goal of this chapter is to study methodologies
related to the selection of these variables. As we pointed out very early in the
book, a major problem associated with pattern recognition is the so-called curse
of dimensionality (Section 2.5.6). The number of features at the disposal of the
designer of a classification system is usually very large. As we will see in Chapter 7,
this number can easily reach the order of a few dozens or even hundreds.

There is more than one reason to reduce the number of features to a sufficient
minimum. Computational complexity is the obvious one. A related reason is that,
although two features may carry good classification information when treated sepa-
rately, there is little gain if they are combined into a feature vector because of a high
mutual correlation. Thus, complexity increases without much gain. Another major
reason is that imposed by the required generalization properties of the classifier, as
discussed in Section 4.9 of Chapter 4. As we will state more formally at the end of
this chapter,the higher the ratio of the number of training patterns N to the number
of free classifier parameters, the better the generalization properties of the resulting
classifier.

A large number of features are directly translated into a large number of
classifier parameters (e.g., synaptic weights in a neural network, weights in a linear
classifier). Thus, for a finite and usually limited number N of training patterns,keep-
ing the number of features as small as possible is in line with our desire to design
classifiers with good generalization capabilities. Furthermore, the ratio N /l enters
the scene from another nearby corner. One important step in the design of a classi-
fication system is the performance evaluation stage, in which the classification error
probability of the designed classifier is estimated. We not only need to design a clas-
sification system,but we must also assess its performance. As is pointed out in Chap-
ter 10, the classification error estimate improves as this ratio becomes higher. In
[Fine 83] it is pointed out that in some cases ratios as high as 10 to 20 were
considered necessary. 261

“07-Ch05-SA272” 17/9/2008 page 262

262 CHAPTER 5 Feature Selection

The major task of this chapter can now be summarized as follows. Given a
number of features, how can one select the most important of them so as to
reduce their number and at the same time retain as much as possible of their
class discriminatory information? The procedure is known as feature selection or
reduction. This step is very crucial. If we selected features with little discrimination
power, the subsequent design of a classifier would lead to poor performance. On
the other hand, if information-rich features are selected, the design of the classifier
can be greatly simplified. In a more quantitative description,we should aim to select
features leading to large between-class distance and small within-class variance in
the feature vector space. This means that features should take distant values in the
different classes and closely located values in the same class. To this end, different
scenarios will be adopted. One is to examine the features individually and discard
those with little discriminatory capability. A better alternative is to examine them
in combinations. Sometimes the application of a linear or nonlinear transformation
to a feature vector may lead to a new one with better discriminatory properties. All
these paths will be our touring directions in this chapter.

Finally, it must be pointed out that there is some confusion in the literature
concerning the terminology of this stage. In some texts the term feature extraction
is used, but we feel that this may be confused with the feature generation stage
treated in Chapter 7. Others prefer to call it a preprocessing stage. We have kept
the latter term to describe the processing performed on the features prior to their
utilization. Such processing involves removing outliers, scaling of the features to
safeguard comparable dynamic range of their respective values, treating missing
data, and so forth.

5.2 PREPROCESSING
5.2.1 Outlier Removal
An outlier is defined as a point that lies very far from the mean of the corresponding
random variable. This distance is measured with respect to a given threshold, usu-
ally a number of times the standard deviation. For a normally distributed random
variable, a distance of two times the standard deviation covers 95% of the points,
and a distance of three times the standard deviation covers 99% of the points. Points
with values very different from the mean value produce large errors during training
and may have disastrous effects. These effects are even worse when the outliers
are the result of noisy measurements. If the number of outliers is very small, they
are usually discarded. However, if this is not the case and they are the result of a
distribution with long tails, then the designer may have to adopt cost functions that
are not very sensitive in the presence of outliers. For example, the least squares cri-
terion is very sensitive to outliers, because large errors dominate the cost function
due to the squaring of the terms. A review of related techniques that attempt to
address such problems is given in [Hube 81].

“07-Ch05-SA272” 17/9/2008 page 263

5.2 Preprocessing 263

5.2.2 Data Normalization
In many practical situations a designer is confronted with features whose values lie
within different dynamic ranges. Thus, features with large values may have a larger
influence in the cost function than features with small values,although this does not
necessarily reflect their respective significance in the design of the classifier. The
problem is overcome by normalizing the features so that their values lie within simi-
lar ranges. A straightforward technique is normalization via the respective estimates
of the mean and variance. For N available data of the kth feature we have

x̄k !
1
N

N∑

i!1

xik, k ! 1, 2, . . . , l

!2
k !

1
N " 1

N∑

i!1

(xik " x̄k)2

x̂ik !
xik " x̄k

!k

In words, all the resulting normalized features will now have zero mean and unit
variance. This is obviously a linear method. Other linear techniques limit the feature
values in the range of [0, 1] or ["1, 1] by proper scaling. Besides the linear methods,
nonlinear methods can also be employed in cases in which the data are not evenly
distributed around the mean. In such cases transformations based on nonlinear
(i.e., logarithmic or sigmoid) functions can be used to map data within speci-
fied intervals. The so-called softmax scaling is a popular candidate. It consists of
two steps

y !
xik " x̄k

r!k
, x̂ik !

1
1 # exp("y)

(5.1)

This is basically a squashing function limiting data in the range of [0, 1]. Using a series
expansion approximation, it is not difficult to see that for small values of y this is an
approximately linear function with respect to xik. The range of values of xik that
correspond to the linear section depends on the standard deviation and the factor
r, which is user defined. Values away from the mean are squashed exponentially.

5.2.3 Missing Data
In practice, certain features may be missing from some feature vectors. Such
incomplete-data cases are common in social sciences due, for example, to partial
response in surveys. Remote sensing is another area where incomplete-data may
occur when certain regions are covered by a subset of sensors. Sensor networks,
which rely on a set of distributed information sources and on the data fusion from
a number of sensors, is also a discipline where incomplete-data may arise.

The most traditional techniques in dealing with missing data include schemes
that“complete”the missing values by (a) zeros or (b) the unconditional mean,com-
puted from the available values of the respective feature or (c) the conditional

“07-Ch05-SA272” 17/9/2008 page 264

264 CHAPTER 5 Feature Selection

mean, if one has an estimate of the pdf of the missing values given the observed
data. Completing the missing values in a set of data is also known as imputation.
Another approach is to discard feature vectors with missing values. Although such
a technique can be useful in cases of large data sets, in most cases it is considered a
“luxury” to afford to drop available information.

Since the mid-1970s ([Rubi 76]), a large research effort has been invested to
cope efficiently with the missing data task, and a number of sophisticated methods
have been developed and used successfully. A popular alternative to the previously
exposed, rather naive approaches is known as imputing from a conditional distri-
bution. The idea here is to impute by respecting the statistical nature of the missing
values. Under this rationale, missing values are not replaced by statistical means or
zeros but by a random draw from a distribution. Let us denote the complete feature
vector as xcom and assume that some of its components are missing (xmis) and the
rest are observed (xobs). Then the complete feature vector is written as

xcom !

[
xobs

xmis

]

Under the assumption that the probability of missing a value does not depend on
the value itself (this is known as the missing at random (MAR) assumption), imput-
ing from a conditional distribution means to simulate a draw from the following
conditional pdf

p(xmis|xobs; !) !
p(xobs, xmis; !)

p(xobs; !)
(5.2)

where

p(xobs; !) !

∫
p(xcom; !)dxmis (5.3)

where ! is an unknown set of parameters. In practice, an estimate !̂ of ! must
first be obtained from xobs. The celebrated EM algorithms (Chapter 2) is a pop-
ular choice for parameter estimation under the missing data setting, for example,
[Ghah 94, Tsud 03].

The multiple imputation (MI) procedure ([Rubi 87]) is one step beyond the
previous methodology, usually referred to as single imputation (SI). In MI, for each
missing value, m $ 1 samples are generated. The results are then combined appro-
priately so that certain statistical properties are fulfilled. MI can be justified as an
attempt to overcome uncertainties associated with the estimation of the parame-
ter !. Hence, instead of drawing a single point from p(xmis|xobs; !̂) one can use
different parameters, !̂i, i ! 1, 2, . . . , m, and draw the m samples from

p(xmis|xobs; !̂i), i ! 1, 2, . . . , m

A way to approach this problem is via Bayesian inference arguments (Chapter 2),
where the unknown parameter vector is treated as a random one described by a
posterior probability, see, for example, [Gelm 95].

“07-Ch05-SA272” 17/9/2008 page 265

5.3 The Peaking Phenomenon 265

In a more recent paper ([Will 07]), the missing data problem is treated in the
context of logistic regression classification (Section 3.6) and explicit imputation is
bypassed. This is achieved by integrating out the missing values and predicting the
binary class label, yi , of the ith pattern based on the value of

P(yi|xi,obs) !

∫
P(yi |xi,obs, xi,mis)p(xi,mis|xi,obs)dxi,mis

Under the assumption that p(xi,mis|xi,obs) is sufficiently modeled by a Gaussian
mixture model (Section 2.5.5) the previous integration can be performed analyti-
cally. For more on the problem of missing data the interested reader may refer to
the excellent review article [Scha 02]. We will return to the missing data problem
in Chapter 11.

5.3 THE PEAKING PHENOMENON
As stated in the introduction of this chapter, in order to design a classifier with good
generalization performance, the number of training points,N ,must be large enough
with respect to the number of features, l, that is, the dimensionality of the feature
space. Take as an example the case of designing a linear classifier, wT x # w0. The
number of the unknown parameters is l # 1. In order to get a good estimate of
these parameters, the number of data points must be larger than l # 1. The larger
the N the better the estimate, since we can filter out the effects of the noise and
also minimize the effects of the outliers.

In [Trun 79],an elegant simple example has been given that reveals the interplay
between the number of features and the size of the training data set and elucidates
the way these two parameters influence the performance of a classifier. Consider a
two-class classification task with equal prior probabilities,P("1) ! P("2) ! 1

2 , in the
l-dimensional space. Both classes,"1,"2,are described by Gaussian distributions of
the same covariance matrix % ! I , where I is the identity matrix and mean values
" and "", respectively, where

" !
[

1, 1√
2

, 1√
3

, . . . , 1√
l

]T
(5.4)

Since the features are jointly Gaussian and % ! I ,the involved features are statistically
independent (see Appendix A.9). Moreover, the optimal Bayesian rule is equivalent
to the minimum Euclidean distance classifier. Given an unknown feature vector x,
we classify it to, say, "1 if

||x " "||2 & ||x # "||2

or after performing the algebra, if

z ≡ xT " $ 0

If z & 0, we decide in favor of the class "2. Thus, the decision relies on the value of
the inner product z. In the sequel we will consider two cases.

“07-Ch05-SA272” 17/9/2008 page 266

266 CHAPTER 5 Feature Selection

Known Mean Value "

The inner product z, being a linear combination of independent Gaussian vari-
ables, is also a Gaussian variable (see, e.g., [Papo 91]) with mean value E[z] !
||"||2 !

∑l
i!1

1
i and variance !2

z ! ||"||2 (Problem 5.1). The probability of com-
mitting an error turns out to be equal to (Problem 5.1)

Pe !

∫ '

bl

1√
2#

exp
(

"
z2

2

)
dz (5.5)

where

bl !

√√√√
l∑

i!1

1
i

(5.6)

Note that the series in (5.6) tends to infinity as l "→'; hence the probability of
error tends to zero as the number of features increases.

Unknown mean value "

In this case, the mean value has to be estimated from the training data set. Adopting
the maximum likelihood estimate we obtain

"̂ !
1
N

N∑

k!1

skxk

where sk ! 1 if xk ∈ "1 and sk ! "1 if xk ∈ "2. Decisions are taken depending
on the inner product z ! xT "̂. However, z is no more a Gaussian variable, since
"̂ is not a constant but a random vector. By the definition of the inner product,
z !

∑l
i!1 xi"̂i and for large enough l and the central limit theorem (AppendixA) z

can be considered approximately Gaussian. Its mean value and variance are given
by (Problem 5.2)

E[z] !
l∑

i!1

1
i

(5.7)

and

!2
z !

(
1 #

1
N

) l∑

i!1

1
i

#
l
N

(5.8)

The probability of error is given by (5.5) with

bl !
E[z]
!z

(5.9)

It can now be shown that bl "→0 as l "→' and the probability of error tends to 1
2

for any finite number N (Problem 5.2).

“07-Ch05-SA272” 17/9/2008 page 267

5.3 The Peaking Phenomenon 267

The above example demonstrates that:

■ If for any l the corresponding pdf is known,then we can perfectly discriminate
the two classes by arbitrarily increasing the number of features.

■ If the pdfs are not known and the associated parameters must be estimated
using a finite training set, then the arbitrary increase of the number of features
leads to the maximum possible value of the error rate, that is, Pe ! 0.5. This
implies that under a limited number of training data we must try to keep the
number of features to a relatively low number.

In practice, for a finite N , by increasing the number of features one obtains
an initial improvement in performance, but after a critical value further increase
of the number of features results in an increase of the probability of error. This
phenomenon is also known as the peaking phenomenon. Figure 5.1 illustrates
the general trend that one expects to experience in practice by playing with the
number of features, l,and the size of the training data set,N . For N2 $$ N1,the error
values corresponding to N2 are lower than those resulting for N1, and the peaking
phenomenon occurs for a value l2 $ l1. For each value of N , the probability of
error starts decreasing with increasing l till a critical value where the error starts
increasing. The minimum in the curves occurs at some number l ! N

$, where $,
usually, takes values in the range of 2 to 10. Consequently, in practice, for a small
number of training data,a small number of features must be used. If a large number
of training data is available, a larger number of features can be selected that yield
better performance.

Although the above scenario covers a large set of “traditional”classifiers, it is not
always valid. We have already seen that adopting an appropriate kernel function to
design a nonlinear SVM classifier implies a mapping to a high-dimensional space,

l

Pe

l1 l2

N ! N1 N ! N2

FIGURE 5.1
For a given value of N , the probability of error decreases as the number of features increases till a
critical value. Further increase in the number of features forces the error probability to increase.
If the number of points increases, N2 $$ N1, the peaking phenomenon occurs for larger values,
l2 $ l1.

“07-Ch05-SA272” 17/9/2008 page 268

268 CHAPTER 5 Feature Selection

which can even be of infinite dimension. In spite of the fact that one now works
in almost empty spaces (N is much less than the dimensionality of the space), the
generalization performance of the SVM classifiers can be very good. The secret to
that was disclosed to us fairly recently. It is not the number of parameters that really
controls the generalization performance, under finite N , but another quantity. For
some types of classifiers,this quantity is directly related to the number of parameters
to be estimated and the dimensionality of the feature space. However, for some
classifiers, such as the SVM, this quantity can be controlled independent of the
dimensionality of the feature space. These issues are discussed at the end of this
chapter. More on the peaking phenomenon and the small sample size problem can
be found in for example, [Raud 80, Raud 91, Duin 00].

5.4 FEATURE SELECTION BASED ON STATISTICAL
HYPOTHESIS TESTING

A first step in feature selection is to look at each of the generated features
independently and test their discriminatory capability for the problem at hand.
Although looking at the features independently is far from optimal, this procedure
helps us to discard easily recognizable “bad” choices and keeps the more elabo-
rate techniques, which we will consider next, from unnecessary computational
burden.

Let x be the random variable representing a specific feature. We will try to
investigate whether the values it takes for the different classes, say "1, "2, differ
significantly. To give an answer to this question, we will formulate the problem in
the context of statistical hypothesis testing. That is, we will try to answer which of
the following hypotheses is correct:

H1: The values of the feature differ significantly
H0: The values of the feature do not differ significantly

H0 is known as the null hypothesis and H1 as the alternative hypothesis. The
decision is reached on the basis of experimental evidence supporting the rejection
or not of H0. This is accomplished by exploiting statistical information,and obviously
any decision will be taken subject to an error probability. We will approach the
problem by considering the differences of the mean values corresponding to a
specific feature in the various classes, and we will test whether these differences
are significantly different from zero. Let us first,however, refresh our memory with
some basics from the statistics related to hypothesis testing.

5.4.1 Hypothesis Testing Basics
Let x be a random variable with a probability density function,which is assumed to
be known within an unknown parameter %. As we have already seen in Chapter 2,

“07-Ch05-SA272” 17/9/2008 page 269

5.4 Statistical Hypothesis Testing 269

in the case of a Gaussian, this parameter may be the mean value or its variance. Our
interest here lies in the following hypothesis test:

H1 : % ̸! %0

H0 : % ! %0

The decision on this test is reached in the following context. Let xi , i ! 1, 2, . . . , N ,
be the experimental samples of the random variable x. A function f (·, . . . , ·) is
selected, depending on the specific problem, and let q ! f (x1, x2, . . . , xN). The
function is selected so that the probability density function of q is easily param-
eterized in terms of the unknown %, that is, pq(q; %). Let D be the interval of
q in which it has a high probability of lying under hypothesis H0. Let D̄ be its
complement, that is, the interval of low probability, also under hypothesis H0.
Then, if the value of q that results from the available samples, xi , i ! 1, 2, . . . , N ,
lies in D we will accept H0, and if it lies in D̄ we will reject it. D is known as
the acceptance interval and D̄ as the critical interval. The variable q is known
as test statistic. The obvious question now refers to the probability of reaching a
wrong decision. Let H0 be true. Then the probability of an error in our decision is
P(q ∈ D̄|H0) ≡ &. This probability is obviously the integral of pq(q|H0) (pq(q; %o))
over D̄ (Figure 5.2). In practice, we preselect this value of &, which is known
as the significance level, and we sometimes denote the corresponding critical
(acceptance) interval as D̄& (D&). Let us now apply this procedure in the case in
which the unknown parameter is the mean of x.

The Known Variance Case
Let x be a random variable and xi , i ! 1, 2, . . . , N ,the resulting experimental samples,
which we will assume to be mutually independent. Let

E[x] ! '

E[(x " ')2] ! !2

pq(q H0)

D D D q

FIGURE 5.2
Acceptance and critical regions for hypothesis testing. The area of the shaded region is the pro-
bability of an erroneous decision.

“07-Ch05-SA272” 17/9/2008 page 270

270 CHAPTER 5 Feature Selection

A popular estimate of ' based on the known samples is the sample mean

x̄ !
1
N

N∑

i!1

xi

Using a different set of N samples, a different estimate will result. Thus, x̄ is also a
random variable,and it is described in terms of a probability density function px̄(x̄).
The corresponding mean is

E[x̄] !
1
N

E

[
N∑

i!1

xi

]

!
1
N

N∑

i!1

E[xi] ! ' (5.10)

Thus, x̄ is an unbiased estimate of the mean ' of x. The variance !2
x̄ of x̄ is

E[(x̄ " ')2] ! E

⎡

⎣
(

1
N

N∑

i!1

xi " '

)2
⎤

⎦

!
1

N2

N∑

i!1

E[(xi " ')2] #
1

N2

∑

i

∑

j ̸!i

E[(xi " ')(xj " ')]

The statistical independence of the samples dictates

E[(xi " ')(xj " ')] ! E[xi " ']E[xj " '] ! 0

Hence

!2
x̄ !

1
N

!2 (5.11)

In words, the larger the number of measurement samples, the smaller the variance
of x̄ around the true mean '.

Having now acquired the necessary ingredients, let us assume that we are given
a value '̂ and we have to decide upon

H1: E[x] ̸! '̂

H0: E[x] ! '̂

To this end we define the test statistic

q !
x̄ " '̂

!/
√

N
(5.12)

Recalling the central limit theorem from Appendix A, the probability density
function of x̄ under H0 (i.e., given '̂) is (approximately) the Gaussian N ('̂, !2

N)

px̄(x̄) !

√
N√

2#!
exp

(
"

N (x̄ " '̂)2

!2

)

“07-Ch05-SA272” 17/9/2008 page 271

5.4 Statistical Hypothesis Testing 271

Table 5.1 Acceptance Intervals ["x&, x&] Corresponding to Various Probabilities for an
N (0, 1) Normal Distribution

1 " & 0.8 0.85 0.9 0.95 0.98 0.99 0.998 0.999

x& 1.282 1.440 1.645 1.967 2.326 2.576 3.090 3.291

Hence, the probability density function of q under H0 is approximately N (0, 1).
For a significance level & the acceptance interval D ≡ ["x&, x&], is chosen as the
interval in which the random variable q lies with probability 1"& (& the probability
of being in D̄). This is readily provided from available tables.

An example for normally distributed N (0, 1) variables is given in Table 5.1. The
decision on the test hypothesis can now be reached by the following steps.

■ Given the N experimental samples of x, compute x̄ and then q.

■ Choose the significance level &.

■ Compute from the corresponding tables for N (0, 1) the acceptance interval
D ! ["x&, x&], corresponding to probability 1 " &.

■ If q ∈ D decide H0, if not decide H1.

Basically,all we say is that we expect the resulting value q to lie in the high-percentage
1"& interval. If it does not, then we decide that this is because the assumed mean
value is not “correct.” Of course, the assumed mean value may be correct, but it so
happens that the resulting q lies in the least probable area because of the specific
set of experimental samples available. In such a case our decision is erroneous,and
the probability of committing such an error is &.

Example 5.1
Let us consider an experiment with a random variable x of ! ! 0.23, and assume N to be
equal to 16 and the resulting x̄ equal to 1.35. Adopt the significance level & ! 0.05. We will
test if the hypothesis '̂ ! 1.4 is true.

From Table 5.1 we have

prob
{

"1.97 &
x̄ " '̂

0.23/4
& 1.97

}
! 0.95

prob
{
"0.113 & x̄ " '̂ & 0.113

}
! 0.95

Thus, since the value of '̂, which we have assumed, is in the interval

1.237 ! 1.35 " 0.113 & '̂ & 1.35 # 0.113 ! 1.463

we accept it, as there is no evidence at the 5% level that the mean value is not equal
to '̂. The interval [1.237, 1463] is also known as the confidence interval at the 1"& ! 0.95
level.

“07-Ch05-SA272” 17/9/2008 page 272

272 CHAPTER 5 Feature Selection

The Unknown Variance Case
If the variance of x is not known, it must be estimated. The estimate

!̂2 ≡ 1
N " 1

N∑

i!1

(xi " x̄)2 (5.13)

is an unbiased estimate of the variance. Indeed,

E[!̂2] !
1

N " 1

N∑

i!1

E[(xi " x̄)2]

!
1

N " 1

N∑

i!1

E
[
((xi " ') " (x̄ " '))2]

!
1

N " 1

N∑

i!1

(
!2 #

!2

N
" 2E[(xi " ')(x̄ " ')]

)

Due to the independence of the experimental samples

E[(xi " ')(x̄ " ')] !
1
N

E
[
(xi " ')

(
(x1 " ') # · · · # (xN " ')

)]
!

!2

N

Thus,

E[!̂2] !
N

N " 1
N " 1

N
!2 ! !2

The test statistic is now defined as

q !
x̄ " '

!̂/
√

N
(5.14)

However, this is no longer a Gaussian variable. Following Appendix A, and if we
assume that x is a Gaussian random variable, then q is described by the so-
called t -distribution with N " 1 degrees of freedom. Table 5.2 shows the confidence
interval D ! ["x&, x&] for various significance levels and degrees of freedom of the
t -distribution.

Example 5.2
For the case of Example 5.1 let us assume that the estimate of the standard deviation !̂ is
0.23. Then, according to Table 5.2 for 15 degrees of freedom (N ! 16) and significance level
& ! 0.025

prob
{

"2.49 &
x̄ " '̂

0.23/4
& 2.49

}
! 0.975

and the confidence interval for '̂ at the 0.975 level is

1.207 & '̂ & 1.493

“07-Ch05-SA272” 17/9/2008 page 273

5.4 Statistical Hypothesis Testing 273

Table 5.2 Interval Values at Various Significance Levels
and Degrees of Freedom for a t-Distribution

Degrees of
Freedom 1 " & 0.9 0.95 0.975 0.99 0.995

10 1.81 2.23 2.63 3.17 3.58

11 1.79 2.20 2.59 3.10 3.50

12 1.78 2.18 2.56 3.05 3.43

13 1.77 2.16 2.53 3.01 3.37

14 1.76 2.15 2.51 2.98 3.33

15 1.75 2.13 2.49 2.95 3.29

16 1.75 2.12 2.47 2.92 3.25

17 1.74 2.11 2.46 2.90 3.22

18 1.73 2.10 2.44 2.88 3.20

19 1.73 2.09 2.43 2.86 3.17

20 1.72 2.09 2.42 2.84 3.15

5.4.2 Application of the t -Test in Feature Selection
We will now see how all of this is specialized for the case of feature selection in
a classification problem. Our major concern now will be to test, against zero, the
difference '1"'2 between the means of the values taken by a feature in two classes.
Let xi , i ! 1, 2, . . . , N ,be the sample values of the feature in class "1 with mean '1.
Correspondingly, for the other class "2 we have yi, i ! 1, 2, . . . , N , with mean '2.
Let us now assume that the variance of the feature values is the same in both
classes, !2

1 ! !2
2 ! !2. To decide about the closeness of the two mean values, we

will test for the hypothesis

H1 : (' ! '1 " '2 ̸! 0
(5.15)

H0 : (' ! '1 " '2 ! 0

To this end, let

z ! x " y (5.16)

where x, y denote the random variables corresponding to the values of the feature
in the two classes "1, "2, respectively, for which statistical independence has been
assumed. Obviously, E[z] ! '1 " '2, and due to the independence assumption
!2

z ! 2!2. Following arguments similar to those used before, we now have

z̄ !
1
N

N∑

i!1

(xi " yi) ! x̄ " ȳ (5.17)

“07-Ch05-SA272” 17/9/2008 page 274

274 CHAPTER 5 Feature Selection

and for the known variance case z̄ follows the normal N ('1 " '2, 2!2

N) distribution
for large N . Thus,Table 5.1 can be used to decide about (5.15). If the variance is
not known, then we choose the test statistic

q !
(x̄ " ȳ) " ('1 " '2)

sz

√
2
N

(5.18)

where

s2
z !

1
2N " 2

(
N∑

i!1

(xi " x̄)2 #
N∑

i!1

(yi " ȳ)2

)

It can be shown that s2
z (2N"2)

!2 follows a chi-square distribution with 2N " 2
degrees of freedom (Appendix A and Problem 5.3). As is pointed out in Appendix
A, if x, y are normally distributed variables of the same variance !2, then the
random variable q turns out to follow the t -distribution with 2N " 2 degrees of
freedom. Thus, Table 5.2 has to be adopted for the test. When the available
number of samples is not the same in all classes, a slight modification is required
(Problem 5.4). Furthermore, in practice the variances may not be the same in
the two classes. Sometimes this becomes the object of another hypothesis test,

concerning the ratio F !
!̂2

1
!̂2

2
, to check whether it is close to unity. It can be

shown that F , being the ratio of two chi-square distributed variables, follows the
so-called F -distribution and the related tables should be used [Fras 58]. Finally, if
the Gaussian assumption about x is not a valid one, other criteria can be used to
check the equality hypothesis of the means, such as the Kruskal–Wallis statistic
[Walp 78, Fine 83].

Example 5.3
The sample measurements of a feature in two classes are

class "1: 3.5 3.7 3.9 4.1 3.4 3.5 4.1 3.8 3.6 3.7
class "2: 3.2 3.6 3.1 3.4 3.0 3.4 2.8 3.1 3.3 3.6

The question is to check whether this feature is informative enough. If not, it will be discarded
during the selection phase. To this end, we will test whether the values of the feature in the
two classes differ significantly. We choose the significance level & ! 0.05.
From the foregoing we have

"1 : x̄ ! 3.73 !̂2
1 ! 0.0601

"2 : ȳ ! 3.25 !̂2
2 ! 0.0672

“07-Ch05-SA272” 17/9/2008 page 275

5.5 The Receiver Operating Characteristics (ROC) Curve 275

For N ! 10 we have

s2
z !

1
2

(!̂2
1 # !̂2

2)

q !
(x̄ " ȳ " 0)

sz

√
2
N

q ! 4.25

From Table 5.2 and for 20 " 2 ! 18 degrees of freedom and significance level 0.05, we obtain
D ! ["2.10, 2.10]. Since 4.25 lies outside the interval D, we decide in favor of H1; that is,
the mean values differ significantly at the 0.05 level. Hence, the feature is selected.

5.5 THE RECEIVER OPERATING CHARACTERISTICS
(ROC) CURVE

The hypothesis tests we have presented offer statistical evidence about the
difference of the mean values of a single feature in the various classes. However,
although this is useful information for discarding features, if the corresponding
mean values are closely located, this information may not be sufficient to guarantee
good discrimination properties of a feature passing the test. The mean values may
differ significantly yet the spread around the means may be large enough to blur the
class distinction. We will now focus on techniques providing information about the
overlap between the classes.

Figure 5.3a illustrates an example of two overlapping probability density
functions describing the distribution of a feature in two classes, together with a
threshold (one pdf has been inverted for illustration purposes). We decide class "1
for values on the left of the threshold and class "2 for the values on the right. This
decision is associated with an error probability,a,of reaching a wrong decision con-
cerning class "1 (the probability of a correct decision is 1 " a). This is equal to the

(a)

1"a

1"(

(b)
a

1"(

1

0
0 1

a
(

FIGURE 5.3
Example of (a) overlapping pdfs of the same feature in two classes and (b) the resulting ROC
curve. The larger the shaded area in (b) the less the overlap of the respective pdfs.

“07-Ch05-SA272” 17/9/2008 page 276

276 CHAPTER 5 Feature Selection

shaded area under the corresponding curve. Similarly,let ((1"() be the probability
of a wrong (correct) decision concerning class "2. By moving the threshold over
“all” possible positions, different values of a and (result. It takes little thought to
realize that if the two distributions have complete overlap, then for any position
of the threshold we get a ! 1 " (. Such a case corresponds to the straight line in
Figure 5.3b,where the two axes are a and 1"(. As the two distributions move apart,
the corresponding curve departs from the straight line,as Figure 5.3b demonstrates.
Once more,a little thought reveals that the less the overlap of the classes, the larger
the area between the curve and the straight line. At the other extreme of two com-
pletely separated class distributions,moving the threshold to sweep the whole range
of values for a in [0, 1],1 " (remains equal to unity. Thus, the aforementioned area
varies between zero, for complete overlap, and 1/2 (the area of the upper triangle),
for complete separation,and it is a measure of the class discrimination capability
of the specific feature. In practice, the ROC curve can easily be constructed by
sweeping the threshold and computing percentages of wrong and correct classifi-
cations over the available training feature vectors. Other related criteria that test
the overlap of the classes have also been suggested (see Problem 5.7).

More recently, the area under the receiver operating characteristics curve (AUC)
has been used as an effective criterion to design classifiers. This is because larger
AUC values indicate on average better classifier performance, see, for example,
[Brad 97, Marr 08, Land 08].

5.6 CLASS SEPARABILITY MEASURES
The emphasis in the previous section was on techniques referring to the discrim-
ination properties of individual features. However, such methods neglect to take
into account the correlation that unavoidably exists among the various features
and influences the classification capabilities of the feature vectors that are formed.
Measuring the discrimination effectiveness of feature vectors will now become our
major concern. This information will then be used in two ways. The first is to allow
us to combine features appropriately and end up with the “best” feature vector for
a given dimension l. The second is to transform the original data on the basis of an
optimality criterion in order to come up with features offering high classification
power. In the sequel we will first state class separability measures, which will be
used subsequently in feature selection procedures.

5.6.1 Divergence
Let us recall our familiar Bayes rule. Given two classes "1 and "2 and a feature
vector x, we select "1 if

P("1|x) $ P("2|x)

As pointed out in Chapter 2, the classification error probability depends on the dif-
ference between P("1|x) and P("2|x), e.g.,Eq. (2.12). Hence, the ratio P("1|x)

P("2|x) can

“07-Ch05-SA272” 17/9/2008 page 277

5.6 Class Separability Measures 277

convey useful information concerning the discriminatory capabilities associated
with an adopted feature vector x, with respect to the two classes "1, "2. Alterna-
tively (for given values of P("1), P("2)), the same information resides in the ratio
ln p(x|"1)

p(x|"2) ≡ D12(x),and this can be used as a measure of the underlying discriminat-
ing information of class "1 with respect to "2. Clearly, for completely overlapped
classes, we get D12(x) ! 0. Since x takes different values, it is natural to consider
the mean value over class "1, that is,

D12 !

#'∫

"'

p(x|"1) ln
p(x|"1)
p(x|"2)

dx (5.19)

Similar arguments hold for class "2, and we define

D21 !

#'∫

"'

p(x|"2) ln
p(x|"2)
p(x|"1)

dx (5.20)

The sum

d12 ! D12 # D21

is known as the divergence and can be used as a separability measure for the classes
"1, "2, with respect to the adopted feature vector x. For a multiclass problem, the
divergence is computed for every class pair "i , "j

dij ! Dij # Dji

!

#'∫

"'

(p(x|"i) " p(x|"j)) ln
p(x|"i)
p(x|"j)

dx (5.21)

and the average class separability can be computed using the average divergence

d !
M∑

i!1

M∑

j!1

P("i)P("j)dij

Divergence is basically a form of the Kullback–Leibler distance measure between
density functions [Kulb 51] (Appendix A). The divergence has the following easily
shown properties:

dij) 0

dij ! 0 if i ! j

dij ! dji

If the components of the feature vector are statistically independent, then it can
be shown (Problem 5.10) that

dij(x1, x2, . . . , xl) !
l∑

r!1

dij(xr)

“07-Ch05-SA272” 17/9/2008 page 278

278 CHAPTER 5 Feature Selection

Assuming now that the density functions are Gaussians N ("i , %i) and N ("j , %j),
respectively, the computation of the divergence is simplified, and it is not difficult
to show that

dij !
1
2

trace{%"1
i %j # %"1

j %i " 2I} #
1
2

("i " "j)
T (

%"1
i # %"1

j
)
("i " "j) (5.22)

For the one-dimensional case this becomes

dij !
1
2

(!2
j

!2
i

#
!2

i

!2
j

" 2
)

#
1
2

('i " 'j)2
(1

!2
i

#
1

!2
j

)

As already pointed out, a class separability measure cannot depend only on the dif-
ference of the mean values; it must also be variance dependent. Indeed,divergence
does depend explicitly on both the difference of the means and the respective
variances. Furthermore, dij can be large even for equal mean values, provided the
variances differ significantly. Thus,class separation is still possible even if the class
means coincide. We will come to this later on.

Let us now investigate (5.22). If the covariance matrices of the two Gaussian
distributions are equal, %i ! %j ! %, then the divergence is further simplified to

dij ! ("i " "j)
T %"1("i " "j)

which is nothing other than the Mahalanobis distance between the corresponding
mean vectors. This has another interesting implication. Recalling Problem 2.9
of Chapter 2, it turns out that in this case we have a direct relation between the
divergence dij and the Bayes error—that is, the minimum error we can achieve
by adopting the specific feature vector. This is a most desirable property for any
class separability measure. Unfortunately, such a direct relation of the divergence
with the Bayes error is not possible for more general distributions. Furthermore, in
[Swai 73, Rich 95] it is pointed out that the specific dependence of the divergence
on the difference of the mean vectors may lead to misleading results, in the sense
that small variations in the difference of the mean values can produce large changes
in the divergence, which, however, are not reflected in the classification error. To
overcome this, a variation of the divergence is suggested, called the transformed
divergence:

d̂ij ! 2
(
1 " exp("dij/8)

)

In the sequel, we will try to define class separability measures with a closer
relationship to the Bayes error.

5.6.2 Chernoff Bound and Bhattacharyya Distance
The minimum attainable classification error of the Bayes classifier for two classes
"1, "2 can be written as:

Pe !

'∫

"'

min
[
P("i)p(x|"i), P("j)p(x|"j)

]
dx (5.23)

“07-Ch05-SA272” 17/9/2008 page 279

5.6 Class Separability Measures 279

Analytic computation of this integral in the general case is not possible. However,
an upper bound can be derived. The derivation is based on the inequality

min[a, b] * asb1"s for a, b ≥ 0, and 0 * s * 1 (5.24)

Combining (5.23) and (5.24), we get

Pe * P("i)sP("j)1"s

'∫

"'

p(x|"i)sp(x|"j)1"s dx ≡)CB (5.25)

)CB is known as the Chernoff bound. The minimum bound can be computed by
minimizing)CB with respect to s. A special form of the bound results for s ! 1/2:

Pe *)CB !
√

P("i)P("j)

'∫

"'

√
p(x|"i)p(x|"j) dx (5.26)

For Gaussian distributions N ("i , %i), N ("j , %j) and after a bit of algebra,we obtain

)CB !
√

P("i)P("j) exp ("B)

where

B !
1
8

("i " "j)
T
(%i # %j

2

)"1
("i " "j) #

1
2

ln
| %i#%j

2 |
√

| %i || %j |
(5.27)

and | · | denotes the determinant of the respective matrix. The term B is known as
the Bhattacharyya distance, and it is used as a class separability measure. It can be
shown (Problem 5.11) that it corresponds to the optimum Chernoff bound when
%i ! %j . It is readily seen that in this case the Bhattacharyya distance becomes pro-
portional to the Mahalanobis distance between the means. In [Lee 00] an equation
that relates the optimal Bayesian error and the Bhattacharyya distance is proposed,
based on an empirical study involving normal distributions. This was subsequently
used for feature selection in [Choi 03].

A comparative study of various distance measures for feature selection in the con-
text of multispectral data classification in remote sensing can be found in [Maus 90].
A more detailed treatment of the topic is given in [Fuku 90].

Example 5.4
Assume that P("1) ! P("2) and that the corresponding distributions are Gaussians N (", !2

1 I)
and N (", !2

2 I). The Bhattacharyya distance becomes

B !
1
2

ln

(
!2

1 #!2
2

2

)l

√
!2l

1 !2l
2

!
1
2

ln
(!2

1 # !2
2

2!1!2

)l
(5.28)

For the one-dimensional case l ! 1 and for !1 ! 10!2, B ! 0.8097 and

Pe * 0.2225

“07-Ch05-SA272” 17/9/2008 page 280

280 CHAPTER 5 Feature Selection

"15 15"10 10"5 0

1

0.8

0.6

0.4

0.2

0
5

FIGURE 5.4
Gaussian pdfs with the same mean and different variances.

If !1 ! 100!2, B ! 1.9561 and

Pe * 0.0707

Thus, the greater the difference of the variances, the smaller the error bound. The decrease
is bigger for higher dimensions due to the dependence on l. Figure 5.4 shows the pdfs for
the same mean and !1 ! 1, !2 ! 0.01. The figure is self-explanatory as to how the Bayesian
classifier discriminates between two classes of the same mean and significantly different
variances. Furthermore, as !2/!1 "→0, the probability of error tends to zero (why?)

5.6.3 Scatter Matrices
A major disadvantage of the class separability criteria considered so far is that they
are not easily computed,unless the Gaussian assumption is employed. We will now
turn our attention to a set of simpler criteria, built upon information related to the
way feature vector samples are scattered in the l-dimensional space. To this end,
the following matrices are defined:

Within-class scatter matrix

Sw !
M∑

i!1

Pi%i

where %i is the covariance matrix for class "i

%i ! E[(x " "i)(x " "i)
T]

“07-Ch05-SA272” 17/9/2008 page 281

5.6 Class Separability Measures 281

and Pi the a priori probability of class "i . That is,Pi ≃ ni/N ,where ni is the number
of samples in class "i ,out of a total of N samples. Obviously, trace {Sw} is a measure
of the average, over all classes, variance of the features.

Between-class scatter matrix

Sb !
M∑

i!1

Pi("i " "0)("i " "0)T

where "0 is the global mean vector

"0 !
M∑

i

Pi"i

Trace{Sb} is a measure of the average (over all classes) distance of the mean of each
individual class from the respective global value.

Mixture scatter matrix

Sm ! E[(x " "0)(x " "0)T]

That is, Sm is the covariance matrix of the feature vector with respect to the global
mean. It is not difficult to show (Problem 5.12) that

Sm ! Sw # Sb

Its trace is the sum of variances of the features around their respective global mean.
From these definitions it is straightforward to see that the criterion

J1 !
trace{Sm}
trace{Sw}

takes large values when samples in the l-dimensional space are well clustered
around their mean, within each class, and the clusters of the different classes are
well separated. Sometimes Sb is used in place of Sm. An alternative criterion results
if determinants are used in the place of traces. This is justified for scatter matri-
ces that are symmetric positive definite, and thus their eigenvalues are positive
(Appendix B). The trace is equal to the sum of the eigenvalues, while the determi-
nant is equal to their product. Hence, large values of J1 also correspond to large
values of the criterion

J2 !
|Sm|
|Sw| ! |S"1

w Sm|

A variant of J2 commonly encountered in practice is

J3 ! trace{S"1
w Sm}

As we will see later on,criteria J2 and J3 have the advantage of being invariant under
linear transformations,and we will adopt them to derive features in an optimal way.

“07-Ch05-SA272” 17/9/2008 page 282

282 CHAPTER 5 Feature Selection

In [Fuku 90] a number of different criteria are also defined by using various combi-
nations of Sw, Sb, Sm in a “trace” or “determinant” formulation. However, whenever
a determinant is used, one should be careful with Sb, since |Sb| ! 0 for M & l. This
is because Sb is the sum of M l + l matrices, of rank one each. In practice, all
three matrices are approximated by appropriate averaging using the available data
samples.

These criteria take a special form in the one-dimensional, two-class problem. In
this case,it is easy to see that for equiprobable classes |Sw| is proportional to !2

1 #!2
2

and |Sb| proportional to ('1 " '2)2. Combining Sb and Sw, the so-called Fisher’s
discriminant ratio (FDR) results

FDR !
('1 " '2)2

!2
1 # !2

2

FDR is sometimes used to quantify the separability capabilities of individual
features. It reminds us of the test statistic q appearing in the hypothesis statisti-
cal tests dealt with before. However, here the use of FDR is suggested in a more
“primitive” fashion, independent of the underlying statistical distributions. For the
multiclass case, averaging forms of FDR can be used. One possibility is

FDR1 !
M∑

i

M∑

j ̸!i

('i " 'j)2

!2
i # !2

j

where the subscripts i, j refer to the mean and variance corresponding to the feature
under investigation for the classes "i , "j , respectively.

Example 5.5
Figure 5.5 shows three cases of classes at different locations and within-class variances. The
resulting values for the J3 criterion involving the Sw and Sm matrices are 164.7, 12.5, and

12

8

4
4 8 12

(a)

12

8

4
4 8 12

(b)

12

8

4
4 8 12

(c)

FIGURE 5.5
Classes with (a) small within-class variance and small between-class distances, (b) large within-
class variance and small between-class distances, and (c) small within-class variance and large
between-class distances.

“07-Ch05-SA272” 17/9/2008 page 283

5.7 Feature Subset Selection 283

620.9 for the cases in Figures 5.5a, b, and c, respectively. That is, the best is for distant
well-clustered classes and the worst for the case of closely located classes with large within-
class variance.

5.7 FEATURE SUBSET SELECTION
Having defined a number of criteria, measuring the classification effectiveness of
individual features and/or feature vectors, we come to the heart of our problem,
that is, to select a subset of l features out of m originally available. There are two
major directions to follow.

5.7.1 Scalar Feature Selection
Features are treated individually. Any of the class separability measuring criteria can
be adopted, for example, ROC , FDR, one-dimensional divergence, and so on. The
value of the criterion C(k) is computed for each of the features, k ! 1, 2, . . . , m.
Features are then ranked in order of descending values of C(k). The l features
corresponding to the l best values of C(k) are then selected to form the feature
vector.

All the criteria we have dealt with in the previous sections measure the classifi-
cation capability with respect to a two-class problem. As we have already pointed
out in a couple of places, in a multiclass situation a form of average or “total”value,
over all classes, is used to compute C(k). However, this is not the only possibility.
In [Su 94] the one-dimensional divergence dij was used and computed for every pair
of classes. Then, for each of the features, the corresponding C(k) was set equal to

C(k) ! min
i,j

dij

that is,the minimum divergence value over all class pairs,instead of an average value.
Thus, selecting the features with the largest C(k) values is equivalent to choosing
features with the best “worst-case” class separability capability, giving a “maxmin”
flavor to the feature selection task. Such an approach may lead to more robust
performance in certain cases.

The major advantage of dealing with features individually is computational sim-
plicity. However, such approaches do not take into account existing correlations
between features. Before we proceed to techniques dealing with vectors, we will
comment on some ad hoc techniques that incorporate correlation information
combined with criteria tailored for scalar features.

Let xnk,n ! 1, 2, . . . , N and k ! 1, 2, . . . , m,be the kth feature of the nth pattern.
The cross-correlation coefficient between any two of them is given by

&ij !

∑N
n!1 xnixnj√∑N

n!1 x2
ni

∑N
n!1 x2

nj

(5.29)

“07-Ch05-SA272” 17/9/2008 page 284

284 CHAPTER 5 Feature Selection

It can be shown that |&ij |*1 (Problem 5.13). The selection procedure evolves along
the following steps:

■ Select a class separability criterion C and compute its values for all the available
features xk, k ! 1, 2, . . . , m. Rank them in descending order and choose the
one with the best C value. Let us say that this is xi1 .

■ To select the second feature,compute the cross-correlation coefficient defined
in Eq. (5.29) between the chosen xi1 and each of the remaining m"1 features,
that is, &i1j , j ̸! i1.

■ Choose the feature xi2 for which

i2 ! arg max
j

{
$1C(j) " $2|&i1 j |

}
, for all j ̸! i1

where $1, $2 are weighting factors that determine the relative importance
we give to the two terms. In words, for the selection of the next feature,
we take into account not only the class separability measure C but also the
correlation with the already chosen feature. This is then generalized for the
kth step

■ Select xik , k ! 3, . . . , l, so that

ik ! arg max
j

{

$1C(j) "
$2

k " 1

k"1∑

r!1

|&ir j |
}

for j ̸! ir ,

r ! 1, 2, . . . , k " 1

That is, the average correlation with all previously selected features is taken
into account.

There are variations of this procedure. For example, in [Fine 83] more than one
criterion is adopted and averaged out. Hence, the best index is found by optimizing

{

$1C1(j) # $2C2(j) "
$3

k " 1

k"1∑

r!1

|&ir j |
}

5.7.2 Feature Vector Selection
Treating features individually, that is, as scalars, has the advantage of computational
simplicity but may not be effective for complex problems and for features with
high mutual correlation. We will now focus on techniques measuring classification
capabilities of feature vectors. It does not require much thought to see that com-
putational burden is the major limiting factor of such an approach. Indeed, if we
want to act according to what “optimality” suggests, we should form all possible
vector combinations of l features out of the m originally available. According to the

“07-Ch05-SA272” 17/9/2008 page 285

5.7 Feature Subset Selection 285

type of optimality rule that one chooses to work with, the feature selection task is
classified into two categories:

Filter approach. In this approach, the optimality rule for feature selection is inde-
pendent of the classifier,which will be used in the classifier design stage. For each
combination we should use one of the separability criteria introduced previously
(e.g.,Bhattacharrya distance, J2) and select the best feature vector combination.
Recalling our combinatorics basics, we obtain the total number of vectors as

(
m
l

)

!
m!

l!(m " l)! (5.30)

This is a large number even for small values of l, m. Indeed, for m ! 20, l ! 5,
the number equals 15,504. Furthermore, in many practical cases the number l is
not even known a priori. Thus,one has to try feature combinations for different
values of l and select the“best”value for it (beyond which no gain in performance
is obtained) and the corresponding “best” l-dimensional feature vector.

Wrapper approach. As we will see in Chapter 10, sometimes it is desirable to base
our feature selection decision not on the values of an adopted class separability
criterion but on the performance of the classifier itself. That is, for each feature
vector combination the classification error probability of the classifier has to be
estimated and the combination resulting in the minimum error probability is
selected. This approach may increase the complexity requirements even more,
depending, of course, on the classifier type.

For both approaches, in order to reduce complexity, a number of efficient
searching techniques have been suggested. Some of them are suboptimal and
some optimal (under certain assumptions or constraints).

Suboptimal Searching Techniques
Sequential Backward Selection
We will demonstrate the method via an example. Let m ! 4, and the originally
available features are x1, x2, x3, x4. We wish to select two of them. The selection
procedure consists of the following steps:

■ Adopt a class separability criterion, C , and compute its value for the feature
vector [x1, x2, x3, x4]T .

■ Eliminate one feature and for each of the possible resulting combinations,
that is, [x1, x2, x3]T , [x1, x2, x4]T , [x1, x3, x4]T , [x2, x3, x4]T , compute the cor-
responding criterion value. Select the combination with the best value, say
[x1, x2, x3]T .

■ From the selected three-dimensional feature vector eliminate one feature and
for each of the resulting combinations, [x1, x2]T , [x1, x3]T , [x2, x3]T , compute
the criterion value and select the one with the best value.

“07-Ch05-SA272” 17/9/2008 page 286

286 CHAPTER 5 Feature Selection

Thus, starting from m, at each step we drop out one feature from the “best”
combination until we obtain a vector of l features. Obviously, this is a subop-
timal searching procedure, since nobody can guarantee that the optimal two-
dimensional vector has to originate from the optimal three-dimensional one. The
number of combinations searched via this method is 1 # 1/2((m # 1)m " l
(l # 1)) (Problem 5.15), which is substantially less than that of the full search
procedure.

Sequential Forward Selection
Here, the reverse to the preceding procedure is followed:

■ Compute the criterion value for each of the features. Select the feature with
the best value, say x1.

■ Form all possible two-dimensional vectors that contain the winner from the
previous step, that is, [x1, x2]T , [x1, x3]T , [x1, x4]T . Compute the criterion
value for each of them and select the best one, say [x1, x3]T .

If l ! 3,then the procedure must continue. That is,we form all three-dimensional
vectors springing from the two-dimensional winner,that is,[x1, x3, x2]T ,[x1, x3,x4]T ,
and select the best one. For the general l, m case, it is simple algebra to show that
the number of combinations searched with this procedure is lm " l(l " 1)/2. Thus,
from a computational point of view,the backward search technique is more efficient
than the forward one for l closer to m than to 1.

Floating Search Methods
The preceding two methods suffer from the so-called nesting effect. That is, once
a feature is discarded in the backward method, there is no possibility for it to be
reconsidered again. The opposite is true for the forward procedure; once a feature
is chosen, there is no way for it to be discarded later on. In [Pudi 94] a technique
is suggested that offers the flexibility to reconsider features previously discarded
and, vice versa, to discard features previously selected. The technique is called the
floating search method. Two schemes implement this technique. One springs from
the forward selection,and the other from the backward selection rationale. We will
focus on the former. We consider a set of m features,and the idea is to search for the
best subset of k of them for k ! 1, 2, . . . , l * m so that a cost criterion C is optimized.
Let Xk ! {x1, x2, . . . , xk} be the set of the best combination of k of the features and
Ym"k the set of the remaining m " k features. We also keep all the lower dimension
best subsets X2, X3, . . . , Xk"1 of 2, 3, . . . , k " 1 features, respectively. The rationale
at the heart of the method is summarized as follows: At the next step the k # 1 best
subset Xk#1 is formed by “borrowing” an element from Ym"k. Then, return to the
previously selected lower dimension subsets to check whether the inclusion of this
new element improves the criterion C . If it does,the new element replaces one of the

“07-Ch05-SA272” 17/9/2008 page 287

5.7 Feature Subset Selection 287

previously selected features. The steps of the algorithm,when maximization of C is
required are:

■ Step I: Inclusion xk#1 ! arg maxy∈Ym"k C({Xk, y}); that is, choose that ele-
ment from Ym"k which, combined with Xk, results in the best value of C.
Xk#1 ! {Xk, xk#1}

■ Step II:Test

1. xr ! arg maxy∈Xk#1 C(Xk#1 " {y}); that is, find the feature that has the
least effect on the cost when it is removed from Xk#1.

2. If r ! k # 1, change k ! k # 1 and go to step I.

3. If r ̸! k#1AND C(Xk#1 " {xr})&C(Xk) go to step I;that is, if removal
of xr does not improve upon the cost of the previously selected best
group of k, no further backward search is performed.

4. If k ! 2 put Xk ! Xk#1 " {xr} and C(Xk) ! C(Xk#1 " {xr});go to step I.

■ Step III: Exclusion

1. X ,
k ! Xk#1 " {xr}; that is, remove xr .

2. xs ! arg maxy∈X ,
k

C(X ,
k " {y}); that is, find the least significant feature

in the new set.

3. If C(X ,
k " {xs}) & C(Xk"1) then Xk ! X ,

k and go to step I; no further
backward search is performed.

4. Put X ,
k"1 ! X ,

k " {xs} and k ! k " 1.

5. If k ! 2 put Xk ! X ,
k and C(Xk) ! C(X ,

k) and go to step I.

6. Go to step III.1.

The algorithm is initialized by running the sequential forward algorithm to form
X2. The algorithm terminates when l features have been selected. Although the
algorithm does not guarantee finding all the best feature subsets, it results in sub-
stantially improved performance compared with its sequential counterpart, at the
expense of increased complexity. The backward floating search scheme operates
in the reverse direction but with the same philosophy.

Optimal Searching Techniques
These techniques are applicable when the separability criterion is monotonic,
that is,

C(x1, . . . , xi) * C(x1, . . . , xi , xi#1)

This property allows identifying the optimal combination but at a considerably
reduced computational cost with respect to (5.30). Algorithms based on the
dynamic programming concept (Chapter 8) offer one possibility to approaching

“07-Ch05-SA272” 17/9/2008 page 288

288 CHAPTER 5 Feature Selection

the problem. A computationally more efficient way is to formulate the problem
as a combinatorial optimization task and employ the so-called branch and bound
methods to obtain the optimal solution [Lawe 66, Yu 93]. These methods compute
the optimal value without involving exhaustive enumeration of all possible combi-
nations. A more detailed description of the branch and bound methods is given
in Chapter 15 and can also be found in [Fuku 90]. However, the complexity of
these techniques is still higher than that of the previously mentioned suboptimal
techniques.

Remark

■ The separability measures and feature selection techniques presented above,
although they indicate the major directions followed in practice,do not cover
the whole range of methods that have been suggested. For example,in [Bati 94,
Kwak 02, Leiv 07] the mutual information between the input features and
the classifier’s outputs is used as a criterion. The features that are selected
maximize the input–output mutual information. In [Sind 04] the mutual
information between the class labels of the respective features and those pre-
dicted by the classifier is used as a criterion. This has the advantage that
only discrete random variables are involved. The existence of bounds that
relate the probability of error to the mutual information function,for example,
[Erdo 03, Butz 05], could offer a theoretically pleasing flavor to the adoption
of information theoretic criteria for feature selection. In [Seti 97] a feature
selection technique is proposed based on a decision tree by excluding features
one by one and retraining the classifier. In [Zhan 02] the tabu combinatorial
optimization technique is employed for feature selection.

Comparative studies of various feature selection searching schemes can be found
in [Kitt 78, Devi 82, Pudi 94, Jain 97, Brun 00, Wang 00, Guyo 03]. The task of
selection bias,when using the wrapper approach and how to overcome it is treated
in [Ambr 02]. This is an important issue, and it has to be carefully considered in
practice in order to avoid biased estimates of the error probability.

5.8 OPTIMAL FEATURE GENERATION
So far, the class separability measuring criteria have been used in a rather “passive”
way,that is, to measure the classification effectiveness of features generated in some
way. In this section we will employ these measuring criteria in an “active”manner,
as an integral part of the feature generation process itself. From this point of view,
this section can be considered as a bridge between this chapter and the following
one. The method goes back to the pioneering work of Fisher ([Fish 36]) on linear
discrimination, and it is also known as linear discriminant analysis (LDA). We
will first focus on the simplest form of the method in order to get a better feeling
and physical understanding of its basic rationale.

“07-Ch05-SA272” 17/9/2008 page 289

5.8 Optimal Feature Generation 289

The Two-class Case
Let our data points,x,be in the m-dimensional space and assume that they originate
from two classes. Our goal is to generate a feature y as a linear combination of
the components of x. In such a way, we expect to “squeeze” the classification-
related information residing in x in a smaller number (in this case only one) of
features. In this section, this goal is achieved by seeking the direction w in the m-
dimensional space, along which the two classes are best separated in some way.
This is not the only possible path for generating features via linear combination of
measurements, and a number of alternative techniques will be studied in the next
chapter.

Given an x ∈ Rm the scalar

y !
wT x
||w|| (5.31)

is the projection of x along w. Since scaling all our feature vectors by the same
factor does not add any classification-related information,we will ignore the scaling
factor ||w||. We adopt the Fisher’s discriminant ratio (FDR) (Section 5.6.3)

FDR !
('1 " '2)2

!2
1 # !2

2
(5.32)

where '1, '2 are the mean values and !2
1, !2

2 the variances of y in the two classes
"1 and "2, respectively, after the projection along w. Using the definition in (5.31)
and omitting ||w||, it is readily seen that

'i ! wT "i , i ! 1, 2 (5.33)

where "i, i ! 1, 2, is the mean value of the data in "i in the m-dimensional
space. Assuming the classes to be equiprobable and recalling the definition of
Sb in Section 5.6.3, it is easily shown that

('1 " '2)2 ! wT ("1 " "2)("1 " "2)T w * wT Sbw (5.34)

where * denotes proportionality. We now turn our attention to the denominator
of (5.32). We have

!2
i ! E[(y " 'i)2] ! E[wT (x " "i)(x " "i)

T w] ! wT %iw (5.35)

where for each i ! 1, 2,samples y (x) from the respective class "i have been used. %i
is the covariance matrix corresponding to the data of class "i in the m-dimensional
space. Recalling the definition of Sw from Section 5.6.3, we get

!2
1 # !2

2 * wT Sww (5.36)

Combining (5.36), (5.34), and (5.32), we end up that the optimal direction is
obtained by maximizing Fisher’s criterion

FDR(w) !
wT Sbw
wT Sww

(5.37)

“07-Ch05-SA272” 17/9/2008 page 290

290 CHAPTER 5 Feature Selection

with respect to w. This is the celebrated generalized Rayleigh quotient,which, as it
is known from linear algebra (Problem 5.16), is maximized if w is chosen such that

Sbw ! +Sww (5.38)

where + is the largest eigenvalue of S"1
w Sb. However, for our simple case we do not

have to worry about any eigen decomposition. By the definition of Sb we have that

+Sww ! ("1 " "2)("1 " "2)T w ! $("1 " "2)

where $ is a scalar. Solving the previous equation with respect to w, and since we
are only interested in the direction of w, we can write

w ! S"1
w ("1 " "2) (5.39)

assuming,of course, that Sw is invertible. As has already been discussed, in practice,
Sw and Sb are approximated by averaging using the available data samples.

Figures 5.6a and 5.6b correspond to two examples for the special case of the two-
dimensional space (m ! 2). In both cases,the classes are assumed equiprobable and
have the same covariance matrix %. Thus Sw ! %. In Figure 5.6a,% is diagonal with
equal diagonal elements,and w turns out to be parallel to "1 " "2. In Figure 5.6b,%
is no more diagonal, and the data distribution does not have a spherical symmetry.
In this case, the optimal direction for projection (the line on the left) is no more
parallel to "1 " "2, and its direction changes in order to account for the shape of
the data distribution. This simple example once again demonstrates that the right
choice of the features is of paramount importance. Take as an example the case
of generating a feature by projecting along the direction of the line on the right in
Figure 5.6b. Then, the values that this feature takes for the two classes exhibit a
heavy overlap.

(a)

0 4 8 12 16 20
"5

0

5

10

"1 – "2 "1 – "2

(b)

0 4 8 12 16
"4

0

4

8

12

FIGURE 5.6
(a) The optimal line resulting from Fisher’s criterion, for two Gaussian classes. Both classes
share the same diagonal covariance matrix, with equal elements on the diagonal. The line is
parallel to "1 " "2. (b) The covariance matrix for both classes is nondiagonal. The optimal line
is on the left. Observe that it is no more parallel to "1 " "2. The line on the right is not optimal
and the classes, after the projection, overlap.

“07-Ch05-SA272” 17/9/2008 page 291

5.8 Optimal Feature Generation 291

Thus, we have reduced the number of features from m to 1 in an optimal way.
Classification can now be performed based on y. Optimality guarantees that the
class separability, with respect to y, is as high as possible, as this is measured by the
FDR criterion.

In the case where both classes are described by Gaussian pdfs with equal covari-
ance matrices, Eq. (5.39) corresponds to nothing else but the optimal Bayesian
classifier with the exception of a threshold value (Problem 2.11 and Eqs. (2.44)–
(2.46)). Moreover, recall from Problem 3.14 that this is also directly related to the
linear MSE classifier. In other words, although our original goal was to generate a
single feature (y) by linearly combining the m components of x,we obtained some-
thing extra for free. Fisher’s method performed feature generation and at the same
time the design of a (linear) classifier; it combined the stages of feature generation
and classifier design into a single one. The resulting classifier is

g(x) ! ("1 " "2)T S"1
w x # w0 (5.40)

However, Fisher’s criterion does not provide a value for w0, which has to be deter-
mined. For example, for the case of two Gaussian classes with the same covariance
matrix the optimal classifier is shown to take the form (see also Problem 3.14)

g(x) ! ("1 " "2)T S"1
w

(
x "

1
2

("1 # "2)
)

" ln
P("2)
P("1)

(5.41)

It has to be emphasized,however, that in the context of Fisher’s theory the Gaussian
assumption was not necessary to derive the direction of the optimal hyperplane.
In practice, sometimes the rule in (5.41) is used even if we know that the data
are non-Gaussian. Of course, other values of w0 may be devised, according to the
problem at hand.

Multiclass Case
The previous results, obtained for the two-class case, are readily generalized for
the case of M $ 2 classes. The multiclass LDA has been adopted as a tool for
optimal feature generation in a number of applications, including biometrics and
bioinformatics, where an original large number of features has to be compactly
reduced. Our major task can be summarized as follows: If x is an m-dimensional
vector of measurement samples, transform it into another l-dimensional vector y so
that an adopted class separability criterion is optimized. We will confine ourselves
to linear transformations,

y ! AT x

where AT is an l + m matrix. Any of the criteria exposed so far can be used.
Obviously, the degree of complexity of the optimization procedure depends heavily
on the chosen criterion. We will demonstrate the method via the J3 scattering
matrix criterion, involving Sw and Sb matrices. Its optimization is straightforward,

“07-Ch05-SA272” 17/9/2008 page 292

292 CHAPTER 5 Feature Selection

and at the same time it has some interesting implications. Let Sxw, Sxb be the within-
class and between-class scatter matrices of x. From the respective definitions, the
corresponding matrices of y become

Syw ! AT Sxw A, Syb ! AT Sxb A

Thus, the J3 criterion in the y subspace is given by

J3(A) ! trace{(AT Sxw A)"1(AT Sxb A)}

Our task is to compute the elements of A so that this is maximized. Then A must
necessarily satisfy

,J3(A)
,A

! 0

It can be shown that (Problem 5.17)

,J3(A)
,A

! "2Sxw A(AT Sxw A)"1(AT Sxb A)(AT Sxw A)"1 # 2Sxb A(AT Sxw A)"1

! 0

or

(S"1
xw Sxb)A ! A(S"1

yw Syb) (5.42)

An experienced eye will easily identify the affinity of this with an eigenvalue prob-
lem. It suffices to simplify its formulation slightly. Recall from Appendix B that the
matrices Syw, Syb can be diagonalized simultaneously by a linear transformation

BT Syw B ! I , BT Syb B ! D (5.43)

which are the within- and between-class scatter matrices of the transformed
vector

ŷ ! BT y ! BT AT x

B is an l + l matrix and D an l + l diagonal matrix. Note that in going from y to
ŷ there is no loss in the value of the cost J3. This is because J3 is invariant under
linear transformations, within the l-dimensional subspace. Indeed,

J3(ŷ) ! trace{S"1
ŷw Sŷb} ! trace{(BT Syw B)"1(BT Syb B)}

! trace{B"1S"1
yw Syb B}

! trace{S"1
yw Syb BB"1} ! J3(y)

“07-Ch05-SA272” 17/9/2008 page 293

5.8 Optimal Feature Generation 293

Combining (5.42) and (5.43), we finally obtain

(S"1
xw Sxb)C ! CD (5.44)

where C ! AB is an m + l dimensional matrix. Equation (5.44) is a typical
eigenvalue–eigenvector problem, with the diagonal matrix D having the eigenval-
ues of S"1

xw Sxb on its diagonal and C having the corresponding eigenvectors as its
columns. However,S"1

xw Sxb is an m + m matrix, and the question is which l out of a
total of m eigenvalues we must choose for the solution of (5.44). From its definition,
matrix Sxb is of rank M"1,where M is the number of classes (Problem 5.18). Thus,
S"1

xw Sxb is also of rank M"1 and there are M"1 nonzero eigenvalues. Let us focus
on the two possible alternatives separately.

■ l ! M " 1: We first form matrix C so that its columns are the unit norm M " 1
eigenvectors of S"1

xw Sxb. Then we form the transformed vector

ŷ ! CT x (5.45)

This guarantees the maximum J3 value. In reducing the number of data from
m to M " 1, there is no loss in class separability power, as this is measured
by J3. Indeed, recalling from linear algebra that the trace of a matrix is equal
to the sum of its eigenvalues, we have

J3, x ! trace{S"1
xw Sxb} ! +1 # · · · # +M"1 # 0 (5.46)

Also

J3, ŷ ! trace{(CT SxwC)"1(CT SxbC)} (5.47)

Rearranging (5.44), we get

CT SxbC ! CT SxwCD (5.48)

Combining (5.47) and (5.48), we obtain

J3, ŷ ! trace{D} ! +1 # · · · # +M"1 ! J3,x (5.49)

It is most interesting to view this from a slightly different perspective. Let us
recall the Bayesian classifier for an M class problem. Of the M conditional class
probabilities,P("i|x), i ! 1, 2, . . . , M , only M " 1 are independent, since they
all add up to one. In general,M " 1 is the minimum number of discriminant
functions needed for an M-class classification task (Problem 5.19). The linear
operation CT x, which computes the M " 1 components of ŷ, can be seen as
an optimal linear rule that provides M " 1 discriminant functions, where
optimality is with respect to J3. This was clearly demonstrated in the two-
class case, where Fisher’s method was also used as a classifier (subject to an
unknown threshold).

“07-Ch05-SA272” 17/9/2008 page 294

294 CHAPTER 5 Feature Selection

Investigating the specific form that Eq. (5.45) takes for the two-class prob-
lem,one can show that for M ! 2 there is only one nonzero eigenvalue, and it
turns out that (Problem 5.20)

ŷ ! ("1 " "2)T S"1
xw x

which is our familiar Fisher’s linear discriminant.

■ l & M"1: In this case C is formed from the eigenvectors corresponding to the
l largest eigenvalues of S"1

xw Sxb. The fact that J3 is given as the sum of the cor-
responding eigenvalues guarantees its maximization. Of course, in this case
there is loss of the available information because now J3,ŷ & J3,x .

A geometric interpretation of (5.45) reveals that ŷ is the projection of the original
vector x onto the subspace spanned by the eigenvectors vi of S"1

w Sb. It must be
pointed out that these are not necessarily mutually orthogonal. Indeed, although
matrices Sw, Sb (Sm) are symmetric, products of the form S"1

w Sb are not; thus, the
eigenvectors are not mutually orthogonal (Problem 5.21). Furthermore, as we saw
during the proof, once we decide on which subspace to project (by selecting the
appropriate combination of eigenvectors) the value of J3 remains invariant under
any linear transformation within this subspace. That is, it is independent of the
coordinate system,and its value depends only on the particular subspace. In general,
projection of the original feature vectors onto a lower dimensional subspace is
associated with some information loss. An extreme example is shown in Figure 5.7,
where the two classes coincide after projection on the v2 axis. On the other hand,
from all possible projection directions, Fisher’s linear discrimination rule leads to

x2

v2

x1

v1

FIGURE 5.7
Geometry illustrating the loss of information associated with projections in lower dimensional
subspaces. Projecting onto the direction of the principle eigenvector, v1, there is no loss of
information. Projection on the orthogonal direction results in a complete class overlap.

“07-Ch05-SA272” 17/9/2008 page 295

5.8 Optimal Feature Generation 295

the choice of the one-dimensional subspace v1, which corresponds to the optimal
J3 value,that guarantees no loss of information for l ! M " 1 ! 1 (as this is measured
by the J3 criterion). Thus, this is a good choice, provided that J3 is a good criterion
for the problem of interest. Of course, this is not always the case; it depends on
the specific classification task. For example, in [Hams 08] the criterion used is the
probability of error for a multiclass task involving normally distributed data. A more
extensive treatment of the topic, also involving other optimizing criteria, can be
found in [Fuku 90].

Remarks

■ If J3 is used with another combination of matrices, such as Sw and Sm, then, in
general, the rank of the corresponding matrix product involved in the trace
is m and there are m nonzero eigenvalues. In such cases, the transformation
matrix C is formed so that its columns are the eigenvectors corresponding to
the l largest eigenvalues. According to (5.49), this guarantees the maximum
value of J3.

■ In practice,one may encounter cases in which Sw is not invertible. This occurs
in applications where the available size of the training set, N , is smaller than
the dimensionality,m,of the original feature space. In such cases the resulting
estimate of Sw,which is obtained as the mean of N outer vector products,has
rank lower than m;hence it is singular. This is known as the small sample size
(SSS) problem. Web document classification, face recognition, and disease
classification based on gene-expression profiling are some examples where
the small sample size problem occurs frequently in practice.

One way to overcome this difficulty is to use the pseudoinverse S#
w in place

of S"1
w [Tian 86]. However, now, there is no guarantee that the J3 criterion is

maximized by selecting the eigenvectors of S#
w Sb corresponding to the largest

eigenvalues. An alternative route is to employ regularization techniques, in
one way or another, for example, [Frie 89, Hast 95]. For example, Sw may be
replaced by Sw # !-, where - can be any positive definite and symmetric
matrix. The specific choice depends on the problem. The choice of ! is also
a critical factor here. Another drawback of these techniques is that they do
not scale well for problems with large dimensionality. For example, in certain
tasks of face recognition, the resulting covariance matrices can be as high as
a few thousand making matrix inversion a computationally thirsty task.

Another way to deal with the small sample size problem is to adopt a two-
stage approach. One such technique is the so-called PCA+LDA technique.
In the first stage, principle component analysis (PCA, see Chapter 6) is per-
formed to reduce, appropriately, the dimensionality of the feature space and
linear discriminant analysis (LDA) is then performed in the low-dimensional
space, for example, [Belh 97]. A drawback of this technique is that during the
dimension reduction phase part of the discriminatory information may be lost.

“07-Ch05-SA272” 17/9/2008 page 296

296 CHAPTER 5 Feature Selection

In [Yang 02] the mixture scatter matrix, Sm, is used in the J criterion in the
place of Sw. It is shown that in this case,applying first a PCA on Sm, to reduce
the dimensionality to the value of the rank of Sm, followed by an LDA in the
reduced space,does not lead to any loss of information. In [Chen 00] the null
space of the within-class scatter matrix is brought into the game. It has been
observed that the null space, of Sw contains useful discriminant information.
The method first projects onto the null space and,then, in the projected space
the transformation that maximizes the between-class scatter is computed. A
disadvantage of this approach is that it may lose information by considering
the null space instead of Sw. A second problem is that the complexity of
determining the null space of Sw is very high. Computational difficulties of
the method are addressed in [Cevi 05]. In [Ye 05],in the first stage,dimension-
ality reduction is achieved by maximizing the between-class cluster (Sb), via a
QR decomposition technique. In the second stage,a refinement is achieved by
focusing on the within-class scatter issue, following arguments similar to the
classical LDA.A unifying treatment of a number from the previous techniques
is considered in [Zhan 07].

A different approach is proposed in [Li 06]. Instead of the J3 criterion,
another criterion is introduced that involves the trace of the difference of the
involved matrices, thus bypassing the need for inversions.

Besides the small sample size problem, another issue associated with the
LDA is that the number of features that can be generated is at most one less
than the number of classes. As we have seen, this is due to the rank of the
matrix product S"1

w Sb. For an M -class problem, there are only M " 1 nonzero
eigenvalues. All the J3 related discriminatory information can be recovered
by projecting onto the subspace generated by the eigenvectors associated
with these nonzero eigenvalues. Projecting on any other direction adds no
information.

Good insight into it can be gained through geometry by considering a
simple example. Let us assume, for simplicity, a two-class task with classes
normally distributed with covariance matrices equal to the identity matrix.
Then by its definition,Sw is also an identity matrix. It is easy to show (Problem
5.20) that in this case the eigenvector corresponding to the only nonzero
eigenvalue is equal to "1 " "2. The (Euclidean) distance between the mean
values of the projection points in the (nonzero) eigenvector direction is the
same as the distance between the mean values of the classes in the original
space, i.e., ||("1 " "2)||. This can easily be deduced by visual inspection of
Figure 5.7, which corresponds to a case such as is discussed our example.
Projecting on the orthogonal direction adds no information since the classes
coincide. All the scatter information, with respect to both classes, is obtained
from a single direction.

Due to the previous drawback,there are cases where the number of classes
M is small, and the resulting number of, at most, M " 1 features is insuffi-
cient. An attempt to overcome this difficulty is given in [Loog 04]. The main

“07-Ch05-SA272” 17/9/2008 page 297

5.8 Optimal Feature Generation 297

idea is to employ a different to Sb measure to quantify the between-class
scatter. The Chernoff distance (closely related to the Bhattacharyya dis-
tance of Section 5.6.2) is employed. This change offers the possibility of
reducing the dimensionality to any dimension l smaller than the original
m. A different path is followed in [Kim 07]. From the original m features,
the authors build a number of so-called composite vectors. Each vector
consists of a subset of the m features. Different composite vectors are
allowed to share some of the original features. LDA is then performed on
this new set of feature vectors. This procedure enhances the range of the
rank of the involved matrix product beyond M " 1. In [Nena 07], the short-
comings of LDA are overcome by defining a new class-separability measure
based on an information-theoretic cost inspired by the concept of mutual
information.

■ No doubt, scattering matrix criteria are not the only ones that can be used
to compute the optimal transformation matrix. For example, [Wata 97] sug-
gested using ta different transformation matrix for each class and optimizing
with respect to the classification error. This is within the spirit of the
recent trend, to optimize directly with respect to the quantity of interest,
which is the classification error probability. For the optimization, smooth
versions of the error rate are used to guarantee differentiability. Other
ways to compute the transformation matrix will be discussed in the next
chapter.

■ Besides the linear nonlinear transformations can also be employed for optimal
feature selection. For example, in [Samm 69] a nonlinear technique is pro-
posed that attempts to preserve maximally all the distances between vectors.
Let xi , yi , i ! 1, 2, . . . , N ,be the feature vectors in the original m-dimensional
and the transformed l-dimensional space, respectively. The transformation
into the lower dimensional space is performed so as to maximize

J !
1

∑N"1
i!1

∑N
j!i#1 do(i, j)

N"1∑

i!1

N∑

j!i#1

(
do(i, j) " d(i, j)

)2

do(i, j)
(5.50)

where do(i, j), d(i, j) are the (Euclidean) distances between vectors xi , and
xj in the original space and yi , yj in the transformed space,respectively.

■ Another nonlinear generalization of the method consists of two (implicit)
steps. First, one employs a nonlinear vector function to transform the input
feature space into a higher-dimensional one, which can even be of infinite
dimension. Then, the linear discriminant method is applied in this high-
dimensionality space. However, the problem formulation is done so that
vectors appear only via inner products. This allows the use of kernel functions
to facilitate computations, as was the case with the nonlinear support vector
machines presented in Chapter 4 [Baud 00, Ma 03].

“07-Ch05-SA272” 17/9/2008 page 298

298 CHAPTER 5 Feature Selection

5.9 NEURAL NETWORKS AND FEATURE
GENERATION/SELECTION

Recently, efforts have been made to use neural networks for feature generation
and selection. A possible solution is via the so-called auto-associative networks.
A network is employed having m input and m output nodes and a single hidden
layer with l nodes with linear activations. During training, the desired outputs are
the same as the inputs. That is,

E(i) !
m∑

k!1

(ŷk(i) " xk(i))2

where the notation of the previous chapter has been adopted. Such a network has
a unique minimum,and the outputs of the hidden layer constitute the projection of
the input m-dimensional space onto an l-dimensional subspace. In [Bour 88] it is
shown that this is basically a projection onto the subspace spanned by the l principal
eigenvectors of the input correlation matrix, a topic that will be our focus in the
next chapter. An extension of this idea is to use three hidden layers [Kram 91]. Such
a network performs a nonlinear principal component analysis. The major drawback
of such an architecture is that nonlinear optimization techniques have to be used
for the training. Besides the computational load, the risk of being trapped in local
minima is always present.

An alternative is to use neural networks, or any other (non)linear structure, to
exploit properties of the LS cost function. In Chapter 3,we saw that the outputs of a
network approximate posterior probabilities, provided that the weights have been
trained so that the outputs match, in the LS sense, the class labels. In [Lowe 91] it
is pointed out that, besides this property, another very interesting one is also valid.
A multilayer perceptron was considered with linear output nodes. The network was
trained to minimize the squared error between the actual and desired responses (i.e.,
class labels 1 and 0). It was shown that minimizing the squared error is equivalent
to maximizing the criterion

J ! trace{S"1
m Sb} (5.51)

where Sm is the mixture scatter matrix of the vectors formed by the outputs of the
last hidden layer nodes and Sb the corresponding between-class scatter matrix in a
weighted form (Problem 5.22). If the inverse of Sm does not exist,it is replaced by its
pseudoinverse. In other words,such a network can be used as a J -optimal nonlinear
transformer of the input m-dimensional vectors into l-dimensional vectors,where l
is the number of nodes in the last hidden layer.

Another approach is to employ neural networks to perform the computations
associated with the optimization of various class separability criteria discussed in
this chapter. Although these techniques do not necessarily provide new approaches,
the incorporation of neural networks offers the capability of adaptation in case the
statistics of the input data are slowly varying. In [Chat 97, Mao 95] a number of
such techniques are developed. The idea behind most of these techniques is to use

“07-Ch05-SA272” 17/9/2008 page 299

5.10 A Hint on Generalization Theory 299

a network that iteratively computes eigenvectors of correlation matrices,a step that,
as we have seen, is at the heart of a number of optimality criteria.

An alternative technique has been suggested in [Lee 93, Lee 97]. They have
shown that the discriminantly informative feature vectors have a component that is
normal to the decision surface at least at one point on the surface. Furthermore,the
less informative vectors are orthogonal to a vector normal to the decision surface
at every point of the surface. This is natural, because vectors that do not have
a component normal to the decision surface cannot cross it (and hence change
classes) whatever their value is. Based on this observation, they estimate normal
vectors to the decision boundary, using gradient approximation techniques, which
are then used to formulate an appropriate eigenvalue–eigenvector problem leading
to the computation of the transformation matrix.

Finally, pruning a neural network is a form of feature selection integrated into
the classifier design stage. Indeed, the weights of the input nodes corresponding
to less important features are expected to be small. As discussed in Chapter 4, the
incorporation of appropriate regularization terms in the cost function encourages
such weights to converge to zero and ultimately to be eliminated. This approach
was followed, for example, in [Seti 97].

5.10 A HINT ON GENERALIZATION THEORY
So far in this book, two major issues have occupied us: the design of the classifier
and its generalization capabilities. The design of the classifier involved two stages:
the choice of the classifier type and the choice of the optimality criterion. The
generalization capabilities led us to seek ways to reduce the feature space dimen-
sionality. In this section we will point out some important theoretical results that
relate the size N of the training data set and the generalization performance of the
designed classifier.

To this end, let us summarize a few necessary basic steps and definitions.

■ Let F be the set of all the functions f that can be realized by the adopted
classifier scheme. For example, if the classifier is a multilayer perceptron with
a given number of neurons, then F is the set of all the functions that can be
realized by the specific network structure. Functions f are mappings from
Rl → {0, 1}. Thus, the response is either 1 or 0; that is, the two-class problem
is considered, and the mapping is either f (x) ! 1 or f (x) ! 0.

■ Let PN
e (f) be the empirical classification error probability,based on the avail-

able input—desired output training pairs (xi, yi), i ! 1, 2, . . . , N , which are
considered to be independent and identically distributed (i.i.d.). Thus,PN

e (f)
is the fraction of training samples for which an error occurs,that is,f (xi) ̸! yi .
Obviously, this depends on the specific function f and the size N . The optimal
function that results from minimizing this empirical cost is denoted by f ∗ and
belongs to the set F .

“07-Ch05-SA272” 17/9/2008 page 300

300 CHAPTER 5 Feature Selection

■ Pe(f) is the true classification error probability when a function f is real-
ized. The corresponding empirical PN

e (f) can be very small, even zero, since
a classifier can be designed to classify all training feature vectors correctly.
However, Pe(f) is the important performance measure, because it measures
error probability based on the statistical nature of the data and not on the spe-
cific training set only. For a classifier with good generalization capabilities,
we expect the empirical and the true error probabilities to be close. Pe(f)
is sometimes known as the generalization error probability.

■ Pe denotes the minimum error probability over all the functions of the set,
that is, Pe ! minf ∈F Pe(f).1 Again, in practice we would like the optimal
empirical error PN

e (f ∗) to be close to Pe.

The Vapnik–Chervonenkis theorem is as follows.

Theorem Let F be the class of functions of the form Rl→{0, 1}. Then the
empirical and true error probabilities corresponding to a function f in the
class, satisfy

prob{ max
f ∈F

|PN
e (f) " Pe(f)| $)} * 8S(F , N) exp("N)2/32) (5.52)

The term S(F , N) is called the shatter coefficient of the class F . This is defined
as the maximum number of dichotomies of N points that can be formed by the
functions in F . From our combinatorics basics,we know that the maximum number
of dichotomies on a set of N points (separating them into two distinct subsets) is 2N .
However, not all these combinations can be implemented by a function f : Rl →
{0, 1}. For example,we know that,in the two-dimensional space,the set of functions
realized by a perceptron (hyperplane) can form only fourteen distinct dichotomies
on four points out of the 16 ! 24 possibilities. The two XOR combinations cannot
be realized. However, the class of functions realized by the perceptron can form
all possible 8 ! 23 dichotomies for N ! 3 points. This leads us to the following
definition

Definition 1. The largest integer k) 1 for which S(F , k) ! 2k is called the
Vapnik–Chervonenkis, or VC dimension of the class F , and is denoted by Vc.
If S(F , N) ! 2N for every N, then the VC dimension is infinite.

Thus, in the two dimensional space,theVC dimension of a single perceptron is 3.
In the general l-dimensional space case, the VC dimension of a perceptron is l # 1,
as is easily verified from Section 4.13. It will not come as a surprise to say that the
VC dimension and the shatter coefficient are related, because they have common
origins. Indeed, this is true. It turns out that if the VC dimension is finite, then the
following bound is valid

S(F , N) * NVc # 1 (5.53)

1 Strictly speaking, in this section inf must be used instead of min and sup instead of max.

“07-Ch05-SA272” 17/9/2008 page 301

5.10 A Hint on Generalization Theory 301

That is, the shatter coefficient is either 2N or is bounded as given in (5.53). This
bound has a very important implication for the usefulness of (5.52). Indeed, for
finite VC dimensions (5.53) guarantees that for large enough N the shatter coeffi-
cient is bounded by polynomial growth. Then the bound in (5.52) is dominated
by its exponential decrease, and it tends to zero as N→'. In words, for large N
the probability of having large differences between the empirical and the true
probability errors is very small! Thus, the network guarantees good generaliza-
tion performance for large N . Furthermore, the theory guarantees another strong
result [Devr 96]

prob{Pe(f ∗) " min
f ∈F

Pe(f) $)} * 8S(F , N) exp("N)2/128) (5.54)

That is,for large N we expect with high probability the performance of the empirical
error optimal classifier to be close to the performance of the optimal one, over the
specific class of functions.

Let us look at these theoretical results from a more intuitive perspective. Con-
sider two different networks with VC dimensions Vc1 && Vc2. Then if we fix N and
), we expect the first network to have better generalization performance, because
the bound in (5.52) will be much tighter. Thus, the probability that the respective
empirical and true errors will differ more than the predetermined quantity will be
much smaller. We can think of the VC dimension as an intrinsic capacity of a net-
work, and only if the number of training vectors exceeds this number sufficiently
can we expect good generalization performance.

Learning theory is rich in bounds that have been derived and that relate quan-
tities such as the empirical error, the true error probability, the number of training
vectors, and the VC dimension or a VC related quantity. In his elegant theory of
learning,Valiant [Vali 84] proposed to express such bounds in the flavor of statisti-
cal tests. That is, the bounds involve an error), such as in Eqs. (5.52) and (5.54),and
a confidence probability level that the bound holds true. Such bounds are known as
PAC bounds,which stands for Probably (the probability of the bound to fail is small)
Approximately Correct (when the bound holds, the error is small). A very interest-
ing (for our purposes) bound that can be derived refers to the minimum number of
training points that guarantee, with high probability, the design of a classifier with
good error performance. Let us denote this minimum number of points as N (), &).
It can be shown that if

N (), &) * max
(

k1Vc

)2 ln
k2Vc

)2 ,
k3

)2 ln
8
&

)
(5.55)

then for any number of training points N)N (), &) the optimal classifier,f ∗,resulting
by minimizing the empirical error probability PN

e (f) satisfies the bound

P{Pe(f ∗) " Pe $)} * & (5.56)

where k1, k2, k3 are constants [Devr 96]. In other words,for small values of) and &,if
N)N (), &),the performance of the optimum empirical error classifier is guaranteed,

“07-Ch05-SA272” 17/9/2008 page 302

302 CHAPTER 5 Feature Selection

with high probability, to be close to the optimal classifier in the class of functions F ,
realized by the specific classification scheme. The number N (), &) is also known as
sample complexity. Observe that the first of the two terms in the bound has a linear
dependence on theVC dimension and an inverse quadratic dependence on the error
). Doubling,for example,theVC dimension roughly requires that we need to double
the number of training points in order to keep the same) and confidence level. On
the other hand, doubling the accuracy (i.e.,)/2) requires us to quadruple the size
of the training set. The confidence level & has a little influence on the bound, due
to its logarithmic dependence. Thus, high VC dimension sets high demands on the
number of training points required to guarantee, with high probability, a classifier
with good performance.

Another related bound of particular interest to us that holds with a probability
at least 1 " & is the following:

Pe(f) * PN
e (f) # -

(
Vc

N

)
(5.57)

where Vc is the VC dimension of the corresponding class and

-

(
Vc

N

)
≡

√√√√Vc

(
ln

(
2N
Vc

1
))

" ln(&/4)

N
(5.58)

The interested reader may obtain more bounds and results concerning the
Vapnik–Chervonenkis theory from [Devr 96, Vapn 95]. It will take some effort,
but it is worth it! In some of the published literature, the constants in the bounds
are different. This depends on the way the bounds are derived. However, this is not
of major practical importance, since the essence of the theory remains the same.

Due to the importance of theVC dimension,efforts have been made to compute
it for certain classes of networks. In [Baum 89] it has been shown that the VC
dimension of a multilayer perceptron with hard limiting activation functions in the
nodes is bounded by

2
[

Kh
n

2

]
l * Vc * 2Kw log2(eKn) (5.59)

where Kh
n is the total number of hidden layer nodes, Kn the total number of nodes,

Kw the total number of weights, l the input space dimension, e the base of the
natural logarithm, and [·] the floor operator that gives the largest integer less than
its argument. The lower bound holds only for networks with a single hidden layer
and full connectivity between the layers. A similar upper bound is true for RBF
networks too. Looking at this more carefully,one can say that for such networks the
VC dimension is roughly given by the number of weights of the network, that is, the
number of its free parameters to be determined! In practice, good generalization
performance is expected if the number of training samples is a few times the VC
dimension. A good rule of thumb is to choose N to be of the order of 10 times the
VC dimension or more [Hush 93].

“07-Ch05-SA272” 17/9/2008 page 303

5.10 A Hint on Generalization Theory 303

Besides theVapnik–Chervonenkis theory,the published literature is rich in results
concerning aspects of designing various classifiers using a finite data set N . Although
they lack the elegance of the generality of theVapnik–Chervonenkis theory,they pro-
vide further insight into this important task. For example, in [Raud 91] asymptotic
analytic results are derived for a number of classifiers (linear, quadratic, etc.) under
the Gaussian assumption of the involved densities. The classification error proba-
bility of a classifier designed using a finite set of N training samples is larger, by an
amount (N , than the error of the same classifier designed using an infinite (N → ')
set of data. It is shown that the mean of (N (over different design sets) decreases
as N tends to infinity. The rate of decrease depends on the specific type of classi-
fier, on the dimensionality of the problem, and also on the value of the asymptotic
(N → ') error. It turns out that in order to keep the mismatch (N within certain
limits,the number N of design samples must be a number of times larger than the
dimension l. Depending on the type of classifier, this proportionality constant can
range from low values (e.g., 1.5) up to a few hundred! Furthermore, in [Fuku 90]
it is shown that keeping N constant and increasing l, beyond a point, results in an
increase of the classification error. This is known as the Hughes phenomenon, and
it was also discussed in Section 5.3.

All these theoretical results provide useful guidelines in selecting appropriate
values for N and l for certain types of classifiers. Moreover, they make crystal clear
the urge to keep the number of features as small as possible with respect to N
and the importance of the feature selection stage in the design of a classification
system. In the fringes of this theoretical “happening,” a substantial research effort
has also been devoted to experimental comparisons, involving different classifiers,
with respect to their generalization capabilities;see,for example,[Mama 96] and the
references therein. In practice,however,experience and empirical results retain an
important part in the final decision. Engineering still has a flavor of art!

Structural Risk Minimization
In our discussion so far, we have focused on the effects of the finite size of the
training data set,N , for a given class of functions, that is, a given classifier structure.
Let us now touch on another important issue. If we allow N to grow indefinitely,
does this luxury provide us with the means not only to have good generalization
properties but also to improve our classification error so as to approach the optimal
Bayesian performance? Recall that as N grows,we can expect to obtain the optimal
performance with respect to all allowable sets of classifiers that can be implemented
by the chosen network structure. However, the error rate of the corresponding
optimal classifier may still be very far from that of the Bayesian classifier. Let us
denote by PB the Bayesian error probability. Then we can write

Pe(f ∗) " PB !
(
Pe(f ∗) " Pe

)
(Pe " PB) (5.60)

A diagrammatic interpretation of Eq. (5.60) is given in Figure 5.8. The right-hand
side in Eq. (5.60) consists of two conflicting terms. If the class F is too small, then

“07-Ch05-SA272” 17/9/2008 page 304

304 CHAPTER 5 Feature Selection

Optimal Bayesian
rule {PB}

Set of
functions

Pe (f *) – Pe

F

 f * {Pe (f *)}

Pe – PB

 fopt {Pe}

FIGURE 5.8
Diagrammatic interpretation of Eq. (5.60). The optimal function over the set F , associated with
the minimum error Pe, is denoted as fopt , and f ∗ is the optimal function resulting from the
empirical cost for a given N .

the first term is expected to be small, but the second term is likely to be large.
If, on the other hand, the class of functions F is large, then the second term is
expected to be small but the first term is probably large. This is natural,because the
larger the set of functions, the higher the probability of including in the set a good
approximation of the Bayesian classifier. Moreover, the smaller the class, the less
the variation between its members. This reminds us of the bias–variance dilemma
we discussed in Chapter 3. A little thought suffices to reveal that the two problems
are basically the same, seen from a different viewpoint. Then the natural question
arises once more, can we make both terms small and how? The answer is that this
is possible only asymptotically, provided that at the same time the size of the class
F grows appropriately. An elegant strategy to achieve this has been suggested by
Vapnik and Chervonenkis [Vapn 82].

Let F (1), F (2), . . . be a sequence of nested classes of functions, that is,

F (1) ⊂ F (2) ⊂ F (3) ⊂ · · · (5.61)

with an increasing, yet finite,VC dimension,

Vc,F (1) * Vc,F (2) * Vc,F (3) * · · · (5.62)

Also let

lim
i→'

inf
f ∈ F (i)

Pe(f) ! PB (5.63)

For each N and class of functions F (i), i ! 1, 2, . . . , compute the optimum, f ∗
N ,i ,with

respect to the empirical error using the N training pairs of input–output samples.
Vapnik and Chervonenkis suggest choosing for each N the function f ∗

N according
to the structural risk minimization principle (SRM).This consists of the following
two steps. First we select the classifier f ∗

N ,i from every class F (i) that minimizes

“07-Ch05-SA272” 17/9/2008 page 305

5.10 A Hint on Generalization Theory 305

the corresponding empirical error over the class of functions. Then, from all these
classifiers, we choose the one that minimizes the upper bound in (5.57), over all i.
More precisely, form the so-called guaranteed error bound,

P̃e(f ∗
N ,i) ≡ PN

e (f ∗
N ,i) # -

(
Vc,F (i)

N

)
(5.64)

and choose

f ∗
N ! arg min

i
P̃e(f ∗

N ,i) (5.65)

Then,as N → ',Pe(f ∗
N) tends to PB with probability one. Note that the second term

in the minimized bound, -
(Vc,F(i)

N

)
, is a complexity penalty term that increases as

the network complexity increases (i.e., with the size of the class of functions and
Vc,F (i)). If on one hand the classifier model is too simple, the penalty term is small
but the empirical error term will be large in (5.64). On the other hand, if the model
is complex, the empirical error is small but the penalty term large. The structural
risk minimization criterion aims at achieving the best trade-off between these two
terms. This is illustrated in Figure 5.9.

From this point of view, the structural risk minimization principle belongs to a
more general class of approaches that try to estimate the order of a system,by consid-
ering simultaneously the model complexity and a performance index. Depending

Guaranteed
error
bound

Complexity
penalty
term

Optimal
empirical
error

VC dimensionVc,F (1) Vc,F (k)Vc,F*

FIGURE 5.9
For a fixed N , the complexity penalty term increases and the optimal empirical error decreases
as the VC dimension of the model increases. Choosing the model according to the SRM principle
aims at achieving the best trade-off between these two terms that corresponds to the minimum
of the guaranteed error bound. Note that, Vc,F (1) & V ∗

c,F & Vc,F (k) , which implies F (1) ⊂ F∗ ⊂
F (k).

“07-Ch05-SA272” 17/9/2008 page 306

306 CHAPTER 5 Feature Selection

on the function used to measure the model complexity and the corresponding per-
formance index, different criteria result. For example, in the Akaike Information
Criterion [Akai 74], the place of the empirical error is taken by the value of the
log-likelihood function, corresponding to the maximum likelihood estimates of the
unknown parameters, and the complexity term is proportional to the number of
free parameters to be estimated. See also Sections 5.11 and 16.4.1.

An alternative interpretation of the SVM cost function in Eq. (3.93) is given in
[Lin 02]. It is treated as a typical regularization method with two components a
data fit functional term

(∑
i I(.i)

)
and a regularization penalty term (||w||2). The

latter is the complexity-related component and is used to guard against overfitting.
In general, the data-fit term approaches a limiting functional as N → '. Under
some general conditions, the estimate resulting from the regularization method
is the minimizer of this data-fit-limiting functional, as N → '. It turns out that
in the SVM case the minimizer of the limiting data-fit functional is the Bayes
optimal rule and the SVM solution approaches it, as N → ', provided that the
kernel choice guarantees a rich enough space (RKHS) and the smoothing param-
eter, C , is chosen appropriately. This interesting result nicely ties the SVM and
the Bayesian optimal rule. Would it be an exaggeration to say that a good the-
ory is like a good piece of art, in the sense that both support more than one
interpretation?

Remarks

■ The SRM procedure provides a theoretical guideline for constructing a classi-
fier that converges asymptotically to the optimal Bayesian one. However, the
bound in (5.57), which is exploited in order to reach this limit, must not be
misinterpreted. For any bound to be useful in practice, one needs an extra
piece of information. Is this bound loose or tight? In general, until now, no
result has provided this information. We can construct classifiers whose VC
dimension is large,yet their performance can be good. A typical example is the
nearest neighbor (NN) classifier. Its VC dimension is infinite. Indeed, since
we know the class label of all the N training points, the NN classifier classi-
fies correctly all training points and the corresponding shatter coefficient is
2N . Yet, it is generally accepted that the generalization performance of this
classifier can be quite good in practice. In contrast, one can build a classifier
with finite VC dimension, yet whose performance is always bad ([Burg 98]).
Concluding this remark, we have to keep in mind that if two classifiers have
the same empirical error, it does not, necessarily, mean that the one with
the smaller VC dimension leads to better performance.

■ Observe that in all bounds given previously no assumptions have been made
about the statistical distribution underlying the data set. That is, they are
distribution-free bounds.

“07-Ch05-SA272” 17/9/2008 page 307

5.10 A Hint on Generalization Theory 307

Support Vector Machines: A Last Touch
We have already discussed that the VC dimension of a linear classifier in the
l-dimensional space is l # 1. However, hyperplanes that are constrained to leave
the maximum margin between the classes may have a smaller VC dimension.

Let us assume that r is the radius of the smallest (hyper)sphere that encloses all
the data (Problem 5.23), that is,

∥xi∥ * r, i ! 1, 2, . . . , N

Then if a hyperplane satisfies the conditions in Eq. (3.73) and

∥w∥2 * c

where c is a constant, then its VC dimension, Vc , is bounded by ([Vapn 98])

Vc * min(r2c, l) # 1 (5.66)

That is, the capacity of the classifier can be controlled independently of the dimen-
sionality of the feature space. This is very interesting indeed. It basically states
that the capacity of a classifier may not, necessarily, be related to the number of
unknown parameters! This is a more general result. To emphasize it further, note
that it is possible to construct a classifier with only one free parameter, yet with
infinite VC dimension; see, for example, [Burg 98]. Let us now consider a sequence
of bounds

c1 & c2 & c3 & . . .

This defines the following sequence of classifiers:

F i :
{
wT x # w0 : ∥w∥2 * ci

}
(5.67)

where

F i ⊂ F i#1

If the classes are separable, then the empirical error is zero. Minimizing the norm
∥w∥ is equivalent to minimizing the VC dimension (to be fair, the upper bound of
the VC dimension). Thus, we can conclude that, the design of an SVM classifier
senses the spirit of the SRM principle. Hence,keeping the VC dimension minimum
suggests that we can expect support vector machines to exhibit good generalization
performance. More on these issues can be found in [Vapn 98, Burg 98].

The essence of all formulas and discussion in this section is that the generalization
performance and accuracy of a classifier depend heavily on two parameters: theVC
dimension and the number of the available feature vectors used for the training.
The VC dimension may or may not be related to the number of free parameters
describing the classifier. For example, in the case of the perceptron linear classifier
theVC dimension coincides with the number of free parameters. However,one can

“07-Ch05-SA272” 17/9/2008 page 308

308 CHAPTER 5 Feature Selection

construct nonlinear classifiers whose VC dimension can be either lower or higher
than the number of free parameters [Vapn 98, p. 159]. The design methodology of
the SVM allows one to“play”with theVC dimension (by minimizing ∥w∥,Eq. (5.66)),
leading to good generalization performance,although the design may be carried out
in a high- (even infinite) dimensional space.

Digging this fertile ground in a slightly different direction, using tools from the
PAC theory of learning one can derive a number of distribution-free and dimension-
free bounds. These bounds bring into the surface a key property underlying the
SVM design; that is, that of the maximum margin (SVMs are just one example of
this larger family of classifiers, which are designed with an effort to maximize the
margin the training points leave from the corresponding decision surface). (See
also the discussion at the end of Chapter 4.) Although a more detailed treatment of
this topic is beyond the scope of this book,we will provide two related bounds that
reinforce this,at first surprising,property of the“emancipation”of the generalization
performance from the feature space dimensionality.

Assume that all available feature vectors lie within a sphere of radius R (i.e.,∥x∥*
R). Let, also, the classifier be a linear one, normalized so that ∥w∥ ! 1, designed
using N randomly chosen training vectors. If the resulting classifier has a margin of
2/ (according to the margin definition in Section 3.7.1) and all training vectors lie
outside the margin, the corresponding true error probability (generalization error)
is no more than

c
N

(
R2

/2 ln2 N # ln
(

1
&

))
(5.68)

where c is a constant, and this bound holds true with a probability at least 1 " &.
Thus,adjusting the margin,as the SVM does, to be maximum we improve the bound,
and this can be carried out even in an infinite dimensional space if the adopted
kernel so dictates [Bart 99, Cris 00]. This result is logical. If the margin is large on a
set of training points randomly chosen,this implies a classifier with large confidence,
thus leading with high probability to good performance.

The bound given previously was derived under the assumption that all train-
ing points are correctly classified. Furthermore, the margin constraint implies
that for all training points yi f (xi)) /, where f (x) denotes the linear classifier
(the decision is taken according to sign(f (x)). A very interesting related bound
refers to the more realistic case, where some of the training points are misclassi-
fied. Let k be the number of points with yi f (xi) & /. (The product yf (x) is also
known as the functional margin of the pair (y, x) with respect to classifier f (x))
Obviously, this also allows for negative values of the product. It can be shown
that with probability at least 1 " & the true error probability is upper bounded by
([Bart 99, Cris 00])

k
N

#

√
c
N

(
R2

/2 ln2 N # ln
(

1
&

))
(5.69)

“07-Ch05-SA272” 17/9/2008 page 309

5.11 The Bayesian Information Criterion 309

Another bound relates the error performance of the SVM classifier with the
number of support vectors. It can be shown [Bart 99] that if N is the number
of training vectors and Ns the number of support vectors, the corresponding true
error probability is bounded by

1
N " Ns

(
Ns log2

eN
Ns

log2
N
&

)
(5.70)

where e is the base of the natural logarithm and the bound holds true with a prob-
ability at least 1 " &. Note that this bound is also independent of the dimension of
the feature space, where the design takes place. The bound increases with Ns and
this must make the user, who has designed an SVM that results in a relatively large
number (with respect to N) of support vectors,cautious and“suspicious”about the
performance of the resulting SVM classifier.

The previous three bounds indicate that the error performance is controlled by
both Ns and /. In practice, one may end up, for example, with a large number of
support vectors and at the same time with a large margin. In such a case, the error
performance could be assessed, with high confidence, depending on which of the
two bounds has lower value.

5.11 THE BAYESIAN INFORMATION CRITERION
The structural risk minimization principle,discussed in the previous section,belongs
to a more general class of methods that estimate the order of a system by consider-
ing, simultaneously, the model complexity and a performance index. Depending
on the function used to measure the model complexity and the corresponding per-
formance index,different criteria result. In this section we will focus on one of such
criteria, which provides a Bayesian theory flavor to the model selection problem.
Moreover, it has a structural form that resembles a number of other popular criteria
that have been proposed over the years. Although the criteria of this “family” lack
the elegance and generality of the SRM principle, they can be useful in a number
of cases. Furthermore, they shed light on the “performance versus complexity”
trade-off task from another perspective.

Let D ! {(xi, yi), i ! 1, 2, . . . , N } be the training data set. We will focus on the
Bayesian classification problem, and the goal is to adopt a parametric model for
the class posterior probabilities; that is, P(yi|x; !), yi ∈ {1, 2, . . . , M} for an M class
task. The cost used for the optimal choice of the unknown parameter ! is the
log-likelihood function computed over the training set; that is, L(!) ! ln p(D|!).

Let Mm denote one of the possible models described by the set of parameters
!m,where m runs over all candidate models. Let us also assume that for each model
we know the prior information with respect to the distribution of !m, that is, the
pdf p(!m|Mm). Our goal is to choose the model for which the posterior probability

“07-Ch05-SA272” 17/9/2008 page 310

310 CHAPTER 5 Feature Selection

P(Mm|D) becomes maximum,over all candidate models. Using the Bayes theorem,
we have

P(Mm|D) !
P(Mm)p(D|Mm)

p(D)
(5.71)

If we further assume that all models are equiprobable,P(Mm) can be dropped out.
The joint data pdf p(D),which is the same for all models, can also be neglected and
our goal becomes to maximize

p(D|Mm) !

∫
p(D|!m, Mm)p(!m|Mm)d!m (5.72)

Employing a series of assumptions (e.g., Gaussian distribution for !m) and the
so-called Laplacian approximation to the integral ([Schw 79, Ripl 96]), and taking
the logarithm of both sides in Eq. (5.72) results in

ln p(D|Mm) ! L(!̂m) "
Km

2
ln N (5.73)

where L(!̂m) is the log-likelihood function computed at the ML estimate, !̂m, and
Km is the number of free parameters (i.e., the dimensionality of !m). Equivalently,
one can search for the minimum of the quantity

BIC ! "2L(!̂m) # Km ln N (5.74)

The criterion is known as the Bayesian information criterion (BIC) or the Schwartz
criterion. In other words, the best model indicated by this criterion depends (a)
on the value of the log-likelihood function at its maximum (i.e., the adopted perfor-
mance index) and (b) on a term that depends on the complexity of the model and
the number of data points. If the model is too simple to describe the distribution
underlying the given data set, the first term in the criterion will have a large value,
since the probability of having obtained the set D from such a model will be small.
On the other hand, if the model is complex,with a large number of free parameters
that can adequately describe the data, the first term will have a small value, which
however, is penalized by a large value of the second term. BIC provides a trade-off
between these two terms. It can be shown that BIC is asymptotically consistent.
This means that if the family of the candidate models contains the true one, then as
N "→' the probability that BIC will select the correct model tends to one.

The Akaike information criterion (AIC) [Akai 74], though derived in a different
way, has similar structure, and the only difference lies in the second term, which is
2Km instead of Km ln N (see also Section 16.4.1). In practice, it is not clear which
model is to be used. It has been reported that for large values of N AIC tends to
choose models that are too complex. On the other hand, for smaller values of N
BIC tends to choose models that are too simple [Hast 01]. Besides the previous
two criteria, a number of alternatives have also been suggested, such as [Riss 83,
Mood 92, Leth 96, Wang 98]. For a review of such techniques, see, for example,
[Ripl 96, Hast 01, Stoi 04a, Stoi 04b].

“07-Ch05-SA272” 17/9/2008 page 311

5.12 Problems 311

5.12 PROBLEMS
5.1 InTrunk’s example,discussed in Section 5.3,prove that the mean value and the

variance of the variable z are given by E[z] ! ||"||2 !
∑l

i!1
1
i and !2

z ! ||"||2
respectively. Also show that the probability of error is

Pe !

∫ '

bl

1√
2#

exp
(

"
z2

2

)
dz (5.75)

where

bl !

√√√√
l∑

i!1

1
i

(5.76)

5.2 In Trunk’s example, as in Problem 5.1, show that the mean value and variance
of z, in the case of unknown mean value, are given the Eqs. (5.7) and (5.8),
respectively. Derive the formula for the probability of error and show that it
tends to 0.5 as the number of features tends to infinity.

5.3 If xi, yi , i ! 1, 2, . . . , N are independent samples of two Gaussian distributions

of the same variance !2, show that the random variable (2N"2)s2
z

!2 , where

s2
z !

1
2N " 2

(
N∑

i!1

(xi " x̄)2 #
N∑

i!1

(yi " ȳ)2

)

where x̄, ȳ are the respective sample mean values,is chi-square distributed with
2N " 2 degrees of freedom.

5.4 Let N1, N2 be the available values of a feature in two classes, respectively. The
feature is assumed to follow a Gaussian distribution with the same variance in
each class. Define the test statistic

q !
(x̄ " ȳ) " ('1 " '2)

sz

√
1

N1
1

N2

(5.77)

where

s2
z !

1
N1 # N2 " 2

(N1∑

i!1

(xi " x̄)2 #
N2∑

i!1

(yi " ȳ)2

)

and '1, '2 are the respective true mean values. Show that q follows the
t -distribution with N1 # N2 " 2 degrees of freedom.

“07-Ch05-SA272” 17/9/2008 page 312

312 CHAPTER 5 Feature Selection

5.5 Show that the matrix

A !

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
n

1√
n

1√
n

. . . 1√
n

"1√
2

1√
2

0 . . . 0

"1√
6

"1√
6

2√
6

. . . 0

...
...

...
...

...

"1√
n(n"1)

"1√
n(n"1)

"1√
n(n"1)

. . . n"1√
n(n"1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is orthogonal, that is, AAT ! I .

5.6 Show that if xi , i ! 1, 2, . . . , l, are jointly Gaussian, then the l variables
yi, i ! 1, 2, . . . , l, resulting from a linear transformation of them are also jointly
Gaussian. Furthermore, if xi are mutually independent and the transformation
is orthogonal, then yi are also mutually independent and Gaussian.

5.7 Let "i , i ! 1, 2, . . . , M ,be the classes for a classification task. Divide the interval
of the possible values of a feature into subintervals (j , j ! 1, 2, . . . , K . If P((j)
is the probability of having values in the respective subinterval and P("i|(j),
the probability of occurrence of "i in this interval, show that the so-called
ambiguity function

A ! "
∑

i

∑

j

P((j)P("i|(j) logM (P("i|(j))

is equal to 1 for completely overlapped distributions and is equal to 0 for
perfectly separated ones. For all other cases it takes intermediate values. Thus,
it can be used as a distribution overlap criterion [Fine 83].

5.8 Show that if dij(x1, x2, . . . , xm) is the class divergence based on m features,
adding a new one xm#1 cannot decrease the divergence, that is,

dij(x1, x2, . . . , xm) * dij(x1, x2, . . . , xm, xm#1)

5.9 Show that if the density functions are Gaussian in both classes with the same
covariance matrix %, then on adding a new feature xm#1 to the feature vector
the new divergence is recursively computed by

dij(x1, . . . , xm#1) ! dij(x1, . . . , xm) #
[('i " 'j) " ("i " "j)T %"1r]2

!2 " rT %"1r

where 'i , 'j are the mean values of xm#1 for the two classes,!2 is its variance,
r is its cross-covariance vector with the other elements of x, and "i , "j are
the mean vectors of x prior to xm#1. If xm#1 is now uncorrelated with the
previously selected features x1, . . . , xm, then this becomes

dij(x1, . . . , xm#1) ! dij(x1, . . . , xm) #
('i " 'j)2

!2

“07-Ch05-SA272” 17/9/2008 page 313

5.12 Problems 313

5.10 Show that if the features are statistically independent, then the divergence is
given by

dij(x1, x2, . . . , xl) !
l∑

i!1

dij(xi)

5.11 Show that in the case of Gaussian distributions the Chernoff bound becomes

)CB ! exp("b(s))

where

b(s) !
s(1 " s)

2
("i " "j)

T [s%j # (1 " s)%i]"1("i " "j)

#
1
2

ln
| s%j # (1 " s)%i |

| %j |s| %i |1"s

Then take the derivative with respect to s and show that for equal covariance
matrices the optimum is achieved for s ! 1/2. Thus, in this case b(s) equals
the Bhattacharyya distance.

5.12 Show that the mixture scatter matrix is the sum of the within-class and
between-class scatter matrices.

5.13 Show that the cross-correlation coefficient in (5.29) lies in the interval ["1, 1].
Hint: Use Schwartz’s inequality |xT y|* ∥x ∥∥y ∥.

5.14 Show that for a two-class problem and Gaussian distributed feature vectors,
with the same covariance matrix in the two classes, which are assumed
equiprobable, the divergence is equal to

trace{S"1
w Sb}

5.15 Show that the number of combinations to be searched using the backward
search technique is given by

1 # 1/2((m # 1)m " l(l # 1))

5.16 Show that the optimal solution of the generalized Rayleigh quotient in (5.37)
satisfies (5.38).

5.17 Show that

,

,A
trace{(AT S1A)"1(AT S2A)} ! "2S1A(AT S1A)"1(AT S2A)(AT S1A)"1

2S2A(AT S1A)"1

5.18 Show that for an M -class problem the matrix Sb is of rank M " 1.
Hint: Recall that "0 !

∑
i Pi"i.

“07-Ch05-SA272” 17/9/2008 page 314

314 CHAPTER 5 Feature Selection

5.19 Show that if fi(x), i ! 1, . . . , M , are the discriminant functions of an M -class
problem, we can construct from them M " 1 new functions that are, in prin-
ciple, sufficient for the classification.
Hint: Consider the differences fi(x) " fj(x).

5.20 Show that for a two-class problem the nonzero eigenvalue of matrix S"1
w Sb is

equal to

+1 ! P1P2("1 " "2)T S"1
xw ("1 " "2)

and the corresponding eigenvector

v1 ! S"1
xw ("1 " "2)

where P1, P2 are the respective class probabilities.

5.21 Show that if matrices %1, %2 are two covariance matrices, then the eigenvec-
tors of %"1

1 %2 are orthogonal with respect to %1, that is,

vT
i %1vj ! 0ij

Hint: Use the fact that %1, %2 can be simultaneously diagonalized (Appen-
dix B).

5.22 Show that in a multilayer perceptron with a linear output node, minimizing
the squared error is equivalent to maximizing (5.51).
Hint: Assume the weights of the nonlinear nodes fixed and compute first the
LS optimal weights driving the linear output nodes. Then substitute these
values into the sum of error squares cost function.

5.23 Compute the minimal enclosure (hyper)sphere, that is, the radius as well as
its center, of a set of points xi, i ! 1, 2, . . . , N .

MATLAB PROGRAMS AND EXERCISES
Computer Programs

5.1 Scatter matrices.Write a MATLAB function named scatter_mat that computes
(a) the within-class (Sw), (b) the between-class (Sb) and the mixture (Sm)
scatter matrices for a c-class classification problem, taking as inputs (a) an
l + N dimensional matrix X ,whose ith row is the ith data vector and (b) an N
dimensional row vector y whose ith element contains the class label for the
ith vector in X (the jth class is denoted by the integer j, j ! 1, . . . , c).

Solution
function [Sw,Sb,Sm]=scatter_mat(X,y)
[l,N]=size(X);

“07-Ch05-SA272” 17/9/2008 page 315

MATLAB Programs and Exercises 315

c=max(y);
%Computation of class mean vectors, a priori prob. and
%Sw
m=[];
Sw=zeros(l);
for i=1:c
y_temp=(y==i);
X_temp=X(:,y_temp);
P(i)=sum(y_temp)/N;
m(:,i)=(mean(X_temp'))';
Sw=Sw+P(i)*cov(X_temp');

end
%Computation of Sb
m0=(sum(((ones(l,1)*P).*m)'))';
Sb=zeros(l);
for i=1:c
Sb=Sb+P(i)*((m(:,i)-m0)*(m(:,i)-m0)');

end
%Computation of Sm
Sm=Sw+Sb;

5.2 J3 criterion. Write a MATLAB function named J3_comp that takes as inputs
the within-class (Sw) and the mixture (Sm) scatter matrices and returns the
value of the J3 criterion

Solution

function J3=J3_comp(Sw,Sm)
J3=trace(inv(Sw)*Sm);

5.3 Best features combination. Write a MATLAB function named features_
best_combin that takes as inputs (a) an l + N dimensional matrix X , whose
ith row is the ith data vector, (b) an N dimensional row vector y, whose ith
element contains the class label for the ith vector in X (the jth class is denoted
by the integer j, j ! 1, . . . , c), and (c) an integer q, the number of required
features. It returns the best combination of q, out of the l, available features,
according to the J3 criterion.

Solution

function id=features_best_combin(X,y,q)
[l,N]=size(X);
J3_max=0;
id=[];
combin=nchoosek(1:l,q);
for j=1:size(combin,1)

“07-Ch05-SA272” 17/9/2008 page 316

316 CHAPTER 5 Feature Selection

X1=X(combin(j,:),:);
[Sw,Sb,Sm]=scatter_mat(X1,y);
J3=J3_comp(Sw,Sm)
if(J3>J3_max)
J3_max=J3;
id=combin(j,:);

end
end

5.4 FDR criterion. Write a MATLAB function named FDR_comp that returns the
FDR index for a c class problem taking as inputs (a) an l + N dimensional
matrix X , whose ith row is the ith data vector, (b) an N dimensional row
vector y, whose ith element contains the class label for the ith vector in X
(the jth class is denoted by the integer j, j ! 1, . . . , c), and (c) the index ind
of the feature over which the FDR will be computed.

Solution

function FDR=FDR_comp(X,y,ind)
[l,N]=size(X);
c=max(y);
for i=1:c
y_temp=(y==i);
X_temp=X(ind,y_temp);
m(i)=mean(X_temp);
vari(i)=var(X_temp);

end
a=nchoosek(1:c,2);
q=(m(a(:,1))-m(a(:,2))).^ 2 ./ (vari(a(:,1))+vari(a(:,2)))';
FDR=sum(q);

Computer Experiments

5.1 a. Generate N1 ! 100 random numbers from the zero mean unit variance
normal distribution and another N2 ! 100 random numbers from the unit
variance normal distribution with mean value equal to 2. Assume that these
numbers correspond to the values a specific feature takes in the frame-
work of a two-class problem. Use the t -test to check whether or not the
hypothesis that the mean values for this feature, for the two classes, differ
significantly, at a 5% significance level.

b. Repeat (a) when the mean value for the second distribution is 0.2.

c. Repeat (a) and (b) when N1 ! 150 and N2 ! 200.
Comment on the results.

“07-Ch05-SA272” 17/9/2008 page 317

MATLAB Programs and Exercises 317

Hint: Use the normrnd MATLAB function to generate the random numbers
and the ttest2, to perform the t -test.

5.2 a. (i) Generate four sets, each one consisting of 100 two-dimensional vectors,
from the normal distributions with mean values ["10, "10]T , ["10, 10]T ,
[10, "10]T , [10, 10]T and covariance matrices equal to 0.2 ∗ I . These
sets constitute the data set for a four-class two-dimensional classification
problem (each set corresponds to a class).

a. (ii) Compute the Sw, Sb, and Sm scatter matrices.

a. (iii) Compute the value for the criterion J3.

b. Repeat (a) when the mean vectors of the normal distributions that generate
the data are ["1, "1]T , ["1, 1]T , [1, "1]T , [1, 1]T .

c. Repeat (a) when the covariance matrices of the normal distributions that
generate the data are equal to 3 ∗ I .

5.3 Generate two sets, each one consisting of 100 five-dimensional vectors, from
the normal distributions with mean values [0, 0, 0, 0, 0]T and [0, 2, 2, 3, 3]T

and covariance matrices equal to
⎡

⎢⎢⎢⎢⎢⎣

0.5 0 0 0 0
0 0.5 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1.5

⎤

⎥⎥⎥⎥⎥⎦
.

Their composition forms the data set for a two-class two-dimensional
classification problem (each set corresponds to a class). Using the J3 criterion
find the best combination of features if:

a. they are considered individually.

b. they are considered in pairs.

c. they are considered in triples.

d. Justify the results.

5.4 a. (i) Generate two sets, each one consisting of 100 two-dimensional vectors,
from the normal distributions with mean values [2, 4]T and [2.5, 10]T and
covariance matrices equal to the 2 + 2 identity matrix I . Their composition
forms the data set for a two class two dimensional classification problem
(each set corresponds to a class).

a. (ii) Compute the value of the FDR index for both features.

b. Repeat (a) when the covariance matrices of the normal distributions that
generate the data are both equal to 0.25 ∗ I .

c. Discuss the results.

“07-Ch05-SA272” 17/9/2008 page 318

318 CHAPTER 5 Feature Selection

REFERENCES
[Akai 74] Akaike H. “A new look at the statistical model identification,” IEEE Transactions on

Automatic Control,Vol. 19(6), pp. 716–723, 1974.

[Ambr 02] Ambroise C.,McLachlan G.J. “Selection bias in gene extraction on the basis of microar-
ray gene-expression data,” Proceedings of the National Academy of Sciences, Vol. 99(10),
pp. 6562–6566, 2002.

[Bart 99] Bartlett P., Shawe-Taylor J. “Generalization performance of support vector machines
and other pattern classifiers,” in Advances in Kernel Methods: Support Vector Learning
(Schcölkopf S., Burges J.C., Smola A., eds.), MIT Press, 1999.

[Bati 94] Batiti R. “Using mutual information for selecting features in supervised neural network
learning,” IEEE Transactions on Neural Networks,Vol. 5(8), pp. 537–550, 1994.

[Baud 00] Baudat G., Anouar F. “Generalized discriminant analysis using a kernel approach,”
Neural Computation,Vol. 12(10), pp. 2385–2404, 2000.

[Baum 89] Baum E.B.,Haussler D.“What size net gives valid generalization,”Neural Computation,
Vol. 1(1), pp. 151–160, 1989.

[Belh 97] Belhumeour P.N., Hespanha J.P., Kriegman D.J. “Eigenfaces vs Fisherfaces: Recognition
using class specific linear projection,” IEEE Transactions on Pattern Analysis and Machine
Intelligence,Vol. 19(7), pp. 711–720, 1997.

[Bish 95] Bishop C. Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[Bour 88] Bourland H., Kamp Y. “Auto-association by multilayer perceptrons and singular value
decomposition,”Biological Cybernetics,Vol. 59, pp. 291–294, 1988.

[Brad 97] Bradley A. “The use of the area under the ROC curve in the evaluation of machine
learning algorithms,”Pattern Recognition,Vol. 30(7), pp. 1145–1159, 1997.

[Brun 00] Brunzell H., Erikcson J. “Feature reduction for classification of multidimensional data,”
Pattern Recognition,Vol. 33, pp. 1741–1748, 2000.

[Burg 98] Burges C.J.C. “A tutorial on support vector machines for pattern recognition,” Data
Mining and Knowledge Discovery,Vol. 2(2), pp. 1–47, 1998.

[Butz 05] Butz T.,Thiran J.P. “From error probability to information theoretic (multi-modal) signal
processing,”Signal Processing),Vol. 85(5), pp. 875–902, 2005.

[Cevi 05] Cevikalp H., Neamtu M., Wilkes M., Barkana A. “Discriminative common vectors for
face recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 27(1),
pp. 4–13, 2005.

[Chat 97] Chatterjee C., Roychowdhury V. “On self-organizing algorithms and networks for
class-separability features,” IEEE Transactions on Neural Networks, Vol. 8(3), pp. 663–678,
1997.

[Chen 00] Chen L.-F., Liao H.-Y.M., Ko M.-T., Lin J.-C.,Yu G.-J. “A new LDA-based face recognition
system which can solve the small sample size problem,” Pattern Recognition, Vol. 33(10),
pp. 1713–1726, 2000.

[Choi 03] Choi E., Lee C. “Feature extraction based on the Bhattacharyya distance,” Pattern
Recognition Letters,Vol. 36, pp. 1703–1709, 2003.

[Cris 00] Cristianini N., Shawe-Taylor J. An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods, Cambridge University Press, Cambridge, MA, 2000.

[Devi 82] Devijver P.A.,Kittler J. Pattern Recognition;A Statistical Approach, Prentice Hall, 1982.

“07-Ch05-SA272” 17/9/2008 page 319

References 319

[Devr 96] Devroye L.,Gyorfi L.,Lugosi G.A Probabilistic Theory of Pattern Recognition,Springer-
Verlag, 1996.

[Duin 00] Duin R.P.W. “Classifiers in almost empty spaces,” Proceedings of the 15th Int. Confer-
ence on Pattern Recognition (ICPR), vol. 2, Pattern Recognition and Neural Networks, IEEE
Computer Society Press, 2000.

[Erdo 03] Erdogmus D., Principe J. “Lower and upper bounds for misclassification probability
based on Renyi’ s information,” Journal of VLSI Signal Processing, 2003.

[Fine 83] Finette S., Bleier A., Swindel W. “Breast tissue classification using diagnostic ultrasound
and pattern recognition techniques: I. Methods of pattern recognition,” Ultrasonic Imaging,
Vol. 5, pp. 55–70, 1983.

[Fish 36] Fisher R.A. “The use of multiple measurements in taxonomic problems,” Annals
of Eugenics,Vol. 7, pp. 179–188, 1936.

[Fras 58] Fraser D.A.S. Statistics: An Introduction, John Wiley & Sons, 1958.

[Frie 89] Friedman J.H. “Regularized discriminant analysis,” Journal of American Statistical
Association,Vol. 84, pp. 165–175, 1989.

[Fuku 90] Fukunaga K. Introduction to Statistical Pattern Recognition, 2nd ed.,Academic Press,
1990.

[Gelm 95] Gelman A., Rubin D.B., Carlin J., Stern H. Bayesian Data Analysis, Chapman & Hall,
London, 1995.

[Ghah 94] Ghaharamani Z., Jordan M.I. “Supervised learning from incomplete data via the EM
approach,” in Advances in Neural Information Processing Systems (Cowan J.D.,Tesauro G.T.,
Alspector J., eds),Vol. 6, pp. 120–127, Morgan Kaufmann, San Mateo, CA, 1994.

[Guyo 03] Guyon I, Elisseeff A. “An introduction to variable and feature selection,” Journal of
Machine Learning Research,Vol. 3, pp. 1157–1182, 2003.

[Hams 08] Hamsici O. C.,Martinez A. M.“ Bayes optimality in LDA,”IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 30(4), pp. 647–657, 2008.

[Hast 95] Hastie T., Tibshirani R. “Penalized discriminant analysis,” Annals of Statistics, Vol. 23,
pp. 73–102, 1995.

[Hast 01] HastieT.,Tibshirani R.,Friedman J. The Elements of Statistical Learning, Springer,2001.

[Hube 81] Huber P.J. Robust Statistics, John Wiley & Sons, 1981.

[Hush 93] Hush D.R., Horne B.G. “Progress in supervised neural networks,” Signal Processing
Magazine,Vol. 10(1), pp. 8–39, 1993.

[Jain 97] Jain A., Zongker D. “Feature selection: Evaluation, application, and small sample per-
formance,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19(2),
pp. 153–158, 1997.

[Kim 07] Kim C., Choi C.-H. “ A discriminant analysis using composite features for classification
problems,”Pattern Recognition,Vol. 40(11), pp. 2958–2967, 2007.

[Kitt 78] Kittler J. “Feature set search algorithms,” in Pattern Recognition and Signal Processing
(Chen C.H., ed.), pp. 41–60, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands,
1978.

[Kram 91] Kramer M.A. “Nonlinear principal component analysis using auto-associative neural
networks,”AIC Journal,Vol. 37(2), pp. 233–243, 1991.

[Kulb 51] Kullback S., Liebler R.A. “On information and sufficiency,” Annals of Mathematical
Statistics,Vol. 22, pp. 79–86, 1951.

“07-Ch05-SA272” 17/9/2008 page 320

320 CHAPTER 5 Feature Selection

[Kwak 02] Kwak N., Choi C.-H. “Input feature selection for classification problems,” IEEE
Transactions on Neural Networks,Vol. 13(1), pp. 143–159, 2002.

[Land 08] Landgrebe T. C. W., Duiy R. P. W. “Efficient multiclasss ROC approximation by decom-
posing via confusion matrix pertubation analysis,”IEEE Transactions on Pattern Analysis and
Machine Intelligence,Vol. 30(5), pp. 810–822, 2008.

[Lawe 66] Lawer E.L.,Wood D.E. “Branch and bound methods: A survey,” Operational Research,
Vol. 149(4), 1966.

[Lee 00] Lee C., Choi E. “Bayes error evaluation of the Gaussian ML classifier,” IEEE Transactions
on Geoscience Remote Sensing,Vol. 38(3), pp. 1471–1475, 2000.

[Lee 93] Lee C., Landgrebe D.A. “Decision boundary feature extraction for nonparametric
classifiers,” IEEE Transactions on Systems Man and Cybernetics,Vol. 23, pp. 433–444, 1993.

[Lee 97] Lee C., Landgrebe D. “Decision boundary feature extraction for neural networks,” IEEE
Transactions on Neural Networks,Vol. 8(1), pp. 75–83, 1997.

[Leiv 07] Leiva-Murillo J.M., Artes-Rodriguez A. “Maximization of mutual information for super-
vised linear feature extraction,” IEEE Transactions on Neural Networks, Vol. 18(5),
pp. 1433–1442, 2007.

[Leth 96] Lethtokanga S.M., Saarinen J., Huuhtanen P., Kaski K. “Predictive minimum description
length criterion for time series modeling with neural networks,”Neural Computation,Vol. 8,
pp. 583–593, 1996.

[Li 06] Li H., Jiang T., Zhang K. “Efficient and robust extraction by maximum margin criterion,”
IEEE Transactions on Neural Networks,Vol. 17(1), pp. 157–165, 2006.

[Lin 02] Lin Y.,Wahba G., Zhang H., Lee Y. “Statistical properties and adaptive tuning of support
vector machines,”Machine Learning,Vol. 48, pp. 115–136, 2002.

[Loog 04] Loog M., Duin P.W. “Linear Dimensionality reduction via a heteroscedastic exten-
sion of LDA:The Chernoff criterion,” IEEE Transactions on Pattern Analysis and Machine
Intelligence,Vol. 26(6), pp. 732–739, 2004.

[Lowe 90] Lowe D., Webb A.R. “Exploiting prior knowledge in network optimization: An illus-
tration from medical prognosis,” Network: Computation in Neural Systems, Vol. 1(3),
pp. 299–323, 1990.

[Lowe 91] Lowe D., Webb A.R. “Optimized feature extraction and the Bayes decision in feed-
forward classifier networks,”IEEETransactions in PatternAnalysis and Machine Intelligence,
Vol. 13(4), pp. 355–364, 1991.

[Ma 03] Ma J.,Jose L. S.,Ahalt S.“Nonlinear multiclass discriminant analysis,”IEEE Signal Processing
Letters,Vol. 10(33), pp. 196–199, 2003.

[Mama 96] Mamamoto Y., Uchimura S.,Tomita S. “On the behaviour of artificial neural network
classifiers in high dimensional spaces,” IEEE Transactions on Pattern Analysis and Machine
Intelligence,Vol. 18(5), pp. 571–574, 1996.

[Mao 95] Mao J., Jain A.K. “Artificial neural networks for feature extraction and multivariate data
projection,” IEEE Transactions on Neural Networks,Vol. 6(2), pp. 296–317, 1997.

[Marr 08] Marroco C., Duin R. P. W.,Tortorella F. “Maximizing the area under the ROC curve by
pairwise feature combination,”Pattern Recognition,Vol. 41, pp. 1961–1974, 2008.

[Maus 90] Mausel P.W., Kramber W.J., Lee J.K. “Optimum band selection for supervised classifi-
cation of multispectra data,” Photogrammetric Engineering and Remote Sensing Vol. 56,
pp. 55–60, 1990.

“07-Ch05-SA272” 17/9/2008 page 321

References 321

[Mood 92] Moody J.E. “The effective number of parameters: An analysis of generalization
and regularization in nonlinear learning systems” in Advances in Neural Computation
(Moody J.E., Hanson S.J., Lippman R.R., eds.), pp. 847–854, Morgan Kaufman, San Mateo,
CA, 1992.

[Nena 07] Nenadic Z. “Information discriminant analysis: feature extraction with an information-
theoretic objective,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 29(8), pp. 1394–1408, 2007.

[Papo 91] Papoulis A. Probability Random Variables and Stochastic Processes, 3rd ed.,McGraw-
Hill, 1991.

[Pudi 94] Pudil P., Novovicova J., Kittler J. “Floating search methods in feature selection,” Pattern
Recognition Letters,Vol. 15, pp. 1119–1125, 1994.

[Raud 91] Raudys S.J., Jain A.K. “Small size effects in statistical pattern recognition: Recommen-
dations for practitioners,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 13(3), pp. 252–264, 1991.

[Raud 80] Raudys S.J.,PikelisV.“On dimensionality,sample size,classification error,and complexity
of classification algorithms in pattern recognition,”IEEETransactions on PatternAnalysis and
Machine Intelligence,Vol. 2(3), pp. 243–251, 1980.

[Rich 95] Richards J. Remote Sensing Digital Image Analysis, 2nd ed., Springer-Verlag, 1995.

[Ripl 96] Ripley B.D. Pattern Recognition And Neural Networks, Cambridge University Press,
Cambridge, MA, 1996.

[Riss 83] Rissanen J.“A universal prior for integers and estimation by minimum description length,”
The Annals of Statistics,Vol. 11(2), pp. 416–431, 1983.

[Rubi 76] Rubin D.B. “Inference and missing data,”Biometrika,Vol. 63, pp. 581–592, 1976.

[Rubi 87] Rubin D.B. Multiple Imputation for Nonresponse in Surveys, John Wiley & Sons,
1987.

[Samm 69] Sammon J.W. “A nonlinear mapping for data structure analysis,” IEEE Transactions on
Computers,Vol. 18, pp. 401–409, 1969.

[Scha 02] Schafer J., Graham J. “Missing data: Our view of the state of the art,” Psychological
Methods, vol. 7(2), pp. 67–81, 2002.

[Schw 79] Schwartz G. “Estimating the dimension of the model,” Annals of Statistics, Vol. 6,
pp. 461–464, 1978.

[Seti 97] Setiono R., Liu H. “Neural network feature selector,” IEEE Transactions on Neural
Networks,Vol. 8(3), pp. 654–662, 1997.

[Sind 04] Sindhwami V., Rakshit S., Deodhare D., Erdogmus D., Principe J.C., Niyogi P. “Feature
selection in MLPs and SVMs based on maximum output information,” IEEE Transactions on
Neural Networks,Vol. 15(4), pp. 937–948, 2004.

[Stoi 04b] Stoica P., Moses R. Spectral Analysis of Signals, Prentice Hall, 2004.

[Stoi 04a] Stoica P.,SelénY.“A review of information criterion rules,”Signal Processing Magazine,
Vol. 21(4), pp. 36–47, 2004.

[Su 94] Su K.Y, Lee C.H. “Speech recognition using weighted HMM and subspace projection
approaches,” IEEE Transactions on Speech and Audio Processing, Vol. 2(1), pp. 69–79,
1994.

“07-Ch05-SA272” 17/9/2008 page 322

322 CHAPTER 5 Feature Selection

[Swai 73] Swain P.H., King R.C. “Two effective feature selection criteria for multispectral
remote sensing,” Proceedings of the 1st International Conference on Pattern Recognition,
pp. 536–540, 1973.

[Tian 86] Tian Q., Marbero M., Gu Z.H., Lee S.H. “Image classification by the Folley-Sammon
transform,”Optical Engineering,Vol. 25(7), pp. 834–840, 1986.

[Tou 74] Tou J., Gonzalez R.C. Pattern Recognition Principles,Addison-Wesley, 1974.

[Trun 79] Trunk G.V. “A problem of dimensionality: A simple example,” IEEE Transactions on
Pattern Analysis and Machine Intelligence,Vol. 1(3), pp. 306–307, 1979.

[Tsud 03] Tsuda K.,Akaho S.,Asai K.“The EM algorithm for kernel matrix completion with auxiliary
data,” Journal of Machine Learning Research,Vol. 4, pp. 67–81, 2003.

[Vali 84] Valiant L. “A theory of the learnable,” Communications of the ACM, Vol. 27(11),
pp. 1134–1142, 1984.

[Vapn 82] Vapnik V.N. Estimation of Dependencies Based on Empirical Data, Springer-Verlag,
1982.

[Vapn 95] Vapnik V.N. The Nature of Statistical Learning Theory, Springer-Verlag, 1995.

[Vapn 98] Vapnik,V.N. Statistical Learning Theory, John Wiley & Sons, 1998.

[Walp 78] Walpole R.E., Myers R.H. Probability and Statistics for Engineers and Scientists,
Macmillan, 1978.

[Wang 00] Wang W., Jones P., Partridge D. “A comparative study of feature salience ranking
techniques,”Neural Computation,Vol. 13(7), pp. 1603–1623, 2000.

[Wang 98] Wang Y.,Adali T., Kung S.Y., Szabo Z. “Quantization and segmentation of brain tissues
from MR images: A probabilistic neural network approach,” IEEE Transactions on Image
Processing,Vol. 7(8), 1998.

[Wata 97] Watanabe H., Yamaguchi T., Katagiri S. “Discriminative metric for robust pat-
tern recognition,” IEEE Transactions on Signal Processing, Vol. 45(11), pp. 2655–2663,
1997.

[Will 07] Williams D., Liao X., Xue Y., Carin L., Krishnapuram B. “On classification with incom-
plete data,” IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 29(3),
pp. 427–436, 2007.

[Yang 02] Yang J., Yang J.-Y. “Why can LDA be performed in PCA transformed space?” Pattern
Recognition,Vol. 36, pp. 563–566, 2002.

[Ye 05] Ye J., Li Q. “A two stage linear discriminant analysis via QR decomposition,”IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 27(6), pp. 929–941,
2005.

[Yu 93] Yu B.,Yuan B.“A more efficient branch and bound algorithm for feature selection,”Pattern
Recognition,Vol. 26(6), pp. 883–889, 1993.

[Zhan 02] Zhang H., Sun G. “Feature selection using tabu search method,” Pattern Recognition,
Vol. 35, pp. 701–711, 2002.

[Zhan 07] Zhang S., Sim T. “Discriminant subspace analysis: A Fukunaga-Koontz approach,” IEEE
Transactions on PatternAnalysis and Machine Intelligence,Vol. 29(10),pp. 1732–1745,2007.

“08-Ch06-SA272” 18/9/2008 page 323

CHAPTER

6Feature Generation I:
Data Transformation and
Dimensionality Reduction

6.1 INTRODUCTION
Feature generation is of paramount importance in any pattern recognition task.
Given a set of measurements, the goal is to discover compact and informative repre-
sentations of the obtained data. A similar process is also taking place in the human
perception apparatus. Our mental representation of the world is based on a rela-
tively small number of perceptually relevant features. These are generated after
processing a large amount of sensory data, such as the intensity and the color of the
pixels of the images sensed by our eyes,and the power spectra of the sound signals
sensed by our ears.

The basic approach followed in this chapter is to transform a given set of measure-
ments to a new set of features. If the transform is suitably chosen, transform dom-
ain features can exhibit high information packing properties compared with the
original input samples. This means that most of the classification-related informa-
tion is “squeezed” in a relatively small number of features, leading to a reduction
of the necessary feature space dimension. Sometimes we refer to such processing
tasks as dimensionality reduction techniques.

The basic reasoning behind transform-based features is that an appropriately
chosen transform can exploit and remove information redundancies, which usu-
ally exist in the set of samples obtained by the measuring devices. Let us take
for example an image resulting from a measuring device, for example, X-rays or a
camera. The pixels (i.e., the input samples) at the various positions in the image
have a large degree of correlation, due to the internal morphological consistencies
of real-world images that distinguish them from noise. Thus, if one uses the pixels
as features, there will be a large degree of redundant information. Alternatively, if
one obtains the Fourier transform,for example,of a typical real-world image, it turns
out that most of the energy lies in the low-frequency components, due to the high
correlation between the pixels’gray levels. Hence,using the Fourier coefficients as
features seems a reasonable choice, because the low-energy, high-frequency coef-
ficients can be neglected, with little loss of information. In this chapter we will

323

“08-Ch06-SA272” 18/9/2008 page 324

324 CHAPTER 6 Feature Generation I

see that the Fourier transform is just one of the tools from a palette of possible
transforms.

6.2 BASIS VECTORS AND IMAGES
Let x(0), x(1), . . . , x(N ! 1) be a set of input samples and x be the N " 1 corres-
ponding vector,

xT # [x(0), . . . , x(N ! 1)]

Given a unitary N " N matrix A,1 we define the transformed vector y of x as

y # AH x ≡

⎡

⎢⎢⎣

aH
0
...

aH
N!1

⎤

⎥⎥⎦ x (6.1)

where H denotes the Hermitian operation, that is, complex conjugation and trans-
position. From (6.1) and the definition of unitary matrices we have

x # Ay #
N!1∑

i#0

y(i)ai (6.2)

The columns of A, ai, i # 0, 1, . . . , N ! 1, are called the basis vectors of the trans-
form. The elements y(i) of y are nothing but the projections of x onto these basis
vectors. Indeed, taking the inner product of x with aj we have

⟨aj , x⟩ ≡ aH
j x #

N!1∑

i#0

y(i)⟨aj , ai⟩ #
N!1∑

i#0

y(i)!ij # y(j) (6.3)

This is due to the unitary property of A, that is, AH A # I or ⟨ai, aj⟩ # aH
i aj # !ij .

In many problems, such as in image analysis, the input set of samples is a two-
dimensional sequence X(i, j), i, j # 0, 1, . . . , N ! 1, defining an N " N matrix X
instead of a vector. In such cases, one can define an equivalent N2 vector x, for
example, by ordering the rows of the matrix one after the other (lexicographic
ordering)

xT # [X(0, 0), . . . , X(0, N ! 1), . . . , X(N ! 1, 0), . . . , X(N ! 1, N ! 1)]

and then transform this equivalent vector. However, this is not the most efficient
way to work. The number of operations required to multiply an N2 " N2 square
matrix (A) with an N2 " 1 vector x is of the order of O(N4), which is prohibitive

1 A complex matrix is called unitary if A!1 # AH . Real matrices are equivalently called orthogonal
if A!1 # AT .

“08-Ch06-SA272” 18/9/2008 page 325

6.2 Basis Vectors and Images 325

for many applications. An alternative possibility is to transform matrix X via a set of
basis matrices or basis images. Let U and V be unitary N "N matrices. Define the
transformed matrix Y of X as

Y # U H XV (6.4)

or

X # UYV H (6.5)

The number of operations is now reduced to O(N3). Equation (6.5) can alternatively
be written (Problem 6.1) as

X #
N!1∑

i#0

N!1∑

j#0

Y (i, j)uiv H
j (6.6)

where ui are the column vectors of U and vj the column vectors of V . Each of the
outer products uivH

j is an N " N matrix

uivH
j #

⎡

⎢⎢⎣

ui0v∗
j0 . . . ui0v∗

jN!1
...

...
...

uiN!1v∗
j0 . . . uiN!1v∗

jN!1

⎤

⎥⎥⎦ ≡ Aij

and (6.6) is an expansion of matrix X in terms of these N2 basis images (matrices).
The ∗ denotes complex conjugation. Furthermore, if Y turns out to be diagonal,
then (6.6) becomes

X #
N!1∑

i#0

Y (i, i)uivH
i

and the number of basis images is reduced to N . An interpretation similar to (6.3) is
also possible. To this end, let us define the inner product between two matrices as

⟨A, B⟩ ≡
N!1∑

m#0

N!1∑

n#0

A∗(m, n)B(m, n) (6.7)

Then it is not difficult to show that (Problem 6.1)

Y (i, j) # ⟨Aij , X⟩ (6.8)

In words, the (i, j) element of the transformed matrix results from multiplying each
element of X by the conjugate of the corresponding element of Aij and summing
up all products.

Transformations of the type (6.4) are also known as separable (Problem 6.2). The
reason is that one can look at them as a succession of one-dimensional transforms,
first applied on column vectors and then on row vectors. For example, the interme-
diate result in (6.4),Z # U H X , is equivalent to N transforms applied to the column

“08-Ch06-SA272” 18/9/2008 page 326

326 CHAPTER 6 Feature Generation I

vectors of X , and (U H X)V # (V H ZH)H is equivalent to a second sequence of N
transforms acting upon the rows of Z . All the two-dimensional transforms that we
will deal with in this chapter are separable ones.

Example 6.1
Given the image X and the orthogonal transform matrix U

X #

[
1 2
2 3

]

, U #
1√
2

[
1 1
1 !1

]

the transformed image Y # U T XU is

Y #
1
2

[
1 1
1 !1

] [
1 2
2 3

] [
1 1
1 !1

]

#

[
4 !1

!1 0

]

The corresponding basis images are

A00 #
1
2

[
1
1

]
[1,1] #

1
2

[
1 1
1 1

]

,

A11 #
1
2

[
1

!1

]
[1, !1] #

1
2

[
1 !1

!1 1

]

and similarly

A01 # AT
10 #

1
2

[
1 !1
1 !1

]

Now verify that the elements of Y are obtained via the matrix inner products ⟨Aij , X⟩.

6.3 THE KARHUNEN–LOÈVE TRANSFORM
In Section 5.8 the problem of the linear transformation of a feature vector was
considered in the spirit of linear discriminant analysis (LDA).The class labels of the
feature vectors were assumed known,and this information was optimally exploited
to compute the transformation matrix. The linear transform task will also be con-
sidered in this section but from a different perspective. Here, the computation of
the transformation matrix will exploit the statistical information describing the data,
and it will take place in an unsupervised mode. The Karhunen–Loève transform or
principal component analysis (PCA), as it is also known, is one of the most popular
methods for feature generation and dimensionality reduction in pattern recognition.
Though an old technique, it is still in use,and it forms the basis for a number of more
advanced approaches.

Let x be the vector of input samples. In the case of an image array, x may be
formed by lexicographic ordering of the array elements. In order to simplify the

“08-Ch06-SA272” 18/9/2008 page 327

6.3 The Karhunen–Loève Transform 327

presentation, we will assume that the data samples have zero mean. If this is not
the case, we can always subtract the mean value. We have already mentioned that
a desirable property of the generated features is to be mutually uncorrelated in an
effort to avoid information redundancies. We begin this section by first developing
a method that generates mutually uncorrelated features, that is, E[y(i)y(j)] # 0,
i ̸# j. Let2

y # AT x (6.9)

Since we have assumed that E[x] # 0, it is readily seen that E[y] # 0. From the
definition of the correlation matrix we have

Ry ≡ E[yyT] # E[AT xxT A] # AT RxA (6.10)

In practice, Rx is estimated as an average over the given set of training vectors. For
example, if we are given n data vectors xk, k # 1, 2, . . . , n, then

Rx ≈ 1
n

n∑

k#1

xkxT
k (6.11)

Note that Rx is a symmetric matrix, and hence its eigenvectors are mutually
orthogonal (Appendix B). Thus, if matrix A is chosen so that its columns are
the orthonormal eigenvectors ai , i # 0, 1, . . . , N ! 1, of Rx , then Ry is diagonal
(Appendix B)

Ry # AT RxA # $ (6.12)

where $ is the diagonal matrix having as elements on its diagonal the respective
eigenvalues "i , i # 0, 1, . . . , N ! 1, of Rx . (Recall that in Section 5.8 a linear trans-
form of the form in (6.9) was also considered, but there the elements of matrix A
were computed so that a class separability criterion could be optimized.) Fur-
thermore, assuming Rx to be positive definite (Appendix B) the eigenvalues are
positive. The resulting transform is known as the Karhunen–Loève (KL) transform,
and it achieves our original goal of generating mutually uncorrelated features. The
KL transform was introduced in [Karh 46] in the context of representing a random
process in terms of orthogonal functions and in the discrete form used in this section
in [Hote 33]. Other classical references of the topic are [Diam 96, Joll 86].

It has to be emphasized that the solution provided by the KL transform is not
a unique one, and it was obtained by imposing an orthogonal structure on matrix
A (AT A # I). Also, note that for zero mean variables the correlation matrix R coin-
cides with the covariance matrix %. As a matter of fact, a direct consequence of the
respective definitions is that

%x # Rx ! E[x]E[x]T

2 We deal with real data. The complex case is a straightforward extension.

“08-Ch06-SA272” 18/9/2008 page 328

328 CHAPTER 6 Feature Generation I

In case the zero mean assumption is not valid, the condition for uncorrelated
variables becomes E[(y(i) ! E[y(i)])(y(j) ! E[y(j)])] # 0, i ̸# j,and the problem
results in the eigendecomposition of the covariance matrix, that is,

%y # AT %xA # $ (6.13)

Although our starting point was to generate mutually uncorrelated features, the KL
transform turns out to have a number of other important properties,which provide
different ways for its interpretation and also the secret for its popularity.

Mean Square Error Approximation
From Eqs. (6.2) and (6.3) we have

x #
N!1∑

i#0

y(i)ai and y(i) # aT
i x (6.14)

Let us now define a new vector in the m-dimensional subspace

x̂ #
m!1∑

i#0

y(i)ai (6.15)

where only m of the basis vectors are involved. Obviously, this is nothing but the
projection of x onto the subspace spanned by the m (orthonormal) eigenvectors
involved in the summation. If we try to approximate x by its projection x̂, the
resulting mean square error is given by

E
[
∥x ! x̂∥2] # E

⎡

⎣
∥∥∥∥∥

N!1∑

i#m

y(i)ai

∥∥∥∥∥

2
⎤

⎦ (6.16)

Our goal now is to choose the eigenvectors that result in the minimum MSE. From
(6.16) and taking into account the orthonormality property of the eigenvectors,
we have

E

⎡

⎣
∥∥∥∥∥

N!1∑

i#m

y(i)ai

∥∥∥∥∥

2
⎤

⎦ # E

⎡

⎣
∑

i

∑

j

(y(i)aT
i)(y(j)aj)

⎤

⎦ (6.17)

#
N!1∑

i#m

E[y2(i)] #
N!1∑

i#m

aT
i E[xxT]ai (6.18)

Combining this with (6.16) and the eigenvector definition, we finally get

E
[
∥x ! x̂∥2] #

N!1∑

i#m

aT
i "iai #

N!1∑

i#m

"i (6.19)

Thus, if we choose in (6.15) the eigenvectors corresponding to the m largest
eigenvalues of the correlation matrix, then the error in (6.19) is minimized,
being the sum of the N ! m smallest eigenvalues. Furthermore, it can be shown

“08-Ch06-SA272” 18/9/2008 page 329

6.3 The Karhunen–Loève Transform 329

(Problem 6.3) that this is also the minimum MSE, compared with any other
approximation of x by an m-dimensional vector. This is the reason that the KL
transform is also known as principal component analysis (PCA).

A difficulty in practice is how to choose the m principal components. One way
is to rank the eigenvalues in descending order, "0 & "1 & . . . & "m!1 & "m & . . .

& "N!1, and determine m so that the gap between the values "m!1 and "m is
“large.” For more on this issue, see [Jack 91].

Note that the previous analysis concerning the MSE property of the KL trans-
form, after projecting onto the m principal components of Rx , is still valid even if
the mean of the data is not zero. However, in this case, although a minimum MSE
solution is obtained, the approximation is not, in general, a good one (why?) In
such cases, one tries to find the optimum m-dimensional subspace, so that the MSE
between x and its following approximation

x̂ #
m!1∑

i#0

y(i)âi '
N!1∑

i#m

biâi , y(i) ≡ âT
i x (6.20)

to be minimum,where bi, i # m, . . . , N !1,are constants independent of x. It turns
out (Problem 6.4) that the resulting orthonormal basis consists of the eigenvectors
of the covariance matrix, %x , where âi , i # 0, 2, . . . , m ! 1, correspond to the
principal eigenvalues of %x , and the constants are equal to

bi # E[y(i)] # âT
i E[x], i # m, . . . , N ! 1

In other words, x is projected onto the subspace spanned by the m principal com-
ponents of %x and the rest N ! m components are frozen to the respective mean
values, in order to bring the estimate closer to its mean. Note, however, that the
number of free parameters remains equal to m. The optimality of the KL transform,
with respect to the MSE approximation, leads to excellent information packing
properties and offers us a tool to select the m dominant features out of N measure-
ment samples. However, although this may be a good criterion, in many cases it
does not necessarily lead to maximum class separability in the lower dimensional
subspace. This is reasonable, since the dimensionality reduction is not optimized
with respect to class separability, as was, for example, the case with the scattering
matrix criteria of the previous chapter. This is demonstrated via the example of
Figure 6.1. The feature vectors in the two classes follow the Gaussian distribution
with the same covariance matrix. The ellipses show the curves of constant pdf
values. We have computed the eigenvectors of the overall correlation matrix, and
the resulting eigenvectors are shown in the figure. Eigenvector a0 is the one that
corresponds to the largest eigenvalue. It does not take time for someone to realize
that projection on a0 makes the two classes almost coincide. However, projecting
on a1 keeps the two class separable.

Total Variance
Let E[x] be zero. Let y be the KL transformed vector of x. From the respective
definitions we have that #2

y(i) ≡ E[y2(i)] # "i . That is, the eigenvalues of the input

“08-Ch06-SA272” 18/9/2008 page 330

330 CHAPTER 6 Feature Generation I

x2

x1

a0

a1

FIGURE 6.1
The KL transform is not always best for pattern recognition. In this example, projection on the
eigenvector with the larger eigenvalue makes the two classes coincide. On the other hand,
projection on the other eigenvector keeps the classes separated.

correlation matrix are equal to the variances of the transformed features. Thus,
selecting those features, y(i) ≡ aT

i x, corresponding to the m largest eigenvalues
makes their sum variance

∑
i "i maximum. In other words, the selected m features

retain most of the total variance associated with the original random variables x(i).
Indeed, the latter is equal to the trace of Rx , which we know from linear algebra
to be equal to the sum of the eigenvalues

∑N!1
i#0 "i [Stra 80]. It can be shown

that this is a more general property. That is, from all possible sets of m features,
obtained via any orthogonal linear transformation on x, the ones resulting from the
KL transform have the largest sum variance (Problem 6.3). If the mean value is not
zero, to maximize the sum variance, we use %x in place of Rx .

Entropy
We know from Chapter 2 that the entropy of a process is defined as

Hy # !E[ln py(y)]

and it is a measure of the randomness of the process. For a zero mean Gaussian
multivariable m-dimensional process, the entropy becomes

Hy #
1
2

E[yT R!1
y y] '

1
2

ln |Ry| '
m
2

ln(2$) (6.21)

However,

E[yT R!1
y y] # E[trace{yT R!1

y y}] # E[trace{R!1
y yyT }] # trace(I) # m

“08-Ch06-SA272” 18/9/2008 page 331

6.3 The Karhunen–Loève Transform 331

and using the known property from linear algebra the determinant is

ln|Ry| # ln("0"1 . . . "m!1)

In words, selection of the m features that correspond to the m largest eigenval-
ues maximizes the entropy of the process. This is expected because variance and
randomness are directly related.

Dimensionality Reduction
PCA achieves a linear transformation of a high-dimensional input vector into a
low-dimensional one whose components are uncorrelated. As already stated, we
can assume that E[x] is zero, without loss of generality. Assuming that the N ! m
smallest eigenvalues of the correlation matrix are zero,then Eq. (6.19) suggests that
x # x̂. In other words, vector x lies in an m-dimensional subspace ([Eq. (6.15)])
of the original N -dimensional space. This brings us to the notion of intrinsic
dimensionality.

A data set X ⊂ RN is said to have intrinsic dimensionality (ID) m (N , if X can
be described in terms of m free parameters. For example, if X consists of vectors
whose components are functions of m random variables, xi # gi(u1, u2, . . . , um),
i # 1, 2, . . . , N , ui ∈ R, then the intrinsic dimensionality of X is m. The geometric
interpretation of this is that the entire data set lies on a m-dimensional hypersurface
(manifold) in RN . Take as an example the case of a random variable % and the
functions

x1 # r cos %, x2 # r sin %

It does not take time to see that x # [x1, x2]T lies on the perimeter of the circle with
radius equal to r. This is a one-dimensional surface (manifold) since one parameter
suffices to describe the data (the length across the circumference from a point,
origin, on the perimeter of the circle). From a statistical point of view, the fact that
the intrinsic or “effective”dimension is smaller than the “apparent”one means that
the features in the data set are correlated.

The PCA method has been used extensively for dimensionality reduction and for
estimation of the ID of a data set. If ID # m (N , then in theory there will be N !m
zero eigenvalues. In practice, one has to ignore the eigenvalues with small values,
and thus an approximation of the ID is obtained. PCA, being a linear projection
method, works well if the data points are distributed, more or less, throughout a
hyperplane. The eigenvalue–eigenvector decomposition of the correlation (covari-
ance) matrix reveals the dimensionality of this hyperplane across which data are
spread; in other words, dimensionality is a measure of the number of underlying
modes of variability. Recall that PCA projects across the directions of maximum
variance.

For more general cases,however where the generation mechanism of the data is
highly nonlinear and they lie on more complicated manifolds,PCA fails, and it tends
to overestimate the true value of the ID. For example,for the case considered before,

“08-Ch06-SA272” 18/9/2008 page 332

332 CHAPTER 6 Feature Generation I

where all the data points lie on the perimeter of a circle in the two-dimensional
space,PCA would result in ID # 2,although the true value is ID # 1. For such cases,
nonlinear dimensionality reduction techniques have been developed and used. For
example, in [Karh 94], a special type of neural network with three hidden layers is
proposed to perform nonlinear PCA. We will return to this issue in Section 6.7.

As we have seen in Chapter 5, LDA is another linear method that has been
used for dimensionality reduction. However, in the case of LDA, this is achieved
in a supervised manner; that is, the lower dimensional space is chosen in order to
preserve a class separability measure. Another linear technique used to project
in a lower dimensional space, while respecting certain constraints, is the metric
multidimensional scaling (MDS). Given the set X ⊂ RN , the goal is to project into
a lower dimensional space,Y ⊂ Rm, so that inner products are optimally preserved,
that is,

E #
∑

i

∑

j

(
xT

i xj ! yT
i yj

)2

is minimized, where yi is the image of xi and the sum runs over all the training
points in X . The problem is similar to the PCA, and it can be shown that the
solution is given by the eigendecomposition of the Gram matrix,whose elements are
defined as

K(i, j) # xT
i xj

Another side of the same coin is to require the Euclidean distances, instead of
the inner products, to be optimally preserved. A Gram matrix, consistent with
the squared Euclidean distances can then be formed, leading to the same solution
as before. It turns out that the solutions obtained by PCA and MDS are equiva-
lent. We can see this by the following simple reasoning. PCA performs the eigen
decomposition of the correlation matrix Rx , which is approximated by

Rx # E[xxT] ≈ 1
n

n∑

k#1

xkxT
k #

1
n

XT X (6.22)

where, as we have defined in (3.44),

XT # [x1, x2, . . . , xn]

On the other hand, the Gram matrix can also be written as

K # XXT

However,as we will see in more detail in Section 6.4,the two matrices XT X and XXT

are of the same rank and have the same eigenvalues. Their eigenvectors, although
different, are related.

More on these issues can be found in, for example, [Cox 94, Burg 04]. As we
will see in Section 6.6, the main idea behind MDS of preserving the distances is
used, in one way or another, in a number of more recently developed nonlinear
dimensionality reduction techniques.

“08-Ch06-SA272” 18/9/2008 page 333

6.3 The Karhunen–Loève Transform 333

Remarks

■ The concept of principal eigenvector subspace has also been exploited as a
classifier. First, the sample mean of the whole training set is subtracted from
the feature vectors. For each class, &i , the correlation matrix Ri is estimated
and the principal m eigenvectors (corresponding to the m largest eigenvalues)
are computed. A matrix Ai is then formed using the respective eigenvectors
as columns. An unknown feature vector x is then classified in the class &j for
which

∥AT
j x∥) ∥AT

i x∥, *i ̸# j (6.23)

that is, the class corresponding to the maximum norm subspace projection
of x [Wata 73]. From the Pythagoras theorem this is equivalent to classifying
a vector in its nearest class subspace. The decision surfaces are hyperplanes
if all the subspaces have the same dimension or quadric surfaces in the
more general case. Subspace classification integrates the stages of feature
generation/selection and classifier design.

If this approach results in a relatively high classification error, the per-
formance may be improved by suitable modifications known as learning
subspace methods. For example, one can iteratively rotate the subspaces
to adjust the lengths of the projections of the training vectors. The basic idea
is to increase the length of a projection in the subspace of the correct class
and decrease it for the rest. Such techniques have been applied successfully
in a number of applications, such as speech recognition, texture classification,
and character recognition. The interested reader may consult, for example,
[Oja 83, Koho 89, Prak 97].

■ For the computation of the correlation matrix eigenvectors, a number of
iterative schemes have been developed. The computation is performed work-
ing directly with the vectors, without having to estimate the corresponding
correlation matrix, using neural network concepts [Oja 83, Diam 96].

Example 6.2
The correlation matrix of a vector x is given by

Rx #

⎡

⎢⎣
0.3 0.1 0.1
0.1 0.3 !0.1
0.1 !0.1 0.3

⎤

⎥⎦

Compute the KL transform of the input vector.
The eigenvalues of Rx are "0 # "1 # 0.4, "2 # 0.1. Since the matrix Rx is symmetric, we

can always construct orthonormal eigenvectors. For this case we have

a0 #
1√
6

⎡

⎢⎣
2
1
1

⎤

⎥⎦, a1 #
1√
2

⎡

⎢⎣
0
1

!1

⎤

⎥⎦, a2 #
1√
3

⎡

⎢⎣
1

!1
!1

⎤

⎥⎦

“08-Ch06-SA272” 18/9/2008 page 334

334 CHAPTER 6 Feature Generation I

The KL transform is then given by

⎡

⎢⎣
y(0)

y(1)

y(2)

⎤

⎥⎦ #

⎡

⎢⎣
2/

√
6 1/

√
6 1/

√
6

0 1/
√

2 !1/
√

2

1/
√

3 !1/
√

3 !1/
√

3

⎤

⎥⎦

⎡

⎢⎣
x(0)

x(1)

x(2)

⎤

⎥⎦

where y(0), y(1) correspond to the two largest eigenvalues.

Example 6.3
Figure 6.2 shows 100 points in the two-dimensional space. The points spread around the
x2 # x1 line, and they have been generated by the model x2 # x1 ' ', where ' is a noise
source following the uniform distribution in [!0.5, 0.5].

We first compute the covariance matrix and perform an eigendecomposition. The resulting
eigenvectors are

a0 # [0.7045, 0.7097]T , a1 # [!0.7097, 0.7045]T

corresponding to the eigenvalues

"0 # 17.26, "1 # 0.04

respectively. Observe that "0)) "1. Figure 6.2 shows the two eigenvectors. a0, which corre-
spond to the largest eigenvalue, points in the direction where data show maximum variability.
Projecting along this direction retains most of the variance. Moreover, according to PCA, the
dimensionality of the set is approximately one, due to the large gap between "0 and "1, which
is the correct answer. Also, note, that a0, is (approximately) parallel to the line x2 # x1.

x2

x1

a0

a1

!6 !4 !2 0 2 4 6

!4

!2

0

2

4

FIGURE 6.2

Points around the x2 # x1 line. The eigenvectors of the associated covariance matrix are a0

and a1. The principal eigenvector a0 points in the direction of maximum variance.

“08-Ch06-SA272” 18/9/2008 page 335

6.4 The Singular Value Decomposition 335

6.4 THE SINGULAR VALUE DECOMPOSITION
The singular value decomposition of a matrix is one of the most elegant and
powerful algorithms in linear algebra, and it has been extensively used for rank
and dimension reduction in pattern recognition and information retrieval applica-
tions. Given a l " n matrix X of rank r (obviously r + min{l, n}),we will show that
there exist unitary matrices U and V of dimensions l " l and n " n, respectively,
so that

X # U

[
$

1
2 O

O 0

]

V H or Y ≡
[

$
1
2 O

O 0

]

U H XV (6.24)

where $
1
2 is the r " r diagonal matrix with elements

√
"i, and "i are the r nonzero

eigenvalues of the associated matrix XHX . O denotes a zero element matrix. In
other words, there exist unitary matrices U and V that transform X into the
special diagonal structure of Y . If ui , vi denote the column vectors of matrices
U and V , respectively, then Eq. (6.24) is written as

X # [u0, u1, . . . , ur!1]

⎡

⎢⎢⎢⎢⎣

√
"0 √

"1

. . . √
"r!1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

vH
0

vH
1
...

vH
r!1

⎤

⎥⎥⎥⎥⎦
(6.25)

or

X #
r!1∑

i#0

√
"iuivH

i (6.26)

Sometimes, the above is also written as

X # Ur$
1
2 V H

r (6.27)

where Ur denotes the l " r matrix that consists of the first r columns of U and Vr
the r " n matrix formed by using the first r columns of V . More precisely,ui, vi are
the eigenvectors corresponding to the nonzero eigenvalues of the matrices XXH

and XHX , respectively. The eigenvalues "i are known as singular values of X and
the expansion in (6.26) as the singular value decomposition (SVD) of X or the
spectral representation of X .

Proof. Given a matrix X of rank r, it is known from linear algebra [Stra 80] that
the n " n matrix XH X as well as the l " l matrix XXH are of the same rank r.
Furthermore, both matrices have the same nonzero eigenvalues but different (yet
related) eigenvectors (Problem 6.5),

XXH ui # "iui (6.28)

XH Xvi # "ivi (6.29)

“08-Ch06-SA272” 18/9/2008 page 336

336 CHAPTER 6 Feature Generation I

Since both matrices are Hermitian and nonnegative (i.e., (XXH)H # XXH), they
have nonnegative real eigenvalues and orthogonal eigenvectors (Appendix B).
The eigenvectors, given in (6.28) and (6.29), can also be normalized to become
orthonormal, that is,uH

i ui # 1 and vH
i vi # 1. It is straightforward to see from (6.28)

and (6.29) that

ui #
1√
"i

Xvi , for "i ̸# 0 (6.30)

Indeed, premultiplying (6.29) by X results in

(XXH)Xvi # "iXvi

That is, ui # (Xvi , where (without loss of generality) the scaling factor (can be
taken as positive and it is found from

∥ui∥2 # 1 # (2vH
i XH Xvi # (2"i∥vi∥2 ⇒ (#

1√
"i

Let us now assume that ui, vi , i # 0, 1, . . . , r ! 1, are the eigenvectors corres-
ponding to the nonzero eigenvalues and ui , i # r, . . . , l ! 1, vi , i # r, . . . , n ! 1,
to the zero ones. Then, for the latter case we have

XH Xvi # 0 ⇒ vH
i XH Xvi # 0 ⇒ ∥Xvi∥2 # 0

Hence

Xvi # 0, i # r, . . . , n ! 1 (6.31)

In a similar way one can show that

XH ui # 0, i # r, . . . , l ! 1 (6.32)

Combining (6.30) and (6.31), we show that the right-hand side of (6.26) is

r!1∑

i#0

√
"iuiv H

i # X
r!1∑

i#0

√
"i

1√
"i

v iv H
i # X

n!1∑

i#0

viv H
i (6.33)

Let us now define a matrix V that has as columns the orthonormal eigenvectors v i ,

V # [v0, . . . , vn!1]

Orthonormality of the columns results in V H V # I ; that is, V is unitary and hence
VV H # I . Thus, it turns out that

I # VV H # [v0, . . . , vn!1]

⎡

⎢⎢⎣

v H
0
...

v H
n!1

⎤

⎥⎥⎦ #
n!1∑

i#0

viv H
i (6.34)

“08-Ch06-SA272” 18/9/2008 page 337

6.4 The Singular Value Decomposition 337

From (6.33) and (6.34) we obtain

X #
r!1∑

i#0

√
"iuiv H

i (6.35)

and X can be written as

X # U

[
$

1
2 O

O 0

]

V H (6.36)

where U is the unitary matrix with columns the orthonormal eigenvectors ui .

Low Rank Approximation
The expansion in (6.26) is an exact representation of matrix X . A very interesting
implication occurs if one uses less than r (the rank of X) terms in the summation.
Let X be approximated by

X ≃ X̂ #
k!1∑

i#0

√
"iuiv H

i , k + r (6.37)

Matrix X̂ , being the sum of k + r rank-one independent l " n matrices, is of rank k.
If the k largest eigenvalues are involved, it can be shown that the squared error

'2 #
l!1∑

i#0

n!1∑

j#0

|X(i, j) ! X̂(i, j)|2 (6.38)

is the minimum one with respect to all rank-k l " n matrices. The square root
of the right-hand side in (6.38) is also known as the Frobenius norm ∥X ! X̂∥F
of the difference matrix X ! X̂ . The error in the approximation turns out to be
(Problem 6.6)

'2 #
r!1∑

i#k

"i (6.39)

Hence, if we order the eigenvalues in descending order,"0 ≥ "1 ≥ · · · ≥ "r!1, then
for a given number of k terms in the expansion, the SVD leads to the minimum
square error. Thus, X̂ is the best rank-k approximation of X in the Frobenius
norm sense. This reminds us of the Karhunen–Loève expansion. However, in the
latter case the optimality was with respect to the mean square error. This is a major
difference in philosophy between SVD and KL. The former is related to a single set
of samples and the latter to an ensemble of them.

Dimensionality Reduction
SVD has been used extensively for dimension reduction in pattern recognition and
information retrieval, and it forms the basis of what is known as latent semantics
indexing, see, for example, [Berr 95]. Adopting the notation used in (6.25) and

“08-Ch06-SA272” 18/9/2008 page 338

338 CHAPTER 6 Feature Generation I

(6.27), Eq. (6.37) can be written as

X ≃ X̂ # [u0, u1, . . . , uk!1]

⎡

⎢⎢⎢⎢⎣

√
"0vH

0√
"1vH

1
...√

"k!1vH
k!1

⎤

⎥⎥⎥⎥⎦

Uk[a0, a1, . . . , an!1] (6.40)

where Uk consists of the first k columns of U and the k-dimensional vectors ai ,

i # 0, 1, . . . , n!1,are the column vectors of the k"n product matrix $
1
2
k V H

k ,where

V H
k consists of the first k rows of V H and $

1
2
k is the diagonal matrix having elements

the square roots of the respective k singular values. Figure 6.3 gives a diagrammatic
interpretation of the matrix products involved in SVD. The formulation given in
(6.40) suggests that each column vector, xi of X , is approximated as

xi ≃ Ukai #
k!1∑

m#0

umai(m), i # 0, 2, . . . , n ! 1 (6.41)

where ai(m), m # 0, 1, . . . , k ! 1, denote the elements of the respective vector
ai . In words,the l-dimensional vector xi is approximated by the k-dimensional vec-
tor ai, lying in the subspace spanned by ui , i # 0, 1, . . . , k ! 1 (ai is the projection
of xi on this subspace; Problem 6.6.) Furthermore, due to the orthonormality of
the columns ui , i # 0, 1, . . . , k ! 1, of Uk it is straightforward to see that

||xi ! xj || ≃ ||Uk(ai ! aj)|| # ||
k!1∑

m#0

um(ai(m) ! aj(m))||

||ai ! aj ||, i, j # 0, 1, . . . , n ! 1 (6.42)

k

k

k

l
r r

r

r
n

k

X 5Ur

Uk Ur

V k
H

V r
H

V r
H

r

1
2

L

k

1
2

L

r

1
2

L

X 5Uk V k
H

k

1
2

L

FIGURE 6.3
Diagrammatic interpretation of the matrix products involved in SVD. In the approximation of X
by X̂ , the first k columns of Ur and the first k rows of V H

r are involved.

“08-Ch06-SA272” 18/9/2008 page 339

6.4 The Singular Value Decomposition 339

where || · || represents the Euclidean norm of a vector. That is, using the previous
projection and assuming the approximation to be reasonably good, the Euclidean
distance between xi and xj in the high l-dimensional space is (approximately)
preserved under the projection in the lower k-dimensional subspace.

The previous observation has important implications in applications such as
information retrieval. Let us take as an example the simple case where we are
given a set of n patterns each represented by a l-dimensional feature vector. These
patterns constitute the available database. Given an unknown pattern, the goal
is to search for and recover from the database the pattern that is most similar to
the unknown one, by computing its Euclidean distance from each vector in the
database. When l and n are large numbers this can be a very time-consuming
task. A procedure to simplify computations is the following. We form the l " n
data matrix, X ,3 having as columns the n feature vectors. Perform a SVD on X
and represent each feature vector, xi, by its lower dimensional projection, ai , as
described before. Given the unknown vector, one projects it on the subspace
spanned by the columns of Uk and performs Euclidean distance computations in
the k-dimensional space. Since Euclidean distances are approximately preserved,
one can decide about the proximity of vectors by working in a lower dimen-
sional space. If k ((l substantial computational savings are obtained (see, e.g.,
[Berr 95, Deer 90, Sebr 03]).

SVD builds upon global information spread over all the data vectors in X . Indeed,
a crucial part of the algorithm is the computation of the eigenvalues of XH X or XXH ,
which,for zero mean data,is directly related to the respective covariance matrix (Eq.
6.22). Hence, the performance of the SVD,as a dimensionality reduction technique,
is most effective for cases where data can sufficiently be described in terms of
the covariance matrix, for example, to be Gaussian-like distributed. In [Cast 03] a
modification of the simple SVD is suggested to account for data with a clustered
structure. In Section 6.7, nonlinear dimensionality techniques will be reviewed,
where more than a simple linear projection on a subspace is required to reduce
dimensionality.

Remarks

■ Due to its optimal approximation properties,the SVD transform also has excel-
lent “information packing”properties, and an image array can be represented
efficiently by a few of its singular values. Thus, SVD is a natural candidate as a
tool for feature generation/selection in classification.

■ Performing SVD of large matrices is a computationally expensive task. In order
to overcome this drawback, a number of computationally efficient schemes
have been developed, see, for example, [Ye 04, Achl 01].

3 Note that X is defined here as the transpose of the data matrix in (3.44),to comply with the notation
used in latent semantics indexing.

“08-Ch06-SA272” 18/9/2008 page 340

340 CHAPTER 6 Feature Generation I

Example 6.4
Consider the matrix

X #

⎡

⎢⎢⎢⎣

6 6
0 1
4 0
0 6

⎤

⎥⎥⎥⎦

The goal is to compute its singular value decomposition.

■ Step 1: Find the eigenvalues and eigenvectors of

XT X #

[
52 36
36 73

]

These are "0 # 100, "1 # 25, and the corresponding eigenvectors are v0 # [0.6, 0.8]T ,
v1 # [0.8, !0.6]T .

■ Step 2: Compute the eigenvectors of XXT . This is a 4 " 4 matrix of rank 2. The eigen-
vectors corresponding to the nonzero eigenvalues "0, "1 are computed via (6.30),
that is, u0 # 0.1Xv0, u1 # 0.2Xv1 or [0.84, 0.08, 0.24, 0.48]T and [0.24, !0.12, 0.64,
!0.72]T respectively.

■ Step 3: Compute the SVD of X

X # 10[0.84, 0.08, 0.24, 0.48]T [0.6, 0.8]

' 5[0.24, !0.12, 0.64, !0.72]T [0.8, !0.6]

If we keep the first of the two terms, then the resulting approximation is the best, in the
Frobenius sense, rank-1 approximation of X .

Example 6.5
The goal of this example is to demonstrate the power of the SVD as a dimensionality reduction
tool, in the context used in latent semantics indexing in information retrieval.

(a) Let our data set consist of 1000 three-dimensional vectors

xi # [x1(i), x2(i), x3(i)]T , i # 1, 2, . . . , 1000

This set of points comprises our database. We form the 3 " 1000 matrix X having these
data vectors as columns. For the needs of this example, the components x1(i), x2(i) are
randomly generated using the uniform distribution in [!10, 10]. The value of the third
dimension of each point is given by x3(i) # !x1(i) ! x2(i) '), where) is a noise source
following the uniform distribution in [!1, 1]. In other words, our data are crowded around the
plane

H : x1 ' x2 ' x3 # 0 (6.43)

“08-Ch06-SA272” 18/9/2008 page 341

6.4 The Singular Value Decomposition 341

Performing SVD analysis, it turns out that the singular values are

"0 # 158.43, "1 # 89.01, "2 # 10.50.

The relatively small value of "2 is the consequence of the fact that our data are approximately
two-dimensional. Recall that the singular values are eigenvalues of XXT , which is the same
(within a scaling factor) with the estimate of the correlation matrix used in PCA (Eq. (6.11)).
The corresponding (orthonormal) eigenvectors, which are also the column vectors of the U
matrix, are (after rounding to the second decimal point)

u0 #

⎡

⎢⎣
!0.39

!0.42

0.82

⎤

⎥⎦, u1 #

⎡

⎢⎣
0.71

!0.70

!0.01

⎤

⎥⎦, u2 #

⎡

⎢⎣
0.58

0.58

0.57

⎤

⎥⎦

It is not difficult to verify that the plane (subspace) formed by the two principal eigenvectors is

H1 : 14.26x1 ' 14.10x2 ' 13.95x3 # 0

which is very close to the hyperplane H in (6.43), around which our data cluster.
(b) We now select randomly six of the points in the data set X and project them along the

H1 plane. The 6"6 distance matrix D whose (i, j) element is the squared Euclidean distance
between the ith and jth points for i, j # 1, 2, . . . , 6, is

D #

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 26.17 24.70 112.25 11.92 4.81

26.17 0 61.46 43.96 38.33 49.25

24.70 61.46 0 107.97 4.34 14.51

112.25 43.96 107.97 0 88.72 140.18

11.92 38.33 4.34 88.72 0 9.95

4.81 49.25 14.51 140.18 9.95 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The corresponding distance matrix, D,, for the respective projections on H1 is

D, #

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 25.85 24.32 112.21 11.72 4.57

25.85 0 61.46 43.83 37.29 49.24

24.32 61.46 0 107.80 3.20 14.49

112.21 43.83 107.80 0 88.29 140.10

11.72 37.29 3.20 88.29 0 9.06

4.57 49.24 14.49 140.10 9.06 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which is in close agreement with D. Note that this good agreement is a consequence of the
fact that the true dimensionality of the data is very close to 2. Increasing the variance of the
noise source), the spread of the data around the plane H would increase and the data would
become more and more “three-dimensional.” In other words, the higher the variance of),
the less the agreement between D and D, that one expects to get.

“08-Ch06-SA272” 18/9/2008 page 342

342 CHAPTER 6 Feature Generation I

6.5 INDEPENDENT COMPONENT ANALYSIS
As we have already seen, the principal component analysis (PCA) performed by
the Karhunen–Loève transform produces features y(i), i # 0, 1, . . . , N ! 1, that are
mutually uncorrelated. The solution obtained by the KL transform solution is
optimal when dimensionality reduction is the goal and one wishes to minimize
the approximation mean square error. However, for certain applications, such as
the one illustrated in Figure 6.1,the obtained solution falls short of the expectations.
In contrast, the more recently developed independent component analysis (ICA)
theory, for example, [Hyva 01, Como 94, Jutt 91, Hayk 00, Lee 98], tries to achieve
much more than simple decorrelation of the data. The ICA task is casted as follows:
Given the set of input samples x, determine an N " N invertible matrix W such
that the entries y(i), i # 0, 1, . . . , N ! 1, of the transformed vector

y # W x (6.44)

are mutually independent. The goal of statistical independence is a stronger con-
dition than the uncorrelatedness required by the PCA. The two conditions are
equivalent only for Gaussian random variables.

Searching for independent rather than uncorrelated features gives us the means
of exploiting a lot more information, hidden in the higher order statistics of the
data. As the example of Figure 6.1 suggests, constraining the search by digging
information in the second-order statistics only results in the least interesting, for
our problem, projection direction, that is, that of a0. However, a1 is, no doubt,
the most interesting direction from the class separation point of view. In contrast,
employing ICA can unveil from the higher order statistics of the data the piece of
information that points a1 as the most interesting one. Furthermore, searching for
statistically independent features is in line with the way nature builds up the“cogni-
tive”maps of the outside world in the brain,by processing the (input) sensory data.
Barlow [Barl 89], in the so-called Barlow’s hypothesis, suggests that the outcome
of the early processing performed in our visual cortical feature detectors might be
the result of a redundancy reduction process. In other words, the neural outputs
are mutually as statistically independent as possible, conditioned, of course, on the
received sensory messages. The interested reader can find more on issues related
to redundancy reduction and also to a number of methodologies inspired by it in
[Atti 92, Fiel 94, Deco 95, Bell 00]. The potential of the ICA as an optimal feature
generator technique, in the context of pattern recognition, has been demonstrated
in [Cao 03, Bell 97, Hoy 00, Jang 99, Bart 02, Kwon 04].

Before we proceed to develop techniques for performing ICA,we need to be sure
that such a problem is well defined and has a solution and under what conditions.
To this end,let us assume that our input random data vector x is indeed generated by
a linear combination of statistically independent and stationary in the strict sense
components (sources), that is,

x # Ay (6.45)

“08-Ch06-SA272” 18/9/2008 page 343

6.5 Independent Component Analysis 343

The task now is under what conditions a matrix, W , can be computed so as to
recover the components of y from Eq. (6.44), by exploiting information hidden
in x. Usually A is known as the mixing and W as the demixing matrix, respectively.
The following condition is proved in [Como 94].

Identifiability Condition of the ICA Model
All independent components y(i), i # 1, 2, . . . , N , with the possible exception of
one,must be non-Gaussian. A second condition is that matrix A must be invertible.
In the more general case where A is a nonsquare l "N matrix,then l must be greater
than N and A must be of full column rank.

In other words, in contrast to PCA which can always be performed, ICA is
meaningful only if the involved random variables are non-Gaussian. Indeed, as
has already been stated, for Gaussian random variables independence is equiva-
lent to uncorrelatedness and PCA suffices. From a mathematical point of view, the
ICA problem is ill-posed for Gaussian processes. Indeed, if we assume that the
obtained independent components y(i), i # 0, 1, . . . , N ! 1, are all Gaussian, then
a linear transformation of them by any unitary matrix will also be a solution (see
Problem 5.4). PCA achieves a unique solution by imposing a specific orthogonal
structure onto the transformation matrix.

Under the above stated conditions,it can be shown that each one of the resulting
independent components is uniquely estimated up to a multiplicative constant,
which is a rather insignificant indeterminacy associated with the method. This is the
reason that many times the components are considered to be of unit variance. Finally,
it is interesting that the independent components result in no specific ordering, in
contrast to the PCA, where a specific ordering is associated with the values of the
corresponding eigenvalues. However, in practice, some form of ordering can be
adopted. For example, the components can be ordered according to the degree of
“non-Gaussianity,” measured by an appropriate index, for example, the fourth-order
cumulant (see Appendix A). Although such an index may seem a bit strange to a
newcomer, its physical interpretation will become clearer as we go on. After all,
from a common-sense point of view, a Gaussian pdf must be the least interesting
one. Recall from Chapter 2 that maximizing the entropy, constraining the solution
to be within the family of random variables with given mean and variance, the
result is a Gaussian pdf. That is, the Gaussian is the most “random” of all the pdfs
describing this family of random variables and from this point of view the least
informative one with respect to the underlying structure of the data. In contrast,
distributions that have the“least resemblance”to the Gaussian are more interesting
since they display some structure associated with the data. This observation is at
the heart of a closely related, to ICA, family of techniques known as projection
pursuit; see also Section 4.12. The essence behind such techniques is to search for
directions (subspaces) in the feature space so that the corresponding data vector
projections are described by “interesting” non-Gaussian distributions. For a more
rigorous discussion on such issues the reader may refer to, for example, [Hube 85,
Jone 87].

“08-Ch06-SA272” 18/9/2008 page 344

344 CHAPTER 6 Feature Generation I

6.5.1 ICA Based on Second- and Fourth-Order Cumulants
This approach in performing ICA is a direct generalization of the PCA technique.
The Karhunen–Loève transform focuses on the second-order statistics and demands
the cross-correlations E[y(i)y(j)] to be zero. Since in ICA we demand that the
components of y be statistically independent, this is equivalent to demanding that
all the higher order cross-cumulants to be zero (see Appendix A). In [Como 94] it
is suggested that restricting ourselves up to the fourth-order cumulants is sufficient
for many applications. Appendix A shows the first three cumulants are equal to the
first three moments, that is,

*1(y(i)) # E[y(i)] # 0

*2(y(i)y(j)) # E[y(i)y(j)]

*3(y(i)y(j)y(k)) # E[y(i)y(j)y(k)]

and the fourth-order cumulants are given by

*4(y(i)y(j)y(k)y(r)) # E[y(i)y(j)y(k)y(r)] ! E[y(i)y(j)]E[y(k)y(r)]

! E[y(i)y(k)]E[y(j)y(r)]

! E[y(i)y(r)]E[y(j)y(k)]

where zero mean processes have been assumed. Another assumption that is usually
encountered in practice,and will be adopted here,is that the associated pdfs are sym-
metric. This makes all odd order cumulants zero. Thus the problem has now been
reduced to finding a matrix, W , so that the second-order (cross-correlations) and
fourth-order cross-cumulants of the transformed variables are zero. In [Como 94]
this is achieved by the following steps:

Step 1: Perform a PCA on the input data, that is,

ŷ # AT x (6.46)

A is our familiar unitary transformation matrix of the Karhunen–Loève
transform. The components of the transformed random vector ŷ are thus
uncorrelated.

Step 2: Compute another unitary matrix,Â,so that the fourth-order cross-cumulants
of the components of the transformed random vector

y # ÂT ŷ (6.47)

are zero. This is equivalent to searching for a matrix Â that makes the sum
of the squares of the fourth-order auto-cumulants maximum, that is,

max
ÂÂT #I

-(Â) ≡
N!1∑

i#0

*4(y(i))2 (6.48)

“08-Ch06-SA272” 18/9/2008 page 345

6.5 Independent Component Analysis 345

Step 2 is justified as follows. It can be shown [Como 94] that the sum of the
squares of the fourth-order cumulants is invariant under a linear transformation by a
unitary matrix. Therefore, since the sum of squares of the fourth-order cumulants is
fixed for ŷ,maximizing the sum of squares of the auto-cumulants of y will force the
corresponding cross-cumulants to zero. Observe that this is basically a diagonaliza-
tion problem of the fourth-order cumulant multidimensional array. In practice, this
is achieved by generalizing the method of Givens rotations, used for matrix diago-
nalization [Como 94]. Note that the right hand side in Eq. (6.48) is a function of (a)
the elements of the unknown matrix Â,(b) the elements of the known (for this step)
matrix A, and (c) the cumulants of the random components of the input data vector
x, which have to be estimated prior to the application of the method. In practice,
it may turn out that the nulling of cross-cumulants is only approximately achieved.
This is because (a) the input data may not obey the linear model of Eq. (6.45);(b) the
input data are corrupted by noise, which has not been taken into account; and (c)
the cumulants of the input are only approximately known,since they are estimated
by the available input data set.

Once the two steps have been completed, the final feature vector with (appro-
ximately) independent components is given by the combined transform

y # (AÂ)T x ≡ W x (6.49)

Notice that since Â is unitary, the uncorrelatedness achieved in the first step is
inherited by the elements of y, which now has its second- and fourth-order cross-
cumulants (at least approximately) zero.

6.5.2 ICA Based on Mutual Information
The approach based on nulling the second- and fourth-order cross-cumulants,though
one of the most widely used in practice, somehow lacks in generality and also
imposes, externally, a structure in the transformation matrix. An alternative, the-
oretically more pleasing approach is estimating W by minimizing the mutual
information between the transformed random variables. The mutual information,
I(y), between the components of y is defined as

I(y) # !H(y) '
N!1∑

i#0

H(y(i)) (6.50)

where H(y(i)) is the associated entropy of y(i), defined as ([Papo 91])

H(y(i)) # !

∫
pi(y(i)) ln pi(y(i)) dy(i) (6.51)

where pi(y(i)) is the marginal pdf of y(i). In Appendix A, it is shown that I(y)
is equal to the Kullback–Leibler probability distance between the joint pdf p(y)
and the product of the respective marginal probability densities

∏N!1
i#0 pi(y(i)).

This distance (and hence the associated mutual information I(y)) is zero if the
components y(i) are statistically independent. This is because only in this case is the

“08-Ch06-SA272” 18/9/2008 page 346

346 CHAPTER 6 Feature Generation I

joint pdf equal to the product of the corresponding marginal pdfs and the Kullback–
Leibler distance becomes zero. Hence,what is more natural than trying to compute
W so as to force I(y) to be minimum, since this will make the components of y
as independent as possible? Combining Eqs. (6.44), (6.50), and (6.51) and taking
into account the formula that relates the two pdfs associated with x and y (y is a
function of x), e.g., [Papo 91], we end up with

I(y) # !H(x) ! ln |det(W)| !
N!1∑

i#0

∫
pi(y(i)) ln pi(y(i)) dy(i) (6.52)

where det(W) denotes the determinant of W . The elements of the unknown matrix
W are hidden in the marginal pdfs of the transformed variables, y(i). However,
it is not easy to express this dependence explicitly. An approach currently used
is to expand each of the marginal probabilities around the Gaussian pdf, g(y),
following Edgeworth’s expansion (AppendixA),and truncate the series to a reason-
able approximation. For example, keeping the first two terms in the Edgeworth
expansion, we have

p(y) # g(y)
(

1 '
1
3!*3(y)H3(y) '

1
4!*4(y)H4(y)

)
(6.53)

where Hk(y) is the Hermite polynomial of order k (Appendix A). To obtain an
approximate expression for I(y) in terms of cumulants of y(i) and W , we can (a)
insert in Eq. (6.52) the pdf approximation in Eq. (6.53),(b) adopt the approximation
ln(1 ' y) ≃ y ! y2,and (c) perform the integrations. This is no doubt a rather painful
task! For the case of Eq. (6.53) and constraining W to be unitary, the following is
obtained ([Hyva 01]):

I(y) ≃ C !
N!1∑

i#0

(
1
12

*2
3(y(i)) '

1
48

*2
4(y(i)) '

7
48

*4
4(y(i)) !

1
8

*2
3(y(i))*4(y(i))

)
(6.54)

where C is a variable independent of W . Under the assumption that the pdfs are
symmetric (thus, third-order cumulants are zero,) it can be shown that minimizing
the approximate expression of the mutual information in Eq. (6.54) is equivalent
to maximizing the sum of the squares of the fourth-order cumulants. Of course, the
unitary W constraint is not necessary,and in this case other approximate expressions
for I(y) result, e.g., [Hayk 99].

Minimization of I(y) in Eq. (6.54) can be carried out by a gradient descent
technique (Appendix C), where the involved expectations (associated with the
cumulants) are replaced by the respective instantaneous values. Although a detailed
treatment of the optimization procedure is beyond the scope of this book,it is worth
pointing out some of its aspects.

Before we apply the approximations, let us go back to Eq. (6.52). Since H(x)
does not depend on W , minimizing I(y) is equivalent to maximization of

J (W) # ln |det(W)| ' E

[
N!1∑

i#0

ln pi(y(i))

]

(6.55)

“08-Ch06-SA272” 18/9/2008 page 347

6.5 Independent Component Analysis 347

Taking the gradient of the cost function with respect to W results in
+J (W)

+W
W !T ! E[,(y)xT] (6.56)

where

,(y) ≡
[

!
p,0(y(0))
p0(y(0))

, . . . , !
p,N!1(y(N ! 1))
pN!1(y(N ! 1))

]T

(6.57)

and

p,i(y(i)) ≡ dpi(y(i))
dy(i)

(6.58)

Obviously, the derivatives of the marginal probability densities depend on the type
of approximation adopted in each case. The general gradient ascent scheme at the
tth iteration step can now be written as

W (t) # W (t ! 1) ' -(t)
(
W !T (t ! 1) ! E[,(y)xT]

)

W (t) # W (t ! 1) ' -(t)
(
I ! E[,(y)yT]

)
W !T (t ! 1) (6.59)

In practice, the expectation operator is neglected, in the spirit of the stochastic
approximation rationale (Section 3.4.2).

Remarks

■ From the gradient in Eq. (6.56) it is easy to see that at a stationary point the
following is true:

+J (W)
+W

W T # E[I ! ,(y)yT] # 0 (6.60)

In other words,what we achieve with ICA is a nonlinear generalization of PCA.
Recall that for the latter, the uncorrelatedness condition can be written as

E[I ! yyT] # 0 (6.61)

The presence of the nonlinear function ,(·) takes us beyond simple uncorre-
latedness, and brings the cumulants into the scene. In fact, Eq. (6.60) was
the one that inspired the early pioneering work on ICA, as a direct nonlinear
generalization of PCA [Jutt 91].

■ The updated equation in Eq. (6.59) involves the inversion of the transpose
of the current estimate of W . Besides the computational complexity issues,
there is no guarantee of invertibility in the process of adaptation. Use of the
so-called natural gradient [Doug 00], instead of the gradient in Eq. (6.56),
results in

W (t) # W (t ! 1) ' -(t)
(
I ! E[,(y)yT]

)
W (t ! 1) (6.62)

“08-Ch06-SA272” 18/9/2008 page 348

348 CHAPTER 6 Feature Generation I

which does not involve matrix inversion and at the same time improves con-
vergence. A more detailed treatment of this issue is beyond the scope of the
present book. Just to give an incentive to the mathematically inclined reader
for indulging more deeply this field, it suffices to say that our familiar gradi-
ent, that is, Eq. (6.56), points to the steepest ascent direction if the space
is Euclidean. However, in our case the parameter space consists of all the
nonsingular N " N matrices, which is a multiplicative group. The space is
Riemannian,and it turns out that the natural gradient,pointing to the steepest
ascent direction, results if we multiply the gradient in Eq. (6.56) by W T W ,
which is the corresponding Riemannian metric tensor [Doug 00].

6.5.3 An ICA Simulation Example
The example is a realization of the case shown in Figure 6.4. A total of 1024 samples
of a two-dimensional normal distribution were generated.

The mean and covariance matrix of the normal pdf were

! # [!2.6042, 2.5]T , % #

[
10.5246 9.6313

9.6313 11.3203

]

Similarly, 1024 samples from a second normal pdf were generated with the same
covariance and mean !!. For the ICA, the method based on the second- and

x1

x2

a1 a0

!15 !10

!10

!5

0

5

10

!5 0 5 10 15

FIGURE 6.4
The setup for the ICA simulation example. The two vectors point to the projection directions
resulting from the analysis. The optimal direction for projection, resulting from the ICA analysis,
is that of a1.

“08-Ch06-SA272” 18/9/2008 page 349

6.6 Nonnegative Matrix Factorization 349

fourth-order cumulants, presented in this section, was used. The resulting
transformation matrix W is

W #

[
!0.7088 0.7054

0.7054 0.7088

]

≡
[

aT
1

aT
0

]

The vectors a0 and a1 point in the principal and minor axis directions, respectively,
obtained from the PCA analysis. However, the most interesting direction for projec-
tion, according to the ICA analysis, is that of a1 and not of a0. Indeed, the kurtosis
of the obtained transformed variables [y1, y2]T # W x is

*4(y1) # !1.7

*4(y2) # 0.1

Thus, projection in the principal axis direction results in a variable with a pdf close
to a Gaussian. The projection to the minor axis direction results in a variable with a
pdf that deviates from the Gaussian (Figures 6.1, 6.4) and is more appropriate from
the classification point of view.

6.6 NONNEGATIVE MATRIX FACTORIZATION
In the PCA as well as the SVD analysis, the underlying constraints were the
orthogonality of the involved basis vectors, in the PCA, and of the column vectors
in the U and V matrices in the SVD. This becomes crystal clear from the prob-
lem 6.3. PCA is formulated as a task minimizing the mean square error subject
to the orthogonality constraint of the basis vectors. Although, in some cases, the
resulting expansion is useful, for some other cases such a constraint turns out to be
very“weak”in representing the data. More recently, a new matrix factorization was
suggested in [Paat 91, Paat 94],which guarantees the nonnegativity of the elements
of the resulting matrix factors. Such a constraint is enforced in certain applica-
tions since negative elements contradict physical reality. For example, in image
analysis the intensity values of the pixels cannot be negative. Also, probability
values cannot be negative. The resulting factorization is known as nonnegative
matrix factorization (NMF) and it has been used successfully in a number of
applications including document clustering ([Xu 03]), molecular pattern discovery
([Brun 04]), image analysis ([Lee 01]), clustering ([Szym 06]), music transcription
and music instrument classification ([Smar 03, Benn 06]) and face verification
([Zafe 06]).

Given a l " n matrix X , the task of NMF consists of finding an approximate
factorization of X , that is,

X ≈ WH (6.63)

where W and H are l " r and r " n matrices, respectively, r (min(n, l) and
all the matrix elements are nonnegative, that is, W (i, k) & 0, H(k, j) & 0,

“08-Ch06-SA272” 18/9/2008 page 350

350 CHAPTER 6 Feature Generation I

i # 1, 2, . . . , l, k # 1, 2, . . . , r, j # 1, 2, . . . , n. Clearly, matrices W and H are of rank
at most r and their product is a low rank, at most r, approximation of X . The
significance of the above is that every column vector in X is represented by the
expansion

xi #
r∑

k#1

H(k, i)wk, i # 1, 2, . . . , n

where wk, k # 1, 2, . . . , r, are the column vectors of W and constitute the basis of
the expansion. The number of vectors in the basis is less than the dimensionality
of the vector itself. Hence, NMF can also be seen as a method for dimensionality
reduction.

To get a good approximation in (6.63) one can adopt different costs. The most
conventional cost is the Frobenius norm of the error matrix. In such a setting, the
NMF task is casted as follows:

minimize ||X ! WH ||F ≡
l∑

i#1

n∑

j#1

(
X(i, j) ' [WH](i, j)

)2 (6.64)

subject to W (i, k) & 0, H(k, j) & 0. H(k, j) & 0 *i, k, j (6.65)

where [WH](i, j) is the (i, j) element of matrix WH . Minimization is performed
with respect to W and H .

Another cost function has also been suggested, which is a close relative of the
Kullback–Leibler distance (see Appendix A) and the task now becomes

minimize
l∑

i#1

n∑

j#1

(
X(i, j) ln

X(i, j)
[WH](i, j)

! X(i, j) ' [WH](i, j)
)

(6.66)

subject to W (i, k) & 0, H(k, j) & 0 *i, k, j (6.67)

It is readily seen that if X # WH the previous cost becomes zero. Also,observe that if∑
i,j X(i, j) #

∑
i, j[WH](i, j) # 1 then the cost becomes identical to the Kullback–

Leibler (KL) distance formulation. Note, however, that the previous KL-like cost is
not well defined if either X(i, j) or [WH](i, j) are zero. For more information on
this topic the interested reader may consult, for example, [Sra 06].

Once the problem has been formulated, the major issue rests on the solution of
the optimization task. To this end, a number of algorithms have been proposed, for
example, Newton–type or gradient descent type (Appendix C). Such algorithmic
issues, as well as a number of related theoretic ones, are beyond the scope of the
current book, and the interested reader may consult [Chu 04, Dono 04, Trop 03].

6.7 NONLINEAR DIMENSIONALITY REDUCTION
All the techniques that have been discussed so far in this chapter, as well as the
LDA in the previous chapter, share a common goal: dimensionality reduction. In

“08-Ch06-SA272” 18/9/2008 page 351

6.7 Nonlinear Dimensionality Reduction 351

other words,given a high-dimensional data set X # {x1, x2, . . . , xn} ⊂ RN of input
patterns,4 the goal is to compute n corresponding patterns, Y # {y1, y2, . . . , yn} ⊂
Rm, m (N , that provide an “informative” representation of the input patterns.
The word “informative” is interpreted in a different way for different methods; for
example, PCA and ICA adopt different views on the issue. Another common
characteristic of all the previous methods is that they respect linearity. Once a
transformation matrix is computed, for each method, points in Y are obtained by
projecting the points in X along the rows of this matrix.

The emphasis of dimensionality reduction has, so far, focussed to the domain
of feature generation, in order to bypass the curse of dimensionality and cope effi-
ciently with the generalization aspects of a classifier. However, the significance
of such techniques goes much beyond and embraces a number of other applica-
tions. Data visualization is an area where dimensionality reduction techniques are
employed in order to transform the original data from a high-dimensional into two
or three dimensions, thereby offering additional insight into the problem at hand.
As stated in [Tene 00], the human brain confronts the same problem extracting
from the high-dimensional sensory system (i.e., 106 optic nerve fibers) a reduced
number of perceptually relevant features. Data mining and information retrieval is
another area where searching can be substantially facilitated if it is performed in
a lower dimensional space. This is a typical area where data usually lie in a very
high-dimensional space,although its intrinsic dimensionality is low. Dimensionality
reduction has been used extensively in clustering and in semi-supervised learning,
an area that is gaining in importance over the last years. So, in a way, this section is
a bridge to the chapters dedicated to these topics.

The aim of this section is to discuss nonlinear dimensionality reduction tech-
niques. We will discuss the main directions that are currently popular, and we will
not delve into many details.

6.7.1 Kernel PCA
As its name suggests, this is a kernelized version of the classical PCA, introduced in
[Scho 98]. Given the data set, X , we make an implicit mapping into a RKHS H ,

x ∈ X .→ "(x) ∈ H

Let xi , i # 1, 2, . . . , n,be the available training points. We will work with an estimate
of the correlation matrix in H obtained as an average over the known sample points5

R #
1
n

n∑

i#1

"(xi)"(xi)T (6.68)

4 To serve the specific needs of this chapter, we have reserved the symbol N to denote dimensiona-
lity of the input space. For the rest of the book, N denotes the number of data points.
5 If the dimensionality of H is infinite, the definition of the correlation matrix needs a special
interpretation, but we will not bother about it.

“08-Ch06-SA272” 18/9/2008 page 352

352 CHAPTER 6 Feature Generation I

The goal is to perform the eigendecomposition of R, that is,

Rv # "v (6.69)

Let us make the assumption that the data are centered
(∑n

i#1 "(xi) # 0. This
assumption is only to simplify the discussion, and it can be relaxed.

)
By the def-

inition of R, it can be shown that v lies in the span of {"(x1), "(x2), . . . , "(xn)}.
Indeed,

"v #

(
1
n

n∑

i#1

"(xi)"(xi)T

)

v #
1
n

n∑

i#1

(
"(xi)T v

)
"(xi)

and for " ̸# 0 we can write

v #
n∑

i#1

a(i)"(xi) (6.70)

Combining (6.69) and (6.70), it turns out ([Scho 98]) that the problem is equivalent
to performing an eigendecomposition of the Gram matrix

Ka # n"a (6.71)

where

a ≡ [a(1), a(2), . . . , a(n)]T (6.72)

As we already know (Section 4.19.1), the elements of the Gram matrix are K(i, j) #
K(xi , xj), with K(·, ·) being the adopted kernel function. Thus, the kth eigen-
vector of R, corresponding to the kth (nonzero) eigenvector of K in (6.71), is
expressed as

vk #
n∑

i#1

ak(i)"(xi), k # 1, 2, . . . , p (6.73)

where "1 & "2 & . . . & "p denote the respective eigenvalues in descending order
and "p is the smallest nonzero one and aT

k ≡ [ak(1), . . . , ak(n)] is the kth eigen-
vector of the Gram matrix. The latter is assumed to be normalized so that
⟨vk, vk⟩ # 1, k # 1, 2, . . . , p, where ⟨·, ·⟩ is the dot product in the Hilbert space
H . This imposes an equivalent normalization on the respective ak’s, resulting
from

1 # ⟨vk, vk⟩ #

〈
n∑

i#1

ak(i)"(xi),
n∑

j#1

ak(j)"(xj)

〉

#
n∑

i#1

n∑

j#1

ak(i)ak(j)K(i, j)

aT
k Kak # n"kaT

k ak, k # 1, 2, . . . , p (6.74)

“08-Ch06-SA272” 18/9/2008 page 353

6.7 Nonlinear Dimensionality Reduction 353

We are now ready to summarize the basic steps for performing a kernel PCA. Given
a vector x ∈ RN and a kernel function K(·, ·):

■ Compute the Gram matrix K(i, j) # K(xi , xj), i, j # 1, 2, . . . , n.

■ Compute the m dominant eigenvalues/eigenvectors "k, ak, k # 1, 2, . . . , m,
of K (Eq. (6.71)).

■ Perform the required normalization (Eq. (6.74)).

■ Compute the m projections onto each one of the dominant eigenvectors,

y(k) ≡
〈
vk, "(x)

〉
#

n∑

i#1

ak(i)K(xi , x), k # 1, 2, . . . , m (6.75)

The operations given in (6.75) correspond to a nonlinear mapping in the input
space. Note that, in contrast to the linear PCA, the dominant eigenvectors vk, k #
1, 2, . . . , m, are not computed explicitly. All we know are the respective (nonlinear)
projections, y(k) along them. After all, this is what we are finally interested in.

Remarks

■ Kernel PCA is equivalent to performing a standard PCA in the RKHS H .
It can be shown that all the properties associated with the dominant eigen-
vectors, as discussed for the PCA, are still valid for the kernel PCA. That is, (a)
the dominant eigenvector directions optimally retain most of the variance,(b)
the MSE in approximating a point in H in terms of the m dominant eigen-
vectors is minimal, with respect to any other m directions, (c) projections
onto the eigenvectors are uncorrelated, and (d) the entropy (under Gaussian
assumption) is maximized ([Scho 98]).

■ Recall from Section 6.3 that the eigendecomposition of the Gram matrix was
required for the metric multidimensional scaling (MDS) method. Hence, ker-
nel PCA can be considered to be a kernelized version of MDS, where inner
products in the input space have been replaced by kernel operations in the
Gram matrix.

■ Note that the kernel PCA method does not explicitly consider the underlying
structure of the manifold on which the data reside.

6.7.2 Graph-Based Methods
Laplacian eigenmaps
The starting point of this method is the assumption that the data points lie on a
smooth manifold (hypersurface) M ⊃ X , whose intrinsic dimension is equal to
m (N and it is embedded in RN , that is,M ⊂ RN . The dimension m is given as a
parameter by the user. In contrast, this is not required in the kernel PCA, where m
is the number of dominant components, which, in practice, is determined so that
the gap between "m and "m'1 has a “large”value.

“08-Ch06-SA272” 18/9/2008 page 354

354 CHAPTER 6 Feature Generation I

The main philosophy behind the method is to compute the low-dimensional
representation of the data so that local neighborhood information in X ⊂ M is
optimally preserved. In this way, one attempts to get a solution that reflects the
geometric structure of the manifold. To achieve this, the following steps are in
order:

Step 1: Construct a graph G # (V , E), where V # {vi, i # 1, 2, . . . , n} is a set of
vertices and E # {eij} is a set of edges connecting vertices (vi, vj) (see also
Section 13.2.5). Each node vi of the graph corresponds to a point xi in
our data set X . We connect vi, vj , that is, insert the edge eij between the
respective nodes, if points xi , xj are “close” to each other. According to
the method, there are two ways of quantifying “closeness.” Vertices vi, vj
are connected with an edge if:

1. ||xi ! xj ||2 (', for some user-defined parameter ', where || · || is the
Euclidean norm operation in RN , or

2. xj is among the k-nearest neighbors of xi or xi is among the k-nearest
neighbors of xj , where k is a user-defined parameter and neighbors are
chosen according to the Euclidean distance in RN . The use of Euclidean
distance is justified by the smoothness of the manifold that allows one
to approximate, locally,manifold geodesics by Euclidean distances in the
space where the manifold is embedded. The latter is a known result
from differential geometry.

For those who are unfamiliar with such concepts, think of a sphere
embedded in three-dimensional space. If somebody is constrained to
live on the surface of the sphere, the shortest path to go from one point
to another is the geodesic between these two points. Obviously, this
is not a straight line but rather an arc across the surface of the sphere.
However, if these points are close enough, their geodesic distance can
be approximated by their Euclidean distance, computed in the three-
dimensional space.

Step 2: Each edge, eij , is associated with a weight, W (i, j). For nodes that are not
connected, the respective weights are zero. Each weight, W (i, j), is a mea-
sure of the “closeness”of the respective neighbors, xi , xj . A typical choice
is

W (i, j) #

⎧
⎨

⎩
exp

(
!

||xi!xj ||2
#2

)
, if vi , vj correspond to neighbors

0 otherwise

where #2 is a user-defined parameter. We form the n " n weight matrix W
having as elements the weights W (i, j). Note that W is symmetric, and it is
sparse since, in practice, many of its elements turn out to be zero.

“08-Ch06-SA272” 18/9/2008 page 355

6.7 Nonlinear Dimensionality Reduction 355

Step 3: Define the diagonal matrix D with elements Dii #
∑

j W (i, j), i # 1,
2, . . . , n, and also the matrix L # D ! W . The latter is known as the
Laplacian matrix of the graph G(V , E). Perform the generalized eigen-
decomposition

Lv # "Dv

Let 0 # "0 + "1 + "2 + . . . + "m be the smallest m ' 1 eigenvalues.6

Ignore the vo eigenvector corresponding to "0 # 0 and choose the next m
eigenvectors v1, v2, . . . , vm. Then map

xi ∈ RN .→ yi ∈ Rm, i # 1, 2, . . . , n

where

yT
i # [v1(i), v2(i), . . . , vm(i)], i # 1, 2, . . . , n (6.76)

The computational complexity of a general eigendecomposition solver
amounts to O(n3) operations. However, for sparse matrices, such as L,
efficient schemes,e.g., the Lanczos algorithm ([Golu 89]),can be employed
to reduce complexity to subquadratic in n.

We will prove the statement of step 3 for the case of m # 1. That is, the low
dimensional space is the real axis. Our path evolves along the lines adopted in
[Belk 03]. The goal is to compute yi ∈ R, i # 1, 2, . . . , n, so that connected points
(in the graph, i.e., neighbors) stay as close as possible after the mapping onto the
one-dimensional subspace. The criterion used to satisfy the closeness after the
mapping is

EL #
n∑

i#1

n∑

j#1

(yi ! yj)2W (i, j) (6.77)

to become minimum. Observe that if W (i, j) has a large value (i.e., xi , xj are close
in RN), then if the respective yi , yj are far apart in R it incurs a heavy penalty in
the cost function. Also,points that are not neighbors do not affect the minimization
since the respective weights are zero. For the more general case where 1 (m (N
the cost function becomes

EL #
n∑

i#1

n∑

j#1

||yi ! yj ||2W (i, j)

6 In contrast to the notation used for PCA, the eigenvalues here are marked in ascending order. This
is because, in this subsection,we are interested in determining the smallest values, and such a choice
is notationally more convenient.

“08-Ch06-SA272” 18/9/2008 page 356

356 CHAPTER 6 Feature Generation I

Let us now reformulate (6.77). After some obvious algebra, we obtain

EL #
∑

i

y2
i

∑

j

W (i, j) '
∑

j

y2
j

∑

i

W (i, j) ! 2
∑

i

∑

j

yiyjW (i, j)

#
∑

i

y2
i Dii '

∑

j

y2
j Djj ! 2

∑

i

∑

j

yiyjW (I , j)

2yT Ly (6.78)

where

L ≡ D ! W (6.79)

and yT # [y1, y2, . . . , yn]. The Laplacian matrix L is symmetric and nonnegative
definite. The latter is readily seen from the definition in (6.78), where EL is always
a nonnegative scalar. Note that the larger the value of Dii , the more “important” is
the sample xi. This is because it implies large values for W (i, j), j # 1, 2, . . . , n, and
plays a dominant role in the minimization process. Obviously, the minimum of EL is
achieved by the trivial solution yi # 0, i # 1, 2, . . . , n. To avoid this, as it is common
in such cases,we constrain the solution to a prespecified norm. Hence our problem
now becomes

minimize yT Ly

subject to yT Dy # 1

Although we can work directly on the previous task, we will reshape slightly it in
order to use tools that are more familiar to us. Define

z # D1/2y (6.80)

and

L̃ # D!1/2LD!1/2 (6.81)

which is known as the normalized graph Laplacian matrix. It is now readily seen
that our optimization problem becomes

minimize zT L̃z (6.82)

subject to zT z # 1 (6.83)

Using Lagrange multipliers and equating the gradient of the Lagrangian to zero
(Appendix C) it turns out that the solution is given by

L̃z # "z (6.84)

In other words,computing the solution becomes equivalent to solving an eigenvalue
problem. By substituting (6.84) into the cost function (6.82) and taking into account
the constraint (6.83), it turns out that the value of the cost associated with the
optimal z is equal to ". Hence, the solution is the eigenvector corresponding to

“08-Ch06-SA272” 18/9/2008 page 357

6.7 Nonlinear Dimensionality Reduction 357

the minimum eigenvalue. However, the minimum eigenvalue of L̃ is zero and the
corresponding eigenvector corresponds to a trivial solution. Indeed, observe that

L̃D1/21 # D!1/2LD!1/2D1/21 # D!1/2(D ! W)1 # 0

where 1 is the vector having all its elements equal 1. In words, z # D1/21 is an
eigenvector corresponding to the zero eigenvalue, and it results to the trivial solu-
tion, yi # 1, i # 1, 2, . . . , n. That is, all the points are mapped onto the same point
in the real line. To exclude this undesired solution, recall that L̃ is a nonnegative
matrix, and, hence, 0 is its smallest eigenvalue (if the graph is connected, that is, at
least one path (see Section 13.2.5) connects any pair of vertices, D1/21 is the only
eigenvector associated with the zero eigenvalue, "0, [Belk 03]. This is an assump-
tion we adopt here.) Also, since L̃ is a symmetric matrix, we know (Appendix B)
that its eigenvectors are orthogonal to each other. In the sequel, we impose an
extra constraint, and we now require the solution to be orthogonal to D1/21. Con-
straining the solution to be orthogonal to the eigenvector corresponding to the
smallest (zero) eigenvalue drives the solution to the next eigenvector correspond-
ing to the next smallest (nonzero) eigenvalue "1. Note that the eigendecomposition
of L̃ is equivalent to what we called generalized eigendecomposition of L in step 3
earlier.

For the more general case of m) 1, we have to compute the m eigenvectors
associated with "1+. . .+"m. For this case,the constraints prevent us from mapping
into a subspace of dimension less than the desired m. For example,we do not want
to project in a three-dimensional space and the points to lie on a two-dimensional
plane or on an one-dimensional line. For more details, the interested reader is
referred to the insightful paper [Belk 03].

Local Linear Embedding (LLE)
As was the case with the Laplacian eigenmap method, LLE assumes that our data
rest on a smooth enough manifold of dimension m, which is embedded in the
RN subspace, with m (N ([Rowe 00]). The smoothness assumption allows us
to further assume that, provided there is sufficient data and the manifold is “well”
sampled, nearby points lie on (or close to) a “locally” linear patch of the manifold.
The algorithm in its simplest form is summarized in the following three steps:

Step 1: For each point xi , i # 1, 2, . . . , n, search for its nearest neighbors.

Step 2: Compute the weights W (i, j), i, j # 1, 2, . . . , n, that best reconstruct each
point, xi , from its nearest neighbors, so that to minimize the cost

arg min
W

EW #
n∑

i#1

||xi !
n∑

j#1

W (i, j)xij ||2 (6.85)

where, xij denotes the jth neighbor of the ith point. The weights are
constrained: (a) to be zero for points that are not neighbors and (b) the

“08-Ch06-SA272” 18/9/2008 page 358

358 CHAPTER 6 Feature Generation I

rows of the weight matrix add to one, that is,

n∑

j#1

W (i, j) # 1 (6.86)

That is, the sum of the weights, over all neighbors, must be equal to one.

Step 3: Use the weights obtained from the previous step to compute the corre-
sponding points yi ∈ Rm, i # 1, 2, . . . , n, so that to minimize the cost with
respect to the unknown points Y # { yi , i # 1, 2, . . . , n}

arg min
Y

EY #
n∑

i#1

||yi !
∑

j

W (i, j)yj ||2 (6.87)

The above minimization takes place subject to two constraints so as to avoid
degenerate results:(a) the outputs are centered,

∑
i yi # 0 and (b) the outputs have

unit covariance matrix ([Saul 01]). The nearest points, in step 1, are searched in
the same way as carried out for the Laplacian eigenmap method. Once again, use
of the Euclidean distance is justified by the smoothness of the manifold, as long as
the search is limited “locally” among neighboring points. For the second step, the
method exploits the local linearity of a smooth manifold and tries to predict linearly
each point by its neighbors using the least squares error criterion. Minimizing the
cost subject to the constraint given in (6.86) results in a solution that satisfies the
following three properties:

1. Rotation invariance.
2. Scale invariance.
3. Translation invariance.

The first two properties can easily be verified by the form of the cost function and
the third one is the consequence of the constraint equation. The implication of this
is that the computed weights encode information about the intrinsic characteristics
of each neighborhood and they do not depend on the particular point.

The resulting weights, W (i, j), reflect the intrinsic properties of the local geo-
metry underlying the data. Since our goal is to retain the local information after
the mapping, these weights are used to reconstruct each point in the Rm subspace
by its neighbors. As is nicely stated in [Saul 01], it is as if we take a pair of scissors
to cut small linear patches of the manifold and place them in the low-dimensional
subspace.

It turns out that solving for (6.87) for the unknown points yi , i # 1, 2, . . . , n, is
equivalent to:

■ Performing an eigendecomposition of the matrix (I ! W)T (I ! W).

■ Discarding the eigenvector that corresponds to the smallest eigenvalue.

■ Taking the eigenvectors that correspond to the next (lower) eigenvalues.
These yield the low–dimensional outputs yi, i # 1, 2, . . . , n.

“08-Ch06-SA272” 18/9/2008 page 359

6.7 Nonlinear Dimensionality Reduction 359

Once again, the involved matrix W is sparse, and if this is taken into account,
the eigenvalue problem scales relatively well to large data sets with complexity
subquadratic in n. The complexity for step 2 scales as O(nk3), and it is contributed
by the solver of the linear set of equations with k unknowns for each point. The
method requires that the user provides two parameters, the number of nearest
neighbors, k (or ') and the dimensionality m. The interested reader can find more
on the LLE method in [Saul 01].

Isometric Mapping (ISOMAP)
In contrast to the two previous methods that unravel the geometry of the manifold
on a local basis, the ISOMAP algorithm adopts the view that only the geodesic
distances between all pairs of the data points can reflect the true structure of the
manifold. Euclidean distances between points in a manifold cannot represent it
properly, since points that lie far apart, as measured by their geodesic distance,
may be close when measured in terms of their Euclidean distance, (see Figure 6.5).
ISOMAP is basically a variant of the MDS algorithm in which the Euclidean distances
are substituted by the respective geodesic distances along the manifold. The essence
of the method is to estimate geodesic distances between points that lie faraway. To
this end, a two-step procedure is adopted:

Step 1: For each point,xi , i # 1, 2, . . . , n, compute the nearest neighbors and con-
struct a graph G(V , E) whose vertices represent input patterns and the
edges connect nearest neighbors (nearest neighbors are computed with

x2

x120.1 20.05 0 0.05 0.1

20.1

20.06

20.02

0.02

0.06

FIGURE 6.5

The point denoted by a “star” is deceptively closer to the point denoted by a “dot” than to
the point denoted by a “box,” if distance is measured in terms of the Euclidean distance.
However, if one is constrained to travel along the spiral, the geodesic distance is the one that
determines closeness and it is the “box” point that is closer to the “star.”

“08-Ch06-SA272” 18/9/2008 page 360

360 CHAPTER 6 Feature Generation I

either of the two alternatives used for the Laplacian eigenmap method.
The parameters k or ' are user-defined parameters.) The edges are assigned
weights based on the respective Euclidean distance. (For nearest neighbors
this is a good approximation of the respective geodesic distance.)

Step 2: Compute the pairwise geodesic distances among all pairs (i, j), i, j #
1, 2, . . . , n, along shortest paths through the graph. The key assumption is
that the geodesic between any two points on the manifold can be approx-
imated by the shortest path connecting the two points along the graph
G(V , E). To this end, efficient algorithms can be used to achieve it with
complexity O(n2 ln n ' n2k) (e.g., Djikstar’s algorithm, [Corm 01]). This
cost can be prohibitive for large values of n.

Having estimated the geodesic distances between all pairs of point, the MDS
method is mobilized. Thus, the problem becomes equivalent to performing the
eigendecomposition of the respective Gram matrix and selecting the m most sig-
nificant eigenvectors to represent the low-dimensional space. After the mapping,
Euclidean distances between points in the low-dimensional subspace match the
respective geodesic distances on the manifold in the original high-dimensional
space. As is the case in PCA and MDS, m is estimated by the number of significant
eigenvalues. It can be shown that ISOMAP is guaranteed asymptotically (n !→ .) to
recover the true dimensionality of a class of nonlinear manifolds [Tene 00, Dono 04].

All three graph-based methods share a common step for computing nearest neigh-
bors in a graph. This is a problem of complexity O(n2) but more efficient search
techniques can be used by employing a special type of data structures, for example,
[Beyg 06]. A notable difference between the ISOMAP on the one side and the Lapla-
cian eigenmap and LLE methods on the other is that the latter two approaches rely
on the eigendecomposition of sparse matrices as opposed to the ISOMAP that relies
on the eigendecomposition of the dense Gram matrix. This gives a computational
advantage to the Laplacian eigenmap and LLE techniques. Moreover, the calcula-
tion of the shortest paths in the ISOMAP is another computationally demanding
task. Finally, it is of interest to note that the three graph-based techniques perform
the goal of dimensionality reduction while trying to unravel, in one way or another,
the geometric properties of the manifold on which the data (approximately) lie. In
contrast, this is not the case with the kernel PCA, which shows no interest in any
manifold learning. However, as the world is very small, in [Ham 04], it is pointed
out that the graph-based techniques can be seen as special cases of the kernel PCA!
This becomes possible if data-dependent kernels, derived from graphs encoding
neighborhood information, are used in the place of predefined kernel functions.

The goal of this section was to present some of the most basic directions that
have been suggested for nonlinear dimensionality reduction. Besides the previous
basic schemes,a number of improved updates have been proposed in the literature,
for example, [Desi 03, Sha 05, Beng 04]. In [Lafo 06, Qui 07], the low-dimensional
embedding is achieved to preserve certain measures that reflect the connectivity

“08-Ch06-SA272” 18/9/2008 page 361

6.7 Nonlinear Dimensionality Reduction 361

of the graph G(V , E). In [He 03, Cai 05, Koki 07] the idea of preserving the local
information in the manifold has been carried out to define linear transforms of the
form y # AT x, and the optimization is now carried out with respect to the ele-
ments of A. The task of incremental manifold learning for dimensionality reduction
was more recently considered in [Law 06]. In [Wein 05, Sun 06], the maximum
variance unfolding method is introduced. The variance of the outputs is maxi-
mized under the constraint that (local) distances and angles are preserved among
neighbors in the graph. Like the ISOMAP, it turns out that the top eigenvectors of a
Gram matrix have to be computed, albeit avoiding the computationally demanding
step of estimating geodesic distances, as required by the ISOMAP. In [Shui 07] a
general framework,called graph embedding, is presented that offers a unified view
for understanding and explaining a number of known (including PCA and nonlinear
PCA) dimensionality reduction techniques,and it also offers a platform for develop-
ing new ones. In [Lin 08] a manifold learning technique is adopted that constructs
coordinate charts for a given Riemannian manifold. For a more detailed and insight-
ful treatment of the topic the interested reader is referred to [Burg 04]. A review of
nonlinear dimensionality reduction techniques can be found in [Cama 03].

Example 6.6
A data set consists of 30 points in the two-dimensional space. The points result from sampling
the spiral of Archimedes (see Figure 6.6a), described by

x1 # a% cos %, x2 # a% sin %

The points of the data set correspond to the values % # 0.5$, and 0.7$, 0.9$, . . . , 2.05$

(% is expressed in radians) and a # 0.1. For illustration purposes and in order to keep track
of the “neighboring” information, we have used a sequence of six symbols, that is, “"”, “'”,
“?”, “✷”, “♦”, “◦”—with black color—followed by the same sequence of symbols in red color,
repeatedly.

To study the performance of PCA for this case, where data lie on a nonlinear manifold, we
first performed the eigendecomposition of the covariance matrix, estimated from the data set.
The resulting eigenvalues are

"0 # 0.089 and "1 # 0.049

Observe that, in contrast to the linear case of Example 6.3, here the eigenvalues are compa-
rable in size. Thus, if one would trust the “verdict” coming from PCA, the answer concerning
the dimensionality of the data would be that it is equal to 2. Moreover, after projecting along
the direction of the principal component (the straight line in Figure 6.6b), corresponding to
"0, neighboring information is lost since points from different locations are mixed together.

Next, the Laplacian eigenmap technique for dimensionality reduction is employed, with
) # 0.2 and # #

√
0.5. The results obtained are shown in Figure 6.6c. Looking from right to

left, we see that the Laplacian method nicely “unfolds” the spiral in an one-dimensional
straight line. Furthermore, neighboring information is retained in this one-dimensional

“08-Ch06-SA272” 18/9/2008 page 362

362 CHAPTER 6 Feature Generation I

20.05 0.05 0.15 0.25

x2

x1

(a)

20.3 20.1 0.1 0.3 0.5
20.5

20.3

20.1

0.1

x2

x1

(b)

20.3 20.1 0.1 0.3 0.5
20.5

20.3

20.1

0.1

(c)

FIGURE 6.6

(a) A spiral of Archimedes in the two-dimensional space. (b) The previous spiral together
with the projections of the sampled points on the direction of the first principal component,
resulting from PCA. It is readily seen that neighboring information is lost after the projection
and points corresponding to different parts of the spiral overlap. (c) The one-dimensional map
of the spiral using the Laplacian method. In this case, the neighboring information is retained
after the nonlinear projection and the spiral nicely unfold to a one-dimensional line.

representation of the data. Black and red areas are succeeding each other in the right order,
and also, observing the symbols, one can see that neighbors are mapped to neighbors.

Example 6.7
Figure 6.7 shows samples from a three-dimensional spiral, parameterized as x1 # a% cos %,
x2 # a% sin %, and sampled at % # 0.5$, 0.7$, 0.9$, . . . , 2.05$ (% is expressed in radians),
a # 0.1 and x3 # !1, !0.8, !0.6, . . . , 1.

For illustration purposes and in order to keep track of the “identity” of each point, we have
used red crosses and dots interchangeably, as we move upward in the x3 dimension. Also,
the first, the middle and the last points for each level of x3 are denoted by black “♦,” black
“?” and black “✷,” respectively. Basically, all points at the same level lie on a two-dimensional
spiral.

Figure 6.8 shows the two-dimensional mapping of the three-dimensional spiral using
the Laplacian method for dimensionality reduction, with parameter values ' # 0.35 and
#

√
0.5. Comparing Figures 6.7 and 6.8, we see that all points corresponding to the same

level x3 are mapped across the same line, with the first point being mapped to the first
one and so on. That is, as was the case in Example 6.6, the Laplacian method unfolds
the three-dimensional spiral into a two-dimensional surface, while retaining neighboring
information.

“08-Ch06-SA272” 18/9/2008 page 363

6.8 The Discrete Fourier Transform (DFT) 363

20.20.20.61

20.5
0

0.521

20.6

20.2

0.2

0.6

1

FIGURE 6.7

Samples from a three-dimensional spiral. One can think of it as a number of two-dimensional
spirals one above the other. Different symbols have been used in order to track neighboring
information.

!0.02 !0.01 0 0.01 0.02

!0.03

!0.02

!0.01

0

FIGURE 6.8

Two-dimensional mapping of the spiral of Figure 6.7 using the Laplacian eigenmap method.
The three-dimensional structure is unfolded to the two-dimensional space by retaining the
neighboring information.

6.8 THE DISCRETE FOURIER TRANSFORM (DFT)
We have already seen that the basis vectors/images for the KL and SVD expansions
are not fixed but are “problem dependent” and are the result of an optimization

“08-Ch06-SA272” 18/9/2008 page 364

364 CHAPTER 6 Feature Generation I

process. This is the reason for their optimality with respect to the decorrelation
and information-packing properties. At the same time, this accounts for their major
disadvantage,that is,their high computational complexity. For the rest of the chapter
we will be concerned with transforms that use fixed basis vectors/images. Their
suboptimality with respect to decorrelation and information packing properties is
most often compensated by their low computational requirements.

6.8.1 One-Dimensional DFT
Given N input samples x(0), x(1), . . . , x(N ! 1), their DFT is defined as

y(k) #
1√
N

N!1∑

n#0

x(n) exp
(

!j
2$

N
kn

)
, k # 0, 1, . . . , N ! 1 (6.88)

and the inverse DFT as

x(n) #
1√
N

N!1∑

k#0

y(k) exp
(

j
2$

N
kn

)
, n # 0, 1, . . . , N ! 1 (6.89)

where j ≡
√

!1. Sometimes, (6.88) is given without the normalizing factor 1√
N

.

In such cases the normalizing factor in (6.89) becomes 1
N . Collecting all x(n) and

y(k) together into two N " 1 vectors and defining

WN ≡ exp
(

!j
2$

N

)
(6.90)

(6.88) and (6.89) are written in a matrix form as

y # W H x, x # W y (6.91)

where

W H #
1√
N

⎡

⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 WN W 2

N . . . W N!1
N

...
...

...
...

...

1 W N!1
N W 2(N!1)

N . . . W (N!1)(N!1)
N

⎤

⎥⎥⎥⎥⎦
(6.92)

It is not difficult to see that W is a unitary and symmetric matrix

W !1 # W H # W ∗

The basis vectors are the columns of W. For example, for N # 4

W #
1
2

⎡

⎢⎢⎢⎣

1 1 1 1
1 j !1 !j
1 !1 1 !1
1 !j !1 j

⎤

⎥⎥⎥⎦

“08-Ch06-SA272” 18/9/2008 page 365

6.8 The Discrete Fourier Transform (DFT) 365

and the basis vectors are

w0 #
1
2

[1, 1, 1, 1]T

w1 #
1
2

[1, j, !1, !j]T

w2 #
1
2

[1, !1, 1, !1]T

w3 #
1
2

[1, !j, !1, j]T

and

x #
3∑

i#0

y(i)wi

The direct computation of (6.91) requires O(N2) computations. However, taking
advantage of the specific structure of the matrix W , a substantial saving in compu-
tations is possible via the celebrated Fast FourienTransform (FFT) algorithm,which
computes each equation of (6.91) in O(N log2 N) operations [Proa 92].

So far, the DFT has been introduced as a special type of a linear unitary transform
of one vector to another. Another point of view, which will be useful later in this
chapter, is to see the DFT as a means of expanding a sequence x(n) into a set of N
basis sequences hk(n)

x(n) #
N!1∑

k#0

y(k)hk(n)

where

hk(n) #

{ 1√
N

exp(j 2$
N kn), n # 0, 1, . . . , N ! 1

0, otherwise

and y(k) are the coefficients of the expansion. The DFT basis sequences belong to
a more general class of sequences known as orthonormal, that is,

⟨hl(n), hk(n)⟩ ≡
∑

n

hk(n)h∗
l (n) # !kl (6.93)

where ⟨. , .⟩ is known as the inner product of the sequences hk(n), hl(n). For the
DFT expansion, we have

⟨hk(n), hl(n)⟩ #
1
N

N!1∑

n#0

exp
(
j
2$

N
kn

)
exp

(
!j

2$

N
ln

)

#
1
N

N!1∑

n#0

exp
(
j
2$

N
(k ! l)n

)
, k, l # 0, 1, . . . , N ! 1

“08-Ch06-SA272” 18/9/2008 page 366

366 CHAPTER 6 Feature Generation I

However, it can easily be shown (Problem 6.8) that

1
N

N!1∑

n#0

exp
(

j
2$

N
(k ! l)n

)
#

{
1, l # k ' rN , r # 0, /1, /2, . . .
0, otherwise

(6.94)

Hence

⟨hk(n), hl(n)⟩ # !kl

6.8.2 Two-Dimensional DFT
Given an N " N matrix/image, its two-dimensional DFT is defined as

Y (k, l) #
1
N

N!1∑

m#0

N!1∑

n#0

X(m, n)W km
N W ln

N (6.95)

and the inverse DFT as

X(m, n) #
1
N

N!1∑

k#0

N!1∑

l#0

Y (k, l)W !km
N W !ln

N (6.96)

It is readily seen that this can be written in a compact form as

Y # W H XW H , X # WYW (6.97)

Thus, the two-dimensional DFT is a separable transform with basis images wiwT
j ,

i, j # 0, 1, . . . , N ! 1. It is apparent from (6.97) that the number of operations
required for the respective computations is O(N2 log2 N), that is, the number of
additions and multiplications needed for 2N one-dimensional DFTs, via the FFT
algorithm.

6.9 THE DISCRETE COSINE AND SINE TRANSFORMS
Given N input samples x(0), x(1), . . . , x(N ! 1) their discrete cosine transform
(DCT) is defined as

y(k) # ((k)
N!1∑

n#0

x(n) cos
($(2n ' 1)k

2N

)
, k # 0, 1, . . . , N ! 1 (6.98)

and the inverse DCT is given by

x(n) #
N!1∑

k#0

((k)y(k) cos
($(2n ' 1)k

2N

)
, n # 0, 1, . . . , N ! 1 (6.99)

“08-Ch06-SA272” 18/9/2008 page 367

6.9 The Discrete Cosine and Sine Transforms 367

where

((k) #

⎧
⎪⎨

⎪⎩

√
1
N , k # 0

√
2
N , k ̸# 0

In vector form the transform is written as

y # CT x

where the elements of the matrix C are given by

C(n, k) #
1√
N

, k # 0, 0 + n + N ! 1

C(n, k) #

√
2
N

cos
($(2n ' 1)k

2N

)
, 1 + k + N ! 1, 0 + n + N ! 1

Matrix C has real elements, and it is easy to see that it is orthogonal,

C!1 # CT

The two-dimensional DCT is the separable transform defined as

Y # CT XC , X # CYCT (6.100)

The discrete sine transform (DST) is defined via the transform matrix

S(k, n) #

√
2

N ' 1
sin

(
$(k ' 1)(n ' 1)

N ' 1

)
, k, n # 0, 1, . . . , N ! 1

and it is also an orthogonal transform. The DCT and DST belong to the family
of transforms that can be computed via a fast method in O(N log2 N) operations
[Jain 89, Lim 90].

Remark

■ The DCT and DST have very good information-packing properties for most
of the images, in the sense that they concentrate most of the energy in a
few coefficients. An explanation for this property is that both offer a close
approximation to the (KL) transform for a class of random signals, known
as first-order Markov processes, which can approximately model a number
of real-world images [Jain 89]. Figure 6.9 shows an image and the resulting
DFT (magnitude), DST, and DCT transforms. It is apparent from the figure
that the high-intensity coefficients of the transforms (dark) are concentrated
in a small area, whose size depends on the energy compaction properties
of the respective transform. This area is smaller for DCT and DST than
for DFT.

“08-Ch06-SA272” 18/9/2008 page 368

368 CHAPTER 6 Feature Generation I

FIGURE 6.9
Example of an image and its magnitude DFT, DST, and DCT transforms, shown from top left to
bottom left in the clockwise sense.

6.10 THE HADAMARD TRANSFORM
The Hadamard transform and the Haar transform, to be considered in the next
section, share a serious computational advantage over the previously considered
DFT, DCT, and DST transforms. Their unitary matrices consist of /1, and the trans-
forms are computed via additions and subtractions only, with no multiplications
being involved. Hence, for processors for which multiplication is a time-consuming
operation, a substantial saving is obtained.

The Hadamard unitary matrix of order n is the N " N matrix,N # 2n, generated
by the following iteration rule:

Hn # H1 ⊗ Hn!1 (6.101)

where

H1 #
1√
2

[
1 1
1 !1

]

(6.102)

“08-Ch06-SA272” 18/9/2008 page 369

6.11 The Haar Transform 369

and ⊗ denotes the Kronecker product of two matrices

A ⊗ B #

⎡

⎢⎢⎣

A(1, 1)B A(1, 2)B . . . A(1, N)B
...

...
...

...
A(N , 1)B A(N , 2)B . . . A(N , N)B

⎤

⎥⎥⎦

where A(i, j) is the (i, j) element of A, i, j # 1, 2, . . . , N . Thus, according to (6.101),
(6.102), it is

H2 # H1 ⊗ H1 #
1
2

⎡

⎢⎢⎢⎣

1 1 1 1
1 !1 1 !1
1 1 !1 !1
1 !1 !1 1

⎤

⎥⎥⎥⎦

and for n # 3

H3 # H1 ⊗ H2 #
1√
2

[
H2 H2

H2 !H2

]

It is not difficult to show the orthogonality of Hn, n # 1, 2, . . . , that is,

H!1
n # HT

n # Hn

For a vector x of N samples and N # 2n the transform pair is

y # Hnx, x # Hny (6.103)

The two-dimensional Hadamard transform is given by

Y # HnXHn, X # HnYHn (6.104)

The Hadamard transform has good to very good energy packing properties. Fast
algorithms for its computation in O(N log2 N) subtractions and/or additions are also
available [Jain 89].

Remark

■ Experimental results using the DCT, DST, and Hadamard transforms for
texture discrimination have shown that the performance obtained was close
to that of the optimal KL transform [Unse 86, Unse 89]. At the same time, this
near-optimal performance is obtained at substantially reduced complexity,due
to the availability of fast computational schemes as reported before.

6.11 THE HAAR TRANSFORM
The starting point for the definition of the Haar transform is the Haar functions
hk(z),which are defined in the closed interval [0, 1]. The order k of the function is

“08-Ch06-SA272” 18/9/2008 page 370

370 CHAPTER 6 Feature Generation I

Table 6.1 Parameters for the Haar functions

k 0 1 2 3 4 5 6 7

p 0 0 1 1 2 2 2 2

q 0 1 1 2 1 2 3 4

uniquely decomposed into two integers p, q

k # 2p ' q ! 1, k # 0, 1, . . . , L ! 1, and L # 2n

where

0 + p + n ! 1, 0 + q + 2p for p ̸# 0 and q # 0 or 1 for p # 0

Table 6.1 summarizes the respective values for L # 8. The Haar functions are

h0(z) ≡ h00(z) #
1√
L

, z ∈ [0, 1] (6.105)

hk(z) ≡ hpq(z) #
1√
L

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
p
2 q!1

2 p + z (
q! 1

2
2 p

!2
p
2

q! 1
2

2 p + z (q
2 p

0 otherwise in [0, 1]

(6.106)

The Haar transform matrix of order L consists of rows resulting from the preceding
functions computed at the points z # m

L , m # 0, 1, 2, . . . , L ! 1. For example, the
8 " 8 transform matrix is

H #
1√
8

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 1 1 1 !1 !1 !1 !1√
2

√
2 !

√
2 !

√
2 0 0 0 0

0 0 0 0
√

2
√

2 !
√

2 !
√

2

2 !2 0 0 0 0 0 0

0 0 2 !2 0 0 0 0

0 0 0 0 2 !2 0 0

0 0 0 0 0 0 2 !2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.107)

It is not difficult to see that

H!1 # HT

that is, H is orthogonal. The energy packing properties of the Haar transform are
not very good. However, its importance for us lies beyond that. We will use it as the
vehicle to take us from the world of unitary transforms to that of multiresolution
analysis. To this end, let us look carefully at the Haar transform matrix. We readily

“08-Ch06-SA272” 18/9/2008 page 371

6.12 The Haar Expansion Revisited 371

observe its sparse nature with a number of zeros, whose location reveals an under-
lying cyclic shift mechanism. To satisfy our curiosity as to why this happens, let us
look at the Haar transform from a different perspective.

6.12 THE HAAR EXPANSION REVISITED
Let us split our original set of N input samples (N even) x(0), x(1), . . . , x(N ! 1)
into successive blocks of two, that is, (x(2k), x(2k ' 1)), k # 0, 1, . . . , N

2 ! 1, and
apply the Haar transform of order L # 2. For each pair of input samples, a pair of
transformed samples is obtained,

[
y1(k)

y0(k)

]

#
1√
2

[
1 1

1 !1

] [
x(2k)

x(2k ' 1)

]

, k # 0, 1, . . . ,
N
2

! 1 (6.108)

That is,

y1(k) #
1√
2

(x(2k) ' x(2k ' 1)) (6.109)

y0(k) #
1√
2

(x(2k) ! x(2k ' 1)), k # 0, 1, . . . ,
N
2

! 1 (6.110)

This can be interpreted as the action—on the sequence of N input samples—
of two (noncausal) filters with impulse responses (h1(0) # 1√

2
, h1(!1) # 1√

2
) and

(h0(0) # 1√
2
, h0(!1) # ! 1√

2
), respectively. The corresponding transfer functions

(Appendix D) are

H1(z) #
1√
2

(1 ' z) (6.111)

H0(z) #
1√
2

(1 ! z) (6.112)

In other words, the order L # 2 Haar transform computes the output samples of the
two filters when they are fed with the input sequence x(n), n # 0, 1, 2, . . . , N ! 1.
Furthermore, the output sequence samples are computed for every other sample
of the input sequence, at even time instants 0, 2, 4, . . . , as (6.109) and (6.110)
suggest. This operation is portrayed in Figure 6.10b. The operation at the output of
the two filters is known as subsampling by M , in this case M # 2, and it is defined
in Figure 6.10a. In other words, from the samples generated at the filter output we
keep one every M(# 2). In the time domain and for an input sequence consisting
of eight samples, the output, y0(k), of the H0 branch of Figure 6.10b will consist of

“08-Ch06-SA272” 18/9/2008 page 372

372 CHAPTER 6 Feature Generation I

...x (2), x (1), x (0)

H0

H1 2

2
y0

(b)

(a)

y(k) 5 y (kM)

y y
M

FIGURE 6.10
(a) Subsampling operation and (b) filtering interpretation of the Haar transform.

four samples given by

⎡

⎢⎢⎢⎢⎣

y0(0)

y0(1)

y0(2)

y0(3)

⎤

⎥⎥⎥⎥⎦
#

⎡

⎢⎢⎢⎢⎢⎣

1√
2

! 1√
2
| 0 0| 0 0| 0 0

0 0| 1√
2

! 1√
2
| 0 0| 0 0

0 0| 0 0| 1√
2

! 1√
2
| 0 0

0 0| 0 0| 0 0| 1√
2

! 1√
2

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)

x(1)

– –

x(2)

x(3)

– –

x(4)

x(5)

– –

x(6)

x(7)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.113)

This is nothing other than the action of the last four rows of the 8 " 8 Haar trans-
form in (6.107)! What about the rest? Let us carry on the splitting of Figure 6.10b
one step further, as shown in Figure 6.11. Using the easily shown Noble iden-
tity illustrated in Figure 6.12a (Problem 6.17), the structure of Figure 6.11 turns
out to be equivalent to that of Figure 6.12b. Taking into account the subsam-
pling operation of the lower branch after the filters H0 and H1, the Noble identity
leads to

F̂1(z) #
1
2

(1 ' z)(1 ! z2) #
1
2

(1 ' z ! z2 ! z3) (6.114)

F̂2(z) #
1
2

(1 ' z)(1 ' z2) #
1
2

(1 ' z ' z2 ' z3) (6.115)

“08-Ch06-SA272” 18/9/2008 page 373

6.12 The Haar Expansion Revisited 373

. . .x (2), x (1), x (0)

H0

H0

H1

H1

2

2

2

2

y0

y1

y2

FIGURE 6.11
Two-stage filtering followed by subsampling operation.

(a)

(b)

F0(z) 5 H0(z)

F1(z) 5 H0(z
2
)H1(z)

F2(z) 5 H1(z
2
)H1(z)

y0

y1

y2

F0

F1

F2

. . .x(2), x(1), x(0)

2

4

4

M MH(z) H(zM)5

FIGURE 6.12
(a) Noble identity I and (b) equivalent filter bank of Figure 6.11.

From the transfer function F̂1(z) and taking into account the subsampling by 4
(2 " 2) operation, the first two samples of the y1(k) sequence are given by

[
y1(0)
y1(1)

]

#

[1
2

1
2 ! 1

2 ! 1
2 0 0 0 0

0 0 0 0 1
2

1
2 ! 1

2 ! 1
2

]
⎡

⎢⎢⎢⎢⎣

x(0)
x(1)

...

x(7)

⎤

⎥⎥⎥⎥⎦
(6.116)

This is nothing but the action of the third and fourth rows of the 8 " 8 Haar trans-
form on the input vector. If we now carry on the splitting one step further, as in
Figure 6.13, it is straightforward to show by repeating the preceding arguments that

y2(0) #
1√
8

[
1 1 1 1 !1 !1 !1 !1

]

⎡

⎢⎢⎢⎢⎣

x(0)
x(1)

...

x(7)

⎤

⎥⎥⎥⎥⎦
(6.117)

“08-Ch06-SA272” 18/9/2008 page 374

374 CHAPTER 6 Feature Generation I

...x (2), x (1), x (0)
H0 2

2

2

2

2

2

H0

H0

y0

y1

y2

y3

H1

H1

H1

FIGURE 6.13
Tree-structured filter bank.

H(&)
(dB)

H0(&) H1(&)

0

25

210

215

220

0
2
$ $ &

FIGURE 6.14
Magnitude of the frequency response for the two Haar filters. H1 is a low-pass and H0 high-pass
filter.

and

y3(0) #
1√
8

[
1 1 1 1 1 1 1 1

]

⎡

⎢⎢⎢⎢⎣

x(0)
x(1)

...

x(7)

⎤

⎥⎥⎥⎥⎦
(6.118)

These equations are the actions of the second and first rows of the Haar trans-
form on the input vector. The structure of Figure 6.13 is known as a (three-level)
tree-structured filter bank generated by the filters H0(z) and H1(z). Figure 6.14
shows the frequency responses of these two filters. One (H0(z)) is a high-pass
and the other a low-pass filter. Herein lies the importance of the filter bank
interpretation of the Haar transform. The input sequence x(n) is first split into two

“08-Ch06-SA272” 18/9/2008 page 375

6.13 Discrete Time Wavelet Transform (DTWT) 375

versions of lower resolution with respect to the original one: a low-pass (average)
coarser resolution version and a high-pass (difference) detailed resolution one. In
the sequel the coarser resolution version is further split into two versions, and so
on. This leads to a number of versions with a hierarchy of resolutions. This decom-
position is known as multiresolution decomposition.

The idea of multiresolution decomposition has been around for some time
[Burt 83, Akan 93] and has been exploited in various applications and for a number
of reasons. Its popularity as a tool in pattern recognition is mainly due to the infor-
mation compaction capabilities associated with such a decomposition, provided
filters H0, H1 are properly designed. For many types of signals, such as speech and
images, most of the information is localized in certain resolution levels. Thus, most
of the energy is concentrated in a (relatively) small number of samples,which carry
most of the necessary information [Este 77, Mall 89]. Some fundamental issues
related to the multiresolution decomposition and the design of filter banks will be
highlighted next.

6.13 DISCRETE TIME WAVELET TRANSFORM (DTWT)
The goal of this section is twofold. We first free ourselves from the Haar functions,
and we seek the possibility of using other filters in place of H0, H1. There is more
than one reason for this generalization. An obvious reason is that the frequency
responses of the Haar filters are far from ideal. If our aim is to split the original
sequence into a hierarchy of “coarse” and “detailed” versions, we should require
the filters that perform the splitting to be as close as possible to the ideal low/high-
pass ones (Figure 6.15). Our next concern in this section is the inversion problem.

2$

2$

$

$ &

&

1
|H1(&)|

|H0(&)|
1

(a)

(b)

FIGURE 6.15
Ideal frequency responses for (a) low-pass and (b) high-pass filters.

“08-Ch06-SA272” 18/9/2008 page 376

376 CHAPTER 6 Feature Generation I

That is,if we know the lower resolution versions,can we obtain the original sequence,
x(n), as was the case with the unitary transforms? We will show that under certain
constraints in the design of H0 and H1 this is indeed possible.

The Two-Band Case
Let us start with the simple two-band case of Figure 6.10b, where we now assume
that the filters are not the Haar ones. If h0(k), h1(k) are the respective impulse
responses, then we can write

y0(k) #
∑

l

x(l)h0(n ! l)|n#2k

y1(k) #
∑

l

x(l)h1(n ! l)|n#2k

where y1(k) is the output of the lower branch of Figure 6.10b. Collecting all
y0(k), y1(k), k # 0, 1, 2, . . . , together in a vector, we have

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

y0(0)

y1(0)

y0(1)

y1(1)

y0(2)

y1(2)
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

#

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
...

...

. . . h0(2) h0(1) h0(0) h0(!1) h0(!2) . . .

. . . h1(2) h1(1) h1(0) h1(!1) h1(!2) . . .

. h0(2) h0(1) h0(0) . . .

. h1(2) h1(1) h1(0) . . .

. h0(2) . . .

. h1(2) . . .

...
...

...
...

...
...

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

x(0)

x(1)

x(2)
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

y # Tix (6.119)

Here, we have assumed that the filters can be noncausal, but they are of finite
impulse response (FIR) (the impulse response has a finite nonzero number of
terms). The latter assumption is imposed here in order to avoid issues of con-
vergence of infinite series. Observe the structure of Ti . It basically consists of two
rows,one with the impulse response of H0 and the other with that of H1,which are
then shifted each time by two to the right, to form the rest of the rows. This is the
result of the subsampling, by two, operation. Figure 6.16b shows a structure that
combines y0(k), y1(k), through the filters G0, G1, to form a sequence x̂. The symbol
at the input of the filters denotes the upsampling by M operation,which is defined
in Figure 6.16a. In this case M # 2. In other words, this is equivalent to stuffing
M ! 1 zeros between every two samples. That is, the input sequences of the filters
G0, G1 will be

. . . 0 y0(0) 0 y0(1) 0 y0(2) 0 . . .

. . . 0 y1(0) 0 y1(1) 0 y1(2) 0 . . .

“08-Ch06-SA272” 18/9/2008 page 377

6.13 Discrete Time Wavelet Transform (DTWT) 377

(a)

(b)

x

y y
M

y(k) 5 y(l), k 5 lM

y(k) 5 0 otherwise

y0 x0

x1

G0

G1

2

2
y1

FIGURE 6.16
(a) The upsampling operation. (b) Tree-structured synthesis filter bank.

respectively. Thus, every other sample of the impulse response hits a zero and

x0(n) #
∑

k

y0(k)g0(n ! 2k)

x1(n) #
∑

k

y1(k)g1(n ! 2k)

x̂(n) # x0(n) ' x1(n)

Filters Gi are known as the synthesis filters and the corresponding Hi , of
Figure 6.10b, as the analysis filters. Collecting all x̂(n) together, it is not difficult to
see that

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

x̂(0)

x̂(1)

x̂(2)
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

#

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
...

. . . g0(0) g1(0) g0(!2) g1(!2) . . .

. . . g0(1) g1(1) g0(!1) g1(!1) . . .

. . . g0(2) g1(2) g0(0) g1(0) . . .

. . . g0(3) g1(3) g0(1) g1(1) . . .

...
...

...
...

...
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

y0(0)

y1(0)

y0(1)

y1(1)
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

x̂ # Toy (6.120)

In order that x̂ # x we require that [Vett 92]

ToTi # I # TiTo (6.121)

“08-Ch06-SA272” 18/9/2008 page 378

378 CHAPTER 6 Feature Generation I

Multiplying rows of Ti with columns of To, (6.121) becomes equivalent to
∑

n

hi(2k ! n)gj(n ! 2l) # !kl!ij , i, j # 0, 1 (6.122)

or according to the definition of the inner product in (6.93),

⟨hi(2k ! n),gj(n ! 2l)⟩ # !kl!ij

If (6.122) is satisfied,we say that the two-band filter bank is a perfect reconstruction
one and x̂(n) # x(n). Thus,

x(n) #
∑

k

y0(k)g0(n ! 2k) '
∑

k

y1(k)g1(n ! 2k) (6.123)

Equation (6.123) can also be seen from a different perspective. It is an expansion
of x(n) into a set of basis sequences

{g0(n ! 2k), g1(n ! 2k)}, k ∈ Z

where Z is the set of the integer numbers. From such a point of view y0(k), y1(k)
are the respective coefficients of the expansion. This is known as the discrete
time wavelet transform (DTWT) and the coefficients y0(k), y1(k) as the discrete
time wavelet coefficients. Thus,given a perfect reconstruction two-band filter bank
(i.e., condition (6.122) is satisfied), the following transform pair is defined:

yi(k) #
∑

n

x(n)hi(2k ! n) (a)

x(n) #
1∑

i#0

∑

k

yi(k)gi(n ! 2k) (b) (6.124)

Remarks

■ Two sets of basis functions are involved, namely,

hi(2k ! n) ≡ ,ik(n), gj(n ! 2l) ≡ .jl(n) i, j # 0, 1 and k, l ∈ Z

Equation (6.122) is an orthogonality condition between ,ik(n) and .jl(n),
that is,

⟨,ik(n), .jl(n)⟩ # !ij!kl

and it is known as the biorthogonality condition. The discrete time wavelet
transform pair in (6.124) is a biorthogonal expansion.

■ The basis sequences ,ik(n) and .jl(n) of the expansion are shifts by an even
number of samples of four basic mother sequences g0(n), g1(n), h0(!n),
h1(!n), which are the impulse responses of the synthesis and the time-
reversed analysis filters. For the recovery of x(n) from its discrete time
wavelet coefficients, each coefficient yi(k) weighs and adds a copy of the
mother sequences gi(n) shifted by 2k.

“08-Ch06-SA272” 18/9/2008 page 379

6.13 Discrete Time Wavelet Transform (DTWT) 379

■ When the sequences ,ik(n) # hi(2k ! n) are themselves orthogonal, that is,
∑

n

hi
j (2k ! n)hj(2l ! n) # !kl!ij , i, j # 0, 1 and k, l ∈ Z

then

gi(n) # hi(!n)

That is, the synthesis filters are the time reverse of the analysis ones. Such a
filter bank is known as orthogonal or paraunitary, and we have the same set
of mother sequences (hi only) involved in both equations of the discrete time
wavelet transform (6.124).

■ A number of orthogonal and biorthogonal perfect reconstruction filter pairs
have been proposed in the literature [Daub 90, Vett 95]. Table 6.2 gives the
coefficients for the first four of Daubechies’s maximally flat orthogonal filters.
The low-pass version h1(n) is shown. The high-pass versions are obtained as
h0(n) # (!1)nh1(!n ' 2L ! 1), where L is the length of the filters.

■ Besides the case of wavelet basis sequences with predefined values, a large
research effort has been devoted to constructing such sequences that are
optimized to the specific problem of interest. This has also been used in
pattern recognition applications. For example, in [Mall 97] it is proposed to
design the filters of the bank to optimize a class discriminant criterion. A dif-
ferent approach is followed in [Szu 92], where an optimal linear combination
of predefined bases is sought for classification of speech signals.

■ When implementing filter banks in practice, noncausal filters have to be
appropriately delayed to make them realizable (Appendix D). This makes it

Table 6.2 Daubechies’s Low-pass Filters of Length 4, 6, 8, and 10

h1(0) 0.4829629 0.33267 0.2303778 0.1601024

h1(1) 0.8365163 0.806891 0.7148466 0.6038293

h1(2) 0.2241439 0.459877 0.6308808 0.7243085

h1(3) !0.1294095 !0.135011 !0.0279838 0.1384281

h1(4) !0.08544 !0.1870348 !0.2422949

h1(5) 0.03522 0.0308414 !0.0322449

h1(6) 0.0328830 0.0775715

h1(7) !0.0105974 !0.0062415

h1(8) !0.0125807

h1(9) 0.0033357

“08-Ch06-SA272” 18/9/2008 page 380

380 CHAPTER 6 Feature Generation I

necessary to involve certain delay elements at different points, in order to
safeguard the perfect reconstruction property of the analysis–synthesis bank
(Problem 6.19).

■ In practice, the number of input samples x(n) is finite, that is, n # 0, 1, . . . ,
N ! 1. Thus, for the computation of (6.124) some initial conditions
are required. Zero, periodic, or symmetric extensions of the data are
popular alternatives. Such implementation issues as well as algorithms
for the efficient computation of the DTWT coefficients are discussed in
[Vett 95, Chapter 6].

Many Bands Case
Figure 6.17 shows the synthesis part corresponding to the analysis bank of
Figure 6.13, and it is a generalization of the two-band synthesis concept. Using
the easily shown Noble identity given in Figure 6.18 (Problem 6.17), we end up
with the equivalent structure of the synthesis part, shown in Figure 6.19. Let fi(n)
be the impulse responses of the Fi filters. It is easy to see that the respective
contribution of each yi(k) sequence to the output x̂(n) is

xi(n) #
∑

k

yi(k) fi(n ! 2i'1k) i # 0, 1, . . . , J ! 2

xJ!1(n) #
∑

k

yJ!1(k) fJ!1(n ! 2 J!1k)

y0

G02

2

2

2

2

2

G0

G0

G1

G1

G1

x

y1

y2

y3

FIGURE 6.17
Tree-structured synthesis filter bank.

H(z) H(zM)M M#

FIGURE 6.18
Noble identity II.

“08-Ch06-SA272” 18/9/2008 page 381

6.13 Discrete Time Wavelet Transform (DTWT) 381

y0

y1

y2

y3

F0

F1

F2

F3

F0(z) # G0(z)

F1(z) # G0(z2)G1(z)

F2(z) # G0(z4)G1(z2)G1(z)

F3(z) # G1(z4)G1(z2)G1(z)

x0

x1

x2

x3

x

2

4

8

8

FIGURE 6.19
Equivalent of the tree-structured filter bank of Figure 6.17.

x̂(n) #

J!1∑

i#0

xi(n)

where J is the number of bands, with J # 4 in the case of Figures 6.17 and 6.19.
It can be shown [Vaid 93] that if the mother filters G0, G1, which generate the
synthesis part, and the mother filters H0, H1 of the analysis part satisfy the
biorthogonality condition (6.122),then the J -level analysis–synthesis bank is also
a perfect reconstruction filter bank, that is,

x̂(n) # x(n) #

J!2∑

i#0

∑

k

yi(k) fi(n ! 2i'1k) '
∑

k

yJ!1(k) fJ!1(n ! 2 J!1k) (6.125)

where

yi(k) #
∑

n

x(n) f̂i(2i'1k ! n), i # 0, 1, . . . , J ! 2 (6.126)

yJ!1(k) #
∑

n

x(n) f̂J!1(2 J!1k ! n) (6.127)

with f̂i(k) being the impulse responses of the corresponding analysis band, in
analogy with Figure 6.12b. To summarize our findings, let us define

.ik(n) # fi(n ! 2i'1k), i # 0, 1, . . . , J ! 2

.(J!1)k(n) # fJ!1(n ! 2 J!1k)

“08-Ch06-SA272” 18/9/2008 page 382

382 CHAPTER 6 Feature Generation I

Table 6.3 The Discrete Time Wavelet Transform

yi(k) #
∑

n x(n),ik(n) DTWT

x(n) #
∑

i
∑

k yi(k).ik(n) Inverse DTWT
∑

n ,ik(n).jl(n) # !kl!ij Biorthogonal expansion

.ik(n) # ,ik(n)
Orthonormal expansion∑

n ,ik(n),jl(n) # !kl!ij

,ik(n) # f̂i(2i'1k ! n) i # 0, 1, . . . , J ! 2

,(J!1)k(n) # f̂J!1(2 J!1k ! n)

Then from (6.125), (6.126), and (6.127) we obtain Table 6.3.

Remarks

■ A notable characteristic of the DTWT is that the basis sequences for each level
i are the power of two shifts of a corresponding mother sequence:

.ik(n) # .i0(n ! 2rk), r # i ' 1 for i ̸# J ! 1
or r # J ! 1 for i # J ! 1

,ik(n) # ,i0(n ! 2rk), r # i ' 1 for i ̸# J ! 1
or r # J ! 1 for i # J ! 1

In the more elegant theory of continuous wavelet transform, all analysis (syn-
thesis) basis functions are produced from a single analysis (synthesis) mother
function by dilations (time scaling) and shifts [Meye 93, Daub 90, Vett 95].

■ The magic number 2, whose powers determine the shifts in the mother basis
sequences, results from the successive splitting by two in the tree-structured
filter banks, which we have adopted to introduce the DTWT. Filter banks of
this type are known as octave-band filter banks. Their characteristic is that
the bandwidth of each of the filters in the bank is the same in a logarithmic
scale. Sometimes they are also called constant-Q filter banks to stress the fact
that the ratio of the filters’ bandwidth to the respective central frequency is
constant. Generalizations of DTWT with another integer M in place of 2 can
also be defined and used [Stef 93].

Example 6.8
The Haar Transform—The Epilogue

We have already seen that the Haar transform is equivalent to a tree-structured analysis
filter bank. Let us now look at the synthesis problem. For the 8 " 8 Haar transform and after
a row reshuffling of the corresponding Haar matrix, we have

“08-Ch06-SA272” 18/9/2008 page 383

6.13 Discrete Time Wavelet Transform (DTWT) 383

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0(0)

y0(1)

y0(2)

y0(3)

y1(0)

y1(1)

y2(0)

y3(0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

#
1√
8

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 !2 0 0 0 0 0 0

0 0 2 !2 0 0 0 0

0 0 0 0 2 !2 0 0

0 0 0 0 0 0 2 !2√
2

√
2 !

√
2 !

√
2 0 0 0 0

0 0 0 0
√

2
√

2 !
√

2 !
√

2

1 1 1 1 !1 !1 !1 !1

1 1 1 1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

x(0)

x(1)
...

x(7)

⎤

⎥⎥⎥⎥⎥⎦

or

y # Ĥx

Thus the 8 " 8 Haar transform gives four coefficients at the finest resolution level 0, two
at level 1 and one for each of the coarsest resolution levels 2 and 3. We will now design the
corresponding synthesis bank to obtain x(n) from these coefficients. The impulse responses
of the Haar analysis filters are

h1(n) #

⎧
⎨

⎩

1√
2

n # 0 or n # !1

0 otherwise

h0(n) #

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
2

n # 0

! 1√
2

n # !1

0 otherwise

It is readily seen that
∑

n

hi(2k ! n)hj(2l ! n) # !ij!kl , i, j # 0, 1

That is, the Haar filter bank is paraunitary . Thus, the synthesis filters can be defined as

gi(n) # hi(!n), i # 0, 1

Hence

G0(z) #
1√
2

(1 ! z!1)

G1(z) #
1√
2

(1 ' z!1)

From the equivalent structure of the synthesis bank of Figure 6.19 we have

F1(z) # G1(z)G0
(
z2)

#
1
2

(
1 ' z!1 ! z!2 ! z!3)

and the respective impulse response is

f1(n) #

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 n # 0, 1

! 1
2 n # 2, 3

0 otherwise

“08-Ch06-SA272” 18/9/2008 page 384

384 CHAPTER 6 Feature Generation I

Following similar arguments, we have

f2(n) #

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
8

n # 0, 1, 2, 3

! 1√
8

n # 4, 5, 6, 7

0 otherwise

f3(n) #

⎧
⎨

⎩

1√
8

n # 0, 1, . . . , 7

0 otherwise

If we now insert these values in (6.125) and collect the values of x(n) together, we get

⎡

⎢⎢⎢⎢⎣

x(0)
x(1)

...
x(7)

⎤

⎥⎥⎥⎥⎦
#

1√
8

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0
√

2 0 1 1

!2 0 0 0
√

2 0 1 1

0 2 0 0 !
√

2 0 1 1

0 !2 0 0 !
√

2 0 1 1

0 0 2 0 0
√

2 !1 1

0 0 !2 0 0
√

2 !1 1

0 0 0 2 0 !
√

2 !1 1

0 0 0 !2 0 !
√

2 !1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0(0)
y0(1)
y0(2)
y0(3)
y1(0)
y1(1)
y2(0)
y3(0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

x # ĤT y

That is, we reobtain the inverse (within a permutation) Haar transform. Hence, we can now
state that the Haar transform and its inverse form a DTWT pair, using the orthogonal Haar
sequences as the basis for the wavelet expansion.

6.14 THE MULTIRESOLUTION INTERPRETATION
The goal of this section is to highlight, without resorting to mathematical details,
an important aspect of the wavelet transform that accounts for its success as a tool
in pattern recognition as well as in numerous other applications. Let us assume
for simplicity that the two filters in the analysis–synthesis bank of a paraunitary
filter bank are ideal low/high pass. Figure 6.20 shows the magnitude responses
of the respective filters in the equivalent of the tree-structured octave band filter
bank of Figure 6.19. The width of the frequency response (bandwidth) is halved
for each level of the tree (Figure 6.20d). That is, the “detail” resolution (high-pass)
filters have a wide bandwidth, and the “coarse” resolution (low-pass) filters are of
narrow bandwidth. Filters F3 and F2, the two coarser resolution ones, are of the
same bandwidth. These observations are true for any octave band filter bank of any

“08-Ch06-SA272” 18/9/2008 page 385

6.14 The Multiresolution Interpretation 385

G0(z)

G0(z2)

G0(z4)

F3(z) F2(z) F1(z) F0(z)

G1(z4)

G1(z2)

G1(z)(a)

(b)

(c)

(d)

1

1

1

1

1

1

1

$
8

$
8

$
8

$
8

$
8

$
8

$
8

$
4

$
4

$
4

$
4

$
4

$
4

$
4

$
2

$
2

$
2

$
2

$
2

$
2

$
2

$

$

$ $

$

$

$

&

&

&

&

&

&

&

FIGURE 6.20
Filter bandwidths in an octave band filter bank.

number of levels J . That is, the width of Fi(z) is half of the width of Fi!1(z),
and the widths of FJ!2 and FJ!1 are equal. This multiresolution viewpoint of
the DTWT is a source of its power as a tool, and it is worth spending some time
on it.

It is known (uncertainty principle) that filters with narrow bandwidth have
long impulse responses and that filters with wide bandwidth have short impulse
responses. Let us take for example the Haar filter bank. The filter impulse response
at level zero, h0(n) # f̂0(n), is (1√

2
, ! 1√

2
) and at level three [i.e., corresponding to

Eq. (6.118)], f̂3(n), is 1√
8
(1, 1, 1, 1, 1, 1, 1, 1). Since the output of each filter of the

analysis bank,that is,the DTWT coefficients,is the convolution of the input sequence
with the respective impulse response,the filter tends to spread out the input activity.
For example, a single impulse in the input of the F̂3(z) filter produces a sequence
of eight samples at the output. Thus, if our goal is to identify sudden (short in time)
changes in an input signal, it is apparent that one should use filters of short impulse
response to be able to obtain good time locality. Otherwise, the sudden activity
will spread in time. Hence, for sudden changes in time (rich in high-frequency
components),one needs a“detailed”analysis filter, that is, a short impulse response.
For slowly time-varying activities,rich in low frequencies,one needs a“less detailed”

“08-Ch06-SA272” 18/9/2008 page 386

386 CHAPTER 6 Feature Generation I

analysis filter, so as to be able to “see” the longer scale variations. Thus, detail is not
of interest here, and long impulse responses are required. In other words, the
resolution should match the scale of the activity under investigation.

The wavelet transform provides the means of analyzing the input signal into a
number of different resolution levels in a hierarchical fashion. This is also known
as multiresolution analysis. Thus, signal components corresponding to differ-
ent physical activities can be best represented at different resolution levels: short
high-frequency activities at the finer resolution and long low-frequency activities
at coarser resolution levels. It turns out that this coarse-to-fine analysis strategy is
appropriate for a number of pattern recognition tasks.

On the synthesis part, the signal can be reconstructed from its multiresolution
components. See, for example, Figure 6.19. The sequence x(n) is synthesized first
by its coarser component x3(n), and then higher frequency (detailed) components
are added, resulting in a successively finer approximation. When the component
of the finest detail, x0(n), is added, the original signal is obtained. This philosophy
is at the heart of a number of signal compression schemes.

Remarks

■ The analysis of a signal in a number of components via a filter bank is not new
and goes back to the work of Gabor in the 1940s. It is directly related to the
short-time Fourier transform defined as [Gabo 46, Vett 95]

Xs(&, m) #
.∑

n#!.

x(n)%(n ! m) exp(!j&n) (6.128)

where %(n) is a window sequence, whose center is successively moved
to the different points m. Thus, each time, the part of the sequence
x(n) around m (depending on the window’s effective width) is selected
and Fourier transformed. It can be shown that this is equivalent to fil-
tering the signal x(n) by a bank of filters, each centered at a different
frequency but all of them having the same bandwidth (Problem 6.20). This
is its drawback, because low- and high-frequency signal components are
“looked” at through the same window in time, resulting in poor overall
localization of the events. What is really needed is a long window to
analyze slowly time-varying low-frequency components and a narrow
window to detect high-frequency short-time activities. As we saw, this is
offered by a tree-structured octave-band filter bank, associated with the
DTWT.

■ All we have said about wavelet transforms and multiresolution analysis is just
a glimpse of the whole story, a story that is really worth further effort; see, for
example, [Daub 90].

“08-Ch06-SA272” 18/9/2008 page 387

6.15 Wavelet Packets 387

6.15 WAVELET PACKETS
The DTWT has been introduced via an octave-band filter bank,and the wavelet coef-
ficients result at the outputs of the bank, when its input is fed with the signal of
interest. The octave-band filter bank is constructed by successively splitting by two
the lowest frequency band (leaf) of the tree-structured bank (Figure 6.13). How-
ever, in many cases most of the activity is not in the low-frequency band but in the
middle or high-frequency parts of the spectrum. In such cases, it may be useful
to be able to allocate finer frequency bandwidths in the bands where the activity
occurs. As we will see later on in the chapter, this can boost the discriminatory
power of our system from a classification point of view, which is always our main
interest. Figure 6.21a shows an example of a tree-structured filter bank but with
the finer frequency splitting occurring at a midfrequency band. Figure 6.21b shows
the resulting bandwidths for each of the (ideal) filters in the bank (f -axis) and the
respective window length of the impulse responses in the time domain (n-axis).
In other words, filters 2 and 3 have half the bandwidth and twice the impulse
response of 4. Furthermore, they have one fourth of the bandwidth and a four
times longer impulse response than that of 1. For comparison, Figure 6.22 shows

(a)

(b)

2

3

4 4

n

f

1 1 1 1

H0 2

H1 2

H0 2

H1 2

H0 2 2

3

4

1

H1 2

FIGURE 6.21
(a) Wavelet packet tree structure and (b) the corresponding frequency versus time resolution.

“08-Ch06-SA272” 18/9/2008 page 388

388 CHAPTER 6 Feature Generation I

(a)

f

n

f

n

1

2 2

2

3

4

3

4

1 1 1

1

(b)

FIGURE 6.22
Frequency versus time resolution for (a) octave band and (b) equal bandwidth filter banks.

the frequency–time resolution plots for an octave-band filter bank (a) and for a bank
with equal bandwidths (b), associated with the DTWT and the short-time Fourier
transform, respectively. Having freed ourselves from the octave-band tree struc-
ture, filter banks can be constructed by various tree growth strategies, with that of
Figure 6.21 being just one possibility. As was the case with the octave-band philos-
ophy, these arbitrary tree structures also lead to a set of basis sequences for discrete
signal expansions [Coif 92] called wavelet packets. Following arguments similar
to those in Section 6.13 and using filters with the perfect reconstruction property,
the basis sequences for the wavelet packets result from the respective impulse
responses of the synthesis bank, after the appropriate, for each level, power of two
time shifts.

6.16 A LOOK AT TWO-DIMENSIONAL GENERALIZATIONS
All the concepts discussed so far can be carried over in the two-dimensional case.
No doubt, the task is even more challenging now. How can one define subsam-
pling here? The straightforward way is via the “separable” philosophy. That is, we
first transform (filter) the columns of the two-dimensional sequence and then the
resulting rows. This leads to the subsampling shown in Figure 6.23. In other words,
we leave out every other row and every other column (for subsampling by 2).
Figure 6.24 shows the filter bank structure that complies with this philosophy. The
image sequence I(m, n) appears in the filters of stage 1 column after column, and
the respective outputs are subsampled by 2. The resulting subsampled images are
in turn filtered at stage two, but now they are fed into the filters row after row.

Assuming H0 to be the (ideal) high-pass and H1 the low-pass filter, the four
frequency bands that are formed by the previous procedure are illustrated in
Figure 6.25a. The area H1H1 corresponds to low-pass columns and rows, H1H0
to low-pass columns and high-pass rows, and so forth. Figure 6.25b shows the

“08-Ch06-SA272” 18/9/2008 page 389

6.16 A Look at Two-Dimensional Generalizations 389

FIGURE 6.23
Separable subsampling by 2 for images.

H0 2

H0 2

H0 2

H1 2

H1 2

H1 2

FIGURE 6.24
Basic element for a two-dimensional filter bank, leading to separable subsampling by 2.

resulting segmentation of the frequency domain when the low-pass area H1H1 is
successively split by repeating the procedure.

Example 6.9
Figure 6.26 shows a 64 " 64 image of a triangle. The three “line” images are the 32 " 32
images that result when passing the triangle image through the structure of Figure 6.24. In
the columnwise filtering of the first stage, the vertical line goes through the low-pass H1 filter
(no variation across it) and the horizontal and diagonal lines go through the high-pass H0. This
is because in a columnwise filtering, these appear as impulses in each column, and thus are
rich in high frequencies. In the row scanning of the second stage, it will be the horizontal line
that will go through the low-pass filter. Similar reasoning explains the position of the various
parts of the triangle in the different bands.

Although this is obviously a very simplified example, it is quite instructive. It demonstrates
how the original image can be obtained from its multiresolution components and also how
different characteristics (directional in this case) of the whole may be isolated at different
bands.

“08-Ch06-SA272” 18/9/2008 page 390

390 CHAPTER 6 Feature Generation I

fv

fh

(a)

H0 H1 H0 H0

H1 H0H1 H1

$

$

(b)

fv

fh
$

$

FIGURE 6.25
(a) Frequency domain division corresponding to the filter bank of Figure 6.24 and (b) the result
of a successive division of the low-pass part of the spectrum.

H0 H1 H0 H0

H1 H0

FIGURE 6.26
A triangle image and its filtered versions through the filter bank of Figure 6.24.

6.17 APPLICATIONS
All the transforms we have studied in this chapter are good candidates for feature
generation, and they have been used extensively in various pattern recognition
tasks. However, the wavelet transform offers an extra advantage, which in some
cases can be beneficially exploited. Its multiresolution properties conform to the
way perception is achieved by humans, through their hearing and visual sys-
tems. The human ear exhibits decreasing resolution at higher frequencies, in a

“08-Ch06-SA272” 18/9/2008 page 391

6.17 Applications 391

way that is uniform on a logarithmic scale (octave bands) [Flan 72]. Experiments
in psychophysics and physiology show that the human visual cortex perceives by
decomposing the stimuli in a number of frequency bands [Camp 68, Levi 85],which
are also dependent on the spatial orientation [Camp 66]. Experimental results
in [Nach 75] indicate that these frequency bands have the approximate bandwidth
of an octave. The similarities between the mechanism with which human percep-
tion systems treat the respective stimuli and the processing techniques that split
the signal into various (spatial) frequency bands, in a way similar to the wavelet
transform, justify the use of the latter in pattern recognition tasks [Mall 89].

The following examples come from two of the most important areas of interest
in today’s pattern recognition applications.

Recognition of Handwritten Characters
The development of OCR systems is of particular importance in various application
areas. One of the most challenging among them is the recognition of handwritten
characters. Figure 6.27 shows the character“3”as well as its boundary contour after
the application of a contour tracing algorithm [Pita 92]. The task now becomes one
of shape recognition. As discussed in more detail in Chapter 7, the boundary can

FIGURE 6.27
Wavelet coefficients corresponding to the curvature of the boundary of number “3.”

“08-Ch06-SA272” 18/9/2008 page 392

392 CHAPTER 6 Feature Generation I

be represented as a closed parametric curve in the complex plane

u(n) # x(n) ' jy(n), 0 + n + N ! 1 (6.129)

with N being the number of samples (pixels) found tracing the contour and
x(n), y(n) the corresponding coordinates. The first point (x(0), y(0)) of the
sequence is considered as the origin. Fourier methods have been used extensively
in such classification tasks, by obtaining the DFT of u(n) and keeping a sufficient
number,from the total of N ,of Fourier components as features. An alternative way is
to extract the features from the wavelet domain. In other words, x(n) and y(n) are
independently filtered through a tree-structured filter bank of appropriate resolution
depth,and the resulting wavelet coefficients are used as features. The low-frequency
components account for the basic shape of the character and are less sensitive to
varying writing styles. The high-frequency components account for the details
and are more sensitive to the specific handwriting style. In [Wuns 95], a com-
parative study was carried out using the same number of DTWT coefficients and
Fourier-based features, with a neural network classifier. The experiments showed
that classification based on wavelet coefficients resulted in reduced error rates.
Furthermore, it was pointed out that Fourier-based features exhibited larger within-
class variance and weaker between-class separation than the wavelet-based ones.
A major disadvantage associated with the wavelet coefficients is that they are not
shift invariant. That is, if we rotate/translate a character, the resulting coefficients
will not be the same. This is a consequence of the subsampling process [Mall 89]
(Problem 6.21). In other words, if

x,(n) # x(n ! n0)

and y,(n), y(n) are the sequences of wavelet coefficients of x,(n) and x(n),
respectively, then, in general

y,(n) ̸# y(n ! n0)

This has led to research in designing filter banks that seek to overcome this
property [Marc 95, Hui 96]. The shift dependence obviously also makes the
wavelet coefficients sensitive to the choice of the initial point from which the
contour is traced, as already described. As we will see in more detail in Chapter 7,
the Fourier coefficients are also dependent on shifts but in a deterministic way.
Thus, various normalizing techniques exist that result in shift-invariant feature
parameters [Crim 82, Arbt 90]. To overcome the problems associated with the
choice of the initial point within the contour, in order to minimize its effects
on the wavelet coefficients, a number of techniques have been suggested and
used in practice. A simple method is to select a specific point resulting during
the scanning process, for example, the first pixel when scanning the charac-
ter from left to right. Other more “intelligent” ways have also been suggested
[Wuns 95, Chua 96, Pun 03].

An alternative approach to that of Eq. (6.129) is to describe a contour in terms
of the arc length between a given point and the origin, within the contour. As arc

“08-Ch06-SA272” 18/9/2008 page 393

6.17 Applications 393

length t at a given point, we define the number of consecutive pixels between the
given point and the point considered as the origin. The contour description can
now be achieved via a one-parameter real-valued function,the arc tangent angle %(t)
or the corresponding curvature *(t), defined as

%(t) # tan!1
[

dy(t)
dx(t)

]

*(t) #
d%(t)

dt

where x(t), y(t) are the coordinates of the respective point as a function of length
t from the origin and dt #

√
dy2 ' dx2. A further discussion of this is provided in

Chapter 7.
[Kapo 96] suggests wavelet transforming the curvature of the contour and using

the corresponding wavelet coefficients as features. Figure 6.27 shows the coef-
ficients resulting from the wavelet analysis of the curvature (bottom left) of the
boundary contour of number 3. The wavelet basis used for the analysis was
Daubechies’s biorthogonal pairs (3,9) [Vett 95]. Six successive resolution levels
are shown,the finest being on top and the coarsest at the bottom. Extensive experi-
mentation with a number of different characters shows that the use of wavelet
coefficients from more than six resolution levels adds no further discriminatory
information to the system. Thus, each of the resulting feature vectors has 32 com-
ponents. A different philosophy is followed in [Geze 00, Geze 02], in the context
of an OCR system for the Greek Orthodox Byzantine music notation. The wavelet
transform is applied to the vector combining the four projections (horizontal, verti-
cal,left-diagonal,right-diagonal) of the characters. It turns out that such an approach
leads to an efficient coding of the directional properties of the characters.

Texture Classification
Texture characterization in image analysis tasks is another area where the wavelet
transform, as well as the other transforms discussed in this chapter, has been hea-
vily utilized. The basic approach is similar to that in the OCR example. However,
because texture is a property of the image region and not of its boundary, the
two-dimensional variants of the transforms are used. The two-dimensional wavelet
transform offers the advantages of spatial frequency and orientation selectivity,pro-
vided the appropriate bases are chosen. The information compaction properties
result from the fact that most of the energy activity is concentrated in certain reso-
lution levels,as was the case with the OCR example considered earlier. The wavelet
coefficients of these levels are then selected as features to form the feature vectors.
Sometimes a function of the features is employed, such as the energy,

∑
i y2

i , or
the entropy,

∑
i y2

i log y2
i , where yi are the respective wavelet coefficients at each

resolution level [Lain 93].
In many cases, the underlying image texture exhibits a great deal of activity in

middle or high-frequency bands.

“08-Ch06-SA272” 18/9/2008 page 394

394 CHAPTER 6 Feature Generation I

(a) (b)

FIGURE 6.28
An example of (a) a textured image and (b) its corresponding wavelet packet transform.

Figure 6.28a is an example of a textured image taken from [Brod 66]. In such
cases, one must pay attention to the bands of high energy, instead of looking with
fine frequency bandwidths at low-frequency bands of low energy. This leads to
the adoption of wavelet packets, discussed in Section 6.15. There, we saw that
there are a number of choices for splitting the frequency bands, leading to different
wavelet packets. In [Chan 93] a dynamic procedure is suggested, depending on
the particular texture image. A threshold C is selected prior to the analysis. If the
output energy in a band is less than C , no splitting of the band is carried out. If it
is higher than C , the band is split further. Splitting terminates if subimages, after
filtering and subsampling,become small, for example,16 " 16. It is then suggested
to use as features the energy values at the J (a preselected number) most dominant
(energywise) bands. In [Mojs 00] the effects of the properties of the analysis band
on texture characterization are considered. It is demonstrated that the choice of the
analysis filters may have a significant influence on the classification performance.
In [Unse 95, Lain 96] another variation of the DTWT is adopted, called the discrete
wavelet frame. The difference from DTWT is that the filter outputs in the bank are
not subsampled. Although this leads to a redundant representation, it results in a
texture description tolerant to translations.

A procedure similar in concept to the DTWT one is to employ a bank of two-
dimensional Gabor filters to perform the splitting of the image into a number of
frequency bands. The impulse response (point spread function, Appendix D) of
the complex two-dimensional Gabor filter is given as the product of a Gaussian
low-pass filter with a complex exponential, that is [Bovi 91],

h(x, y) # g,(x, y) exp(j(&xx ' &yy)) (6.130)

where

g,(x, y) #
1

"#2 g
(

x,

"#
,

y,

#

)
, g(x, y) #

1
2$

exp
(

!
x2 ' y2

2

)
(6.131)

“08-Ch06-SA272” 18/9/2008 page 395

6.17 Applications 395

and

x, # x cos % ' y sin %

y, # !x sin % ' y cos % (6.132)

That is,g,(x, y) is a version of the Gaussian g(x, y) that is spatially scaled and rotated
by %. The parameter # is the spatial scaling, which controls the width of the filter
impulse response, and " defines the aspect ratio of the filter, which determines the
directionality of the filter, which is no longer circularly symmetric. The orientation
angle % is usually chosen to be equal to the direction of the filter’s center circular
frequency

& #
√

&2
x ' &2

y (6.133)

That is,

% # tan!1 &y

&x
(6.134)

By varying the free parameters #, ", &, and %, filters of arbitrary orientation and
bandwidth characteristics are obtained (Problem 6.22). Figure 6.29a shows the
magnitude of the complex Gabor filter for # # 1.0, " # 0.3. Figure 6.29b shows
the magnitude of the corresponding spatial frequency response. The choice of
the Gabor filters is justified by the fact that these filters offer the optimal trade-
off between spectral bandwidth and spatial localization. In Section 6.14 we saw
that the shorter the filter’s impulse response (spatial localization), the wider its fre-
quency bandwidth and vice versa,according to the uncertainty principle [Papo 91],

(a) (b)

0

1

1
u

v
1

!1 !1

|H(u, v)|

0

0.6

|h(x, y)|

2

!2
!2

2
y

x

FIGURE 6.29
Plot of (a) the magnitude of point spread function of a Gabor filter and (b) the magnitude of its
Fourier transform.

“08-Ch06-SA272” 18/9/2008 page 396

396 CHAPTER 6 Feature Generation I

that is,

0 x0&x &
1
2

0 y0&y &
1
2

(6.135)

In [Daug 85] it has been shown that the two-dimensional Gabor filters attain
the minimum uncertainty bound. For digital images, a sampling of the above
functions has to be performed, which introduces aliasing errors regardless of the
sampling interval. This happens because Gabor filters are not bandlimited, but
have a Gaussian-shaped frequency response (Problem 6.23). The topic is treated
in [Bovi 90]. Gabor filter banks for analyzing the image in a number of bands, in
the context of texture classification, have been successfully employed in a num-
ber of cases, [Jain 91, Turn 86, Bovi 90, Hale 95, Hale 99, Weld 96]. A set of Gabor
filters centered at different frequencies and having different orientations are used
to cover the frequency range of interest, using various frequency and orientation
bandwidths. Images are then filtered through this set of filters, and the features are
generated from the resulting output samples. For example, the output energies of
the Gabor filters may be chosen to be the respective features. Thus,using this strat-
egy, the generated features encode classification information related to the spatial
frequency as well as the orientation activity of the various textures. In order to
grasp most of the textural information, techniques have been proposed to place the
centers of the Gabor filters in the most “important” image frequencies [Pich 96].
In [Chan 93, Grig 02] a comparative study of various transform-based features is
provided in the context of texture classification.

6.18 PROBLEMS
6.1 Show the equivalence (a) between (6.5) and (6.6) and (b) between (6.7)

and (6.8).

6.2 Consider the separable transform Y # UXV T . Then show that if Y , X are
turned into the row-ordered vectors y, x, respectively, then y # (U ⊗ V)x,
where ⊗ denotes the Kronecker product of two matrices.

6.3 Let ei , i # 0, 1, . . . , N ! 1, be any orthonormal basis in the N -dimensional
space. Show that the MSE between an N -dimensional vector and an m-
dimensional projection of it is minimized if (a) the basis consists of the
eigenvectors of Rx and (b) the m-dimensional subspace is the one spanned
by the eigenvectors corresponding to the m largest eigenvalues. Furthermore,
the projection onto the latter subspace is the one that maximizes the sum
of the variances of its components.
Hint: Minimize the mean square error E[∥'∥2] subject to the constraint
eT

i ei # 1.

“08-Ch06-SA272” 18/9/2008 page 397

6.18 Problems 397

6.4 Consider an N -dimensional random vector x, which is approximated by

x̂ #
m!1∑

i#0

yiei '
N!1∑

i#m

ciei

where ci are nonrandom constants and ei , i # 0, 1, 2, . . . , N ! 1, constitute
an orthonormal basis. Show that the minimum mean square error E∥x ! x̂∥2

is achieved if (a) ci # E[yi], i # m, . . . , N ! 1; (b) the orthonormal basis
consists of the eigenvectors of %x ; and (c) ei, i # m, . . . , N ! 1, correspond
to the N ! m smallest eigenvalues.

6.5 If X is a rank r matrix, show that the two square matrices XXH and XH X
have the same nonzero eigenvalues.

6.6 (a) Show Eq. (6.39).
(b) Show that the expansion in the right-hand side of (6.41) is the projection
of xi on the subspace spanned by the first k columns of U .

6.7 Given the matrix
⎡

⎢⎣
1 2
2 1
1 3

⎤

⎥⎦

compute its SVD representation.

6.8 Show the orthogonality of the DFT matrix W and also identity (6.94).

6.9 Given the image array

⎡

⎢⎣
1 2 1
0 1 1
2 1 2

⎤

⎥⎦

compute its two-dimensional DFT transform.

6.10 For one of the images available at the Web site of the book, write a program
to compute its DFT transform. Use a routine to implement the fast Fourier
transform and plot the magnitude of the resulting Fourier transform.

6.11 Show the orthogonality of the DCT transform.

6.12 Compute the DCT of the image array of Problem 6.9.

6.13 Develop a program to compute the DCT for one of the images available from
the Web site of the book.

6.14 Show the orthogonality of the Hadamard transform.

6.15 Compute the Hadamard transform for a 2 " 2 submatrix of the matrix of
Problem 6.9.

“08-Ch06-SA272” 18/9/2008 page 398

398 CHAPTER 6 Feature Generation I

6.16 Show the orthogonality of the Haar transform.

6.17 Show the two Noble identities of Figures 6.12a and 6.18.

6.18 Show the equivalence between the tree structure of Figure 6.11 and that of
Figure 6.12b.

6.19 Consider the perfect reconstruction two-band Haar bank. Show that
a. If we make the analysis filters causal by delaying each of them by one

sample, then the reconstructed sequence x̂(n) is delayed by one sample,
that is, x̂(n) # x(n ! 1). In the more general case, if both the analysis
filters have to be delayed by L, then the output of the band is also delayed
by L.

b. If this is repeated with the more general N -band case,show that the output
is delayed as x̂(n) # x(n ! (2N!1 ! 1)L) and a delay must be inserted in
each band to safeguard perfect reconstruction. Figure 6.30 shows the
three-band case. In the general case, the delay element in each band is
z!(2N!i!1!1)L, i # 0, 1, . . . , N ! 1.

6.20 Show that the short-time Fourier transform defined in (6.128) is equal to

Xs(&, m) # exp(!j&m)
.∑

n#!.

x(n)%(n ! m) exp(j&(m ! n))

Verify that this is equivalent to filtering the sequence x(n) with different filters
of the same bandwidth but centered at different frequencies.

6.21 Show that the process of filtering and then subsampling is equivalent to the
action of a linear but time-varying system. In fact, it is a periodically time-
varying linear system. The same is true for the process of upsampling followed
by linear filtering.

2
x(n)

x(n)

y0(n)

y1(n)

y2(n)

y3(n)

H0

H1

H0

H1

ANALYSIS SYNTHESIS

2

2

2

H0

H1

G0

G1

G0

G1

G0

G12

Z

Z
!L

!3L

2

2

2

2

2

2

2

^

FIGURE 6.30
A three-band perfect reconstruction filter bank with causal analysis and synthesis filters.

“08-Ch06-SA272” 18/9/2008 page 399

MATLAB Programs and Exercises 399

6.22 Show that the frequency (octave) and orientation (radians) half-peak
bandwidths for Gabor filters are given by Bf , B%, respectively, where

Bf # log2
&"# '

√
2 ln 2

&"# !
√

2 ln 2

B% # 2 tan!1

√
2 ln 2
&#

Compute these for different values of ", #.

6.23 Show that the Fourier transform of the two-dimensional Gabor filter response
h(x, y) is given by

H(u, v) # exp
(

!
#2

2
{(u, ! &x,)2"2 ' (v, ! &y,)2}

)

where

u, # u cos % ' v sin %

v, # !u sin % ' v cos %

and &x,, &y, the corresponding versions of &x , &y rotated by %. Draw its
magnitude versus frequency (u, v) for different values of " and %.

MATLAB PROGRAMS AND EXERCISES
Computer Programs

6.1 Generation of points around an (l ! 1)-dimensional hyperplane: Write a
MATLAB function named generate_hyper that generates randomly l-
dimensional points xi # [x1(i), x2(i), . . . , xl(i)]T around an (l!1)-dimensional
hyperplane H : wT x ' w0 # 0, where w # [w1, w2, . . . , wl]T . More specifi-
cally, the function takes as inputs: (a) the parameter (column) vector w for H
(wl ̸# 0), (b) the offset w0 for H , (c) a positive parameter a that defines the
range [!a, a], where each one of the first (l ! 1) coordinates of the points
is uniformly distributed, (d) the positive parameter e that defines the range
[!e, e] of a uniformly distributed noise source, which is added to the term
(!w0 !

∑l!1
i#0 wixi)/wl to produce the lth coordinate, (e) the number N of

points to be generated, and (f) the seed sed for the rand MATLAB function. It
returns an l " N dimensional matrix,X ,whose columns contain the generated
data points. In addition, the function plots the data points for l # 2, 3.

Solution

function X=generate_hyper(w,w0,a,e,N,sed)
l=length(w);

“08-Ch06-SA272” 18/9/2008 page 400

400 CHAPTER 6 Feature Generation I

t=(rand(l-1,N)-.5)*2*a;
t_last=-(w(1:l-1)/w(l))'*t + 2*e*(rand(1,N)-.5)-(w0/w(l));
X=[t; t_last];
%Plots for the 2d and 3d case
if(l==2)
figure(1), plot(X(1,:),X(2,:),'.b')

elseif(l==3)
figure(1), plot3(X(1,:),X(2,:),X(3,:),'.b')

end
figure(1), axis equal

6.2 PCA analysis:Write MATLAB commands to compute the principal components
of the covariance matrix of an l " N dimensional data matrix X as well as the
corresponding variances.

Solution
Just write

[pc,variances]=pcacov(cov(X'))

In the above command (a) cov(X ,) computes the covariance matrix of X ,

and (b) pcacov returns the principal components (eigenvectors of the covari-
ance matrix) in the columns of pc as well as the corresponding variances
(eigenvalues) in the column vector variances (note that pcacov assumes the
the data vectors lie in the rows of corresponding data matrix).

6.3 Distance matrix computation: Write a MATLAB function named compute_
distances that takes as input an l " N matrix X and returns the N " N dimen-
sional matrix distX whose (i, j) entry contains the squared Euclidean distance
between the ith and jth column vectors of X .

Solution
function distX=compute_distances(X)
[l,N]=size(X);
distX=zeros(N);
for i=1:N
for j=i+1:N
distX(i,j)=(X(:,i)-X(:,j))'*(X(:,i)-X(:,j));
distX(j,i)=distX(i,j);

end
end

6.4 Singular Value Decomposition: Write MATLAB commands to perform SVD
on an l " N dimensional data matrix X whose columns are the data
vectors.

“08-Ch06-SA272” 18/9/2008 page 401

MATLAB Programs and Exercises 401

Solution
Just write

[U,S,V]=svd(X)

The above command returns: (a) a diagonal matrix S of the same size with
X , containing in its diagonal the singular values of X in decreasing order and
(b) the unitary matrices U , V such that U ∗ S ∗ V , # X .

6.5 Dimensionality reduction using SVD: Write a MATLAB function named
SVD_eval that evaluates the performance of the SVD method when applied
on a data matrix X . More specifically, this function takes as inputs: (a)
an l " N dimensional matrix X , whose columns contain the data vectors,
(b) the dimensionality k((l) of the reduced space (k-dimensional hyperplane),
h, generated by the k column vectors of the matrix Ur , which correspond to
the k largest singular values of X . It returns: (a) an l "1 column vector contain-
ing the singular values of X , (b) the corresponding Ur matrix, denoted by Ur,
(c) the 1 " l dimensional parameter vector w of h, (d) the offset w0 of h, (e)
the distance matrix distX for X , and (f) the distance matrix distX_proj of the
projections of the vectors of X on h.

Solution
function [s,Ur,w,w0,distX,distX_proj]=SVD_eval(X,k)
[l,N]=size(X);
[Ur,S,Vr] = svd(X);
s=diag(S(1:l,1:l));
a=S(1:k,1:k)*Vr(:,1:k)';
X_proj=Ur(:,1:k)*a;
% Deterimnation of the estimated by the SVD hypeprlane
P=X_proj(:,1:l)';
w=[];
for i=1:l
w=[w (-1)^(i+1)*det([P(:,1:i-1) P(:,i+1:l) ones(l,1)])];

end
w0=(-1)^(l+2)*det(P(:,1:l));
% Computation of distances
distX=compute_distances(X);
distX_proj=compute_distances(X_proj);

Computer Experiments

6.1 a. Generate an l " N dimensional matrix X (l # 2 and N # 1000), whose
columns are two-dimensional points lying around the line h: x1 ' x2 # 0

“08-Ch06-SA272” 18/9/2008 page 402

402 CHAPTER 6 Feature Generation I

(i.e., w # [1, 1]T and w0 # 0), using the generate_hyper function with
parameters a # 10, e # 1 and sed # 0.

b. Compute the principal components of the covariance of X as well as the
corresponding variances (eigenvalues). Compare the direction of the first
principal component with the direction vector of h (which is perpendicular
to w) and draw your conclusions.

6.2 Repeat 6.1 with e # 5.

6.3 Repeat 6.1 and 6.2 where now l # 3 and the line h is replaced by the plane H :
x1 ! 5x2 ' 2x3 # 0.

6.4 a. Generate an l " N dimensional matrix X (l # 3 and N # 1000), whose
columns are two-dimensional points lying around the three dimensional
hyperplane with w # [1, 1, 1]T ,w0 # 0,using the generate_hyper function,
with parameters a # 10, e # 1 and sed # 0.

b. Use the SVD_eval function to compute (a) the singular values of X ,(b)
k # 2 column vectors of the matrix Ur , that correspond to the two largest
singular values of X . Also, compare the distances between the points of X
and the distances of their corresponding projections on h.

c. Repeat (b) for k # 1.

6.5 Repeat 6.4 with e # 6. Comment on the results.

REFERENCES
[Achl 01] Achlioptas D., McSherry F. “Fast computation of low rank approximations,” Proceed-

ings of the ACM STOC Conference, pp. 611–618, 2001.

[Akan 93] Akansu A.N., Hadda R.A. Multiresolution Signal Decomposition, Academic Press,
1992.

[Arbt 90] Arbter K., Snyder W.E., Burkhardt H., Hirzinger G. “Application of affine-invariant
Fourier descriptors to recognition of 3-D objects,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 12(7), pp. 640–647, 1990.

[Atti 92] Attick J.J. “Entropy minimization: A design principle for sensory perception,” Inter-
national Journal of Neural Systems, Vol. 3, pp. 81–90, 1992.

[Barl 89] Barlow H.B. “Unsupervised learning,” Neural Computation,Vol. 1, pp. 295–311, 1989.

[Bart 02] Bartlett M.S., Movellan J.R., Sejnowski T.J. “Face recognition by independent com-
ponent analysis,” IEEE Transactions on Neural Networks, Vol. 13(6), pp. 1450–1464,
2002.

[Bell 00] Bell A.J. “Information theory, independent component analysis, and applications,”
in Unsupervised Adaptive Filtering, Part I: Blind Source Separation (Haykin S., ed.),
pp. 237–264, John Wiley & Sons, 2000.

“08-Ch06-SA272” 18/9/2008 page 403

References 403

[Bell 97] Bell A.J., Sejnowski T.J. “The independent components of natural scenes are edge
filters,” Vision Research, Vol. 37(23), pp. 3327–3338, 1997.

[Belk 03] Belikn M., Niyogi P. “Laplacian eigenmaps for dimensionality reduction and data
representation,” Neural Computation, Vol. 15(6), pp. 1373–1396, 2003.

[Beng 04] Bengio Y., Paiement J.-F., Vincent P., Delalleau O., Le Roux N., Quimet M. “Out of
sample extensions for LLE, Isomap, MDS, Eigenmaps and Spectral clustering,” Advances in
Neural Information Processing Systems Conference, (Thrun S., Saul L., Schölkopf B., eds.),
MIT Press, 2004.

[Benn 06] Benetos E., Kotti M., Kotropoulos C. “Applying supervised classifiers based on non-
negative matrix factorization to musical instrument classification,” Proceedings IEEE Intl.
Conference on Multimedia and Expo, pp. 2105–2108, Toronto, Canada, 2006.

[Berr 95] Berry M., Dumais S., O’Brie G. “Using linear algebra for intelligent information
retrieval,” SIAM Review, Vol. 37, pp. 573–595, 1995.

[Beyg 06] Beygelzimer A., Kakade S., Langford J. “Cover trees for nearest neighbor,” Proceedings
of the 23rd International Conference on Machine Learning, Pittsburgh, PA, 2006.

[Bovi 91] Bovic A.C. “Analysis of multichannel narrow-band filters for image texture
segmentation,” IEEE Transactions on Signal Processing, Vol. 39(9), pp. 2025–2044, 1991.

[Bovi 90] Bovic A.C., Clark M., Geisler W.S. “Multichannel texture analysis using local-
ized spatial filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 12(1), pp. 55–73, 1990.

[Brod 66] Brodatz P. Textures: A Photographic Album for Artists and Designers, Dover, 1966.

[Brun 04] Brunet J.-P. Tamayo P., Golub T.R., Mesirov J.P. “Meta-genes and molecular pattern
discovery using matrix factorization,” Proceedings of the National Academy of Science, Vol.
101(2), pp. 4164–4169, 2004.

[Burg 04] Burges C.J.C. “Geometric methods for feature extraction and dimensional reduction:
A guided tour,” Technical Report MSR-TR-2004-55, Microsoft Research, 2004.

[Burt 83] Burt P.J., Adelson E.H. “The Laplacian pyramid as a compact image code,” IEEE
Transactions on Communications, Vol. 31(4), pp. 532–540, 1983.

[Cai 05] Cai D., He X. “Orthogonal locally preserving indexing,” Proceedings 28th Annual
International Conference on Research and Development in Information Retrieval, 2005.

[Cama 03] Camastra F. “Data dimensionality estimation methods: A survey,” Pattern Recognition,
Vol. 36, pp. 2945–2954, 2003.

[Camp 66] Campell F., Kulikowski J. “Orientation selectivity of the human visual system,”
Journal of Physiology, Vol. 197, pp. 437–441, 1966.

[Camp 68] Campell F., Robson J. “Application of Fourier analysis to the visibility of gratings,”
Journal of Physiology, Vol. 197, pp. 551–566, 1968.

[Cao 03] Cao J.J., Chua K.S., Chong W.K., Lee H.P., Gu Q.M. “ A comparison of PCA, KPCA
and ICA for dimensionality reduction,” Neurocomputing, Vol. 55, pp. 321–336, 2003.

[Cast 03] Casteli V., Thomasian A., Li C.-S. “CSVD: Clustering and singular value decomposition
for approximate similarity searches in high-dimensional space,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 15(3), pp. 671–685, 2003.

[Chan 93] Chang T., Kuo C.C.J. “Texture analysis and classification with tree structured
wavelet transform,” IEEE Transactions on Image Processing, Vol. 2(4), pp. 429–442,
1993.

“08-Ch06-SA272” 18/9/2008 page 404

404 CHAPTER 6 Feature Generation I

[Chu 04] Chu M., Diele F., Plemmons R., Ragni S. “Optimality, computation and interpretation
of the nonnegative matrix factorization,” available at http://www.wfu.edu/p̃lemmons,
2004.

[Chua 96] Chuang G.C.H., Kuo C.C.J. “Wavelet descriptor of planar curves: Theory and
applications,” IEEE Transactions on Image Processing, Vol. 5(1), pp. 56–71, 1996.

[Coif 92] Coifman R.R., Meyer Y., Wickerhauser M.V. “Wavelet analysis and signal processing,”
in Wavelets and Their Applications (Ruskai M.B. et al., eds.), pp. 153–178, Jones and
Barlett, 1992.

[Como 94] Comon P. “Independent component analysis—A new concept?” Signal Processing,
Vol. 36, pp. 287–314, 1994.

[Corm 01] Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. Introduction to Algorithms,
Second Edition, MIT Press and McGraw-Hill, 2001.

[Cox 94] Cox T., Cox M. Multidimensional Scaling, Chapmay & Hall, London, 1994.

[Crim 82] Crimmins T.R. “A complete set of Fourier descriptors for two dimensional shapes,”
IEEE Transactions on Systems, Man Cybernetics, Vol. 12(6), pp. 848–855, 1982.

[Daub 90] Daubechies I. Ten Lectures on Wavelets, SIAM, Philadelphia, 1991.

[Daug 85] Daugman J.G. “Uncertainty relation for resolution in space, spatial frequency, and
orientation optimized by two dimensional visual cortical filters,” Journal of Optical Society
of America, Vol. 2, pp. 1160–1169, 1985.

[Deco 95] Deco G., Obradovic D. “Linear redundancy reduction learning,” Neural Networks,
Vol. 8(5), pp. 751–755, 1995.

[Deer 90] Deerwester S., Dumais S., Furnas G., Landauer T., Harshman R. “Indexing by latent
semantic analysis,” Journal of the Society for Information Science, Vol. 41, pp. 391–407,
1990.

[Desi 03] De Silva V.,Tenenbaum J.B. “Global versus local methods in nonlinear dimensionality
reduction,” in Advances in Neural Information Processing Systems Becker S., Thrun S.,
Obermayer K. (eds.), Vol. 15, pp. 721–728, MIT Press, 2003.

[Diam 96] Diamantaras K.I., Kung S.Y. Principal Component Neural Networks, John Wiley
Sons, 1996.

[Dono 02] Donoho D.L., Grimes C.E. “When does ISOMAP recover the natural parameterization
of families of articulated images?” Technical Report 2002-27, Department of Statistics,
Stanford University, 2002.

[Dono 04] Donoho D., Stodden V. “When does nonnegative matrix factorization give a correct
decomposition into parts?” in Advances in Neural Information Processing Systems (Thrun
S., Saul L., Schölkopf B., eds.), MIT Press, 2004.

[Doug 00] Douglas S.C., Amari S. “Natural gradient adaptation,” in Unsupervised Adaptive
Filtering, Part I:Blind Source Separation (Haykin S., ed.), pp. 13–61, John Wiley & Sons, 2000.

[Este 77] Esteban D., Galand C. “Application of quadrature mirror filters to split band voice
coding schemes,” Proceedings of the IEEE Conference on Acoustics Speech and Signal
Procesing, pp. 191–195, May 1977.

[Fiel 94] Field D.J. “What is the goal of sensory coding?” Neural Computation, Vol. 6,
pp. 559–601, 1994.

[Flan 72] Flanagan J.L. Speech Analysis, Synthesis and Perception, Springer-Verlag, New York,
1972.

“08-Ch06-SA272” 18/9/2008 page 405

References 405

[Fuku 90] Fukunaga K. Introduction to Statistical Pattern Recognition, 2nd ed., Academic
Press, 1990.

[Gabo 46] Gabor D. “Theory of communications,” Journal of the Institute of Elec. Eng.,
Vol. 93, pp. 429–457, 1946.

[Geze 00] Gezerlis V., Theodoridis, S. “An optical music recognition system for the notation
of Orthodox Hellenic Byzantine music,” Proceedings of the International Conference on
Pattern Recognition (ICPR), Barcelona, 2000.

[Geze 02] Gezerlis V., Theodoridis S. “Optical character recognition of the Orthodox Hellenic
Byzantine music,” Pattern Recognition, Vol. 35(4), pp. 895–914, 2002.

[Golu 89] Golub G.H., Van Loan C.F. Matrix Computations, Johns Hopkins Press, 1989.

[Grig 02] Grigorescu S.E., Petkov N., Kruizinga P. “Comparison of texture features based on
Gabor filters,” IEEE Transactions on Image Processing, Vol. 11(10), pp. 1160–1167, 2002.

[Hale 95] Haley G., Manjunath B.S. “Rotation-invariant texture classification using modified
Gabor filters,” IEEE International Conference on Image Processing, pp. 262–265, 1995.

[Hale 99] Haley G., Manjunath B.S. “Rotation-invariant texture classification using complete
space frequency model,” IEEE Transactions on Image Processing, Vol. 8(2), pp. 255–269,
1999.

[Ham 04] Ham J., Lee D.D., Mika S., Schölkopf B. “A kernel view of the dimensionality
reduction of manifolds,” Proceedings of the 21st International Conference on Machine
Learning, pp. 369–376, Banff, Canada, 2004.

[Hayk 99] Haykin S. Neural Networks—A Comprehensive Foundation, 2nd ed., Prentice Hall,
1999.

[Hayk 00] Haykin S. (ed.) Unsupervised Adaptive Filtering, Part I: Blind Source Separation,
John Wiley & Sons, 2000.

[He 03] He X., Niyogi P. “Locally preserving projections,” Proceedings Advances in Neural
Information Processing Systems Conference, 2003.

[Hote 33] Hotelling H. “Analysis of a complex of statistical variables into principal components,”
Journal of Educational Psychology, Vol. 24, pp. 417–441, 1933.

[Hoy 00] Hoyer P.O., Hyvärien A. “Independent component analysis applied to feature
extraction from color and stereo images,” Network: Comput. Neural Systems, Vol. 11(3),
pp. 191–210, 2000.

[Hube 85] Huber P.J. “Projection pursuit,”The Annals of Statistics,Vol. 13(2), pp. 435–475, 1985.

[Hui 96] Hui Y., Kok C.W., Nguyen T.Q. “Theory and design of shift invariant filter banks,”
Proceeding of IEEE TFTS’96, June 1996.

[Hyva 01] Hyvärien A., Karhunen J., Oja E. Independent Component Analysis, Wiley
Interscience, 2001.

[Jack 91] Jackson J.E A User’s Guide to Principle Components, John Wiley & Sons, 1991.

[Jain 89] Jain A.K. Fundamentals of Digital Image Processing, Prentice Hall, 1989.

[Jain 91] Jain A.K., Farrokhnia F. “Unsupervised texture segmentation using Gabor filters,”
Pattern Recognition, Vol. 24(12), pp. 1167–1186, 1991.

[Jang 99] Jang G.J., Yun S.J., Hwan Y. “Feature vector transformation using independent com-
ponent analysis and its application to speaker identification,” Proceedings of Eurospeech,
pp. 767–770, Hungary, 1999.

“08-Ch06-SA272” 18/9/2008 page 406

406 CHAPTER 6 Feature Generation I

[Joll 86] Jollife I.T. Principal Component Analysis, Springer-Verlag, 1986.

[Jone 87] Jones M.C., Sibson R. “What is projection pursuit?” Journal of the Royal Statistical
Society, Ser. A, Vol. 150, pp. 1–36, 1987.

[Jutt 91] Jutten C., Herault J. “Blind separation of sources, Part I: An adaptive algorithm based
on neuromimetic architecture,” Signal Processing, Vol. 24, pp. 1–10, 1991.

[Kann 04] Kannan R., Vempala S., Vetta A. “On clustering: good, bad and spectral,” Journal of
the ACM, Vol. 51(3), pp. 497–515, 2004.

[Kapo 96] Kapogiannopoulos G., Papadakis M. “Character recognition using biorthogonal
discrete wavelet transform,” Proceedings of the 41st Annual SPIE Meeting,Vol. 2825,August
1996.

[Karh 46] Karhunen K. “Zur spektraltheorie stochastischer prozesse,” Annales Academiae
Scientiarum Fennicae, Vol. 37, 1946.

[Karh 94] Karhunen J., Joutsensalo J. “Representation and separation of signals using nonlinear
PCA type learning,” Neural Networks, Vol. 7(1), pp. 113–127, 1994.

[Koho 89] Kohonen T. Self-Organization and Associative Memory, 3rd ed., Springer-Verlag,
1989.

[Koki 07] Kokiopoulou E., Saad Y. “Orthogonal neighborhood preserving projections: A
projection-based dimensionality reduction technique,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 29(12), pp. 2143–2156, 2007.

[Kwon 04] Kwon O.W., Lee T.W. “Phoneme recognition using the ICA-based feature extraction
and transformation,” Signal Processing, Vol. 84(6), pp. 1005–1021, 2004.

[Lafo 06] Lafon S., Lee A.B. “Diffusion maps and coarse-graining:A unified framework for dimen-
sionality reduction, graph partitioning and data set parameterization,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 28(9), pp. 1393–1403, 2006.

[Lain 93] Laine A., Fan J. “Texture classification by wavelet packet signatures,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 15(11), pp. 1186–1191, 1993.

[Lain 96] Laine A., Fan J. “Frame representations for texture segmentation,” IEEE Transcaction
on Image Processing, Vol. 5(5), pp. 771–780, 1996.

[Law 06] Law M.H.C., Jain A.K. “Incremental nonlinear dimensionality reduction by manifold
learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28(3),
pp. 377–391, 2006.

[Lee 98] Lee T.-W. Independent Component Analysis, Kluwer Academic Publishers, 1998.

[Lee 01] Lee D.D., Seung S. “Learning the parts of objects by nonnegative matrix factorization,”
Nature, Vol. 401, pp. 788–791, 1999.

[Levi 85] Levine M.D. Vision in Man and Machine, McGraw-Hill, 1985.

[Lim 90] Lim J.S. Two-Dimensional Signal Processing, Prentice Hall, 1990.

[Lin 08] Lin T., Zha H. “Riemannian manifold learning,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 30(5), pp. 796–810, 2008.

[Mall 89] Mallat S. “Multifrequency channel decompositions of images and wavelet mod-
els,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37(12),
pp. 2091–2110, 1989.

[Mall 97] Mallet Y., Coomans D., Kautsky J., De Vel O. “Classification using adaptive wavelets
for feature extraction,” IEEE Transactions for Pattern Analysis and Machine Intelligence,
Vol. 19(10), pp. 1058–1067, 1997.

“08-Ch06-SA272” 18/9/2008 page 407

References 407

[Marc 95] Marco S.D., Heller P.N., Weiss J. “An M-band two dimensional translation-invariant
wavelet transform and its applivations,” Proceedings of the IEEE Conference on Acoustics
Speech and Signal Processing, pp. 1077–1080, 1995.

[Meye 93] Meyer Y. Wavelets, Algorithms and Applications, SIAM, Philadelphia, 1993.

[Mojs 00] Mojsilovic A., Popovic M.V., Rackov D.M. “On the selection of an optimal wavelet
basis for texture characterization,” IEEE Transactions Image Processing, Vol. 9(12), 2000.

[Nach 75] Nachmais J., Weber A. “Discrimination of simple and complex gratings,” V ision
Research, Vol. 15, pp. 217–223, 1975.

[Oja 83] Oja E. Subspace Methods for Pattern Recognition, Res. Studies Press, Letchworth,
U.K., 1983.

[Paat 91] Paatero P., Tapper U., aalto R., Kulmala M. “Matrix factorization methods for analysis
diffusion battery data,” Journal of Aerosol Science,Vol. 22 (Supplement 1), pp. 273–276, 1991.

[Paat 94] Paatero P., Tapper U. “Positive matrix factor model with optimal utilization of error,”
Environmetrics, Vol. 5, pp. 111–126, 1994.

[Papo 91] Papoulis A. Probability, Random Variables, and Stochastic Processes, 3rd ed.,
McGraw-Hill, 1991.

[Pich 96] Pichler O., Teuner A., Hosticka, B. “A comparison of texture feature extraction
using adaptive Gabor filtering, pyramidal and tree structured wavelet transforms,” Pattern
Recognition, Vol. 29(5), pp. 733–742, 1996.

[Pita 92] Pitas I. Digital Image Processing Algorithms, Prentice Hall, 1992.

[Prak 97] Prakash M., Murty M.N. “Growing subspace pattern recognition methods and their
neural network models,” IEEE Transactions on Neural Networks,Vol. 8(1), pp. 161–168, 1997.

[Proa 92] Proakis J., Manolakis D. Digital Signal Processing, 2nd ed., Macmillan, 1992.

[Pun 03] Pun C.-M., Lee M.-C. “Log-Polar wavelet energy signatures for rotation and scale
invariant texture classification,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 25(5), pp. 590–603, 2003.

[Qui 07] Qui H., Hancock E.R. “Clustering and embedding using commute times,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. 29(11), pp. 1873–1890, 2007.

[Rowe 00] S.T. Roweis S.T., Saul L.K. “Nonlinear dimensionality reduction by locally linear
embedding,” Science, Vol. 290, pp. 2323–2326, 2000.

[Saul 01] Saul L.K., Roweis S.T. “An introduction to locally linear embedding,”
http://www.cs.toronto.edu/˜ roweis/lle/papers/lleintro.pdf

[Scho 98] Schölkopf B., Smola A., Muller K.R. “Nonlinear component analysis as a kernel
eigenvalue problem,” Neural Computation, Vol. 10, pp. 1299–1319, 1998.

[Sebr 03] Sebro N., Jaakola T. “Weighted low-rank approximations,” Proceedings of the ICML
Conference, pp. 720–727, 2003.

[Sha 05] Sha F., Saul L.K. “Analysis and extension of spectral methods for nonlinear dimension-
ality reduction,” Proceedings of the 22nd International Conference on Machine Learning,
Bonn, Germany, 2005.

[Shui 07] Shuicheng Y., Xu D., Zhang B., Zhang H.-J., Yang Q., Lin S. “Graph embedding
and extensions: A general framework for dimensionality reduction,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 29(1), pp. 40–51, 2007.

[Shaw 04] Shawe-Taylor J., Cristianini N. Kernel Methods for Pattern Analysis, Cambridge
University Press, Cambridge, MA, 2004.

“08-Ch06-SA272” 18/9/2008 page 408

408 CHAPTER 6 Feature Generation I

[Smar 03] Smaragdis P., Brown J.C. “Nonnegative matrix factorization for polyphonic music
transcription,” Proceedings IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics, 2003.

[Sra 06] Sra S., Dhillon I.S. “Non-negative matrix approximation: Algorithms and applications,”
Technical Report TR-06-27, University of Texas at Austin, 2006.

[Stef 93] Steffen P., Heller P.N., Gopinath R.A., Burrus C.S. “Theory of regular M-band wavelet
bases,” IEEE Tansactions on Signal Processing, Vol. 41(12), pp. 3497–3511, 1993.

[Stra 80] Strang G. Linear Algebra and Its Applications, 2nd ed., Harcourt Brace Jovanovich,
1980.

[Szu 92] Szu H.H., Telfer B.A., Katambe S. “Neural network adaptive wavelets for signal
representation and classification,” Optical Eng., Vol. 31, pp. 1907–1916, 1992.

[Szym 06] Szymkowiak-Have A., Girolami M.A., Larsen J. “Clustering via kernel decomposition,”
IEEE Transactions on Neural Networks, Vol. 17(1), pp. 256–264, 2006.

[Sun 06] Sun J., Boyd S., Xiao L., Diaconis P. “The fastest mixing Markov process on a graph
and a connection to a maximum variance unfolding problem,” SIAM Review, Vol. 48(4), pp.
681–699, 2006.

[Tene 00] Tenenbaum J.B., De Silva V., Langford J.C. “A global geometric framework for
dimensionality reduction,” Science, Vol. 290, pp. 2319–2323, 2000.

[Trop 03] Tropp J.A. “Literature survey: Nonnegative matrix factorization,” Unpublished note,
http://www-personal.umich.edu/̃jtropp/, 2003.

[Turn 86] Turner M.R. “Texture discrimination by Gabor functions,” Biol. Cybern., Vol. 55,
pp. 71–82, 1986.

[Unse 86] Unser M. “Local linear transforms for texture measurements,” Signal Processing,
Vol. 11(1), pp. 61–79, 1986.

[Unse 95] Unser M. “Texture classification and segmentation using wavelet frames,” IEEE
Transactions on Image Processing, Vol. 4(11), pp. 1549–1560, 1995.

[Unse 89] Unser M., Eden M. “Multiresolution feature extraction and selection for texture
segmentation,” IEEE Transations on Pattern Analysis and Machine Intelligence, Vol. 11(7),
pp. 717–728, 1989.

[Vaid 93] Vaidyanathan P.P. Multirate Systems and Filter Banks, Prentice Hall, 1993.

[Vett 92] Vetterli M., Herley C. “Wavelets and filter banks: Theory and design,” IEEE
Transactions on Signal Processing, Vol. 40(9), pp. 2207–2232, 1992.

[Vett 95] Vetterli M., Kovacevic J. Wavelets and Subband Coding, Prentice Hall, 1995.

[Wata 73] Watanabe S., Pakvasa N. “Subspace method in pattern recognition,” Proceedings of
the International Joint Conference on Pattern Recognition, pp. 25–32, 1973.

[Weld 96] Weldon T., Higgins W., Dunn D. “Efficient Gabor filter design for texture segmentation,”
Pattern Recognition, Vol. 29(2), pp. 2005–2025, 1996.

[Wein 05] Weinberger K.Q., Saul L.K. “Unsupervised learning of image manifolds by semidef-
inite programming,” Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Vol. 2, pp. 988–995, Washington D.C., USA, 2004.

[Wuns 95] Wuncsh P., Laine A. “Wavelet descriptors for multiresolution recognition of
handwritten characters,” Pattern Recognition, Vol. 28(8), pp. 1237–1249, 1995.

“08-Ch06-SA272” 18/9/2008 page 409

References 409

[Xu 03] Xu W., Liu X., Gong Y. “Document clustering based on nonnegative matrix factoriza-
tion,” Proceedings 26th Annual International ACM SIGIR Conference, pp. 263–273, ACM
Press, 2003.

[Ye 04] Ye J. “Generalized low rank approximation of matrices,” Proceedings of the 21st
International Conference on Machine Learning, pp. 887–894, Banff, Alberta, Canada, 2004.

[Zafe 06] Zafeiriou S., Tefas A., Buciu I., Pitas I. “Exploiting discriminant information in
non-negative matrix factorization with application to frontal face verification,” IEEE
Transactions on Neural Networks, Vol. 17(3), pp. 683–695, 2006.

“09-Ch07-SA272” 18/9/2008 page 411

CHAPTER

7Feature Generation II

7.1 INTRODUCTION
In the previous chapter we dealt with the task of feature generation via linear or
nonlinear transformation techniques. This is just one of the possibilities available
to the designer. There are a number of alternatives, however, that are very much
application dependent. Although similarities among various applications do exist,
there are also major differences. We will start by focusing on one major application
area; that of image analysis. Clearly, we cannot review all techniques that have
been suggested and used. Their number is really large. Instead, we will focus on
basic directions, with a wide range of applications in mind, such as medical ima-
ging, remote sensing, robot vision, and optical character recognition.

The major goal may be summarized as follows: given an image, or a region
within an image, generate the features that will subsequently be fed to a clas-
sifier in order to classify the image in one of the possible classes. A digital
(monochrome) image is usually the result of a discretization process (sampling)
of a continuous image function I(x, y) and is stored in the computer as a two-
dimensional array I(m, n) with m ! 0, 1, . . . , Nx " 1 and n ! 0, 1, . . . , Ny " 1. That
is, it is stored as an Nx # Ny array. Every (m, n) element of the array corresponds to
a pixel (picture element or image element) of the image,whose brightness or inten-
sity is equal to I(m, n). Furthermore, when the intensity I(m, n) is quantized in Ng
discrete (gray) levels Ng is known as the depth of the image. Then, the gray-level
sequence I(m, n) can take one of the integer values 0, 1, . . . , Ng " 1. The depth Ng
is usually a power of 2 and can take large values (e.g., 64, 256) when the image is
stored in the computer. However,for the human eye it is difficult to discern detailed
intensity differences, and in practice Ng ! 32 or 16 is a sufficient choice for image
representation.

The need for feature generation stems from our inability to use the raw data.
Even for a small 64 # 64 image the number of pixels is 4096. For most classifica-
tion tasks this number is too large, raising computational as well as generalization
problems, as discussed in earlier chapters. Feature generation is a procedure that
computes new variables that in one way or another originate from the stored values 411

“09-Ch07-SA272” 18/9/2008 page 412

412 CHAPTER 7 Feature Generation II

of the image array I(m, n). The goal is to generate features that exhibit high
information-packing properties, from the class separability point of view. Because
we cannot use the raw data I(m, n) directly, the features should encode efficiently
the relevant information residing in the original data.

The other application area (discussed at the end of this chapter) is that of audio
classification. Although some years ago image and audio analysis were considered
to a large extent to be two scientific disciplines with different and distinct applica-
tion areas, this is no longer the case. In a multimedia document its semantics are
embedded in multiple forms that are usually complementary to each other. Thus,
effective indexing for efficient handling (browsing, searching, manipulation, and
information retrieval) requires a multimodal approach, in which either the most
appropriate modality is selected or the different modalities are used in an integrated
fashion. The visual modality contains everything that can be sensed by the eye (i.e.,
images that are naturally or artificially generated). The auditory modality contains
the speech, music, and environmental sounds that can be heard in a video docu-
ment. The focus of the last part of this chapter will be on typical features used to
characterize and classify audio information. Some of the feature generation tech-
niques can be considered common and can be applicable in both visual and audio
modalities. On the other hand, a large number of features are the result of different
approaches to exploit the specific nature of the signals and encode the required
classification information in a more efficient way.

7.2 REGIONAL FEATURES
7.2.1 Features for Texture Characterization
The texture of an image region is determined by the way the gray levels are dis-
tributed over the pixels in this region. Although there is no clear definition of
“texture,” we are all in a position to describe an image by the look of it as fine or
coarse, smooth or irregular, homogeneous or inhomogeneous, and so forth. Our
goal in this subsection is to generate appropriate features that somehow quantify
these properties of an image region. These features will emerge by exploiting space
relations underlying the gray-level distribution.

First-Order Statistics Features
Let I be the random variable representing the gray levels in the region of interest.
The first-order histogram P(I) is defined as

P(I) !
number of pixels with gray-level I

total number of pixels in the region
(7.1)

That is, P(I) is the fraction of pixels with gray-level I . Let Ng be the number of
possible gray levels. Based on (7.1), the following quantities are defined.

“09-Ch07-SA272” 18/9/2008 page 413

7.2 Regional Features 413

Moments:

mi ! E[I i] !

Ng"1∑

I!0

I iP(I), i ! 1, 2, . . . (7.2)

Obviously m0 ! 1 and m1 ! E[I], the mean value of I .

Central moments:

!i ! E[(I " E[I])i] !

Ng"1∑

I!0

(I " m1)iP(I) (7.3)

The most frequently used central moments are !2, !3, and !4. !2 ! "2 is the
variance, and !3 is known as the skewness (sometimes and is normalized by "3)
and !4 as the kurtosis (sometimes is normalized by "4) of the histogram. The vari-
ance is a measure of the histogram width, that is, a measure of how much the gray
levels differ from the mean. Skewness is a measure of the degree of histogram asym-
metry around the mean,and !4 is a measure of the histogram sharpness. Depending
on the value of !4, the resulting histogram is called platykurtic, for large values, lep-
tokurtic, for small values, and mesokurtic otherwise. The normal distribution is a
mesokurtic one. Figure 7.1 shows six variations of the same image (with 16 gray lev-
els) with their corresponding histograms. We can observe the difference between
the platykurtic and the leptokurtic one. In the latter,only the middle gray levels are
present (with no I ! 0 or I ! 15), in contrast to the platykurtic one, where all gray
levels are present. For the two asymmetric cases, one corresponds to a majority of
low gray levels and the other to a majority of high levels. The resulting values of !3

Original Normal "Skewed $Skewed Platykurtic Leptokurtic

FIGURE 7.1
Examples of images and corresponding histograms.

“09-Ch07-SA272” 18/9/2008 page 414

414 CHAPTER 7 Feature Generation II

and !4 from left to right are

!3 : 587 0 "169 169 0 0
!4 : 16609 7365 7450 7450 9774 1007

Other quantities that result from the first-order histogram are:

Absolute moments:

!̂i ! E[| I " E[I] |i] !

Ng"1∑

I!0

| I " E[I] |i P(I)
(7.4)

Entropy:

H ! "E[log2 P(I)] ! "

Ng"1∑

I!0

P(I) log2 P(I) (7.5)

Entropy is a measure of histogram uniformity. The closer to the uniform distri-
bution (P(I) ! constant), the higher the H . For the six images of Figure 7.1 the
corresponding values are

H : 4.61 4.89 4.81 4.81 4.96 4.12

Second-Order Statistics Features—Co-occurrence Matrices
The features resulting from the first-order statistics provide information related to the
gray-level distribution of the image, but they do not give any information about the
relative positions of the various gray levels within the image. Are all low-value gray
levels positioned together, or are they interchanged with the high-value ones? This
type of information can be extracted from the second-order histograms, where the
pixels are considered in pairs. Two more parameters now enter into the scene.
These are the relative distance among the pixels and their relative orientation.
Let d be the relative distance measured in pixel numbers (d ! 1 for neighboring
pixels, etc.). The orientation # is quantized in four directions: horizontal, diagonal,
vertical, and antidiagonal (0◦, 45◦, 90◦, 135◦), as shown in Figure 7.2. For each
combination of d and # a two-dimensional histogram is defined

0◦ : P
(
I(m, n) ! I1, I(m % d, n) ! I2

)
(7.6)

!
number of pairs of pixels at distance d with values (I1, I2)

total number of possible pairs

In a similar way

45◦ : P
(
I(m, n) ! I1, I(m % d, n & d) ! I2

)

90◦ : P
(
I(m, n) ! I1, I(m, n & d) ! I2

)

135◦ : P
(
I(m, n) ! I1, I(m % d, n % d) ! I2

)

“09-Ch07-SA272” 18/9/2008 page 415

7.2 Regional Features 415

135˚ 45
˚

90˚

0˚

m

n

FIGURE 7.2
The four orientations used to construct co-occurrence matrices.

For each of these histograms an array is defined, known as the co-occurrence or
spatial dependence matrix. Let, for example, an image array I(m, n) be

I !

⎡

⎢⎢⎢⎣

0 0 2 2
1 1 0 0
3 2 3 3
3 2 2 2

⎤

⎥⎥⎥⎦
(7.7)

which corresponds to a 4 # 4 image. We have also assumed that Ng ! 4 (I(m, n) ∈
{0, 1, 2, 3}). The co-occurrence matrix for a pair (d, #) is defined as the Ng # Ng
matrix

A !
1
R

⎡

⎢⎢⎢⎢⎣

$(0, 0) $(0, 1) $(0, 2) $(0, 3)

$(1, 0) $(1, 1) $(1, 2) $(1, 3)

$(2, 0) $(2, 1) $(2, 2) $(2, 3)

$(3, 0) $(3, 1) $(3, 2) $(3, 3)

⎤

⎥⎥⎥⎥⎦

where $(I1, I2) is the number of pixel pairs, at relative position (d, #), which have
gray-level values I1, I2, respectively. R is the total number of possible pixel pairs.
Hence 1

R $(I1, I2) ! P(I1, I2). For the image of (7.7) and relative pixel position (1, 0◦)
we have

A0(d ! 1) !
1

24

⎡

⎢⎢⎢⎣

4 1 1 0
1 2 0 0
1 0 6 3
0 0 3 2

⎤

⎥⎥⎥⎦

In words, for each of the intensity pairs, such as (0, 0), we count the number of
pixel pairs at relative distance d ! 1 and orientation # ! 0◦ that take these values.

“09-Ch07-SA272” 18/9/2008 page 416

416 CHAPTER 7 Feature Generation II

For our example this is 4. Two of them result from searching in the positive direction
and two in the negative. According to the definition (7.6), these pixel pairs have
coordinates (m, n) and (m % 1, n) and gray levels I1 ! 0, I2 ! 0. The total number
of pixel pairs for this case is 24. Indeed, for each row there are Nx " 1 pairs and
there are Ny rows. Thus,the total number for both positive and negative directions
is 2(Nx " 1)Ny ! 2(3 # 4) ! 24. For the diagonal direction 45◦ and d ! 1 for each
row we have 2(Nx " 1) pairs, except the first (or last) one, for which no pairs exist.
Thus, the total number is 2(Nx " 1)(Ny " 1) ! 2(3 # 3) ! 18. For d ! 1 and 90◦ we
have 2(Ny " 1)Nx pairs, and finally for d ! 1 and 135◦ 2(Nx " 1)(Ny " 1). For our
example image and (d ! 1, # ! 45◦), we obtain

A45(d ! 1) !
1

18

⎡

⎢⎢⎢⎣

0 1 2 1
1 0 1 1
2 1 0 3
1 1 3 0

⎤

⎥⎥⎥⎦

From the definition of the co-occurrence matrix, it is apparent that it is a symmetric
one, something that can be used to reduce subsequent computations.

Having defined the probabilities of occurrence of gray levels with respect to
relative spatial pixel position, we will go ahead to define the corresponding fea-
tures. Some of them have a direct physical interpretation with respect to texture,
for example, to quantify coarseness, smoothness, and so on. On the other hand,
others do not possess such a property, but they still encode texture-related infor-
mation with high discriminatory power.

■ Angular second moment

ASM !

Ng"1∑

i!0

Ng"1∑

j!0

(P(i, j))2 (7.8)

This feature is a measure of the smoothness of the image. Indeed, if all pixels
are of the same gray-level I ! k, then P(k, k) ! 1 and P(i, j) ! 0, i ̸! k or j ̸! k,
and ASM ! 1. At the other extreme, if we could have all possible pairs of
gray levels with equal probability 1

R , then ASM ! R
R2 ! 1

R . The less smooth
the region is, the more uniformly distributed P(i, j) and the lower the ASM
(Problem 7.5).

■ Contrast

CON !

Ng"1∑

n!0

n2

⎧
⎪⎪⎨

⎪⎪⎩

Ng"1∑

i!0

Ng"1∑

j!0

P(i, j)

|i"j|!n

⎫
⎪⎪⎬

⎪⎪⎭
(7.9)

“09-Ch07-SA272” 18/9/2008 page 417

7.2 Regional Features 417

This is a measure of the image contrast—that is, a measure of local gray-
level variations. Indeed,

∑
i
∑

j P(i, j) is the percentage of pixel pairs whose
intensity differs by n. The n2 dependence weighs the big differences more;
thus, CON takes high values for images of high contrast.

■ Inverse difference moment

IDF !

Ng"1∑

i!0

Ng"1∑

j!0

P(i, j)
1 $ (i " j)2 (7.10)

This feature takes high values for low-contrast images due to the inverse (i"j)2

dependence.

■ Entropy

Hxy ! "

Ng"1∑

i!0

Ng"1∑

j!0

P(i, j) log2 P(i, j) (7.11)

Entropy is a measure of randomness and takes low values for smooth images.

These features are only a few from a larger set that can be derived. In the classical
[Hara 73] paper, fourteen of those are summarized. They are repeated in Table 7.1.
Px(Py) (and related quantities) refer to the statistics with respect to the x(y)-axis.
All features in the table are functions of the distance d and the orientation #. Thus,
if an image is rotated, the values of the features will be different. In practice, for
each d the resulting values for the four directions are averaged out. In this way, we
make these textural features rotation tolerant.

Besides the previous list of features, a number of other statistics-related features
have been proposed. For example, in [Tamu 78] textural features are generated
with an emphasis on the human visual perception. A set of features is suggested
corresponding to texture coarseness, contrast, regularity, and so on. In [Davi 79]
features based on a generalized definition of co-occurrence matrices are suggested,
which are more appropriate for textures with long scale variations (macrotextures).
An extensive treatment of texture is given in [Petr 06].

Example 7.1
Figure 7.3 shows two texture images, one coarse, known as grass [Brod 66], and the other
smooth. Table 7.2 summarizes the values of some of the features for both of them.

Features Using Gray-Level Run Lengths
A gray-level run is a set of consecutive pixels having the same gray-level value. The
length of the run is the number of pixels in the run [Gall 75, Tang 98]. Run length
features encode textural information related to the number of times each gray-level,

“09-Ch07-SA272” 18/9/2008 page 418

418 CHAPTER 7 Feature Generation II

Table 7.1 Features for Texture Characterization
Angular Second Moment: Sum Entropy:

f1!
∑
i

∑
j

(P(i, j))2 f8! "
2Ng"2∑

i!0
Px$y(i) log Px$y(i)

Contrast: Entropy:

f2!
∑Ng"1

n!0 n2

⎧
⎪⎨

⎪⎩

∑
i

∑
j

|i"j|!n

P(i, j)

⎫
⎪⎬

⎪⎭
f9! "

∑
i

∑
j

P(i, j) log P(i, j) ≡ Hxy

Correlation: Difference Variance:

f3 !
{∑i

∑
j(ij)P(i, j)} " !x!y

"x"y
f10 !

Ng"1∑
i!0

(i " f̂6)2Px"y(i)

Variance: Difference Entropy:

f4 !
∑
i

∑
j

(i " !)2P(i, j) f11 ! "
Ng"1∑
i!0

Px"y(i) log Px"y(i)

Inverse Difference Moment: Information Measure I:

f5 !
∑
i

∑
j

P(i, j)
1 $ (i " j)2 f12 !

Hxy " H1
xy

max{Hx , Hy}

Sum (Difference) Average: Information Measure II:

f6(f̂6) !
2Nx"2 (Ng"1)∑

i!0
iPx$(")y(i) f13 !

√
1 " exp("2(H2

xy " Hxy))

Sum Variance: Maximal Correlation Coefficient:

f7 !
2Ng"2∑

i!0
(i " f6)2Px$y(i) f14 ! (2nd largest eigenvalue of Q)

1
2

Definitions: Q(i, j) !
∑
k

P(i, k)P(j, k)
Px(i)Py(k)

H1
xy! "

∑
i

∑
j

P(i, j) H2
xy! "

∑
j

∑
i

Px(i)Py(j)

log(Px(i)Py(j)) log(Px(i)Py(j))

Px(i) !
∑
j

P(i, j) Py(j) !
∑
i

P(i, j)

Px%y(k) !
∑
i

∑
j,|i%j|!k

P(i, j) !, !x , !y, "x , "y; Hx , Hy

means, st. deviations and entropies.

“09-Ch07-SA272” 18/9/2008 page 419

7.2 Regional Features 419

(a) (b)

FIGURE 7.3
Examples of (a) coarse and (b) smooth images.

Table 7.2 Second-Order
Histogram Features for the
Two Images of Figure 7.3

Coarse Smooth

ASM 0.0066 0.0272

CON 989.5 0.613

IDF 0.117 0.783

Hxy 8.352 5.884

for example,“1,” appears in the image by itself, the number of times it appears in
pairs, and so on. Take, for example, the image

I !

⎡

⎢⎢⎢⎣

0 0 2 2
1 1 0 0
3 2 3 3
3 2 2 2

⎤

⎥⎥⎥⎦

with four possible levels of gray (Ng ! 4). For each of the four directions (0◦, 45◦,
90◦, 135◦) we define the corresponding run length matrix QRL. Its (i, j) element
gives the number of times a gray-level i " 1, i ! 1, . . . , Ng, appears in the image
with run length j, j ! 1, 2, . . . , Nr . This is an Ng # Nr array, where Nr is the largest
possible run length in the image. For 0◦ we obtain

QRL(0◦) !

⎡

⎢⎢⎢⎣

0 2 0 0
0 1 0 0
1 1 1 0
2 1 0 0

⎤

⎥⎥⎥⎦
(7.12)

“09-Ch07-SA272” 18/9/2008 page 420

420 CHAPTER 7 Feature Generation II

The first element of the first row of the matrix is the number of times gray-level “0”
appears by itself (0 for our example), the second element is the number of times it
appears in pairs (2 in the example), and so on. The second row provides the same
information for gray-level “1”and so on. For the 45◦ direction we have

QRL(45◦) !

⎡

⎢⎢⎢⎣

4 0 0 0
2 0 0 0
6 0 0 0
4 0 0 0

⎤

⎥⎥⎥⎦
(7.13)

Based on the preceding definition of the run length matrix, the following features
are defined.

■ Short-run emphasis

SRE !

∑Ng
i!1

∑Nr
j!1(QRL(i, j)/j2)

∑Ng
i!1

∑Nr
j!1 QRL(i, j)

(7.14)

The denominator is the total number of run lengths in the matrix,9 for (7.12)
and 16 for (7.13). This feature emphasizes small run lengths,due to the division
by j2.

■ Long-run emphasis

LRE !

∑Ng
i!1

∑Nr
j!1(QRL(i, j)j2)

∑Ng
i!1

∑Nr
j!1 QRL(i, j)

(7.15)

This gives emphasis to long-run lengths. Thus, we expect SRE to be large for
coarser and LRE to be large for smoother images.

■ Gray-level nonuniformity

GLNU !

∑Ng
i!1

[∑Nr
j!1 QRL(i, j)

]2

∑Ng
i!1

∑Nr
j!1 QRL(i, j)

(7.16)

The term in the brackets is the total number of run lengths for each gray-
level. Large run length values contribute a great deal because of the square.
When runs are uniformly distributed among the gray levels,GNLU takes small
values.

■ Run length nonuniformity

RLN !

∑Nr
j!1

[∑Ng
i!1 QRL(i, j)

]2

∑Ng
i!1

∑Nr
j!1 QRL(i, j)

(7.17)

In a similar way, RLN is a measure of run length nonuniformity.

“09-Ch07-SA272” 18/9/2008 page 421

7.2 Regional Features 421

Table 7.3 Run Length
Features for the Images
of Figure 7.3

Coarse Smooth

SRE 0.932 0.563

LRE 1.349 16.929

GLNU 255.6 71.6

RLN 3108 507

RP 0.906 0.4

■ Run percentage

RP !

∑Ng
i!1

∑Nr
j!1 QRL(i, j)

L
(7.18)

where L is the total possible number of runs in the image, if all runs had
length equal to one, that is, the total number of pixels. RP takes low values
for smooth images.

Example 7.2
For the two images of Figure 7.3 the values of Table 7.3 have resulted.

7.2.2 Local Linear Transforms for Texture Feature Extraction
Second-order statistics features were introduced in order to exploit the spatial
dependencies that characterize the texture of an image region. We will now focus
on an alternative possibility, which has been used extensively in practice. Let us
consider a neighborhood of size N # N centered at pixel location (m, n). Let xmn
be the vector with elements the N2 points within the area, arranged in a row-by-
row mode. A local linear transform or local feature extractor is defined as

ymn ! AT xmn ≡

⎡

⎢⎢⎢⎢⎢⎣

aT
1

aT
2
...

aT
N2

⎤

⎥⎥⎥⎥⎥⎦
xmn (7.19)

The respective correlation matrices are related via the N2 # N2 nonsingular
transformation matrix A as

Ry ≡ E[ymn yT
mn] ! AT Rx A (7.20)

“09-Ch07-SA272” 18/9/2008 page 422

422 CHAPTER 7 Feature Generation II

m
as

k
2

m

n

m
as

k
9

m
as

k
1

ymn
1 ymn

2 ymn
9

FIGURE 7.4
Filtering the image with each of the masks results in new transformed images/channels.

From these definitions it is readily seen that each element of y contains information
about all the elements of x. This becomes clearer if we look more closely at the way
the two correlation matrices are related. Indeed,the diagonal elements of Ry are the
respective variances of the elements of y. These are first-order statistics quantities,
yet their values contain information about the spatial dependencies (second-order
statistics) of the original image. Here lies the essence of the technique. Texture-
related spatial dependencies of an image can be accommodated in the first-order
statistics of the transformed image. Using appropriately defined local transform
matrices,various aspects of texture properties can be extracted. Of course, the phi-
losophy does not change if instead of transforming vectors we use two-dimensional
(separable) transforms of the corresponding subimage region.

One way to look at (7.19) is to interpret it as a series of N2 filtering opera-
tions (convolutions, Appendix D), with a common input vector, xmn, that is, the
N # N subimage centered at (m, n). The elements of ymn are the respective fil-
ter output samples. This is illustrated in Figure 7.4, where the N # N subimage
(N ! 3) is filtered through 9 equivalent two-dimensional filters, each characterized
by a different coefficient matrix, known as mask. In [Laws 80] it is suggested
that the corresponding masks be constructed from three basic vectors, namely,
[1, 2, 1]T , ["1, 0, 1]T , ["1, 2, "1]T , for N ! 3. The first corresponds to a local aver-
aging operator, the second to an edge detection operator, and the third to a spot
detector. These form a complete (nonorthogonal) set of vectors in the R3 space.
The respective nine masks are formed by their cross-products, that is,

⎡

⎢⎣
1 2 1
2 4 2
1 2 1

⎤

⎥⎦

⎡

⎢⎣
"1 0 1
"2 0 2
"1 0 1

⎤

⎥⎦

⎡

⎢⎣
"1 2 "1
"2 4 "2
"1 2 "1

⎤

⎥⎦

“09-Ch07-SA272” 18/9/2008 page 423

7.2 Regional Features 423

⎡

⎢⎣
"1 "2 "1

0 0 0
1 2 1

⎤

⎥⎦

⎡

⎢⎣
1 0 "1
0 0 0

"1 0 1

⎤

⎥⎦

⎡

⎢⎣
1 "2 1
0 0 0

"1 2 "1

⎤

⎥⎦

⎡

⎢⎣
"1 "2 "1

2 4 2
"1 "2 "1

⎤

⎥⎦

⎡

⎢⎣
1 0 "1

"2 0 2
1 0 "1

⎤

⎥⎦

⎡

⎢⎣
1 "2 1

"2 4 "2
1 "2 1

⎤

⎥⎦

Each element of the vector ymn is the result of filtering the local image neigh-
borhood centered at (m, n) with each of the masks. By moving the masks around at
the various (m, n) positions,nine different images, channels,will be obtained,each
encoding different aspects of the texture of the original image. First-order-statistics
quantities, such as variance and kurtosis, computed from each of these images, can
then be used as features for texture classification. Masks larger than 3 # 3 have also
been used. In some cases, an attempt to optimize the masks has been made, so
that the resulting variances of the channels for the different classes are as different
as possible [Unse 86]. This turns out to be an eigenvalue–eigenvector task, similar
to the ones we have already met in Chapter 5. A comparative study of a number
of optimal or suboptimal local linear transforms, including orthogonal ones, such
as DCT, DST, and Karhunen-Loève, is given in [Unse 86, Unse 89, Rand 99]. Finally,
it must be pointed out that all these techniques are closely related to the Gabor
filtering approach of the previous chapter.

7.2.3 Moments
Geometric Moments
Let I(x, y) be a continuous image function. Its geometric moment of order p $ q
is defined as

mpq !

∫ '

"'

∫ '

"'
xpyqI(x, y) dx dy (7.21)

Geometric moments provide rich information about the image and are popular
features for pattern recognition. Their information content stems from the fact
that moments provide an equivalent representation of an image, in the sense that an
image can be reconstructed from its moments (of all orders) [Papo 91,p. 115]. Thus,
each moment coefficient conveys a certain amount of the information residing in
an image.

It is by now commonplace to state that a desirable property in pattern recog-
nition is invariance in geometric transformations. Moments, as defined in (7.21),
depend on the coordinates of the object of interest within an image; thus, they lack
the invariance property. This problem can be circumvented by defining appropriate
combinations of normalized versions of the moments. Specifically, our goal will be
to define moments that are invariant to:

Translations:

x(! x $ a, y(! y $ b

“09-Ch07-SA272” 18/9/2008 page 424

424 CHAPTER 7 Feature Generation II

Scaling:

x(! %x, y(! %y

Rotations:
[

x(

y(

]

!

[
cos & sin &

" sin & cos &

] [
x
y

]

To this end, let us define

Central moments:

!pq !

∫ ∫
I(x, y)(x " x̄)p(y " ȳ)q dx dy (7.22)

where

x̄ !
m10

m00
, ȳ !

m01

m00

Central moments are invariant to translations.

Normalized central moments:

$pq !
!pq

!
'
00

, ' !
p $ q $ 2

2
(7.23)

These are easily shown to be invariant to both translation and scaling
(Problem 7.6).

The Seven Moments of Hu
Hu [Hu 62] has defined a set of seven moments that are invariant under the actions
of translation, scaling, and rotation. These are

p $ q ! 2

#1 ! $20 $ $02

#2 ! ($20 " $02)2 $ 4$2
11

p $ q ! 3

#3 ! ($30 " 3$12)2 $ ($03 " 3$21)2

#4 ! ($30 $ $12)2 $ ($03 $ $21)2

#5 ! ($30 " 3$12)($30 $ $12)[($30 $ $12)2 " 3($21 $ $03)2]

$ ($03 " 3$21)($03 $ $21)[($03 $ $21)2 " 3($12 $ $30)2]

#6 ! ($20 " $02)[($30 $ $12)2 " ($21$$03)2] $4$11($30 $ $12)($03 $ $21)

“09-Ch07-SA272” 18/9/2008 page 425

7.2 Regional Features 425

#7 ! (3$21 " $03)($30 $ $12)[($30 $ $12)2 " 3($21 $ $03)2]

$ ($30 " 3$12)($21 $ $03)[($03 $ $21)2 " 3($30 $ $12)2]

The first six of these moments are also invariant under the action of reflection,
while # 7 changes sign. The values of these quantities can be quite different. In
practice, in order to avoid precision problems, the logarithms of their absolute
values are usually used as features. A number of other moment-based features that
are invariant to more general transformations have also been proposed [Reis 91,
Flus 93, Flus 94]. The case of moment invariants in the general l-dimensional space is
treated in [Mami 98].

For a digital image I(i, j), with i ! 0, 1, . . . , Nx " 1, j ! 0, 1, . . . , Ny " 1, the
preceding moments can be approximated by replacing integrals by summations,

mpq !
∑

i

∑

j

I(i, j)ipjq (7.24)

In order to keep the dynamic range of the moment values consistent for different-
sized images, normalization of the x " y axis can be performed, prior to compu-
tation of the moments. The moments are then approximated by

mpq !
∑

i

I(xi , yi)x
p
i yq

i (7.25)

where the sum is over all image pixels. Then xi , yi are the coordinates of the center
point of the ith pixel and are no longer integers but real numbers in the interval
xi ∈ ["1, $1], yi ∈ ["1, $1]. For digital images, the invariance properties of the
moments we have defined are only approximately true. An analysis in [Liao 96]
reveals that the approximation error increases with the coarseness of the sampling
grid as well as with the order of the moments.

Example 7.3
Figure 7.5 shows the Byzantine music symbol known as “petasti,” resulting from a scanner,
in scaled and various rotated versions. From left to right in the clockwise sense we have the
original version, the scaled, the mirrored, and the rotated by 15◦, 90◦, and 180◦ versions,
respectively.

Table 7.4 shows the resulting Hu moments for each of the version. The (approximate)
invariance of the moments is apparent. Note the minus sign in # 7 for the reflected (mirror)
version.

Zernike Moments
The geometric moments defined in (7.21) can also be viewed as projections
(Chapter 6) of I(x, y) on the basis functions formed by the monomials xpyq. These
monomials are not orthogonal; thus, the resulting geometric moment features are
not optimal from an information redundancy point of view. In this subsection we
will derive moments based on alternative complex polynomial functions,known as

“09-Ch07-SA272” 18/9/2008 page 426

426 CHAPTER 7 Feature Generation II

(a) (b) (c)

(d) (e) (f)

FIGURE 7.5
The Byzantine symbol “petasti” in various scaled and rotated versions, from (a) to (f).

Table 7.4 The Invariant Moments of Hu for the Versions of
the “Petasti” Symbol

Moments 0◦ Scaled 180◦ 15◦ Mirror 90◦

#1 93.13 91.76 93.13 94.28 93.13 93.13

#2 58.13 56.60 58.13 58.59 58.13 58.13

#3 26.70 25.06 26.70 27.00 26.70 26.70

#4 15.92 14.78 15.92 15.83 15.92 15.92

#5 3.24 2.80 3.24 3.22 3.24 3.24

#6 10.70 9.71 10.70 10.57 10.70 10.70

#7 0.53 0.46 0.53 0.56 "0.53 0.53

Zernike polynomials. These form a complete orthogonal set over the interior of
the unit circle x2 $ y2) 1 (Problem 7.7) and are defined as

Vpq(x, y) ! Vpq((, &) ! Rpq(() exp(jq&)

where:

p is a nonnegative integer

q is an integer subject to the constraint p " |q| even, |q|) p

(!
√

x2 $ y2

& ! tan"1 y
x

“09-Ch07-SA272” 18/9/2008 page 427

7.2 Regional Features 427

Rpq(() !

(p"|q|)/2∑

s!0

("1)s[(p " s)!](p"2s

s!
(

p $ |q|
2

" s
)

!
(

p " |q|
2

" s
)

!

The Zernike moments of a function I(x, y) are given by

Apq !
p $ 1

)

∫ ∫

x2$y2)1
I(x, y)V ∗((, &) dx dy

where the ∗ denotes complex conjugation. For a digital image, the respective
Zernike moments are computed as

Apq !
p $ 1

)

∑

i

I(xi , yi)V ∗((i , &i), x2
i $ y2

i) 1

where i runs over all the image pixels. The computation of the corresponding
moments of an image considers the center of the image as the origin and pixels
are mapped into the unit circle, that is, x2

i $ y2
i) 1. The pixels falling outside

the unit circle are not taken into consideration. The magnitude of the Zernike
moments is invariant to rotations [Teag 80] (Problem 7.8). Translation and scal-
ing invariance is treated in [Khot 90a, Chon 03]. A drawback of the Zernike
moments is the computational complexity associated with the computation of the
radial polynomials. A common approach used in reducing complexity includes
the application of recurrence relations between successive radial polynomials and
coefficients. Computational aspects of the Zernike moments are examined in
[Muku 95, Wee 06, Huan 06]. Numerical error issues associated with the computa-
tions of the Zernike moments are treated in [Sing 06]. Comparative studies of the
performance of the Zernike moments against the moments of Hu, in the context of
character recognition, have demonstrated that the former behave better, especially
in noisy environments [Khot 90b]. In [Wang 98], Zernike moments are used to
cope with both geometry and illumination invariance, in the context of multispec-
tral texture classification. Variants of the Zernike moments, called pseudo-Zernike
moments, have also been proposed and used. Comparative studies can be found in
[Teh 88, Heyw 95]. Besides Zernike moments, other types of moments have also
been suggested and used, such as the Fourier–Mellin moments and moments based
on Legendre polynomials, as in [Kan 02, Chon 04, Muku 98].

7.2.4 Parametric Models
So far, in various parts of the book, we have treated the gray levels as random
variables and looked at aspects of their first- and second-order statistics. In this
subsection, their randomness will be approached from a different perspective. We
will assume that I(m, n) is a real nondiscrete random variable, and we will try to
model its underlying generation mechanism by adopting an appropriate parametric
model. The parameters of the resulting models encode useful information and

“09-Ch07-SA272” 18/9/2008 page 428

428 CHAPTER 7 Feature Generation II

lend themselves as powerful feature candidates for a number of pattern recognition
tasks.

We will move in two directions. One is to treat an image as a successive sequence
of rows or columns. That is, our random variables will be considered as successive
realization samples from a one-dimensional random process I(n). The alternative
looks at the image as a two-dimensional random process I(m, n), also known as
random field.

One-Dimensional Parametric Models
Let I(n) denote the random sequence. We will assume that it is stationary in the
wide sense. This means that its autocorrelation sequence r(k) exists and is of the
form

r(k) ! E[I(n)I(n " k)]

and the Fourier transform of r(k) also exists and is a positive function (power
spectral density)

I(*) !
$'∑

k!"'

r(k) exp("j*k)

Under certain assumptions, which are met in practice most of the time [Papo 91,
Theo 93], it can be shown that such a random sequence can be generated at the
output of a linear, causal, stable, time-invariant system with impulse response h(n),
whose input is excited by a white noise sequence, as shown in Figure 7.6. In
simple terms, this means that we can write

I(n) !
'∑

k!0

h(k)$(n " k)

where h(n) satisfies the stability condition
∑

n |h(n) | * '. The sequence $(n) is a
white noise sequence, that is, E[$(n)] ! 0 and E[$(n)$(n " l)] ! "2+(l) : +(l) ! 1
for l ! 0 and zero otherwise. Such processes of a special type are the so-called
autoregressive processes (AR), which are generated by systems of the form

I(n) !

p∑

k!1

a(k)I(n " k) $ $(n) (7.26)

$(n)
h(n)

I(n)

FIGURE 7.6
Generation model of a stationary random process at the output of a stable, linear, time-invariant
system excited by a white noise sequence.

“09-Ch07-SA272” 18/9/2008 page 429

7.2 Regional Features 429

$(n)
$

I(n)

+a(k)I(n"k)

FIGURE 7.7
Generation model of an AR stationary random process.

In words, the random sequence I(n) is given as a linear combination of previous
samples I(n " k) and the current input sample $(n) (Figure 7.7). Here p is the
order of the AR model, and we write AR(p). The coefficients a(k), k ! 1, 2, . . . , p
are the AR model parameters. AR models are a special case of a more general class
of models, known as autoregressive–moving average (ARMA(p,m)), for which

I(n) !

p∑

k!1

a(k)I(n " k) $
m∑

l!0

b(l)$(n " l) (7.27)

That is, the model is regressive with respect to both input and output sequences.
The major advantage of the AR models, compared with their ARMA relatives, is that
the former lead to linear systems of equations for the estimation of the model
parameters.

Estimation of the AR Parameters
Another way to look at (7.26) is to interpret the coefficients a(k), k ! 1, . . . , p,
as the predictor parameters of the sequence I(n). That is, the parameters weigh
previous samples, I(n " 1), . . . , I(n " p), in order to predict the value of the current
sample I(n), and $(n) is the prediction error,

În !

p∑

k!1

a(k)I(n " k) ≡ aT
p Ip(n " 1) (7.28)

where IT
p (n " 1) ≡ [I(n " 1), . . . , I(n " p)]. The unknown parameter vector

aT
p ! [a(1), a(2), . . . , a(p)] is optimally estimated, for example, by minimizing the

mean square prediction error,

E[$2(n)] ! E[(I(n) " Î(n))2] ! E[(I(n) " aT
p Ip(n " 1))2] (7.29)

The problem is exactly the same as that of the mean square linear classifier estimation
of Chapter 3, and the unknown parameters result from the solution of

E[Ip(n " 1)IT
p (n " 1)]ap ! E[I(n)Ip(n " 1)] (7.30)

“09-Ch07-SA272” 18/9/2008 page 430

430 CHAPTER 7 Feature Generation II

or
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

r(0) r("1) . . . r("p $ 1)

r(1) r(0) . . . r("p $ 2)

...
...

...
...

r(p " 2) r(p " 3) . . . r("1)

r(p " 1) r(p " 2) . . . r(0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(1)

a(2)

...

a(p " 1)

a(p)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

!

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

r(1)

r(2)

...

r(p " 1)

r(p)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

Rap ! rp (7.31)

with rp ≡ [r(1), . . . , r(p)]T . The relation of the optimal parameters a(k) with the
mean square error (variance of generating noise) is obtained from (7.29) and (7.31)
and is given by

"2
$! E[$2(n)] ! r(0) "

p∑

k!1

a(k)r(k) (7.32)

The autocorrelation matrix has a computationally rich structure. It is symmetric
(r(k) ! r("k)) and Toeplitz—that is, all the elements across any of its diagonals
are the same. Exploitation of these properties leads to the development of a
computationally efficient scheme for the solution of (7.31). This is Levinson’s
algorithm, which solves the linear system of equations in O(p2) multiplications
and additions, as opposed to O(p3) required by more classical algorithmic schemes
[Theo 93, Hayk 96]. In Chapter 3, we saw that when the autocorrelation sequence
is not known, it is often preferable to adopt the least sum of squares instead of the
mean square criterion. Then the AR parameters are still provided by a linear system
of equations, but the associated matrix is no longer Toeplitz. However, it is still
computationally rich, and Levinson-type O(p2) algorithms for the efficient solution
of such systems have also been derived [Theo 93].

Besides images,AR (ARMA) models have been used extensively to model other
type of random sequences,such as those resulting from digitizing speech signals and
electroencephalographic signals. For all these cases the resulting AR parameters
can be used as features to classify one type of signal from another.

Example 7.4
Let the AR random sequence of order p ! 2 be

I(n) !
2∑

k!1

a(k)I(n " k) $ $(k)

with r(0) ! 1, r(1) ! 0.5, r(2) ! 0.85. Computing the mean square estimates of a(k),
k ! 1, 2, we obtain

“09-Ch07-SA272” 18/9/2008 page 431

7.2 Regional Features 431

[
1 0.5

0.5 1

] [
a(1)
a(2)

]

!

[
0.5

0.85

]

and its solution gives a(1) ! 0.1, a(2) ! 0.8.

Two-Dimensional AR Models
A two-dimensional AR random sequence I(m, n) is defined as

Î(m, n) !
∑

k

∑

l

a(k, l)I(m " k, n " l), (k, l) ∈ W (7.33)

I(m, n) ! Î(m, n) $ $(m, n) (7.34)

Figure 7.8 shows the region W of the pixels that contribute to the prediction of
Î(m, n), for a number of possible choices. The case in Figure 7.8a corresponds to
what is known as a strongly causal predictor model. This is because all pixels in
the contributing area have coordinates smaller than the coordinates m, n of the
predicted pixel, which is represented by the unshaded node in the figure. The
corresponding window is W1 ! {0) k) p, 0) l) q, (k, l) ̸! (0, 0)}. However,
the notions of past and present have no real meaning for an image, and alternative
windows can also be used. A noncausal predictor is defined as

I(m, n) !

p∑

k!"p

q∑

l!"q

a(k, l)I(m " k, n " l) $ $(m, n)

In Figure 7.8d the corresponding window is shown for the case of p ! q ! 2.
Figure 7.8c shows a third possibility, which is known as a semicausal predictor,
and Figure 7.8b shows the case of a causal predictor. Next we summarize the last
three cases, which are the most common in practice:

Causal : W2 ! {("p) k) p, 1) l) q) ∪ (1) k) p, l ! 0)}
Semicausal : W3 ! {"p) k) p, 0) l) q , (k, l) ̸! (0, 0)}
Noncausal : W4 ! {"p) k) p, "q) l) q , (k, l) ̸! (0, 0)}

AR Parameter Estimation
We have

Î(m, n) !
∑

k

∑

l

a(k, l)I(m " k, n " l)

Recalling the orthogonality condition from Chapter 3, in its two-dimensional
generalization, we obtain that the minimum mean square error solution satisfies

E

[

I(m " i, n " j)
(

I(m, n) "
∑

k

∑

l

a(k, l)I(m " k, n " l)
)]

! 0, (i, j) ∈ W (7.35)

“09-Ch07-SA272” 18/9/2008 page 432

432 CHAPTER 7 Feature Generation II

(a) (b)

(c) (d)

n n

n n

m m

m m

FIGURE 7.8
Different types of two-dimensional prediction models. The predicted pixel is represented by
the unshaded node. The red pixels are those that take part in the prediction and the corre-
sponding window W is the area enclosed by the dotted line. (a) Strictly causal, (b) causal,
(c) semicausal, and (d) noncausal.

or

r(i, j) !
∑

k

∑

l

a(k, l)r(i " k, j " l), (i, j) ∈ W (7.36)

where r(i, j) ≡ E[I(m, n)I(m " i, n " j)] is the two-dimensional autocorrelation
sequence of the random field I(m, n). The set of equations in (7.36) constitutes
a linear system of equations leading to the estimates of a(k, l). The associated
matrix also has a computationally rich structure,which can be exploited to develop
efficient schemes to compute the solution. Let us take, for example, the noncausal
window for p ! q. This is a symmetric window, in the sense that for each index
pair (i, j), the ("i, "j) is also present. Combining (7.36) with the equation of the

“09-Ch07-SA272” 18/9/2008 page 433

7.2 Regional Features 433

variance of the minimum error, which is given by (Problem 7.11)

"2
$! r(0, 0) "

∑

k

∑

l

a(k, l)r(k, l) (7.37)

the following system results:

Ra ! "

⎡

⎢⎣
0

"2
n

0

⎤

⎥⎦ (7.38)

where 0 is the zero vector of appropriate dimension and

aT ! [a(p, p), . . . , a(p, "p), . . . , a(0, 0), . . . , a("p, p), . . . , a("p, "p)]

where a(0, 0) ≡ 1 and R is the corresponding autocorrelation matrix. The dimension
of a is (2p$1)2. The correlation of a homogeneous (i.e.,E[I(m, n)I(m " k, n"l)] !
r(k, l)) and isotropic (no direction dependence) image depends only on the relative
distance between pixels,

r(k, l) ! r
(√

k2 $ l2
)

and the resulting autocorrelation matrix is easily shown to be symmetric and block
Toeplitz with each block being itself a Toeplitz matrix,

R !

⎡

⎢⎢⎢⎢⎣

R0 R1 . . . R2p

R1 R0 . . . R2p"1
...

...
...

...
R2p R2p"1 . . . R0

⎤

⎥⎥⎥⎥⎦
(7.39)

where

Ri !

⎡

⎢⎢⎣

r(i, 0) . . . r(i, 2p)
...

...
...

r(i, 2p) . . . r(i, 0)

⎤

⎥⎥⎦ (7.40)

For homogeneous images and symmetric windows it is easy to show that the
AR parameters are symmetric a(k, l) ! a("k, "l) and the system can be solved
efficiently by a Levinson-type algorithm [Kalo 89]. If the image is homogeneous but
anisotropic, the resulting system’s associated matrix is block Toeplitz, but the ele-
ments are no longer Toeplitz. Furthermore, more general windows than the ones
introduced in this section have also been suggested and used. Efficient Levinson-
type algorithms for such cases have also been developed (e.g., [Glen 94]). Finally,
besides the squared error criteria,maximum likelihood techniques can be employed
for the estimation of the unknown parameters,which can lead to more accurate esti-
mates. Of course, in such cases assumptions about the underlying statistics have to
be adopted (e.g., [Kash 82]).

“09-Ch07-SA272” 18/9/2008 page 434

434 CHAPTER 7 Feature Generation II

Remarks

■ The AR modeling of images has been used in the classification context in a
number of cases [Chel 85, Cros 83, Kash 82, Sark 97]. In [Kash 86, Mao 92]
extensions have been proposed for rotation-invariant models.

■ TheAR random field models are related to a class of models known as Markov
random fields. The essence of these fields is that for each pixel (m, n)
the image is divided into three areas: ,$ (“future”), , (“present”), and ,"

(“past”). It is then assumed that the random variable I(m, n), (m, n) ∈ ,$, is
independent of its values in ," and depends only on the values in ,; thus,
the conditional density function satisfies

p
(
I(m, n), (m, n) ∈ ,$|I(m, n), (m, n) ∈ ," ∪ ,

)

! p
(
I(m, n), (m, n) ∈ ,$|I(m, n), (m, n) ∈ ,

)

In words,the“future”depends only on the“present”and not on the“past”; that
is, the value of the random variable at a pixel depends on the values that the
random variable takes in a specific (neighboring) area only, and it does not
depend on the values in the remaining regions of the image.

■ It can be shown that every Gaussian AR model is a Markov random field.
[Wood 72, Chel 85].

Example 7.5
For an image whose autocorrelation sequence obeys

r(k, l) ! 0.8
√

k2$l2

estimate the AR parameters for a noncausal p ! q ! 1 window.
From the definition we have

Î(m, n) ! a(1, 1)I(m " 1, n " 1) $ a(1, 0)I(m " 1, n)

$ a(1, "1)I(m " 1, n $ 1) $ a(0, 1)I(m, n " 1)

$ a(0, "1)I(m, n $ 1) $ a("1, 1)I(m $ 1, n " 1)

$ a("1, 0)I(m $ 1, n) $ a("1, "1)I(m $ 1, n $ 1)

The resulting matrix R is a block (2p $ 1) # (2p $ 1) ! 3 # 3 matrix with elements the
3 # 3 matrices

R !

⎡

⎢⎣
R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤

⎥⎦

where

R0 !

⎡

⎢⎣
r(0, 0) r(0, 1) r(0, 2)
r(0, 1) r(0, 0) r(0, 1)
r(0, 2) r(0, 1) r(0, 0)

⎤

⎥⎦

“09-Ch07-SA272” 18/9/2008 page 435

7.3 Features for Shape and Size Characterization 435

R1 !

⎡

⎢⎣
r(1, 0) r(1, 1) r(1, 2)
r(1, 1) r(1, 0) r(1, 1)
r(1, 2) r(1, 1) r(1, 0)

⎤

⎥⎦

R2 !

⎡

⎢⎣
r(2, 0) r(2, 1) r(2, 2)
r(2, 1) r(2, 0) r(2, 1)
r(2, 2) r(2, 1) r(2, 0)

⎤

⎥⎦

For this specific model the linear system in (7.38) has nine unknowns and the solution gives

a(1, 1) ! a("1, "1) ! "0.011, a(1, 0) ! a("1, 0) ! "0.25

a(1, "1) ! a("1, 1) ! "0.011, a(0, 1) ! a(0, "1) ! "0.25

"2
$! 0.17

7.3 FEATURES FOR SHAPE AND SIZE CHARACTERIZATION
In a number of image analysis applications,an important piece of information is the
shape and size of an object of interest within the image. For example, in medical
applications the shape and size of nodules are crucial in classifying them as malig-
nant, or benign. Nodules with an irregular boundary have a high probability of
being malignant, and those with a more regular boundary are usually benign. Also,
it has been observed that in certain cases nodules with a perimeter of more than 3
cm are usually malignant [Cavo 92].

Another example in which the shape of the object is of major importance is
the automatic character recognition in an optical character recognition (OCR)
system [Mori 92, Plam 00, Vinc 02]. Although OCR systems employing our already
familiar regional features, there is a large class of techniques that use the shape
information residing in the boundary curve of the characters.

Figure 7.9a shows the character “5”as seen from the scanner of an OCR system.
An appropriate image segmentation algorithm (e.g., [Pita 94]) has first been applied
to separate the character from the rest of the image. The character in Figure 7.9b
is in binary form. This is the result of the binarization phase, in which all gray

(a) (b) (c)

FIGURE 7.9
The character “5” after (a) the segmentation of the scanned image and then (b) the application
of a binarization algorithm and (c) its boundary after the application of a boundary extraction
algorithm in the binarized version.

“09-Ch07-SA272” 18/9/2008 page 436

436 CHAPTER 7 Feature Generation II

levels of the character region below a certain threshold become 0 and all above it
become 1 [Trie 95]. Figure 7.9c shows the resulting boundary, after the application
of a boundary extraction algorithm (e.g., [Pita 94]) on the binary version. Thus,
in the last version there is no texture of interest inside the character. What is of
paramount importance in such systems is feature invariance in geometric transfor-
mations. The recognition of the character must be insensitive to its position, size,
and orientation. A review of various methodologies for invariant pattern recognition
techniques can be found in [Wood 96].

The shape characterization of a region or an object can be achieved in various
ways. Two are the major directions along which we will proceed. One is to develop
techniques that provide a full description of the boundary of the object in a regen-
erative manner. In words, the boundary can be reobtained from the description
coefficients, such as by using a Fourier expansion of the boundary, which in turn
can be reconstructed from its Fourier coefficients. The other direction is to use fea-
tures that are descriptive of the characteristics of the shape of the region but are not
regenerative. Examples of such features are the number of corners in the boundary
and the perimeter. They provide useful information about the boundary, but they
are not sufficient to reproduce it. In the following we will focus on some basic
techniques, which have in turn given birth to a large number of variants shaped to
fit specific application requirements (for example, see [Trie 96] for a review).

7.3.1 Fourier Features
Let (xk, yk), k ! 0, 1, . . . , N " 1, be the coordinates of N samples on the boundary
of an image region, Figure 7.10a. For each pair (xk, yk) we define the complex
variable

uk ! xk $ jyk

For the N uk points we obtain the DFT fl

fl !
N"1∑

k!0

uk exp
(

"j
2)

N
lk

)
, l ! 0, 1, . . . , N " 1

y y

yk
Rmin

t

o

&

Rmax

xkx0

y0

x x
(a) (b)

FIGURE 7.10
Boundary of an image region (a) and associated parameters (b).

“09-Ch07-SA272” 18/9/2008 page 437

7.3 Features for Shape and Size Characterization 437

The coefficients fl are also known as the Fourier descriptors of the bound-
ary. Once the fl are available, the uk can be recovered and the boundary can be
reconstructed. However, our goal in pattern recognition is not to reconstruct the
boundary. Thus, a smaller number of coefficients (or descriptors) is usually used,
enough to include sufficient discriminatory information. In the sequel, we will
investigate how the Fourier descriptors are affected by the actions of translation,
rotation, and scaling. For translation we have

xk(! xk $ -x

yk(! yk $ -y

Then

uk(! uk $ (-x $ j-y) ≡ uk $ -u(

For rotation, it is not difficult to verify that in rotating all points of the region by &,
with respect to the origin, the rotated coordinates correspond to (Problem 7.13)

uk(! uk exp
(

j&
)

If fl , fl(are the DFTs of uk, uk(, respectively, then from the DFT definition we get

Translation : uk(! uk $ -u(⇒ fl(! fl $ -u(+(l)

Rotation : uk(! uk exp
(

j&
)

⇒ fl(! fl exp
(

j&
)

Scaling : uk(! auk ⇒ fl(! afl

Translation of the sampling origin : uk(! uk"k0 ⇒

fl(! fl exp
(

"j2)k0
l
N

)

In words, translation affects only the f0(coefficient. Rotation affects the phase of
all the coefficients by the same factor, and it has no effect on their magnitude.
Scaling affects all coefficients in the same way, and thus it has no effect on the
ratios fi

fj
. The sampling point origin, within the boundary, affects the phase but

leaves invariant the magnitude |fl |.
This deterministic manner, in which the three geometric transformations

affect the Fourier coefficients, allows the development of appropriate normalized
versions that are invariant to these actions [Crim 82, Arbt 90, Gran 72]. Let us
demonstrate the rationale of such approaches via an example, by considering the
boundary of an object. The first decision to be taken, prior to the computation
of the Fourier coefficients, is to define the first sampling point (x0, y0) on the
boundary. In practice, the choice of this point for each character has a degree
of randomness. The choice of a different sampling origin corresponds to a relative
translation of, say,k0 * N samples (since the boundary is a closed curve, the relative

“09-Ch07-SA272” 18/9/2008 page 438

438 CHAPTER 7 Feature Generation II

translation will always be (k " k0) modulo N * N). As we have seen earlier, this
affects the Fourier descriptors

uk(! uk"k0 ⇒ fl(! fl exp
(

"j2)k0
l
N

)
(7.41)

hence

f1(! f1 exp
(

"j2)
k0

N

)
⇒ f1(! | f1| exp("j#1) exp

(
"j2)

k0

N

)

where |f1|, #1 are the magnitude and phase of f1, respectively. Hence, the phase of
f1(is #1(! #1 $ 2) k0

N . In the sequel we define the following normalized Fourier
coefficients:

f̂l ! fl exp(jl#1) (7.42)

The corresponding normalized coefficient with shifted origin will be

f̂ (l ! fl (exp(jl#(1) ! fl (exp
(

jl#1 $ j2)k0
l
N

)
(7.43)

Taking into account (7.41), we obtain

f̂ (l ! f̂l

Thus,the preceding normalization generates features that are invariant to the choice
of the sampling origin (x0, y0).

This method of exploiting the power of the Fourier transform as a tool for
boundary description is not the only possibility. An alternative is to express the
coordinates of the boundary contour points as functions of the boundary length t ,
measured from an origin within the boundary, that is, (x(t), y(t)). Since the bound-
ary is a closed curve,these are periodic functions and they can be expanded in their
Fourier series. Invariant versions of the Fourier coefficients can then be computed
and used as features for pattern recognition [Kuhl 82, Lin 87]. Comparative per-
formance studies of a number of invariant Fourier-based features, in the context of
handwritten character recognition, can be found in [Pers 77, Taxt 90].

Another way is to generate Fourier descriptors from the curvature k(t) function
of the boundary, defined as

k(t) !
d&(t)

dt

where &(t) is the tangent angle (Figure 7.10b) at a point a distance t from
the origin, which is marked “o” in the figure. Such a description is justified by
Gauss’s theorem, stating that every curvature function corresponds to one and
only one curve in space (with the exception of its position in space). The advan-
tage of such a description stems from its obvious scale invariance property. If
we measure the length of the boundary at a point by the number of pixels n

“09-Ch07-SA272” 18/9/2008 page 439

7.3 Features for Shape and Size Characterization 439

between this point and the origin of the curve, the curvature of the boundary is
approximated by

&n ! tan"1 yn$1 " yn

xn$1 " xn
, n ! 0, 1, . . . , N " 1

kn ! &n$1 " &n, n ! 0, 1, . . . , N " 1
(7.44)

In the previous chapter we have seen that an alternative to Fourier descriptors is to
use wavelet coefficients. However, as we pointed out there, the definition of invari-
ant wavelet descriptors is not a straightforward task,and invariance is attempted via
indirect methods.

7.3.2 Chain Codes
Chain coding is among the most widely used techniques for boundary shape descrip-
tion. In [Free 61],the boundary curve is approximated via a sequence of connected
straight line segments of preselected direction and length. Every line segment
is coded with a specific coding number depending on its direction.

In Figure 7.11 two possible choices,usually encountered in practice, are shown.
In this way a chain code [di] is created, where di is the coding number of the
direction of the line segment that connects boundary pixel (xi , yi) with the next
one (xi$1, yi$1), sweeping the boundary in, say, the clockwise sense. A disadvan-
tage of this description is that the resulting chain codes are usually long and at the
same time are very sensitive in the presence of noise. This leads to chain codes
with variations due to noise and not necessarily to the boundary curve. A way out
is to resample the boundary curve by selecting a grid of larger dimensions. For
each of the boxes of the grid all points inside a box are assigned the value of the
respective box center. In Figure 7.12a the original samples are shown alongside
the larger sampling grid. Figure 7.12b is the resulting resampled version. The chain

(a) (b)

1 1

0 02

2

3

3

4

5 6 7

FIGURE 7.11
Directions for a (a) four-directional chain code and (b) an eight-directional chain code.

“09-Ch07-SA272” 18/9/2008 page 440

440 CHAPTER 7 Feature Generation II

1

2
2
2
2

2

3
3

3

4 4 4 4

4 4 4 4 4

4 4 4 4 4 5
5

5

6
6
6

6
6

7
7

7

1
1

0000

0000

0 0 0000

(a) (b) (c)

FIGURE 7.12
The character “5” and (a) its original sampled image, (b) its resampled version on a coarser grid,
and (c) the resulting chain code.

code is formed from the sequential connection of these pixels, Figure 7.12c. If we
consider the length of the grid side as the basic measurement unit, then for even-
coded directions, 0, 2, 4, 6, the length of the corresponding straight line segment
is 1, and for the odd-coded directions, 1, 3, 5, 7, it is

√
2 (from the Pythagoras theo-

rem). For the case of Figure 7.12b and for a coding with eight possible directions,
the resulting chain code is shown in the Figure 7.12c. This sequence of num-
bers constitutes the spine on which a number of shape-related features are built.
Two possibilities, for example, are the following [Lai 81, Mahm 94].

Direction and Direction Length Features
For each direction we count the number of times a specific chain code number
appears in the chain. Then this number is divided by the total number of chain
codes that appear in the chain description of the boundary. For an eight-code
scheme this procedure gives rise to eight features (one for each direction). Another
way that also provides eight features is to divide the total length of the line seg-
ments in each direction by the total length of the boundary line.

Curvature Features
These features quantify concave (smaller than 180◦) and convex (larger than 180◦)
external angles between adjacent edges at the corners of the polygon that is formed
by the line segments when the boundary curve is scanned in the clockwise sense.
Figure 7.13 shows the possible cases. For example, successive directions 01,02,23,
71 correspond to concave external angles, and the pairs 06, 41, 64, 75 to convex
angles. The occurrence percentage of each of these cases in the chain code defines
a respective feature. Sometimes chain code pairs are grouped according to whether
the first chain code is even or odd. Thus, a total of 16 features are generated, 8 for
the convex and 8 for the concave case.

“09-Ch07-SA272” 18/9/2008 page 441

7.3 Features for Shape and Size Characterization 441

(a) Concave features

41 42 43

10

05

16

06

17

07

52 53 54

20 21 27 63 64 65

30 31 32 74 75 76

(b) Convex features

01 02 03 45 46 47

12 13 14 50 56 57

23 24 25 60 61 67

34 35 36 70 71 72

FIGURE 7.13
Curvature features characterizing the boundary polygon that results from an eight-directional
chain code description of the boundary.

7.3.3 Moment-Based Features
In (7.21) and (7.25) the geometric moments and central moments were defined. If
in the place of I(i, j) we consider the sequence

I(i, j) !

{
1 (i, j) ∈ C

0 (i, j) otherwise

where C is the set of points (i, j) inside the object of interest, then we obtain a way
to describe the shape of the object through the moments. Indeed, in such a case
only the limits in the summations (hence the object’s shape) are taken into account,
whereas the details inside the object (i.e., texture) do not participate. Hence

mpq !
∑

i

∑

j

ipjq , (i, j) ∈ C

with m00 ! N , the total number of pixels inside the region. The features

x̄ !
m10

m00
and ȳ !

m01

m00

“09-Ch07-SA272” 18/9/2008 page 442

442 CHAPTER 7 Feature Generation II

define the center of mass (x̄, ȳ). The respective central moments become

!pq !
∑

i

∑

j

(i " x̄)p(j " ȳ)q , (i, j) ∈ C

The invariant moments can in turn be computed and used, whenever appropri-
ate. Two useful quantities that are related to these moments and provide useful
discriminatory information are:

1. Orientation

& !
1
2

tan"1
[

2!11

!20 " !02

]

which is the angle between the axis with the least moment of inertia and the
x-coordinate axis (Problem 7.18).

2. Eccentricity

, !
(!20 " !02)2 $ 4!11

area

Another representation of the eccentricity is via the ratio Rmax
Rmin

of the maxi-
mum to the minimum distance of the center of mass (x̄, ȳ) from the object’s
boundary (Figure 7.10b).

7.3.4 Geometric Features
The features of this subsection are derived directly from the geometry of the object’s
shape. The perimeter P of the object and its area A are two widely used features.
If xi, i ! 1, 2, . . . , N , are the samples of the boundary, then the perimeter is given
by

P !
N"1∑

i!1

∥xi$1 " xi∥ $ ∥xN " x1∥

If we consider the area of a pixel as the measuring unit, a straightforward way to
compute the area enclosed by a boundary is by counting the number of pixels inside
the region of the object. The roundness ratio is a third quantity, defined as

' !
P2

4)A

A useful feature that is related to the curvature of the boundary,as defined in (7.44),
is the so-called bending energy at a point n, given by

E(n) !
1
P

n"1∑

i!0

|ki|2

“09-Ch07-SA272” 18/9/2008 page 443

7.3 Features for Shape and Size Characterization 443

Another popular feature is the number of corners in the boundary contour. These
correspond to points where the curvature ki takes large values (infinity in theory).
In [Ghos 97] corners as well as other topological features are detected via the
use of Zernike moments and appropriate parametric modeling of the respective
topological image intensity profile.

The number of holes inside the region of an object is another useful quantity.
For example, a large error percentage in handwriting character recognition tasks is
related to the difficulty of the classifiers in distinguishing“8”from“0,”because their
boundaries look alike. The detection of the presence of holes inside the object,
using appropriate algorithms, is extra information that can be beneficially used for
recognition [Lai 81, Mahm 94].

In our study so far, we have demonstrated how to derive geometric features
from the boundary curve. However, this is not the only possibility. For example,
in [Wang 98] geometric features are extracted directly from the gray-level variation
within the image region. In this way, the binarization phase is avoided, which in
some cases can become tricky. Another direction that has been used extensively in
OCR is to work on the thinned version of the binarized character.

Figure 7.14 illustrates the procedure via an example. Figure 7.14b is the result
of the application of a thinning algorithm (e.g., [Pita 94]) on the binary version
of the character “5” of Figure 7.14a. Also in Figure 7.14b the so-called key points
are denoted. These can be node points where one or more lines (strokes) of the
character are crossed or corner points or end points. These can be computed by
processing neighboring pixels. For example, in order to identify an end point, we
look at its eight neighboring pixels. An end point has only one neighbor at gray-level
1,and the rest are 0. In the sequel, the thinned version of the character is simplified
as a set of line segments (edges) connecting the key points,Figure 7.14c. Each edge
can then be characterized by its direction, for example, using the chain code; its
length, for example, long or short; and its relation to its neighboring edges. In the
sequel each character is described by an array providing this information in a coded
form. Classification is then based on these coded matrices by defining appropriate
costs. The interested reader may consult for example [Lu 91, Alem 90] for more
details.

(a) (b) (c)

FIGURE 7.14
(a) Binarized version of 5 (b) the thinned version with the key points and (c) version with edges
connecting key points.

“09-Ch07-SA272” 18/9/2008 page 444

444 CHAPTER 7 Feature Generation II

7.4 A GLIMPSE AT FRACTALS
We have already seen that the 1980s was the decade in which two major tools
were introduced into the realm of pattern recognition applications (among others):
neural networks and wavelets. The same decade was also the time when another
tool was adopted in many application areas to offer its potential power. Fractals
and fractal dimension have become the focus of considerable research effort. This
section aims at giving the basic definitions and outlining the basic concepts behind
the use of fractals in pattern recognition. A deeper study of the area is beyond the
goals of a short section, and the interested reader may refer to a number of books
and articles available [Mand 77, Tson 92, Falc 90].

7.4.1 Self-Similarity and Fractal Dimension
Let us consider the straight-line segment of length L in Figure 7.15a. Divide L into
N (two for the example of the figure) equal parts of length l. Each of the resulting
parts is still a straight-line segment, and its length has been scaled down by a factor
m ! l

L ! 1
N . Magnification of any of these parts by the same factor will reproduce the

original line segment. We refer to such types of structures as self-similar. If instead
of a straight-line segment we had a square of side L (Figure 7.15b), then scaling

(a)

LL

L/2

L/2

(b)

(c)

(d)

(e)

FIGURE 7.15
Self similar structures (a) line segment, (b) square, (c)–(e) three stages in the generation of
Koch’s curve.

“09-Ch07-SA272” 18/9/2008 page 445

7.4 A Glimpse at Fractals 445

down the side by m ! 1
N1/2 would result into N square parts. Each part looks like

the original square,which can be reobtained from the parts after magnification. The
same is true for all dimensions, where N similar parts result after scaling the sides
of the D-dimensional (hyper)cube by m ! 1

N1/D , D ! 1, 2, That is, the Euclidean
dimension D is directly related to the scaling and the number N of the resulting
self-similar parts. We can write

N !

(
L
l

)D

≡ m"D (7.45)

If we now want to measure the length (area,volume) of the original segment (hyper-
cube) using as a measurement unit a scaled element of length l (l2, l3, etc.), then
the result is independent of the size l of the measuring unit. Indeed, the resulting
metric property (length, area, etc.) is given by

M ! N (l)lD (7.46)

where N (l) is the number of parts that cover the curve (area, etc.) to be measured
and l is the size of the measuring unit. Combination of (7.45) and (7.46) leads to a
metric M that is always constant (LD) for the same structure, and it is independent
of the size l of the chosen unit, as expected.

Let us now turn our attention to some more interesting structures, such as
the one in Figure 7.15d. The curve in Figure 7.15d results from the straight-line
segment of Figure 7.15c,known as the initiator,by the following strategy:(a) divide
the segment into three equal parts and (b) replace the central one by the two sides
of an equilateral triangle, with sides of size equal to the size of the scaled parts.
The procedure is then repeated for each of the line segments in Figure 7.15d, and
this results in the structure of Figure 7.15e. This process can go on indefinitely, and
the limit curve is the so-called Koch curve [Mand 77]. Such a curve is everywhere
continuous but nowhere differentiable. It is readily observed that at each step of
the iteration, the resulting structure is part of the structure that will result in the
next iteration, after a scaling by 3. The curve therefore has a self-similar structure.
In the sequel we will try to measure the length of the curve. Using as a (measur-
ing) unit a segment of length l ! L

3 (i.e., Figure 7.15d), the resulting length is 4.
For a unit segment l ! L

32 (i.e., Figure 7.15e), the measured length is 42. It is not
difficult to see that the length keeps increasing with decreasing unit size and tends
to infinity as the size of the measuring unit tends to zero! That is, the length of
the curve depends not only on the curve itself but also on the adopted measure-
ment unit! This strange result is the outcome of an “unfair” measurement process.
Indeed, in the case of the Koch curve, scaling by 3 results in four similar parts.
In contrast, in the case of a straight-line segment, scaling by m ! 1

N results in the
same number N of similar parts. In higher dimensional Euclidean space, scaling by
m ! N"1/D results in N parts. The measurement process involves this number N ,
the scaled side length l, and the Euclidean dimension D, as (7.46) suggests. From
this discussion, the Euclidean dimension can also be seen as the ratio ln N

" ln m ! D.
Starting from this observation, let us now define the similarity dimension of a

“09-Ch07-SA272” 18/9/2008 page 446

446 CHAPTER 7 Feature Generation II

general self-similar structure as

D !
ln N

" ln m
(7.47)

where N is the number of the resulting similar parts, when scaling by a factor
m. For hypercube structures the similarity dimension is the respective Euclidean
dimension,which is an integer. In contrast, the corresponding similarity dimension
of the Koch curve D ! ln 4

" ln(1
3)

is a fraction and not an integer. Such structures

are called fractals, and the corresponding similarity dimension is called a fractal
dimension. Measuring a fractal structure, we can adopt (7.46) with the corre-
sponding fractal dimension in the place of D. The result of the measurement process
now becomes independent of the measuring tool l. Indeed, it is easy to see that
using the definition in (7.47),(7.46) results in a constant M ! LD for m ! l

L . The use
of similarity dimension, therefore, results in a consistent description of the metric
properties of such self-similar structures. For a deeper treatment and other defi-
nitions of the dimension the interested reader may consult more specialized texts
(e.g., [Falc 90]).

7.4.2 Fractional Brownian Motion
A major part of our effort in this chapter was dedicated to the description of statistical
properties of signals and images and to the ways these can be exploited to extract
information-rich features for classification (e.g.,co-occurrence matrices,AR models).
In this section we will focus our attention on whether the notion of self-similarity is
extendable to stochastic processes and, if it is,how useful it can be for our interests.
In the previous section “similarity” referred to the shape of a curve. For statistics
such a view would be of no interest. From a statistical point of view it would
be more reasonable and justifiable to interpret similarity from the perspective of
“similar statistical properties,”that is,mean,standard deviation,and so forth. Indeed,
it can be shown that stochastic processes that are self-similar under scaling do exist.
Furthermore, such processes can model adequately a number of processes met in
practice.

Let $(n) be a white (Gaussian) noise sequence with variance "2
$! 1. The process

defined as

x(n) !
n∑

i!1

$(i)

is known as a random walk sequence, and it belongs to a more general class of
stochastic processes known as Brownian motion processes [Papo 91,p. 350]. It is
straightforward to see that

E[x(n)] ! 0

“09-Ch07-SA272” 18/9/2008 page 447

7.4 A Glimpse at Fractals 447

and that its variance is given by

E[x2(n)] ! n"2
$

Thus, the process is a nonstationary one because its variance is time dependent.
A direct generalization of the previous result is

E[-2x(n)] ≡ E[(x(n $ n0) " x(n0))2] ! n"2
$ (7.48)

where by definition -x(n) is the sequence of increments. Scaling the time axis by
m results in

E[-2x(mn)] ≡ E[(x(mn $ n0) " x(n0))2] ! mn"2
$ (7.49)

Hence, if the sequence of increments is to retain the same variance after scaling,
it should be scaled by

√
m. Furthermore, it is easy to see that the sequence of

increments, as well as the scaled versions, follow a Gaussian distribution (e.g.,
[Falc 90]). Recalling that Gaussian processes are completely specified by their mean
and variance, we conclude that the increments -x(n) of x(n) are statistically self-
similar in the sense that

-x(n) and
1√
m

-x(mn) (7.50)

are described by the same probability density functions, for any n0 and m.
Figure 7.16 shows three curves of the scaled random walk increments for m ! 1, 3, 6.
It is readily observed that they indeed“look”alike. Such curves, for which different
scaling has been used for the coordinates (-x, n), are also known as statistically
self-affine.

The random walk Brownian motion is a special case of a more general class of
processes known as fractional Brownian motion sequences (fBm), introduced
in [Mand 68]. The increments of this type of processes have variance of the
general form

E[-2x]-(-n)2H (7.51)

with 0 * H * 1,-n ≡ n"n0 and - denoting proportionality. The parameter H is also
known as the Hurst parameter. As in the case of Brownian motion, the increments
of such processes are statistically self-affine in the sense that the processes

-x(n) and
1

mH -x(mn)

are described by the same probability density functions. The parameter H relates
to the visual smoothness or coarseness of the respective graph of the increments
versus time. This is an implication of (7.51). Let us start from a maximum
interval -n, corresponding to an incremental variance "2. In the sequel we halve
the interval to -n/2. The respective variance will be reduced by the factor (1/2)2H .

“09-Ch07-SA272” 18/9/2008 page 448

448 CHAPTER 7 Feature Generation II

40

0

"40

40

0

"40

40

0

0

m ! 1

m ! 3

m ! 6

250 500
"40

FIGURE 7.16
Time evolution of the random walk (m ! 1) sequence and two of its self-affine versions. They all
do look alike.

This process can go on. Each time we reduce the interval -n by half, we look
at increments between points located closer in time. The higher the value of H ,
the greater the reduction of the variance of the increments between these points,
indicating smoother curves. For H ! 0, the variance of the increments remains
constant and independent of -n. This process is not an fBm, and it corresponds
to a white noise stationary process, with no dependence between adjacent time
instants. Hence, it exhibits the most erratic behavior, and its graph has the most
coarse appearance. This observation indicates that the parameter H could be
used as a measure of the “smoothness” of such curves. By varying H one can get
curves of varying degree of smoothness [Saup 91]. Figure 7.17 indeed verifies that
the curve for H ! 0.8 is smoother than the one for H ! 0.2,and both are smoother
than the top one, which corresponds to a white noise sequence. As was the case
with the fractal curves of the previous subsection, a dimension can also be defined
for curves resulting from fBm processes. It can be shown [Falc 90, p. 246] that an
fBm process with parameter H corresponds to a curve with fractal dimension
2"H . In general, if l is the number of free parameters of the graph,the correspond-
ing fractal dimension is l $ 1 " H . For a graph as in Figure 7.17, l ! 1 and for an
image l ! 2.

The question now is how all these no doubt mind-stimulating points can be of
use to us in the context of pattern recognition. The terms smoothness and coarse-
ness have been used in association with the parameter H and equivalently with
the dimension D of an fBm process. On the other hand, the terms smoothness

“09-Ch07-SA272” 18/9/2008 page 449

7.4 A Glimpse at Fractals 449

4

0

"4
1

"0.5

"2

1

0.4

"0.2

H ! 0.2

H ! 0.8

0 250 500

FIGURE 7.17
Time evolution of a white noise sequence (top) and two fBm processes of different Hurst
parameters H . The lower the value of H , the coarser the appearance of the graph.

and roughness, were in a central position when dealing with feature generation
for texture classification. We have now reached our crucial point. Provided that
we can describe the sequence of gray levels of an image as an fBm process, the
corresponding fractal dimension can be used as a potential feature for texture clas-
sification. In [Pent 84] it is reported that this is indeed true for a number of cases.
Using a number of textured images from [Brod 66], as well as images from natural
scenes, it was found that a large percentage of them exhibited fBm behavior. This
was easily verified by constructing the histogram of differences (increments) of the
gray-level intensities for various relative pixel distances -n. It turned out that for
each value of -n the corresponding histogram was close to a Gaussian pdf centered
at zero. Furthermore, the widths of the Gaussian-like histograms were different for
the different relative pixel distances -n. The larger the -n, the wider the resulting
histogram. However, we know that the width of a Gaussian is directly related to its
variance. The plot of the variance as a function of relative pixel distance revealed
an underlying fBm nature of the intensity processes, at least over a 10:1 range of
relative distances measured. The parameter H ,or equivalently the fractal dimension
D, was then used successfully to distinguish a number of different textured regions
in an image. The estimation of the H can take place via its definition in (7.51).
Taking the logarithm, we get

ln E[-2x] ! ln c $ 2H ln -n

“09-Ch07-SA272” 18/9/2008 page 450

450 CHAPTER 7 Feature Generation II

where c is the proportionality constant and -x is now the difference in the
gray-level intensities between pixels at relative distance -n, that is, -n ! 1, 2, and
so on. Obviously, c ! E[-2x] for -n ! 1. For each pixel distance -n the corre-
sponding average -2x is computed over the image window of interest. The resulting
points (E[-2x], -n) are plotted in a two-dimensional logarithmic plot. A straight
line is then fitted through the points using a least squares linear regression tech-
nique. The parameter H is provided by the slope of the line. This is also a test of the
fractal nature of the underlying process. If the resulting points do not lie approxi-
mately on a straight line, the fractal model assumption will not be valid. Figure 7.18
demonstrates the procedure for two images. The one on the right is an artificially
produced fractal image with H ! 0.76. The least squares fit in the logarithmic plot
of the standard deviation against -n results in a straight line of slope 0.76. The
image on the left is from [Brod 66]. We observe that the resulting least squares fit is
reasonable, suggesting that the image is approximately fractal in nature. The slope
is now H ! 0.27. The lower value of H reflects the fact that the latter image is
coarser than the former.

4.7

4.5

4.3

4.1

3.9

3

2.2

2.6

1.8

1.4

1
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

FIGURE 7.18
Examples of images with corresponding logarithmic plots of the standard deviation of increments
(vertical axis) versus relative distance (horizontal axis).

“09-Ch07-SA272” 18/9/2008 page 451

7.5 Typical Features for Speech and Audio Classification 451

The method presented previously for the computation of the Hurst parameter is
not the only one,and a number of other techniques have been suggested. A popular
alternative is based on the wavelet analysis of the underlying fBm process. The
basis sequences (functions) used in the wavelet analysis are scaled and translated
versions of a mother sequence (function). This underlying notion of scale invariance
is shown to relate to fBm processes, whose statistical properties are scale invariant
[Flan 92]. It turns out that the wavelet coefficients of an fBm process,at a given reso-
lution level, i, form a stationary sequence,with a variance proportional to 2"i(2H$1),
see [Worn 96]. This leads to a simple method for estimating the associated Hurst
parameter. Other methods for estimating the fractal dimension include the box-
counting and variation method [Huan 94, Kell 87];maximum likelihood estimates,as
in [Lund 86, Deri 93, Fieg 96];morphological covers [Mara 93];methods in the spec-
tral domain, as in [Gewe 83]; and fractal interpolation function models [Penn 97].

Fractional modeling and the use of fractal dimension D as a feature for classifica-
tion have been demonstrated in a number of applications [Chen 89, Lund 86,
Rich 95]. However, the method is not without drawbacks. Indeed, it may hap-
pen that different textures result in the same fractal dimension, thus limiting the
classification potential of the method. Another shortcoming is that in practice phys-
ical processes retain their fractal characteristics over a range of distances but not
over all ranges. Thus, the fractal dimension may change as we pass from one range
of scales to another [Pent 84, Pele 84], and the use of a single Hurst parameter
may not lead to sufficient modeling. To overcome these drawbacks, a number of
possible solutions have been suggested. The multifractional Brownian motion
(mBm) is an extension of an fBm process with a parameter H , which is allowed
to vary, as in [Ayac 00]. Extended self similar (ESS) processes allow in (7.51) for
a more general dependence on -n, via a so-called structure function [Kapl 94].
For more on these issues the interested reader is referred, for example, to [Bass 92,
Ardu 92, Kapl 95, Kapl 99, Pesq 02]. A comparative study of various textural features,
including fractal modeling techniques, can be found in [Ohan 92, Ojal 96].

7.5 TYPICAL FEATURES FOR SPEECH AND AUDIO
CLASSIFICATION

As we have already commented in the Preface, speech recognition is a major appli-
cation area of pattern recognition, and a number of speech-recognizing systems
are already available in the market. Audio classification and recognition have
also received a lot of attention in recent years. A great number of commercial
applications are envisaged for the future in the field of multimedia databases. Tech-
niques for automatic indexing tools, intelligent browsers, and search engines with
content-based retrieval capabilities are currently the focus of a major research effort.
In this context, audiovisual data segmentation and indexing, based not only on
visual information but on the accompanying audio signal, greatly enhance the per-
formance. For instance, classifying video scenes of gun fights using the audio

“09-Ch07-SA272” 18/9/2008 page 452

452 CHAPTER 7 Feature Generation II

information related to shooting and explosions will, no doubt, enhance the per-
formance of the classifier compared to a system that is based on the corresponding
visual information only.

Content-based retrieval from music databases is another application that attracts
the interest of current research. It is very likely that not far in the future a large
corpus of the recorded music in human history will be available on the Web. Auto-
matic music analysis is envisaged to be one of the main services to facilitate content
distribution. Automatic music genre classification, querying music databases by
humming the tune of a song or querying by example (i.e., providing a music
extract of short duration in order to locate and retrieve the complete recording)
are examples of services that vendors would very much like to offer in such sys-
tems. More on these issues can be found in [Wold 96, Wang 00, Zhan 01, Pikr 03,
Pikr 06, Pikr 08, Frag 01, Clau 04].

This section focuses on the generation of some typical and commonly used
features for speech recognition and audio classification/recognition. However, as
has already been stated elsewhere in the book one must keep in mind that feature
generation is very much a problem-dependent task. Thus, the combination of the
designer’s imagination with his or her good knowledge of the peculiarities of the
specific task can only benefit the generation of informative features.

7.5.1 Short Time Processing of Signals
Speech and audio signals are statistically nonstationary; that is, their statistical pro-
perties vary with time. A way to circumvent this problem and be able to use analy-
sis tools that have been developed and make sense for stationary signals only, such
as the Fourier transform, is to divide the time signal into a series of successive
frames. Each frame consists of a finite number, N , of samples. During the time
interval of a frame, the signal is assumed to be “reasonably stationary.” Such sig-
nals are also known as quasistationary. Figure 7.19 shows a signal segment and
three successive frames,each consisting of N ! 20 samples,with an overlap among
neighboring frames of 5 samples. Choosing the length, N , of the frames is a “bit
of an art” and is a problem-dependent task. First, each frame must be long enough
for an analysis method to have enough “data resources” to build up the required
information. For example, if we are interested in estimating the period of a peri-
odic signal the number of samples in each frame must be large enough to allow
the signal periodicity to be revealed. Of course, this will depend on the value of
the period. For short periods, a few samples can be sufficient. On the other hand,
for long periods more samples will be necessary. Second, N must be short enough
to guarantee the approximate stationarity of the signal within the time scale of
each frame in order for the results to be meaningful. For speech signals sampled
at a frequency of fs ! 10 KHz, reasonable frame sizes range from 100 to 200 sam-
ples, corresponding to 10–20 msecs time duration. For music signals sampled at
44.1 KHz,reasonable frame sizes range from 2048 to 4096 samples,corresponding to
45–95 msecs, approximately.

“09-Ch07-SA272” 18/9/2008 page 453

7.5 Typical Features for Speech and Audio Classification 453

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 1st frame 2nd frame 3rd frame

overlap

n

x(n)

FIGURE 7.19
Three successive frames, each of length N ! 20 samples. The overlap between successive fra-
mes is 5 samples.

From a mathematical formulation point of view, dividing the time signal in a
sequence of successive frames is equivalent to multiplying the signal segment by
a window sequence, w(n), of finite duration N . The simplest window sequence is
the rectangular window, defined as

w(n) !

{
1 0) n) N " 1

0 elsewhere

For different frames, the window is shifted to different points, mi , in the time axis.
Hence, if x(n) denotes the signal sequence, the samples of the ith frame can be
written as

xi(n) ! x(n $ mi)w(n)

where mi is the corresponding window shift associated with the ith frame. This
implies that all samples in the ith frame are identically zero, except for the time
instants n ! 0, . . . , N " 1, which correspond to the original signal samples, x(n),
with n ∈ [mi , mi $N "1]. The procedure is illustrated in Figure 7.20. As it is known
from the Fourier transform theory basics, multiplying a sequence by a window in
the time domain smooths out its Fourier transform by convolving it with the Fourier
transform of the window sequence. Some of the effects of this smoothing action
can be minimized by using a different window sequence,with a smoother decay to

“09-Ch07-SA272” 18/9/2008 page 454

454 CHAPTER 7 Feature Generation II

(a)

mi mi$ N"1
n

x(n)

0

1

2

3

4

5

(b)

0

1

2

3

4

5

nN"1

xi(n)

FIGURE 7.20
A signal segment (a) and the resulting frame (b) after the application of a rectangular window
sequence of duration equal to 14 samples and shifted at mi .

zero. A popular choice is the Hamming window, defined as

w(n) !

{
0.54 " 0.46 cos

(2)n
N"1

)
0) n) N " 1

0 elsewhere

More on these issues can be found in [Rabi 78, Dell 00].
As an example, let us assume that we have divided a speech segment into a

sequence of I frames,each of length N . Then, for each frame, i ! 1, 2, . . . , I ,we can
compute the discrete Fourier transform (DFT) as

Xi(m) !
N"1∑

n!0

xi(n) exp
(

"j
2)

N
mn

)
, m ! 0, 1, . . . , N " 1

It is common to refer to this DFT as the short-time DFT. It must be pointed out that
this definition implies much more theory and interesting implementation issues
(which, however, are not of interest to us and we will not delve into this topic any
deeper). Selecting l) N DFT coefficients from each frame, we can construct a
sequence of feature vectors

xi !

⎡

⎢⎢⎢⎢⎣

Xi(0)
Xi(1)

...

Xi(l)

⎤

⎥⎥⎥⎥⎦
, i ! 1, 2, . . . , I (7.52)

Thus, the pattern of interest (i.e., the speech segment) is not represented by a single
feature vector but by a sequence of feature vectors. We will see how to attack such
problems in Chapters 8 and 9.

The autocorrelation sequence is another very important statistical quantity,
which is also defined for stationary processes. Recall from Section 7.2.4 that, if
x(n) is a stationary process, the autocorrelation sequence is defined as

r(k) ! E[x(n)x(n " k)] ! E[x(n)x(n $ k)] ! r("k) (7.53)

“09-Ch07-SA272” 18/9/2008 page 455

7.5 Typical Features for Speech and Audio Classification 455

In other words, it is the expectation of the product of x(n) with its shifted version
x(n % k). In practice, the expectation can be obtained as

r(k) !
1

2N $ 1

N∑

n!"N

x(n)x(n $ k)

which under mild assumptions (i.e., ergodicity) tends to the true value of r(k)
as N tends to infinity. In the case of a quasistationary process, the short-time
autocorrelation sequence, ri(k), is defined for each of the frames as

ri(k) !
1
N

N"1"|k|∑

n!0

xi(n)xi(n $ |k|) (7.54)

where | · | denotes the absolute value operator. The limits in the sum indicate that
outside the interval [0, N " 1 " |k|] the product xi(n)xi(n $ |k|) is identically
zero, due to the finite duration, N , of the frame. This definition complies with the
definition in (7.53) in the sense that for stationary processes ri(k) is an asymptoti-
cally unbiased estimate of the autocorrelation as the length of the frame N ⇒ '.
Indeed,viewing ri(k) as an estimate of r(k), its mean value for different realizations
is easily shown to be

E[ri(k)] !
N " |k|

N
r(k) (7.55)

Thus, for finite frame length,N , Eq. (7.54) results in a biased estimate of r(k). How-
ever, for small values of the lag k, with respect to N , the bias is small. On the
other hand, for values of k close to N we expect ri(k) to get values close to zero,
something that is verified in practice. To remedy this drawback, other definitions
of the short-time autocorrelation have been proposed. See, for example, [Rabi 78].
Another important property of the definition in (7.54), from the computational
point of view, is that the corresponding (short-time) autocorrelation matrix retains
the computationally elegant properties of being symmetric and having a Toeplitz
structure (Section 7.2.4).

7.5.2 Cepstrum
Let x(0), x(1), . . . , x(N " 1) be the samples from the current data frame (the index
i has been dropped for notational simplicity). The Fourier transform (FT) of this
finite-length sequence of data is defined as the periodic complex function

X(*) !
N"1∑

n!0

x(n) exp
(
"j*Tn

)
(7.56)

with period (in the frequency domain) 2)/T , where T is the sampling period.
It is well known from the basic theory of signal processing (e.g., [Proa 92] and
Chapter 6), that the coefficients of the DFT transform

X(m) !
N"1∑

n!0

x(n) exp
(

"j
2)

N
mn

)
, m ! 0, 1, . . . , N " 1 (7.57)

“09-Ch07-SA272” 18/9/2008 page 456

456 CHAPTER 7 Feature Generation II

are the samples of the FT taken at the frequency points 0, 2)
NT , . . . , 2)

NT (N " 1).
Assuming, without loss of generality, T ! 1, the inverse FT is defined as

x(n) !
1

2)

∫)

")
X(*) exp

(
j*n

)
d*, n ! 0, 1, . . . , N " 1 (7.58)

That is, the resulting samples are equal to the samples of the original sequence and
identical to what is obtained by the inverse DFT. That is,

x(n) !
1
N

N"1∑

m!0

X(m) exp
(

j
2)

N
mn

)
, n ! 0, 1, . . . , N " 1 (7.59)

The cepstrum, c(n), of a sequence, x(n), is the sequence resulting from the inverse
FT of the logarithm of the magnitude of its FT. That is,

c(n) !
1

2)

∫)

")
log10 |X(*)| exp

(
j*n

)
d* (7.60)

Although the base 10 logarithm has been used, the logarithm of any base can be
adopted. Another way of looking at the cepstral coefficients, c(n), is the following.
Since the FT function X(*) is a periodic function of *,with period 2), the function
log10 |X(*)| is also periodic with the same period. Therefore, it can be written in
terms of its Fourier series expansion

log10 |X(*)| !
'∑

n!"'

c(n) exp
(

"j*
2)

2)
n
)

!
'∑

n!"'

c(n) exp
(
"j*n

)
(7.61)

Hence, Eq. (7.60) is the formula that provides the coefficients of the Fourier series
expansion in (7.61). However, the function log10 |X(*)| is defined in the frequency
and not in the time domain. Its Fourier transform domain is known as the quefrency
domain, and the respective Fourier series coefficients, c(n), are known as cepstral
coefficients. This is only to remind us that the original transformed function is in
the frequency domain. Otherwise, all Fourier transform/series properties are still
valid. Thus, since log10 |X(*)| is a real and even function, (|X(*)| is even for a real
sequence x(n)), the cepstral coefficients are real and even. That is,

c∗(n) ! c(n) ! c("n)

Cepstral coefficients have very good information-packing properties, from the class
discrimination point of view, and are very popular candidates as features, both for
speech recognition and audio classification tasks [Rabi 93, Tzan 02].

Computation of the cepstral coefficients is achieved via the DFT (using the FFT)
of X(*). However, this computation is not as innocent as it is for the case of
X(*). As we have already seen, the inverse transforms of X(*) and X(m) coincide
[Eqs. (7.58) and (7.59)]. This is because the input sequence is of finite length, N ,
and the sampling period *s, in the frequency domain, is chosen to obey the Nyquist
criterion; that is, *s ! 2)

N . This is not the case with the cepstral coefficients. Using
log10 |X(m)|, m ! 0, 1, . . . , N " 1, and taking the inverse DFT results in

ĉ(n) !
1
N

N"1∑

m!0

log10 |X(m)| exp
(

j
2)

N
mn

)
, n ! 0, 1, . . . , N " 1 (7.62)

“09-Ch07-SA272” 18/9/2008 page 457

7.5 Typical Features for Speech and Audio Classification 457

where ĉ(n) and c(n) are related as

ĉ(n) !
'∑

r!"'

c(n $ rN) (7.63)

For those readers familiar with basic digital signal processing this is most natural. The
sequence c(n) is not of finite duration. Thus, sampling its FT (C(*) ≡ log10 |X(*)|)
with a sampling period of 2)

N does not satisfy Nyquist’s criterion. Hence, taking
the inverse DFT [Eq. (7.62)] will result in aliasing with a periodic repetition of the
aliased sequence (c(n)) every N samples, which is expressed via (7.63). See, for
example, [Proa 92]. In practice, the effects of this aliasing are minimized if one
extends the length of the frame from N to M by appending M " N zeros at the end
of it. That is,

x(n) : x(0), . . . , x(N " 1), x(N) ! 0, . . . , x(M " 1) ! 0 (7.64)

These zeros (as it can easily be checked out) have no effect on the FT X(*). However,
the DFT is now of length M (corresponding to sampling the FT every 2)

M frequency
points),which makes the implicit repetition period in (7.63) equal to M . Assuming
that the cepstral coefficients decay fast enough,with respect to the repetition period
M ,we can assume that ĉ(n) ≈ c(n), n ! 0, 1, . . . , N "1,since successive repetitions
in (7.63) now have little overlap. In practice,a number of 512 or 1024 zeros may be
necessary. For further information related to cepstrum, the interested reader may
refer to [Rabi 78, Dell 00].

In summary, the computational steps to obtain the cepstral coefficients of a
frame, xi(n), n ! 0, 1, . . . , N " 1, are the following:

■ Extend the length of the frame by appending M " N zeros at the end of the
frame.

■ Obtain the DFT of length M of the extended frame.

■ Compute the logarithm of the magnitude of the DFT coefficients.

■ Compute the inverse DFT of length M .

The obtained coefficients are the (approximate) cepstral coefficients of the
sequence xi(n).

7.5.3 The Mel-Cepstrum
Human perception of audio has often been studied from a psychophysical point
of view. Experiments have suggested that perception of the frequency content of
pure tones does not follow a linear scale. This led to the idea of mapping acoustic
frequency content to a linear“perceptual”frequency scale. A popular approximation
to this type of mapping is known as the mel scale [Pico 93, Rabi 93]:

fmel ! 2595 log10 10(1 $ f /700.0) (7.65)

Equation (7.65) suggests that an actual frequency of 1 KHz is mapped to 1000 mel
units. The plot of (7.65) is shown in Figure 7.21, and as can be seen the mapping

“09-Ch07-SA272” 18/9/2008 page 458

458 CHAPTER 7 Feature Generation II

Frequency (Hz)

M
el

 u
ni

ts

0 1000 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

FIGURE 7.21
Subjectively perceived pitch, in mel units, as a function of the measured frequency.

is approximately linear from 0 Hz up to 1000 Hz, and its logarithmic nature pre-
vails for frequencies above 1000 Hz. As an example, Eq. (7.65) suggests that the
perceived frequency of a pure tone at the frequency of 10 KHz will be approxi-
mately 3000 mel units (mels). That is, a tenfold increase in the frequency will be
subjectively perceived as a threefold increase.

Another psychoacoustics phenomenon is related to the way our auditory system
perceives the differences in frequency among different tones that contribute to
the formation of a more complex sound. It turns out that the tones cannot be
individually distinguished if they fall within a certain bandwidth around the center
frequency of the sound. We refer to this bandwidth as the critical bandwidth
[Pico 93, Rabi 93]. Furthermore, if the bandwidth of a complex sound is less than
the critical bandwidth around its center frequency the ear would perceive it as a
single tone at the center of the critical band and with its loudness being equal to a
weighted average of the loudness of each one of the contributing tones. The critical
bandwidth around a frequency f can approximately be given by

BW critical ! 25 $ 75[1 $ 1.4(f /1000)2]0.69 (7.66)

A plot of this equation reveals that the critical bandwidth is approximately linear
below 1 KHz and increases logarithmically for frequencies above 1 KHz.

In an effort to generate features that are rich in information, we will try to
“manipulate” the frequency content of a sound segment by imitating nature, in the
way our auditory system perceives and recognizes sounds. To this end the following
steps are adopted:

“09-Ch07-SA272” 18/9/2008 page 459

7.5 Typical Features for Speech and Audio Classification 459

■ A sound segment, of length N , is analyzed via the DFT transform. As we have
already observed, it is useful to append a number of zeros at the end and let M
denote the number of samples after the extension. If fs !1/T is the sampling
frequency,each DFT coefficient X(m) corresponds to a real frequency of mfs

M .

■ In the sequel, a number, L, of critical bands are “spread” over the frequency
range up to fs/2. Figure 7.22 is an example, where only the first 17 of L ! 35
such bands are shown (for illustration simplicity) to occupy the frequency
range from 0 Hz up to approximately 3700 Hz. The shape of each frequency
band is a graphical representation of the weighting imposed on the corre-
sponding frequency sample (frequency bin) within the bandwidth of the
band. The sampling frequency is fs ! 44.1 KHz. These bands are uniformly
distributed in a mel scale,and their bandwidth has been chosen to be approx-
imately equal to 110 mels. In the frequency scale, these bands are almost
uniformly spaced below 1 KHz and logarithmically above it. The shape of the
bands has been chosen to be triangular. In general, the shape,bandwidth,and
number of bands are critical design issues, and several approaches have been
suggested throughout the years, depending on the application domain (see,
for example, [Pico 93, Rabi 93, Davi 80]). In our example,we chose nonover-
lapping bands, although in some cases an overlap between successive bands
is allowed to exist.

■ Since, in general, the center frequencies of these frequency bands do not
coincide with the frequency quantization performed by the DFT,each band is
moved so that its center frequency coincides with the nearest DFT frequency

...

Frequency (Hz)

Fr
eq

ue
nc

y
R

es
p

on
se

 M
ag

ni
tu

de

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

FIGURE 7.22
A critical-band filter bank consisting of nonoverlapping triangular bandpass filters.

“09-Ch07-SA272” 18/9/2008 page 460

460 CHAPTER 7 Feature Generation II

bin (mfs
M). Denote by mi this (center) frequency bin of the ith band in the

bank, i ! 1, 2, . . . , L.

■ For each of the bands in the bank, compute the weighted average of the
log-magnitude of the DFT coefficients that fall within the frequency band.
That is,

Y (mi) ≡
∑

m

log10 |X(m)|Hi

(m
M

fs
)

, i ! 1, 2, . . . , M (7.67)

where Hi(·) is the corresponding weighting value. Note that since the width of
each band is finite,this summation,over m, is restricted to the DFT coefficients
located within the bandwidth of the respective critical band.

■ Define the sequence

Y (m) !

{
Y (mi) if m ! mi , i ! 1, 2, . . . , L

0 otherwise
(7.68)

In other words, this sequence is zero everywhere except at the frequency
bins corresponding to the centers of the bands in the bank, where the value
is equal to the weighted average of the log-magnitude of the DFT coefficients
at the frequency bins within the bandwidth of the respective band. We can
think of this new sequence as the psychologically perceived log-magnitude
spectrum equivalent to the physically measured one.

■ Take the inverse DFT

cmel(n) !
1
M

M"1∑

m!0

Y (m) exp
(

j
2)

M
mn

)
, n ! 0, 1, 2, . . . , N " 1 (7.69)

These are known as the mel-cepstral coefficients and are among the most
powerful features in speech and audio recognition/classification. Note that
since the log-magnitude DFT coefficients are real and symmetrical, the previ-
ous inverse DFT can also be efficiently computed via a cosine transform,as in
[Proa 92].

The reader should note that the previous method of defining mel-cepstral
coefficients is just one of many variants that have been proposed over the years.
For a more extensive treatment the reader is referred to more specialized texts and
articles, such as [Pico 93, Rabi 93, Dell 00].

7.5.4 Spectral Features
Let xi(n), n ! 0, 1, . . . , N " 1 be the samples of the ith frame and Xi(m),
m ! 0, 1, . . . , N " 1, the corresponding DFT coefficients. The following features
are quite common in speech recognition and audio classification/recognition, each
providing information for different acoustic qualities.

“09-Ch07-SA272” 18/9/2008 page 461

7.5 Typical Features for Speech and Audio Classification 461

Spectral Centroid

C(i) !

∑N"1
m!0 m|Xi(m)|

∑N"1
m!0 |Xi(m)|

The centroid is a measure of the spectral shape. High values of the centroid cor-
respond to“brighter”acoustic structures with more energy in the high frequencies.

Spectral Roll-off
The spectral roll-off is the frequency sample, mR

c (i), below which the c% (e.g., c !
85 or 90) of the magnitude distribution of the DFT coefficients is concentrated.
That is, for this frequency sample the following is true:

mR
c (i)∑

m!0

|Xi(m)| !
c

100

N"1∑

m!0

|Xi(m)|

This is another measure indicating where most of the spectral energy is concen-
trated. It is a measure of skewness of the spectral shape, with right-skewed shapes
(brighter sounds) resulting in higher values.

Spectral Flux

F(i) !
N"1∑

m!0

(Ni(m) " Ni"1(m))2

Here,Ni(m) is the normalized (by its maximum value) magnitude of the respective
DFT coefficient of the ith frame and is a measure of the local spectral change
between successive frames.

Fundamental Frequency
Speech and audio signals can be either noise-like in nature,such as unvoiced speech
segments or audio segments corresponding to an applause or footstep recordings,
or can exhibit a periodic nature. In the latter case, we talk about harmonic signals
to distinguish them from their noise-like inharmonic counterparts. Audio signals
produced from musical instruments and voiced speech segments are two exam-
ples of harmonic signals. A distinct characteristic of a harmonic sound signal is its
fundamental frequency.

In the case of voiced speech signals,this is the frequency of successive vocal fold
openings and is also known as the pitch of the signal. For men this lies in the range
of 80 to 200 Hz and for women in the range of 150 Hz to 350 Hz. For musical instru-
ments,the fundamental frequency may vary a lot,and in some cases the fundamental
frequency may not be present in the frequency spectrum, although the ear can
have the ability to perceive it,by processing the information provided by the higher
harmonics. This is a psychoacoustics phenomenon. Psychoacousticians as well as
musicologists use the term pitch to define the frequency perceived by the ear,which
in some cases may even be different from the fundamental.

“09-Ch07-SA272” 18/9/2008 page 462

462 CHAPTER 7 Feature Generation II

Frequency (Hz)

0 500 1000 1500 2000 2500 3000 3500

N
or

m
al

iz
ed

 F
ou

ri
er

 c
oe

ff
ic

ie
nt

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 7.23
Normalized DFT coefficients of a clarinet sound, whose fundamental frequency is absent.

The fundamental frequency estimation is not an easy task, and a num-
ber of techniques have been proposed in the published literature, including
[Schr 68, Brow 91, Wu 03, Tolo 00, Klap 03, Goto 04] and the references therein.
Figure 7.23 is an example of the (normalized) amplitude of the DFT of a signal
segment corresponding to a harmonic sound produced by a clarinet. The length
of the frame is 4096 samples long. The spectrum consists of the regularly spaced
harmonics of the fundamental frequency, which is equal to 230 Hz but is missing
from the spectrum. Note that, listening to this sound, a trained ear will perceive
that the pitch of this signal is indeed 230 Hz. It can be observed that odd and even
multiples of the fundamental frequency are present as peaks. (For this frame, it
turned out that the amplitudes of the odd multiples are considerably smaller than
the amplitudes of the even multiples of the fundamental frequency.) Application of
the algorithm given in [Schr 68], for the estimation of the fundamental frequency,
returns the true value of 230 Hz. The method builds on the idea of exploiting the
greatest common divisor of all peaks present in the spectrum.

7.5.5 Time Domain Features
Zero-Crossing Rate
The zero-crossing rate is defined as

Z(i) !
1

2N

N"1∑

n!0

|sgn[xi(n)] " sgn[xi(n " 1)]|

“09-Ch07-SA272” 18/9/2008 page 463

7.5 Typical Features for Speech and Audio Classification 463

where

sgn[xi(n)] !

{
1 xi(n) . 0

"1 xi(n) * 0

This is a measure of the noisiness of the signal. Thus, unvoiced speech signals
have higher zero-crossing values compared to the voiced ones. Temporal curves of
variation of the zero-crossing rate from frame to frame may also be informative of
the type of signal.

Energy
This is a very simple feature, defined as

E(i) !
1
N

N"1∑

n!0

|xi(n)|2

and it can be used to discriminate voiced from unvoiced speech signals, since the
latter tend to have much lower energy values than the former. It is also useful to
discriminate silent periods in a recording and can be useful during the segmentation
process.

All features discussed in this section are also known as frame-level features. They
provide local information with respect to individual frames,and their goal is to cap-
ture short-term characteristics. However, to extract semantic content information,
one needs to follow how the previously cited features change from frame to frame
over a longer time scale. To this end, one can develop various methods to quantify
this variation. In [Tzan 02], the mean and variances of the frame-level features have
been used as features for music genre classification.

Besides the above features, other features—such as wavelet coefficients, fractal
dimension, AR modeling, and independent components (ICA), presented in the
previous and the present chapter—are also popular candidates. For music signals,
based on early studies on the human perception of pitch, it has been proposed to
use a 12-element representation of the spectral energy of a music signal, known as
the chroma vector [Bart 05]. Each element of the vector corresponds to one of the
12 traditional pitch classes (i.e., 12 notes) of the equal-tempered scale of Western
music. The chroma vector can encode and represent harmonic relationships within
a particular music signal.

7.5.6 An Example
To demonstrate the classification power of two of the previously discussed features,
let us take a simple example. Figure 7.24 shows the variation of the zero-crossing
rate from frame to frame as time evolves, for a clapping sound. The sampling fre-
quency was 44.1 KHz, and the length of each frame was equal to 1024 samples,
with a successive frame overlap of 512 samples. For each frame the Hamming
window was used. One can observe the noisy look of the resulting graph, with a
large change of the feature values from frame to frame. This noisy nature of the
clapping sound can also be revealed if the fundamental frequency is adopted as a

“09-Ch07-SA272” 18/9/2008 page 464

464 CHAPTER 7 Feature Generation II

Time (secs)

0 0.5 1 1.5 2 2.5 3 3.5

Z
er

o
C

ro
ss

in
g

R
at

e

0

20

40

60

80

100

120

FIGURE 7.24
Zero-crossing rate results for a clapping sound recording, using a Hamming moving window
technique.

Time (secs)

0 0.5 1 1.5 2 2.5 3 3.5
100

200

300

400

500

600

700

Fu
nd

am
en

ta
l F

re
qu

en
cy

 (
H

z)

FIGURE 7.25
Fundamental frequency tracking results for the same clapping sound recording as in Figure 7.24.

“09-Ch07-SA272” 18/9/2008 page 465

7.5 Typical Features for Speech and Audio Classification 465

feature. Figure 7.25 shows the change of the fundamental frequency from frame
to frame. The algorithm used for the fundamental frequency tracking was that pro-
posed in [Brow 91]. In contrast to the noisy nature of the previous audio recording,
Figures 7.26 and 7.27 show the graphs of the change, from frame to frame, of the

Time (secs)

0 0.5 1 1.5 2 2.5 3 3.5 4
15

20

25

30

35

40

45

50

55

Z
er

o
C

ro
ss

in
g

R
at

e

FIGURE 7.26
Zero-crossing rate results for the piano music recording, using a Hamming moving window
technique.

Time (secs)

Fu
nd

am
en

ta
l F

re
qu

en
cy

 (
H

z)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

FIGURE 7.27
Fundamental frequency tracking results for the same piano music recording as in Figure 7.26.

“09-Ch07-SA272” 18/9/2008 page 466

466 CHAPTER 7 Feature Generation II

zero-crossing rate and fundamental frequency, respectively, for a piano recording
(from Bach’s English suite in A major). The frame parameters used for the analysis
were the same as before. One can observe that both graphs are now much less
noisy. The variation from frame to frame is much smaller, and at some points of the
graph the values of both features remain almost constant for relatively long periods
of time, revealing the “structured”harmonic nature of the analyzed sound.

7.6 PROBLEMS
7.1 Consider the image array

I !

⎡

⎢⎢⎢⎢⎢⎣

0 1 2 2 3
1 2 0 2 0
3 0 3 2 1
1 2 2 2 3
0 0 1 1 2

⎤

⎥⎥⎥⎥⎥⎦

Compute the co-occurrence matrix for d ! 1 and the four directions. Then
compute the ASM and CON features.

7.2 For the image array of the previous problem compute the run length matrix
for the four directions and then the features SRE, LRE.

7.3 Construct a 4 # 4 array that will have a high contrast (CON) value in the 0◦

direction and low CON value in the 45◦ direction.

7.4 For two of the test images provided in the Web site of the book, develop a
program that computes the co-occurrence and run length matrices for the
four directions and d ! 1. Then compute the ASM , CON , IDF , Hxy, SRE, LRE,
GLNU , RLN features and average their respective values over the four
directions. Justify your findings.

7.5 Show that if

N∑

i!1

Pi ! 1

then

S !
N∑

i!1

P2
i

becomes minimum if Pi ! 1
N , i ! 1, 2, . . . , N .

7.6 Show that the central moments defined in (7.22) are invariant to translations
and the normalized central moments in (7.23) are invariant to both translation
and scaling.

“09-Ch07-SA272” 18/9/2008 page 467

7.6 Problems 467

7.7 Show that the Zernike polynomials are orthogonal on the unit circle disk,
that is,

∫ ∫

x2$y2)1
V ∗

nm(x, y)Vpq(x, y) dx dy !
)

n $ 1
+np+mq

7.8 Show that if a region in an image is rotated by an angle & with respect to the
origin, the Zernike moments of the rotated region are related to the unrotated
ones by

A(pq ! Apq exp("jq&)

7.9 Write a program to compute the moments of Hu. Then apply it to two of
the test images involving objects, available from the web, and compute the
respective moments.

7.10 Repeat Problem 7.9 for the Zernike moments of order A11, A20, A02.

7.11 Show Eq. (7.37).

7.12 Write a program that computes the AR parameters for a noncausal prediction
model. Apply it to a homogeneous and isotropic image whose autocorrelation
sequence is given by

r(k, l) ! exp("
√

k2 $ l2)

for a window W of order p ! q ! 1.

7.13 Let uk ! xk $ jyk, where (xk, yk) are the coordinates of the points on the
boundary of an object in an image. Show that if the object is rotated by an
angle & with respect to the origin of the axis, the new complex sequence is

u(k ! uk exp(j&)

7.14 Let t denote the length along a closed boundary curve measured from an
origin within the curve, and x(t), y(t) the coordinates as functions of t . If T
is the total length of the curve, then the following Fourier series expansion
holds.

x(t) ! a0 $
'∑

n!1

[
an cos

2)nt
T

$ bn sin
2)nt

T

]

y(t) ! c0 $
'∑

n!1

[
cn cos

2)nt
T

$ dn sin
2)nt

T

]

“09-Ch07-SA272” 18/9/2008 page 468

468 CHAPTER 7 Feature Generation II

Prove that if x(t), y(t) are piecewise linear functions between the sampled
points (x(t), y(t)), t ! 0, 1, . . . , m " 1, the Fourier coefficients an, bn, cn, dn
are given by

an !
T

2)2n2

m∑

i!1

-xi

-ti
[cos #i " cos #i"1]

bn !
T

2)2n2

m∑

i!1

-xi

-ti
[sin #i " sin #i"1]

cn !
T

2)2n2

m∑

i!1

-yi

-ti
[cos #i " cos #i"1]

dn !
T

2)2n2

m∑

i!1

-yi

-ti
[sin #i " sin #i"1]

where

-xi ! xi " xi"1, -yi ! yi " yi"1

-ti !
√

-x2
i $ -y2

i , ti !
i∑

j!1

-tj

T ! tm, #i !
2n)ti

T

7.15 For the Fourier coefficients in Problem 7.14, prove that the following
parameters are rotation invariant:

In ! a2
n $ b2

n $ c2
n $ d2

n

Jn ! andn " bncn

K1,n ! (a2
1 $ b2

1)(a2
n $ b2

n) $ (c2
1 $ d2

1)(c2
n $ d2

n)

$ 2(a1c1 $ b1d1)(ancn $ bndn)

7.16 If (x(t), y(t)) are defined as in Problem 7.14 and

z(t) ! x(t) $ jy(t)

the respective complex exponential Fourier series is given as

z(t) !
'∑

n!"'

an exp(j2)nt/T)

an !
1
T

∫ T

0
z(t) exp("j2)nt/T) dt

“09-Ch07-SA272” 18/9/2008 page 469

7.6 Problems 469

Prove that the following parameters are scale and rotation invariant
[Gran 72]:

bn !
a1 $ na1"n

a2
1

, dmn !
an

1 $ mam
1"n

a(m$n)
1

where n ̸! 1.

7.17 Prove that if x(t), y(t) of the previous problem are piecewise linear func-
tions between the points (x(t), y(t)), t ! 0, 1, . . . , m " 1, then the Fourier
coefficients an are given by [Lai 81]

an !
T

(2)n)2

m∑

i!1

(bi"1 " bi) exp("jn2)ti/T)

where

bi !
Vi$1 " Vi

|Vi$1 " Vi|
, ti !

i∑

k!1

|Vk " Vk"1|, i / 0, t0 ! 0

and Vi, i ! 1, 2, . . . , m, the phasors at the respective points.

7.18 Show that the orientation & in Section 7.3.3 results from minimizing

I(&) !
∑

i

∑

j

[(i " x̄) cos & " (j " ȳ) sin &]2

7.19 Show that the power spectrum of an fdm process with Hurst parameter H is
given by

S(f)-
1

f (2H$1)

7.20 Show that the definition of M in (7.46) results in a consistent metric for the
Koch curve.

7.21 Assuming that x(0) ! 0, show that

E[x(n)(x(n $ n0) " x(n))] !
1
2

{
(n $ n0)2H " n2H " n2H

0
}

For the case of a Brownian motion (H ! 1
2) this suggests that x(n) is uncorre-

lated to the increment. This is not true for H ̸! 1
2 ,where a nonzero correlation

exists, positive for H / 1/2 and negative for H * 1/2. To prove this, use, the
definition in (7.51). This can be generalized. That is, if n1) n2) n3) n4 and
the process is Brownian then

E[(x(n2) " x(n1))(x(n4) " x(n3))] ! 0

“09-Ch07-SA272” 18/9/2008 page 470

470 CHAPTER 7 Feature Generation II

MATLAB PROGRAMS AND EXERCISES
Computer Exercises

7.1 First-order image statistics. Write a MATLAB function named first_order_
stats that computes the first-order statistics of a set of images. Specifically, the
function takes as inputs (a) a num_in # q dimensional array name_images,
whose ith row contains the name of the ith image file, (b) the number N_gray
specifying the range [0, N_gray " 1] in which the intensity of the pixels will
be scaled. It returns a num_im#4 dimensional matrix features, the ith row of
which contains the mean,the standard deviation,the skewness and the kurtosis
of the intensity of the pixels of the ith image.

Solution
In practice, it is more convenient to work with images where the intensity
of the pixels lie in a rather small range of values (e.g. [0, 31]), in order to
produce smoother histograms and smaller (nonsparse and easier to handle)
co-occurence matrices (see next program). This is the reason for the N_gray
input argument in the functions of this section.

function features=first_order_stats(name_images,N_gray)
[num_im,q]=size(name_images);
features=zeros(num_im,4);
for i=1:num_im
A=imread(name_images(i,:));
A=double(A);
%Normalization of the pixels intensity in [0,N_gray-1]
A=round((N_gray-1)*((A-min(A(:)))/(max(A(:))-min(A(:)))));
features(i,1)=mean2(A);
features(i,2)=std2(A);
features(i,3)=skewness(A(:));
features(i,4)=kurtosis(A(:));

end

7.2 Second-order image statistics. Write a MATLAB function named second_
order_stats that computes second-order statistics of a set of images. Specifically,
the function takes as inputs: (a) a num_in#q dimensional array name_images,
whose ith row contains the name of the ith image file, (b) the number N_gray
specifying the range [0, N_gray " 1] in which the intensity of the pixels
will be scaled. For each image, four co-occurence matrices determined by
the pixel pairs that are at relative positions (1, 0)◦, (1, 45◦), (1, 90◦), (1, 135◦)
should be computed. The function returns a num_im # 8 dimensional matrix
features, the ith row of which contains (a) in its first four entries: the means
of the contrast, the correlation, the angular second moment (in MATLAB
termed “Energy”) and the inverse difference moment (in MATLAB termed

“09-Ch07-SA272” 18/9/2008 page 471

MATLAB Programs and Exercises 471

“Homogeneity”) computed from the four co-occurence matrices of the ith
image and (b) in its last four entries: the ranges of the values of the previous
features of the ith image.

Solution
In the following implementation, we make use of the graycomatrix and
graycoprops built-in MATLAB functions. The first computes the co-occurence
matrices of an image, while the second is applied on co-occurence matrices
and computes the features ‘Contrast’,‘Correlation’,‘Energy’,‘Homogeneity’.

function features=second_order_stats(name_images,N_gray)
[num_im,q]=size(name_images);
features=zeros(num_im,8);
for i=1:num_im
A=imread(name_images(i,:));
A=double(A);
%Normalization of the pixels intensity in [0, N_gray-1]
A=round((N_gray-1)*((A-min(A(:)))/(max(A(:))-min(A(:)))));
[glcm,SI]=graycomatrix(A,'GrayLimits',[0,N_gray-1],...
'NumLevels',...
N_gray,'Offset',[0 1;-1 0;-1 1; -1 -1],'Symmetric',true);
stats=graycoprops(glcm,{'Contrast','Correlation',...
'Energy','Homogeneity'});
features(i,1)=mean(stats.Contrast);
features(i,2)=mean(stats.Correlation);
features(i,3)=mean(stats.Energy);
features(i,4)=mean(stats.Homogeneity);
features(i,5)=range(stats.Contrast);
features(i,6)=range(stats.Correlation);
features(i,7)=range(stats.Energy);
features(i,8)=range(stats.Homogeneity);

end

7.3 Second-order image statistics (masks). Write a MATLAB function named
mask_order_stats that takes as input a set of original images. Each one of them
is convolved with nine masks, and for each one of the nine resulting images
first order statistics are computed. Specifically,the function takes as inputs: (a)
a num_in # q dimensional array name_images, whose ith row contains the
name of the ith original image file,(b) the number N_gray specifying the range
[0, N_gray " 1] in which the intensity of the pixels will be scaled. The func-
tion should convolve each one of the original images with each one of the
nine masks, defined in Section 7.2.2, producing nine (convolved) images for
each original image. Then, the first-order statistics (mean, standard deviation,
skewness, kurtosis) for each one of the convolved images is computed. The
function returns a num_in # 4 # 9 three-dimensional matrix features, where

“09-Ch07-SA272” 18/9/2008 page 472

472 CHAPTER 7 Feature Generation II

its ith num_im # 4 two-dimensional component corresponds to the results
produced when the ith mask is applied to each one of the original images. Each
one of the two-dimensional components is defined as in the first_order_stats
function.

Solution

function features=mask_stats(name_images,N_gray)
[num_im,q]=size(name_images);
features=zeros(num_im,4,9);
%Definition of the masks
mask(:,:,1)=[1 2 1; 2 4 2; 1 2 1];
mask(:,:,2)=[-1 0 1; -2 0 2; -1 0 1];
mask(:,:,3)=[-1 2 -1; -2 4 -2; -1 2 -1];
mask(:,:,4)=[-1 -2 -1; 0 0 0; 1 2 1];
mask(:,:,5)=[1 0 -1; 0 0 0; -1 0 1];
mask(:,:,6)=[1 -2 1; 0 0 0; -1 2 -1];
mask(:,:,7)=[-1 -2 -1; 2 4 2; -1 -2 -1];
mask(:,:,8)=[1 0 -1; -2 0 2; 1 0 -1];
mask(:,:,9)=[1 -2 1; -2 4 -2; 1 -2 1];
% The following is useful in normalizing the convolution result
sum_mask=sum(sum(mask))+(sum(sum(mask))==0);
for i=1:num_im
A=imread(name_images(i,:));
A=double(A);
%Normalization of the pixels intensity in [0, N_gray-1]
A=round((N_gray-1)*((A-min(A(:)))/(max(A(:))-min(A(:)))));
for j=1:9
B=conv2(A,mask(:,:,j),'same')/sum_mask(j);
features(i,1,j)=mean2(B);
features(i,2,j)=std2(B);
features(i,3,j)=skewness(B(:));
features(i,4,j)=kurtosis(B(:));
end
end

Computer Experiments
Notes:

■ All filenames included in the rows of the name_images array should have the
same number of characters.

■ Test images on which the above programs can be applied can be
found in www.elsevierdirect.com/9781597492720 (‘ROI_01_seeds.bmp’,
‘ROI_02_seeds.bmp’, . . ., ‘ROI_10_seeds.bmp’). In the sequel, this set of
images is called “set of seeds”.

“09-Ch07-SA272” 18/9/2008 page 473

References 473

7.1 Compute the first-order statistics for the set of seeds, using N_gray ! 32 and
comment on the results.

7.2 Compute the second-order statistics for the set of seeds, using N_gray ! 32
and comment on the results.

7.3 Compute the first-order statistics of the nine images produced by each
image of the set of seeds,after its convolution with each one of the nine masks,
given in Section 7.2.2 and comment on the results. Use N_gray ! 32.

REFERENCES
[Alem 90] Al-Emami S., Usher M. “On-line recognition of handwritten Arabic characters,” IEEE

Transactions on Pattern Analysis and Machine Intelligence,Vol. 12(7), pp. 704–710, 1990.

[Arbt 89] Arbter K. “Affine-invariant Fourier descriptors,” in From Pixel to Features (Simon J.C.,
ed.), pp. 153–164, Elsevier, 1989.

[Arbt 90] Arbter K., Snyder W.E., Burkhardt H., Hirzinger G. “Application of affine-invariant
Fourier descriptors to recognition of 3-D objects,” IEEE Transactions on Pattern Analysis and
Machine Intelligence,Vol. 12, pp. 640–647, 1990.

[Ardu 92] Ardunini F.,Fioravanti S.,Giusto D.D., Inzirillo F.“Multifractals and texture classification,”
IEEE International Conference on Image Processing, pp. 454–457, 1992.

[Ayac 00] Ayache A., Véhel J.L. “The generalized multifractional Brownian motion,” Statistical
Inference for Stochastic Processes,Vol. 3, pp. 7–18, 2000.

[Bart 05] Bartch M., Wakefield G.H. “Audio thumbnailing of popular music using chroma-based
representations,” IEEE Transactions on Multimedia,Vol. 7(1), pp. 96–104, February 2005.

[Bass 92] Bassevile M., Benveniste A., Chou K., Golden S.A., Nikoukhah R.,Willsky A.S. “Modeling
and estimation of multiresolution stochastic processes,” IEEE Transactions on Information
Theory,Vol. 38, pp. 766–784, 1992.

[Brod 66] Brodatz P. Textures—A Photographic Album for Artists and Designers, Dover, 1966.

[Brow 91] Brown J.C., Zhang B. “Musical frequency tracking using the methods of conventional
and narrowed autocorrelation,” Journal of the Acoustical Society of America,Vol. 89(5), 1991.

[Cavo 92] Cavouras D., Prassopoulos P., Pantelidis N. “Image analysis methods for solitary pul-
monary nodule characterization by CT,”European Journal of Radiology,Vol. 14, pp. 169–172,
1992.

[Chel 85] Chellapa R. “Two dimensional discrete Gaussian Markov random field models for
image processing,” in Progress in Pattern Recognition (Kanal L.N., Rosenfeld A., eds.),Vol. 2,
pp. 79–112, North Holland, 1985.

[Chen 89] Chen C.C.,Daponee J.S.,Fox M.D.“Fractal feature analysis and classification in medical
imaging,” IEEE Transactions on Medical Imaging,Vol. 8, pp. 133–142, 1989.

[Chon 03] Chong C.-W.,Raveendran P.,Mukundan R.“Translation invariants of Zernike moments,”
Pattern Recognition,Vol. 36, pp. 1765–1773, 2003.

[Chon 04] Chong C.-W.,Raveendran P.,Mukundan R.“Translation and scale invariants of Legendre
moments,”Pattern Recognition,Vol. 37, pp. 119–129, 2004.

[Clau 04] Clausen M., Kurth F. “A unified approach to content-based and fault-tolerant music
recognition,” IEEE Transactions on Multimedia,Vol. 6(5), pp. 717–731, October 2004.

“09-Ch07-SA272” 18/9/2008 page 474

474 CHAPTER 7 Feature Generation II

[Crim 82] Crimmins T.R. “A complete set of Fourier descriptors,” IEEE Transactions on Systems
Man and Cybernetics,Vol. 12, pp. 236–258, 1982.

[Cros 83] Cross G.R.,JainA.K.“Markov random field texture models,”IEEETransactions on Pattern
Analysis and Machine Intelligence,Vol. 5(1), pp. 25–39, 1983.

[Davi 79] Davis L., Johns S.,Aggrawal J.K.“Texture analysis using generalized co-occurrence matri-
ces,” IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 1(3), pp. 251–259,
1979.

[Davi 80] Davis S.B., Mermelstein P. “Comparison of parametric representations of monosyllabic
word recognition in continuously spoken sentences,” IEEE Transactions on Acoustics, Speech,
and Signal Processing,Vol. 28(4), pp. 357–366, 1980.

[Dell 00] Deller J.R., Hansen J.H.L., Proakis J.G. Discrete Processing of Speech Signals, John Wiley
& Sons, New York, 2000.

[Deri 93] Deriche M., Tewfik A.H. “Signal modeling with filtered discrete fractional noise pro-
cesses,” IEEE Transactions on Signal Processing,Vol. 41, pp. 2839–2850, 1993.

[Falc 90] Falconer K. Fractal Geometry:Mathematical Foundations andApplications,JohnWiley
& Sons, 1990.

[Fieg 96] Fieguth P.W., Willsky A.S. “Fractal estimation using models on multiscale trees,” IEEE
Transactions on Signal Processing,Vol. 41, pp. 1297–1300, 1996.

[Flan 92] Flandrin P. “Wavelet analysis and synthesis of fractional Brownian motion,” IEEE
Transactions on Information Theory,Vol. 38, pp. 910–917, 1992.

[Flus 93] Flusser J.,Suk T.“Pattern recognition by affine moment invariants,”Pattern Recognition,
Vol. 26(1), pp. 167–174, 1993.

[Flus 94] Flusser J.,SukT.“Affine moment invariants:A new tool for character recognition,”Pattern
Recognition,Vol. 15(4), pp. 433–436, 1994.

[Frag 01] Fragoulis D., Rousopoulos G., Panagopoulos T., Alexiou C., Papaodysseus C. “On the
automated recognition of seriously distorted musical recordings,” IEEE Transactions on Signal
Processing,Vol. 49(4), pp. 898–908, 2001.

[Free 61] Freeman H. “On the encoding of arbitrary geometric configurations,” IRE Transactions
on Electronic Computers,Vol. 10(2), pp. 260–268, 1961.

[Gall 75] Galloway M. “Texture analysis using gray-level run lengths,” Computer Graphics and
Image Processing,Vol. 4, pp. 172–179, 1975.

[Gewe 83] Geweke J., Porter-Hudak S. “The estimation and application of long memory time
series,” Journal of Time Series Analysis,Vol. 4, pp. 221–237, 1983.

[Ghos 97] Ghosal S., Mehrotra R. “A moment based unified approach to image feature detection,”
IEEE Transactions on Image Processing,Vol. 6(6), pp. 781–794, 1997.

[Glen 94] Glentis G., Slump C., Herrmann O. “An efficient algorithm for two-dimensional FIR
filtering and system identification,”SPIE Proceedings,VCIP, pp. 220–232, Chicago, 1994.

[Goto 04] Goto M. “A real-time music-scene-description system: Predominant - F0 estimation for
detecting melody and bass lines in real-world audio signals,” Speech Communication (ISCA)
Journal,Vol. 43(4), pp. 311–329, 2004.

[Gran 72] Granlund G.H. “Fourier preprocessing for hand print character recognition,” IEEE
Transactions on Computers,Vol. 21, pp. 195–201, 1972.

[Hara 73] Haralick R., Shanmugam K., Distein I. “Textural features for image classification,” IEEE
Transactions on Systems Man and Cybernetics,Vol. 3(6), pp. 610–621, 1973.

“09-Ch07-SA272” 18/9/2008 page 475

References 475

[Hayk 96] Haykin S. Adaptive Filter Theory, 3rd ed., Prentice Hall, 1996.

[Heyw 95] Heywodd M.I.,Noakes P.D.“Fractional central moment method for movement-invariant
object classification,” IEE Proceedings Vision, Image and Signal Processing,Vol. 142 (4), pp.
213–219, 1995.

[Hu 62] Hu M.K. “Visual pattern recognition by moment invariants,” IRE Transactions on
Information Theory,Vol. 8(2), pp. 179–187, 1962.

[Huan 94] Huang Q., Lorch J.R., Dubes R.C. “Can the fractal dimension of images be measured?”
Pattern Recognition,Vol. 27(3), pp. 339–349, 1994.

[Huan 06] Huang S.-K.,KimW.-Y.“A novel approach to the fast computation of Zernike moments,”
Pattern Recognition,Vol. 39(11), pp. 2065–2076, 2006.

[Kalo 89] Kalouptsidis N., Theodoridis S. “Concurrent algorithms for a class of 1-D and 2-D
Wiener filters with symmetric impulse response,” IEEE Transactions on Signal Processing,Vol.
ASSP-37, pp. 1780–1782, 1989.

[Kan 02] Kan C., Srinath M.D. “Invariant character recognition with Zernike moments and
orthogonal Fourier-Mellin moments,”Pattern Recognition,Vol. 35, pp. 143–154, 2003.

[Kapl 99] Kaplan L.M. “Extended fractal analysis for the texture classification and segmentation,”
IEEE Transactions on Image Processing,Vol. 8(11), pp. 1572–1585, 1999.

[Kapl 94] Kaplan L.M.,Kuo C.-C.J.“Extending self similarity for fractional Brownian motion,”IEEE
Transactions on Signal Processing,Vol. 42(12), pp. 3526–3530, 1994.

[Kapl 95] Kaplan L.M., Kuo C.C.J. “Texture roughness analysis and synthesis via extended self-
similar model,” IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 17(11),
pp. 1043–1056, 1995.

[Kara 95] KarayannisY.A.,StouraitisT.“Texture classification using fractal dimension as computed
in a wavelet decomposed image,” IEEE Workshop on Nonlinear Signal and Image Processing,
pp. 186–189, Neos Marmaras, Halkioliki, June 95.

[Kash 82] Kashyap R.L., Chellapa R., Khotanzad A. “Texture classification using features derived
from random field models,”Pattern Recognition Letters,Vol. 1, pp. 43–50, 1982.

[Kash 86] Kashyap R.L., Khotanzad A. “A model based method for rotation invariant texture
classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8(4),
pp. 472–481, 1986.

[Kell 87] Keller J.M., Crownover R., Chen R.Y. “Characteristics of natural scenes related to frac-
tal dimension,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9,
pp. 621–627, 1987.

[Khot 90a] Khotanzad A., Hong Y.H. “Invariant image recognition by Zernike moments,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 12(5), pp. 489–497, 1990.

[Khot 90b] Khotanzad A., Lu J.H. “Classification of invariant image representations using a
neural network,” IEEE Transactions on Acoustics Speech and Signal Processing, Vol. 38(6),
pp. 1028–1038, 1990.

[Klap 03] Klapuri A. “Multiple fundamental frequency estimation by harmonicity and spectral
smoothness,” IEEE Transactions on Speech and Audio Processing, Vol. 11(6), pp. 804–816,
2003.

[Kuhl 82] Kuhl F.P., Giardina C.R. “Elliptic Fourier features of a closed contour,” Comput. Vis.
Graphics Image Processing,Vol. 18, pp. 236–258, 1982.

[Lai 81] Lai M.,SuenY.C.“Automatic recognition of characters by Fourier descriptors and boundary
line encoding,”Pattern Recognition,Vol. 14, pp. 383–393, 1981.

“09-Ch07-SA272” 18/9/2008 page 476

476 CHAPTER 7 Feature Generation II

[Laws 80] Laws K.I. “Texture image segmentation”Ph.D.Thesis,University of Southern California,
1980.

[Liao 96] Liao S., Pawlak M. “On image analysis by moments,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 18(3), pp. 254–266, March 1996.

[Lin 87] Lin C.S., Hwang C.L. “New forms of shape invariants from elliptic Fourier descriptors,”
Pattern Recognition,Vol. 20(5), pp. 535–545, 1987.

[Lu 91] Lu S.Y., Ren Y., Suen C.Y. “Hierarchical attributed graph representation and recognition of
handwritten Chinese characters,”Pattern Recognition,Vol. 24(7), pp. 617–632, 1991.

[Lund 86] LundahlT.,OhleyW.J.,Kay S.M.,Siffer R.“Fractional Brownian motion: A maximum like-
lihood estimator and its application to image texture,” IEEE Transactions on Medical Imaging,
Vol. 5, pp. 152–161, 1986.

[Mahm 94] Mahmoud S. “Arabic character recognition using Fourier descriptors and character
contour encoding,”Pattern Recognition,Vol. 27(6), pp. 815–824, 1994.

[Mami 98] Mamistvalov A.G. “n-Dimensional moment invariants and the conceptual mathemati-
cal theory of recognition n-dimensional objects,” IEEE Transactions on Pattern Analysis and
Machine Intelligence,Vol. 20(8), pp. 819–831, 1998.

[Mand 68] Mandelbrot B.B, Van Ness J.W. “Fractional Brownian motion, fractional noises and
applications,”SIAM Review,Vol. 10, pp. 422–437, 1968.

[Mand 77] Manderbrot B.B. The Fractal Geometry of Nature,W.H. Freeman, New York, 1982.

[Mao 92] Mao J., Jain A.K. “Texture classification and segmentation using multiresolution simulta-
neous autoregressive models,”Pattern Recognition,Vol. 25(2), pp. 173–188, 1992.

[Mara 93] Maragos P., Sun F.K. “Measuring the fractal dimension of signals: Morphological covers
and iterative optimization,”IEEE Transactions on Signal Processing,Vol. 41,pp. 108–121,1993.

[Mori 92] Mori S., Suen C. “Historical review of OCR research and development,” Proceedings of
IEEE,Vol. 80(7), pp. 1029–1057, 1992.

[Muku 95] Mukundan R., Ramakrshnan J. “Fast computation of Legendre and Zernike moments,”
Pattern Recognition,Vol. 28(9), pp. 1433–1442, 1995.

[Muku 98] Mukundan R., Ramakrshnan J. Moment Functions in Image Analysis–Theory and
Applications,World Scientific, Singapore, 1998.

[Ohan 92] Ohanian P., Dubes R. “Performance evaluation for four classes of textural features,”
Pattern Recognition,Vol. 25(8), pp. 819–833, 1992.

[Ojal 96] Ojala T., Pietikainen M., Harwood D. “A comparative study of texture measures with
classification based on feature distributions,”Pattern Recognition,Vol. 29(1), pp. 51–59, 1996.

[Papo 91] PapoulisA. Probability, RandomVariables, and Stochastic Processes,3rd ed.,McGraw-
Hill, 1991.

[Pele 84] Peleg S., Naor J., Hartley R.,Anvir D. “Multiple resolution texture analysis and classifica-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 6, pp. 818–523,
1984.

[Penn 97] Penn A.I., Loew M.H. “Estimating fractal dimension with fractal interpolation function
models,” IEEE Transcations on Medical Imaging,Vol. 16, pp. 930–937, 1997.

[Pent 84] Pentland A. “Fractal based decomposition of natural scenes,” IEEE Transactions on
Pattern Analysis and Machine Intelligence,Vol. 6(6), pp. 661–674, 1984.

“09-Ch07-SA272” 18/9/2008 page 477

References 477

[Pers 77] Persoon E., Fu K.S. “Shape discrimination using Fourier descriptors,” IEEE Transactions
on Systems Man and Cybernetics,Vol. 7, pp. 170–179, 1977.

[Petr 06] Petrou M.,Sevilla P.G. Image Processing: Dealing with Texture, JohnWiley & Sons,2006.

[Pesq 02] Pesquet-Popescu B., Vehel J.L. “Stochastic fractal models for image processing,” IEEE
Signal Processing Magazine,Vol. 19(5), pp. 48–62, 2002.

[Pico 93] Picone J. “Signal modeling techniques in speech recognition,”Proceedings of the IEEE,
Vol. 81(9), pp. 1215–1247, 1993.

[Pikr 03] Pikrakis A.,Theodoridis S.,Kamarotos D.“Recognition of isolated musical patterns using
context dependent dynamic time warping,”IEEETransactions on Speech andAudio Processing,
Vol. 11(3), pp. 175–183, 2003.

[Pikr 06] Pikrakis A., Theodoridis S., Kamarotos D. “Classification of musical patterns using
variable duration hidden Markov models,”IEEE Transactions on Speech and Audio Processing,
to appear in 2006.

[Pikr 08] Pikrakis A., Gannakopoulos T., Theodoridis S. “A speech-music discriminator of radio
recordings based on dynamic programming and Bayesian networks,” IEEE Transactions on
Multimedia,Vol. 10(5), pp. 846–856, 2008.

[Pita 94] Pitas I. Image Processing Algorithms, Prentice Hall, 1994.

[Plam 00] Plamondon R., Srihari S.N. “On-line and off-line handwriting recognition: A compre-
hensive survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 22(1),
pp. 63–84, 2000.

[Proa 92] Proakis J., Manolakis D. Digital Signal Processing: Principles, Algorithms, and
Applications, 2nd ed., Macmillan, 1992.

[Rabi 93] Rabiner L., Juang B.H. Fundamentals of Speech Recognition, Prentice Hall, Englewood
Cliffs, NJ, 1993.

[Rabi 78] Rabiner L.R., Schafer R.W. Digital Processing of Speech Signals, Prentice Hall, 1978.

[Rand 99] Randen T., Husoy H.H. “Filtering for texture classification: A comparative study,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 21(4), pp. 291–310, 1999.

[Reis 91] Reiss T.H. “The revised fundamental theorem of moment invariants,” IEEE Transactions
on Pattern Analysis and Machine Intelligence,Vol. 13, pp. 830–834, 1991.

[Rich 95] RichardsonW.“Applying wavelets to mammograms,”IEEE Engineering in Medicine and
Biology,Vol. 14, pp. 551–560, 1995.

[Sark 97] Sarkar A., Sharma K.M.S., Sonak R.V. “A new approach for subset 2-D AR model identifi-
cation for describing textures,”IEEE Transactions on Image Processing,Vol. 6(3),pp. 407–414,
1997.

[Saup 91] Saupe D. “Random fractals in image processing,” in Fractals and Chaos (Crilly A.J.,
Earnshaw R.A., Jones H., eds.), pp. 89–118, Springer-Verlag, 1991.

[Schr 68] Schroeder M.R.“Period histogram and product spectrum: New methods for fundamental
frequency measurement,” Journal of Acoustical Society of America, Vol. 43(4), pp. 829–834,
1968.

[Sing 06] Singh C. “Improved quality of reconstructed images using floating point arithmetic for
moment calculation,”Pattern Recognition,Vol. 39(11), pp. 2047–2064, 2006.

[Tamu 78] Tamura H., Mori S.,Yamawaki T. “Textural features corresponding to visual Perception,”
IEEE Transactions on Systems, Man, and Cybernetics,Vol. 8(6), pp. 460–473, 1978.

“09-Ch07-SA272” 18/9/2008 page 478

478 CHAPTER 7 Feature Generation II

[Tang 98] Tang X. “Texture information in run-length matrices,” IEEE Transactions on Image
Processing,Vol. 7(11), pp. 1602–1609, 1998.

[Taxt 90] Taxt T., Olafsdottir J.B., Daechlen M. “Recognition of hand written symbols,” Pattern
Recognition,Vol. 23(11), pp. 1155–1166, 1990.

[Teag 80] Teague M.“Image analysis via the general theory of moments,”Journal of Optical Society
of America,Vol. 70(8), pp. 920–930, 1980.

[Teh 88] Teh C.H., Chin R.T. “On image analysis by the method of moments,” IEEE Transactions
on Pattern Analysis and Machine Intelligence,Vol. 10(4), pp. 496–512, 1988.

[Theo 93] Theodoridis S., Kalouptsidis N. “Spectral analysis,” in Adaptive System Identification
and Signal Processing Algorithms (Kalouptsidis N.,Theodoridis S., eds.), Prentice Hall, 1993.

[Tolo 00] Tolonen T., Karjalainen M. “A computationally efficient multipitch analysis model,” IEEE
Transactions on Speech and Audio Processing,Vol. 8(6), pp. 708–716, November 2000.

[Trie 95] Trier O.D.,JainA.K.“Goal-directed evaluation of binarization methods,”IEEETransactions
on Pattern Analysis and Machine Intelligence,Vol. 17(12), pp. 1191–1201, 1995.

[Trie 96] Trier O.D., Jain A.K., Taxt T. “Feature extraction methods for character recognition—A
survey,”Pattern Recognition,Vol. 29(4), pp. 641–661, 1996.

[Tson 92] Tsonis A. Chaos: From Theory to Applications, Plenum Press, 1992.

[Tzan 02] Tzanetakis G., Cook P. “Musical genre classification of audio signals,” IEEE Transactions
on Speech and Audio Processing,Vol. 10(5), pp. 293–302, 2002.

[Unse 86] Unser M.“Local linear transforms for texture measurements,”Signal Processing,Vol. 11,
pp. 61–79, 1986.

[Unse 89] Unser M., Eden M. “Multiresolution feature extraction and selection for texture seg-
mentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11(7),
pp. 717–728, 1989.

[Vinc 02] Vinciarelli A. “A survey on off-line cursive word recognition,” Pattern Recognition,
Vol. 35, pp. 1433–1446, 2002.

[Wang 98] Wang L.,Healey G.“Using Zernike moments for the illumination and geometry invariant
classification of multispectral textures,” IEEE Transactions on Pattern Analysis and Machine
Intelligence,Vol. 7(2), pp. 196–203, 1998.

[Wang 93] Wang L., Pavlidis T. “Direct gray-scale extraction of features for character recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 15(10),pp. 1053–1067,
1993.

[Wang 00] Wang Y., Huang J.C. “Multimedia content analysis,” IEEE Signal Processing Magazine,
Vol. 17(6), pp. 12–36, 2000.

[Wee 06] Wee C.-Y., Paramesran R. “Efficient computation of radial moment functions using
symmetrical property,”Pattern Recognition,Vol. 39(11), pp. 2036–2046, 2006.

[Wold 96] Wold E.,BlumT.,Keislar D.,Wheaton J.“Content-based classification,search,and retrieval
of audio,” IEEE Multimedia Magazine,Vol. 22, pp. 27–36, 1996.

[Wood 72] Woods J. “Markov image modeling,” IEEE Transactions on Information Theory,
Vol. 18(3), pp. 232–240, 1972.

[Wood 96] Wood J.“Invariant pattern recognition,”Pattern Recognition,Vol. 29(1),pp. 1–17,1996.

“09-Ch07-SA272” 18/9/2008 page 479

References 479

[Worn 96] WornellW.G. Signal Processing with Fractals.AWavelet BasedApproach,Prentice Hall,
1996.

[Wu 03] Wu M., Wang D., Brown G.J. “A multipitch tracking algorithm for noisy speech,” IEEE
Transactions on Speech and Audio Processing,Vol. 11(3), pp. 229–241, May 2003.

[Zhan 01] Zhang T., Kuo C.C.J. “Audio content analysis for online audiovisual data segmen-
tation and classification,” IEEE Transactions on Speech and Audio Processing, Vol. 9(4),
pp. 441–458, 2001.

“10-Ch08-SA272” 18/9/2008 page 481

CHAPTER

8Template Matching

8.1 INTRODUCTION
In all previous chapters,the major concern was to assign an unknown pattern to one
of the possible classes. The problem that will accompany us throughout this chap-
ter is of a slightly different nature. We will assume that a set of reference patterns
(templates) are available to us,and we have to decide which one of these reference
patterns an unknown one (the test pattern) matches best. These templates may be
certain objects in a scene or can be strings of patterns,such as letters forming words
in a written text or words or phrases in a spoken text. Typically, such problems
arise in speech recognition, in automation using robot vision, in motion estima-
tion for video coding, and in image database retrieval systems, to name but a few.
A reasonable first step to approaching such a task is to define a measure or a cost
measuring the“distance”or the“similarity”between the (known) reference patterns
and the (unknown) test pattern, in order to perform the matching operation known
as template matching. We know by now that each pattern is expressed in terms
of a vector or a matrix with elements the set of the selected features. Then why
not use one of the already known distance measures, that is,Euclidean or Frobenius
norms, and perform the matching operation based on the minimum distance? A
little more thinking reveals that such a straightforward approach is not enough and
something more is needed. This is the crucial point that makes template matching
different and at the same time interesting.

To understand this issue better, let us consider a written text matching problem,
that is, to identify which one from a set of written words is the word, say,“beauty.”
However, because of errors in the reading sensors, the specific test pattern may
appear, for example, as “beety”or “beaut.” In a speech recognition task, if a specific
word is spoken by the same speaker a number of times, it will be spoken differently
every time. Sometimes it will be spoken quickly, and the resulting pattern will be
of short duration in time, sometimes slowly, and the pattern will be longer. Yet
in all cases it is the “same” word spoken by the same person. In a scene analysis
application, the object to be identified may be present in an image, but its location
within the image is not known. In content-based image database retrieval systems,

481

“10-Ch08-SA272” 18/9/2008 page 482

482 CHAPTER 8 Template Matching

queries often include the shape of an object. However, the shape provided by
the user, most often, does not match exactly the shape of the object residing in
the database images. The major goal of this chapter is to define measures that
accommodate the distinct characteristics for each category of these problems. As
is always the case with a textbook, only general directions and typical cases will be
treated.

We will begin with the problem of string pattern matching and will deal with the
scene analysis and shape recognition problems later on. The tasks, although they
share the same goal, require different tools because of their different nature.

8.2 MEASURES BASED ON OPTIMAL PATH
SEARCHING TECHNIQUES

We will first focus on a category of template matching,where the involved patterns
consist of strings of identified symbols or feature vectors (string patterns). That is,
each of the reference and test patterns is represented as a sequence (string) of meas-
ured parameters, and one has to decide which reference sequence the test-pattern
matches best.

Let r(i), i!1, 2, . . . , I , and t(j), j!1, 2, . . . , J , be the respective feature vector
sequences for a specific pair of reference and test patterns, where in general I ̸!
J . The objective is to develop an appropriate distance measure between the two
sequences. To this end, we form a two-dimensional grid with the elements of the
two sequences as points on the respective axes, that is, the reference string at the
abscissa (i-axis) and the test one at the ordinate (j-axis). Figure 8.1 is an example
for I ! 6, J ! 5. Each point of the grid (node) marks a correspondence between
the respective elements of the two sequences. For example, node (3, 2) maps the
element r(3) to t(2). Each node (i, j) of the grid is associated with a cost, which
is an appropriately defined function d(i, j) measuring the “distance” between the
respective elements of the strings, t(j) and r(i). A path through the grid from an
initial node (i0, j0) to a final one (if , jf) is an ordered set of nodes of the form

(i0, j0), (i1, j1), (i2, j2), . . . , (if , jf)

Each path is associated with an overall cost D defined as

D !
K"1∑

k!0

d(ik, jk)

where K is the number of nodes along the path. For the example of Figure 8.1,
K ! 8. The overall cost up to node (ik, jk) will be denoted by D(ik, jk), and by
convention we assume D(0, 0) ! 0 and also d(0, 0) ! 0. The path is said to be
complete if

(i0, j0) ! (0, 0), (if , jf) ! (I , J)

“10-Ch08-SA272” 18/9/2008 page 483

8.2 Optimal Path Searching Techniques 483

5

4

3

2

11

1 2 3 4 5 6 i

j

0
0

FIGURE 8.1
Each point along the path marks a correspondence between the respective elements of the
test and reference patterns.

The distance1 between the two sequences is defined as the minimum D over all
possible paths. At the same time, the minimum cost path unravels the optimal
pairwise correspondence between the elements of the two sequences,which is the
crucial part, since the two sequences are of different lengths. In other words, the
optimal path procedure makes the alignment or warping of the elements of the test
string to the elements of the reference string, corresponding to the best matching
score. Before we talk about the optimization procedure, we must point out that
there are a number of variations of this scheme. For example, one may not impose
the constraint of having necessarily a complete path but may adopt more relaxed
constraints known as end point constraints. Furthermore, one could associate a
cost not only with each node but also with each transition between nodes, making
certain transitions more costly than others. In such cases, the cost at a node (ik, jk)
also depends on the specific transition, that is, from which node (ik"1, jk"1) the
(ik, jk) node was reached. Thus, the cost d is now of the form d(ik, jk|ik"1, jk"1)
and the overall path cost is

D !
∑

k

d(ik, jk|ik"1, jk"1)

In some cases the overall path cost is defined as the product

D !
∏

k

d(ik, jk|ik"1, jk"1)

1 The term distance here must not be interpreted with its strict mathematical definition.

“10-Ch08-SA272” 18/9/2008 page 484

484 CHAPTER 8 Template Matching

Finally, there are cases where d is chosen so that maximization instead of
minimization is required. Obviously, in all these variations appropriate initial condi-
tions have to be adopted. Let us now come back to the optimization problem
itself. To obtain the best path, one has to search all possible combinations of
paths. However, this is a computationally costly procedure. Dynamic program-
ming algorithms based on Bellman’s principle are powerful tools that we will adopt
to reduce the computational complexity.

8.2.1 Bellman’s Optimality Principle and Dynamic Programming
Let the optimal path between an initial node (i0, j0) and a final one (if , jf) be
denoted as

(i0, j0)
opt
"→ (if , jf)

If (i, j) is an intermediate node between (i0, j0) and (if , jf), we will denote the
optimal path constrained to pass through (i, j) as

(i0, j0)
opt
"→

(i, j)
(if , jf)

Bellman’s principle states that [Bell 57]

(i0, j0)
opt
"→

(i, j)
(if , jf) ! (i0, j0)

opt
"→ (i, j) ⊕ (i, j)

opt
"→ (if , jf)

where ⊕ denotes concatenation of paths. In other words,Bellman’s principle states
that the overall optimal path from (i0, j0) to (if , jf) through (i, j) is the concate-
nation of the optimal path from (i0, j0) to (i, j) and the optimal path from (i, j)
to (if , jf). The consequence of this principle is that once we are at (i, j) through
the optimal path, then to reach (if , jf) optimally we need to search only for the
optimal path from (i, j) to (if , jf).

Let us now express this in a way that will be useful to us later on. Assume that
we have departed from (i0, j0) and let the kth node of the path be (ik, jk). The goal
is to compute the minimum cost required to reach the latter node. The transition
to (ik, jk) has to take place from one of the possible nodes that are allowed to be in
the (k " 1)th position of the path (that is, the (ik"1, jk"1) node). This is important.
For each node of the grid we assume that there is a set of allowed predecessors,
defining the so-called local constraints. Bellman’s principle readily leads to

Dmin(ik, jk) ! min
ik"1,jk"1

[Dmin(ik"1, jk"1) # d(ik, jk|ik"1, jk"1)] (8.1)

Indeed, the overall minimum cost to reach node (ik, jk) is the minimum cost up to
node (ik"1, jk"1) plus the extra cost of the transition from (ik"1, jk"1) to (ik, jk).
Furthermore, the search for the minimum is constrained only within the set of
allowable predecessors for the (ik, jk) node. This procedure is carried out for all
the nodes of the grid. However, in many cases not all nodes of the grid are involved,

“10-Ch08-SA272” 18/9/2008 page 485

8.2 Optimal Path Searching Techniques 485

and the optimal path searching takes place among a subset of the nodes,which are
defined via the so-called global constraints. The resulting algorithm is known as
dynamic programming. Equation (8.1) has to be modified accordingly if the cost
D is given in its multiplicative form and/or if maximization is required.

Let us now focus on our string pattern matching task and see how the recursive
equation (8.1) is used to construct the optimal complete path.

Figure 8.2 illustrates the procedure. The set of nodes involved in the optimiza-
tion (global constraints) is denoted as dark dots, and the local constraints, defining
the allowable transitions among these nodes, are shown in the figure by the black
lines. Having decided to search for the complete path and assuming D(0, 0) ! 0,
the respective costs D(i1, j1) for all the allowed nodes involved in step k ! 1 are
computed, via (8.1) (in our case there are only two allowable nodes, ((1, 1) and
(1, 2)). Subsequently, the costs of the (three) nodes at step k!2 are computed,and
the procedure is repeated until we arrive at the final node (I , J). The sequence of
transitions leading to the minimum D(I , J) of the final node defines the minimum
cost path, denoted by the red line. The optimal node correspondence, between
the test and reference patterns, can then be unraveled by backtracking the opti-
mal path. In the example of Figure 8.2, each step k of the recursion involves
only nodes with the same abscissa coordinate, which reflects the local constraints

5

4

3

2

1

0
0

1 2 3 4 5 step k

1 2 3 4 5 i

j

FIGURE 8.2
The optimal path (red line) is constructed by searching among all allowable paths, as defined
by the global and local constraints. The optimal node correspondence, between the test and
reference patterns, is unraveled by backtracking the optimal path.

“10-Ch08-SA272” 18/9/2008 page 486

486 CHAPTER 8 Template Matching

adopted. In general,this is not necessary,and more involved topologies may be used.
However, the philosophy of the search for the minimum remains the same. In
the following subsections, we will apply the procedure in two different popular
application areas.

Example 8.1
Figure 8.3 shows the optimal paths (black lines) to reach the nodes at step k!3 starting from
the nodes at step k ! 0. The grid contains three nodes per step. Only the optimal paths, up
to step k ! 3, have been drawn. The goal of this example is to extend the previous paths to
the next step and compute the optimal paths terminating at the three nodes at step k ! 4.
Bellman’s principle will be employed. Assume that the accumulated costs of the optimal paths
Dmin(3, j3), j3 ! 0, 1, 2 at the respective nodes are:

Dmin(3, 0) ! 0.8, Dmin(3, 1) ! 1.2, Dmin(3, 2) ! 1.0 (8.2)

We are also given the transition costs d(4, j4|3, j3), j3 ! 0, 1, 2, j4 ! 0, 1, 2, in the form of a
transition matrix in Table 8.1. In other words, the transition cost, for example, from node (3, 1)
to node (4, 2) is equal to 0.2. To obtain the optimal path to node (4, 0) one has to combine
the values given in (8.2) and the corresponding transition costs provided in Table 8.1. Thus

Total cost for the transition from (3, 0) to (4, 0) is equal to 0.8 # 0.8 ! 1.6.
Total cost for the transition from (3, 1) to (4, 0) is equal to 1.2 # 0.2 ! 1.4.
Total cost for the transition from (3, 2) to (4, 0) is equal to 1.0 # 0.7 ! 1.7.

Applying Eq. (8.1) shows that the optimal path, with the minimum accumulated cost, to reach
node (4, 0) is obtained via the transition from node (3, 1). The reader can verify that the
optimal paths to the nodes at step k ! 4 are the ones shown in Figure 8.3. The optimal costs
associated with nodes (4, 1) and (4, 2) are equal to 1.2 and 1.3, respectively. Transitions
from step k ! 3 to k ! 4 are indicated by red lines. Note that, for the case of our example,

1 2 3 4 i

j

0

1

2

0

FIGURE 8.3
Optimal paths for the grid of example 8.1. Red lines correspond to the extensions of the optimal
paths from step k ! 3 to step k ! 4.

“10-Ch08-SA272” 18/9/2008 page 487

8.2 Optimal Path Searching Techniques 487

Table 8.1 Transition Costs Between
Nodes for the Example 8.1

Nodes (4, 0) (4, 1) (4, 2)

(3, 0) 0.8 0.6 0.8

(3, 1) 0.2 0.3 0.2

(3, 2) 0.7 0.2 0.3

the path originating from node (0,1) will not take place in the computations if more steps are
added, that is, k ! 5,6, As we say, this path does not survive beyond step k ! 3.

8.2.2 The Edit Distance
In this section, we will be concerned with patterns that consist of sets of ordered
symbols. For example, if these symbols are letters, then the patterns are words from
a written text. Such problems arise in automatic editing and text retrieval appli-
cations. Other examples of symbol strings occur in structural pattern recognition.
Once the symbols of a (test) pattern have been identified, for example,via a reading
device, the task is to recognize the pattern,searching for the best match of it against
a set of reference patterns. The measure to be adopted for the matching procedure
should take into account the following errors, which may occur during the symbol
identification phase.

■ Wrongly identified symbol (e.g.,“befuty” instead of “beauty”)

■ Insertion error (e.g.,“bearuty”)

■ Deletion error (e.g.,“beuty”)

Obviously, a combination of these errors may also occur. For the matching proce-
dure we will adopt the philosophy behind the so-called variational similarity. In
other words, the similarity between two patterns is based on the “cost” associated
with converting one pattern to the other. If the patterns are of the same length,then
the cost is directly related to the number of symbols that have to be changed in one
of them so that the other pattern results. More interest arises when the two patterns
are not of equal length. In such cases symbols have to be either deleted or inserted
at certain places of the test string. The location where deletions or insertions are
to be made presupposes an optimal alignment (warping) among the symbols of the
two patterns. The Edit distance [Dame 64, Leven 66] between two string patterns
A and B, denoted D(A, B), is defined as the minimum total number of changes C ,
insertions I , and deletions R required to change pattern A into pattern B,

D(A, B) ! min
j

[C(j) # I(j) # R(j)] (8.3)

“10-Ch08-SA272” 18/9/2008 page 488

488 CHAPTER 8 Template Matching

where j runs over all possible combinations of symbol variations in order to obtain
B from A. To elaborate a bit, note that there is more than one way to change, say,
“beuty” to “beauty.” For example, one can either insert “a” after “e” or change “u” to
“a”and then insert “u.”

We will employ the dynamic programming methodology to compute the re-
quired minimum in (8.3). To this end, we form the grid by placing the symbols of
the reference pattern in the abscissa axis and the test pattern in the ordinate one.
Figure 8.4 demonstrates the procedure via four examples. As already pointed out,
the first step in an optimal path searching procedure via dynamic programming

i

j

m

e

r

d

d r e a

(a)

i

j

m

e

r

d

d r e a

(b)

u

i

j
m

e

r

d

d r e a

(c)

a

i

j

m

e

r

d

d e a

(d)

D ! 1 D ! 1

D ! 1 D ! 0
a

a

i " 1, j

i " 1, j " 1
i, j " 1

i , j

m m

m r m

FIGURE 8.4
Computation of the Edit distance with (a) an insertion, (b) a change, (c) a deletion, and
(d) an equality. The local constraints are shown at the bottom right corner.

“10-Ch08-SA272” 18/9/2008 page 489

8.2 Optimal Path Searching Techniques 489

techniques is to state the node transition constraints imposed by the problem. For
our case of interest, the following constraints are adopted.

■ The cost D(0, 0) of the (0, 0) node is zero.

■ A complete path is searched.

■ Each node (i, j) can be reached only through three allowable predecessors,
that is,

(i " 1, j), (i " 1, j " 1), (i, j " 1)

as indicated at the bottom of Figure 8.4.

The costs associated with the above three transitions are:

1. Diagonal transitions:

d(i, j|i " 1, j " 1) !

{
0 if r(i) ! t(j)

1 if r(i) ̸! t(j)

That is, the cost of a transition is zero if the symbols corresponding to the
(i, j) node are the same and unity if they are different;hence a symbol change
has to take place.

2. Horizontal and vertical transitions:

d(i, j|i " 1, j) ! d(i, j|i, j " 1) ! 1

The meaning of horizontal transitions is that they attempt alignment of the
two strings by insertion of a symbol; see Figure 8.4a. Thus, they add to the
cost, because they imply local mismatch. Similarly, vertical transitions add to
the cost because they imply deletions, Figure 8.4c.

Incorporating these constraints and the distance (8.3) in a dynamic programming
procedure, the following algorithm results.

Algorithm for Computing the Edit Distance

■ D(0, 0) ! 0

■ For i ! 1 to I

• D(i, 0) ! D(i " 1, 0) # 1

■ End { For }

■ For j ! 1 to J

• D(0, j) ! D(0, j " 1) # 1

■ End { For }

“10-Ch08-SA272” 18/9/2008 page 490

490 CHAPTER 8 Template Matching

■ For i ! 1 to I

• For j ! 1 to J
⃝ c1 ! D(i " 1, j " 1) # d(i, j|i " 1, j " 1)

⃝ c2 ! D(i " 1, j) # 1

⃝ c3 ! D(i, j " 1) # 1

⃝ D(i, j) ! min(c1, c2, c3)

• End { For }

■ End { For }

■ D(A, B) ! D(I , J)

In other words,we first compute the minimum cost for reaching each node of the
grid,starting at (0, 0),and the optimal (complete) path is subsequently constructed.
Figure 8.4 shows the respective minimum cost paths and the resulting Edit distances
for each of the cases. Verify that any other path for the examples of Figure 8.4 results
in a higher cost.

The Edit distance is also known as Levenstein distance. Over the years a number
of variants of the previous basic Edit distance scheme have been suggested to better
address problems rising in various applications. In [Ocud 76] the cost for a change
of one symbol to another is allowed to take values different to one, depending on
the dependence between different symbols in different applications. For example,
for the spelling correction task, it is reasonable to assume that changing an “a” to
a “q” results in lower cost than changing an “a” to a “b.” This is because in touch
typing the letters “a”and“q”are typed using the same finger whereas “a”and“b”are
not. Another generalization as suggested in [Seni 96] allows for merges, splits, and
two-letter substitutions in the context of handwriting recognition.

A drawback of the basic Edit distance scheme is that it takes no account of the
length of the string sequences that are compared. Thus, for example, if two string
sequences differ in one symbol, their Edit distance will be equal to one regardless
of their length being, say, equal to two or fifty. However, common sense leads us to
assume that in the latter case the two strings are more similar than in the former,
for which the two sequences share only one out of two symbols. In [Marz 93]
the normalization by the length of the corresponding optimal path in the grid is
proposed to account for the length of the involved sequences.

In [Mei 04] a variant called Markov Edit distance is defined that accounts for
the local interactions among adjacent symbols. For example, this modified Edit
distance assigns a lower cost to symbol changes in the test pattern if these are
reshuffles of the corresponding subpattern in the reference pattern. This is natural
since in practice it is not uncommon for one to mess up locally in typing. Taking this
into consideration, comparing the reference pattern “beauty” with the test pattern
“beuaty”will result in lower Markov Edit distance than comparing the same reference
pattern with “besrty,” in contrast to the basic Edit distance that is equal to two for
both cases.

“10-Ch08-SA272” 18/9/2008 page 491

8.2 Optimal Path Searching Techniques 491

The Edit distance and its variants have been used in a number of applications,
where the problem can be posed as a string matching, such as polygon matching
([Koch 89]), OCR ([Tsay 93, Seni 96]), stereo vision ([Wang 90]), computational
biology, and genome sequence matching ([Durb 97]).

8.2.3 Dynamic Time Warping in Speech Recognition
In this section,we highlight the application of dynamic programming techniques in
speech recognition. We will focus on the simpler form of the task,known as discrete
or isolated word recognition (IWR). That is, we will assume that the spoken text
consists of discrete words,well isolated with sufficient silent periods between them.
In tasks of this type, it is fairly straightforward to decide where, in time, one word
finishes and another one starts. This is not, however, the case in the more complex
continuous speech recognition (CSR) systems,where the speaker speaks in a natural
way and temporal boundaries between words are not well defined. In the latter
case,more elaborate schemes are required (e.g., [Silv 90, Desh 99, Neg 99]). When
words are spoken by a single speaker and the purpose of the recognition system
is to recognize words spoken by this person, then the recognition task is known
as speaker-dependent recognition. A more complex task is speaker-independent
recognition. In the latter case, the system must be trained using a number of
speakers and the system must be able to generalize and recognize words spoken by
people outside the training population.

At the heart of any IWR system are a set of known reference patterns and a
distance measure (recall the footnote 1 in Section 8.2). Recognition of an unknown
test pattern is achieved by searching for the best match between the test and each
of the reference patterns, on the basis of the adopted measure.

Figures 8.5a and 8.6a show the plots of two time sequences resulting from the
sampling of the word “love,” spoken twice by the same speaker. The samples were
taken at the output of a microphone at a sampling rate of 22,050 Hz. Although it
is difficult to describe the differences, these are readily noticeable. Moreover, the
two spoken words are of different duration. The arrows indicate (approximately)
the intervals in which the spoken segments lie. The intervals outside the arrows
correspond to silent periods. Specifically, the sequence in Figure 8.6a is 0.4 sec-
ond long, and the sequence in Figure 8.5a is 0.45 second long. Furthermore, it is
important to say that this is not the result of a simple linear time scaling. On the
contrary, a highly nonlinear mapping is required to obtain a match between these
two“same”words spoken by the same person. For comparison,Figure 8.6b shows
the plot of the time sequence corresponding to another word,“kiss,”spoken by the
same speaker.

We will resort to dynamic programming techniques to unravel the nonlinear
mapping (warping) required to achieve the optimal match between a test and
a reference pattern. To this end, we must first express the spoken words as
sequences (strings) of appropriate feature vectors, r(i) i ! 1, . . . , I , for the ref-
erence pattern and t(j), j ! 1, . . . , J , for the test one. Obviously, there is more
than one way to choose the feature vectors. We will focus on Fourier transform

“10-Ch08-SA272” 18/9/2008 page 492

492 CHAPTER 8 Template Matching

0.1

0.3

5

DFT
(db)

"5

s(n)

0 0.4 1.20.8

(a)

(b)

Number of samples ($10 4)

Fourier coefficients

1.6

"0.1

"25

"15

"35
0 10 20 30 40 50

"0.3

"0.5

"0.7

FIGURE 8.5
Plots of (a) the time sequence corresponding to the word “love” and (b) the magnitude of the
DFT, in dB, for one of its frames.

features. Each of the time sequences involved is divided into successive over-
lapped time frames. In our case, each frame is chosen to be tf ! 512 samples
long and the overlap between successive frames is t0!100 samples, as shown in
Figure 8.7. The resulting number of frames for the speech segment shown in
Figure 8.5a is I ! 24, and for the other two they are J!21 (Figure 8.6a) and J ! 23
(Figure 8.6b), respectively. We assume that the former is the reference pattern and
the latter two the test patterns. Let xi(n), n ! 0, . . . , 511, be the samples for the
ith frame of the reference pattern, with i ! 1, . . . , I . The corresponding DFT is
given as

Xi(m) !
1√
512

n!511∑

n!0

xi(n) exp
(

"j
2!

512
mn

)
, m ! 0, . . . , 511

“10-Ch08-SA272” 18/9/2008 page 493

8.2 Optimal Path Searching Techniques 493

(a)
Number of samples (310 4)

(b)
Number of samples (310 4)

0.1

0.3

s(n)

s(n)

20.1

20.3

20.5

20.7

0.5

0.2

20.1

20.4

0.50

0 0.6 1.2 1.8

1.51 2

FIGURE 8.6
Plots of the time sequences resulting from the words (a) “love” and (b) “kiss,” spoken by the
same speaker.

frame 1 frame 2

t0

tf

frame 3

FIGURE 8.7
Successive overlapping frames for computation of the DFT feature vectors.

Figure 8.5b shows the magnitude of the DFT coefficients for one of the I frames
of the reference pattern. The plot is a typical one for speech segments. The mag-
nitude of the higher DFT coefficients is very small, with little contribution to the
signal. This justifies use of the first l DFT coefficients as features, where usually

“10-Ch08-SA272” 18/9/2008 page 494

494 CHAPTER 8 Template Matching

l %% tf . In our case l ! 50 was considered to be sufficient. Thus,the vector sequence
becomes

r(i) !

⎡

⎢⎢⎢⎢⎣

Xi(0)
Xi(1)

...

Xi(l " 1)

⎤

⎥⎥⎥⎥⎦
, i ! 1, . . . , I (8.4)

The feature vectors t(j) for each of the test patterns are formed in a similar way.
The choice of the DFT coefficients as features is just one of various possibilities that
have been suggested and used over the years. Other popular alternatives include
the parameters from anAR modeling of the speech segment, the ceptral coefficients
(inverse DFT of the logarithm of the magnitude of the DFT coefficients), and so on
(e.g.,[Davi 80, Dell 93]). Having completed the preprocessing and feature selection,
the reference and test patterns are expressed as (ordered) sequences of feature
vectors r(i) and t(j). Our goal becomes to compute the best match among the
frames of the test and reference patterns. That is,the test pattern will be stretched in
time (one test frame corresponds to more than one frame of the reference patterns)
or compressed in time (more than one test frame corresponds to one frame of the
reference pattern). This optimal alignment of the vectors in the two string patterns
will take place via the dynamic programming procedure. To this end,we first locate
the vectors of the reference string along the abscissa and those of the test pattern
along the ordinate. Then, the following need to be determined:

■ Global constraints

■ Local constraints

■ End-point constraints

■ The cost d for the transitions

Various assumptions can be adopted for each of these, leading to different
results with relative merits. In the sequel, we will focus on some widely used
cases.

End-Point Constraints
In our example,we will look for the optimal complete path that starts at (0, 0) and
ends at (I , J) and whose first transition is to the node (1, 1). Thus, it is implicitly
assumed that the end points of the speech segments (i.e., r(1), t(1) and r(I), t(J))
match to a fair degree. These can be the vectors resulting from the silent periods
just before and just after the speech segments, respectively. A simple variation of
the complete path constraints results if the end points of the path are not specified
a priori and are assumed to be located within a distance " from points (1, 1) and
(I , J). It is left to the optimizing algorithm to locate them.

“10-Ch08-SA272” 18/9/2008 page 495

8.2 Optimal Path Searching Techniques 495

j ! 2i" 1

j

J " &

J

1 # &

1 # & I " &

1

1

j ! 2i # (J " 2I)

j !
1
2

1
2

i#(J " I)

j !
1
2

1
2

#i

I i

FIGURE 8.8
Itakura global constraints. The maximum compression/expansion factor is 2, and it determines
the slope of the boundary line segments. The red lines correspond to the same global constraints
when the relaxed end-point constraints are adopted.

Global Constraints
The global constraints define the region of nodes that are searched for the optimal
path. Nodes outside this region are not searched. Basically, the global constraints
define the overall stretching or compression allowed for the matching procedure.
An example is shown in Figure 8.8. They are known as Itakura constraints and
impose a maximum factor of 2 for any expansion or compression of the test with
respect to the reference pattern. The allowable nodes are then located within the
parallelogram shown in Figure 8.8 by the black line. The red lines correspond to the
same global constraints when the relaxed end-point constraints, mentioned before,
are adopted. Observe from the figure that paths across the sides of the parallelogram
compress or expand corresponding frame intervals by a factor of 2, and this is the
maximum possible factor attained. This constraint is usually reasonable and at the
same time it reduces the number of nodes to be searched for the optimal path
substantially. If I ≈ J , then it is not difficult to show that the number of grid points
to be searched is reduced by approximately one-third.

Local Constraints
These constraints define the set of predecessors and the allowable transitions to a
given node of the grid. Basically, they impose limits for the maximum expansion/

“10-Ch08-SA272” 18/9/2008 page 496

496 CHAPTER 8 Template Matching

compression rates that successive transitions can achieve. A property that any local
constraint must satisfy is monotonicity. That is,

ik"1 ' ik and jk"1 ' jk

In other words, all predecessors of a node are located to its left and south. This
guarantees that the matching operation follows the natural time evolution and avoids
confusing, for example, the word “from”with the word “form.”

Two examples of nonmonotonic paths are shown in Figure 8.9. A popular set of
local constraints,known as the Itakura constraints [Itak 75],is shown in Figure 8.10.
The maximum achievable expansion (compression) rate over a local path is
measured by the associated slope, which is defined as the maximum ratio of the
total change (i, in the ith direction, to the total change (j, in the jth direction,over
the local path. The slope for the Itakura constraints is 2, and it is the result of a
(repetitive) transition of the type (i " 1, j " 2) to (i, j). Another notable charac-
teristic of the Itakura constraints is that horizontal transitions are allowed, but not
successively, and this is indicated by the cross over the arrow. Thus, Itakura con-
straints do not allow long horizontal paths,corresponding to) slopes. Finally, these
constraints allow the path to skip at most one feature vector in the test pattern
string, that is, the one at the j " 1 position of the ordinate axis, and the path jumps
from (i " 1, j " 2) to (i, j). In contrast, feature vectors in the reference string are
not skipped, and all take part in the optimal path. Such constraints are known as
asymmetrical.

5

j

4

3

2

1

0
0 1 2 3 4 5 6 i

FIGURE 8.9
Examples of nonmonotonic paths. Such paths are not allowed and are not considered in the
search for the optimum.

“10-Ch08-SA272” 18/9/2008 page 497

8.2 Optimal Path Searching Techniques 497

i , ji " 2, j

i " 2, j " 1

i " 1, j " 2

i " 1, j

FIGURE 8.10
The Itakura local constraints. Two successive horizontal transitions are not allowed.

(a) (b)

(c) (d)

FIGURE 8.11
The Sakoe and Chiba local constraints.

A number of alternative local constraints have also been suggested and used
in practice. Figure 8.11 shows four different types of constraints considered by
Sakoe and Chiba [Sako 78]. For the type in Figure 8.11a, there is no limit in
the rate of expansion/compression, since successive horizontal or vertical transi-
tions can take place, until of course one falls outside the region defined by the
global constraints. In contrast, in Figure 8.11b horizontal (vertical) transitions are
allowed only after a diagonal transition and in Figure 8.11d after two successive
diagonal transitions. In Figure 8.11c, at most two successive horizontal (vertical)
transitions are allowed only after a diagonal one. The slopes for each of the con-
straints in Figures 8.11a, b, c and d are), 2, 3, and 3/2, respectively (Problem 8.2).

“10-Ch08-SA272” 18/9/2008 page 498

498 CHAPTER 8 Template Matching

For a more detailed treatment of the topic, the interested reader may consult
[Dell 93, Silv 90, Myer 80].

The Cost
A commonly used cost, which we will also adopt here, is the Euclidean distance
between r(ik) and t(jk), corresponding to node (ik, jk), that is,

d(ik, jk|ik"1, jk"1) ! ∥r(ik) " t(jk)∥ ≡ d(ik, jk)

In this, we assume that no cost is associated with the transitions to a specific node,
and the cost depends entirely on the feature vectors corresponding to the respective
node. Other costs have also been suggested and used [Gray 76, Gray 80, Rabi 93].
More recently ([Pikr 03]) used a cost that accounts for the most commonly encoun-
tered errors (e.g.,different players style) in the context of music recognition. Finally,
it must be stated that often a normalization of the overall cost D is carried out. This is
to compensate for the difference in the path lengths,offering“equal”opportunities
to all of them. A logical choice is to divide the overall cost D by the length of each
path [Myer 80].

The resulting overall costs for the two test patterns of Figure 8.6, against the
reference pattern of Figure 8.5,using the Itakura constraints,were D ! 11.473, D !
25.155, respectively. Thus, the overall cost for the word “love” is lower than the
overall cost for the word“kiss,”and our procedure has recognized the spoken word
correctly. The resulting normalized overall costs after dividing by the number of
nodes along each path were 0.221 and 0.559, respectively.

8.3 MEASURES BASED ON CORRELATIONS
The major task to be addressed in this section can be summarized as follows:“Given
a block of recorded data, find whether a specific known (reference) pattern is con-
tained within the block and where it is located.”A typical application of this is found
in scene analysis, when we want to search for specific objects within the image.
Such problems arise in many applications, such as target detection, robot vision,
and video coding. For example, in video coding a major step is that of motion esti-
mation—that is, the process of locating corresponding pixels (of the same moved
object) among successive image frames at different time instants. This step is then
followed by the motion compensation stage, which compensates for the displace-
ment of moving objects from one frame to another. One then codes the frame
difference

e(i, j, t) ! r(i, j, t) " r(i " m, j " n, t " 1)

where r(i, j, t) are the pixel gray levels of the image frame at time t and
r(i " m, j " n, t " 1) the corresponding pixel values at spatial locations i " m,

“10-Ch08-SA272” 18/9/2008 page 499

8.3 Measures Based on Correlations 499

j " n of the previous frame at time t " 1. In this way, we code only the new
information contained at the latest frame, avoiding redundancies.

Let us assume that we are given a reference pattern expressed as an M $ N
image array r(i, j), i ! 0, . . . , M " 1, j ! 0, . . . , N " 1, and an I $ J image array
t(i, j), i ! 0, . . . , I " 1, j ! 0, . . . , J " 1,where M ' I , N ' J . The goal is to develop
a measure for detecting an M $ N subimage within t(i, j) that matches best the
reference pattern r(i, j). To this end, the reference image r(i, j) is superimposed
on the test image, and it is translated to all possible positions (m, n) within it. For
each of the points (m, n), the mismatch between r(i, j) and the M $ N subimage
of t(i, j) is computed according to

D(m, n) !
m#M"1∑

i!m

n#N"1∑

j!n

|t(i, j) " r(i " m, j " n)|2 (8.5)

Template matching is conducted by searching for the location (m, n) for which
D(m, n) is minimum. Let us now give this a computationally more attractive form.
Equation (8.5) is equivalent to

D(m, n) !
∑

i

∑

j

|t(i, j)|2 #
∑

i

∑

j

|r(i, j)|2

" 2
∑

i

∑

j

t(i, j)r(i " m, j " n) (8.6)

The second summand is constant for a given reference pattern. Assuming that the
first one does not change much across the image,that is,there is not much variation
of the pixel gray levels over the test image, the minimum of D(m, n) is achieved
when

c(m, n) !
∑

i

∑

j

t(i, j)r(i " m, j " n) (8.7)

is maximum for all possible locations (m, n). The quantity c(m, n) is nothing other
than a cross-correlation sequence between t(i, j) and r(i, j) computed at the point
(m, n). In cases for which the assumption of little gray-level variation is not valid,
this measure is very sensitive to gray-level variations within t(i, j). In such cases
the cross-correlation coefficient, defined as

cN (m, n) !
c(m, n)

√∑
i
∑

j |t(i, j)|2 ∑
i
∑

j |r(i, j)|2
(8.8)

is a more appropriate measure. Here, cN (m, n) is a normalized version of c(m, n),
and variations in t(i, j) tend to cancel out. Recall now the Cauchy–Schwarz
inequality

∣∣∣∣
∑

i

∑

j

t(i, j)r(i " m, j " n)

∣∣∣∣ '

√∑

i

∑

j

|t(i, j)|2
∑

i

∑

j

|r(i, j)|2

“10-Ch08-SA272” 18/9/2008 page 500

500 CHAPTER 8 Template Matching

Equality holds if and only if

t(i, j) ! #r(i " m, j " n), i ! m, . . . , m # M " 1 and

j ! n, . . . , n # N " 1

with # being an arbitrary constant. Hence, cN (m, n) is always less than unity and
achieves its maximum value of one only if the (test) subimage is the same (within
a scaling factor) as the reference pattern.

In our discussion so far,we have assumed that the reference pattern has only been
translated within t(i, j) and no rotation or scaling has been involved. In applications
such as video coding, this is a valid assumption and it has been adopted in the video
coding standards [Bhas 95]. However, this is not always the case and the technique
has to be modified. One way is to describe the reference and test subimages in terms
of invariant moments and measure the similarity using correlations involving these
moments [Hall 79] (Problem 8.4). Another rotation- and scale-invariant technique,
using a combination of the Fourier and Mellin transforms, is described in [Scha 89].
This technique tries to exploit the translation invariance of the magnitude of the
Fourier transform (already discussed in Chapter 7) and the scale invariance of the
Mellin transform ([Ravi 95], Problem 8.5). Another path, which of course demands
high computational resources, is to have a set of distorted (e.g., rotated and scaled)
reference templates to cover all possibilities. Correlation matching will then reveal
the best match between a test pattern and one of the reference templates. A com-
putationally more attractive technique is to employ the Karhunen–Loève transform
[Ueno 97]. The main idea is that rotated templates are highly correlated, and each
of them can be approximated by its projection onto a lower dimension eigenspace,
using the most significant eigenvectors of their correlation matrix. Matching of an
unknown pattern with the template of the right orientation is performed in the
lower dimensional space, leading to substantial computational savings.

Example 8.2
The image t(i, j) in Figure 8.12a contains two objects, a screwdriver and a hammer. The
latter is the object that we want to search for in the image. The reference image is shown at
the top right corner of Figure 8.12a. The dotted area represents the general (m, n) position
of the reference image when it is superimposed on the test one. Figure 8.12b shows the
cross-correlation c(m, n) between the two images. We readily observe that the maximum
(black) occurs at the position (13, 66), that is, where the hammer is located in t(i, j).

Computational Considerations
■ In some cases, it is more efficient to compute the cross-correlation via its

Fourier transform. Recall that in the frequency domain (8.7) is written as

C(k, l) ! T (k, l)R∗(k, l) (8.9)

“10-Ch08-SA272” 18/9/2008 page 501

8.3 Measures Based on Correlations 501

n

m I M

N

J J

I

13

(a) (b)

66

FIGURE 8.12
Example of (a) reference and test images and (b) their respective correlation.

where T (k, l), R(k, l) are the DFT transforms of t(i, j) and r(i, j),respectively,
with “∗” denoting complex conjugation. Of course, in order to write (8.9),
both images must be of the same size. If they are not, which is usually the
case, a number of zeros must be appended to extend the smaller sized image.
c(m, n) is obtained via the inverse DFT of C(k, l). Taking into account
the computational efficiency of the FFT, this procedure may lead to savings
depending, of course, on the relative size of M , N and I , J .

■ A major computational load in correlation-based template matching is search-
ing over the pixels of t(i, j) in order to locate the maximum correlation.
Usually, the search is restricted within a rectangle ["p, p] $ ["p, p] centered
at a point (x, y) in t(i, j). For example, in video coding, if the M $ N block is
centered at a position (x, y) in the frame at time t " 1, then the current frame
is searched within (x * p, y * p). The value of p depends on the applica-
tion. For broadcastTV p ! 15 is sufficient. For sporting events (high motion)
p ! 63 is more appropriate. Thus, an exhaustive search for the maximum of
c(m, n), defined in (8.7),will require a number proportional to (2p # 1)2MN
additions and multiplications. This leads to a huge number of operations
indeed (Problem 8.6). Thus, in practice, suboptimal heuristic searching tech-
niques are usually adopted, which, although they do not guarantee locating
the maximum, reduce the required number of operations substantially. There
are two major directions. One is to reduce the search points and the other is
to reduce the size of the involved images.

Two-Dimensional Logarithmic Search
Logarithmic Search Figure 8.13 shows the rectangular ["p, p] $ ["p, p] searching
area for the case of p ! 7. The center of the rectangle is assumed to be the point
(0, 0). The cross-correlation computation is first performed at the center as well

“10-Ch08-SA272” 18/9/2008 page 502

502 CHAPTER 8 Template Matching

("7,7)

("7,0)

(0,7) (7,7)

(7,0)

(7,"7)(0,"7)("7,"7)

d1

FIGURE 8.13
Logarithmic search to find the point of maximum cross-correlation.

as the eight points located on the perimeter of the inner ["p/2, p/2] $ ["p/2, p/2]
area (p/2 rounded to an integer). These points are denoted by a square. The spacing
between these points is d1 ! 4 pixels, that is,d1 ! 2k"1 and k ! ⌈log2 p⌉,where ⌈·⌉
denotes rounding to the first larger integer. For p ! 7 we get k ! 3 and d1 ! 4.
We will demonstrate the procedure via an example. Let us assume that the largest
cross-correlation value resulted at the position ("4, 0) (shaded square). Then we
consider this point as the center of a rectangle of size ["p/4, p/4] $ ["p/4, p/4]
(["2, 2] $ ["2, 2] in our case) and compute the correlation at the eight points
of its perimeter. These points are denoted by a circle, and the spacing between
them is now d2 ! d1/2 (2). The process is repeated, and finally the computation
is performed on the eight (diamond) points on the perimeter of the rectangle of
size ["1, 1] $ ["1, 1], which is centered at the optimum (of the previous step)
shaded circle point. The spacing between the diamond points is d3 ! 1. The shaded
diamond corresponds to the point with the maximum cross-correlation, and the
process is terminated. The number of computations has now been reduced to
MN (8k#1) operations,which is a substantial saving compared with the exhaustive
search.

A variant of the two-dimensional logarithmic search is to search the i and j
directions independently. The point whose coordinates are the resulting best values
of i and j becomes the new origin of the coordinate system, and the search is
repeated in the new i, j directions,with smaller spacing d. The process is repeated
until the spacing becomes unity.

Hierarchical Search
The hierarchical search technique springs from the multiresolution concept
considered in Chapter 6. Let us again consider an example.

“10-Ch08-SA272” 18/9/2008 page 503

8.3 Measures Based on Correlations 503

■ Step 1:A reference block of,say,16 $ 16 is given,and the search area is assumed
to be the rectangle ["p, p] $ ["p, p], centered at the point (x, y) in the test
image. We refer to level 0 versions of the images. Both the reference block
and the test image are low-pass filtered and subsampled by 2,resulting in their
level 1 versions. The total number of pixels in the level 1 versions has been
reduced by 4. Level 1 versions are in turn low-pass filtered and subsampled,
resulting in level 2 versions. In general, this process can continue.

■ Step 2: At level 2 the search for the maximum takes place with the 4 $ 4
low-pass version of the reference block. The search area in the level 2
low-pass version of the test image is the rectangle ["p/4, p/4] $ ["p/4, p/4]
centered at (x/4, y/4). Either a full or a logarithmic search can be employed.
Let (x1, y1) be the coordinates of the optimum, with respect to (x/4, y/4).

■ Step 3: At level 1, the search for the maximum is performed using the cor-
responding 8 $ 8 version of the reference block. The search area, within the
level 1 version of the test image, is the rectangle of size ["1, 1] $ ["1, 1]
centered at (x/2 # 2x1, y/2 # 2y1), that is,nine pixels in total. This is because
the eight pixels at the perimeter of this area were not involved at level 2, due
to the subsampling (see Figure 6.23 of Chapter 6). The center point must also
be included in order to have a fair comparison at this level for the search for
the maximum. Let the maximum occur at (x2, y2) with respect (x/2, y/2).

■ Step 4: At level 0 the search is performed using the original reference tem-
plate,within the area of size ["1, 1] $ ["1, 1] centered at (x # 2x2, y # 2y2)
in the test image. The location of the maximum is the final one and the
process terminates.

The computational saving with this method depends on the number of levels, as
well as the type of search adopted at the highest level (Problem 8.5). In general,
hierarchical methods are very efficient from a computational point of view. This is
gained at the expense of increased memory requirements,due to the various image
versions that must be kept. A disadvantage of the method is that if small objects are
present in the templates, they may disappear at the lowest resolution images due
to the subsampling. Furthermore, the method cannot guarantee to find the global
best match. In [Alkh 01] an alternative philosophy is suggested that results in the
global best match. Computational savings are achieved by pruning the number of
candidates for the best match in a level, using the results in a higher level and an
appropriately chosen threshold value.

Sequential Method
A number of other techniques have also been suggested. For example,the sequential
search method computes a variant of (8.5) directly. Specifically, define

Dpq(m, n) !

p"1∑

i!0

q"1∑

j!0

|t(i # m, j # n) " r(i, j)| (8.10)

“10-Ch08-SA272” 18/9/2008 page 504

504 CHAPTER 8 Template Matching

Thus, the error is computed in a smaller and sequentially increasing window area,
for p, q ! 1, 2, . . . and p ' M , q ' N . The computations stop when Dpq(m, n)
becomes larger than a predetermined threshold. Then computations start in a dif-
ferent direction (m, n). Hence, saving is achieved,because for bad positions only a
small number of computations need to be performed.

8.4 DEFORMABLE TEMPLATE MODELS
In the previous section, we considered the problem of searching for a known ref-
erence pattern (template) within a test image. We assumed that the template and
the object, residing in the image, were identical. The only differences that were
allowed to enter into our discussion were those imposed by a different orientation
and/or scaling. However,there are many problems where we know a priori that the
available template and the object we search for in the image may not look exactly
the same. This may be due to varying imaging conditions, occlusion, and imperfect
image segmentation. Furthermore, in a content-based image database retrieval sys-
tem, the user may provide the system with a sketch of the shape of the object to be
retrieved. Obviously, the sketch will not match exactly the corresponding object
in the database images. Our goal in this section is to allow the template matching
procedure to account for deviations between the reference template and the cor-
responding test pattern in the image. In our discussion, we will assume that the
reference template is available in the form of an image array containing the object’s
boundary information (contour). That is, we will focus on shape information only.
Extensions incorporating more information, for example, texture, are also possible.

Let us denote the reference template image array as r(i, j). This is also known
as prototype. The basic idea behind the deformable template matching procedure
is simple: Deform the prototype and produce deformed variants of it. From a
mathematical point of view a deformation consists of the application of a parametric
transform T! on r(i, j) to produce a deformed version T![r(i, j)]. Different values
of the vector parameter ! lead to different versions. From the set of the deformed
prototype variants that can be generated, there will be one that “best” matches
the test pattern. The goodness of fit is measured via a cost, which we will call
the matching energy Em(!). Obviously, the goal is to choose ! so that Em(!)
is minimum. However, this is not enough. If, for example, the optimal set of
parameters is such that the corresponding deformed template has been deformed
to such an extent that it bears little resemblance to the original prototype, the
method will be meaningless. Thus, one more term has to be taken into account in
the optimization process. This is the cost measuring the “deformation,” which the
prototype needs to undergo in order to fit the test pattern. We will call this term of
the cost deformation energy Ed(!). Then the optimal vector parameter is computed
so that

! : min
!

{Em(!) # Ed(!)} (8.11)

“10-Ch08-SA272” 18/9/2008 page 505

8.4 Deformable Template Models 505

In words,one could think of the boundary curve of the prototype as made by rubber.
Then with the help of a pencil we deform the shape of the rubber curve to match
the test pattern. The more we deform the shape of the prototype, the higher the
energy we have to spend for it. This energy, quantified by Ed(!), depends on the
shape of the prototype. That is, it is an intrinsic property of the prototype, and
this is the reason that it is also known as internal energy. The other energy term,
Em(!),depends on the input data (test image), and we usually refer to it as external
energy. The optimal vector parameter,!, is chosen so that the best trade-off between
these two energy terms is achieved. Sometimes,a weighting factor C is used to give
preference to one of the two terms, and ! is computed so that

! : min
!

{Em(!) # CEd(!)} (8.12)

Hence, in order to apply the above procedure in practice, one must have at one’s
disposal the following ingredients:

■ A prototype
■ A transformation procedure to deform the prototype
■ The two energy function terms

Choice of the Prototype
This should be carefully chosen so that it is a (typical) representative of the various
instances in which this object is expected to appear in practice. In a way, the
prototype should encode the “mean shape” characteristics of the corresponding
“shape class.”

Deformation Transformation
This consists of a set of parametric operations. Let (x, y) be the (continuous) coor-
dinates of a point in a two-dimensional image. Without loss of generality, assume
that the image is defined in a square [0, 1]$ [0, 1]. Then each point (x, y) is mapped
using a continuous mapping function, as

(x, y) "→(x, y) # (Dx(x, y), Dy(x, y)) (8.13)

For discrete image arrays a quantization step is necessary after the transformation.
Different functions can be used to perform the above mapping. A set that has
successfully been used in practice is ([Amit 91])

Dx(x, y) !
M∑

m!1

N∑

n!1

$x
mnex

mn(x, y) (8.14)

Dy(x, y) !
M∑

m!1

N∑

n!1

$
y
mney

mn(x, y) (8.15)

ex
mn(x, y) ! #mn sin !nx cos !my (8.16)

ey
mn(x, y) ! #mn cos !mx sin !ny (8.17)

“10-Ch08-SA272” 18/9/2008 page 506

506 CHAPTER 8 Template Matching

for appropriately chosen values of M , N . The normalizing constants #mn can be
taken as

#mn !
1

!2(n2 # m2)

Other basis functions can also be used, such as splines or wavelets. Figure 8.14
shows a prototype for an object and three deformed versions obtained for the
simplest case of the transformation model in (8.14)–(8.17), that is, M ! N ! 1.

Internal Energy
This should be minimum for no deformation, that is, for ! ! 0. A reasonable choice,
associated with the transformation functions considered above, is

Ed(!) !
∑

m

∑

n

(($x
mn)2 # ($

y
mn)2) (8.18)

External Energy
Here again a number of choices are possible,measuring the goodness of fit between
the test pattern and each one of the deformed template variants. For example, for a
specific position,orientation,and scale of a deformed template,this energy term can
be measured in terms of the distance of each point in the contour of the deformed

(a) (b) (c)

(d) (e)

FIGURE 8.14
(a) A reference pattern, (b) its contour used as prototype, and (c), (d), (e) three of its deformed
variants.

“10-Ch08-SA272” 18/9/2008 page 507

8.4 Deformable Template Models 507

template from the nearest point in the contour of the test image, I . One way to
achieve this is via the following energy function:

Em(!, ", I) !
1

Nd

∑

i,j

(1 # +(i, j)) (8.19)

where " is the vector of the parameters defining the position,orientation,and scaling
and Nd the number of contour pixels of the corresponding deformed template and

+(i, j) ! " exp
(

"%(&2
i # &2

j)1/2
)

(8.20)

where % a constant and (&i , &j) is the displacement of the (i, j) pixel of the
deformed template from the nearest point in the test image. In [Jain 96] directional
information is also incorporated into the cost.

Remarks

■ One can arrive at (8.11) in a more systematic way via probabilistic arguments,
that is, by seeking to maximize the a posteriori probability density of (!, ")
given the test image array, that is,

p(!, "|I) !
p(!, ")p(I |!, ")

p(I)
(8.21)

where the Bayes rule has been employed. In this framework, (8.18) results
if one assumes that the various parameters $x

mn, $
y
mn are statistically inde-

pendent and are normally distributed, for example, p($) ! N (0, '2). The
higher the variance '2, the wider the range of the values that occur with high
probability. To obtain (8.19)–(8.20) the model

p(I |!, ") ! # exp
(
"Em(!, ", I)

)
(8.22)

is adopted, where # is a normalizing constant [Jain 96].

■ The cost in (8.11) is a nonlinear function,and its minimization can be achieved
via any nonlinear optimization scheme. Besides complexity, the major draw-
back is the omnipresent danger that the algorithm will be trapped in a local
minimum. In [Jain 96] a procedure has been suggested that builds around the
gradient descent methodology (Appendix C). The idea is to adopt a multires-
olution iterative approach and use larger values of % in (8.20) for the coarser
levels and smaller values for the finer ones. This procedure seems to help the
algorithm to avoid local minima, at an affordable computing cost.

■ The methodology we described in this section belongs to a more general class
of deformable template matching techniques,which builds around an available
prototype. This is not the only available path. Another class of deformable
models stems from an analytic description of the prototype shape,using a set
of parameterized geometrical shapes,for example,ellipses or parabolic curves.

“10-Ch08-SA272” 18/9/2008 page 508

508 CHAPTER 8 Template Matching

To delve deeper into these issues the reader may refer to the review articles
[Jain 98, McIn 96, Cheu 02] and the references therein. [Widr 73, Fisc 73]
seem to be the first attempts to introduce the concept of deformable models
in computer vision.

■ In the pattern recognition context, given an unknown test pattern, we seek
to see to which one from a known set of different prototypes this matches
best. For each prototype, the best deformed variant is selected, based on
the minimum energy cost. The prototype that wins is the one whose best
deformed variant results in the overall minimum energy cost.

8.5 CONTENT-BASED INFORMATION RETRIEVAL: RELEVANCE
FEEDBACK

With the rapid development and spread of the Internet,a large corpus of information
is stored and distributed over the Web. Search engines have become indispensable
tools for searching and retrieving information in all possible forms, including text,
images, audio and more recently video. The more traditional way of information
retrieval is text-based; stored information is manually annotated by text descriptors,
which are in turn used by a distributed database system to perform the information
retrieval task. Such a procedure has the obvious drawback of requiring manual
annotation, which, besides being time consuming and costly, is vulnerable to anno-
tation inaccuracies and also to the subjectivity of the human perception. Due to
the advances in pattern recognition, an alternative search procedure, known as
content-based retrieval, is gaining in importance,and it is becoming more and more
popular. Stored information is now indexed and searched based on its content. For
example, in image retrieval, images can be indexed automatically by using features
“describing” image content qualities such as color, texture and shapes. A music or
speech segment could be represented in terms of a number of features such as those
described in Section 7.5.

Content-based information retrieval is similar in concept to template matching,
as introduced in this chapter. The goal is to search for and retrieve stored pieces
of information, that is, patterns/templates that are most “similar” to the pattern
presented as input to the search engine system. Similarity is quantified in terms of
a similarity measure defined in the feature space. The similarity measures described
at the beginning of this chapter may be possible candidates for some content-based
retrieval tasks. A popular metric that has extensively been used is the weighted lp
metric between two feature vectors x, y, given by:

d(x, y) !

(
l∑

i!1

wi |xi " yi|p
) 1

p

“10-Ch08-SA272” 18/9/2008 page 509

8.5 Content-Based Information Retrieval: Relevance Feedback 509

Obviously, for p ! 2 and wi ! 1, i ! 1, 2, . . . , l, this becomes the Euclidean distance
and for p ! 1 the so called weighted l1 (Manhattan) norm. A more detailed treatment
of similarity/dissimilarity measures is given in Chapter 11.

A major disadvantage of such a contend-based approach is that search and sub-
sequent retrieval is based solely on the derived features, which are usually referred
to as low-level features. Humans, being much more intelligent than the machines
they themselves develop, utilize a number of so-called high-level concepts when
they come to recognize objects (patterns). The notion of semantic gap is usu-
ally adopted to express this discrepancy between the low-level features, derived
from and describing the patterns, and the high-level descriptions that are meaning-
ful to a human. Artificial Intelligence is the discipline that focuses on developing
methodologies and techniques for machine high-level reasoning in association with
the low-level derived features. However, so far, such techniques are feasible and
applicable only to restricted domains and applications.

The goal of the current section is a more humble one, compared to the goals
originally set in the field of artificial intelligence, and yet very interesting. Since
learning machines cannot compete with the high-level concepts and reasoning of a
human being,let the user be involved and become part of the learning“game”. Such
a methodology offers the system the advantage of exploiting the user’ s own way of
conceptualizing the patterns, which are experienced through his or her senses. To
this end, the search/retrieval session is divided into a number of consecutive loops.
At every loop, the user provides feedback regarding the results by characterizing
the retrieved patterns as either relevant or irrelevant. Relevance is usually defined
by a characteristic that is shared by some of the patterns. It can be a perceptual
characteristic or a more semantic one [Cruc 04]. Such a methodology is known as
relevance feedback (RF). Since the user is directly involved, for the learning pro-
cess to be useful in practice,convergence should be achieved within a few iteration
steps and the search engine must operate in real time. In turn,this imposes the con-
straint that the selected (low-level) features must be as informative as possible. Thus
the feature selection techniques, as exposed in Chapter 5, are of significance here
too. One of the most successful paradigms for RF is the case of content-based
image retrieval (CBIR), for which commercial products are already available; see,
for example, [Liu 07].

A typical scenario, met in a number of RF tasks, is given below and it is
schematically presented in Figure 8.15.

1. The system provides an initial set of patterns“similar”to the pattern presented
by the user to the search engine (e.g., an image, a Web page, or an audio
segment from a piece of music).

2. The user marks a number from the returned patterns as “relevant” or
“irrelevant.”

3. A classification procedure is used to “learn” the user’ s feedback.

“10-Ch08-SA272” 18/9/2008 page 510

510 CHAPTER 8 Template Matching

Final retrieved results

Initial user
query

Retrieved results

Labeling by
the user

Training of the
classifier

RF loop

FIGURE 8.15
Block diagram illustrating the basic steps involved in a relevance feedback task.

Steps 2–3 are repeated untill the RF algorithm converges to a level that satisfies the
user; that is, enough of truly relevant patterns have been retrieved by the search
engine. Obviously, different techniques have been suggested and used for all three
steps in the loop.

For Step 1,one can initialize the system either randomly or,preferably,by retriev-
ing an initial set of “similar” patterns based on a similarity metric, such as the lp
metric. For Step 3, a popular choice is to employ a binary classifier that is trained
to classify the marked patterns, in Step 2, either to the “relevant” or the “irrelevant”
class, according to their label as judged by the user. Support vector machines have
enjoyed a high popularity among the researchers,although other classifiers can also
be used, see, [Druc 01, Cruc 04, Liu 07].

Interestingly enough, Step 2 is of critical importance. A selection strategy is
first adopted concerning the type of the patterns that the system returns and on
which the user must apply the query concept and label these patterns accordingly.
Obviously, the patterns that the search engine returns in each round depend on
the current knowledge of the “learner” in Step 3. In each iteration step, the system
performs a ranking of the retrieved patterns, according to a confidence measure
associated with the classifier’ s decisions. For example, in the case an SVM has
been adopted, this confidence measure can be the distance of the feature vector,

“10-Ch08-SA272” 18/9/2008 page 511

8.5 Content-Based Information Retrieval: Relevance Feedback 511

representing the pattern, from the decision hyperplane in the RKHS feature space,
which is proportional to the value of |g(x)| in Eq. (4.72) (Section 4.18). In
[Druc 01], the remotest instance to the positive (relevant) side is ranked at the
top of the list, and the remotest one to the negative side (irrelevant) is ranked at
the bottom. The user selects a number of patterns (say, 10 to 20) among the top
ranked in the list. That is, selection is done among patterns that have been classified
(by the current classifier) as relevant and with high confidence. Obviously, if the
system has not yet converged, some of the returned patterns will not satisfy the
user and will be judged as being irrelevant. This strategy seems to be the most
popular one. The strong point of such a selection procedure is that the user gets
a few good relevant patterns quite early in the iteration process. On the other
hand, such a philosophy turns out to lead to a relatively slow convergence of the
method.

Another point of view has been adopted in the strategy proposed in [Tong 01].
This is inspired by the notion of active learning used in pattern recognition (see,
[Lewi 94, Scho 00]). Active learning is an approach that trains the classifier by using
a subset of the data, that are considered the most informative ones. Hence, one
can achieve better performance with less training data. The most informative data
points are taken to be the most uncertain instances. Thus, in such a RF setting, the
user is asked to label a number of pool patterns that lie closest to the classifier’ s
boundary decision. In [Tong 01] a strong theoretical justification is also provided for
such a scenario. In other words,such a selection criterion forces the system to elicit
from the user a crucial part of information: what makes distinct the“relevant”from
the “irrelevant.” This is because, once the user labels as relevant or irrelevant such
“uncertain” patterns, a significant part of uncertainty is removed from the system.
The advantage of this selection criterion is that it speeds up the convergence of the
RF scheme.

Figure 8.16 compares the convergence performance of an RF system for the two
previous strategies and for two different users; a “lazy” user, who only marks up to
two relevant and two irrelevant patterns (if a single relevant pattern is returned by
the system, the user marks only one) and a“patient”user who marks all the relevant
and all the irrelevant patterns, among the patterns that the engine returns at each
iteration step. The horizontal axis corresponds to the number of iteration steps and
the vertical one to the precision, denoted as Pr. As precision, we define the ratio
of the relevant patterns to the total number of returned (at each iteration round)
patterns. In all cases, the curves start from the same point. This is the precision
value corresponding to the initialization step, where a simple similarity measure
was used. Also, all curves tend to Pr ! 1; that is, as the learning process advances,
more and more of the returned patterns are judged by the user as being relevant.
For both users, the curve corresponding to the active learning strategy tends to
Pr ! 1 faster. As it is natural, the system tends to Pr !1 much faster for the cases of
the patient user, since,at each iteration step,more patterns are available for training
the classifier in Step 3. The curves in the figure have been obtained using the Wang
image database [Wang 01] and an SVM classifier. More details about the features and

“10-Ch08-SA272” 18/9/2008 page 512

512 CHAPTER 8 Template Matching

simple SVM-all

Relevance Feedback Step

0 1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1
active SVM-all

simple SVM-2pos-2neg

active SVM-2pos-2neg

Pr
ec

is
io

n

FIGURE 8.16
Dotted lines correspond to the active learning scenario. Learning curves for the “lazy”user, who,
in each iteration round, marks up to two positive (relevant) and two negative (irrelevant) images,
converge slower compared to those associated with the user who labels all the returned images as
either positive or negative. For both users, active learning leads to faster convergence. We have
used the terms active and simple to annotate the curves corresponding to the two strategies.

the parameters used are available in the book’s Web site, and the interested reader
can also perform a set of related experiments.

For the experienced researcher, it will not come as a surprise to say that a third
route to the selection strategy has been proposed by combining the previous two
“extremes.” In [Xu 03], a hybrid approach has been suggested consisting of the
following steps:

1. An SVM is trained by the user’ s initial query.

2. The system returns a set of M patterns consisting of the K ' M remotest ones,
from the decision hyperplane in the RKHS and on the positive side, and the
M–K closest ones to it.

3. The user labels the patterns as relevant or irrelevant.

4. The SVM classifier is retrained using all the patterns labeled,so far,by the user.
The algorithm is either terminated, if the user is satisfied,or it is redirected to
Step 2.

In [Xu 03], it is claimed that such a scheme shares the advantages of both previous
selection criteria. It speeds up convergence and at the same time presents to the
user some truly relevant patterns early enough in the iteration process.

“10-Ch08-SA272” 18/9/2008 page 513

8.6 Problems 513

Although in this section we have focused on the use of a classifier in Step 3,other
alternatives are also possible. For example, in the so-called query point method
(QPM) the existence of an ideal query point in the feature space is assumed,which,
if found,would provide the appropriate answer to the user’s query. Each feature in
the feature vector is weighted and the task of the learner is to adjust the weights so
that to move the point in the feature space appropriately. Learning can be based
either on the positive examples (e.g., [Scla 97]) or on both positive and negative
ones (e.g.,[Rui 98]). For a more detailed reference survey on the topic the interested
reader may consult [Liu 07, Long 03, Cruc 04].

8.6 PROBLEMS
8.1 Find the Edit distance between the word “poem” and its misspelled version

“poten.” Draw the optimal path.

8.2 Derive the slopes for the Sakoe–Chiba constraints and draw paths that achieve
the maximum expansion/compression rates as well as paths corresponding to
intermediate rates.

8.3 Develop a computer program for dynamic time warping, for a complete opti-
mum path, and for the Itakura constraints. Verify the algorithm, using speech
segments available from the book’s web site.

8.4 Let the seven Hu moments of the reference M $ N image block be
(i , i ! 1, 2, . . . , 7. Also, denote by)i(m, n), i ! 1, 2, . . . , 7, the respective
moments resulting from the test subimage located at (m, n). Explain why

M(m, n) !

∑7
i!1 (i)i(m, n)

(∑7
i!1 (2

i
∑7

i!1)2
i (m, n)

)1/2

is a reasonable measure of similarity.

8.5 Show that the Mellin transform M(u, v) of a function f (x, y), defined as

M(u, v) !

∫∫
f (x, y)x"ju"1y"jv"1 dx dy

is scale invariant.

8.6 For the motion compensation step in a video coding application, the image
frame of size I $ J is divided into subblocks of size M $ N . For each subblock
the search for its corresponding one, in the current frame, is restricted in an
area of size ["p, p] $ ["p, p]. Find the required number of operations per
second for the computation of the maximum cross-correlation for a full search,
a two-dimensional and a one-dimensional (independent i, j) logarithmic search,
and a hierarchical search of three levels. Typical values for broadcast TV are
M ! N ! 16, I ! 720, J ! 480, and p ! 15. The number of frames transmitted
per second is f ! 30.

“10-Ch08-SA272” 18/9/2008 page 514

514 CHAPTER 8 Template Matching

MATLAB PROGRAMS AND EXERCISES
Computer Programs

8.1 Edit distance. Write a MATLAB function named edit_distance that computes
the Edit distance between two strings. This function takes as inputs (a) the ref-
erence string ref _str and (b) the test string test_str. It returns (a) the matching
cost edit_cost and (b) the node predecessors matrix pred. Each element of the
last matrix stores the coordinates of the predecessor of a node as a complex
number, the real part of which stands for the row index and the imaginary part
for the column index.

Solution

In the following implementation it is assumed that the reference pattern is
associated with the horizontal axis.

function [edit_cost,pred]=edit_distance(ref_str,test_str)
I = length(ref_str);
J = length(test_str);
D = zeros(J,I);
%Initialization
D(1,1) = ~(ref_str(1) == test_str(1));
pred(1,1) = 0;
for j = 2:J
D(j,1) = D(j-1,1)+1;
pred(j,1) = (j-1) + sqrt(-1)*1;

end
for i = 2:I
D(1,i) = D(1,i-1)+1;
pred(1,i) = 1+ sqrt(-1)*(i-1);

end
%Main Loop
for i = 2:I
for j = 2:J
if(ref_str(i) == test_str(j))
d(j,i) = 0;

else
d(j,i) = 1;

end
c1 = D(j-1,i-1)+d(j,i); c2 = D(j,i-1)+1; c3 = D(j-1,i)+1;
[D(j,i),ind] = min([c1 c2 c3]);
if(ind == 1)
pred(j,i) = (j-1)+sqrt(-1)*(i-1);

elseif(ind == 2)

“10-Ch08-SA272” 18/9/2008 page 515

MATLAB Programs and Exercises 515

pred(j,i) = j+sqrt(-1)*(i-1);
else
pred(j,i) = (j-1)+sqrt(-1)*i;

end
end

end
edit_cost = D(J,I);

8.2 Backtracking. Write a MATLAB function named back_tracking, which takes
as inputs (a) a node predecessors matrix pred, (b) the coordinates k and l
of the node from which the backtracking will start. It returns the best path
on the cost grid, best_path, and also plots the best path. It is assumed that
backtracking always terminates when a node whose predecessor is (0, 0) is
reached.

Solution
function best_path=back_tracking(pred,k,l)
Node = k+sqrt(-1)*l;
best_path = [Node];
while (pred(real(Node),imag(Node)) = 0)
Node = pred(real(Node),imag(Node));
best_path = [Node;best_path];

end
%Plot the best path
[I,J] = size(pred);
clf;
hold
for j = 1:J
for i = 1:I
plot(j,i,'r.')

end
end
plot(imag(best_path),real(best_path),'g')
axis off

8.3 Dynamic time warping with Sakoe–Chiba local path constraints. Write
a MATLAB function named Dtw_Sakoe that implements a dynamic time-
warping scheme where the Sakoe–Chiba local path constraints are adopted.
More specifically, the function takes as input (a) a row vector ref that
corresponds to the reference sequence and (b) a row vector test that cor-
responds to the test sequence. It returns (a) the time-warping matching cost,
matching_cost and (b) the best path best_ path. It is assumed that (i) the cost
assigned to each node in the grid upon initialization is equal to the Euclidean
distance of the respective pattern elements and (ii) the cost of a transition

“10-Ch08-SA272” 18/9/2008 page 516

516 CHAPTER 8 Template Matching

depends only on the cost that has been assigned to the node at the end of the
transition.

Solution

In the following implementation, function back_tracking introduced before is
utilized to determine the best path.

function [matching_cost,best_path]=Dtw_Sakoe(ref,test)
I = length(ref);
J = length(test);
for i = 1:I
for j = 1:J
%Euclidean distance
node_cost(i,j) = sqrt(sum((ref(:,i)-test(:,j)).^2));

end
end
%Initialization
D(1,1) = node_cost(1,1);
pred(1,1) = 0;
for i = 2:I
D(i,1) = D(i-1,1)+node_cost(i,1);
pred(i,1) = i-1 + sqrt(-1)*1;

end
for j = 2:J
D(1,j) = D(1,j-1)+node_cost(1,j);
pred(1,j) = 1 + sqrt(-1)*(j-1);

end
%Main Loop
for i = 2:I
for j = 2:J
[D(i,j),ind] = min([D(i-1,j-1) D(i-1,j) ...

D(i,j-1)]+node_cost(i,j));
if (ind == 1)
pred(i,j) = (i-1)+sqrt(-1)*(j-1);

elseif (ind == 2)
pred(i,j) = (i-1)+sqrt(-1)*(j);

else
pred(i,j) = (i)+sqrt(-1)*(j-1);

end
end %for j

end %for i
%End of Main Loop
matching_cost = D(I,J);
best_path = back_tracking(pred,I,J);

“10-Ch08-SA272” 18/9/2008 page 517

References 517

Computer Experiments

8.1 a. Compute the Edit distance between the following pairs of strings:
(i) (beauty, beaty), (ii) (beauty, biauty), (iii) (beauty, betty), using the first
element of each pair as the reference string.

b. Plot the respective matching paths using the function back_tracking.

8.2 Use the Dtw_Sakoe function to compute the time-warping cost between the
sequences {1, 2, 3} and {1, 1, 2, 2, 2, 3, 3, 3}, using the former as reference
sequence. Comment on the results.

8.3 Let r1 ! [1, 0]T , r2 ! [0, 1]T and ref ! [r1, r2]. Generate a sequence of
10 two-dimensional vectors with the following MATLAB command test !
[1 # rand(1, 4)/2 rand(1, 6)/3; rand(1, 4)/2 1 # rand(1, 6)/3]. Use the
Dtw_Sakoe function to compute the time-warping cost and the respective
best path between ref and test , taking the former as the reference sequence.
Comment on the results.

REFERENCES
[Alkh 01] Ghavari-Alkhansavi M. “A fast globally optimal algorithm for template matching using

low resolution pruning,” IEEE Transactions on Image Processing, Vol. 10(4), pp. 526–533,
2001.

[Amit 91] Amit Y., Grenander U., Piccioni M. “Structural image restoration through deformable
template,” J.Amer. Statist.Association,Vol. 86(414), pp. 376–387, 1991.

[Bell 57] Bellman R.E. Dynamic Programming, Princeton University Press, 1957.

[Bhas 95] Bhaskaran V., Konstantinides K. Image and Video Compression Standards, Kluwer
Academic Publishers, 1995.

[Cheu 02] Cheung K.-W.,Yeung D.-Y., Chin R.T. “On deformable models for visual pattern recog-
nition,”Pattern Recognition,Vol. 35, pp. 1507–1526, 2002.

[Cruc 04] Crucianu M.,Ferecatu M.,Boujemaa N.“Relevance feedback for image retrieval: a short
survey,” in Audiovisual Content-based Retrieval, Information Universal Access and Interac-
tion, Including Datamodels and Languages, Report of the DELOS2 European Network of
Excellence, FP6, 2004.

[Dame 64] Damerau F.J. “A technique for computer detection and correction of spelling errors,”
Commun.ACM,Vol. 7(3), pp. 171–176, 1964.

[Davi 80] Davis S.B., Mermelstein P. “Comparison of parametric representations for monosyllabic
word recognition in continuously spoken sentences,” IEEE Transactions on Acoustics Speech
and Signal Processing,Vol. 28(4), pp. 357–366, 1980.

[Dell 93] Deller J.,Proakis J.,Hansen J.H.L. Discrete-Time Processing of Speech Signals,Macmillan,
1993.

[Desh 99] Deshmukh N., Ganapathirajn A., Picone J. “Hierarchical search for large vocabulary
conversational speech recognition,”IEEE Signal Processing Magazine,Vol. 16(5),pp. 84–107,
1999.

“10-Ch08-SA272” 18/9/2008 page 518

518 CHAPTER 8 Template Matching

[Druc 01] Drucker H., Shahraray B., Gibbon D. “Relevance feedback using support vector
machines,” Proceedings of th 18th International Conference on Machine Learning, pp.
122–129, 2001.

[Durb 97] Durbin K., Eddy S., Krogh A., Mitchison G. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press, Cambridge,
MA, 1997.

[Fisc 73] Fischler M.,Elschlager R.“The representation and matching of pictorial structures,”IEEE
Transations on Computers,Vol. 22(1), pp. 67–92, 1973.

[Gray 76] GrayA.H.,Markel J.D.“Distance measures for speech processing,”IEEE Transactions on
Acoustics Speech and Signal Processing,Vol. 24(5), pp. 380–391, 1976.

[Gray 80] Gray R.M.,BuzoA.,GrayA.H.,MatsuyamaY.“Distortion measures for speech processing,”
IEEE Transactions on Acoustics Speech and Signal Processing,Vol. 28(4),pp. 367–376,1980.

[Hall 79] Hall E. Computer Image Processing and Recognition,Academic Press, 1979.

[Itak 75] Itakura F. “Minimum prediction residual principle applied to speech recognition,” IEEE
Transactions on Acoustics Speech and Signal Processing,Vol. 23(2), pp. 67–72, 1975.

[Jain 98] Jain A.K., Zhong Y., Dubuisson-Jolly M.P. “Deformable template models: A review,”Signal
Processing,Vol. 71, pp. 109–129, 1998.

[Jain 96] Jain A.K., Zhong Y., Lakshmanan S. “Object matching using deformable templates,” IEEE
Transactions on Pattern Analysis and Machine Itelligence,Vol. 18(3), pp. 267–277, 1996.

[Koch 89] Koch M.W., Kashyap R.L. “Matching polygon fragments,” Pattern Recognition Letters,
Vol. 10, pp. 297–308, 1989.

[Leven 66] LevenshteinV.I.“Binary codes capable of correcting deletions,insertions and reversals,”
Soviet phys.Dokl.,Vol. 10(8), pp. 707–710, 1966.

[Lewi 94] Lewis D., Gale W. “A sequential algorithm for training text classifiers,” Proceedings of
the 11th International Conference on Machine Learning, pp. 148–156, Morgan Kaufmann,
1994.

[Liu 07] LiuY.,Zhang D.,Lu G.,Ma W.-Y.“A survey of content-based image retrieval with high-level
semantics,”Pattern Recognition,Vol. 40, pp. 262–282, 2007.

[Long 03] Long F., Zang H.J., Feng D.D. “Fundamentals of content-based image retrieval,” in
Multimedia Information Retrieval and Management (Feng D. ed.), Springer, Berlin, 2003.

[Marz 93] Marzal A., Vidal E. “Computation of normalized edit distance and applications,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 15(9), 1993.

[McIn 96] McInerney T.,Terzopoulos D. “Deformable models in medical image analysis: A survey,”
Med. Image Anal.,Vol. 1(2), pp. 91–108, 1996.

[Mei 04] Mei J. “Markov edit distance,” IEEE Transactions on Pattern Analysis and Machine
Intelligence,Vol. 6(3), pp. 311–320, 2004.

[Myer 80] Myers C.S., Rabiner L.R., Rosenberg A.E. “Performance tradeoffs in dynamic time warp-
ing algorithms for isolated word recognition,” IEEE Transactions on Acoustics Speech and
Signal Processing,Vol. 28(6), pp. 622–635, 1980.

[Neg 99] Neg H.,Ortmanns S.“Dynamic programming search for continuous speech recognition,”
IEEE Signal Processing Magazine,Vol. 16(5), pp. 64–83, 1999.

[Ocud 76] Ocuda T.,Tanaka E., Kasai T. “A method for correction of garbled words based on the
Levenstein metric,” IEEE Transactions on Computers, pp. 172–177, 1976.

“10-Ch08-SA272” 18/9/2008 page 519

References 519

[Pikr 03] Pikrakis A., Theodoridis S., Kamarotos D. “Recognition of isolated musical patterns
using context dependent dynamic time warping,” IEEE Transactions on Speech and Audio
Processing,Vol 11(3), pp. 175–183, 2003.

[Rabi 93] Rabiner L., Juang B.H. Fundamentals of Speech Recognition, Prentice Hall, 1993.

[Ravi 95] Ravichandran G.,Trivedi M.M. “Circular-Mellin features for texture segmentation,” IEEE
Transactions on Image Processing,Vol. 2(12), pp. 1629–1641, 1995.

[Rui 98] Rui Y., Huang T.S., Ortega M., Mehrotra S. “Relevance feedback: power tool in interac-
tive content-based image retrieval,” IEEE Transactions on Circuits and Systems for Video
Technology,Vol. 8(5), pp. 644–655, 1998.

[Sako 78] Sakoe H., Chiba S. “Dynamic programming algorithm optimization for spoken word
recognition,”IEEETransactions onAcoustics Speech and Signal Processing,Vol. 26(2),pp. 43–
49, 1978.

[Scha 89] Schalkoff R. Digital Image Processing and Computer Vision, John Wiley & Sons,1989.

[Scho 00] Schohn G., Cohn D. “Less is more: Active learning with support vector machines,” Pro-
ceedings of the 17th International Conference on Machine Learning, pp. 839–846, Morgan
Kaufmann, 2000.

[Scla 97] Sclaroff S.,Taycher L. Cascia M“Imagerover:A content-based image browser for the world
wide web,”Proceedings of the 1997 Workshop on Content-Based Access of Image and Video
Libraries (CBAIVL’97), pp. 2–9, IEEE Computer Society, 1997.

[Seni 96] Seni G., Kripasundar V., Srihari R. “Generalizing Edit distance to incorporate domain
information: Handwritten text recognition as a case study,” Pattern Recognition, Vol. 29(3),
pp. 405–414, 1996.

[Silv 90] Silverman H., Morgan D.P. “The application of the dynamic programming to connected
speech recognition,” IEEE Signal Processing Magazine,Vol. 7(3), pp. 7–25, 1990.

[Tong 01] Tong S., Chang E. “Support vector machine active learning for image retrieval,” Pro-
ceedings of the 9th ACM International Conference on Multimedia, pp. 107–118,ACM Press,
2001.

[Tsay 93] TsayY.T.,Tsai W.H.“Attributed string matching split and merge for on-line Chinese char-
acter recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
15(2), pp. 180–185, 1993.

[Ueno 97] Uenohara M., Kanade T. “Use of the Fourier and Karhunen–Loève decomposition for
fast pattern matching with a large set of templates,” IEEE Transactions on Pattern Analysis
and Machine Intelligence,Vol. 19(8), pp. 891–899, 1997.

[Wang 01] Wang J.Z., Li J.,Wiederhold G.“SIMPLIcity: Semantics-sensitive Integrated Matching for
Picture LIbraries,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 23,
no.9, pp. 947–963, 2001.

[Wang 90] Wang Y.P., Pavlidis T. “Optimal correspondence of string subsequences,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 12(11), pp. 1080–1086,
1990.

[Widr 73] Widrow B. “The rubber mask technique, Parts I and II,” Pattern Recognition, Vol. 5,
pp. 175–211, 1973.

[Xu 03] Xu Z., Xu X., Yu K., Tresp V. “A hybrid relevance-feedback approach to text retrieval,”
Proceedings of the 25th European Conference on Information Retrieval Research, Lecture
Notes in Computer Science,Vol. 2633, Springer Verlag, 2003.

“11-Ch09-SA272” 18/9/2008 page 521

CHAPTER

9Context-Dependent
Classification

9.1 INTRODUCTION
The classification tasks considered so far have assumed that no relation exists among
the various classes. In other words, having obtained a feature vector x from a class
!i, the next feature vector could belong to any other class. In this chapter we will
remove this assumption, and we will assume that the various classes are closely
related. That is, successive feature vectors are not independent. Under such an
assumption,classifying each feature vector separately from the others obviously has
no meaning. The class to which a feature vector is assigned depends (a) on its own
value, (b) on the values of the other feature vectors, and (c) on the existing relation
among the various classes. Such problems appear in various applications such as
communications, speech recognition, and image processing.

In the context-free classification, our starting point was the Bayesian classifier.
In other words, a feature vector was classified to a class !i if

P(!i|x) ! P(!j |x), "j ̸# i

The Bayesian point of view will also be adopted here. However, the dependence
among the various classes sets demands for a more general formulation of the prob-
lem. The mutual information that resides within the feature vectors requires the
classification to be performed using all feature vectors simultaneously and also to
be arranged in the same sequence in which they occurred from the experiments.
For this reason, in this chapter we will refer to the feature vectors as observations
occurring in sequence, one after the other, with x1 being the first and xN the last
from a set of N observations.

9.2 THE BAYES CLASSIFIER
Let X : x1, x2, . . . , xN be a sequence of N (feature vectors) observations and
!i, i # 1, 2, . . . , M , the classes in which these vectors must be classified. Let 521

“11-Ch09-SA272” 18/9/2008 page 522

522 CHAPTER 9 Context-Dependent Classification

$i : !i1 , !i2 , . . . , !iN be one of the possible sequences of these classes correspond-
ing to the observation sequence, with ik ∈ {1, 2, . . . , M} for k # 1, 2, . . . , N . The
total number of these class sequences $i is MN , that is, the number of possible
ordered combinations of M distinct objects taken in groups of N . Our classifica-
tion task is to decide to which class sequence $i a sequence of observations X
corresponds. This is equivalent to appending x1 to class !i1 , x2 to !i2 , and so on.
A way to approach the problem is to view each specific sequence X as an (extended)
feature vector and $i , i # 1, 2, . . . , MN , as the available classes. Having observed a
specific X , the Bayes rule assigns it to $i for which

P($i|X) ! P($j |X), "i ̸# j (9.1)

and following our already familiar arguments, this is equivalent to

P($i)p(X |$i) ! P($j)p(X |$j), "i ̸# j (9.2)

In the following we will investigate the specific form that Eq. (9.2) takes for some
typical class dependence models.

9.3 MARKOV CHAIN MODELS
One of the most widely used models describing the underlying class dependence
is the Markov chain rule. If !i1 , !i2 , . . . is a sequence of classes, then the Markov
model assumes that

P(!ik |!ik%1 , !ik%2 , . . . , !i1) # P(!ik |!ik%1) (9.3)

The meaning of this is that the class dependence is limited only within two succes-
sive classes. This type of model is also called a first-order Markov model, to distin-
guish it from obvious generalizations (second,third,etc.). In other words,given that
the observations xk%1, xk%2, . . . , x1 belong to classes !ik%1 , !ik%2 , . . . , !i1 , respec-
tively,the probability of the observation xk,at stage k,belonging to class !ik depends
only on the class from which observation xk%1,at stage k%1,has occurred. Now
combining (9.3) with the probability chain rule [Papo 91, p. 192],

P($i) ≡ P(!i1 , !i2 , . . . , !iN)

P(!iN |!iN%1 , . . . , !i1)P(!iN%1 |!iN%2 , . . . , !i1) . . . P(!i1)

we obtain

P($i) # P(!i1)
N∏

k#2

P(!ik |!ik%1) (9.4)

where P(!i1) is the prior probability for class !i1 , i1 ∈ {1, 2, . . . , M}, to occur.
Furthermore, two commonly adopted assumptions are that (a) given the sequence
of classes, the observations are statistically independent, and (b) the probability
density function in one class does not depend on the other classes. That is,

“11-Ch09-SA272” 18/9/2008 page 523

9.4 The Viterbi Algorithm 523

dependence exists only on the sequence in which classes occur, but within a
class observations “obey” the class’ own rules. This assumption implies that

p(X |$i) #
N∏

k#1

p(xk|!ik) (9.5)

Combining Eqs. (9.4) and (9.5), the Bayes rule for Markovian models becomes
equivalent to the statement:

Statement
Having observed the sequence of feature vectors X : x1, . . . , xN , classify them in
the respective sequence of classes $i : !i1 , !i2 , . . . , !iN , so that the quantity

p(X |$i)P($i) # P(!i1)p(x1|!i1)
N∏

k#2

P(!ik |!ik%1)p(xk|!ik) (9.6)

becomes maximum.
As we have already stated, searching for this maximum requires the compu-

tation of Eq. (9.6) for each of the $i , i # 1, 2, . . . , MN . This amounts to a total
of O(NMN) multiplications, which is usually a large number indeed. However,
this direct computation is a brute-force task. Let us take for example two
sequences $i and $j , which we assume differ only in the last class, that is,
!ik # !jk , k # 1, 2, . . . , N % 1 and !iN ̸# !jN . It does not take much “scientific
thought” to realize that the computation of (9.6) for these two sequences shares
all multiplications (which need not be repeated) but one. Furthermore, closer
observation of (9.6) reveals that it has a rich computational structure,which can be
exploited in order to maximize it in a much more efficient way. This now becomes
our next concern.

9.4 THE VITERBI ALGORITHM
Figure 9.1 shows a diagram with N dot columns,where each dot in a column repre-
sents one of the M possible classes,!1, !2, . . . , !M . Successive columns correspond
to successive observations xk, k # 1, 2, . . . , N . The arrows determine transitions
from one class to another, as observation vectors are obtained in sequence. Thus,
each of the class sequences $i corresponds to a specific path of successive tran-
sitions. Each transition from one class !i to another !j is characterized by a fixed
probability P(!j |!i),which is assumed to be known for the adopted model of class
dependence. Furthermore, we assume that these probabilities are the same for all
successive stages k. That is, the probabilities depend only on the respective class
transitions and not on the stage at which they occur. We will further assume that
the conditional probability densities p(x|!i), i # 1, 2, . . . , M , are also known to the
model. The task of maximizing (9.6) can now be stated as follows. Given a sequence
of observations x1, x2, . . . , xN , find the path of successive (class) transitions that

“11-Ch09-SA272” 18/9/2008 page 524

524 CHAPTER 9 Context-Dependent Classification

!M

!2

!1

P(! 2
|! 1

)

k # 1 2 3
x1 x2 xN%1

N % 1 N
xNx3

!M%1

FIGURE 9.1
Trellis diagram for the Viterbi algorithm. The red line denotes the optimal path. The classes
along this optimal path will be the ones in which the respective observations are classified.

maximizes (9.6) (e.g., red line in the figure). The classes along this optimal path
will be the ones in which the respective observations are classified. To search
for the optimal path we have to associate a cost with each of the transitions, in
agreement with the cost function given in (9.6). A careful look at (9.6) suggests
adopting

d̂(!ik , !ik%1) # P(!ik |!ik%1)p(xk|!ik) (9.7)

as the cost associated with a transition of a path i from node (class) !ik%1 , at stage
k % 1, to node !ik , at stage k and at the same time observation xk occurring. The
initial condition for k # 1 is given by

d̂(!i1 , !i0) # P(!i1)p(x1|!i1)

Using this notation, the overall cost to be optimized becomes

D̂ ≡
N∏

k#1

d̂(!ik , !ik%1) (9.8)

It will not come as a surprise to us if instead of (9.8) one chooses to maximize

ln(D̂) #
N∑

k#1

ln d̂(!ik , !ik%1)

≡
N∑

k#1

d(!ik , !ik%1) ≡ D (9.9)

“11-Ch09-SA272” 18/9/2008 page 525

9.4 The Viterbi Algorithm 525

where d(·, ·) ≡ ln d̂(·, ·). Looking carefully at (9.9) or (9.8), it will not take us
long to realize that Bellman’s principle can again offer us the means for efficient
optimization. Indeed, let us define, in accordance with D, the cost for reaching class
!ik at stage k via a path i as

D(!ik) #
k∑

r#1

d(!ir , !ir%1) (9.10)

Then, Bellman’s principle states that

Dmax(!ik) # max
ik%1

[Dmax(!ik%1) & d(!ik , !ik%1)], ik, ik%1 # 1, 2, . . . , M (9.11)

with

Dmax(!i0) # 0 (9.12)

It is now straightforward to see that the optimal path, which leads to the maxi-
mum D in (9.9), is the one that ends at the final stage N in the class !∗

iN for which

!∗
iN # arg max

!iN
Dmax(!iN) (9.13)

Going back to Figure 9.1, we see that at each stage k, k # 1, 2, . . . , N , there are
M possible transitions to each of the nodes !ik . The recursive relation in (9.11)
suggests that in searching for the maximum we need only keep one of these
transitions for every node, the one that leads to the maximum respective cost
Dmax(!ik) (red lines in the figure). Hence, at each stage there are only M sur-
viving paths. Therefore, the number of operations is M for each node, thus M2

for all the nodes at each stage, and NM2 in total. The latter number compares
very favorably with the NMN of the “brute-force task.” The resulting algorithm
is known as the Viterbi algorithm. This dynamic programming algorithm was
first suggested for optimal decoding in convolutional codes in communications
[Vite 67].

In previous chapters,we stated that for a number of reasons an alternative to the
optimal Bayes classifier can be used. No doubt context-dependent classification can
also be emancipated from its Bayesian root. This can easily be achieved by adopting
different transition costs d(!ik , !ik%1), which are not necessarily related to proba-
bility densities. In the following sections we will present two typical application
areas of the Viterbi algorithm.

Example 9.1
In this example we apply the Viterbi algorithm to compute the optimal paths up to stage k # 4,
once observation x4 has been received. Assume that x4 # 1.2 and that the observations
reside in the one-dimensional space. Let the task involve three classes, namely, !1, !2, !3.
We will further assume that the optimal paths up to stage k # 3 have been computed and

“11-Ch09-SA272” 18/9/2008 page 526

526 CHAPTER 9 Context-Dependent Classification

0 1 2 4 k

!2

!3

!1
3

FIGURE 9.2
Optimal paths for the grid corresponding to Example 9.1. The red lines correspond to the
extensions of the optimal paths from stage k # 3 to stage k # 4.

Table 9.1 Transition Costs Between Nodes for
Example 9.1

Classes !ik # !1 !ik # !2 !ik # !3

!ik%1 # !1 0.1 0.7 0.2

!ik%1 # !2 0.4 0.3 0.3

!ik%1 # !3 0.3 0.1 0.6

are shown in black lines in Figure 9.2. Let the optimal costs associated with each class at
stage k # 3 be equal to

D(!1) # %0.5, D(!2) # %0.6, D(!3) # %0.2 (9.14)

All the values are negative, since, as Eqs. (9.9) and (9.10) suggest, costs result by summing
up logarithms of probability products. The previous costs are assumed known and they have
been computed based on the initial class probability values and (a) the transition probability
costs among the three classes, which are given in Table 9.1 and (b) the values of the received
observations, x0, x1, x2, x3. We have further assumed that the probability density function
describing the emission of an observation from each one of the classes follows a Gaussian
distribution

p(x|!i) #
1√

2"#i
exp

(
%

(x % $i)2

2#2
i

)

where $1 # 1.0 and #2
1 # 0.03, $2 # 1.5 and #2

2 # 0.02, $3 # 0.5 and #2
3 # 0.01.

We will first compute the optimal path reaching class !1 at stage k # 4. According to
Eqs. (9.11), (9.10), and (9.7), the following calculations are in order:

ln p(x4 # 1.2|!i4 # !1) # %0.1578

Total cost for the transition from !i3 # !1 to !i4 # !1 is equal to
%0.5 & ln(0.1) % 0.1578 # %2.9604.

“11-Ch09-SA272” 18/9/2008 page 527

9.5 Channel Equalization 527

Total cost for the transition from !i3 # !2 to !i4 # !1 is equal to
%0.6 & ln(0.4) % 0.1578 # %1.6741.

Total cost for the transition from !i3 # !3 to !i4 # !1 is equal to
%0.2 & ln(0.3) % 0.1578 # %1.5617.

Hence, the optimal path reaching class !1 at stage k # 4 is through !3 at stage k # 3.
For the transitions to !2 at k # 4, we have

ln p(x4 # 1.2|!i4 # !2) # %0.2591

and the respective values for the paths reaching class !2 from classes !1, !2 and !3 at k # 3
are %1.1158, %2.0631, %2.7617. Thus the optimal path reaching !2 at k # 4 is through !1

at k # 3.
Finally, the respective values for the paths reaching !3 at k # 4 are

ln p(x4 # 1.2|!i4 # !3) # %2.2176

and %4.3271, %4.0216, %2.9285. As a result, the best path reaching node !3 at stage k # 4
goes through class !3 at stage k # 3 (self-transition).

If k # 4 is the final stage, that is, only four observations are available, then the optimal
path, denoted by a bold line in Figure 9.2, is the one ending at stage !2 with an overall cost
equal to %1.1158. Going backwards along the optimal path (backtracking), we assign: x4 to
!2, x3 to !1, x2 to !2, x1 to !1 and x0 to !2.

9.5 CHANNEL EQUALIZATION
Channel equalization is the task of recovering a transmitted sequence of information
bits Ik (e.g.,1 or 0) after they have been corrupted by the transmission channel and
noise sources. The samples received at the receiver end are, thus, given by

xk # f (Ik, Ik%1, . . . , Ik%n&1) & %k (9.15)

where the function f (·) represents the action of the channel and %k the noise
sequence. The channel contribution to the overall corruption is called the
intersymbol interference (ISI) and it spans n successive information bits. The
equalizer is the inverse system whose task is to provide decisions Îk about
the transmitted information bits Ik, based on l successively received samples
[xk, xk%1, . . . , xk%l&1] ≡ xT

k . Usually, a delay r must be used in order to accom-
modate the (possible) noncausal nature of the inverse system. In such cases
the decisions made at time k correspond to the Ik%r transmitted information bit
(Figure 9.3). A simple example will reveal to us how the equalization problem
comes under the umbrella of a Markovian context-dependent classification task.
Assume a simple linear channel

xk # 0.5Ik & Ik%1 & %k (9.16)

“11-Ch09-SA272” 18/9/2008 page 528

528 CHAPTER 9 Context-Dependent Classification

xk
Equalizer

Ik&r

FIGURE 9.3
Block diagram of an equalizer.

For l # 2, successively received samples are combined in vectors in the two-
dimensional space, that is,

xT
k # [xk, xk%1]

Let us further assume that there are N such observation vectors available. From
(9.16) it is readily seen that each xk, k # 1, 2, . . . , N , depends on the values of
three successive information bits, namely Ik, Ik%1, Ik%2. Neglecting the effects
of noise, the possible values of the received samples xk are given in Table 9.1,
together with the respective information bits. Figure 9.4a shows the geometry
in the two-dimensional space with (xk, xk%1) on its axis. When the effect of
noise is taken into account, the received vectors are clustered around these points
(for example, shaded area). For the specific channel of (9.16) there are eight pos-
sible clusters, !i , i # 1, 2, . . . , 8 (Table 9.1). Clusters (red) around “&” correspond
to Ik # 1 and those (gray) around “o” to Ik # 0. In general, the total number of
clusters for a binary information sequence is m # 2n&l%1. On the reception of
each xk # [xk, xk%1]T ,the equalizer has to decide whether the corresponding trans-
mitted information bit Ik was either a “1”(i.e., class “A”) or a “0”(class “B”). In other
words, this is nothing other than a two-class classification problem (M class for
the M -ary case), and each class consists of a union of clusters. Thus, various tech-
niques, from those we have already studied in previous chapters, can be used.
A simple way, which was followed in [Theo 95], consists of two steps. During
the training period a sequence of known information bits is transmitted, and the
representative center !i for each of the clusters is computed by a simple averaging
of all the vectors xk belonging to the respective cluster. This is possible during
the training period, since the transmitted information bits are known,and thus we
know to which of the clusters each received xk belongs. For example, in the case
of Table 9.1 if the sequence of transmitted bits is (Ik # 1, Ik%1 # 0, Ik%2 # 1), then
the received xk belongs to !6. At the same time,the clusters are labeled as“1”or“0”
depending on the value of the Ik bit. At the so-called decision directed mode the
transmitted information bits are unknown, and the decision about the transmitted
Ik is based on which cluster (“1”or“0”label) the received vector xk is closest to. For
this purpose a metric is adopted to define distance. The Euclidean distance of the
received vector xk from the representatives !i of the clusters is an obvious candi-
date. Although such an equalizer can result in reasonable performance,measured in
bit error rate (BER) (the percentage of information bits wrongly identified), there
is still a great deal of information that has not been exploited. Let us search for it!

“11-Ch09-SA272” 18/9/2008 page 529

9.5 Channel Equalization 529

Table 9.2 Received Samples and Respective
Information Bits for the Channel of Eq. (9.16)

Ik Ik%1 Ik%2 xk xk%1 Cluster

0 0 0 0 0 !1

0 0 1 0 1 !2

0 1 0 1 0.5 !3

0 1 1 1 1.5 !4

1 0 0 0.5 0 !5

1 0 1 0.5 1 !6

1 1 0 1.5 0.5 !7

1 1 1 1.5 1.5 !8

(a) (b)

!8

!7

!6

!5

!4

!3

!2

!1

!8

!7

!6

!5

!4

!3

!2

!1

xk

1.5

1

0.5

0

%0.5
%0.5 0 0.5 1 1.5 xk%1

& &

& &

FIGURE 9.4
Plot (a) of the eight possible clusters associated with the channel of Eq. (9.16) and (b) the
allowable transitions among them.

From the definition of ISI in (9.15) we know that the channel spans a number
of successive information bits. Thus, only certain transitions among clusters are
possible. Indeed, let us assume, for example, that at time k the transmitted informa-
tion bits (Ik, Ik%1, Ik%2) were (0, 0, 1);hence, the corresponding observation vector
xk belongs to cluster !2. The next received observation vector xk&1 will depend
on the triple (Ik&1, Ik, Ik%1) bits,which can be either (1, 0, 0) or (0, 0, 0). Thus,xk&1

“11-Ch09-SA272” 18/9/2008 page 530

530 CHAPTER 9 Context-Dependent Classification

will belong either to !5 or to !1. That is,there are only two possible transitions from
!2. Figure 9.4b shows the possible transitions among the various clusters. Assum-
ing equiprobable information bits, then from Figure 9.4b we can easily conclude
that all allowable transitions have probability 0.5, that is,

P(!1|!1) # 0.5 # P(!5|!1)

and the rest are zero (not allowable). We now have all the ingredients to define the
equalization problem as a context-dependent classification task.

Given N observation vectors xk, k # 1, 2, . . . , N , classify them in a sequence
of clusters !i1 , !i2 , . . . , !iN . This automatically classifies each xk in one of the two
classes “A” and “B,” which is equivalent to deciding that Ik is 1 or 0. For this goal
a cost function has to be adopted. In [Theo 95, Geor 97] the cost d(!ik , !ik%1) in
(9.9) used in the Viterbi algorithm, for the allowable transitions, was taken to be

d(!ik , !ik%1) # d!ik
(xk) (9.17)

where d!ik
(xk) is the distance of xk from the representative of the !ik cluster.

This can be either the Euclidean

d!ik
(xk) # ∥xk % !ik∥ (9.18)

or the Mahalanobis distance

d!ik
(xk) #

(
(xk % !ik)T '%1

ik (xk % !ik)
)1/2

(9.19)

The covariance matrices 'ik , describing the distribution of the observation vec-
tors around the respective cluster representatives, are learned during the training
period together with the cluster representatives !i. The Viterbi algorithm is then
used to obtain the optimal overall minimum distance sequence,and recursion (9.11)
is modified for the search of the minimum.

An alternative way to define the cost function is to consider observations
as scalars xk, that is, the received samples (l # 1), and make the following
assumptions:

■ Successive noise samples are statistically independent and Gaussian.

■ The channel impulse response is known or can be estimated. In practice, a
specific channel model is assumed,that is, f̂ (·),and its parameters are estimated
via an optimization method, for example, least squares [Proa 89].

Under the preceding assumptions, the cost for the allowable state transitions
in (9.9) becomes

d(!ik , !ik%1) # ln p(xk|!ik) ≡ ln(p(%k))

%(xk % f̂ (Ik, . . . , Ik%n&1))2 (9.20)

where %k is the respective Gaussian distributed noise sample. Obviously, in (9.20)
the constants in the Gaussian density function have been omitted. If the Gaus-
sian and independence assumptions are valid, this is obviously a Bayesian optimal

“11-Ch09-SA272” 18/9/2008 page 531

9.5 Channel Equalization 531

classification to the clusters (from which the “0”and “1”classes result). However, if
this is not true, the cost in (9.20) is no longer the optimal choice. This is, for exam-
ple, the case when the so-called cochannel (nonwhite) interference is present. In
such cases, the cluster-based approach is justifiable, and indeed it leads to equal-
izers with more robust performance [Geor 97]. Furthermore, the fact that in the
clustering approach no channel estimation is required can be very attractive in a
number of cases,where nonlinear channels are involved and their estimation is not
a straightforward task [Theo 95]. In [Kops 03] equalization is performed in the one-
dimensional space, that is, l # 1. Although this increases the probability of having
clusters with different labels to overlap, this is not crucial to the performance,since
the Viterbi algorithm has the power to detect the correct label, by exploiting the
history in the path. Furthermore, it is pointed out that one needs not determine
directly all the 2n cluster representatives; it suffices to learn, during the training
phase, only n of the clusters, and the rest can be obtained by simple arithmetic
operations. This is achieved by exploiting the mechanism underlying the cluster
formation and the associated symmetries. Both of these observations have a sub-
stantial impact on reducing the computational complexity as well as the required
length of the training sequence.

The discussion so far has been based on the development of a trellis diagram
associated with the transitions among clusters, and the goal has been to unravel the
optimal path, using the Viterbi algorithm. However, although this came as a natural
consequence of the context-dependent Bayesian classifier, it turns out this is not the
most efficient way from a computational point of view. From Figure 9.4b one can
easily observe that pairs of clusters jump to the same clusters after transition. For
example, the allowable transitions from !1 and !2 are the same and lead to either
!1 or !5. The same is true for !3 and !4, and so on. This is because the allowable
transitions are determined by the n & l % 2 most recent bits. For the example of
Figure 9.4, transitions are determined by the pair (Ik, Ik%1), which, however, is
shared by two clusters, that is, (Ik, Ik%1, Ik%2),depending on the value of Ik%2 if it is
0 or 1. The pair (Ik, Ik%1) is known as the state at time k. This is because, knowing
the state at time k and the transmitted bit Ik&1 at time k & 1,we can determine the
next state (Ik&1, Ik) at time k & 1, as is the case in the finite state machines. Since
transitions are determined by the states, one can construct a trellis diagram based
on the states instead of on clusters. For the example of Figure 9.5, where eight
clusters are present, there is a total of four states, that is, s1 : (0, 0), s2 : (0, 1), s3 :
(1, 0), s4 : (1, 1). Figure 9.5 shows these states and the allowable transitions among
them. Each transition is associated with one bit, which is the current transmitted
bit. Obviously, there is a close relationship between states and clusters. If we
know the state transition, that is, (Ik, Ik%1) → (Ik&1, Ik), then the current cluster
at time k & 1 will be determined by the corresponding values of (Ik&1, Ik, Ik%1),
and this automatically determines the cost of the respective transition, for example,
(9.18) or (9.19). Hence the estimates of the transmitted bits are obtained from
the sequence of bits along the optimal path, that is, the one with the minimum
total cost, in the state trellis diagram instead of the larger cluster trellis diagram.

“11-Ch09-SA272” 18/9/2008 page 532

532 CHAPTER 9 Context-Dependent Classification

s4

s3

1

1
0

0

0

0

1

1

s2

s1

s4

s3

s2

s1

FIGURE 9.5
Plot of the four states associated with the channel of Eq. (9.16) and a two-dimensional equalizer
showing the allowable transitions among them.

9.6 HIDDEN MARKOV MODELS
In the channel equalization application of the previous section, the states of the
Markov chain were observable. That is,given the l & n % 1 most recent information
bits (i.e., Ik, Ik%1, Ik%2, in the given example), the state to which the correspond-
ing observation vector xk belongs is readily known. Thus, during the training
period these states can be “labeled,” and we can estimate their associated parame-
ters (i.e., the related clusters). In this section, we will be concerned with systems
where the states cannot be directly observed. The observations will be considered
as the result of an action associated with each state and which is described by a set
of probabilistic functions. Moreover, the sequence in which the different states are
visited by successive observations is itself the result of another stochastic process,
which is hidden to us, and the associated parameters describing it can only be
inferred by the set of the received observations.

These types of Markov models are known as hidden Markov models (HMMs).
Let us consider some simple examples of such processes inspired by the well-
known coin-tossing problem. We will assume that in all experiments the coin tossing
takes place behind a curtain, and all that is disclosed to us is the outcome of each
experiment. That is, each time an experiment is performed we cannot know the
specific coin (in the case of multiple coins) whose tossing resulted in the current
observation (heads or tails). Thus, a crucial part of the probabilistic process is
hidden to us.

In the first experiment,a single coin is tossed to produce a sequence of heads (H)
and tails (T). This experiment is characterized by a single parameter indicating the
propensity of the coin for landing heads. This is quantified by the probability P(H)
of H (P(T) # 1 % P(H)). A straightforward modeling of this statistical process is to
associate one state with the outcome H and one with the outcome T . Hence, this is
another example of a process with observable states, since states coincide with the

“11-Ch09-SA272” 18/9/2008 page 533

9.6 Hidden Markov Models 533

1 2

P(1|1) 5 P(H) P(2|2) 5 1 2 P(H)

P(2|1) 5 1 2 P(H) P(2|1) 5 1 2 P(1|1)

P(1|2) 5 P(H) P(1|2) 5 P(2|2)

(a) (b)

1 2 P(H)P(H)

P(1|1)

P1(H) P2(H)

P1(T) 5 1 2 P1(H) P2(T) 5 1 2 P2(H)

P(2|2)

FIGURE 9.6
Markov models for hidden coin-tossing experiments: (a) single coin and (b) two coins.

observations. Figure 9.6a illustrates the underlying generation mechanism of the
sequence of observations. P(i|j) denotes the transition probability from state sj to
state si, once the coin has been tossed and an observation has been made available
to us. For simplicity,states are shown simply as j and i,respectively. For this specific
example, state i # 1 represents H and state j # 2 represents T . Also, for this case,
all transition probabilities are expressed in terms of one parameter; that is, P(H).
For example, assume that the coin is in state i # 1 (H). Tossing the coin again it
can either result in H (the coin stays in the same state and P(1|1) # P(H)) or it can
jump into the other state resulting in T (P(2|1) # P(T) # 1 % P(H)).

In the second experiment,we assume that two coins are used behind the curtain.
Although, again, the sequence of observations consists of a random succession of
heads or tails, it is apparent that this process cannot be sufficiently modeled by a
single parameter. To model the process we assume two states, corresponding to
the two coins. The model is shown in Figure 9.6b. Two sets of parameters are
involved. One of them consists of the probabilities P1(H) and P2(H); that is, the
probabilities of H for coins 1 and 2, respectively. The other set of parameters are
the transition probabilities,P(i| j), i, j # 1, 2. For example,P(1|2) is the probability
that the current observation (which can be either H or T) is the outcome of an
experiment performed using coin 1 (state i #1) and that the previous observation
was the result of tossing coin 2 (state j #2). Self-transition probabilities,for example,
P(1|1), mean that the same coin (1) is tossed twice and the process remains in the
same state (i # 1) for two successive times. Taking into account that probabilities of
an event add to one,two of the transition parameters are sufficient,and this amounts
to a total of four parameters (i.e.,P1(H), P2(H), P(1|1), P(2|2)). It is important to
point out that the states of this process are not observable, since we have no access
to the information related to which coin is tossed each time.

Figure 9.7 shows the Markov model for the case of tossing three coins behind
the curtain. Nine parameters are now required to describe the process; that is,
the probabilities Pi(H), i # 1, 2, 3, one for each coin and six transition probabili-
ties (the number of transition probabilities is nine but there are three constraints;

“11-Ch09-SA272” 18/9/2008 page 534

534 CHAPTER 9 Context-Dependent Classification

P(1|1)
P(2|1)

P(1|2)

P(1|3)

P1(H)

P1(T) # 1% P1(H) P2(T) # 1% P2(H) P3(T) # 1% P3(H)

P2(H) P3(H)

P(3|1)
P(2|3)

P(3|2)

P(3|3)

P(2|2)

FIGURE 9.7
Markov model for three hidden coins.

i.e.,
∑3

i#1 P(i| j) # 1, j # 1, 2, 3). The case of three coins is another example of a
probabilistic process with hidden states.

As we will soon see, a major task associated with HMM is first to adopt a model
for the underlying process that produces the sequence of observations and then
to estimate the unknown set of parameters based on these observations. For the
tossing coins examples, these parameters are the transition probabilities as well as
the head or tail probabilities for each of the coins. No doubt, adopting the right
model is crucial. If, for example, the head or tail observations were produced
by tossing two coins and we selected, wrongly, a three-coin model, the resulting
estimates of the parameters would lead to an overall poor modeling of the received
observations.

In general, an HMM is a type of stochastic modeling appropriate for nonstation-
ary stochastic sequences, with statistical properties that undergo distinct random
transitions among a set of different stationary processes. In other words, an HMM
models a sequence of observations as a piecewise stationary process. Such mod-
els have been used extensively in speech recognition to model speech utterances
[Bake 75, Jeli 76]. An utterance may be a spoken word, part of a word, or even a
complete sentence or a paragraph. The statistical properties of the speech signal
within an utterance undergo a series of transitions. For example,a word consists of

“11-Ch09-SA272” 18/9/2008 page 535

9.6 Hidden Markov Models 535

subword portions of voiced (vowels) and unvoiced (consonants) sounds. These are
characterized by distinctly different statistical properties,which are in turn reflected
in transitions of the speech signal from one statistic to another. Handwriting
recognition [Chen 95, Vlon 92, Agaz 93, ElYa 99, Aric 02, Ramd 03], texture classi-
fication [Chen 95a, Wu 96], blind equalization [Anto 97, Kale 94, Geor 98], musical
pattern recognition [Pikr 06] are some other example applications in which the
power of HMM modeling has been successfully exploited.

An HMM model is basically a stochastic finite state automaton,which generates
an observation string, that is, the sequence of observation vectors, x1, x2, . . . , xN .
Thus,an HMM model consists of a number of,say K ,states and the observation string
is produced as a result of successive transitions from one state i to another j. We
will adopt the so-called Moore machine model,according to which observations are
produced as emissions from the states upon arrival (of the transition) at each state.

Figure 9.8 shows a typical diagram of an HMM of three states, where arrows
indicate transitions. Such a model could correspond to a short word with three
different stationary parts. The model provides information about the succes-
sive transitions between the states (P(i| j), i, j # 1, 2, 3—temporal modeling of
the spoken word) and also about the stationary statistics underlying each state
(p(x|i), i # 1, 2, 3). This type of HMM model is also known as left to right,because
transitions to states with a smaller index are not allowed. Other models also do
exist [Rabi 89]. In practice, the states correspond to certain physical characteris-
tics, such as distinct sounds. In speech recognition, the number of states depends
on the expected number of such sound phenomena (phonemes)1 within one word.
Actually,a number of states (typically three or four) are used for each phoneme. The
average number of observations, resulting from various versions of a spoken word,

P(1|1) P(2|2) P(3|3)

P(2|1)

p(x|1) p(x|2) p(x|3)

P(3|2)

x x x

FIGURE 9.8
Model parameters describing a three-state hidden Markov model.

1 A phoneme is a basic sound unit corresponding to a unique set of articulatory gestures,characterizing
the vocal tract articulators for speech sound production [Dell 93].

“11-Ch09-SA272” 18/9/2008 page 536

536 CHAPTER 9 Context-Dependent Classification

can also be used as an indication of the number of required states. However, the
exact number of states is often the result of experimentation and cannot be deter-
mined accurately a priori. In blind equalization, the states are associated with the
number of clusters formed by the received data [Geor 98]. In character recognition
tasks, the states may correspond to line or arc segments in the character [Vlon 92].

In the sequel we will assume that we are given a set of M known reference
patterns, and our goal is to recognize which one of them an unknown test pattern
matches best. This problem was studied in the previous chapter from a template
matching (deterministic) perspective. A different (stochastic) path will be taken
here. Specifically,we will assume that each known (reference) pattern is described
via an HMM model. That is,each of the M patterns is characterized by the following
set of parameters:

■ The number Ks of the states, s # 1, 2, . . . , M .

■ The probability densities p(x| j), j # 1, 2, . . . , Ks, describing the distribution
of the observations emitted from state j.

■ The transition probabilities P(i| j), i, j #1, 2, . . . , Ks, among the various states.
Some of them can be zero.

■ The probabilities P(i), i # 1, 2, . . . , Ks, of the initial state.

Although this is quite a general description of an HMM model, it is worth pointing
out that variations are also possible. For example, sometimes the place of the self-
transition probability (P(i|i)) is taken by the state duration probability distribution,
which describes the number of successive stages for which the model stays in state i
(Section 9.7). In some other cases, a model for the generation mechanism of the
observations is adopted—for example, an autoregressive model [Pori 82] or even a
time-varying one that models nonstationary state statistics [Deng 94]. In the sequel
we will adhere to the foregoing model. Our problem now consists of two major
tasks. One is the training for each of the HMM models, that is, the computation of
the parameters just listed. The other is the task of recognition. That is,once the HMM
parameters of the reference models are known,how do we decide which reference
model the unknown pattern matches best? We will start with the latter task.

Recognition
Any path method
To start with, we will treat each of the M reference HMM models as a dis-
tinct class. The sequence of observations X is the result of emissions, due to
transitions among the different states of the respective model. The problem
then becomes a typical classification task. Given the sequence of N observa-
tions X : x1, x2, . . . , xN , resulting from the unknown pattern, decide to which
class it belongs. The Bayesian classifier decides in favor of pattern S∗ for
which

S∗ # arg max
S

P(S|X), that is, over all the models (9.21)

“11-Ch09-SA272” 18/9/2008 page 537

9.6 Hidden Markov Models 537

and for equiprobable reference models (classes) this is equivalent to

S∗ # arg max
S

p(X |S) (9.22)

where for convenience we have used S to denote the set of parameters describing
each HMM model, that is,

S # {P(i|j), p(x|i), P(i), Ks}

For each model S there is more than one possible set of successive state transitions
$i , each having probability of occurrence P($i|S). Thus, recalling the known rule
for probabilities, we can write [Papo 91]

p(X |S) #
∑

i

p(X , $i|S) #
∑

i

p(X |$i , S)P($i|S) (9.23)

In order to find the maximum p(X |S) over all possible models, the quantity in
(9.23) has to be computed for each of the M reference models. Its efficient com-
putation can be achieved via an approach similar to the Viterbi algorithm. Indeed,
the only difference between (9.23) and (9.6) is that, instead of simply searching for
the maximum over all possible state sequences $i , (9.23) requires summing up the
respective values for each of them. To this end, let us define as '(ik) the probability
density of the joint event: (a) a path is at state ik(ik ∈ {1, 2, . . . , Ks}) at stage k and
(b) observations x1, x2, . . . , xk%1 have been emitted at the previous stages and (c)
observation xk is emitted from the state ik at stage k. From the definition of '(ik)
the following recursive relation is easily understood:

'(ik&1) ≡ p(x1, . . . , xk&1, ik&1|S)

#
∑

ik

'(ik)P(ik&1|ik)p(xk&1|ik&1), k # 1, 2, . . . , N % 1 (9.24)

with

'(i1) # P(i1)p(x1|i1)

The product P(ik&1|ik)p(xk&1|ik&1) in (9.24) provides the local information for
the last transition, and '(ik) is the information accumulated from the path history
up to stage k. As is apparent from its definition, '(ik) does not depend on the
subsequent observations xk&1, . . . , xN . The definition of a joint probability density
function, which depends on all available observations, is also possible and will be
used later on. To this end, let us define ((ik) as the probability density function of
the event: observations xk&1, . . . , xN occur at stages k&1, . . . , N ,given that at stage
k the path is at state ik. Then after a little thought we conclude that ((ik) obeys the
following recursion:

((ik) ≡ p(xk&1, xk&2, . . . , xN |ik, S)

#
∑

ik&1

((ik&1)P(ik&1|ik)p(xk&1|ik&1), k # N % 1, . . . , 1 (9.25)

“11-Ch09-SA272” 18/9/2008 page 538

538 CHAPTER 9 Context-Dependent Classification

where by definition

((iN) # 1, iN ∈ {1, 2, . . . , Ks} (9.26)

Thus, the probability density of the joint event: (a) a path is at state ik at stage k and
(b) x1, . . . , xN have been observed, is given by

)(ik) ≡ p(x1, . . . , xN , ik|S)

p(x1, . . . , xk, ik|S)p(xk&1, . . . , xN |ik, S)

'(ik)((ik) (9.27)

where the assumption about the observations’ independence has been employed.
Equation (9.27) also justifies the choice ((iN) # 1, iN ∈ {1, 2, . . . , Ks}.

Let us now return to our original goal of computing the maximum p(X |S).
Equation (9.24) suggests that we can write Eq. (9.23) as

p(X |S) #
Ks∑

iN #1

'(iN) (9.28)

For the computation of (9.28), we need to compute all '(ik), for k # 1, 2, . . . , N .
This is efficiently achieved using the diagram of Figure 9.9. Each node corresponds
to a stage k and a state ik, ik # 1, 2, . . . , Ks. For each of the nodes the density

i1 5Ks

i1 5 1 i2 5 1 ik5 1 ik 1 15 1 iN5 1

a(ik) a(ik 1 1)

i2 5 Ks ik5 Ks ik 1 15 Ks iN5 Ks

P(ik 11 ik)

p(xk 1 1 ik 1 1)

x1 x2 xk xk 1 1 xN

FIGURE 9.9
Diagram showing the computational flow for the any path method.

“11-Ch09-SA272” 18/9/2008 page 539

9.6 Hidden Markov Models 539

'(ik) from Eq. (9.24) is computed. Thus, the number of computations is of the
order of NK2

s . The resulting algorithm is known as the any path method, since
all paths participate in the final cost. The computation of (9.28) is performed
for each of the M models, and the unknown string pattern of the observations
x1, x2, . . . , xN is classified to the reference model S for which p(X |S) becomes
maximum.

Best Path Method
An alternative, suboptimal, approach is the so-called best path method. According
to this method, for a given observation sequence X , we compute the most prob-
able (best) path of states sequence for each of the reference models. The task
now becomes that of (9.1), and the search for each of the optima can be achieved
efficiently via the Viterbi algorithm, with the cost D given as in (9.9),

D #
N∑

k#1

d(ik, ik%1) (9.29)

d(ik, ik%1) # ln P(ik|ik%1) & ln p(xk|ik)

In other words, for each of the models we compute the maximum of
P($i) p(X |$i) # p($i , X). Hence, the summation in (9.23) is replaced by a maxi-
mum operation. The unknown pattern is classified to that reference model S for
which the resulting optimal cost D is maximum.

Training
Training is a more difficult task. The states now are not observable, and a direct
training approach, such as the one used in Section 9.5, cannot be adopted. The
parameters that define each HMM model S can only be inferred from the available
observations.

One way to achieve this goal is to estimate the unknown parameters, so that
the output for each model, (9.29) or (9.28), becomes maximum for a training set
of observations known to belong to the model. This is an optimization task with
a nonlinear cost function, and it is carried out iteratively. To this end, assumptions
about the probability density functions p(x|i) are required. The procedure can be
simplified if one assumes that the observations xk can take only discrete values.
In such cases probability density functions p(x|i) become probabilities, P(x|i).

Discrete Observation HMM Models
We will assume that the training observation string xk, k # 1, 2, . . . , N , consists of
quantized vectors. In practice,this is achieved via vector quantization techniques,to
be discussed later in Chapter 14. Hence,each observation vector can take one only
out of L possible distinct values in the l-dimensional space. Thus, observations

“11-Ch09-SA272” 18/9/2008 page 540

540 CHAPTER 9 Context-Dependent Classification

can be described as integers r, r # 1, 2, . . . , L. The steps for each of the two
methods, that is, any path and best path, are as following:

Baum–Welch Reestimation
The “output” quantity in the any path procedure is p(X |S). Thus, estimating the
parameters of the model S so that p(X |S) is a maximum is nothing but a maximum
likelihood parameter estimation procedure. Before going into the discussion of the
iteration steps some definitions are needed.

Definitions

■ *k(i, j, X |S) ≡ the probability of the joint event: (a) a path passes through
state i at stage k and (b) through state j at the next stage k & 1 and
(c) the model generates the available sequence of observations X , given the
parameters of the model S.

■)k(i|X , S) ≡ the probability of the event: a path passes through state i at stage
k given the model and the available observation sequence.

From these definitions, it is not difficult to show that

*k(i, j) ≡ *k(i, j|X , S) #
*k(i, j, X |S)

P(X |S)
(9.30)

Mobilizing the definitions in Eqs. (9.24) and (9.25), Eq. (9.30) becomes

*k(i, j) #
'(ik # i)P(j|i)P(xk&1| j)((ik&1 # j)

P(X |S)
(9.31)

where '(ik # i) accounts for the path history terminating at stage k and state i.
((ik&1 # j) accounts for the future of the path, which at stage k & 1 is at state
j and then evolves unconstrained until the end. The product P(j|i)P(xk&1| j)
accounts for the local activity at stage k. The other quantity of interest is
given by

)k(i) ≡)k(i|X , S) #
'(ik # i)((ik # i)

P(X |S)
(9.32)

From the foregoing it is not difficult to see that

■
∑N

k#1)k(i) can be regarded as the expected (over the number of stages)
number of times state i occurs, given the model S and the observation
sequence X . When the upper index in the summation is N % 1, this quantity
is the expected number of transitions from state i.

■
∑N%1

k#1 *k(i, j) can be regarded as the expected number of transitions from
state i to state j, given the model and the observation sequence.

“11-Ch09-SA272” 18/9/2008 page 541

9.6 Hidden Markov Models 541

The preceding definitions lead us to adopt the following (re)estimation formulas
as reasonable estimates of the unknown model parameters.

P̄(j|i) #

∑N%1
k#1 *k(i, j)

∑N%1
k#1)k(i)

(9.33)

P̄x(r|i) #

∑N
(k#1 and x→r))k(i)

∑N
k#1)k(i)

(9.34)

P̄(i) #)1(i) (9.35)

The numerator in (9.34) sums only those of)k(i) for which the corresponding
observation xk takes the rth discrete value. The iterative algorithm can now be
expressed in terms of the following steps:

Iterations

■ Initial conditions: Assume initial conditions for the unknown quantities.
Compute P(X |S).

■ Step 1: From the current estimates of the model parameters reestimate the
new model S̄ via Eqs. (9.33) to (9.35).

■ Step 2: Compute P(X | S̄). If P(X | S̄) % P(X | S) ! + set S # S̄ and go to
step 1. Otherwise stop.

Remarks

■ Each iteration improves the model S̄; that is, it is true that P(X |S̄) (P(X |S).

■ The algorithm may lead to local maxima;see,for example,[Baum 67, Baum 68,
Baum 70]. This is why the algorithm in practice runs a number of times,
starting from different initial conditions, in order to find a favorable local
maximum for P(X |S). Other computational issues, including parallelism and
memory requirements, are treated in [Turi 98].

■ The Baum–Welch algorithm is basically an implementation of the EM algo-
rithm,which was introduced in Chapter 2. Indeed,a little thought reveals that
the ML estimation of the HMM parameters is a typical ML problem with an
incomplete data set, that is, the unobserved states (e.g., [Moon 96, Diga 93]).
A generalization of the method that allows multiple observation training
sequences is given in [Li 00]. Other, gradient-based, optimizing techniques
for the estimation of the unknown parameters have also been suggested and
used [Levi 83].

■ Practical implementation issues:
1. Scaling: The probabilities '(ik), ((ik) are obviously less than one, and

their values tend to zero very fast as the number of terms in the products
(9.24) and (9.25) increases. In practice, the dynamic range of their
computed values may exceed the precision range of the computer, so

“11-Ch09-SA272” 18/9/2008 page 542

542 CHAPTER 9 Context-Dependent Classification

appropriate scaling is required. A basic procedure is to scale '(ik) in pro-
portion to the number of stages. If the same scaling factor is used for
the ((ik), then on taking their product in the recursions the effect of the
scaling cancels out [Levi 83, Rabi 89] (Problem 9.4).

2. Initial conditions: This is an omnipresent problem in all iterative opti-
mization algorithms. Usually, the unknown parameters are initialized
randomly, subject, of course, to the constraints of the problem. That is,
if some transitions are not allowed, the corresponding probabilities are
set to zero, and also probabilities must add to one.

3. Insufficient training data: Generally, a large amount of training data is
necessary to learn the HMM parameters. The observation sequence must
be sufficiently long with respect to the number of states of the HMM
model. This will guarantee that all state transitions will appear a sufficient
number of times,so that the reestimation algorithm learns their respective
parameters. If this not the case,a number of techniques have been devised
to cope with the issue. For a more detailed treatment the reader may
consult [Rabi 89, Dell 93] and the references therein.

Viterbi Reestimation
In the speech literature the algorithm is also known as the segmental k-means
training algorithm [Rabi 89]. It is related to the best path method.

Definition 1.

■ ni|j ≡ number of transitions from state j to state i.

■ n|j ≡ number of transitions originated from state j.

■ ni| ≡ number of transitions terminated at state i.

■ n(r|i) ≡ number of times observation r ∈ {1, 2, . . . , L} occurs jointly with
state i.

Iterations

■ Initial conditions: Assume the initial estimates of the unknown parameters.
Obtain the best path and compute D.

■ Step 1:From the available best path, reestimate the new model parameters as:

P̄(i| j) #
ni| j

n| j

P̄x(r|i) #
n(r|i)

ni|

■ Step 2: For the new model parameters obtain the best path and compute the
corresponding overall cost D̄. Compare it with the cost D of the previous
iteration. If D̄ % D ! + set D # D̄ and go to step 1. Otherwise stop.

“11-Ch09-SA272” 18/9/2008 page 543

9.6 Hidden Markov Models 543

Symbol P̄x(r|i) is the current iteration estimate of the probability of emitting
from state i the rth value from the available palette of the L possible vectors. The
preceding algorithm has assumed that the initial state is known; thus no estimation
of the respective probabilities is needed. This is, for example, true for left-to-right
models,such as the one shown in Figure 9.8. TheViterbi reestimation algorithm can
be shown to converge to a proper characterization of the underlying observations
[Fu 82, Lee 72].

Continuous Observation HMM
The discrete observation modeling of originally continuous variables suffers from a
serious drawback. During the (vector) quantization stage of the signal (e.g., speech
segment),a severe loss of information about the original waveform may occur,which
can seriously degrade the performance of the recognizer. The alternative is to
work with continuous observation modeling, albeit at the expense of higher com-
plexity. This approach requires modeling of the probability densities p(x|i), prior
to estimation. Once these have been estimated, the recognition problem evolves
along the same lines as with the discrete observation case. The difference exists
only in the training task. One way to approach the problem is to assume a paramet-
ric model for the probability density function and then use reestimation procedures
to compute the unknown model parameters. As we have already discussed in
Chapter 2, a very general parameterization of the probability density function is
via mixture modeling, that is,

p(x|i) #
L∑

m#1

cimF(x, !im, 'im) (9.36)

where F(·, ·, ·) is a density function and !im, 'im are the mean vector and the covari-
ance matrix of the mth mixture. We will adhere to Gaussian functions, which
are usually employed in practice. The mixture coefficients cim have to satisfy the
constraint

L∑

m#1

cim # 1, 1) i) Ks

so that
∫ &*

%*
p(x|i) dx # 1, 1) i) Ks

Following arguments similar to those used to reestimate the parameters in the
discrete observation HMM case, the following reestimation formulas are obtained
[Lipo 82, Juan 85, Juan 86].

c̄im #

∑N
k#1)k(i, m)

∑N
k#1

∑L
r#1)k(i, r)

(9.37)

!̄im #

∑N
k#1)k(i, m)xk∑N

k#1)k(i, m)
(9.38)

“11-Ch09-SA272” 18/9/2008 page 544

544 CHAPTER 9 Context-Dependent Classification

'̄im #

∑N
k#1)k(i, m)(xk % !̄im)(xk % !̄im)T

∑N
k#1)k(i, m)

(9.39)

The term)k(i, m) is the probability density of being at state i and stage k with the
mth mixture component accounting for xk, that is,

)k(i, m) #
'(ik # i)((ik # i)
∑Ks

ik#1 '(ik)((ik)
+

cimF(xk, !im, 'im)
∑L

r#1 cirF(xk, !ir , 'ir)
(9.40)

where cim is the ratio of the expected number of times the system is at state i using
the mth mixture component to the overall expected number of times the system is
at state i. Similar interpretations can be made for the other formulas too.

When the Viterbi method is employed, reestimation of the parameters is based
on averages computed across the best path. For example, for mixture modeling
using a single Gaussian (L # 1) we get

!i #
1
Ni

N∑

k#1

xk,ik

'i #
1
Ni

N∑

k#1

(xk % !i)(xk % !i)
T ,ik

where ,ik # 1 for the stages where the path goes through state i and is zero
otherwise,and Ni is the respective number of times the path passes through state i.

Remarks

■ The algorithms just described estimate the unknown parameters using all the
available observations simultaneously. An alternative path, of major practical
importance, is to employ adaptive techniques in which new information can
be incorporated to adapt an already trained model, without it being neces-
sary to retrain it with all previously used data. It is generally accepted that
speaker-dependent recognizers outperform speaker-independent systems, as
long as sufficient training data are available. Thus, a long-standing idea is
to use speaker-independent recognizers, trained with enough data on a multi-
speaker platform,and then adapt the model parameters to fit a specific speaker
(and/or acoustic environment). This can be achieved by using the minimum
number of data from the new speaker. Both batch and sequential schemes
have been suggested. Some examples of such learning procedures are given
in [Lee 91, Diga 95, Legg 95, Huo 95, Huo 97, Diga 93, Wang 01].

■ A drawback of the modeling in (9.36) is that a mixture model is adopted for
each of the states. This makes the number of parameters to be estimated
rather high. Thus, for a given size of training data, it affects the robustness of
the parameter estimation. To alleviate such problems and decrease the number
of unknown parameters, so-called tied-mixture densities modeling has been

“11-Ch09-SA272” 18/9/2008 page 545

9.7 HMM with State Duration Modeling 545

suggested, where the same Gaussian densities are shared across the mixtures
of all the states [Bell 90] or groups of states [Diga 96, Kim 95, Gale 99, Gu 02].

■ The Baum–Welch algorithm is an iterative procedure to maximize the like-
lihood function with respect to the unknown parameters. MAP proce-
dures incorporating prior statistical information have also been proposed,
and enhanced performance has been reported [Gauv 94]. An alterna-
tive is to optimize with respect to all the unknown parameters, instead
of optimizing each HMM model separately, as was the case with ML ear-
lier. The goal of such an optimization approach is to enhance the dis-
crimination capabilities of the models, see, for example, [He 08]. Maxi-
mizing the mutual information [Bahl 86] or minimizing the cross-entropy
[Ephr 89] and, more recently, the classification error rate by using either
a smooth version of it [Juan 92, Juan 97] or the deterministic annealing
technique [Rao 01] or controlling the influence of the outliers [Arsl 99]
are examples of approaches that enhance performance at the expense of
complexity.

More recently, [Li 04] suggested the use of a deterministic annealing tech-
nique that allows one to adapt the number of states during training. This can
offer some advantages for those cases where the number of states cannot be
accurately predetermined.

■ HMM are graphical models and they belong to a class of Bayesian networks (dis-
cussed in Chapter 2) known as dynamic Bayesian networks [Neap 04].

9.7 HMM WITH STATE DURATION MODELING
Hidden Markov modeling,as we have approached it so far,falls short of expectations
in many cases in practice. Experimental evidence has identified a serious shortcom-
ing associated with the use of the self-transition probabilities, P(i|i), as parameters
in the standard HMMs. This is related to the exponential modeling of the state
duration probability, Pi(d), that such a modeling implies, where d is the successive
number of times the model remains in state i. Indeed, given P(i|i) the probability
of a path leaving current state i is equal to 1 % P(i|i). Hence, the probability of
being in state i for d successive instants (i.e., d % 1 self-transitions, and emission of
d consecutive observations from state i) is given by

Pi(d) # (P(i|i))d%1 (1 % P(i|i)) (9.41)

For many cases (e.g., for a number of audio signals), such an exponential state dura-
tion modeling is inappropriate. To alleviate this drawback, it has been suggested to
substitute the self-transition probability,P(i|i),by an explicit variable state duration

“11-Ch09-SA272” 18/9/2008 page 546

546 CHAPTER 9 Context-Dependent Classification

probability Pi(d) in the set of unknown HMM parameters [Ferg 80]. Thus, under
this new setting, the set of the unknown parameters defining an HMM consists of

■ The number Ks of the states.

■ The probability densities p(x|j) (they become probabilities for the case of
discrete observation models, i.e., x ∈ {1, 2, . . . , L}).

■ The state transition probabilities P(i|j), i, j # 1, 2, . . . , Ks.

■ The state duration probabilities, Pi(d), i # 1, 2, . . . , Ks, 1) d) D.

■ The probabilities P(i), i # 1, 2, . . . , Ks, of the initial state.

Observe that a maximum allowable state duration D has been adopted. Thus, the
model S can now be written as

S # {P(i| j), Pi(d), p(x|i), P(i), Ks}
Our goal remains the computation of the maximum of P(X |S) in (9.23). To achieve
this in an efficient way, we have to modify the set of auxiliary variables used with
the standard HMM so that we can adapt to the needs of the new parameterization.
To this end,define 'k(i) to be the probability density of the joint event: (a) a stay at
state i ends at stage k and (b) observations x1, x2, . . . , xk have been emitted up to
stage k. That is,

'k(i) # p(x1, x2, . . . , xk, state i ends at stage k|S) (9.42)

Note the slightly different notation used here, compared to (9.24), to emphasize
the different meaning of the involved variables. Since the stay at state i ends at
stage k, the next state, at stage k & 1, can take any value except i; that is, ik&1 ̸# i.
Furthermore, looking at the path history up to stage k, there are various ways to
reach state ik # i. One is to jump to ik # i from an ik%1 ̸# i, and this suggests
that only one symbol is emitted from state i. The probability of this event depends
on the value of Pi(d # 1), since we know that the path will depart from state
i at k & 1. The second possibility is the path to be at state i at stage k % 1 and
remain there for two successive stages (i.e., ik%1 # ik # i). The probability of
such an event is equal to Pi(d # 2). This rationale can be pushed backward D % 1
steps prior to k (i.e., ik%D&1 # · · · # ik # i), and the probability of this event is
given by Pi(D). This, of course, can be applied to all stages prior to k (i.e., 1, 2, . . . ,
k % 1). From this discussion, it is not difficult to write the counterpart of recursion
(9.24) as

'k(i) #
Ks∑

(j#1, j ̸#i)

D∑

d#1

'k%d(j)P(i| j)Pi(d)
k∏

m#k%d&1

p(xm|i) (9.43)

where, once more, statistical independence between observations has been
assumed. Initialization of (9.43) requires the following computations as it can
easily be understood from the respective definitions:

'1(j) # P(j)Pj(1)p(x1| j)

“11-Ch09-SA272” 18/9/2008 page 547

9.7 HMM with State Duration Modeling 547

For k # 2, 3, . . . , D and j # 1, 2, . . . , Ks,

'k(j) # P(j)Pj(k)
k∏

m#1

p(xm| j)

&
Ks∑

(r#1, r ̸#j)

k%1∑

d#1

'k%d(r)P(j|r)Pj(d)
k∏

m#k%d&1

p(xm| j)

As was the case with the standard form of HMMs during the recognition phase,
the desired quantity p(X |S) can now be obtained from

p(X |S) #
Ks∑

i#1

'N (i) (9.44)

which is easily understood from the respective definitions and can efficiently be
obtained by the repeated computation of Eq. (9.43) over all ks and is.

For the training phase, in order to derive reestimation formulas for the set of
the unknown parameters (P(i| j), P(i), Pi(d)) and for a given number of states Ks
the following auxiliary variables need to be defined [Rabi 93]. Variable '∗

k(i) is the
probability density (probability for the discrete observations case) of the joint event:
(a) a path starts its stay at state i at stage k & 1 and (b) observations x1, x2, . . . , xk
have been emitted. That is,

'∗
k(i) # p(x1, x2, . . . , xk, state i starts at stage k & 1|S)

From the respective definitions, the following are easily established.

'∗
k(i) #

Ks∑

j#1, j ̸#i

'k(j)P(i|j) (9.45)

'k(i) #
D∑

d#1

'∗
k%d(i)Pi(d)

k∏

m#k%d&1

p(xm|i) (9.46)

In addition, let (k(i) be the conditional probability density of the event: observa-
tions xk&1, xk&2, . . . , xN have been observed, given that the path ends at state i
and at stage k. That is,

(k(i) # p(xk&1, xk&2, . . . , xN |the path ends its stay at state i at stage k, S)

Also, (∗
k(i) is the conditional probability density of the event: observations

xk&1, xk&2, . . . , xN have been observed, given that the path starts its stay at state
i at stage k & 1. That is,

(∗
k(i) # p(xk&1, xk&2, . . . , xN |the path starts its stay at state i and stage k & 1, S)

The previous definitions allow us to write

(k(i) #
Ks∑

j#1, j ̸#i

(∗
k(j)P(j|i) (9.47)

“11-Ch09-SA272” 18/9/2008 page 548

548 CHAPTER 9 Context-Dependent Classification

(∗
k(i) #

D∑

d#1

(k&d(i)Pi(d)
k&d∏

m#k&1

p(xm|i) (9.48)

Here, via the definitions, the following initial conditions hold (combined with
(9.47)):

(N (i) # 1, i # 1, 2, . . . , Ks (9.49)

and

(∗
k(i) #

N%k∑

d#1

(k&d(i)Pi(d)
k&d∏

k&1

p(xm|i), k # N % 1, . . . , N % D (9.50)

Based on the previous auxiliary variables and the derived relationships, the follow-
ing reestimation formulas for the set of unknown parameters are obtained for the
discrete observations case (xk → r ∈ {1, 2, . . . , L}).

P̄(i) #
P(i)(∗

0(i)

P(X |S)
(9.51)

P̄(j|i) #

∑N%1
k#1 'k(i)P(j|i)(∗

k(j)
∑Ks

j#1
∑N%1

k#1 'k(i)P(j|i)(∗
k(j)

(9.52)

P̄x(r|i) #

∑N
k#1,xk→r

(∑
m,k '∗

m(i)(∗
m(i) %

∑
m,k 'm(i)(m(i)

)

∑L
r#1

∑N
k#1,xk→r

(∑
m,k '∗

m(i)(∗
m(i) %

∑
m,k 'm(i)(m(i)

) (9.53)

P̄i(d) #

∑N%d
k#1 '∗

k(i)Pi(d)(k&d(i)
∏k&d

m#k&1 P(xm|i)
∑D

d#1

(∑N%d
k#1 '∗

k(i)Pi(d)(k&d(i)
∏k&d

m#k&1 P(xm|i)
) (9.54)

Equation (9.51) is straightforward from the definitions and is an implication of
the Bayes theorem. Equation (9.52) is the total number of path transitions from
state i to state j along all the stages, divided by the total number of transitions that
occur from state i. Equation (9.54) is the ratio of the number of times the path starts
its stay at state i with duration d,divided by the number of times state i occurs with
any duration.

Equation (9.53) needs a bit more elaboration. The numerator is the number of
times observation xk ∈ {1, 2, . . . , L} is emitted from state i. To be simultaneously at
state i and stage k means that a path can either start its stay at state i at stage k or
may have started to be at this state at a previous stage (i.e., at k % 1, k % 2, . . .) and
remain there for a corresponding number of successive instants. However, there is
a finite probability for a path to start being at state i at a stage earlier than k but not
to survive long enough at this state for us to have the chance to “meet” it there at

“11-Ch09-SA272” 18/9/2008 page 549

9.7 HMM with State Duration Modeling 549

stage k. The term '∗
m(i)(∗

m(i) is the probability that a path starts its stay at state i
at some stage m & 1, and the term 'm&1(i)(m&1(i) is the probability that a path
ends its stay at state i at stage m & 1. The first summation is the total probability
that a path starts its stay at state i at any stage up to k. The second summation is
the total probability that a path ends its stay at i at any stage prior to k. Hence,
the subtraction of the two summation terms gives the probability of having a path
through i at stage k, for the given observation sequence. The denominator is the
same quantity, but the summation is over all times that state i is visited by a path,
regardless of the emitted observation.

Adopting HMM with an explicit state duration probability modeling improves
the performance in many recognition tasks compared to the standard HMM. The
cost one pays for such an improvement is the increased computational complexity.
The storage requirements are increased by an order of D and the computational
cost by an order of D2. Besides it, the state duration model requires D more
parameters to be estimated, in addition to those in the standard HMM.This,unavoid-
ably, leads to a demand for longer training sequences to safeguard enough data
for the accurate estimation of all unknown parameters. Some of these problems
can be minimized by adopting a parametric model for Pi(d), so that the num-
ber of unknown parameters is reduced to the number of parameters describing
the parametric probability function. To this end, Gaussian, Poisson, and Gamma
distribution models have been used [Levi 86, Russ 85]. In [Chie 03] the case of
adapting the parameters of the adopted parametric state duration model is treated,
to fit nonstationary speech variations for large vocabulary continuous speech
recognition.

Best Path Method
For the recognition phase, given a trained HMM and an observation sequence X ,
the goal now becomes to compute the probability of the most probable path of
states sequence. However, this can no longer be achieved by employing the Viterbi
algorithm in the form given in Section 9.4. To adapt to the needs of the new para-
meterization, imposed by the explicit time duration modeling,we have to attack the
problem in a slightly different way. For the computation of the best path, up to a
node corresponding to stage k and state i, there are now two types of competing
paths: (a) paths that end their stay in a state j different to i at stage k % 1 and
jump to the node (k, i) and (b) paths that end their stay in a j ̸# i state at previous
stages, k % 2, . . . , k % D, and then jump to state i and remain there for 2, . . . , D,
time instants, respectively. Let ak(i) be the optimal cost up to stage k and state
i. According to Bellman’s principle, for the computation of ak(i) the following are
valid:

■ For paths through (k % 1, j), j # 1, 2, . . . , Ks, j ̸# i and then jumping
to i,

ak(i) # ak%1(j)P(i| j)p(xk|i)Pi(1), j ̸# i (9.55)

“11-Ch09-SA272” 18/9/2008 page 550

550 CHAPTER 9 Context-Dependent Classification

■ For paths through nodes (k % d, j), j ̸# i, d # 2, . . . , D, that jump to i and
remain there for d successive instants,

ak(i) # ak%d(j)P(i| j)Pi(d)
k∏

m#k%d&1

p(xm|i) (9.56)

Thus, the optimal cost associated with node (k, i) results from

ak(i) # max
1)d)D,1) j)Ks ,j ̸#i

[,k(j, d, i)] (9.57)

,k(j, d, i) # ak%d(j)P(i| j)Pi(d)
k∏

m#k%d&1

p(xm|i) (9.58)

Equations (9.57) and (9.58) hold for k ! D. For k) D, initialization of (9.57) and
(9.58) requires the following computations:

a1(i) # P(i)Pi(1)p(x1|i), i # 1, . . . , Ks

For k # 2, 3, . . . , D,

ak(i) # max

{

P(i)Pi(k)
k∏

m#1

p(xm|i), ,k(j, d, i)

}

, 1) d , k, 1) j) Ks, j ̸# i

According to the previous definitions, it turns out that the optimal path is the one
ending at state i, where

aN (i) # arg max
1) j)Ks

aN (j)

Equations (9.57) and (9.58) suggest that for k ! D there exist (Ks + D % D)
candidate arguments, ,k(j, d, i) for the maximization of each quantity ak(i).

Reestimation Equations for the Best Path Method
The reestimation formulas for the best path method require maintaining counters
to track state transitions, symbol emissions from the individual states, and state
durations. For example, the state transition probability P(i|j) is reestimated by
counting the number of times the transition from state j to state i appears along the
optimal path (computed at the current iteration) and dividing it by the total number
of times transitions from state j to any other state are detected. This approach results
in the following formulas:

P̄(i|j) #
number of transitions from state j to state i

total number of transitions from state j
, i ̸# j

P̄x(r|i) #
number of times x → r was emitted from state i

total number of observations at state i
, r # 1, 2, . . . , L

“11-Ch09-SA272” 18/9/2008 page 551

9.7 HMM with State Duration Modeling 551

P̄i(d) #
number of times d successive observations are emitted from state i

total time spent at state i

A variant of the best path state duration HMM modeling is proposed in [Pikr 06],
which has been developed to fit the needs of the music recognition/classification
task. To this end,the cost function is modified to account for possible errors that are
usually encountered in practice—that is,errors in fundamental frequency estimation
or variations among recordings of the same music item due to different instrument
players.

Segment Modeling
Although HMM modeling is one of the most powerful and widely used techniques
in recognition, it is not without its shortcomings. One of its principal limitations is
the required assumption of independence among the observations (conditioned on
the state sequence). In fact, this is not true for most of the cases. Another limitation
is the rather weak state duration modeling achieved by standard HMM modeling.
To overcome these limitations, a number of schemes have been suggested. Such an
example is the state duration HMM modeling. More recently, an effort was made
to present a variety of such schemes in a unified framework, under the notion of
segment modeling. Here only the basic definitions will be reviewed.

In HMM modeling on the arrival of a transition at a state, a single observation
(corresponding to a single frame of the original speech samples) is assumed to be
emitted and the fundamental observation distribution is on the frame level, that
is, p(x|i). In contrast, in segment modeling a segment Xd

r consisting of d frames,
Xd

r # [xr , . . . , xr&d%1], is assumed to be emitted upon the arrival at a state. Here
d is a random variable itself. The fundamental distribution is now at the segment
level,that is,p(Xd

r |i, d). A schematic representation is given in Figure 9.10. The para-
meters describing a segment model are (a) the number of states; (b) their transition
modeling parameters; (c) the joint probability density function for the segment
distribution, given the duration d; and (d) the duration probability P(d|i). Training
of these parameters follows generalizations of the Baum–Welch andViterbi schemes.
A more detailed treatment of the topic is beyond our scope, and the interested
reader may consult, for example, [Oste 96, Russ 97, Gold 99] and the references
therein.

xr xr, xr & 1, ..., xr &d % 1

HMM SM

FIGURE 9.10
HMM and segment modeling (SM) for the emission of observations upon arrival of a transition
at a state.

“11-Ch09-SA272” 18/9/2008 page 552

552 CHAPTER 9 Context-Dependent Classification

9.8 TRAINING MARKOV MODELS VIA NEURAL NETWORKS
The training phase of an HMM-based recognition system is entirely dedicated to the
learning of probabilities (and densities). In Chapter 3 we have seen that a super-
vised classifier optimized via certain criteria, such as least squares,can approximate
posterior class probabilities. This is the kickoff point for our current concern. States
can be treated as classes, and a multilayer perceptron can be used as a nonlinear
classifier. The observations feed the input nodes, and the network has as many
outputs as the states. Training can be done via the backpropagation algorithm, and
the desired responses will be 1 at the true state output and 0 at the others (see
Chapter 4). It is now straightforward to see that the outputs of the NN will suffi-
ciently approximate the posterior probabilities P(i|x). These can then be changed
to p(x|i),as required in the recognition phase of a Markov model–based recognizer,
via the Bayes rule

p(x|i) #
P(i|x)p(x)

P(i)

where the state priors P(i) are determined from their relative occurrence freque-
ncies and p(x) is constant for all states during recognition.

In following this procedure, we have made a crucial assumption. That is, the
states are treated here as being observable,and during training we know the specific
state from which each observation originates. For example, in speech recognition
this is possible by associating each phoneme in a spoken word with a state. Here
lies a disadvantage of this approach, since accurate segmentation of the speech
signal is required and the boundaries are not always well defined. This is not the
case in the HMM approach, where it is left to the algorithm to decide optimally
about the state boundaries. A scheme for unified training of HMM/MLP that avoids
the segmentation problem has been suggested [Koni 96]. Let us now turn to the
benefits of bringing neural networks into the scene.

We have already mentioned that a major disadvantage of the standard HMM is the
assumption of independence among the observations. Using a multilayer percep-
tron,the underlying statistical dependence can easily be accommodated. Figure 9.11
shows a possible way. Together with the “current” observation vector xk, p “past”
as well as p “future”ones appear simultaneously at the input nodes. Thus, the input
nodes amount to (2p & 1)l, with l being the dimension of the observation vectors.
During training,the desired response will be 1 at the output node,corresponding to
the state that“gives birth”to the“current”vector. We say that the network is trained
with contextual input information. Further data dependence can also be accom-
modated by providing the input with information about the previous state in the
sequence. During recognition,this is provided via an output feedback,shown in the
figure by the dotted lines [Bourl 90]. Obviously, in such a configuration the output
nodes of the network compute the conditional state probabilities P(ik|Xk&p

k%p , ik%1),

where Xk&p
k%p denotes the contextual input information ranging from xk%p to xk&p.

“11-Ch09-SA272” 18/9/2008 page 553

9.8 Training Markov Models via Neural Networks 553

Output Layer

2nd Layer

1st Layer

xk%p ... xk%1 xk &1 ... xk&pxk

FIGURE 9.11
A multilayer perceptron architecture for training the parameters of a Markov model.

Having these probabilities at our disposal, a number of new“opportunities”open to
us. Let us, for example, return to our original goal in (9.1) and treat states as classes.
By the chain rule we have

P($i|X) ≡ P(i1, i2, . . . , iN |X)

P(iN |iN%1, . . . , i1, X) . . . P(iN%1|iN%2, . . . , i1, X)P(i1|X) (9.59)

Taking into account the Markovian property of the state dependence and relaxing
a bit the conditional constraint on the observations, this can be written as

P($i |X) #
∏

k

P(ik|Xk&p
k%p , ik%1) (9.60)

with some appropriate initial conditions. Computing its maximum can easily be
done via dynamic programming arguments. A number of other alternatives are
also possible; see for example [Bourl 90, Bourl 94, Morg 95] for a more detailed
discussion of the topic. In [Pikr 06a] the use of Bayesian networks is suggested in
place of neural networks.

Finally, it must be emphasized that in order to obtain good probability estimates
the size of the multilayer perceptron must be large enough to have good approxi-
mating capabilities. This, of course, requires increased computational resources for
the training. Furthermore,the incorporation of the contextual information imposes
its own demands on large networks. Another point is that the approximation of
probabilities by the network is valid at the global minimum of the minimized cost
function, at least in theory. Practical issues affecting the overall performance of
such an approach are reported in [Spec 94].

“11-Ch09-SA272” 18/9/2008 page 554

554 CHAPTER 9 Context-Dependent Classification

9.9 A DISCUSSION OF MARKOV RANDOM FIELDS
So far, our concern with context-dependent classification has been limited to the
one-dimensional case. The current subsection is focused on the related two-
dimensional generalizations. That is,observations will be treated as two-dimensional
sequences X(i, j). Such problems result in image processing, and observations can
be, for example, the gray levels of the image array pixels. No doubt, complications
arise, and our aim here is to provide the basic definitions and directions and not a
detailed treatment of the topic.

Let us assume that we are given an array of observations X :X(i, j), i # 0, 1, . . . ,
Nx %1, j # 0, 1, . . . , Ny %1,and a corresponding array of classes/states $: !ij ,where
each !ij can take one of M values. Once more our objective is, given the array of
the observations, to estimate the corresponding values of the state array $ so that

p(X |$)P($) is maximum (9.61)

Within the scope of context-dependent classification the values of the elements of
$ will be assumed to be mutually dependent. Furthermore,we will assume that the
range of this dependence is limited within a neighborhood. This brings us to the
notion of Markov random fields (MRFs) defined in Chapter 7. Thus, for each (i, j)
element of the array $ a respective neighborhood Nij is defined so that

■ !ij ̸∈ Nij

■ !ij ∈ Nkl ⇐⇒ !kl ∈ Nij

In words, the (i, j) element does not belong to its own set of neighbors, and if !ij
is a neighbor of !kl , then !kl is also a neighbor of !ij . The Markov property is then
defined as

P(!ij |$̄ij) # P(!ij |Nij) (9.62)

where $̄ij includes all the elements of $ except the (i, j) one. Figure 9.12 gives a
typical example of a neighborhood with eight neighbor pixels. Equation (9.62) is
a generalization of (9.3). In the one-dimensional case the ordering of the sequence
led to the relation (9.4). Unfortunately, this sequence ordering does not gener-
alize in a natural way to the two-dimensional case and imposes limitations on
the involvement of the computationally elegant dynamic programming techniques
[Hans 82].

A seminal paper that had an impact on the use of MRF modeling in image pro-
cessing and analysis was that of Geman and Geman [Gema 84]. They built upon
the important Hammersley–Clifford theorem, which establishes the equivalence
between Markov random fields and Gibbs distributions [Besa 74]. Thus, we can
talk of Gibbs random fields (GRFs). A Gibbs conditional probability is of the
form

P(!ij |Nij) #
1
Z

exp

(

%
1
T

∑

k

Fk(Ck(i, j))

)

(9.63)

“11-Ch09-SA272” 18/9/2008 page 555

9.9 A discussion of Markov Random Fields 555

j

i

FIGURE 9.12
Example of a neighborhood involving eight neighbors of the (i, j) element (red).

where Z is a normalizing constant so that probabilities sum up to 1,T is a parameter,
and Fk(·) are functions of the states of the pixels in the cliques Ck(i, j). A clique
consists of either a single pixel or a set of pixels,which are neighbors of each other,
with respect to the type of the chosen neighborhood. Figure 9.13 shows two cases
of neighborhoods and the corresponding sets of cliques. A typical example of the
exponent function in (9.63) for the four neighbors case is

%
1
T

!ij
(
'1 & '2(!i%1,j & !i&1,j) & '2(!i,j%1 & !i,j&1)

)

where the ai’s are constants.
It turns out that the joint probability P($) for the Gibbsian model is

P($) # exp
(

%
U ($)

T

)
(9.64)

where

U ($) #
∑

i,j

∑

k

Fk(Ck(i, j)) (9.65)

that is, the sum of the functions over all possible cliques associated with the neigh-
borhood. In many cases, the posterior probability P($|X), which is to be maxi-
mized (i.e., (9.61)) also turns out to be Gibbsian. Such cases result, for example, if
the regions in the image are themselves generated by Markov (e.g., Gaussian two-
dimensional AR) processes [Deri 86, Chel 85]. Simulating annealing techniques
can then be employed to obtain the required maximum [Gema 84].

“11-Ch09-SA272” 18/9/2008 page 556

556 CHAPTER 9 Context-Dependent Classification

(a)

(b)

FIGURE 9.13
Two examples of neighborhoods with the corresponding cliques.

Hidden Markov generalizations to the two-dimensional plane have also been
considered [Povl 95]. The idea here is to build a pseudolikelihood function starting
from the local state transition probabilities, using Besag’s method for coding the
image in mutually independent pixel sets [Besa 74]. An alternative EM formulation
of the problem was given in [Zhan 94]. Finally,another direction is the combination
of Markov random fields and multiresolution analysis. At the subsampling stage, the
Markov property is lost and suitable models are derived for the coarser resolutions.
For more details the reader may consult, for example,[Laks 93, Bell 94, Kris 97] and
the references therein.

9.10 PROBLEMS
9.1 Assume an HMM model with K states and an observation string X of N contin-

uous observations. Assume that the pdf in each state is described by a Gaussian
with known diagonal covariance matrix and unknown mean values. Using the
EM algorithm, derive the reestimation recursions.
Hint: Form the complete data set as Y # (X , $), where $ is the set of the
states.

9.2 If the self-transition probability of a state is P(i|i), then the probability of the
model being at state i for d successive stages is given by Pi(d) # (P(i|i))d%1(1%
P(i|i)). Show that the average duration for staying in state i is equal to d̄ #

1
1%P(i|i)) .

9.3 In practice, a number Q of different versions of the spoken word are used
for training, each resulting in a sequence of observations Xm of length Nm,

“11-Ch09-SA272” 18/9/2008 page 557

MATLAB Programs and Exercises 557

m # 1, 2, . . . , Q. Then comment on the following reestimation formulas:

P̄(j|i) #

∑Q
m#1

1
P(Xm|S)

∑Nm%1
k#1 *k(i, j, Xm|S)

∑Q
m#1

1
P(Xm|S)

∑Nm%1
k#1 'm(ik # i)(m(ik # i)

P̄x(r|i) #

∑Q
m#1

1
P(Xm|S)

∑Nm
(k#1 and x→r) 'm(ik # i)(m(ik # i)

∑Q
m#1

1
P(Xm|S)

∑Nm
k#1 'm(ik # i)(m(ik # i)

where superscript m refers to the mth observation sequence, and *(i, j, X |S)
is defined in (9.30).

9.4 Rederive recursions (9.33) and (9.34) in terms of the scaled versions of ', (

'̂(ik # i) #
1
ck

'(ik # i), (̂(ik&1 # i) # ck((ik&1 # i)

where ck #
∑Ks

ik#1 '(ik).

9.5 Assume that the HMM models are not equiprobable and let - be the set of
all the unknown parameters for the M available models. Assume now that a
training string X is known to correspond to the model Sr . However, during
training,maximization of P(Sr |X , -) is done with respect to all the parameters
and not only those of the specific model. Show that this optimization leads
to a maximum ratio between the contribution p(X |Sr , -)P(Sr) of the correct
model and

∑
s ̸#r p(X |Ss, -)P(Ss) of the incorrect models. That is,optimization

with respect to all the parameters offers maximum discrimination power.

MATLAB PROGRAMS AND EXERCISES
Computer Programs

9.1 Recognition score for HMMs using the Baum-Welch method. Write a MAT-
LAB function named Baum_Welch_Do_HMM that takes as input: (a) a column
vector of initial state probabilities pi_init , (b) the transition matrix A, whose
(i, j) element is the probability of transition from state i to state j, (c) the
matrix of the emission probabilities B, whose (i, j) element is the probability
to emit the ith alphabet symbol from state j, and (d) a row vector O, which
contains a sequence of the code numbers of discrete symbols. It returns the
score produced when the HMM, defined by pi_init , A, B, is applied to the
sequence of symbols contained in O. Assume that if the alphabet symbols are,
say, s1, s2, . . . , sq, the corresponding code numbers are 1, 2, . . . , q.

Solution
In order to avoid underflow problems, in the following implementation the
score is computed as the log product of scaling factors.

“11-Ch09-SA272” 18/9/2008 page 558

558 CHAPTER 9 Context-Dependent Classification

function matching_prob=Baum_Welch_Do_HMM(pi_init,A,B,O)
%Initialization
T=length(O);
[M,N]=size(B);
alpha(:,1)=pi_init .* B(O(1),:)';
c(1)=1/(sum(alpha(:,1)));
alpha(:,1)=c(1)*alpha(:,1);
for t=2:T
for i=1:N
alpha(i,t)=sum((alpha(:,t-1).* A(:,i)) * B(O(t),i));

end
c(t)=1/(sum(alpha(:,t)));
alpha(:,t)=c(t)*alpha(:,t);

end
matching_prob=-sum(log10(c));

9.2 Viterbi method for Discrete Observation HMMs. Write a MATLAB func-
tion named Viterbi_Do_HMM that takes the same inputs as Baum_Welch_
Do_HMM and returns (a) the best-state sequence and (b) the respective prob-
ability produced when the HMM, defined by pi_init , A and B, is applied to O,
using the Viterbi method.

Solution
In the following implementation, the trellis diagram is constructed first, and
then the best state sequence is extracted using the back_traking function
defined in the computer programs’ section of Chapter 8.

function [matching_prob,best_path]=Viterbi_Do_HMM...
(pi_init,A,B,O)
%Initialization
T=length(O);
[M,N]=size(B);
pi_init(find(pi_init==0))=-inf;
pi_init(find(pi_init>0))=log10(pi_init(find(pi_init>0)));
A(find(A==0))=-inf;
A(find(A>0))=log10(A(find(A>0)));
B(find(B==0))=-inf;
B(find(B>0))=log10(B(find(B>0)));
% First observation
alpha(:,1)=pi_init + B(O(1),:)';
pred(:,1)=zeros(N,1);
% Construct the trellis diagram
for t=2:T

“11-Ch09-SA272” 18/9/2008 page 559

MATLAB Programs and Exercises 559

for i=1:N
temp=alpha(:,t-1)+A(:,i)+B(O(t),i);
[alpha(i,t),ind]=max(temp);
pred(i,t)=ind+sqrt(-1)*(t-1);

end
end
[matching_prob,winner_ind]=max(alpha(:,T));
best_path=back_tracking(pred,winner_ind,T);

9.3 Viterbi method for Continuous Observation HMMs. Under the hypothesis
that the emission pdfs p(x|i) are Gaussians, write a MATLAB function named
Viterbi_Co_HMM , which takes as inputs: (a) a column vector of initial state
probabilities pi_init , (b) the transition matrix A, (c) a row vector, m, whose
ith element is the mean of the ith Gaussian emission pdf, (d) a row vector,
sigma, containing the variances of the previous pdfs, and (e) a row vector O,
which contains a feature sequence. It returns, (a) the best-state sequence and
(b) the respective probability,produced when the HMM,defined by pi_init ,A,
m, sigma, is applied to O, using the Viterbi method.

Solution
function [matching_prob,best_path]=Viterbi_Co_HMM...
(pi_init,A,m,sigma,O)
%Initialization
T=length(O);
[N,N]=size(A);
pi_init(find(pi_init==0))=-inf;
pi_init(find(pi_init>0))=log10(pi_init(find(pi_init>0)));
A(find(A==0))=-inf;
A(find(A>0))=log10(A(find(A>0)));
for i=1:N
alpha(i,1)=pi_init(i)+log10(normpdf(O(1),m(i),sigma(1)));
end
pred(:,1)=zeros(N,1);
% Construction of the trellis diagram
for t=2:T
for i=1:N
temp=alpha(:,t-1)+A(:,i)+log10(normpdf(O(t),m(i),...
sigma(i)));

[alpha(i,t),ind]=max(temp);
pred(i,t)=ind+sqrt(-1)*(t-1);

end
end
[matching_prob,winner_ind]=max(alpha(:,T));
best_path=back_tracking(pred,winner_ind,T);

“11-Ch09-SA272” 18/9/2008 page 560

560 CHAPTER 9 Context-Dependent Classification

Computer Experiments

9.1 Two coins are used for a coin-tossing experiment, that is,coinA and coin B.The
probability that coin A returns heads is 0.6, and the respective probability for
coin B is 0.4. An individual standing behind a curtain decides which coin to
toss as follows: the first coin to be tossed is always coin A, the probability that
coin A is re-tossed is 0.4, and similarly, the probability that coin B is re-tossed is
0.6. An observer can only have access to the outcome of the experiment, that
is, the sequence of heads and tails that is produced. (a) Model the experiment
by means of a HMM (i.e., define the vector of the initial state probabilities, the
transition matrix and the matrix of the emission probabilities) and (b) use the
Baum_Welch_Do_HMM function to compute the HMM score for the sequence
of observations {H , H , T , H , T , T } where H stands for heads and T stands for
tails.
Hint: In defining the input sequence of symbols O for Baum_Welch_Do_
HMM function, use “1” for “H”and “2” for “T”.

9.2 For the HMM of the previous experiment, use the Viterbi_Do_HMM function
to find the best state sequence and respective path probability,for the following
observation sequences: {H , T , T , T , H} and {T , T , T , H , H , H , H}.
Hint: In defining the input sequence of symbols O for Viterbi_Do_HMM
function, use “1” for “H”and “2” for “T”.

9.3 Assume that two number generators, Gaussian in nature, operate with mean
values 0 and 5, respectively. The values for the respective standard deviations
are 1 and 2. The following experiment is carried out behind a curtain: a per-
son tosses a coin to decide which generator will be the first to emit a number.
Heads has a probability of 0.4 and stands for generator A. Then the coin is
tossed 8 times, and each time the coin decides which generator will emit the
next number. An observer has only access to the outcome of the experi-
ment, i.e., to the following sequence of numbers: {0.3, 0.4, 0.2, 2.1, 3.2, 5,
5.1, 5.2, 4.9}. (a) Model the experiment by means of a HMM that emits contin-
uous observations and (b) use the Viterbi_Co_HMM function to compute the
best-state sequence and the corresponding probability for the given sequence
of numbers.

REFERENCES
[Agaz 93] Agazi O.E., Kuo S.S. “Hidden Markov model based optical character recognition in

the presence of deterministic transformations,” Pattern Recognition,Vol. 26, pp. 1813–1826,
1993.

[Anto 97] Anton-Haro C., Fonollosa J.A.R., Fonollosa J.R. “Blind channel estimation and data
detection using HMM,” IEEE Transactions on Signal Processing, Vol. 45(1), pp. 241–247,
1997.

“11-Ch09-SA272” 18/9/2008 page 561

References 561

[Aric 02] Arica N.,Yarman-Vural F.T. “Optical character recognition for cursive handwriting,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 24(6), pp. 801–813, 2003

[Arsl 99] Arslan L., Hansen J.H.L. “Selective training for hidden Markov models with applica-
tions to speech classification,” IEEE Transactions on Speech and Audio Processing,Vol. 7(1),
pp. 46–54, 1999.

[Bahl 86] Bahl L.R., Brown B.F., Desouza P.V. “Maximum mutual information estimation of
hidden Markov model parameters for speech recognition,” Proceedings of the IEEE Inter-
national Conference on Acoustics Speech and Signal Processing,Vol. 1, pp. 872–875, Japan,
1986.

[Bake 75] Baker J. “The DRAGON system—an overview,” IEEE Transactions on Acoustics Speech
and Signal Processing,Vol. 23(1), pp. 24–29, 1975.

[Baum 67] Baum L.E.,Eagon J.A.“An inequality with applications to statistical prediction for func-
tions of Markov processes and to a model for ecology,”Bulletin of theAmerican Mathematical
Society,Vol. 73, pp. 360–362, 1967.

[Baum 70] Baum L.E.,PetrieT.,Soules G.,Weiss N.“A maximization technique occurring in the sta-
tistical analysis of probabilistic functions of Markov chains,”Annals of Mathematical Statistics,
Vol. 41, pp. 164–171, 1970.

[Baum 68] Baum L.E.,Sell G.R.“Growth functions for transformations of manifolds,”Pacific Journal
of Mathematics,Vol. 27, pp. 211–227, 1968.

[Bell 90] Bellegarda J.R., Nahamoo D. “Tied mixture continuous parameter modeling for speech
recognition,” IEEE Transactions on Acoustics Speech and Signal Processing, Vol. 38(12),
pp. 2033–2045, 1990.

[Bell 94] Bello M.G. “A combined Markov random field and wave-packet approach to image
segmentation,” IEEE Transactions on Image Processing,Vol. 3(6), pp. 834–847, 1994.

[Besa 74] Besag J. “Spatial interaction and the statistical analysis of lattice systems,” J. Royal Stat.
Soc.B,Vol. 36(2), pp. 192–236, 1974.

[Bourl 94] Bourland H., Morgan N. Connectionist Speech Recognition. Kluwer Academic
Publishers, 1994.

[Bourl 90] Bourland H., Wellekens C.J. “Links between Markov models and the multilayer per-
ceptrons,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12(12),
pp. 1167–1178, 1990.

[Chel 85] Chellapa R., Kashyap R.L. “Texture synthesis using 2-D noncausal autoregressive mod-
els,” IEEE Transactions on Acoustics Speech and Signal Processing,Vol. 33(1), pp. 194–203,
1985.

[Chen 95a] Chen J.-L., Kundu A. “Unsupervised texture segmentation using multichannel decom-
position and hidden Markov models,” IEEE Transactions on Image Processing, Vol. 4(5),
pp. 603–620, 1995.

[Chen 95] Chen M.Y., Kundu A., Srihari S.N. “Variable duration HMM and morphological segmen-
tation for handwritten word recognition,”IEEE Transactions on Image Processing,Vol. 4(12),
pp. 1675–1689, 1995.

[Chie 03] Chien J.-T., Huang C.-H. “Bayesian learning of speech duration models,” IEEE Transac-
tions on Speech and Audio Processing,Vol. 11(6), pp. 558–567, 2003.

[Dell 93] Deller J., Proakis J., Hansen J. Discrete Time Processing of Speech Signals. Macmillan,
1993.

“11-Ch09-SA272” 18/9/2008 page 562

562 CHAPTER 9 Context-Dependent Classification

[Deng 94] Deng L.,Aksmanovic M.“Speaker-independent phonetic classification using HMM with
mixtures of trend functions,” IEEE Transactions on Speech and Audio Processing,Vol. 5(4),
pp. 319–324, 1997.

[Deri 86] Derin H.“Segmentation of textured images using Gibb’s random fields,”ComputerVision,
Graphics, and Image Processing,Vol. 35, pp. 72–98, 1986.

[Diga 99] Digalakis V. “Online adaptation of hidden Markov models using incremental estima-
tion algorithms,” IEEE Transactions on Speech and Audio Processing,Vol. 7(3), pp. 253–261,
1999.

[Diga 95] Digalakis V., Rtischef D., Neumeyer L.G. “Speaker adaptation using constrained estima-
tion of Gaussian mixtures,” IEEE Transaction on Speech and Audio Processing, Vol. 3(5),
pp. 357–366, 1995.

[Diga 96] Digalakis V., Monaco P., Murveit H. “Genones: Generalized mixture tying in continuous
HMM model-based speech recognizers,” IEEE Transactions on Speech and Audio Processing,
Vol. 4(4), pp. 281–289, 1996.

[Diga 93] DigalakisV.,Rohlicek J.R.,Ostendorf M.“ML estimation of a stochastic linear system with
the EM algorithm and its application to speech recognition,”IEEE Transactions on Speech and
Audio Processing,Vol. 1(4), pp. 431–441, 1993.

[ElYa 99] El-Yacoubi A., Gilloux M., Sabourin R., Suen C.Y. “An HHM-based approach for off-line
unconstrained handwritten word modeling and recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 21(8), pp. 752–760, 1999.

[Ephr 89] EphraimY.,DemboA.,Rabiner L.R.“A minimum discrimination information approach to
hidden Markov modelling,”IEEE Transactions on Information Theory,Vol. 35,pp. 1001–1023,
September 1989.

[Ferg 80] Ferguson J. D. “Hiden Markov analysis: An introduction,” in Hidden Markov Models for
Speech, Institute for Defence Analysis, Princeton university, 1980.

[Fu 82] Fu K.S. Syntactic Pattern Recognition and Applications, Prentice Hall, 1982.

[Gale 99] Gales M.J.F. “Semitied covariance matrices for hidden Markov models,” IEEE
Transactions on Speech and Audio Processing,Vol. 7(3), pp. 272–281, 1999.

[Gauv 94] Gauvain J.L., Lee C.H. “Maximum a posteriori estimation for multivariate Gaussian
mixture observations of Markov chains,” IEEE Transactions on Speech and Audio Processing,
Vol. 2(2), pp. 291–299, 1994.

[Gema 84] Geman S., Geman D. “Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images,” IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.
6(6), pp. 721–741, 1984.

[Geor 97] Georgoulakis C.,Theodoridis S.“Efficient clustering techniques for channel equalization
in hostile environments,”Signal Processing,Vol. 58, pp. 153–164, 1997.

[Geor 98] Georgoulakis C.,Theodoridis S. “Blind equalization for nonlinear channels via hidden
Markov modeling,”Proceedings EUSIPCO-98, Rhodes, Greece, 1998.

[Gold 99] Goldberger J., Burshtein D., Franco H. “Segmental modeling using a continuous
mixture of noparametric models,” IEEE Transactions on Speech and Audio Processing,
Vol. 7(3), pp. 262–271, 1999.

[Gu 02] Gu L., Rose K. “Substate tying with combined parameter training and reduction in
tied-mixture HMM design,” IEEE Transactions on Speech and Audio Processing, Vol. 10(3),
2002.

“11-Ch09-SA272” 18/9/2008 page 563

References 563

[Hans 82] Hansen F.R.,Elliot H.“Image segmentation using simple Markov field models,”Computer
Graphics and Image Processing,Vol. 20, pp. 101–132, 1982.

[He 08] He X., Deng L., Chou W. “Discriminative Learning in Sequential Pattern Recognition—A
Unifying Review for Optimization-Oriented Speech Recognition,” to appear IEEE Signal
Processing Magazine, september 2008.

[Huo 95] Huo Q., Chan C., Lee C.H. “Bayesian adaptive learning of the parameters of hidden
Markov model for speech recognition,” IEEE Transactions on Speech and Audio Processing,
Vol. 3(5), pp. 334–345, 1995.

[Huo 97] Huo Q., Lee C.H. “On-line adaptive learning of the continuous density HMM based on
approximate recursive Bayes estimate,” IEEE Transactions on Speech and Audio Processing,
Vol. 5(2), pp. 161–173, 1997.

[Jeli 76] Jelinek F. “Continuous speech recognition by statistical methods,” Proceedings of the
IEEE,Vol. 64(4), pp. 532–555, 1976.

[Juan 85] Juang B.H. “Maximum likelihood estimation for mixture multivariate stochastic
observations of Markov chains,” AT&T System Technical Journal, Vol. 64, pp. 1235–1249,
July–August 1985.

[Juan 97] Juang B.H., Chou W., Lee C.H. “Minimum classification error rate methods for speech
recognition,” IEEE Transactions on Speech and Audio Processing, Vol. 5(3), pp. 257–266,
1997.

[Juan 92] Juang B.H., Katagiri S. “Discriminative learning for minimum error classification,” IEEE
Transactions on Signal Processing,Vol. 40(12), pp. 3043–3054, 1992.

[Juan 86] Juang B.H., Levinson S.E., Sondhi M.M. “Maximum likelihood estimation for multi-
variate mixture observations of Markov chains,” IEEE Transactions on Information Theory,
Vol. IT-32, pp. 307–309, March 1986.

[Kale 94] Kaleh G.K., Vallet R. “Joint parameter estimation and symbol detection for linear
and nonlinear unknown channels,” IEEE Transactions on Communications, Vol. 42(7),
pp. 2406–2414, 1994.

[Kim 95] Kim N.S., Un C.K. “On estimating robust probability distribution in HMM-based speech
recognition,”IEEETransactions on Speech andAudio Processing,Vol. 3(4),pp. 279–286,1995.

[Koni 96] Konig Y. “REMAP: Recursive estimation and maximization of a-posteriori probabilities
in transition-based speech recognition,”Ph.D. thesis,University of California at Berkeley,1996.

[Kops 03] Kopsinis Y.,Theodoridis S. “An efficient low-complexity technique for MLSE equalizers
for linear and nonlinear channels,” IEEE Transactions on Signal Processing, Vol. 51(12),
pp. 3236–3249, 2003.

[Kris 97] Krishnamachari S.,Chellappa R.“Multiresolution Gauss–Markov random field models for
texture segmentation,” IEEE Transactions on Image Processing,Vol. 6(2), pp. 251–268, 1997.

[Laks 93] Lakshmanan S., Derin H. “Gaussian Markov random fields at multiple resolutions,”
in Markov Random Fields: Theory and Applications (R. Chellappa, ed.), Academic Press,
1993.

[Lee 72] Lee C.H., Fu K.S. “A stochastic syntax analysis procedure and its application to pattern
recognition,” IEEE Transactions on Computers,Vol. 21, pp. 660–666, 1972.

[Lee 91] Lee C.H., Lin C.H., Juang B.H. “A study on speaker adaptation of the parameters
of continuous density hidden Markov models,” IEEE Transactions on Signal Processing,
Vol. 39(4), pp. 806–815, 1991.

“11-Ch09-SA272” 18/9/2008 page 564

564 CHAPTER 9 Context-Dependent Classification

[Legg 95] Leggetter C.J., Woodland P.C. “Maximum likelihood linear regression for speaker
adaptation of continuous density hidden Markov models,” Comput. Speech Lang., Vol. 9,
pp. 171–185, 1995.

[Levi 86] Levinson S.E. “Continuously variable duration HMMs for automatic speech recognition,”
Computer Speech and Language,Vol. 1, pp. 29–45, March 1986.

[Levi 83] Levinson S.E., Rabiner L.R., Sondhi M.M. “An introduction to the application of the
theory of probabilistic functions of a Markov process to automatic speech recognition,” Bell
System Technical Journal,Vol. 62(4), pp. 1035–1074,April 1983.

[Li 04] Li J., Wang J., Zhao Y., Yang Z. “Self adaptive design of hidden Markov models,” Pattern
Recognition Letters,Vol. 25, pp. 197–210, 2004.

[Li 00] Li X., Parizeau M., Plamondon R. “Training hidden Markov models with multiple
observations-A combinatorial method,” IEEE Transactions on Pattern Analysis and Machine
Intelligence,Vol. 22(4), pp. 371–377, 2000.

[Lipo 82] Liporace L.A. “Maximum likelihood estimation for multivariate observations of Markov
sources,” IEEE Transactions on Information Theory,Vol. IT-28(5), pp. 729–734, 1982.

[Moon 96] Moon T. “The expectation maximization algorithm,” Signal Processing Magazine,
Vol. 13(6), pp. 47–60, 1996.

[Morg 95] Morgan N. Boulard H. “Continuous speech recognition,” Signal Processing Magazine,
Vol. 12(3), pp. 25–42, 1995.

[Neap 04] Neapolitan R.D. Learning Bayesian Networks, Prentice Hall, Gliffs, N.J. 2004.

[Oste 96] Ostendorf M., Digalakis V., Kimball O. “From HMM’s to segment models: A unified view
of stochastic modeling for speech,” IEEE Transactions on Audio and Speech Processing,
Vol. 4(5), pp. 360–378, 1996.

[Papo 91] Papoulis A. Probability Random Variables and Stochastic Processes, 3rd ed.,
McGraw-Hill 1991.

[Pikr 06] Pikrakis A.,Theodoridis S., Kamarotos D. “Classification of musical patterns using vari-
able duration hidden Markov models,” IEEE Transactions on Speech and Audio Processing,
Vol. 14(5), pp. 1795–1807, 2006.

[Pikr06a] Pikrakis A., Gaunakopoulos T., Theodoridis S. “Speech/music discrimination for radio
broadcasts using a hybrid HMM–Bayesiay network architecture,” Proceedings, EUSIPCO-
Florence, 2006.

[Pori 82] Poritz A.B. “Linear predictive HMM and the speech signal,” Proceedings of the Interna-
tional Conference on Acoustics, Speech and Signal Processing, pp. 1291–1294, Paris, 1982.

[Povl 95] Povlow B.,Dunn S.“Texture classification using noncausal hidden Markov models,”IEEE
Transactions on PatternAnalysis and Machine Intelligence,Vol. 17(10),pp. 1010–1014,1995.

[Proa 89] Proakis J. Digital Communications, 2nd ed., McGraw-Hill, 1989.

[Rabi 89] Rabiner L. “A tutorial on hidden Markov models and selected applications in speech
recognition,”Proceedings of IEEE,Vol. 77, pp. 257–285, February, 1989.

[Rabi 93] Rabiner L., Juang B.H. Fundamentals of Speech Recognition, Prentice Hall, 1993.

[Ramd 03] Ramdane S.,Taconet B., Zahour A. “Classification of forms with handwritten fields by
planar Markov models,”Pattern Recognition,Vol. 36, pp. 1045–1060, 2003.

[Rao 01] Rao A.V., Rose K. “Deterministically annealed design of hidden Markov Model speech
recognizers,”IEEETransactions on Speech andAudio Precessing,Vol. 9(2),pp. 111–127,2001.

“11-Ch09-SA272” 18/9/2008 page 565

References 565

[Russ 97] Russell M., Holmes W. “Linear trajectory segmental HMM’s,” IEEE Signal Processing
Letters,Vol. 4(3), pp. 72–75, 1997.

[Russ 85] Russell M.J., Moore R.K. “Explicit modeling of state occupancy in HMMs for automatic
speech recognition,”Proceedings of the International Conference on Acoustics, Speech and
Signal Processing,Vol. 1, pp. 5–8, 1985.

[Spec 94] Special issue on neural networks for speech in IEEE Transactions on Speech and
Audio Processing,Vol. 2(1), 1994.

[Theo 95] Theodoridis S., Cowan C.F.N., See C.M.S. “Schemes for equalization of communication
channels with nonlinear impairments,” IEE Proceedings on Communications, Vol. 142(3),
pp. 165–171, 1995.

[Turi 98] Turin W. “Unidirectional and parallel Baum-Welch algorithms,” IEEE Transactions on
Speech and Audio Processing,Vol. 6(6), pp. 516–523, 1998.

[Vite 67] Viterbi A.J. “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Transactions on Information Theory,Vol. 13, pp. 260–269, 1967.

[Vlon 92] Vlontzos J.A., Kung S.Y. “Hidden Markov models for character recognition,” IEEE
Transactions on Image Processing,Vol. 1(4), pp. 539–543, 1992.

[Wang 01] Wang S., Zhao Y. “Online Bayesian tree-structured transformation of HMM’s with
optimal model selection for speaker adaptation,” IEEE Transactions on Speech and Audio
Processing,Vol. 9(6), pp. 663–677, 2001.

[Wu 96] WuW.R.,Wei S.C.“Rotational and gray scale transform invariant texture classification using
spiral resampling, subband decomposition, and hidden Markov model,” IEEE Transactions on
Image Processing,Vol. 5(10), pp. 1423–1435, 1996.

[Zhan 94] Zhang J., Modestino J.W., Langan D.A. “Maximum likelihood parameter estimation for
unsupervised stochastic model based image segmentation,” IEEE Transactions on Image
Processing,Vol. 3(4), pp. 404–421, 1994.

“12-Ch10-SA272” 18/9/2008 page 567

CHAPTER

10Supervised Learning:
The Epilogue

10.1 INTRODUCTION

This chapter is the last one related to supervised learning,and it is intended to serve
three purposes. The first sections focus on the last stage of the design procedure
of a classification system. In other words, we assume that an optimal classifier has
been designed, based on a selected set of training feature vectors. Our goal now
is to evaluate its performance with respect to the probability of classification error
associated with the designed system. To this end,methodologies will be developed
for the estimation of the classification error probability, using the available, hence
finite,set of data. Once the estimated error is considered satisfactory, full evaluation
of the system performance is carried out in the real environment for which the
system has been designed, such as a hospital for a medical diagnosis system or a
factory for an industrial production–oriented system.

It is important to note that the evaluation stage is not cut off from the previous
stages of the design procedure. On the contrary, it is an integral part of the pro-
cedure. The evaluation of the system’s performance will determine whether the
designed system complies with the requirements imposed by the specific applica-
tion and intended use of the system. If this is not the case, the designer may have
to reconsider and redesign parts of the system. Furthermore, the misclassification
probability can also be used as a performance index, in the feature selection stage,
to choose the best features associated with a specific classifier.

The second goal of this chapter is to tie together the various design stages that
have been considered separately, so far, in the context of a case study coming from
medical ultrasound imaging. Our purpose is to help the reader to get a better feeling,
via an example, on how a classification system is built by combining the various
design stages. Techniques for feature generation, feature selection, classifier design
and system evaluation will be mobilized in order to develop a realistic computer-
aided diagnosis medical system to assist a doctor reaching a decision.

In the final sections of the chapter,we will move away from the fully supervised
nature of the problem that we have considered so far in the book, and we will
allow unlabeled data to enter the scene. As we will see, in certain cases, unlabeled 567

“12-Ch10-SA272” 18/9/2008 page 568

568 CHAPTER 10 Supervised Learning: The Epilogue

data can offer additional information that can help the designer in cases where the
number of labeled data is limited. Semi-supervised learning is gaining in importance
in recent years, and it is currently among the hottest research areas. The aim of this
chapter is to introduce the reader to the semi-supervised learning basics and to
indicate the possible performance improvement that unlabeled data may offer if
used properly.

10.2 ERROR-COUNTING APPROACH
Let us consider an M -class classification task. Our objective is to estimate the classi-
fication error probability by testing the“correct/false”response of an independently
designed classifier using a finite set of N test feature vectors. Let Ni be the vectors
in each class, with

∑M
i!1 Ni ! N and Pi the corresponding error probability for

class !i . Assuming independence among the feature vectors, the probability of ki
vectors from class !i being misclassified is given by the binomial distribution

prob{ki misclassified } !

(
Ni

ki

)

Pki
i (1 " Pi)Ni"ki (10.1)

In our case the probabilities Pi are not known. An estimate P̂i results if we maximize
(10.1) with respect to Pi . Differentiating and equating to zero result in our familiar
estimate

P̂i !
ki

Ni
(10.2)

Thus, the total error probability estimate is given by

P̂ !
M∑

i!1

P(!i)
ki

Ni
(10.3)

where P(!i) is the occurrence probability of class !i . We will now show that P̂ is
an unbiased estimate of the true error probability. Indeed, from the properties of
the binomial distribution (Problem 10.1) we have

E[ki] ! NiPi (10.4)

which leads to

E[P̂] !
M∑

i!1

P(!i)Pi ≡ P (10.5)

that is, the true error probability. To compute the respective variance of the esti-
mator, we recall from Problem 10.1 that

"2
ki

! NiPi(1 " Pi) (10.6)

“12-Ch10-SA272” 18/9/2008 page 569

10.3 Exploiting the Finite Size of the Data Set 569

leading to

"2
P̂

!
M∑

i!1

P2(!i)
Pi(1 " Pi)

Ni
(10.7)

Thus, the error probability estimator in (10.3), which results from simply counting
the errors, is unbiased but only asymptotically consistent as Ni → #. Thus, if small
data sets are used for testing the performance of a classifier, the resulting estimate
may not be reliable.

In [Guyo 98] the minimum size of the test data set, N , is derived in terms of the
true error probability P of the already designed classifier. The goal is to estimate N
so that to guarantee, with probability 1 " a, 0 $ a $ 1, that P does not exceed the
estimated from the test set, P̂, by an amount larger than #(N , a), that is

prob{P ≥ P̂ % #(N , a)} $ a (10.8)

Let #(N , a) be expressed as a function of P, that is, #(N , a) ! $P. An analytical
solution for Eq. (10.8) with respect to N is not possible. However, after some
approximations certain bounds can be derived. For our purposes, it suffices to
consider a simplified formula, which is valid for typical values of a and $ (a !
0.05, $! 0.2),

N ≈ 100
P

(10.9)

In words, if we want to guarantee, with a risk a of being wrong, that the error
probability P will not exceed P̂

1"$, then N must be of the order given in Eq. (10.9).
For P ! 0.01, N ! 10,000 and for P ! 0.03, N ! 3000. Note that this result is inde-
pendent of the number of classes. Furthermore, if the samples in the test data
set are not independent, this number must be further increased. Such bounds
are also of particular importance, if the objective is to determine the size N of
the test data set that provides good confidence in the results, when compar-
ing different classification systems with relatively small differences in their error
probabilities.

Although the error-counting approach is by far the most popular one, other
techniques have also been suggested in the literature. These techniques estimate
the error probability by using smoother versions of the discriminant function(s)
realized by the classifier. The error-counting approach can be thought of as an
extreme case of a hard limiter,where a 1 or 0 is produced and counted,depending on
the discriminant function’s response, that is,whether it is false or true, respectively.
See, for example, [Raud 91, Brag 04].

10.3 EXPLOITING THE FINITE SIZE OF THE DATA SET
The estimation of the classification error probability presupposes that one has
decided upon the data set to which the error counting will be applied. This is

“12-Ch10-SA272” 18/9/2008 page 570

570 CHAPTER 10 Supervised Learning: The Epilogue

not a straightforward task. The set of samples that we have at our disposal is finite,
and it has to be utilized for both training and testing. Can we use the same samples
for training and testing? If not,what are the alternatives? Depending on the answer
to the question, the following methods have been suggested:

■ Resubstitution Method: The same data set is used, first for training and then
for testing. One need not go into mathematical details in order to see that
such a procedure is not very fair. Indeed, this is justified by the mathematical
analysis. In [Fole 72] the performance of this method was analyzed using
normal distributions. The analysis results show that this method provides an
optimistic estimate of the true error probability. The amount of bias of the
resubstitution estimate is a function of the ratio N/l,that is,the data set size and
the dimension of the feature space. Furthermore, the variance of the estimate
is inversely proportional to the data set size N . In words, in order to obtain a
reasonably good estimate,N as well as the ratio N/l must be large enough.
The results from the analysis and the related simulations show that N/l should
be at least three and that an upper bound of the variance is 1/8N . Of course, if
this technique is to be used in practice,where the assumptions of the analysis
are not valid,experience suggests that the suggested ratio must be even larger
[Kana 74]. Once more, the larger the ratio N/l, the more comfortable one
feels.

■ Holdout Method: The available data set is divided into two subsets, one for
training and one for testing. The major drawback of this technique is that it
reduces the size for both the training and the testing data. Another problem is
to decide how many of the N available data will be allocated to the training set
and how many to the test set. This is an important issue. In Section 3.5.3 of
Chapter 3, we saw that designing a classifier using a finite data set introduces
an excess mean error and a variance around it, as different data sets, of the
same size, are used for the design. Both of these quantities depend on the
size of the training set. In [Raud 91], it is shown that the classification error
probability of a classifier, designed using a finite training data set, N , is always
higher than the corresponding asymptotic error probability (N → #). This
excess error decreases as N increases. On the other hand, in our discussion in
the previous section we saw that the variance of the error counting depends
on the size of the test set, and for small test data sets the estimates can be
unreliable. Efforts made to optimize the respective sizes of the two sets have
not yet led to practical results.

■ Leave-One-Out Method: This method [Lach 68] alleviates the lack of inde-
pendence between the training and test sets in the resubstitution method and
at the same time frees itself from the dilemma associated with the holdout
method. The training is performed using N "1 samples,and the test is carried
out using the excluded sample. If this is misclassified, an error is counted.
This is repeated N times, each time excluding a different sample. The total

“12-Ch10-SA272” 18/9/2008 page 571

10.3 Exploiting the Finite Size of the Data Set 571

number of errors leads to the estimation of the classification error probability.
Thus, training is achieved using, basically, all samples, and at the same time
independence between training and test sets is maintained. The major dis-
advantage of the technique is its high computational complexity. For certain
types of classifiers (i.e., linear or quadratic) it turns out that a simple relation
exists between the leave-one-out and the resubstitution method ([Fuku 90],
Problem 10.2). Thus, in such cases the former estimate is obtained using the
latter method with some computationally simple modifications.

The estimates resulting from the holdout and leave-one-out methods turn out
to be very similar, for comparable sizes of the test and training sets. Furthermore,
it can be shown (Problem 10.3, [Fuku 90]) that the holdout error estimate, for a
Bayesian classifier, is an upper bound of the true Bayesian error. In contrast, the
resubstitution error estimate is a lower bound of the Bayesian error,confirming our
previous comment that it is an optimistic estimate. To gain further insight into these
estimates and their relation, let us make the following definitions:

■ PN
e denotes the classification error probability for a classifier designed using

a finite set of N training samples.

■ P̄N
e denotes the average E[PN

e] over all possible training sets of size N .

■ Pe is the average asymptotic error as N→#.

It turns out that the holdout and leave-one-out methods (for statistically indepen-
dent samples) provide an unbiased estimate of P̄N

e . In contrast, the resubstitution
method provides a biased (underestimated) estimate of P̄N

e . Figure 10.1 shows the
trend of a typical plot of P̄N

e and the average (over all possible sets of size N) resub-
stitution error as functions of N [Fole 72, Raud 91]. It is readily observed that as
the data size N increases, both curves tend to approach the asymptotic Pe.

Resubstitution

Leave-one-out

P

N
Pe

FIGURE 10.1
Plots indicating the general trend of the average resubstitution and leave-one-out error
probabilities as functions of the number of training points.

“12-Ch10-SA272” 18/9/2008 page 572

572 CHAPTER 10 Supervised Learning: The Epilogue

A number of variations and combinations of these basic schemes have also been
suggested in the literature. For example, a variation of the leave-one-out method is
to leave k & 1, instead of one, samples out. The design and test process is repeated
for all distinct choices of k samples. References [Kana 74, Raud 91] are two good
examples of works discussing various aspects of the topic.

In [Leis 98] a method called cross-validation with active pattern selection is
proposed, with the goal of reducing the high computational burden required by
the leave-one-out method. It is suggested not to leave out (one at a time) all N
feature vectors, but only k ' N . To this end the “good” points of the data set
(expected to contribute a 0 to the error) are not tested. Only the k “worst” points
are considered. The choice between “good” and “bad” is based on the respective
values of the cost function after an initial training. This method exploits the fact
that the outputs of the classifier, trained according to the least squares cost func-
tion, approximate posterior probabilities, as discussed in Chapter 3. Thus, those
feature vectors whose outputs have a large deviation from the desired value (for
the true class) are expected to be the ones that contribute to the classification
error.

Another set of techniques have been developed around the bootstrap method
[Efro 79, Hand 86, Jain 87]. A major incentive for the development of these tech-
niques is the variance of the leave-one-out method estimate for small data sets
[Efro 83]. According to the “bootstrap” philosophy, new data sets are artificially
generated. This is a way to overcome the limited number of available data and
create more data in order to better assess the statistical properties of an estimator.
Let X be the set of the available data of size N . A bootstrap design sample set of
size N,X∗, is formed by random sampling with replacement of the set X . Replace-
ment means that when a sample, say xi , is “copied” to the set X∗, it is not removed
from X but is reconsidered in the next sampling. A number of variants have been
built upon the bootstrap method. A straightforward one is to design the classifier
using a bootstrap sample set and count the errors using the samples from X that
do not appear in this bootstrap sample set. This is repeated for different bootstrap
sample sets. The error rate estimate, e0, is computed by counting all the errors and
dividing the sum by the total number of test samples used. However, in [Raud 91] it
is pointed out that the bootstrap techniques improve on the leave-one-out method
only when the classification error is large.

Another direction is to combine estimates from different estimators. For exam-
ple, in the so-called 0.632 estimator ([Efro 83]), the error estimate is taken as a
convex combination of the resubstitution error, eres, and the bootstrap error e0,

e0.632 ! 0.368eres % 0.632e0

It has been reported that the 0.632 estimator is particularly effective in cases
of small size data sets [Brag 04]. An extension of the 0.632 rule is discussed
in [Sima 06] where convex combinations of different estimators are considered
and the combining weights are computed via an optimization process.

“12-Ch10-SA272” 18/9/2008 page 573

10.4 A Case Study from Medical Imaging 573

Confusion Matrix, Recall and Precision
In evaluating the performance of a classification system, the probability of error
is sometimes not the only quantity that assesses its performance sufficiently. Let
us take for example, an M-class classification task. An important issue is to know
whether there are classes that exhibit a higher tendency for confusion. The confu-
sion matrix A ! [A(i, j)] is defined so that its element A(i, j) is the number of data
points whose true class label was i and were classified to class j. From A, one can
directly extract the recall and precision values for each class, along with the overall
accuracy:

■ Recall (Ri). Ri is the percentage of data points with true class label i, which
were correctly classified in that class. For example, for a two-class problem,
the recall of the first class is calculated as R1 ! A(1,1)

A(1,1)%A(1,2) .

■ Precision (Pi). Pi is the percentage of data points classified as class i, whose
true class label is indeed i. Therefore, for the first class in a two-class problem,
P1 ! A(1,1)

A(1,1)%A(2,1) .

■ Overall Accuracy (Ac). The overall accuracy,Ac, is the percentage of data that
has been correctly classified. Given an M -class problem,Ac is computed from
the confusion matrix according to the equation Ac ! 1

N

∑M
i!1 A(i, i), where

N is the total number of points in the test set.

Take as an example a two-class problem where the test set consists of 130 points
from class !1 and 150 points from class !2. The designed classifier classifies 110
points from !1 correctly and 20 points to class !2. Also, it classifies 120 points from
class !2 correctly and 30 points to class !1. The confusion matrix for this case is

A !

[
110 20
30 120

]

The recall for the first class is R1 ! 110
130 and the precision P1 ! 110

140 . The respective
values for the second class are similarly computed. The accuracy is Ac ! 110%120

130%150 .

10.4 A CASE STUDY FROM MEDICAL IMAGING
Our goal in this section is to demonstrate the various design stages, discussed in
the previous chapters,via a case study borrowed from a real application. It will not
come as a surprise to say that focusing on a single example cannot cover all possible
design approaches that are followed in practice. However, our aim is to provide a
flavor for the newcomer. After all,“perfection is the enemy of the good.”

Our chosen application comes from the medical imaging discipline. Our task
is to develop a pattern recognition system for the diagnosis of certain liver dis-
eases. Specifically, the system will be presented with ultrasound images of the

“12-Ch10-SA272” 18/9/2008 page 574

574 CHAPTER 10 Supervised Learning: The Epilogue

(a) (b) (c)

FIGURE 10.2
Ultrasound images corresponding to (a) normal liver, (b) liver with fatty infiltration, and (c) liver
with cirrhosis. The square shows the image area on which the analysis was carried out.

liver, and it must be able to recognize normal from abnormal cases. Abnormal
cases correspond to two types of liver diseases, namely, cirrhosis and fatty liver
infiltration. For each case, two different gratings must be recognized, depending
on the degree of the disease development [Cavo 97]. Figure 10.2 shows three exam-
ples of ultrasound images corresponding to (a) a normal liver, (b) an abnormal liver
with fatty infiltration, and (c) an abnormal liver with cirrhosis. It is readily realized
that the visual differences between the images are not great. This makes the clini-
cal diagnosis and the diagnostic accuracy very much dependent on the skill of the
doctor. Thus, the development of a pattern recognition system can assist the doctor
in assessing the case and, together with other clinical findings, reduce the need for
invasive techniques (biopsy).

The first stage in the design process involves the close cooperation of the sys-
tem designer with the specialist, that is, the doctor, in order to establish a“common
language” and have the designer understand the task and define, in common with
the doctor, the goals and requirements of the pattern recognition system. Besides
the acceptable error rate, other performance issues come into play, such as com-
plexity, computational time,and cost of the system. The next stage involves various
image processing steps, such as image enhancement, in order to assist the system
by presenting it only useful information as much as possible. Then things are ripe
to begin with the design of the pattern recognition system.

Figure 10.3 outlines the task. There are five possible classes. The pattern recog-
nition system can be designed either around a single classifier, which assigns an
unknown image directly to one of the five classes, or around a number of classi-
fiers built on a tree structure philosophy. The latter approach was adopted here.
Figure 10.4 illustrates the procedure. A separate classifier was used at each node,
and each of them performs a two-class decision. At the first node, the respective
classifier decides between normal and abnormal cases. At the second node, images,
classified as abnormal, are tested and classified in either the cirrhosis or the fatty
liver infiltration class,and so on. The advantage of such a procedure is that we break
the problem into a number of simpler ones. It must be stressed, however, that in

“12-Ch10-SA272” 18/9/2008 page 575

10.4 A Case Study from Medical Imaging 575

liver

cirrhosis

grating Bgrating Agrating Bgrating A

normal fatty liver
infiltration

FIGURE 10.3
The classification task.

A

fatty liver
infiltration

cirrhosis

normal abnormal

liver

B A B

2

3
4

1

FIGURE 10.4
A tree-structured hierarchy of classifiers.

other applications such a procedure may not be applicable. For the design of the
classification system,150 ultrasound liver images were obtained from a medical cen-
ter. Fifty of them correspond to normal cases,55 of them to patients suffering from
cirrhosis, and 45 of them to patients suffering from fatty liver infiltration. Three
classifiers were adopted for comparison, namely the least squares linear classifier,
the minimum Euclidean distance classifier, and the kNN for different values of k.
Each time, the same type of classifier was used for all nodes. From the discussions

“12-Ch10-SA272” 18/9/2008 page 576

576 CHAPTER 10 Supervised Learning: The Epilogue

with the specialists,we concluded that what was of interest here was the texture of
the respective images. The methods described in Section 7.2.1 of Chapter 7 were
used, and a total of 38 features were generated for each of the images. This is a
large number,and a feature selection procedure was“mobilized”to reduce this num-
ber. Let us first concentrate on the first node classification task and the LS linear
classifier.

■ For each of the 38 features the t -test was applied, and only 19 of them passed
the test at a significance level of 0.001. The latter is chosen so that “enough”
features pass the test. Taking into account the size of the problem, enough
was considered to be around 15 for our problem. However, 19 is still a large
number, and a further reduction was considered necessary. For example, 19
is of the same order as 50 (the number of normal patterns),which would lead
to poor generalization.

■ The 19 features were considered in pairs, in triples, up to groups of seven,
in all possible combinations. For each combination, the optimal LS classifier
was designed and each time the corresponding classification error rate was
estimated, using the leave-one-out method. It turned out that taking the fea-
tures in groups larger than two did not improve the error rate significantly.
Thus, it was decided that l ! 2 was satisfactory and that the best combination
consisted of the kurtosis and theASM.The percentage of correct classification
with this combination was 92.5%.

For the design of the linear classifier of “node 2” the same procedure was fol-
lowed,using,of course,only the images originating from abnormal cases. Of the 38
originally produced features, only 15 passed the t -test. The optimal combination of
features turned out to be the mean,the variance,and the correlation. It may be worth
pointing out that the variance was rejected from the t -test during the design of the
“node 1” classifier. The percentage of correct classification for node 2 was 90.1%.
The optimal combination for the “node 3” LS classifier was the variance, entropy,
the sum entropy, and the difference entropy corresponding to a correct classifica-
tion rate of 92.2%. Finally, the optimization procedure for the “node 4” classifier
resulted in the mean value, the ASM, and the contrast with a correct classification
rate estimate of 83.8%.

Having completed the design with the LS linear classifiers, the same procedure
was followed for the Euclidean minimum distance classifier and the kNN classifier.
However,in both of these cases the resulting error rate estimates were always higher
than the ones obtained with the LS classifier. Thus,the latter one was finally adopted.

Once more, it must be stated that this case study does not and cannot repre-
sent the wealth of classification tasks encountered in practice, each with its own
specific requirements. We could state, with a touch of exaggeration, of course, that
each classification task is like a human being. Each one has its own personality!
For example, the dimension of our problem was such that it was computationally
feasible, with today’s technology to follow the procedure described. The feature

“12-Ch10-SA272” 18/9/2008 page 577

10.5 Semi-Supervised Learning 577

selection, classifier design, and classification error stages were combined to com-
pute the best combination. This was also a motivation for choosing the specific case
study, that is, to demonstrate that the various stages in the design of a classification
system are not independent but they can be closely interdependent. However, this
may not be possible for a large number of tasks, as, for example, the case of a large
multilayer neural network in a high-dimensional feature space. Then the feature
selection stage cannot be easily integrated with that of classifier design, and tech-
niques such as those presented in Chapter 5 must be employed. Ideally, what one
should aim at is to have a procedure to design the classifiers by minimizing the error
probability directly (not the LS, etc.), and at the same time this procedure should
be computationally simple (!) to allow also for a search for the optimal feature
combination. However, this “utopia” is still quite distant.

10.5 SEMI-SUPERVISED LEARNING
All the methods that we have considered in the book so far have relied on using a set
of labeled data for the training of an adopted model structure (classifier). The final
goal was, always, to design a “machine,” which, after the training phase, can predict
reliably the labels of unseen points. In other words, the scope was to develop a
general rule based on the inductive inference rationale. In such a perspective,
the generalization performance of the designed classifier was a key issue that has
“haunted”every design methodology.

In this section, we are going to relax the design procedure from both “pillars”
on which all our methods were so far built; (a) the labeled data set used for the
training and (b) our concern about the generalization performance of the devel-
oped classifier. Initially, unlabeled data will be brought into the game, and we will
investigate the possibility of whether this extra information, in conjunction with
the labeled data, can offer performance improvement. Moving on, in a later stage,
we will consider cases where the classifier design is not focused on predicting the
labels of“future”unseen data points. In contrast, the optimization of a loss function
will entirely rely on best serving the needs of a given set of unlabeled data, which
are at the designer’s disposal “now”, that is, at the time of the design. The latter
concept of designing a classifier is known as transductive inference to contrast it
to the inductive inference mentioned earlier.

Designing classifiers by exploiting information that resides in both labeled and
unlabeled data springs from a fact of life; that is, in many real applications collecting
unlabeled data is much easier than the task of labeling them. In a number of cases,
the task of labeling is time consuming, and it requires annotation by an expert.
Bioinformatics is a field in which unlabeled data is abundant, yet only a relatively
small percentage is labeled, as, for example in protein classification tasks. Text
classification is another area where unlabeled data is fairly easy to collect while the
labeling task requires the involvement of an expert. Annotating music is also a very

“12-Ch10-SA272” 18/9/2008 page 578

578 CHAPTER 10 Supervised Learning: The Epilogue

demanding task, which, in addition, involves a high degree of subjectivity, as, for
example, in deciding the genre of a music piece. On the other hand, it is very easy
to obtain unlabeled data.

Figures 10.5 and 10.6,inspired by [Sind 06],present two simple examples raising
expectations that performance may be boosted by exploiting additional information
that resides in an unlabeled data set. In Figure 10.5a we are given two labeled
points and one, denoted by “?”, whose class is unknown. Based on this limited
information, one will readily think that the most sensible decision is to classify the
unknown point to the “*” class. In Figure 10.5b, in addition to the previous three
points, a set of unlabeled points is shown. Having this more complete picture,
one will definitely be tempted to reconsider the previous decision. In this case,

?

+

*?

+

*

(a) (b)

FIGURE 10.5
(a) The unknown point, denoted by “?”, is classified in the same class as point “∗”. (b) The
setup after a number of unlabeled data have been provided, which leads us to reconsider our
previous classification decision.

*
?

++

?
*

(a) (b)

FIGURE 10.6
(a) The unknown point, denoted by “?”, is classified in the same class as point “∗”. (b) The setup
after a number of unlabeled data have been provided. The latter forces us, again, to reconsider
our previous classification decision.

“12-Ch10-SA272” 18/9/2008 page 579

10.5 Semi-Supervised Learning 579

the extra information unveiled by the unlabeled data, and used by our perceptive
mechanism, is the clustered structure of the data set. Figure 10.6 provides us with
a slightly different viewpoint. Once more, we are given the three points, and the
same decision as before is drawn (Figure 10.6a). In Figure 10.6b, the unlabeled data
reveal a manifold structure on which the points reside (see also Section 6.6). The
extra piece of information,which is disclosed to us now, is that the unknown point
is closer to the “%” than to the “∗” point, if the geodesic, instead of the Euclidean,
distance is used. Of course, in both cases, reconsideration of our initial decision is
justified only under the following assumptions:

■ Cluster assumption: If two points are in the same cluster, they are likely to
originate from the same class.

■ Manifold assumption: If the marginal probability distribution, p(x), is sup-
ported on a manifold, then points lying close to each other on the manifold
are more likely to be in the same class. Another way to express this is that the
conditional probability, P(y|x), of the class label y, is a smooth function of x,
with respect to the underlying structure of the manifold.

Figure 10.5 illustrates the cluster assumption, and Figure 10.6 the manifold one.
Both assumptions can be seen as particular instances of a more general

assumption that covers both classification and regression:

■ Semi-supervised assumption: If two points are close in a high-density region,
then their corresponding outputs should have close values.

In other words, closeness between points is not a decisive factor, if, considered by
itself. It has to be considered in the context of the underlying data distribution.
This is apparent from the previous two figures. According to the semi-supervised
smoothness assumption, if two points are close and linked by a path through a high-
density area, they are likely to give closely located outputs. On the other hand, if
the path that links them goes through a low-density region, there is no need for the
corresponding outputs to be close ([Chap 06a, p. 5]).

Although semi-supervised learning has attracted a lot of interest recently, it is not
new as a problem. Semi-supervised learning has been addressed in the statistics
community as early as the mid-1960s, for example, [Scud 65]. Transductive learning
was introduced by Vapnik and Chervonenkis in the mid-1970s, [Vapn 74]. Over
the years, a large number of approaches and algorithms have been proposed, and
it is beyond the scope of the present section to cover the area in depth and in
its entire breadth. Our goal is to present some of the basic directions that are
currently popular and at the same time are based on methods previously addressed
in this book.

10.5.1 Generative Models
Generative models are perhaps the oldest semi-supervised methods and they have
been used in statistics for many years. The essence behind these methods is to

“12-Ch10-SA272” 18/9/2008 page 580

580 CHAPTER 10 Supervised Learning: The Epilogue

model the class-conditional densities p(x|y), using information provided by both
labeled and unlabeled data. Once such a model is available, one can compute the
marginal distribution p(x)

p(x) !
∑

y

P(y)p(x|y) (10.10)

the joint distribution

p(y, x) ! P(y)p(x|y) (10.11)

and finally the quantity that is required by the Bayesian classifier

P(y|x) !
P(y)p(x|y)∑
y P(y)p(x|y)

(10.12)

The class label is an integer, y ∈ {1, 2, . . . , M}, where M is the number of classes. If
P(y) is not known then an estimate of it is used. The above formulas are familiar to
us from Chapter 2, but they are repeated here for the sake of completeness.

In the sequel, we adopt a parametric model for the class conditional densities,
that is, p(x| y; !). Let also Py, y ! 1, 2, . . . , M , denote the respective estimates of
the class priors P(y). Assume that we are given two types of data sets:

■ Unlabeled data: This data set consists of Nu samples xi ∈ Rl , i ! 1, 2, . . . ,
Nu, which are assumed to be independently and identically distributed ran-
dom vectors drawn from the marginal distribution p(x; !, P), which is also
parameterized in terms of !, and P ! [P1, P2, . . . , PM]T . The corresponding
set is denoted by Du.

■ Labeled data: We assume that Nl samples are randomly and independently
generated and they are subsequently labeled by an expert. Let Ny of them
be associated with class y ! 1, 2, . . . , M , where Nl !

∑
y Ny. We adopt the

notation z iy, i ! 1, 2, . . . , Ny, y ! 1, 2, . . . , M , to represent the ith sample
assigned in the yth class. The set of labeled samples is denoted as Dl !{z iy,
i ! 1, 2, . . . , Ny, y ! 1, 2, . . . , M}. This type of labeling data matches best a
number of practical applications. For example, in medical imaging an expert
is given a set of images,which have been previously produced,and labels them
accordingly. Other “mechanisms”of generating labeled data are also possible,
by adopting different assumptions, see [Redn 84, Shas 94, Mill 97, Mill 03].

Our task now is to estimate the set of the unknown parameters, that is, Q ≡
[!T , PT]T in the mixture model (see Section 2.5.5 of Chapter 2.)

p(x;Q) !
M∑

y!1

Pyp(x|y; !) (10.13)

using the observations in Du and Dl . For simplicity, in the previous mixture
model we have assumed one mixture component per class. This can be relaxed,

“12-Ch10-SA272” 18/9/2008 page 581

10.5 Semi-Supervised Learning 581

for example, [Mill 97]. If only Du was available, then the task would reduce to
the mixture modeling task with hidden class (mixture) labels, as discussed in
Section 2.5.5.

It is known from statistics and it is readily deduced from the definition of the
log-likelihood in Section 2.5, that if the set of observations is the union of two
independent sets then the log-likelihood is the sum of the log-likelihoods of the
respective sets. In our case the following are valid (see also [Redn 84]):

Du: Lu(Q) !
Nu∑

i!1

ln p(xi;Q) !
Nu∑

i!1

ln
M∑

y!1

Pyp(xi|y; !) (10.14)

Dl : Ll(Q) !
M∑

y!1

Ny∑

i!1

ln p(y, z iy;Q) % ln
Nl !

N1!N2! . . . NM !

!
M∑

y!1

Ny∑

i!1

ln
(
Pyp(z iy|y; !)

)
% ln

Nl !
N1!N2! . . . NM ! (10.15)

Note that in the case of labeled data the“full”observations of the joint events (y, z iy)
are made available to us. The second term in the log-likelihood function results from
the generalized Bernoulli theorem [Papo 02, p.110]. This is a consequence of the
way labeled samples were assumed to occur. Basically, we are given Nl random
samples and after the labeling N1 of them are assigned to class y ! 1, N2 of them
to class y ! 2 and so on. However, this term is independent of ! and P and, in
practice, is neglected. The unknown set of parameters !, P can now be obtained by
maximizing the sum Lu(Q) % Ll(Q) with respect to ! and P . Due to the nature of
Lu(Q) optimization has to be carried out in the framework discussed in Section 2.5.5.
The EM algorithm is the most popular alternative toward this end.

In order to get a feeling on how the presence of labeled data affects the results
of the EM algorithm, when compared with the case where only unlabeled data are
used, let us consider the example of Section 2.5.5, where the conditional densities
were assumed to be Gaussians, that is,

p(x|y; !) !
1

(
2%"2

y
)l/2 exp

(

"
∥x " "y∥2

2"2
y

)

(10.16)

where ! ! ["T
1 , . . . , "T

M , "2
1, . . . , "2

M]T . The E-step now becomes:

E-step:

Q(Q;Q(t)) !
Nu∑

i!1

M∑

y!1

P(y|xi;Q(t)) ln
(
p(xi |y; "y, "2

y)Py

)

%
Nl∑

i!1

ln
(
p(z iy|y; "y, "2

y)Py

)
(10.17)

“12-Ch10-SA272” 18/9/2008 page 582

582 CHAPTER 10 Supervised Learning: The Epilogue

In words,the expectation operation is required for the unlabeled samples only,since
for the rest the corresponding labels are known. Using similar steps as in Problem
2.31 and considering both log-likelihood terms,recursions (2.98),(2.99) and (2.100)
are modified as follows:

M-step:

"y(t % 1) !

∑Nu
i!1 P(y|xi;Q(t))xi %

∑Ny
i!1 z iy

∑Nu
i!1 P(y|xi;Q(t)) % Ny

(10.18)

"2
y (t % 1) !

∑Nu
i!1 P(y|xi;Q(t))∥xi " "y(t % 1)∥2

l
(∑Nu

i!1 P(y|xi;Q(t)) % Ny

)

%

∑Ny
i!1 ∥z iy " "y(t % 1)∥2

l
(∑Nu

i!1 P(y|xi;Q(t)) % Ny

) (10.19)

Py(t % 1) !
1

Nu % Nl

(Nu∑

i!1

P(y|xi;Q(t)) % Ny

)

(10.20)

Remarks

■ Provided that the adopted mixture model for the marginal density is correct,
the use of unlabeled data is guaranteed to improve performance, for exam-
ple, [Cast 96]. However, if this is not the case, and the adopted model does
not match the characteristics of the true distribution that generates the data,
incorporating unlabeled data may actually degrade the performance. This is a
very important issue, since in practice it may not be an easy task to have good
knowledge about the exact nature of the underlying distribution. This claim
has been supported by a number of researchers,and a theoretical justification
is provided in [Cohe 04].

■ Looking at Eqs. (10.14) and (10.15), we observe that if Nu &&Nl , which is
usually the case in practice, the unlabeled data term is the dominant one.
This is also clear by inspecting the recursion in (10.18)–(10.20). To overcome
this, an appropriate weighting of the two log-likelihood terms may be used,
for example, [Cord 02, Niga 00]. Another problem associated with the EM
algorithm is, as we already know, that it can be trapped in a local maximum.
This can also be a source for performance degradation when using unlabeled
data. This is treated in [Niga 00].

10.5.2 Graph-Based Methods
In any classification task, the ultimate goal is to predict the class label given the
observation x. In the generative modeling, the philosophy is to model the “genera-
tion”mechanism of the data and also to adopt a model for p(x|y),which then implies

“12-Ch10-SA272” 18/9/2008 page 583

10.5 Semi-Supervised Learning 583

all the required information,that is,p(x),p(y, x),P(y|x). However, throughout this
book,the majority of the methods we dealt with were developed on a different ratio-
nale. If all we need is to infer the class labels, let us model the required information
directly. As Vapnik stated:

When solving a given problem, try to avoid solving a more general one as an
intermediate step.

For example, if the densities underlying the classes are Gaussians with the same
covariance matrix, one need not bother to estimate the covariance parameters;
exploiting the fact that the optimum discriminant function is linear can be sufficient
to design a good classifier [Vapn 99]. Such techniques are known as diagnostic or
discriminative methods. Linear classifiers, backpropagation neural networks, and
support vector machines are typical examples that fall under the diagnostic design
methodology. In all these methods, the marginal probability density, p(x), was not
considered explicitly for the estimation of the corresponding optimal parameters.
The obvious question that now arises is whether and how such techniques can
benefit from the existence of unlabeled data. The latter “express” themselves via
p(x). On the other hand, the marginal probability density does not enter into the
discriminative models explicitly. The way out comes through penalization, where
one forces the solution to respect certain general characteristics of p(x). Typical
such characteristics, which have been exploited in semi-supervised learning, are:
(a) the clustering structure that may underlie the data distribution and (b) the man-
ifold geometry on which the data might lie. This information can be embedded in
the form of regularization in the optimization of a loss function associated with
the classification task (see Section 4.19).

Graph methods fall under the diagnostic design approach, and a number of
techniques have been proposed to exploit classification-related information that
resides in the data distribution. In order to present the basic rationale behind graph
methods,we will focus on a technique that builds around the manifold assumption.
This technique also fits nicely with a number of concepts discussed in previous
chapters in the book.

As we have already seen in Section 6.7.2,graph methods start with the construc-
tion of an undirected graph G(V , E). Each node, vi , of the graph corresponds to a
data point,xi , and the edges connecting nodes,e.g.,vi , vj , are weighted by a weight
W (i, j) that quantifies similarity between the corresponding points, xi , xj . There
was discussed how these weight values can be used to provide information related
to the local structure of the underlying manifold—that is, the intrinsic geometry
associated with p(x).

Assume that we are given a set of Nl labeled points xi, i ! 1, 2 . . . , Nl , and
a set of Nu unlabeled points xi, i ! Nl % 1, . . . , Nl % Nu. Our kickoff point is
Eq. (4.79)

Nl∑

i!1

L
(
g(xi), yi

)
% ||g||2H (10.21)

“12-Ch10-SA272” 18/9/2008 page 584

584 CHAPTER 10 Supervised Learning: The Epilogue

where H is used explicitly to denote that the norm of the regularizer is taken in the
RKHS space, and we have assumed ((·) to be a square one. The loss function is
considered over the labeled data only. In [Belk 04, Sind 06],it is suggested to adding
an extra regularization term that reflects the intrinsic structure of p(x). Using some
differential geometry arguments,which are not of interest to us here,it turns out that
a quantity that approximately reflects the underlying manifold structure is related to
the Laplacian matrix of the graph (see also Section 6.7.2). The proposed in [Belk 04]
optimization task is:

arg min
g∈H

1
Nl

Nl∑

i!1

L
(
g(xi), yi

)
% &H ||g||2H %

&I

(Nl % Nu)2

Nl %Nu∑

i, j!1

(
g(xi) " g(xj)

)2 W (i, j) (10.22)

Observe that two normalizing constants are present in the denominators and
account for the number of points contributing to each of the two data terms. The
parameters &H , &I control the relative significance of the two terms in the objective
function. Also note that in the last term all points, labeled as well as unlabeled,
are considered. For those who do not have “theoretical anxieties,” it suffices to
understand that the last term in the cost accounts for the local geometry structure.
If two points are far apart, the respective W (i, j) is small so their contribution to the
cost is negligible. On the other hand,if the points are closely located,W (i, j) is large,
and these points have an important “say” in the optimization process. This means
that the demand (through the minimization task) of nearby points to be mapped to
similar values (i.e., g(xi) " g(xj) to be small) will be seriously taken into account.
This is basically a smoothness constraint, which is in line with the essence of the
manifold assumption stated before. Using similar arguments as in Section 6.7.2,we
end up with the following optimization task

arg min
g∈H

1
Nl

Nl∑

i!1

L
(
g(xi), yi

)
% &H ||g||2H %

&I

(Nl % Nu)2 gT Lg (10.23)

where g ! [g(x1), g(x2), . . . , g(xNl%Nu)]T . Recall that the Laplacian matrix is
defined as

L ! D " W

where D is the diagonal matrix with elements Dii !
∑Nl%Nu

j W (i, j) and W !
[W (i, j)], i, j ! 1, 2, . . . , Nl % Nu. A most welcome characteristic of this procedure
is that the Representer Theorem, discussed in Section 4.19.1, is still valid and the
minimizer of (10.23) admits an expansion

g(x) !
Nl %Nu∑

j!1

ajK(x, xj) (10.24)

“12-Ch10-SA272” 18/9/2008 page 585

10.5 Semi-Supervised Learning 585

where K(·, ·) is the adopted kernel function. Observe that the summation is taken
over labeled as well as unlabeled points.

In Section 4.19.1, it was demonstrated how use of the Representer Theorem
can facilitate the way the optimal solution is sought. This is also true here. Take
as an example the case where the loss function is the least squares one that is,
L

(
g(xi), yi

)
! (yi " g(xi))2. Then it is easy to show (Problem 10.4) that the

coefficients in the expansion (10.24) are given by

[a1, a2, . . . aNl %Nu]T ≡ a ! (JK % &H NlI %
&I Nl

(Nl % Nu)2 LK)"1y (10.25)

where I is the identity matrix, y ! [y1, y2, . . . , yNl , 0, . . . , 0]T , J the (Nl % Nu))
(Nl % Nu) diagonal matrix with Nl entries as 1 and the rest 0, i.e., J !
diag(1, 1, . . . , 1, 0, . . . , 0) and K ! [K(i, j)] is the (Nl %Nu))(Nl %Nu) Gram matrix.
Combining (10.25) and (10.24) results in the optimum classifier,employing labeled
as well as unlabeled data, given by

g(x) ! yT (JK % &H NlI %
&I Nl

(Nl % Nu)2 LK)"1p (10.26)

where p ! [K(x, x1), . . . , K(x, xNl%Nu)]T (see also Section 4.19.1). The resulting
minimizer is known as the Laplacian regularized kernel least squares (LRKLS)
solution and it can be seen as a generalization of the kernel ridge regressor given
in (4.100). Indeed, if &I ! 0, unlabeled data do not enter into the game and the
last term in the parenthesis becomes zero. Then for C ! &H Nl we obtain the kernel
ridge regressor form (Eq. (4.110)). Note that Eq. (10.26) is the result of a scien-
tific evolution process that spans a period spreading over three centuries. It was
Gauss in the nineteenth century who solved for the first term in the parenthesis.
The second term was added in the mid-1960s,due to the introduction of the notion
of regularized optimization ([Tiho 63, Ivan 62, Phil 62]). To our knowledge, ridge
regression was introduced in statistics in [Hoer 70]. The kernelized version was
developed in mid-1990s following the work of Vapnik and his coworkers, and the
Laplacian “edition”was added in the beginning of this century!

We can now summarize the basic steps in computing the LRKLS algorithm:

Laplacian regularized kernel least squares classifier

■ Construct a graph using both labeled and unlabeled points. Choose weights
W (i, j) as described in Section 6.7.2.

■ Choose a kernel function K(·, ·) and compute the Gram matrix K(i, j).

■ Compute the Laplacian matrix L ! D " W .

■ Choose &H , &I .

■ Compute a1, a2, . . . , aNl%Nu from Eq. (10.25).

“12-Ch10-SA272” 18/9/2008 page 586

586 CHAPTER 10 Supervised Learning: The Epilogue

Given an unknown x, compute g(x) !
∑Nl%Nu

j!1 ajK(x, xj). For the two-class
classification case the class label, y ∈ [%1, "1], is obtained by y ! sign{g(x)}.

By changing the cost function and/or the regularization term different algorithms
result with different performance trade-offs,for example,[Wu 07, Dela 05, Zhou 04].
Another direction that has been followed within the graph theory framework is
what is called label propagation, for example, [Zhu 02]. Given a graph, nodes cor-
responding to the labeled points are assigned their respective class label (e.g., *1
for the two-class case) and the unlabeled ones are labeled with a zero. Labels are
then propagated in an iterative way through the data set along high-density areas
defined by the unlabeled data, until convergence. In [Szum 02] label propagation
is achieved by considering Markov random walks on the graph. An interest-
ing point is that the previously discussed two directions to semi-supervised
learning, which build on graph theoretic arguments, turn out to be equivalent
or, at least, very similar, see, for example, [Beng 06]. Once more, the world
is small!

10.5.3 Transductive Support Vector Machines
According to the inductive inference philosophy, one starts from the particular
knowledge (training set using labeled data) and then the general rule (the classi-
fier or regressor) is derived, which is subsequently used to predict the labels of
specific points comprising the test set. In other words, one follows a path

particular "→ general "→ particular

Vapnik and Chervonenkis, pushing the frontiers, questioned whether this is indeed
the best path to follow in practice. In cases where the training data set is
limited in size, deriving a good general rule becomes a hard task. For such
cases, they proposed the transductive inference approach, where one follows a
“direct”path

particular "→ particular

In such a way,one may be able to exploit information residing in a given test set and
obtain improved results. Transductive learning is a special type of semi-supervised
learning and the goal is to predict the labels of the points in a specific test set
by embedding the points of the set, explicitly, in the optimization task. From this
perspective, label propagation techniques, discussed before, are also transductive
in nature. For a more theoretical treatment of transductive learning, the reader is
referred to, for example, [Vapn 06, Derb 03, Joac 02].

In the framework of support vectors machines (see Section 3.7), and for the
two class problem, transductive learning is cast as follows. Given the set Dl !
{xi , i ! 1, 2, . . . , Nl} of labeled points and the set Du ! {xi, i ! Nl %1, . . . , Nl %Nu}
compute the labels yNl%1, . . . , yNl%Nu of the points in Du so that the hyperplane that
separates the two classes, by taking into consideration both labeled and unlabeled

“12-Ch10-SA272” 18/9/2008 page 587

10.5 Semi-Supervised Learning 587

points, has maximum margin. The corresponding optimization tasks for the two
versions (hard margin and soft margin) become:

Hard margin TSVM

minimize J (yNl %1, . . . , yNl %Nu , w, w0) !
1
2
||w||2 (10.27)

subject to yi(wT xi % w0) + 1, i ! 1, 2, . . . , Nl (10.28)

yi(wT xi % w0) + 1, i ! Nl % 1, . . . , Nl % Nu (10.29)

yi ∈ {%1, "1}, i ! Nl % 1, . . . , Nl % Nu (10.30)

Soft margin TSVM

minimize J (yNl %1, . . . , yNl %Nu , w, w0, #) !
1
2
||w||2%

Cl

Nl∑

i!1

'i % Cu

Nl %Nu∑

i!Nl %1

'i (10.31)

subject to yi(wT xi % w0) + 1 " 'i , i ! 1, 2, . . . , Nl (10.32)

yi(wT xi % w0) + 1 " 'i , i ! Nl % 1, . . . , Nl % Nu (10.33)

yi ∈ {%1, "1}, i ! Nl % 1, . . . , Nl % Nu (10.34)

'i + 0, i ! 1, 2, . . . , Nl % Nu (10.35)

where Cl , Cu are user-defined parameters that control the importance of the respec-
tive terms in the cost. In [Joac 99,Chap 05] an extra constraint is used that forces the
solution to assign unlabeled data to the two classes in roughly the same proportion
as that of the labeled ones.

Figure 10.7 shows a simplified example,for the hard margin case,illustrating that
the optimal hyperplane, which results if only labeled examples are used (SVM), is
different from the one obtained when both labeled and unlabeled data are employed
(TSVM). Performing labeling (of the unlabeled samples),so that the margin between
the resulting classes is maximized,pushes the decision hyperplane in sparse regions
and it is in line with the clustering assumption stated in the beginning of this
section.

A major difficulty associated with TSVM is that, in contrast to the con-
vex nature of the standard SVM problem, the optimization is over the labels
yi, i ! Nl % 1, . . . , Nl % Nu, which are integers in {%1, "1} and it is an NP-hard
task. To this end, a number of techniques have been suggested. For example, in
[DeBi 04] the task is relaxed, and it is solved in the semidefinite programming
framework. Algorithms based on coordinate descent searching have been proposed
in [Joac 02, Demi 00, Fung 01]. A slight reformulation of the problem is proposed

“12-Ch10-SA272” 18/9/2008 page 588

588 CHAPTER 10 Supervised Learning: The Epilogue

x1

x2

FIGURE 10.7
Red lines correspond to the SVM classifier when only labeled “"” and “%” points are available.
The black lines result when the unlabeled data have been considered and have “pushed” the
decision hyperplane to an area which is sparse in data.

in [Chap 06]. The constraints associated with the unlabeled data are removed and
replaced by |wT xi % w0| + 1 " 'i , i ! Nl % 1, . . . , Nl % Nu. Such constraints
push the hyperplane away from the unlabeled data, since penalization occurs
each time the absolute value becomes less than one. Hence, they are in line
with the cluster assumption. This problem formulation has the advantage of
removing the combinatorial nature of the problem; yet it remains nonconvex.
Strictly speaking, the problem solved in [Chap 06] is not transductive in nature,
since one does not try to assign labels to the unlabeled points. All one tries to
do is to locate the hyperplane in sparse regions and do not “cut” clusters. This
is the reason that such techniques are known as semi-supervised SVM or S3VM
(see, e.g., [Benn 98, Sind 06a]). At this point it is interesting to note that the
borderline between transductive learning and semi-supervised learning that is
inductive in nature is not clearly marked, and it is a topic of ongoing discussion.
Take, for example, TSVM. After training, the resulting decision hyperplane can
be used for induction to predict the label of an unseen point. We are not
going to delve into such issues. A very interesting and quite enlightening discus-
sion on the topic,in a“Platonic dialogue”style,is provided in [Chap 06a,Chapter 25].

Remarks

■ Besides the previous semi-supervised methodologies that we have presented,
a number of other techniques have been suggested. For example,self-training
is simple in concept and a commonly used approach. A classifier is first trained
with the labeled data. Then this is applied to the unlabeled data to perform
label predictions. Based on a confidence criterion,those of the data that result

“12-Ch10-SA272” 18/9/2008 page 589

10.5 Semi-Supervised Learning 589

in confident predictions are added in the labeled training set. The classifier
is retrained, and the process is repeated, for example, [Culp 07]. The pro-
cedure is similar with that used in the decision feedback equalization (DFE)
([Proa 89]) in communications for more than three decades, in the sense that
the classifier uses its own predictions to train itself. Similar in concept is the
co-training ([Mitc 99, Balc 06, Zhou 07] procedure. However, in this case,
the feature set is split into a number of subsets, for example, two,and for each
subset a separate classifier is trained using labeled data. The trained classifiers
are then used to predict (in their respective feature subspace) labels for the
unlabeled points. Each one of the classifiers passes to the other the most confi-
dent of the predictions,together with the respective points. The classifiers are
then retrained using this new extra information. Splitting the feature set and
training the classifiers in different subspaces provides a different complemen-
tary “view” of the data points. This reminds us of the classifier combination
method where classifiers are trained in different subspaces (Section 4.21). As
it was the case there, independence of the two sets is a required assumption.

■ A major issue concerning semi-supervised techniques is whether and under
what conditions one can obtain enhanced performance compared to training
the classifier using labeled data only. A number of papers report that enhanced
performance has been obtained. For example, in [Niga 00] a generative
approach has been applied to the problem of text classification. It is reported
that, using a number of 10,000 unlabeled articles, substantial improvement
gains have been attained when the number of labeled documents is small.
As the number of labeled data increases from a few tens to a few thousands,
the classification accuracies (corresponding to semi-supervised and super-
vised training) start to converge. In [Chap 06a] a number of semi-supervised
techniques were compared using eight benchmark data sets. Some general
conclusions are: (a) One must not always expect to obtain improved perfor-
mance when using unlabeled data. (b) Moreover, the choice of the type of the
semi-supervised technique is a crucial issue. The algorithm should “match”
the nature of the data set; algorithms that implement the clustering assump-
tion (e.g.,TSVM) must be used with data exhibiting a cluster structure, and
algorithms that implement the manifold assumption (e.g., Laplacian LS) must
be used with data residing on a manifold. So,prior to using a semi-supervised
technique, one must have a good “feeling” about the data at hand. This point
was also stressed in the remarks given previously, when dealing with the
generative methods. It was stated that if the adopted model for the class condi-
tional densities is not correct,then the performance,using unlabeled data,may
degrade.

Besides the cases already mentioned before in this section, the perfor-
mance of semi-supervised techniques has also been tested in the context of
other real applications. In [Kasa 04] transductive SVMs were used to rec-
ognize promoter sequences in genes. Their results show that TSVM achieve

“12-Ch10-SA272” 18/9/2008 page 590

590 CHAPTER 10 Supervised Learning: The Epilogue

enhanced performance compared to the (inductive) SVM. The news coming
from [Krog 04], however, is not that encouraging. In the task of predict-
ing functional properties of proteins, the SVM approach resulted in much
better performance compared to TSVM. These results are in line with the
comments made before; there is no guarantee for performance improvement
when using semi-supervised techniques. Some more samples of applications
of semi-supervised learning techniques include [Wang 03] for relevance feed-
back in image retrieval, [Kock 03] for mail classification, and [Blum 98] for
Web mining.

■ As it was stated in the beginning of this section,our goal was to present to the
reader the main concepts behind semi-supervised learning and in particular
to see how techniques that have been used in this book in earlier chapters
can be extended to this case. A large number of algorithms and methods are
around,and the area is, at the time of writing, the focus of an intense research
effort by a number of serious groups worldwide. For deeper and broader
information, the interested reader may consult, [Chap 06a, Zhu 07].

■ Another type of classification framework was proposed (once more) by
Vapnik [Chap 06a, Chapter 24]. It is proposed that an additional data set
is used, which is not from the same distribution as the labeled data. In other
words, the points of this data set do not belong to either of the classes of
interest and are called the Universum. This data set is a form of data-dependent
regularization and it encodes prior knowledge related to the problem at hand.
The classifier must be trained so that the decision function to result in small
values for the points in the Universum; that is, these points are forced to lie
close to the decision surface. In [West 06] it is shown that different choices of
Universa and loss functions result in some known types of regularizers. Early
results reported in [West 06, Sinz 06] indicate that the obtained performance
depends on the quality of Universum set. The choice of an appropriate Univer-
sum is still an open issue. The results obtained in [Sinz 06] suggest that must
be carefully chosen and must contain invariant directions and to be positioned
“in between” the two classes.

10.6 PROBLEMS
10.1 Let P be the probability that event A occurs. The probability that event A

occurs k times in a sequence of N independent experiments is given by the
binomial distribution

(
N
k

)
Pk(1 " P)N"k

Show that E[k] ! NP and "2
k ! NP(1 " P).

“12-Ch10-SA272” 18/9/2008 page 591

References 591

10.2 In a two-class problem the classifier to be used is the minimum Euclidean dis-
tance one. Assume N1 samples from class !1 and N2 from class !2. Show that
the leave-one-out method estimate can be obtained from the resubstitution
method, if the distance of x from the class means di(x), i ! 1, 2,are modified
as d,

i (x) ! (Ni
Ni"1)2di(x), if x belongs to class i. Furthermore, show that in

this case the leave-one-out method always results in larger error estimates than
the resubstitution method.

10.3 Show that for the Bayesian classifier, the estimate provided by the resubstitu-
tion method is a lower bound of the true error and that computed from the
holdout method is an upper bound.

10.4 Show Eq. (10.25).

REFERENCES
[Balc 06] Balcan M. F., Blum A. “An augmented PAC model for semi-supervised learning,” in Semi-

Supervised Learning (Chapelle O., Schölkopf B., Zien A., eds.), MIT Press, 2006.

[Belk 04] Belkin V., Niyogi P., Sindhwani V. “Manifold regularization: A geometric framework for
learning from examples,” Technical Report, TR:2004-06, Department of Computer Science,
University of Chicago, 2004.

[Benn 98] Bennett K., Demiriz A. “Semi-supervised support vector machines,” in Advances in
Neural Information Processing Systems,Vol. 12, 1998.

[Beng 06] BengioY.,Delalleau O.,Le Roux N.“Label propagation and quadratic criterion,”in Semi-
Supervised Learning (Chapelle O., Schölkopf B., Zien A., eds.), MIT Press, 2006.

[Blum 98] Blum A., Mitchell T. “Combining labeled and unlabeled data with co-training,” Pro-
ceedings of the 11th Annual Conference on Computational Learning Theory, pp. 92–100,
1998.

[Brag 04] Braga-Neto U., Dougherty E. “Bolstereol error estimation,”Pattern Recognition,Vol. 37,
pp. 1267–1281, 2004.

[Cast 96] Castelli V., Cover T. “The relative value of labeled and unlabeled samples in pattern
recognition with an unknown mixing parameter,”IEEE Transactions on Information Theory,
Vol. 42, pp. 2101–2117, 1996.

[Chap 05] Chapelle O., Zien A. “Semi-supervised classification by low density separation,” Pro-
ceedings of the 10th International Workshop on Artificial Intelligence and Statistics,
pp. 57–64, 2005.

[Chap 06] Chapelle O., Chi M., Zien A. “A continuation method for semi-supervised SVMs,”
Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA.
2006.

[Chap 06a] Chapelle O., Schölkopf B., Zien A. Semi-Supervised Learning, MIT Press, 2006.

[Cavo 97] Cavouras D., et al. “Computer image analysis of ultrasound images for discriminat-
ing and grating liver parenchyma disease employing a hierarchical decision tree scheme
and the multilayer perceptron classifier,” Proceedings of Medical Informatics Europe ’97,
pp. 517–521, 1997.

“12-Ch10-SA272” 18/9/2008 page 592

592 CHAPTER 10 Supervised Learning: The Epilogue

[Cohe 04] Cohen I., Cozman F.G., Cirelo M.C., Huang T.S. “Semi-supervised learning of classifiers:
Theory, algorithms, and their application to human-computer interaction,” IEEE Transactions
on Pattern Analysis and Machine Intelligence,Vol. 26(12), pp. 1553–1567, 2004.

[Cord 02] Corduneanu A., Jaakola T. “Continuation methods for mixing heterogeneous sources,”
Proceedings of 18th Annual Conference on Uncertainty in Artificial Intelligence (Darwiche
A., Friedman N., eds.),Alberta, Canada, Morgan Kaufmann, 2002.

[Culp 07] Culp M., Michailidis G. “An iterative algorithm for extending learners to a semi-
supervised setting,” Proceedings of the Joint Statistical Meeting (JSM), Salt Lake, Utah,
2007.

[DeBi 04] DeBie T., Christianini N. “Convex methods for transduction ,” in Advances in Neural
Information Processing Systems (Thrun S., Saul L, Schölkopf B., eds.), pp. 73–80, MIT Press,
2004.

[Dela 05] Delalleau O., Bengio Y., Le Roux N. “Efficient non-parametric function induction in
semi-supervised learning,” Proceedings of the 10th International Workshop on Artificial
Intelligence and Statistics (Cowell R.G., Ghahramani Z., eds.), pp. 96–103, Barbados, 2005.

[Demi 00] Demiriz A., Bennett K.P. “Optimization approaches to semi-supervised learning,”Appli-
cations and Algorithms of Complementarity (Ferries M.C., Mangasarian O.L., Pang J.S., eds),
pp. 121–141, Kluwer, Dordrecht, the Netherlands, 2000.

[Derb 03] Derbeko P.,El-Yanif R.,Meir R.“Error bounds for transductive learning via compression
and clustering,” in Advances in Neural Information Processing Systems, pp. 1085–1092,MIT
Press, 2003.

[Efro 79] Efron B. “Bootstrap methods: Another look at the jackknife,”Annals of Statistics,Vol. 7,
pp. 1–26, 1979.

[Efro 83] Efron B.“Estimating the error rate of a prediction rule: Improvement on cross-validation,”
Journal of the American Statistical Association,Vol. 78, pp. 316–331, 1983.

[Fole 72] Foley D. “Consideration of sample and feature size,” IEEE Transactions on Information
Theory,Vol. 18(5), pp. 618–626, 1972.

[Fung 01] Fung G., Mangasarian O. “Semi-supervised support vector machines for unlabeled data
classification,”Optimization Methods and Software,Vol. 15, pp. 29–44, 2001.

[Fuku 90] Fukunaga K. Introduction to Statistical Pattern Recognition,2nd ed., Academic Press,
1990.

[Guyo 98] Guyon I., Makhoul J., Schwartz R.,Vapnik U. “What size test set gives good error rate
estimates?” IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 20(1), pp.
52–64, 1998.

[Hand 86] Hand D.J. “Recent advances in error rate estimation,” Pattern Recognition Letters,
Vol. 5, pp. 335–346, 1986.

[Hoer 70] Hoerl A.E., Kennard R. “Ridge regression: biased estimate for nonorthogonal pro-
blems,”Technometrics,Vol. 12, pp. 55–67, 1970.

[Ivan 62] Ivanov V.V. “On linear problems which are not well-posed,” Soviet Mathematical Docl.,
Vol. 3(4), pp. 981–983, 1962.

[Jain 87] Jain A.K., Dubes R.C., Chen C.C. “Bootstrap techniques for error estimation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 9(9), pp. 628–636, 1987.

[Joac 02] Joachims T. Learning to Classify Text Using Support Vector Machines, Kluwer, Dor-
drecht, the Netherlands, 2002.

“12-Ch10-SA272” 18/9/2008 page 593

References 593

[Joac 99] Joachims T. “Transductive inference for text classification using support vector
machines,” Proceedings of 16th International Conference on Machine Learning (ICML),
(Bratko I., Dzeroski S., eds), pp. 200–209, 1999.

[Kana 74] Kanal L. “Patterns in Pattern Recognition,” IEEE Transactions on Information Theory,
Vol. 20(6), pp. 697–722, 1974.

[Kasa 04] Kasabov N.,Pang S.“Transductive support vector machines and applications to bioinfor-
matics for promoter recognition,” Neural Information Processing-Letters and Reviews,Vol.
3(2), pp. 31–38, 2004.

[Kock 03] Kockelkorn M., Lüneburg A., Scheffer T. “Using transduction and multi-view learning
to answer emails,” Proceedings of the European Conference on Principles and Practice of
Knowledge Discovery in Databases, pp. 266–277, 2003.

[Krog 04] Krogel M.,SchefferT.“Multirelational learning,text mining and semi-supervised learning
for functional genomics,”Machine Learning,Vol. 57(1/2), pp. 61–81, 2004.

[Lach 68] Lachenbruch P.A., Mickey R.M. “Estimation of error rates in discriminant analysis,”
Technometrics,Vol. 10, pp. 1–11, 1968.

[Leis 98] Leisch F., Jain L.C., Hornik K. “Cross-validation with active pattern selection for neural
network classifiers,” IEEE Transactions on Neural Networks,Vol. 9(1), pp. 35–41, 1998.

[Mill 97] Miller D.J., Uyar H. “A mixture of experts classifier with learning based on both labeled
and unlabeled data,”Neural Information Processing Systems,Vol. 9, pp. 571–577, 1997.

[Mill 03] Miller D.J., Browning J. “A mixture model and EM-algorithm for class discovery, robust
classification, and outlier rejection in mixed labeled/unlabeled data sets,” IEEE Transactions
on Pattern Analysis and Machine Intelligence,Vol. 25(11), pp. 1468–1483, 2003.

[Mitc 99] Mitchell T. “The role of unlabeled data in supervised learning,” Proceedings of the 6th
International Colloquium on Cognitive Science, San Sebastian, Spain, 1999.

[Niga 00] Nigam K., McCallum A.K., Thrun S., Mitchell T. “Text classification from labeled and
unlabeled documents using EM,”Machine Learning,Vol. 39, pp. 103–134, 2000.

[Papo 02] Papoulis A., Pillai S.U. Probability, Random Variables, and Stochastic Processes, 4th
eds, McGraw-Hill, 2002.

[Phil 62] Phillips D.Z. “A technique for numerical solution of certain integral equation of the first
kind,” Journal of Association of Computer Machinery (ACM),Vol. 9, pp. 84–96.

[Proa 89] Proakis J. Digital Communications, McGraw-Hill, 1989.

[Raud 91] Raudys S.J., Jain A.K. “Small size effects in statistical pattern recognition: Recommen-
dations for practitioners,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 13(3), pp. 252–264, 1991.

[Redn 84] Redner R.A., Walker H.M. “Mixture densities, maximum likelihood and the EM
algorithm,”SIAM Review,Vol. 26(2), pp. 195–239, 1984.

[Scud 65] Scudder H.J.“Probability of error of some adaptive pattern recognition machines,”IEEE
Transactions on Information Theory,Vol. 11, pp. 363–371, 1965.

[Shas 94] Shashahani B.,Landgrebe D.“The effect of unlabeled samples in reducing the small sam-
ple size problem and mitigating the Hughes phenomenon,” IEEE Transactions on Geoscience
and Remote Sensing,Vol. 32, pp. 1087–1095, 1994.

[Sima 06] sima C, Dougherty E.R. “Optimal convex error estimators for classification,” Pattery
Recognist,Vol. 39(9), pp. 1763–1780, 2006.

“12-Ch10-SA272” 18/9/2008 page 594

594 CHAPTER 10 Supervised Learning: The Epilogue

[Sind 06a] Sindhawi V, Keerthi S., Chapelle O. “Deterministic annealing for semi-supervised
kernel machines,” Proceedings of the 23nd nternational Conference on Machine Learning,
2006.

[Sind 06] Sindhawi V., Belkin M., Niyogi P. “The geometric basis of semi-supervised learning,” in
Semi-Supervised Learning (Chapelle O., Schölkopf B., Zien A., eds.), MIT Press, 2006.

[Sinz 06] Sinz F.H., Chapelle O.,Agarwal A., Schölkopf B. “An analysis of inference with the Uni-
versum,” Proceedings of the 20th Annual Conference on Neural Information Processing
Systems (NIPS), MIT Press, Cambridge, Mass., USA, 2008.

[Szum 02] Szummer M., Jaakkola T. “Partially labeled classification with Markov random
fields,” in Advances in Neural Information Processing Systems (Dietterich T.G., Becker S.,
Ghahramani Z., eds.), MIT Press, 2002.

[Tiho 63] Tikhonov A.N. “On solving ill-posed problems and a method for regularization,”
Doklady Akademii Nauk, USSR,Vol. 153, pp. 501–504, 1963.

[Vapn 74] Vapnik V., Chervonenkis A.Y. Theory of Pattern Recognition (in Russian), Nauka,
Moskow, 1974.

[Vapn 99] Vapnik V. The Nature of Statistical Learning Theory, Springer, 1999.

[Vapn 06] Vapnik V. “Transductive inference and semi-supevised learning,” in Semi-Supervised
Learning (Chapelle O., Schölkopf B., Zien A., eds.), MIT Press, 2006.

[Wang 03] Wang L.,Chan K.L.,Zhang Z.“Bootstrapping SVM active learning by incorporating unla-
beled images for retrieval,” Proceedings of the Conference on Computer Vision and Pattern
Recognition, pp. 629–639, 2003.

[West 06] Weston J., Collobert R., Sinz F., Bottou L., Vapnik V. “Inference with the Universum,”
Proceedings of the 23nd International Conference on Machine Learning, Pittsburgh, PA,
2006.

[Wu 07] Wu M., Schölkopf B. “Transductive classification via local learning regularization,”
Proceedings 11th International conference on Artificial Intelligence and Statistics, San Juan,
Puerto Rico, 2007.

[Zhou 04] Zhou D., Bousquet O., Lal T.N., Weston J., Schölkopf “Learning with local and global
consistency,” in Advances in Neural Information Processing Systems (Thrun S., Saul L,
Schölkopf B., eds.), pp. 321–328, MIT Press, 2004.

[Zhou 07] Zhou Z.H., Xu J.M. “On the relation between multi-instance learning and semi-
supervised learning,” Proceedings of the 24th International Conference on Machine
Learning, Oregon State, 2007.

[Zhu 02] Zhu X.,Ghahramani Z.“Learning from labeled and unlabeled data with label propagation,”
Technical Report CMU-CALD-02-107, Carnegie Mellon University, Pittsburgh, PA, 2002.

[Zhu 07] Zhu X. “Semi-supervised learning literature review,” Technical Report, TR 1530, Com-
puter Science Department, University of Wisconsin-Madison, 2007.

“13-Ch11-SA272” 17/9/2008 page 595

CHAPTER

11Clustering: Basic Concepts

11.1 INTRODUCTION
All the previous chapters were concerned with supervised classification. In the
current and following chapters, we turn to the unsupervised case, where class
labeling of the training patterns is not available. Thus, our major concern now is
to “reveal” the organization of patterns into “sensible” clusters (groups), which will
allow us to discover similarities and differences among patterns and to derive useful
conclusions about them. This idea is met in many fields, such as the life sciences
(biology, zoology), medical sciences (psychiatry, pathology), social sciences (sociol-
ogy, archaeology), earth sciences (geography, geology), and engineering [Ande 73].
Clustering may be found under different names in different contexts, such as unsu-
pervised learning and learning without a teacher (in pattern recognition),numerical
taxonomy (in biology,ecology),typology (in social sciences),and partition (in graph
theory). The following example is inspired by biology and gives us a flavor of the
problem.

Consider the following animals: sheep, dog, cat (mammals), sparrow, seagull
(birds),viper,lizard (reptiles),goldfish,red mullet,blue shark (fish),and frog (amphib-
ians). In order to organize these animals into clusters,we need to define a clustering
criterion. Thus, if we employ the way these animals bear their progeny as a clus-
tering criterion, the sheep, the dog, the cat, and the blue shark will be assigned to
the same cluster, while all the rest will form a second cluster (Figure 11.1a). If the
clustering criterion is the existence of lungs, the goldfish, the red mullet, and the
blue shark are assigned to the same cluster, while all the other animals are assigned
to a second cluster (Figure 11.1b). On the other hand, if the clustering criterion is
the environment where the animals live, the sheep, the dog, the cat, the sparrow,
the seagull, the viper, and the lizard will form one cluster (animals living outside
water); the goldfish, the red mullet, and the blue shark will form a second cluster
(animals living only in water); and the frog will form a third cluster by itself, since
it may live in the water or out of it (Figure 11.1c). It is worth pointing out that
if the existence of a vertebral column is the clustering criterion, all the animals
will lie in the same cluster. Finally, we may use composite clustering criteria as 595

“13-Ch11-SA272” 17/9/2008 page 596

596 CHAPTER 11 Clustering: Basic Concepts

sheep

sheep

lizard
sparrow

seagullviper
goldfish

goldfish
sheep

sparrow
dog

seagull
cat

lizard frog

viper

viper seagull

sparrow
lizard

red mullet
sharkfrog

frog

(a) (b)

(c) (d)

goldfish
red-mullet

blue shark

sparrow
sheep

dog cat

shark

goldfish

red-mullet
frog lizard

seagull
viper

red mullet

dog

dog

cat

cat

shark

FIGURE 11.1
Resulting clusters if the clustering criterion is (a) the way the animals bear their progeny,
(b) the existence of lungs, (c) the environment where the animals live, and (d) the way these
animals bear their progeny and the existence of lungs.

well. For example, if the clustering criterion is the way these animals bear their
progeny and the existence of lungs, we end up with four clusters as shown in
Figure 11.1d.

This example shows that the process of assigning objects to clusters may lead to
very different results, depending on the specific criterion used for clustering.

Clustering is one of the most primitive mental activities of humans, used to
handle the huge amount of information they receive every day. Processing every
piece of information as a single entity would be impossible. Thus, humans tend to
categorize entities (i.e., objects, persons, events) into clusters. Each cluster is then
characterized by the common attributes of the entities it contains. For example,
most humans“possess”a cluster“dog.” If someone sees a dog sleeping on the grass,
he or she will identify it as an entity of the cluster “dog.” Thus, the individual will
infer that this entity barks even though he or she has never heard this specific entity
bark before.

As was the case with supervised learning, we will assume that all patterns are
represented in terms of features, which form l-dimensional feature vectors.

The basic steps that an expert must follow in order to develop a clustering task
are the following:

■ Feature selection. Features must be properly selected so as to encode as
much information as possible concerning the task of interest. Once more,
parsimony and, thus, minimum information redundancy among the features

“13-Ch11-SA272” 17/9/2008 page 597

11.1 Introduction 597

is a major goal. As in supervised classification, preprocessing of features may
be necessary prior to their utilization in subsequent stages. The techniques
discussed there are applicable here, too.

■ Proximity measure. This measure quantifies how“similar”or“dissimilar”two
feature vectors are. It is natural to ensure that all selected features contribute
equally to the computation of the proximity measure and there are no features
that dominate others. This must be taken care of during preprocessing.

■ Clustering criterion. This criterion depends on the interpretation the expert
gives to the term sensible, based on the type of clusters that are expected to
underlie the data set. For example, a compact cluster of feature vectors in
the l-dimensional space, may be sensible according to one criterion, whereas
an elongated cluster may be sensible according to another. The clustering
criterion may be expressed via a cost function or some other types of rules.

■ Clustering algorithms. Having adopted a proximity measure and a clustering
criterion, this step refers to the choice of a specific algorithmic scheme that
unravels the clustering structure of the data set.

■ Validation of the results. Once the results of the clustering algorithm have
been obtained, we have to verify their correctness. This is usually carried out
using appropriate tests.

■ Interpretation of the results. In many cases,the expert in the application field
must integrate the results of clustering with other experimental evidence and
analysis in order to draw the right conclusions.

In a number of cases, a step known as clustering tendency should be involved.
This includes various tests that indicate whether or not the available data possess
a clustering structure. For example, the data set may be of a completely random
nature, thus trying to unravel clusters would be meaningless.

As one may have already suspected,different choices of features,proximity mea-
sures, clustering criteria, and clustering algorithms may lead to totally different
clustering results. Subjectivity is a reality we have to live with from now on.
To demonstrate this, let us consider the following example. Consider Figure 11.2.
How many “sensible” ways of clustering can we obtain for these points? The most
“logical” answer seems to be two. The first clustering contains four clusters (sur-
rounded by solid circles). The second clustering contains two clusters (surrounded
by dashed lines). Which clustering is “correct”? It seems that there is no defi-
nite answer. Both clusterings are valid. The best thing to do is give the results to an
expert and let the expert decide about the most sensible one. Thus,the final answer
to these questions will be influenced by the expert’s knowledge.

The rest of the chapter presents some basic concepts and definitions related to
clustering, and it discusses proximity measures that are commonly encountered in
various applications.

“13-Ch11-SA272” 17/9/2008 page 598

598 CHAPTER 11 Clustering: Basic Concepts

FIGURE 11.2
A coarse clustering of the data results in two clusters, whereas a finer one results in four clusters.

11.1.1 Applications of Cluster Analysis
Clustering is a major tool used in a number of applications. To enrich the list of
examples already presented in the introductory chapter of the book,we summarize
here four basic directions in which clustering is of use [Ball 71, Ever 01]:

■ Data reduction. In several cases, the amount of the available data,N , is often
very large and as a consequence, its processing becomes very demanding.
Cluster analysis can be used in order to group the data into a number of
“sensible” clusters, m (!!N), and to process each cluster as a single entity.
For example, in data transmission, a representative for each cluster is defined.
Then, instead of transmitting the data samples, we transmit a code number
corresponding to the representative of the cluster in which each specific
sample lies. Thus, data compression is achieved.

■ Hypothesis generation. In this case we apply cluster analysis to a data set
in order to infer some hypotheses concerning the nature of the data. Thus,
clustering is used here as a vehicle to suggest hypotheses. These hypotheses
must then be verified using other data sets.

■ Hypothesis testing. In this context,cluster analysis is used for the verification
of the validity of a specific hypothesis. Consider, for example, the following
hypothesis: “Big companies invest abroad.” One way to verify whether this
is true is to apply cluster analysis to a large and representative set of com-
panies. Suppose that each company is represented by its size, its activities
abroad, and its ability to complete successfully projects on applied research.
If, after applying cluster analysis, a cluster is formed that corresponds to com-
panies that are large and have investments abroad (regardless of their ability
to complete successfully projects on applied research), then the hypothesis is
supported by the cluster analysis.

“13-Ch11-SA272” 17/9/2008 page 599

11.1 Introduction 599

■ Prediction based on groups. In this case, we apply cluster analysis to the
available data set, and the resulting clusters are characterized based on the
characteristics of the patterns by which they are formed. In the sequel, if we
are given an unknown pattern, we can determine the cluster to which it is
more likely to belong, and we characterize it based on the characterization of
the respective cluster. Suppose, for example, that cluster analysis is applied
to a data set concerning patients infected by the same disease. This results in
a number of clusters of patients, according to their reaction to specific drugs.
Then for a new patient,we identify the most appropriate cluster for the patient
and, based on it, we decide on his or her medication (e.g., see [Payk 72]).

11.1.2 Types of Features
A feature may take values from a continuous range (subset of R) or from a finite
discrete set. If the finite discrete set has only two elements,then the feature is called
binary or dichotomous.

A different categorization of the features is based on the relative significance of
the values they take [Jain 88, Spat 80]. We have four categories of features: nominal,
ordinal, interval-scaled, and ratio-scaled.

The first category, nominal, includes features whose possible values code states.
Consider for example a feature that corresponds to the sex of an individual. Its
possible values may be 1 for a male and 0 for a female. Clearly,any quantitative com-
parison between these values is meaningless. The next category, ordinal, includes
features whose values can be meaningfully ordered. Consider, for example, a fea-
ture that characterizes the performance of a student in the pattern recognition
course. Suppose that its possible values are 4, 3, 2, 1 and that these correspond to
the ratings “excellent,”“very good,”“good,”“not good.” Obviously, these values are
arranged in a meaningful order. However, the difference between two successive
values is of no meaningful quantitative importance.

If, for a specific feature, the difference between two values is meaningful while
their ratio is meaningless, then it is an interval-scaled feature. A typical example
is the measure of temperature in degrees Celsius. If the temperatures in London
and Paris are 5 and 10 degrees Celsius, respectively, then it is meaningful to say that
the temperature in Paris is 5 degrees higher than that in London. However, it is
meaningless to say that Paris is twice as hot as London.

Finally, if the ratio between two values of a specific feature is meaningful, then
this is a ratio-scaled feature, the fourth category. An example of such a feature is
weight, since it is meaningful to say that a person who weighs 100 kg is twice as fat
as a person whose weight is 50 kg.

By ordering the types of features as nominal, ordinal, interval-scaled, and ratio
scaled, one can easily notice that each type of feature possesses all the properties
of the types that are before it. For example, an interval-scaled feature has all the
properties of the ordinal and nominal types. This information will be of use in
Section 11.2.2.

“13-Ch11-SA272” 17/9/2008 page 600

600 CHAPTER 11 Clustering: Basic Concepts

Example 11.1
Suppose that we want to group companies according to their prospects of progress. To this
end, we may take into account whether a company is private or public, whether or not the
company has activities abroad, its annual budgets for the last, say, three years, its investments,
and its rates of change of the budgets and investments. Therefore, each company is repre-
sented by a 10"1 vector. The first component of the vector corresponds to a nominal feature,
which codes the state “public” or “private.” The second component indicates whether or not
there are activities abroad. Its possible values are 0, 1, and 2 (discrete range of values), which
correspond to “no investments,” “poor investments,” and “large investments.” Clearly, this
component corresponds to an ordinal feature. All the remaining features are ratio-scaled.

11.1.3 Definitions of Clustering
The definition of clustering leads directly to the definition of a single“cluster.” Many
definitions have been proposed over the years (e.g., [John 67, Wall 68, Ever 01]).
However, most of these definitions are based on loosely defined terms, such as
similar, and alike, etc., or they are oriented to a specific kind of cluster. As pointed
out in [Ever 01], most of these definitions are of vague and of circular nature. This
fact reveals the difficulty of having a universally acceptable definition for the term
cluster.

In [Ever 01], the vectors are viewed as points in the l-dimensional space,and the
clusters are described as “continuous regions of this space containing a relatively
high density of points, separated from other high density regions by regions of
relatively low density of points.” Clusters described in this way are sometimes
referred to as natural clusters. This definition is closer to our visual perception of
clusters in the two- and three-dimensional spaces.

Let us now try to give some definitions for “clustering,” which, although they
may not be universal, give us an idea of what clustering is. Let X be our data set,
that is,

X # {x1, x2, . . . , xN }. (11.1)

We define as an m-clustering of X , ℜ, the partition of X into m sets (clusters),
C1, . . . , Cm, so that the following three conditions are met:

■ Ci ̸# ∅, i # 1, . . . , m

■ ∪m
i#1Ci # X

■ Ci ∩ Cj # ∅, i ̸# j, i, j # 1, . . . , m

In addition, the vectors contained in a cluster Ci are “more similar” to each
other and “less similar” to the feature vectors of the other clusters. Quantifying
the terms similar and dissimilar depends very much on the types of clusters

“13-Ch11-SA272” 17/9/2008 page 601

11.1 Introduction 601

involved. For example,other measures (measuring similarity) are required for com-
pact clusters (e.g., Figure 11.3a), others for elongated clusters (e.g., Figure 11.3b),
and different ones for shell-shaped clusters (e.g., Figure 11.3c).

Note that, under the preceding definitions of clustering, each vector belongs to
a single cluster. For reasons that will become clear later on, this type of clustering
is sometimes called hard or crisp. An alternative definition is in terms of the fuzzy
sets, introduced by Zadeh [Zade 65]. A fuzzy clustering of X into m clusters is
characterized by m functions uj where

uj : X → [0, 1], j # 1, . . . , m (11.2)

and
m∑

j#1

uj(xi) # 1, i # 1, 2, . . . , N , 0 !
N∑

i#1

uj(xi) ! N , j # 1, 2, . . . , m (11.3)

These are called membership functions. The value of a fuzzy membership function
is a mathematical characterization of a set, that is, a cluster in our case, which may
not be precisely defined. That is, each vector x belongs to more than one cluster
simultaneously“up to some degree,”which is quantified by the corresponding value
of uj in the interval [0,1]. Values close to unity show a high “grade of membership”
in the corresponding cluster and values close to zero, a low grade of membership.
The values of these membership functions are indicative of the structure of the data
set, in the sense that if a membership function has close to unity values for two
vectors of X , that is, xk, xn, they are considered similar to each other [Wind 82].

The right condition in (11.3) guarantees that there are not trivial cases where
clusters exist that do not share any vectors. This is analogous to the condition
Ci ̸# ∅ of the aforementioned definition.

The definition of clustering into m distinct sets Ci , given before, can be recov-
ered as a special case of the fuzzy clustering if we define the fuzzy membership
functions uj to take values in {0, 1}, that is, to be either 1 or 0. In this sense, each
data vector belongs exclusively to one cluster and the membership functions are
now called characteristic functions ([Klir 95]).

(a) (b) (c)

FIGURE 11.3
(a) Compact clusters. (b) Elongated clusters. (c) Spherical and ellipsoidal clusters.

“13-Ch11-SA272” 17/9/2008 page 602

602 CHAPTER 11 Clustering: Basic Concepts

11.2 PROXIMITY MEASURES
11.2.1 Definitions
We begin with definitions concerning measures between vectors,and we will extend
them later on to include measures between subsets of the data set X .

A dissimilarity measure (DM) d on X is a function.

d : X " X → R

where R is the set of real numbers, such that

∃d0 ∈ R : $% ! d0 & d(x, y) ! '%, (x, y ∈ X (11.4)

d(x, x) # d0, (x ∈ X (11.5)

and

d(x, y) # d(y, x), (x, y ∈ X (11.6)

If in addition

d(x, y) # d0 if and only if x # y (11.7)

and

d(x, z) & d(x, y) ' d(y, z), (x, y, z∈X (11.8)

d is called a metric DM. Inequality (11.8) is also known as the triangular inequal-
ity. Finally, equivalence (11.7) indicates that the minimum possible dissimilarity
level value d0 between any two vectors in X is achieved when they are identical.
Sometimes we will refer to the dissimilarity level as distance,where the term is not
used in its strict mathematical sense.

A similarity measure (SM) s on X is defined as

s : X " X → R

such that

∃s0 ∈ R : $% ! s(x, y) & s0 ! '%, (x, y ∈ X (11.9)

s(x, x) # s0, (x ∈ X (11.10)

and

s(x, y) # s(y, x), (x,y ∈ X (11.11)

If in addition

s(x, y) # s0 if and only if x # y (11.12)

and

s(x, y)s(y, z) & [s(x, y) ' s(y, z)]s(x, z), (x, y, z ∈ X (11.13)

s is called a metric SM.

“13-Ch11-SA272” 17/9/2008 page 603

11.2 Proximity Measures 603

Example 11.2
Let us consider the well-known Euclidean distance, d2

d2(x, y) #

√√√√
l∑

i#1

(xi $ yi)2

where x, y ∈ X and xi , yi are the ith coordinates of x and y, respectively. This is a dissimilarity
measure on X , with d0 # 0; that is, the minimum possible distance between two vectors of
X is 0. Moreover, the distance of a vector from itself is equal to 0. Also, it is easy to observe
that d(x, y) # d(y, x).

The preceding arguments show that the Euclidean distance is a dissimilarity measure. In
addition, the Euclidean distance between two vectors takes its minimum value d0 # 0, when
the vectors coincide. Finally, it is not difficult to show that the triangular inequality holds for
the Euclidean distance (see Problem 11.2). Therefore, the Euclidean distance is a metric
dissimilarity measure.

For other measures, the values d0 (s0) may be positive or negative.

Not all clustering algorithms,however,are based on proximity measures between
vectors. For example, in the hierarchical clustering algorithms1 one has to compute
distances between pairs of sets of vectors of X . In the sequel, we extend the
preceding definitions in order to measure“proximity”between subsets of X . Let U
be a set containing subsets of X . That is,Di ⊂ X , i # 1, . . . , k, and U # {D1, . . . , Dk}.
A proximity measure ℘ on U is a function

℘ : U " U → R

Equations (11.4)–(11.8) for dissimilarity measures and Eqs. (11.9)–(11.13) for sim-
ilarity measures can now be repeated with Di , Dj in the place of x and y and U in
the place of X .

Usually,the proximity measures between two sets Di and Dj are defined in terms
of proximity measures between elements of Di and Dj .

Example 11.3
Let X # {x1, x2, x3, x4, x5, x6} and U # {{x1, x2}, {x1, x4}, {x3, x4, x5}, {x1, x2, x3,
x4, x5}}. Let us define the following dissimilarity function:

dss
min(Di , Dj) # min

x∈Di , y∈Dj
d2(x, y)

where d2 is the Euclidean distance between two vectors and Di , Dj ∈ U .
The minimum possible value of dss

min is dss
min,0 # 0. Also, dss

min(Di , Di) # 0, since the
Euclidean distance between a vector in Di and itself is 0. In addition, it is easy to see that the

1 These algorithms are treated in detail in Chapter 13.

“13-Ch11-SA272” 17/9/2008 page 604

604 CHAPTER 11 Clustering: Basic Concepts

commutative property holds. Thus, this dissimilarity function is a measure. It is not difficult
to see that dss

min is not a metric. Indeed, Eq. (11.7) for subsets of X does not hold in general,
since the two sets Di and Dj may have an element in common. Consider, for example the two
sets {x1, x2} and {x1, x4} of U . Although they are different, their distance dss

min is 0, since
they both contain x1.

Intuitively speaking, the preceding definitions show that the DMs are“opposite”
to SMs. For example, it is easy to show that if d is a (metric) DM, with d(x, y)) 0,
(x, y ∈ X , then s # a/d with a) 0 is a (metric) SM (see Problem 11.1). Also,
dmax $ d is a (metric) SM, where dmax denotes the maximum value of d among
all pairs of elements of X . It is also easy to show that if d is a (metric) DM on a
finite set X , such that d(x, y)) 0, (x, y ∈ X , then so are $ ln(dmax ' k $ d) and
kd/(1 ' d), where k is an arbitrary positive constant. On the other hand, if s is a
(metric) SM with s0 # 1 $!, where ! is a small positive constant, then 1/(1 $ s) is
also a (metric) SM. Similar comments are valid for the similarity and dissimilarity
measures between sets Di , Dj ∈ U .

In the sequel, we will review the most commonly used proximity measures
between two points. For each measure of similarity we give a corresponding mea-
sure of dissimilarity. We will denote by bmin and bmax the corresponding minimum
and maximum values that they take for a finite data set X .

11.2.2 Proximity Measures between Two Points
Real-Valued Vectors
A. Dissimilarity Measures
The most common DMs between real-valued vectors used in practice are:

■ The weighted lp metric DMs, that is,

dp(x, y) #

(
l∑

i#1

wi|xi $ yi|p
)1/p

(11.14)

where xi , yi are the ith coordinates of x and y, i # 1, . . . , l, and wi ≥ 0 is
the ith weight coefficient. They are used mainly on real-valued vectors. If
wi # 1, i # 1, . . . , l, we obtain the unweighted lp metric DMs. A well-known
representative of the latter category of measures is the Euclidean distance,
which was introduced in Example 11.2 and is obtained by setting p # 2.

The weighted l2 metric DM can be further generalized as follows:

d(x, y) #
√

(x $ y)T B(x $ y) (11.15)

where B is a symmetric, positive definite matrix (Appendix B).
This includes the Mahalanobis distance as a special case, and it is also

a metric DM.

“13-Ch11-SA272” 17/9/2008 page 605

11.2 Proximity Measures 605

Special lp metric DMs that are also encountered in practice are the
(weighted) l1 or Manhattan norm,

d1(x, y) #
l∑

i#1

wi|xi $ yi | (11.16)

and the (weighted) l% norm,

d%(x, y) # max
1&i&l

wi|xi $ yi | (11.17)

The l1 and l% norms may be viewed as overestimation and underestimation
of the l2 norm,respectively. Indeed,it can be shown that d%(x, y)&d2(x, y)&
d1(x, y) (see Problem 11.6). When l # 1 all lp norms coincide.

Based on these DMs,we can define corresponding SMs as sp(x, y) # bmax$
dp(x, y).

■ Some additional DMs are the following [Spat 80]:

dG(x, y) # $log10

⎛

⎝1 $
1
l

l∑

j#1

|xj $ yj |
bj $ aj

⎞

⎠ (11.18)

where bj and aj are the maximum and the minimum values among the jth fea-
tures of the N vectors of X , respectively. It can easily be shown that dG(x, y)
is a metric DM. Notice that the value of dG(x, y) depends not only on x and
y but also on the whole of X . Thus, if dG(x, y) is the distance between two
vectors x and y that belong to a set X and d*

G(x, y) is the distance between
the same two vectors when they belong to a different set X *, then, in general,
dG(x, y) ̸# d*

G(x, y). Another DM is [Spat 80]

dQ(x, y) #

√√√√1
l

l∑

j#1

(xj $ yj

xj ' yj

)2
(11.19)

Example 11.4
Consider the three-dimensional vectors x # [0, 1, 2]T , y # [4, 3, 2]T . Then, assuming
that all wi ’s are equal to 1, d1(x, y) # 6, d2(x, y) # 2

√
5, and d%(x, y) # 4. Notice that

d%(x, y) ! d2(x, y) ! d1(x, y).
Assume now that these vectors belong to a data set X that contains N vectors with max-

imum values per feature 10, 12, 13 and minimum values per feature 0, 0.5, 1, respectively.
Then dG(x, y) # 0.0922. If, on the other hand, x and y belong to an X * with the maxi-
mum (minimum) values per feature being 20, 22, 23 ($10, $9.5, $9), respectively, then
dG(x, y) # 0.0295.

Finally, dQ(x, y) # 0.6455.

“13-Ch11-SA272” 17/9/2008 page 606

606 CHAPTER 11 Clustering: Basic Concepts

B. Similarity Measures
The most common similarity measures for real-valued vectors used in practice
are:

■ The inner product. It is defined as sinner(x, y) # xT y #
∑l

i#1 xiyi. In most
cases, the inner product is used when the vectors x and y are normalized,
so that they have the same length a. In these cases, the upper and the
lower bounds of sinner are 'a2 and $a2,respectively,and sinner(x, y) depends
exclusively on the angle between x and y.

A corresponding dissimilarity measure for the inner product is
dinner(x, y) # bmax $ sinner(x, y).

Closely related to the inner product is the cosine similarity measure,
which is defined as

scosine(x, y) #
xT y

∥x∥∥y∥ (11.20)

where ∥x∥ #
√∑l

i#1 x2
i and ∥y∥ #

√∑l
i#1 y2

i are the lengths of the vectors
x and y, respectively. This measure is invariant to rotations but not to linear
transformations.

■ Pearson’s correlation coefficient.This measure can be expressed as

rPearson(x, y) #
xd

T yd

∥xd∥∥yd∥ (11.21)

where xd # [x1 $ x̄, . . . , xl $ x̄]T and yd # [y1 $ ȳ, . . . , yl $ ȳ]T , with
xi, yi being the ith coordinates of x and y, respectively, and x̄ # 1

l

∑l
i#1 xi,

ȳ # 1
l

∑l
i#1 yi. Usually, xd and yd are called difference vectors. Clearly,

rPearson(x, y) takes values between $1 and '1. The difference from sinner is
that sPearson does not depend directly on x and y but on their corresponding
difference vectors. A related dissimilarity measure can be defined as

D(x, y) #
1 $ rPearson(x, y)

2
(11.22)

This takes values in the range [0, 1]. This measure has been used in the analysis
of gene-expression data ([Eise 98]).

■ Another commonly used SM is the Tanimoto measure, which is also known
as Tanimoto distance [Tani 58]. It may be used for real- as well as for
discrete-valued vectors. It is defined as

sT (x, y) #
xT y

∥x∥2 ' ∥y∥2 $ xT y
(11.23)

By adding and subtracting the term xT y in the denominator of (11.23) and
after some algebraic manipulations, we obtain

sT (x, y) #
1

1 '
(x$y)T (x$y)

xT y

“13-Ch11-SA272” 17/9/2008 page 607

11.2 Proximity Measures 607

(a) (b)

FIGURE 11.4
(a) The l # 2 dimensional grid for k # 4. (b) The H2 hypercube (square).

That is,the Tanimoto measure between x and y is inversely proportional to the
squared Euclidean distance between x and y divided by their inner product.
Intuitively speaking, since the inner product may be considered as a measure
of the correlation between x and y, sT (x, y) is inversely proportional to the
squared Euclidean distance between x and y, divided by their correlation.

In the case in which the vectors of X have been normalized to the same
length a, the last equation leads to

sT (x, y) #
1

$1 ' 2 a2

xT y

In this case, sT is inversely proportional to a2/xT y. Thus, the more correlated
x and y are, the larger the value of sT .

■ Finally, another similarity measure that has been proved useful in certain
applications [Fu 93] is the following:

sc(x, y) # 1 $
d2(x, y)

∥x∥ ' ∥y∥ (11.24)

sc(x, y) takes its maximum value (1) when x # y and its minimum (0) when
x # $y.

Discrete-Valued Vectors
We will now consider vectors x whose coordinates belong to the finite set
F # {0, 1, . . . , k $ 1}, where k is a positive integer. It is clear that there are exactly
kl vectors x ∈ Fl . One can imagine these vectors as vertices in an l-dimensional
grid as depicted in Figure 11.4. When k # 2, the grid collapses to the Hl (unit)
hypercube.

“13-Ch11-SA272” 17/9/2008 page 608

608 CHAPTER 11 Clustering: Basic Concepts

Consider x, y ∈ Fl and let

A(x, y) # [aij] i, j # 0, 1, . . . , k $ 1 (11.25)

be a k " k matrix, where the element aij is the number of places where the first
vector has the i symbol and the corresponding element of the second vector has the
j symbol, i, j ∈ F . This matrix is also known as a contingency table. For example, if
l # 6, k # 3 and x # [0, 1, 2, 1, 2, 1]T , y # [1, 0, 2, 1, 0, 1]T , then matrix A(x, y) is
equal to

A(x, y) #

⎡

⎢⎣
0 1 0
1 2 0
1 0 1

⎤

⎥⎦

It is easy to verify that

k$1∑

i#0

k$1∑

j#0

aij # l

Most of the proximity measures between two discrete-valued vectors may be
expressed as combinations of elements of matrix A(x, y).

A. Dissimilarity Measures
■ The Hamming distance (e.g., [Lipp 87, Gers 92]). It is defined as the number

of places where two vectors differ. Using the matrix A, we can define the
Hamming distance dH (x, y) as

dH (x, y) #
k$1∑

i#0

k$1∑

j#0,j ̸#i

aij (11.26)

that is, the summation of all the off-diagonal elements of A,which indicate the
positions where x and y differ.

In the special case in which k # 2, the vectors x ∈ Fl are binary valued
and the Hamming distance becomes

dH (x, y) #
l∑

i#1

(xi ' yi $ 2xiyi) #
l∑

i#1

(xi $ yi)2 (11.27)

In the case where x ∈ Fl
1, where F1 # {$1, 1}, x is called bipolar vector and

the Hamming distance is given as

dH (x, y) # 0.5

(

l $
l∑

i#1

xiyi

)

(11.28)

Obviously, a corresponding similarity measure of dH is sH (x, y) # bmax $
dH (x, y).

“13-Ch11-SA272” 17/9/2008 page 609

11.2 Proximity Measures 609

■ The l1 distance. It is defined as in the case of the continuous-valued vectors,
that is,

d1(x, y) #
l∑

i#1

|xi $ yi | (11.29)

The l1 distance and the Hamming distance coincide when binary-valued
vectors are considered.

B. Similarity Measures
A widely used similarity measure for discrete-valued vectors is the Tanimoto mea-
sure. It is inspired by the comparison of sets. If X and Y are two sets and nX , nY ,
nX∩Y are the cardinalities (number of elements) of X , Y , and X ∩ Y , respectively,
the Tanimoto measure between two sets X and Y is defined as

nX∩Y

nX ' nY $ nX∩Y
#

nX∩Y

nX∪Y

In other words, the Tanimoto measure between two sets is the ratio of the number
of elements they have in common to the number of all different elements.

We turn now to the Tanimoto measure between two discrete-valued vectors x
and y. The measure takes into account all pairs of corresponding coordinates of x
and y, except those whose corresponding coordinates (xi , yi) are both 0. This is
justified if we have ordinal features and interpret the value of the ith coordinate of,
say, y as the degree to which the vector y possesses the ith feature. According to
this interpretation, the pairs (xi, yi) # (0, 0) are less important than the others. We
now define nx #

∑k$1
i#1

∑k$1
j#0 aij and ny #

∑k$1
i#0

∑k$1
j#1 aij ,where aij are elements

of the A(x, y) matrix (see Figure 11.5). In words, nx (ny) denotes the number of
the nonzero coordinates of x (y). Then, the Tanimoto measure is defined as

sT (x, y) #

∑k$1
i#1 aii

nx ' ny $
∑k$1

i#1
∑k$1

j#1 aij
(11.30)

(0, 0)

(1, 0)

(2, 0)

(0, 1)

(1, 1)

(2, 1)

(0, 2)

(1, 2)

(2, 2)

FIGURE 11.5
The elements of a contingency table taken into account for the computation of the Tanimoto
measure.

“13-Ch11-SA272” 17/9/2008 page 610

610 CHAPTER 11 Clustering: Basic Concepts

In the special case k # 2, this equation results in [Tani 58, Spat 80]

sT (x, y) #
a11

a11 ' a01 ' a10
(11.31)

Other similarity functions between x, y ∈ Fl can be defined using elements of
A(x, y). Some of them consider only the number of places where the two vec-
tors agree and the corresponding value is not 0, whereas others consider all the
places where the two vectors agree. Similarity functions that belong to the first
category are

∑k$1
i#1 aii

l
and

∑k$1
i#1 aii

l $ a00
(11.32)

A representative of the second category is
∑k$1

i#0 aii

l
(11.33)

When dealing with binary-valued vectors (i.e., k # 2), probabilistic similarity
measures have also been proposed [Good 66, Li 85, Broc 81]. For two binary-
valued vectors x and y, a measure of this kind, s, is based on the number of
positions where x and y agree. The value of s(x, y) is then compared with the
distances of pairs of randomly chosen vectors, in order to conclude whether x and
y are “close” to each other. This task is carried out using statistical tests (see also
Chapter 16).

Dynamic Similarity Measures
The proximity measures discussed so far apply to vectors with the same dimension,l.
However, in certain applications, such as the comparison of two strings st1 and st2
stemming from two different texts, this is not the case. For example, one of the
two strings may be shifted with respect to the other. In these cases the preceding
proximity measures fail. In such cases,dynamic similarity measures,such as the Edit
distance, discussed in Chapter 8, can be used.

Mixed Valued Vectors
An interesting case,which often arises in practice,is when the features of the feature
vectors are not all real or all discrete valued. In terms of Example 11.1, the third
to the tenth features are real valued, and the second feature is discrete valued. A
naive way to attack this problem is to adopt proximity measures (PMs) suitable for
real-valued vectors. The reason is that discrete-valued vectors can be accurately
compared in terms of PMs for real-valued vectors, whereas the opposite does not
lead, in general, to reasonable results. A good PM candidate for such cases is the l1
distance.

“13-Ch11-SA272” 17/9/2008 page 611

11.2 Proximity Measures 611

Example 11.5
Consider the vectors x # [4, 1, 0.8]T and y # [1, 0, 0.4]T . Their (unweighted) l1 and l2
distances are

d1(x, y) # |4 $ 1| ' |1 $ 0| ' |0.8 $ 0.4| # 3 ' 1 ' 0.4 # 4.4

and

d2(x, y) #
√

|4 $ 1|2 ' |1 $ 0|2 ' |0.8 $ 0.4|2 #
√

9 ' 1 ' 0.16 # 3.187

respectively. Notice that in the second case, the difference between the first coordinates of x
and y specifies almost exclusively the difference between the two vectors. This is not the case
with l1 distance (see also related comments in Chapter 5, Section 5.2).

Another method that may be employed is to convert the real-valued features to
discrete-valued ones,that is,to discretize the real-valued data. To this end,if a feature
xi takes values in the interval [a, b], we may divide this interval into k subintervals.
If the value of xi lies in the rth subinterval, the value r $ 1 will be assigned to it.
This strategy leads to discrete-valued vectors,and as a consequence,we may use any
of the measures discussed in the previous section.

In [Ande 73] the types nominal, ordinal, and interval-scaled types of features
are considered and methods for converting features from one type to another are
discussed. These are based on the fact (see Section 11.1.2) that as we move from
nominal to interval scaled, we have to impose information on the specific feature,
and when we move along the opposite direction, we have to give up information.

A similarity function that deals with mixed valued vectors, without making any
conversions to the type of features, is proposed in [Gowe 71]. Let us consider two l-
dimensional mixed valued vectors xi and xj . Then, the similarity function between
xi and xj is defined as

s(xi , xj) #

∑l
q#1 sq(xi , xj)
∑l

q#1 wq
(11.34)

where sq(xi, xj) is the similarity between the qth coordinates of xi and xj and wq
is a weight factor corresponding to the qth coordinate. Specifically, if at least one
of the qth coordinates of xi and xj is undefined, then wq # 0. Also, if the qth
coordinate is a binary variable and it is 0 for both vectors, then wq #0. In all other
cases,wq is set equal to 1. Finally,if all wq’s are equal to 0 then s(xi , xj) is undefined.
If the qth coordinates of the two vectors are binary then

sq(xi , xj) #

{
1, if xiq # xjq # 1

0, otherwise
(11.35)

If the qth coordinates of the two vectors correspond to nominal or ordinal variables,
then sq(xi, xj) # 1 if xiq and xjq have the same values. Otherwise, sq(xi , xj) # 0.

“13-Ch11-SA272” 17/9/2008 page 612

612 CHAPTER 11 Clustering: Basic Concepts

Finally, if the qth coordinates correspond to interval or ratio scaled variables,
then

sq(xi , xj) # 1 $
|xiq $ xjq|

rq
(11.36)

where rq is the length of the interval where the values of the qth coordinates lie.
One can easily observe that for the case of intervals or ratio-scaled variables,when xik
and xjk coincide, sq(xi , xj) takes its maximum value, which equals 1. On the other
hand, if the absolute difference between xiq and xjq equals rq, then sq(xi , xj) # 0.
For any other value of |xiq $ xjq|, sq(xi , xj) lies between 0 and 1.

Example 11.6
Let us consider the following four 5-dimensional feature vectors, each representing a specific
company. More specifically, the first three coordinates (features) correspond to their annual
budget for the last three years (in millions of dollars), the fourth indicates whether or not there
is any activity abroad, and the fifth coordinate corresponds to the number of employees of
each company. The last feature is ordinal scaled and takes the values 0 (small number of
employees), 1 (medium number of employees), and 2 (large number of employees). The four
vectors are

Company 1st bud. 2nd bud. 3rd bud. Act. abr. Empl.

1 (x1) 1.2 1.5 1.9 0 1

2 (x2) 0.3 0.4 0.6 0 0

3 (x3) 10 13 15 1 2

4 (x4) 6 6 7 1 1

(11.37)

For the first three coordinates, which are ratio scaled, we have r1 # 9.7, r2 # 12.6, and
r3 # 14.4. Let us first compute the similarity between the first two vectors. It is

s1(x1, x2) # 1 $ |1.2 $ 0.3|/9.7 # 0.9072

s2(x1, x2) # 1 $ |1.5 $ 0.4|/12.6 # 0.9127

s3(x1, x2) # 1 $ |1.9 $ 0.6|/14.4 # 0.9097

s4(x1, x2) # 0

and

s5(x1, x2) # 0

Also, w4 # 0, while all the other weight factors are equal to 1. Using Eq. (11.34), we finally
obtain s(x1, x2) # 0.6824.

Working in the same way, we find that s(x1, x3) # 0.0541, s(x1, x4) # 0.5588,
s(x2, x3)#0, s(x2, x4) # 0.3047, s(x3, x4) # 0.4953.

“13-Ch11-SA272” 17/9/2008 page 613

11.2 Proximity Measures 613

Fuzzy Measures
In this section, we consider real-valued vectors x, y whose components xi and yi
belong to the interval [0, 1], i # 1, . . . , l. In contrast to what we have said so far, the
values of xi are not the outcome of a measuring device. The closer the xi to 1
(0), the more likely x possesses (does not possess) the ith feature (characteristic).2

As xi approaches 1/2, we become less certain about the possession or not of the
ith feature from x. When xi # 1/2 we have absolutely no clue whether or not x
possesses the ith feature. It is easy to observe that this situation is a generalization
of binary logic, where xi can take only the value 0 or 1 (x possesses a feature or
not). In binary logic,there is a certainty about the occurrence of a fact (for example,
it will rain or it will not rain). The idea of fuzzy logic is that nothing is happening or
not happening with absolute certainty. This is reflected in the values that xi takes.
The binary logic can be viewed as a special case of fuzzy logic where xi takes only
the value 0 or 1.

Next, we will define the similarity between two real-valued variables in [0, 1].
We will approach it as a generalization of the equivalence between two binary
variables. The equivalence of two binary variables a and b is given by the following
relation:

(a ≡ b) # ((NOT a) AND (NOT b)) OR (a AND b) (11.38)

Indeed, if a # b # 0 (1), the first (second) argument of the OR operator is 1. On
the other hand if a # 0 (1) and b # 1 (0), then none of the arguments of the OR
operator becomes 1.

An interesting observation is that the AND (OR) operator between two binary
variables may be seen as the min (max) operator on them. Also, the NOT operation
of a binary variable a may be written as 1$a. In the fuzzy logic context and based on
this observation, the logical AND is replaced by the operator min, while the logical
OR is replaced by the operator max. Also, the logical NOT on xi is replaced by
1 $ xi [Klir 95]. This suggests that the degree of similarity between two real-valued
variables xi and yi in [0, 1] may be defined as

s(xi , yi) # max(min(1 $ xi , 1 $ yi), min(xi , yi)) (11.39)

Note that this definition includes the special case where xi and yi take binary values
and results in (11.38).

When we now deal with vectors in the l-dimensional space (l) 1), the vector
space is the Hl hypercube. In this context, the closer a vector x lies to the center
of Hl (1/2, . . . , 1/2), the greater the amount of uncertainty. That is, in this case we
have almost no clue whether x possesses any of the l features. On the other hand,
the closer x lies to a vertex of Hl , the less the uncertainty.

Based on similarity s between two variables in [0, 1] given in (11.39), we are
now able to define a similarity measure between two vectors. A common similarity

2 The ideas of this section follow [Zade 73].

“13-Ch11-SA272” 17/9/2008 page 614

614 CHAPTER 11 Clustering: Basic Concepts

measure between two vectors x and y is defined as

sq
F (x, y) #

(
l∑

i#1

s(xi , yi)q

)1/q

(11.40)

It is easy to verify that the maximum and minimum values of sF are l1/q and
0.5l1/q, respectively. As q → '%, we get sF (x, y) # max1&i&l s(xi, yi). Also, when
q # 1, sF (x, y) #

∑l
i#1 s(xi, yi) (Problem 11.7).

Example 11.7
In this example we consider the case where l #3 and q #1. Under these circumstances, the
maximum possible value of sF is 3. Let us consider the vectors x1 # [1, 1, 1]T , x2 # [0, 0, 1]T ,
x3 # [1/2, 1/3, 1/4]T , and x4 # [1/2, 1/2, 1/2]T . If we compute the similarities of these vectors
with themselves, we obtain

s1
F (x1, x1) # 3 max(min(1 $ 1, 1 $ 1), min(1, 1)) # 3

and similarly, s1
F (x2, x2) # 3, s1

F (x3, x3) # 1.92, and s1
F (x4, x4) # 1.5. This is very inter-

esting. The similarity measure of a vector with itself depends not only on the vector but also
on its position in the Hl hypercube. Furthermore, we observe that the greatest similarity
value is obtained at the vertices of Hl . As we move toward the center of Hl , the similarity
measure between a vector and itself decreases, attaining its minimum value at the center
of Hl .

Let us now consider the vectors y1 # [3/4, 3/4, 3/4]T , y2 # [1, 1, 1]T , y3 # [1/4, 1/4,
1/4]T , y4 # [1/2, 1/2, 1/2]T . Notice that in terms of the Euclidean distance d2(y1, y2) #

d2(y3, y4). However, s1
F (y1, y2) # 2.25 and s1

F (y3, y4) # 1.5. These results suggest that
the closer the two vectors to the center of Hl , the less their similarity. On the other hand, the
closer the two vectors to a vertex of Hl , the greater their similarity. That is, the value of sq

F (x, y)
depends not only on the relative position of x and y in Hl but also on their closeness to the
center of Hl .

Missing Data
A problem that is commonly met in real-life applications is that of missing data. This
means that for some feature vectors we do not know all of their components. This
may be a consequence of a failure of the measuring device. Also, in cases such as
the one mentioned in Example 11.1, missing data may be the result of a recording
error. The following are some commonly used techniques that handle this situation
[Snea 73, Dixo 79, Jain 88].

1. Discard all feature vectors that have missing features. This approach may be
used when the number of vectors with missing features is small compared
to the total number of available feature vectors. If this is not the case, the
nature of the problem may be affected.

“13-Ch11-SA272” 17/9/2008 page 615

11.2 Proximity Measures 615

2. For the ith feature, find its mean value based on the corresponding available
values of all feature vectors of X . Then, substitute this value for the vectors
where their ith coordinate is not available.

3. For all the pairs of components xi and yi of the vectors x and y define
bi as

bi #

{
0, if both xi and yi are available

1, otherwise
(11.41)

Then, the proximity between x and y is defined as

℘(x, y) #
l

l $
∑l

i#1 bi

∑

all i:bi#0

"(xi , yi) (11.42)

where "(xi , yi) denotes the proximity between the two scalars xi and yi .
A common choice of " when a dissimilarity measure is involved,is "(xi , yi) #
|xi $ yi|. The rationale behind this approach is simple. Let [a, b] be the
interval of the allowable values of ℘(x, y). The preceding definition ensures
that the proximity measure between x and y spans all [a, b], regardless of
the number of unavailable features in both vectors.

4. Find the average proximities "avg(i) between all feature vectors in X along all
components i #1, . . . , l. It is clear that for some vectors x the ith component
is not available. In that case,the proximities that include xi are excluded from
the computation of "avg(i). We define the proximity #(xi, yi) between the
ith components of x and y as "avg(i) if at least one of the xi and yi is not
available, and as "(xi , yi) if both xi and yi are available ("(xi , yi) may be
defined as in the previous case). Then,

℘(x, y) #
l∑

i#1

#(xi , yi) (11.43)

Example 11.8
Consider the set X # {x1, x2, x3, x4, x5}, where x1 # [0, 0]T , x2 # [1, ∗]T , x3 # [0, ∗]T ,
x4 # [2, 2]T , x5 # [3, 1]T . The “∗” means that the corresponding value is not available.

According to the second technique, we find the average value of the second feature, which
is 1, and we substitute it for the “∗”s. Then, we may use any of the proximity measures defined
in the previous sections.

Assume now that we wish to find the distance between x1 and x2 using the third technique.
We use the absolute difference as the distance between two scalars. Then d(x1, x2) #

2
2$1 1 # 2. Similarly, d(x2, x3) # 2

2$1 1 # 2.
Finally, if we choose the fourth of the techniques, we must first find the average of the

distances between any two values of the second feature. We again use the absolute difference
as the distance between two scalars. The distances between any two available values of the

“13-Ch11-SA272” 17/9/2008 page 616

616 CHAPTER 11 Clustering: Basic Concepts

second feature are |0 $ 2| # 2, |0 $ 1| # 1, and |2 $ 1| # 1, and the average is 4/3. Thus,
the distance between x1 and x2 is d(x1, x2) # 1 ' 4/3 # 7/3.

11.2.3 Proximity Functions between a Point and a Set
In many clustering schemes,a vector x is assigned to a cluster C taking into account
the proximity between x and C , ℘(x, C). There are two general directions for the
definition of ℘(x, C). According to the first one,all points of C contribute to ℘(x, C).
Typical examples of this case include:

■ The max proximity function:

℘
ps
max(x, C) # max

y∈C
℘(x, y) (11.44)

■ The min proximity function:

℘
ps
min(x, C) # min

y∈C
℘(x, y) (11.45)

■ The average proximity function:

℘
ps
avg(x, C) #

1
nC

∑

y∈C

℘(x, y) (11.46)

where nC is the cardinality of C .

In these definitions,℘(x, y) may be any proximity measure between two points.

x6

x4

x1

x2

x3

x5

x7 x8

x

FIGURE 11.6
The setup of Example 11.9.

“13-Ch11-SA272” 17/9/2008 page 617

11.2 Proximity Measures 617

(a) (b) (c)

FIGURE 11.7
(a) Compact cluster. (b) Hyperplanar (linear) cluster. (c) Hyperspherical cluster.

Example 11.9
Let C # {x1, x2, x3, x4, x5, x6, x7, x8}, where x1 # [1.5, 1.5]T , x2 # [2, 1]T , x3 # [2.5,
1.75]T , x4 # [1.5, 2]T , x5 # [3, 2]T , x6 # [1, 3.5]T , x7 # [2, 3]T , x8 # [3.5, 3]T , and
let x # [6, 4]T (see Figure 11.6). Assume that the Euclidean distance is used to measure
the dissimilarity between two points. Then dps

max(x, C) # maxy∈C d(x, y) # d(x, x1) # 5.15.
For the other two distances we have dps

min(x, C) # miny∈C d(x, y) # d(x, x8) # 2.69 and
dps

avg(x, C) # 1
nC

∑
y∈C d(x, y) # 1

8

∑8
i#1 d(x, xi) # 4.33.

According to the second direction, C is equipped with a representative and
the proximity between x and C is measured as the proximity between x and
the representative of C . Many types of representatives have been used in the
literature. Among them, the point, the hyperplane, and the hypersphere are
most commonly used.3 Point representatives are suitable for compact clusters
(Figure 11.7a) and hyperplane (hyperspherical) representatives for clusters of linear
shape (Figure 11.7b) (hyperspherical shape, Figure 11.7c).

Point Representatives
Typical choices for a point representative of a cluster are:

■ The mean vector (or mean point)

mp #
1

nC

∑

y∈C

y (11.47)

where nC is the cardinality of C . This is the most common choice when
point representatives are employed, and we deal with data of a continuous
space. However, it may not work well when we deal with points of a discrete
space Fl . This is because it is possible for mp to lie outside Fl . To cope with
this problem, we may use the mean center mc of C , which is defined next.

3 In Chapter 14 we discuss the more general family of hyperquadric representatives, which include
hyperellipsoids, hyperparabolas, and pairs of hyperplanes.

“13-Ch11-SA272” 17/9/2008 page 618

618 CHAPTER 11 Clustering: Basic Concepts

■ The mean center mc ∈ C is defined as the point for which
∑

y∈C

d(mc , y) &
∑

y∈C

d(z , y), (z ∈ C (11.48)

where d is a dissimilarity measure between two points. When similarity
measures are involved, the inequality is reversed.

Another commonly used point representative is the median center. It is
usually employed when the proximity measure between two points is not a
metric.

■ The median center mmed ∈ C is defined as the point for which

med(d(mmed, y)|y ∈ C) & med(d(z , y)|y ∈ C), (z ∈ C (11.49)

where d is a dissimilarity measure between two points. Here med(T),with T
being a set of q scalars,is the minimum number in T that is greater than or equal
to exactly [(q '1)/2] numbers of T . An algorithmic way to determine med(T)
is to list the elements of T in increasing order and to pick the [(q ' 1)/2]
element of that list.

Example 11.10
Let C # {x1, x2, x3, x4, x5}, where x1 # [1, 1]T , x2 # [3, 1]T , x3 # [1, 2]T , x4 # [1, 3]T ,
and x5 # [3, 3]T (see Figure 11.8). All points lie in the discrete space {0, 1, 2, . . . , 6}2. We
use the Euclidean distance to measure the dissimilarity between two vectors in C. The mean
point of C is mp # [1.8, 2]T . It is clear that mp lies outside the space where the elements of C
belong.

x1

x3

x4 x5

x

x2

FIGURE 11.8
The setup of Example 11.10.

“13-Ch11-SA272” 17/9/2008 page 619

11.2 Proximity Measures 619

To find the mean center mc , we compute, for each point xi ∈ C , i # 1, . . . , 5, the sum
Ai of its distances from all other points of C. The resulting values are A1 # 7.83, A2 # 9.06,
A3 # 6.47, A4 # 7.83, A5 # 9.06. The minimum of these values is A3. Thus, x3 is the mean
center of C.

Finally, for the computation of the median center mmed we work as follows. For each
vector xi ∈ C we form the nC " 1 dimensional vector Ti of the distances between xi and
each of the vectors of C. Working as indicated, we identify med(Ti), i # 1, . . . , 5. Thus,
med(T1) # med(T2) # 2, med(T3)#1, med(T4) # med(T5) # 2. Then we choose med(Tj) #

mini#1,...,nC {med(Ti)} # med(T3), and we identify x3 as the median vector of C. In our exam-
ple, the mean center and the median center coincide. In general, however, this is not the case.

The distances between x # [6, 4]T and C when the mean point, the mean center, and
the median center are used as representatives of C are 4.65, 5.39, and 5.39, respectively.

Hyperplane Representatives
Linear shaped clusters (or hyperplanar in the general case) are often encountered in
computer vision applications. This type of cluster cannot be accurately represented
by a single point. In such cases we use lines (hyperplanes) as representatives of the
clusters (e.g., [Duda 01]).

The general equation of a hyperplane H is

l∑

j#1

ajxj ' a0 # aT x ' a0 # 0 (11.50)

where x # [x1, . . . , xl]T and a # [a1, . . . , al]T is the weight vector of H . The
distance of a point x from H is defined as

d(x, H) # min
z∈H

d(x, z) (11.51)

In the case of Euclidean distance between two points and using simple geometric
arguments (see Figure 11.9a), we obtain

d(x, H) #
|aT x ' a0|

∥a∥ (11.52)

where ∥a∥ #
√∑l

j#1 a2
j .

Hyperspherical Representatives
Clusters of another type are those that are circular (hyperspherical in higher dimen-
sions). These are also frequently encountered in computer vision applications. For
such clusters, the ideal representative is a circle (hypersphere).

The general equation of a hypersphere Q is

(x $ c)T (x $ c) # r2 (11.53)

“13-Ch11-SA272” 17/9/2008 page 620

620 CHAPTER 11 Clustering: Basic Concepts

d(x1, H)
d(x2, H)

d(x1, Q)

d(x2, Q)

Q

H

(a) (b)

x1

x2

x1

x2

c

FIGURE 11.9
(a) Distance between a point and a hyperplane. (b) Distance between a point and hypersphere.

where c is the center of the hypersphere and r its radius. The distance from a point
x to Q is defined as

d(x, Q) # min
z∈Q

d(x, z) (11.54)

In most of the cases of interest, the Euclidean distance between two points is
used in this definition. Figure 11.9b provides geometric insight into this definition.
However, other nongeometric distances d(x, Q) have been used in the literature
(e.g., [Dave 92, Kris 95, Frig 96]).

11.2.4 Proximity Functions between Two Sets
So far, we have been concerned with proximity measures between points in
l-dimensional spaces and proximity functions between points and sets. Our major
focus now is on defining proximity functions between sets of points. As we will
soon see,some of the clustering algorithms are built upon such information. Most of
the proximity functions ℘ss used for the comparison of sets are based on proximity
measures,℘, between vectors (see [Duda 01]). If Di , Dj are two sets of vectors, the
most common proximity functions are:

■ The max proximity function:

℘ss
max(Di , Dj) # max

x∈Di ,y∈Dj
℘(x, y) (11.55)

It is easy to see that if ℘ is a dissimilarity measure,℘ss
max is not a measure,since

it does not satisfy the conditions in Section 11.2.1. ℘ss
max is fully determined

by the pair (x, y) of the most dissimilar (distant) vectors, with x ∈ Di and
y ∈ Dj . On the other hand, if ℘ is a similarity measure,℘ss

max is a measure but it
is not a metric (see Problem 11.12). In that case ℘ss

max is fully determined by
the pair (x, y) of the most similar (closest) vectors, with x ∈ Di and y ∈ Dj .

■ The min proximity function:

℘ss
min(Di , Dj) # min

x∈Di ,y∈Dj
℘(x, y) (11.56)

“13-Ch11-SA272” 17/9/2008 page 621

11.2 Proximity Measures 621

When ℘ is a similarity measure,℘ss
min is not a measure. In this case ℘ss

min is fully
determined by the pair (x, y) of the most dissimilar (distant) vectors, with
x ∈ Di and y ∈ Dj . On the other hand, if ℘ is a dissimilarity measure, ℘ss

min
is a measure, but it is not a metric (see Problem 11.12). In this case ℘ss

min is
fully determined by the pair (x, y) of the most similar (closest) vectors, with
x ∈ Di and y ∈ Dj .

■ The average proximity function:

℘ss
avg(Di , Dj) #

1
nDi nDj

∑

x∈Di

∑

y∈Dj

℘(x, y) (11.57)

where nDi and nDj are the cardinalities of Di and Dj , respectively. It is easily
shown that ℘ss

avg is not a measure even though ℘ is a measure. In this case, all
vectors of both Di and Dj contribute to the computation of ℘ss

avg.

■ The mean proximity function:

℘ss
mean(Di , Dj) # ℘(mDi , mDj) (11.58)

where mDi is the representative of Di , i # 1, 2. For example, mDi may be
the mean point, the mean center, or the median of Di . Obviously, this is the
proximity function between the representatives of Di and Dj . It is clear that
the mean proximity function is a measure provided that ℘ is a measure.

■ Another proximity function that will be used later on is based on the mean
proximity function and is defined as4

℘ss
e (Di , Dj) #

√
nDi nDj

nDi ' nDj

℘(mDi , mDj) (11.59)

where mDi is defined as in the previous case.

In the last two alternatives we consider only the cases in which Di’s are repre-
sented by points. The need for a definition of a proximity function between two
sets via their representatives, when the latter are not points, is of limited practical
interest.

Example 11.11
(a) Consider the set D1 # {x1, x2, x3, x4} and D2 # {y1, y2, y3, y4}, with x1 # [0, 0]T ,
x2 # [0, 2]T , x3 # [2, 0]T , x4 # [2, 2]T , y1 # [$3, 0]T , y2 # [$5, 0]T , y3 # [$3,
$2]T , y4 # [$5, $2]T . The Euclidean distance is employed as the distance between two
vectors. The distances between D1 and D2 according to the proximity functions just defined
are dss

min(D1, D2) # 3, dss
max(D1, D2) # 8.06, dss

avg(D1, D2) # 5.57, dss
mean(D1, D2) # 5.39,

dss
e (D1, D2) # 7.62.

4 This definition is a generalization of that given in [Ward 63] (see Chapter 13).

“13-Ch11-SA272” 17/9/2008 page 622

622 CHAPTER 11 Clustering: Basic Concepts

(b) Consider now the set D*
2 # {z1, z2, z3, z4}, with z1 # [1, 1.5]T , z2 # [1, 0.5]T ,

z3 # [0.5, 1]T , z4 # [1.5, 1]T . Notice that the points of D1 and D*
2 lie in two concentric

circles centered at [1, 1]T . The radius corresponding to D1 (D*
2) is

√
2 (0.5). The dis-

tances between D1 and D*
2 according to the proximity functions are dss

min(D1, D*
2) # 1.19,

dss
max(D1, D*

2) # 1.80, dss
avg(D1, D*

2) # 1.46, dss
mean(D1, D*

2) # 0, dss
e (D1, D*

2) # 0.
Notice that in the last case, in which one of the sets lies in the convex hull of the other,

some proximity measures may not be appropriate. For example, the measure based on
the distances between the two means of the clusters gives meaningless results. However,
this distance is well suited for cases in which the two sets are compact and well separated,
especially because of its low computational requirements.

Notice that the proximities between two sets are built on proximities between
two points. Intuitively, one can understand that different choices of proximity
functions between sets may lead to totally different clustering results. Moreover, if
we use different proximity measures between points, the same proximity function
between sets will lead, in general, to different clustering results. The only way
to achieve proper clustering of the data is by trial and error and, of course, by
taking into account the opinion of an expert in the field of application.

Finally,proximity functions between a vector x and a set Di may also be derived
from the functions defined here, if we set Dj # {x}.

11.3 PROBLEMS
11.1 Let s be a metric similarity measure on X with s(x, y)) 0, (x, y ∈ X and

d(x, y) # a/s(x, y),with a) 0. Prove that d is a metric dissimilarity measure.

11.2 Prove that the Euclidean distance satisfies the triangular inequality.
Hint: Use the Minkowski inequality, which states that for a positive integer p
and two vectors x # [x1, . . . , xl]T and y # [y1, . . . , yl]T it holds that

(
l∑

i#1

|xi ' yi|p
)1/p

&

(
l∑

i#1

|xi |p
)1/p

'

(
l∑

i#1

|yi|p
)1/p

11.3 Show that:
a. if s is a metric similarity measure on a set X with s(x, y) ≥ 0, (x, y ∈ X ,

then s(x, y) ' a is also a metric similarity measure on X , (a ≥ 0.

b. If d is a metric dissimilarity measure on X , then d ' a is also a metric
dissimilarity measure on X , (a ≥ 0.

11.4 Let f : R' → R' be a continuous monotonically increasing function such
that

f (x) ' f (y) ≥ f (x ' y), (x,y ∈ R'

“13-Ch11-SA272” 17/9/2008 page 623

11.3 Problems 623

and let d be a metric dissimilarity measure on a set X with d0 ≥ 0. Show that
f (d) is also a metric dissimilarity measure on X .

11.5 Let s be a metric similarity measure on a set X , with s(x, y)) 0, (x, y ∈ X
and f : R' → R' be a continuous monotonically decreasing function such
that

f (x) ' f (y) ≥ f

(
1

1
x ' 1

y

)

, (x,y ∈ R'

Show that f (s) is a metric dissimilarity measure on X .

11.6 Prove that

d%(x, y) & d2(x, y) & d1(x, y)

for any two vectors x and y in X .

11.7 a. Prove that the maximum and the minimum values of sF (x, y) given in
(11.40) are l1/q and 0.5l1/q, respectively.

b. Prove that as q → '%, Eq. (11.40) results in sF (x, y) # max1 & i & l
s(xi, yi).

11.8 Examine whether the similarity functions defined by Eqs. (11.32), (11.33)
are metric SMs.

11.9 Let d be a dissimilarity measure on X and s # dmax $ d a corresponding
similarity measure. Prove that

s ps
avg(x, C) # dmax $ dps

avg(x, C), (x ∈ X , C ⊂ X

where sps
avg and dps

avg are defined in terms of s and d,respectively. The definition
of ℘

ps
avg may be obtained from (11.57), where the first set consists of a single

vector.

11.10 Let x, y ∈ {0, 1}l . Prove that d2(x, y) #
√

dHamming(x, y).

11.11 Consider two points in an l-dimensional space, x # [x1, . . . , xl]T and y #
[y1, . . . , yl]T , and let |xi $ yi| # maxj#1,...,l{|xj $ yj |}. We define the distance
dn(x, y) as

dn(x, y) # |xi $ yi| '
1

l $ [(l $ 2)/2]

l∑

j#1,j ̸#i

|xj $ yj |

This distance has been proposed in [Chau 92] as an approximation of the
d2 (Euclidean) distance.

a. Prove that dn is a metric.

b. Compare dn with d2 in terms of computational complexity.

“13-Ch11-SA272” 17/9/2008 page 624

624 CHAPTER 11 Clustering: Basic Concepts

11.12 Let d and s be a dissimilarity and a similarity measure, respectively. Let dss
min

(sss
min), dss

max (sss
max), dss

avg (sss
avg), dss

mean (sss
mean) be defined in terms of d(s).

a. Prove that dss
min, dss

mean are measures and dss
max, dss

avg are not.

b. Prove that sss
max, sss

mean are measures while sss
min, sss

avg are not.

11.13 Based on Eqs. (11.55),(11.56),(11.57),and (11.58),derive the corresponding
proximity functions between a point and a set. Are these proximity functions
measures?

REFERENCES
[Ande 73] Anderberg M.R. Cluster Analysis for Applications,Academic Press, 1973.

[Ball 71] Ball G.H. “Classification analysis,” Stanford Research Institute, SRI Project 5533, 1971.

[Broc 81] Brockett P.L., Haaland P.D., Levine A. “Information theoretic analysis of questionnaire
data,” IEEE Transactions on Information Theory,Vol. 27, pp. 438–445, 1981.

[Chau 92] Chaudhuri D., Murthy C.A., Chaudhuri B.B. “A modified metric to compute distance,”
Pattern Recognition,Vol. 25(7), pp. 667–677, 1992.

[Dave 92] Dave R.N., Bhaswan K. “Adaptive fuzzy c-shells clustering and detection of ellipses,”
IEEE Transactions on Neural Networks,Vol. 3(5), pp. 643–662, 1992.

[Dixo 79] Dixon J.K.“Pattern recognition with partly missing data,”IEEE Transactions on Systems
Man and Cybernetics,Vol. SMC 9, 617–621, 1979.

[Duda 01] Duda R.O., Hart P., Stork D. Pattern Classification, 2nd ed., John Wiley & Sons, 2001.

[Eise 98] Eisen M., Spellman P., Brown P., Botstein D. “Cluster analysis and display of genome-
wide expression data,” Proceedings of National Academy of Science, USA, Vol. 95,
pp. 14863–14868, 1998.

[Ever 01] Everitt B., Landau S., Leesse M. Cluster Analysis,Arnold, 2001.

[Frig 96] Frigui H., Krishnapuram R. “A comparison of fuzzy shell clustering methods for the
detection of ellipses,” IEEE Transactions on Fuzzy Systems,Vol. 4(2), May 1996.

[Fu 93] Fu L., Yang M., Braylan R., Benson N. “Real-time adaptive clustering of flow cytometric
data,”Pattern Recognition,Vol. 26(2), pp. 365–373, 1993.

[Gers 92] Gersho A., Gray R.M.Vector Quantization and Signal Compression, Kluwer Academic
Publishers, 1992.

[Good 66] Goodall D.W. “A new similarity index based on probability,” Biometrics, Vol. 22,
pp. 882–907, 1966.

[Gowe 67] Gower J.C. “A comparison of some methods of cluster analysis,” Biometrics, Vol. 23,
pp. 623–637, 1967.

[Gowe 71] Gower J.C. “A general coefficient of similarity and some of its properties,”Biometrics,
Vol. 27, pp. 857–872, 1971.

[Gowe 86] Gower J.C., Legendre P. “Metric and Euclidean properties of dissimilarity coefficients,”
Journal of Classification,Vol. 3, pp. 5–48, 1986.

[Hall 67] Hall A.V. “Methods for demonstrating resemblance in taxonomy and ecology,” Nature,
Vol. 214, pp. 830–831, 1967.

“13-Ch11-SA272” 17/9/2008 page 625

References 625

[Huba 82] Hubalek Z. “Coefficients of association and similarity based on binary (presence–
absence) data—an evaluation,”Biological Review,Vol. 57, pp. 669–689, 1982.

[Jain 88] Jain A.K., Dubes R.C. Algorithms for Clustering Data, Prentice Hall, 1988.

[John 67] Johnson S.C. “Hierarchical clustering schemes,” Psychometrika, Vol. 32, pp. 241–254,
1967.

[Klir 95] Klir G.,Yuan B. Fuzzy sets and fuzzy logic, Prentice Hall, 1995.

[Koho 89] Kohonen T. Self-Organization and Associative Memory, Springer-Verlag, 1989.

[Kris 95] Krishnapuram R., Frigui H., Nasraoui O. “Fuzzy and possibilistic shell clustering algo-
rithms and their application to boundary detection and surface approximation—Part I,” IEEE
Transactions on Fuzzy Systems,Vol. 3(1), pp. 29–43, February 1995.

[Li 85] Li X., Dubes R.C. “The first stage in two-stage template matching,” IEEE Transactions on
Pattern Analysis and Machine Intelligence,Vol. 7, pp. 700–707, 1985.

[Lipp 87] Lippmann R.P. “An introduction to computing with neural nets,” IEEE ASSP Magazine,
Vol. 4(2),April 1987.

[Payk 72] Paykel E.S. “Depressive typologies and response to amitriptyline,” British Journal of
Psychiatry,Vol. 120, pp. 147–156, 1972.

[Snea 73] Sneath P.H.A., Sokal R.R. Numerical Taxonomy,W.H. Freeman & Co., 1973.

[Soka 63] Sokal R.R.,Sneath P.H.A. Principles of NumericalTaxonomy,W.H. Freeman & Co.,1963.

[Spat 80] Spath H. Cluster Analysis Algorithms, Ellis Horwood, 1980.

[Tani 58] Tanimoto T. “An elementary mathematical theory of classification and prediction,” Int.
Rpt., IBM Corp., 1958.

[Wall 68] Wallace C.S., Boulton D.M. “An information measure for classification,” Computer
Journal,Vol. 11, pp. 185–194, 1968.

[Ward 63] Ward J.H., Jr. “Hierarchical grouping to optimize an objective function,” Journal of
the American Statistical Association.,Vol. 58, pp. 236–244, 1963.

[Wind 82] Windham M.P. “Cluster validity for the fuzzy c-means clustering algorithm,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 4(4), pp. 357–363, 1982.

[Zade 65] Zadeh L.A. “Fuzzy sets,” Information and Control,Vol. 8, pp. 338–353, 1965.

[Zade 73] Zadeh L.A. IEEE Transactions on Systems Man and Cybernetics SMC-3,Vol. 28, 1973.

“14-Ch12-SA272” 17/9/2008 page 627

CHAPTER

12Clustering Algorithms I:
Sequential Algorithms

12.1 INTRODUCTION
In the previous chapter,our major focus was on introducing a number of proximity
measures. Each of these measures gives a different interpretation of the terms
similar and dissimilar, associated with the types of clusters that our clustering pro-
cedure has to reveal. In the current and the following three chapters, the emphasis
is on the various clustering algorithmic schemes and criteria that are available to
the analyst. As has already been stated, different combinations of a proximity mea-
sure and a clustering scheme will lead to different results, which the expert has to
interpret.

This chapter begins with a general overview of the various clustering algorithmic
schemes and then focuses on one category, known as sequential algorithms.

12.1.1 Number of Possible Clusterings
Given the time and resources, the best way to assign the feature vectors xi , i !
1, . . . , N , of a set X to clusters would be to identify all possible partitions and to
select the most sensible one according to a preselected criterion. However, this
is not possible even for moderate values of N . Indeed, let S(N , m) denote the
number of all possible clusterings of N vectors into m groups. Remember that,
by definition, no cluster is empty. It is clear that the following conditions hold
[Spat 80, Jain 88]:

■ S(N , 1) ! 1

■ S(N , N) ! 1

■ S(N , m) ! 0, for m " N

Let Lk
N#1 be the list containing all possible clusterings of the N # 1 vectors into k

clusters, for k ! m, m # 1. The N th vector

■ Either will be added to one of the clusters of any member of Lm
N#1

■ Or will form a new cluster to each member of Lm#1
N#1

627

“14-Ch12-SA272” 17/9/2008 page 628

628 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

Thus, we may write

S(N , m) ! mS(N # 1, m) $ S(N # 1, m # 1) (12.1)

The solutions of (12.1) are the so-called Stirling numbers of the second kind (e.g.,
see [Liu 68]):1

S(N , m) !
1

m!
m∑

i!0

(#1)m#i

(
m
i

)

iN (12.2)

Example 12.1
Assume that X ! {x1, x2, x3}. We seek to find all possible clusterings of the elements of X
in two clusters. It is easy to deduce that

L1
2 ! {{x1, x2}}

and

L2
2 ! {{x1}, {x2}}

Taking into account (12.1), we easily find that S(3, 2) ! 2 % 1$! 3. Indeed, the L2
3 list is

L2
3 ! {{x1, x3}, {x2}}, {{x1}, {x2, x3}}, {{x1, x2}, {x3}}

Especially for m ! 2, (12.2) becomes

S(N , 2) ! 2N#1 # 1 (12.3)

(see Problem 12.1). Some numerical values of (12.2) are [Spat 80]

■ S(15, 3) ! 2375101

■ S(20, 4) ! 45232115901

■ S(25, 8) ! 690223721118368580

■ S(100, 5) ≃ 1068

It is clear that these calculations are valid for the case in which the number of clusters
is fixed. If this is not the case, one has to enumerate all possible clusterings for all
possible values of m. From the preceding analysis, it is obvious that evaluating all of
them to identify the most sensible one is impractical even for moderate values of N .
Indeed, if, for example, one has to evaluate all possible clusterings of 100 objects
into five clusters with a computer that evaluates each single clustering in 10#12

seconds, the most“sensible”clustering would be available after approximately 1048

years!

1 Compare it with the number of dichotomies in Cover’s theorem.

“14-Ch12-SA272” 17/9/2008 page 629

12.2 Categories of Clustering Algorithms 629

12.2 CATEGORIES OF CLUSTERING ALGORITHMS
Clustering algorithms may be viewed as schemes that provide us with sensible
clusterings by considering only a small fraction of the set containing all possible
partitions of X. The result depends on the specific algorithm and the criteria used.
Thus a clustering algorithm is a learning procedure that tries to identify the specific
characteristics of the clusters underlying the data set. Clustering algorithms may be
divided into the following major categories.

■ Sequential algorithms. These algorithms produce a single clustering. They
are quite straightforward and fast methods. In most of them, all the feature
vectors are presented to the algorithm once or a few times (typically no more
than five or six times). The final result is, usually, dependent on the order in
which the vectors are presented to the algorithm. These schemes tend to
produce compact and hyperspherically or hyperellipsoidally shaped clusters,
depending on the distance metric used. This category will be studied at the
end of this chapter.

■ Hierarchical clustering algorithms.These schemes are further divided into

• Agglomerative algorithms. These algorithms produce a sequence of clus-
terings of decreasing number of clusters, m, at each step. The clustering
produced at each step results from the previous one by merging two clus-
ters into one. The main representatives of the agglomerative algorithms
are the single and complete link algorithms. The agglomerative algorithms
may be further divided into the following subcategories:

⃝ Algorithms that stem from the matrix theory

⃝ Algorithms that stem from graph theory

These algorithms are appropriate for the recovery of elongated clusters (as
is the case with the single link algorithm) and compact clusters (as is the
case with the complete link algorithm).

• Divisive algorithms.These algorithms act in the opposite direction; that is,
they produce a sequence of clusterings of increasing m at each step. The
clustering produced at each step results from the previous one by splitting
a single cluster into two.

■ Clustering algorithms based on cost function optimization. This category
contains algorithms in which “sensible” is quantified by a cost function, J , in
terms of which a clustering is evaluated. Usually, the number of clusters m
is kept fixed. Most of these algorithms use differential calculus concepts and
produce successive clusterings while trying to optimize J . They terminate
when a local optimum of J is determined. Algorithms of this category are also
called iterative function optimization schemes. This category includes the
following subcategories:

“14-Ch12-SA272” 17/9/2008 page 630

630 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

• Hard or crisp clustering algorithms, where a vector belongs exclusively
to a specific cluster. The assignment of the vectors to individual clusters
is carried out optimally, according to the adopted optimality criterion. The
most famous algorithm of this category is the Isodata or Lloyd algorithm
[Lloy 82, Duda 01].

• Probabilistic clustering algorithms, are a special type of hard clustering
algorithms that follow Bayesian classification arguments and each vector x
is assigned to the cluster Ci for which P(Ci|x) (i.e., the a posteriori proba-
bility) is maximum. These probabilities are estimated via an appropriately
defined optimization task.

• Fuzzy clustering algorithms, where a vector belongs to a specific cluster
up to a certain degree.

• Possibilistic clustering algorithms. In this case we measure the possibility
for a feature vector x to belong to a cluster Ci .

• Boundary detection algorithms. Instead of determining the clusters by the
feature vectors themselves, these algorithms adjust iteratively the bound-
aries of the regions where clusters lie. These algorithms, although they
evolve from a cost function optimization philosophy, are different from
the above algorithms. All the aforementioned schemes use cluster repre-
sentatives, and the goal is to locate them in space in an optimal way. In
contrast, boundary detection algorithms seek ways of placing optimally
boundaries between clusters. This has led us to the decision to treat these
algorithms in a separate chapter, together with algorithms to be discussed
next.

■ Other: This last category contains some special clustering techniques that do
not fit nicely in any of the previous categories. These include:

• Branch and bound clustering algorithms. These algorithms provide us
with the globally optimal clustering without having to consider all pos-
sible clusterings, for fixed number m of clusters, and for a prespecified
criterion that satisfies certain conditions. However, their computational
burden is excessive.

• Genetic clustering algorithms. These algorithms use an initial population
of possible clusterings and iteratively generate new populations, which, in
general, contain better clusterings than those of the previous generations,
according to a prespecified criterion.

• Stochastic relaxation methods. These are methods that guarantee, under
certain conditions,convergence in probability to the globally optimum clus-
tering, with respect to a prespecified criterion, at the expense of intensive
computations.

“14-Ch12-SA272” 17/9/2008 page 631

12.2 Categories of Clustering Algorithms 631

It must be pointed out that stochastic relaxation methods (as well as
genetic algorithms and branch and bound techniques) are cost function
optimization methods. However, each follows a conceptually different
approach to the problem compared to the methods of the previous category.
This is why we chose to treat them separately.

• Valley-seeking clustering algorithms. These algorithms treat the fea-
ture vectors as instances of a (multidimensional) random variable x.
They are based on the commonly accepted assumption that regions of
x where many vectors reside correspond to regions of increased val-
ues of the respective probability density function (pdf) of x. Therefore,
the estimation of the pdf may highlight the regions where clusters are
formed.

• Competitive learning algorithms. These are iterative schemes that do not
employ cost functions. They produce several clusterings and they converge
to the most“sensible”one,according to a distance metric. Typical represen-
tatives of this category are the basic competitive learning scheme and the
leaky learning algorithm.

• Algorithms based on morphological transformation techniques. These
algorithms use morphological transformations in order to achieve better
separation of the involved clusters.

• Density-based algorithms. These algorithms view the clusters as regions
in the l-dimensional space that are “dense” in data. From this point
of view there is an affinity with the valley-seeking algorithms. How-
ever, now the approach to the problem is achieved via an alternative
route. Algorithmic variants within this family spring from the different
way each of them quantifies the term density. Because most of them
require only a few passes on the data set X (some of them consider the
data points only once), they are serious candidates for processing large
data sets.

• Subspace clustering algorithms. These algorithms are well suited for
processing high-dimensional data sets. In some applications the dimen-
sion of the feature space can even be of the order of a few thousands.
A major problem one has to face is the “curse of dimensionality” and one
is forced to equip his/her arsenal with tools tailored for such demanding
tasks.

• Kernel-based methods. The essence behind these methods is to adopt
the “kernel trick,” discussed in Chapter 4 in the context of nonlinear
support vector machines, to perform a mapping of the original space,
X , into a high-dimensional space and to exploit the nonlinear power of
this tool.

“14-Ch12-SA272” 17/9/2008 page 632

632 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

Advances in database and Internet technologies over the past years have made
data collection easier and faster, resulting in large and complex data sets with
many patterns and/or dimensions ([Pars 04]). Such very large data sets are met,
for example, in Web mining, where the goal is to extract knowledge from the Web
([Pier 03]). Two significant branches of this area are Web content mining (which
aims at the extraction of useful knowledge from the content of Web pages) and
Web usage mining (which aims at the discovery of interesting patterns of use by
analyzing Web usage data). The sizes of web data are, in general, orders of mag-
nitude larger than those encountered in more common clustering applications.
Thus, the task of clustering Web pages in order to categorize them according to
their content (Web content mining) or to categorize users according to the pages
they visit most often (Web usage mining) becomes a very challenging problem.
In addition, if in Web content mining each page is represented by a significant
number of the words it contains, the dimension of the data space can become
very high.

Another typical example of a computational resource-demanding cluster-
ing application comes from the area of bioinformatics, especially from DNA
microarray analysis. This is a scientific field of enormous interest and signifi-
cance that has already attracted a lot of research effort and investment. In such
applications, data sets of dimensionality as high as 4000 can be encountered
([Pars 04]).

The need for efficient processing of data sets large in size and/or dimensionality
has led to the development of clustering algorithms tailored for such complex tasks.
Although many of these algorithms fall under the umbrella of one of the previously
mentioned categories, we have chosen to discuss them separately at each related
chapter to emphasize their specific focus and characteristics.

Several books—including [Ande 73, Dura 74, Ever 01, Gord 99, Hart 75, Jain 88,
Kauf 90,and Spat 80]—are dedicated to the clustering problem. In addition,several
survey papers on clustering algorithms have also been written. Specifically,a presen-
tation of the clustering algorithms from a statistical point of view is given in [Jain 99].
In [Hans 97], the clustering problem is presented in a mathematical programming
framework. In [Kola 01], applications of clustering algorithms for spatial database
systems are discussed. Other survey papers are [Berk 02, Murt 83, Bara 99], and
[Xu 05].

In addition, papers dealing with comparative studies among different cluster-
ing methods have also appeared in the literature. For example, in [Raub 00] the
comparison of five typical clustering algorithms and their relative merits are dis-
cussed. Computationally efficient algorithms for large databases are compared
in [Wei 00].

Finally, evaluations of different clustering techniques in the context of specific
applications have also been conducted. For example, clustering applications for
gene-expression data from DNA microarray experiments are discussed in [Jian 04,
Made 04], and an experimental evaluation of document clustering techniques is
given in [Stei 00].

“14-Ch12-SA272” 17/9/2008 page 633

12.3 Sequential Clustering Algorithms 633

12.3 SEQUENTIAL CLUSTERING ALGORITHMS
In this section we describe a basic sequential algorithmic scheme, (BSAS), (which
is a generalization of that discussed in [Hall 67]), and we also give some variants of
it. First, we consider the case where all the vectors are presented to the algorithm
only once. The number of clusters is not known a priori in this case. In fact,new
clusters are created as the algorithm evolves.

Let d(x, C) denote the distance (or dissimilarity) between a feature vector x and
a cluster C . This may be defined by taking into account either all vectors of C or a
representative vector of it (see Chapter 11). The user-defined parameters required
by the algorithmic scheme are the threshold of dissimilarity & and the maximum
allowable number of clusters, q. The basic idea of the algorithm is the following:
As each new vector is considered, it is assigned either to an existing cluster or to a
newly created cluster, depending on its distance from the already formed ones. Let
m be the number of clusters that the algorithm has created up to now. Then the
algorithmic scheme may be stated as:

Basic Sequential Algorithmic Scheme (BSAS)

■ m ! 1

■ Cm ! {x1}
■ For i ! 2 to N

• Find Ck: d(xi , Ck) ! min1 ' j ' m d(xi , Cj).

• If (d(xi, Ck) " &) AND (m (q) then
⃝ m ! m $ 1

⃝ Cm ! {xi}
• Else

⃝ Ck ! Ck ∪ {xi}
⃝ Where necessary, update representatives2

• End {if}

■ End {For}

Different choices of d(x, C) lead to different algorithms,and any of the measures
introduced in Chapter 11 can be employed. When C is represented by a single vector,
d(x, C) becomes

d(x, C) ! d(x, mC) (12.4)

2 This statement is activated in the cases where each cluster is represented by a single vector. For
example, if each cluster is represented by its mean vector, this must be updated each time a new
vector becomes a member of the cluster.

“14-Ch12-SA272” 17/9/2008 page 634

634 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

where mC is the representative of C . In the case in which the mean vector is used
as a representative, the updating may take place in an iterative fashion, that is,

mnew
Ck

!
(nCnew

k
1)mold

Ck
$ x

nCnew
k

(12.5)

where nCnew
k

is the cardinality of Ck after the assignment of x to it and mnew
Ck

(mold
Ck

)
is the representative of Ck after (before) the assignment of x to it (Problem 12.2).

It is not difficult to realize that the order in which the vectors are presented to
the BSAS plays an important role in the clustering results. Different presentation
ordering may lead to totally different clustering results, in terms of the number
of clusters as well as the clusters themselves (see Problem 12.3).

Another important factor affecting the result of the clustering algorithm is the
choice of the threshold &. This value directly affects the number of clusters
formed by BSAS. If & is too small, unnecessary clusters will be created. On the
other hand, if & is too large a smaller than appropriate number of clusters will
be created. In both cases, the number of clusters that best fits the data set is
missed.

If the number q of the maximum allowable number of clusters is not constrained,
we leave it to the algorithm to “decide” about the appropriate number of clusters.
Consider,for example,Figure 12.1,where three compact and well-separated clusters
are formed by the points of X . If the maximum allowable number of clusters is set
equal to two,the BSAS algorithm will be unable to discover three clusters. Probably,
in this case the two rightmost groups of points will form a single cluster. On
the other hand, if q is unconstrained, the BSAS algorithm will probably form three
clusters (with an appropriate choice of &), at least for the case in which the mean
vector is used as a representative. However, constraining q becomes necessary
when dealing with implementations where the available computational resources
are limited. In the next subsection, a simple technique is given for determining the
number of clusters.3

FIGURE 12.1
Three clusters are formed by the feature vectors. When q is constrained to a value less than 3,
the BSAS algorithm will not be able to reveal them.

3 This problem is also treated in Chapter 16.

“14-Ch12-SA272” 17/9/2008 page 635

12.3 Sequential Clustering Algorithms 635

Remarks

■ The BSAS scheme may be used with similarity instead of dissimilarity measures
with appropriate modification; that is, the min operator is replaced by max.

■ It turns out that BSAS,with point cluster representatives, favors compact clus-
ters. Thus, it is not recommended if there is strong evidence that other types
of clusters are present.

■ The BSAS algorithm performs a single pass on the entire data set, X . For
each iteration, the distance of the vector currently considered from each of
the clusters defined so far is computed. Because the final number of clus-
ters m is expected to be much smaller than N , the time complexity of BSAS
is O(N).

■ The preceding algorithm is closely related to the algorithm implemented by
theART2 (adaptive resonance theory) neural architecture [Carp 87, Burk 91].

12.3.1 Estimation of the Number of Clusters
In this subsection, a simple method is described for determining the number of
clusters (other such methods are discussed in Chapter 16). The method is suitable
for BSAS as well as other algorithms,for which the number of clusters is not required
as an input parameter. In what follows, BSAS(&) denotes the BSAS algorithm with
a specific threshold of dissimilarity &.

■ For & ! a to b step c
• Run s times the algorithm BSAS(&), each time presenting the data in a

different order.

• Estimate the number of clusters,m&,as the most frequent number resulting
from the s runs of BSAS(&).

■ Next &

The values a and b are the minimum and maximum dissimilarity levels among
all pairs of vectors in X , that is, a ! mini,j!1, . . . ,N d(xi , xj) and b ! maxi,j!1, . . . ,N
d(xi , xj). The choice of c is directly influenced by the choice of d(x, C). As far as the
value of s is concerned, the greater the s, the larger the statistical sample and, thus,
the higher the accuracy of the results. In the sequel,we plot the number of clusters
m& versus &. This plot has a number of flat regions. We estimate the number of
clusters as the number that corresponds to the widest flat region. It is expected that
at least for the case in which the vectors form well-separated compact clusters, this
is the desired number. Let us explain this argument intuitively. Suppose that the
data form two compact and well-separated clusters C1 and C2. Let the maximum
distance between two vectors in C1 (C2) be r1 (r2) and suppose that r1 (r2. Also
let r ("r2) be the minimum among all distances d(xi , xj),with xi ∈ C1 and xj ∈ C2.
It is clear that for & ∈ [r2, r # r2], the number of clusters created by BSAS is 2. In

“14-Ch12-SA272” 17/9/2008 page 636

636 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

addition, if r ""r2, the interval has a wide range, and thus it corresponds to a wide
flat region in the plot of m& versus &. Example 12.2 illustrates the idea.

Example 12.2
Consider two 2-dimensional Gaussian distributions with means [0, 0]T and [20, 20]T , respec-
tively. The covariance matrices are) ! 0.5I for both distributions, where I is the 2 % 2 identity
matrix. Generate 50 points from each distribution (Figure 12.2a). The number of underlying
clusters is 2. The plot resulting from the application of the previously described procedure
is shown in Figure 12.2b, with a ! minxi ,xj∈X d2(xi , xj), b ! maxxi ,xj∈X d2(xi , xj), and
c ≃ 0.3. It can be seen that the widest flat region corresponds to the number 2, which is the
number of underlying clusters.

In the foregoing procedure,we have implicitly assumed that the feature vectors
do form clusters. If this is not the case,the method is useless. Methods that deal with
the problem of discovering whether any clusters exist are discussed in Chapter 16.
Moreover, if the vectors form compact clusters, which are not well separated, the
procedure may give unreliable results, since it is unlikely for the plot of m& versus
& to contain wide flat regions.

In some cases, it may be advisable to consider all the numbers of clusters, m&,
that correspond to all flat regions of considerable size in the plot of m& versus &.
If, for example, we have three clusters and the first two of them lie close to each
other and away from the third, the flattest region may occur for m& ! 2 and the
second flattest for m& ! 3. If we discard the second flattest region,we will miss the
three-cluster solution (Problem 12.6).

25

5

15

25

25
5 15

(a) (b)

25 0
0

10

20

N
um

be
r

of
 c

lu
st

er
s

30

40

10 20 30
Q

FIGURE 12.2
(a) The data set. (b) The plot of the number of clusters versus &. It can be seen that for a wide
range of values of &, the number of clusters, m, is 2.

“14-Ch12-SA272” 17/9/2008 page 637

12.4 A Modification of BSAS 637

12.4 A MODIFICATION OF BSAS
As has already been stated, the basic idea behind BSAS is that each input vector x is
assigned to an already created cluster or a new one is formed. Therefore, a decision
for the vector x is reached prior to the final cluster formation,which is determined
after all vectors have been presented. The following refinement of BSAS,which will
be called modified BSAS (MBSAS), overcomes this drawback. The cost we pay for
it is that the vectors of X have to be presented twice to the algorithm. The algo-
rithmic scheme consists of two phases. The first phase involves the determination
of the clusters, via the assignment of some of the vectors of X to them. During
the second phase, the unassigned vectors are presented for a second time to the
algorithm and are assigned to the appropriate cluster. The MBSAS may be written as
follows:

Modified Basic Sequential Algorithmic Scheme (MBSAS)

■ Cluster Determination

■ m ! 1

■ Cm ! {x1}
• For i ! 2 to N

• Find Ck: d(xi, Ck) ! min1 ' j ' m d(xi , Cj).

• If (d(xi, Ck) " &) AND (m (q) then

⃝ m ! m $ 1

⃝ Cm ! {xi}
• End {if}

■ End {For}

Pattern Classification

■ For i ! 1 to N
• If xi has not been assigned to a cluster, then

⃝ Find Ck: d(xi , Ck) ! min1 ' j ' m d(xi, Cj)

⃝ Ck ! Ck ∪ {xi}
⃝ Where necessary, update representatives

• End {if}

■ End {For}

“14-Ch12-SA272” 17/9/2008 page 638

638 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

The number of clusters is determined in the first phase, and then it is frozen.
Thus, the decision taken during the second phase for each vector takes into account
all clusters.

When the mean vector of a cluster is used as its representative, the appropriate
cluster representative has to be adjusted using Eq. (12.5), after the assignment of
each vector in a cluster.

Also, as it was the case with BSAS, MBSAS is sensitive to the order in which the
vectors are presented. In addition, because MBSAS performs two passes (one in
each phase) on the data set X , it is expected to be slower than BSAS. However, its
time complexity is of the same order; that is, O(N).

Finally, it must be stated that, after minor modifications, MBSAS may be used
when a similarity measure is employed (see Problem 12.7).

Another algorithm that falls under the MBSAS rationale is the so-called maxmin
algorithm [Kats 94, Juan 00]. In the MBSAS scheme, a cluster is formed during
the first pass, every time the distance of a vector from the already formed clusters
is larger than a threshold. In contrast, the max-min algorithm follows a different
strategy during the first phase. Let W be the set of all points that have been selected
to form clusters,up to the current iteration step. To form a new cluster,we compute
the distance of every point in X # W from every point in W . If x ∈ X # W , let dx
be the minimum distance of x from all the points in W . This is performed for all
points in X # W . Then we select the point (say,y) whose minimum distance (from
the vectors in W) is maximum; that is,

dy ! max
x

dx , x ∈ X # W

If this is greater than a threshold,this vector forms a new cluster. Otherwise,the first
phase of the algorithm terminates. It must be emphasized that in contrast to BSAS
and MBSAS, the max-min algorithm employs a threshold that is data dependent.
During the second pass, points that have not yet been assigned to clusters are
assigned to the created clusters as in the MBSAS method. The max-min algorithm,
although computationally more demanding than MBSAS, is expected to produce
clusterings of better quality.

12.5 A TWO-THRESHOLD SEQUENTIAL SCHEME
As already has been pointed out, the results of BSAS and MBSAS are strongly depen-
dent on the order in which the vectors are presented to the algorithm,as well as on
the value of &. Improper choice of & may lead to meaningless clustering results.
One way to overcome these difficulties is to define a “gray” region (see [Trah 89]).
This is achieved by employing two thresholds,&1 and &2("&1). If the dissimilarity
level d(x, C) of a vector x from its closest cluster C is less than &1, x is assigned
to C . If d(x, C) " &2, a new cluster is formed and x is placed in it. Otherwise,
if &1 ' d(x, C) ' &2, there exists uncertainty, and the assignment of x to a cluster
will take place at a later stage. Let clas(x) be a flag that indicates whether x has

“14-Ch12-SA272” 17/9/2008 page 639

12.5 A Two-Threshold Sequential Scheme 639

been classified (1) or not (0). Again, we denote by m the number of clusters that
have been formed up to now. In the following,we assume no bounds to the number
of clusters (i.e., q ! N). The algorithmic scheme is:

The Two-Threshold Sequential Algorithmic Scheme (TTSAS)

m ! 0
clas(x) ! 0, *x ∈ X
prev_change ! 0
cur_change ! 0
exists_change ! 0

While (there exists at least one feature vector x with clas(x) ! 0) do

■ For i ! 1 to N
• if clas(xi) ! 0 AND it is the first in the new while loop AND

exists_change ! 0 then
⃝ m ! m $ 1

⃝ Cm ! {xi}
⃝ clas(xi) ! 1

⃝ cur_change ! cur_change $ 1

• Else if clas(xi) ! 0 then
⃝ Find d(xi, Ck) ! min1'j'm d(xi , Cj)

⃝ if d(xi , Ck) (&1 then

— Ck ! Ck ∪ {xi}
— clas(xi) ! 1

— cur_change ! cur_change $ 1

⃝ else if d(xi , Ck) " &2 then

— m ! m $ 1

— Cm ! {xi}
— clas(xi) ! 1

— cur_change ! cur_change $ 1

⃝ End {If}

• Else if clas(xi) ! 1 then
⃝ cur_change ! cur_change $ 1

• End {If}

“14-Ch12-SA272” 17/9/2008 page 640

640 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

■ End {For}

■ exists_change ! |cur_change # prev_change|
■ prev_change ! cur_change

■ cur_change ! 0

End {While}

The exists_change checks whether there exists at least one vector that has been
classified at the current pass on X (i.e., the current iteration of the while loop). This
is achieved by comparing the number of vectors that have been classified up to the
current pass on X ,cur_change,with the number of vectors that have been classified
up to the previous pass on X , prev_change. If exists_change ! 0, that is, no vector
has been assigned to a cluster during the last pass on X , the first unclassified vector
is used for the formation of a new cluster.

The first if condition in the For loop ensures that the algorithm terminates after
N passes on X (N executions of the while loop) at the most. Indeed, this condition
forces the first unassigned vector to a new cluster when no vector has been assigned
during the last pass on X . This gives a way out to the case in which no vector has
been assigned at a given circle.

However, in practice, the number of required passes is much less than N . It
should be pointed out that this scheme is almost always at least as expensive as
the previous two schemes, because in general it requires at least two passes on X .
Moreover, since the assignment of a vector is postponed until enough information
becomes available, it turns out that this algorithm is less sensitive to the order of
data presentation.

As in the previous case, different choices of the dissimilarity between a vector
and a cluster lead to different results. This algorithm also favors compact clusters,
when used with point cluster representatives.

Remark

■ Note that for all these algorithms no deadlock state occurs. That is, none of
the algorithms enters into a state where there exist unassigned vectors that
cannot be assigned either to existing clusters or to new ones, regardless of
the number of passes of the data to the algorithm. The BSAS and MBSAS
algorithms are guaranteed to terminate after a single and after two passes on
X , respectively. In TTSAS the deadlock situation is avoided, as we arbitrarily
assign the first unassigned vector at the current pass to a new cluster if no
assignment of vectors occurred in the previous pass.

Example 12.3
Consider the vectors x1 ! [2, 5]T , x2 ! [6, 4]T , x3 ! [5, 3]T , x4 ! [2, 2]T , x5 ! [1, 4]T ,
x6 ! [5, 2]T , x7 ! [3, 3]T , and x8 ! [2, 3]T . The distance from a vector x to a cluster C

“14-Ch12-SA272” 17/9/2008 page 641

12.6 Refinement Stages 641

x1
x5

x8
x4

x7

x2

x3
x6

(a)

x4

x7x8

x5

x1
x2

x3
x6

(b)

FIGURE 12.3
(a) The clustering produced by the MBSAS. (b) The clustering produced by the TTSAS.

is taken to be the Euclidean distance between x and the mean vector of C. If we present
the vectors in the above order to the MBSAS algorithm and we set & ! 2.5, we obtain three
clusters, C1 ! {x1, x5, x7, x8}, C2 ! {x2, x3, x6}, and C3 ! {x4} (see Figure 12.3a).

On the other hand, if we present the vectors in the above order to the TTSAS algorithm,
with &1 ! 2.2 and &2 ! 4, we obtain C1 ! {x1, x5, x7, x8, x4} and C2 ! {x2, x3, x6} (see
Figure 12.3b). In this case, all vectors were assigned to clusters during the first pass on X ,
except x4. This was assigned to cluster C1 during the second pass on X . At each pass on X ,
we had at least one vector assignment to a cluster. Thus, no vector is forced to a new cluster
arbitrarily.

It is clear that the last algorithm leads to more reasonable results than MBSAS. However,
it should be noted that MBSAS also leads to the same clustering if, for example, the vectors
are presented with the following order: x1, x2, x5, x3, x8, x6, x7, x4.

12.6 REFINEMENT STAGES
In all the preceding algorithms, it may happen that two of the formed clusters are
very closely located, and it may be desirable to merge them into a single one. Such
cases cannot be handled by these algorithms. One way out of this problem is to
run the following simple merging procedure,after the termination of the preceding
schemes (see [Fu 93]).

Merging procedure

■ (A) Find Ci , Cj (i (j) such that d(Ci , Cj) ! mink,r!1,...,m, k ̸!r d(Ck, Cr)

■ If d(Ci , Cj) ' M1 then
• Merge Ci, Cj to Ci and eliminate Cj .

• Update the cluster representative of Ci (if cluster representatives are used).

• Rename the clusters Cj$1, . . . , Cm to Cj , . . . , Cm#1, respectively

“14-Ch12-SA272” 17/9/2008 page 642

642 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

• m ! m # 1

• Go to (A)

■ Else
• Stop

■ End {If}

M1 is a user-defined parameter that quantifies the closeness of two clusters, Ci
and Cj . The dissimilarity d(Ci , Cj) between the clusters can be defined using the
definitions given in Chapter 11.

The other drawback of the sequential algorithms is their sensitivity to the order
of presentation of vectors. Suppose, for example, that in using BSAS,x2 is assigned
to the first cluster, C1, and after the termination of the algorithm four clusters are
formed. Then it is possible for x2 to be closer to a cluster different from C1. However,
there is no way for x2 to move to its closest cluster once assigned to another one.
A simple way to face this problem is to use the following reassignment procedure:

Reassignment procedure

■ For i ! 1 to N
• Find Cj such that d(xi , Cj) ! mink!1,...,m d(xi , Ck).

• Set b(i) ! j.

■ End {For}

■ For j ! 1 to m
• Set Cj ! {xi ∈ X : b(i) ! j}.
• Update the representatives (if used).

■ End {For}

In this procedure, b(i) denotes the closest to xi cluster. This procedure may
be used after the termination of the algorithms or, if the merging procedure is also
used, after the termination of the merging procedure.

A variant of the BSAS algorithm combining the two refinement procedures has
been proposed in [MacQ 67]. Only the case in which point representatives are used
is considered. According to this algorithm, instead of starting with a single cluster,
we start with m " 1 clusters, each containing one of the first m of the vectors
in X . We apply the merging procedure and then we present each of the remaining
vectors to the algorithm. After assigning the current vector to a cluster and updating
its representative, we run the merging procedure again. If the distance between a
vector xi and its closest cluster is greater than a prespecified threshold, we form a
new cluster which contains only xi . Finally,after all vectors have been presented to
the algorithm,we run the reassignment procedure once. The merging procedure is
applied N # m $ 1 times. A variant of the algorithm is given in [Ande 73].

“14-Ch12-SA272” 17/9/2008 page 643

12.7 Neural Network Implementation 643

A different sequential clustering algorithm that requires a single pass on X is
discussed in [Mant 85]. More specifically,it is assumed that the vectors are produced
by a mixture of k Gaussian probability densities, p(x|Ci), that is,

p(x) !
k∑

j!1

P(Cj)p(x|Cj; !j ,)j) (12.6)

where !j and)j are the mean and the covariance matrix of the jth Gaussian distri-
bution, respectively. Also, P(Cj) is the a priori probability for Cj . For convenience,
let us assume that all P(Cj)’s are equal to each other. The clusters formed by the
algorithm are assumed to follow the Gaussian distribution. At the beginning,a single
cluster is formed using the first vector. Then, for each newly arrived vector, xi , the
mean vector and covariance matrix of each of the m clusters, formed up to now,
are appropriately updated and the conditional probabilities P(Cj |xi) are estimated.
If P(Cq|xi) ! maxj!1,...,m P(Cj |xi) is greater than a prespecifed threshold a, then
xi is assigned to Cq. Otherwise, a new cluster is formed where xi is assigned. An
alternative sequential clustering method that uses statistical tools is presented in
[Amad 05].

12.7 NEURAL NETWORK IMPLEMENTATION
In this section, a neural network architecture is introduced and is then used to
implement BSAS.

12.7.1 Description of the Architecture
The architecture is shown in Figure 12.4a. It consists of two modules, the matching
score generator (MSG) and the MaxNet network (MN).4

The first module stores q parameter vectors5 w1, w2, . . . , wq of dimension l % 1
and implements a function f (x, w), which indicates the similarity between x and
w. The higher the value of f (x, w), the more similar x and w are.

When a vector x is presented to the network, the MSG module outputs a q % 1
vector v, with its ith coordinate being equal to f (x, wi), i ! 1, . . . , q.

The second module takes as input the vector v and identifies its maximum
coordinate. Its output is a q % 1 vector s with all its components equal to 0
except one that corresponds to the maximum coordinate of v. This is set equal
to 1. Most of the modules of this type require at least one coordinate of v to be
positive.

Different implementations of the MSG can be used,depending on the proximity
measure adopted. For example, if the function f is the inner product, the MSG

4 This is a generalization of the Hamming network proposed in [Lipp 87].
5 These are also called exemplar patterns.

“14-Ch12-SA272” 17/9/2008 page 644

644 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

(a) (b)

Clustering
Algorithm

Max Net
(MN)

s(x)

Max Net
(MN)

Matching Score
Generator (MSG)

FIGURE 12.4
(a) The neural architecture. (b) Implementation of the BSAS algorithm when each cluster is
represented by its mean vector and the Euclidean distance between two vectors is used.

module consists of q linear nodes with their threshold being equal to 0. Each of
these nodes is associated with a parameter vector wi , and its output is the inner
product of the input vector x with wi .

If the Euclidean distance is used,the MSG module also consists of q linear nodes.
However, a different setup is required. The weight vector associated with the ith
node is wi and its threshold is set equal to Ti ! 1

2 (Q #∥wi∥2),where Q is a positive
constant that ensures that at least one of the first layer nodes will output a positive
matching score,and ∥wi∥ is the Euclidean norm of wi. Thus, the output of the node
is

f (x, wi) ! xT wi $
1
2

(Q # ∥wi∥2) (12.7)

It is easy to show that d2(x, wi) (d2(x, wj) is equivalent to f (x, wi) " f (x, wj)
and thus the output of MSG corresponds to the wi with the minimum Euclidean
distance from x (see Problem 12.8).

The MN module can be implemented via a number of alternatives. One can use
either neural network comparators such as the Hamming MaxNet,its generalizations
and other feed-forward architectures [Lipp 87, Kout 95, Kout 05, Kout 98] or
conventional comparators [Mano 79].

12.7.2 Implementation of the BSAS Algorithm
In this section,we demonstrate how the BSAS algorithm can be mapped to the neural
network architecture when (a) each cluster is represented by its mean vector and
(b) the Euclidean distance between two vectors is used (see Figure 12.4b). The
structure of the Hamming network must also be slightly modified,so that each node

“14-Ch12-SA272” 17/9/2008 page 645

12.7 Neural Network Implementation 645

in the first layer to has as an extra input the term # 1
2∥x∥2. Let wi and Ti be the

weight vector and the threshold of the ith node in the MSG module, respectively.
Also let a be a q % 1 vector whose ith component indicates the number of vectors
contained in the ith cluster. Also, let s(x) be the output of the MN module when
the input to the network is x. In addition, let ti be the connection between the ith
node of the MSG and its corresponding node in the MN module. Finally, let sgn(z)
be the step function that returns 1 if z " 0 and 0 otherwise.

The first m of the q wi’s correspond to the representatives of the clusters
defined so far by the algorithm. At each iteration step either one of the first m wi’s
is updated or a new parameter vector wm$1 is employed, whenever a new cluster
is created (if m (q). The algorithm may be stated as follows.

■ Initialization
• a ! 0

• wi ! 0, i ! 1, . . . , q

• ti ! 0, i ! 1, . . . , q

• m ! 1

• For the first vector x1 set
⃝ w1 ! x1

⃝ a1 ! 1

⃝ t1 ! 1

■ Main Phase
• Repeat

⃝ Present the next vector x to the network

⃝ Compute the output vector s(x)

⃝ GATE(x) ! AND((1 #
∑q

j!1(sj(x))), sgn(q # m))

⃝ m ! m $ GATE(x)

⃝ am ! am $ GATE(x)

⃝ wm ! wm $ GATE(x)x

⃝ Tm ! & # 1
2∥wm∥2

⃝ tm ! 1

⃝ For j ! 1 to m
— aj ! aj $ (1 # GATE(x))sj(x)

— wj ! wj # (1 # GATE(x))sj(x)(1
aj

(wj # x))

— Tj ! & # 1
2∥wj∥2

“14-Ch12-SA272” 17/9/2008 page 646

646 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

⃝ Next j

• Until all vectors have been presented once to the network

Note that only the outputs of the m first nodes of the MSG module are taken
into account,because only these correspond to clusters. The outputs of the remain-
ing nodes are not taken into account, since tk ! 0, k ! m $ 1, . . . , q. Assume that
a new vector is presented to the network such that min1'j'm d(x, wj) " & and
m (q. Then GATE(x) ! 1. Therefore, a new cluster is created and the next
node is activated in order to represent it. Since 1#GATE(x) ! 0, the execution
of the instructions in the For loop does not affect any of the parameters of the
network.

Suppose next that GATE(x) ! 0. This is equivalent to the fact that either
min1 ' j' m d(x, wj) ' & or there are no more nodes available to represent addi-
tional clusters. Then the execution of the instructions in the For loop results in
updating the weight vector and the threshold of the node,k, for which d(x, wk) !
min1 ' j' m d(x, wj). This happens because sk(x) ! 1 and sj(x) ! 0, j ! 1, . . . , q,
j ̸! k.

12.8 PROBLEMS
12.1 Prove Eq. (12.3) using induction.

12.2 Prove Eq. (12.5).

12.3 This problem aims at the investigation of the effects of the ordering of presenta-
tion of the vectors in the BSAS and MBSAS algorithms. Consider the following
two-dimensional vectors: x1 ! [1, 1]T , x2![1, 2]T , x3 ! [2, 2]T , x4 ! [2, 3]T ,
x5 ! [3, 3]T , x6 ! [3, 4]T , x7 ! [4, 4]T , x8 ! [4, 5]T , x9 ! [5, 5]T , x10 !
[5, 6]T , x11 ! [#4, 5]T , x12 ! [#3, 5]T , x13 ! [#4, 4]T , x14 ! [#3, 4]T . Also
consider the case that each cluster is represented by its mean vector.

a. Run the BSAS and the MBSAS algorithms when the vectors are presented
in the given order. Use the Euclidean distance between two vectors and
take & !

√
2.

b. Change the order of presentation to x1, x10, x2, x3, x4, x11, x12, x5, x6,
x7, x13, x8, x14, x9 and rerun the algorithms.

c. Run the algorithms for the following order of presentation: x1,x10,x5,x2,
x3, x11, x12, x4, x6, x7, x13, x14, x8, x9.

d. Plot the given vectors and discuss the results of these runs.

e. Perform a visual clustering of the data. How many clusters do you claim
are formed by the given vectors?

“14-Ch12-SA272” 17/9/2008 page 647

12.8 Problems 647

12.4 Consider the setup of Example 12.2. Run BSAS and MBSAS algorithms, with
& ! 5, using the mean vector as representative for each cluster. Discuss the
results.

12.5 Consider Figure 12.5. The inner square has side S1 ! 0.3, and the sides of the
inner and outer square of the outer frame are S2 ! 1 and S3 ! 1.3,respectively.
The inner square contains 50 points that stem from a uniform distribution in
the square. Similarly, the outer frame contains 50 points that stem from a
uniform distribution in the frame.
a. Perform a visual clustering of the data. How many clusters do you claim

are formed by the given points?

b. Consider the case in which each cluster is represented by its mean vector
and the Euclidean distance between two vectors is employed. Run BSAS
and MBSAS algorithms, with

& ! min
i, j!1,...,100

d(xi , xj), to max
i, j!1,...,100

d(xi , xj) with step 0.2

and with random ordering of the data. Give a quantitative explanation for
the results. Compare them with the results obtained from the previous
problem.

c. Repeat (b) for the case in which dps
min is chosen as the dissimilarity between

a vector and a cluster (see Chapter 11).

FIGURE 12.5
The setup of Problem 12.5.

“14-Ch12-SA272” 17/9/2008 page 648

648 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

12.6 Consider three two-dimensional Gaussian distributions with means [0, 0]T ,
[6, 0]T and [12, 6]T , respectively. The covariance matrices for all dis-
tributions are equal to the identity matrix I . Generate 30 points from
each distribution and let X be the resulting data set. Employ the
Euclidean distance and apply the procedure discussed in Section 12.3.1
for the estimation of the number of clusters underlying in X , with
a ! mini, j!1,...,100 d(xi , xj), b ! maxi, j!1,...,100 d(xi, xj) and c ! 0.3. Plot m
versus & and draw your conclusions.

12.7 Let s be a similarity measure between a vector and a cluster. Express the
BSAS, MBSAS, and TTSAS algorithms in terms of s.

12.8 Show that when the Euclidean distance between two vectors is in use and
the output function of the MSG module is given by Eq. (12.7), the relations
d2(x, w1) (d2(x, w2) and f (x, w1) " f (x, w2) are equivalent.

12.9 Describe a neural network implementation similar to the one given in
Section 12.7 for the BSAS algorithm when each cluster is represented by
the first vector assigned to it.

12.10 The neural network architecture that implements the MBSAS algorithm, if
the mean vector is in use, is similar to the one given in Figure 12.4b for the
Euclidean distance case. Write the algorithm in a form similar to the one
given in Section 12.7 for the MBSAS when the mean vector is in use, and
highlight the differences between the two implementations.

MATLAB PROGRAMS AND EXERCISES
Computer Programs

12.1 MBSAS algorithm.Write a MATLAB function,named MBSAS, that implements
the MBSAS algorithm. The function will take as input: (a) an l % N dimen-
sional matrix, whose ith column is the i-th data vector, (b) the parameter
theta (it corresponds to & in the text), (c) the maximum number of allow-
able clusters q, (d) an N -dimensional row array, called order, that defines the
order of presentation of the vectors of X to the algorithm. For example, if
order ! [3 4 1 2], the third vector will be presented first, the fourth vector
will be presented second, etc. If order ! [], no reordering takes place. The
outputs of the function will be: (a) an N -dimensional row vector bel, whose
ith component contains the identity of the cluster where the data vector with
order of presentation“i”has been assigned (the identity of a cluster is an inte-
ger in {1, 2, . . . , n_clust}, where n_clust is the number of clusters) and (b)
an l % n_clust matrix m whose i-th row is the cluster representative of the
i-th cluster. Use the Euclidean distance to measure the distance between two
vectors.

“14-Ch12-SA272” 17/9/2008 page 649

MATLAB Programs and Exercises 649

Solution
In the following code, do not type the asterisks. They will be used later on
for reference purposes.

function [bel, m]=MBSAS(X,theta,q,order)
% Ordering the data
[l,N]=size(X);
if(length(order)==N)
X1=[];
for i=1:N
X1=[X1 X(:,order(i))];

end
X=X1;
clear X1

end
% Cluster determination phase
n_clust=1; % no. of clusters
[l,N]=size(X);
bel=zeros(1,N);
bel(1)=n_clust;
m=X(:,1);
for i=2:N
[m1,m2]=size(m);
% Determining the closest cluster representative
[s1,s2]=min(sqrt(sum((m-X(:,i)*ones(1,m2)).^ 2)));
if(s1>theta) && (n_clust<q)
n_clust=n_clust+1;
bel(i)=n_clust;
m=[m X(:,i)];

end(*1)
end(*2)
[m1,m2]=size(m);(*3)
% Pattern classification phase(*4)
for i=1:N(*5)
if(bel(i)==0)(*6)
% Determining the closest cluster representative(*7)
[s1,s2]=min(sqrt(sum((m-X(:,i)*ones(1,m2)).^ 2)));(*8)
bel(i)=s2;
m(:,s2)=((sum(bel==s2)-1)*m(:,s2) +

X(:,i))/sum(bel==s2);
end

end

“14-Ch12-SA272” 17/9/2008 page 650

650 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

12.2 BSAS algorithm.Write a MATLAB function,named BSAS, that implements the
BSAS algorithm. Its inputs and outputs are defined exactly as in the MBSAS
function.

Solution
In the code given for MBSAS replace the line with (*1) with the command

else

and remove all the other lines with asterisk.

Computer Experiments

12.1 Consider the data set X ! {x1, x2, x3, x4, x5, x6, x7, x8}, where x1 !
[2, 5]T , x2 ! [8, 4]T , x3 ! [7, 3]T x4 ! [2, 2]T , x5 ! [1, 4]T , x6 ! [7, 2]T ,
x7 ! [3, 3]T , x8 ! [2, 3]T . Plot the data vectors.

12.2 Run the MBSAS function for q ! 5 on the above data set for

a. order ! [1, 5, 8, 4, 7, 3, 6, 2], theta !
√

2 $ 0.001

b. order ! [5, 8, 1, 4, 7, 2, 3 6], theta !
√

2 $ 0.001

c. order ! [1, 4, 5, 7, 8, 2, 3, 6], theta ! 2.5

d. order ! [1, 8, 4, 7, 5, 2, 3, 6], theta ! 2.5

e. the same order as in (c) and theta ! 3

f. the same order as in (d) and theta ! 3.

Study carefully the results and draw your conclusions.

12.3 Repeat 12.2 for BSAS.

REFERENCES
[Amad 05] Amador J.J. “Sequential clustering by statistical methodology,” Pattern Recognition

Letters,Vol. 26, pp. 2152–2163, 2005.

[Ande 73] Anderberg M.R. Cluster Analysis for Applications,Academic Press, 1973.

[Ball 65] Ball G.H. “Data analysis in social sciences,”Proceedings FJCC, Las Vegas, 1965.

[Bara 99] Baraldi A., Blonda P. “A survey of fuzzy clustering algorithms for pattern recogni-
tion, Parts I and II,” IEEE Transactions on Systems, Man and Cybernetics, B. Cybernetics,
Vol. 29(6), pp. 778–801, 1999.

[Bara 99a] Baraldi A., Schenato L. “Soft-to-hard model transition in clustering: a review,” Tech-
nical Report TR-99-010, 1999.

[Berk 02] Berkhin P. “Survey of clustering data mining techniques,” Technical Report, Accrue
Software Inc., 2002.

“14-Ch12-SA272” 17/9/2008 page 651

References 651

[Burk 91] Burke L.I.“Clustering characterization of adaptive reasonance,”Neural Networks,Vol. 4,
pp. 485–491, 1991.

[Carp 87] Carpenter G.A., Grossberg S. “ART2: Self-organization of stable category recognition
codes for analog input patterns,”Applied Optics,Vol. 26, pp. 4919–4930, 1987.

[Duda 01] Duda R.O., Hart P., Stork D. Pattern Classification, 2nd ed., John Wiley & Sons, 2001.

[Dura 74] Duran B., Odell P. Cluster Analysis: A Survey, Springer-Verlag, Berlin, 1974.

[Ever 01] Everitt B., Landau S., Leesse M. Cluster Analysis,Arnold, London, 2001.

[Flor 91] Floreen P.“The convergence of the Hamming memory networks,”IEEE Transactions on
Neural Networks, Vol. 2(4), pp. 449–459, July 1991.

[Fu 93] Fu L., Yang M., Braylan R., Benson N. “Real-time adaptive clustering of flow cytometric
data,”Pattern Recognition, Vol. 26(2), pp. 365–373, 1993.

[Gord 99] Gordon A. Classification, 2nd ed., Chapman & Hall, London, 1999.

[Hall 67] Hall A.V. “Methods for demonstrating resemblance in taxonomy and ecology,” Nature,
Vol. 214, pp. 830–831, 1967.

[Hans 97] Hansen P., Jaumard B.“Cluster analysis and mathematical programming,”Mathematical
Programming, Vol. 79, pp. 191–215, 1997.

[Hart 75] Hartigan J. Clustering Algorithms, John Wiley & Sons, 1975.

[Jain 88] Jain A.K., Dubes R.C. Algorithms for Clustering Data, Prentice Hall, 1988.

[Jain 99] Jain A., Muthy M., Flynn P. “Data clustering: A review,” ACM Computational Surveys,
Vol. 31(3), pp. 264–323, 1999.

[Jian 04] Jiang D., Tang C., Zhang A. “Cluster analysis for gene expression data: A survey,” IEEE
Transactions on Knowledge Data Engineering, Vol. 16(11), pp. 1370–1386, 2004.

[Juan 00] Juan A.,Vidal E. “Comparison of four initialization techniques for the k-medians cluster-
ing algorithm,” Proceedings of Joint IAPR International Workshops SSPR2000 and SPR2000,
Lecture Notes in Computer Science, Vol. 1876, pp. 842–852, Springer-Verlag, Alacant (Spain),
September 2000.

[Kats 94] Katsavounidis I., Jay Kuo C.-C., Zhang Z.,“A new initialization technique for generalized
Lloyd iteration,” IEEE Signal Processing Letters,Vol. 1(10), pp. 144–146, 1994.

[Kauf 90] Kaufman L., Roussseeuw P. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & Sons, 1990.

[Kola 01] Kolatch E. “Clustering algorithms for spatial databases: A survey,” available at http://
citeseer.nj.nec.com/436843.html.

[Kout 95] Koutroumbas K. “Hamming neural networks, architecture design and applications,”
Ph.D. thesis, Department of Informatics, University of Athens, 1995.

[Kout 94] Koutroumbas K., Kalouptsidis N. “Qualitative analysis of the parallel and asyn-
chronous modes of the Hamming network,” IEEE Transactions on Neural Networks, Vol. 5(3),
pp. 380–391, May 1994.

[Kout 98] Koutroumbas K., Kalouptsidis N. “Neural network architectures for selecting the
maximum input,” International Journal of Computer Mathematics,Vol. 68(1–2), 1998.

[Kout 05] Koutroumbas K., Kalouptsidis N.,“Generalized Hamming Networks and Applications,”
Neural Networks,Vol. 18, pp. 896–913, 2005.

[Lipp 87] Lippmann R.P. “An introduction to computing with neural nets,” IEEE ASSP Magazine,
Vol. 4(2), April 1987.

“14-Ch12-SA272” 17/9/2008 page 652

652 CHAPTER 12 Clustering Algorithms I: Sequential Algorithms

[Liu 68] Liu C.L. Introduction to Combinatorial Mathematics, McGraw-Hill, 1968.

[Lloy 82] Lloyd S.P. “Least squares quantization in PCM,” IEEE Transactions on Information
Theory, Vol. 28(2), pp. 129–137, March 1982.

[MacQ 67] MacQuenn J.B. “Some methods for classification and analysis of multivariate observa-
tions,” Proceedings of the Symposium on Mathematical Statistics and Probability, 5th ed.,
Vol. 1, pp. 281–297,AD 669871, University of California Press, Berkeley, 1967.

[Made 04] Madeira S.C.,OliveiraA.L.“Biclustering algorithms for biological data analysis:A survey,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 1(1), pp. 24–45,
2004.

[Mano 79] Mano M. Digital Logic and Computer Design, Prentice Hall, 1979.

[Mant 85] Mantaras R.L., Aguilar-Martin J. “Self-learning pattern classification using a sequential
clustering technique,”Pattern Recognition,Vol. 18(3/4), pp. 271–277, 1985.

[Murt 83] Murtagh F. “A survey of recent advanced in hierarchical clustering algorithms,” Journal
of Computation,Vol. 26(4), pp. 354–359, 1983.

[Pars 04] Parsons L., Haque E., Liu H. “Subspace clustering for high dimensional data: A review,”
ACM SIGKDD Explorations Newsletter,Vol. 6(1), pp. 90–105, 2004.

[Pier 03] Pierrakos D., Paliouras G., Papatheodorou C., Spyropoulos C.D. “Web usage mining
as a tool for personalization: A survey,” User Modelling and User-Adapted Interaction, Vol.
13(4), pp. 311–372, 2003.

[Raub 00] Rauber A.,Paralic J.,Pampalk E.“Empirical evaluation of clustering algorithms,”Journal
of Inf.Org. Sci., Vol. 24(2), pp. 195–209, 2000.

[Sebe 62] Sebestyen G.S. “Pattern recognition by an adaptive process of sample set construction,”
IRE Transactions on Information Theory,Vol. 8(5), pp. S82–S91, 1962.

[Snea 73] Sneath P.H.A., Sokal R.R. Numerical Taxonomy,W.H. Freeman, 1973.

[Spat 80] Spath H. Cluster Analysis Algorithms, Ellis Horwood, 1980.

[Stei 00] Steinbach M., Karypis G., Kumar V. “A comparison of document clustering techniques,”
Technical Report, 00-034, University of Minnesota, Minneapolis, 2000.

[Trah 89] Trahanias P., Scordalakis E. “An efficient sequential clustering method,”Pattern Recogni-
tion, Vol. 22(4), pp. 449–453, 1989.

[Wei 00] Wei C., Lee Y., Hsu C. “Empirical comparison of fast clustering algorithms for large data
sets,”Proceedings of the 33rd Hawaii International Conference on System Sciences, pp. 1–10,
Maui, HI, 2000.

[Xu 05] Xu R., Wunsch D. “Survey of clustering algorithms,” IEEE Transactions on Neural
Networks,Vol. 16(3), pp. 645–678, 2005.

“15-Ch13-SA272” 17/9/2008 page 653

CHAPTER

13Clustering Algorithms II:
Hierarchical Algorithms

13.1 INTRODUCTION
Hierarchical clustering algorithms are of different philosophy from the algorithms
described in the previous chapter. Specifically, instead of producing a single clus-
tering, they produce a hierarchy of clusterings. This kind of algorithm is usually
found in the social sciences and biological taxonomy (e.g., [El-G 68, Prit 71, Shea 65,
McQu 62]). In addition, they have been used in many other fields, including mod-
ern biology, medicine, and archaeology (e.g., [Stri 67, Bobe 93, Solo 71, Hods 71]).
Applications of the hierarchical algorithms may also be found in computer science
and engineering (e.g., [Murt 95, Kank 96]).

Before we describe their basic idea, let us recall that

X ! {xi , i ! 1, . . . , N }

is a set of l-dimensional vectors that are to be clustered. Also,recall from Chapter 11
the definition of a clustering

ℜ ! {Cj , j ! 1, . . . , m}

where Cj ⊆ X .
A clustering ℜ1 containing k clusters is said to be nested in the clustering

ℜ2, which contains r(" k) clusters, if each cluster in ℜ1 is a subset of a set in
ℜ2. Note that at least one cluster of ℜ1 is a proper subset of ℜ2. In this case
we write ℜ1 !ℜ2. For example, the clustering ℜ1 ! {{x1, x3}, {x4}, {x2, x5}} is
nested in ℜ2 ! {{x1, x3, x4}, {x2, x5}}. On the other hand, ℜ1 is nested neither in
ℜ3 ! {{x1, x4}, {x3}, {x2, x5}} nor in ℜ4 ! {{x1, x2, x4}, {x3, x5}}. It is clear that a
clustering is not nested to itself.

Hierarchical clustering algorithms produce a hierarchy of nested clusterings.
More specifically, these algorithms involve N steps, as many as the number of data
vectors. At each step t , a new clustering is obtained based on the clustering pro-
duced at the previous step t#1. There are two main categories of these algorithms,
the agglomerative and the divisive hierarchical algorithms. 653

“15-Ch13-SA272” 17/9/2008 page 654

654 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

The initial clustering ℜ0 for the agglomerative algorithms consists of N clusters,
each containing a single element of X . At the first step,the clustering ℜ1 is produced.
It contains N # 1 sets, such that ℜ0 !ℜ1. This procedure continues until the final
clustering, ℜN#1, is obtained, which contains a single set, that is, the set of data, X .
Notice that for the hierarchy of the resulting clusterings, we have

ℜ0 !ℜ1 ! · · ·! ℜN#1

The divisive algorithms follow the inverse path. In this case, the initial clustering
ℜ0 consists of a single set, X . At the first step the clustering ℜ1 is produced. It
consists of two sets, such that ℜ1 !ℜ0. This procedure continues until the final
clustering ℜN#1 is obtained, which contains N sets, each consisting of a single
element of X . In this case we have

ℜN#1 !ℜN#2 ! . . . , !ℜ0

The next section is devoted to the agglomerative algorithms; the divisive algo-
rithms are discussed briefly in Section 13.4.

13.2 AGGLOMERATIVE ALGORITHMS
Let g(Ci , Cj) be a function defined for all possible pairs of clusters of X . This
function measures the proximity between Ci and Cj . Let t denote the current
level of hierarchy. Then, the general agglomerative scheme may be stated as
follows:

Generalized Agglomerative Scheme (GAS)

■ Initialization:

• Choose ℜ0 ! {Ci ! {xi}, i ! 1, . . . , N } as the initial clustering.

• t ! 0.

■ Repeat:

• t ! t $ 1

• Among all possible pairs of clusters (Cr , Cs) in ℜt#1 find the one, say
(Ci , Cj), such that

g(Ci , Cj) !

{
minr, s g(Cr , Cs), if g is a dissimilarity function

maxr, s g(Cr , Cs), if g is a similarity function
(13.1)

• Define Cq ! Ci ∪ Cj and produce the new clustering ℜt ! (ℜt#1 #
{Ci , Cj}) ∪ {Cq}.

■ Until all vectors lie in a single cluster.

“15-Ch13-SA272” 17/9/2008 page 655

13.2 Agglomerative Algorithms 655

It is clear that this scheme creates a hierarchy of N clusterings, so that each one
is nested in all successive clusterings, that is,ℜt1 !ℜt2 , for t1" t2, t2 ! 1, . . . , N # 1.
Alternatively, we can say that if two vectors come together into a single cluster at
level t of the hierarchy, they will remain in the same cluster for all subsequent
clusterings. This is another way of viewing the nesting property.

A disadvantage of the nesting property is that there is no way to recover from
a “poor” clustering that may have occurred in an earlier level of the hierarchy (see
[Gowe 67]).1

At each level t , there are N # t clusters. Thus, in order to determine the pair of
clusters that is going to be merged at the t $ 1 level, (N#t

2) ≡ (N#t)(N#t#1)
2 pairs

of clusters have to be considered. Thus, the total number of pairs that have to be
examined throughout the whole clustering process is

N#1∑

t!0

(
N # t

2

)

!
N∑

k!1

(
k
2

)

!
(N # 1)N (N $ 1)

6

that is, the total number of operations required by an agglomerative scheme is
proportional to N3. However, the exact complexity of the algorithm depends on
the definition of g.

13.2.1 Definition of Some Useful Quantities
There are two main categories of agglomerative algorithms. Algorithms of the first
category are based on matrix theory concepts, while algorithms of the second one
are based on graph theory concepts. Before we enter into their discussion, some
definitions are required. The pattern matrix D(X) is the N % l matrix, whose ith
row is the (transposed) ith vector of X . The similarity (dissimilarity) matrix,
P(X), is an N %N matrix whose (i, j) element equals the similarity s(xi , xj) (dissim-
ilarity d(xi , xj)) between vectors xi and xj . It is also referred to as the proximity
matrix to include both cases. In general, P is a symmetric matrix.2 Moreover, if
P is a similarity matrix, its diagonal elements are equal to the maximum value of
s. On the other hand, if P is a dissimilarity matrix, its diagonal elements are equal
to the minimum value of d. Notice that for a single pattern matrix there exists
more than one proximity matrix depending on the choice of the proximity mea-
sure ℘(xi, xj). However, fixing ℘(xi, xj), one can easily observe that for a given
pattern matrix there exists an associated single proximity matrix. On the other
hand, a proximity matrix may correspond to more than one pattern matrices (see
Problem 13.1).

1 A method that produces hierarchies, which do not, necessarily, possess the nesting property, has
been proposed in [Frig 97].
2 In [Ozaw 83] a hierarchical clustering algorithm, called RANCOR, is discussed, which is based on
asymmetric proximity matrices.

“15-Ch13-SA272” 17/9/2008 page 656

656 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

Example 13.1
Let X ! {xi , i ! 1, . . . , 5}, with x1! [1, 1]T , x2 ! [2, 1]T , x3 ! [5, 4]T , x4 ! [6, 5]T , and
x5 ! [6.5, 6]T . The pattern matrix of X is

D(X) !

⎡

⎢⎢⎢⎢⎢⎣

1 1
2 1
5 4
6 5

6.5 6

⎤

⎥⎥⎥⎥⎥⎦

and its corresponding dissimilarity matrix, when the Euclidean distance is in use, is

P(X) !

⎡

⎢⎢⎢⎢⎢⎣

0 1 5 6.4 7.4
1 0 4.2 5.7 6.7
5 4.2 0 1.4 2.5

6.4 5.7 1.4 0 1.1
7.4 6.7 2.5 1.1 0

⎤

⎥⎥⎥⎥⎥⎦

When the Tanimoto measure is used, the similarity matrix of X becomes

P&(X) !

⎡

⎢⎢⎢⎢⎢⎣

1 0.75 0.26 0.21 0.18
0.75 1 0.44 0.35 0.20
0.26 0.44 1 0.96 0.90
0.21 0.35 0.96 1 0.98
0.18 0.20 0.90 0.98 1

⎤

⎥⎥⎥⎥⎥⎦

Note that in P(X) all diagonal elements are 0, since d2(x, x) ! 0, while in P&(X) all diagonal
elements are equal to 1, since sT (x, x) ! 1.

A threshold dendrogram, or simply a dendrogram, is an effective means of
representing the sequence of clusterings produced by an agglomerative algorithm.
To clarify this idea, let us consider again the data set given in Example 13.1. Let
us define g(Ci , Cj) as g(Ci, Cj) ! dss

min(Ci, Cj) (see Section 11.2). One may easily
see that, in this case, the clustering sequence for X produced by the generalized
agglomerative scheme, when the Euclidean distance between two vectors is used,
is the one shown in Figure 13.1. At the first step x1 and x2 form a new cluster.
At the second step x4 and x5 stick together, forming a single cluster. At the third
step x3 joins the cluster {x4, x5} and,finally, at the fourth step the clusters {x1, x2}
and {x3, x4, x5} are merged into a single set, X . The right-hand side of Figure 13.1
shows the corresponding dendrogram. Each step of the generalized agglomerative
sheme (GAS) corresponds to a level of the dendrogram. Cutting the dendrogram
at a specific level results in a clustering.

A proximity dendrogram is a dendrogram that takes into account the level of
proximity where two clusters are merged for the first time. When a dissimilarity
(similarity) measure is in use, the proximity dendrogram is called a dissimilarity
(similarity) dendrogram. This tool may be used as an indicator of the natural or

“15-Ch13-SA272” 17/9/2008 page 657

13.2 Agglomerative Algorithms 657

{{x1},{x2},{x3},{x4},{x5}}

{{x1, x2},{x3},{x4},{x5}}

{{x1, x2},{x3},{x4,x5}}

{{x1, x2},{x3, x4, x5}}

{{x1, x2, x3, x4, x5}}

x1 x2 x3 x4 x5

FIGURE 13.1
The clustering hierarchy for X of Example 13.1 and its corresponding dendrogram.

(a) (b)

0.1
0

Si
m

ila
ri

ty
 s

ca
le

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

D
is

si
m

ila
ri

ty
 s

ca
le

9
10

8
7
6
5
4
3
2
1
0

FIGURE 13.2

(a) The proximity (similarity) dendrogram for X using P&(X) from Example 13.1. (b) The proximity
(dissimilarity) dendrogram for X using P(X) from Example 13.1.

forced formation of clusters at any level. That is, it may provide a clue about the clus-
tering that best fits the data,as will be explained in Section 13.6. Figure 13.2 shows
the similarity and dissimilarity dendrograms for X of Example 13.1 when P&(X) and
P(X) are in use, respectively.

Before we proceed to a more detailed discussion of the hierarchical algorithms,
an important note is in order. As explained earlier, this kind of algorithm determines
a whole hierarchy of clusterings, rather than a single clustering. The determination
of the whole dendrogram may be very useful in some applications,such as biological
taxonomy (e.g.,see [Prit 71]). However,in other applications we are interested only
in the specific clustering that best fits the data. If one is willing to use hierarchical
algorithms for applications of the latter type,he or she has to decide which clustering
of the produced hierarchy is most suitable for the data. Equivalently, one must
determine the appropriate level to cut the dendrogram that corresponds to the
resulting hierarchy. Similar comments also hold for the divisive algorithms to be

“15-Ch13-SA272” 17/9/2008 page 658

658 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

discussed later. Methods for determining the cutting level are discussed in the last
section of the chapter.

In the sequel, unless otherwise stated, we consider only dissimilarity matrices.
Similar arguments hold for similarity matrices.

13.2.2 Agglomerative Algorithms Based on Matrix Theory
These algorithms may be viewed as special cases of GAS. The input in these
schemes is the N % N dissimilarity matrix, P0 ! P(X), derived from X . At each
level, t , when two clusters are merged into one, the size of the dissimilarity matrix
Pt becomes (N # t) % (N # t). Pt follows from Pt#1 by (a) deleting the two rows
and columns that correspond to the merged clusters and (b) adding a new row and
a new column that contain the distances between the newly formed cluster and
the old (unaffected at this level) clusters. The distance between the newly formed
cluster Cq (the result of merging Ci and Cj) and an old cluster, Cs, is a function of
the form

d(Cq , Cs) ! f (d(Ci , Cs), d(Cj , Cs), d(Ci , Cj)) (13.2)

The procedure justifies the name matrix updating algorithms, often used in
the literature. In the sequel, we give an algorithmic scheme, the matrix updating
algorithmic scheme (MUAS),that includes most of the algorithms of this kind. Again,
t denotes the current level of the hierarchy.

Matrix Updating Algorithmic Scheme (MUAS)

■ Initialization:

• ℜ0 ! {{xi}, i ! 1, . . . , N }.
• P0 ! P(X).

• t ! 0

■ Repeat:

• t ! t $ 1

• Find Ci, Cj such that d(Ci , Cj) ! minr,s ! 1,...,N , r ̸!s d(Cr , Cs)

• Merge Ci, Cj into a single cluster Cq and form ℜt ! (ℜt#1 # {Ci, Cj})
∪ {Cq}.

• Define the proximity matrix Pt from Pt#1 as explained in the text.

■ Until ℜN#1 clustering is formed, that is, all vectors lie in the same cluster.

Notice that this scheme is in the spirit of the GAS. In [Lanc 67] it is pointed out
that a number of distance functions comply with the following update equation:

d(Cq , Cs) ! aid(Ci , Cs) $ ajd(Cj , Cs) $ bd(Ci , Cj)

$ c|d(Ci , Cs) # d(Cj , Cs)| (13.3)

“15-Ch13-SA272” 17/9/2008 page 659

13.2 Agglomerative Algorithms 659

Different values of ai , aj , b, and c correspond to different choices of the dissimi-
larity measure d(Ci , Cj). Equation (13.3) is also a recursive definition of a distance
between two clusters, initialized from the distance between the initial point clus-
ters. Another formula, not involving the last term and allowing ai , aj , and b to be
functions of Ci ,Cj , and Cs, is discussed in [Bobe 93]. In the sequel we present algo-
rithms stemming from MUAS and following from Eq. (13.3) for different values of
the parameters ai , aj , b, c.

The simpler algorithms included in this scheme are:

■ The single link algorithm. This is obtained from Eq. (13.3) if we set ai ! 1/2,
aj ! 1/2, b ! 0, c ! # 1/2. In this case,

d(Cq , Cs) ! min{d(Ci , Cs), d(Cj , Cs)} (13.4)

The dss
min measure, defined in Section 11.2, falls under this umbrella.

■ The complete link algorithm. This follows from Eq. (13.3) if we set ai ! 1
2 ,

aj ! 1
2 , b ! 0 and c ! 1

2 . Then we may write3

d(Cq , Cs) ! max{d(Ci , Cs), d(Cj , Cs)}. (13.5)

Note that the distance between the merged clusters Ci and Cj does not enter
into the above formulas. In the case where a similarity, instead of a dissimilarity,
measure is used then (a) for the single link algorithm the operator min should be
replaced by max in Eq. (13.4) and (b) for the complete link algorithm the opera-
tor max should be replaced by the operator min in Eq. (13.5). To gain a further
insight into the behavior of the above algorithms, let us consider the following
example.

Example 13.2
Consider the data set shown in Figure 13.3a. The first seven points form an elongated cluster
while the remaining four form a rather compact cluster. The numbers on top of the edges
connecting the points correspond to the respective (Euclidean) distances between vectors.
These distances are also taken to measure the distance between two initial point clusters.
Distances that are not shown are assumed to have very large values. Figure 13.3b shows the
dendrogram produced by the application of the single link algorithm to this data set. As one
can easily observe, the algorithm first recovers the elongated cluster, and the second cluster
is recovered at a higher dissimilarity level.

Figure 13.3c shows the dendrogram produced by the complete link algorithm. It is easily
noticed that this algorithm proceeds by recovering first compact clusters.

3 Equations (13.4) and (13.5) suggest that merging clusters is a min/max problem for the complete
link and a min/min problem for the single link.

“15-Ch13-SA272” 17/9/2008 page 660

660 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

(a) (b)

(c)

1 1.1 1.2

2

5
2.2

2.6

4.5
2.4

1.3 1.4 1.5
x1

x8 x9

x11
x10

x2 x3 x4 x5 x6 x7
1.1

1.2 1.3
1.4

1.5

2
2.2

2.4

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1

1.2

3.3

7.5

2

4.5
5

2.9

1.4

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1

FIGURE 13.3
(a) The data set X . (b) The dissimilarity dendrogram produced by the single link algorithm.
(c) The dissimilarity dendrogram produced by the complete link algorithm (the level of the final
clustering is not shown).

Remark

■ The preceding algorithms are the two extremes of the family described by
Eq. (13.3). Indeed, the clusters produced by the single link algorithm are
formed at low dissimilarities in the dissimilarity dendrogram. On the other
hand, the clusters produced by the complete link algorithm are formed at
high dissimilarities in the dissimilarity dendrogram. This happens because
in the single link (complete link) algorithm the minimum (maximum) of the
distances d(Ci , Cs) and d(Cj , Cs) is used as the distance between d(Cq, Cs).
This implies that the single link algorithm has a tendency to favor elongated
clusters. This characteristic is also known as the chaining effect. On the other
hand, the complete link algorithm proceeds by recovering small compact
clusters, and it should be preferred if there is evidence that compact clusters
underlie X .

“15-Ch13-SA272” 17/9/2008 page 661

13.2 Agglomerative Algorithms 661

The rest of the algorithms,to be discussed next,are compromises between these
two extremes.4

■ The weighted pair group method average (WPGMA) algorithm is obtained
from Eq. (13.3) if we set ai ! aj ! 1

2 , b ! 0, and c ! 0, that is,

d(Cq , Cs) !
1
2

(d(Ci , Cs) $ d(Cj , Cs)) (13.6)

Thus, in this case the distance between the newly formed cluster Cq and an
old one Cs is defined as the average of distances between Ci, Cs and Cj , Cs.

■ The unweighted pair group method average (UPGMA) algorithm is defined
if we choose ai ! ni

ni$nj
, aj !

nj
ni$nj

, b ! 0, c ! 0, where ni and nj are the
cardinalities of Ci and Cj , respectively. In this case the distance between Cq
and Cs is defined as

d(Cq , Cs) !
ni

ni $ nj
d(Ci , Cs) $

nj

ni $ nj
d(Cj , Cs) (13.7)

■ The unweighted pair group method centroid (UPGMC) algorithm results on
setting ai ! ni

ni$nj
, aj !

nj
ni$nj

, b ! #
ninj

(ni$nj)2 , c ! 0, that is,

dqs !
ni

ni $ nj
dis $

nj

ni $ nj
djs #

ninj

(ni $ nj)2 dij (13.8)

where dqs has been used in place of d(Cq, Cs) for notational simplicity. This
algorithm has an interesting interpretation. Let the representatives of the
clusters be chosen as the respective means (centroids), that is,

mq !
1

nq

∑

x∈Cq

x (13.9)

and the dissimilarity to be the squared Euclidean distance between cluster
representatives. Then it turns out that this recursive definition of dqs is nothing
but the square Euclidean distance between the respective representatives (see
Problem 13.2), that is,

dqs ! ∥mq # ms∥2 (13.10)

■ The weighted pair group method centroid (WPGMC) algorithm is obtained
if we choose ai ! aj ! 1

2 , b ! # 1
4 , and c ! 0. That is,

dqs !
1
2

dis $
1
2

djs #
1
4

dij (13.11)

4 The terminology used here follows that given in [Jain 88].

“15-Ch13-SA272” 17/9/2008 page 662

662 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

Note that Eq. (13.11) results from (13.8) if the merging clusters have the same
number of vectors. Of course, this is not true in general, and the algorithm
basically computes the distance between weighted versions of the respective
centroids. A notable feature of the WPGMC algorithm is that there are cases
where dqs ' min(dis, djs) (Problem 13.3).

■ TheWard or minimum variance algorithm. Here, the distance between two
clusters Ci and Cj ,d&

ij ,is defined as a weighted version of the squared Euclidean
distance of their mean vectors, that is,

d&
ij !

ninj

ni $ nj
dij (13.12)

where dij ! ∥mi # mj∥2. Thus, in step 2.2 of MUAS we seek the pair of clus-
ters Ci, Cj so that the quantity d&

ij is minimum. Furthermore, it can be shown
(Problem 13.4) that this distance belongs to the family of Eq. (13.3), and we
can write

d&
qs !

ni $ ns

ni $ nj $ ns
d&

is $
nj $ ns

ni $ nj $ ns
d&

js #
ns

ni $ nj $ ns
d&

ij (13.13)

The preceding distance can also be viewed from a different perspective. Let us
define

e2
r !

∑

x∈Cr

∥x # mr∥2

as the variance of the rth cluster around its mean and

Et !
N#t∑

r!1

e2
r (13.14)

as the total variance of the clusters at the tth level (where N #t clusters are present).
We will now show that Ward’s algorithm forms ℜt$1 by merging the two clusters
that lead to the smallest possible increase of the total variance. Suppose that
clusters Ci and Cj are chosen to be merged into one, say Cq. Let Eij

t$1 be the total
variance after the clusters Ci and Cj are merged in Cq at the t $ 1 level. Then, since

all other clusters remain unaffected, the difference (Eij
t$1 ! Eij

t$1 # Et is equal to

(Eij
t$1 ! e2

q # e2
i # e2

j (13.15)

Taking into account that
∑

x∈Cr

∥x # mr∥2 !
∑

x∈Cr

∥x∥2 # nr∥mr∥2 (13.16)

Eq. (13.15) is written as

(Eij
t$1 ! ni∥mi∥2 $ nj∥mj∥2 # nq∥mq∥2 (13.17)

“15-Ch13-SA272” 17/9/2008 page 663

13.2 Agglomerative Algorithms 663

Using the fact that

nimi $ njmj ! nqmq (13.18)

Eq. (13.17) becomes

(Eij
t$1 !

ninj

ni $ nj
∥mi # mj∥2 ! d&

ij (13.19)

which is the distance minimized by Ward’s algorithm. This justifies the name
minimum variance.

Example 13.3
Consider the following dissimilarity matrix:

P0 !

⎡

⎢⎢⎢⎢⎢⎣

0 1 2 26 37
1 0 3 25 36
2 3 0 16 25

26 25 16 0 1.5
37 36 25 1.5 0

⎤

⎥⎥⎥⎥⎥⎦

where the corresponding squared Euclidean distance is adopted. As one can easily observe,
the first three vectors, x1, x2, and x3, are very close to each other and far away from the
others. Likewise, x4 and x5 lie very close to each other and far away from the first three vec-
tors. For this problem all seven algorithms discussed before result in the same dendrogram.
The only difference is that each clustering is formed at a different dissimilarity level.

Let us first consider the single link algorithm. Since P0 is symmetric, we consider only the
upper diagonal elements. The smallest of these elements equals 1 and occurs at position (1, 2)
of P0. Thus, x1 and x2 come into the same cluster and ℜ1 ! {{x1, x2}, {x3}, {x4}, {x5}} is
produced. In the sequel, the dissimilarities among the newly formed cluster and the remaining
ones have to be computed. This can be achieved via Eq. (13.4). The resulting proximity matrix,
P1, is

P1 !

⎡

⎢⎢⎢⎣

0 2 25 36
2 0 16 25

25 16 0 1.5
36 25 1.5 0

⎤

⎥⎥⎥⎦

Its first row and column correspond to the cluster {x1, x2}. The smallest of the upper diagonal
elements of P1 equals 1.5. This means that at the next stage, the clusters {x4} and {x5} will
stick together into a single cluster, producing ℜ2 ! {{x1, x2}, {x3}, {x4, x5}}. Employing
Eq. (13.4), we obtain

P2 !

⎡

⎢⎣
0 2 25
2 0 16

25 16 0

⎤

⎥⎦

where the first row (column) corresponds to {x1, x2}, and the second and third rows (columns)
correspond to {x3} and {x4, x5}, respectively. Proceeding as before, at the next stage {x1, x2}

“15-Ch13-SA272” 17/9/2008 page 664

664 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

and {x3} will get together in a single cluster and ℜ3 ! {{x1, x2, x3}, { x4, x5}} is produced.
The new proximity matrix, P3, becomes

P3 !

[
0 16

16 0

]

where the first and the second row (column) correspond to {x1, x2, x3} and {x4, x5} clusters,
respectively. Finally, ℜ4 ! {{x1, x2, x3, x4, x5}} will be formed at dissimilarity level equal
to 16.

Working in a similar fashion, we can apply the remaining six algorithms to P0. Note that in
the case of Ward’s algorithm, the initial dissimilarity matrix should be 1

2 P0, due to the definition
in Eq. (13.12). However, care must be taken when we apply UPGMA, UPGMC, and Ward’s
method. In these cases, when a merging takes place the parameters ai , aj , b, and c must be
properly adjusted. The proximity levels at which each clustering is formed for each algorithm
are shown in Table 13.1.

The considered task is a nice problem with two well-defined compact clusters lying away
from each other. The preceding example demonstrates that in such “easy” cases all algo-
rithms work satisfactorily (as happens with most of the clustering algorithms proposed in the
literature). The particular characteristics of each algorithm are revealed when more demand-
ing situations are faced. Thus, in Example 13.2, we saw the different behaviors of the single
link and complete link algorithms. Characteristics of other algorithms, such as the WPGMC
and the UPGMC, are discussed next.

13.2.3 Monotonicity and Crossover
Let us consider the following dissimilarity matrix:

P !

⎡

⎢⎢⎢⎣

0 1.8 2.4 2.3
1.8 0 2.5 2.7
2.4 2.5 0 1.2
2.3 2.7 1.2 0

⎤

⎥⎥⎥⎦

Table 13.1 The Results Obtained with the Seven Algorithms Discussed when they are
Applied to the Proximity Matrix of Example 13.3

SL CL WPGMA UPGMA WPGMC UPGMC Ward’s Algorithm

ℜ0 0 0 0 0 0 0 0

ℜ1 1 1 1 1 1 1 0.5

ℜ2 1.5 1.5 1.5 1.5 1.5 1.5 0.75

ℜ3 2 3 2.5 2.5 2.25 2.25 1.5

ℜ4 16 37 25.75 27.5 24.69 26.46 31.75

“15-Ch13-SA272” 17/9/2008 page 665

13.2 Agglomerative Algorithms 665

(a)

3

2

1

0

(b) (c)

Single link Complete link
UPGMC

algorithm

x4x3x2x1 x4x3x2x1 x4x3x2x1

FIGURE 13.4
Dissimilarity dendrograms derived from (a) single link, (b) complete link, and (c) UPGMC and
WPGMC when they apply to P. The third dendrogram exhibits the crossover phenomenon.

Application of the single and complete link algorithms to P gives rise to the dissimi-
larity dendrograms depicted in Figures 13.4a and 13.4b,respectively. Application of
the UPGMC and WPGMC algorithms to P results in the same dissimilarity dendro-
gram, which is shown in Figure 13.4c. In this dendrogram something interesting
occurs. The cluster {x1, x2, x3, x4} is formed at a lower dissimilarity level than
cluster {x1, x2}. This phenomenon is called crossover. More specifically, crossover
occurs when a cluster is formed at a lower dissimilarity level than any of its com-
ponents. The opposite of the crossover is monotonicity. Satisfaction of the latter
condition implies that each cluster is formed at a higher dissimilarity level than any
one of its components. More formally, the monotonicity condition may be stated as
follows:

“If clusters Ci and Cj are selected to be merged in cluster Cq, at the tth level of
the hierarchy, then the following condition must hold:

d(Cq, Ck) ≥ d(Ci, Cj)

for all Ck, k ̸! i, j, q.”
Monotonicity is a property that is exclusively related to the clustering

algorithm and not to the (initial) proximity matrix.
Recall Eq. (13.3) defined in terms of the parameters ai,aj ,b,and c. In the sequel,

a proposition is stated and proved that allows us to decide whether an algorithm
satisfies the monotonicity condition.

Proposition 1. If ai and aj are nonnegative, ai $aj $b ≥ 1, and either (a) c ≥ 0
or (b) max{#ai, #aj} ' c ' 0, then the corresponding clustering method satisfies
the monotonicity condition.

“15-Ch13-SA272” 17/9/2008 page 666

666 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

Proof. (a) From the hypothesis we have that

b ≥ 1 # ai # aj

Substituting this result in Eq. (13.3) and after some rearrangements, we obtain

d(Cq, Cs) ≥ d(Ci , Cj) $ ai(d(Ci , Cs) # d(Ci, Cj))
$ aj(d(Cj , Cs) # d(Ci , Cj)) $ c|d(Ci , Cs) # d(Cj , Cs)|

Since, from step 2.2 of the MUAS in Section 13.2.2,

d(Ci, Cj) ! min
r,u

d(Cr , Cu)

the second and third terms of the last inequality are nonnegative. Moreover, the
fourth term of the same inequality is also nonnegative. Therefore, we obtain

d(Cq, Cs) ≥ d(Ci , Cj)

Thus, the monotonicity condition is satisfied.
(b) Let d(Ci , Cs) ≥ d(Cj , Cs) (the case where d(Ci , Cs) " d(Cj , Cs) may be

treated similarly). As in the previous case,

b ≥ 1 # ai # aj

Taking into account this inequality, Eq. (13.3) gives

d(Cq, Cs) ≥ d(Ci, Cj) $ ai(d(Ci, Cs) # d(Ci, Cj))

$ aj(d(Cj , Cs) # d(Ci , Cj)) $ c(d(Ci , Cs) # d(Cj , Cs))

By adding and subtracting on the right-hand side of this inequality,the term cd(Ci, Cj)
and after some manipulations, we obtain

d(Cq, Cs) ≥ (aj # c)(d(Cj , Cs) # d(Ci, Cj)) $ d(Ci , Cj)

$ (ai $ c)(d(Ci, Cs) # d(Ci, Cj))

Since, from the hypothesis, aj # c ≥ 0 and

d(Ci, Cj) ! min
r,u

d(Cr , Cu)

from step 2.2 of the MUAS we obtain that

d(Cq , Cs) ≥ d(Ci , Cj)

Note that the conditions of Proposition 1 are sufficient but not necessary. This
means that algorithms that do not satisfy the premises of this proposition may still
satisfy the monotonicity condition. It is easy to note that the single link, the com-
plete link, the UPGMA, the WPGMA, and Ward’s algorithm satisfy the premises of

“15-Ch13-SA272” 17/9/2008 page 667

13.2 Agglomerative Algorithms 667

Proposition 1. Thus, all these algorithms satisfy the monotonicity condition. The
other two algorithms, the UPGMC and the WPGMC, do not satisfy the monotonic-
ity condition. Moreover, we can construct examples that demonstrate that these
two algorithms violate the monotonicity property, as follows from Figure 13.4c.
However, it is this does not mean that they always lead to dendrograms with
crossovers.

Finally, we note that there have been several criticisms concerning the
usefulness of algorithms that do not satisfy the monotonicity condition (e.g.,
[Will 77, Snea 73]). However, these algorithms may give satisfactory results in the
frame of certain applications. Moreover, there is no theoretical guideline suggesting
that the algorithms satisfying the monotonicity condition always lead to acceptable
results. After all, this ought to be the ultimate criterion for the usefulness of an
algorithm (unfortunately, such a criterion does not exist in general).

13.2.4 Implementational Issues
As stated earlier, the computational time of GAS is O(N3). However, many efficient
implementations of these schemes have been proposed in the literature, which
reduce the computational time by an order of N . For example,in [Kuri 91] an imple-
mentation is discussed, for which the required computational time is reduced to
O(N2 log N). Also, in [Murt 83, Murt 84, Murt 85], implementations for widely used
agglomerative algorithms are discussed that require O(N2) computational time and
either O(N2) or O(N) storage. Finally,parallel implementations on single instruction
multiple data (SIMD) machines are discussed in [Will 89] and [Li 90].

13.2.5 Agglomerative Algorithms Based on Graph Theory
Before we describe the algorithms of this family, let us first recall some basic
definitions from graph theory.

Basic Definitions from Graph Theory
A graph G is defined as an ordered pair G ! (V , E), where V ! {vi , i ! 1, . . . , N } is
a set of vertices and E is a set of edges connecting some pairs of vertices. An edge,
connecting the vertices vi and vj , will be denoted either by eij or by (vi , vj). When
the ordering of vi and vj is of no importance, then we deal with undirected graphs.
Otherwise, we deal with directed graphs. In addition, if no cost is associated with
the edges of the graph, we deal with unweighted graphs. Otherwise, we deal
with weighted graphs. In the sequel, we consider graphs where a pair of vertices
may be connected by at most one edge. In the framework of clustering, we deal
with undirected graphs where each vertex corresponds to a feature vector (or,
equivalently, to the pattern represented by the feature vector).

A path in G, between vertices vi1 and vin , is a sequence of vertices and edges
of the form vi1ei1i2vi2 . . . vin#1ein#1invin (Figure 13.5a). Of course, there is no guar-
anteed, that there will be always exists a path from vi1 to vin . If in this path, vi1

“15-Ch13-SA272” 17/9/2008 page 668

668 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

Complete
graph

(d)

Path

(a)

Loop

(b)

Maximally
connected
subgraph

(e)

Connected
graph

(c)

Maximally
complete
subgraph

(f)

v1v1

v1
v3

v3

v3

v5

v4v4

v2

v2v2

FIGURE 13.5
(a) A path connecting the vertices v1 and v4. (b) A loop. (c) A connected graph. (d) A complete
graph. (e) Maximally connected subgraph. (f) Maximally complete subgraph.

coincides with vin , the path is called a loop or circle (Figure 13.5b). In the special
case in which an edge connects a vertex to itself, we have a self-loop.

A subgraph G&! (V &, E&) of G is a graph with V &⊆ V and E&⊆ E1, where E1 is a
subset of E, whose edges connect vertices that lie in V &. Clearly, G is a subgraph of
itself.

A subgraph G&! (V &, E&) is connected if there exists at least one path connec-
ting any pair of vertices in V & (Figure 13.5c). For example, in Figure 13.5c the
subgraph with vertices v1, v2, v4, and v5 is not connected. The subgraph G& is
complete if every vertex vi ∈ V & is connected with every vertex in V & # {vi} (Figure
13.5d).

A maximally connected subgraph of G is a connected subgraph G& of G that
contains as many vertices of G as possible (Figure 13.5e). A maximally complete
subgraph is a complete subgraph G& of G that contains as many vertices of G as
possible (Figure 13.5f).

A concept that is closely related to the algorithms based on graph theory is that
of the threshold graph. A threshold graph is an undirected,unweighted graph with

“15-Ch13-SA272” 17/9/2008 page 669

13.2 Agglomerative Algorithms 669

N nodes,each corresponding to a vector of the data set X . In this graph there are no
self-loops or multiple edges between any two nodes. Let a be a dissimilarity level.
A threshold graph G(a) with N nodes contains an edge between two nodes i and j
if the dissimilarity between the corresponding vectors xi and xj is less than or
equal to a, i, j ! 1, . . . , N . Alternatively, we may write

(vi , vj) ∈ G(a), if d(xi , xj) ' a, i, j ! 1, . . . , N (13.20)

If similarity measures are used, this definition is altered to

(vi, vj) ∈ G(a), if s(xi , xj) ≥ a, i, j ! 1, . . . , N

A proximity graph Gp(a) is a threshold graph G(a), all of whose edges (vi , vj)
are weighted with the proximity measure between xi and xj . If a dissimilarity
(similarity) measure is used as proximity between two vectors, then the proximity
graph is called a dissimilarity (similarity) graph. Figure 13.6 shows the threshold
and proximity graphs G(3) and Gp(3),G(5) and Gp(5) obtained from the dissimilarity
matrix P(X) given in Example 13.1.

The Algorithms
In this section, we discuss agglomerative algorithms based on graph theory
concepts. More specifically, we consider graphs, G, of N nodes with each node
corresponding to a vector of X . Clusters are formed by connecting nodes together,
and this leads to connected subgraphs. Usually, an additional graph property, h(k),
must be satisfied by the subgraphs in order to define valid clusters. In this context,
the function g involved in GAS is replaced by gh(k),where h(k) is the graph property.
Some typical properties that can be adopted are [Jain 88, Ling 72].

1

2 3

4
5

1

2 3

4
5

(a)

(c) (d)

(b)

1

1

2 3
2.5

1.1 5
4

1.4

1

1
5

2 34.2

2.5

1.1 5
4

1.4

FIGURE 13.6
(a) The threshold graph G(3), (b) the proximity (dissimilarity) graph Gp(3), (c) the threshold
graph G(5), (d) the proximity (dissimilarity) graph Gp(5), obtained from the dissimilarity matrix
P(X) of Example 13.1.

“15-Ch13-SA272” 17/9/2008 page 670

670 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

■ Node connectivity. The node connectivity of a connected subgraph is the
largest integer k such that all pairs of nodes are joined by at least k paths
having no nodes in common.

■ Edge connectivity. The edge connectivity of a connected subgraph is the
largest integer k such that all pairs of nodes are joined by at least k paths
having no edges in common.

■ Node degree. The degree of a connected subgraph is the largest integer k
such that each node has at least k incident edges.

The general agglomerative scheme in the context of graph theory is known
as the graph theory–based algorithmic scheme (GTAS). The algorithm follows
exactly the same iteration steps as the generalized agglomerative scheme (GAS),
with the exception of step 2.2. This is expressed as

gh(k)(Ci , Cj) !

{
minr,s gh(k)(Cr , Cs), for dissimilarity functions

maxr,s gh(k)(Cr , Cs), for similarity functions
(13.21)

The proximity function gh(k)(Cr , Cs) between two clusters is defined in terms
of (a) a proximity measure between vectors (that is nodes in the graph) and (b)
certain constraints imposed by the property h(k) on the subgraphs that are formed.
In a more formal way, gh(k) is defined as

gh(k)(Cr , Cs)

! min
xu∈Cr ,xv∈Cs

{d(xu, xv) ≡ a : the G(a) subgraph

defined by Cr ∪ Cs is (a) connected and either

(b1) has the property h(k) or (b2) is complete}5 (13.22)

In words, clusters (that is connected subgraphs) are merged (a) based on the
proximity measure between their nodes and (b) provided that their merging leads
to a connected subgraph that either has property h(k) or is complete. Let us now
consider a few examples.

Single Link Algorithm
Here connectedness is the only prerequisite. That is, no property h(k) is imposed
and no completeness is required. Thus (b1) and (b2) in (13.22) are ignored and
(13.22) is simplified to

gh(k)(Cr , Cs) ! min
xu∈Cr ,xv∈Cs

{d(xu, xv) ≡ a: the G(a)

subgraph defined by Cr ∪ Cs is connected} (13.23)

Let us demonstrate the algorithm via an example.

5 This means that all nodes of Cr ∪ Cs participate in the required properties.

“15-Ch13-SA272” 17/9/2008 page 671

13.2 Agglomerative Algorithms 671

Example 13.4
Consider the following dissimilarity matrix:

P !

⎡

⎢⎢⎢⎢⎢⎣

0 1.2 3 3.7 4.2
1.2 0 2.5 3.2 3.9
3 2.5 0 1.8 2.0

3.7 3.2 1.8 0 1.5
4.2 3.9 2.0 1.5 0

⎤

⎥⎥⎥⎥⎥⎦

The first clustering, ℜ0, is the one where each vector of X forms a single cluster (see
Figure 13.7). In order to determine the next clustering, ℜ1, via the single link algorithm,
we need to compute gh(k)(Cr , Cs) for all pairs of the existing clusters. For {x1} and {x2}, the
value of gh(k) is equal to 1.2, since {x1} ∪ {x2} become connected for a first time in G(1.2).
Likewise, gh(k)({x1}, {x3}) ! 3. The rest of the gh(k) values are computed in a similar fashion.
Then, using Eq. (13.21), we find that gh(k)({x1}, {x2}) ! 1.2 is the minimum value of gh(k)

and thus {x1} and {x2} are merged in order to produce

ℜ1 ! {{x1, x2}, {x3}, {x4}, {x5}}
Following the same procedure, we find that the minimum gh(k) among all pairs of clusters is
gh(k)({x4}, {x5}) ! 1.5. Thus, ℜ2 is given by

ℜ2 ! {{x1, x2}, {x3}, {x4, x5}}
For the formation of ℜ3 we first consider the clusters {x3} and {x4, x5}. In this case
gh(k)({x3}, {x4, x5}) ! 1.8, since {x3} ∪ {x4, x5} becomes connected at G(1.8) for a first
time. Similarly, we find that gh(k)({x1, x2}, {x3}) ! 2.5, and gh(k)({x1, x2}, {x4, x5}) ! 3.2.
Thus,

ℜ3 ! {{x1, x2}, {x3, x4, x5}}
Finally, we find that gh(k)({x1, x2}, {x3, x4, x5}) ! 2.5 and ℜ4 is formed at this level. Observe
that at G(2.0) no clustering is formed.

Remark

■ In the single link algorithm no property h(k) is required, and Eq. (13.23) is
basically the same as

gh(k)(Cr , Cs) ! min
x∈Cr ,y∈Cs

d(x, y) (13.24)

Hence the algorithm is equivalent to its single link counterpart based on matrix
theory and both produce the same results (see Problem 13.7).

Complete Link Algorithm
The only prerequisite here is that of completeness; that is, the graph property h(k) is
omitted. Since,connectedness is a weaker condition than completeness,subgraphs
form valid clusters only if they are complete. Let us demonstrate the algorithms
through the case of Example 13.4.

“15-Ch13-SA272” 17/9/2008 page 672

672 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

G(0) G(1.2) G(1.5)

G(1.8) G(2.0) G(2.5)

G(3.0) G(3.2) G(3.7)

G(3.9) G(4.2)

FIGURE 13.7
Threshold graphs derived by the dissimilarity matrix P given in Example 13.4.

Clusterings ℜ0,ℜ1,and ℜ2 are the same as those produced by the single link algo-
rithm and are formed by G(0),G(1.2),and G(1.5), respectively. Let us derive the ℜ3
clustering. It is gh(k)({x3}, {x4, x5}) ! 2, because at G(2.0), {x3} ∪ {x4, x5} bec-
omes complete for the first time. Similarly, gh(k)({x1, x2}, {x3}) ! 3 and gh(k)
({x1, x2}, {x4, x5}) ! 4.2. Thus, the resulting ℜ3 clustering is the same as the one
obtained by the single link algorithm. The only difference is that it is formed at
graph G(2.0) instead of G(1.8), which was the case with the single link algorithm.
Finally, the last clustering,ℜ4 is defined at G(4.2).

“15-Ch13-SA272” 17/9/2008 page 673

13.2 Agglomerative Algorithms 673

Node connectivity : 3

Edge connectivity : 3

Node degree : 3

FIGURE 13.8
A graph with node connectivity, edge connectivity, and node degree equal to 3.

Remark

■ A little thought suffices to see that Eq. (13.22) for the complete link algorithm
is equivalent to

gh(k)(Cr , Cs) ! max
x∈Cr ,y∈Cs

d(x, y) (13.25)

and, thus, this algorithm is equivalent to its matrix-based counterpart (see
Problem 13.8)

The single and the complete link algorithms may be seen as the extreme cases of
the GTAS scheme. This is because the criteria adopted for the formation of a new
cluster are the weakest possible for the single link and the strongest possible for
the complete link algorithm. A variety of algorithms between these two extremes
may be obtained if we make different choices for gh(k). From Eq. (13.22) it is clear
that this may be achieved by changing the property h(k), where k is a parameter
whose meaning depends on the adopted property h(k). For example,in Figure 13.8,
the value of k for the properties of node connectivity, edge connectivity, and node
degree is 3.

Example 13.5
In this example we demonstrate the operation of the property h(k). Let us consider the fol-
lowing dissimilarity matrix:

P(X) !

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 9 18 19 20 21
1 0 8 13 14 15 16
9 8 0 17 10 11 12

18 13 17 0 5 6 7
19 14 10 5 0 3 4
20 15 11 6 3 0 2
21 16 12 7 4 2 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

“15-Ch13-SA272” 17/9/2008 page 674

674 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

1

8

9

10

11

3

2

7

5

6

4

13

x7
x1

x3

x2
x6

x5

x4

FIGURE 13.9
The proximity graph G(13) derived by the dissimilarity matrix P given in Example 13.5.

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7

(a) (b) (c)

1
2

4

6

10
9

1
2

4

6

13

9

1
2

4

11

9

FIGURE 13.10
Dissimilarity dendrograms related to Example 13.5. (a) Dissimilarity dendrogram produced when
h(k) is the node degree property, with k ! 2. (b) Dissimilarity dendrogram produced when h(k)
is the node connectivity property, with k ! 2. (c) Dissimilarity dendrogram produced when h(k)
is the edge connectivity property, with k ! 2.

Figure 13.9 shows the G(13) proximity graph produced by this dissimilarity matrix. Let h(k)
be the node degree property with k ! 2; that is, it is required that each node has at least
two incident edges. Then the obtained threshold dendrogram is shown in Figure 13.10a. At
dissimilarity level 1, x1 and x2 form a single cluster. This happens because {x1} ∪ {x2} is
complete at G(1), despite the fact that property h(2) is not satisfied (remember the disjunction
between conditions (b1) and (b2) in Eq. (13.22)). Similarly, {x6} ∪ {x7} forms a cluster at
dissimilarity level 2. The next clustering is formed at level 4, since {x5} ∪ {x6, x7} becomes
complete in G(4). At level 6, x4, x5, x6, and x7 lie for the first time in the same cluster.
Although this subgraph is not complete, it does satisfy h(2). Finally, at level 9, x1, x2, and
x3 come into the same cluster. Note that, although all nodes in the graph have node degree

“15-Ch13-SA272” 17/9/2008 page 675

13.2 Agglomerative Algorithms 675

equal to 2, the final clustering will be formed at level 10 because at level 9 the graph is not
connected.

Assume now that h(k) is the node connectivity property, with k ! 2; that is, all pairs of
nodes in a connected subgraph are joined by at least two paths having no nodes in common.
The dissimilarity dendrogram produced in this case is shown in Figure 13.10b.

Finally, the dissimilarity dendrogram produced when the edge connectivity property with
k ! 2 is employed is shown in Figure 13.10c.

It is not difficult to see that all these properties for k ! 1 result in the single link
algorithm. On the other hand, as k increases, the resulting subgraphs approach
completeness.

Example 13.6
Consider again the dissimilarity matrix of the previous example. Assume now that h(k) is the
node degree property with k ! 3. The corresponding dendrogram is shown in Figure 13.11.
Comparing the dendrograms of Figures 13.10a and 13.11, we observe that the same clusters
in the second case are formed in larger dissimilarity levels.

Clustering Algorithms Based on the Minimum Spanning Tree
A spanning tree is a connected graph (containing all the vertices of the graph)
and having no loops (that is, there exists only one path connecting any two pairs of

x1 x2 x3 x4 x5 x6 x7

1

2

4

7

18

9

FIGURE 13.11
Threshold dendrogram related to Example 13.6 for the node degree property and k ! 3.

“15-Ch13-SA272” 17/9/2008 page 676

676 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

nodes in the graph). If the edges of the graph are weighted,we define as the weight
of the spanning tree the sum of the weights of its edges. A minimum spanning
tree (MST) is a spanning tree with the smallest weight among all spanning trees
connecting the nodes of the graph. An MST of a graph may be derived with Prim’s
algorithm or Kruskal’s algorithm (e.g., see [Horo 78]). Note that there may be more
than one minimum spanning trees for a given graph. However, when the weights
of the edges of G are different from each other, then the MST is unique. In our case,
the weights of a graph are derived from the proximity matrix P(X).

Searching for the MST can also be seen as a special case of the GTAS scheme, if
we adopt in place of gh(k)(Cr , Cs) the following proximity function:

g(Cr , Cs) ! min
ij

{wij : xi ∈ Cr , xj ∈ Cs} (13.26)

where wij ! d(xi , xj).
In words, this measure identifies the minimum weight of the MST that connects

the subgraphs corresponding to Cr and Cs.
Once the MST has been determined (using any suitable algorithm), we may

identify a hierarchy of clusterings as follows: the clusters of the clustering at level t
are identified as the connected components of G if only the edges of its MST with the
smallest t weights are considered. It takes a little thought to see that this hierarchy
is identical to the one defined by the single link algorithm, at least for the case in
which all the distances between any two vectors of X are different from each other.
Thus, this scheme may also be viewed as an alternative implementation of the single
link algorithm. The following example demonstrates the operation of this scheme.

Example 13.7
Let us consider the following proximity matrix.

P !

⎡

⎢⎢⎢⎢⎢⎣

0 1.2 4.0 4.6 5.1
1.2 0 3.5 4.2 4.7
4.0 3.5 0 2.2 2.8
4.6 4.2 2.2 0 1.6
5.1 4.7 2.8 1.6 0

⎤

⎥⎥⎥⎥⎥⎦

The MST derived from this proximity matrix is given in Figure 13.12a. The corresponding
dendrogram is given in Figure 13.12b.

It is easy to observe that a minimum spanning tree uniquely specifies the den-
drogram of the single link algorithm. Thus,MST can be used as an alternative to the
single link algorithm and can lead to computational savings.

13.2.6 Ties in the Proximity Matrix
In cases in which the vectors consist of interval-scaled or ratio-scaled features, the
probability of a vector of the data set X being equidistant from two other vectors of
X is very small for most practical problems. However, if we deal with ordinal data,

“15-Ch13-SA272” 17/9/2008 page 677

13.2 Agglomerative Algorithms 677

1

1

2

2 4

2.23.5

1.61.2

3

3

4 5

5
0

1.2
1.6
2.2

3.5

(b)(a)

FIGURE 13.12
(a) The minimum spanning tree derived with the dissimilarity matrix given in Example 13.7.
(b) The dissimilarity dendrogram obtained with the algorithm based on the MST.

this probability is not negligible. The fact that a vector is equidistant from two other
vectors implies that a proximity matrix P will have at least two equal entries in the
triangle above its main diagonal (see Example 13.8). It is interesting to see how the
hierarchical algorithms behave with such proximity matrices. Let us consider first
the family of algorithms based on the graph theory via the following example.

Example 13.8
Consider the following dissimilarity matrix:

P !

⎡

⎢⎢⎢⎢⎢⎣

0 4 9 6 5
4 0 3 8 7
9 3 0 3 2
6 8 3 0 1
5 7 2 1 0

⎤

⎥⎥⎥⎥⎥⎦

Note that P(2, 3) ! P(3, 4). The corresponding dissimilarity graph G(9) is shown in Figure
13.13a. Figure 13.13b shows the corresponding dissimilarity dendrogram obtained by the
single link algorithm. No matter which of the two edges is considered first, the resulting
dendrogram remains the same. Figure 13.13c (13.13d) depicts the dendrogram obtained
by the complete link algorithm when the (3, 4) ((2, 3)) edge is considered first. Note that the
dendrograms of Figures 13.13c and 13.13d are different.

Let us interchange the P(1, 2) and P(2, 3) entries of P6 and let P1 be the new dissimilarity
matrix. Figure 13.14a shows the dendrogram obtained by the single link algorithm, and Figure
13.14b depicts the dendrogram obtained by the complete link algorithm. In this case, the
complete link algorithm produces the same dendrogram regardless the order in which edges
(1, 2) and (3, 4) are considered.

This example indicates that the single link algorithm leads to the same dendro-
gram, regardless of how the ties are considered. On the other hand, the complete

6 Since a dissimilarity matrix is symmetric, P(2, 1) and P(3, 2) entries are also interchanged.

“15-Ch13-SA272” 17/9/2008 page 678

678 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

1 1

1
0

2 2

2

4

3 4

4

2

6
9

5

8

7

5

5

4
1

3

3

3

1 2 4 53 3 2 4 51

3

1
0

3

9

4

6

1
0

3

9

4

6

(a) (b)

(c) (d)

FIGURE 13.13
(a) The dissimilarity graph (G(9)) for the dissimilarity matrix given in Example 13.8. (b)
The dissimilarity dendrogram obtained by the single link algorithm. (c) The dissimilarity
dendrogram obtained by the complete link algorithm when edge (3, 4) is considered first.
(d) The dissimilarity dendrogram obtained by the complete link algorithm when edge (2, 3)
is considered first.

link algorithm may lead to different dendrograms if it follows different ways of con-
sidering the ties. The other graph theory–based algorithms,which fall between the
single and the complete algorithm, exhibit behavior similar to that of the complete
link algorithm (see Problem 13.11).

The same trend is true for the matrix-based algorithms. Note, however, that in
matrix-based schemes ties may appear at a later stage in the proximity matrix
(see Problem 13.12). Thus, as is shown in [Jard 71], the single link algorithm treats
the ties in the proximity matrix in the most reliable way; it always leads to the
same proximity dendrogram. It seems that every requirement additional to the
connectivity property (for graph theory-based algorithms) or to Eq. (13.4) (for
matrix theory-based algorithms) produces ambiguity, and the results become sen-
sitive to the order in which ties are processed. From this point of view, the single
link algorithm seems to outperform its competitors. This does not mean that all

“15-Ch13-SA272” 17/9/2008 page 679

13.3 The Cophenetic Matrix 679

(a) (b)

1 2 4 53 1 2 4 53

1

0

2

9

3

1

0

2
3

4

FIGURE 13.14
(a) The dissimilarity dendrogram obtained by the single link algorithm for P1 given in Example
13.8. (b) The dissimilarity dendrogram obtained by the complete link algorithm for P1 given in
Example 13.8.

the other algorithms are inferior. The algorithm that gives the best results is prob-
lem dependent. However, if one decides to use any other algorithm, different from
the single link, he or she must treat the possible ties in the proximity matrix very
carefully.

13.3 THE COPHENETIC MATRIX
Another quantity associated with the hierarchical algorithms is the cophenetic
matrix. This will be used as a tool for the validation of clustering hierarchies in
Chapter 16.

Let ℜtij be the clustering at which xi and xj are merged in the same cluster
for the first time (of course, they will remain in the same cluster for all subsequent
clusterings). Also let L(tij) be the proximity level at which clustering ℜtij is defined.
We define the cophenetic distance between two vectors as

dC (xi , xj) ! L(tij)

In words, the cophenetic distance between two vectors xi and xj is defined as the
proximity level at which the two vectors are found in the same cluster for the first
time.

The cophenetic distance is a metric, under the assumption of monotonicity.
To prove this, we need to show that the five conditions stated in Chapter 11 are
satisfied. Indeed, the first condition holds; that is, 0 ' dC (x, y) " $). Note that

“15-Ch13-SA272” 17/9/2008 page 680

680 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

the minimum value of dC is zero, since L(0) ! 0. Also, dC (x, x) ! 0, since a vector
x lies in the same cluster with itself at the zero level clustering, where dissimilar-
ity is 0. Furthermore, it is obvious that dC (x, y) ! dC (y, x). Also, it is easy to see
that dC (x, y) ! 0 ⇔ x ! y, since at L(0) each cluster consists of a single vector.
Finally, the triangular inequality is also valid. Indeed, for a triple (xi , xj , xr), let
t1 ! max{tij , tjr} and L1 ! max{L(tij), L(tjr)}. It is clear, from the property of hier-
archy, that in the clustering formed at the t1 level, xi, xj , and xr fall into the same
cluster. Furthermore, assuming monotonicity, dC (xi , xr) ' L1, or

dC (xi , xr) ' max{dC (xi , xj), dC (xj , xr)} (13.27)

Note that two of these three distances are always equal, depending on which pair
of vectors came first under a single cluster. This condition is stronger than the
triangular inequality and is called ultrametric inequality. Notice the close relation
of ultrametricity and monotonicity. Monotonicity ensures ultrametricity and, as a
consequence, the triangular inequality.

The cophenetic matrix is defined as

DC (X) ! [dC (xi, xj)] ! [L(tij)], i, j ! 1, . . . , N

It is clear that the cophenetic matrix is symmetric. Moreover,apart from its diagonal
elements,it has only N #1 distinct entries;that is,it has many ties (duplicate entries).
DC (X) is a special case of dissimilarity matrix,since dC (xi , xj) satisfy the ultrametric
inequality.

A hierarchical algorithm can, thus,be viewed as a mapping of the data proximity
matrix into a cophenetic matrix.

Example 13.9
Let us consider the dissimilarity dendrogram of Figure 13.2b. The corresponding cophenetic
matrix is

DC (X) !

⎡

⎢⎢⎢⎢⎢⎣

0 1 4.2 4.2 4.2
1 0 4.2 4.2 4.2

4.2 4.2 0 1.4 1.4
4.2 4.2 1.4 0 1.1
4.2 4.2 1.4 1.1 0

⎤

⎥⎥⎥⎥⎥⎦

13.4 DIVISIVE ALGORITHMS
The divisive algorithms follow the reverse strategy from that of the agglomerative
schemes. The first clustering contains a single set,X . At the first step,we search for
the best possible partition of X into two clusters. The straightforward method is to
consider all possible 2N#1#1 partitions of X into two sets and to select the optimum,

“15-Ch13-SA272” 17/9/2008 page 681

13.4 Divisive Algorithms 681

according to a prespecified criterion. This procedure is then applied iteratively to
each of the two sets produced in the previous stage. The final clustering consists
of N clusters, each containing a single vector of X .

Let us state the general divisive scheme more formally. Here, the tth clustering
contains t $ 1 clusters. In the sequel, Ctj will denote the jth cluster of the tth clus-
tering ℜt , t ! 0, . . . , N # 1, j ! 1, . . . , t $ 1. Let g(Ci, Cj) be a dissimilarity function
defined for all possible pairs of clusters. The initial clustering ℜ0 contains only the
set X , that is, C01 ! X . To determine the next clustering, we consider all possible
pairs of clusters that form a partition of X . Among them we choose the pair,denoted
by (C11, C12), that maximizes g.7 These clusters form the next clustering ℜ1, that
is, ℜ1 ! {C11, C12}. At the next time step, we consider all possible pairs of clusters
produced by C11 and we choose the one that maximizes g. The same procedure
is repeated for C12. Assume now that from the two resulting pairs of clusters, the
one originating from C11 gives the larger value of g. Let this pair be denoted by
(C1

11, C2
11). Then the new clustering, ℜ2, consists of C1

11, C2
11, and C12. Relabeling

these clusters as C21, C22, C23, respectively, we have ℜ2 ! {C21, C22, C23}. Carrying
on in the same way,we form all subsequent clusterings. The general divisive scheme
may be stated as follows:

Generalized Divisive Scheme (GDS)

■ Initialization

• Choose ℜ0 ! {X} as the initial clustering.

• t ! 0

■ Repeat

• t ! t $ 1

• For i ! 1 to t
⃝ Among all possible pairs of clusters (Cr , Cs) that form a partition of Ct#1, i,

find the pair (C1
t#1, i , C2

t#1, i) that gives the maximum value for g.

• Next i

• From the t pairs defined in the previous step choose the one that maximizes
g. Suppose that this is (C1

t#1, j , C2
t#1, j).

• The new clustering is

ℜt ! (ℜt#1 # {Ct#1, j}) ∪ {C1
t#1, j , C2

t#1, j}
• Relabel the clusters of ℜt .

■ Until each vector lies in a single distinct cluster.

7 We can also use a similarity function. In that case we should choose the pair of clusters that
minimizes g.

“15-Ch13-SA272” 17/9/2008 page 682

682 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

Different choices of g give rise to different algorithms. One can easily observe
that this divisive scheme is computationally very demanding, even for moderate
values of N . This is its main drawback, compared with the agglomerative scheme.
Thus, if these schemes are to be of any use in practice, some further computa-
tional simplifications are required. One possibility is to make compromises and not
search for all possible partitions of a cluster. This can be done by ruling out many
partitions as not“reasonable,”under a prespecified criterion. Examples of such algo-
rithms are discussed in [Gowd 95] and [MacN 64]. The latter scheme is discussed
next.

Let Ci be an already formed cluster. Our goal is to split it further, so that the
two resulting clusters, C1

i and C2
i , are as “dissimilar” as possible. Initially, we have

C1
i ! ∅ and C2

i ! Ci. Then, we identify the vector in C2
i whose average dissim-

ilarity from the remaining vectors is maximum, and we move it to C1
i . In the

sequel, for each of the remaining x ∈ C2
i , we compute its average dissimilarity with

the vectors of C1
i , g(x, C1

i), as well as its average dissimilarity with the rest of the
vectors in C2

i , g(x, C2
i # {x}). If for every x ∈ C2

i , g(x, C2
i # {x}) " g(x, C1

i),
then we stop. Otherwise, we select the vector x ∈ C2

i for which the difference
D(x) ! g(x, C2

i #{x})#g(x, C1
i) is maximum (among the vectors of C2

i ,x exhibits
the maximum dissimilarity with C2

i # {x} and the maximum similarity to C1
i) and

we move it to C1
i . The procedure is repeated until the termination criterion is met.

This iterative procedure accounts for step 2.2.1 of the“generalized divisive scheme”
GDS.

In the preceding algorithm the splitting of the clusters is based on all the fea-
tures (coordinates) of the feature vectors. Algorithms of this kind are also called
polythetic algorithms. In fact, all the algorithms that have been or will be con-
sidered in this book are polythetic. In contrast, there are divisive algorithms that
achieve the division of a cluster based on a single feature at each step. These are
the so-called monothetic algorithms. Such algorithms are discussed in [Ever 01].
For more details see [Lamb 62, Lamb 66, MacN 65].

A large research effort has been devoted to comparing the performance of a
number of the various hierarchical algorithms in the context of different applica-
tions. The interested reader may consult, for example, [Bake 74, Hube 74, Kuip 75,
Dube 76, Mill 80, Mill 83].

13.5 HIERARCHICAL ALGORITHMS FOR LARGE DATA SETS
As we have seen in Section 13.2 the number of operations for the generalized agglom-
erative scheme (GAS) is of the order of N3,and this cannot become less than O(N2),
even if efficient computational schemes are employed. This section is devoted to a
special type of hierarchical algorithms that are most appropriate for handling large
data sets. As it has been stated elsewhere, the need for such algorithms stems from
a number of applications, such as Web mining, bioinformatics, and so on.

“15-Ch13-SA272” 17/9/2008 page 683

13.5 Hierarchical Algorithms For Large Data Sets 683

The CURE Algorithm
The acronym CURE stands for Clustering Using REpresentatives. The innovative
feature of CURE is that it represents each cluster,C ,by a set of k * 1 representatives,
denoted by RC . By using multiple representatives for each cluster, the CURE algo-
rithm tries to “capture” the shape of each one. However, in order to avoid taking
into account irregularities in the border of the cluster, the initially chosen represen-
tatives are “pushed” toward the mean of the cluster. This action is also known as
“shrinking”in the sense that the volume of space“defined”by the representatives is
shrunk toward the mean of the cluster. More specifically, for each C the set RC is
determined as follows:

■ Select the point x ∈ C with the maximum distance from the mean of C and
set RC ! {x} (the set of representatives).

■ For i ! 2 to min{k, nC }8

• Determine y ∈ C # RC that lies farthest from the points in RC and set
RC ! RC ∪ { y}.

■ End { For }

■ Shrink the points x ∈ RC toward the mean mc in C by a factor a. That is,
x ! (1 # a)x $ amc , + x ∈ RC .

The resulting set RC is the set of representatives of C . The distance between two
clusters Ci and Cj is defined as

d(Ci , Cj) ! min
x∈RCi , y∈RCj

d(x, y) (13.28)

Given the previous definitions, the CURE algorithm may be viewed as a special
case of the GAS scheme. In its original version, the representatives of a cluster,
Cq, generated from the agglomeration of two clusters Ci and Cj , are determined
by taking into account all the points of Cq and applying the procedure described
previously. However, to reduce the time complexity of this procedure, especially
for the case of large number of points in each cluster, the representatives of Cq are
selected among the 2k representatives of Ci and Cj . Such a choice is justified by
the fact that the representatives are the most scattered points in each one of the
clusters, Ci and Cj . Hence, it is expected that the resulting k representative points
for Cq will also be well scattered. Once the final number of m clusters has been
established,each point x in X ,which is not among the representatives of any of the
final clusters, is assigned to the cluster that contains the closest to x representative.
The number m of clusters is either supplied to the algorithm by the user, based on
his prior knowledge about the structure of the data set,or estimated using methods
such as those described in Section 13.6.

8 nC denotes the number of points in C .

“15-Ch13-SA272” 17/9/2008 page 684

684 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

The worst-case time complexity of CURE can be shown to be O(N2 log2 N)
([Guha 98]). Clearly, this time complexity becomes prohibitive in the case of very
large data sets. The technique adopted by the CURE algorithm, in order to reduce
the computational complexity, is that of random sampling. That is, a sample set X &

is created from X , by choosing randomly N & out of the N points of X . However,
one has to ensure that the probability of missing a cluster of X ,due to this sampling,
is low. This can be guaranteed if the number of points N & is sufficiently large
([Guha 98]).

Having estimated N &, CURE forms a number of p ! N /N & sample data sets by
successive random sampling. In other words,X is partitioned randomly in p subsets.
Let q * 1 be a user-defined parameter. Then,the points in each partition are clustered
(following the procedure already explained) until N &/q clusters are formed or the
distance between the closest pair of clusters to be merged in the next iteration
step exceeds a user-defined threshold. Once the clustering procedure applied to
each one of the subsets is completed, a second clustering pass on the (at most)
p(N &/q) ! N /q clusters, obtained from all subsets, is performed. The goal of this
pass is to apply the merging procedure described previously to all (at most) N /q
clusters so that we end up with the required final number, m, of clusters. To this
end, for each of the (at most) N /q clusters k representatives are used. Finally, each
point x in the data set, X , that is not used as a representative in any one of the
m clusters is assigned to one of them according to the following strategy. First,
a random sample of representative points from each of the m clusters is chosen.
Then, based on the previous representatives the point x is assigned to the cluster
that contains the representative closest to it.

Experiments reported in [Guha 98] show that CURE is sensitive to the choice
of the parameters k, N &, and a. Specifically, k must be large enough to capture the
geometry of each cluster. In addition, N & must be higher than a certain percentage
of N (for the reported experiments,N & should be at least 2.5% of N). The choice of
the shrinking factor, a, also affects the performance of CURE. For small values of a
(small shrinkage), CURE exhibits a behavior similar to the MST algorithm, whereas
for large values of a its performance resembles that of algorithms using a single point
representative for each cluster. The worst-case execution time for CURE increases
quadratically with the sample size N &, that is, O(N &2 log2 N &) ([Guha 98]).

Remarks

■ The algorithm exhibits low sensitivity with respect to outliers within the
clusters. The reason is that shrinking the scattered points toward the mean
“dampens” the adverse effects due to outliers ([Guha 98]).

■ The problem of outliers that form clusters by themselves is faced by CURE as
follows. Because the outliers usually form small clusters, a few stages prior
to the termination of the algorithm a check for clusters containing very few
points takes place. These clusters are likely to consist of outliers, and they are
removed.

“15-Ch13-SA272” 17/9/2008 page 685

13.5 Hierarchical Algorithms For Large Data Sets 685

■ If N &/q is chosen to be sufficiently large compared to the final number (m) of
clusters in X , it is expected that the points in a subset X & that are merged to
the same cluster during the application of CURE on X &,will also belong to the
same cluster (as if the entire data set, X , were taken into account). In other
words, it is expected that the quality of the final clustering obtained by CURE
will not be significantly affected by the partitioning of X .

■ For a !1, all representatives diminish to the mean of the cluster.

■ The CURE algorithm can reveal clusters with nonspherical or elongated shapes,
as well as clusters of wide variance in size.

■ In [Guha 98], the task of the efficient implementation of the algorithm is
discussed using the heap and the k # d tree data structures (see also [Corm 90]
and [Same 89]).

The ROCK Algorithm
The RObust Clustering using linKs (ROCK) algorithm is best suited for nominal
(categorical) features. For this type of data, it makes no sense to choose the mean of
a cluster as a representative. In addition,the proximity between two feature vectors
whose coordinates stem from a discrete data set cannot be adequately quantified
by any of the lp distances. ROCK introduces the idea of links, in place of distances,
to merge clusters.

Before we proceed further, some definitions are in order. Two points x, y ∈ X
are considered neighbors if s(x, y) ≥ !, where s(·) is an appropriately chosen simi-
larity function and ! is a user-defined parameter, which defines the similarity level
according to which two points can be considered “similar.” Let link(x, y) be the
number of common neighbors between x and y. Consider the graph whose ver-
tices are the points in X and whose edges connect points that are neighbors. Then,
it can easily be determined that link(x, y) may be viewed as the number of distinct
paths of length 2 connecting x and y.

Assume now that there exists a function f (!)"1 that is dependent on the data set
as well as on the type of clusters we are interested in, with the following property:
each point assigned to a cluster Ci has approximately nf (!)

i neighbors in Ci , where
ni is the number of points in Ci . Assuming that cluster Ci is large enough and that
points outside Ci result in a very small number of links to the points of Ci ,each point
in Ci contributes approximately to n2f (!)

i links. Thus, the expected total number of

links among all pairs in Ci is n1$2f (!)
i (Problem 13.15).

The “closeness”between two clusters is assessed by the function

g(Ci , Cj) !
link(Ci , Cj)

(ni $ nj)1$2f (!) # n1$2f (!)
i # n1$2f (!)

j

(13.29)

where link(Ci, Cj) !
∑

x∈Ci , y∈Cj
link(x, y). Note that the denominator in this frac-

tion is the expected total number of links between the two clusters. Clearly, the

“15-Ch13-SA272” 17/9/2008 page 686

686 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

larger the value of g(·) the more similar the clusters Ci and Cj . The number of clus-
ters, m, is a user-defined parameter. At each iteration, the clusters with maximum
g(·) are merged. The procedure stops when the number of clusters formed becomes
equal to the desired number of clusters, m, or the number of links between every
pair of clusters in a clustering ℜt is 0.

In the case where the data set X is very large (and in order to improve the
execution time), ROCK is applied on a reduced data set, X &, stemming from X via
random sampling, whose size N & is estimated as in the CURE algorithm. After the
clusters in the sample data set X & have been identified, the points in X that were
not selected in the sample subset are assigned to a cluster via the following strategy.
First, a subset Li of points from each cluster Ci is selected. In the sequel, for each
z in X # X & and each cluster Ci , the number Ni of its neighbors among the Li
points is determined. Then z is assigned to the cluster Ci for which the quantity
Ni/(nLi $ 1)f (!) is maximum, where nLi is the number of points in Li. Note that
the denominator in this expression is the expected number of neighbors of z in
Li ∪ {z}.

Remarks

■ In [Guha 00], it is proposed using f (!) ! (1 # !)/(1 $!), with ! " 1.

■ The algorithm makes a rather strong hypothesis about the existence of the
function f (!). In other words, it poses a constraint for each cluster in the data
set,which may lead to poor results if the clusters in the data set do not satisfy
this hypothesis. However, in the experimental cases discussed in [Guha 00]
the clustering results were satisfactory for the choice of f (!).

■ For large values of N , the worst-case time complexity of ROCK is similar to
that of CURE.

In [Dutt 05] it is proved that, under certain conditions, the clusters produced
by the ROCK algorithm are the connected components of a certain graph, called
link graph whose vertices correspond to the data points. Based on the above result
a quick version of ROCK, called QROCK, is described, which simply identifies the
connected components of the link graph.

The Chameleon Algorithm
The algorithms CURE and ROCK,described previously,are based on“static”modeling
of the clusters. Specifically, CURE models each cluster by the same number, k,
of representatives, whereas ROCK poses constraints on the clusters through f (!).
Clearly, these algorithms may fail to unravel the clustering structure of the data set
in cases where the individual clusters do not obey the adopted model, or when
noise is present. In the sequel, another hierarchical clustering algorithm, known as
Chameleon, is presented. The algorithm is capable of recovering clusters of various
shapes and sizes.

“15-Ch13-SA272” 17/9/2008 page 687

13.5 Hierarchical Algorithms For Large Data Sets 687

To quantify the similarity between two clusters, we define the concepts of rela-
tive interconnectivity and relative closeness. Both of these quantities are defined
in terms of graph theory concepts. Specifically, a graph G ! (V , E) is constructed
so that each data point corresponds to a vertex in V and E contains edges among
vertices. The weight of each edge is set equal to the similarity between the points
associated with the connected vertices.

Before we proceed further, the following definitions are in order. Let C be the
set of points corresponding to a subset of V . Assume that C is partitioned into two
nonempty subsets C1 and C2 (C1 ∪ C2 ! C). The subset of the edges E& of E that
connect C1 and C2 form the edge cut set. If the sum of the weights of the edge cut
set,E&, corresponding to the (C1, C2) partition of C is minimum among all edge cut
sets resulting from all possible partitions of C into two sets (excluding the empty
set cases),E& is called the minimum cut set of C . If,now,C1 and C2 are constrained
to be of approximately equal size, then the minimum sum E& (over all possible
partitions of approximately equal size) is known as the minimum cut bisector
of C . For example, suppose that C is represented by the vertices v1, v2, v3, v4,
and v5 in Figure 13.15. The edges of the respective graph G are e12, e23, e34, e45,
and e51,with weights 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. Then, the sums of the
weights of the edges of the sets {e51, e34}, {e12, e23}, and {e12, e34} are 0.8,0.3, and
0.4, respectively. The second edge cut set corresponds to the minimum cut set of
C , whereas the third corresponds to the minimum cut bisector of C .

Relative Interconnectivity
Let Eij be the set of edges connecting points in Ci with points in Cj , and Ei be the
set of edges that corresponds to the minimum cut bisector of Ci . The absolute
interconnectivity, |Eij |,between two clusters Ci and Cj , is defined as the sum of the
weights of the edges in Eij . Equivalently, this is the edge cut set associated with the
partition of Ci ∪ Cj into Ci and Cj . The internal interconnectivity |Ei| of a cluster
Ci is defined as the sum of the weights of its minimum cut bisector Ei . The relative

v1

v2

v3
v4

v5

0.1

0.2

0.3

0.4

0.5

Minimum
cut bisector Minimum

cut set

FIGURE 13.15
Partitions leading to the minimum cut set and the minimum cut bisector of the set C
containing five vertices (see text for explanation).

“15-Ch13-SA272” 17/9/2008 page 688

688 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

interconnectivity between two clusters, Ci and Cj , is defined as

RIij !
|Eij |

|Ei |$|Ej |
2

(13.30)

Relative Closeness
Let Sij be the average weight of the edges in the set Eij , and Si be the average weight
of the edges in Ei. Then the relative closeness between two clusters Ci and Cj is
defined as

RCij !
Sij

ni
ni$nj

Si $
nj

ni$nj
Sj

(13.31)

where ni and nj are the number of points in Ci and Cj , respectively.
Having defined the previous quantities, we proceed now to description of

the algorithm. This algorithm, unlike most hierarchical algorithms that are either
agglomerative or divisive, enjoys both of these characteristics. Initially, a k-nearest
neighbor graph is created. More specifically, each vertex of the graph corresponds
to a feature vector, and an edge is added between two vertices if at least one of
the corresponding points is among the k-nearest neighbors of the other (typically
k takes values in the range from 5 to 20). Note that if a point x is among the k
nearest neighbors of a point y, this does not necessarily mean that y is among the
k nearest neighbors of x.

The first phase of the algorithm is the divisive phase. Initially, all points belong
to a single cluster. This cluster is partitioned into two clusters so that the sum of the
weights of the edge cut set between the resulting clusters is minimized and each of
the resulting clusters contains at least 25% of the vertices of the initial cluster. Then,
at each step the largest cluster is selected and is partitioned as indicated previously.
This procedure terminates when all obtained clusters,at a given level,contain fewer
than q points (a user-defined parameter, typically chosen in the range 1 to 5% of
the total number of points in X). In the sequel, the agglomerative phase is applied
on the set of clusters that have resulted from the previous phase. Specifically, two
clusters Ci and Cj are merged to a single cluster if

RIij ≥ TRI and RCij ≥ TRC (13.32)

where TRI and TRC are user-defined parameters. Observe that for merging two
clusters their internal structure plays an important role through their respective
S and internal interconnectivity values, as (13.30) and (13.31) suggest. The more
similar the elements within each cluster the higher “their resistance” in merging
with another cluster. If more than one clusters Cj satisfy both conditions for a given
cluster Ci , then Ci is merged with the cluster for which |Eij | is the highest among the
candidates Cjs. In addition, unlike most agglomerative algorithms, it is permissible
to merge more than one pair of clusters at a given level of hierarchy (provided, of
course, that these pairs satisfy the condition (13.32)).

“15-Ch13-SA272” 17/9/2008 page 689

13.5 Hierarchical Algorithms For Large Data Sets 689

A different rule that may be employed for the choice of the clusters to be merged
is the following: merge those clusters that maximize the quantity

RIijRCa
ij (13.33)

where a gives the relative importance between RI and RC . Typically, a is chosen
between 1.5 and 3.

Example 13.10
To gain a better understanding of the rationale behind the Chameleon algorithm, let’s consider
the overly-simplistic four-cluster data set depicted in Figure 13.16. We assume that k ! 2.
The similarities between the connected pairs of points for C1, C2, C3, and C4 are as shown
in the figure (the weights between the connected pairs of points in C3 and C4 not shown in
the figure are all equal to 0.9). In addition, the similarity between the closest points between
clusters C1 and C2 is 0.4, whereas the similarity between the closest points between clusters
C3 and C4 is 0.6. Note that although C3 and C4 lie closer to each other than C1 and C2, each
exhibits a significantly higher degree of internal interconnectivity, compared to each of the C1

and C2.
For the previous clusters we have |E1| ! 0.48, |E2| ! 0.48, |E3| ! 0.9 $ 0.55 ! 1.45,

|E4| ! 1.45, |S1| ! 0.48, |S2| ! 0.48, |S3| ! 1.45 / 2 ! 0.725, and |S4| ! 0.725. In addition,
|E12| ! 0.4, |E34| ! 0.6, |S12| ! 0.4, and |S34| ! 0.6. Taking into account the definitions of
RI and RC, we have RI12 ! 0.833, RI34 ! 0.414 and RC12 ! 0.833, RC34 ! 0.828. We see
that both RI and RC favor the merging of C1 and C2 against the merging of C3 and C4.

C4C3

0.9
0.9

0.6

C2
C1

0.48
0.40.48

0.48

0.25
0.48 0.48 0.48

0.25

0.8
0.55

0.8
0.55

0.48
0.48

FIGURE 13.16
The high degree of internal interconnectivity of C3 and C4 favors the merging of C1 with C2,
although the neighbors between C1 and C2 are less similar than the neighbors between C3

and C4.

“15-Ch13-SA272” 17/9/2008 page 690

690 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

Thus, Chameleon merges C1 and C2, which is in agreement with intuition. Note that the MST
algorithm would merge the clusters C3 and C4.

Remarks

■ This algorithm requires user-defined parameters (k, q and TRI , TRC for the
rule given in (13.32) or a for the rule given in (13.33)). Experiments reported
in [Kary 99] show that Chameleon is not very sensitive to the choice of the
parameters k, q, and a.

■ Chameleon requires large data sets in order to have more accurate esti-
mates for |Eij |, |Ei|, Sij , and Si . Thus, the algorithm is well suited for the app-
lications where the volume of the available data is large.

■ For large N , the worst-case time complexity of the algorithm is
O(N (log2 N $ m)), where m is the number of clusters formed after com-
pletion of the first (divisive) phase of the algorithm.

An alternative clustering method that employs agglomerative algorithms and is
suitable for processing very large data sets is the so-called BIRCH method (Balanced
Iterative Reducing and Clustering using Hierarchies) ([Zhan 96]). This method
has been designed so as to minimize the number of I/O operations (that is, the
exchange of information between the main memory and the secondary memory
where the data set is stored). It performs a preclustering of data and stores a
compact summary for each generated subcluster in a specific data structure called
CF # tree. More specifically, it generates the maximum number of subclusters such
that the resulting CF # tree fits in the main memory. Then an agglomerative clus-
tering algorithm ([Olso 93]) is applied on the subcluster summaries to produce
the final clusters. BIRCH can achieve a computational complexity of O(N). Two
generalizations of BIRCH, known as BUBBLE and BUBBLE-FM algorithms, are given
in [Gant 99].

13.6 CHOICE OF THE BEST NUMBER OF CLUSTERS
So far, we have focused on various hierarchical algorithms. In the sequel we turn
our attention to the important task of determining the best clustering within a
given hierarchy. Clearly, this is equivalent to identifying the number of clusters that
best fits the data. An intuitive approach is to search in the proximity dendrogram
for clusters that have a large lifetime. The lifetime of a cluster is defined as the
absolute value of the difference between the proximity level at which it is created
and the proximity level at which it is absorbed into a larger cluster. For example,
the dendrogram of Figure 13.17a suggests that two major clusters are present and
that of Figure 13.17b suggests only one. In [Ever 01],experiments are conducted to

“15-Ch13-SA272” 17/9/2008 page 691

13.6 Choice of the Best Number of Clusters 691

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

(a) (b)

FIGURE 13.17
(a) A dendrogram that suggests that there are two major clusters in the data set. (b) A dendrogram
indicating that there is a single major cluster in the data set.

assess the behavior of various agglomerative algorithms when (a) a single compact
cluster and (b) two compact clusters are formed by the vectors of X . However,
human subjectivity is required to reach conclusions.

Many formal methods that may be used in cooperation with both hierarchical
and nonhierarchical algorithms for identifying the best number of clusters for the
data at hand have been proposed (e.g., [Cali 74, Duda 01, Hube 76]).

A comparison of many such methods is given in [Mill 85]. In the sequel,
we discuss two methods, proposed in [Bobe 93] for identifying the clustering
that best fits the data that are appropriate for agglomerative algorithms. The clus-
tering algorithm does not necessarily produce the whole hierarchy of N clusterings,
but it terminates when the clustering that best fits the data has been achieved,
according to a criterion.

Method I
This is an extrinsic method, in the sense that it requires determination of the value
of a specific parameter by the user. It involves the definition of a function h(C) that
measures the dissimilarity between the vectors of the same cluster C . That is, we
can view it as a “self-similarity”measure. For example, h(C) may be defined as

h1(C) ! max{d(x, y), x, y ∈ C} (13.34)

or

h2(C) ! med{d(x, y), x, y ∈ C} (13.35)

(see Figure 13.18a).

“15-Ch13-SA272” 17/9/2008 page 692

692 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

When d is a metric distance, h(C) may be defined as

h3(C) !
1

2nC

∑

x∈C

∑

y∈C

d(x, y) (13.36)

where nC is the cardinality of C . Other definitions of h(C) are also possible for the
last case.

Let ! be an appropriate threshold for the adopted h(C). Then, the algorithm
terminates at the ℜt clustering if

∃Cj ∈ ℜt$1 : h(Cj) * ! (13.37)

In words,ℜt is the final clustering if there exists a cluster C in ℜt$1 with dissimilarity
between its vectors (h(C)) greater than !.

Sometimes the threshold ! is defined as

! ! " $ #$ (13.38)

where " is the average distance between any two vectors in X and $ is its variance.
The parameter # is a user-defined parameter. Thus,the need for specifying an appro-
priate value for ! is transferred to the choice of #. However, # may be estimated
more reasonably than !.

Method II
This is an intrinsic method; that is, in this case only the structure of the data set X
is taken into account. According to this method, the final clustering ℜt must satisfy
the following relation:

dss
min(Ci , Cj) * max{h(Ci), h(Cj)}, +Ci , Cj ∈ ℜt (13.39)

where dss
min is defined in Chapter 11. In words, in the final clustering, the dissimi-

larity between every pair of clusters is larger than the “self-similarity” of each of
them (see Figure 13.18b). Note that this is only a necessary condition.

Finally, it must be stated that all these methods are based on heuristic arguments,
and they are indicative only of the best clustering.

h2
h1

h(Ci) h(Cj)

(a)

1.8

1

4

3.5

1.5
2.5

(b)

dmin (Ci,Cj)
ss

FIGURE 13.18
(a) Examples of “self-similarity” measures. (b) Illustration of the termination condition for
method II.

“15-Ch13-SA272” 17/9/2008 page 693

13.7 Problems 693

13.7 PROBLEMS
13.1 Consider the Euclidean distance as the proximity measure between two

vectors. Consider only ratio-scaled vectors. Prove that:
a. A pattern matrix uniquely identifies the corresponding proximity matrix.

b. A proximity matrix does not identify a pattern matrix uniquely. Fur-
thermore, there are proximity matrices which do not correspond to any
pattern matrix.

Hint: (b) Consider, for example, the translations of the points of the data
set X .

13.2 Derive Eq. (13.10) from Eq. (13.8).
Hint: Make use of the following identities:

n3m3 ! n1m1 $ n2m2 (13.40)

and

n1∥m1 # m3∥2 $ n2∥m2 # m3∥2 !
n1n2

n1 $ n2
∥m1 # m2∥2 (13.41)

where C1 and C2 are any two clusters and C3 ! C1 ∪ C2.

13.3 Show that for the WPGMC algorithm there are cases where dqs '
min(dis, djs).

13.4 Prove

d&
qs !

nqns

nq $ ns
dqs (13.42)

Hint: Multiply both sides of

∥mq # ms∥2 !
ni

ni $ nj
dis $

nj

ni $ nj
djs #

ninj

(ni $ nj)2 dij

by (ni $ nj)ns/(ni $ nj $ ns) (This equation holds from Problem 13.2).

13.5 a. Prove Eq. (13.16).
b. Complete the proof of Eq. (13.19).
Hint: Take the squares of both sides of Eq. (13.18).

13.6 Consider the proximity matrix given in Example 13.5. Find the proximity
dendrograms derived by the GTAS algorithm when h(k) is (a) the node
connectivity property and (b) the edge connectivity property, with k ! 3.

13.7 Prove that the distance between two clusters Cr and Cs, d(Cr , Cs), which
are at the same level of the hierarchy produced by the single link algorithm,

“15-Ch13-SA272” 17/9/2008 page 694

694 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

given by Eq. (13.4), may be written as

d(Cr , Cs) ! min
x∈Cr ,y∈Cs

d(x, y) (13.43)

That is, the single link algorithms based on matrix and graph theory are
equivalent.
Hint: Proceed by induction on the level of hierarchy t . Take into account
that the clusterings ℜt and ℜt$1 have N # t # 2 common clusters.

13.8 Prove that the distance between two clusters Cr and Cs,d(Cr , Cs),which are
at the same level of the hierarchy produced by the complete link algorithm,
given by Eq. (13.5), may be written as

d(Cr , Cs) ! max
x∈Cr ,y∈Cs

d(x, y) (13.44)

That is, the complete link algorithms based on matrix and graph theory are
equivalent.
Hint: Take into account the hints of the previous problem.

13.9 State and prove the propositions of the previous two problems when
similarity measures between two vectors are used.

13.10 Consider the following proximity matrix:

P !

⎡

⎢⎢⎢⎢⎢⎣

0 4 9 6 5
4 0 1 8 7
9 1 0 3 2
6 8 3 0 1
5 7 2 1 0

⎤

⎥⎥⎥⎥⎥⎦

Apply the single and complete link algorithms to P and comment on the
resulting dendrograms.

13.11 Consider the dissimilarity matrix P given in Example 13.5. Let us change
P(3, 4) to 6 (P(4, 6) is also equal to 6). Also let h(k) be the node degree
property with k ! 2. Run the corresponding graph theory algorithm when
(a) the edge (3, 4) is considered first and (b) the edge (4, 6) is considered
first. Comment on the resulting dendrograms.

13.12 Consider the following dissimilarity matrix:

P !

⎡

⎢⎢⎢⎢⎢⎣

0 4 9 6 5
4 0 3 8 7
9 3 0 3 2
6 8 3 0 1
5 7 2 1 0

⎤

⎥⎥⎥⎥⎥⎦

a. Determine all possible dendrograms resulting from application of the
single and the complete link algorithms to P and comment on the results.

“15-Ch13-SA272” 17/9/2008 page 695

MATLAB Programs and Exercises 695

b. Set P(3, 4) ! 4, P(1, 2) ! 10, and let P1 be the new proximity matrix.
Note that P1 contains no ties. Determine all possible dendrograms
resulting from the application of the UPGMA algorithm to P1.

13.13 Consider the general divisive scheme. Assume that at step 2.2.1 of the
algorithm the cluster C1

t#1,i consists of a single vector, for i ! 1, . . . , t ,
t ! 1, . . . , N . Compute the number of pairs of clusters that have to be
examined during the whole clustering process. Discuss the merits and the
disadvantages of this scheme.

13.14 Does the alternative divisive algorithm discussed in Section 13.4 guaran-
tee the determination of the optimum possible clustering at each level? Is
it reasonable to extend the answer to this question to other such divisive
algorithms?

13.15 In the ROCK algorithm prove that the expected total number of links among
all pairs of points in a cluster, C , is n1$2f (!), where n is the cardinality of C .

13.16 Explain the physical meaning of Eq. (13.38).

MATLAB PROGRAMS AND EXERCISES
Computer Programs

13.1 Convert matrix to vector. Write a MATLAB function named convert_
prox_mat that takes as input an N % N dimensional proximity matrix
prox_mat and returns an N (N # 1)/2 dimensional row vector proc_vec that
contains the upper diagonal elements of prox_mat in the following order:
(1, 2), (1, 3), . . . (1, N), (2, 3), . . . (2, N), . . . (N # 1, N).

Solution
function prox_vec=convert_prox_mat(prox_mat)
[N,N]=size(prox_mat);
prox_vec=[];
for i=1:N-1
prox_vec=[prox_vec prox_mat(i,i+1:N)];

end

13.2 Single link, Complete link algorithms.Write MATLAB code for the single link
and complete link algorithms.

Solution

Just type

Z=linkage(prox_vec,'single')

“15-Ch13-SA272” 17/9/2008 page 696

696 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

for the single link algorithm and

Z=linkage(prox_vec,'complete')

for the complete link algorithm. The function linkage is a built-in MATLAB
function that takes as inputs (a) a proximity vector in the form described
before in 13.1 and (b) the type of the agglomerative algorithm that will be
used. It returns an (N # 1) % 3 matrix Z , each line of which corresponds to a
clustering of the hierarchy. The first two elements of the ith line of Z contain
the indices of the objects that were linked at this level to form a new cluster.
The index value N $ i is assigned to the new cluster. If, for example, N ! 7
and at the first level the elements 1 and 4 are merged, the cluster consisting
of these elements will be represented by the integer 8(! 7 $ 1). If cluster
8 appears at a later row, this means that this cluster is being combined with
another cluster in order to form a larger cluster. Finally, the third element
of the ith line of Z contains the dissimilarity between the clusters that have
been merged at this level.

13.3 Generate the dendrogram corresponding to the output of an agglomerative
algorithm.

Solution

Just type

H=dendrogram(Z);

The dendrogram is a built-in MATLAB function that takes as input the output
of the linkage function and generates the corresponding dendrogram.

Computer Experiments

13.1 Consider the following dissimilarity matrix

prox_mat !

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0 2.0 4.2 6.6 9.2 12.0 15.0 300 340 420
2.0 0.0 2.2 4.6 7.2 10.0 13.0 280 320 400
4.2 2.2 0.0 2.4 5.0 7.8 10.8 270 310 390
6.6 4.6 2.4 0.0 2.6 5.4 8.4 260 300 380
9.2 7.2 5.0 2.6 0.0 2.8 5.8 262 296 388
12.0 10.0 7.8 5.4 2.8 0.0 3.0 316 280 414
15.0 13.0 10.8 8.4 5.8 3.0 0.0 380 326 470
300 280 270 260 262 316 380 0.0 4.0 4.4
340 320 310 300 296 280 326 4.0 0.0 9.0
420 400 390 380 388 414 470 4.4 9.0 0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

“15-Ch13-SA272” 17/9/2008 page 697

References 697

a. Apply the single link and the complete link algorithms on prox_mat and
draw the corresponding dissimilarity dendrograms.

b. Comment on the way the successive clusterings are created in each of the
two algorithms.

c. Compare the dissimilarity thresholds where clusters are merged for both
single link and complete link algorithms.

d. Can you draw any conclusion about the most natural clustering for the
above data set by considering the dissimilarity thresholds where the clusters
are merged for both algorithms?

REFERENCES
[Ande 73] Anderberg M.R. Cluster Analysis for Applications,Academic Press, 1973.

[Bake 74] Baker F.B. “Stability of two hierarchical grouping techniques. Case 1. Sensitivity to data
errors,” J.Am. Statist.Assoc.,Vol. 69, pp. 440–445, 1974.

[Bobe 93] Boberg J., Salakoski T. “General formulation and evaluation of agglomerative clustering
methods with metric and non-metric distances,” Pattern Recognition, Vol. 26(9), pp. 1395–
1406, 1993.

[Cali 74] Calinski R.B., Harabasz J. “A dendrite method for cluster analysis,” Communications in
Statistics,Vol. 3, pp. 1–27, 1974.

[Corm 90] Cormen T.H., Leiserson C.E., Rivest R.L. Introduction to Algorithms, MIT Press, 1990.

[Day 84] Day W.H.E., Edelsbrunner H. “Efficient algorithms for agglomerative hierarchical cluster-
ing methods,” Journal of Classification,Vol. 1(1), pp. 7–24, 1984.

[Dube 76] Dubes R., Jain A.K. “Clustering techniques: The user’s dilemma,” Pattern Recognition,
Vol. 8, pp. 247–260, 1976.

[Dube 87] Dubes R. “How many clusters are best?—An experiment,” Pattern Recognition,
Vol. 20(6), pp. 645–663, 1987.

[Duda 01] Duda R., Hart P., Stork D. Pattern Classification, 2nd ed., John Wiley & Sons, 2001.

[Dutt 05] Dutta M., Mahanta A.K., Pujari A.K. “QROCK: A quick version of the ROCK algo-
rithm for clustering catergorical data,” Pattern Recognition Letters, Vol. 26, pp. 2364–2373,
2005.

[El-G 68] El-Gazzar A., Watson L., Williams W.T., Lance G. “The taxonomy of Salvia: A test
of two radically different numerical methods,” J. Linn. Soc. (Bot.), Vol. 60, pp. 237–250,
1968.

[Ever 01] Everitt B., Landau S., Leese M. Cluster Analysis,Arnold, 2001.

[Frig 97] Frigui H.,Krishnapuram R.“Clustering by competitive agglomeration,”Pattern Recogni-
tion,Vol. 30(7), pp. 1109–1119, 1997.

[Gant 99] Ganti V., Ramakrishnan R., Gehrke J., Powell A., French J. “Clustering large datasets in
arbitrary metric spaces,” Proceedings 15th International Conference on Data Engineering,
pp. 502–511, 1999.

“15-Ch13-SA272” 17/9/2008 page 698

698 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

[Gowd 95] Gowda Chidananda K., Ravi T.V. “Divisive clustering of symbolic objects using the
concepts of both similarity and dissimilarity,”Pattern Recognition,Vol. 28(8), pp. 1277–1282,
1995.

[Gowe 67] Gower J.C. “A comparison of some methods of cluster analysis,” Biometrics, Vol. 23,
pp. 623–628, 1967.

[Guha 98] Guha S., Rastogi R., Shim K. “CURE: An efficient clustering algorithm for large
databases,” Proceedings of the ACM SIGMOD Conference on Management of Data,
pp. 73–84, 1998.

[Guha 00] Guha S., Rastogi R., Shim K. “ROCK: A robust clustering algorithm for categorical
attributes,” Information Systems,Vol. 25, No. 5, pp. 345–366, 2000.

[Hods 71] Hodson F.R. “Numerical typology and prehistoric archaeology,” in Mathematics in
Archaeological and Historical Sciences (Hodson F.R.,Kendell D.G.,Tautu P.A.,eds.),University
Press, Edinburgh, 1971.

[Horo 78] Horowitz E.,Sahni S. Fundamentals of Computer Algorithms,Computer Science Press,
1978.

[Hube 74] Hubert L.J. “Approximate evaluation techniques for the single link and com-
plete link hierarchical clustering procedures,” J. Am.Statist. Assoc., Vol. 69, pp. 698–704,
1974.

[Hube 76] Hubert L.J.,Levin J.R.“A general statistical framework for assessing categorical clustering
in free recall,”Psychological Bulletin,Vol. 83, pp. 1072–1080, 1976.

[Jain 88] Jain A.K., Dubes R.C. Algorithms for Clustering Data, Prentice Hall, 1988.

[Jard 71] Jardine N., Sibson R. Numerical Taxonomy, John Wiley & Sons, 1971.

[Kank 96] Kankanhalli M.S., Mehtre B.M., Wu J.K. “Cluster-based color matching for image
retrieval,”Pattern Recognition,Vol. 29(4), pp. 701–708, 1996.

[Kary 99] Karypis G., Han E., Kumar V. “Chameleon: Hierarchical clustering using dynamic
modeling,” IEEE Computer,Vol. 32, No. 8, pp. 68–75, 1999.

[Kuip 75] Kuiper F.K., Fisher L. “A Monte Carlo comparison of six clustering procedures,”
Biometrics,Vol. 31, pp. 777–783, 1975.

[Kuri 91] Kurita T. “An efficient agglomerative clustering algorithm using a heap,” Pattern
Recognition,Vol. 24, pp. 205–209, 1991.

[Lamb 62] Lambert J.M.,WilliamsW.T.“Multivariate methods in plant technology,IV. Nodal analysis,”
J. Ecol.,Vol. 50, pp. 775–802, 1962.

[Lamb 66] Lambert J.M.,Williams W.T. “Multivariate methods in plant technology, IV. Comparison
of information analysis and association analysis,” J. Ecol.,Vol. 54, pp. 635–664, 1966.

[Lanc 67] Lance G.N.,Williams W.T. “A general theory of classificatory sorting strategies: II. Clu-
stering systems,”Computer Journal,Vol. 10, pp. 271–277, 1967.

[Li 90] Li X.“Parallel algorithms for hierarchical clustering and cluster validity,”IEEE Transactions
on Pattern Analysis and Machine Intelligence,Vol. 12(11), pp. 1088–1092, 1990.

[Ling 72] Ling R.F. “On the theory and construction of k-clusters,” Computer Journal, Vol. 15,
pp. 326–332, 1972.

[Liu 68] Liu C.L. Introduction to Combinatorial Mathematics, McGraw-Hill, 1968.

[MacN 64] MacNaughton-Smith P.,Williams W.T., Dale M.B., Mockett L.G. “Dissimilarity analysis,”
Nature,Vol. 202, pp. 1034–1035, 1964.

“15-Ch13-SA272” 17/9/2008 page 699

References 699

[MacN 65] MacNaughton-Smith P.“Some statistical and other numerical techniques for classifying
individuals,”Home Office Research Unit Report No.6, London: H.M.S.O., 1965.

[Marr 71] Marriot F.H.C. “Practical problems in a method of cluster analysis,” Biometrics,Vol. 27,
pp. 501–514, 1971.

[McQu 62] McQuitty L.L. “Multiple hierarchical classification of institutions and persons with
reference to union-management relations and psychological well-being,”Educ.Psychol.Measur.,
Vol. 23, pp. 55–61, 1962.

[Mill 80] Milligan G.W. “An examination of the effect of six types of error perturbation on fifteen
clustering algorithms,”Psychometrika,Vol. 45, pp. 325–342, 1980.

[Mill 85] Milligan G.W., Cooper M.C. “An examination of procedures for determining the number
of clusters in a data set,”Psychometrika,Vol. 50(2), pp. 159–179, 1985.

[Mill 83] Milligan G.W.,Soon S.C.,Sokol L.M.“The effect of cluster size,dimensionality and the num-
ber of clusters on recovery of true cluster structure,” IEEE Transactions on Pattern Analysis
and Machine Intelligence,Vol. 5(1), January 1983.

[Murt 83] Murtagh F. “A survey of recent advances in hierarchical clustering algorithms,” Journal
of Computation,Vol. 26, pp. 354–359, 1983.

[Murt 84] Murtagh F. “Complexities of hierarchic clustering algorithms: State of the art,” Com-
putational Statistics Quarterly,Vol. 1(2), pp. 101–113, 1984.

[Murt 85] Murtagh F. Multidimensional clustering algorithms, Physica-Verlag, COMPSTAT Lect-
ures,Vol. 4,Vienna, 1985.

[Murt 95] Murthy M.N.,JainA.K.“Knowledge-based clustering scheme for collection,management
and retrieval of library books,”Pattern Recognition,Vol. 28(7), pp. 949–963, 1995.

[Olso 93] Olson C.F. “Parallel algorithms for hierarchical clustering,”Technical Report, University
of California at Berkeley, December. 1993.

[Ozaw 83] Ozawa K. “Classic: A hierarchical clustering algorithm based on asymmetric simil-
arities,”Pattern Recognition,Vol. 16(2), pp. 201–211, 1983.

[Prit 71] Pritchard N.M., Anderson A.J.B. “Observations on the use of cluster analysis in botany
with an ecological example,” J. Ecol.,Vol. 59, pp. 727–747, 1971.

[Rolp 73] Rolph F.J. “Algorithm 76: Hierarchical clustering using the minimum spanning tree,”
Journal of Computation,Vol. 16, pp. 93–95, 1973.

[Rolp 78] Rolph F.J. “A probabilistic minimum spanning tree algorithm,” Information Processing
Letters,Vol. 7, pp. 44–48, 1978.

[Same 89] Samet H. The Design and Analysis of Spatial Data Structures.Addison-Wesley,Boston,
1989.

[Shea 65] Sheals J.G. “An application of computer techniques to Acrine taxonomy: A preliminary
examination with species of the Hypoaspio-Androlaelaps complex Acarina,” Proc. Linn. Soc.
Lond.,Vol. 176, pp. 11–21, 1965.

[Snea 73] Sneath P.H.A., Sokal R.R. Numerical Taxonomy,W.H. Freeman & Co., 1973.

[Solo 71] Solomon H. “Numerical taxonomy,” in Mathematics in the Archaeological and Histor-
ical Sciences (Hobson F.R., Kendall D.G.,Tautu P.A., eds.), University Press, 1971.

[Stri 67] Stringer P. “Cluster analysis of non-verbal judgement of facial expressions,” Br. J. Math.
Statist. Psychol.,Vol. 20, pp. 71–79, 1967.

“15-Ch13-SA272” 17/9/2008 page 700

700 CHAPTER 13 Clustering Algorithms II: Hierarchical Algorithms

[Will 89] Willett P.“Efficiency of hierarchic agglomerative clustering using the ICL distributed array
processor,” Journal of Documentation,Vol. 45, pp. 1–45, 1989.

[Will 77] WilliamsW.T.,Lance G.N.“Hierarchical classificatory methods,”in Statistical Methods for
Digital Computers (Enslein K., Ralston A.,Wilf H.S., eds.), John Wiley & Sons, 1977.

[Zhan 96] Zhang T., Ramakrishnan R., Livny M. “BIRCH: An efficient data clustering method for
very large databases,”Proceedings of the ACM SIGMOD Conference on Management of Data,
pp. 103–114, Montreal, Canada, 1996.

“16-Ch14-SA272” 17/9/2008 page 701

CHAPTER

14Clustering Algorithms III:
Schemes Based on
Function Optimization

14.1 INTRODUCTION
One of the most commonly used families of clustering schemes relies on the
optimization of a cost function J using differential calculus techniques (e.g., see
[Duda 01, Bezd 80, Bobr 91, Kris 95a, Kris 95b]). The cost J is a function of the
vectors of the data set X and it is parameterized in terms of an unknown parame-
ter vector, !. For most of the schemes of the family, the number of clusters, m, is
assumed to be known.

Our goal is the estimation of ! that characterizes best the clusters underly-
ing X . The parameter vector ! is strongly dependent on the shape of the clusters.
For example, for compact clusters (see Figure 14.1a), it is reasonable to adopt as
parameters a set of m points,mi , in the l-dimensional space,each corresponding to
a cluster—thus,! ! [m1

T , m2
T , . . . , mm

T]T . On the other hand,if ring-shaped clus-
ters are expected (see Figure 14.1b),it is reasonable to use m hyperspheres C(ci , ri),
i ! 1, . . . , m, as representatives, where ci and ri are the center and the radius of
the ith hypersphere, respectively. In this case, ! ! [c1

T , r1, c2
T , r2, . . . , cm

T , rm]T .
Spherical or, in general, shell-shaped clusters1 are encountered in many robot

vision applications. The basic problem here is the identification of objects (pat-
terns) lying in a scene (which is a region in the three-dimensional space), and
the estimation of their relative positions, using a single or several images (two-
dimensional projections of the scene). An important task of this problem is the
identification of the boundaries of the objects in the image. Given an image (see,e.g.,
Figure 14.2a),we may identify the pixels that constitute the boundary of the objects
using appropriate operators (see,e.g.,[Horn 86, Kare 94]) (see Figure 14.2b). Then,
the boundaries of the objects may be considered as shell-shaped or linear-shaped
clusters and clustering algorithms may be mobilized in order to recover their exact
shape and location in the image. In fact, clustering techniques have exhibited

1 These may be hyperellipsoids, hyperparabolas, etc.
701

“16-Ch14-SA272” 17/9/2008 page 702

702 CHAPTER 14 Clustering Algorithms III

(a) (b)

FIGURE 14.1
(a) Compact clusters. (b) Spherical clusters.

(a) (b)

FIGURE 14.2
(a) The original image of a scene. (b) The image after the application of appropriate
operators.

satisfactory results at least when the boundaries are known to be shell shaped (e.g.,
[Kris 95a]).

A distinct characteristic of most of the algorithms of this chapter, compared
with the algorithms of the previous chapter, is that the cluster representatives are
computed using all the available vectors of X , and not only the vectors that have
been assigned to the respective cluster. We will focus on four major categories
of algorithms: the mixture decomposition, the fuzzy, the possibilistic and the hard
clustering algorithms. In the first, the cost function is constructed on the basis of
random vectors, and assignment to clusters follows probabilistic arguments, in the
spirit of the Bayesian classification. The conditional probabilities here result from
the optimization process. In the fuzzy approach a proximity function between
a vector and a cluster is defined, and the “grade of membership” of a vector in a
cluster is provided by the set of membership functions. As is always the case with
fuzzy approaches, the values of the membership functions of a vector in the various
clusters are interrelated. This constraint is removed in the case of the possibilistic
approach. Finally,hard clustering may be viewed as a special case of the fuzzy clus-
tering approach, where each vector belongs exclusively to a cluster. This category
includes the celebrated k-means clustering algorithm.

“16-Ch14-SA272” 17/9/2008 page 703

14.2 Mixture Decomposition Schemes 703

14.2 MIXTURE DECOMPOSITION SCHEMES
The basic reasoning behind this algorithmic family springs from our familiar Bayesian
philosophy. We assume that there are m clusters, Cj , j ! 1, . . . , m, underlying the
data set.2 Each vector xi, i ! 1, . . . , N , belongs to a cluster Cj with probability
P(Cj |xi). A vector xi is appointed to the cluster Cj if

P(Cj |xi) " P(Ck|xi), k ! 1, . . . , m, k ̸! j

The differences from the classification task of Chapter 2 are that (a) no training
data with known cluster labeling are available and (b) the a priori probabilities
P(Cj) ≡ Pj are not known either. Thus,although the goal is the same, the tools have
to be different. Basically, this is a typical task with an incomplete training data set.
We are missing the corresponding cluster labeling information for each data point
xi. Thus, the task fits nicely in the framework introduced in Section 2.5.5.

From Eq. (2.81) and adopting the notation for the needs of the current chapter
we have

Q(Q;Q(t)) !
N∑

i!1

m∑

j!1

P(Cj |xi;Q(t)) ln (p(xi|Cj; !)Pj), (14.1)

where ! ! [!T
1 , . . . , !T

m]T ,with !j being the parameter vector corresponding to the j-
th cluster,P ! [P1, . . . , Pm]T ,with Pj being the a priori probability for the jth cluster
and Q! [!T, PT]T . The above equation results from application of the E-step of the
EM algorithm. The M-step of the algorithm is

Q(t # 1) ! arg max
Q

Q(Q;Q(t)). (14.2)

Assuming that all pairs of !k, !j ’s are functionally independent,that is,no !k gives
any information about !j(j ̸! i), we estimate !j from Eq. (14.2) as follows:

N∑

i!1

m∑

j!1

P(Cj |xi;Q(t))
!

!!j
ln p(xi |Cj; !j) ! 0 (14.3)

Maximization with respect to P is a constraint optimization problem since

Pk $ 0, k ! 1, . . . , m, and
m∑

k!1

Pk ! 1 (14.4)

The corresponding Lagrangian function is

Q(P , ") ! Q(Q;Q(t)) % "

(
m∑

k!1

Pk % 1

)

(14.5)

2 Recall that the number m is assumed to be known.

“16-Ch14-SA272” 17/9/2008 page 704

704 CHAPTER 14 Clustering Algorithms III

Taking the partial derivative of Q(P , ") with respect to Pj and setting it equal to 0,
and after some algebra we obtain

Pj !
1
"

N∑

i!1

P(Cj |xi;Q(t)), j ! 1, . . . , m (14.6)

Substituting the above equations into Eq. (14.4), we obtain

" !
N∑

i!1

m∑

j!1

P(Cj |xi;Q(t)) ! N (14.7)

Thus, Eq. (14.6) gives

Pj !
1
N

N∑

i!1

P(Cj |xi;Q(t)) j ! 1, . . . , m (14.8)

Taking into account Eqs. (14.3), (14.8), and (2.87), the EM algorithm for this case
may be stated as

Generalized Mixture Decomposition Algorithmic Scheme (GMDAS)

■ Choose initial estimates, ! ! !(0) and P ! P(0).3

■ t ! 0

■ Repeat

• Compute

P(Cj |xi;Q(t)) !
p(xi |Cj; !j(t))Pj(t)∑m

k!1 p(xi |Ck, !k(t))Pk(t)
(14.9)

i ! 1, . . . , N , j ! 1, . . . , m.

• Set !j(t # 1) equal to the solution of the equation

N∑

i!1

m∑

j!1

P(Cj |xi;Q(t))
!

!!j
ln p(xi|Cj; !j) ! 0 (14.10)

with respect to !j , for j ! 1, . . . , m.

• Set

Pj(t # 1) !
1
N

N∑

i!1

P(Cj |xi;Q(t)), j ! 1, . . . , m (14.11)

• t ! t # 1

■ Until convergence, with respect to Q, is achieved.

3 Initial conditions must satisfy the constraints.

“16-Ch14-SA272” 17/9/2008 page 705

14.2 Mixture Decomposition Schemes 705

A suitable termination criterion for the algorithm is the following:

∥Q(t # 1) % Q(t)∥ & #

where ∥ · ∥ is an appropriate vector norm and # is a “small” user-defined constant.
This scheme is guaranteed to converge to a global or a local maximum of the log-
likelihood function. However, even if a local maximum solution is reached, it may
still capture satisfactorily the underlying clustering structure of X .

Once the algorithm has converged, vectors are assigned to clusters accord-
ing to the final estimates P(Cj |xi) of Eq. (14.9). Hence, the task now becomes
a typical Bayesian classification problem, if we treat each cluster as a separate
class.

14.2.1 Compact and Hyperellipsoidal Clusters
In this section, we focus our attention on the case in which the vectors of X form
compact clusters. A distribution that is suitable for clusters of this scheme is the
normal distribution, that is,

p(x|Cj; !j) !
1

(2$)l/2|'j |1/2 exp
(
%

1
2

(x % "j)
T '%1

j (x % "j)
)

, j ! 1, . . . , m (14.12)

or

ln p(x|Cj; !j) ! ln
|'j |%1/2

(2$)l/2 %
1
2

(x % "j)
T '%1

j (x % "j), j ! 1, . . . , m (14.13)

In this case, each vector !j consists of the l parameters of the mean "j and the
l(l # 1)/2 independent parameters of 'j . A parameter reduction may be obtained
by assuming that the covariance matrices are diagonal. If this assumption is too
strict, another commonly used assumption is that all covariance matrices are equal.
In the former case ! consists of 2ml parameters, while in the latter it consists of
ml # l(l # 1)/2 parameters.

Combining Eq. (14.12) and Eq. (14.9) results in

P(Cj |x;Q(t))

!
|'j(t)|%1/2 exp

(
% 1

2 (x % "j(t))
T '%1

j (t)(x % "j(t))
)
Pj(t)

∑m
k!1 |'k(t)|%1/2 exp

(
% 1

2 (x % "k(t))T '%1
k (t)(x % "k(t))

)
Pk(t)

(14.14)

In the sequel, we consider the problem in its most general form; that is, we
assume that all the means "j and the covariance matrices 'j are unknown. We
also assume that, in general, all 'j ’s are different from each other. Following an
approach similar to the one described in Chapter 2, the updating equations for "j ’s
and 'j ’s from the M-step are

“16-Ch14-SA272” 17/9/2008 page 706

706 CHAPTER 14 Clustering Algorithms III

"j(t # 1) !

∑N
k!1 P(Cj |xk;Q(t))xk∑N

k!1 P(Cj |xk;Q(t))
(14.15)

and

'j(t # 1) !

∑N
k!1 P(Cj |xk;Q(t))(xk % "j(t))(xk % "j(t))

T

∑N
k!1 P(Cj |xk;Q(t))

(14.16)

j ! 1, . . . , m.
Thus, in the Gaussian case these two equations replace Eq. (14.10), and

Eq. (14.14) replaces Eq. (14.9) in the corresponding steps of the GMDAS
algorithm.

Remark

■ Notice that this scheme is computationally very demanding, because at each
iteration step the inverses of m covariance matrices are required for the com-
putation of P(Cj |xi;Q(t)). As stated earlier, one way to relax this demand is
to assume that all covariance matrices are diagonal or that all are equal to each
other. In the latter case, only one inversion is required at each iteration step.

Example 14.1
(a) Consider three 2-dimensional normal distributions with means "1 ! [1, 1]T ,
"2 ! [3.5, 3.5]T , "3 ! [6, 1]T and covariance matrices

'1 !

[
1 %0.3

%0.3 1

]

, '2 !

[
1 0.3

0.3 1

]

, '3 !

[
1 0.7

0.7 1

]

respectively.
A group of 100 vectors is generated from each distribution. These groups constitute the

data set X . Figure 14.3a is a plot of the generated data.
We initialize Pj ! 1/3, j ! 1, 2, 3. Also, we set "i(0) ! "i # yi , where yi is an 2 (1 vec-

tor with random coordinates, uniformly distributed in the interval [%1, 1]T . Similarly, we
define 'i(0), i ! 1, 2, 3. We set # ! 0.01. Using these initial conditions, the GMDAS for
Gaussian pdf’s terminates after 38 iterations. The final parameter estimates obtained are
P) ! [0.35, 0.31, 0.34]T , "1

) ! [1.28, 1.16]T , "2
) ! [3.49, 3.68]T , "3

) ! [5.96, 0.84]T , and

')
1 !

[
1.45 0.01
0.01 0.57

]

, ')
2 !

[
0.62 0.09
0.09 0.74

]

, ')
3 !

[
0.30 0.0024

0.0024 1.94

]

“16-Ch14-SA272” 17/9/2008 page 707

14.2 Mixture Decomposition Schemes 707

23 23

(a)

6

3

0

322 8

(b)

6

3

0

322 8

FIGURE 14.3
(a) A data set that consists of three groups of points. (b) The results from the application of
GMDAS when normal mixtures are used.

For comparison, the sample mean values are "̂1 ! [1.16, 1.13]T , "̂2 ! [3.54, 3.56]T ,
"̂3 ! [5.97, 0.76]T , respectively. Also, the sample covariance matrices are

'̂1 !

[
1.27 %0.03

%0.03 0.52

]

, '̂2 !

[
0.70 0.07
0.07 0.98

]

, '̂3 !

[
0.32 0.05
0.05 1.81

]

respectively.
As we can see, the final estimates of the algorithm are close enough to the means and the

covariance matrices of the three groups of vectors.
Once the unknown parameters of the model have been estimated, the data vectors are

assigned to clusters according to the estimated values of P(Cj |xi). Figure 14.3b shows
the assignment of points to the three clusters, which is in close agreement with the original
structure. A way to assess the performance of the resulting model estimates is via the so-called
confusion matrix. This is a matrix A whose (i, j) element is the number of vectors that originate
from the ith distribution and are assigned to the jth cluster.4 For our example this is

A1 !

⎡

⎢⎣
99 0 1
0 100 0
3 4 93

⎤

⎥⎦

This example indicates that 99% of the data from the first distribution are assigned to the
same cluster (the first one). Similarly, all the data from the second distribution are assigned
to the same cluster (the second one) and, finally, 93% of the data from the third distribution
are assigned to the same cluster (the third one).

4 It should be noted here that in real clustering applications the confusion matrix cannot be defined,
since we do not know a priori the cluster where each feature vector belongs. However,we may use
it in artificial experiments such as this one, in order to evaluate the performance of the clustering
algorithms.

“16-Ch14-SA272” 17/9/2008 page 708

708 CHAPTER 14 Clustering Algorithms III

(a)

23
22 3 8

6

3

0

(b)

23
22 3 8

6

3

0

FIGURE 14.4
(a) The data set, which consists of three overlapping groups of points. (b) The results of the
GMDAS when Gaussian mixtures are used.

(b) Let us now consider the case in which the three normal distributions are located closer,
for example, "1 ! [1, 1]T , "2 ! [2, 2]T , "3 ! [3, 1]T , and with the same covariance matrices
as before (Figure 14.4). We initialize "i and 'i , i ! 1, 2, 3, as in the previous case and run
the GMDAS for Gaussian pdf’s. The confusion matrix for this case is

A2 !

⎡

⎢⎣
85 4 11
35 56 9
26 0 74

⎤

⎥⎦

As expected, each one of the obtained clusters contains a significant percentage of points
from more than one distribution.

Example 14.2
The data set X , which is depicted in Figure 14.5a, consists of two intersecting ring-shaped
clusters. Each cluster consists of 500 points. We run the GMDAS with Gaussians and m ! 2
and # ! 0.01. The algorithm terminates after 72 iterations, and the results are shown in
Figure 14.5b. As expected, the algorithm fails to recover the underlying clustering structure
of X , because it seeks compact clusters. Generally speaking, GMDAS using Gaussians reveals
clusters that are as compact as possible, even though the clusters underlying X may have a
different shape. Even worse, it will identify clusters in X even though there is no clustering
structure in it.5

5 In general, before we apply any clustering algorithm to identify clusters contained in X, we should
first check whether there exists any clustering structure in X. This procedure refers to clustering
tendency and is considered in Chapter 16.

“16-Ch14-SA272” 17/9/2008 page 709

14.2 Mixture Decomposition Schemes 709

210

215 25
220

20

10

0

(a)
5 15

210

215 25
220

20

10

0

(b)
5 15

FIGURE 14.5
(a) A data set that consists of ring-shaped intersecting clusters. (b) The results from the
application of GMDAS when Gaussian mixtures are used.

In [Zhua 96], the case of Gaussian pdf’s, contaminated by unknown out-
lier distributions, h(xi|Cj), is considered. In this case, we can write p(x|Cj) !
(1 % #j)G(x|Cj) # #jh(x|Cj), where #j is the level of contamination and G(x|Cj)
is the jth Gaussian distribution. Under the assumption that all h(xi|Cj) are con-
stant, that is, h(xi|Cj) ! cj , i ! 1, . . . , N , p(x|Cj) may be written as p(x|Cj) !
(1 % #j)G(x|Cj) # #jcj . Then we may use the preceding methodology in order to
identify the mean and the covariance matrices of the normal distributions G(x|Cj)
as well as the values of #j and cj .

In [Figu 02] an alternative mixture decomposition scheme is proposed, which
does not demand a priori knowledge of m and, in addition, it does not require
careful initialization.

14.2.2 A Geometrical Interpretation
As mentioned earlier, the conditional probability, P(Cj |xi), indicates how likely it is
that xi ∈ X belongs to Cj , i ! 1, . . . , N , subject, of course, to the constraint

m∑

j!1

P(Cj |xi) ! 1 (14.17)

This may be viewed as the equation of an (m % 1)-dimensional hyperplane. For
notational purposes,let P(Cj |xi) ≡ yj ,j ! 1, . . . , m. Then Eq. (14.17) may be written
as

aT y ! 1 (14.18)

where yT ! [y1, . . . , ym] and aT ! [1, 1, . . . , 1]. That is, y is allowed to move on
the hyperplane defined by the previous equation. In addition, since 0 * yj * 1,
j ! 1, . . . , m, y lies also inside the unit hypercube (see Figure 14.6).

“16-Ch14-SA272” 17/9/2008 page 710

710 CHAPTER 14 Clustering Algorithms III

110

100

101

111011

P

001

000

010

y2

y1

y3

FIGURE 14.6
The hypercube for m ! 3. The point y is allowed to move only on the shaded region of P.

This interpretation allows us to derive some useful conclusions for the so-called
noisy feature vectors or outliers. Let xi be such a vector. Since Eq. (14.17) holds for
xi, at least one of the yj ’s, j ! 1, . . . , m, is significant (it lies in the interval [1/m, 1]).
Thus, xi will affect, at least, the estimates for the corresponding cluster Cj , through
Eqs. (14.9), (14.10), and (14.11), and this makes GMDAS sensitive to outliers. The
following example clarifies this idea further.

Example 14.3
Consider the data set X shown in Figure 14.7. It consists of 22 vectors. The first (next) 10
vectors are drawn from the normal distribution with mean "1 ! [0, 0]T ("2 ! [4.5, 4.5]T)
and covariance matrix '1 ! I ('2 ! I), where I is the 2 (2 identity matrix. The last
two points are x21 ! [%6, 5]T and x22 ! [11, 0]T , respectively. We run the GMDAS for
Gaussian pdf’s on X . The estimates of P , "j , and 'j , j ! 1, 2, obtained after five iterations,
are

P) ! [0.5, 0.5]T , ")1 ! [%0.58, 0.35]T , ")2 ! [4.98, 4.00]T

')
1 !

[
4.96 %2.01

%2.01 2.63

]

, ')
2 !

[
3.40 %2.53

%2.53 3.27

]

The resulting values of P(Cj |xi), j ! 1, 2, i ! 1, . . . , 22, are shown in Table 14.1. Although
x21 and x22 may be considered as outliers, since they lie away from the two clusters, we
get that P(C1|x21) ! 1 and P(C2|x22) ! 1, due to the constraint

∑2
j!1 P(Cj |xi) ! 1. This

“16-Ch14-SA272” 17/9/2008 page 711

14.2 Mixture Decomposition Schemes 711

7

6

5

4

3

2

1

21

0

26 24 22 0 2 4 6 8 10 12

FIGURE 14.7
The data set for Example 14.3.

Table 14.1 The Resulting a Posteriori Probabilities for the Data
Set of Example 14.3

feat. vec. P(C 1|x) P(C 2|x) feat. vec. P(C 1|x) P(C 2|x)

x1 0 1 x12 1 0

x2 0 1 x13 1 0

x3 0 1 x14 1 0

x4 0 1 x15 1 0

x5 0 1 x16 1 0

x6 0 1 x17 1 0

x7 0 1 x18 1 0

x8 0 1 x19 0.99 0.01

x9 0 1 x20 1 0

x10 0 1 x21 0 1

x11 1 0 x22 1 0

implies that these points have a nonnegligible impact on "1, "2, '1, and '2. Indeed, if
we run GMDAS for Gaussian pdf’s on X1 ! {xi : i ! 1, . . . , 20} (i.e., we exclude the last two
points), using the same initial conditions, we obtain after five iterations:

P)) ! [0.5, 0.5]T , "))1 ! [%0.03, %0.12]T , "))2 ! [4.37, 4.40]T

“16-Ch14-SA272” 17/9/2008 page 712

712 CHAPTER 14 Clustering Algorithms III

'))
1 !

[
0.50 %0.01

%0.01 1.22

]

, '))
2 !

[
1.47 0.44
0.44 1.13

]

Comparing the results of the two experiments, it is easily observed that the last setup gives
more accurate estimates of the unknown parameters.

Another interesting observation can be derived by examining the following
situation. Let l ! 1. Consider two clusters described by normal distributions
p(x|Cj), j ! 1, 2, with the same variance and means %1 and %2, respectively (%1 &

%2). Also let P1 ! P2. It is not difficult to prove that for x & (") %1#%2
2 , P(C1|x) "

(&) P(C2|x). Now consider the points x1 ! 3%1#%2
4 and x2 ! 5%1%%2

4 . Although
these points have the same distance from %1 (i.e., they are symmetric with respect
to %1), it is not hard to show that P(C1|x1) " P(C1|x2). This happens because
P(C1|x) and P(C2|x) are related through Eq. (14.17). Thus, the probability of
having x in one cluster is affected by the probability of belonging to the other.
We will soon see that we can free ourselves from such an interrelation.

14.3 FUZZY CLUSTERING ALGORITHMS
One of the difficulties associated with the previously discussed probabilistic algo-
rithms is the involvement of the pdf’s,for which a suitable model has to be assumed.
In addition, it is not easy to handle cases where the clusters are not compact but
are shell shaped. A family of clustering algorithms that emancipates itself from
such constraints is that of fuzzy clustering algorithms. These schemes have been
the subject of intensive research during the past three decades. The major point
that differentiates the two approaches is that in the fuzzy schemes a vector belongs
simultaneously to more than one cluster, whereas in the probabilistic schemes,
each vector belongs exclusively to a single cluster.

As already discussed in Chapter 11, a fuzzy m-clustering of X is defined by a set
of functions uj : X → A, j ! 1, . . . , m, where A ! [0, 1].

In the case where A ! {0, 1}, a hard m-clustering of X is defined. In this case,
each vector belongs exclusively to a single cluster.

As in the previous section, it is assumed that the number of clusters as well as
their shape is known a priori. The shape of the clusters is characterized by the
adopted set of parameters. For example, if we deal with compact clusters, a point
representative is used to represent each cluster;that is,each cluster is represented by
l parameters. On the other hand, if we deal with noncompact but, say, hyperspher-
ical clusters, a hypersphere is used as a representative of each cluster. In this case,
each cluster is represented by l # 1 parameters (l for the center of the hypersphere
and 1 for its radius).

In the sequel we use the following notation: !j is the parameterized represen-
tative of the jth cluster, ! ≡ [!1

T , . . . , !m
T]T , U is an N (m matrix whose (i, j)

“16-Ch14-SA272” 17/9/2008 page 713

14.3 Fuzzy Clustering Algorithms 713

element equals uj(xi),d(xi , !j) is the dissimilarity between xi and !j , and q("1) is
a parameter called a fuzzifier. The role of the latter will be clarified shortly. Most of
the well-known fuzzy clustering algorithms are those derived by minimizing a cost
function of the form

Jq(!, U) !
N∑

i!1

m∑

j!1

uq
ijd(xi , !j) (14.19)

with respect to ! and U , subject to the constraints

m∑

j!1

uij ! 1, i ! 1, . . . , N (14.20)

where

uij ∈ [0, 1], i ! 1, . . . , N , j ! 1, . . . , m,

0 &
N∑

i!1

uij & N , j ! 1, 2, . . . , m (14.21)

In other words, the grade of membership of xi in the jth cluster is related to
the grade of membership of xi to the rest m % 1 clusters through Eq. (14.20).
Different values of q in Eq. (14.19) bias Jq(!, U) toward either the fuzzy or the hard
clusterings. More specifically, for fixed !, if q ! 1, no fuzzy clustering is better
than the best hard clustering in terms of Jq(!, U). However, if q " 1, there are
cases in which fuzzy clusterings lead to lower values of Jq(!, U) than the best
hard clustering. Let us clarify these ideas further using the following example.

Example 14.4
Let X ! {x1, x2, x3, x4}, where x1 ! [0, 0]T , x2 ! [2, 0]T , x3 ! [0, 3]T , x4 ! [2, 3]T . Let
!1 ! [1, 0]T , !2 ! [1, 3]T be the cluster representatives. Suppose also that the Euclidean
distance between a vector and a representative is in use. The hard two-cluster clustering that
minimizes Jq(!, U), for the above choice of !1, !2, can be represented by

Uhard !

⎡

⎢⎢⎢⎣

1 0
1 0
0 1
0 1

⎤

⎥⎥⎥⎦

The value of Jq(!, U) in this case Eq. (14.19) is Jhard
q (!, U) ! 4. Obviously, hard clusterings

do not depend on q.
Assume now that q ! 1 and uij ’s are between 0 and 1. Then the value of the cost function

becomes

J fuzzy
1 (!, U) !

2∑

i!1

(ui1 # ui2
√

10) #
4∑

i!3

(ui1
√

10 # ui2)

“16-Ch14-SA272” 17/9/2008 page 714

714 CHAPTER 14 Clustering Algorithms III

Since for each xi both ui1 and ui2 are positive and ui1 # ui2 ! 1, it easily follows that
J fuzzy
1 (!, U) " 4. Thus, the hard clustering always results in better values of J fuzzy

q (!, U),
compared with their fuzzy counterparts, when q ! 1.

Assume now that q ! 2. The reader should easily verify that when ui2 ∈ [0, 0.48] for
i ! 1, 2 and ui1 ∈ [0, 0.48] for i ! 3, 4, and, of course, ui1 ! 1 % ui2, for each xi , then the
value of J fuzzy

2 (!, U) is less than 4 (see Problem 14.7). Thus, in this case fuzzy clusterings
are favored over hard ones.

Finally, let q ! 3. In this case, it is easily verified that when ui2 ∈ [0, 0.67] for i ! 1, 2
and ui1 ∈ [0, 0.67] for i ! 3, 4 and ui1 ! 1 % ui2, for each xi , then the value of J fuzzy

3 (!, U)
is also less than 4.

Minimization of J q (!, U)
We first assume that no xi coincides with any of the representatives. More formally,
for an xi let Zi be the set that contains the indices of the representatives !j for
which d(xi, !j) ! 0. According to our assumption, Zi ! ∅, for all i. In the sequel,
for ease of notation, we drop the index q from Jq(!, U). Let us consider first U .
Minimization of Jq(!, U) with respect to U , subject to the constraint (14.20), leads
to the following Lagrangian function:

J (!, U) !
N∑

i!1

m∑

j!1

uq
ijd(xi , !j) %

N∑

i!1

"i

⎛

⎝
m∑

j!1

uij % 1

⎞

⎠ (14.22)

The partial derivative of J (!, U) with respect to urs is

!J (!, U)
!urs

! quq%1
rs d(xr , !s) % "r (14.23)

Setting !J (!, U)/!urs equal to 0 and solving with respect to urs, we obtain

urs !
("r

qd(xr , !s)

) 1
q%1

, s ! 1, . . . , m (14.24)

Substituting urs from the previous equation in the constraint equation
∑m

j!1 urj ! 1,
we obtain

m∑

j!1

("r

qd(xr , !j)

) 1
q%1

! 1

or

"r !
q

(∑m
j!1

(
1

d(xr ,!j)

) 1
q%1

)q%1 (14.25)

“16-Ch14-SA272” 17/9/2008 page 715

14.3 Fuzzy Clustering Algorithms 715

Combining Eq. (14.25) with (14.24) and using a bit of algebra, we obtain

urs !
1

∑m
j!1

(
d(xr ,!s)
d(xr ,!j)

) 1
q%1

(14.26)

r ! 1, . . . , N , s ! 1, . . . , m.
Now consider the parameter vector !j . Taking the gradient of J (!, U) with

respect to !j and setting it equal to zero, we obtain

!J (!, U)
!!j

!
N∑

i!1

uq
ij

!d(xi , !j)

!!j
! 0, j ! 1, . . . , m (14.27)

Equations (14.26) and (14.27) are coupled and, in general, cannot give closed-
form solutions. One way to proceed is to employ the following iterative algorithmic
scheme, in order to obtain estimates for U and !.

Generalized Fuzzy Algorithmic Scheme (GFAS)

■ Choose !j(0) as initial estimates for !j , j ! 1, . . . , m.

■ t ! 0

■ Repeat

• For i ! 1 to N
⃝ For j ! 1 to m

— uij(t) !
1

∑m
k!1

(
d(xi ,!j(t))
d(xi ,!k(t))

) 1
q%1

⃝ End {For-j}

• End {For-i}

• t ! t # 1

• For j ! 1 to m
⃝ Parameter updating: Solve

N∑

i!1

uq
ij(t % 1)

!d(xi , !j)

!!j
! 0 (14.28)

with respect to !j and set !j(t) equal to this solution.

• End {For-j}

■ Until a termination criterion is met.

“16-Ch14-SA272” 17/9/2008 page 716

716 CHAPTER 14 Clustering Algorithms III

As the termination criterion we may employ ∥!(t) % !(t % 1)∥ & #, where ∥·∥ is
any vector norm and # is a “small”user-defined constant.

Remarks

■ If, for a given xi, Zi ̸! ∅, we arbitrarily choose uij ’s, with j ∈ Zi , such that∑
j∈Zi

uij ! 1 and uij ! 0, for j ̸∈ Zi . That is, xi is shared arbitrarily among
the clusters whose representatives coincide with xi , subject to the constraint
(14.20). In the case in which xi coincides with a single representative, say !j ,
the condition becomes uij ! 1, and uik ! 0, k ̸! j.

■ The algorithmic scheme may also be initialized from U(0) instead of !j(0),
j ! 1, . . . , m, and start iterations with computing !j first.

■ The above iterative algorithmic scheme is also known as the alternating opti-
mization (AO) scheme, since at each iteration step U is updated for fixed !,
and then ! is updated for fixed U ([Bezd 95, Hopp 99]).

In the sequel the algorithm is specialized to three commonly encountered cases.

14.3.1 Point Representatives
In the case of compact clusters, a point representative is used for each cluster; that
is, !j consists of l parameters. In this case, the dissimilarity d(xi , !j) may be any
distance measure between two points. Two common choices for d(xi , !j) are (see
also Chapter 11)

d(xi , !j) ! (xi % !j)T A(xi % !j) (14.29)

where A is a symmetric, positive definite matrix, and the Minkowski distance,

d(xi , !j) !

(
l∑

k!1

|xik % &jk|p
) 1

p

(14.30)

where p is a positive integer and xik, &jk are the kth coordinates of xi and !j ,
respectively. Let us now see the specific form of GFAS under these choices.

■ When the distance given in Eq. (14.29) is in use, we have

!d(xi , !j)

!!j
! 2A(!j % xi) (14.31)

Substituting Eq. (14.31) into Eq. (14.28), we obtain

N∑

i!1

uq
ij(t % 1)2A(!j % xi) ! 0

“16-Ch14-SA272” 17/9/2008 page 717

14.3 Fuzzy Clustering Algorithms 717

Since A is positive definite, it is invertible. Premultiplying both sides of
this equation with A%1 and after some simple algebra, we obtain

!j(t) !

∑N
i!1 uq

ij(t % 1)xi
∑N

i!1 uq
ij(t % 1)

(14.32)

The resulting algorithm is also known as Fuzzy c-Means (FCM)6 or Fuzzy
k-means algorithm and has been discussed extensively in the literature (e.g.
[Bezd 80, Cann 86, Hath 86, Hath 89, Isma 86]).

■ Let us now examine the case in which Minkowski distances are in use. In
the sequel, we consider only the case where p is even and p & #+. In this
case, we can guarantee the differentiability of d(xi, !j) with respect to !j .
Equation (14.30) then gives

!d(xi , !j)

!&jr
!

(&jr % xir) p%1

(∑l
k!1 |xik % &jk|p

)1% 1
p

, r ! 1, . . . , l (14.33)

Substituting Eq. (14.33) into Eq. (14.28), we obtain

N∑

i!1

uq
ij(t % 1)

(&jr % xir) p%1

(∑l
k!1 |xik % &jk|p

)1% 1
p

! 0, r ! 1, . . . , l (14.34)

Hence,we end up with a system of l nonlinear equations and l unknowns,
that is, the coordinates of !j . This can be solved by an iterative technique,
such as the Gauss–Newton or the Levenberg–Marquardt (L-M) method (e.g.,
[Luen 84]).

The resulting algorithms are also known as pFCM, where p indicates the
employed Minkowski distance ([Bobr 91]).

In the iterative technique,the initial estimates at step t can be the estimates
obtained from the previous iteration step t % 1.

Example 14.5
(a) Consider the setup of Example 14.1(a). We run the GFAS first for the distance defined

in Eq. (14.29), when (i) A is the identity 2 (2 matrix, and (ii) A !

[
2 1.5

1.5 2

]

, and (iii) the

Minkowski distance with p ! 4 is used. The algorithm is initialized as in the Example 14.1,
with !j in the place of "j . The fuzzifier q was set equal to 2.

The estimates for !1, !2, and !3 are !1 ! [1.37, 0.71]T , !2 ! [3.14, 3.12]T , and !3 !

[5.08, 1.21]T for case (i), !1 ! [1.47, 0.56]T , !2 ! [3.54, 1.97]T , and !3 ! [5.21, 2.97]T for

6 A variant of the FCM tailored to a specific medical application is discussed in [Siya 05].

“16-Ch14-SA272” 17/9/2008 page 718

718 CHAPTER 14 Clustering Algorithms III

case (ii), and !1 ! [1.13, 0.74]T , !2 ! [2.99, 3.16]T , and !3 ! [5.21, 3.16]T for case (iii).
The corresponding confusion matrices (see Example 14.1) are

Ai !

⎡

⎢⎣
98 2 0
14 84 2
11 0 89

⎤

⎥⎦ , Aii !

⎡

⎢⎣
63 11 26
5 95 0

39 23 38

⎤

⎥⎦ , Aiii !

⎡

⎢⎣
96 0 4
11 89 0
13 2 85

⎤

⎥⎦

Notice that in the cases of Ai and Aiii , almost all vectors from the same distribution are
assigned to the same cluster. Note that for the construction of the confusion matrices we took
the liberty to assign each point xi to the cluster, for which the respective uij has the maximum
value.

(b) Let us now consider the setup of Example 14.1(b). We run the GFAS algorithm for
the three cases described in (a). The estimates for !1, !2, and !3 are !1 ! [1.60, 0.12]T ,
!2 ! [1.15, 1.67]T , and !3 ! [3.37, 2.10]T for case (i), !1 ! [1.01, 0.38]T , !2 ! [2.25,
1.49]T , !3 ! [3.75, 2.68]T for case (ii), and !1 ! [1.50, %0.13]T , !2 ! [1.25, 1.77]T , !3 !

[3.54, 1.74]T for case (iii). The corresponding confusion matrices are

Ai !

⎡

⎢⎣
51 46 3
14 47 39
43 0 57

⎤

⎥⎦ , Aii !

⎡

⎢⎣
79 21 0
19 58 23
28 41 31

⎤

⎥⎦ , Aiii !

⎡

⎢⎣
51 3 46
37 62 1
11 36 53

⎤

⎥⎦

Let us now comment on these results. First, as expected, the closer the clusters are, the
worse the performance of all the algorithms. Also, when the distance given in Eq. (14.29) is
employed, the choice of the matrix A is critical. For the case of our example, when A ! I ,
the GFAS identifies almost perfectly the clusters underlying X , when they are not too close to
each other. The same holds true for the Minkowski distance with p ! 4.

Remarks

■ The choice of the fuzzifier q in significant for the fuzzy clustering algorithms.
Especially for the FCM, heuristic guidelines for the choice of q are given in
[Bezd 81],while in [Gao 00] a method for selecting q based on fuzzy decision
theory concepts is discussed.

■ Several generalized FCM schemes have been proposed in the literature. These
are derived from the minimization of cost functions that result from the basic
one given in eq. (14.19) by adding suitable terms (see e.g. [Yang 93, Lin 96,
Pedr 96, Ozde 02, Yu 03]).

■ Kernelized versions of the FCM are discussed in [Chia 03, Shen 06, Zeyu 01,
Zhan 03, Zhou 04]. Also, a comparative study of the kernelized verisons of
FCM and the FCM itself is reported in [Grav 07].

14.3.2 Quadric Surfaces as Representatives
In this section we consider the case of clusters of quadric shape,such as hyperellip-
soids and hyperparaboloids. In the sequel, we present four algorithms of this type,
out of a large number that have appeared in the literature.

“16-Ch14-SA272” 17/9/2008 page 719

14.3 Fuzzy Clustering Algorithms 719

Our first concern is to define the distance between a point and a quadric surface,
as Eq. (14.19) demands. The next section is devoted to the definition and the
physical explanation of some commonly used distances of this kind.

Distances between a Point and a Quadric Surface
In this section we introduce definitions in addition to those discussed in Chapter 11
concerning the distance between a point and a quadric surface.

We recall that the general equation of a quadric surface, Q, is

xT Ax # bT x # c ! 0 (14.35)

where A is an l (l symmetric matrix, b is an l (1 vector, c is a scalar, and
x ! [x1, . . . , xl]T . The A, b and c quantities are the parameters defining Q.
For various choices of these quantities we obtain hyperellipses, hyperparabolas,
and so on. An alternative to the Eq. (14.35) form is easily verified to be (see
Problem 14.8)

qT p ! 0 (14.36)

where

q !
[

l︷ ︸︸ ︷
x2

1 , x2
2 , . . . , x2

l ,

l(l%1)/2︷ ︸︸ ︷
x1x2, . . . , xl%1xl ,

l#1︷ ︸︸ ︷
x1, x2, . . . , xl , 1

]T (14.37)

and

p ! [p1, p2, . . . , pl , pl#1, . . . , pr , pr#1, . . . , ps]T (14.38)

with r ! l(l # 1)/2 and s ! r # l # 1. Vector p is easily derived from A,b, and c so
that Eq. (14.36) is satisfied.

Algebraic Distance
The squared algebraic distance between a point x and a quadric surface Q is
defined as

d2
a(x, Q) ! (xT Ax # bT x # c)2 (14.39)

Using the alternative formulation in Eq. (14.36), d2
a(x, Q) can be written as

d2
a(x, Q) ! pT Mp (14.40)

where M ! qqT . The algebraic distance could be seen as a generalization of the
distance of a point from a hyperplane (see Chapter 11). Its physical meaning
will become clear later on. For the derivation of the GFAS algorithm, based on
the squared algebraic distance, it is more convenient to use the last formulation
in (14.40).

“16-Ch14-SA272” 17/9/2008 page 720

720 CHAPTER 14 Clustering Algorithms III

Perpendicular Distance
Another distance between a point x and a quadric surface Q is the squared
perpendicular distance defined as

d2
p (x, Q) ! min

z
∥x % z∥2 (14.41)

subject to the constraint that

zT Az # bT z # c ! 0 (14.42)

In words,this definition states that the distance between x and Q is defined as the
squared Euclidean distance between x and the point z of Q closest to x. dp(x, Q) is
the length of the perpendicular line segment from x to Q. Although this definition
seems to be the most reasonable one from an intuitive point of view, its compu-
tation is not straightforward. More precisely, it involves Lagrangian formalization.
Specifically, we define

D(x, Q) ! ∥x % z∥2 % "(zT Az # bT z # c) (14.43)

Taking into account that A is symmetric, the gradient of D(x, Q) with respect
to z is

!D(x, Q)
!z

! 2(x % z) % 2"Az % "b

Setting !D(x, Q)/!z equal to 0 and after some algebra, we obtain

z !
1
2

(I # "A)%1(2x % "b) (14.44)

To compute ", we substitute z in Eq. (14.42), and we obtain a polynomial of "
of degree 2l. For each of the real roots, "k, of this polynomial, we determine the
corresponding zk. Then, dp(x, Q) is defined as

d2
p (x, Q) ! min

zk
∥x % zk∥2

Radial Distance
This distance is suitable when Q is a hyperellipsoidal. Then Eq. (14.35) can be
brought into the form

(x % c)T A(x % c) ! 1 (14.45)

where c is the center of the ellipse and A is a symmetric positive definite matrix,7

which determines the major and the minor axis of the ellipse as well as its
orientation.

7 Obviously, this matrix is in general different (yet related) from the A matrix used in Eq. (14.35). We
use the same symbol for notational convenience.

“16-Ch14-SA272” 17/9/2008 page 721

14.3 Fuzzy Clustering Algorithms 721

The squared radial distance [Frig 96] between a point x and Q is defined as

d2
r (x, Q) ! ∥x % z∥2 (14.46)

subject to the constraints

(z % c)T A(z % c) ! 1 (14.47)

and

(z % c) ! a(x % c) (14.48)

In words,we first determine the intersection point,z ,between the line segment
x % c and Q, and then we compute dr(x, Q) as the squared Euclidean distance
between x and z (see Figure 14.8).

Normalized Radial Distance
The squared normalized radial distance between x and Q is also appropriate for
hyperellipsoids and is defined as

d2
nr(x, Q) !

((
(x % c)T A(x % c)

)1/2
% 1

)2

(14.49)

It can be shown (Problem 14.10) that

d2
r (x, Q) ! d2

nr(x, Q)∥z % c∥2 (14.50)

where z is the intersection of the line segment x % c with Q. This justifies the term
“normalized.”

The following examples give some insight into the distances that have been
defined.

Q

B

Q1

P4
P3

P1

P2

A

x2

dp

dp

dr

dr dr

dp

dr

dp x1

C

FIGURE 14.8
Graphical representation of the perpendicular and radial distances.

“16-Ch14-SA272” 17/9/2008 page 722

722 CHAPTER 14 Clustering Algorithms III

Example 14.6
Consider an ellipse Q centered at c ! [0, 0]T , with

A !

[
0.25 0

0 1

]

and an ellipse Q1 centered at c ! [0, 0]T , with

A1 !

[
1/16 0

0 1/4

]

Let P(x1, x2) be a point in Q1 moving from A(4, 0) to B(%4, 0) and always having its x2

coordinate positive (Figure 14.8). Figure 14.9 illustrates how the four distances vary as P
moves from A to B. One can easily observe that da and dnr do not vary as P moves. This
means that all points lying on an ellipse sharing the same center as Q and, having the same
orientation as it, have the same da and dnr distances from Q. However, this is not the case
with the other two distances. Figure 14.8 shows graphically the dp and dr distances for various
instances of P. As expected, the closer P is to the point C(2, 0), the smaller the dp and dr

distances. Also, Figure 14.8 indicates that dr can be used as an approximation of dp, since,
as we saw earlier, it is hard to compute dp. However, it should be recalled that dp is applicable
when general quadric surfaces are considered, whereas dr is used only when hyperellipsoids
are considered.

3.5

da

dr

dp

dnr

2.5

1.5

24 22

3

2

1

0.5

0
0 2 4

FIGURE 14.9
Variation of the distances dp, da, dnr , and dr as P moves from A(4, 0) to B(%4, 0), with its x2

coordinate being positive. The horizontal axis corresponds to the x1 coordinate of the various
points considered.

“16-Ch14-SA272” 17/9/2008 page 723

14.3 Fuzzy Clustering Algorithms 723

Example 14.7
Consider the two ellipses Q1 and Q2 shown in Figure 14.10, with equations

(x % cj)T Aj(x % cj) ! 1, j ! 1, 2

where c1 ! [0, 0]T , c2 ! [8, 0]T and

A1 !

[
1/16 0

0 1/4

]

, A2 !

[
1/4 0
0 1

]

Also consider the points A(5, 0), B(3, 0), C(0, 2), and D(5.25, 1.45). The distances da, dp,
dnr , dr between each of these points and Q1 and Q2 are shown in Table 14.2. From this table
we observe that the dp distances from A, B, and C to Q1 are equal. Moreover, as expected,
the dr distance is always greater than or equal to dp (when the equality holds?). Also, dp

is unbiased toward the size of the ellipses (dp(A, Q1) ! dp(A, Q2)). Finally, da and dnr are
biased toward larger ellipses (da(A, Q1) & da(A, Q2) and dnr(A, Q1) & dnr(A, Q2)).

Q1
Q2

x1

x2

C

B A

D

FIGURE 14.10
The setup of Example 14.7.

Table 14.2 Comparison of the various distances between
points and hyperellipsoids

da dp dnr dr
Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

A 0.32 1.56 1 1 0.06 0.25 1 1

B 0.19 27.56 1 9 0.06 2.25 1 9

C 1.56 576 1 44.32 0.25 16 1 46.72

D 1.56 9.00 2.78 1.93 0.25 1 3.30 2.42

“16-Ch14-SA272” 17/9/2008 page 724

724 CHAPTER 14 Clustering Algorithms III

In the sequel, we derive some well-known algorithms suitable for shell-shaped
clusters. These algorithms are usually called fuzzy shell clustering algorithms, and
the representatives of the clusters are (in most cases) hyperquadrics.

Fuzzy Shell Clustering Algorithms
The first two algorithms that are examined are suitable for hyperellipsoid-shaped
clusters. The first of them [Dave 92a, Dave 92b] is called the adaptive fuzzy C-shells
(AFCS) clustering algorithm,and the second one is known as the fuzzy C ellipsoidal
shells (FCES) algorithm [Kris 95a].

The Adaptive Fuzzy C-Shells (AFCS) Algorithm
The AFCS uses the squared distance dnr between a point and a hyperellipsoidal
(Eq. 14.49). Thus, Eq. (14.19) becomes

Jnr(!, U) !
N∑

i!1

m∑

j!1

uq
ijd

2
nr(xi , Qj) (14.51)

It is clear that in this case the parameters used to identify a representative (an
ellipse) are its center, cj , and the symmetric, positive definite matrix, Aj . Thus,
the parameter vector !j of the jth cluster contains the l parameters of cj plus the
l(l # 1)/2 independent parameters of Aj , j ! 1, . . . , m. In the sequel, we write
dnr(xi, !j) instead of dnr(xi , Qj), in order to show explicitly the dependence on the
parameter vector.

As in the case of point representatives, our first step is the computation of the
gradient of d2

nr(xi , !j) with respect to cj and Aj . The gradient !d2
nr(xi , !j)/!cj after

some algebra becomes

!d2
nr(xi , !j)

!cj
! %2

dnr(xi , !j)

'(xi , !j)
Aj(xi % cj) (14.52)

where

'2(xi , !j) ! (xi % cj)T Aj(xi % cj) (14.53)

Let a j
rs be the (r, s) element of Aj and xir , cjr the rth coordinates of xi and cj ,

respectively. Then,the partial derivative of d2
nr(xi, !j) with respect to a j

rs,after some
elementary manipulations, becomes

!d2
nr(xi , !j)

!aj
rs

!
dnr(xi , !j)

'(xi , !j)
(xir % cjr)(xis % cjs)

Thus,

!d2
nr(xi , !j)

!Aj
!

dnr(xi , !j)

'(xi , !j)
(xi % cj)(xi % cj)T (14.54)

“16-Ch14-SA272” 17/9/2008 page 725

14.3 Fuzzy Clustering Algorithms 725

Substituting Eqs. (14.52) and (14.54) in (14.28), and after some minor manipu-
lations, the parameter updating part of GFAS becomes

■ Parameter updating:
• Solve with respect to cj and Aj the following equations.

N∑

i!1

uq
ij(t % 1)

dnr(xi , !j)

'(xi , !j)
(xi % cj) ! 0

and
N∑

i!1

uq
ij(t % 1)

dnr(xi , !j)

'(xi , !j)
(xi % cj)(xi % cj)T ! O

where

'2(xi , !j) ! (xi % cj)T Aj(xi % cj)

and

d2
nr(xi , !j) ! ('(xi , !j) % 1)2

• Set cj(t) and Aj(t), j ! 1, . . . , m, equal to the resulting solutions.

■ End parameter updating.

Once more, the above system of equations can be solved by employing iterative
techniques.

Variants of the algorithm, imposing certain constraints on Aj , j ! 1, . . . , m, have
also been proposed in [Dave 92a] and [Dave 92b].

Example 14.8
Consider the three ellipses in Figure 14.11a, with centers c1 ! [0, 0]T , c2 ! [8, 0]T , and
c3 ! [1, 1]T , respectively. The corresponding matrices that specify their major and minor
axes, as well as their orientation, are

A1 !

[
1

16 0

0 1
4

]

, A2 !

[
1
4 0

0 1

]

, A3 !

[
1
8 0

0 1
4

]

respectively. We generate 100 points, xi , from each ellipse and we add to each of these points
a random vector whose coordinates stem from the uniform distribution in [%0.5, 0.5]. The
initial values for the ci ’s and the Ai ’s, i ! 1, 2, 3, are ci(0) ! ci # z , i ! 1, 2, 3, with z taken
to be z ! [0.3, 0.3]T and Ai(0) ! Ai # Z , i ! 1, 2, 3, where all the elements of Z are equal to
0.2. The fuzzifier q was also set equal to 2. Application of the AFCS algorithm to this data
set gives, after four iterations, the results shown in Figure 14.11b. Thus, the algorithm has
identified the ellipses to a good approximation.

“16-Ch14-SA272” 17/9/2008 page 726

726 CHAPTER 14 Clustering Algorithms III

(a) (b)

FIGURE 14.11
The setup of Example 14.8. Thick dots represent the points of the data set. Thin dots represent
(a) the initial estimates and (b) the final estimates of the ellipses.

The Fuzzy C Ellipsoidal Shells (FCES) Algorithm
This algorithm uses the squared radial distance between a point and a hyperellip-
soidal. Equation (14.19) now becomes

Jr(!, U) !
N∑

i!1

m∑

j!1

uq
ijd

2
r (xi , !j) (14.55)

Defining the !j ’s as in the previous case and carrying out the steps followed for
the derivation of the AFCS, we end up with the following equations for cj and Aj
(see Problem 14.11):

N∑

i!1

uq
ij(t % 1)

[∥xi % cj∥2(1 % '(xi , !j))

'4(xi , !j)
Aj %

(
1 %

1
'(xi , !j)

)2

I
]

(xi % cj) ! 0 (14.56)

and

N∑

i!1

uq
ij(t % 1)

'(xi , !j) % 1

'4(xi , !j)
∥xi % cj∥2(xi % cj)(xi % cj)T ! O (14.57)

where '(xi, !j) is defined as in the case of the AFCS algorithm.
The following two algorithms are proposed in [Kris 95a] and [Frig 96]. In con-

trast to the previous algorithms, they may fit quadrics of any shape to the data set.
They are called the fuzzy C quadric shells (FCQS) algorithm and modified fuzzy
C quadric shells (MFCQS) algorithm, respectively.

“16-Ch14-SA272” 17/9/2008 page 727

14.3 Fuzzy Clustering Algorithms 727

Fuzzy C Quadric Shells (FCQS) Algorithm
The FCQS algorithm is suitable for recovering general hyperquadric shapes. It uses
the squared algebraic distance. Equation (14.19) now becomes

Ja(!, U) !
N∑

i!1

m∑

j!1

uq
ijd

2
a(xi , !j) !

N∑

i!1

m∑

j!1

uq
ijpj

T Mipj (14.58)

where pj is defined in Eq. (14.38) and Mi ! q iq i
T , with q i defined in Eq. (14.37).

We recall that pj incorporates all the parameters of the jth quadric surface (see
Eq. 14.40),that is,!j ! pj . Direct minimization of Ja(!, U) with respect to pj would
lead to the trivial zero solution for pj . Thus,constraints on pj must be imposed,and
a number of those have been proposed in the literature. Different constraints lead to
different algorithms. Examples of such constraints are [Kris 95a] (i) ∥pj∥2 ! 1, (ii)
∑r#l

k!1 p2
jk ! 1, (iii) pj1 ! 1, (iv) p2

js ! 1,and (v) ∥ ∑l
k!1 p2

jk # 0.5
∑r

k!l#1 p2
jk∥2 ! 1

(Problem 14.12). Each of these constraints has its advantages and disadvantages. For
example, constraints (i) and (ii) [Gnan 77, Pato 70] do not preserve the invariance
under translation and rotation of da. However, they are able to identify planar
clusters. Also, constraint (iii) [Chen 89] precludes linear clusters and can lead to
poor results if the points in X are approximately coplanar.

Modified Fuzzy C Quadric Shells (MFCQS) Algorithm
A different C-shells quadric algorithm is obtained if we employ the squared perpen-
dicular distance dp between a point and a quadric surface. However, because of
the difficulty of its estimation, the resulting problem is much more difficult than
those examined before. In this case, due to the complex nature of dp, minimiza-
tion of the Jp(!, U) with respect to the parameter vector !j becomes very complex
[Kris 95a].

One way to simplify things is to use the following alternative scheme. For the
computation of uij ’s the perpendicular distance dp is used,and for the estimation of
the parameters !j , j ! 1, . . . , m, the updating scheme of FCQS is employed (recall
that in FCQS, !i ! pi). In other words, the grade of membership of a vector
xi in a cluster is determined using the perpendicular distance, and the updat-
ing of the parameters of the representatives is carried out using the parameter
updating part of the FCQS algorithm. However, this simplification implies that the
algebraic and the perpendicular distances should be close to each other (see also
Problem 14.13). This modification leads to the so called modified FCQS (MFCQS)
algorithm.

Another algorithm, discussed in [Kris 95a] and [Frig 96], is the fuzzy C
planoquadric shells (FCPQS) algorithm. This algorithm uses a first-order approx-
imation of the algebraic distance, and it is derived, as are all the others, by taking
derivatives of the resulting cost function with respect to the parameter vector, !j ,
and setting them equal to zero.

“16-Ch14-SA272” 17/9/2008 page 728

728 CHAPTER 14 Clustering Algorithms III

Finally, fuzzy clustering algorithms that are able to detect spherical clusters are
discussed in [Dave 92a, Kris 92a, Kris 92b, Man 94]. However, most of these may
be viewed as special cases of the algorithms developed to fit ellipses.

14.3.3 Hyperplane Representatives
In this section, we discuss algorithms that suitable for the recovery of hyperplanar
clusters [Kris 92a]. Algorithms of this kind can be applied to the surface-fitting prob-
lem, which is one of the most important tasks in computer vision. In this problem,
the surfaces of an object depicted in the image are approximated by planar surfaces.
Successful identification of the surfaces is a prerequisite for the identification of the
objects depicted in an image.

Some of these algorithms,such as the fuzzy c-varieties (FCV) algorithm [Ande 85],
are based on minimization of the distances of the vectors in X from hyperplanes (see
Chapter 11). However, FCV tends to recover very long clusters, and thus, collinear
distinct clusters may be merged into a single cluster.

In this section we describe an algorithm, known as the Gustafson–Kessel (G-K)
algorithm (see,e.g.,[Kris 92a, Kris 99a]). According to this algorithm,planar clusters
are represented by centers cj and covariance matrices 'j . Defining !j as in previous
cases,we define the squared distance between a vector x and the jth cluster as the
scaled Mahalanobis distance

d2
GK (x, !j) ! |'j |1/l(x % cj)T '%1

j (x % cj) (14.59)

Let us now gain some insight into the behavior of this distance. A well-known
property that characterizes the distance dH of a point from a hyperplane,as defined
in Chapter 11, is that all points lying on a hyperplane H1 parallel to a given hyper-
plane H , have the same dH distance from H . This will be our starting point for the
investigation of d2

GK .

Example 14.9
Consider the setup of Figure 14.12a, where a single cluster C is present, and let ! be
its parameter vector. The points of C are of the form [xi1, xi2]T where xi1 ! % 2 # 0.1i,
i ! 0, 1, 2, . . . , 40, and the corresponding xi2’s are random numbers following the uniform
distribution in [%0.1, 0.1].

Consider also the points of the line segment u connecting the points (%2, 2) and (2, 2).
Figure 14.12b shows the distances dGK (x, !) of the points x ∈ u from C. As we can see,
all these distances are almost the same. Indeed, the relative difference (dmax % dmin)/dmax

between the maximum dmax and the minimum dmin values is approximately equal to 0.02.
Now consider the larger line segment v1(v2) that connects (%8, 2)((%8, %2)) and

(8, 2)((8, %2)). The distances dGK (x, !) of the points x∈v1(v2) from C are shown in
Figure 14.12b. Note that although we have larger variations compared to the previous case,
they still remain relatively small (the relative difference (dmax % dmin)/dmax is approximately
0.12).

“16-Ch14-SA272” 17/9/2008 page 729

14.3 Fuzzy Clustering Algorithms 729

0 8

(a) (b)

v2 22
28

v1

28 22 2 8

90

80

70

60

x1

x2

u

2

A

FIGURE 14.12
(a) The setup of the Example 14.9. (b) The solid line corresponds to the distances of the points
of u from C. The dashed line corresponds to the distances of the points of the line segment v1

from C (the solid line is part of the dashed line). Also, the dash-dotted line corresponds to the
distances of the points of the line segment v2 from C.

The G-K algorithm can be derived via the minimization of

JGK (!, U) !
N∑

i!1

m∑

j!1

uq
ijd

2
GK (xi , !j) (14.60)

Taking the gradient of JGK (!, U) with respect to cj , we obtain

!JGK (!, U)
!cj

!
N∑

i!1

uq
ij

!d2
GK (xi , !j)

!cj
(14.61)

The gradient of the distance, after a bit of algebra, becomes

!d2
GK (xi , !j)

!cj
! %2|'j |1/l'%1

j (xi % cj) (14.62)

Substituting !d2(xi , !j)/!cj from Eq. (14.62) into (14.61) and setting
!JGK (!, U)/!cj equal to zero, we obtain8

cj !

∑N
i!1 uq

ijxi
∑N

i!1 uq
ij

(14.63)

8 We also make the mild assumption that the covariance matrix is invertible.

“16-Ch14-SA272” 17/9/2008 page 730

730 CHAPTER 14 Clustering Algorithms III

Now taking the derivative of JGK (!, U) with respect to the elements of the
covariance matrix, 'j results (Problem 14.16) in

'j !

∑N
i!1 uq

ij(xi % cj)(xi % cj)T

∑N
i!1 uq

ij

(14.64)

Having derived Eqs. (14.63) and (14.64), the parameter updating part of GFAS
for the G-K algorithm becomes

■ cj(t) !

∑N
i!1 uq

ij(t % 1)xi
∑N

i!1 uq
ij(t % 1)

■ 'j(t) !

∑N
i!1 uq

ij(t % 1)
(
xi % cj(t % 1)

)(
xi % cj(t % 1)

)T

∑N
i!1 uq

ij(t % 1)

Example 14.10
(a) Consider Figure 14.13a. It consists of three linear clusters. Each cluster contains 41
points. The points of the first cluster lie around the line x2 ! x1 # 1, while the points of the
second and the third clusters lie around the lines x2 ! 0 and x2 ! %x1 # 1, respectively.
The cj ’s, j ! 1, 2, 3, are randomly initialized and the threshold of the termination criterion, #,
is set to 0.01. The G-K algorithm converges after 26 iterations. As shown in Figure 14.13b,
the G-K identifies correctly the clusters underlying X .

(b) Now consider Figure 14.14a. We also have three clusters, each consisting of 41 points.
The first and the third clusters are the same as in Figure 14.13a, while the points of the second
cluster lie around the line x2 ! 0.5. Note that in this case the three intersection points between

(a)

22
21

21 0

0

1

2

3

1 2

(b)

22 21 0 1 221

0

1

2

3

FIGURE 14.13
(a) The data set X for Example 14.10(a). (b) The results of the G-K algorithm.

“16-Ch14-SA272” 17/9/2008 page 731

14.3 Fuzzy Clustering Algorithms 731

(a) (b)

22
21

21 0 1 2 22 21
21

0

1

2

3

0 1 2

0

1

2

3

FIGURE 14.14
(a) The data set X for Example 14.10(b). (b) The results of the G-K algorithm.

any pair of lines lie very close to each other. The G-K algorithm terminates after 38 iterations.
The results obtained are shown in Figure 14.14b. In this case, the G-K algorithm fails to
identify the clusters correctly.

14.3.4 Combining Quadric and Hyperplane Representatives
In this section, we assume that l ! 2. Consider the case in which X contains
quadric-shaped clusters as well as linear clusters. How can we accurately identify
both kinds of clusters? If we run an algorithm that fits quadric curves to the clusters,
the linear clusters will not be properly represented. On the other hand, if we run an
algorithm that fits lines to the clusters, the ellipsoidally and hyperbolically shaped
clusters will be poorly represented. A way out of this problem is discussed in
[Kris 95a]. The idea is to run the FCQS algorithm first on the whole data set X . This
algorithm can be used to detect linear clusters,even though the adopted constraints
force all representatives to be of second degree. This happens since, in practice,
FCQS fits a pair of coincident lines for a single line, a hyperbola for two intersecting
lines and a very “flat” hyperbola or a very elongated ellipse or a pair of lines for
two parallel lines [Kris 95a]. The identification of “extreme” quadric curves (i.e.,
extremely elongated ellipses,“flat” hyperbolas, a set of lines) after the termination
of the algorithm is a strong indication that X contains linear clusters. In order to
represent these extreme clusters more accurately, we can run the G-K algorithm on
the set X), which contains only the vectors that belong to them (with a high grade
of membership). However, different actions have to be carried out depending on
the shape of each extreme quadric curve. Let Qj be the representative curve of
the jth cluster, j ! 1, . . . , m, identified by FCQS and Q)j ’s the representative curves

“16-Ch14-SA272” 17/9/2008 page 732

732 CHAPTER 14 Clustering Algorithms III

of the linear clusters that are identified by the G-K algorithm. Specifically, we
have

■ If Qj is a pair of coincident lines, then initialize Q)j using one of the two lines.

■ If Qj is a nonflat hyperbola or a pair of intersecting lines or a pair of parallel
lines, then initialize two representatives Q)j1 and Q)j2 using the asymptotes of
the hyperbola (for the first case) or using each of the lines (for the last two
cases).

■ If Qj is an ellipse with a very large ratio of major to minor axis, then initialize
two representatives Q)j1 and Q)j2 using the tangents of the ellipse at the two
ends of the minor axis.

■ If Qj is a hyperbola with a very large ratio of conjugate axis to transverse axis,
then initialize two representatives Q)j1 and Q)j2 using the two tangents of the
hyperbola at its two vertices.

Since the initialization of the Q)j representatives is very good, it is expected that
the G-K algorithm will converge in a few iterations to a satisfactory solution.

14.3.5 A Geometrical Interpretation
Arguments similar to those given in Section 14.2.2 can also be repeated here. Now
uij takes the place of P(Cj |xi). The constraint equation in this case is

m∑

j!1

uij ! 1, i ! 1, . . . , N . (14.65)

The vector y associated with vector xi becomes y ! [ui1, ui2, . . . , uim] and
it is also restricted on the hyperplane defined by the constraint (14.65) in the
Hm hypercube. If we carry out the experiments discussed in Section 14.2.2,
we will draw similar conclusions with respect to the effect of the outliers on the
performance of the fuzzy algorithms.

In [Mena 00] an algorithm called fuzzy c # 2 means is introduced. This is an
extension of GFAS for point representatives,where the outliers as well as the points
that lie near the cluster boundaries are treated so as to control their effect on the
estimates of the cluster representatives.

14.3.6 Convergence Aspects of the Fuzzy Clustering Algorithms
Although fuzzy clustering algorithms are obtained by minimizing a cost function of
the form of Eq. (14.19), little is known about their convergence behavior. More
specifically, it has been proved [Bezd 80, Hath 86], using the global convergence
theorem of Zangwill [Luen 84], that when a Mahalanobis distance is used (or
other distances satisfying certain conditions discussed in [Bezd 80]), the iteration
sequence produced by the fuzzy c-means (FCM) algorithm either converges to a
stationary point of the cost function in a finite number of iteration steps or it has at

“16-Ch14-SA272” 17/9/2008 page 733

14.4 Possibilistic Clustering 733

(a)

230

u2(x)

220 210 0 10 20 30

1

0.8

0.6

0.4

0.2

0 x

(b)

0 x

1

u
“low” “medium” “high”

FIGURE 14.15
(a) The membership function u2(x) given by Eq. (14.26), for the one-dimensional case, with
&1 ! 5, &2 ! 3, &3 ! 8, q ! 2 and d(x, &i) ! |x % &i |. (b) Examples of membership functions
characterizing “low,”, “medium,” and “high” for a specific quantity.

least one subsequence that converges to a stationary point of the cost function. This
point may be a local (or global) optimum or a saddle point. Tests for the identification
of the nature of the convergence point are discussed in [Isma 86, Hath 86, Kim 88].
More recently in [Grol 05] it is shown that sequence produced by the FCM converges
to a stationary point of the cost function. Issues concerning numerical convergence
aspects of the FCM algorithms are discussed in [Bezd 92].

14.3.7 Alternating Cluster Estimation
It is not difficult to notice that the membership functions uj(xi), associated with
the uij ’s used in GFAS (Eq. (14.26)), are neither convex nor monotonous (see, for
example, Figure 14.15a). However, in fuzzy rule-based systems convexity of the
membership functions is an important requirement. For example, linguistic charac-
terizations such as“low,”“medium,”or“high”require convex membership functions
of the form shown in Figure 14.15b. In such cases it may be preferable to adopt a
specific membership function and use the alternating updating philosophy used in
GFAS to estimate uij ’s and !j . The resulting algorithmic scheme is known as alter-
nating cluster estimation (ACE) ([Runk 99, Hopp 99]) and GFAS may be viewed as
a special case of it. Obviously, in this case, the solution obtained is not necessarily
related to an optimizing criterion.

14.4 POSSIBILISTIC CLUSTERING
The algorithms of this section are relaxed from constraints such as in (14.17) and
(14.65) [Kris 93, Kris 96]. Speaking in the terms of Section 14.3.5, this means
that the vector y, with coordinates the uij ’s, will be allowed to move anywhere in

“16-Ch14-SA272” 17/9/2008 page 734

734 CHAPTER 14 Clustering Algorithms III

the Hm hypercube, that is,

uij ∈ [0, 1]

maxj!1,...,m uij " 0, i ! 1, . . . , N

and

0 &
N∑

i!1

uij * N , i ! 1, . . . , N (14.66)

This change in the constraints has an important impact on the interpretation of
the uij ’s. In the fuzzy framework, uij denotes the grade of membership of xi in
the jth cluster. Here, uij may be interpreted as the degree of compatibility of xi
with the jth cluster representative, or, following [Zade 78], the possibility that xi
belongs to the jth cluster. Note that the possibility that xi belongs to the jth cluster
depends exclusively on xi and the cluster representative of the jth cluster; that is,
it is independent of the possibilities that xi belongs to any other cluster.

For convenience, let us recall here that the cost function to be minimized is

J (!, U) !
N∑

i!1

m∑

j!1

uq
ijd(xi , !j) (14.67)

Obviously, direct minimization with respect to U will lead to the trivial zero
solution. In order to avoid this situation,we must insert an additional term in J (!, U).
This term, f (U), will be a function of uij ’s only. Motivated by the discussion in
Section 14.2.2, it will be chosen in such a way so as to minimize the effects of
outliers. As will become apparent soon, one such choice of f (U) is

f (U) !
m∑

j!1

(j

N∑

i!1

(1 % uij)q (14.68)

Then, the cost function becomes

J (!, U) !
N∑

i!1

m∑

j!1

uq
ijd(xi , !j) #

m∑

j!1

(j

N∑

i!1

(1 % uij)q (14.69)

where (j are suitably chosen positive constants.
The minimum of J (!, U), with respect to uij , is obtained by

!J (!, U)
!uij

! quq%1
ij d(xi , !j) % q(j(1 % uij)q%1 ! 0

or

uij !
1

1 #
(

d(xi ,!j)
(j

) 1
q%1

(14.70)

“16-Ch14-SA272” 17/9/2008 page 735

14.4 Possibilistic Clustering 735

In words, uij is inversely proportional to the dissimilarity between xi , and the
representative of the jth cluster. Loosely speaking,uij denotes the degree to which
the representative of the jth cluster should be “stretched” in order to match xi .
Large (small) values of uij indicate little (large) stretch for the jth representative.
It is clear that for a specific vector xi , this “stretching” action can be carried out
independently for each cluster.

The meaning of the second term in Eq. (14.69) is clearer now. Its effect is
to minimize the influence of outliers in the estimation of the !j ’s. Indeed, large
dissimilarity levels correspond to small uij ’s and they have little effect on the first
term in the cost function, which controls the estimation of !j ’s.

Since the second term does not involve the representatives of the clusters, one
may easily conclude that in possibilistic clustering schemes, the updating of the
parameters of each cluster is carried out in exactly the same way as in the case of
their fuzzy counterparts.

Generalized Possibilistic Algorithmic Scheme (GPAS)

■ Fix (j , j ! 1, . . . , m.

■ Choose !j(0) as the initial estimates of !j , j ! 1, . . . , m.

■ t ! 0.

■ Repeat

• For i ! 1 to N

⃝ For j ! 1 to m

uij(t) !
1

1 #
(

d(xi ,!j (t))
(j

) 1
q%1

⃝ End {For-j}

• End {For-i}

• t ! t # 1

• For j ! 1 to m

⃝ Parameter updating: Solve

N∑

i!1

uq
ij(t % 1)

!d(xi , !j)

!!j
! 0 (14.71)

with respect to !j and set !j(t) equal to the computed solution.

• End {For-j}.

■ Until a termination criterion is met.

“16-Ch14-SA272” 17/9/2008 page 736

736 CHAPTER 14 Clustering Algorithms III

As usual,we may employ ∥!(t) % !(t % 1)∥ & # as a termination criterion. Based
on the preceding generalized scheme, for each of the fuzzy clustering algorithms,
defined in the previous section, we can derive a corresponding possibilistic one.

An interesting observation is that, since for each vector xi , uij ’s, j ! 1, . . . , m,
are independent of each other, we can write J (!, U) as

J (!, U) !
m∑

j!1

Jj

where

Jj !
N∑

i!1

uq
ijd(xi , !j) # (j

N∑

i!1

(1 % uij)q (14.72)

Each Jj corresponds to a different cluster and the minimization of J (!, U) with
respect to the uij ’s can be carried out separately for each Jj .

The value of (j determines the relative significance of the two terms in (14.72)
and it is related to the size and “shape” of the jth cluster, j ! 1, . . . , m. More
specifically, as can be seen from Figure 14.16, (j determines the dissimilarity level
between a vector xi and the representative !j at which uij becomes equal to 0.5.
Thus, (j determines the influence of a specific point on the estimation of the jth
cluster representative.

In general, the size of (j is assumed constant during the execution of the algo-
rithm. One way to estimate its value,under the assumption that X does not contain
many outliers, is to run the generalized fuzzy algorithmic scheme (GFAS) and after
its convergence to estimate (j as [Kris 96]

(j !

∑N
i!1 uq

ijd(xi , !j)
∑N

i!1 uq
ij

(14.73)

or

(j !

∑
uij"a d(xi , !j)
∑

uij"a 1
(14.74)

where a is an appropriate threshold. In words, (j is defined as a weighted average
of the dissimilarities between the vectors xi and !j . Once (j ’s have been fixed, the
GPAS algorithm can be applied.

In Figure 14.16, uij versus d(xi, !j)/(j is plotted for various choices of q (see
Eq. (14.70)). From this diagram,it can be seen that q determines the rate of decrease
of uij with respect to d(xi, !j). For q ! 1, all points xi with d(xi , !j) " (j have
uij ! 0. On the other hand, as q→ # +, uij tends to a constant and all the vectors
of X contribute equally to the estimation of the representative of the jth cluster.

It is worth noting here that q has different meanings in the possibilistic and the
fuzzy framework. In the first case,high values of q imply almost equal contributions
of all feature vectors to all clusters, whereas in the second case, high values of q
imply increased sharing of the vectors among all clusters [Kris 96]. This implies
that, in general, different values of q are required to provide satisfactory results for
the two cases.

“16-Ch14-SA272” 17/9/2008 page 737

14.4 Possibilistic Clustering 737

1

0.5

0
0 1

q 5 1.1 q 5 1.2

q 5 3

q 5 5

q 5 2

q 5 1.8

q 5 1.5

2 3 4 5

uij

d(xi, !i)/nj

FIGURE 14.16
Plots of the membership function for various values of q.

14.4.1 The Mode-Seeking Property
The generalized mixture decomposition algorithmic scheme (GMDAS) and the
generalized fuzzy algorithmic scheme (GFAS) are partition algorithmic schemes—
that is, schemes that always end up with the predetermined number of clusters
m, no matter how many “naturally formed” clusters underlie X . If, for example,
the data set X contains two clusters and we run GMDAS or GFAS with m ! 3,
these algorithms will split at least one natural cluster and will end up with three
clusters.

This is not the case however with the generalized possibilistic algorithmic
scheme (GPAS). Algorithms of this kind are known as mode-seeking algorithms—
that is, algorithms searching for dense regions of vectors in X .9 In order to see this,
let us consider again the individual functions Jj . Solving Eq. (14.70) with respect to
d(xi , !j), we obtain

d(xi , !j) ! (j

(
1 % uij

uij

)q%1

9 Such algorithms are also considered in Chapter 15.

“16-Ch14-SA272” 17/9/2008 page 738

738 CHAPTER 14 Clustering Algorithms III

Substituting d(xi , !j) from this equation into Eq. (14.72) results in

Jj ! (j

N∑

i!1

(1 % uij)q%1 (14.75)

For fixed (j ,minimization of Jj requires maximization of uij ’s,which,in turn,requires
minimization of d(xi , !j). The last requirement implies that !j should be placed in
a region dense in vectors of X .

The mode-seeking property of the GPAS implies that the number of clusters in X
need not be known a priori. Indeed,if we run a possibilistic algorithm for m clusters
while X contains k natural clusters, with m " k, then, after proper initialization,
some of the m clusters will coincide with others [Kris 96]. It is hoped that the
number of the noncoincident clusters will be equal to k. If, on the other hand,
m & k, proper initialization of the possibilistic algorithm will potentially lead to m
different clusters. Of course, these are not all the natural clusters formed in X , but
at least they are some of them [Kris 96].

Example 14.11
This example demonstrates the mode-seeking property. Consider three two-dimensional
Gaussian distributions with means "1 ! [1, 1]T , "2 ! [6, 1]T , "3 ! [6, 6]T and covari-
ance matrices 'j ! I , j ! 1, 2, 3. One hundred vectors are generated from each distribution.
These constitute the data set X . We set q ! 1.5 and, finally, we employ the squared Euclidean
distance. It is not difficult to realize that under the above choice, Eq. (14.71) gives

!j(t) !

∑N
i!1 uq

ij(t % 1)xi
∑N

i!1 uq
ij(t % 1)

(14.76)

(a) Let m ! 3. The initial estimates of !j ’s (which, in this case, are vectors in the two-
dimensional space) in GPAS are !j(0) ! "j # z j , j ! 1, 2, 3, where the z j ’s are
two-dimensional vectors whose components are drawn from the uniform distribution
in [%2, 2]. Also, we set (j ! 1.5, j ! 1, 2, 3. Application of the GPAS causes the move-
ment of each one of the !j ’s toward the mean of each distribution (i.e., toward
dense regions). Indeed, the final estimates for !j ’s obtained after 12 iterations, are
!1 ! [0.93, 0.60]T , !2 ! [5.88, 1.12]T , and !3 ! [6.25, 5.86]T , which compare very
favorably to "j ’s.

(b) Let m ! 4. In this case, !j ’s, j ! 1, 2, 3 are initialized as in the previous example, while
!4 is initialized as "1 # z4. Application of GPAS in this case causes the movement of
!1 and !4 toward the dense region that corresponds to the first distribution. Also, !2

and !3 move toward the dense regions that correspond to the second and the third
distribution, respectively. The resulting values for !j ’s, obtained after 12 iterations, are
!1 ! [0.93, 0.60]T , !2 ! [5.88, 1.12]T , !3 ! [6.25, 5.86]T , and !4 ! [0.94, 0.60]T .

(c) Let m ! 2. We initialize !1 and !2 as in (a). Application of the GPAS algorithm
causes the movement of !1 and !2 toward the dense regions corresponding to first

“16-Ch14-SA272” 17/9/2008 page 739

14.5 Hard Clustering Algorithms 739

and the second distribution, respectively. The resulting values for !j ’s, obtained after
11 iterations, are !1 ! [0.93, 0.60]T and !2 ! [5.88, 1.12]T .

14.4.2 An Alternative Possibilistic Scheme
An alternative possibilistic algorithm may be derived from the function [Kris 96]

J1(!, U) !
N∑

i!1

m∑

j!1

uijd(xi , !j) #
m∑

j!1

(j

N∑

i!1

(uij ln uij % uij) (14.77)

Note that q is not involved in the definition of J1(!, U). Also, in this case the
second term is negative. Setting the partial derivative of J1(!, U) with respect to
uij equal to 0 and solving for uij , we obtain the following necessary condition for
each uij to be a minimum of J1(!, U):

uij ! exp
(

%
d(xi , !j)

(j

)
(14.78)

Hence, uij decreases more rapidly with d(xi , !j) than in the previous case
(Eq. 14.70). Let us consider a point xi and a cluster representative !j . For the
same distance d, (14.78) leads to smaller values of uij than those derived from
(14.70). This means that increased “stretching” is demanded for the former case.
This is an indication that this algorithmic scheme may be used when the clusters
are expected to lie close to each other.

14.5 HARD CLUSTERING ALGORITHMS
In this section we return to the world where each vector belongs exclusively to a
single cluster. This is why such schemes are called hard or crisp clustering algo-
rithms. It turns out that some of the most well-known and widely used clustering
algorithms fall into this category. Our starting point is the assumption that the
membership coefficients uij are either 1 or 0. Moreover, they are 1 for one cluster,
Cj , and zero for all the others, Ck, k ̸! j, that is,

uij ∈ {0, 1}, j ! 1, . . . , m (14.79)

and
m∑

j!1

uij ! 1 (14.80)

This situation may be seen as a special case of the fuzzy algorithmic schemes.
However, the cost function

J (!, U) !
N∑

i!1

m∑

j!1

uijd(xi , !j) (14.81)

“16-Ch14-SA272” 17/9/2008 page 740

740 CHAPTER 14 Clustering Algorithms III

is no longer differentiable with respect to !j . Despite that, the general frame-
work of the generalized fuzzy algorithmic schemes, can be adopted for the special
case of hard clustering. Such schemes have been used extensively in practice
(e.g., [Duda 01]).

Let us fix !j , j ! 1, . . . , m. Since for each vector xi only one uij is 1 and all the
others are 0, it is straightforward to see that J (!, U) in Eq. (14.81) is minimized if
we assign each xi to its closest cluster, that is,

uij !
{1, If d(xi , !j) ! mink!1,...,m d(xi , !k)

0, otherwise
i ! 1, . . . , N (14.82)

Let us now fix uijs. Working as in the fuzzy algorithms case, the updating
equations of the parameter vectors, !j , of the clusters are

N∑

i!1

uij
!d(xi , !j)

!!j
! 0, j ! 1, . . . , m (14.83)

Having derived Eqs. (14.82) and (14.83),we are now in a position to write down
the generalized hard clustering algorithmic scheme

Generalized Hard Algorithmic Scheme (GHAS)

■ Choose !j(0) as initial estimates for !j , j ! 1, . . . , m.

■ t ! 0

■ Repeat

• For i ! 1 to N

⃝ For j ! 1 to m
— Determination of the partition:10

uij(t) !

{
1, ifd(xi , !j(t)) ! mink!1,...,m d(xi , !k(t))
0, otherwise,

⃝ End {For-j}

• End {For-i}

• t ! t # 1

• For j ! 1 to m
⃝ Parameter updating: Solve

N∑

i!1

uij(t % 1)
!d(xi , !j)

!!j
! 0 (14.84)

10 In the case in which two or more minima occur, an arbitrary choice is made.

“16-Ch14-SA272” 17/9/2008 page 741

14.5 Hard Clustering Algorithms 741

with respect to !j and set !j(t) equal to the computed solution.

• End {For-j}.

■ Until a termination criterion is met.

Note that in the update of each !j , only the vectors xi closest to it (i.e., those xi ’s
for which uij(t %1) ! 1) are used. As usual, the termination criterion ∥!(t)% !(t %
1)∥ & # can be used. Alternatively, GHAS may terminate if U remains unchanged
for two successive iterations.

Each hard clustering algorithm has its corresponding fuzzy clustering algorithm.
As with the fuzzy clustering algorithms, we may obtain hard clustering algorithms
when !js represent points,quadric surfaces,or hyperplanes. The updating equations
for the parameter vectors !j in the hard clustering algorithms are obtained from their
fuzzy counterparts if we set q ! 1.

Remarks

■ Hard clustering algorithms are not as robust as fuzzy clustering algorithms
when other than point representatives are employed. If, for example, hyper-
plane representatives are used and the G-K algorithm is adopted, we must
have an adequate number of vectors N from all underlying clusters in order
to avoid degenerate cases where 'j is not invertible [Kris 92a].

■ The determination of the partition part of the algorithms optimizes J (!, U)
with respect to U given a set of representatives !j . On the other hand, the
parameter updating phase optimizes J (!, U) with respect to ! given a specific
partition. Note that this procedure does not necessarily lead to a (local)
optimum of J (!, U).

14.5.1 The Isodata or k-Means or c-Means Algorithm
This is one of the most popular and well-known clustering algorithms [Duda 01,
Ball 67, Lloy 82]. It can be viewed as a special case of the generalized hard clustering
algorithmic scheme when point representatives are used and the squared Euclidean
distance is adopted to measure the dissimilarity between vectors xi and cluster
representatives !j . Before we state the algorithm explicitly, some further comments
may be of interest. For this case Eq. (14.81) becomes

J (!, U) !
N∑

i!1

m∑

j!1

uij∥xi % !j∥2 (14.85)

This is nothing but the trace of the within scatter matrix Sw, defined in Chapter 5.
That is,

J (!, U) ! trace{Sw} (14.86)

“16-Ch14-SA272” 17/9/2008 page 742

742 CHAPTER 14 Clustering Algorithms III

For the above choice of distance, Eq. (14.83) gives that !j is the mean vector of
the jth cluster. Applying the generalized hard algorithmic scheme for this specific
choice, it turns out that the algorithm converges to a minimum of the cost func-
tion. In other words, the isodata algorithm recovers clusters that are as compact as
possible. It must be emphasized however, that this convergence result is not valid
for other distances,including the Euclidean distance. For example,when Minkowski
distances are used, the algorithm converges but not necessarily to a minimum of
the corresponding cost function [Seli 84a].

The Isodata or k-Means or c-Means Algorithm

■ Choose arbitrary initial estimates !j(0) for the !j ’s, j ! 1, . . . , m.

■ Repeat

• For i ! 1 to N

⃝ Determine the closest representative, say !j , for xi .

⃝ Set b(i) ! j.

• End {For}

• For j ! 1 to m

⃝ Parameter updating: Determine !j as the mean of the vectors xi ∈ X
with b(i) ! j.

• End {For}.

■ Until no change in !j ’s occurs between two successive iterations.

As with all the algorithms that use point representatives, isodata is suitable for
recovering compact clusters. A sequential version of the k-means (see, for example,
[Pena 99]) results if the updating of the representatives takes place immediately
after determining the representative that lies closest to the currently considered
vector xi . Clearly, the result of this version of the algorithm is dependent on the
order in which the vectors are considered. A version of the k-means algorithm,
where in each cluster Ci the number of vectors is constrained a priori to be ni , is
proposed in [Ng 00].

Example 14.12
(a) Consider the setup of Example 14.1(a). In this case !js correspond to the %js. We
set m ! 3 and we initialize randomly !js. After convergence, the isodata algorithm identifies
successfully the underlying clusters in X , as indicated by the corresponding confusion matrix,

A !

⎡

⎢⎣
94 3 3
0 100 0
9 0 91

⎤

⎥⎦.

“16-Ch14-SA272” 17/9/2008 page 743

14.5 Hard Clustering Algorithms 743

5

1

4

(a)

12
23

22

5

1

4

(b)

12
23

22

FIGURE 14.17
(a) The data set. (b) The results of the isodata algorithm.

The resulting values of !js are !1 ! [1.19, 1.16]T , !2 ! [3.76, 3.63]T and !3 ! [5.93,
0.55]T .

(b) Let us now consider two 2-dimensional Gaussian distributions with means "1 ! [1, 1]T

and "2 ! [8, 1]T and covariance matrices '1 ! 1.5I and '2 ! I , respectively. We generate
300 points from the first distribution and 10 points from the second distribution in order to form
the data set X (Figure 14.17a). Also, we set m ! 2 and we initialize randomly !1 and !2. After
convergence, we observe that the large group has been split into two parts and, in addition,
the right part joins the vectors of the second distribution in the same cluster (Figure 14.17b).
Specifically, the results of the algorithm are !1 ! [0.54, 0.94]T and !2 ! [3.53, 0.99]T and
61 vectors from the first distribution are assigned to the same cluster with the ten vectors
of the second distribution. The above situation reveals a weakness of the algorithm to deal
accurately with clusters having significantly different sizes.

A major advantage of the k-means algorithm is its computational simplicity,which
makes it an attractive candidate for a variety of applications. Its time complexity is
O(Nmq), where q is the number of iterations required for convergence. Because
in practice m and q are significantly less than N , k-means becomes eligible for
processing large data sets. Furthermore, its conceptual simplicity has been a source
of inspiration to many authors,who have proposed a number of variants in order to
remedy drawbacks associated with the algorithm. Some of them are summarized
in the following

■ As all optimization schemes considered in this chapter, the k-means algorithm
cannot guarantee convergence to the global minimum of J (!, U). Equiva-
lently, different initial partitions may lead k-means to produce different final
clusterings, each corresponding to a different local minimum of J (!, U). To
minimize or even overcome this drawback, a number of strategies have been
suggested.

• Instead of initializing !js by m randomly chosen points (some suggest ran-
dom initialization with points drawn from X , [Forg 65]), one can use any

“16-Ch14-SA272” 17/9/2008 page 744

744 CHAPTER 14 Clustering Algorithms III

of the sequential algorithms discussed in Chapter 12 to produce the ini-
tial estimates for !js. Another way is to partition randomly the data set, X ,
into m subsets and use their mean values as initial estimates of the !js. A
number of variants based on different partition schemes of X and running
the k-means algorithm many times have also been proposed. See, for exam-
ple, [Kauf 90, Pena 99, Brad 98]. An alternative approach is discussed in
[Lika 03],where the representatives are computed iteratively,one at a time,
by running the algorithm mN times. The authors claim convergence that
is independent of the initial estimates, at the cost, of course, of increased
computational complexity.

• Another path is to adopt tools from stochastic optimization techniques,
such as simulated annealing and genetic algorithms (see also Chapter 15), in
that such techniques guarantee,in probability,the computation of the global
minimum of J (!, U) at the cost of excessive computations. Extensions of
the k-means in this spirit are discussed in [Kris 99] and [Pata 01].

• Although computing the optimal partition for the k-means, as well as the
k-medoids algorithm to be discussed next, is an NP-hard problem, recent
theoretical work shows that it is possible to find solutions that are prov-
ably good approximations. In addition, this can be achieved via reasonably
efficient techniques, see, for example, [Indy 99, Kuma 04, Kanu 04].

■ The number of clusters m in the data set,X , is required as an input parameter
to the algorithm. Clearly, a poor estimate of m will prevent the algorithm
to unravel the underlying clustering structure in X . To this end, a num-
ber of variants of the k-means algorithm have been suggested, employing
various splitting, merging, and discarding operations among the resulting
clusters [Ande 73] (based on suitably chosen user-defined parameters). No
doubt, such ad hoc techniques are no more the result of an optimization
process.

An alternative method for estimating m is to apply the procedure described
in Section 12.3, using a sequential clustering algorithm.

■ k-means is sensitive to outliers and noise. The outliers, being points in X , are
necessarily assigned to one of the clusters. Thus,they influence the respective
means and, as a consequence, the final clustering. Taking into account that
in general small clusters are likely to be formed by outliers, a version of the
algorithm given in [Ball 67] deals with outliers by simply discarding “small”
clusters.

In addition, this drawback of the k-means gave rise to the so-called
k-medoids algorithms (see next section), where each cluster is represented
by one of its points. This way of representing clusters is less sensitive to
outliers, at the cost of increased computational complexity.

“16-Ch14-SA272” 17/9/2008 page 745

14.5 Hard Clustering Algorithms 745

■ k-means is generally applicable to data sets with continuous valued feature
vectors, and in principle it is not suitable for data with nominal (categorical)
coordinates. Variants of the k-means that can deal with data sets consisting of
data stemming from a finite discrete-valued domain are discussed in [Huan 98,
Gupa 99]. The k-medoids algorithms, discussed next, are another possibility.

■ As it is currently the trend kernelized versions of the k-means algorithm have
also been proposed, see, for example, [Scho 98, Giro 02].

Other advances related to the k-means and other square-error-based clustering
algorithms can be found in [Hans 01, Kanu 00, Pata 02, Su 01, Wags 01].

14.5.2 k -Medoids Algorithms
In the k-means algorithm described in the previous section, each cluster is repre-
sented by the mean of its vectors. In the k-medoids methods, discussed in this
section, each cluster is represented by a vector selected among the elements of X ,
and we will refer to it as the medoid. Apart from its medoid, each cluster contains
all vectors in X that (a) are not used as medoids in other clusters and (b) lie closer
to its medoid than to the medoids representing the other clusters. Let , be the set
of medoids for all clusters. We will denote by I, the set of indices of the points in X
that constitute ,, and by IX%, the set of indices of the points that are not medoids.
Thus, if for example , ! {x1, x5, x13} is the set of medoids for a three-cluster case
then I, ! {1, 5, 13}. The quality of the clustering associated with a given set , of
medoids is assessed through the cost function

J (,, U) !
∑

i∈IX%,

∑

j∈I,

uijd(xi , xj) (14.87)

and

uij !

{
1, if d(xi , xj) ! minq∈I, d(xi , xq)

0, otherwise
i ! 1, . . . , N (14.88)

Thus, obtaining the set of medoids , that best represents the data set, X , is
equivalent to minimizing J (,, U). Note that Eqs. (14.87) and (14.81) are almost
identical. The only difference is that !j in Eq. (14.81) is replaced by xj , in that each
cluster is now represented by a vector in X .

Representing clusters using medoids has two advantages over the k-means algo-
rithm. First, it can be used with data sets originating from either continuous or
discrete domains,whereas k-means is suited only for the case of continuous domains
because in a discrete domain application the mean of a subset of the data vectors is
not necessarily a point lying in the domain (see Figure 14.18a). Second, k-medoids
algorithms tend to be less sensitive to outliers compared to the k-means algorithm
(see Figure 14.18b). However, it should be noted that the mean of a cluster has a
clear geometrical and statistical meaning,which is not necessarily the case with the

“16-Ch14-SA272” 17/9/2008 page 746

746 CHAPTER 14 Clustering Algorithms III

0

1

1 2 3 4 5 0 1 2 3 4 5 876 9

x2

x1

(a) (b)

2

3

4

5

+

x2

x1

+

0

1

2

3

4

5

0

FIGURE 14.18
(a) The five-point two-dimensional set stems from the discrete domain D ! {1, 2, 3, 4, . . .} (
{1, 2, 3, 4, . . .}. Its medoid is the circled point. The mean of the vectors of the set is denoted by
“#” and does not belong to D. (b) In the six-point two-dimensional set, the point (9, 2) can be
considered an outlier. Clearly, the outlier affects significantly the position of the mean of the set,
whereas it has no affect on the position of its medoid.

medoids. In addition, the algorithms for the estimation of the best set of medoids
are computationally more demanding compared to the k-means algorithm.

In the sequel, we describe three k-medoids algorithms: PAM (Partitioning Aro-
und Medoids), CLARA (Clustering LARge Applications), and CLARANS (Clustering
LargeApplications based on RANdomized Search). Note that the last two algorithms
are inspired by PAM but are suitable for dealing with large data sets more efficiently
than PAM.

The PAM Algorithm
To determine the set , of the m medoids that best represent the data set, PAM
uses a function optimization procedure that minimizes J (,, U), subject to the con-
straint that the representatives of the clusters are themselves elements of X . Before
proceeding any further, some definitions are in order. Two sets of medoids , and
,), each consisting of m elements, are called neighbors if they share m % 1 ele-
ments. Clearly, the number of neighbors a set , ⊂ X with m elements can have
is m(N % m). Also, let ,ij denote the neighbor of , that results if xj , j ∈ IX%,

replaces xi, i ∈ I,. Finally, let - Jij ! J (,ij , Uij) % J (,, U).
PAM starts with a set , of m medoids, which are randomly selected out of X .

Then, among all m(N % m) neighbors, ,ij , i ∈ I,, j ∈ IX%,, of the set ,, we select
,qr , q ∈ I,, r ∈ IX%,, with - Jqr ! minij - Jij . If - Jqr is negative, then , is
replaced by ,qr and the same procedure is repeated. Otherwise, if - Jqr ≥ 0 the
algorithm has reached a local minimum and terminates. Once the set , that best
represents the data has been determined,each x ∈ X % , is assigned to the cluster
represented by the closest to it medoid.

Let us focus now on the computation of - Jij . This quantity may be written as

- Jij !
∑

h∈IX%,

Chij (14.89)

“16-Ch14-SA272” 17/9/2008 page 747

14.5 Hard Clustering Algorithms 747

where Chij is the difference in J resulting from the (possible) assignment of the
vector xh ∈ X %, from the cluster it currently belongs to another,as a consequence
of the replacement of xi ∈ , by xj ∈ X % ,. For the computation of Chij we
consider the following four cases.

■ Suppose that xh belongs to the cluster represented by xi. Also, let xh2 ∈ ,
denote the second closest to xh representative. If d(xh, xj) ≥ d(xh, xh2)
(see Figure 14.19a), then after the replacement of xi by xj in ,, xh will now
be represented by xh2. Thus,

Chij ! d(xh, xh2) % d(xh, xi) $ 0 (14.90)

The equality corresponds to the case of a tie, that is, d(xh, xh2) ! d(xh, xi).

■ Suppose again that xh belongs to the cluster represented by xi and let xh2
denote the second closest to xh representative. If d(xh, xj)*d(xh, xh2) (see
Figure 14.19b–c), then after the replacement of xi by xj in ,,xh will now be
represented by xj . Thus,

Chij ! d(xh, xj) % d(xh, xi) (14.91)

(a) (b) (c)

(d) (e)

xh

xh

xh

xj

xj

xj

xj

xj

xi

xi

xi

xi

xi
xh

xh

xh2

xh1

xh1

xh2
xh2

FIGURE 14.19
Different cases encountered in the computation of Cĥij : (a) Cĥij " 0, (b) Cĥij & 0, (c) Cĥij " 0,
(d) Cĥij ! 0, (e) Cĥij & 0.

“16-Ch14-SA272” 17/9/2008 page 748

748 CHAPTER 14 Clustering Algorithms III

In this case, Chij may be either negative, zero, or positive (e.g., Figure
14.19b–c).

■ Suppose now that xh is not represented by xi and let xh1 be the closest to xh
medoid. If d(xh, xh1) * d(xh, xj) (see Figure 14.19d), then xh will continue
to be represented by xh1. Thus,

Chij ! 0 (14.92)

■ Finally, suppose that xh is not represented by xi and let xh1 be the closest to
xh medoid. If d(xh, xh1) " d(xh, xj) (see Figure 14.19e), then

Chij ! d(xh, xj) % d(xh, xh1) & 0 (14.93)

Experimental results ([Kauf 90]) show that PAM works satisfactorily for relatively
small data sets. However, it becomes inefficient for large data sets because its time
complexity per iteration increases quadratically with respect to N . This is easily
verified because at each iteration the term - Jij for m(N %m) pairs of vectors has to
be calculated. In addition, for the computation of a single - Jij ,N % m of Chij terms
have to be considered (see Eq. (14.89)). Thus, the total complexity of the algorithm
per iteration amounts to O(m(N % m)2).

CLARA and CLARANS: k-Medoids Algorithms for Large Data Sets
These algorithms are versions of the PAM algorithm,and they have been developed
to cope with the high computational demands imposed by large data sets. Both
algorithms exploit the idea of randomized sampling but each in a different way.
Specifically, the idea underlying CLARA is to draw randomly a sample X) of size N)
from the entire data set, X , and to determine the set ,) of the medoids that best
represents X) using the PAM algorithm. The rationale behind this algorithm is based
on the assumption that if the sample X) is drawn in a way that is representative of
the statistical distribution of the data points in X the set ,) will be a satisfactory
approximation of the set , of the medoids that would result if the PAM algorithm
was run on the entire data set. To obtain better results,CLARA runs PAM on a number
of sample subsets of X , denoted by X)1, . . . , X)s. Each run returns a set of medoids
denoted by ,)1, . . . , ,)s. Then, the quality of the clustering associated with each
of them is assessed through Eq. (14.87), where the entire data set, X , is taken into
account. Experimental studies ([Kauf 90]) suggest that s ! 5 and N) ! 40 # 2m
lead to satisfactory results.

The philosophy behind CLARANS is different from that behind CLARA.
According to CLARANS, PAM is applied on the entire data set, X , but with a slight
modification. At each iteration, not all neighbors of the current set , of medoids
are considered. Instead, only a randomly selected fraction q & m(N % m) of them
is utilized. The selected neighbors are considered in a sequential manner and if
the currently considered neighbor ,ij of , is better than , (in terms of J) then
, is replaced by ,ij and the procedure is repeated. When none of the q selected

“16-Ch14-SA272” 17/9/2008 page 749

14.6 Vector Quantization 749

neighbors of , is better than ,, in terms of J , then , is considered to be “local
minimum.”11 Then CLARANS starts from another arbitrarily chosen ,, and the
same procedure is followed in order to obtain a different “local minimum.” This
is repeated for a predetermined number of times, s, and the algorithm outputs
the best among the s “local minima.” In the sequel, based on this set of medoids
each point x ∈ X %, is assigned to the cluster whose representative is closest to x.

Remarks

■ The performance of CLARANS depends on the two parameters q and s. As q
gets closer to m(N % m),CLARANS approaches PAM and the time complexity
increases. As suggested in [Ng 94a], a typical value for s is 2, whereas for q it
is suggested to be chosen as the maximum between 0.12m (N % m) and 250.

■ The CLARANS algorithm can also be described in terms of graph theory
concepts ([Ng 94]).

■ CLARANS unravels better-quality clusterings than CLARA. On the other hand,
in some cases CLARA runs significantly faster than CLARANS ([Ng 94]). It
must be pointed out that CLARANS retains its quadratic computational nature
and is thus not appropriate for very large data sets.

14.6 VECTOR QUANTIZATION
An area that has close affinity with clustering is that of vector quantization (VQ),and
it has been the focus of intensive research effort over the past years (e.g., [Gray 84,
Gers 92]). Vector quantization techniques are used mainly for data compression,
which is a prerequisite for achieving better computer storage utilization and better
bandwidth utilization (in communications). Let T be the set of all possible vectors
for the problem at hand. The task of VQ may be stated in the general case in which T
is a continuous subset of Rl . The idea is rather simple. We separate T into m distinct
regions Rj that exhaust T , and we represent each of them with an l-dimensional
vector, the so-called code vector or reproduction vector, !j , j ! 1, . . . , m. In the
sequel, given an x ∈ T , we determine the region where it belongs, say Rj , and
we adopt the corresponding representative !j , instead of x, for further use, that is,
storage or transmission. This is obviously associated with some information loss,
which is known as distortion. The major goal in VQ is to define the regions Rj and
their representatives !j so that distortion is minimized.

After stating the general idea,let us proceed now to some more formal definitions.
A vector quantizer Q of dimension l and size m is a mapping of T to a finite set C ,

11 Note that , may not actually be a local minimum because it may have a nonselected neighbor that
gives lower value of J .

“16-Ch14-SA272” 17/9/2008 page 750

750 CHAPTER 14 Clustering Algorithms III

which is called the reproduction set and contains m output reproduction points,
the code vectors or code words. Thus

Q : T → C

where C ! {!1, !2, . . . , !m} with !i ∈ T . Each code vector !i represents a specific
region Ri of the vector space.

The next question that naturally arises is how one can select the code vectors
!j in such a way as to achieve the least possible distortion. A usual approach is to
optimize an appropriate criterion function, which in this framework is also known
as a distortion function,with respect to !j ’s. Let x be a random vector that models
T and p(x) its corresponding pdf.

A commonly used distortion criterion is the average expected quantization
error, which is defined as

D(Q) !
m∑

j!1

Dj(Q) (14.94)

where

Dj(Q) !

∫

Rj

d(x, !j)p(x) dx (14.95)

Dj(Q) is known as the average quantization error for region Rj . The quantity d is
a distance measure, for example, Euclidean, and it is also referred to as a distortion
measure.

When a finite number of samples,x1, x2, . . . , xN ,of x is available, the distortion
criterion becomes

D(Q) !
N∑

i!1

d(xi , Q(xi))P(xi) (14.96)

where Q(xi) ∈ C is the code vector that represents xi and P(xi)("0) i ! 1, . . . , N ,
the respective probabilities.

In [Gers 92] it is shown that the following conditions are necessary for a given
quantizer to be optimal. The first refers to the encoder part of the vector quantizer,
that is, the optimal way in which T is partitioned in the regions Rj , j ! 1, . . . , m,
given the code vectors !j . It is known as the nearest neighbor condition, and it
states that

■ For fixed C ,

Q(x) ! !j only if d(x, !j) * d(x, !k), k ! 1, . . . , m, k ̸! j

The second condition refers to the decoder part of the VQ, that is, the optimal way
the code words !j are chosen, given the partition regions Rj , j ! 1, . . . , m. It is
known as the centroid condition, and it is stated as

“16-Ch14-SA272” 17/9/2008 page 751

14.6 Vector Quantization 751

■ For a fixed partition R1, R2, . . . , Rm, each !j is chosen such that
∫

Rj

d(x, !j)p(x) dx ! min
y

∫

Rj

d(x, y)p(x) dx12

In the case that T is finite, the integrals are replaced with summations. One way
to compute the code vectors of the set C is to start with an arbitrary initial estimate
of the code vectors and to iteratively apply the nearest neighbor condition and
the centroid condition, interchangeably, until a termination criterion is satisfied.13

This is the well-known Lloyd’s algorithm [Lloy 82].14 Note that if P(xi) ! 1/N ,
.xi ∈ T , Lloyd’s algorithm coincides with the generalized hard clustering algorith-
mic scheme. This is not surprising. Both algorithms try to place optimally point
representatives in space. Note, however, that despite algorithmic similarities, the
two tasks have different goals. The goal of VQ is to place points in space in a way
that is representative of the data distribution. On the other hand,clustering focuses
on revealing the underlying clusters in X , if they exist.

Finally, it is worth pointing out that many other models for vector quantization
have been proposed in the literature. For example, hierarchical and fuzzy vector
quantizers are discussed in [Lutt 89] and [Kara 96], respectively.

APPENDIX
Derivation of %j and 'j for the EM Algorithm (Section 14.2)
Equations (14.3) and (14.13) for "j lead to

"j !

∑N
k!1 P(Cj |xk;Q(t))xk∑N

k!1 P(Cj |xk;Q(t))
(14.97)

for j ! 1, . . . , m.
Let us now turn our attention to 'j . Let)rs be the (r, s) element of '%1

j . Then
Eq. (14.13) gives

!

!)rs
ln p(x|Cj; !j) !

1
2
|'j |

!

!)rs
|'%1

j | %
1
2

(xr % %jr)(xs % %js)

or

!

!)rs
ln p(x|Cj; !j) !

1
2
|'j |#rs %

1
2

(xr % %jr)(xs % %js)

12 An additional optimality condition,given in [Gers 92], is that no vector in T is equidistant from two
(or more) code vectors.
13 One such criterion is to have the same values for all !j ’s, j ! 1, . . . , m, for two successive iterations.
14 For the special case in which the squared Euclidean distance is considered, the centroid condition
becomes !j ! (1/nj)

∑
x∈Rj

x, where nj is the number of vectors that lie in Rj . The corresponding
algorithm is the isodata algorithm,which in this framework is also called the LBG algorithm [Lind 80].

“16-Ch14-SA272” 17/9/2008 page 752

752 CHAPTER 14 Clustering Algorithms III

where #rs is the cofactor of)rs
15 and xr , %jr (xs, %js) are the rth (sth) coordinates

of x and "j , respectively. Thus,

! ln p(x|Cj; !j)

!'%1
j

!
1
2
|'j |# %

1
2

(x % "j)(x % "j)
T (14.98)

where # is the matrix of the cofactors of '%1
j . Since, in general, |'%1| ̸! 0, the

following identity holds from linear algebra:

'%1
j #T ! |'%1

j |I

Premultiplying both sides of this equation by 'j and noting that) is a symmetric
matrix, we obtain

! |'%1
j |'j

Substituting the last result into Eq. (14.98), we obtain

! ln p(x|Cj; !j)

!'%1
j

!
1
2

'j %
1
2

(x % "j)(x % "j)
T (14.99)

Substituting this result into Eq. (14.3) and after some manipulations, we finally
obtain

'j !

∑N
k!1 P(Cj |xk;Q(t))(xk % "j)(xk % "j)

T

∑N
k!1 P(Cj |xk;Q(t))

(14.100)

for j ! 1, . . . , m.

14.7 PROBLEMS
14.1 Consider the case in which there exist m clusters in X , which are charac-

terized by normal distributions of unknown means and known covariance
matrices; that is, the parameter vector ! consists only of the parameters of "j ,
j ! 1, . . . , m. State the corresponding generalized mixture decomposition
algorithmic scheme (GMDAS).

14.2 Consider the case that there exist m clusters in X which are described by
normal distributions of unknown means and unknown diagonal covariance
matrices. Derive the corresponding GMDAS.

14.3 Consider the case that there exist m clusters in X which are described by
normal distributions. Derive the maximum likelihood estimates of the means
"j and covariance matrices 'j when:

a. the means and the covariance matrices are unknown and

15 Recall that the cofactor of the element aij of a matrix A is the determinant of the matrix that results
from A if we delete its ith row and its jth column.

“16-Ch14-SA272” 17/9/2008 page 753

14.7 Problems 753

b. the means and the covariance matrices are unknown but 'j ! ', j !
1, . . . , m.

Compare the results of (a) with those of Section 14.2.1.

14.4 Consider the data set X ! {xi ∈ R2, i ! 1, . . . , 16}, where x1 ! [2, 0]T ,
x2 ! [

√
2,

√
2]T , x3 ! [0, 2]T , x4 ! [%

√
2,

√
2]T , x5 ! [%2, 0]T , x6 !

[%
√

2, %
√

2]T , x7 ! [0, %2]T , x8 ! [
√

2, %
√

2]T . The remaining points
xi, i ! 9, . . . , 16, are obtained from the first eight points as follows. The first
coordinate of xi ,i ! 9, . . . , 16,equals the first coordinate of xi%8 plus 6,while
the second coordinate of xi , i ! 9, . . . , 16, equals the second coordinate of
xi%8.

a. Run the GMDAS, with Gaussian pdf’s, to obtain estimates of "j , and 'j ,
j ! 1, 2.

b. Does the algorithm determine the clusters that underlie X correctly?
Justify your answer.
Hint: In the rest problems,where possible,one may use the MATLAB codes
given in the Computer Programs section of this chapter.

14.5 Consider the setup of Problem 14.4, with the difference that the points xi,
i ! 9, . . . , 16, are derived as follows. The first coordinate of xi , i ! 9, . . . , 16,
equals the first coordinate of xi%8 plus 2, while the second coordinate of xi,
i ! 9, . . . , 16, equals to the second coordinate of xi%8.

a. Run the GMDAS, with Gaussian pdf’s, to obtain estimates for "j , and 'j ,
j ! 1, 2.

b. Does the algorithm determine the clusters that underlie X accurately?
Justify your answer.

c. Compare the results obtained in this and the previous problem.

14.6 Consider four two-dimensional distributions with means "1 ! [0, 0]T , "2 !
[2, 2]T , "3 ! [4, 0]T , "4 ! [7, 0]T , respectively, and covariance matrices

'1 !

[
1 0.3

0.3 1

]
, '2 !

[
1 0
0 1

]

'3 !

[
1 %0.5

%0.5 1

]
, '4 !

[
1 0.5

0.5 1

]

respectively. Draw 80 points from each distribution and let X be the set that
contains these 320 points. Initialize "i and 'i, i ! 1, . . . , 4, as in
Example 14.1. Set m ! 4, # ! 0.01 and run the GMDAS, with Gaussian
pdf’s.

a. What are the estimates of "j , j ! 1, . . . , 4, and 'j , j ! 1, . . . , 4?

b. Assign each feature vector x ∈ X to a cluster Cj according to the Bayes
decision rule.

c. Derive the respective confusion matrix.

“16-Ch14-SA272” 17/9/2008 page 754

754 CHAPTER 14 Clustering Algorithms III

d. Run the algorithm for m ! 3 and m ! 2 and repeat steps (a) and (b).
Discuss the results.

14.7 In the framework of Example 14.4, prove that for m ! 2, q ∈ {2, 3} and for
fixed !, there are cases where the fuzzy clusterings are favored against the
hard ones.

14.8 Find the relation between p and A, b, and c so that Eqs. (14.35) and (14.36)
are equivalent.
Hint: Consider each coordinate of p separately.

14.9 Let l ! 2. Prove that the substitution of z , as given by Eq. (14.44), into
Eq. (14.42) leads to a fourth-degree polynomial, with respect to ".

14.10 Prove Eq. (14.50).

14.11 a. Derive Eqs. (14.56) and (14.57) for the fuzzy C ellipsoidal shells (FCES)
algorithm.

b. Write the parameter determination part of the fuzzy C ellipsoidal shells
(FCES) algorithm.

14.12 Derive the fuzzy C quadric shells (FCQs) algorithm by minimizing Eq. (14.58)
under constraint (v).

14.13 a. State explicitly the modified fuzzy C quadric shells (MFCQS) algorithm.

b. Under what general conditions are the algebraic and the perpendicular
distances close to each other?

14.14 What is the relation between the perpendicular and the radial distance
between a point x and a hyperspherical cluster?

14.15 a. Derive theAFCS algorithm [Dave 92b] for the case that spherical clusters
are to be recovered. The distance between a point x and a hypersphere
Q with center c and radius r is

d2(x, Q) ! (∥x % c∥ % r)2

b. Derive the fuzzy C spherical shells (FCSS) algorithm [Kris 92b] for the
case that spherical clusters are to be identified.

14.16 Prove Eq. (14.64).

14.17 Derive the possibilistic algorithm obtained via minimization of the function
J1 given in Eq. (14.77).

14.18 Plot uij versus d(xi , !j)/(j , using Eq. (14.78). Compare this plot with the
one shown in Figure 14.15.

14.19 Compare the isodata algorithm with the variant of the BSAS proposed in
MACQ 67 and outlined in Section 12.6.

“16-Ch14-SA272” 17/9/2008 page 755

MATLAB Programs and Exercises 755

MATLAB PROGRAMS AND EXCERCISES
Computer Programs

14.1 GMDAS algorithm.Write a MATLAB function named GMDAS that implements
the GMDAS algorithm when normal distributions are adopted for the repre-
sentation of the clusters. The function takes as input (a) an l (N dimensional
matrix X whose columns are the data vectors, (b) an l (m dimensional
matrix mv whose ith column contains an initial estimate of the mean of the
ith normal distribution,(c) an l(l(m dimensional matrix mc,whose ith two-
dimensional l (l component contains an initial estimate of the covariance
matrix of the ith normal distribution, (d) a parameter e used in the termi-
nation condition of the algorithm, which is ||Q(t) % Q(t % 1)|| & e, (e) the
maximum number of allowable iterations,maxiter, (f) a seed sed for the rand
MATLAB function. The output consists of (a) an m dimensional row vector
ap with the a priori probabilities, (b) an N (m dimensional matrix cp,whose
ith row contains the conditional probabilities P(Cj |xi), j ! 1, . . . , m, (c)–(d)
the final estimates mv and mc of the mean values and covariance matrices of
the normal distributions, respectively, (e) the number of iterations required
for convergence, (f) the vector diffvec that contains the differences between
successive values of Q, during the training phase.

Solution
For an implementation of this function see in http://www.di.uoa.gr/∼stpa-
trec.

14.2 Random initialization. Write a MATLAB function named rand_vec, that
selects randomly m vectors in the range of values of a given data set. The
function takes as input (a) an l (N dimensional matrix X , whose columns
are the data vectors, (b) the number m of column vectors that will be pro-
duced,(c) a seed (integer) for the initialization of the rand MATLAB function.
It returns an l (m dimensional matrix consisting of the randomly selected
column vectors, which will be used for initialization purposes.

Solution

function w=rand_vec(X,m,sed)
rand('seed',sed)
mini=min(X');
maxi=max(X');
w=rand(size(X,1),m);
for i=1:m
w(:,i)=w(:,i).*(maxi'-mini')+mini';

end

“16-Ch14-SA272” 17/9/2008 page 756

756 CHAPTER 14 Clustering Algorithms III

14.3 k-means algorithm. Write a MATLAB function, named k_means, that imple-
ments the k-means algorithm. The function takes as input (a) an l (N
dimensional matrix X , each column of which is a data vector, (b) an l (m
dimensional matrix w, the ith column of which is the initial estimate of the
ith representative. The output consists of (a) a matrix w similar to the previ-
ous one, which contains the final estimates of the representatives and (b) an
N -dimensional row vector whose ith element contains the identity number of
the cluster where the ith vector belongs (an integer in the set {1, 2, . . . , m}).

Solution

function [w,bel]=k_means(X,w)
[l,N]=size(X);
[l,m]=size(w);
e=1;
iter=0;
while(e~=0)

iter=iter+1;
w_old=w;
dist_all=[];
for j=1:m
dist=sum(((ones(N,1)*w(:,j)'-X'). ^ 2)');
dist_all=[dist_all; dist];

end
[q1,bel]=min(dist_all);
for j=1:m
if(sum(bel==j)~=0)
w(:,j)=sum(X'.*((bel==j)'*ones(1,l))) / sum(bel==j);

end
end
e=sum(abs(w-w_old));

end

Computer Experiments

14.1 a. Generate q ! 50 two-dimensional vectors from three normal distribu-
tions with mean values [1, 1]T , [5, 5]T , [9, 1]T and covariance matrices
[

1 0.4
0.4 1

]
,

[
1 %0.6

%0.6 1

]
,

[
1 0
0 1

]
, respectively. Form the

2 (150 dimensional matrix X , whose columns are the data vectors
produced before.

b. Run the GMDAS algorithm on X setting e ! 0.01, maxiter ! 300, sed !
110 and initializing randomly the mv and mc using the rand MATLAB
function.

“16-Ch14-SA272” 17/9/2008 page 757

MATLAB Programs and Exercises 757

c. Compute the sample mean and the sample covariance matrix for the vec-
tors from each distribution and compare them with the corresponding
estimates produced by the algorithm.

d. Comment on the conditional probabilities for each vector.

e. Repeat (b)–(d) five times for different initial estimates for mv and mc.

Hint:Assuming that the first group of q vectors in X is generated from the
first distribution,the second group of q vectors in X is generated from the
second distribution and so on, the sample mean and sample covariance
matrix of the ith group are computed via sum (X(:, (i % 1) ∗ q # 1 :
i ∗ q))))/q and cov(X(:, (i % 1) ∗ q # 1 : i ∗ q))), respectively.

14.2 Repeat 14.1 when the mean values of the normal distributions are [1, 1]T ,
[3.5, 3.5]T , [6, 1]T .

14.3 a. Repeat 14.1 when the mean values of the normal distributions are [1, 1]T ,
[2, 2]T , [3, 1]T .

b. Compare the results obtained in (a) with those obtained in 14.1 and 14.2
and draw your conclusions.

14.4 a. Generate 100 two-dimensional vectors from each one of the three normal
distributions with mean values m1 ! [2, 2]T , m2 ! [6, 6]T , m3 !
[10, 2]T and covariance matrices S1 ! S2 ! S3 ! 0.5 ∗ I . Form the
2 (300 dimensional matrix X using as columns the vectors generated
previously from the three distributions.

b. Run the k-means algorithm on X for m ! 2, 3, 4 representatives using 10
different (randomly selected) initial conditions for the representatives, for
each value of m.

c. Comment on the results.
Hint: Use the rand_vec function for the initialization of the representa-
tives.

14.5 In the data set of the previous experiment apply the k-means algorithm
for m ! 3 representatives, initializing the representatives to the vectors
[%100, %100]T , [4.5, 6.5]T , [3.5, 5.5]T . Comment on the results.

14.6 a. Generate 400 two-dimensional vectors from the normal distribution
with mean [0, 0]T and covariance matrix 1.5 ∗ I and another 15 two-
dimensional vectors from the normal distribution with mean [7, 0]T and
covariance matrix I . Form the 2 (415 dimensional matrix X using as
columns the vectors generated previously from both distributions.

b. Run the k-means algorithm on X for m ! 2 representatives using 10
different randomly selected initial conditions for the representatives.

“16-Ch14-SA272” 17/9/2008 page 758

758 CHAPTER 14 Clustering Algorithms III

c. Comment on the results.
Hint: Use the rand_vec function for the initialization of the representa-
tives.

14.7 a. Generate 20 two-dimensional vectors from each one of the two nor-
mal distributions with mean values m1 ! [0, 0]T , m2 ! [6, 6]T and
covariance matrices S1 ! S2 ! 0.5 ∗ I . Form the 2 (40 dimensional
matrix using as columns the vectors generated previously from the two
distributions.

b. Run the fuzzy c-means (FCM) algorithm on the above data set with m ! 2
representatives, initialized randomly. Comment on the grade of mem-
berships of the data vectors in the two resulting clusters.
Hint: Just type

[w,U,obj_fun]=fcm(X,m)

This function returns (a) the cluster representatives in the rows of w, (b)
the grade of membership of each vector to each cluster in matrix U , and
(c) the values of the objective function during iterations.

14.8 Repeat the previous experiment when S1 ! S2 ! 6 ∗ I .

14.9 Run the FCM algorithm for m ! 3 representatives on the data sets produced
in 14.7 and 14.8 and comment on the results.

14.10 Run the k-means algorithm on the data sets of experiments 14.7 and 14.8
for m ! 2 randomly initialized representatives and compare the final values
of the representatives with those produced by the FCM algorithm on these
data sets. Comment on the results.

REFERENCES
[Ande 73] Anderberg M.R. Cluster analysis for applications,Academic Press, 1973.

[Ande 85] Anderson I., Bezdek J.C. “An application of the c-varieties clustering algorithms
to polygonal curve fitting,” IEEE Transactions on Systems Man and Cybernetics, Vol. 15,
pp. 637–639, 1985.

[Ball 67] Ball G.H.,Hall D.J.“A clustering technique for summarizing multivariate data,”Beh- avioral
Science,Vol. 12, pp. 153–155, March 1967.

[Barn 96] Barni M., Cappellini V., Mecocci A. “Comments on ‘A possibilistic approach to clus-
tering’,” IEEE Transactions on Fuzzy Systems,Vol. 4(3), pp. 393–396,August 1996.

[Berk 02] Berkhin P. “Survey of clustering data mining techniques,” Technical Report, Accrue
Software Inc., 2002.

[Bezd 80] Bezdek J.C. “A convergence theorem for the fuzzy Isodata clustering algorithms,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 2(1), pp. 1–8, 1980.

[Bezd 81] Bezdek J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum,
1981.

“16-Ch14-SA272” 17/9/2008 page 759

References 759

[Bezd 92] Bezdek J.C., Hathaway R.J. “Numerical convergence and interpretation of the fuzzy
c-shells clustering algorithm,” IEEE Transactions on Neural Networks,Vol. 3(5), pp. 787–793,
September 1992.

[Bezd 95] Bezdek J.C.,Hathaway R.J.,Pal N.R.,“Norm-induced shell prototypes (NISP) clus- tering,”
Neural, Parallel and Scientific Computations,Vol. 3, pp. 431–450, 1995.

[Bobr 91] Bobrowski L.,Bejdek J.C. “c-Means clustering with l1 and l+ norms,” IEEE Transactions
on Systems Man and Cybernetics,Vol. 21(3), pp. 545–554, May/June 1991.

[Brad 98] Bradley P., Fayyad U. “Refining initial points for K -means clustering,”Proceedings of the
15th International Conference on Machine Learning, pp. 91–99, 1998.

[Cann 86] Cannon R.L., Dave J.V., Bezdek J.C. “Efficient implementation of the fuzzy c-means
clustering algorithms,” IEEE Transactions on PAMI,Vol. 8(2), pp. 248–255, March 1986.

[Chen 89] Chen D.S. “A data-driven intermediate level feature extraction algorithm,” IEEE
Transactions on PAMI, Vol. 11(7), pp. 749–758, July 1989.

[Chia 03] Chiang J.H., Hao P.Y., “A new kernel-based fuzzy clustering approach: support vector
clustering with cell growing,” IEEE Transactions of Fuzzy Systems, Vol. 11(4), pp. 518–527,
2003.

[Dave 92a] Dave R.N., Bhaswan K. “Adaptive fuzzy c-shells clustering and detection of ellipses,”
IEEE Transactions on Neural Networks,Vol. 3(5), pp. 643–662, 1992.

[Dave 92b] Dave R.N.“Generalized fuzzy c-shells clustering and detection of circular and elliptical
boundaries,”Pattern Recognition,Vol. 25(7), pp. 713–721, 1992.

[Duda 01] Duda R.O., Hart P.E., Stork D. Pattern Classification, John Wiley & Sons, 2001.

[Figu 02] Figueiredo M., Jain A.K. “Unsupervised learning of finite mixture models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 24(3), pp. 381–396, 2002.

[Forg 65] Forgy E. “Cluster analysis of multivariate data: Efficiency vs. interpretability of
classifications,”Biometrics,Vol. 21, pp. 768–780, 1965.

[Frig 96] Frigui H., Krishnapuram R. “A comparison of fuzzy shell clustering methods for the
detection of ellipses,” IEEE Transactions on Fuzzy Systems, Vol. 4(2), pp. 193–199, May
1996.

[Gao 00] Gao X., Li J., Xie W.,“Parameter optimization in FCM clustering algorithms,” Proc. of the
Int. Conf. on Signal Processing (ICSP) 2000, pp. 1457–1461, 2000.

[Gers 79] Gersho A. “Asymptotically optimal block quantization,” IEEE Transactions on Infor-
mation Theory,Vol. 25(4), pp. 373–380, 1979.

[Gers 92] GershoA.,Gray R.M.Vector Quantization and Signal Compression,Kluwer Publishers,
1992.

[Giro 02] Girolami M. “Mercer kernel based clustering in feature space,” IEEE Transactions on
Neural Networks,Vol. 13(3), pp. 780–784, 2002.

[Gnan 77] Gnanadesikan R. Methods for Statistical Data Analysis of Multivariate Observations,
John Wiley & Sons, 1977.

[Grav 07] Graves D., Pedrycz W., “Fuzzy c-means, Gustafson-Kessel FCM, and kernel-based FCM.
A comparative study,” in Analysis and Design on Intelligent Systems using Soft Computing
Techniques, eds. Mellin P. et al., Springer, pp. 140–149, 2007.

[Gray 84] Gray R.M. “Vector quantization,” IEEE ASSP Magazine,Vol. 1, pp. 4–29, 1984.

[Grol 05] Groll L., Jakel J.,“An new convergence proof of fuzzy c-means”, IEEE Transactions on
Fuzzy Systems,Vol. 13(5), pp. 717–720, 2005.

“16-Ch14-SA272” 17/9/2008 page 760

760 CHAPTER 14 Clustering Algorithms III

[Gupa 99] Gupata S., Rao K., Bhatnagar V. “K -means clustering algorithm for categorical attri-
butes,”Proceedings of the 1st International Conference on DataWarehousing and Knowledge
Discovery, pp. 203–208, Florence, Italy, 1999.

[Hans 01] Hansen P., Mladenovic. “J -means: A new local search heuristic for minimum sum of
squares clustering.”Pattern Recognition,Vol. 34, pp. 405–413, 2001.

[Hath 86] Hathaway R.J.,Bezdek J.C.“Local convergence of the fuzzy c-means algorithms,”Pattern
Recognition Vol. 19(6), pp. 477–480, 1986.

[Hath 89] Hathaway R.J., Davenport J.W., Bezdek J.C. “Relational duals of the c-means clustering
algorithms,”Pattern Recognition,Vol. 22(2), pp. 205–212, 1989.

[Hath 93] Hathaway R.J., Bezdek J.C. “Switching regression models and fuzzy clustering,” IEEE
Transactions on Fuzzy Systems,Vol. 1(3), pp. 195–204,August 1993.

[Hath 95] Hathaway R.J., Bezdek J.C. “Optimization of clustering criteria by reformulation,” IEEE
Transactions on Fuzzy Systems,Vol. 3(2), pp. 241–245, 1995.

[Hopp 99] Hoppner F., Klawonn F., Kruse R., Runkler T. Fuzzy Cluster Analysis, John Wiley &
Sons, 1999.

[Horn 86] Horn B.K.P. Robot Vision, MIT Press, 1986.

[Huan 98] Huang Z. “Extensions to the K -means algorithm for clustering large data sets with
categorical values,”Data Mining Knowledge Discovery,Vol. 2, pp. 283–304, 1998.

[Indy 99] Indyk P. “A sublinear time approximation scheme for clustering in metric spaces,”
Foundations of Computer Science (FOCS), pp. 154–159, 1999.

[Isma 86] Ismail M.A.,Selim S.Z.“Fuzzy c-means: Optimality of solutions and effective termination
of the algorithm,”Pattern Recognition,Vol. 19(6), pp. 481–485, 1986.

[Kanu 00] Kanungo T., Mount D.M., Netanyahu N., Piatko C., Silverman R., Wu A. “An efficient
k-means clustering algorithm: Analysis and implementation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 24(7), pp. 881–892, 2000.

[Kanu 04] Kanungo T., Mount D.M., Netanyahu N., Piatko C., Silverman R.,Wu A. “A local search
approximation algorithm for k-means clustering,” Computational Geometry, Vol. 28(2–3),
pp. 89–112, 2004.

[Kara 96] Karayiannis N.B., Pai P.-I. “Fuzzy algorithms for learning vector quantization,” IEEE
Transactions on Neural Networks,Vol. 7(5), pp. 1196–1211, September 1996.

[Kare 94] Karen D., Cooper D., Subrahmonia J. “Describing complicated objects by implicit
polynomials,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16(1),
pp. 38–53, 1994.

[Kauf 90] Kaufman L., Rousseeuw P. Finding groups in data: An introduction to cluster
analysis. John Wiley & Sons, 1990.

[Kim 88] KimT.,Bezdek J.C.,Hathaway R.J. “Optimality tests for fixed points of the fuzzy c-means
algorithm,”Pattern Recognition,Vol. 21(6), pp. 651–663, 1988.

[Kris 92a] Krishnapuram R., Freg C.-P. “Fitting an unknown number of lines and planes to image
data through compatible cluster merging,”Pattern Recognition,Vol. 25(4), pp. 385–400, 1992.

[Kris 92b] Krishnapuram R., Nasraoui O., Frigui H. “The fuzzy c spherical shells algorithm: A new
approach,” IEEE Transactions on Neural Networks,Vol. 3(5), pp. 663–671, 1992.

[Kris 93] Krishnapuram R., Keller J.M. “A possibilistic approach to clustering,” IEEE Transactions
on Fuzzy Systems,Vol. 1(2), pp. 98–110, May 1993.

“16-Ch14-SA272” 17/9/2008 page 761

References 761

[Kris 95a] Krishnapuram R., Frigui H., Nasraoui O. “Fuzzy and possibilistic shell clustering
algorithms and their application to boundary detection and surface approximation—Part I,”
IEEE Transactions on Fuzzy Systems,Vol. 3(1), pp. 29–43, February 1995.

[Kris 95b] Krishnapuram R., Frigui H., Nasraoui O. “Fuzzy and possibilistic shell clustering
algorithms and their application to boundary detection and surface approximation—Part II,”
IEEE Transactions on Fuzzy Systems,Vol. 3(1), pp. 44–60, February 1995.

[Kris 96] Krishnapuram R., Keller J.M. “The possibilistic c-means algorithm: Insights and recom-
mendations,” IEEE Transactions on Fuzzy Systems,Vol. 4(3), pp. 385–393,August 1996.

[Kris 99] Krishna K.,Muthy M.“Genetic k-means algorithm,”IEEE Transactions on Systems, Man
and Cybernetics,Vol. 29(3), pp. 433–439, 1999.

[Kris 99a] Krishnapuram R.,Kim J.,“A note on the Gustafson-Kessel and adaptive fuzzy clustering
algorithms,” IEEE Transactions on Fuzzy Systems,Vol. 7(4), pp. 453–461, 1999.

[Kuma 04] Kumar A., Sabharwal Y., Sen S. “A simple linear time (1+)-approximation algorithm for
k-means clustering in any dimension,”Foundations of Computer Science (FOCS),pp. 454–462,
2004.

[Lika 03] Likas A., Vlassis N., Verbeek J. “The global K -means clustering algorithm,” Pattern
Recognition,Vol. 36(2), pp. 451–461, 2003.

[Lin 96] Lin J.S.,Cheng K.S.,Mao C.W.,“Segmentation of multispectral magnetic resonance image
using penalized fuzzy competitive learning network,” Computers and Biomedical Research,
Vol. 29, pp. 314–326, 1996.

[Lind 80] Linde Y., Buzo A., Gray R.M. “An algorithm for vector quantizer design,” IEEE Tran-
sactions on Communications,Vol. 28, pp. 84–95, 1980.

[Lloy 82] Lloyd S.P. “Least squares quantization in PCM,” IEEE Transactions on Information
Theory,Vol. 28(2), pp. 129–137 March 1982.

[Luen 84] Luenberger D.G. Linear and Nonlinear Programming,Addison Wesley, 1984.

[Lutt 89] Luttrell S.P. “Hierarchical vector quantization,” IEE Proceedings (London),Vol. 136 (Part
I), pp. 405–413, 1989.

[MacQ 67] MacQueen J.B. “Some methods for classification and analysis of multivariate obser-
vations,” Proceedings of the Symposium on Mathematical Statistics and Probability, 5th
Berkeley,Vol. 1, pp. 281–297,AD 669871, University of California Press, 1967.

[Man 94] ManY.,Gath I. “Detection and separation of ring-shaped clusters using fuzzy clustering,”
IEEE Transactions on PAMI,Vol. 16(8), pp. 855–861,August 1994.

[Mena 00] Menard M.,Demko C.,Loonis P.“The fuzzy c#2 means:solving the ambiguity rejection
in clustering,”Pattern Recognition,Vol. 33, pp. 1219–1237, 2000.

[Ng 94] Ng R., Han J.“Efficient and effective clustering methods for spatial data mining.”
Proceedings of the 20th Conference on VLDB, pp. 144–155, Santiago, Chile, 1994.

[Ng 94a] Ng R., Han J. “Efficient and effective clustering methods for spatial data mining.”
Technical Report 94–13, University of British Columbia.

[Ng 00] Ng M. K. “A note on constrained k-means algorithms,” Pattern Recognition, Vol. 33,
pp. 515–519, 2000.

[Ozde 01] Özdemir D., Akarun L., “Fuzzy algorithms for combined quantization and dithering,”
IEEE Transactions on Image Processing,Vol. 10(6), pp. 923–931, 2001.

[Ozde 02] Özdemir D.,Akarun L.,“A fuzzy algorithm for color quantization and images,” Pattern
Recognition,Vol. 35, pp. 1785–1791, 2002.

“16-Ch14-SA272” 17/9/2008 page 762

762 CHAPTER 14 Clustering Algorithms III

[Pata 01] Patane G., Russo M. “The enhanced-LBG algorithm,” Neural Networks, Vol. 14(9),
pp. 1219–1237, 2001.

[Pata 02] Patane G., Russo M. “Fully automatic clustering system,” IEEE Transactions on Neural
Networks,Vol. 13(6), pp. 1285–1298, 2002.

[Pato 70] Paton K. “Conic sections in chromosome analysis,” Pattern Recognition, Vol. 2(1),
pp. 39–51, January 1970.

[Pedr 96] Pedrycz W., “Conditional fuzzy c-means,” Pattern Recognition Letters, Vol. 17,
pp. 625–632, 1996.

[Pena 99] Pena J., Lozano J., Larranaga P. “An empirical comparison of four initialization methods
for the k-means algorithm,”Pattern Recognition Letters,Vol. 20, pp. 1027–1040, 1999.

[Runk 99] Runkler T.A., Bezdek J.C. “Alternating cluster estimation: A new tool for clustering and
function approximation,”IEEE Trans.on Fuzzy Systems,Vol. 7,No. 4,pp. 377–393,August 1999.

[Sabi 87] Sabin M.J. “Convergence and consistency of fuzzy c-means/Isodata algorithms,” IEEE
Transactions on PAMI,Vol. 9(5), pp. 661–668, September 1987.

[Scho 98] Schölkopf B., Smola A.J., Müller “Nonlinear component analysis as a kernel eigenvalue
problem,”Neural Computation,Vol. 10(5), pp. 1299–1319, 1998.

[Seli 84a] Selim S.Z., Ismail M.A. “K-means type algorithms: A generalized convergence theorem
and characterization of local optimality,”IEEE Transactions on PAMI,Vol. 6(1),pp. 81–87,1984.

[Seli 84b] Selim S.Z., Ismail M.A.“Soft clustering of multidimensional data: A semifuzzy approach,”
Pattern Recognition,Vol. 17(5), pp. 559–568, 1984.

[Seli 86] Selim,S.Z., Ismail,M.A.“On the local optimality of the fuzzy Isodata clustering algorithm,”
IEEE Transactions on PAMI,Vol. 8(2), pp. 284–288, March 1986.

[Shen 06] Shen H.,Yang J.,Wang S.,Liu X.,“Attribute weighted Mercer kernel-based fuzzy clustering
algorithm for general non-spherical data sets,”Soft Computing,Vol. 10(11),pp. 1061–1073,2006.

[Siya 05] Siyal M.Y.,Yu L.,“An intelligent modified fuzzy c-means based algorithm for bias estimation
and segmentation of brain MRI,”Pattern Recognition Letters,Vol. 26(13),pp. 2052–2062,2005.

[Spra 66] Spragins J. “Learning without a teacher,” IEEE Transactions on Information Theory,
Vol. IT-12, pp. 223–230,April 1966.

[Su 01] Su M., Chou C. “A modified version of the K -means algorithm with a distance based
on cluster symmetry,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 23(6), pp. 674–680, 2001.

[Wags 01] Wagstaff K., Rogers S., Schroedl S. “Constrained k-means clustering with background
knowledge,” Proceedings of the 8th International Conference on Machine Learning,
pp. 577–584, 2001.

[Wei 94] Wei W., Mendel J.M. “Optimality tests for the fuzzy c-means algorithm,” Pattern
Recognition,Vol. 27(11), pp. 1567–1573, 1994.

[Yama 80] Yamada Y., Tazaki S., Gray R.M. “Asymptotic performance of block quantizers with
difference distortion measures,” IEEE Transactions on Information Theory, Vol. 26(1),
pp. 6–14, 1980.

[Yang 93] Yang M.S.,“On a class of fuzzy classification maximum likelihood procedures,” Fuzzy
Sets and Systems,Vol. 57, pp. 365–375, 1993.

[Yu 03] Yu J.,Yang M.,“A study on a generalized FCM,” in Rough Sets, Fuzzy Sets, Data Mining,
and Granular Computing, eds. Wang G. et al, pp. 390–393, Springer, 2003.

“16-Ch14-SA272” 17/9/2008 page 763

References 763

[Zade 78] Zadeh L.A. “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems,
Vol. 1, pp. 3–28, 1978.

[Zeyu 01] Zeyu L., Shiwei T., Jing X., Jun J.,“Modified FCM clustering based on kernel mapping,”
Proc. of Int. Society of Optical Engineering,Vol. 4554 pp. 241–245, 2001.

[Zhan 03] Zhang D.Q., Chen S.C.,“Clustering incomplete data using kernel-based fuzzy c-means
algorithm,”Neural Processing Letters,Vol. 18(3), pp. 155–162, 2003.

[Zhou 04] Zhou S., Gan J., “Mercer kernel fuzzy c-means algorithm and prototypes of clusters,”
Proc. Cong. on Int. Data Engineering and Automated Learning, pp. 613–618, 2004.

[Zhua 96] Zhuang X., Huang Y., Palaniappan K., Zhao Y. “Gaussian mixture density mod-
elling, decomposition and applications,” IEEE Transactions on Image Processing, Vol. 5,
pp. 1293–1302, September 1996.

“17-Ch15-SA272” 18/9/2008 page 765

CHAPTER

15Clustering Algorithms IV

15.1 INTRODUCTION
The clustering algorithms presented in the previous two chapters evolved along two
distinct major philosophies. The current chapter presents categories of algorithms
that cannot be included in either of the previous two families, and they stem from
various ideas. The first one includes clustering algorithms based on graph theory
concepts, such as the minimum spanning tree, the directed tree and spectral clus-
tering. The second category includes competitive learning algorithms. The third
category includes branch and bound algorithms. These schemes guarantee to pro-
vide globally optimal clustering,in terms of a prespecified optimality criterion,at the
cost of increased computational requirements. The fourth category contains algo-
rithms that are based on morphological transformations. These have been inspired
by the corresponding methods used in signal and image processing. The fifth cate-
gory contains algorithms that are not based on cluster representatives but, instead,
seek to place boundaries between clusters. Algorithms of the sixth category treat
clusters as dense in data regions of the feature space separated by regions sparse in
data. Alternatively, clusters may be viewed as peaks of the pdf, underlying the data
in X , separated by valleys. The seventh category includes additional algorithms that
are based on function optimization, such as simulated annealing and deterministic
annealing. The difference from the algorithms presented in Chapter 14 is that the
optimizing methods used in this chapter do not involve differential calculus con-
cepts. In addition, this category also includes genetic algorithms modified suitably
for clustering tasks. Finally, the eighth category includes algorithms that combine
clusterings in order to produce a final (hopefully more accurate) one.

15.2 CLUSTERING ALGORITHMS BASED ON GRAPH THEORY
The algorithms of this family are capable of detecting clusters of various shapes, at
least for the case in which they are well separated. Detection of clusters of various
shapes is a feature that is shared by only a few other clustering algorithms. 765

“17-Ch15-SA272” 18/9/2008 page 766

766 CHAPTER 15 Clustering Algorithms IV

15.2.1 Minimum Spanning Tree Algorithms
The first algorithm is based on the idea of the minimum spanning tree (MST)
(Chapter 13) and is motivated by the way human perception works [Zahn 71].
More precisely, humans organize information with the most economical encoding
[Hoch 64]. For example, the more likely way for a human to organize the points in
Figure 15.1 is in four groups (clusters).

Let us consider the complete graph G, each node of which corresponds to a
point of X . The weight of an edge e ! (xi, xj), we, connecting two nodes xi and
xj , is set equal to the distance d(xi , xj) of the corresponding points in the feature
space. Also, we say that two edges e1 and e2 are k steps away from each other if
the minimum path that connects a vertex of e1 and a vertex of e2 has length equal
to k " 1, that is, contains k " 1 edges.

The idea of the algorithm is the following: determine the minimum spanning
tree of G and then remove the edges that are“unusually”large compared with their
neighboring edges. These edges are called inconsistent, and it is expected that
they connect points from different clusters. Next, we discuss a way to determine
inconsistent edges. For each edge e, we consider all the edges, ei , that lie k steps
away from it,at the most,and we compute the mean,me,and the standard deviation,
!e,of their weights. If we lies more than q (typically q ! 2) standard deviations (!e)
away from me, then we consider e as inconsistent. From this, it is clear that the
characterization of an edge as inconsistent is somewhat subjective and depends on
k and q, which are preselected.

Example 15.1
Consider Figure 15.2. Let k ! 2 and q ! 3. The edges lying two steps at the most from e0

are ei , i ! 1, . . . , 10. The mean me0 and the standard deviation !e0 , corresponding to e0

are 2.3 and 0.95, respectively. Thus we0 lies 15.5 standard deviations (!e0) away from me0 .
Therefore, e0 is an inconsistent edge.

Let us now consider the edge e11. Working as before, we find that me11 and !e11 are
2.5 and 2.12, respectively. Thus we11 is 0.24 standard deviations (!e11) away from me11 .
Therefore, e11 is not an inconsistent edge.

FIGURE 15.1
An arrangement of clusters.

“17-Ch15-SA272” 18/9/2008 page 767

15.2 Clustering Algorithms Based on Graph Theory 767

we1
52

w
e
0 517

we7
52

w
e 6

5
2

w
e
8 53

A

we9
51

we10
54

we11
53

B

we2
51

we5
53

w
e
4 52

w e 3
5

3

FIGURE 15.2
The minimum spanning tree of a graph. The edge e0 is inconsistent, while e11 is consistent.

After these definitions, the MST clustering algorithm may be stated as follows.

The MST Clustering Algorithm
■ Construct a complete graph G such that:

• its vertices correspond to the vectors of X .

• w(xi ,xj) ! d(xi , xj), i, j ! 1, . . . , N , i ̸! j.

■ Determine the MST of G.

■ Identify the inconsistent edges of the MST.

■ The clusters are the connected components of the MST after the removal of
the inconsistent edges.

This algorithm works satisfactorily for many cases where the clusters are well
separated. However, this is not a panacea. Let us consider for example Figure 15.3.
The edge AB has a very large neighboring edge (BC),which increases mAB and !AB.
Thus,AB may not be characterized as inconsistent and,as a consequence,the vectors
from regions R1 and R2 are considered as members of the same cluster [Jarv 78].

Some suggestions for the use of the MST algorithm for the cases where we
have touching clusters (Figure 15.4a), as well as for the case where the clusters
have different densities (Figure 15.4b), are discussed in [Zahn 71]. However, they
implicitly require knowledge of the shape of the clusters.

“17-Ch15-SA272” 18/9/2008 page 768

768 CHAPTER 15 Clustering Algorithms IV

C

B

A

R1

R2

FIGURE 15.3
The MST clustering algorithm will assign the vectors of the regions R1 and R2 to the same cluster.

(a) (b)

FIGURE 15.4
(a) Touching clusters. (b) Clusters with different densities.

Remark

■ Note that this algorithm does not depend on the order in which data are
considered by the algorithm and, also, no initial conditions are required, as is
the case with the algorithms of Chapter 14.

15.2.2 Algorithms Based on Regions of Influence
An extension of the MST involves regions of influence for each pair of vectors of X .
This idea was used by many researchers (e.g., [Tous 80, Gabr 69, Urqu 82]) in order
to overcome the problems associated with the MST algorithms.

“17-Ch15-SA272” 18/9/2008 page 769

15.2 Clustering Algorithms Based on Graph Theory 769

Let us consider two distinct vectors, xi , xj ∈ X . Their region of influence is
defined as

R(xi , xj) ! {x: cond(d(x, xi), d(x, xj), d(xi , xj)), xi ̸! xj} (15.1)

where cond(d(x, xi), d(x, xj), d(xi, xj)) is a condition among the distances
d(x, xi), d(x, xj), and d(xi, xj). Different choices of cond give rise to different
shapes of regions of influence. Typical choices of cond, proposed in [Tous 80]
and [Gabr 69], are

max{d(x, xi), d(x, xj)} # d(xi , xj) (15.2)

and

d2(x, xi) $ d2(x, xj) # d2(xi , xj) (15.3)

respectively. Also, in [Urqu 82], the following two alternatives are proposed:

(d2(x, xi) $ d2(x, xj) # d2(xi , xj)) OR

(! min{d(x, xi), d(x, xj)} # d(xi , xj)) (15.4)

and

(max{d(x, xi), d(x, xj)} # d(xi , xj)) OR

(! min{d(x, xi), d(x, xj)} # d(xi , xj)) (15.5)

where ! is a factor called relative edge consistency. This factor affects the size of
the region of influence defined by xi and xj . The shapes of these regions are shown
in Figure 15.5. Other choices of cond are also possible. An algorithm based on the
idea of the regions of influence is described next.

Algorithm Based on Regions of Influence
■ For i ! 1 to N

• For j ! i $ 1 to N

(a) (b) (c) (d)

xj

xi

xj

xi

xj

xi

xj

xi

FIGURE 15.5
The shapes of the regions defined by (a) condition (15.2), (b) condition (15.3), (c) condition
(15.4), and (d) condition (15.5).

“17-Ch15-SA272” 18/9/2008 page 770

770 CHAPTER 15 Clustering Algorithms IV

⃝ Determine the region of influence R(xi, xj).

⃝ If R(xi , xj) ∩ (X " {xi, xj}) ! ∅ then

— Add the edge connecting xi , xj

⃝ End {If }

• End {For}

■ End {For}

■ Determine the connected components of the resulted graph and identify them
as clusters.

In words, the edge between xi and xj is added if no other vector of X lies in
R(xi , xj). This is because when xi and xj are closely located, it is expected that
no other points of X will be in R(xi, xj). The opposite is obviously true for points
located further away.

The algorithm is insensitive to the order in which the pairs of vectors are con-
sidered. Also, for the last two choices of cond, the value of ! must be chosen a
priori. The graphs produced by these algorithms when (15.2) and (15.3) are used
are also called relative neighborhood graphs (RNGs) and Gabriel graphs (GGs),
respectively.

These techniques avoid situations such as the one shown in Figure 15.3. More-
over, several results are given in [Urqu 82] showing the superior performance for
the last two choices of cond compared with the first two. Also, in [Urqu 82] it is
shown how the idea of the regions of influence may be used to give rise to hierar-
chical algorithms. Finally, in [Ozbo 95],empirically defined regions of influence are
used, that exhibit satisfactory behavior.

15.2.3 Algorithms Based on Directed Trees
An alternative clustering scheme, based on the idea of directed trees, is proposed
in [Koon 76]. Before we proceed, let us give some definitions. We recall that a
directed graph is a graph whose edges are directed (see Figure 15.6a). We say that
a set of edges ei1 , . . . , eiq constitute a directed path from a vertex A to a vertex
B, if A is the initial vertex of ei1 , B is the final vertex of eiq , and the destination
vertex of the edge eij , j ! 1, . . . , q " 1, is the departure vertex of the edge eij$1 .
For example, in Figure 15.6a, the sequence e1, e2, e3 constitutes a directed path
connecting the vertices A and B. Finally, a directed tree is a directed graph with a
specific node A, known as root, such that (a) every node B ̸! A of the tree is the
initial node of exactly one edge, (b) no edge departs from A, and (c) no circles are
encountered,that is,there is no directed path from a node to itself (see Figure 15.6b).

The idea of the algorithm is the identification of directed trees in a graph,
corresponding to the points of X , so that each of them corresponds to a cluster.

“17-Ch15-SA272” 18/9/2008 page 771

15.2 Clustering Algorithms Based on Graph Theory 771

(a)

A

(b)

A

B

e2
e1

e4 e5
e7 e3

e8 e6

FIGURE 15.6
(a) A directed graph. (b) A directed tree.

The vectors of X are processed sequentially. For each point xi, we define its
neighborhood as

"i(#) ! {xj ∈ X : d(xi , xj) % #, xj ̸! xi} (15.6)

where # determines the size of the neighborhood and d(xi , xj) is the distance
between the corresponding vectors of X . Let ni ! |"i(#)| be the number of points
of X lying in "i(#). Finally, let gij ! (nj " ni)/d(xi , xj). This quantity will be used
to determine the position of the point xi in a directed tree. After these definitions,
the clustering algorithm may be stated as follows.

Clustering Algorithm Based on Directed Trees
Set # to a specific value.
Determine ni , i ! 1, . . . , N .
Compute gij , i, j ! 1, . . . , N , i ̸! j.
For i ! 1 to N

■ if ni ! 0 then
• xi is the root of a new directed tree.

■ else

• Determine xr such that gir ! maxxj∈"i(#) gij .

• If gir # 0 then
⃝ xi is the root of a new directed tree.

• Else if gir & 0 then

⃝ xr is the parent of xi .1

• Else if gir ! 0 then

1 We say that xr is the parent of xi if there exists a directed edge from xi to xr .

“17-Ch15-SA272” 18/9/2008 page 772

772 CHAPTER 15 Clustering Algorithms IV

⃝ Define Ti ! {xj : xj ∈ "i(#), gij ! 0}.
⃝ Eliminate all the elements xj ∈ Ti , for which there exists a directed path

from xj to xi .

⃝ If the resulting Ti is empty then

— xi is the root of a new directed tree.

⃝ Else

— The parent of xi is xq such that d(xi , xq) ! minxS∈Ti d(xi, xs).

⃝ End {if}

• End {if}

■ End {if}

End {for}

The directed trees formed by these steps identify the clusters.
It is clear from the preceding algorithm that the root, say xi , of a directed tree

has the largest ni among the points lying in "i(#). That is, among the points lying
in "i(#), xi is the point with the most dense neighborhood. It should be pointed
out that the branch that handles the case in which gir ! 0 ensures that no circles
will occur. Also, this algorithm is sensitive to the order in which the vectors are
processed. Finally, it can be shown that for proper values of # and large N this
scheme behaves as a mode-seeking algorithm [Koon 76].

Example 15.2
Consider Figure 15.7. The size of the edge of the grid is 1 and the diagonal of a small
rectangle equals

√
2. Also, let X ! {xi , i ! 1, . . . , 11}. It is clear that the vectors of X form two

well-separated clusters. Let # ! 1.1. Applying the preceding algorithm on X , we determine
the two directed trees shown in Figure 15.7. However, if we present x5 before x4, the left-
directed tree will have a different root. Nevertheless, the final results of the algorithm remain
the same in this (rather easy) case.

15.2.4 Spectral Clustering
Spectral clustering is a class of graph-based techniques that unravel the structural
properties of a graph using information conveyed by the spectral decomposition
(eigendecomposition) of an associated matrix. The elements of this matrix code
the underlying similarities among the nodes (data points) of the graph. Spectral
clustering algorithms have attracted a lot of interest over the last years. Their high
popularity springs from their improved performance in a number of applications,
where several classical techniques fail and also from a number of interesting related
theoretical issues. Among the earlier works on spectral clustering are [Scot 90]
and [Hage 92].

“17-Ch15-SA272” 18/9/2008 page 773

15.2 Clustering Algorithms Based on Graph Theory 773

x2 x11

x10

x8

x9x7x6x5

x3

x4

x1

FIGURE 15.7
The setup of Example 15.2.

In this book, we will focus on the simplest task of bi-partitioning a given data
set, X , into two clusters, A and B. Generalizations will be discussed later on. Let
X ! {x1, x2, . . . , xN } ⊂ Rl . In graph-based clustering methods the following steps
are in order:

■ Construct a graph G(V , E), where each point of the graph corresponds to a
point xi, i ! 1, 2, . . . , N , of X . We will further assume that G is undirected
and connected (Section 13.2.5).

■ Weigh each one of the edges of the graph, eij , by a weight W (i, j) that mea-
sures the similarity between the respective nodes, vi, vj in G2. The set of
weights defines the proximity (sometimes called affinity) N ' N matrix W
with elements

W ≡ [W (i, j)], i, j ! 1, 2, . . . , N

The proximity matrix is assumed to be symmetric, that is, W (i, j) ! W (j, i).
The choice of the weights is up to the user and it is a problem dependent task.
A common choice is

W (i, j) !

⎧
⎨

⎩
exp

(
"

||xi"xj ||2
2!2

)
, if ||xi " xj || # $

0, otherwise

where $ is a user-defined constant and || · || is the Euclidean norm.

2 For notational convenience in some places we use i instead of vi .

“17-Ch15-SA272” 18/9/2008 page 774

774 CHAPTER 15 Clustering Algorithms IV

Choosing the proximity matrix is not always an“innocent”task. A right choice
can have a significant improvement on the obtained results. For example,
in the previous Gaussian kernel case, determining ! is a pivotal issue that
significantly influences the resulting clustering. This is also a problem that
we have faced with all kernel methods considered in previous chapters. A
naive approach is to work with different values of ! and choose the one that
is best according to a predetermined criterion [Ng 01]. The issue of how one
can construct a good proximity matrix is treated in [Fisc 05, Weis 99]. There
is also stated that a good proximity matrix must have a structure which is as
close to a block diagonal as possible.

By the definition of clustering,A∪B ! X and A∩B ! ∅. Once a weighted graph
has been formed, the second phase in any graph-based clustering method consists
of the following two steps:

■ Choose an appropriate clustering criterion for the partitioning of the graph.

■ Adopt an efficient algorithmic scheme to perform the partitioning, in accor-
dance with the previously adopted clustering criterion.

A commonly used clustering criterion is the so called cut [Wu 93]. If A and B
are the resulting clusters, the associated cut is defined as

cut(A, B) !
∑

i∈A, j∈B

W (i, j) (15.7)

Selecting A and B so that the respective cut(A, B) is minimized means that the
set of edges, connecting nodes in A with nodes in B, have the minimum sum of
weights, that is, points in A and B have the least similarity compared to any other
bi-partitioning. However, this simple criterion turns out to form clusters of small
size of isolated points (least similar with the rest of the nodes). This is illustrated in
Figure 15.8. The minimum cut criterion would result in the two clusters separated
by the dotted line,although the partition by the full line seems to be a more natural
partitioning.

To remedy the previous drawback, the normalized cut criterion has been sug-
gested in [Shi 00]. This is one of the most popular criteria used in spectral clustering.

FIGURE 15.8
The cut criterion has the tendency to form small clusters of isolated points, as for example the
two points separated by the dotted line. A more natural clustering for this case results by the
full line.

“17-Ch15-SA272” 18/9/2008 page 775

15.2 Clustering Algorithms Based on Graph Theory 775

The driving force behind this criterion is to minimize the cut and at the same time
trying to keep the sizes of the clusters large. To this end, for each node, vi ∈ V in
the graph G, define the index

Dii !
∑

j∈V

W (i, j) (15.8)

This is an index measuring the“significance”of a node,vi, i ! 1, 2, . . . , N . The higher
the value of Dii is, the higher the similarity of the respective ith node with respect
to the rest of the nodes. A low Dii value indicates an isolated (remote) point. Given
a cluster A, a measure of the total significance of the points in A is given by the
following index

V (A) !
∑

i∈A

Dii !
∑

i∈A, j∈V

W (i, j) (15.9)

where V (A) is sometimes known as the volume or the degree of A. It is obvious
that small and isolated clusters will have a small V (·). The normalized cut between
two clusters A, B is defined as

Ncut(A, B) !
cut(A, B)

V (A)
$

cut(A, B)
V (B)

(15.10)

It is easy to see that a small cluster, for example,A,will result in a large value (close to
one) for the previous ratio, since in such a case cut(A, B) will be a large percentage
of V (A).

Minimization of the Ncut(A, B) turns out to be an NP-hard task. To alleviate
this difficulty, we will reformulate the problem to bring it in a form that allows an
efficient approximate solution. To this end define ([Belk 03])

yi !

{
1

V (A) , if i ∈ A

" 1
V (B) , if i ∈ B

(15.11)

y ! [y1, y2, . . . , yN]T

In words, each yi can be thought of as a cluster indicator of the correspond-
ing point xi , i ! 1, 2, . . . , N . Taking into account the definitions in (15.11), it is
straightforward to see that (see also Section 6.7)

yT Ly !
1
2

∑

i∈V

∑

j∈V

(yi " yj)2W (i, j)

!
∑

i∈A

∑

j∈B

(
1

V (A)
$

1
V (B)

)2
cut(A, B)

%

(
1

V (A)
$

1
V (B)

)2

cut(A, B) (15.12)

“17-Ch15-SA272” 18/9/2008 page 776

776 CHAPTER 15 Clustering Algorithms IV

since the contribution of yi " yj is zero for points in the same cluster. The symbol
% denotes proportionality and

L ! D " W , D ≡ diag{Dii}

is the Laplacian matrix of the graph (Section 6.7). Matrix D is diagonal with the
elements Dii along the main diagonal. In addition we have that

yT Dy !
∑

i∈A

y2
i Dii $

∑

j∈B

y2
j Djj !

1
V (A)2 V (A) $

1
V (B)2 V (B)

!
1

V (A)
$

1
V (B)

(15.13)

Combining (15.12) and (15.13),it turns out that minimizing Ncut(A, B) is equivalent
with minimizing

J !
yT Ly
yT Dy

(15.14)

subject to the constraint that yi ∈ { 1
V (A) , " 1

V (B) }. Furthermore, direct substitution
of the definitions of the involved quantities results in

yT D1 ! 0 (15.15)

where 1 is the N -dimensional vector with all its elements being equal to 1. In
order to overcome the NP-hard nature of the original task we will solve, instead,
the relaxed problem of minimizing (15.14) subject to the constraint in (15.15). The
unknown variables yi, i ! 1, 2, . . . , N , are now assumed to lie on the real axis. We
are already very close to a well known optimization task. Define

z ≡ D1/2y

Then (15.14) becomes

J !
zT L̃z
zT z

(15.16)

and the constraint in (15.15)

zT D1/21 ! 0 (15.17)

where L̃ ≡ D"1/2LD"1/2 and it is known as the normalized graph Laplacian
matrix. It can easily be shown that L̃ has the following properties (see also,
Section 6.7)

■ It is symmetric and nonnegative definite. Thus, all its eigenvalues are nonneg-
ative and the corresponding eigenvectors are orthogonal to each other (see
Appendix B).

“17-Ch15-SA272” 18/9/2008 page 777

15.2 Clustering Algorithms Based on Graph Theory 777

■ It can easily be checked out that D1/21 is an eigenvector corresponding to a
zero eigenvalue, that is,

L̃D1/21 ! 0

Obviously, the zero eigenvalue is the smallest one of L̃, due to its nonnegative
definite nature. As it was stated in Section 6.7, if the graph is connected
then there is one eigenvector associated with the zero eigenvalue. This is an
assumption which is adopted here.

We have by now all the ingredients to perform the final optimization. Observe
that the ratio in (15.16) is the celebrated Rayleigh quotient. Recall from linear
algebra, for example, [Golu 89], that

■ The smallest value of the quotient, with respect to z , is equal to the smallest
eigenvalue of L̃ and it occurs for z equal to the eigenvector corresponding to
this (smallest) eigenvalue.

■ If we constraint the solution to be orthogonal to all eigenvectors associated
with the j smallest eigenvalues, &0 % &1 % · · · % &j"1, the Rayleigh quotient is
minimized by the eigenvector corresponding to the next smallest eigenvalue,
&j , and the minimum value is equal to &j .

Taking into account a) the orthogonality condition in the constraint (15.17) and
b) the fact that D1/21 is the eigenvector corresponding to the smallest eigenvalue
&0 ! 0, we end up that:

The optimal solution vector z minimizing the Rayleigh quotient in (15.16),
subject to the constraint (15.17), is the eigenvector corresponding to the second
smallest eigenvalue of L̃.

We are now ready to summarize the steps for our spectral clustering algorithm.

1. Given a set of points, x1, x2, . . . , xN , set up the weighted graph G(V , E).
Form the proximity matrix W by adopting a similarity rule.

2. Form the matrices D, L ! D " W and L̃. Perform the eigenanalysis

L̃z ! &z

of the normalized Laplacian matrix L̃. Compute the eigenvector z1 corres-
ponding to the second smallest eigenvalue &1. Compute the vector

y ! D"1/2z1

3. Discretize the components of y according to a threshold value.

The final step is necessary since the components of the obtained solution are real-
valued and our required solution is discrete. To this goal, different techniques can

“17-Ch15-SA272” 18/9/2008 page 778

778 CHAPTER 15 Clustering Algorithms IV

be applied. For example, the threshold can be taken to be equal to zero. Another
choice is to adopt the median value of the components of the optimum eigenvector.
An alternative approach would be to select the threshold value that results in the
minimum cut value.

The eigenanalysis of an N ' N matrix, using a general purpose solver, amounts
to O(N3) operations. Thus, for large number of data points, this may be prohibitive
for some applications. However, for most of the practical applications, the resulting
graph is only locally connected, and the proximity matrix is sparse. Moreover,
only the smallest eigenvalues/eigenvectors are required and also the accuracy is
not of major issue, since the solution is to be discretized. In such a setting, the
efficient Lanczos algorithm (e.g.,[Golu 89]) can be mobilized and the computational
requirements drop down to approximately O(N3/2).

So far, the partition of a data set into two clusters has been considered. If more
clusters are expected,the scheme can be used in a hierarchical mode,where,at each
step,each one of the resulting clusters is partitioned further into two clusters. This
is continued until a prespecified criterion is satisfied. In [Shi 00] it is suggested that
the third smallest eigenvalue can be used to sub-partition the first two clusters and
so on. However, this procedure tends to become unreliable due to approximation
errors.

In our discussion, so far, we focused on a specific clustering criterion, that is,
the normalized cut, in order to present the basic philosophy behind the spectral
clustering techniques. No doubt, a number of other criteria have been proposed in
the related literature. For example, the ratio cut ([Chan 94]) is defined as

Rcut(A, B) !
cut(A, B)

|A| $
cut(A, B)

|B|

In [Kann 00] the Cheeger constant is used as the partition criterion, that is,

hG !
cut(A, B)

min(V (A), V (B))

For each criterion, a different eigendecomposition problem results, each with its
advantages and drawbacks. In [Verm 03], a review and a comparative study of
a number of popular spectral clustering algorithms is presented. A comparative
and insightful study of a number of spectral clustering algorithms is provided in
[Weis 99].

The literature on spectral clustering is large and it is beyond the purpose of this
section to cover it in detail. Besides the criteria mentioned before,other approaches
to spectral clustering have also been proposed. For example, in [Meil 00] the pair-
wise similarities are interpreted as edge flows in a Markov random walk leading to
a probabilistic interpretation of spectral clustering. In [Xian 08], the issues on how
to determine the number of clusters and how to deal with noisy and sparse data
are considered. They tackle this problem via a data-driven approach that selects the
most relevant eigenvectors, which provide information about the natural grouping

“17-Ch15-SA272” 18/9/2008 page 779

15.2 Clustering Algorithms Based on Graph Theory 779

of the data. Also, in [Jens 04] a spectral clustering algorithm based on an informa-
tion theoretic framework is discussed. For more information,besides the references
given before, the interested reader may consult, for example, [Chun 97, vonL 07].

Spectral clustering has been used in a number of applications such as image
segmentation and motion tracking [Shi 00, Qiu 07], circuit layout [Chan 94], gene
expression [Kann 00], machine learning [Ng 01], load balancing [Hend 93].

Remarks

■ For those of the readers who have also covered Section 6.7, it is obvious to
observe the close resemblance between spectral clustering and the dimen-
sionality reduction methods that preserve locality (Laplacian eigenmaps and
LLE). Attempting to preserve neighborhood information, while projecting in
the low dimensional subspace, may be interpreted as imposing a “soft” clus-
tering on the data, [Belk 03]. In spectral clustering,one can look at each yi as
the nonlinear mapping onto the real axis of the data point,xi, i ! 1, 2, . . . , N ,
and a hard clustering is obtained after discretization. Moreover,as Eq. (15.12)
suggests, the cluster indicators yi are“forced”to take similar values for closely
located points. This is a consequence of the minimization task in Eq. (15.14)
and of the fact that far away points result in small or zero values of the
weights.

■ A very interesting result, that ties the“old”and the“new”, is the establishment
of the mathematical equivalence between a weighted form of the kernelized
k-means objective and a general weighted graph clustering objective. The
normalized cut and the ratio cut objectives fall under this category. Thus,
a kernelized version of the classical k-means algorithm can be employed to
solve the task instead of a matrix eigendecomposition. This may have certain
computational advantages, especially for large problems. However, spectral
decomposition computes the global optimal, in contrast to the k-means algo-
rithm that may be trapped in local minima. Such issues and a novel algorithm,
exploiting this equivalence, are discussed in, for example, [Dill 07, Zass-05].

Example 15.3
In the example shown in Figure 15.9a, two concentric circularly shaped clusters are shown.
The first cluster is spread around the circle of radius equal to 3 centered at (0, 0), while the
second cluster is spread around the circle of radius equal to 6 and also centered at (0, 0).
The spectral clustering algorithm with !2 ! 2 and ' ! 2, using the normalized cut criterion,
is applied on the previous data set and the results are shown in Figure 15.9b. Clearly, the
algorithm identifies successfully the two clusters. On the contrary, the k-means algorithm
fails to identify the clusters successfully, as shown in Figure 15.9c. Recall that the k-means
algorithm has the tendency of recovering compact clusters.

“17-Ch15-SA272” 18/9/2008 page 780

780 CHAPTER 15 Clustering Algorithms IV

28 24 0 4 8
26

22

2

6

x1

x2

(a)

28 24 0 4 8
26

22

2

6

x1

x2

(b)
28 24 0 4 8

26

22

2

6

x1

x2

(c)

FIGURE 15.9
(a) The data set. (b) The two clusters (denoted by different colors) obtained by the spectral
clustering algorithm. (c) The two clusters obtained by the k-means algorithm.

15.3 COMPETITIVE LEARNING ALGORITHMS
These algorithms employ a set of representatives wj , j ! 1, . . . , m.3 Their goal
is to move each of them to regions of the vector space that are “dense” in
vectors of X.The representatives are updated each time a new vector x ∈ X is pre-
sented to the algorithm. Algorithms of this type are called pattern mode algorithms.
This is a point of differentiation from the hard clustering algorithms discussed in
Chapter 14. There the updating of the representatives takes place after the presen-
tation of all the vectors of X to the algorithm. Algorithms of the latter kind are also
called batch mode algorithms. It must be emphasized that competitive learning
algorithms do not necessarily stem from the optimization of a cost function.

3 We use wj here instead of !j to comply with the notation usually adopted for this type of schemes.

“17-Ch15-SA272” 18/9/2008 page 781

15.3 Competitive Learning Algorithms 781

The general idea is very simple. When a vector x is presented to the algorithm,
all representatives compete with each other. The winner of this competition is the
representative that lies closer (according to some distance measure) to x. Then, the
winner is updated so as to move toward x,while the losers either remain unchanged
or are updated toward x but at a much slower rate.

Although, in most of the cases, wj ’s are points in the l-dimensional space, other
choices are also possible. For example, the representatives may be hyperplanes
[Likh 97]. In the sequel, we consider only the case in which wj ’s are points in the
l-dimensional space.

Let t be the current iteration and tmax the maximum allowable number of
iterations. Also, let m be the current number, minit the initial number, and mmax
the maximum allowable number of clusters (representatives). Then, a generalized
competitive learning scheme (GCLS) may be stated as follows.

Generalized Competitive Learning Scheme (GCLS)
■ t ! 0

■ m ! minit

■ (A) Initialize any other necessary parameters (depending on the specific
scheme).

■ Repeat

• t ! t $ 1

• Present the next x ∈ X to the algorithm.

• (B) Determine the winning representative wj .

• (C) If ((x is not “similar” to wj) OR (other condition)) AND (m# mmax)
then
⃝ m ! m $ 1

⃝ wm ! x

• Else
⃝ (D) Parameter updating

wj(t) !

{
wj(t " 1) $ (h(x, wj(t " 1)), if wj is the winner

wj(t " 1) $ ((h(x, wj(t " 1)), otherwise
(15.18)

• End

■ (E) Until (convergence has occurred) OR (t & tmax)

■ Identify the clusters represented by wj ’s, by assigning each vector, x ∈ X , to
the cluster that corresponds to the representative closest to x.

The function h(x, wi) is an appropriately defined function. Also, (and ((are
the learning rates controlling the update of the winner and the losers, respectively.

“17-Ch15-SA272” 18/9/2008 page 782

782 CHAPTER 15 Clustering Algorithms IV

The parameter ((may be different for different losers. The similarity between a
vector x and a representative wj may be characterized by a threshold of similarity
); that is, if d(x, wj) &), for some distance measure, x and wj are considered as
dissimilar and wj cannot be used to represent x accurately. It is clear that improper
choice of the value of) may lead to misleading results.

Termination of the algorithm is achieved via our familiar criterion ∥W (t) "
W (t " 1)∥ # ', where W ! [wT

1 , . . . , wT
m]T .

With appropriate choices of the parts (A), (B), (C), and (D),most of the competi-
tive learning algorithms may be viewed as special cases of the GCLS. In the sequel,
unless otherwise stated, we use the Euclidean distance, although other distances
may also be used.

15.3.1 Basic Competitive Learning Algorithm
In this algorithm m ! minit ! mmax; that is, the number of representatives is con-
stant. Thus,condition (C) is never satisfied. Also,no other parameters are necessary,
so part (A) is omitted. The determination of the winning representative (part (B))
is carried out using the following rule.

■ The representative wj is the winner on x if

d(x, wj) ! min
k!1,..., m

d(x, wk)

Besides the Euclidean distance, other distances may also be used, depending
on the application at hand. For example, in [Ahal 90], the Itakura–Saito distor-
tion is proposed when dealing with speech coding applications in the clustering
framework. Moreover, similarity measures may also be used (see, e.g., [Fu 93]).
In this case, the min operator in the preceding relation is replaced by the max
operator. Finally, the updating of the representatives (part (D)) is carried out as
follows:

wj(t) !

{
wj(t " 1) $ ((x " wj(t " 1)), if wj is the winner

wj(t " 1), otherwise
(15.19)

where (is the learning rate and takes values in [0, 1]. According to this algorithm,the
losers remain unchanged. On the other hand, the winner wj(t) moves toward x.
The size of the movement depends on (. In the extreme case where (! 0, no
updating takes place. On the other hand, if (! 1, the winning representative is
placed on x. For all other choices of (, the new value of the winner lies in the line
segment formed by wj(t " 1) and x.

It is clear that this algorithm requires an accurate determination of the number
of representatives; that is,knowledge of the number of clusters is required. Another
related problem that may arise is associated with the initialization of wj ’s. If a
representative is initialized far away from its closest vector in X ,4 it will never win.

4 More specifically, if it lies far away from the convex hull defined by the vectors of X .

“17-Ch15-SA272” 18/9/2008 page 783

15.3 Competitive Learning Algorithms 783

Thus, the vectors of X will be represented by the remaining representatives. An
easy way to avoid this situation is to initialize all representatives using vectors of X .

In the special case in which the vectors are always presented in the same order,
that is, x1, x2, . . . , xN , x1, x2, . . . , xN , . . . , and under the assumption that after an
iteration t0 each representative wins on the same vectors, which is reasonable at
least for the case where well-separated clusters are formed by the vectors of X , it
can be shown that each representative converges to a weighted mean of the vectors
it represents [Kout 95].

This algorithm has also been studied for a variable learning rate (e.g., [Likh 97]).
Typical constraints for ((t) in this case are:

■ ((t) is a positive decreasing sequence and ((t) → 0.

■
∑*

t!0 ((t) ! *.

■
∑*

t!0 (r(t) # $*, for r & 1.

Note that these constraints are very similar to those required by the Robbins–Monro
schemes, discussed in Section 3.4.2. This is not a coincidence. Let us consider for
example the trivial case of a single representative (m ! 1). If (! ((t), the updating
equation may be seen as the Robbins–Monro iteration for solving the problem

E[h(x, w)] ! 0

where h(x, w) ! x " w.
Finally, competitive learning algorithms for binary-valued vectors are discussed

in [Rume 86, Mals 73].

15.3.2 Leaky Learning Algorithm
This algorithm is the same as the basic competitive learning algorithm except for
the updating equation of the representatives, which is

wj(t) !

{
wj(t " 1) $ (w(x " wj(t " 1)), if wj is the winner
wj(t " 1) $ (l(x " wj(t " 1)), if wj is a loser

(15.20)

where (w and (l are the learning rates in [0, 1] and (w &&(l . The basic competitive
learning scheme may be viewed as a special case of the leaky learning scheme, for
(l ! 0. In the general case where (w and (l are both positive, all representatives
move toward x. However, the losers move toward x at a much slower rate than the
winner.

This algorithm does not suffer from the problem of poor initialization of the
representatives. This is because the second branch of (15.20) ensures that even if
some representatives are initialized away from their closest vectors of X , they will
eventually come closer to the region where the vectors of X are located.

An algorithm in the same spirit is the neural-gas algorithm. However, in this
case nw ! ' and (l ! 'g(kj(x, wj(t " 1))), where ' ∈ [0, 1] is the step size of the
updating,kj(x, wj(t " 1)) is the number of representatives that lie closer to x than

“17-Ch15-SA272” 18/9/2008 page 784

784 CHAPTER 15 Clustering Algorithms IV

wj(t " 1) and g(·) is a function that takes the value 1 for kj(x, wj(t " 1)) ! 0 and
decays to zero as kj(x, wj(t " 1)) increases. It is worth noting that this algorithm
results from the optimization of a cost function via a gradient descent technique
([Mart 93]).

15.3.3 Conscientious Competitive Learning Algorithms
Another way to utilize the representative power of wj ’s is to discourage a repre-
sentative from winning if it has won many times in the past. This is achieved
by assigning a “conscience” to each representative. Several models of conscience
have been proposed in the literature (e.g., [Gros 76a, Gros 76b, Gros 87, Hech 88,
Chen 94, Uchi 94]).

Perhaps the simplest way to implement this idea is to equip each representative,
wj , j ! 1, . . . , m, with a counter fj , that counts the times that wj wins. One way
to proceed is the following [Ahal 90]. At the initialization stage (part (A)) we set
fj ! 1, j ! 1, . . . , m. We define

d∗(x, wj) ! d(x, wj) fj

and part (B) becomes the following:

■ The representative wj is the winner on x if

d∗(x, wj) ! min
k!1,..., m

d∗(x, wk)

■ fj(t) ! fj(t " 1) $ 1.

This setup ensures that the distance is penalized to discourage representatives
that have won many times. The parts (C) and (D) are the same as their correspond-
ing parts of the basic competitive learning algorithm, and also m ! minit ! mmax.

An alternative way is to utilize fj via the equation [Chou 97]

fj ! fj $ d(x, wj)

Other schemes of this kind may be found in [Ueda 94, Zhu 94, Butl 96, Chou 97].
A different approach is followed in [Chen 94]. Here, in part (A), all fj ’s are

initialized to 1/m. We define d∗(x, wj) as

d∗(x, wj) ! d(x, wj) $)(fj " 1/m)

where) is a conscience parameter. Letting zj(x) be 1 if wj wins on x and 0
otherwise, part (B) of the algorithm becomes

■ The representative wj is the winner on x if

d∗(x, wj) ! min
k!1,..., m

d∗(x, wk)

■ fj(t) ! fj(t " 1) $ '(zj(x) " fj(t " 1))

“17-Ch15-SA272” 18/9/2008 page 785

15.3 Competitive Learning Algorithms 785

where 0 # ' ##1. As we can easily observe, fj increases for the winner and, in
contrast to the previous case, decreases for the losers. Guidelines for the choice of
the appropriate values of ' and), as well as a version of the algorithm where the
value of) is adaptively adjusted, are discussed in [Chen 94].

15.3.4 Competitive Learning–Like Algorithms Associated with Cost
Functions

The basic philosophy behind the competitive learning schemes is to move repre-
sentatives toward their closest points. If we want to express this in terms of a cost
function, then a possible way is the following. Let us consider the cost function

J (W) !
1

2m

N∑

i!1

m∑

j!1

zj(xi)∥xi " wj∥2 (15.21)

where W ! [wT
1 , . . . , wT

m]T and zj(x) ! 1, if wj lies closer to x, and 0 otherwise.
This is basically the cost function associated with the isodata algorithm (Chapter 14),
and it is not differentiable, due to the presence of zj(x). One way to overcome
the problem of differentiability of J (W) is to smooth zj(x). This implies that the
concept of the competition is abandoned. Instead, each representative is updated
in proportion to its distance from x.

One way to smooth zj(x) is to redefine it as

zj(x) !
∥x " wj∥"2

∑m
r!1 ∥x " wr∥"2 , j ! 1, . . . , m (15.22)

where ∥·∥ is the Euclidean distance between two vectors. Clearly,zj(x) is no longer
strictly equal to 0 or 1 but lies in [0, 1]. More specifically, the closer the wj to x, the
larger the zj(x).

Using the preceding definition and after some rearrangements, J (W) becomes

J (W) !
1
2

N∑

i!1

⎛

⎝
m∑

j!1

∥xi " wj∥"2

⎞

⎠
"1

(15.23)

The gradient of J (W) with respect to wk, *J /*wk, after some algebra, becomes

*J
*wk

! "
N∑

i!1

z2
k(xi) (xi " wk) (15.24)

In the context of the gradient descent algorithms and using the “instantaneous”
value of the gradient, as it was the case with the backpropagation algorithm, the
following updating algorithm results.

wk(t) ! wk(t " 1) $ ((t)z2
k(x) (x " wk(t " 1)), k ! 1, . . . , m (15.25)

where x is the vector currently presented to the algorithm.

“17-Ch15-SA272” 18/9/2008 page 786

786 CHAPTER 15 Clustering Algorithms IV

Notice that in this scheme all representatives are updated in proportion to their
distance from x. Thus, by smoothing zk(x), we end up with algorithms that are
competitive in a wider sense,for which general tools may apply for the establishment
of their convergence properties.

Alternative choices of zj(x) and J (W), leading to more general algorithmic
schemes, are given in [Masu 93].

15.3.5 Self-Organizing Maps
So far, we have implicitly assumed that the representatives, w ∈ Rl , are not inter-
related. We will now remove this assumption. Furthermore,the representatives will
be “forced” to be topologically ordered in the one-dimensional or two-dimensional
space. In other words, each w is parameterized in terms of an integer pair (for the
two-dimensional case) (i, j), i ! 1, 2, . . . , I , j ! 1, 2, . . . , J ,where I J is the number
of representatives. In this way, a grid of nodes is defined. The goal in this section
is to place the representatives so that data points that lie close in the Rl space to
be represented by representatives that lie close in the grid. Alternatively, the one-
dimensional or two-dimensional grid can be seen as a map where we require that
different “dense” in data regions, in the data space, are mapped to different regions
in the map.

The concept of the topological ordering implies the adoption of a topological
distance between two representatives. For example, if (i1, j1) and (i2, j2) denote
the positions of two representatives in a (two-dimensional) grid of nodes, their
topological distance may be defined as the l1 distance (Section 11.2.2) between
the two integer pairs. In this respect, in Figure 15.10a, wr and wq are topolog-
ically close to each other in the two-dimensional grid, while ws is far from both
of them. Figure 15.10b shows the case of an one-dimensional grid. In the sequel,
we define a topological neighborhood Qj for each representative wj , which con-
sists of representatives that are close to wj in terms of the topological distance.
Typical topological neighborhood shapes are shown in Figures 15.11a and 15.11b
for the two-dimensional and the one-dimensional cases, respectively. However, for
the two-dimensional case, other shapes, such as hexagonal or rhombic, may also be
employed.

As it was the case with the algorithms discussed in previous sections, at each
iteration step, t , a single data vector, x, is presented to the algorithm. However
now, when a representative wj wins on a given data vector x, all the representa-
tives inside its respective neighborhood Qj(t) are also updated (move toward x).
Note that the neighborhood is allowed to change with the iteration step. After a
random initialization of the representatives, it is expected that, at the beginning of
the training, topologically close representatives may win on data points that may
not, necessarily, lie close in the data space. However, as the training evolves, this
phenomenon decays and after convergence, topologically neighboring represen-
tatives on the grid win on vectors lying in the same region in the data space.
In contrast, topologically distant representatives win on data vectors that lie in

“17-Ch15-SA272” 18/9/2008 page 787

15.3 Competitive Learning Algorithms 787

wr

wq

ws

(b)

(a)

FIGURE 15.10
(a) An 8 ' 8 two-dimensional grid of topologically ordered representatives. Adopting l1 as the
topological distance between two representatives, wr and wq are topologically close to each
other, while ws is distant from both of them. (b) A 1 ' 12 one-dimensional grid.

j j

Qj

Qj

(a) (b)

FIGURE 15.11
(a) A square-shaped 3 ' 3 neighborhood. (b) A squared-shaped 5 ' 1 neighborhood.

different regions in the data space. In other words, each dense in data region in
the data space is represented by a set of topologically neighboring representatives.

The previous described approach leads to the celebrated Kohonen self-
organizing mapping (SOM) scheme [Koho 89, Koho 95, Kask 98, Diam 07] and it
has extensively been used for applications such as data visualization. In its simplest
form, SOM may be viewed as a special case of the generalized competitive learning
scheme (GCLS). Precisely, it is the same as the basic competitive learning algorithm

“17-Ch15-SA272” 18/9/2008 page 788

788 CHAPTER 15 Clustering Algorithms IV

as far as parts (A), (B), and (C) are concerned. However, part (D) is different.
If wj wins on x, this part becomes

wk(t) !

{
wk(t " 1) $ ((t) (x " wk(t " 1)), if wk ∈ Qj(t)
wk(t " 1), otherwise

(15.26)

where ((t) is a variable learning rate, which is chosen to satisfy the conditions in
Section 15.3.1. The choices of ((t) and Qj(t) are crucial for the convergence of
the algorithm. In practice,as t increases,Qj(t) shrinks and concentrates around wj ,
according to a preselected rule.

The SOM algorithm can also be seen as a constrained clustering scheme, where
the representatives are encouraged to lie in a low (one or two)-dimensional mani-
fold. This is the reason that, if the data do not lie close to such a low dimensional
manifold, the performance of the method may degrade. The effect of the update
in (15.26) is to move the winner as well as its neighboring representatives closer
to the corresponding data point; this imposes a smooth spatial structure in the
low-dimensional grid.

A suboptimal method for selecting the winner representative that may lead to
computational savings is presented in [Vish 00]. Kernelized versions of SOM have
appeared in [Inok 04, Macd 00].

Example 15.4
Let X be a data set consisting of 200 3-dimensional data points. The first 100 of them stem
from a Gaussian distribution with mean "1 ! [0.3, 0.3, 0.3]T while the rest stem from another
Gaussian distribution with mean "2 ! [0.7, 0.7, 0.7]T . The covariance matrices of both
distributions are equal to 0.01I , where I is the 3 ' 3 identity matrix. Clearly, the previous data
vectors form two well separated clusters in the 3-dimensional space. Let C1 denote the cluster
corresponding to the first distribution and C2 denote the cluster corresponding to the second
distribution. Let us consider a SOM with a 10 ' 10 grid of representatives. Figure 15.12a
is a “snapsot” of the grid just after a random initialization of the representatives in [0, 1]3.
Each representative that wins on vectors from cluster C1 is denoted by a blue circle, while
each representative that wins on the vectors from cluster C2 is denoted by a black circle. All
the rest nodes of the grid are denoted by black dots. Note that representatives are spread
throughout the grid, irrespective of the cluster they represent.

The results after the convergence of the SOM scheme are shown in Figure 15.12b; the
representatives are concentrated in two distinctly different regions of the grid, depending on
the cluster they represent.

15.3.6 Supervised Learning Vector Quantization
A supervised variant of the competitive schemes has been suggested and extensively
used in the context of VQ [Koho 89, Kosk 92]. In this case, each cluster is treated
as a class and the available vectors have known class labels. In this framework, let
m be the number of classes. Supervised VQ uses a set of m representatives, one

“17-Ch15-SA272” 18/9/2008 page 789

15.4 Binary Morphology Clustering Algorithms (BMCAs) 789

0 2 4 6 8 10
0

2

4

6

8

10

(a)

0 2 4 6 8 10
0

2

4

6

8

10

(b)

FIGURE 15.12
(a) The state of the map after the first iteration step for the case of the Example 15.4. The rep-
resentatives of both clusters (black and red circles respectivley) are spread throughout the grid.
(b) The state of the grid after the completion of the training. Now the clusters are represented
by neighboring representatives which occupy two clearly distinct regions in the grid. Black dots
are points where no representatives have been allocated by the algorithm.

for each class, and tries to place them in such a way that each class is “optimally”
represented. The simplest version of the supervisedVQ (also called LVQ1 [Tsyp 73])
may be derived from generalized competitive learning schemes by keeping parts
(A),(B),and (C) the same as in the basic competitive learning scheme and modifying
part (D) to

wj(t) !

⎧
⎪⎪⎨

⎪⎪⎩

wj(t " 1) $ ((t) (x " wj(t " 1)), if wj correctly wins on x

wj(t " 1) " ((t) (x " wj(t " 1)), if wj wrongly wins on x

wj(t " 1), otherwise

(15.27)

It is clear that the information related to the known class labels determines the
direction in which wj is moved. Specifically, we move wj (a) toward x if wj wins
and x belongs to the jth class and (b) away from x if wj wins and x does not
belong to the jth class. In addition,all other representatives remain unaltered. Such
algorithms have been used in speech recognition and OCR applications.

A variant of this scheme,where more than one representative is used to represent
each class, is discussed in [Koho 89].

15.4 BINARY MORPHOLOGY CLUSTERING
ALGORITHMS (BMCAs)

Algorithms of this type are suitable for cases in which clusters are not properly
represented by a single representative ([Post 93, Mora 00]). The idea here is to
map X to a discrete set S that facilitates the clustering procedure and then use
the identified clusters in S as a guide for the identification of the clusters in X . In

“17-Ch15-SA272” 18/9/2008 page 790

790 CHAPTER 15 Clustering Algorithms IV

the sequel,we describe such an algorithm,called the binary morphology clustering
algorithm [Post 93]. The BMCA involves four main stages. During the first stage the
data set is discretized and a new set is derived. This is the so-called discrete binary
(DB) set. During the second stage,the basic morphological operators (opening and
closing) are applied on the DB set, giving rise to a new discrete set. The third stage
reveals the clusters formed in the last set. Finally, the last stage is responsible for
the identification of the clusters formed by the original vectors of X , using as guide
the clusters discovered during the third stage. Before we present the algorithm, let
us first recall some basic tools and definitions.

15.4.1 Discretization
During the first step of the discretization stage, we normalize the vectors x ∈ X
so that all their coordinates lie in the range [0, r " 1], where r is a user-defined
parameter. This is achieved via the following transformation:

yij !
xij " minq!1,...,N xqj

maxq!1,...,N xqj " minq!1,...,N xqj
(r " 1), i ! 1, . . . , N , j ! 1, . . . , l (15.28)

where xij denotes coordinate j of vector i. Let us denote the resulting set by X(,
that is,

X(! {yi ∈ [0, r " 1]l , i ! 1, . . . , N }

Next,we discretize [0, r "1]l into rl hypercubes. This is achieved by segmenting
the [0, r"1] interval,for each coordinate,into r subintervals (see Figure 15.13). Each
hypercube is identified by the coordinates of its lower left corner. The parameter r
defines the “resolution”of [0, r " 1]l .

(b)

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

max xq2q

min xq1q

min xq2q

max xq1q

(a)

FIGURE 15.13

(a) The original data set X . (b) Normalization of the data set X in [0, r " 1]l , with r ! 10, and
discretization. The nonempty hypercubes define the discrete binary set.

“17-Ch15-SA272” 18/9/2008 page 791

15.4 Binary Morphology Clustering Algorithms (BMCAs) 791

In the sequel, we identify the hypercube where each vector yi ∈ X (lies. This
can be accomplished by simply taking the integer part of each coordinate of yi .
The resulting vector,z i,will be the identity label of a hypercube in the defined grid.
More specifically,

zij ! [yij], i ! 1, . . . , N , j ! 1, . . . , l

where [x] denotes the integer part of x. Let S be the set containing the new vectors
z i ,after removing all duplicates. Thus,each element of S corresponds to a nonempty
hypercube, and S is the discrete binary set.

15.4.2 Morphological Operations
These operations are applied only to sets with discrete-valued vectors. The simplest
operations of this kind are dilation and erosion. Based on these two operations,
opening and closing operations are defined.

Let Y and T be subsets of Zl ,where Z is the set of integers and s a vector in Zl .
The translation of Y by s is defined as

Ys ! {t ∈ Zl : t ! x $ s, x ∈ Y } (15.29)

Definition 1. The dilation of Y by T , denoted by Y ⊕ T , is defined as

Y ⊕ T ! {e ∈ Zl : e ! x $ s, x ∈ Y , s ∈ T } (15.30)

Equivalently, the set Y ⊕ T is determined by translating Y by all elements of T
and taking the union of the resulting sets [Gonz 93].

Definition 2. The erosion of Y by T is denoted by Y ⊖ T and is defined as

Y ⊖ T ! {f ∈ Zl : x ! f $ s, x ∈ Y , + s ∈ T } (15.31)

Equivalently, the set Y ⊖ T is determined by translating Y by all elements of T
and taking the intersection of the resulting sets [Gonz 93].

In both of these cases, T is called the structuring element. Usually, it has a
hypercubical shape (see Figure 15.14) but other choices, such as hyperspherical
shape, are also possible.

Example 15.5
Let us consider a two-dimensional normal density function with mean " ! [0, 0]T and covari-
ance matrix , ! 3 I , where I is the 2 ' 2 identity matrix. Let X be a set containing 200
vectors stemming from this distribution (Figure 15.15a). We apply the discretization process
on X , with r ! 20, in order to obtain the corresponding discrete binary set, which is denoted
by Y (Figure 15.15b). Let T be the 3 ' 3 structuring element shown in Figure 15.14a, which
consists of the points

T ! {t1, t2, . . . , t9}
! {("1, "1), ("1, 0), ("1, 1), (0, "1), (0, 0), (0, 1), (1, "1), (1, 0), (1, 1)}

“17-Ch15-SA272” 18/9/2008 page 792

792 CHAPTER 15 Clustering Algorithms IV

(a) (b)

FIGURE 15.14
(a) A squared 3 ' 3 structuring element. (b) A squared 5 ' 5 structuring element.

15

10

5

15105
0

0

15

10

5

1510

(c) (d)

5
0

0

20

10

0

15

15

10

10

5

5
0

0

(b)

0

210

220
20

(a)

220

FIGURE 15.15
(a) The original data set X given in Example 15.5. (b) The discrete binary set Y derived from X .
(c) The set Y dilated by T . (d) The set Y eroded by T .

In order to derive the dilation of Y by T , we compute the sets Yi , i ! 1, . . . , 9, produced by
the translation of Y by each element t i of T , i ! 1, . . . , 9, and in the sequel, we take the
union of all Yi ’s. This is the dilation of Y by T (Figure 15.15c). The erosion of Y by T is
computed by taking the intersection of all Yi ’s defined above. The result of this operation is
shown in Figure 15.15d.

“17-Ch15-SA272” 18/9/2008 page 793

15.4 Binary Morphology Clustering Algorithms (BMCAs) 793

Opening and closing are two additional basic operations that are defined in terms
of the dilation and the erosion.

Definition 3. The opening of Y by T is denoted by YT and is defined as

YT ! (Y ⊖ T) ⊕ T (15.32)

that is, the opening of Y by T is the erosion of Y by T followed by the dilation of
the resulting Y ⊖ T by T .

Definition 4. The closing of Y by T is denoted by Y T and is defined as

Y T ! (Y ⊕ T) ⊖ T (15.33)

that is, the closing of Y by T is the dilation of Y by T followed by the erosion of
the resulting Y ⊕ T by T .

In general, Y is different from YT and Y T . Note that the opening operation
smooths out the boundary of Y by discarding irrelevant details of it. On the other
hand, the closing operation fills the gaps in the set Y . These observations show
that opening and closing tend to produce new sets with simpler shapes than the
original ones. As pointed out in [Post 93],“Opening and closing seem to be very
effective to eliminate isolated groups of set points and holes, provided that these
details do not exceed the size of the structuring element.” The following example
shows how the opening and closing operations work.

Example 15.6
Let us consider the discrete binary set Y (see Figure 15.15b) and the structuring element T
of Example 15.5. We derive first the opening of Y by T . The result is shown in Figure 15.16a.
As one can observe, the resulting set retains the basic shape of Y , while irrelevant details

15

10

10

(a)

15

5

0
0 5

15

10

10

(b)

15

5

0
0 5

FIGURE 15.16
(a) The set Y given in Example 15.5, opened by T . (b) The set Y given in Example 15.5, closed
by T .

“17-Ch15-SA272” 18/9/2008 page 794

794 CHAPTER 15 Clustering Algorithms IV

of the boundary of Y have been discarded. The action of closing Y by T is shown in
Figure 15.16b.

The above arguments indicate that the structuring element T plays an important
role in the outcome of the above operations. Unfortunately, there are no general
guidelines for choosing the appropriate T .

15.4.3 Determination of the Clusters in a Discrete Binary Set
We begin with a description of a rather simple algorithm suitable for clusters formed
by the points of a discrete-valued data set S ⊂ {0, 1, . . . , r " 1}l . Let us first define
the neighborhood, V (x), of a point x ∈ S as

V (x) ! { y ∈ S " {x}: d(x, y) % dq}
where d may be any distance measure between two points (see Chapter 11)
and dq is a distance threshold. Also, let # be a threshold of the density of the
neighborhood V (x) of a point x. That is, if V (x) contains at least # points of S, it is
considered “dense.” These are user-defined parameters.

Let U (x) be the immediate neighborhood of x, that is, the set that contains all
points lying at a (Euclidean) distance less than or equal to

√
l from x.

Cluster Detection Algorithm for Discrete-Valued Sets (CDADV)
■ Initially no vector is considered as processed.

■ Repeat

• Choose a nonprocessed point x of S.

• Determine the neighborhood V (x).

• If V (x) contains at least # points then

⃝ Create a new cluster that includes:

— The point x

— All points y ∈ S for which there exists a sequence of points yjs ∈ S,
s ! 1, . . . , qy, such that y ∈ U (yj1), yjs ∈ U (yjs$1

), s ! 1, . . . , qy " 1,
and yjqy

∈ U (x).

⃝ The defined points are considered as processed.
• Else

⃝ Consider x as processed

• End {if}

■ Until all points of S have been processed.

Example 15.7
Consider the setup of Figure 15.17a. We choose dq !

√
2 and # ! 1 (in this case V (x) ≡

U (x)). Also, the sides of the squares depicted in Figure 15.17a are of unit length. The CDADV

“17-Ch15-SA272” 18/9/2008 page 795

15.4 Binary Morphology Clustering Algorithms (BMCAs) 795

y

x7

x10

x8 x9

x11

x2

x5

x3

x1

x4

x7
x

x6

(a) (b)

x10

x8 x9

x13

x11

x12

x3

x2

x1

x4

xx5

x6

y

FIGURE 15.17
(a) The setup of Example 15.7. (b) A data set containing outliers.

considers first x1. Since it is “dense” (i.e., its neighborhood contains at least one point of S
apart from x1), a new cluster is created. x2 also belongs to this cluster because x2 ∈ U (x1).
Moreover, x3, x4 belong to this cluster because x3, x4 ∈ U (x2) and x2 ∈ U (x1). In
addition, x5 belongs to this cluster because x5 ∈ U (x3), x3 ∈ U (x2), and x2 ∈ U (x1).
Finally, since x6 ∈ U (x5), x5 ∈ U (x4), x4 ∈ U (x2), and x2 ∈ U (x1), x6 also belongs to
this cluster. Working similarly, we find that x7, x8, x9, and x10 form a second cluster, while
no action is taken for x11.

In the preceding scheme,all points of S are processed by the algorithm,regardless
of their density. In fact,CDADV works well when the points of S form well-separated
clusters. However, if this is not the case, for example,when we have a small number
of outliers in S lying between its clusters (Figure 15.17b),we may proceed as follows.
As it is expected,the neighborhood of an outlier is rather“sparse,”and we first define
a lower threshold #1 (%#) for the density of the neighborhood of a point and we
consider the set S(of all points of S whose neighborhoods have density at least #1.
That is,we exclude the outliers from S(. Then we run the CDADV on S(using #, and,
after its completion,we assign each vector of S " S(to the cluster where its nearest
point in S(belongs. Note that the distance function between a point and a cluster
that we employ for this stage should not involve cluster representatives, since S is a
discrete-valued set.

15.4.4 Assignment of Feature Vectors to Clusters
This subsection deals with the final stage of the algorithmic procedure. Let us recall
that S is the discrete-valued set obtained from X , after applying the opening and
closing transformations. Let C1(, . . . , Cm(be the clusters formed in S, determined
by the previously discussed CDADV algorithm. The aim of the current task is to

“17-Ch15-SA272” 18/9/2008 page 796

796 CHAPTER 15 Clustering Algorithms IV

determine m clusters in X , denoted by C1, . . . , Cm, that correspond to the clusters
Ci(, i ! 1, . . . , m.

The algorithm assigns the vectors of X to clusters in two steps. During the first
one,all vectors x ∈ X such that [y] ∈ S5 are considered. In the sequel,the algorithm
assigns a vector x to the cluster Ci if [y] belongs to Ci(. Let X(be the set of the
vectors of X that have been assigned to clusters during this step. At the second stage,
the algorithm assigns each of the points in X " X(to its closest Cj , j ! 1, . . . , m.

15.4.5 The Algorithmic Scheme
Having described the steps, we may proceed now to the description of the BMCA.

Binary Morphology–Based Clustering Algorithm (BMCA)
■ 1st stage. Discretize the data set X and let S be the resulting discrete binary

set.

■ 2nd stage.
• (a) Apply the opening transformation on S using a preselected structuring

element T , to obtain ST .

• (b) Apply the closing transformation on ST using T . Let S1 ! (ST)T be the
set obtained.

■ 3rd stage. Determine the underlying clusters of S1 using the CDADV algorithm.

■ 4th stage. Based on the clusters formed in S1, determine the underlying
clusters of X .

It should be noted here that different choices of morphological operators can
be used at the second stage of the algorithm. Thus, for example,one may use either
the opening or the closing operator or both of them in the reverse order.

BMCA is sensitive to the parameter r and the structuring element T . These
parameters may cause overestimation or underestimation of the true number of
clusters underlying X . However, it is expected that when X contains clusters,
their number remains unchanged for a significant range of values of the parameters
involved (a similar situation has been met earlier in Chapter 12). Based on this
assumption,we run the first three stages of the algorithm for various values of r and
different T (for simplicity we may assume that T has a hypercubic scheme and,thus,
its only parameter that is subject to change is the length of its side a). Then we plot
the number of the resulting clusters versus r and a and we consider the widest area
in the (r, a) plane, for which the number of clusters remains unchanged. The final
values for r and a are chosen to be those corresponding to the middle point of the

5 By [y] we denote the l-dimensional vector whose ith coordinate is the integer part of the ith
coordinate of the l-dimensional vector y.

“17-Ch15-SA272” 18/9/2008 page 797

15.4 Binary Morphology Clustering Algorithms (BMCAs) 797

above area. Using these values, we run the BMCA algorithmic scheme in order to
determine the clusters of X .

A major drawback of the procedure is that it requires intensive computations,
since many combinations of the values for r and a have to be considered. A way
to reduce the required computations is to fix one of the two parameters to a rea-
sonable value (if this is possible) and to apply the procedure only to the other
parameter.

An important observation is that when the underlying clusters of X are compact
and well separated, algorithms such as the isodata give better results than BMCA
(see Problem 15.6). However, the situation is reversed when this is not the case.
Let us consider the following example.

Example 15.8
Let X be a data set consisting of 1000 vectors. The first 500 of them, (xi1 , xi2), are defined as

xi1 ! (i " 1)
2s

500

xi2 !
√

s2 " x2
i1 $ zi

where s ! 10 and zi stems from a Gaussian distribution with zero mean and unit variance,
i ! 1, . . . , 500. Similarly, the remaining vectors (xi1 , xi2) are defined as

xi1 ! b1 $ (i " 501)
2s

500

xi2 ! b2 $
√

s2 " (xi1 " b1)2 $ zi(

where b1 ! "10, b2 ! 3, s ! 10, and zi(is normally distributed with zero mean and unit
variance, i ! 501, . . . , 1000. It is not difficult to realize that the first 500 feature vectors spread
around the upper half-circle with radius 10 centered at (0, 0). Similarly, the rest of the 500
vectors spread around the lower half-circle with radius 10, centered at the point ("10, 3) (see
Figure 15.18a).

Clearly, two clusters are formed in X and each of them cannot be represented satisfactorily
by a single point representative. In our simulations we use the 3 ' 3 structuring element
defined in Example 15.5 and r ! 25. Also, the Euclidean distance between two vectors is
adopted. The discrete binary set S, resulting from the discretization process, is shown in
Figure 15.18b. Figure 15.18c shows the result of the opening of S by T , and Figure 15.18d
shows the result of the closing of ST by T . The two clusters involved in the last set are well
separated. Application of the third stage of the BMCA algorithmic scheme reveals these two
clusters. Finally, application of the fourth stage of the algorithm determines the clusters formed
in X . The results obtained are excellent. Only two of the first 500 vectors were misclassified,
and only 1 of the remaining 500 vectors was misclassified. Thus, 99.7% of the vectors of X
were correctly classified. In contrast, the results obtained with the isodata algorithm were
much inferior to these results.

“17-Ch15-SA272” 18/9/2008 page 798

798 CHAPTER 15 Clustering Algorithms IV

20

10

0

0210 10220
210

(a)

20

15

10

5

0
0 10 20

(b)

20

15

10

5

0
0 10 20

(c)

0 10 20

20

15

10

5

0

(d)

FIGURE 15.18
(a) The original data set X . (b) The set S resulting from the discretization of X . (c) The set
resulting from opening of S by T . (d) The set resulting from closing of ST by T .

15.5 BOUNDARY DETECTION ALGORITHMS
Most of the algorithms discussed so far determine clusters based on either the
distance between vectors and clusters or the distance between clusters. In this
section, a different rationale is discussed. Clusters are formed via the estimation of
the boundary surfaces that separate them [Atiy 90]. This approach is well suited
when the underlying clusters are compact. The idea is rather simple. The compact
clusters are viewed as dense regions,in the l-dimensional space,separated by regions
sparse in data vectors. Therefore, it suffices to begin with an initial estimate of the
boundary and move it iteratively to regions that are sparse in vectors.

Let us consider first the case in which two clusters are present. Let g(x; !) be the
function describing the decision boundary between the two clusters,where ! is the
unknown parameter vector describing the surface. If, for a specific x, g(x; !) & 0,
then x belongs to the first cluster, denoted by C$. Otherwise, x belongs to the
second cluster, denoted by C". The goal is to determine the unknown parameter
vector !. The situation looks similar to the supervised case where we identify the

“17-Ch15-SA272” 18/9/2008 page 799

15.5 Boundary Detection Algorithms 799

decision boundary between classes,utilizing the labeling information of the feature
vectors. However, no such information is available here. In the present case, the
adjustment of ! relies exclusively on the distances of the vectors of X from the
decision boundary.

To this end, we define a cost function J , whose maximization will lead to locally
optimal values for !. Let J be defined as

J (!) !
1
N

N∑

i!1

f 2 (
g(xi; !)

)
"

(
1
N

N∑

i!1

f (g(xi; !))

)2q

(15.34)

where q is a constant positive integer and f (x) is a monotonically increasing
symmetric squashing function with

lim
x→$*

f (x) ! 1, lim
x→"*

f (x) ! "1, and f (0) ! 0 (15.35)

A common choice for such a function is the hyperbolic tangent

f (x) !
1 " e"x

1 $ e"x

Each of the two terms in (15.34) has a maximum value of 1. Also, J (!) is
nonnegative since

J (!) ≥ 1
N

N∑

i!1

(

f (g(xi; !)) "
1
N

N∑

k!1

f (g(xk; !))

)2

≥ 0 (15.36)

One can easily observe that the first term in Eq. (15.34) is maximized when all
x ∈ X lie away from the boundary. In this case f 2(g(xi; !)) → 1 and the first term
attains values close to 1. However,this argument holds also true if all vectors of X lie
on the same side of the boundary and away from it. The role of the second term is to
discourage such trivial solutions. Indeed,in such cases (1

N

∑N
i!1 f (g(xi; !)))2q → 1

and therefore J (!) approaches zero, its minimum value. The role of q is to control
the impact of the second term on the cost function J .

Let us now consider an intermediate case in which the boundary lies between
two dense regions. In such cases, the contribution of the second term to J is small.
Let us demonstrate it via a simplified example. Assume that the decision surface is a
hyperplane H and that at the positive (negative) side of H we have k points lying at
distance a ("a) away from it. Then it is not difficult to show that the second term
becomes zero while the first equals f 2(a∥!∥).

In the sequel we adopt a steepest ascent scheme in order to determine the
optimal value for !. Let #j be a coordinate of !. Then

#j(t $ 1) ! #j(t) $ +
*J (!)
*#j

∣∣∣
#j!#j(t)

“17-Ch15-SA272” 18/9/2008 page 800

800 CHAPTER 15 Clustering Algorithms IV

or

#j(t $ 1) ! #j(t) $ +

(
2
N

N∑

i!1

f (g(xi; !))
*f (g(xi; !))

*g(xi; !)
*g(xi; !)

*#j

"
2q
N

(
1
N

N∑

i!1

f (g(xi; !))

)2q"1 N∑

i!1

*f (g(xi; !))
*g(xi; !)

*g(xi; !)
*#j

⎞

⎠
∣∣∣
#j ! #j (t)

(15.37)

For the simple case where g(x; !) is a hyperplane we can write

g(x; !) ! wT x $ w0

where ! ≡ [w w0]T . The updating equation for the parameters follows directly from
Eq. (15.37) if we notice that

*g(x; !)
*wj

!

{
x j , j ! 1, . . . , l

1, j ! 0

The resulting algorithm is rather simple in its formulation and may be stated as
follows

Boundary Detection Algorithm (BDA)
■ Choose an initial value !(0) for the parameter vector.

■ Compute J (!(0)) using Eq. (15.34).

■ t ! 0.

■ Repeat
• t ! t $ 1

• Compute !(t) using Eq. (15.37).

• Compute J (!(t)) using Eq. (15.34).

■ Until
∣∣∣
J (!(t $ 1)) " J (!(t))

J (!(t))

∣∣∣ # '.

We note here that the coordinates of ! should not grow in an unbounded way.
In the case that g(x; !) corresponds to a hyperplane, a bounded condition for the
coordinates of ! could be ∥!∥ % a, where a is a user-defined parameter.

Let us now consider the case in which more than two clusters underlie X .
In this case,we follow a hierarchical procedure. First we divide X into two clusters
X$ and X" using the boundary detection algorithm. Then, using the algorithm
again, we further divide X$ (X") and obtain X$" and X$$ (X"" and X"$).
This procedure is then applied iteratively to the resulting clusters until a specific
termination criterion is met. This procedure reminds us of the neural network
design discussed in Chapter 4 [Atiy 90].

“17-Ch15-SA272” 18/9/2008 page 801

15.6 Valley-Seeking Clustering Algorithms 801

One can easily observe that if no sparse regions exist in a formed cluster C , the
division of C will result in a low value of J (!). Thus, an appropriate criterion that
may be used to check whether C contains more clusters is

J (!) % b

where b is a user-defined threshold. If this happens, the division of C is not accept-
able. Otherwise, the division of C is accepted and we proceed with C$ and C".
It is clear that the smaller the value of b, the more clusters will be defined. On
the other hand, higher values of b result in the acceptance of fewer clusters with
well-defined borders among them. Thus, b should be chosen with care.

A different algorithm, called OptiGrid, that separates clusters by applying
a suitably defined grid of hyperplanes on the feature space, is discussed in
[Hinn 99].

15.6 VALLEY-SEEKING CLUSTERING ALGORITHMS
The method discussed here is in the same spirit as that of the previous section. Let
p(x) be the density function describing the distribution of the vectors in X . An
alternative way to attack the clustering problem is to view the clusters as peaks
of p(x) separated by valleys. Inspired by this consideration, one can search to
identify such valleys, and try to move and place the borders of the clusters in these
valleys.

In the sequel, we discuss an iterative and computationally effective algorithm
based on this idea [Fuku 90]. Once more, let V (x) be the local region of x,
that is,

V (x) ! {y ∈ X " {x}: d(x, y) % a} (15.38)

where a is a user-defined parameter. The distance d(x, y) can be taken to be

d(x, y) ! (y " x)T A(y " x) (15.39)

where A is a symmetric positive definite matrix. Also, let ki
j denote the number of

vectors of the j cluster that belong to V (xi), excluding xi . Also, let ci ∈ {1, . . . , m}
denote the cluster to which xi belongs, i ! 1, . . . , N . Then the algorithm is stated
as follows.

Valley-Seeking Algorithm
■ Fix a.

■ Fix the number of clusters m.

■ Define an initial clustering of X .

■ Repeat

• For i ! 1 to N

“17-Ch15-SA272” 18/9/2008 page 802

802 CHAPTER 15 Clustering Algorithms IV

⃝ Find j: ki
j ! maxq!1,...,m ki

q
6

⃝ Set ci ! j

• End {For}

• For i ! 1 to N
⃝ Assign xi to cluster Cci .

• End {For}

■ Until no reclustering of vectors occurs.

Remarks

■ Observe that the preceding algorithm has close similarities to the Parzen
windows method, for pdf estimation, discussed in Chapter 2. Indeed, all it
does is to move a window d(x, y) % a at x and to count points from dif-
ferent clusters. Then it assigns x to the cluster with the larger number of
points in the window. That is, to the cluster with the highest local pdf den-
sity. This is equivalent with moving the boundary away from the “winning”
cluster.

■ The preceding is a mode seeking algorithm. That is, if more than enough
clusters are initially appointed, some of them may be empty.

Example 15.9
(a) Consider Figure 15.19a. X consists of the following 10 vectors: x1 ! [0, 1]T , x2 ! [1, 0]T ,
x3 ! [1, 2]T , x4 ! [2, 1]T , x5 ! [1, 1]T , x6 ! [5, 1]T , x7 ! [6, 0]T , x8 ! [6, 2]T , x9 !

[7, 1]T , x10 ! [6, 1]T . The squared Euclidean distance is employed.
The initial clustering consists of two clusters as shown in Figure 15.19a. Also, a decision

line, b1, separating the two clusters is shown (Figure 15.19a). Let a ! 1.415.7 After the first
iteration of the algorithm, x4 is assigned to the cluster denoted by “x.” This is equivalent
to moving the decision curve separating the two clusters to the valley between the two high
density areas.

(b) Now consider Figure 15.19b. The set X remains unchanged. Also, the initial clustering
remains the same except that x6 is assigned to the cluster denoted by “x.” Three curves, b1,
b2, and b3, can now be used to separate the clusters. After the first iteration of the algorithm,
x4 is assigned to the cluster denoted “x” and x6 is assigned to the cluster denoted by “o.”
Equivalently, b1, b2 can be thought to move to the valley between the two peaks in the place
of b3.

6 If ties occur, that is,more than one maximum are encountered,we choose the one with the smallest
index.
7 This number is slightly greater than

√
2.

“17-Ch15-SA272” 18/9/2008 page 803

15.7 Clustering via Cost Optimization (Revisited) 803

x1

b1 b1
b2 b2

b4b3

b1b3

x3

x5

x2 x7 x2 x7
o o

o o

o

oo o

o

o o

o

(a) (b) (c)

o

o

o
x4

x6

x8

x10 x9
x1

x3

x5 x4

x6

x8

x10 x9 x1

x2 x7

x3

x5 x4
x6 x10

x9

x8
3

3

3

3 3

3

3

3

3 3

3

3

3

* *

FIGURE 15.19
(a) The setup of Example 15.9(a). (b) The setup of Example 15.9(b). (c) The setup of Example
15.9(c).

(c) Finally, let us consider Figure 15.19c. Again X remains unchanged. However, the
initial clustering consists of three clusters, denoted by “x,” “o,” and “∗.” Also, the initial
clustering is the same as that of (b) except that x4 and x6 are assigned to the cluster denoted
by “∗,” x5 is assigned to the cluster denoted by “o,” and, finally, x10 is assigned to the cluster
denoted by “x.” The decision surfaces consist of the curves bi , i ! 1, . . . , 4. After the first
iteration of the algorithm, x4 and x5 are assigned to the cluster denoted by “x.” Likewise,
x6 and x10 are assigned to the cluster denoted by “o.” Finally, the rest vectors remain in
the clusters where they were initially assigned. The important point here is that, although we
initially considered three clusters, the algorithm ends up with two. This is because only two
peaks are present. Moreover, in all cases, the decision surface is moved to the valley between
the two peaks.

It should be emphasized here that the algorithm is sensitive to the value of the
parameter a. Thus, one should run the algorithm several times for different values
of a and interpret the results very carefully.

An alternative algorithm based on similar ideas is discussed in [Fuku 90]. It
identifies the underlying clusters of X by moving the xi ∈ X toward the direction
of *p(x)/*x, computed at xi , by (*p(x)/*x, where (is a user-defined parameter.
Iterating this procedure,points of the same cluster converge towards the same point
in space (a method for the estimation of the gradient of p(x) is given in [Fuku 90]).
Finally, other related algorithms can be found in [Touz 88, Chow 97].

15.7 CLUSTERING VIA COST OPTIMIZATION (REVISITED)
In this section we present four optimization methods that have been used
successfully in many fields of application.

15.7.1 Branch and Bound Clustering Algorithms
As already stated in Chapter 5, branch and bound methods compute the globally
optimal solution to combinatorial problems, according to a prespecified criterion

“17-Ch15-SA272” 18/9/2008 page 804

804 CHAPTER 15 Clustering Algorithms IV

1 xx

111 112 121 122

12 x11 x

FIGURE 15.20
The classification tree corresponding to the grouping of three vectors in two clusters.

(cost) function J , overcoming the need for exhaustive search.8 They are applicable
to monotonic criteria. That is, if k vectors of X have been assigned to clusters, the
assignment of an extra vector to a cluster does not decrease the value of J .

We will first attempt to gain some insight into these methods by considering
an example. Let us assume that our goal is to find the best way (with respect to a
criterion J) in which three vectors can be clustered in two clusters. To this end,we
construct the classification tree of Figure 15.20. Each node is characterized by a
string of three symbols,namely 1,2,and x. For example, the string“122”means that
the first vector is assigned to cluster 1 while the other two are assigned to cluster
2. Also, the string“1xx”means that the first vector is assigned to cluster 1 while the
other two remain unassigned. The first vector is always assigned to the first cluster.
Note that each leaf corresponds to an actual clustering and there are as many leaves
as the possible clusterings of the three vectors in two clusters. All the other nodes
correspond to the so-called partial clusterings, that is, to clusterings where not all
the vectors of X have been assigned yet to a cluster.

We are now ready to see where the computational saving comes from. Let us
assume that at an iteration step of the algorithm, the best computed value for the
criterion J is B. Then, if at a node the corresponding value of J is greater than B,no
further search is performed for all subsequent descendants springing from this
node. This is because of the monotonicity of the criterion, which ensures that all
descendants will result in values of J no less than B.

More formally, let Cr ! [c1, . . . , cr], 1 % r % N , denote a partial clustering, where
ci ∈ {1, 2, . . . , m}, ci ! j if the vector xi belongs to cluster Cj , and the vectors
xr$1, . . . , xN are not yet assigned to any cluster.

8 In the sequel we consider only the minimization problem.

“17-Ch15-SA272” 18/9/2008 page 805

15.7 Clustering via Cost Optimization (Revisited) 805

In the sequel, we focus on compact clusters and we give a simple branch and
bound algorithm [Koon 75]. We assume that the number of clusters, m, is fixed.
The criterion function employed is defined as

J (Cr) !
r∑

i!1

∥xi " mci (Cr)∥2 (15.40)

where mci is the mean vector of the cluster Cci , that is,

mj(Cr) !
1

nj(Cr)

∑

{q!1,...,r:cq!j}
xq , j ! 1, . . . , m (15.41)

with nj(Cr) being the number of vectors x ∈ {x1, . . . , xr} that belong to cluster Cj .
Note that the computation of the mean vectors of the clusters takes into account
only the first r vectors. We assume that J (C1) ! 0. One can easily verify that

J (Cr$1) ! J (Cr) $ -J (Cr) (15.42)

with - J (Cr) ≥ 0. In words,- J (Cr) denotes the increase in the value of J when the
next vector is assigned to a cluster. More precisely, assuming that the r $ 1 vector
is assigned to the cluster Cj , it can be shown that

- J (Cr) !
nj(Cr)

nj(Cr) $ 1
∥xr$1 " mj(Cr)∥2 (15.43)

Let C∗
N ! [c∗

1, . . . , c∗
N] denote the optimal clustering. In the sequel, the index

r denotes the vector that is currently considered for cluster assignment. Then the
algorithm may be stated as follows.

Branch and Bound Clustering (BBC) Algorithm
r ! 1
B ! $*
While r ̸! 0 do

■ If (J (Cr) # B) AND (r # N) then
• r ! r $ 1

• Among all possible assignments, cr , of xr that have not been tested yet,
choose the one that minimizes the value of -J (Cr).9

■ End {If}

■ If (J (Cr) # B) AND (r ! N) then

• C∗
N ! CN

• B ! J (CN)

■ End {If}

9 If more than one cr ’s minimize - J (Cr), choose the smallest one.

“17-Ch15-SA272” 18/9/2008 page 806

806 CHAPTER 15 Clustering Algorithms IV

■ If ((J (Cr) % B) AND (r ! N)) OR (J (Cr) & B) then
• (A) r ! r " 1

• If (r ! 0) then
⃝ Stop

• Else
⃝ If all possible clusterings that branch from this node have been exhausted

for the rth vector then
— Go to (A)

⃝ Else
— r ! r $ 1

— Among all possible cr ’s that have not been tested yet, choose another
path, the one that minimizes the value of - J (Cr).

⃝ End {If}

• End {If}

■ End {If}

End {While}

The algorithm starts from the initial node of the tree and goes down until either
(i) a leaf or (ii) a node q with cost function value greater than B is encountered. In
case (i) if the cost for the clustering that corresponds to that leaf is less than B, then
this cost becomes the new bound B, and the clustering is the best clustering found
so far. In case (ii) all subsequent clusterings branching from q are not considered
any further and we say that they are exhausted. The algorithm, then, backtracks
to the parent node of q in order to span a different path. If all paths branching from
the parent of q have already been considered, we move to the grandparent of q.
The algorithm terminates when all possible paths have been considered explicitly
or implicitly (via the aforementioned case (ii)). Clearly, in the beginning, the BBC
algorithm spans first a whole path from the initial node of the tree down to a leaf.
The cost function of the clustering corresponding to that leaf is the new value of B.

It is clear that the tighter the upper bound B,the more paths are rejected without
explicit consideration. Variations of this algorithm that use better estimates of B are
discussed in [Koon 75]. Moreover, the substitution of the values J (Cr) with tighter
lower bounds of the optimal value of J is also suggested in [Koon 75]. This leads to
the rejection of many more clusterings without considering them explicitly.

The major disadvantage of this algorithm is the excessive amount of compu-
tational time it requires even for moderate values of N .10 In addition, this time
is unpredictable. One way to face this problem is to run the algorithm for a
prechosen time and use the best clustering found so far. It is clear that in this

10 This is a common feature for the methods performing global optimization.

“17-Ch15-SA272” 18/9/2008 page 807

15.7 Clustering via Cost Optimization (Revisited) 807

case, the algorithm can no longer guarantee the determination of the globally
optimal clustering. Versions of the branch and bound algorithm that achieve
some computational savings by reducing redundant J evaluations have appeared in
[Yu 93, Chen 95].

15.7.2 Simulated Annealing
This is a global optimization algorithm. More specifically, under certain conditions,
it guarantees, in probability, the computation of the globally optimal solution of the
problem at hand via the minimization of a cost function J . This algorithm has been
proposed by Kirkpatrick et al. [Kirk 83] (see also [Laar 87]) and it is inspired by
the problem of condensed matter in physics.11 In contrast to the algorithms that
allow corrections of the unknown parameters only to directions that reduce the
cost function J , simulated annealing allows moves that, temporarily, may increase
the value of J . The rationale is that, by allowing such moves, we may escape from
the region of attraction of a local minimum.

A very important parameter of this method is the so-called temperature T ,which
is the analog of the temperature in physical systems. The algorithm starts with a high
temperature, which is reduced gradually. A sweep is the time that has to be spent
at a given temperature so that the system can enter the“thermal equilibrium”state.
Let Tmax and Cinit denote the initial value of the temperature, T , and the initial
clustering, respectively. Also, C denotes the current clustering and t the current
sweep. The general scheme of simulated annealing, in the clustering context, is the
following.

Simulated Annealing for Clustering
■ Set T ! Tmax and C ! Cinit .

■ t ! 0.

■ Repeat

• t ! t $ 1

• Repeat

⃝ Compute J (C).

⃝ Produce a new clustering,C(,by assigning a randomly chosen vector from
X to a different cluster.

⃝ Compute J (C().

⃝ If -J ! J (C() " J (C) # 0 then

— (A) C ! C(

11 Also, it shares many common features with the Metropolis algorithm [Metr 53].

“17-Ch15-SA272” 18/9/2008 page 808

808 CHAPTER 15 Clustering Algorithms IV

⃝ Else
— (B) C ! C(, with probability P(-J) ! e"- J /T .

⃝ End if

• Until an equilibrium state is reached at this temperature.

• T ! f (Tmax, t)

■ Until a predetermined value Tmin for T is reached.

It is clear that high values of the temperature imply that almost all movements
of vectors between clusters are allowed, since, as T → $*, P(- J) ≃ 1. On the
other hand, for low values of T , fewer moves of the (B) type are allowed and,finally,
as T → 0, the probability of such moves tends to zero. Thus, as T is lowered, it
becomes more probable that clusterings that correspond to lower values of J will be
reached. On the other hand,by keeping T positive,we ensure a nonzero probability
for escaping from a local minimum.

A difficulty with this algorithm is the determination of the equilibrium state
at a specific temperature. One heuristic rule for this case is to consider that the
equilibrium state has been reached if for k successive random reassignments of
patterns,C remains unchanged (typically k is of the order of a few thousand). Further
discussion of this direction is provided in [Klei 89]. Also, another crucial point is
the schedule for lowering T . It has been shown that if

T ! Tmax/ ln(1 $ t) (15.44)

this scheme converges to the global minimum with probability 1 [Gema 84].
However, this schedule is too slow. A faster schedule for lowering T is discussed
in [Szu 86]. Despite this, the main disadvantage of this algorithm remains the vast
amount of computations required.

Finally, in [Al-S 93] simulated annealing is used in terms of fuzzy clustering.
Experiments with simulated annealing in clustering problems are presented in
[Klei 89, Brow 92].

15.7.3 Deterministic Annealing
This is a hybrid parametric scheme combining the advantages of simulated anneal-
ing and the deterministic clustering methods. In contrast to simulated annealing,
where successive clusterings are obtained by randomly disturbing the current one,
no random disturbances occur here. On the other hand,the cost function is changed
slightly, in order to accommodate the parameter , ! 1/T , where T is defined as
in the simulated annealing methods.12 In contrast to simulated annealing, deter-
ministic annealing is the counterpart of the phase transition phenomenon that is
observed when the temperature of a material changes [Rose 91].

12 We choose to work with , instead of T , because this notation is generally used for this algorithm.

“17-Ch15-SA272” 18/9/2008 page 809

15.7 Clustering via Cost Optimization (Revisited) 809

In this framework,a set of representatives wj ,j ! 1, . . . , m (m is fixed),is adopted
and our goal is to locate them in appropriate positions so that a distortion function
is minimized. To this end, the following “effective” cost function J is constructed
[Rose 91]:

J ! "
1
,

N∑

i!1

ln

⎛

⎝
m∑

j!1

e",d(xi ,wj)

⎞

⎠ (15.45)

where m is the number of clusters. Differentiating J with respect to the repre-
sentative wr and setting it equal to 0, we obtain

*J
*wr

!
N∑

i!1

(
e",d(xi ,wr)

∑m
j!1 e",d(xi ,wj)

)
*d(xi , wr)

*wr
! 0 (15.46)

It is clear that the ratio in parentheses takes values in [0, 1] and, in addition,all these
terms for a specific xi sum up to 1. Thus, it may be interpreted as the probability,
Pir , that xi belongs to Cr , r ! 1, . . . , m. Then Eq. (15.46) can be written as

N∑

i!1

Pir
*d(xi , wr)

*wr
! 0 (15.47)

In the sequel, we assume that d(x, w) is a convex function of w for fixed x.
Note that for , ! 0, all Pij ’s are equal to 1/m, for all xi’s, i ! 1, . . . , N . Thus, in this
case Eq. (15.47) becomes

N∑

i!1

*d(xi , wr)
*wr

! 0 (15.48)

Since d(x, w) is a convex function,
∑N

i!1 d(xi , wr) is also a convex function
and, thus, it has a unique minimum,which may be captured by any gradient descent
scheme. Thus, in this case, all the resulting representatives coincide with this
unique global minimum.That is, all data belong to a single cluster. As the value of
, increases, it reaches a critical value where a phase transition occurs (alternatively,
the probabilities Pir “depart sufficiently”from the uniform model);that is,the clusters
are no longer optimally represented by a single representative. Thus, the represen-
tatives split up in order to provide an optimal representation of the data set at the
new phase. Further increase of , causes a new phase transition and the available
representatives are further split up. By choosing m to be greater than the “actual”
number of clusters, we ensure the ability of the algorithm to represent the data set
properly. In the worst case, some of the representatives will coincide.

Note that as , increases, the probabilities Pij depart from the uniform model
and approach the hard clustering model; that is, for all xi, Pir ≃ 1 for some r, and
Pij ≃ 0 for j ̸! r.

Thus, the requirement for each vector to be assigned to a specific cluster with
probability close to unity may serve as a termination criterion for the algorithm.

“17-Ch15-SA272” 18/9/2008 page 810

810 CHAPTER 15 Clustering Algorithms IV

Schedules for the increase of , are discussed in [Rose 91]. Although simulation
results show satisfactory performance of the algorithm, it is not guaranteed that
it reaches the globally optimum clustering. Other applications of deterministic
annealing to clustering are discussed in [Hofm 97, Beni 94].

15.7.4 Clustering Using Genetic Algorithms
Genetic algorithms have been inspired by the natural selection mechanism intro-
duced by Darwin. They apply certain operators to a population of solutions of the
problem at hand,in such a way that the new population is improved compared with
the previous one according to a prespecified criterion function J . This procedure
is applied for a preselected number of iterations and the output of the algorithm is
the best solution found in the last population or, in some cases, the best solution
found during the evolution of the algorithm.

In general, the solutions of the problem at hand are coded13 and the operators
are applied to the coded versions of the solutions. The way the solutions are coded
plays an important role in the performance of a genetic algorithm. Inappropriate
coding may lead to poor performance.

The operators used by genetic algorithms simulate the way natural selection is
carried out. The most well-known operators used are the reproduction, crossover,
and mutation operators applied in that order to the current population. The repro-
duction operator ensures that, in probability, the better (worse) a solution in the
current population is, the more (less) replicates it has in the next population.
The crossover operator, which is applied to the temporary population produced
after the application of the reproduction operator, selects pairs of solutions ran-
domly, splits them at a random position, and exchanges their second parts. Finally,
the mutation operator, which is applied after the application of the reproduction
and crossover operators,selects randomly an element of a solution and alters it with
some probability. The last operator may be viewed as a way out of getting stuck in
local minima. Apart from these three operators, many others have been proposed
in the literature (e.g., [Mich 94]).

Besides the coding of the solutions, other parameters, such as the number of
solutions in a population, p,14 the probability with which we select two solutions
for crossover, and the probability with which an element of a solution is mutated,
play very important roles in the performance of the algorithm.

Several genetic algorithms with application to clustering have been proposed
(e.g., [Bhan 91, Andr 94, Sche 97, Maul 00, Tsen 00]). In the sequel, we briefly
discuss a simple parametric one that is suitable for hard clustering. We assume that
the number of clusters,m, is fixed. As stated before,the first thing we have to decide

13 Binary representations as well as more general ones are possible.
14 This may be fixed or varied.

“17-Ch15-SA272” 18/9/2008 page 811

15.8 Kernel Clustering Methods 811

is how to code a solution. A simple (but not unique) way to achieve this is to use
the representatives in order to form the following string:

[w1, w2, . . . , wm] (15.49)

or, in more detail,

[w11, w12, . . . , w1l , w21, w22, . . . , w2l , . . . , wm1, wm2, . . . , wml] (15.50)

The cost function we use is

J !
N∑

i!1

uijd(xi , wj) (15.51)

where

uij !

{
1, d(xi , wj) ! mink!1,..., m d(xi , wk)

0, otherwise
i ! 1, . . . , N (15.52)

The allowable cut points for the crossover operator are between different rep-
resentatives. Also, in this case the mutation operator selects randomly a coordinate
of a vector of a solution and decides randomly to add a small random number to it.

An alternative to this algorithm is the following. Before we apply the repro-
duction operator to the current population, we run the hard clustering algorithm,
described in Chapter 14,p times,each time using a different solution of the current
population as the initial state. The p solutions produced after the convergence of
the hard clustering algorithm constitute the population to which the reproduction
operator will be applied. It is expected that this modification will give better results,
as it is likely that the resulting p solutions are local minima of the cost function. This
modified algorithm has been reported to give satisfactory results in a color image
quantization application, [Sche 97].

15.8 KERNEL CLUSTERING METHODS
The minimal-enclosure (hyper)sphere (i.e., the sphere with the minimum volume
enclosing all points in a vector space X) was briefly discussed in Chapter 5
(Problem 5.20). In [Tax 99], this problem was considered in a more relaxed frame-
work, allowing some of the points of the data set to lie outside the volume of
the sphere. This viewpoint makes the problem less sensitive to outliers. The
optimization task now becomes similar to the soft-margin SVM and can be casted as

minimize r2 $ C
N∑

i!1

-i (15.53)

subject to ||x " c||2 % r2 $ -i , i ! 1, 2, . . . , N (15.54)

-i . 0, i ! 1, 2, . . . , N (15.55)

“17-Ch15-SA272” 18/9/2008 page 812

812 CHAPTER 15 Clustering Algorithms IV

In other words, the radius r of the sphere, centered at c, enclosing the data points
of X , is minimized. However, some points in X are allowed to lie outside it (- & 0),
but at the same time the number of these points must be as small as possible (due
to the second term in Equation (15.53)). The Lagrangian of the above constrained
problem (Chapter 3 and Appendix C) is given by

L(r, c, -, +, &) ! r2 $ C
N∑

i!1

-i "
N∑

i!1

+i-i

"
N∑

i!1

&i
(
r2 $ -i " ||xi " c||2

)
(15.56)

Taking the derivatives of the above and equating to zero, the Wolfe dual form
results in

max
&

⎛

⎝
N∑

i!1

&ixT
i xi "

N∑

i!1

N∑

j!1

&i&jxT
i xj

⎞

⎠ (15.57)

subject to 0 % &i % C , i ! 1, 2, . . . , N (15.58)

N∑

i!1

&i ! 1 (15.59)

and the KKT conditions are

+i-i ! 0 (15.60)

&i
[
r2 $ -i " ||xi " c||2

]
! 0 (15.61)

c !
N∑

i!1

&ixi (15.62)

&i ! C " +i , i ! 1, 2, . . . , N (15.63)

From these conditions the following remarks are easily deduced.

■ Only points with &i ̸! 0 contribute to the definition of the center of the
optimal sphere (Eq. (15.62)). These points are known as support vectors.

■ Points with -i & 0 correspond to +i ! 0 (Eq. (15.60)), which leads to &i ! C
(Eq. (15.63)) and, as (15.61) suggests, these points lie outside the sphere. We
will refer to these points as bounded support vectors.

■ Points with 0 # &i # C have corresponding +i & 0 leading to -i ! 0
(Eq. (15.60)) and,as Equation (15.61) suggests, these points lie on the sphere.

■ Points with &i ! 0 correspond to -i ! 0. As (15.61) suggests, all points lying
inside the sphere satisfy, necessarily, these two conditions.

“17-Ch15-SA272” 18/9/2008 page 813

15.8 Kernel Clustering Methods 813

As we already know from the SVM theory, exposed in Chapter 4, all we have said
so far is still valid if the input space, X , is mapped into a high-dimensional Hilbert
space, H , via the “kernel trick.”The task now becomes

max
&

⎛

⎝
N∑

i!1

&iK(xi , xi) "
N∑

i!1

N∑

j!1

&i&jK(xi , xj)

⎞

⎠ (15.64)

subject to 0 % &i % C , i ! 1, 2, . . . , N (15.65)

N∑

i!1

&i ! 1 (15.66)

Maximization of the previous leads to the computation of the optimal Lagrange
multipliers.

In [Ben 01] a methodology is presented that exploits the minimal enclosure
sphere problem to unravel the clustering structure underlying the data set X .
Let us denote the (implicit) mapping, induced by the adopted kernel function, from
the original X to the high-dimensional space H as

x ∈ X "→.(x) ∈ H (15.67)

The distance of .(x) from the center of the optimal sphere c !
∑

i &i.(xi) (as
Equation (15.62) suggests) is equal to

r2(x) ≡ ||.(x) " c||2 ! .T (x).(x) (15.68)

$ cT c " 2.T (x)c (15.69)

or

r2(x) ! K(x, x) $
N∑

i!1

N∑

j!1

&i&jK(xi , xj) (15.70)

" 2
N∑

i!1

&iK(x, xi) (15.71)

Obviously, for any of the support vectors, xi, this function is equal to the radius of
the optimum sphere, that is,

r2(xi) ! r2 (15.72)

The contours formed in the original vector space, X , defined by the points

{x : r(x) ! r} (15.73)

are interpreted as forming cluster boundaries. It is apparent that the shapes of
these contours are heavily dependent on the specific kernel function that has been
adopted. In view of what we have already said, the vectors in X whose images in H

“17-Ch15-SA272” 18/9/2008 page 814

814 CHAPTER 15 Clustering Algorithms IV

are support vectors (0#&i #C) lie on these contours,points with images inside the
sphere (&i ! 0) lie inside these, contours, and points whose images lie outside the
sphere (&i ! C) lie outside these contours. A schematic representation is shown in
Figure 15.21.

Contours, of course, do not suffice to define clusters. In [Ben 01] a geometric
approach is suggested to differentiate points of the same and of different clusters.
If the line segment, joining two points, does not cross a contour in X , these points
reside in the same cluster. However, if a line segment crosses a contour it means
that there are points on it (e.g., y in Figure 15.21), whose images in H lie outside
the optimal sphere. Therefore, in order to check whether a line segment crosses a
contour it suffices to detect some points on it with the property r(y)&r. This leads
to the definition of the adjacency matrix,A, with elements Aij , referring to the pair
of points xi, xj ∈ X , whose images lie in or on the sphere in H

Aij !

{
1 no points, y, on the respective segment exist such that r(y) & r

0 otherwise
(15.74)

Clusters are now defined as the connected components of the graph induced by
A. An extension of the previous that combines the concept of fuzzy membership
is discussed in [Chia 03]. In [Wang 07] a variant of the method is presented, which
utilizes the minimal-enclosure hyperellipsoid instead of a hypersphere.

The other direction that has been followed, in order to exploit the power spring-
ing from the nonlinear nature of the “kernel trick,” is of the same nature as the
kernel-based principle component analysis (PCA), discussed in Chapter 6. To this
end,any clustering approach that can be casted, throughout, in terms of inner prod-
uct computations is a candidate to accommodate the “kernel trick.” The classical
k-Means algorithm, as well as some of its variants, are typical examples that have
been proposed and used. See, for example, [Scho 98, Cama 05, Giro 02]. This is
because the Euclidean distance,which is in one way or another at the heart of these

x2

x1

y

FIGURE 15.21
Point y on the line segment, crossing the contours, has an image outside the minimal enclosure
sphere.

“17-Ch15-SA272” 18/9/2008 page 815

15.9 Density-Based Algorithms for Large Data Sets 815

algorithms,is itself an inner product and all involved computations can be expressed
in terms of inner products.

The advantage of the kernel-based methods lies in the fact that they can reveal
clusters of arbitrary shapes, due to the nonlinear nature of the mapping. On the
other hand,the results are very sensitive to the choice of the specific kernel function
as well as of its defining parameters. Moreover,the required computational demands
pose an obstacle for the use of these methods for large data sets

15.9 DENSITY-BASED ALGORITHMS FOR LARGE DATA SETS
In this framework,clusters are considered as regions in the l-dimensional space that
are “dense” in points of X (Note the close agreement between this way of viewing
clusters and the definition of clusters given in [Ever 01]). Most of the density-based
algorithms do not impose any restrictions to the shape of the resulting clusters.
Thus, these algorithms have the ability to recover arbitrarily shaped clusters. In
addition, they are able to handle efficiently the outliers. Moreover, the time com-
plexity of these algorithms is lower than O(N2), which makes them eligible for
processing large data sets.

Typical density-based algorithms are the DBSCAN ([Este 96]), the DBCLASD
([Xu 98]),and the DENCLUE ([Hinn 98]). Although these algorithms share the same
basic philosophy, they differ in the way the density is quantified.

15.9.1 The DBSCAN Algorithm
The “density” as it is considered in DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) around a point x is estimated as the number of points in
X that fall inside a certain region in the l-dimensional space surrounding x. In the
sequel,we will consider this region to be a hypersphere V'(x) centered at x,whose
radius ' is a user-defined parameter. In addition, let N'(x) denote the number of
points of X lying in V'(x). An additional user-defined parameter is the minimum
number of points,q,that must be contained in V'(x), in order for x to be considered
an “interior” point of a cluster. Before we proceed, the following definitions are in
order.

Definition 5. A point y is directly density reachable from a point x (see
Figure 15.22a) if

(i) y ∈ V'(x) and

(ii) N'(x) ≥ q.

Definition 6. A point y is density reachable from a point x in X if there is a
sequence of points x1, x2, . . . , xp ∈ X, with x1 ! x, xp ! y, such that xi$1 is
directly density reachable from xi (see Figure 15.22b).

“17-Ch15-SA272” 18/9/2008 page 816

816 CHAPTER 15 Clustering Algorithms IV

(a) (b)

(c)

x y x

y

x2 x3

x

y

z

FIGURE 15.22
Assuming that q ! 5, (a) y is directly density reachable from x, but not vice versa, (b) y is density
reachable from x, but not vice versa, and (c) x and y are density connected (in addition, y is
density reachable from x, but not vice versa).

It is easy to note that if x and y in the previous definition are “dense enough”
(that is, N'(x) ≥ q and N'(y) ≥ q), the density reachability property is symmetric.
On the other hand, symmetry is lost in the case where either of the points, x and
y, has less than q points in its neighborhood. However, in this case there must be a
third point z ∈ X such that both x and y are density reachable from z . This leads
to the definition of the density-connectivity.

Definition 7. A point x is density connected to a point y ∈ X if there exists
z ∈ X such that both x and y are density reachable from z (see Figure 15.22c).

After the previous definitions, a cluster C in the DBSCAN framework is defined
as a nonempty subset of X satisfying the following conditions:

(i) If x belongs to C and y ∈ X is density reachable from x, then y ∈ C .

(ii) For each pair (x, y) ∈ C , x and y are density connected.

Let C1, . . . , Cm be the clusters in X . Then, the set of points that are not contained
in any of the clusters C1, . . . , Cm is known as noise.

“17-Ch15-SA272” 18/9/2008 page 817

15.9 Density-Based Algorithms for Large Data Sets 817

In the sequel, we define a point x as a core point if it has at least q points in
its neighborhood. Otherwise, x is said to be a noncore point. A noncore point
may be either a border point of a cluster (that is, density reachable from a core
point) or a noise point (that is, not density reachable from other points in X).
Having established the previous definitions, the following two propositions hold
true ([Este 96]).

Proposition 1. If x is a core point and D is the set of points in X that are density
reachable from x, then D is a cluster.

Proposition 2. If C is a cluster and x a core point in C , then C equals to the set of
the points y ∈ X that are density reachable from x.

These two propositions imply that a cluster is uniquely determined by any of
its core points. Keeping in mind the last conclusion, we proceed now with the
description of the DBSCAN algorithm. Let Xun be the set of points in X that have
not been considered yet, and let m denote the number of clusters.

DBSCAN Algorithm

■ Set Xun ! X

■ Set m ! 0

■ While Xun ̸! ∅ do
• Arbitrarily select a x ∈ Xun.

• If x is a noncore point then
⃝ Mark x as noise point.

⃝ Xun ! Xun " {x}
• If x is a core point then

⃝ m ! m $ 1

⃝ Determine all density-reachable points in X from x.

⃝ Assign x and the previous points to the cluster Cm. The border points
that may have been marked as noise are also assigned to Cm.

⃝ Xun ! Xun " Cm

• End { if }

■ End { while }

A delicate point of the algorithm is the following. Suppose that a border point y of
a cluster C has currently been selected by the algorithm. This point will be marked
as a noise point, through the first branch of the if statement of the algorithm. Note,
however, that when, later on, a core point x of C will be considered from which y
is density reachable, then y will be identified as a density-reachable point from x
and will be assigned to C . On the other hand, if y is a noise point it will be marked

“17-Ch15-SA272” 18/9/2008 page 818

818 CHAPTER 15 Clustering Algorithms IV

as such and because it is not density reachable by any of the core points in X its
“noise” label will remain unaltered.

Remarks

■ The results of the algorithm are greatly influenced by the choice of ' and q.
Different values of the parameters may lead to totally different results. One
should select these parameters so that the algorithm is able to detect the least
“dense” cluster. In practice, one has to experiment with several values for '
and q in order to identify their “best”combination for the data set at hand.

■ Implementation of the algorithm by adopting the R∗-tree data structure
can achieve time complexity of O(N log2 N) for low-dimensional data sets
([Berk 02]).

■ The DBSCAN is not appropriate for cases where the clusters in X exhibit
significant differences in density,and it is not well suited for high-dimensional
data ([Xu 05]).

■ It is also worth noting the close resemblance of the previous algorithm with
the CDADV algorithm described in Section 15.4.3. However, the latter is
suitable for discrete-valued vectors.

An extension of DBSCAN that overcomes the necessity of choosing carefully the
parameters ' and q is the OPTICS (Ordering Points To Identify the Clustering
Structure) algorithm ([Anke 99]). This generates a density-based cluster ordering,
representing the intrinsic hierarchical cluster structure of the data set in a compre-
hensible form ([Bohm 00]). Experiments indicate that the run time of OPTICS is
roughly equal to 1.6 of the runtime required by DBSCAN ([Berk 02]). On the other
hand, in practice one has to run DBSCAN more than one time for different values
of ' and q. Another extension of DBSCAN is given in [Sand 98].

15.9.2 The DBCLASD Algorithm
An alternative to the DBSCAN approach is followed by the DBCLASD (Distribution-
Based Clustering of LArge Spatial Databases) algorithm ([Xu 98]). In this case, the
distance d of a point x ∈ X to its nearest neighbor is considered a random variable
and the “density” is quantified in terms of probability distribution of d. In addition,
it is assumed that the points in each cluster are uniformly distributed. However,not
all points in X are assumed to be uniformly distributed. Based on this assumption,
the distribution of d can be derived analytically ([Xu 98]). In the framework of
DBCLASD, a cluster C is defined as a nonempty subset of X with the following
properties.

(a) The distribution of the distances, d, between points in C and their nearest
neighbors is in agreement with the distribution derived theoretically, within
some confidence interval. (This is carried out by using the /2 test.)

“17-Ch15-SA272” 18/9/2008 page 819

15.9 Density-Based Algorithms for Large Data Sets 819

(b) It is the maximal set with the previous property. That is, the insertion
of additional points neighboring to points in C will cause (a) not to hold
anymore.

(c) It is connected. Having applied a grid of cubes on the feature space, this
property implies that for any pair of points (x, y) from C there exists a path
of adjacent cubes that contains at least one point in C that connects x and y.

In this algorithm, the points are considered in a sequential manner. A point that
has been assigned to a cluster may be reassigned to another cluster at a later stage
of the algorithm. In addition, some points are not assigned to any of the clusters
determined so far, but they are tested again at a later stage.

Among the merits of the algorithm is that it is able to determine arbitrarily shaped
clusters of various densities in X , and it requires no parameter definition. Exper-
imental results given in [Xu 98] indicate that the runtime of DBCLASD is roughly
twice the runtime of DBSCAN,whereas DBCLASD outperforms CLARANS by a factor
of at least 60.

15.9.3 The DENCLUE Algorithm
In the previously described methods,“density” was defined based on the distance
between neighboring points x ∈ X , in either a deterministic (DBSCAN) or a prob-
abilistic setting (DBCLASD). In the following,“density” is quantified via a different
route. Specifically, for each point y ∈ X a so-called influence function f y(x) ≥ 0
is defined, which decreases to zero as x “moves away” from y. Typical examples of
f y(x) include

f y(x) !

{
1, if d(x, y) # !

0, otherwise
(15.75)

and

f y(x) ! e
" d(x,y)2

2!2 (15.76)

where d(x, y) denotes the distance between x and y (this may be the Euclidean
distance or any other dissimilarity measure) and ! is a user-defined parameter. Then,
the density function based on X is defined as

f X (x) !
N∑

i!1

f xi (x) (15.77)

Note the similarity of the previous with the Parzen windows approximation of
the density function p(x), discussed in Chapter 2. The goal here is to identify all
“significant”local maxima,x∗

j , j ! 1, . . . , m, of f X (x) and then to create a cluster Cj
for each x∗

j and to assign to Cj all the points of X that lie in the region of attraction
of x∗

j . The region of attraction of x∗
j is defined as the set of points x ∈ Rl such

that if a“hill-climbing”method (a hill-climbing method aims at determining the local

“17-Ch15-SA272” 18/9/2008 page 820

820 CHAPTER 15 Clustering Algorithms IV

maxima of a function;a typical example is the steepest ascent method,seeAppendix
C) is applied, initialized by x, it will terminate arbitrarily close to x∗

j .
As can be seen from Eqs. (15.75) and (15.76), ! quantifies the influence

of a specific data point of X in the Rl space. In addition, a parameter - is
required in order to quantify the significance of a local maximum. Thus, a local
maximum is considered significant if f X (x∗

j) ≥ -. Since by definition f xi (x)
decreases as x moves away from xi , it is expected that f X (x) can be approximated
satisfactorily by

f̂ X (x) !
∑

xi∈Y (x)

f xi (x) (15.78)

where Y (x) is the set of points in X that lie “close” to x.
A well-known representative that evolves around the previous methodology is

the DENCLUE (DENsity-based CLUstEring) algorithm ([Hinn 98]). Since the“signif-
icant” local maxima are expected to be located in regions “dense” in data (and in
order to reduce time complexity), DENCLUE applies first a preclustering step to
determine regions that are dense in points of X . To this end, an l-dimensional grid
of edge-length 2! is applied on the feature space that contains X and the set Dp
of the (hyper)cubes that contain at least one point of X is determined. Then, the
subset Dsp of Dp that contains the highly populated cubes of Dp (a high populated
cube contains at least -c & 1 points of X , where -c is a user-defined parameter) is
determined. For each highly populated cube, c, a connection is defined with all
neighboring cubes cj in Dp for which d(mc , mcj) is no greater than 4!, where mc
and mcj are the mean values of the points in the respective cubes.

Once the previous step has been completed, DENCLUE proceeds as follows.
First, it considers the set Dr of the highly populated cubes and the cubes that have
at least one connection with a highly populated cube. The search for local maxima
is constrained within the cubes in Dr . Then, for each point x in a cube c ∈ Dr
its neighboring points that influence it are considered. Specifically, Y (x) contains
all points that belong to cubes cj in Dr such that the means of cjs lie at a distance
less than &! from x (typically & ! 4). Then, a hill climbing method ([Hinn 98])
starting from x is applied. The local maximum x∗ to which the method converges
is then tested to see if it is a significant local maximum (i.e., if f̂ X (x∗) ≥ -). If it is
not, no additional action is taken. Otherwise, if a cluster associated to x∗ has not
been created yet it is created now and x is assigned to it. In addition, all points
of X for which the hill-climbing method leads to x∗ will be assigned to the same
cluster. Shortcuts that allow the assignment of points to clusters based on certain
conditions to be satisfied, without having to apply the hill-climbing procedure, are
also discussed in [Hinn 98].

The method, like all density-based methods, is able to detect arbitrarily shaped
clusters ([Hinn 98]). In addition, DENCLUE deals with noise very satisfactorily.
A procedure for selecting appropriate values for the parameters ! and - is discussed
in ([Hinn 98]). The worst-case time complexity of DENCLUE is O(N log2 N); that

“17-Ch15-SA272” 18/9/2008 page 821

15.10 Clustering Algorithms for High-Dimensional Data Sets 821

is, of the same order as the time complexity of DBSCAN. However, experimental
results reported in [Hinn 98] indicate that DENCLUE can be significantly faster than
DBSCAN, and the reported experiments indicate that the average time complexity
for DENCLUE is O(log2 N). This is a consequence of the fact that only a small fraction
of the total number of points in X are considered for determining the clusters. It has
also been pointed out that the algorithm works efficiently with high-dimensional
data, and it has been applied to a molecular biology experiment ([Hinn 98]).

A very recent density-based clustering algorithm, named ADACLUS, is discussed
in [Noso 08]. It is able to discover clusters of various shapes and densities and to
detect boundaries of the clusters. Also, it is robust to noise and it does not oblige
the user to define the values of certain parameters. Finally, it has low computational
requirements, which is very important in the processing of large data sets.

15.10 CLUSTERING ALGORITHMS FOR HIGH-DIMENSIONAL
DATA SETS

As we have already discussed at several points in this book, concerning algorithms
that have been designed to meet the needs of large data sets, special data structures
for indexing data such as R-trees,k"d trees,and so on have been employed in order
to facilitate access to the data. As it is pointed out in [Berk 02], the performance of
most of these data structures degrades to the level of sequential search for l & 20.
Thus, one can consider the value of 20 as a “lower bound” that quantifies high
dimensionality. In fact, there are applications such as bioinformatics or web mining
in which the dimensionality of the feature space can be as high as a few thousands.

Most of the algorithms discussed so far consider all dimensions of the feature
space simultaneously, trying to utilize as much of the available information as possi-
ble. However,this approach may turn to be problematic in high-dimensional spaces.
One source of problems is the“curse of dimensionality”which besides the complex-
ity issues discussed in Section 2.5.6 now shows another of its “faces.” Having fixed
the number of data points, N , as the dimensionality of the feature space increases,
the points are spread out in the space. This can easily be verified by considering
two points in the two-dimensional space. Then add a third dimension to each of
them and compare the resulting Euclidean distances for both cases. As the points
spread out in very high-dimensional spaces they become almost equidistant. Clearly,
in such a case the terms similarity and dissimilarity between two points become
increasingly meaningless ([Pars 04]). A second source of problems is that often in
very high-dimensional spaces only a small fraction of the features contributes to the
formation of each cluster. In other words,clusters can be identified in subspaces of
the original feature space. In terms of Figure 15.23a, the clusters C1 and C2 are the
result of the concentration of the values of x2 within two small intervals, whereas
the values along x1 do not show such a preference. In a similar manner, the clusters
in Figure 15.23b are due to data concentrations in the (x1, x2) subspace. Observe
that these clusters could be identified by projecting the points in (x1, x2).

“17-Ch15-SA272” 18/9/2008 page 822

822 CHAPTER 15 Clustering Algorithms IV

x2

x2

x1

x3

x1

C1

C1

C2

C2

(a) (b)

FIGURE 15.23
(a) The clusters C1 and C2 are the result of concentrations of the projections of the data points
along x2. (b) The clusters in this three-dimensional case are the result of concentrations of the
projections of the data points in the (x1, x2) subspace.

Clearly, a way out of this situation is to work on subspaces of dimension
lower than l. In the sequel we discuss two main approaches to this direction:
the dimensionality reduction clustering approach and the subspace clustering
approach.

15.10.1 Dimensionality Reduction Clustering Approach
The general idea of this approach is to identify an l(-dimensional space Hl(

(l(# l), project the data points in X onto it, and apply a clustering algorithm on
the projections of the points of X into Hl(. For the identification of Hl(one may
use (a) feature generation methods, (b) feature selection methods,and (c) random
projections. In the sequel, we “touch” briefly the first two methodologies, in that
they build upon the techniques treated in more detail in Chapters 5 and 6, and
continue to pursue the random projection method.

Feature generation methods, such as the principal component analysis (PCA)
and the singular value decomposition (SVD), generally preserve the distances
between the points in the high-dimensional space when these are mapped to the
lower-dimensional space. These methods are very useful in producing compact
representations of the original high-dimensional feature space. Algorithms that
adopt feature generation methods are discussed in, for example, [Deer 90, Ding 99]
and [Ding 02]. A notable characteristic of the latter work is that feature generation
is integrated with the clustering algorithm (k-means or EM) and as a consequence
applies iteratively as the clustering algorithm evolves. Feature generation methods
can be proved useful in cases where a significant number of features contributes to
the identification of the clusters. In addition to PCA or SVD, other techniques used
for dimensionality reduction can also be employed,such as nonlinear PCA,ICA.,and
so on (see Chapter 6).

An alternative approach is to employ feature selection methods, in order to
identify those features that are the main contributors to the formation of the clusters.

“17-Ch15-SA272” 18/9/2008 page 823

15.10 Clustering Algorithms for High-Dimensional Data Sets 823

However, the feature selection methods proposed for the supervised case are no
longer suitable in the clustering framework. In general, the criteria used to evaluate
the “goodness”of a specific subset of features follows either the wrapper model or
the filter model ([Koha 97]). According to the former, the clustering algorithm, C,
is first chosen and a subset of features,Fi , is evaluated through the results obtained
from the application of C on the data set X , where for each point only the features
in Fi are taken into account. According to the latter, the evaluation of a subset of
features is carried out using intrinsic properties of the data,prior to the application
of the clustering algorithm. Feature selection methods are discussed in [Blum 97,
Liu 98, Pena 01, Yu 03]. The feature selection approach is useful when all clusters
lie in the same subspace of the feature space.

Clustering Using Random Projections
Unlike the previously cited dimensionality reduction methods, where Hl(is identi-
fied deterministically, in the present case Hl(will be identified in a random manner.
Noting that a projection from an l-dimensional space,Hl , to an l(-dimensional space
Hl((l(# l) is uniquely defined via an l(' l projection matrix A, the issues to be
addressed here are: (a) the proper estimate of l(and (b) the definition of the pro-
jection matrix. In [Achl 01, Dasg 99] estimates of l(are given that guarantee (with
a certain probability) that the distances between the points of the data set X , in the
original feature space Hl , will be preserved up to a factor 1 / ' (where ' & 0 is
an arbitrarily chosen constant) after the projection of X to a randomly chosen l(-
dimensional space Hl(,whose projection matrix is constructed by following certain
simple probabilistic rules. More specifically, in [Dasg 99] l(is shown to be bounded
below by 4('2/2 " '3/3)"1 ln N . (Note, however, that the choice for l(does not
guarantee, even in probability that the separation of clusters is preserved in the
general case of arbitrarily shaped clusters. This problem is studied in [Dasg 00] for
the special case where the clusters stem from Gaussian distributions.)

As far as A is concerned,one way to construct it is to set each of its entries equal
to a value stemming from an i.i.d. zero-mean unit variance Gaussian distribution
and then to normalize each row to the unit length ([Fern 03]). Another way is to
set each entry of A equal to "1 or $1, with probability 0.5. Still another way to
generate A is to set each of its entries equal to $

√
3 with probability 1/6,"

√
3 with

probability 1/6, or 0 with probability 2/3 ([Achl 01]).
After the definition of the projection matrix A, one proceeds by projecting the

points of X into Hl(and performing a clustering algorithm on the projections of
the points of X into Hl(. However, a significant problem may arise here. Different
random projections may lead to totally different clustering results. One way to
cope with this problem is to perform several random projections,apply a clustering
algorithm on the projections of X to each of them, and combine the clustering
results in order to produce the final clustering.

A method in this spirit is discussed in the sequel ([Fern 03]). First,the dimension
l(of the lower-dimensional space is selected and r different projection matrices,
A1, . . . , Ar , are generated using the first of the three ways described previously.
Then, the Generalized Mixture Decomposition Algorithmic Scheme (GMDAS) for

“17-Ch15-SA272” 18/9/2008 page 824

824 CHAPTER 15 Clustering Algorithms IV

compact and hyperellipsoidal clusters (Section 14.2) is applied on each one of the
r random projections of X . Let P(Cs

j |xi) denote the probability that xi belongs to
the j-th cluster in the s-th projection (Cs

j) after the execution of GMDAS on each
projection of X .

For each projection, a similarity matrix Ps is created, whose (i, j) element is
defined as

Ps
ij !

ms∑

q!1

P(Cs
q|xi)P(Cs

q|xj) (15.79)

where ms is the number of clusters in the s-th projection. Actually, Ps
ij is the prob-

ability that xi and xj belong to the same cluster at the s-th projection. Then, the
average proximity matrix P is defined,so that its (i, j) element is equal to the average
of Ps

ij , s ! 1, . . . , r.
In the sequel, the Generalized Agglomerative Scheme (GAS) (Section 13.2) is

employed in order to identify the final clusters. The similarity between two clusters
Ci and Cj is defined as minxu∈Ci , xv∈Cj Puv (actually, this choice complies with the
philosophy of the complete link algorithm).

For the estimation of the number of clusters m underlying X , it is proposed to
let GAS run until all points of X are agglomerated to a single cluster. Then, the
similarity between the closest pair of clusters, determined in each iteration of GAS,
is plotted versus the number of iterations. The most abrupt decrease in the plot is
determined and m is set equal to the value corresponding to this decrease. Results
reported in [Fern 03] show that in principle this method produces better clusters
and is more robust than the principal component analysis method followed by the
EM algorithm. The complexity of this algorithm is controlled by the GAS algorithm
and is larger than O(N2).

15.10.2 Subspace Clustering Approach
The general strategy followed by the dimensionality reduction methods was to
project the data set into a lower-dimensional space and to apply a clustering algo-
rithm on the projections of the data points in this space. This strategy copes well
with the problems rising from the “curse of dimensionality,” as stated previously.
However, these methods cannot deal well with the cases where (a) a small number
of features contributes to the identification of clusters and (b) different clusters
reside in different subspaces of the original feature space. The latter situation is
depicted in Figure 15.24.

A way to overcome these shortcomings is to develop special types of clustering
algorithms that are able to search for clusters within the various subspaces of the
feature space. In other words, these algorithms will reveal the clusters as well as
the subspaces where they reside. Algorithms of this type are known as subspace
clustering algorithms (SCAs). In contrast to all of the algorithms considered so far
in the book,SCAs allow us to seek for clusters in different subspaces of the original
feature space. SCAs algorithms can be divided into two categories: (a) grid-based

“17-Ch15-SA272” 18/9/2008 page 825

15.10 Clustering Algorithms for High-Dimensional Data Sets 825

x2

x1

C2

C1

FIGURE 15.24
By projecting the data points in both x1 and x2 directions, it is readily seen that cluster C1 lies
in the x2 subspace, whereas cluster C2 lies in x1.

SCAs and (b) point-based SCAs. In the sequel, we explore the basic philosophy
behind the algorithms in each of the two categories and focus on some typical
representatives.

Grid-based Subspace Clustering Algorithms (GBSCAs)
The main strategy adopted by these algorithms consists of the following steps:
(a) identify the subspaces of the feature space that are likely to contain clusters,
(b) determine the clusters lying in each of these subspaces, and (c) obtain
descriptions of the resulting clusters.

The algorithms of this family apply an l-dimensional grid on the feature space
and identify the subspaces that are likely to contain clusters, based on the
k-dimensional units (boxes) (k % l) defined by the grid. However,the consideration
of all possible subspaces becomes infeasible,especially when high-dimensional data
sets are considered. To solve this problem, the algorithms establish certain criteria
that are indicative of the presence of clusters in a subspace. These criteria must com-
ply with the so-called downward closure property,which states that if a criterion is
satisfied in a k-dimensional space, it is also satisfied in all of its (k " 1)-dimensional
subspaces. This allows the identification of the subspaces in an iterative bottom-up
fashion, from lower to higher dimensional subspaces.

Having established the subspaces via the previously described procedure, the
algorithms seek for clusters in each of them. Clusters are identified as maximally
connected components of units in each subspace. In the sequel, we describe in
more detail the CLIQUE and ENCLUS algorithms,which are among the most popular
representatives of this family.

The CLIQUE (CLustering In QUEst) Algorithm
CLIQUE ([Agra 98]) partitions the feature space by applying an l-dimensional grid on
it of edge size - (a user-defined parameter). Each unit u is written as ut1 ' . . . ' utk

“17-Ch15-SA272” 18/9/2008 page 826

826 CHAPTER 15 Clustering Algorithms IV

(t1 # . . . # tk, k % l), or for convenience as (ut1 , . . . , utk), where uti ! [ati , bti) is
a right-open interval in the partitioning of the ti -th dimension of the feature space.
For example, t1 ! 2, t2 ! 5, t3 ! 7 indicates a unit lying in the subspace spanned
by x2, x5, and x7 dimensions.

Before we proceed, some definitions are in order. We say that a point x is
contained in a k-dimensional unit u ! (ut1 , . . . , utk) if ati % xti # bti for all ti .
The selectivity of a unit u is defined as the fraction of the total number of data
points (N) contained in u. A unit u is called dense if its selectivity is greater than
a user-defined threshold 0 (see Figure 15.25). We say that two k-dimensional units,
u ! (ut1 , . . . , utk) and u(! (u(

t1 , . . . , u(
tk),share a face if there are (k"1) dimensions

(e.g., xt1 . . . , xtk"1), such that utj ! u(
tj , j ! 1, 2, . . . , k " 1, and either atk ! b(

tk or

btk ! a(
tk . For example, units u12 and u22 in Figure 15.25 share a one-dimensional

face. Two k-dimensional units u1 and u2 are said to be directly connected if they
have in common a (k"1)-dimensional face. In addition,two k-dimensional units are
said to be connected if there exists a sequence of k-dimensional units v1, . . . , vs,with
v1 ! u1 and vs ! u2, such that each pair (vi , vi$1) of units is directly connected.
Finally, in the present framework, a cluster is defined as a maximal set of connected
dense units in k dimensions.

We proceed now with the description of the algorithm. CLIQUE consists of
three main stages. In the first stage identification of the subspaces that contain clus-
ters takes place. This is carried out by first identifying all k-dimensional dense
units (1 % k % l) and then selecting those subspaces that contain dense units.

1
u1

u22

u12

u1
2

2

2

2

u2

u3

u4

u2 u3 u4

-

-

x1

x2

1 1 1

FIGURE 15.25
A two-dimensional grid of lines of edge size - is applied in the two-dimensional feature space,
defining two-dimensional and one-dimensional boxes (units). In the figure, uq

i denotes the i-
th one-dimensional unit along xq and uij denotes the two-dimensional unit resulting from the
Cartesian product of the i-th and j-th intervals along x1 and x2, respectively. In addition, let
0 ! 3. Then u1

1, u1
2, u1

4, u2
2 are one-dimensional dense units, each containing 4, 4, 4, and 9

points, respectively, whereas u12 and u22 are two-dimensional dense units, each containing 4
points.

“17-Ch15-SA272” 18/9/2008 page 827

15.10 Clustering Algorithms for High-Dimensional Data Sets 827

(In other words, the criterion a subspace has to satisfy to be selected is to have
at least one dense unit.) We proceed by identifying dense units in a bottom-up
fashion from lower to higher dimensionality. First, all one-dimensional dense units
are identified,along each dimension of the feature space. At each step, the set Dk of
the k-dimensional dense units is determined based on the set Dk"1 of the (k " 1)-
dimensional dense units. To this end, a k-dimensional dense unit u in Dk results
from two (k " 1)-dimensional dense units in Dk"1 that share a (k " 2)-dimensional
face and at the same time, all (k " 1)-dimensional projections must belong to
Dk"1. Clearly, this procedure can be terminated to a dimension less than l. Having
identified the dense units, the subspaces that contain at least one such unit can in
turn be determined.

The rationale behind this approach relies on the downward closure property of
the density, which states that: “if there is a dense unit u in a k-dimensional space,
there are also dense units in the projections of u in all (k"1)-dimensional subspaces
of the k-dimensional space”(Note how the downward closure property appears in
Figure 15.25) [Pars 04].

This procedure may lead to an increasing number of dense units in all subspaces
(especially for large l), which increases significantly the required computational
time. This problem can be overcome as follows. After the completion of the pro-
cedure, we consider all subspaces that contain dense units and sort the subspaces
according to their coverage; that is, the fraction of the number of points of the orig-
inal data set they contain. Then, subspaces with large coverage are selected and
the rest are pruned. The threshold under which a coverage is considered “low” is
determined by the optimization of a suitably defined Minimum Description Length
criterion function ([Agra 98]).

During the second stage, CLIQUE identifies the clusters. The input to this stage
are the subspaces with high coverage as determined by the previous step. The
clusters are formed in each subspace separately. Specifically, for each selected
subspace the dense units in it are considered. One such unit is randomly picked,
and all of the dense units connected to it are identified and we assign all of them
to a new cluster C . If there are other dense units left in the current subspace, the
same procedure is applied to form a second cluster, and so on.

Finally, the goal of the third stage is to derive a minimal cluster description
for each cluster; that is, to express each cluster as the minimum possible union of
hyperrectangular regions (see Figure 15.26a). This stage consists of two phases.
During the first phase, we pick randomly a (dense) unit of a cluster C formed by
the previous stage, and we grow it in both directions along a dimension, trying to
cover as many units in C as possible. Then the unit is grown along the second
direction (as in the previous case) and we continue until all dimensions have been
considered once. If there are uncovered units, we repeat the procedure starting
from a new uncovered point. For example, the description in Figure 15.26a may
result by selecting u1 and growing along x1 and then along x2, producing A. In a
similar way,B is produced starting from the (uncovered by A) unit u2. In the second
phase we consider all covers produced for each cluster and remove those whose

“17-Ch15-SA272” 18/9/2008 page 828

828 CHAPTER 15 Clustering Algorithms IV

A

B

D

C

E

u2

u1

x1 x1

x2 x2

FIGURE 15.26
The minimal cluster description of the shaded region is A∪B, shown in (a), whereas a nonminimal
cluster description of the same region (C ∪ D ∪ E) is shown in (b).

units are covered by at least another cover. Example 15.10 will help us gain more
insight on how CLIQUE works.

Example 15.10
Consider the two-dimensional data set shown in Figure 15.27, where the two-dimensional
grid applied is also shown. By uq

i , we denote the i-th one-dimensional unit along the
q-th dimension, whereas by uij we denote the two-dimensional unit which results from the
Cartesian product of the i-th unit along the first direction (x1) times the j-th unit along the
second direction (x2). Assume that - ! 1, which implies that uq

i ! [i " 1, i), and that
0 ! 8% (since we have 69 points in total, each unit with more than 5 points is considered to
be dense). In addition, the points in units u48, u58, u75, u76, u83, and u93 are collinear in
the direction of one of the two axes. This implies that, for example, u48 contributes to u2

8 a
single point. Similar observations hold for the rest of the units. Applying the first stage of the
CLIQUE algorithm, we identify the set D1 of the one-dimensional dense units, which equals

D1 ! {u1
2, u1

3, u1
4, u1

5, u1
8, u1

9, u2
1, u2

2, u2
3, u2

5, u2
6}

Based on D1, D2 is then determined and it equals

D2 ! {u21, u22, u32, u33, u83, u93}

Note that although each of the u48, u58, u75, u76 contains more than 5 points they are
not included in D2, since each of them has one one-dimensional projection outside D1 (for
example, for u75, u2

5 belongs to D1, wheras u1
7 is not included in D1). Furthermore, although

it seems unnatural for u83 and u93 to be included in D2 they are included, since u2
3 is dense.

However, u2
3 is characterized as dense not because of the projections of the points in u83 and

“17-Ch15-SA272” 18/9/2008 page 829

15.10 Clustering Algorithms for High-Dimensional Data Sets 829

u1

x2

u8

u7

u6

u5

u4

u3

u2

u1

u2 u3 u4 u5 u6 u7 u8 u9 u10
1x1 1 1 1

2

2

2

2

1 1 1 1 11

2

2

2

2

u21

u22
u32

u33 u83u93 u93

u10, 4

u75

u76

u87

u58u48

u10, 7

FIGURE 15.27
The set up of Example 15.10.

u93 but because of the projections of the points in u33. Skipping the pruning step associated
with the coverage criterion, the second stage of the algorithm ends up with the one-dimensional
clusters C1 ! {u1

2, u1
3, u1

4, u1
5}, C2 ! {u1

8, u1
9}, C3 ! {u2

1, u2
2, u2

3}, C4 ! {u2
5, u2

6} and the
two-dimensional clusters C5 ! {u21, u22, u32, u33}, C6 ! {u83, u93}.
Finally, the representation of the clusters after the completion of the third stage is as follows:
C1 ! {(x1) : 1 % x1 # 5}, C2 ! {(x1) : 7 % x1 # 9}, C3 ! {(x2) : 0 % x2 # 3},
C4 ! {(x2) : 4 % x2 # 6}, C5 ! {(x1, x2) : 1 % x1 # 2, 0 % x2 # 2} ∪ {(x1, x2) : 2 % x1 #

3, 1 % x2 # 3}, C6 ! {(x1, x2) : 7 % x1 # 9, 2 % x2 # 3}. Note that C2 and C6 are essentially
the same cluster, which is reported twice by the algorithm.

Among the performance features of the CLIQUE algorithm is that it automatically
determines the subspaces of the original feature space where high-density clusters
exist. In addition,it is insensitive to the order the data are presented to the algorithm
and does not impose any data distribution hypothesis on the data set. Also, it scales
linearly with N but scales exponentially with l. In addition, the accuracy of the
determined clusters may be degraded because the clusters are not given in terms
of the points in X but as unions of dense units. Moreover, the performance of
the algorithm is heavily dependent on the choices of - and 0, and it is not obvious
how they must be selected in practice. Also, there is a large overlap among the
reported clusters because for each dense unit (the structuring element of a cluster)
all of its projections are also dense and contribute to clusters in lower-dimensional
subspaces. Finally, there is a risk of losing small but meaningful clusters after the
pruning of subspaces based on their coverage.

“17-Ch15-SA272” 18/9/2008 page 830

830 CHAPTER 15 Clustering Algorithms IV

The ENCLUS Algorithm
An alternative grid-based SCA is the ENCLUS algorithm ([Chen 99]), which adopts
the three-stage philosophy of CLIQUE. In particular, the last two stages of both
algorithms are identical. However,during the first stage,ENCLUS seeks for subspaces
with (a) high coverage (that is,high percentage of points covered by all dense units
of the subspace),(b) high density of points in the dense units in the subspace,and (c)
high correlation among the dimensions of the subspace. All of these requirements
are indicative of a subspace with nonrandom structure, and these can be described
utilizing the notion of entropy. The rationale behind the choice of entropy is that
typically a subspace with a strong clustering structure has lower entropy than a
subspace where data do not show a clustering tendency. Additional supportive
evidence for the above choice is that under certain conditions the entropy decreases
as the coverage increases. Moreover,entropy also decreases as the density increases.

In order to measure the entropy H(Xk) of a k-dimensional subspace Xk (k % l)
of X , a k-dimensional grid is applied on it and the percentage pi of points that fall
in each unit of the grid is calculated. (It is advisable to select the size of the edge
of the grid such that each unit contains at least a minimum number of points. In
[Devo 95] this minimum value is taken to be equal to 35.) Then,H(Xk) is defined as

H(Xk) ! "
n∑

i!1

pi log2 pi (15.80)

where n is the total number of units. Also, an additional entropy-based measure,
called interest,which quantifies the degree of correlation among the dimensions of
a subspace, is defined as

interest (Xk) !
k∑

j!1

H(xk
tj) " H(Xk) (15.81)

where t1 # . . . # tk (k % l) with xk
tj denoting the j-th dimension of the Xk sub-

space. The higher the interest the stronger the correlation among the dimensions
of Xk. Note that the minimum value of interest is 0, which is achieved when xk

tj
are independent from each other. (By definition,xk

tj s are independent if and only if

H(Xk) !
∑k

j!1 H(xk
tj) [Chen 99].)

A subspace with “low” entropy (below a user-defined threshold 1) is consi-
dered to have good clustering. A significant subspace is a subspace with good
clustering and interest above a user-defined threshold '. Following these neces-
sary definitions, we are now ready to outline the way ENCLUS identifies significant
subspaces. (In other words, a subspace is selected provided it satisfies the
“low entropy” and “high interest” criteria.) Let Bk denote the set of significant
k-dimensional subspaces and Dk the set of subspaces having good clustering but
low interest. As in CLIQUE, a bottom-up strategy in the consideration of the sub-
spaces is adopted. First, the set A1 of all one-dimensional subspaces is considered

“17-Ch15-SA272” 18/9/2008 page 831

15.10 Clustering Algorithms for High-Dimensional Data Sets 831

and each is examined if it is significant or has a good clustering but is of low interest
(below '). In the former case, the subspace at hand is assigned to B1, whereas the
latter is assigned to D1. In an iterative procedure, having defined Bk and Dk we
determine the set Ak$1 as follows: a (k $ 1)-dimensional subspace, E , is assigned
to Ak$1 if (a) it is the result of the union of two k-dimensional subspaces in Dk,
sharing (k " 1) dimensions,and (b) all k-dimensional projections of E belong to Dk.
If Ak$1 is nonempty, the procedure repeated. Otherwise, the procedure terminates
and returns all significant subspaces found; that is, B1 ∪ . . . ∪ Bk.

The rationale behind this approach relies on the downward closure property
of entropy, which states that if a k-dimensional space is of low entropy all of its
(k " 1)-dimensional subspaces are also of low entropy ([Chen 99]).

A variant of this scheme, based on a different criterion for measuring the cor-
relation among the different dimensions of a subspace, is discussed in [Chen 99].
ENCLUS shares most of the features of CLIQUE; that is, insensitivity in the order of
consideration of the data, the utility to unravel (in principle) arbitrarily shaped clus-
ters, overlap among reported clusters, and linear dependence of the computational
time on N . Also, the performance of ENCLUS is heavily dependent on the choice of
the edge of the grid as well as on the parameters 1 and '.

Another algorithm of the grid-based SCA family is the so-called MAFIA algorithm
(Merging of Adaptive Finite IntervAls) ([Goil 99]). In contrast to both algorithms
discussed previously,where the grid applied on a subspace is static (that is, the edge
size - is fixed for all dimensions), in MAFIA the grid is adaptively adjusted to match
the distribution of the data. More specifically, the algorithm divides each dimension
xi of the feature space into (one-dimensional) windows of small size d. Then, it
projects the points of the data set on each dimension, determines the projections
that lie in each window,and sets the value of the corresponding window equal to the
maximum among the projections lying in the window. In the sequel, it considers
each dimension separately, scans its windows from left to right, and merges two
adjacent windows if their values happen to be within a user-defined threshold ,
(a typical value for , is 20%). In the case where all windows in xi are merged to
a single one, which implies that the data are uniformly distributed along xi , MAFIA
applies on this a grid of fixed edge size. The unions of the windows resulting from
this procedure are the one-dimensional units. Once these have been established,all
other k-dimensional units can be defined (1 % k % l), and the algorithm proceeds
exactly as CLIQUE.

Parallel versions of the MAFIA algorithm are discussed in [Goil 99]. As it was
the case with the CLIQUE and ENCLUS, MAFIA is sensitive on the choice of the
related parameters. The required computational time increases linearly with N and
performs better than the other two algorithms of this family, as far as the dimen-
sionality is concerned. However, the computational time still grows exponentially
as l increases ([Pars 04]). Finally, considering its parallel implementation as well
as some other improvements, it is reported that MAFIA performs much faster than
CLIQUE. Other algorithms that exploit the adaptive partition of each dimension

“17-Ch15-SA272” 18/9/2008 page 832

832 CHAPTER 15 Clustering Algorithms IV

are the cell-based clustering method (CBF) ([Chan 02]) and the CLTree algorithm
([Liu 00]).

Point-based Subspace Clustering Algorithms (PBSCA)
According to the philosophy of grid-based algorithms,clusters are defined as unions
of dense units. In addition,a data point may“contribute”to more than one cluster in
different subspaces through its projections. Moreover, the identification of clusters
takes place after the establishment of the appropriate subspaces. In the present
framework, a different philosophy is adopted. The clusters are defined in terms of
data points and each data point contributes to a single cluster. Furthermore, the
clusters as well as the subspaces in which they live are simultaneously determined
in an iterative fashion. Two typical representatives of this category, the PROCLUS
and ORCLUS, are described next.

The PROCLUS Algorithm
This algorithm ([Agga 99]) borrows concepts from the k-medoids algorithmic family,
described in Chapter 14. Its main idea is to generate an initial set of medoids and
to iterate until an “optimum” set of medoids results. However, at each iteration a
special treatment is required in order to determine the subspace where each cluster
resides. The number of clusters, m, as well as the average dimensionality, s, of the
subspaces where the clusters lie, are given as inputs to the algorithm. PROCLUS
consists of three main stages, namely, the initialization stage, the iterative stage,
and the refinement stage.

In the initialization stage a sample X (of size am is generated via a random
selection from the entire data set (a is a constant positive integer). Then, a sub-
set X ((of X (consisting of bm points (b # a) is selected such that each of its
points lies as far as possible from the remaining points in it. The latter set is likely
to contain points from all “physical” clusters underlying X . Then, a set) with
a corresponding index set I) (for the notation see related section in Chapter 14)
containing m randomly selected elements of X ((is formed. Its elements are taken
as the initial estimates of the medoids of the m clusters. The iterative stage of the
algorithm is outlined in the following in algorithmic form.

■ Set cost ! *

■ iter ! 0

■ Repeat
• iter ! iter $ 1

• (A) For each i ∈ I) determine the set of dimensions Di of the subspace
where cluster Ci lives.

• (B) For each i ∈ I) determine the corresponding cluster Ci .

• (C) Compute the cost J ()) associated with).

“17-Ch15-SA272” 18/9/2008 page 833

15.10 Clustering Algorithms for High-Dimensional Data Sets 833

• if J ()) # cost then
⃝)best !)

⃝ cost ! J ()best)

• End { if }

• (D) Determine the “bad”medoids of)best .

• Set) equal to)best and replace its bad medoids with randomly selected
points from X ((.

■ Until a termination condition is satisfied.

In the sequel we describe in more detail the steps (A) through (D) of the
algorithm.

■ (A) Determination of the cluster subspaces: For each xi ,i ∈ I),the minimum
among its distances from all other medoids in) is computed; that is, 2i !
minr∈I)"{i} d(xi, xr). Then, for each xi , i ∈ I), the set Li containing the
points of X that lie in the sphere of radius 2i , centered at xi, is determined.
Along each dimension, j, of the feature space, the average distance between
each x ∈ Li and xi , i ∈ I) is calculated (i.e., dij !

∑
x∈Li

|xj " xij |/|Li|),
where |Li| is the cardinality of Li . In the sequel, for each xi , i ∈ I), the
average distance and standard deviation along all dimensions is computed;

that is, ei ! (
∑l

j!1 dij)/l and !i !
√∑l

j!1(dij " ei)2/(l " 1).
Then, for each medoid xi, i ∈ I) and for each dimension of the feature

space, the value zij ! (dij " ei)/!i is computed. Clearly, the smaller the
value of zij the more concentrated the points in Li around xi along the
j-th dimension are. Then the Dis are determined based exclusively on the
zijs values,under the following conditions: (a) each Di has at least two dimen-
sions and (b) the total number of dimensions contained in all Dis is equal to
sm, where s is the (user-defined) average dimensionality of the cluster sub-
spaces. Specifically, for each medoid xi , i ∈ I) the two dimensions with the
smallest zij values among the ziqs, q ! 1, . . . , l, are assigned to Di. Then, all
the rest m(l " 2) zij values, for all medoids,are simultaneously considered, the
m(s " 2) lowest of them are identified,and the corresponding dimensions are
assigned to the appropriate Di. If, for example, z34 is among the m(s " 2)
lowest values, the fourth dimension will be assigned to D3.

■ (B) Determination of the clusters: For each data point, its Manhattan
segmental distance from each medoid xi, i ∈ I) is computed; that is,

dDi (x, xi) !

∑
j∈Di

|xj " xij |
|Di|

(15.82)

Note that in dDi (x, xi) only the coordinates in the dimensions that belong to
Di are taken into account. In addition, this distance is defined as an average

“17-Ch15-SA272” 18/9/2008 page 834

834 CHAPTER 15 Clustering Algorithms IV

and not as a summation. Then x is assigned to the cluster whose medoid lies
closer to it.

■ (C) Computation of J ()): J ()) is defined as the average Manhattan segmental
distance between the points of X and the means of the clusters to which they
belong; that is,

J ()) !
1
N

m∑

i!1

∑

x∈Ci

dDi (x, mi) (15.83)

where mi is the mean of the vectors in Ci .

■ (D) Determination of “bad” medoids: A medoid is considered to be a “bad”
one if (a) its corresponding cluster has the least number of points and
(b) its corresponding cluster has less than (N /m)q points, where q is a user-
defined constant (typically q ! 0.1). The rationale behind this rule is that a
medoid whose corresponding cluster is of small size is likely to be an outlier or
to belong to a“physical”cluster that contains at least one of the other medoids
in).

Finally, in the refinement stage for the set)best that has been determined during the
iteration stage the sets Di are recomputed by applying the (A) step of the iteration
stage on the Cis resulting from the iteration stage, rather than the Lis. Once the
new Dis have been established, the Cis are recomputed based on the new Dis.

Like many other algorithms of this algorithmic class, PROCLUS is biased toward
hyperspherically shaped clusters. In addition, the cluster subspaces must be of
similar size since the average subspace dimensionality is required as input to the
algorithm. Also,special care is required during the initialization stage in order to get
representative points (in the set X (() from all the (“physical”) clusters underlying
the data set X . Otherwise, some clusters will not be recovered. In general, PRO-
CLUS is sensitive to the input parameters it requires, which are not always easy to
determine. On the other hand, PROCLUS is somewhat faster than CLIQUE on large
data sets ([Pars 04]) and the required computational effort increases linearly with
the dimension of the feature space, l ([Agga 99]).

The ORCLUS Algorithm
This is a point-based SCA algorithm of an agglomerative hierarchical nature
([Agga 00]). However, unlike the classical agglomerative hierarchical algorithms
apart from reducing the number of clusters at each iteration (down to a user-defined
value m) ORCLUS also successively reduces the dimensionality of the subspaces,
where the clusters lie, down to a (user-defined) dimensionality l. (Only for this
section,we denote the dimensionality of the feature space with l0 instead of l. With
l we denote the user-defined value to which the dimensionality of the cluster sub-
spaces will gradually converge.) At each iteration of the algorithm the number of
clusters as well as the dimensionality of the subspace of each cluster are reduced by

“17-Ch15-SA272” 18/9/2008 page 835

15.10 Clustering Algorithms for High-Dimensional Data Sets 835

user-defined factors a # 1 (a typical value for a is 0.5) and b # 1, respectively. How-
ever, a and b must be chosen so that the reduction of the initial number of clusters
m0, down to m, and the reduction of the initial dimensionality l0 (of the original
feature space),down to l,to be achieved in the same number of iterations. Assuming
that t is the total number of iterations, we have that m ! atm0 and l ! bt l0, which
implies that a and b are related via the condition

ln(m/m0)
ln(l/l0)

!
ln a
ln b

(15.84)

In addition, the subspace where each cluster lies is represented by a set of vectors,
which are not necessarily parallel to the axes of the original feature space. Specifi-
cally, the set of vectors Ei,defining the“best”q-dimensional subspace for the cluster
Ci , is chosen as the subspace where the points of Ci exhibit the least spread (high-
est concentration). Hence,Ei consists of the eigenvectors of the l0 ' l0 covariance
matrix ,i of the points in Ci that correspond to the q smallest eigenvalues of ,i
(see also Section 6.3). The sum of these eigenvalues is the (projected) energy of
the cluster Ci in Ei, denoted by E(Ci, Ei). The ORCLUS algorithm is summarized as
follows.

■ Generate a set S0 consisting of m0(&m) points selected randomly from X .

■ Set mc ! m0, lc ! l0 and Sc ! S0.

■ Set Ei equal to the set of vectors defining the original feature space, for i !
1, . . . , mc .

■ Set a ! 0.5 and compute b by solving Equation (15.84).

■ While mc & m do

• For each i, i ! 1, . . . , mc , define the Ci cluster as the one containing all
points in X that lie closer to the i-th element of Sc . (In this case, the
distance between two points is computed in the Ei subspace.)

• For each i, i ! 1, . . . , mc ,define Ei as the set of eigenvectors corresponding
to the lc smallest eigenvalues of the l0 ' l0 covariance matrix of Ci.

• Set mnew ! max{m, amc} and lnew ! max{l, blc}.
• For each pair (Ci , Cj), i, j ! 1, . . . , mc , i # j determine Eij for the Ci ∪ Cj as

well as E(Ci ∪ Cj , Eij).

• While mc & mnew do

⃝ Determine E(Cu ∪ Cv, Euv) ! mini, j!1,...,mc , i ̸!j E(Ci ∪ Cj , Eij) and merge
Cu and Cv to Cr ! Cu ∪ Cv.

⃝ Recompute the necessary E(Ci∪Cr , Eir)s in light of the previous merging.

⃝ mc ! mc " 1

“17-Ch15-SA272” 18/9/2008 page 836

836 CHAPTER 15 Clustering Algorithms IV

• End { While }. (Note that during this While loop the subspace dimension
remains unchanged.)

■ mc ! mnew

■ lc ! lnew

■ Set Sc equal to the means of the mnew clusters formed by the previous
While loop.

■ End { While }

As PROCLUS, ORCLUS is biased toward hyperspherical clusters, due to the fact
that the mean of a cluster is used as its representative. In addition, the required
computational time is O(m3

0 $ m0Nl0 $ m2
0l3

0). That is, it increases linearly with
N and cubically with l0. It is worth noting that although increasing the value
of m0 increases the computational time this may improve the quality of the final
clustering. Furthermore,note that the subspaces of all clusters are restricted to the
same dimensionality. Criteria for choosing a proper value for l as well as extensions
of the algorithm that are able to handle outliers are discussed in [Agga 00]. Finally,
random sampling techniques may be used to reduce the computational time. Other
point-based subspace clustering algorithms are discussed in [Frie 02, Woo 02], and
[Yang 02].

Remarks

■ In GBSCAs, the clusters are represented as unions of dense units (which is a
rather “rough” description), whereas in PBSCAs the clusters are represented
in terms of data points (exact description). Moreover, in GBSCAs each point
may contribute to more than one cluster in different subspaces through its
projections,whereas in the PBSCAs each point contributes to a single cluster.

■ In GBSCAs the identification of clusters is carried out only after the appropriate
subspaces have been determined. In contrast, in PBSCAs the clusters as well
as the subspaces where they lie are simultaneously determined in an iterative
fashion.

■ The GBSCAs are able, in principle, to unravel arbitrarily shaped clusters,
whereas several PBSCAs are biased toward hyperellepsoidal clusters.

■ The computational time required by most of the GBSCAs and PBSCAs scales
linearly with N ,the number of points. (For PROCLUS this has been established
experimentally [Agga 99].)

■ The computational time required by the described GBSCAs increases expo-
nentially with the dimensionality of the feature space l, whereas in PBSCAs it
exhibits a polynomial dependence.

■ In the GBSCAs there are no restrictions concerning the dimensionality of the
subspaces, wheras the PBSCAs pose constraints on it.

“17-Ch15-SA272” 18/9/2008 page 837

15.11 Other Clustering Algorithms 837

■ In GBSCAs there exists a large overlap in the resulting clusters. On the contrary,
most of the PBSCAs produce disjoint clusters.

■ Both GBSCAs and PBSCAs are sensitive to the choice of the involved user-
defined parameters.

15.11 OTHER CLUSTERING ALGORITHMS
A clustering algorithm that is based on the so-called tabu search method is
presented in [Al-S 95]. Its initial state is an arbitrarily chosen clustering. The algo-
rithm proceeds as follows. Based on the current state of the algorithm, a set of
candidate clusterings, A, is created. The next state is chosen to be the “best” ele-
ment of A,according to some criterion function. Certain criteria are used to prevent
the algorithm from returning to recently visited states. The procedure is repeated for
a prespecified number of iterations. Preliminary results reported in [Al-S 95] show
that this algorithm compares favorably with the hard clustering and the simulated
annealing algorithms. A recent tabu search based heuristic scheme for clustering is
presented in [Sung 00].

A method that directly relates clusters to peak values of the pdf has been sug-
gested in [Tou 74],where the estimation of the pdf is achieved via Parzen windows.
A related method is the mountain method (see, e.g., [Dave 97]). The idea is to
assign to each vector, x, an energy source. The generated potential has a peak at
x and rapidly decays as we move away from it. The total potential function at a
specific point in the vector space is the summation of the potentials produced by
all the vectors of X . We compute the value of this function at each data point and
form the array v of the N resulting values. The maximum one, which corresponds
to the highest peak, is identified and the corresponding vector is considered as the
representative of the first cluster. Then we remove the largest value of v and update
the rest of the components appropriately. This procedure is repeated until a specific
termination criterion is met.

An algorithm that combines ideas from both the fuzzy clustering schemes and
the agglomerative algorithms (Chapter 13) is discussed in [Frig 97]. This scheme
produces clusterings that minimize the following cost function

J (!, U) !
N∑

i!1

m∑

j!1

u2
ijd(xi , Cj) " a

m∑

j!1

[
N∑

i!1

u2
ij

]

(15.85)

where now m varies. Clearly, the first term in the above equation is minimized
when m ! N , and the second term is maximized when m ! 1. It is worth
mentioning that the hierarchies of clusterings produced do not necessarily possess
the nested property.

Besides the preceding algorithms, many other clustering algorithms based on
very different ideas have been proposed. For example, in [Matt 91] a scheme that
does not use the concept of the distance between vectors is proposed. Also, in

“17-Ch15-SA272” 18/9/2008 page 838

838 CHAPTER 15 Clustering Algorithms IV

[Kodr 88] a clustering technique based on a conceptual distance is presented.
Clustering approaches that borrow concepts from gravity theory are discussed
in [Oyan 01, Chen 05]. Clustering algorithms, suitable for discrete-valued fea-
ture vectors, that construct classification trees are discussed in [Fish 87, Bisw 98].
A graph theory-based algorithm that uses a probabilistic framework is discussed
in [Ben 99].

Another technique combining supervised and unsupervised methods has been
proposed in [Pedr 97]. The latter may be useful in applications in which only a
fraction of the data have a class label for the training.

In [Robe 00],a different clustering method is discussed. The clustering problem
is stated in information theoretic terms and it is shown that minimization of the
entropy can be used in order to estimate the clustering structure underlying the
data set X . This is equivalent to obtaining the structure associated with maximum
certainty. Another algorithm based on information theoretic criteria has been sug-
gested in [Goks 02]. It is a valley-seeking algorithm and builds upon Renyi’s entropy
estimator.

Another interesting clustering algorithm that utilizes the wavelet transform (see
Section 6.13) is the so-calledWaveCluster algorithm ([Shei 98]). The method applies,
first,an l-dimensional grid on the feature space by dividing each dimension in r inter-
vals and it determines the data points contained in each unit (box), Mi , of the grid.
In the sequel, an l-dimensional signal is generated by representing each unit by
the number of points it contains. Then, it applies the l-dimensional wavelet trans-
form on the units (points) Mi of the grid (the multidimensional wavelet transform
is actually a generalization of the two-dimensional wavelet transform discussed in
Section 6.14) and produces a new set of units Tj in the transformed space at various
resolutions. Then, at each resolution it determines the clusters in the transformed
space as connected components of Tj units. In the sequel,based on the correspon-
dence between Mis and Tjs the algorithm assigns the points contained in each Mi
to the appropriate cluster. Among the advantages of WaveCluster is the efficient
handling of outliers, its insensitivity to the order of the presentation of the points
to the algorithm, its ability to determine arbitrarily shaped clusters,and the fact that
it does not require as input the exact number of the clusters. Its computational
complexity is O(N $ rl). Thus, the algorithm is best suited for large data sets of
relatively low dimensionality.

In recent years there has been an increasing interest in clustering sequential
data. DNA sequencing and web data mining are examples of two typical appli-
cations of this type. Techniques for clustering this type of data are based on
tools discussed in Chapters 8 and 9, with the Edit distance and the HMM being
among the most popular. A major problem associated with these applications is
the very long length of the sequences to be matched, which renders most of
the classical algorithms computationally infeasible. To overcome such difficulties,
a number of algorithmic schemes have been suggested adopting various heuris-
tics. Some well-known schemes include BLAST [Alts 97] and FASTA [Pear 88].

“17-Ch15-SA272” 18/9/2008 page 839

15.12 Combination of clusterings 839

Reviews of such clustering methods and applications are discussed in, for example,
[Durb 98, Gusf 97, Beng 99, Mill 01, Liew 05].

Constraint clustering
In many cases, the use of labeled data is critical for the success of the clustering
process. A subset of labeled data also makes the evaluation of the resulting clustering
more accurate. Consequently, several clustering approches have been introduced
that use both labeled and unlabeled data,as it was the case with the semi-supervised
learning treated in chapter 10.

Most of these approaches rely on getting input from the user in terms of con-
straints on feasible clusterings. The simplest constraints are placed on pairs of
patterns and either force both patterns to be in the same cluster (Must-Link con-
straint), or force them to be in different clusters (Cannot-Link constraint). Initial
efforts concentrated on modifying existing algorithms, such as the k-means or hier-
archical algorithms, to operate with constraints ([Wags 01, Davi 05]). More recent
approaches use the constraints imposed by the user to learn distance measures
that conform to the user expectation, as this is expressed by the given constraints
([Basu 04, Xing 02, Kuli 05, Halk 08]).

In [Bene 00, Bane 02] two modifications of the k-means algorithm are proposed
that deal with the case where the number of points in each cluster is bounded
below. Also, an approach that builds balanced clusters is discussed in [Stre 00]. In
[Tung 01] the problem of clustering two-dimensional data in the presence of obsta-
cles in the feature space is considered. In this case,the distance between two points
is defined as the shortest path from one point to the other, taking into account the
obstacles in the feature space.

15.12 COMBINATION OF CLUSTERINGS
Throughout the second part of the book, we discussed algorithms that produce
a single clustering (or a hierarchy of clusterings) for a given data set X !
{x1, x2, . . . , xN }, xi ∈ Rl , i ! 1, 2, . . . , N . In this section, the situation is dif-
ferent. A (final) clustering is obtained based on a set of n different clusterings of X .
Specifically,the aim here is two-fold: (a) the production of an appropriate set of clus-
terings,E ,for the data set,X ,called ensemble of clusterings,and (b) the combination
of the clusterings of E to produce a final clustering, called consensus clustering.
The main motivation for considering such techniques is that it is expected that the
resulting consensus clustering,based on E ,will model the data better that any single
clustering.

Various techniques have been proposed in the above spirit but none of them
seems to clearly outperform the rest ([Topc 05]). In the sequel, after giving some
necessary definitions, we consider separately the two previously stated goals and
we focus on the most representative methods for each case.

“17-Ch15-SA272” 18/9/2008 page 840

840 CHAPTER 15 Clustering Algorithms IV

Let E ! {R1, R2, . . . , Rn} be a set of clusterings of the data set X , where
Ri ! {C1

i , C2
i , . . . , Cmi

i }, with mi being the number of clusters in the Ri

clustering. The superscript j in Cj
i denotes the label of the corresponding

cluster in the Ri clustering. Alternatively, each clustering, Ri , can be repre-
sented by an N dimensional row vector, yi , called label vector, whose k-th
element yi(k) contains the cluster label of the k-th data point. If for exam-
ple Ri ! {C1

i , C2
i , C3

i } ! {{x1, x2, x6, x10}, {x3, x4, x7}, {x5, x8, x9}}, then yi !
[1, 1, 2, 2, 3, 1, 2, 3, 3, 1]. Clearly,both Ri and yi are equivalent representations
of the same clustering.

A. Generation of an ensemble of clusterings
Generation of each clustering Ri of E involves the following two steps: (a) the choice
of a subspace to project the data points in X and (b) the application of a clustering
algorithm on this subspace. Note that, in general, the Ris are not constrained to
have the same number of clusters. Unless otherwise stated, this assumption has
been adopted here.

In analogy with the schemes for combining classifiers (Section 4.21), it is desir-
able for E to contain clusterings that are as “independent” as possible. To this end,
the following general directions are followed:

■ All data, all features. In this case, all l features and all N data points are
used. The n different clusterings, Ri , i ! 1, 2, . . . , n, result by employing
either different clustering algorithms or the same clustering algorithm with
different parameters (e.g.,in the case of the k-means algorithm,different initial
conditions or different distance measures can be used) (see, e.g., [Fred 05]).
This method of generating the Ris is also called robust centralized clustering
([Stre 02]).

■ All data, some features. In this case, all the data points of X are considered.
A number of n sets,Xi , i ! 1, . . . , n, are formed from X , where in each one of
them the data points are represented (a) either by selecting a subset of features
or (b) by projecting onto a randomly chosen lower dimensional space, see
for example, [Fern 03, Topc 05] (see Section 15.10.1). Clearly, the cardinality
of each Xi is N . In the sequel, eihter the same algorithm (also called base
algorithm) with the same parameters (e.g., [Fern 04]) or different algorithms
(e.g., [Stre 02]) are applied on the Xis in order to produce the respective
clusterings Ris. This method of generating the Ris is also called feature-
distributed clustering ([Stre 02]).

■ Some data, all features. In this case, techniques like bootstrapping or sam-
pling are applied on X , in order to produce data sets Xi,i ! 1, . . . , n,on which
(usually) the same clustering algorithm is applied to produce the respective
n clusterings of E . The points of X , which have not been selected to partici-
pate in Xi , may be assigned to their nearest cluster in Ri . When X is a high
dimensional data set, its points may first be projected to a lower dimensional

“17-Ch15-SA272” 18/9/2008 page 841

15.12 Combination of clusterings 841

space (using, e.g., PCA), forming a lower dimensional data set X (. Then the
method that generates the Xis is applied on the reduced dimensionality data
set X ((e.g., [Fern 04]).

B. Combination of clusterings
Having generated the clustering ensemble, E ! {R1, R2, . . . , Rn}, the next step
is to combine the Ris in order to produce the final (consensus) clustering F !
{F1, . . . , Fm}.

Among the various combination techniques that have been proposed, several of
them make use of the so-called co-association matrix C.This is an N'N dimensional
matrix,whose (i, j) element c(i, j) equals to nij/n,where nij is the number of times
the ith and the jth points of X have been assigned to the same cluster, among the n
clusterings of E . Note that c(i, j) ∈ [0, 1]. Clearly, large values of c(i, j) imply that
the ith and jth points of X are likely to be similar to each other.

In the sequel, a brief description is given for the most popular methods for
combining clusterings.

■ Methods based on the co-association matrix. The co-association matrix C is
computed and then, using C as a similarity matrix, the single link algorithm
is applied. From the resulting dendrogram, the clustering with the larger
lifetime (see Section 13.6) is selected as the final clustering ([Fred 05]). Other
hierarchical clustering algorithms, such as the complete link and the average
link, can also be applied on C (e.g., [Topc 05]).

In general, these methods require a large number of clusterings n, in order
to estimate more reliably the elements of C.

■ Graph-based methods. In the sequel, we discuss three different formulations
in this framework.
• Instance-based graph formulation (IBGF).A fully connected (complete)

graph G(V , E) is constructed, where each vertex of V corresponds to a
data point and each edge eij is weighted by c(i, j) (the (i, j) element of
the co-association matrix). Then the graph is partitioned into m disjoint
subsets of vertices V1, . . . , Vm such that: (i) the sum of the weights of the
edges that connect vertices from different subsets is minimized and (ii) the
Vis are approximately of the same size (note,however, that (ii) is not always
required). To this end, different optimization criteria are used, such as the
normalized cut criterion ([Shi 00]) and the ratio-cut criterion ([Hage 98])
(see also Section 15.2.4 on spectral clustering).

• Cluster-based graph formulation (CBGF).Let

E (! {C1
1 , . . . , Cm1

1 , C1
2 , . . . , Cm2

2 , . . . , C1
n, . . . , Cmn

n }

be the set of all the clusters contained in the n clusterings of E and let t !∑n
i!1 mi be its cardinality. In this case, a graph G ! (V , E) is constructed

where each vertex of V corresponds to a cluster in E (. Also, the weight wij

“17-Ch15-SA272” 18/9/2008 page 842

842 CHAPTER 15 Clustering Algorithms IV

of the edge connecting the vertices associated with the clusters Ci , Cj ∈ E (

is defined as the Jaccard measure, which is the ratio of the number of the
data points in Ci ∩ Cj to the number of the data points in Ci ∪ Cj , that

is, wij !
|Ci∩Cj |
|Ci∪Cj | . Then, an m-partition P ! {P1, . . . , Pm} of the graph is

obtained, under the constraints (i) and (ii) used in the previous case (Note
that each Pi corresponds to a set of clusters). Ultimately, the final clustering
F ! {F1, . . . , Fm} is obtained as follows: For each data point x ∈ X we count
the number of its occurrences in the clusters contained in Pi , i ! 1, . . . , m.
Then x is assigned to Fi , if it is more frequently met in Pi ([Fern 04]).

• Hybrid bipartite graph formulation (HBGF).Let E (and t be defined as in
CBFG.A graph G ! (V , E) is constructed,however, in this case,data points
as well as clusters in E (are represented by vertices. Thus, V contains a
total of N $ t vertices. The weight wij between the vi and vj vertices of the
graph equals to 0 if either both vertices correspond to data points or both
correspond to clusters. Otherwise, if vj corresponds to a cluster and vi to a
point and in addition the point belongs to this cluster, then wij ! wji ! 1.
In all other cases we set wij ! 0. A graph clustering approach (e.g.,spectral
clustering) is then applied to the previous graph, leading to the consensus
(final) clustering of the data in X .

Consider, for example, the following case: E ! {R1, R2}, where R1 !
{C1

1 , C2
1 } ! {{x1, . . . , x6}, {x7, x8, x9}} and R2 ! {C1

2 , C2
2 } !

{{x1, . . . , x5}, {x6, . . . , x9}}. The corresponding graph, for this case, is
shown in Figure 15.28. The line shows a bi-partition of the graph which
implies that the final clustering is {{x1, . . . , x5}, {x6, . . . , x9}}.

In general,IBGF exhibits higher computational complexity compared to CBGF
and HBGF.This happens because in IBGF a fully connected graph is generated
and the graph partitioning problem is of size O(N2). On the other hand, in
CBGF the size of the problem is O(t2),where (usually) t ## N ,while in HBGF
the size of the problem is O(nN).

Experimental results ([Fern 04]) suggest that HBGF achieves comparable
or better performance than IBGF, CBGF. Also, HBGF consistently improves
over the average performance of the members of the clustering ensemble
E (this is measured in terms of data sets, where the true clusters are known).
In addition, all methods perform, in general, better as n increases.

Another graph-based method is discussed in [Ayad 03]. A graph G ! (V , E)
is constructed where each vertex of V corresponds to a data point of X and
the co-association matrix is used to define the nearest neighbor vertices of
a given vertex. In the sequel (a) each edge between two vertices vi and vj
is weighted accordingly, depending on the number of their common nearest
neighbors, nij , provided that nij exceeds a certain threshold (otherwise, the
edge weight is set to 0) and (b) each vertex is weighted according to the
number of its nearest neighbor vertices that shares with other vertices. Having

“17-Ch15-SA272” 18/9/2008 page 843

15.12 Combination of clusterings 843

x2x1 x4x3 x6x5 x8x7 x9

C1
1 C 2

1

C2
1

C2
2

FIGURE 15.28
The graph constructed by HBGF for an ensemble of two clusterings, each one containing two
clusters. Only edges associated with nonzero weights are shown. The dashed line cuts the graph
and it defines the ensemble clustering (see text for more explanation).

defined G, a graph partition algorithm is employed to determine the final
clustering of X , subject to some constraints imposed on the weights of the
vertices.

■ Cost function optimization methods. In this framework, the ensemble clus-
tering F ! {F1, . . . , Fm} is obtained via cost optimization techniques. In the
sequel, three such methods are described.

• Utility function optimization. According to this method, F , also called
median clustering, is defined as the clustering that “summarizes”
best the clusterings of E , according to the utility function criterion
([Fish 87, Topc 05]). The latter measures the quality of a candidate median
clustering F against some other clustering Ri and it is defined as

U (F , Ri) !
m∑

r!1

P(Fr)
mi∑

j!1

P(Cj
i |Fr)2 "

mi∑

j!1

P(Cj
i)2 (15.86)

where P(Fr) ! |Fr |/N , P(Cj
i) ! |Cj

i |/N and P(Cj
i |Fr) ! |Cj

i ∩ Fr |/|Fr |, with
|A| denoting the cardinality of the set A. U (F , Ri) measures the agreement
between the two clusterings Ri and F . It turns out that U (F , Ri) achieves
its maximum value when F and Ri are identical (in this case, the probabil-
ities P(Cj

i |Fr) are either one or zero), while as F and Ri deviate from each
other U (F , Ri) decreases.

The overall utility of F on E is defined as

U (F , E) !
n∑

i!1

U (F , Ri) (15.87)

The best summary of the clusterings of E (the median clustering) follows
from the maximization of the cost given in (15.87). In [Mirk 01],it is shown

“17-Ch15-SA272” 18/9/2008 page 844

844 CHAPTER 15 Clustering Algorithms IV

that maximizing the overall utility is equivalent to minimizing the square
error clustering criterion (Eq. (14.85) associated with the k-means algo-
rithm) over the data points (assuming that the number of clusters m in
F is fixed). However, now, each data point is represented by a vector
whose coordinates are the respective cluster labels in the n clusterings of
E ([Mirk 01, Topc 05]). Hence by applying, for example, the k-means algo-
rithm on the transformed data set a solution for the maximization problem
of U (F , E) is obtained.

• Normalized mutual information (NMI) criterion.This criterion has been
inspired from the information theory, where the statistical information
shared between two distributions is assessed by the mutual information
measure. In the context of clustering, NMI is a measure analogous to the
mutual information between two distributions and it is defined as

NMI(R1, R2) !
2
N

m1∑

q!1

m2∑

r!1

nr
q logm1m2

(nr
qN

nqnr

)
(15.88)

where m1, m2 are the number of clusters in R1 and R2, respectively,
nr

q ! |Cq
1 ∩ Cr

2 |, nq ! |Cq
1 |, nr ! |Cr

2 |, where |A| denotes the cardinality of
a set A. Let us define the average normalized mutual information crite-
rion (ANMI) between a clustering F and an ensemble of clusterings E as
follows

ANMI(F , E) !
1
n

n∑

i!1

NMI(F , Ri) (15.89)

Then the ensemble clustering F is obtained as the one that maximizes the
previous criterion ([Stre 02]).

It is worth noting that NMI may also be used to assess the performance
of a clustering algorithm when it is performed on a data set where the labels
of the data points are known (e.g. [Fred 05]).

• Mixture model formulation. Such a formulation is discussed in [Topc 05].
In this framework, each data point xi ∈ X is represented by a new n-
dimensional vector, x(

i , whose jth component equals to the cluster label
of xi in the jth clustering. Let X (! {x(

1, . . . , x(
N }. Recall that yi is the

label vector for clustering Ri ; the relation between the xis, yis and x(
is is

schematically given below:

y1 . . . yn
x1 → [y1(1) . . . yn(1)] ≡ x(

1
x2 → [y1(2) . . . yn(2)] ≡ x(

2
... → ...

xN → [y1(N) . . . yn(N)] ≡ x(
N

“17-Ch15-SA272” 18/9/2008 page 845

15.12 Combination of clusterings 845

The goal, now, is to determine the (unknown) cluster labels of the data
in the final clustering F ! {F1, . . . , Fm}. To this end, a finite mixture model
of probability functions is defined

P(x(;Q) !
m∑

q!1

PqP(x(|Fq; !q) (15.90)

where m is the number of clusters in the consensus clustering F ,Pq is the a
priori probability of the qth cluster in F and P(x(|Fq; !q) is the probability
function describing the cluster Fq, which is parametrized by the vector
!q. Finally, Q ! {P1, . . . , Pm, !1, . . . , !m} is the set of all the parameters of
the model.

Assuming statistical independence among the components of x(, it
follows that

P(x(|Fq; !q) ! 0n
j!1Pj(x(

j |Fq; !j
q) (15.91)

Since the values of x(
j are nominal (integers) it seems natural to model the

respective probabilities via a multinomial distribution, that is,

Pj(x(
j |Fq; ! j

q) ! 0
mj
r!1#jq(r)2(x(

j ,r) (15.92)

where 2(a, b) ! 1,if a ! b and 0 otherwise. Keeping in mind the definition
of x(,#jq(r) models the probability that the data point x belongs to the rth
cluster in the jth clustering Rj of E , given that x belongs to cluster Fq
of F .

In the sequel, the EM algorithm can be employed to derive the estimates
for the parameters of Q (see [Topc 05]). Experimental results ([Topc 05])
show that the EM algorithm converges fast and its performance is slightly
better than that of graph-based methods for small n. As n increases, the per-
formance of EM is expected to degrade,due to the increase of the parameters
that have to be estimated. An alternative EM formulation of the problem is
discussed in [Lang 05].

An interesting variation of the clustering combination problem is discussed in
[Topc 04]. In this case, the sets Xi, i ! 1, . . . , n, used for the generation of the
ensemble E ,are generated sequentially via sampling of X ,where now the sampling
probabilities for the data points differ from each other. Specifically, for each
Xi (a) the clustering Ri is produced (b) the sampling probabilities for the data
points in X are re-estimated according to a rule and (c) the next set Xi$1 performs
sampling on X based on the updated probabilities. The essence of this method is
to assign higher sampling probabilities to points of X , which lie in regions where
overlap between clusters is encountered. In this way, the focus of the Xis to be
formed at the later stages will be on those overlapping regions. Experimental results
reported in [Topc 04] suggest that this technique improves (even slightly) the results

“17-Ch15-SA272” 18/9/2008 page 846

846 CHAPTER 15 Clustering Algorithms IV

of other methods, where the Xis are drawn independently from each other. Other
techniques are discussed in,for example,[Law 04, Qian 00, Fred 05] where the case
of combining different objective functions is also considered.

Remarks

■ In comparing two clusterings usually one faces the problem of determin-
ing the optimal correspondence between the two clusterings. For example
the clusterings with cluster vectors y1 ! [1, 1, 1, 1, 2, 2, 2] and y2 !
[2, 2, 2, 2, 1, 1, 1] define exactly the same clustering on the data set, how-
ever,the same cluster in the above clusterings is denoted with different labels.
This problem is usually faced using the so called Hungarian method (see,e.g.,
[Papa 82]).

■ The problem of combining various clusterings is in close affinity with the
so-called distributed clustering, which has attracted significant attention due
to the increasing size of the current databases ([Kots 04]). In distributed
clustering, the objects to be clustered and/or their features reside in different
(local) sites in one of the following ways: (a) each site has access to a specific
subset of features from all objects (feature distributed clustering), (b) each
site stores all the available features for some objects (object distributed clus-
tering), (c) each site stores some features for some objects (feature/object
distributed clustering). Instead of transmitting all of them to a single site and
perform a standard clustering algorithm, the data are clustered independently
on the different local sites and then the clustering results are moved to a single
site, where they contribute to the generation of a final clustering.

15.13 PROBLEMS
15.1 Consider the set X ! {xi , i ! 1, . . . , 7}, where x1 ! [1, 1]T , x2 ! [1, 2]T ,

x3 ! [2, 1]T , x4 ! [3, 1]T , x5 ! [6, 1]T , x6 ! [7, 1]T , x7 ! [6, 2]T .
a. Determine the value of q (Section 15.2.1) for which the MST clustering

algorithm gives two clusters.

b. Apply the algorithms that are based on the idea of regions of influence
when these regions are defined by Eqs. (15.2)–(15.5).

c. Run the directed tree-based clustering algorithm and determine the
values of # for which it gives two clusters.

15.2 Consider the basic competitive learning algorithm with (! 0.2. Let X !
{xi , i ! 1, . . . , 4}, where x1 ! "3, x2 ! "2, x3 ! 2, x4 ! 3. Also, let m ! 2
and w1 ! "1 and w2 ! 1. Assume that the vectors of X are presented to
the algorithm in the same order, x1, x2, x3x4, x1, x2, x3, x4, Let us call
the time required for the consideration of the feature vectors of X once the
updating circle.

“17-Ch15-SA272” 18/9/2008 page 847

15.13 Problems 847

a. Show that w1 (w2) always wins on the first (last) two feature vectors
when the squared Euclidean distance is in use.

b. Will w1 and w2 converge to the values "2.5 and 2.5, respectively, after
an infinite number of updating circles? Give intuitive arguments.

15.3 What would the behavior of the leaky learning algorithm be if (w ! (l?

15.4 von der Malsburg learning rule. Assume that the data set X consists of N
binary-valued feature vectors,and for each of the m available representatives,
wj , we have

∑l
k!1 wjk ! 1, where wjk is the kth coordinate of wj . The rule

may be stated as follows:

■ Present an input vector x ∈ X .

■ Determine the winner, wj , of the competition for x.

■ Update the representatives

wnew
jk !

⎧
⎨

⎩
wjk $ (

(
xk
nx

" wjk

)
, if wj wins on x

wjk, if wj loses on x
(15.93)

where xk is the kth coordinate of x. In the last equation nx !
∑l

k!1 xk,
that is, it is equal to the number of 1’s contained in x, and (, the learning
rate, takes values in [0, 1]. The updating rule may be stated in words as
follows: “If a representative wins, each of its coordinates gives up some
proportion (that in the sequel is equally distributed among the coordinates
wji that correspond to xk ! 1. All the remaining representatives do not
change.”
a. Verify that this statement is equivalent to the updating rule given by

Eq. (15.93).

b. Prove that
∑l

k!1 wnew
jk ! 1, j ! 1, . . . , m.

15.5 Prove Eq. (15.43).

15.6 Consider three 2-dimensional Gaussian probability density functions with
means "1 ! ["1, "1]T , "2 ! [6, 3]T , "3 ! ["0.7, 7]T and covariance
matrices ,1 ! ,2 ! ,3 ! 2I , respectively, where I is the 2 ' 2 identity
matrix. Draw 200 points from each distribution and form a data set X with
the resulting 600 points.
a. Run the Binary Morphology ClusteringAlgorithm (BMCA) when T is the

3 ' 3 square structuring element given in Example 15.5. For each case
use different values of r and proceed to the third stage of the algorithm
with the best one of them.

“17-Ch15-SA272” 18/9/2008 page 848

848 CHAPTER 15 Clustering Algorithms IV

b. Run the Generalized Hard Clustering Scheme (GHAS) algorithm from
Chapter 14,using the squared Euclidean distance as the dissimilarity func-
tion between two vectors, for the optimum number of clusters derived
by the previous procedure. Compare the results of the two algorithms.

15.7 For the data set X given in Example 15.8,run the isodata algorithm assuming
that the number of clusters is 2. Compare the results obtained in Example
15.8 and those obtained with isodata. Give a qualitative explanation of the
differences that may be observed.

15.8 Verify Eqs. (15.36) and (15.37).

15.9 Derive the updating equation for the coordinates of the parameter vector !
when g(x; !), defined in Section 15.6, is a quadratic function of !.
Hint: In this case g(x; !) ! w0 $

∑l
i!1 wixi $

∑l
s!1

∑l
r!1 wsrxsxr .

15.10 Consider two 2-dimensional Gaussian distributions with means "1 ! [0, 0]T

and "2 ! [3, 3]T and covariance matrices ,1 ! I and ,2 ! 1.5I , respec-
tively, where I is the 2 ' 2 identity matrix. Create a data set X such that
100 feature vectors stem from the first and another 100 feature vectors stem
from the second Gaussian distribution.
a. Run the Boundary Detection Algorithm (BDA) algorithm on X assuming

that the decision boundary is a hyperplane. Use the hyperbolic tangent
as f .

b. Run the BDA algorithm on the X$ and X" stemming from the previous
running. Comment on the results.

15.11 a. What is the shape of V (x), defined by Eq. (15.38) when d(x, y) is given
as in Eq. (15.39)?

b. How should d(x, y) be defined in order to have a hypercubical shape for
V (x)?

c. Does the shape of V (x) affects the behavior of the valley-seeking
clustering algorithm? Give an example.

15.12 Consider the set X ! {xi , i ! 1, . . . , 10}, where x1 ! [0, 1]T , x2 !
[0, 2]T , x3 ! [0, 3]T , x4 ! [0, 4]T , x5 ! [1, 1]T , x6 ! [1, 2]T ,
x7 ! [1, 3]T ,x8 ! [2, 1]T ,x9 ! [2, 2]T ,x10 ! [2, 3]T . Initially,the first six
of them belong to cluster C1 and the next four belong to cluster C2. Apply the
valley-seeking algorithm to X and comment on the results.

15.13 If Tmax ! 5 and Tmin ! 0.5, estimate the number of sweeps required with
the simulated annealing algorithm in order to determine (in probability) the
clustering with the globally minimum value of J .
Hint: Use Eq. (15.44).

15.14 Modify the deterministic annealing algorithm so that the number of repre-
sentatives is not fixed a priori but increases as , increases.

“17-Ch15-SA272” 18/9/2008 page 849

MATLAB Programs and Exercises 849

15.15 Consider the function

J !
N∑

i!1

d(xi , Cxi) (15.94)

where Cxi is the cluster to which xi belongs and d(xi , Cxi) is a distance
between a point and a set using no representative for the set (e.g., Chapter
11). Propose a coding of the solutions for a genetic algorithm that uses this
function. Discuss the merits and the disadvantages of the proposed coding.

MATLAB PROGRAMS AND EXERCISES
Computer Programs

15.1 Competitive learning. Write a MATLAB function named leaky_learn that
implements the leaky learning algorithm. This function takes as inputs: (a)
an l ' N dimensional matrix X each column of which is a data vector, (b) an
l ' m dimensional matrix w whose columns contain initial estimates of the m
representatives, (c) the learning rate for the winner unit, gw, (d) the learning
rate for the rest of the units, gl, (e) the maximum number of iterations, (f)
the parameter e, which is used in the termination condition of the algorithm
(||w(t) " w(t " 1)|| # e). The output consists of: (a) the vector w whose
columns are the final estimates of the representatives and (b) an N dimensional
row vector bel, the i-th element of which contains the cluster to which the
i-th vector belongs. The Euclidean distance is used to measure the distance
between two vectors and the vectors are presented always in the same order
to the algorithm, until convergence.

Solution

function [w,bel]=leaky_learn(X,w,gw,gl,maxiter,e)
[l,N]=size(X);
[l,m]=size(w);
diff=e+1;
iter=0;
while(diff>e)&(iter<=maxiter)
iter=iter+1;
wold=w;
for i=1:N
%Computation of the distances
dist=sum((X(:,i)*ones(1,m)-w).^ 2);
[mval,mind]=min(dist);
%Updating the representatives
w=w+gl*(X(:,i)*ones(1,m)-w);

“17-Ch15-SA272” 18/9/2008 page 850

850 CHAPTER 15 Clustering Algorithms IV

w(:,mind)=w(:,mind)+(gw-gl)*(X(:,i)-w(:,mind));
end
diff=sum(sum(abs(w-wold)))

end
%Assigning vectors to clusters
bel=zeros(1,N);
for i=1:N
dist=sum((X(:,i)*ones(1,m)-w).^ 2);
[mval,mind]=min(dist);
bel(i)=mind;

end

15.2 Self-Organizing Map.Write a MATLAB function named som_experi that imple-
ments the Self-Organizing Map. More specifically, this function takes as input
(a) an l ' N dimensional matrix X each column of which is a data vector, (b)
the cluster label (a positive integer) where each vector belongs (this is used
only in the plot of the results), (c) the number of iterations, iter, the algorithm
will perform, (d) the size side of the side of the two-dimensional grid (only
squared grids are considered). The function returns: (a) a matrix w each col-
umn of which contains the final estimates of the representatives and (b) a plot
of the grid after the convergence of SOM, where the representatives of the
same cluster are denoted by the same color.

Solution
The following function can plot a map for up to 4 different clusters.

function w=som_experi(X,y,iter,side)
[l,N]=size(X);
p=[side side];
q=side^2; %Number of representatives
minmax=[];
for i=1:l
minmax=[minmax; min(X(i,:)) max(X(i,:))];

end
% Defining and training the SOM
net=newsom(minmax,p,'gridtop', 'mandist');
net.trainParam.epochs=iter;
net.trainParam.show=50;
net = train(net,X);
% Check if representatives represent data points
% of a cluster.
w=net.iw1';
repr=zeros(1,q);
map=zeros(side,side);

“17-Ch15-SA272” 18/9/2008 page 851

MATLAB Programs and Exercises 851

for i=1:N
[s1,s2]=min(sum((X(:,i)*ones(1,q)-w).^2));
repr(s2)=y(i);

end
% Creation of the map
for i=1:q
i1=fix(i/side)+(mod(i,side)>0);
i2=mod(i,side)+side*(mod(i,side)==0);
map(i1,i2)=repr(i);

end
% Plot of the map. Up to four clusters can be plotted
if(max(y)<=4)
figure(1), hold on
palet=['k.';'ro'; 'ko'; 'go'; 'bo'];
for i=1:side
for j=1:side
figure(1), plot(j,i,palet(map(i,j)+1,:))

end
end

end

Computer Experiments

15.1 a. Generate three data sets each one consisting of q ! 100 two dimen-
sional vectors stemming from normal distributions with means [1, 1]T ,
[5, 5]T , [9, 1]T and covariance matrices all equal to the 2 ' 2 identity
matrix I . Form the matrix X using as columns the data vectors from these
data sets.

b. Initialize randomly m ! 3 representatives using the rand_vec function
(see in the “computer programs” section of chapter 14) and apply the
leaky learning algorithm with gw ! 0.1, gl ! 0.001, maxiter ! 200 and
e ! 0.001.

c. Repeat (b) with gl ! 0 (basic competitive learning algorithm), initializing
the representatives from the same values as in (b).

d. Comment on the results.

15.2 a. Repeat 1(b) and 1(c) using as initial estimates for the representatives
the following: ["100, "100]T , [3.5, 4.5]T , [2.5, 3]T . Comment on the
results.

b. Taking into account the comments of 1 and 2(a) can you propose a combi-
nation of the leaky learning algorithm and the basic competitive learning
algorithm that takes advantage of the merits of both methods?

“17-Ch15-SA272” 18/9/2008 page 852

852 CHAPTER 15 Clustering Algorithms IV

15.3 a. Consider three 3-dimensional Gaussian distributions with means
[0.3, 0.3, 0.3]T , [0.7, 0.7, 0.7]T and [0.3, 0.7, 0.3]T and covariance matri-
ces equal to 0.01I ,where I is the 3 ' 3 identity matrix. Generate 100 data
vectors from each distribution and let X be the resulting data set containing
the above vectors (300 in total).

b. Apply the Self-Organizing Map (SOM) on the previous data set using a
squared two-dimensional grid of size 10 ' 10. Let the algorithm run for
300 iterations.

c. Repeat (b) for grid sizes 6 ' 6 and 15 ' 15.

d. Comment on the results.

REFERENCES
[Achl 01] Achlioptas D. “Database-friendly random projections,” Symposium on Principles of

Database Systems (PODS), pp. 274–281, 2001.

[Agga 99] Aggarwal C.C.,Wolf J.L.,Yu P.S.,Procopiuc C.,Park J.S.“Fast algorithms for projected clus-
tering,” Proceedings of the 1999 ACM SIGMOD International Conference on Management
of Data, pp. 61–72, 1999.

[Agga 00] Aggarwal C.C., Yu P.S. “Finding generalized projected clusters in high dimensional
spaces,” Proceedings of the 2000 ACM SIGMOD International Conference on Management
and Data, pp. 70–81, 2000.

[Agra 98] Agrawal R., Gehrke J., Gunopoulos D., Raghavan P. “Automatic subspace clustering of
high dimensional data for data mining applications,” Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, pp. 94–105, 1998.

[Ahal 90] Ahalt S.C., Krishnamurthy A.K., Chen P., Melton D.E. “Competitive learning algorithms
for vector quantization,”Neural Networks,Vol. 3, pp. 277–290, 1990.

[Al-S 95] Al-Sultan K.S. “A tabu search to the clustering problem,”Pattern Recognition,Vol. 28(9),
pp. 1443–1451, 1995.

[Al-S 93] Al-Sultan K.S., Selim S.Z. “A global algorithm for the fuzzy clustering problem,” Pattern
Recognition,Vol. 26(9), pp. 1357–1361, 1993.

[Alts 97] Altschul S.F.,MaddenT.L.,SchafferA.A.,Zhang J.,Zhang Z.,MillerW.,Lipman D.J.“Gapped-
BLAST and PSI-BLAST:A new generation of protein database search programs,” Nucleic Acids
Research,Vol. 25, pp. 3389–3402, 1997.

[Andr 94] Andrey P., Tarroux P. “Unsupervised image segmentation using a distributed genetic
algorithm,”Pattern Recognition,Vol. 27(5), pp. 659–673, 1994.

[Anke 99] Ankerst M., Breunig M., Kriegel H.-P., Sander J. “OPTICS: Ordering points to iden-
tify clustering structure,” Proceedings of the ACM SIGMOD Conference, pp. 49–60,
Philadelphia, PA, 1999.

[Atiy 90] Atiya A.F. “An unsupervised learning technique for artificial neural networks,” Neural
Networks,Vol. 3, pp. 707–711, 1990.

[Ayad 03] Ayad H., Kamel M. “Finding natural clusters using multi-clusterer combiner based one
shared nearest neighbors,”Multiple Classifier Systems: 4th International Workshop, 2003.

“17-Ch15-SA272” 18/9/2008 page 853

References 853

[Bane 02] Banerjee A., Ghosh J. “On scaling up balanced clustering algorithms,” Proceedings
of the 2nd SIAM International Conference on Data Mining, pp. 333–349, Arlington, VA,
2002.

[Banz 90] Banzhaf W., Haken H. “Learning in a competitive network,” Neural Networks, Vol. 3,
pp. 423–435, 1990.

[Basu 04] Basu S., Bilenko M., Mooney R.J. “A probabilistic framework for semi-supervised clus-
tering,” International Conference on Knowledge Discovery and Data Mining, pp. 59–68,
2004.

[Belk 03] Belkin M., Niyogi P. “Laplacian eigenmaps for dimensionality reduction and data
representation,”Neural Computation,Vol. 15(6), pp. 1373–1396, 2003.

[Ben 99] Ben-Dor A., Shamir R., Yakhimi Z. “Clustering gene expression patterns,” Journal of
Computational Biology,Vol. 6, pp. 281–297, 1999.

[Ben 01] Ben-Hur A., Horn D., Siegelmann H.T.,Vapnik V. “Support vector clustering,” Journal of
Machine Learning Research,Vol. 2, pp. 125–137, 2001.

[Bene 00] Bennett K.P., Bradley P.S., Demiriz A. “Constraint k-means clustering,”Technical Report
MSR-TR-2000-65, Microsoft Research, Redmond, CA, 2000.

[Beng 99] Bengio Y. “Markovian models for sequential data,” Neural Computation Survey,Vol. 2,
pp. 129–162, 1999.

[Beni 94] Beni G., Liu X. “A least biased fuzzy clustering method,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 16, pp. 954–960, September 1994.

[Benv 87] BenvenisteA.,Metivier M.,Priouret P. Adaptive Algorithms and Stochastic Approxima-
tion, Springer-Verlag, 1987.

[Berk 02] Berkhin P. “Survey of clustering data mining techniques,” Technical report, Accrue
Software, San Jose, CA, 2002.

[Bhan 91] Bhanu B., Lee S., Ming J. “Self-optimizing image segmentation system using a genetic
algorithm,” Proceedings, Fourth International Conference on Genetic Algorithms, pp. 362–
369, 1991.

[Bisw 98] Biswas G., Weinberg J.B., Fisher D.H. “ITERATE: A conceptual clustering algo-
rithm for data mining,” IEEE Transactions on Systems, Man and Cybernetics,
Part C,Vol. 28(2), pp. 100–111, 1998.

[Blum 97] Blum A., Langley P. “Selection of relevant features and examples in machine
learning,”Artificial Intelligence,Vol. 97, pp. 245–271, 1997.

[Bohm 00] Bohm C., Braunmuller B., Breunig M., Kriegel H.P. “High performance cluster-
ing based on the similarity join,” Proceedings of the 9th International Conference
on Information and Knowledge Management, CIKN, pp. 298–313, Washington, DC,
2000.

[Brow 92] Brown D.E.,Huntley C.L. “A practical application of simulated annealing to clustering,”
Pattern Recognition,Vol. 25(4), pp. 401–412, 1992.

[Burr 91] Burrascano P. “Learning vector quantization for the probabilistic neural network,” IEEE
Transactions on Neural Networks,Vol. 2(4), pp. 458–461, 1991.

[Butl 96] Butler D., Jiang J. “Distortion equalized fuzzy competitive learning for image data vector
quantization,”Proceedings of ICAPPS’96, pp. 3390–3393, 1996.

[Cama 05] Camastra F. “A novel kernel method for clustering,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 27(5), pp. 801–805, 2005.

“17-Ch15-SA272” 18/9/2008 page 854

854 CHAPTER 15 Clustering Algorithms IV

[Chan 02] Chang J.-W., Jin D.-S. “A new cell-based clustering method for large high-dimensional
data in data mining applications,” Proceedings of 2002 ACM Symposium on Applied
Computing, pp. 503–507, 2002.

[Chan 94] Chan P., Schlag M., Zien J. “Spectral k-way ratio cut partitioning,” IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems,Vol. 13, pp.1088–1096, 1994.

[Chen 94] Chen L., Chang S. “An adaptive conscientious competitive learning algorithm and its
applications,”Pattern Recognition,Vol. 27(12), pp. 1787–1813, 1994.

[Chen 99] Cheng C.-H., Fu A.W., Zhang Y. “Entropy-based subspace clustering for mining numer-
ical data,” Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 84–93, 1999.

[Chen 03] Chen X. “An improved branch and bound algorithm for feature selection,” Pattern
Recognition Letters,Vol. 24, pp. 1925–1933, 2003.

[Chen 05] Chen C.-Y., Hwang S.-C., Oyang Y.-J.,“A statistics-based approach to control the quality
of subclusters in incremental gravitational clustering”,Pattern Recognition,Vol. 38,pp. 2256–
2269, 2005.

[Chia 03] Chiang J., Hao P. “A new kernel-based fuzzy clustering approach: Support vector clus-
tering with cell growing,” IEEE Transactions on Fuzzy Systems, Vol. 11(4), pp. 518–527,
2003.

[Chou 97] Chou C.S.,SiuW.“Distortion sensitive competitive learning for vector quantizer design,”
IEEE Proc., pp. 3405–3408, 1997.

[Chow 97] Chowdhury N., Murthy C.A. “Minimal spanning tree based clustering
technique: Relationship with Bayes classifier,” Pattern Recognition, Vol. 30(11), pp.
1919–1929, 1997.

[Chun 97] Chung F.R.K. Spectral Graph theory,American Mathematical Society, 1997.

[Davi 05] Davidson I.,Ravi I.I.“Agglomerative hierarchical clustering with constraints: theoretical
and empirical results,” 9th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD), pp. 59–70, 2005.

[Dasg 99] Dasgupta S., Gupta A. “An elementary proof of the Johnson–Lindenstrauss lemma,”
Technical Report TR-99-006, International Computer Science Institute, Berkeley, California,
1999.

[Dasg 99a] Dasgupta S. “Learning mixtures of Gaussians,” IEEE Symposium on Foundations of
Computer Science (FOCS), 1999.

[Dasg 00] Dasgupta S. “Experiments with random projections,” Proceedings of the
16th Conference of Uncertainty in Artificial Intelligence (UAI), 2000.

[Dave 97] Dave R.N., Krishnapuram R. “Robust clustering methods: A unified view,” IEEE
Transactions on Fuzzy Systems,Vol. 5(2), pp. 270–293, May 1997.

[Deer 90] Deerwester S., Dumais S.T., Landauer T.K., Furnas G.W., Harshman R.A. “Indexing by
latent semantic analysis,” Jouranl of American Society of Information Sciences, Vol. 41,
pp. 391–407, 1990.

[Dela 80] Delattre M., Hansen P. “Bicriterion cluster analysis,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 2(4), pp. 277–291, July 1980.

[Devo 95] Devorer J.L. Probability and Statistics for Engineering and the Sciences,
(4th ed.), Duxbury Press, 1995.

[Diam 07] Diamantaras K. Artificial Neural Networks, Klidarithmos, 2007, (in Greek).

“17-Ch15-SA272” 18/9/2008 page 855

References 855

[Dill 07] Dillon I., Guan Y., Kullis B. “Weighted graph cuts without eigenvectors: A multilevel
approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29(11),
pp. 1945–1957, 2007.

[Ding 99] Ding C.H.Q. “A similarity-based probability model for latent semantic indexing,”
Proceedings of the 22th ACM SIGIR Conference, pp. 59–65, 1999.

[Ding 02] Ding C.H.Q., He X., Zha H., Simon H.D. “Adaptive dimension reduction for clustering
high dimensional data,” Proceedings of the 2nd IEEE International Conference on Data
Mining, pp. 147–154, 2002.

[Durb 98] Durbin R., Eddy S., Krogh A., Mitchison G. Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids, Cambridge University Press, UK, 1998.

[Este 96] Ester M.,Kriegel H.-P.,Sander J.,Xu X.“A density-based algorithm for discovering clusters
in large spatial databases with noise,” Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining, pp. 226–231, Portland, OR, 1996.

[Ever 01] Everitt B., Landau S., Leese M. Cluster Analysis,Arnold, 2001.

[Fern 04] Fern X.Z., Brodley C.E. “Solving ensemble problems by bipartite graph partitioning,”
Proceedings of the 21th International Conference on Machine Learning, Banff, Canada,
2004.

[Fern 03] Fern X.Z., Brodley C.E. “Random projection for high dimensional data
clustering: A cluster ensemble approach,”Proceedings of the 20th International Conference
on Machine Learning, 2003.

[Fisc 05] Fischer I., Poland J. “Amplifying the block matrix structure for spectral clustering,”Tech-
nical Report No.IDSIA-03-05, Instituto Dalle Molle di Studi sull’IntelligenzaArtificialle (IDSIA),
2005.

[Fish 87] Fisher D. “Knowledge acquisition via incremental conceptual clustering,” Machine
Learning,Vol. 2, pp. 139–172, 1987.

[Fred 05] Fred A., Jain A.K.,“Combining multiple clustering using evidence accumulation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 27(6), pp. 835–850, 2005.

[Frie 02] Friedman J.H., Meulman “Clustering objects on subsets of attributes,”
http://citeseer.nj.nec.com/friedman02clustering.html, 2002.

[Frig 97] Frigui H.,Krishnapuram R.“Clustering by competitive agglomeration,”Pattern Recogni-
tion,Vol. 30(7), pp. 1109–1119, 1997.

[Fu 93] Fu L., Yang M., Braylan R., Benson N. “Real-time adaptive clustering of flow cytometric
data,”Pattern Recognition,Vol. 26(2), pp. 365–373, 1993.

[Fuku 90] Fukunaga K. Introduction to Statistical Pattern Recognition, 2nd ed.,
Academic Press, 1990.

[Gabr 69] Gabriel K.R., Sokal R.R. “A new statistical approach to geographic variation analysis,”
Syst. Zool. Vol. 18, pp. 259–278, 1969.

[Gan 04] Gan G.,Wu J. “Subspace clustering for high dimensional categorical data,”ACM SIGKDD
Explorations Newsletter,Vol. 6(2), pp. 87–94, 2004.

[Gema 84] Geman S., Geman D. “Stochastic relaxation, Gibbs distribution and Bayesian restora-
tion of images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6,
pp. 721–741, 1984.

[Gers 79] Gersho A.“Asumptotically optimal block quantization,” IEEE Transactions on Informa-
tion Theory,Vol. 25(4), pp. 373–380, 1979.

“17-Ch15-SA272” 18/9/2008 page 856

856 CHAPTER 15 Clustering Algorithms IV

[Gers 92] Gersho A.,Gray R.M.Vector Quantization and Signal Compression,Kluwer Academic,
1992.

[Giro 02] Girolami M. “Mercer kernel-based clustering in feature space,” IEEE Transactions on
Neural Networks,Vol. 13(2), pp. 780–784, 2002.

[Goil 99] Goil S., Nagesh H., Choudhary A. “Mafia: Efficient and scalable subspace clustering for
very large data sets,”Technical Report CPDC-TR-9906-010,Northwestern University, June 1999.

[Goks 02] Goksay E., Principe J.C. “Information theoretic clustering,” IEEE Transactions on
Pattern Analysis and Machine Intelligence,Vol. 24(2), pp. 158–171, 2002.

[Golu 89] Golub G.H.,Van Loan C.F. Matrix Computations, John Hopkins Press, 1989.

[Gonz 93] Gonzalez R.C.,Woods R.E. Digital Image Processing, Addison Wesley, 1993.

[Gray 84] Gray R.M. “Vector quantization,” IEEE ASSP Magazine, pp. 4–29, April 1984.

[Gros 76a] Grossberg S. “Adaptive pattern classification and universal recoding: I. Parallel devel-
opment and coding of neural feature detectors,”Biological Cybernetics,Vol. 23, pp. 121–134,
1976.

[Gros 76b] Grossberg S. “Adaptive pattern classification and universal recoding: II. Feedback,
expectation, olfaction, illusions,”Biological Cybernetics,Vol. 23, pp. 187–202, 1976.

[Gros 87] Grossberg S. “Competitive learning: From interactive activation to adaptive resonance,”
Cognitive Science,Vol. 11, pp. 23–63, 1987.

[Gusf 97] Gusfield D. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology, Cambridge University Press, UK, 1997.

[Halk 08] Halkidi M.,Gunopulos D.,Vazirgiannis M.,Kumar N.,Domeniconi C.“A clustering frame-
work based on subjective and objective validity criteria,” ACM Transactions on Knowledge
Discovery from Data,Vol. 1(4), 2008.

[Hage 98] Hagen L., Kahng A. “New spectral methods for ratio cut partitioning and clustering,”
IEEE Transactions on Computer-Aided-Design of Integrated Circuits and Systems,Vol. 11,
pp. 1074–1085, 1998.

[Hage 92] Hagen L.W.,KahngA.B.“New spectral methods for ratio cut partitioning and clustering,”
IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,Vol. 11(9),
pp. 1074–1085, 1992.

[Hech 88] Hecht-Nielsen R. “Applications of counter-propagation networks,” Neural Networks,
Vol. 1(2), pp. 131–141, 1988.

[Hend 93] Hendrickson B., Leland R.“Multidimensional spectral load balancing,”Proceedings 4th
SIAM Conference on Parallel Processing, pp. 953–961, 1993.

[Hinn 98] Hinneburg A., Keim D. “An efficient approach to clustering large multimedia databases
with noise,”Proceedings of the 4th ACM SIGKDD, pp. 58–65, New York, NY, 1998.

[Hinn 99] HinneburgA.,Keim D.A.“Optimal grid-clustering:Towards breaking the curse of dimen-
sionality in high-dimensional clustering,” Proceedings of the 25th Conference on Very Large
Databases, Edinburgh, Scotland, 1999.

[Hoch 64] Hochberg J.E. Perception, Prentice-Hall, 1964.

[Hofm 97] HofmannT.,Buchmann J.M.“Pairwise data clustering by deterministic annealing,”IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 19(1), pp. 1–14, 1997.

[Inok 04] Inokuchi R.,Miyamoto S.“LVQ clustering and SOM using a kernel function,”Proceedings
of the IEEE International Conference on Fuzzy Systems,Vol. 3, pp. 1497–1500, 2004.

“17-Ch15-SA272” 18/9/2008 page 857

References 857

[Jarv 78] Jarvis R.A. “Shared nearest neighbor maximal spanning trees for cluster anal-
ysis,” Proceedings, 4th Joint Conference on Pattern Recognition, Kyoto, Japan,
pp. 308–313, 1978.

[Jayn 82] Jaynes E.T. “On the rationale of maximum-entropy methods,” Proc. IEEE, Vol. 70(9),
pp. 939–952, September 1982.

[Jens 04] Jenssen R.,EltoftT.,Principe J.C.“Information theoretic spectral clustering,”Proceedings
of the International Joint Conference on Neural Networks, pp. 111–116, 2004.

[Kann 00] Kannan R.,Vempala S.,Vetta A. “On clusterings- good, bad and spectral,” 41st Annual
Symposium on Foundations of Computer Science, FOCS, pp. 367–377, Redondo Beach,
California, USA, 2000.

[Kara 96] Karayiannis N.B., Pai P. “Fuzzy algorithms for learning vector quantization,” IEEE
Transactions on Neural Networks,Vol. 7(5), pp. 1196–1211, 1996.

[Kask 98] Kaski S., Kangas J., Kohonen T. “Bibliography of SOM papers: 1981–1997,” Neural
Computing Reviews,Vol. 1, pp. 102–350, 1998.

[Kirk 83] Kirkpatrick S.,Gelatt C.D. Jr.,Vecchi M.P.“Optimization by simulated annealing,”Science,
Vol. 220, pp. 671–680, 1983.

[Klei 89] Klein R.W., Dubes R.C. “Experiments in projection and clustering by simulated
annealing,”Pattern Recognition,Vol. 22(2), pp. 213–220, 1989.

[Kodr 88] Kodratoff Y.,Tecuci G. “Learning based on conceptual distance,” IEEE Transactions on
Pattern Analysis and Machine Intelligence,Vol. 10(6), pp. 897–909, 1988.

[Koha 97] Kohavi R., John G. “Wrappers for feature subset selection,” Artificial Intelligence,
Vol. 97(1–2), pp. 273–324, 1997.

[Koho 89] Kohonen T. Self-Organization and Associative Memory, 2nd ed., Springer-Verlag,
1989.

[Koho 95] Kohonen T. Self-Organizing Maps, Springer-Verlag, 1995.

[Koon 75] Koontz W.L.G., Narendra P.M., Fukunaga K. “A branch and bound clustering algorithm,”
IEEE Transactions on Computers,Vol. 24(9), pp. 908–914, September 1975.

[Koon 76] Koontz W.L.G., Narendra P.M., Fukunaga K. “A graph-theoretic approach to nonpara-
metric cluster analysis,”IEEE Transactions on Computers,Vol. 25(9),pp. 936–944,September
1976.

[Kosk 91] Kosko B. “Stochastic competitive learning,” IEEE Transactions on Neural Networks,
Vol. 2(5), pp. 522–529, 1991.

[Kosk 92] Kosko B. Neural Networks for Signal Processing, Prentice Hall, 1992.

[Kotr 92] Kotropoulos C., Auge E., Pitas I. “Two-layer learning vector quantizer for color image
quantization,”Signal Processing VI, pp. 1177–1180, 1992.

[Kots 04] Kotsiantis S.B., Pintelas P.E. “Recent advances in clustering: a brief survey,” WSEAS
Transactions on Information Science and Applications,Vol. 1(1), pp. 73–81, 2004.

[Kout 95] Koutroumbas K. “Hamming neural networks, architecture design and applications,”
Ph.D. dissertation, Department of Informatics, University of Athens, 1995 (in Greek).

[Kuli 05] Kulis B., Basu S., Dhilon I.S., Mooney R.J., “Semi-supervised graph clustering: a kernel
approach,” International Conference on Machine Learning, pp. 457–464, 2005.

[Laar 87] van Laarhoven P.J.M., Aarts E.H.L. Simulated Annealing: Theory and Applications,
Reidel, Hingham, MA, 1987.

“17-Ch15-SA272” 18/9/2008 page 858

858 CHAPTER 15 Clustering Algorithms IV

[Lang 05] Lange T., Buhmann J.M. “Combining partitions by probabilistic label aggregation,”
Proceedings of the 11th ACM SIGKDD International Conference on Knowledge discovery
in data mining, pp. 147–155, 2005.

[Law 04] Law M.,Topchy A., Jain A.K., “Multiobjective data clustering,” Proceedings of the IEEE
Computer Society Conference on ComputerVision and Pattern Recognition,Vol. 2,pp. 424–
430, 2004.

[Liew 05] Liew A.W.C.,Yan H.,Yang M. “Pattern recognition techniques for the emerging field of
bioinformatics: A review,”Pattern Recognition,Vol. 38, pp. 2055–2073, 2005.

[Likh 97] Likhovidov V. “Variational approach to unsupervised learning algorithms of neural
networks,”Neural Networks,Vol. 10(2), pp. 273–289, 1997.

[Lind 80] LindeY.,BuzoA.,Gray R.M.“An algorithm for vector quantizer design,”IEEETransactions
on Communications,Vol. 28(1), pp. 84–95, 1980.

[Liu 98] Liu H.,Motoda H. Feature Selection for Knowledge Discovery and Data Mining,Kluwer
Academic Publishers, 1998.

[Liu 00] Liu B., Xia Y.,Yu P.S. “Clustering through decision tree construction,” Proceedings of the
ninth International Conference on Information and Knowledge Management, pp. 20–29,
2000.

[Luen 84] Luenberger D.G. Linear and Nonlinear Programming, Addison Wesley, 1984.

[Macd 00] Macdonald D., Fyfe C. “The kernel self- organizing map,” Proceedings of the fourth
International Conference on Knowledge-based Intelligent Engineering Systems and Allied
Technologies,Vol. 1, pp. 317–320, 2000.

[Mals 73] von der Maslburg. “Self-organization sensitive cells in the striate cortex,” Kybernetic,
Vol. 14, pp. 85–100, 1973.

[Mara 80] Maragos P.,Schafer R.W.“Morphological systems for multidimensional signal processing,”
Proc. IEEE,Vol. 78(4), pp. 690–710, April 1980.

[Mart 93] MartinetzT.M.,Berkovich S.G.,Schulten K.J.“Neural-gas network for vector quantization
and its application to time-series prediction,”IEEE Transactions on Neural Networks,Vol. 4(4),
pp. 558–569, July 1993.

[Masu 93] Masuda T. “Model of competitive learning based upon a generalized energy function,”
Neural Networks,Vol. 6, pp. 1095–1103, 1993.

[Matt 91] Matthews G., Hearne J. “Clustering without a metric,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 13(2), pp. 175–184, 1991.

[Maul 00] Maulik U., Bandyopadhyay S. “Genetic algorithm-based clustering technique,” Pattern
Recognition,Vol. 33, pp. 1455–1465, 2000.

[Meil 00] Meilǎ M., Shi J. “A random walk view of spectral segmentation,” Proceedings Neural
Information Processing Conference, pp. 873–879, 2000.

[Metr 53] Metropolis N.,RosenbluthA.W.,Rosenbluth M.N.,TellerA.H.,Teller E.“Equations of state
calculations by fast computing machines,”Journal of Chemical Physics,Vol. 21,pp. 1087–1092,
1953.

[Mich 94] Michalevitz Z. Genetic Algorithms $ Data Structures ! Evolutionary Programming,
2nd ed., Springer-Verlag, 1994.

[Mill 01] Miller W. “Comparison of genomic DNA sequences: Solved and unsolved problems,”
Bioinformatics,Vol. 17, pp. 391–397, 2001.

“17-Ch15-SA272” 18/9/2008 page 859

References 859

[Mirk 01] Mirkin B. “Reinterpreting the category utility function,” Machine Learning,Vol. 45(2),
pp. 219–228, 2001.

[Mora 00] Morales E., Shih F.Y. “Wavelet coefficients clustering using morphological operations
and pruned quadtrees,”Pattern Recognition,Vol. 33, pp. 1611–1620, 2000.

[Ng 01] NgA.Y., Jordan M.,WeissY.“On spectral clustering analysis and an algorithm,”Proceedings
14th Conference on Advances in Neural Information Processing Systems, 2001.

[Noso 08] Nosovskiy G.V., Liu D., Sourina O. “Automatic clustering and boundary detection algo-
rithm based on adaptive influence function,” Pattern Recognition, Vol. 41, pp. 2757–2776,
2008.

[Nyec 92] Nyeck A., Mokhtari H.,Tosser-Roussey A. “An improved fast adaptive search algorithm
for vector quantization by progressive codebook arrangement,”Pattern Recognition,Vol. 25(8),
pp. 799–802, 1992.

[Oyan 01] OyangY.-J., Chen C.-Y.,YangT.-W. “A study on the hierarchical data clustering algorithm
based on gravity theory,” Lecture Notes in Artificial Intelligence: Principles of Data Mining
and Knowledge Discovery,Vol. 2168, pp. 350–361, Springer, 2001.

[Ozbo 95] Osbourn G.C., Martinez R.F. “Empirically defined regions of influence for cluster
analysis,”Pattern Recognition,Vol. 28(11), pp. 1793–1806, 1995.

[Papa 82] Papadimitriou C.H., Steiglitz K. Combinatorial Optimization: algorithms and com-
plexity, Prentice-Hall, 1982.

[Pars 04] Parsons L., Haque E., Liu H. “Subspace clustering for high dimensional data: A review,”
ACM SIGKDD Explorations Newsletter,Vol. 6(1), pp. 90–105, 2004.

[Pear 88] PearsonW.“Improved tools for biological sequence comparison,”Proceedings National
Academy of Sciences,Vol. 85, pp. 2444–2448, 1988.

[Pedr 97] Pedrycz W., Waletzky J. “Neural–network front ends in unsupervised learning,” IEEE
Transactions on Neural Networks,Vol. 8(2), pp. 390–401, March 1997.

[Pena 01] Pena J.M., Lozano J.A., Larranaga P., Inza I. “Dimensionality reduction in unsupervised
learning of conditional gaussian networks,” IEEE Transactions on Pattern Analysis and
Machine Intelligence,Vol. 23(6), pp. 590–603, 2001.

[Post 93] Postaire J.G., Zhang R.D., Lecocq-Botte C. “Cluster analysis by binary morphology,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 15(2), pp. 170–180, 1993.

[Proc 02] Procopiuc C.M., Jones M., Agarwal P.K., Murali T.M. “A Monte-Carlo algorithm for fast
projective clustering,” Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, pp. 418–427, 2002.

[Qian 00] Qian Y., Suen C. “Clustering combination method,” 15th International Conference on
Pattern Recognition (ICPR00),Vol. 2, pp. 732–735, 2000.

[Qiu 07] Qiu H., Hancock E.R. “Clustering and embedding using commute times,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,Vol. 29(11), pp. 1873–1890, 2007.

[Robe 00] Roberts S.J., Everson R., Rezek I. “Maximum certainty data partitioning,” Pattern
Recognition, pp. 833–839, 2000.

[Rose 91] Rose K. “Deterministic annealing, clustering and optimization,” Ph.D. dissertation,
California Institute of Technology, 1991.

[Rose 93] Rose K.,Gurewitz E.,Fox G.C.“Constrained clustering as an optimization method,”IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 15(8), pp. 785–794, 1993.

“17-Ch15-SA272” 18/9/2008 page 860

860 CHAPTER 15 Clustering Algorithms IV

[Rume 86] Rumelhart D.E., Zipser D. “Feature discovery by competitive learning,” Cognitive
Science,Vol. 9, pp. 75–112, 1986.

[Rume 86] Rumelhart D.E., McLelland J.L. Parallel Distributed Processing, Cambridge, MA: MIT
Press, 1986.

[Sand 98] Sander J.,Ester M.,Kriegel H.-P.,Xu X.“Density based clustering in spatial databases:The
algorithm GDBSCAN and its applications,”Data Mining and Knowledge Discovery,Vol. 2(2),
pp. 169–194, 1998.

[Sche 97] Scheunders P. “A genetic c-means clustering algorithm applied to color image quantiza-
tion,”Pattern Recognition,Vol. 30(6), pp. 859–866, 1997.

[Scho 98] Schölkopf B.,SmolaA.,Müller K.R.“Nonlinear component analysis as a kernel eigenvalue
problem,”Neural Computation,Vol. 10(5), pp. 1299–1319, 1998.

[Scot 90] Scott G., Longuet-Higgins H. “Feature grouping by relocalization of eigenvectors
of the proximity matrix,” Proceedings British Machine Vision Conference, pp. 103–108,
1990.

[Shei 98] Sheikholeslami G., Chatterjee S., Zhang A. “WaveCluster: A multi-resolution clustering
approach for very large spatial databases,”Proceedings of the 24th Conference on Very Large
Databases, New York, 1998.

[Shi 00] Shi J., Malik J. “Normalized cuts and image segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 22(8), pp.888–905, 2000.

[Stre 02] Strehl A., Ghosh J. “Cluster ensembles - a knowledge reuse framework for combin-
ing multiple partitions,” Journal of Machine Learning Research, Vol. 3, pp. 583–617,
2002.

[Stre 00] Strehl A., Ghosh J. “A scalable approach to balanced, high-dimensional clustering of
market baskets,” Proceedings of the 17th International conference on High Performance
Computing, pp. 525–536, Springer LNCS, Bangalore, India, 2000.

[Sung 00] Sung C.S., Jin H.W.,“A tabu-search-based heuristic for clustering,” Pattern Recognition,
Vol. 33, pp. 849–858, 2000.

[Szu 86] Szu H. “Fast simulated annealing,” in Neural Networks for Computing (Denker J.S., ed.),
American Institute of Physics, 1986.

[Tax 99] Tax D.M.J.,Duin R.P.W.“Support vector domain description,”Pattern Recognition Letters,
Vol. 20, pp. 1191–1199, 1999.

[Topc 05] Topchy A., Jain A.K., Punch W. “Clustering ensembles: Models of consensus and weak
partitions,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27(12),
pp. 1866–1881, 2005.

[Topc 04] Topchy A., Minaei B., Jain A.K., Punch W. “Adaptive clustering ensembles,” Procee-
dings of the International Conference on Pattern Recognition (ICPR), U.K.,August 23–26,
2004.

[Tou 74] Tou J.T., Gonzales R.C. Pattern Recognition Principles, Addison-Wesley, 1974.

[Tous 80] Toussaint G.T. “The relative neighborhood graph of a finite planar set,” Pattern
Recognition,Vol. 12, pp. 261–268, 1980.

[Touz 88] Touzani A., Postaire J.G. “Mode detection by relaxation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 10(6), pp. 970–977, 1988.

[Tsen 00] Tseng L.Y.,Yang S.B.,“A genetic clustering algorithm for data with non-spherical-shape
clusters,”Pattern Recognition,Vol. 33, pp. 1251–1259, 2000.

“17-Ch15-SA272” 18/9/2008 page 861

References 861

[Tsyp 73] Tsypkin Y.Z. Foundations of the Theory of Learning Systems, Academic Press, 1973.

[Tung 01] Tung A.K.H., Ng R.T., Lakshmanan L.V.S., Han J. “Constraint-based clustering in large
databases,” Proceedings of the 8th International Conference on Database Theory, London,
2001.

[Uchi 94] UchiyamaT.,Arbib M.A. “An algorithm for competitive learning in clustering problems,”
Pattern Recognition,Vol. 27(10), pp. 1415–1421, 1994.

[Ueda 94] Ueda N., Nakano R. “A new competitive learning approach based on an equidistortion
principle for designing optimal vector quantizers,”Neural Networks,Vol. 7(8),pp. 1211–1227,
1994.

[Urqu 82] Urquhart R.“Graph theoretical clustering based on limited neighborhood sets,”Pattern
Recognition,Vol. 15(3), pp. 173–187, 1982.

[Verm 03] Verma D., Meilǎ M. “A comparison of spectral clustering algorithms,”Technical Report,
UW-CSE-03-05-01, University of Washington, Seattle, CSE Department, 2003.

[Vish 00] Vishwanathan S.V.N., Murty M.N., “Kohonen’s SOM with cashe,” Pattern Recognition,
Vol. 33, pp. 1927–1929, 2000.

[vonL 07] von Luxburg U.“ATutorial on Spectral Clustering,”Statistics and Computing,Vol. 17(4),
2007.

[Wags 01] Wagstaff K., Cardie C., Rogers S., Schrodl S. “Constraint k-means clustering with
background knowledge,”International Conference on Machine Learning,pp. 577–584,2001.

[Weis 99] Weiss Y. “Segmentation using eigenvectors: A unifying view,” Proceedings 7th IEEE
International Conference on Computer Vision, pp. 975–982, 1999.

[Wang 07] Wang D.,Shi L.,Yeung D.S.,Tsang E.C.C.,Heng P.A.“Ellipsoidal support vector clustering
for functional MRI analysis,”Pattern Recognition,Vol. 40(10), pp. 2685–2695, 2007.

[Woo 02] Woo K.-G., Lee J.-H. “FINDIT:A fast and intelligent subspace clustering algorithm using
dimension voting,” Ph.D. Thesis, Korea Advanced Institute of Science and Technology,Taejon,
Korea, 2002.

[Wu 93] Wu Z., Leahy R. “An optimal graph theoretic approach to data clustering: Theory and its
applications to image segmentation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence,Vol. 15(11), pp. 1101–1113, 1993.

[Xian 08] Xiang T., Gong S. “Spectral clustering with eigenvalue selection,” Pattern Recognition,
Vol. 41(3), pp. 1012–1029, 2008.

[Xie 93] Xie Q., Laszlo A., Ward R.K. “Vector quantization technique for nonparametric classi-
fier design,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15(12),
pp. 1326–1330, 1993.

[Xing 02] Xing E.P., Ng A.Y., Jordan M.I., Russell S.J. “Distance metric learning with applica-
tion to clustering with side-information,” International Conference on Neural Information
Processing Systems, pp. 505–512, 2002.

[Xu 98] Xu X.,Ester M.,Kriegel H.P.,Sander J.“A distribution-based clustering algorithm for mining
in large spatial databases,”Proceedings of the 14th ICDE, pp. 324–331, Orlando, FL, 1998.

[Xu 05] Xu R., Wunsch D. II “Survey of clustering algorithms,” IEEE Transactions on Neural
Networks,Vol. 16(3), pp. 645–677, 2005.

[Yama 80] Yamada Y.,Tazaki S., Gray R.M. “Asymptotic performance of block quantizers with dif-
ference distortion measures,” IEEE Transactions on Information Theory,Vol. 26(1),pp. 6–14,
1980.

“17-Ch15-SA272” 18/9/2008 page 862

862 CHAPTER 15 Clustering Algorithms IV

[Yang 02] Yang J.,WangW.,Wang H.,Yu P.“2-clusters: Capturing subspace correlation in a large data
set,” Proceedings of the 18th International Conference on Data Engineering, pp. 517–528,
2002.

[Yu 93] Yu B.,Yuan B.“A more efficient branch and bound algorithm for feature selection,”Pattern
Recognition,Vol. 26, pp. 883–889, 1993.

[Yu 03] Yu L., Liu H. “Feature selection for high-dimensional data: A fast correlation-based filter
solution,”Proceedings of the 20th International Conference on Machine Learning,pp. 856–
863, 2003.

[Zahn 71] Zahn C.T. “Graph-theoretical methods for detecting and describing gestalt clusters,”
IEEE Transactions on Computers,Vol. 20(1), pp. 68–86, January 1971.

[Zass-05] Zass R.,ShashuaA.“A unifying approach to hard and probabilistic clustering,”Proceedings
of the 10th IEEE International Conference on Computer Vision, ICCV, pp. 294–301, 2005.

[Zhu 94] Zhu C., Li L., He Z.,Wang J. “A new competitive learning learning algorithm for vector
quantization,”Proceedings of ICASSP’94, pp. 557–560, 1994.

“18-Ch16-SA272” 17/9/2008 page 863

CHAPTER

16Cluster Validity

16.1 INTRODUCTION
A common characteristic of the majority of the clustering algorithms, discussed in
the previous chapters, is that they impose a clustering structure on the data set
X , even though X may not possess such a structure. In the latter case, the results
produced after the application of a clustering algorithm on X are not indicative
of the structure of X . In other words, cluster analysis is not a panacea. That is,
we must have an indication that the vectors of X form clusters before we apply a
clustering algorithm. The problem of verifying whether X possesses a clustering
structure, without identifying it explicitly, is known as clustering tendency and is
discussed at the end of the chapter.

Let us now assume that X possesses a clustering structure and we want to unravel
it. A different kind of problem is encountered now. Recall that all the clustering
algorithms require knowledge of the values of specific parameters and, in addition,
some of them impose restrictions on the shape of the clusters (e.g.,compact,hyper-
ellipsoidal). As already shown in the previous chapters, poor estimation of these
parameters and inappropriate restrictions on the shape of the clusters (wherever
such restrictions are required) may lead to incorrect conclusions about the cluster-
ing structure of X . Thus,the need for further evaluation of the results of a clustering
algorithm is apparent.

In this chapter, we discuss methods suitable for quantitative evaluation of the
results of a clustering algorithm. This task is known under the general term cluster
validity. However, it must be emphasized that the results obtained by these meth-
ods are only tools at the disposal of the expert in order to evaluate the resulting
clustering.

Let C denote the clustering structure resulting from the application of a cluster-
ing algorithm on X . This may be a hierarchy of clusterings, as is the case with the
hierarchical algorithms, or a single clustering, as happens with all the other algo-
rithms discussed in the previous chapters. Cluster validity can be approached in
three possible directions. First, we may evaluate C in terms of an independently

863

“18-Ch16-SA272” 17/9/2008 page 864

864 CHAPTER 16 Cluster Validity

drawn structure, which is imposed on X a priori and reflects our intuition about
the clustering structure of X . The criteria used for the evaluation of this kind are
called external criteria. In addition, external criteria may be used to measure the
degree to which the available data confirm a prespecified structure, without apply-
ing any clustering algorithm to X . Second,we may evaluate C in terms of quantities
that involve the vectors of X themselves, for example, the proximity matrix. The
criteria used for this kind of evaluation are called internal criteria. Finally, we may
evaluate C by comparing it with other clustering structures, resulting from the
application of the same clustering algorithm, but with different parameter val-
ues, or of other clustering algorithms to X . Criteria of this kind are called relative
criteria.

The cluster validation methods based on external or internal criteria rely on
statistical hypothesis testing, which was introduced in Chapter 5. The following
section contains some additional definitions to be used in this chapter.

16.2 HYPOTHESIS TESTING REVISITED
Let H0 and H1 be the null and alternative hypotheses, respectively,

H1 : ! ̸! !0

H0 : ! ! !0

Also let D̄! be the critical interval corresponding to significance level ! of a test
statistic q, and "1 the set of all possible values that ! may take under hypothesis H1.
The power function of the test is defined as

W (!) ! P(q ∈ D̄!|! ∈ "1) (16.1)

For a specific ! ∈ "1, W (!) is known as the test power under the alternative !. In
words,W (!) is the probability that q lies in the critical region when the value of the
parameter vector is !. This is the probability of making the correct decision when
H0 is rejected. The power function can be used for the comparison of two different
statistical tests. The test whose power under the alternative hypotheses is greater
is always preferred.

There are two types of errors associated with a statistical test.

■ Suppose that H0 is true. If q(x) ∈ D̄!,H0 will be rejected even if it is true. This
is called a type I error. The probability of such an error is !. The probability
of accepting H0 when it is true is 1 # !.

■ Suppose that H0 is false. If q(x) ̸∈ D̄!, H0 will be accepted even if it is false.
This is called a type II error. The probability of such an error is 1 # W (!), and
it depends on the specific value of !.

“18-Ch16-SA272” 17/9/2008 page 865

16.2 Hypothesis Testing Revisited 865

(b)(a)

p(q|H0)
p(q|H0) p(q|H1) p(q|H1)

W(")

W(")
!

D—! D—! D—!

q0
12 2

q0
1 2 !q 0

!
2

!

!

(c)

p(q|H0)

p(q|H1)
W(")

D—!

q0
!!

FIGURE 16.1

Critical regions of (a) A two-tailed test, (b) A right-tailed test, and (c) A left-tailed test. q0
a is the

a percentile of q under H0.1

In practice, the final decision to reject or accept H0 is based partially on the pre-
ceding statements as well as on other factors, such as the cost of a wrong decision.
Thus, the terms “accept”and “reject”H0 must be interpreted accordingly.

The probability density function (pdf) of the statistic q, under H0, for most of
the statistics used in practice has a single maximum and the D̄! region is either a
half-line or the union of two half-lines. These assumptions have also been adopted
here. Figure 16.1 shows the three possible cases for D̄!. In the first case, D̄! is the
union of two half-lines. Such a test is known as a two-tailed statistical test. The
other two tests are called one-tailed statistical tests, because D̄! consists of a single
half-line. Figure 16.1a is an example of a two-tailed statistical test2 and Figures 16.1b
and 16.1c are examples of a right- and a left-tailed test, respectively.

In many practical cases the exact form of the pdf of a statistic q, under a given
hypothesis, is not available and it is difficult to obtain. In the sequel,we discuss two
methods for estimating pdf’s via simulations.

■ Monte Carlo techniques [Shre 64, Sobo 84] rely on simulating the process at
hand using a sufficient number of computer-generated data. For each of the,
say r, data sets, Xi , we compute the value of q, denoted by qi , and then we
construct the corresponding histogram of these values. The unknown pdf can

1 The a percentile of q is the smallest number qa such that a ! P(q $ qa).
2 More general versions of a two-tailed statistical test are also possible (e.g., [Papo 91]).

“18-Ch16-SA272” 17/9/2008 page 866

866 CHAPTER 16 Cluster Validity

then be approximated by this histogram. Assume now that q corresponds to
a right-tailed statistical test and a histogram is constructed using r values of q
corresponding to the r data sets. For a given data set, if q is the corresponding
value of the statistic, rejection (acceptance) of the null hypothesis is done on
the basis of

Reject (accept) H0 if q is greater (smaller) than (1 # !)r of the qi values (16.2)

For a left-tailed test, rejection or acceptance of the null hypothesis is done
on the basis of

Reject (accept) H0 if q is smaller (greater) than !r of the qi values (16.3)

Finally, for a two-tailed test we have

Accept H0 if q is greater than (!/2) r of the qi values and
less than (1 # !/2) r of the qi values (16.4)

■ Bootstrapping techniques constitute an alternative way to cope with a limited
amount of data. The idea here is to parameterize the unknown pdf in terms
of an unknown parameter. To cope with the limited amount of data and in
order to improve the accuracy of the estimate of the unknown pdf parameter,
several“fake”data sets X1, . . . , Xr are created by sampling X with replacement,
as discussed in Chapter 10.

Typically, good estimates are obtained if r is between 100 and 200. For
a more detailed discussion and applications of the bootstrapping techniques
see, for example, [Diac 83, Efro 79, Jain 87a, Jain 87b].

16.3 HYPOTHESIS TESTING IN CLUSTER VALIDITY
In this framework, the null hypothesis H0 will be expressed in a slightly different
way. This is because our major concern is not to test a parameter against a specific
value. In contrast, our concern here is to test whether the data of X possess a
“random” structure or not. Thus, in this case, the null hypothesis H0 should be a
statement of randomness concerning the structure of X. Thus, our goal is now
twofold.

■ First, we must generate a reference data population under the random
hypothesis, that is, a data population that models a random structure.

■ Second, we must define an appropriate statistic, whose values are indicative
of the structure of a data set, and compare the value that results from our data
set X against the value obtained from the reference (random) population.

There are three different ways to generate the reference population under the
null (randomness) hypothesis, each being appropriate for different situations.

“18-Ch16-SA272” 17/9/2008 page 867

16.3 Hypothesis Testing in Cluster Validity 867

■ Random position hypothesis.This hypothesis is appropriate for ratio data. It
requires that “All the arrangements of N vectors in a specific region of the
l-dimensional space are equally likely to occur.” Such regions may be the Hl
hypercube or the l-dimensional hypersphere. One way to produce such an
arrangement is to insert each point randomly in this region of the l-dimensional
space,according to the uniform distribution. The random position hypothesis
can be used with either external or internal criteria.

• Internal criteria. In this case, the statistic q is defined so as to measure the
degree to which a clustering structure,produced by a clustering algorithm,
matches the proximity matrix of the corresponding data set. Let Xi be a set
of N vectors generated according to the random position hypothesis and Pi
be the corresponding proximity matrix. In the sequel, we apply the same
clustering algorithm to each Xi and to our data set X and let Ci and C be
the resulting clustering structures, respectively. For each case, the value of
the statistic q is computed. The random hypothesis, H0, is then rejected
if the value q, resulting from X lies in the critical interval D̄! of the statistic
pdf of the reference population (i.e.,under H0),that is, if q is unusually small
or large.

• External criteria. The statistic q is defined so as to measure the degree
of correspondence between a prespecified structure P imposed on X and
the clustering that results after the application of a specific clustering algo-
rithm to X . Then, the value of q corresponding to the clustering C resulting
from the data set X is tested against the qi’s, corresponding to the cluster-
ings resulting from the reference population generated under the random
position hypothesis. Once more, the random hypothesis is rejected if q is
unusually large or small.

■ Random graph hypothesis. It is usually adopted when only internal
information (i.e., information that concerns only the vectors themselves or
their relationships) is available. It is appropriate when ordinal proximities
between vectors are used. Before we proceed, let us define the ordinal,
or rank order, N % N matrix A as a symmetric matrix with zero diagonal
elements (provided that dissimilarity measures are used) and with its upper
diagonal elements being integers in the range [1, N (N # 1)/2]. The entry
A(i, j) of A provides only qualitative information about the dissimilarity
between the corresponding vectors xi and xj . If, for example, A(2, 3) ! 3
and A(2, 5) ! 5, we can only conclude that x2 is more similar to x3 than x5.
That is, in this context, comparing dissimilarities is meaningless (recall the
comments made in Chapter 11, concerning ordinal type data).

Let Ai be an N % N rank order proximity matrix with no ties; that is,
all entries in the upper diagonal are different from each other. Under the
random graph hypothesis, the reference population consists of such matrices
Ai each one generated by inserting randomly the integers in the range

“18-Ch16-SA272” 17/9/2008 page 868

868 CHAPTER 16 Cluster Validity

[1, N (N # 1)/2], in its upper diagonal entries. Let P be the ordinal proximity
matrix associated with the given data set X and C be the clustering structure
produced by the application of a specific algorithm to P. Finally, let Ci be
the clustering structure produced when the same algorithm is applied to
Ai . We may now proceed as in the previous case and define a statistic q that
measures the agreement between a rank order (proximity) matrix and the
corresponding clustering structure. If the value of q, corresponding to P and
C, is unusually large or small, the random hypothesis is rejected.

It must be emphasized that the random graph hypothesis is not appro-
priate for ratio-scaled data. Let us take, for example, the case where the
Euclidean distance is in use and l $ N # 2 and consider the points x1 ! 0,
x2 ! 1, x3 ! 3 on the real line. It is clear that the distance between x1 and
x3 cannot be smaller than the distance between x2 and x3. That is, the matrix

A !

⎡

⎣
0 2 1
2 0 3
1 3 0

⎤

⎦ is not a valid proximity matrix for these ratio-scaled data.

■ Random label hypothesis. Let us consider all possible partitions,P &,of X into
m groups. Each partition may be defined in terms of a mapping g from X
to {1, . . . , m}. The random label hypothesis assumes that all possible map-
pings are equally likely. The statistic q can be defined so as to measure the
degree to which information inherent in the data set X , such as the proximity
matrix P, matches a specific partition. The statistic q is then used to test the
degree of match between P and an externally imposed partition P , against
the qi’s corresponding to the random partitions generated under the random
label hypothesis. Once more, H0 is then rejected if q is unusually large or
small.

In the sequel,we give a number of statistic indices appropriate for external and,
then, for internal criteria.

16.3.1 External Criteria
External criteria are used either (a) for the comparison of a clustering structure C,
produced by a clustering algorithm, with a partition P of X drawn independently
from C or (b) for measuring the degree of agreement between a predetermined
partition P and the proximity matrix of X , P.

Comparison of P with a Clustering C
In this case,C may be either a specific hierarchy of clusterings or a specific cluster-
ing. The latter may be produced either by cutting the dendrogram produced by a
hierarchical algorithm at a given level (see Chapter 13) or by any other algorithm dis-
cussed in the previous chapters. However, a prespecified hierarchy of partitions is
rarely available in practice. Thus,the problem of validating hierarchies of clusterings
is of limited practical interest.

“18-Ch16-SA272” 17/9/2008 page 869

16.3 Hypothesis Testing in Cluster Validity 869

In the sequel,we consider the validation task concerning a clustering,C,resulting
from a specific clustering algorithm,in terms of an independently drawn partition P
of X . Let C ! {C1, . . . , Cm} and P ! {P1, . . . , Ps}. Note that the number of clusters
in C need not be the same as the number of groups in P . Our goal is to define
appropriate statistical indices to be used for the hypothesis test.

Let nij denote the number of vectors that belong to Ci and Pj simultaneously. Also
let nC

i !
∑s

j!1 nij ; that is, nC
i is the number of vectors that belong to Ci . Similarly,

we define the number of vectors that belong to Pj as nP
j !

∑m
i!1 nij .

Consider a pair of vectors (xv, xu). We refer to it as (a) SS if both vectors
belong to the same cluster in C and to the same group in P , (b) DD if both vectors
belong to different clusters in C and to different groups in P , (c) SD if the vec-
tors belong to the same cluster in C and to different groups in P , and (d) DS if the
vectors belong to different clusters in C and to the same group in P . Let a,b, c, and
d be the number of SS, SD, DS, and DD pairs of vectors of X , respectively. Then
a ' b ' c ' d ! M , where M is the total number of possible pairs in X , that is,
M ! N (N # 1)/2.

Example 16.1
Let X ! {xi , i ! 1, . . . , 6}, C ! {{x1, x2, x3}, {x4, x5}, {x6}}, and P ! {{x1, x2, x3},
{x4, x5, x6}}. The following table shows the type of all pairs of vectors in X .

x1 x2 x3 x4 x5 x6

x1 SS SS DD DD DD
x2 SS DD DD DD
x3 DD DD DD
x4 SS DS
x5 DS
x6

From this table we obtain a ! 4, b ! 0, c ! 2, and d ! 9.

Let m1 ! a'b be the number of pairs of vectors that belong to the same cluster
in C and m2 ! a ' c be the number of pairs of vectors that belong to the same
group in P . Using the preceding definitions,we can define statistical indices (statis-
tics) in order to measure the degree to which C matches P . Such statistical indices
are the following:

■ Rand statistic

R ! (a ' d)/M (16.5)

■ Jaccard coefficient

J ! a/(a ' b ' c) (16.6)

“18-Ch16-SA272” 17/9/2008 page 870

870 CHAPTER 16 Cluster Validity

■ Fowlkes and Mallows index

FM ! a/
√

m1m2 !

√
a

a ' b
a

a ' c
(16.7)

The term a'd is the number of SS pairs of vectors plus the number of DD pairs.
Thus, the Rand statistic measures the fraction of the total number of pairs that are
either SS or DD. The Jaccard coefficient follows the same philosophy as the Rand
statistic, except that it excludes d. The values of these two statistics are between 0
and 1. However, a prerequisite for achieving the maximum value is to have m ! s,
which, in general, is not always the case.

For all the above defined indices, it is clear that the larger their value, the higher
the agreement between C and P , that is, all the corresponding statistical tests are
right tailed.

Another very popular statistic that is, frequently used in conjunction with exter-
nal criteria is Hubert’s (statistic (e.g., [Hube 76, Mant 67, Bart 62]). It measures
the correlation between two matrices, X and Y , of dimension N % N , drawn
independently of each other. For symmetric matrices this can be written as

■ Hubert’s (statistic

(! (1/M)
N#1∑

i!1

N∑

j!i'1

X(i, j)Y (i, j) (16.8)

where X(i, j) and Y (i, j) are the (i, j) elements of the matrices X and Y ,
respectively. High values of (indicate close agreement between X and Y .
The normalized version of the (statistic, denoted by (̂, is also used.

■ Normalized (statistic

(̂ !
(1/M)

∑N#1
i!1

∑N
j!i'1(X(i, j) # #X)(Y (i, j) # #Y)

$X $Y
(16.9)

where #X , #Y , $2
X , and $2

Y are the respective means and variances, that is,
#X ! (1/M)

∑N#1
i!1

∑N
j!i'1 X(i, j), $2

X ! (1/M)
∑N#1

i!1
∑N

j!i'1 X(i, j)2 # #2
X

(similarly we define #Y and $2
Y). The values of (̂ are between #1 and 1.

Let us set X(i, j) equal to 1 if xi and xj belong to the same cluster in C and 0
otherwise, and Y (i, j) equal to 1 if xi and xj belong to the same group in P and 0
otherwise. It can then be shown (see Problem 16.2) that in this case the (̂ statistic
becomes equal to

(̂ ! (Ma # m1m2)/
√

m1m2(M # m1)(M # m2) (16.10)

Unusually large absolute values of (((̂) suggest that C and P agree with each
other.

As almost always happens in practice, the exact computation of the pdf of all
these indices, under the null hypothesis, is very difficult. Thus, we use Monte Carlo

“18-Ch16-SA272” 17/9/2008 page 871

16.3 Hypothesis Testing in Cluster Validity 871

techniques for their estimation. In the sequel,we discuss such a procedure,which is
based on the random position hypothesis. Data are assumed to be ratio scaled.

■ For i ! 1 to r

• Generate a data set Xi of N vectors in the area of interest of X , so that the
vectors are uniformly distributed in it.

• Assign each vector yi
j ∈ Xi to the group where the xj ∈ X belongs, accor-

ding to the structure imposed by P .

• Run the same clustering algorithm,used for obtaining C,on Xi and let Ci be
the resulting clustering.

• Compute the value q(Ci) of the corresponding statistical index q for P
and Ci .

■ End {For}

■ Create the histogram of q(Ci)’s.

The following example demonstrates how this methodology can be used in
practice.

Example 16.2
(a) Consider a data set X of 100 vectors in the H3 hypercube. The data are generated to form
four groups, each consisted of 25 vectors. Each group is generated by a normal distribution.
The first group of 25 vectors of X is generated from the first distribution while the second,
third, and fourth groups of 25 vectors are generated from the second, the third, and the fourth
distribution, respectively. The covariance matrices of all distributions are equal to 0.2I , where
I is the 3 % 3 identity matrix. The mean vectors for the four distributions are [0.2, 0.2, 0.2]T ,
[0.5, 0.2, 0.8]T , [0.5, 0.8, 0.2]T , and [0.8, 0.8, 0.8]T , respectively. If a distribution generates a
vector that is, outside the unit hypercube, it is ignored and replaced by another that lies inside
H3. It is not difficult to realize that the points of X form four compact and well-separated
clusters.

We assume that the external information is: “The vectors of X belong to four different
groups P1, P2, P3, and P4, such that P1 contains the first 25 vectors of X and P2, P3, and P4

contain the second, third, and fourth groups of 25 vectors of X , respectively.”
We run the isodata algorithm for m ! 4 and let C be the resulting clustering. We compute

the values of the Rand, R, the Jaccard, J , the Fowlkes and Mallows, FM , and the (̂ statistics
for C and P. These are 0.91, 0.68, 0.81, and 0.75, respectively. Next, we estimate the
distribution of these statistics using the procedure described before. Specifically, 100 data
sets Xi , i ! 1, . . . , 100, are generated, each of them consisting of 100 randomly selected
vectors in H3, following the uniform distribution. According to the P defined earlier, we assign
the first 25 of them to P1 and the second, third, and fourth groups of 25 vectors to P2, P3,
and P4, respectively. For each Xi we run the isodata algorithm for m ! 4 and we produce
the clustering Ci , i ! 1, . . . , 100. Then we compute the values of the four statistics, Ri , Ji ,
FMi , and (̂i for each Ci and P , i ! 1, . . . , 100. We set the significance level at ! ! 0.05.

“18-Ch16-SA272” 17/9/2008 page 872

872 CHAPTER 16 Cluster Validity

Then, in terms of a given statistic, we accept or reject the null hypothesis (i.e., the random
hypothesis) according to the conditions given in Section 16.2. In our case R is greater than
all Ri ’s. Similarly, J , FM , and (̂ are greater than all Ji ’s, FMi ’s, and (̂i ’s, respectively. Thus,
all statistics reject the null hypothesis at significance level ! ! 0.05.

(b) Now let X& be a data set constructed as X , but with the covariance matrices of the
normal distributions equal to 0.6I . In this case, the vectors of X form weak clusters, that is,
clusters that exhibit “large” spread around their mean vector. The values of the four statistics
in this case are R ! 0.64, J ! 0.15, FM ! 0.27, and (̂ ! 0.03. R is greater than 99 of the Ri ’s.
Similarly, J , FM , and (̂ are greater than 94 Ji ’s, 94 FMi ’s, and 98 (̂i ’s, respectively. Thus,
according to the Rand and (̂ statistics, the null hypothesis is rejected at significance level
! ! 0.05. However, this is not the case for the other two indices.

This situation illustrates the fact that different statistics may lead to different conclusions
when no clear-cut situations are considered (see also comparative studies in [Mill 80, Mill 83,
Mill 85]).

(c) Let us now construct X&& by selecting the covariance matrices equal to 0.8I . In this
case, the vectors of X&& are so dispersed that, practically, X&& does not exhibit any clustering
structure. The values of the four statistics in this case are R ! 0.63, J ! 0.14, FM ! 0.25, and
(̂ ! # 0.01. Specifically, R is greater than 62, from the total of 100, Ri ’s. Similarly, J , FM , and
(̂ are greater than 48 Ri ’s, 48 Ji ’s, and 55 (̂i ’s, respectively. Thus, according to all statistics,
the null hypothesis is not rejected at significance level ! ! 0.05.

Remark

■ For each of these statistics, q, there exists a corresponding “corrected” statis-
tic q&, which is a normalized version of q and is defined as

q& !
q # E(q)

max(q) # E(q)
(16.11)

where max(q) is the maximum possible value of q and E(q) is the mean value
of q,under the null hypothesis. Its values are between 0 and 1. The maximum
value is always achievable when a perfect match between C and P occurs
and the minimum if C and P have been chosen by chance. The problem
encountered here is the computation of E(q) and max(q). This problem
is attacked in [Hube 85], for the Rand statistic, under the assumption that
the maximum value of the Rand statistic is 1. The same problem for the
Fowlkes–Mallows index is treated in [Fowl 83].

Assessing the Agreement between P and Proximity Matrix P
In this section, we show that the (statistic can be used to measure the degree
to which the proximity matrix P of X matches a partition P , which is imposed a
priori on X . Recall that P may be viewed as a mapping g of X to {1, . . . , m}. Let
us consider the matrix Y whose (i, j) element, Y (i, j), is defined as follows:

Y (i, j) !

{
1, if g(xi) ̸! g(xj)

0, otherwise
(16.12)

“18-Ch16-SA272” 17/9/2008 page 873

16.3 Hypothesis Testing in Cluster Validity 873

for i, j ! 1, . . . , N . It is clear that Y is symmetric. Then, the ((or (̂) statistic is
applied to the proximity matrix P and Y . Its value is a measure of the degree to
which Y matches P.

In order to estimate the pdf of ((or (̂) under the random label hypothesis,
we produce, say, r mappings gi, i ! 1, . . . , r.3 For each of them we form the corre-
sponding Yi matrix and we apply the ((or (̂) statistic to P and Yi , i ! 1, . . . , r.
Then we proceed as usual for the acceptance or rejection of the random label
hypothesis.

Example 16.3
We consider a data set X of 64 two-dimensional vectors. The first 16 of them spring out of a
normal distribution with mean [0.2, 0.2]T , and the remaining three groups of 16 vectors stem
from three normal distributions with means [0.2, 0.8]T , [0.8, 0.2]T , and [0.8, 0.8]T , respec-
tively. The covariance matrices of all distributions are equal to 0.15I . Let P be the proximity
matrix of X when the squared Euclidean distance is in use. Also, we set the significance
level at ! ! 0.05.

(a) Let P ! {P1, P2, P3, P4}. Suppose that the first set of 16 vectors is assigned to P1,
the second is assigned to P2, the third is assigned to P3, and the last to P4. Based on this
information, we form Y as described before and we compute the value of (̂ for P and Y ,
which is found to be 0.77. Then we generate random partitions Pi , i ! 1, . . . , 100, we form
the corresponding matrices Yi , and we compute the values (̂i between P and each of the
Yi ’s. It turns out that (̂ is greater than all of these values. Thus, the null hypothesis is rejected
at significance level !.

(b) Assume now that the external information P assigns randomly 16 vectors of X to each
Pi . It is clear that the external information does not agree with the underlying structure of X .
If we apply the same procedure as before, we find that (̂ ! #0.01, which is less than 70
values of (̂i . Thus, the randomness hypothesis is accepted.

16.3.2 Internal Criteria
Our aim here is to verify whether the clustering structure produced by a clustering
algorithm fits the data, using only information inherent in the data. In the sequel,
unless otherwise stated, we consider the case in which the data are represented
by their proximity matrix. Two cases are considered: (a) the clustering structure
is a hierarchy of clusterings and (b) the clustering structure consists of a single
clustering.

Validation of Hierarchies of Clusterings
We recall that the dendrogram produced by a hierarchical clustering algorithm may
be represented by the respective cophenetic matrix, Pc . We will define statistical
indices that measure the degree of agreement between the cophenetic matrix,

3 Typically, r ! 100.

“18-Ch16-SA272” 17/9/2008 page 874

874 CHAPTER 16 Cluster Validity

Pc, produced by a specific hierarchical clustering algorithm, with the proximity
matrix P of X. Because both matrices are symmetric and have their diagonal ele-
ments equal to 0,4 we consider only the M ≡ N (N # 1)/2 upper diagonal elements
of Pc and P. Let dij and cij be the (i, j) element of P and Pc , respectively.

The first index,known as the cophenetic correlation coefficient (CPCC) measures
the correlation between Pc and P and is used when the matrices are interval or ratio
scaled. It is defined as

CPCC !
(1/M)

∑N#1
i!1

∑N
j!i'1 dijcij # #p#c

√(
(1/M)

∑N#1
i!1

∑N
j!i'1 d2

ij # #2
p

)(
(1/M)

∑N#1
i!1

∑N
j!i'1 c2

ij # #2
c

) (16.13)

where the corresponding mean values are defined as in Eq. (16.9). It can be shown
that the values of the CPCC are between #1 and 1 (see Problem 16.4). The closer
the CPCC index to 1, the better the agreement between the cophenetic and the
proximity matrix. The CPCC statistic has been studied by various researchers (see,
e.g., [Rolp 68, Rolp 70, Farr 69]). The major difficulty associated with it is that it
depends on many parameters of the problem, such as the size of X , the clustering
algorithm used and the employed proximity measure. Hence,the exact computation
of its pdf under H0 is very difficult. Once more, one is forced to use Monte Carlo
techniques for the estimation of its distribution,under H0. According to the random
position hypothesis, we generate r sets Xi , whose vectors are randomly distributed
according to the uniform distribution,and we apply to each Xi the same hierarchical
algorithm that has produced Pc . Then,we compute CPCC for the proximity matrix of
Xi,Pi, and the resulting cophenetic matrix,Pci and we construct the corresponding
histogram.

Interestingly enough, in [Rolp 70], it is stated that even high values of CPCC
(near 0.9) should be handled with caution when the unweighted pair group method
average (UPGMA) algorithm is in use (Chapter 13),as there are cases for which even
such large values cannot guarantee close agreement between the cophenetic and
the proximity matrix.

Another statistical index, which is suitable for cases in which Pc and P are
ordinally scaled, is the % statistic,which is described in the sequel. Let vp and vc be
two vectors of dimension N (N #1)/2,each containing the upper diagonal elements
of P and Pc , respectively, ordered by rows. Let (vpi , vpj) and (vci , vcj) be two
pairs of elements of vp and vc , respectively. The following definitions are in order.

A set of pairs {(vpi , vpj), (vci , vcj)} is called

■ concordant if

(
(vpi) vci) & (vpj) vcj)

)
or

(
(vpi * vci) & (vpj * vcj)

)

4 This implies that we use a dissimilarity measure.

“18-Ch16-SA272” 17/9/2008 page 875

16.3 Hypothesis Testing in Cluster Validity 875

■ discordant if
(
(vpi) vci) & (vpj * vcj)

)
or

(
(vpi * vci) & (vpj) vcj)

)

Finally, a set of pairs is neither concordant nor discordant if vpi ! vci or
vpj ! vcj . Let S' and S# be the numbers of the concordant and discordant pairs,
respectively. Then % is defined as

% !
S' # S#

S' ' S#
(16.14)

The % statistic takes values between #1 and 1.

Example 16.4
Let vp![3, 2, 1, 5, 2, 6]T and vc![2, 3, 5, 1, 6, 4]T . For all possible 16 pairs of pairs we
have

Index vp vc Index vp vc

(1, 2) (3, 2) (2, 3) dis. (2, 6) (2, 6) (3, 4) dis.
(1, 3) (3, 1) (2, 5) dis. (3, 4) (1, 5) (5, 1) dis.
(1, 4) (3, 5) (2, 1) con. (3, 5) (1, 2) (5, 6) con.
(1, 5) (3, 2) (2, 6) dis. (3, 6) (1, 6) (5, 4) dis.
(1, 6) (3, 6) (2, 4) con. (4, 5) (5, 2) (1, 6) dis.
(2, 3) (2, 1) (3, 5) con. (4, 6) (5, 6) (1, 4) con.
(2, 4) (2, 5) (3, 1) dis. (5, 6) (2, 6) (6, 4) dis.
(2, 5) (2, 2) (3, 6) con.

Thus, S' ! 6, S# ! 9 and % ! #1/5 ! #0.2.

The % statistic depends on all the factors of the problem at hand and,as a conse-
quence,the estimate of its pdf under the randomness hypothesis (H0) is also difficult
to derive. Thus, one has to use Monte Carlo techniques once again for the estima-
tion of the pdf of % under H0. In this case, the random graph hypothesis is used.
Specifically, we produce r random rank order proximity matrices Pi , with no ties,
and we run the algorithm that produced Pc on each of them. Then we compute the
value of % for each Pi and its corresponding cophenetic matrix Pci and we form the
histogram for the values of %.

Remarks

■ It has been conjectured [Hube 74] that when the single and the complete
link algorithms are used, the statistic N% # a ln N follows (approximately) the
standard normal distribution. The constant a is set equal to 1.1 (1.8) when
the single (complete) link algorithm is used. If we adopt this conjecture, it
relieves us of the computational burden of the Monte Carlo method.

■ The % statistic may also be used to compare the results for two different hier-
archies of clusterings resulting from two different clustering algorithms. (e.g.,
[Bake 74, Hube 74], Problem 16.5).

“18-Ch16-SA272” 17/9/2008 page 876

876 CHAPTER 16 Cluster Validity

Another measure that is, suitable for ordinal-scaled P and Pc is Kudall’s & statistic
[Cunn 72], which is defined as

& !
S' # S#

N (N # 1)/2
(16.15)

The difference from the % statistic is that the denominator here extends to all
sets of pairs, whereas in the case of the % statistic the sets of pairs that are neither
concordant nor discordant are excluded.

Validation of Individual Clusterings
Our goal here is to investigate whether a given clustering C,consisting of m clusters,
matches information that is, inherent in the data set X . In the sequel,we show that
the ((or (̂) statistic can be used in order to achieve this goal. Once again, we
use the proximity matrix P as a measure representing the structural information
inherent in the data. The (i, j) element of the matrix Y is defined as

Y (i, j) !

{
1, if xi and xj belong to different clusters

0, otherwise
(16.16)

for i, j ! 1, . . . , N . It is clear that Y is symmetric. Then the ((or (̂) statistic is app-
lied to P and Y . Its value is a measure of the degree of correspondence between
P and Y .

The random position hypothesis is employed. For each of the resulting random
data sets Xi , the proximity matrix Pi is computed. Then we apply, to each of them,
the clustering algorithm used to produce C. Let Ci , i ! 1, . . . , r, be the resulting
clusterings of m clusters. We compute Yi and (i . Finally,we decide for the rejection
or acceptance of the null hypothesis at a given significance level ! according to the
conditions given in Section 16.2.

Example 16.5
Consider a data set X of 100 vectors in the H2 hypercube. The vectors are generated to
form four groups, each of 25 vectors. Each group is generated by a normal distribution. The
corresponding covariance matrices are all equal to 0.1I and the mean vectors are [0.2, 0.2]T ,
[0.8, 0.2]T , [0.2, 0.8]T , [0.8, 0.8]T , respectively. We apply the isodata algorithm and let C be
the resulting clustering. Computing the corresponding matrices Y and P, we obtain (̂ !

0.5704. Then we generate 100 data sets, Xi , whose vectors are randomly distributed in H2,
following the uniform distribution. The isodata algorithm is applied to each of them, and let Ci ,
i ! 1, . . . , 100, be the resulting clusterings. Computing Yi and Pi associated with the resulting
clusterings for each Xi , it turns out that 99 of the corresponding (̂i values are smaller than (̂.
Thus, the null hypothesis is rejected at significance level ! ! 0.05.
Repeating the experiment but with covariance matrices equal to 0.2I , we find that (̂ is
greater than 86 of 100 (̂i values. Thus, the null hypothesis is not rejected at significance level
! ! 0.05.

“18-Ch16-SA272” 17/9/2008 page 877

16.4 Relative Criteria 877

16.4 RELATIVE CRITERIA
So far, clustering validation has been performed on the basis of statistical tests.
A major drawback of most of these techniques is their high computational demands,
due to the required Monte Carlo methodology. In this section, a different approach
is discussed that does not involve statistical tests. To this end, a set of clusterings
is considered and the goal is to choose the best one according to a prespecified
criterion. More specifically, let A be the set of parameters associated with a specific
algorithm. For example, for the algorithms of Chapter 14,A contains the number of
clusters, m, as well as the initial estimates of the parameter vectors associated with
each cluster. The problem can be stated as follows:

“Among the clusterings produced by a specific clustering algorithm,for different
values of the parameters in A, choose the one that best fits the data set X .”

We consider the following cases:

■ A does not contain the number of clusters, m, as a parameter (such as the
algorithms based on graph theory,the morphological clustering algorithm and
the boundary detection algorithms).

The choice of the“best”parameter values for this type of algorithm is based
on the assumption that if X possesses a clustering structure, this structure is
captured for a“wide”range of values of the parameters in A (e.g.,[Post 93]).
Based on this assumption, we proceed as follows. We run the algorithm for
a wide range of values of its parameters and we choose the widest range for
which, m, remains constant (typically m)) N). Then we choose as appropri-
ate values of the parameters of A the values that correspond to the middle of
this range. Note that, implicitly, this procedure also identifies the number of
clusters that underlie X .

Example 16.6
(a) We consider a data set X , consisted of three groups of 100 two-dimensional vectors. These
groups are formed from normal distributions with means [0, 0]T , [8, 4]T , and [8, 0]T , respec-
tively, and covariance matrices equal to 1.5I . As one can easily observe in Figure 16.2a,
the three groups form three compact and well-separated clusters. We run the binary mor-
phology clustering algorithm (BMCA), using the 3 % 3 structuring element (Figure 15.10a),
with the resolution parameter r ranging from 1 to 77 and we plot the number of clus-
ters versus r (Figure 16.2b). We observe that for any value of r between 37 and 67, the
number of clusters remains constant and equal to 3. Taking into account that this range
of values is the largest one, we choose r ! 52, and we conclude that our data form three
clusters.

(b) Generate another data set, as before, but with the covariance matrices equal to 2.5I .
This data set is depicted in Figure 16.3a. We observe that in this case the three groups are so
dispersed that they practically cannot be distinguished from each other. We run BMCA once
again, using the 3 % 3 structuring element, for r ranging from 1 to 77, with step 1, and we

“18-Ch16-SA272” 17/9/2008 page 878

878 CHAPTER 16 Cluster Validity

(a) (b)

14

10

6

2

22

26
24 0 4 8 12

0
0

2

4

6

m

20 40 60 80
r

FIGURE 16.2
(a) Three well-separated clusters. (b) The plot of the number of clusters m versus the resolution
parameter r, using the binary morphology clustering algorithm (BMCA).

210
210

0

0

10

20

10

(a) (b)

20 0
0

20 40 60 80
r

0

4

8

12
m

FIGURE 16.3
(a) Three overlapped clusters. (b) The plot of m versus r.

plot the number of clusters versus r (see Figure 16.3b). In this case, for r ! 7, . . . , 46, the
number of clusters remains constant and the corresponding value of m is 1.

■ A contains m as a parameter (such as the fuzzy and hard clustering
algorithms discussed in Chapter 14). For this case, a different procedure is
followed. We first select a suitable performance index q. The“best”clustering

“18-Ch16-SA272” 17/9/2008 page 879

16.4 Relative Criteria 879

is identified, in terms of q, via the following procedure. We run the clustering
algorithm at hand for all values of m between a minimum mmin and a max-
imum mmax, where mmin and mmax are chosen a priori. For each value of
m, we run the algorithm r times, using different sets of values for the other
parameters of A.5 Then we plot the best values of q, obtained for each m,
versus m and we seek the maximum or the minimum of this plot,according to
whether large or small values of q indicate good clusterings. This procedure
works well if q exhibits no trend with respect to m. However, as we will see,
several of the commonly used indices q exhibit an increasing (decreasing)
trend as m increases. Thus, locating the maximum (minimum) versus m is no
longer indicative of a good clustering. For indices that exhibit such behavior,
in the range [mmin, mmax], we search for values of m at which a significant
local change in the value of q occurs. This change appears in the plot as a
significant “knee.” The presence of such a knee is an indication of the num-
ber of clusters underlying X. On the other hand, the absence of such a knee
may be an indication that X possesses no clustering structure.

Another source of complication, associated with many of the indices used
in this framework is that their behavior depends on many other factors such
as the number of vectors in X and their dimensionality. The situation is
demonstrated via the following example.

Example 16.7
(a) In this example, we consider 16 different data sets with different numbers of vectors and
dimensionalities. Specifically, we consider four 2-dimensional data sets of 50, 100, 150, and
200 vectors; four 4-dimensional data sets of 50, 100, 150, and 200 vectors; four 6-dime-
nsional data sets of 50, 100, 150, and 200 vectors; and four 8-dimensional data sets
of 50, 100, 150, and 200 vectors. The vectors of the data sets lie in the Hi hypercube,
i ! 2, 4, 6, 8, respectively. All the data sets contain four compact and well-separated

clusters. All the clusters stem from normal distributions with means

i︷ ︸︸ ︷
[0.2, . . . , 0.2]T ,

i/2︷ ︸︸ ︷
[0.2, . . . , 0.2,

i/2︷ ︸︸ ︷
0.8, . . . , 0.8]T ,

i/2︷ ︸︸ ︷
[0.8, . . . , 0.8,

i/2︷ ︸︸ ︷
0.2, . . . , 0.2]T ,

i︷ ︸︸ ︷
[0.8, . . . , 0.8]T , where i is the

dimensionality, and covariance matrices 0.2Ii , where Ii is the i % i identity matrix. For each
of these data sets we run the isodata algorithm for m ! 1, . . . , 10, and we compute the cor-
responding values of the cost function J . For this case, only a single run is performed for
each m. In Figure 16.4 we plot J versus the number of clusters, m, for the cases of 50, 100,
150, and 200 vectors and for different dimensionalities.

One can easily notice that the higher the dimensionality, the sharper the knee at m ! 4.
Moreover, as the size of the data set increases, the knee at m ! 4 becomes sharper, even
at lower dimensionalities. Rules for automatic identification of a knee are discussed in
[Dube 87a].

5 For example, if the k-means algorithm is used, we run it using different initial conditions.

“18-Ch16-SA272” 17/9/2008 page 880

880 CHAPTER 16 Cluster Validity

0

5

10

15

20

25

30

J

J

21 3 4 5 6 7 8 9 m

(a)

l 5 2
l 5 4

l 5 6

l 5 8

l 5 2
l 5 4

l 5 6

l 5 8

0

20

40

60

80

21 3 4 5 6 7 8 9 m

(c)

0

10

20

30

40

50

60

21 3 4 5 6 7 8 9 m

J

J

(b)

l 5 2
l 5 4

l 5 6

l 5 8

l 5 2
l 5 4

l 5 6

l 5 8

0

20

40

60

80

100

120

21 3 4 5 6 7 8 9 m

(d)

FIGURE 16.4
Plots of J versus m for (a) N ! 50, (b) N ! 100, (c) N ! 150, (d) N ! 200, for clustered data.

(b) We again construct 16 data sets, but now the vectors in each of them are randomly
distributed in the Hi hypercube, according to the uniform distribution. If we carry out the same
procedure as before, we see in Figure 16.5 that there are no sharp knees in the plots. Thus,
the absence of sharp knees in the plots may be an indication of the absence of clustering
structure.

16.4.1 Hard Clustering
In this section we discuss indices that are suitable for hard clusterings. In the sequel
unless otherwise stated, we consider only the case of compact clusters.

■ The modified Hubert (statistic. Let ci ! k if the vector xi belongs to cluster
Ck. Also let Q be the N % N matrix whose (i, j) element, Q(i, j), is equal to
the distance d(wci , wcj) between the representatives of the clusters where xi

“18-Ch16-SA272” 17/9/2008 page 881

16.4 Relative Criteria 881

0

10

20

(b)
1 2 3 4 5 6 7 8 9 m

30

40

50

60

l 5 8

l 5 6

l 5 4

l 5 2

J

(c)

1 2 3 4 5 6 7 8 9 m

l 5 8

l 5 6

l 5 4

l 5 2

0

20

40

80

J

60

(d)

1 2 3 4 5 6 7 8 9 m

l 5 8

l 5 6

l 5 4

l 5 2

0

20

40

80

100

120

J

60

1 2 3 4
(a)

5 6 7 8 9 m

l 5 8

l 5 6

l 5 4

l 5 2

0

5

10

15

20

25

30

J

FIGURE 16.5
Plots of J versus m for (a) N ! 50, (b) N ! 100, (c) N ! 150, (d) N ! 200, for random data.

and xj belong. The modified Hubert (statistic is defined as in Eq. (16.8)
and it is applied to the proximity matrix P of the data set X and the matrix
Q (of course, the same distance measure must be used for both P and Q).
Similarly, we can define the normalized modified Hubert (statistic. It is clear
that if d(wci , wcj) is close to d(xi , xj), for i, j!1, . . . , N , that is, when com-
pact clusters are encountered in X , P and Q will be in close agreement and
the values of (and (̂ will be high. Conversely, high values of (((̂) indicate
the existence of compact clusters. If the opposite is true, the values of the
modified (and (̂ indices are expected to be low. Thus, in the plot of (̂ versus
m, we seek a significant knee that corresponds to a significant increase of (̂.
The value of m at which this knee occurs indicates the number of clusters tha
underlie X .

For m ! 1 and m ! N the index is not defined. Also, this index tends
to increase as m increases toward N (see Problem 16.6) for random

“18-Ch16-SA272” 17/9/2008 page 882

882 CHAPTER 16 Cluster Validity

data and tends to be flat for data sets that possess a clustering structure
[Jain 88].

■ The Dunn and Dunn-like indices. Let the dissimilarity function between two
clusters Ci and Cj be (Chapter 11)

d(Ci , Cj) ! min
x∈Ci , y∈Cj

d(x, y) (16.17)

and define the diameter of a cluster C as

diam(C) ! max
x,y∈C

d(x, y) (16.18)

that is, the diameter of a cluster C is the distance of its two most distant
vectors. diam(C) may be viewed as a measure of dispersion of C . Then, the
Dunn index for a specific m is defined as

Dm ! min
i!1,..., m

{
min

j!i'1,..., m

(
d(Ci , Cj)

maxk!1,..., m diam(Ck)

)}
(16.19)

It is clear that if X contains compact and well-separated clusters,Dunn’s index
will be large, since the distance between the clusters is expected to be“large”
and the diameter of the clusters is expected to be “small.” Conversely, large
values of Dunn’s index indicate the presence of compact and well-separated
clusters. The index Dm does not exhibit any trend with respect to m, hence
the maximum in the plot of Dm versus m can be used to indicate the number
of clusters that underlie X .

In [Dunn 74], it is shown that if Dm * 1 for a specific clustering, then
this clustering contains compact and well-separated clusters.

A disadvantage of the Dunn index is the considerable amount of time
required for its computation (see Problem 16.7). Moreover, Dunn’s index
is sensitive to the presence of noisy vectors in X , because these are likely to
increase the value of the denominator of Eq. (16.19).

In [Pal 97] three Dunn-like indices are proposed that are more robust to
the presence of noisy vectors. Furthermore, preliminary simulation results
show that they may be used for cases in which shell-shaped clusters underlie
X . These three indices are based on the concepts of the minimum spanning
tree (MST), the relative neighborhood graph (RNG), and the Gabriel graph
(GG), discussed in Chapter 15. Let us consider explicitly the index based on
the MST concept. The other two are defined using similar arguments.

Consider a cluster Ci and the complete graph Gi having vertices that cor-
respond to the vectors of Ci . The weight,we,of an edge,e,of this graph equals
the distance between its two end points, x and y, that is, we ! d(x, y). Let
EMST

i be the set of edges of the MST of Gi and let eMST
i be the edge in EMST

i
with the maximum weight. Then the diameter of Ci, diamMST

i , is defined as
the weight of eMST

i (see Figure 16.6).

“18-Ch16-SA272” 17/9/2008 page 883

16.4 Relative Criteria 883

ei
MST

FIGURE 16.6
A minimum spanning tree.

The dissimilarity between two clusters is defined as the distance of their
mean vectors,d(Ci, Cj) ! d(mi , mj). Then, the Dunn-like index,based on the
concept of the MST, is defined as

DMST
m ! min

i!1,..., m

{

min
j!i'1,..., m

(
d(Ci , Cj)

maxk!1,..., m diamMST
k

)}

(16.20)

The maximum in the plot of DMST
m versus m indicates the underlying num-

ber of clusters in X . Similar arguments are followed to define Dunn-like indices
for GG and RNG graphs (see Problem 16.8).

■ The Davies–Bouldin (DB) and DB-like indices. Let si be a measure of disper-
sion of a cluster Ci (i.e., a measure of its spread around its mean vector) and
d(Ci , Cj) ≡ dij the dissimilarity between two clusters, using an appropriate
dissimilarity measure. Based on these, a similarity index Rij between Ci and
Cj is defined to satisfy the following conditions [Davi 79]:

(C1) Rij ≥ 0.
(C2) Rij ! Rji .
(C3) If si ! 0 and sj ! 0 then Rij ! 0.
(C4) If sj * sk and dij ! dik then Rij * Rik.
(C5) If sj ! sk and dij) dik then Rij * Rik.

These conditions state that Rij is nonnegative and symmetric. If both
clusters, Ci and Cj , collapse to a single point, then Rij ! 0. A cluster Ci with
the same distance from two other clusters,Cj ,Ck, is more similar to the cluster
with the largest dispersion (condition (C4)). For the case of equal dispersions
and different dissimilarity levels, the cluster Ci is more similar to the closer of
the two (condition (C5)).

“18-Ch16-SA272” 17/9/2008 page 884

884 CHAPTER 16 Cluster Validity

A (simple) choice for an Rij that satisfies these conditions is the following
[Davi 79]:

Rij !
si ' sj

dij
(16.21)

provided that dij is symmetric.
Also let Ri be defined as

Ri ! max
j!1,..., m,j ̸!i

Rij , i ! 1, . . . , m (16.22)

Then the DB index is defined as

DBm !
1
m

m∑

i!1

Ri (16.23)

That is, DBm is the average similarity between each cluster Ci , i ! 1, . . . , m,
and its most similar one. As it is desirable for the clusters to have the minimum
possible similarity to each other, we seek clusterings that minimize DB. On
the other hand, small values of DB are indicative of the presence of compact
and well-separated clusters. The DBm index exhibits no trends with respect
to m [Davi 79], thus we seek the minimum value of DBm, in the plot of DBm
versus m.

In [Davi 79], the dissimilarity d(Ci , Cj) between two clusters is defined as

dij ! ∥wi # wj∥q !

(
l∑

k!1

|wik # wjk|q
)1/q

(16.24)

Also, the dispersion of a cluster Ci is defined as

si !

⎛

⎝ 1
ni

∑

x∈Ci

∥x # wi∥r

⎞

⎠
1/r

(16.25)

where ni is the number of vectors in Ci . (Compare this definition with that
of the diameter of a cluster defined earlier.)

In [Pal 97] three variants of the DB index, based again on the MST, RNG,
and GG concepts, are proposed. We focus on the MST case. Let sMST

i be the
diamMST

i ,as defined in the Dunn-like index,and let dij be the distance between
the mean vectors of Ci, Cj . Then, we define

RMST
ij !

sMST
i ' sMST

j

dij
(16.26)

It is easy to show that RMST
ij satisfies the conditions (C1)–(C5) (see Problem

16.10). Defining RMST
i ! maxj!1,..., m,j ̸!i RMST

ij , the MST DB index is defined as

DBMST
m !

1
m

m∑

i!1

RMST
i (16.27)

“18-Ch16-SA272” 17/9/2008 page 885

16.4 Relative Criteria 885

The minimum in the plot of DBMST
m versus m is an indication of the number

of clusters that underlie X .
Using arguments similar to these, we may define DBRNG

m and DBGG
m .

■ The silhouette index ([Kauf 90]). Let Cci denote the cluster where xi ∈ X
belongs, i ! 1, . . . , N . For each xi let ai be the average distance between xi
and the rest of the elements of Cci , that is,

ai ! dps
avg(xi, Cci # {xi})

where dps
avg(·, ·) denotes the average distance measure between a point and a

set (see Section 11.2.1). Let also bi be the average distance between xi and
its closest cluster excluding Cci , that is,

bi ! min
k!1,...,m,k ̸!ci

dps
avg(xi , Ck)

Then the silhouette width of xi is defined as

si !
bi # ai

max(bi , ai)
(16.28)

It is not difficult to see that #1 $ si $ 1. Values of si close to 1 imply that
the distance of xi from the cluster where it belongs (Cci) is significantly less
than the distance between xi and its nearest cluster excluding Cci . This is an
indication that xi is well clustered. On the other hand, values of si close to
#1 imply that the distance between xi and Cci is significantly higher than the
distance between xi and its nearest cluster excluding Cci . This is an indication
that xi is not well clustered. Finally,values of si close to 0 indicate that xi lies
close to the border between the two clusters.

Based on the definition of si, the silhouette of the cluster Cj , j ! 1, . . . , m,
is defined as

Sj !
1
nj

∑

i:xi∈Cj

si (16.29)

where nj is the cardinality of Cj , and the global silhouette index is defined as

Sm !
1
m

m∑

j!1

Sj (16.30)

Clearly, Sm ∈ [#1, 1]. In addition, the higher the value of Sm, the better the
corresponding clustering is. Therefore, the maximum in the plot of Sm versus
m is taken to indicate the underlying number of clusters in X .

■ The Gap statistic ([Tibs 01]). Let Dq denote the sum of the distances between
all pairs of patterns in cluster Cq, that is,

Dq !
∑

xi∈Cq

∑

xj∈Cq

d(xi , xj)

“18-Ch16-SA272” 17/9/2008 page 886

886 CHAPTER 16 Cluster Validity

and let

Wm !
m∑

q!1

1
2nq

Dq (16.31)

Clearly, a low value of Wm indicates a clustering of compact clusters.
The idea here is to compare the curve of log Wm versus m with the

corresponding curve obtained from data uniformly distributed within a hyper-
rectangle that contains the data points of X [Hast 01] (see also [Tibs 01] for a
more formal discussion on this issue). To this end, and for each m,n data sets
Xr

m,r ! 1, . . . , n,are generated,as indicated before,and the average (in theory
the expectation) En(log(W r

m)) over the log(W r
m)s of the corresponding Xr

ms
is computed. Then the value of m for which log(Wm) falls the farthest below
the reference curve formed by En(log(W r

m)) is taken to indicate the number
of clusters in X . This is formalized via the so-called Gap statistic, which is
defined as

Gapn(m) ! En(log(W r
m)) # log(Wm) (16.32)

The estimate of the number of clusters in X is taken to be the value that
maximizes Gapn(m) (within some tolerance).

For the computational implementation of the Gap statistic we proceed as
follows:

• For each value of m in [mmin, mmax] do
⃝ Cluster the data set X and compute log(Wm)

⃝ Generate n reference data sets and compute the Gap statistic via Eq.
(16.32).

⃝ Define sm ! sdm
√

1 ' 1/n, where sdm is the standard deviation of the
log(W r

m)s around their average value.

• Choose the smallest m for which Gapn(m) ≥ Gapn(m ' 1) # sm'1

The Gap statistic can be used with any distance measure between points. In
addition, it works well for the case where the data of X form a single cluster.
Experimental results ([Tibs 01]) show that the Gap statistic outperforms sev-
eral other indices. However, when the data are concentrated on a subspace
of Rl , the method generating the Xr

ms, as described before, degrades the
performance of the Gap statistic.

■ Information Theory based criteria. A different philosophy that may be used
for the estimation of the number of clusters m relies on the determination
of a model that best fits the available data, without having any knowledge of
their true distribution (see, for example, [Lu 00]).

Let us define the following criterion function:

C(!, K) ! #2L(!) ' '(K) (16.33)

“18-Ch16-SA272” 17/9/2008 page 887

16.4 Relative Criteria 887

where ! is the parameter vector of the model, L(!), is the log-likelihood
function (see Eq. (2.58)), K is the order of the model, that is, the dimen-
sionality of !, and ' is an increasing function of K . Typical choices of '
are '(K) ! 2K (Akaike Information Criterion,AIC [Akai 85]), '(K) ! 2KN

N#K#1
(Consistent AIC [Hurv 89]), '(K) ! K ln N (Minimum Description Length
(MDL) Criterion [Riss 78, Riss 89] and Bayesian Information Criterion (BIC)
[Schw 76, Fral 98]). Note that K is a strictly increasing function of the
number of clusters, m, since the higher the m, the larger the dimensional-
ity of !. For example, in the case where p(x; !) is a weighted summation of
m l-dimensional Gaussian distributions, each one corresponding to a clus-
ter, ! consists of the ml parameters associated with the mean values of
the distributions, plus ml(l'1)

2 parameters associated with the covariance
matrices of the distributions plus the m # 1 weighting parameters. Thus,
K ! (l ' l(l'1)

2 ' 1)m # 1. In words,K is an increasing linear function of m.
The aim is to minimize C with respect to ! and K . We proceed as follows.

First, the set of candidate models is fixed,involving models of similar structure
but of different orders. Let m ∈ [mmin, mmax] for the models of the above set.
Then for each value of mi ∈ [mmin, mmax],we optimize C(!, mi) with respect
to !,that is,we determine the maximum likelihood estimation !i . Then,among
all pairs (!i, mi), we choose the one, say (!j , mj), that minimizes C . Thus, the
estimated number of clusters is mj . In the case where it is desirable to choose
the best among models of different structure, we first identify all the subsets,
each one containing similar models of differing order. Then,we determine the
best model of each subset as described above. Finally, among these models,
we select the one that leads to the minimum value of C .

Other indices suitable for hard clusterings have also been proposed. For exam-
ple, in [Mill 80] and [Mill 85] many indices of this kind are tested on specific data
sets (see, also, [Gord 99]). Also, in [Kirl 00] two new indices are presented and
their relation to the method discussed in Section 12.3, for estimating the number of
clusters, is investigated. Additional indices may be found in [Shar 96, Halk 00]. In
[Halk 01] an index that takes into account the density of the clusters is proposed.
An evaluation of several indices may be found in [Halk 02a, Halk 02b]. Finally, in
[Bout 04] a number of validity indices suitable for graph partitioning is considered.

16.4.2 Fuzzy Clustering
In this section we consider indices suitable for fuzzy clustering. In this context,
we seek clusterings that are not very fuzzy, that is, those whose clusters exhibit
small overlap. In other words, we seek clusterings where most of the vectors of X
exhibit high grade of membership in only one cluster. Recall that a fuzzy clustering is
defined by the N % m matrix U ! [uij],where uij denotes the grade of membership
of the vector xi in the j-th cluster. Also, let W ! {wj , j ! 1, . . . , m} be the set of the
cluster representatives.

“18-Ch16-SA272” 17/9/2008 page 888

888 CHAPTER 16 Cluster Validity

The strategy followed for the hard clustering case is also adopted here. That
is, we define an appropriate index q (not to be confused with the fuzzifier) and
we search for the minimum or the maximum in the plot of q versus m. In the case
where q exhibits a trend with respect to m in the range [mmin, mmax], we seek a
significant knee of decrease or increase of q.

Indices for Clusters with Point Representatives
A. Indices that Involve Only U
One such index is the partition coefficient [Bezd 74], which is defined as

PC !
1
N

N∑

i!1

m∑

j!1

u2
ij (16.34)

where uij ’s are the values obtained after the convergence of the adopted fuzzy
clustering algorithm.

The range of values for PC is [1/m, 1]. This index is computed for values of m
greater than 1, since for m ! 1, it is trivially equal to 1. The closer to unity the PC,
the harder the clustering is or, alternatively, the smaller the “sharing” of the vectors
in X among different clusters. The lowest value of PC is obtained when all uij ’s
are equal, that is, uij ! 1/m, j ! 1, . . . , m, i ! 1, . . . , N . Thus, the closer the value of
PC to 1/m, the fuzzier the clustering. A value close to 1/m indicates that either
X possesses no clustering structure or the adopted clustering algorithm failed to
unravel it [Pal 95].

Another index of this category is the partition entropy coefficient [Bezd 75],
which is defined as

PE ! #
1
N

N∑

i!1

m∑

j!1

(uij loga uij) (16.35)

where a is the base of the logarithm. This index is also computed for values of m
greater than 1. Its minimum value equals 0 and its maximum loga m. The closer
the value of PE to 0, the harder the clustering is. On the other hand, the closer the
value of PE to loga m, the fuzzier the clustering is. As in the previous case, values
close to loga m indicate the absence of any clustering structure in X or the inability
of the clustering algorithm to reveal it [Pal 95].

Both of these indices measure the amount of “overlap”among clusters, without
utilizing any additional information concerning the positions of the data vectors and
the cluster representatives in space.

A disadvantage of both PC and PE indices is that they exhibit a dependence on
m with a trend to increase or decrease, respectively,as m increases. Thus,one seeks
significant knees of increase (for PC) or decrease (for PE) in the plot of the indices
versus m. Moreover, they are also sensitive to the fuzzifier q. It can be shown
(Problem 16.13) that as q → 1',6 both PC and PE give the same values for all m’s;

6 This notation means that q tends to 1 from the right.

“18-Ch16-SA272” 17/9/2008 page 889

16.4 Relative Criteria 889

that is, they are unable to discriminate between different values of m. On the other
hand, as q → +, both PC and PE exhibit the most significant knee at m ! 2 (see
Problem 16.13). The behavior of PC and PE is illustrated via the following example.

Example 16.8
Let X be a data set that consists of three groups of two-dimensional vectors, each containing
100 vectors. The groups stem from normal distributions with means [1, 1]T , [4, 4]T , [7, 1]T ,
respectively (see Figure 16.7a). All covariance matrices are equal to the identity 2 % 2 matrix.
We run the fuzzy c-means algorithm for q ! 1.5, 2, 3, 5 and m ! 1, . . . , 10. Figure 16.7b shows
the behavior of the PC index. One can observe that for q ! 1.5 and q ! 2, the corresponding
plots exhibit a significant knee at m ! 3, which is the correct number of (the natural) clusters.
The plots for q ! 3 and q ! 5 coincide. This implies that no significant change in the behavior
of the index is expected for q ≥ 3. Moreover, no peak is encountered; that is, no conjecture
can be made for the number of clusters. Also, notice the general decreasing trend as m
increases.

Figure 16.7c shows the behavior of the PE index. The plots corresponding to q ! 1.5 and
q ! 2 exhibit a significant knee at m ! 3. Also, as in the previous case, no significant change
in the behavior of the index is expected for q ≥ 3, and no minimum is encountered for q ≥ 3.
Finally, PE exhibits an increasing trend as m increases.

Other indices of this kind have also been proposed in the literature (e.g.,
[Wind 81]). We consider next indices that involve X , U , and W .

B. Indices Involving W, U, and the Data Set X
Let us define the so-called cluster variation as $

q
j !

∑N
i!1 uq

ij∥xi # wj∥2 (compare
this with the dispersion used in the DB index) and the total variation as $q !∑m

j!1 $
q
j . The parameter $q may be viewed as a measure of compactness of the

specific clustering. Also let dmin ! mini,j!1,..., m,i ̸!j ∥wi # wj∥2 be a measure of

22

q 5 1.5

q 5 2

q 5 3, q 5 5

1 4 7 10
m

(c)

PE

0

0.5

1.5

2

1

2.5
q 5 1.5

q 5 2

q 5 3, q 5 5

1 4 7 10
m

PC

(b)

0.1

0.4

0.7

1

22 2 6 10
m

(a)

1

4

7

FIGURE 16.7
(a) The data set. (b) The plot of PC versus m. (c) The plot of PE versus m.

“18-Ch16-SA272” 17/9/2008 page 890

890 CHAPTER 16 Cluster Validity

separability of the clusters in X , where wj denotes the representative of the j-th
cluster j ! 1, . . . , m. Then the Xie–Beni index,which is also called the compactness
and separation validity function, is defined as

XB !
$2/N
dmin

(16.36)

This index is usually employed for the validation of clusterings produced by the
fuzzy c-means algorithm when the Euclidean distance is in use. Note that despite
the fact that the fuzzifier q in the fuzzy c-means may have any value greater than 1,
in the XB index the value of q involved in $q is restricted to 2.

It is clear that for compact and well-separated clusters, small values of XB are
expected. On the other hand, small values of XB indicate compact and well-
separated clusters. As stated in [Xie 91], the XB index decreases monotonically
as m gets very close to N . One way to handle this problem is to determine the
starting point, mmax, of the monotonicity behavior and to search for the minimum
value of XB in the range [2, mmax].

Let

Jq !
N∑

i!1

m∑

j!1

uq
ij∥xi # wj∥2 (16.37)

(recall that this is the cost function minimized by the fuzzy c-means clustering
algorithm when the squared Euclidean distance is in use). Then XB may be written
in terms of J2 as

XB !
J2

Ndmin
(16.38)

Thus, minimization of XB implies minimization of J2.
Removal of the constraint q ! 2,used in the definition of XB,allows the definition

of the generalized XB index as

XBq !
$q

Ndmin
(16.39)

It can be shown (Problem 16.14) that, as q → +, XB tends to + and XBq becomes
indeterminate.

Another index that combines X , W , and U is the Fukuyama–Sugeno index
[Pal 95], which is defined as

FSq !
N∑

i!1

m∑

j!1

uq
ij

(
∥xi # wj∥2

A # ∥wj # w∥2
A

)
(16.40)

where w is the mean vector of X and A is an l % l positive definite, symmetric
matrix. Recall that ∥ · ∥A is the A norm defined in Section 2.4. When A ! I , the
above distance becomes the squared Euclidean distance.

The first of the two terms in the parenthesis measures the compactness of the
clusters, and the second one measures the distance of the cluster representatives,

“18-Ch16-SA272” 17/9/2008 page 891

16.4 Relative Criteria 891

wi , from the overall mean vector w. It is clear that for compact and well-separated
clusters we expect small values for FSq. Furthermore,small values of FSq are indica-
tive of compact and well-separated clusters. As far as the limiting behavior of FSq is
concerned, it can be shown (Problem 16.15) that (a) as q → 1', FSq behaves like
tr(Sw), the trace of the within scatter matrix (see Chapter 5), and (b) as q → +,FSq
tends to 0.

In [Gath 89],three additional indices are proposed that are based on the concepts
of hypervolume and density. Let us define the fuzzy covariance matrix of the j-th
cluster as

,j !

∑N
i!1 uq

ij(xi # wj)(xi # wj)T

∑N
i!1 uq

ij

(16.41)

The fuzzy hypervolume of the j-th cluster is defined as

Vj ! |,j |1/2 (16.42)

where |,j | is the determinant of ,j . Note that this is a measure of compactness of
the j-th cluster. The smaller the value of Vj , the more “compact” the j-th cluster is.

The total fuzzy hypervolume is defined as

FH !
m∑

j!1

Vj (16.43)

Small values of FH indicate the existence of compact clusters.
Let Xj ! {x ∈ X :(x#wj)T ,#1

j (x#wj))1}; that is,Xj contains all the vectors in
X that are within a prespecified (small) region around wj . Also let Sj !

∑
xi∈Xj

uij

be the so-called sum of central members of the j-th cluster. The quantity Sj/Vj is
called the fuzzy density of the j-th cluster. Then the average partition density is
defined as

PA !
1
m

m∑

j!1

Sj

Vj
(16.44)

A different measure is the partition density index and it is defined as

PD !
S

FH
(16.45)

where S !
∑m

j!1 Sj .
“Compact” clusters lead to large values of PA and PD, and vice versa, large

values of PA and PD are indications of “compact”clusters.
Note that all these indices, except PE and PC, may be used in the framework of

hard clustering as well, by defining

uij !

{
1, if d(xi , Cj) ! mink!1,..., m d(xi , Ck)

0, otherwise
i ! 1, . . . , N (16.46)

Additional indices for fuzzy clustering validation are discussed in [Boug 04, Sent 07].

“18-Ch16-SA272” 17/9/2008 page 892

892 CHAPTER 16 Cluster Validity

Indices for Shell-Shaped Clusters
Let us now focus on the case of shell-shaped clusters (see Chapter 14). The PE
and PC indices, discussed previously, may also be used in this case, since they
involve no information concerning the geometrical characteristics of X .7 However,
the rest of the previously discussed indices need to be modified accordingly. Here,
the representatives of each cluster,are shell shaped and they are denoted by (j .The
parameter vector !j contains all the necessary parameters for the identification of (j .
For a vector xi , we define its distance from (j in terms of

&ij ! xi # xi
j (16.47)

where xi
j is the point on (j that is, closer to xi . It is not difficult to show (Problem

16.16) that for clusters of spherical shape, where !j ! (cj , rj), with cj being the
center and rj being the radius of the corresponding sphere,

&ij ! (xi # cj) # rj
xi # cj

∥xi # cj∥
(16.48)

However, for general types of shells, computation of the &ij ’s is not always an
easy task. In such cases we resort to approximations of xi

j ([Kris 95a]).
The fuzzy shell covariance matrix for the j-th cluster is defined in accordance

with Eq. (16.41) as

,S
j !

∑N
i!1 uq

ij&ij&ij
T

∑N
i!1 uq

ij

(16.49)

Then the shell hypervolume of a cluster is defined as

V S
j ! |,s

j |1/2 (16.50)

Let us define XS
j ! {xi : &ij

T (,S
j)#1&ij) 1} and SS

j !
∑

xi∈XS
j

uij . Then, the fuzzy

shell density, the average partition shell density, and the shell partition density
are defined as before.

Finally, another measure suitable for shell-shaped clusters is the total fuzzy
average shell thickness, T S [Kris 95b], which is defined as

T S !
m∑

j!1

T S
j (16.51)

where T S
j is the so-called fuzzy average shell thickness of the j-th cluster,defined as

T S
j !

∑N
i!1 uq

ij∥&ij∥2

∑N
i!1 uq

ij

(16.52)

7 Such characteristics may concern the shape of the clusters, the position of the representatives, etc.

“18-Ch16-SA272” 17/9/2008 page 893

16.5 Validity of Individual Clusters 893

It is clear that the “thicker” the clusters, the smaller the value of T S . Further-
more, small values of T S indicate “thick” clusters. However, T S tends to decrease
monotonically as the number of clusters increases.

The comments made for the total fuzzy hypervolume, the average partition
density and the partition density indices are also valid here.

Note that PAS, PDS, and T S can be thought as measures of the density of the
clusters formed by the vectors of X around their representatives.

A few other indices of this kind have also been proposed and discussed in
[Dave 90, Kris 93]. A detailed overview of objective structural validity criteria is
given in [Halk 02a, Halk 02b]. A general comment applied to all these indices is
that they are sensitive to the size and the density of the points in the clusters.

Finally, using Eq. (16.46), we obtain the shell density, the average partition shell
density, and the shell partition density for the hard clustering case.

Remarks

■ An alternative way of determining the number of clusters underlying in
the data set X , is to perform the so called progressive clustering method
(e.g., [Kris 95b]). According to this method we run first the clustering
algorithm at hand for an overspecified number of clusters, m. Then, we
remove spurious clusters, we merge compatible clusters and we identify
the “good” clusters. Let k be the number of spurious and “good” clusters
defined above. Then, we temporarily remove the vectors contained in the
above clusters from the data set and we apply the algorithm on the reduced
data set for m#k clusters. This procedure is repeated until no “good” clus-
ters can be removed anymore or no vectors are left in the data set. The
output of the above method is the set of the “good” clusters determined
above.

The advantage of this method is that, in general, it is not necessary to run
the clustering algorithm for all values of m in a prespecified range. Also, this
method is less influenced by the presence of noise. However,one must estab-
lish criteria concerning the merging and the removing operations involved in
the above method as well as criteria for the identification of “good”clusters.

■ A different philosophy for the determination of the number of clusters under-
lying in the data set X employs the idea of information criteria (IC), such as
Akaike and the Minimum Description Length (MDL) criteria (see, e.g., [Sclo
87, Lang 98]).

16.5 VALIDITY OF INDIVIDUAL CLUSTERS
There are two cases in which individual cluster validity may be of interest. One is
when we want to test whether a given subset of X forms a “good” cluster. “Good”

“18-Ch16-SA272” 17/9/2008 page 894

894 CHAPTER 16 Cluster Validity

in this case is interpreted in terms of compactness, with respect to its own data,
and isolation with respect to the other vectors of X . The other case concerns the
validation of a cluster resulting from the application of a clustering algorithm. To
this end, both external and internal criteria may be used.

16.5.1 External Criteria
In this section we consider hard clusters and ordinal-type proximity matrices
[Bail 82, Jain 88]. The goal is to test whether a given subset of X forms a compact
and well-separated cluster. In [Bail 82], two indices are defined, one for compact-
ness and one for isolation. Both are based on graph theory concepts. However,
some necessary definitions must first be provided.

Let us consider the proximity graph G(p), with p ()N (N # 1)/2) edges, whose
vertices correspond to the N vectors of X and whose edges correspond to the p
smallest entries of the upper diagonal of the proximity matrix of X , P. In other
words, a pair of vertices xi and xj is connected with an edge if the dissimilarity
d(xi , xj) is among the p smallest dissimilarity values of all possible pairs of vectors
in X (see Chapter 13). Also, let C be a predetermined subset of X , with k vectors.
Our goal is to determine whether C is a good cluster. For the G(p) and the given
P,we define the sets Ain(p),Aout(p), and Abet(p) as follows: (a) Ain(p) is the set of
edges whose end points are vectors in C , (b) Aout(p) is the set of edges whose end
points are vectors in X # C , and (c) Abet(p) is the set of edges that connect vectors
in C with vectors in X # C .

For a given G(p),let qC (p) be the number of edges connecting vertices in C with
vertices in X # C and rC (p) be the set of edges connecting vertices in C . Clearly,
these indices depend on p. It is easy to see that low values of qC (p) indicate a
well-isolated cluster, and large values of rC (p) indicate a compact cluster. In order
to extract conclusions about the compactness and isolation of C , we consider the
behavior of these indices with respect to p. To this end, we plot the indices versus
p. It is expected that an isolated and compact cluster will exhibit low values for
qC (p) and high values for rC (p), for a “wide” range of values of p. The size of this
range is application dependent.

A drawback of these indices is that they do not provide information with respect
to a random population. To overcome this, an extension of the indices within the
probabilistic framework is discussed in [Bail 82].

16.5.2 Internal Criteria
The aim here is to validate a single cluster that results from a clustering algorithm
using only the information residing in the proximity matrix, P, of X .

■ Hard clustering case

• Ordinal proximity matrices. A method for the evaluation of a cluster is
given in [Ling 72] and [Ling 73]. This method is well suited for hierarchies
of clusterings, produced by a hierarchical clustering algorithm. It relies on

“18-Ch16-SA272” 17/9/2008 page 895

16.5 Validity of Individual Clusters 895

the lifetime, L(C), of a cluster C , which is given by L(C) ! da(C) # df (C)
where df (C) is the level of hierarchy where C is formed and da(C) is the
level where C is absorbed in a larger cluster. The statistical index used is the
so-called Ling index, which is defined as the probability of the lifetime of
a randomly selected cluster exceeding L(C). Finally, other methods in this
category are the so-called best case method [Bail 82] and the CM (clustering
method) reachable method [Bake 76].

• Ratio-scaled proximity matrices. In this case, we may adopt the hard
hypervolume and the hard density (Section 16.4.2) when we seek compact
clusters and the hard shell hypervolume and hard shell density when shell-
shaped clusters are considered. Here, an empirically established threshold,
), is used and,according to whether the value of the index is greater or less
than), C is characterized as a “good”cluster or not.

■ Fuzzy clustering case. We first focus on shell-shaped clusters. In this context,
“good”clusters are those that are“compact”around their shell representatives.
In this framework,one can use the shell hypervolume,the shell density indices,
and the fuzzy average shell thickness,defined in Section 16.4. Based on these
indices,a cluster is characterized as a good one according to whether the value
of the corresponding index is greater or less than a prespecified threshold).

All these indices do not take into account the fact that shell clusters
lie in subspaces of the vector space [Kris 95b]. A criterion that takes this
observation into account is the surface density criterion. We present the two-
dimensional case. The criterion measures the number of points in a cluster
per unit curve length. Let us define X& as the set of the vectors in C that
lie at a distance smaller than or equal to &max from the shell representative
(of C and let S !

∑
j:xj∈X & uj . Then, the surface density * of a cluster C is

defined as

* !
S

2+reff
(16.53)

where reff is defined as

reff !
√

trace{,} (16.54)

where , is given in Eq. (16.49) and tr(,) is the trace of ,. The quantity 2+reff
may be viewed as an estimate of the arc length of C (see Problem 16.17). The
higher the value of *, the more dense the cluster is expected to be. Consider
for example Figure 16.8. The clusters depicted there have a circular shape
and their representative circles are of equal radius. Also, the one on the right
is denser around its representative than the one on the left. The value of * for
the right cluster is greater than that for the left cluster.

For compact clusters,indices such as the fuzzy hypervolume or the fuzzy
density of a cluster can be employed.

“18-Ch16-SA272” 17/9/2008 page 896

896 CHAPTER 16 Cluster Validity

(b)(a)

FIGURE 16.8
A sparse and a dense circular cluster.

16.6 CLUSTERING TENDENCY
As discussed in the introduction of the chapter, almost all the clustering algorithms
introduced in the previous sections share an annoying feature. That is, they impose
a clustering structure on a data set X even though the vectors of X do not exhibit
such a structure. Thus, in order to prevent a misleading interpretation of the struc-
ture of the data set X , it would be more sensible to check first whether X possesses a
clustering structure. If this is the case, then one may proceed by applying a cluster-
ing algorithm to X . Otherwise,cluster analysis is likely to lead to misleading results.
The problem of determining the presence or the absence of a clustering structure
in X is called clustering tendency. Usually, this task relies on statistical tests.

Clustering tendency methods have been applied in various application areas
(e.g., [Digg 83, Ripl 81]). However, most of these methods are suitable only for
l ! 2. In the sequel,we discuss the problem in the general l ≥ 2 case. Furthermore,
we focus on methods that are suitable for detecting compact clusters (if any).

In this framework, we test the randomness (null) hypothesis (H0) against the
clustering hypothesis and the regularity hypothesis. Let us define these terms more
precisely.

■ “The vectors of X are randomly distributed, according to the uniform
distribution in the sampling window8 of X”(H0).

■ “The vectors of X are regularly spaced in the sampling window.”
This implies that, they are not too close to each other.

■ “The vectors of X form clusters.”

If the randomness or the regularity hypothesis is accepted, methods alternative
to clustering analysis should be used for the interpretation of the data set X .

8 In [Smit 84] the sampling window is mathematically defined as the compact convex support set for
the underlying distribution of the vectors of the data set X.

“18-Ch16-SA272” 17/9/2008 page 897

16.6 Clustering Tendency 897

FIGURE 16.9
See text for explanation.

There are two key points that have an important influence on the performance
of many statistical tests used in clustering tendency. The first is the dimensionality
of the data, l,which affects the performance in a nonobvious way. This dependence
can be revealed through simulations [Pana 83].

The other key point is the sampling window. Apart from artificial experiments,
in practice, we do not know the sampling window. One of the problems that this
may cause is demonstrated in Figure 16.9. The vectors in the dashed circle are
uniformly distributed in it. Thus, we expect that tests for randomness will identify
this situation. However, if we use as sampling window the region surrounded by
the dash-dotted line (for the same data set), the vectors are no longer uniformly
distributed and the tests for randomness may fail to accept H0. Moreover, due
to the finite extent of the window, the statistical characteristics of the data are
different near the edges of the sampling window than they are in its center. For
example, the distribution of the distances of a vector x ∈ X from the rest of the
vectors of X is different when x is in the center than when it is near the border
of the sampling window. One way to overcome this situation is to use a periodic
extension of the sampling window. Another popular technique is to consider data
in a smaller area inside the sampling window,known as sampling frame. With this
method, we overcome the boundary effects in the sampling frame by considering
points outside it and inside the sampling frame, for the estimation of statistical
properties.

Example 16.9
Consider a data set X that consists of 100 vectors uniformly distributed in the H2 hypercube
(see Figure 16.10a). Figure 16.10b shows the distribution of the distances between the point
x ! [0.5045, 0.4764]T and each of the points of X # {x}. Also, Figure 16.10c shows the

“18-Ch16-SA272” 17/9/2008 page 898

898 CHAPTER 16 Cluster Validity

(a)
0

0

0.5

1

0.5 1
(b)

12

8

4

0
0 10 20

(c)

16

8

0
0 10 20

FIGURE 16.10

(a) The data set X . (b) The distribution of the distances of the point [0.5045, 0.4764]T from the
remaining points in X . (c) The distribution of the distances of the point [0.0159, 0.8089]T from
the remaining points in X .

distribution of the distances between the point y ! [0.0159, 0.8089]T and each of the points
of X # {y}. Note that x lies close to the center of H2 and y lies close to its border.

A method for estimating the sampling window is to use the convex hull of the
vectors in X . However, the distributions for the tests, derived using this sampling
window, depend on the specific data at hand. A second drawback associated with
this approach is the high computational cost for computing the convex hull of X . An
alternative [Zeng 85, Dube 87b] that seems to work well in practice is to define the
sampling window as the hypersphere centered at the mean point of X and including
half of its vectors. The fact that half of the vectors are discarded is not so crucial,
because in the current framework we want to test only whether the vectors of X
possess a clustering structure. If this is the case, then the clusters will be identified
by applying a clustering algorithm to all the data of X . Notice the similarity to the
sampling frame technique discussed earlier.

In the sequel, we define various test statistics, q, suitable for the detection
of clustering tendency. Recall that a crucial quantity we have to determine is
p(q|H0). Moreover, in order to measure the power of q against the regularity
and the clustering tendency hypotheses, we also need to determine the respec-
tive pdf’s under these hypotheses. In the sequel, we provide general guidelines
on how to generate clustered and regularly spaced data sets. This is required
in order to estimate the pdf’s of q under regularity and clustering tendency
hypotheses, via Monte Carlo simulations. Randomly spaced data sets may be gen-
erated by inserting vectors in the sampling window, according to the uniform
distribution.

■ Generation of clustered data. A well-known procedure for generating
(compact) clustered data is the Neyman–Scott procedure [Neym 72]. This
procedure assumes that the sampling window is known. It produces a ran-
dom number of compact clusters, formed at random positions in the sampling
window and each consisting of a random number of points. The number of

“18-Ch16-SA272” 17/9/2008 page 899

16.6 Clustering Tendency 899

points in each cluster follows the Poisson distribution (AppendixA).The tech-
nique requires as inputs the total number of points N of the set, the intensity
of the Poisson process ,, and the spread parameter $ that controls the spread
of each cluster around its center. According to this procedure, we randomly
insert a point yi in the sampling window, following the uniform distribution.
This point serves as the center of the ith cluster,and we determine its number
of vectors, ni , using the Poisson distribution. Then the ni points around yi
are generated according to the normal distribution with mean yi and covari-
ance matrix $2I . If a point turns out to be outside the sampling window,
we ignore it and another one is generated. This procedure is repeated until N
points have been inserted in the sampling window (see Figures 16.11a and b).
In some cases, yi’s are also included as vectors in the set.

■ Generation of regularly spaced data. Perhaps the simplest way to produce
regularly spaced points is to define a lattice in the convex hull of X and to
place the vectors at its vertices. An alternative procedure, known as simple
sequential inhibition (SSI) (see,e.g.,[Jain 88, Zeng 85]),is the following. The
points yi are inserted in the sampling window one at a time. For each point
we define a hypersphere of radius r centered at yi. The next point can be
placed anywhere in the sampling window in such a way that its hypersphere
does not intersect with any of the hyperspheres defined by the previously
inserted points. The procedure stops when a predetermined number of
points have been inserted in the sampling window, or when no more points
can be inserted in the sampling window, after say a few thousand trials (see
Figure 16.11c). A variation of this model allows intersection of these hyper-
spheres up to a certain degree. A measure of the degree of fulfillment of the
sampling window is the so-called packing density, which is defined as

! !
L
V

Vr (16.55)

1

0.5

0
0.1 0.4 0.7

(a) (c)
1

(b)

1

0.5

0
0 0.5 1

1

0.5

0
0 0.5 1

FIGURE 16.11
(a) and (b) Clustered data sets produced by the Neyman–Scott process. (c) Regularly spaced
data produced by the SSI model.

“18-Ch16-SA272” 17/9/2008 page 900

900 CHAPTER 16 Cluster Validity

where L/V is the average number of points per unit volume and Vr is the
volume of a hypersphere of radius r. Vr can be written as

Vr ! Arl (16.56)

where A is the volume of the l-dimensional hypersphere with unit radius,
which is given by

A !
+l/2

((l/2 ' 1)
(16.57)

and ((·) is the gamma function (Appendix A).

16.6.1 Tests for Spatial Randomness
Several tests for spatial randomness have been proposed in the literature. All of them
assume knowledge of the sampling window. The scan test ([Naus 82, Cono 79]),
the quadrat analysis [Grei 64, Piel 69, Mead 74], the second moment structure
[Ripl 77], and the interpoint distances [Ripl 78, Silv 78, Stra 75] provide us with
tests for clustering tendency that have been extensively used when l ! 2. In the
sequel,we discuss three methods for determining clustering tendency that are well
suited for the general l ≥ 2 case. All these methods require knowledge of the
sampling window.

Tests Based on Structural Graphs
In this section, we discuss a test for testing randomness, that is, based on the idea
of the minimum spanning tree (MST) ([Smit 84]). First, we determine the convex
region where the vectors of X lie. Then, we generate M vectors that are uniformly
distributed over a region that approximates the convex region found before (usually
M ! N). These vectors constitute the set X&. Next we find the MST of X ∪ X& and
we determine the number of edges, q, that connect vectors of X with vectors
of X&. This number is used as the statistic index. If X contains clusters, then
we expect q to be small. Conversely, small values of q indicate the presence of
clusters. On the other hand, large values of q indicate a regular arrangement of the
vectors of X .

Let e be the number of pairs of the MST edges that share a node. In [Frie 79],
the following expressions for the mean value of q and the variance of q under the
null (randomness) hypothesis, conditioned on e, are derived:

E(q|H0) !
2MN

M ' N
(16.58)

and

var(q|e, H0) !
2MN

L(L # 1)

[2MN # L
L

'
e # L ' 2

(L # 2)(L # 3)
[L(L # 1) # 4MN'2]

]
(16.59)

“18-Ch16-SA272” 17/9/2008 page 901

16.6 Clustering Tendency 901

where L ! M ' N . Moreover, it can be shown [Frie 79] that if M , N → + and M/N
is away from 0 and +, the pdf of the statistic

q& !
q # E(q|H0)√

var(q|e, H0)
(16.60)

is approximately given by the standard normal distribution. Thus, we reject H0
at significance level ! if q& is less than the !-percentile of the standard normal
distribution. This test exhibits high power against clustering tendency and little
power against regularity [Jain 88].

Tests Based on Nearest Neighbor Distances
Two tests of this kind are the Hopkins test [Hopk 54] and the Cox–Lewis test
[Cox 76, Pana 83]. The tests rely on the distances between the vectors of X and a
number of vectors which are randomly placed in the sampling window.

The Hopkins Test
Let X& ! {yi, i ! 1, . . . , M}, M)) N ,9 be a set of vectors that are randomly dis-
tributed in the sampling window, following the uniform distribution. Also let
X1 ⊂ X be a set of M randomly chosen vectors of X . Let dj be the distance
from yj ∈ X & to its closest vector in X1, denoted by xj , and *j be the distance from
xj to its closest vector in X1 # {xj}. Then the Hopkins statistic involves the lth
powers of dj and *j and it is defined as [Jain 88]

h !

∑M
j!1 dl

j∑M
j!1 dl

j '
∑M

j!1 *l
j

(16.61)

This statistic compares the nearest neighbor distribution of the points in X1 with
that from the points in X &. When X contains clusters,the distances between nearest
neighbor points in X1 are expected to be small, on the average, and, thus, large
values of h are expected. Furthermore, large values of h indicate the presence of
a clustering structure in X . When the points in X are regularly distributed in the
sampling window, it is expected that, on the average, the term

∑M
j!1 dl

j is smaller

than
∑M

j!1 *l
j , thus leading to small values of h. Also, small values of h indicate the

presence of regularly spaced points. Finally, a value around 1/2 is an indication
that the vectors of X are randomly distributed over the sampling window. It can
be shown (e.g., [Jain 88]) that if the generated vectors are distributed according
to a Poisson random process (hypothesis of randomness) and all nearest neighbor
distances are statistically independent,h (under H0) follows a beta distribution,with
(M , M) parameters (Appendix A).

9 Typically M ! 0.1N .

“18-Ch16-SA272” 17/9/2008 page 902

902 CHAPTER 16 Cluster Validity

Simulation results [Zeng 85] show that this test exhibits high power against
regularity for a hypercubic sampling window and periodic boundaries, for
l ! 2, . . . , 5. However, its power is limited against clustering tendency.

The Cox–Lewis Test
This test is less intuitive than the previous one. It was first proposed in [Cox 76] for
the two-dimensional case and it has been extended to the general l ≥ 2 dimensional
case in [Pana 83]. It follows the setup of the previous test with the exception that
X1 need not be defined. For each yj ∈ X&,we determine its closest vector in X , say
xj , and then we determine the vector closest to xj in X # {xj}, say xi . Let dj be the
distance between yj and xj and *j the distance between xj and xi . We consider

all yj ’s for which 2dj/*j is greater than or equal to one. Let M & be the number of
such yj ’s. Then, an appropriate function Rj of 2dj/*j (see [Pana 83]) is defined for
these yj ’s. Finally, we define the statistic

R !
1

M&

M&∑

j!1

Rj (16.62)

It can be shown [Pana 83] that R,under H0,has an approximately normal distribution
with mean 1/2 and variance 12M&. Small values of R indicate the presence of a
clustering structure in X , and large values indicate a regular structure in X . Finally,
values around the mean of R indicate that the vectors of X are randomly arranged in
the sampling window. Simulation results [Zeng 85] show that the Cox–Lewis test
exhibits inferior performance compared with the Hopkins test against the clustering
alternative. However, this is not the case against the regularity hypothesis.

Two additional tests are the so called T -squared sampling tests, introduced in
[Besa 73]. However, simulation results [Zeng 85] show that the these two tests
exhibit rather poor performance compared with the Hopkins and Cox–Lewis tests.

A Sparse Decomposition Technique
This technique begins with the data set X and sequentially removes vectors from it
until no vectors are left [Hoff 87]. Before we proceed further, some definitions are
needed. A sequential decomposition D of X is a partition of X into L1, . . . , Lk sets,
such that the order of their formation matters. Li’s are also called decomposition
layers.

We denote by MST (X) the MST corresponding to X . Let S(X) be the set derived
from X according to the following procedure. Initially, S(X) ! ∅. We move an
end point x of the longest edge,e, of the MST (X) to S(X). Also,we mark this point
and all points that lie at a distance less than or equal to b from x, where b is the
length of e. Then,we determine the unmarked point,y ∈ X , that lies closer to S(X)
and we move it to S(X). Also,we mark all the unmarked vectors that lie at a distance
no greater than b from y. We apply the same procedure for all the unmarked vectors
of X . The procedure terminates when all vectors are marked.

“18-Ch16-SA272” 17/9/2008 page 903

16.6 Clustering Tendency 903

Let us define R(X) ≡ X # S(X). Setting X ! R0(X), we define

Li ! S(Ri#1(X)), i ! 1, . . . , k (16.63)

where k is the smallest integer such that Rk(X) ! ∅. The index i denotes the
so-called decomposition layer. Intuitively speaking, the procedure sequentially
“peels”X until all of its vectors have been removed.

The information that becomes available to us after the application of the
decomposition procedure is (a) the number of decomposition layers k, (b) the
decomposition layers Li, (c) the cardinality, li, of the Li decomposition layer,
i ! 1, . . . , k, and (d) the sequence of the longest MST edges used in deriving the
decomposition layers. The decomposition procedure gives different results when
the vectors of X are clustered and when they are regularly spaced or randomly
distributed in the sampling window. Based on this observation we may define
statistical indices utilizing the information associated with this decomposition pro-
cedure. For example, it is expected that the number of decomposition layers, k, is
smaller for random data than it is for clustered data. Also, it is smaller for regularly
spaced data than for random data (see Problem 16.20). This situation is illustrated
in the following example.

Example 16.10
(a) We consider a data set X1 of 60 two-dimensional points in the unit square. The first 15
points stem from a normal distribution, with mean [0.2, 0.2]T and covariance matrix 0.15I .
The second, the third, and the fourth group of 15 points also stem from normal distributions
with means [0.2, 0.8]T , [0.8, 0.2]T , and [0.8, 0.8]T , respectively. Their covariance matrices
are also equal to 0.15I . Applying the sparse decomposition technique on X1, we obtain 15
decomposition layers.

(b) We consider another data set X2 of 60 two-dimensional points, which are now randomly
distributed in the unit square. The sparse decomposition technique in this case gives 10
decomposition layers.

(c) Finally, we generate a data set X3 of 60 two-dimensional points regularly distributed
in the unit square, using the simple sequential inhibition (SSI) procedure. The sparse
decomposition technique gives 7 decomposition layers in this case.
Figures 16.12, 16.13, and 16.14 show the first four decomposition layers for clustered, ran-
dom, and regularly spaced data. It is clear that the rate of point removal is much slower for
the clustered data and much faster for the regular data.

Several tests that rely on the preceding information are discussed in [Hoff 87].
One such statistic that exhibits good performance is the so-called P statistic,which
is defined as follows:

P !
∏k

i!1

li
ni # li

(16.64)

“18-Ch16-SA272” 17/9/2008 page 904

904 CHAPTER 16 Cluster Validity

L1 L2

L3 L4

FIGURE 16.12
The first four decomposition layers for clustered data in the unit square (Example 16.10(a)).

where ni is the number of points in Ri#1(X). In words, each factor of P is the ratio
of the removed to the remaining points at each decomposition stage.

Preliminary simulation results show high power of P against the clustering alter-
native. The required pdf’s of P under H0, H1, and H2 are estimated using Monte
Carlo techniques, since it is difficult to derive theoretical results [Hoff 87].

Finally, tests for clustering tendency for the cases in which ordinal proximity
matrices are in use have also been proposed (e.g., [Fill 71, Dube 79]). Most of
them are based on graph theory concepts. Let GN (v) be a threshold graph with
N vertices, one for each vector of X (Chapter 13). Then, graph properties, such
as the node degree and the number of edges needed for GN (v) to be connected,
are used in order to investigate the clustering tendency of X . Specifically, suppose
that we use the number of edges n needed to make GN (v) connected. Obviously,
n depends directly on v. That is, increasing v, we also increase n. Let v∗ be the
smallest value of v for which GN (v∗) becomes connected, for the given proximity
matrix. Let V be the random variable that models v. Also, let P(V $ v|N) be the
probability that a graph with N nodes and v randomly inserted edges is connected
(this is provided from tables in [Ling 76]). Then, for the specific v∗, we determine
P(V $ v∗|N). Very high values of P(V $ v∗|N) indicate that the proximity matrix

“18-Ch16-SA272” 17/9/2008 page 905

16.7 Problems 905

L1 L2

L4L3

FIGURE 16.13
The first four decomposition layers for randomly distributed data in the unit square (Example
16.10(b)).

was not chosen at random. This is because the within-cluster edges will tend to
occur before the between-cluster edges when the data are clustered, thus, delaying
the formation of a connected graph.

16.7 PROBLEMS
16.1 Let X be a set of vectors. Show that if the number of clusters in a clustering

C of X is m and the number of groups in a partition P of X is q ̸! m, then
the maximum values of the Rand, the Jaccard, and the Fowlkes and Mallows
statistics are less than 1.

16.2 Prove Eq. (16.10).

16.3 a. Repeat Example 16.2 with two-dimensional vectors steming from the
normal distributions with means [0.2, 0.2]T , [0.2, 0.8]T , [0.8, 0.2]T ,
[0.8, 0.8]T , and covariance matrices 0.22I .

b. Repeat the experiment when all covariance matrices are equal to 0.52I .

“18-Ch16-SA272” 17/9/2008 page 906

906 CHAPTER 16 Cluster Validity

L1 L2

L4L3

FIGURE 16.14
The first four decomposition layers for regularly spaced data in the unit square (Example
16.10(c)).

16.4 Prove that the values of the CPCC in Section 16.3.2 lie in the interval [#1, 1].

16.5 Consider a data set X of six vectors, whose (ordinal) proximity matrix is

P !

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 5 7 8 9
1 0 3 6 10 11
5 3 0 12 13 14
7 6 12 0 6 4
8 10 13 6 0 2
9 11 14 4 2 0

⎤

⎥⎥⎥⎥⎥⎥⎦

Run the single and the complete link algorithms on X and compare the
resulting dendrograms, using the % statistic. Comment on the results.

16.6 Let X ! {xi , i ! 1, . . . , 12}, with x1 ! [#4, 0]T , x2 ! [#3, 1]T , x3 !
[#3, #1]T , x4 ! [#2, 0]T , x5 ! [2, 0]T , x6 ! [3, 1]T , x7 ! [4, 0]T , x8 !
[3, #1]T , x9 ! [#1, 7]T , x10 ! [0, 8]T , x11 ! [1, 7]T , x12 ! [0, 6]T .

“18-Ch16-SA272” 17/9/2008 page 907

16.7 Problems 907

a. Let m ! 2. Consider the vectors w1 ! [0, 0]T and w2 ! [0, 7]T , such
that the first one represents the points x1 through x8 and the second
one represents the rest of the points in X . Compute the values of (and
(̂ (Section 16.4.1).

b. Let m ! 3. Consider the vectors w1 ! [#3, 0]T w2 ! [3, 0]T , and w3 !
[0, 7]T , so that the first one represents the points x1 through x4, the
second represents the points x5 through x8, and the third represents
the rest of the points of X . Compute the values of (and (̂.

c. Let m ! 4. Define w1 and w2 as in the previous case. Also, define
w3 ! [#0.5, 7.5]T and w4 ! [0.5, 6.5]T , so that the first represents x9
and x10, while the second represents x11 and x12. Compute the values
of (and (̂.

d. What conclusions can you draw from the comparison of the values of (

and (̂ obtained from the preceding three cases?

16.7 Estimate the number of operations required for the computation of Dunn’s
index, Dm, given by Eq. (16.19). What is the total number of computations
required for the computation of Dm, for m ! 1, . . . , N ?

16.8 Define explicitly diamGG
i and diamRNG

i that are involved in the definitions
of the GG and the RNG Dunn-like indices. Using these definitions derive
explicitly the GG and the RNG Dunn-like indices.

16.9 Show that DGG
m $ DRNG

m $ DMST
m .

Hint: Use the fact that for a cluster Ci , EMST
i ⊆ ERNG

i ⊆ EGG
i .

16.10 a. Show that the RMST
ij given by Eq. (16.26) satisfies the conditions (C1)–

(C5).

b. Taking into account the definition of RMST
ij , define RGG

ij and RRNG
ij and

show that they also satisfy the conditions (C1)–(C5).

16.11 Show that DBGG
m ≥ DBRNG

m ≥ DBMST
m .

Hint: Use the fact that for a cluster Ci , EMST
i ⊆ ERNG

i ⊆ EGG
i .

16.12 Explain intuitively why the MST DB is more robust to the presence of noisy
vectors than the original DB.

16.13 a. Prove that, as q → 1', PC and PE tend to 1 and 0, respectively.

b. Prove that, as q → +, PC and PE tend to 1/m and loga m, respectively.

c. Show that in the latter case,in the plots of PC and PE,the most significant
knee is exhibited at m ! 2.

16.14 Prove that, as q → +, the XB index tends to +, while XBq becomes
indeterminate.

“18-Ch16-SA272” 17/9/2008 page 908

908 CHAPTER 16 Cluster Validity

Hint: Use the following facts: (a) limq→+ wi ! w, where w is the mean
vector of all vectors in X , i ! 1, . . . , m, and (b) for q → +, uij ! 1/m.

16.15 a. Prove that limq→1' FSq ! 2N trace(Sw) # N trace(Sm), where Sw and Sm
are the within and the mixture scatter matrices defined in Chapter 5.

b. Prove that limq→+ FSq ! 0.

Hint: Use the hints given in the previous problem.

16.16 Prove that the distance of a point xi from a sphere with center cj and radius
rj is given by Eq. (16.48).

16.17 Consider a cluster C that consists of the points of a circular arc of radius r,
subtending an angle ' (of course, this case is of theoretical interest, since
the number of vectors in C would be infinite). The covariance matrix of this
arc is

, !
1
L'

∫ '/2

#'/2
xxT dl # mmT (16.65)

where x ! [r cos ", r sin "]T is a point on the arc, dl ! rd", and L' is the
arc length. (a) Prove that

* !
'

2+

√
1 # 4sin2('/2)

'2

(16.66)

What is the value of * when ' ! 2+?
(b) Repeat for the case where the length of the cluster is a line segment

of length L.

16.18 Consider a square of side a. Consider a grid of horizontal and vertical lines
in the square so that the distance between two adjacent parallel lines is r.
Place in it (a/2r)2 vectors (of course,a/2r is assumed to be an integer) such
that each of them lies at an intersection point of a grid and the circles of
radius r centered at these points do not intersect at more than one point.
(a) Compute the packing density of the square. Repeat the above for the
case where r is replaced by r/2.

(b) Assuming that no circle is allowed to have a part of it outside the square,
is it possible to determine an arrangement of points in the square that results
in a higher packing density?

16.19 Sometimes we say that the Hopkins test includes“first-order”information on
the data set X and the Cox–Lewis test “second-order” information. Can you
justify this proposition?

16.20 Repeat Example 16.10 and explain why (a) the number of decomposition
layers is greater in clustered data than in random data and (b) the number
of decomposition layers is greater in random data than in regular data.

“18-Ch16-SA272” 17/9/2008 page 909

References 909

REFERENCES
[Akai 85] Akaike H.,“Prediction and Entropy,”inA Celebration of Statistics (AtkinsonA.C.,Fienberg

S.E., eds.), Sprieger-Verlag, New York, pp. 1–24, 1985.

[Back 81] Backer E., Jain A.K. “A clustering performance measure based on fuzzy set decomposi-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 3(1), pp. 66–75,
1981.

[Bail 82] Bailey T.A.,Dubes R.C.“Cluster validity profiles,”Pattern Recognition,Vol. 15,pp. 61–83,
1982.

[Bake 74] Baker F.B.“Stability of two hierarchical grouping techniques—Case 1. Sensitivity to data
errors,” Journal of the American Statistical Association,Vol. 69, 440–445, 1974.

[Bake 76] Baker F.B., Hubert L.J. “A graph-theoretic approach to goodness of fitting complete-link
hierarchical clustering,”Journal of the American Statistical Association,Vol. 71,pp. 870–878,
1976.

[Bart 62] Barton D.E.,David F.N.“Randomization basis for multivariate tests in the bivariate case—
randomness of points in the plane,”Bulletin of the International Statistical Institute,Vol. 39,
pp. 455–467, 1962.

[Beni 94] Beni G., Liu X. “A least biased fuzzy clustering method,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 16(9), pp. 954–960, 1994.

[Besa 73] Besag J.E.,Gleaves J.T.“On the detection of spatial pattern in plant communities,”Bulletin
of International Statistics Institute,Vol. 45, p. 153, 1973.

[Bezd 74] Bezdek J.C. “Cluster validity with fuzzy sets,” Journal of Cybernetics, Vol. 3(3),
pp. 58–72, 1974.

[Bezd 75] Bezdek J.C. “Mathematical models for systematics and taxonomy,” in Proc.8th Int.Conf.
in Numerical Taxonomy (Estarook G., ed.), Freeman, San Francisco pp. 143–166, 1975.

[Boug 04] Bouguessa M.,Wang S-R.“A new efficient validity index for fuzzy clustering,”Proceedings
of the 3rd International Conference on Machine Learning and Cybernetics,pp. 1914–1919,
2004.

[Bout 04] Boutin F.,Hascoët M.“Cluster validity indices for graph partitioning,”Proceedings of the
8th Conference on Information Visualization, pp. 376–381, 2004.

[Cono 79] Conover W.J., Benent T.R., Iman R.L. “On a method for detecting clusters of possible
uranium deposits,”Technometrics,Vol. 21, pp. 277–282, 1979.

[Cox 76] Cox T.F., Lewis T. “A conditioned distance ratio method for analyzing spatial patterns,”
Biometrika,Vol. 63, p. 483, 1976.

[Cunn 72] Cunningham K.M., Ogilvie J.C. “Evaluation of hierarchical grouping techniques: A
preliminary study,”Computer Journal,Vol. 15, pp. 209–213, 1972.

[Dave 90] Dave R.N., Patel K.J. “Progressive fuzzy clustering algorithms for characteristic
shape recognition,” Proc. North American Fuzzy Inf. Process. Soc. Workshop, Toronto,
pp. 121–124, 1990.

[Davi 79] Davies D.L.,Bouldin D.W.“A cluster separation measure,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 1(2), pp. 224–227, 1979.

[Diac 83] Diaconis P., Efron B. “Computer-intensive methods in statistics,” Scientific American,
May, pp. 116–130, 1983.

[Digg 83] Diggle P.J. Statistical Analysis of Spatial Point Patterns,Academic Press, 1983.

“18-Ch16-SA272” 17/9/2008 page 910

910 CHAPTER 16 Cluster Validity

[Dube 79] Dubes R.C., Jain A.K. “Validity studies in clustering methodologies,” Pattern Recogni-
tion,Vol. 11, pp. 235–254, 1979.

[Dube 87a] Dubes R.C. “How many clusters are best? An experiment,” Pattern Recognition,
Vol. 20(6), pp. 645–663, 1987.

[Dube 87b] Dubes R.C., Zeng G. “A test for spatial homogeneity in cluster analysis,” Journal of
Classification,Vol. 4, pp. 33–56, 1987.

[Dunn 74] Dunn J.C.“Well separated clusters and optimal fuzzy partitions,”Journal of Cybernetics,
Vol. 4, pp. 95–104, 1974.

[Dunn 76] Dunn J.C.“Indices of partition fuzziness and the detection of clusters in large data sets,”
in Fuzzy Automata and Decision Processes (Gupta M.M., ed.), Elsevier, 1976.

[Efro 79] Efron B. “Bootstrap methods: Another look at jackknife,” Applied Statistics, Vol. 7,
pp. 1–26, 1979.

[Farr 69] Farris J.S. “On the cophenetic correlation coefficient,” Systematic Zoology, Vol. 18,
pp. 279–285, 1969.

[Fill 71] Fillenbaum S., Rapoport A. Structures in the Subjective Lexicon, Academic Press, 1971.

[Fowl 83] Fowlkes E.B., Mallows C.L. “A method for comparing two hierarchical clusterings,”
Journal of the American Statistical Association,Vol. 78, pp. 553–569, 1983.

[Fral 98] Fraley C., Raftery A.E., “How many clusters? Which clustering method? Answers via
model-based cluster analysis,”The Computer Journal,Vol. 41, No. 8, pp. 578–588, 1998.

[Frie 79] Friedman J.H., Rafsky L.C. “Multivariate generalization of the Wald–Wolfowitz and
Smirnov two-sample tests,”Annual Statistics,Vol. 7, pp. 697–717, 1979.

[Gath 89] Gath I.,GevaA.B.“Unsupervised optimal fuzzy clustering,”IEEETransactions on Pattern
Analysis and Machine Intelligence,Vol. 11(7), pp. 773–781, 1989.

[Grei 64] Greig-Smith P. Quantitative Plant Ecology, 2nd ed., Butterworth, 1964.

[Gord 99] Gordon A. Classification, 2nd edition, Chapman and Hall/CRC press, London, 1999.

[Halk 00] Halkidi M., Vazirgiannis M., Batistakis Y. “Quality scheme assessment in the clustering
process,” Proceedings of the 4th European Conference on Principles of Data Mining and
Knowledge Discovery, pp. 265–276, 2000.

[Halk 01] Halkidi M., Vazirgiannis M. “Clustering validity assessment: finding the optimal parti-
tioning of a data set,” Proceedings of the International Conference of Data Mining 2001,
pp. 187–194, 2001.

[Halk 02a] Halkidi M., Batistakis Y., Vazirgiannis M. “Cluster validity methods: part 1,” SIGMOD
Record,Vol. 31(2), pp. 40–45, 2002.

[Halk 02b] Halkidi M., Batistakis Y., Vazirgiannis M. “Cluster validity methods: part 2,” SIGMOD
Record,Vol. 31(3), pp. 19–27, 2002.

[Hart 75] Hartigan J.A. Clustering Algorithms, John Wiley & Sons, 1975.

[Hast 01] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning, Springer,
2001.

[Hoff 87] Hoffman R.L., Jain A.K. “Sparse decompositions for exploratory pattern analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 9(4), pp. 551–560, 1987.

[Hopk 54] Hopkins B.“A new method for determining the type of distribution of plant-individuals,”
Annals of Botany,Vol. 18, pp. 213–226, 1954.

“18-Ch16-SA272” 17/9/2008 page 911

References 911

[Hube 74] Hubert L.J. “Approximate evaluation techniques for the single-link and complete-link
hierarchical clustering procedures,” Journal of the American Statistical Association,Vol. 69,
pp. 698–704, 1974.

[Hube 76] Hubert L.J., Schultz J. “Quadratic assignment as a general data-analysis strategy,”British
Journal of Mathemetical and Statistical Psychology,Vol. 29, pp. 190–241, 1976.

[Hube 85] Hubert L.J.,Arabie P. “Comparing partitions,” Journal of Classification,Vol. 2, pp. 193–
218, 1985.

[Hurv 89] Hurvich C.M.,Tsai C-L,“Regression and time series model selection in small samples,”
Biometrika Vol. 76, pp. 297–307, 1989.

[Ivch 1991] Ivchenko G., Medvedev Y., Chistyakov A. Problems in Mathematical Statistics, Mir
Publishers, Moscow, 1991.

[Jain 87a] Jain A.K., Dubes R., Chen C.C. “Bootstrapping techniques for error estimation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 9, pp. 628–633, 1987.

[Jain 87b] Jain A.K., Moreau J.V. “Bootstrap technique in cluster analysis,” Pattern Recognition,
Vol. 20(5), pp. 547–568, 1987.

[Jain 88] Jain A.K., Dubes R.C. Algorithms for Clustering Data, Prentice Hall, 1988.

[Kauf 90] Kaufman L.,Rousseeuw P. Finding Groups in Data:an Introduction to ClusterAnalysis,
Wiley New York, 1990.

[Kirl 00] Kirlin R.L., Dizaji R.M., “Cluster order using clustering performance index rate, CPIR,”
NORSIG 2000, Kolmarden, Sweden, June 2000.

[Kris 93] Krishnapuram R., Frigui H., Nasraoui O. “Quadratic shell clustering algorithms and the
detection of second-degree curves,”Pattern Recognition Letters,Vol. 14(7), pp. 545–552, July
1993.

[Kris 95a] Krishnapuram R., Frigui H., Nasraoui O. “Fuzzy and possibilistic shell clustering algo-
rithms and their application to boundary detection and surface approximation—Part I,” IEEE
Transactions on Fuzzy Systems,Vol. 3(1), pp. 29–43, 1995.

[Kris 95b] Krishnapuram R., Frigui H., Nasraoui O. “Fuzzy and possibilistic shell clustering algo-
rithms and their application to boundary detection and surface approximation—Part II,” IEEE
Transactions on Fuzzy Systems,Vol. 3(1), pp. 44–60, 1995.

[Lang 98] Langan D.A., Modestino J.W., Zhang J. “Cluster validation for unsupervised stochas-
tic model-based image segmentation,” IEEE Transactions on Image Processing, Vol. 7(2),
pp. 180–195, 1998.

[Ling 72] Ling R.F. “On the theory and construction of k-clusters,” Computer Journal, Vol. 15,
pp. 326–332, 1972.

[Ling 73] Ling R.F. “Probability theory of cluster analysis,” Journal of the American Statistical
Association,Vol. 68, pp. 159–164, 1973.

[Ling 76] Ling R.F.,Killough G.S.“Probability tables for cluster analysis based on a theory of random
graphs,” Journal of the American Statistical Association,Vol. 71, pp. 293–300, 1976.

[Lu 00] Lu X. “Comparisons among information-based criteria, a novel modification thereof, and
the Monte Carlo Markov chain method,” MSc Thesis, University of Victoria, British Columbia,
Canada, July 2000.

[Mant 67] Mantel N. “The detection of disease clustering and a generalized regression approach,”
Cancer Research,Vol. 27, pp. 209–220, 1967.

“18-Ch16-SA272” 17/9/2008 page 912

912 CHAPTER 16 Cluster Validity

[Mead 74] Mead R.“A test for spatial pattern at several scales using data from a grid of contiguous
quadrats,”Biometrics,Vol. 30, pp. 295–308, 1974.

[Mill 80] Milligan G.W. “An examination of the effect of six types of error perturbation on fifteen
clustering algorithms,”Psychometrica,Vol. 45, pp. 325–342, 1980.

[Mill 83] Milligan G.W.,Soon S.C.,Sokol L.M.“The effect of cluster size,dimensionality,and the num-
ber of clusters on recovery of true cluster structure,” IEEE Transactions on Pattern Analysis
and Machine Intelligence,Vol. 5, pp. 40–47, 1983.

[Mill 85] Milligan G.W., Cooper M.C. “An examination of procedures for determining the number
of clusters in a data set,”Psychometrika,Vol. 50, pp. 159–179, 1985.

[Naus 82] Naus J.J. “Approximations for distributions of scan statistics,” Journal of the American
Statistical Association,Vol. 77, pp. 177–183, 1982.

[Neym 72] Neyman J., Scott E.L. “Processes of clustering and applications,” in Stochastic Point
Processes: Statistical Analysis, Theory and Applications (Lewis P.A.W., ed.), John Wiley &
Sons, 1972.

[Pal 95] Pal N.R.,Bezdek J.C. “On cluster validity for the fuzzy c-means model,” IEEE Transactions
on Fuzzy Systems,Vol. 3(3), pp. 370–379, 1995.

[Pal 97] Pal N.R.,Biswas J.“Cluster validation using graph theoretic concepts,”Pattern Recognition,
Vol. 30(6), pp. 847–857, 1997.

[Pana 83] Panayirci E., Dubes R.C. “A test for multidimensional clustering tendency,” Pattern
Recognition,Vol. 16(4), pp. 433–444, 1983.

[Papo 91] PapoulisA. Probability, RandomVariables and Stochastic Processes,3rd ed.,McGraw-
Hill, 1991.

[Piel 69] Pielou E.C. An Introduction to Mathematical Ecology, John Wiley & Sons, 1969.

[Post 93] Postaire J.G., Zhang R.D., Lecocq-Botte C. “Cluster analysis by binary morphology,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. 15(2), pp. 170–180, 1993.

[Ripl 77] Ripley B.D.“Modelling spatial patterns,”Journal of the Royal Statistical Society,Vol. B39,
pp. 172–212, 1977.

[Ripl 78] Ripley B.D., Silverman B.W. “Quick tests for spatial interaction,” Biometrika, Vol. 65,
pp. 641–642, 1978.

[Ripl 81] Ripley B.D. Spatial Statistics, John Wiley & Sons, 1981.

[Riss 78] Rissanen J. “Modeling by shortest data description,”Automatica 14, pp. 465–471, 1978.

[Riss 89] Rissanen J. “Stochastic complexity in statistical enquiry,”Series in computer science, 15,
World Scientific, Singapore, 1989.

[Rolp 68] Rolph F.J., Fisher D.R. “Tests for hierarchical structure in random data sets,” Systematic
Zoology,Vol. 17, pp. 407–412, 1968.

[Rolp 70] Rolph F.J. “Adaptive hierarchical clustering schemes,” Systematic Zoology, Vol. 19,
pp. 58–82, 1970.

[Schw 76] Schwarz G. “Estimating the dimension of a model,” Annals of Statistics Vol. 6,
pp. 461–464, 1976.

[Sclo 87] Sclove S.L. “Application of model-selection criteria to some problems in multivariate
analysis,”Psychometrika,Vol. 52, pp. 333–343, 1987.

“18-Ch16-SA272” 17/9/2008 page 913

References 913

[Sent 07] Sentelle C., Hong S.L., Georgiopoulos M., Anagnostopoulos G.C. “A fuzzy gap statistic
for fuzzy c-means,” Proceedings of the 11th IASTED International Conference on Artificial
Intelligence and Soft Computing, pp. 68–73, 2007.

[Shar 96] Sharma S. Applied Multivariate Techniques, John Wiley & Sons Inc., 1996.

[Shre 64] ShreiderY.A. Method of StatisticalTesting: Monte Carlo Method,Elsevier North-Holland,
1964.

[Silv 78] Silverman B., Brown T. “Short distances, flat triangles and Poisson limits,” Journal of
Applied Probability,Vol. 15, pp. 815–825, 1978.

[Smit 84] Smith S.P., Jain A.K.“Testing for uniformity in multidimensional data,”IEEE Transactions
on Pattern Analysis and Machine Intelligence,Vol. 6, pp. 73–81, 1984.

[Snea 77] Sneath P.H.A. “A significance test for clusters in UPGMA phenograms obtained from
squared Euclidean distance,”Classification Soc.Bulletin,Vol. 4, pp. 2–14, 1977.

[Sobo 84] Sobol I.M. The Monte Carlo Method, Mir Publishers, Moscow, 1984.

[Stra 75] Strauss D.J. “Model for clustering,”Biometrika,Vol. 62, pp. 467–475, 1975.

[Tibs 01] Tibshirani R.,Walther G.,HastieT.“Estimating the number of clusters in a data set via the
gap statistic,” Journal of Royal Statistics Society B,Vol. 63, pp. 411–423, 2001.

[Wind 81] WindhamA.P.“Cluster validity for fuzzy clustering algorithms,”Fuzzy Sets and Systems,
Vol. 5, pp. 177–185, 1981.

[Wind 82] Windham M.P. “Cluster validity for the fuzzy c-means clustering algorithm,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 4(4), pp. 357–363, July
1982.

[Xie 91] Xie X.L., Beni G. “A validity measure for fuzzy clustering,” IEEE Transactions on Pattern
Analysis and Machine Intelligence,Vol. 13(8), pp. 841–846, 1991.

[Yarm 87] Yarman-Vural F.,Ataman E. “Noise, histogram and cluster validity for Gaussian mixtured
data,”Pattern Recognition,Vol. 20(4), pp. 385–401, 1987.

[Zeng 85] Zeng G., Dubes R.C. “A comparison of tests for randomness,”Pattern Recognition,Vol.
18(2), pp. 191–198, 1985.

“19-Appendix-A-SA272” 17/9/2008 page 915

APPENDIX

AHints from Probability
and Statistics

A.1 TOTAL PROBABILITY AND THE BAYES RULE
Let Ai , i ! 1, 2, . . . , M , be M events so that

∑M
i!1 P(Ai) ! 1. Then the probability

of an arbitrary event B is given by

P(B) !
M∑

i!1

P(B|Ai)P(Ai) (A.1)

where P(B|A) denotes the conditional probability of B assuming A,which is defined
as

P(B|A) !
P(B, A)

P(A)
(A.2)

and P(B, A) is the joint probability of the two events. Equation (A.1) is known as
the total probability theorem. From the definition in (A.2) the Bayes rule is readily
available

P(B|A)P(A) ! P(A|B)P(B) (A.3)

These are easily extended to random variables or vectors described by probability
density functions and we have

p(x|A)P(A) ! P(A|x)p(x) (A.4)

and

p(x|y)p(y) ! p(y|x)p(x) (A.5)

and finally

p(x) !
M∑

i!1

p(x|Ai)P(Ai) (A.6)

915

“19-Appendix-A-SA272” 17/9/2008 page 916

916 APPENDIX A Hints from Probability and Statistics

A.2 MEAN AND VARIANCE
Let p(x) be the probability density function (pdf) describing the random variable x.
Its mean and variance are defined as

E[x] !

∫ "#

$#
xp(x) dx, !2

x !

∫ "#

$#
(x $ E[x])2p(x) dx (A.7)

A.3 STATISTICAL INDEPENDENCE
Two (or more) random variables x and y are statistically independent if and
only if

p(x, y) ! px(x)py(y) (A.8)

It turns out that in this case E[xy] ! E[x]E[y]. These are generalized to more than
two variables.

A.4 MARGINALIZATION
Let xi, i ! 1, 2, . . . , l, be a set of random variables with a joint probability density
function p(x1, x2, . . . , xl). It can be shown that by integrating the joint pdf with
respect to some of the variables, over all possible values, the result is the joint pdf
of the remaining variables. For example,

∫ "#

$#

∫ "#

$#
· · ·

∫ "#

$#
p(x1, . . . , xl)dxk"1dxk"2 · · · dxl ! p(x1, x2, . . . , xk)

This calculation is known as marginalization. For discrete random variables,
marginalization involves probabilities and summations, i.e.,

∑

xk"1

∑

xk"2

· · ·
∑

xl

P(x1, . . . , xl) ! P(x1, . . . , xk)

where summations are over all possible values of the respective variables.

A.5 CHARACTERISTIC FUNCTIONS
Let p(x) be the probability density function of a random variable x. The associated
characteristic function is by definition the integral

%(&) !

∫ "#

$#
p(x) exp(j&x) dx ≡ E[exp(j&x)] (A.9)

If j& is changed into s, the resulting integral becomes

%(s) !

∫ "#

$#
p(x) exp(sx) dx ≡ E[exp(sx)] (A.10)

“19-Appendix-A-SA272” 17/9/2008 page 917

A.6 Moments and Cumulants 917

and it is known as the moment generating function.
The function

'(&) ! ln %(&) (A.11)

is known as the second characteristic function of x.
The joint characteristic function of l random variables is defined by

%(&1, &2, . . . , &l) !

∫ "#

$#
p(x1, x2, . . . , xl) exp

(

j
l∑

i!1

&ixi

)

dx (A.12)

The logarithm of the above is the second joint characteristic function of the l random
variables.

A.6 MOMENTS AND CUMULANTS
Taking the derivative of %(s) in Eq. (A.10) we obtain

dn%(s)
dsn ≡ %(n)(s) ! E[xn exp(sx)] (A.13)

and hence for s ! 0

%(n)(0) ! E[xn] ≡ mn (A.14)

where mn is known as the nth-order moment of x. If the moments of all orders are
finite, the Taylor series expansion of %(s) near the origin exists and is given by

%(s) !
"#∑

n!0

mn

n! sn (A.15)

Similarly, the Taylor expansion of the second generating function results in

'(s) !
"#∑

n!1

"n

n! sn (A.16)

where

"n ≡ dn'(0)
dsn (A.17)

and are known as the cumulants of the random variable x. It is not difficult to show
that "0 ! 0. For a zero mean random variable, it turns out that

"1(x) ! E[x] ! 0 (A.18)

"2(x) ! E[x2] ! !2 (A.19)

"3(x) ! E[x3] (A.20)

"4(x) ! E[x4] $ 3!4 (A.21)

“19-Appendix-A-SA272” 17/9/2008 page 918

918 APPENDIX A Hints from Probability and Statistics

That is, the first three cumulants are equal to the corresponding moments. The
fourth-order cumulant is also known as kurtosis. For a Gaussian process all cumu-
lants of order higher than two are zero. The kurtosis is commonly used as a measure
of the non-Gaussianity of a random variable. For random variables described by
(unimodal) pdfs with spiky shape and heavy tails, known as leptokurtic or super-
Gaussian, "4 is positive, whereas for random variables associated with pdfs with a
flatter shape, known as platykurtic or sub-Gaussian, "4 is negative. Gaussian vari-
ables have zero kurtosis. The opposite is not always true, in the sense that there
exist non-Gaussian random variables with zero kurtosis;however,this can be consid-
ered rare.

Similar arguments hold for the expansion of the joint characteristic functions for
multivariate pdfs. For zero mean random variables,xi, i ! 1, 2, . . . , l, the cumulants
of order up to four are given by

"1(xi) ! E[xi] ! 0 (A.22)

"2(xi , xj) ! E[xixj] (A.23)

"3(xi , xj , xk) ! E[xixjxk] (A.24)

"4(xi , xj , xk, xr) ! E[xixjxkxr] $ E[xixj]E[xkxr] (A.25)

$ E[xixk]E[xjxr] $ E[xixr]E[xjxk] (A.26)

Thus, once more, the cumulants of the first three orders are equal to the corre-
sponding moments. If all variables coincide, we talk about auto-cumulants, and
otherwise about cross-cumulants, that is,

"4(xi , xi , xi , xi) ! "4(xi)

that is, the auto-cumulant of xi is identical to its kurtosis. It is not difficult to see that
if the zero mean random variables are mutually independent, their cross-cumulants
are zero. This is also true for the cross-cumulants of all orders.

A.7 EDGEWORTH EXPANSION OF A PDF
Taking into account the expansion in Eq. (A.16), the definition given in Eq. (A.11),
and taking the inverse Fourier of %(&) in Eq. (A.9) we can obtain the following
expansion of p(x) for a zero mean unit variance random variable x:

p(x) ! g(x)
(

1 "
1
3!"3(x)H3(x) "

1
4!"4(x)H4(x) "

10
6! "2

3(x)H6(x)

"
1
5!"5(x)H5(x) "

35
7! "3(x)"4(x)H7(x) " . . .

)
(A.27)

where g(x) is the unit variance and zero mean normal pdf,and H"(x) is the Hermite
polynomial of degree k. The rather strange ordering of terms is the outcome of a

“19-Appendix-A-SA272” 17/9/2008 page 919

A.8 Kullback–Leibler Distance 919

specific reordering in the resulting expansion, so that the successive coefficients in
the series decrease uniformly. This is very important when truncation of the series
is required. The Hermite polynomials are defined as

Hk(x) ! ($1)k exp(x2/2)
dk

dxk exp($x2/2) (A.28)

and they form a complete orthogonal basis set in the real axis, that is,

∫ "#

$#
exp($x2/2)Hn(x)Hm(x) dx !

{
n!

√
2# if n ! m

0 if n ̸! m
(A.29)

The expansion of p(x) in Eq. (A.27) is known as the Edgeworth expansion, and it
is actually an expansion of a pdf around the normal pdf [Papo 91].

A.8 KULLBACK–LEIBLER DISTANCE
The Kullback–Leibler (KL) distance is a measure of the distance between two
probability density functions p(x) and p̂(x) and is defined as

L ! $

∫
p(x) ln

p̂(x)
p(x)

dx (A.30)

Sometimes it is referred to as cross or relative entropy. The KL distance can
be shown to be always nonnegative but it is not a true distance measure, from a
mathematical point of view, since it is not symmetric. Sometimes it is referred as
the KL divergence.

The KL distance is closely related to the mutual information measure, I , bet-
ween l scalar random variables, xi , i ! 1, 2, . . . , l. Indeed, let us compute the KL
distance between the joint pdf p(x) and the pdf resulting from the product of the
corresponding marginal probability densities, that is,

L ! $

∫
p(x) ln

∏l
i!1 pi(xi)
p(x)

dx

!

∫
p(x) ln p(x)dx $

l∑

i!1

∫
p(x) ln pi(xi)dx

! $H(x) $
l∑

i!1

∫
p(x) ln pi(xi)dx (A.31)

Carrying out the integrations on the right-hand side it is straightforward to see the
KL distance is equal to the mutual information, I , defined as

I(x1, x2, . . . , xl) ! $H(x) "
l∑

i!1

H(xi) (A.32)

“19-Appendix-A-SA272” 17/9/2008 page 920

920 APPENDIX A Hints from Probability and Statistics

where H(xi) is the associated entropy of xi, defined as ([Papo 91])

H(xi) ! $

∫
pi(xi) ln pi(xi) dxi (A.33)

It is now easy to see that if the variables xi, i ! 1, 2, . . . , l, are statistically indepen-
dent their mutual information I is zero. Indeed, in this case (l

i!1pi(xi) ! p(x),
hence L ! I(x1, x2, . . . , xl) ! 0.

A.9 MULTIVARIATE GAUSSIAN OR NORMAL PROBABILITY
DENSITY FUNCTION

This is defined as a generalization of the univariate normal pdf

p(x) !
1

(2#)l/2|)|1/2 exp
(

$
1
2

(x $!)T)$1(x $!)
)

, (A.34)

where ! is the mean vector, that is, E
[
[x1, x2, . . . , xl]T

]
! [$1, $2, . . . , $l]T and)

the covariance matrix

) ! E[(x $!)(x $!)T] (A.35)

and we say that x is normally distributed as N (!,)). For the one dimensional,
l ! 1,case the covariance matrix becomes the variance !2 and the Gaussian density
function takes the form

p(x) !
1√
2#!

exp
(

$
(x $ $)2

2!2

)

Figure A.1 shows the plots of two Gaussians for the same mean and different
variances. For the general l-dimensional case the covariance matrix has the form

) !

⎡

⎢⎢⎢⎢⎢⎢⎣

!2
1 !12 · · · !1l

!21 !2
2 · · · !2l

...
...

...
...

!l1 !l2 · · · !2
l

⎤

⎥⎥⎥⎥⎥⎥⎦
(A.36)

where !2
i ! E[(xi $ $i)2], !ij ! !ji ! E[(xi $ $i)(xj $ $j)]. Thus, the main matrix

diagonal consists of the respective variances of the elements of the random vector
and the off-diagonal elements are the respective covariances between the elements
of the random vector. Note that if the random variables xi are statistically inde-
pendent, then the mean of the product equals the product of the means, that is,
E[(xi $ $i)(xj $ $j)] ! E[(xi $ $i)]E[(xj $ $j)] ! 0, and the covariance matrix is
diagonal. However,a diagonal covariance matrix does not, in general,mean that the
variables are statistically independent. In the case, though,of multivariate Gaussian

Leandro Bezerra Marinho

Leandro Bezerra Marinho

“19-Appendix-A-SA272” 17/9/2008 page 921

A.10 Transformation of Random Variables 921

p(x)

x

!2
2

!2
1

$

!2
2!2

1 .

FIGURE A.1
Two Gaussians with the same mean $ and different variances.

densities the opposite is also valid. Indeed, if the covariance matrix is diagonal then
it is straightforward to see that

p(x) !
l∏

i!1

pi(xi) (A.37)

where

pi(xi) !
1√

2#!i
exp

(
$

(xi $ $i)2

2!2
i

)

which is the univariate Gaussian describing the ith variable (why?). Thus, the joint
probability density is the product of the individual (marginal) ones, which is the
definition of statistical independence.

A.10 TRANSFORMATION OF RANDOM VARIABLES
Let X ! {x1, x2, . . . , xl} be a set of random variables, which are jointly distributed
according to the joint pdf pX (x1, x2, . . . , xl). We form a new set of random variables
by the following transformations

y1 ! g1(x1), y2 ! g2(x2), . . . , yl ! gl(xl) (A.38)

It can be shown [Papo 91] that the joint pdf describing the set Y is given by

pY (y1, y2, . . . , yl) !
pX (x1, x2, . . . , xl)
|J (x1, x2, . . . , xl)|

(A.39)

“19-Appendix-A-SA272” 17/9/2008 page 922

922 APPENDIX A Hints from Probability and Statistics

where | · | denotes the determinant of a matrix and J (x1, x2, . . . , xl) is the Jacobian
matrix of the transformation, defined as

J (x1, x2, . . . , xl) !

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

%y1
%x1

%y1
%x2

. . .
%y1
%xl

%y2
%x1

%y2
%x2

. . .
%y2
%xl

...
...

...
...

%yl
%x1

%yl
%x2

. . .
%yl
%xl

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

provided that the system of equations given in (A.38) has a solution with respect to
x1, x2, . . . , xl and it is unique.

A widely used transformation is the linear one and the set in (A.38) is compactly
written as

y ! Ax (A.40)

where y ! [y1, y2, . . . , yl]T and x ! [x1, x2, . . . , xl]T and the matrix A is invertible.
Then the system of equations has a unique solution, x ! A$1y, and the Jacobian is
easily shown to be

J (x1, x2, . . . , xl) ! A (A.41)

The above can be used, for example, in the MATLAB framework to generate
jointly Gaussian variables with mean value ! and covariance matrix), utilizing the
normalized Gaussian generator N (0, I). The latter is described by

p(x) !
1

(2#)l/2 exp
(

$
1
2

xT x
)

(A.42)

Let) be the covariance matrix of the multivariate Gaussian, which describes the
variables to be generated. We know that) is a symmetric matrix,) !)T , and
therefore it can be diagonalized (Appendix B) as

) ! P*PT

where * is a diagonal matrix having the eigenvalues of) as its elements and P is a
unitary matrix (P$1 ! PT) having as columns the corresponding eigenvectors of
). Define, now, the linear transformation

y ! P*1/2x (A.43)

where *1/2 is the square root of *. Assuming the transformation to be invertible
(i.e.,) is invertible) then, recalling (A.39), (A.41), (A.42) and (A.43) we obtain

p(y) !
1

(2#)l/2|)|1/2 exp
(

$
1
2

yT P*$1/2*$1/2PT y
)

(A.44)

!
1

(2#)l/2|)|1/2 exp
(

$
1
2

yT)$1y
)

(A.45)

“19-Appendix-A-SA272” 17/9/2008 page 923

A.12 Central Limit Theorem 923

where we have used the fact that the determinant of the Jacobian matrix is |P*1/2| !
|P*1/2*1/2PT |1/2 ! |)|1/2. Thus, in order to generate a set of random variables
described by the multivariate Gaussian N (0,)), it suffices to generate a vector, x,
using the normalized Gaussian, N (0, I), and then transform it, that is, y ! P*1/2x.
Finally, a further shift by !, that is, ŷ ! y " !, suffices to produce multivariate
Gaussian variables described by the Gaussian N (!,)).

A.11 THE CRAMER–RAO LOWER BOUND
Let p(x; ") be the pdf of a random vector,parameterized in terms of an r-dimensional
vector parameter ". If X is the set of N observations xi, i ! 1, 2, . . . , N , the log
likelihood function is the logarithm of the joint pdf of the observations ln p(X; ") !
L("). The Fisher matrix is defined so that its (i, j) element equals

Jij ! $E
[

%2L(")
%&i%&j

]
, i, j ! 1, 2, . . . , r (A.46)

It can be shown that the ith element of any unbiased estimate "̂,of the parameter ",
based on the observations set X satisfies

E[(&̂i $ &i)2] + J$1
ii (A.47)

In other words, its variance is lower bounded by the (i, i) element of the inverse
Fisher matrix. This is known as the Cramer–Rao bound. If the relation is valid with
equality, the corresponding estimator is called efficient.

A.12 CENTRAL LIMIT THEOREM
Let x1, x2, . . . , xN be N independent random variables, with mean and variances
$i, !2

i , respectively. We form the new random variable

z !
N∑

i!1

xi (A.48)

Its mean and variance are given by $!
∑N

i!1 $i and !2 !
∑N

i!1 !2
i . The central

limit theorem states that as N → #, and under certain general conditions, the pdf
of the variable

q !
z $ $

!
(A.49)

approaches N (0, 1), irrespective of the pdfs of the summands [Papo 91]. Thus in
practice, for large enough N we can consider z as approximately Gaussian with
mean $ and variance !2.

“19-Appendix-A-SA272” 17/9/2008 page 924

924 APPENDIX A Hints from Probability and Statistics

A.13 CHI-SQUARE DISTRIBUTION
Let xi, i ! 1, 2, . . . , N , be samples of a Gaussian N (0, 1) random variable x. The
sum of squares variable

'2 ! x2
1 " x2

2 " · · · " x2
N ≡ y (A.50)

is a chi-square distributed variable with N degrees of freedom. Its probability density
function is given by [Papo 91]

py(y) !
1

2N /2,(N /2)
yN /2$1 exp($y/2)u(y) (A.51)

where

,(b " 1) !

∫ #

0
yb exp($y) dy b - $1 (A.52)

where u(y) is the step function (1 for y-0 and 0 for y.0). Recalling the respective
definitions, it is easy to show that E[y] ! N , !2

y ! 2N .
The chi-square distribution possesses the additive property. Let '2

1 and '2
2 be

independent random variables of chi-square distribution with N1, N2 degrees of
freedom, respectively. Then the random variable

'2 ! '2
1 " '2

2 (A.53)

is a chi-square variable with N1 "N2 degrees of freedom. Based on these properties,
we can show that the variance estimate of Eq. (5.13) is described by a chi-square
distribution with N$1 degrees of freedom,provided x is Gaussian and the samples xi
are independent. The proof is simple and interesting [Fras 58]. Define the following
transformation:

y1 !
√

Nx̄ !
x1 " · · · " xn√

N

y2 !
1√
2

(x2 $ x1)

...

yn !
1√

n(n $ 1)
[(n $ 1)xn $ (x1 " · · · " xn$1)], n ! 2, 3, . . . , N

It is easy to show that this transformation is an orthogonal one (Problem 5.5). Thus,
the random variables yi are also Gaussian, statistically independent, and with the
same variance !2 as x (Problem 5.6). This transformation easily results in

N∑

i!1

y2
i !

N∑

i!1

x2
i (A.54)

“19-Appendix-A-SA272” 17/9/2008 page 925

A.15 Beta Distribution 925

and of course

y2
1 ! Nx̄2 (A.55)

Subtracting the two, we obtain

N∑

i!2

y2
i !

N∑

i!1

(xi $ x̄)2 ≡ (N $ 1)!̂2 (A.56)

Furthermore, E[yi] ! 0, i ! 2, . . . , N . Thus the variable

z !
N $ 1

!2 !̂2 !
N∑

i!2

y2
i

!2 (A.57)

is a chi-square with N $ 1 degrees of freedom.

A.14 t-DISTRIBUTION
Let x and z be two independent random variables with x being N (0, 1) and z a
chi-square with N degrees of freedom. Then it can be shown [Papo 91] that the
variable

q !
x√
z/N

(A.58)

is a so-called t -distributed variable with probability density function given by

pq(q) !
(1√

(1 " q2/N)N"1
, (1 !

,((N " 1)/2)√
#N,(N /2)

where ,(·) was defined in Eq. (A.44). Thus, from the test statistic in Eqs. (5.14) and
(A.57) we have

q !
x̄ $ $

!̂/
√

N
!

x̄$$
!/

√
N√

z/N $ 1
(A.59)

Since z is a chi-square with N $ 1 degrees of freedom, q is a t -distributed variable
with N $ 1 degrees of freedom. In a similar way we can show that the test statistic
in Eq. (5.18) is t -distributed with 2N $ 2 degrees of freedom.

A.15 BETA DISTRIBUTION
A random variable follows the Beta distribution with parameters a and b (a, b - 0),
if its probability density function is defined as

p(x) !

⎧
⎨

⎩

xa$1(1$x)b$1

B(a,b) , 0 . x . 1

0, Otherwise
(A.60)

“19-Appendix-A-SA272” 17/9/2008 page 926

926 APPENDIX A Hints from Probability and Statistics

where

B(a, b) !

∫ 1

0
ua$1(1 $ u)b$1 du (A.61)

Its mean and variance are equal to a/(a"b) and ab/((a"b)2(a"b"1)),respectively.

A.16 POISSON DISTRIBUTION
A Poisson distributed random variable X, with parameter a, takes the values k !
0, 1, 2, . . . , with probabilities

P(X ! k) ! e$a ak

k! (A.62)

A Poisson process scatters vectors in a Euclidean space in such a way that the random
variable X , denoting the number of vectors in a region of volume V , has a Poisson
distribution with parameter)V , that is,

P(X ! k) ! e$)V ()V)k

k! , k ! 0, 1, 2, . . . (A.63)

The parameter) is called the intensity of the process and equals the expected
number of vectors per unit volume.

A.17 GAMMA FUNCTION
The Gamma function is defined as

,(*) !

∫ #

0
x*$1e$xdx

If * is an integer, integrating by parts we get

,(n) ! (n $ 1),(n $ 1) ! (n $ 1)!

REFERENCES
[Digg 83] Diggle P.J. Statistical Analysis of Spatial Point Processes,Academic Press, 1983.

[Fras 58] Fraser D.A.S. Statistics: An Introduction, John Wiley, 1958.

[Papo 91] Papoulis A. Probability Random Variables and Stochastic Processes, 3rd ed. McGraw
Hill, 1991.

[Spie 75] Spiegel M.R. Schaum’s Outline of Theory and Problems of Probability and Statistics,
McGraw Hill, 1975.

“20-Appendix-B-SA272” 17/9/2008 page 927

APPENDIX

BLinear Algebra Basics

B.1 POSITIVE DEFINITE AND SYMMETRIC MATRICES
■ An l ! l real matrix A is called positive definite if for every nonzero vector x

the following is true:

xT Ax " 0 (B.1)

If equality with zero is allowed, A is called nonnegative or positive semidefi-
nite.

■ It is easy to show that all eigenvalues of such a matrix are positive. Indeed,
let !i be one eigenvalue and vi the corresponding unit norm eigenvector
(vT

i vi # 1). Then by the respective definitions

Avi # !ivi or (B.2)

0 $ vT
i Avi # !i (B.3)

Since the determinant of a matrix is equal to the product of its eigenvalues,
we conclude that the determinant of a positive definite matrix is also positive.

■ Let A be an l ! l symmetric matrix, AT # A. Then the eigenvectors corre-
sponding to distinct eigenvalues are orthogonal. Indeed, let !i ̸# !j be two
such eigenvalues. From the definitions we have

Avi # !ivi (B.4)

Avj # !jvj (B.5)

Multiplying (B.4) on the left by vT
j and the transpose of (B.5) on the right by

vi , we obtain

vT
j Avi % vT

j Avi # 0 # (!i % !j)vT
j vi (B.6)

Thus, vT
j vi # 0. Furthermore, it can be shown that even if the eigenvalues

are not distinct,we can still find a set of orthogonal eigenvectors. The same is 927

“20-Appendix-B-SA272” 17/9/2008 page 928

928 APPENDIX B Linear Algebra Basics

true for Hermitian matrices,in case we deal with more general complex-valued
matrices.

■ Based on this, it is now straightforward to show that a symmetric matrix A can
be diagonalized by the similarity transformation

&T A& # ' (B.7)

where matrix & has as its columns the unit eigenvectors (vT
i vi # 1) of A,

that is,

& # [v1, v2, . . . , vl] (B.8)

and ' is the diagonal matrix with elements the corresponding eigenvalues of
A. From the orthonormality of the eigenvectors it is obvious that &T & # I ,
that is, & is a unitary matrix, &T # &%1. The proof is similar for Hermitian
complex matrices as well.

B.2 CORRELATION MATRIX DIAGONALIZATION
Let x be a random vector in the l-dimensional space. Its correlation matrix is
defined as R # E[xxT]. Matrix R is readily seen to be positive semidefinite. For
our purposes we will assume that it is positive definite, thus invertible. Moreover,
it is symmetric, and hence it can always be diagonalized

&T R& # ' (B.9)

where & is the matrix consisting of the (orthogonal) eigenvectors and ' the diago-
nal matrix with the corresponding eigenvalues on its diagonal. Thus,we can always
transform x into another random vector whose elements are uncorrelated. Indeed

x1 ≡ &T x (B.10)

Then the new correlation matrix is R1 # &T R& # '. Furthermore, if '1/2 is the
diagonal matrix whose elements are the square roots of the eigenvalues of
R ('1/2'1/2 # '), then it is readily shown that the transformed random vector

x1 ≡ '%1/2&T x (B.11)

has uncorrelated elements with unit variance. '%1/2 denotes the inverse of '1/2.
It is now easy to see that if the correlation matrix of a random vector is the identity
matrix I , then this is invariant under any unitary transformation AT x, AT A # I .
That is, the transformed variables are also uncorrelated with unit variance. A useful
by-product of this is the following lemma.

Lemma Let x, y be two random vectors with correlation matrices Rx , Ry, respec-
tively. Then there is a linear transformation that diagonalizes both matrices
simultaneously.

“20-Appendix-B-SA272” 17/9/2008 page 929

B.2 Correlation Matrix Diagonalization 929

Proof. Let & be the eigenvector matrix diagonalizing Rx . Then the transformation

x1 ≡ '%1/2&T x (B.12)

y1 ≡ '%1/2&T y (B.13)

generates two new random vectors with correlation matrices R1
x # I , R1

y, respec-
tively. Now let (be the eigenvector matrix diagonalizing R1

y. Then the random
vectors generated by the unitary transformation ((T (# I)

x2 ≡ (T x1 (B.14)

y2 ≡ (T y1 (B.15)

have correlation matrices R2
x # I , R2

y # D, where D is the diagonal matrix with ele-
ments the eigenvalues of R1

y. Thus, the linear transformation of the original vectors
by the matrix

AT # (T '%1/2&T (B.16)

diagonalizes both correlation matrices simultaneously (one to an identity matrix).
All these are obviously valid for covariance matrices as well.

“21-Appendix-C-SA272” 17/9/2008 page 930

APPENDIX

CCost Function Optimization

In this appendix, we review a number of optimization schemes that have been
encountered throughout the book.

Let ! be an unknown parameter vector and J (!) the corresponding cost function
to be minimized. Function J (!) is assumed to be differentiable

C.1 GRADIENT DESCENT ALGORITHM
The algorithm starts with an initial estimate !(0) of the minimum point and the
subsequent algorithmic iterations are of the form

!(new) ! !(old) " #! (C.1)

#! ! $!
"J (!)

"!

∣∣∣
!!!(old)

(C.2)

where ! % 0. If a maximum is sought, the method is known as gradient ascent and
the minus sign in (C.2) is neglected.

Figure C.1 shows the geometric interpretation of the scheme. The new estimate
!(new) is chosen in the direction that decreases J (!). The parameter ! is very
important and it plays a crucial role in the convergence of the algorithm. If it is too
small, the corrections #! are small and the convergence to the optimum point is
very slow. On the other hand, if it is too large, the algorithm may oscillate around
the optimum value and convergence is not possible. However, if the parameter
is properly chosen, the algorithm converges to a stationary point of J (!), which
can be either, a local minimum (!0

1) or a global minimum (!0) or a saddle point
(!0

2). In other words, it converges to a point where the gradient becomes zero (see
Figure C.2). To which of the stationary points the algorithm will converge depends
on the position of the initial point, relative to the stationary points. Furthermore,
the convergence speed depends on the form of the cost J (!). Figure C.3 shows
the constant J (!) ! c curves, for two cases and for different values of c, in the two-
dimensional space, that is, ! ! [#1, #2]T . The optimum !0 is located at the center
of the curves. Recall that the gradient "J (!)

"! is always vertical to the tangent to the

“21-Appendix-C-SA272” 17/9/2008 page 931

C.1 Gradient Descent Algorithm 931

J(!)

D!

!

D!

$
$%

FIGURE C.1
In the gradient descent scheme, the correction of the parameters takes place in the direction
that decreases the value of the cost function.

J(!)

!1
0 !2

0 !!0

FIGURE C.2
A local minimum, a global minimum, and a saddle point of J (#).

“21-Appendix-C-SA272” 17/9/2008 page 932

932 APPENDIX C Cost Function Optimization

(a) (b)

#2

#2

!0

#2

#1

!0

FIGURE C.3
Curves of constant cost values. In (a) the negative gradient always points to the optimum. In
(b) it points to the optimum at only a few places, and convergence can be slow. The correction
term can follow a zig zag path.

constant J curves. Indeed, if J (!) ! c, then

dc ! 0 !
"J (!)T

"!
d! ⇒ J (!)

"!
⊥ d! (C.3)

Furthermore, at each point ! on a curve J (!) ! c, the gradient "J (!)
"! points to the

direction of the maximum increase of J (!). This is easily seen by writing

dJ !
"J (!)T

"!
d! ! |"J (!)

"!
||d!| cos &

where cos & is maximum for & ! 0, that is, when the two involved vectors are
parallel. Thus "J (!)

"! necessarily points to the direction of the maximum increase of
J (!). Hence, in the case of Figure C.3a the negative gradient, that is, the correction
term, always points to the optimum (minimum) point. In principle, in such cases,
convergence can be achieved in a single step. The scenario is different for the
case of Figure C.3b. There, #! points to the center at only very few places. Thus,
convergence in this case can be quite slow and #! can oscillate back and forth
following a zigzag path until it rests at the optimum.

■ Quadratic surface: Let J (!) be of a quadratic form, that is,

J (!) ! b $ pT ! "
1
2

!T R! (C.4)

where R is assumed to be positive definite, in order (C.4) to have a (single)
minimum (why?). Then,

"J (!)
"!

! R! $ p (C.5)

Thus, the optimum value is given by

R!0 ! p (C.6)

“21-Appendix-C-SA272” 17/9/2008 page 933

C.1 Gradient Descent Algorithm 933

The tth iteration step in (C.1) then becomes

!(t) ! !(t $ 1) $!
(
R!(t $ 1) $ p

)
(C.7)

Subtracting !0 from both sides and taking into account (C.6), (C.7) becomes

!̃(t) ! !̃(t $ 1) $!R!̃(t $ 1) ! (I $!R)!̃(t $ 1) (C.8)

where !̃(t) ≡ !(t) $!0. Now let R be a symmetric matrix. Then, as we know
from Appendix B, it can be diagonalized, that is,

R ! &T '& (C.9)

where & is the orthogonal matrix with columns the orthonormal eigen-
vectors of R and ' the diagonal matrix having the corresponding eigenvalues
on its diagonal. Incorporating (C.9) into (C.8) we obtain

!̂(t) ! (I $!')!̂(t $ 1) (C.10)

where !̂(t) ≡ &!̃(t). Matrix I $!' is now diagonal,and (C.10) is equivalent to

!̂i(t) ! (1 $!'i)!̂i(t $ 1) (C.11)

where !̂ ≡ [#̂1, #̂2, . . . , #̂l]T . Considering (C.11) for successive iteration steps
we obtain

#̂i(t) ! (1 $!'i)t #̂i(0) (C.12)

which converges to

lim
t→(

#̂i(t) ! 0, !⇒ lim
t→(

#i(t) ! #0
i , i ! 1, 2, . . . , l (C.13)

provided that |1 $!'i|) 1, i ! 1, 2, . . . , l. Thus, we can conclude that

! $→!0, if !)
2

'max
(C.14)

where 'max is the maximum eigenvalue of R (which is positive since R is pos-
itive definite). Thus, the convergence speed of the gradient descent algorithm
is controlled by the ratio 'min/'max as (C.12) and (C.14) suggest.

■ Nonquadratic cost functions: If J (!) is not quadratic, we can mobilize
Taylor’s theorem and assume that at some step near a stationary point, !0,
J (!) can be written approximately as

J (!) ! J (!0) " (! $!0)T g "
1
2

(! $!0)T H(! $!0) (C.15)

where g is the gradient at !0 and H is the corresponding Hessian matrix,that is,

g !
"J (!)

"!

∣∣∣
!!!0

, H(i, j) !
"2J (!)
"#i"#j

∣∣∣
!!!0

(C.16)

Thus, in the neighborhood of !0, J (!) is given approximately by a quadratic
form and the convergence of the algorithm is controlled by the eigenvalues
of the Hessian matrix.

“21-Appendix-C-SA272” 17/9/2008 page 934

934 APPENDIX C Cost Function Optimization

C.2 NEWTON’S ALGORITHM
The problems associated with the dependence of the convergence speed on the
eigenvalue spread can be overcome by using Newton’s iterative scheme,where the
correction in (C.2) is defined by

#! ! H1(old)
"J (!)

"!

∣∣∣
!!!(old)

(C.17)

where H(old) is the Hessian matrix computed at !(old). Newton’s algorithm con-
verges much faster than the gradient descent method and, practically, its speed is
independent of the eigenvalue spread. Faster convergence can be demonstrated by
looking at the approximation in (C.15). Taking the gradient results in

"J (!)
"(!)

!
"J (!)
"(!)

∣∣∣
!!!0

" H(! $!0) (C.18)

Thus, the gradient is a linear function of ! and hence the Hessian is constant, that is
H. Having assumed that !0 is a stationary point, the first term on the right-hand side
becomes zero. Now let ! ! !(old). Then, according to Newton’s iteration

!(new) ! !(old) $ H$1(H(!(old) $!0)) ! !0 (C.19)

Thus, the minimum is found in a single iteration. Of course, in practice, this is not
true, as the approximations are not exactly valid. It is true, however, for quadratic
costs.

Following a more formal proof (e.g., [Luen 84]), it can be shown that the conver-
gence of Newton’s algorithm is quadratic (i.e., the error at one step is proportional
to the square of the previous step) while that of the gradient descent is linear. This
speedup in convergence is achieved at increased computational cost, since New-
ton’s algorithm requires the computation and then inversion of the Hessian matrix.
Furthermore, numerical issues concerning the invertibility of H arise.

C.3 CONJUGATE-GRADIENT METHOD
Discussing the gradient descent method, we saw that, in general, a zigzag path is
followed from the initial estimate to the optimum. This drawback is overcome by
the following scheme, which results in improved convergence speed with respect
to the gradient descent method. Compute the correction term according to the
following rule:

#!(t) ! g(t) $ ((t)#!(t $ 1) (C.20)

where

g(t) !
"J (!)

"!
|!!!(t) (C.21)

“21-Appendix-C-SA272” 17/9/2008 page 935

C.4 Optimization for Constrained Problems 935

and

((t) !
gT (t)g(t)

gT (t $ 1)g(t $ 1)
(C.22)

or

((t) !
gT (t)

(
g(t) $ g(t $ 1)

)

gT (t $ 1)g(t $ 1)
(C.23)

The former is known as the Fletcher–Reeves and the latter as the Polak–Ribiere
formula.

For a more rigorous treatment of the topic the reader is referred to [Luen 84].
Finally, it must be stated that a number of variants of these schemes have appeared
in the literature.

C.4 OPTIMIZATION FOR CONSTRAINED PROBLEMS
C.4.1 Equality Constraints
We will first focus on linear equality constraints and then generalize to the nonlinear
case. Although the philosophy for both cases is the same, it is easier to grasp the
basics when linear constraints are involved. Thus the problem is cast as

minimize J (!)

subject to A! ! b

where A is an m * l matrix and b, ! are m * 1 and l * 1 vectors, respectively. It
is assumed that the cost function J (!) is twice continuously differentiable and it is,
in general, a nonlinear function. Furthermore, we assume that the rows of A are
linearly independent, hence A has full row rank. This assumption is known as the
regularity assumption.

Let !∗ be a local minimizer of J (!) over the set {!: A! ! b}. Then it is not
difficult to show (e.g., [Nash 96]) that, at this point, the gradient of J (!) is given by

"

"!
(J (!))|!!!∗ ! AT ' (C.24)

where " ≡ ['1, . . . , 'm]T . Taking into account that

"

"!
(A!) ! AT (C.25)

Eq. (C.24) states that, at a constrained minimum, the gradient of the cost function
is a linear combination of the gradients of the constraints. This is quite natural.
Let us take a simple example involving a single linear constraint, that is,

aT ! ! b

“21-Appendix-C-SA272” 17/9/2008 page 936

936 APPENDIX C Cost Function Optimization

c1

c1 , c2, c3 . . .

aT! 5 b

a

 J(!)
 !

c2 c3

J(!) 5 ci

#2

#1

FIGURE C.4
At the minimizer, the gradient of the cost function is in the direction of the gradient of the
constraint function.

Equation (C.24) then becomes

"

"!
(J (!∗)) ! 'a

where the parameter ' is now a scalar. Figure C.4 shows an example of isovalue
contours of J (!) ! c in the two-dimensional space (l ! 2). The constrained mini-
mum coincides with the point where the straight line“meets”the isovalue contours
for the first time, as one moves from small to large values of c. This is the point
where the line is tangent to an isovalue contour; hence at this point the gradient of
the cost function is in the direction of a (see Chapter 3).

Let us now define the function

L(!, ") ! J (!) $ "T (A! $ b) (C.26)

! J (!) $
m∑

i!1

'i(aT
i ! $ bi) (C.27)

where aT
i , i ! 1, 2, . . . , m, are the rows of A. L(!, ") is known as the Lagrangian

function and the coefficients, 'i, i ! 1, 2, . . . , m, as the Lagrange multipliers. The
optimality condition (C.24), together with the constraints,which the minimizer has
to satisfy, can now be written in a compact form as

+L(!, ") ! 0 (C.28)

where + denotes the gradient operation with respect to both ! and ". Indeed,
equating with zero the derivatives of the Lagrangian with respect to ! and " gives,

“21-Appendix-C-SA272” 17/9/2008 page 937

C.4 Optimization for Constrained Problems 937

respectively,

"

"!
J (!) ! AT "

A! ! b

The above is a set of m " l unknowns, that is, (#1, . . . , #l , '1, . . . , 'm), with m " l
equations, whose solution provides the minimizer !∗ and the corresponding
Lagrange multipliers. Similar arguments hold for nonlinear equation constraints.
Let us consider the problem

minimize J (!)
subject to fi(!) ! 0, i ! 1, 2, . . . , m

The minimizer is again a stationary point of the corresponding Lagrangian

L(!, ") ! J (!) $
m∑

i!1

'i fi(!)

and it results from the solution of the set of m " l equations

+L(!, ") ! 0

The regularity condition for nonlinear constraints requires the gradients of the
constraints "

"! (fi(!)) to be linearly independent.

C.4.2 Inequality Constraints
The general problem can be cast as follows:

minimize J (!)
subject to fi(!) , 0, i ! 1, 2, . . . , m (C.29)

Each one of the constraints defines a region in Rl . The intersection of all these
regions defines the area in which the constrained minimum, !∗, must lie. This is
known as the feasible region and the points in it (candidate solutions) as feasible
points. The type of the constraints control the type of the feasible region, that
is, whether it is convex or concave. At this point, it will not harm us to recall a few
definitions.

Convex functions. A function f (!)

f : S ⊆ Rl $→R

is called convex in S, if for every b# and !- ∈ S

f ('! " (1 $ ')!-) . 'f (!) " (1 $ ')f (!-)

for every ' ∈ [0, 1]. If strict inequality holds,we say that the function is strict convex.

Concave functions. A function f (!) is called concave, if for every !, !- ∈ S

f ('! " (1 $ ')!-) , 'f (!) " (1 $ ')f (!-)

for every ' ∈ [0, 1]. For strict inequality, the function is known as strict concave.

“21-Appendix-C-SA272” 17/9/2008 page 938

938 APPENDIX C Cost Function Optimization

Figure C.5 shows three functions, one convex, one concave, and one which is
neither convex nor concave.

Convex sets. A set S ⊆ Rl is called convex, if for every pair of points !, !- ∈ S, the
line segment joining these points also belongs to the set. In other words, all points
'! " (1 $ ')!-, ' ∈ [0, 1] belong to the set. Figure C.6 shows two sets,one convex
and one nonconvex.

Remarks

■ If f (!) is convex then $f (!) is concave and vice versa. Furthermore, if
fi(!), i ! 1, 2, . . . , m,are convex,so is the sum

∑m
i!1 'i fi(!), 'i ,0. Similarly,

if fi(!) are concave, so is their summation.

(a)

f (!) f (!) f (!)

#

(b) (c)

FIGURE C.5
(a) A convex function, (b) a concave function, and (c) a function that is neither convex nor
concave.

#2 #2

#1 #1

! !

!%

!%

(a) (b)

FIGURE C.6
(a) A convex set and (b) a concave set of points.

“21-Appendix-C-SA272” 17/9/2008 page 939

C.4 Optimization for Constrained Problems 939

■ If a function f (!) is convex, it can be shown that a local minimum is also
a global one. This can be easily checked from the graph of Figure C.5. Fur-
thermore, if the function is strict convex then this minimum is unique. For
concave functions, the above also hold true but for points where a maximum
occurs.

■ A direct consequence of the respective definitions is that if f (!) is convex
then the set

X ! {!| f (!) . b, b ∈ R}

is convex. Also, if f (!) is concave then the set

X ! {!| f (!) , b, b ∈ R}
is also convex.

■ The intersection of convex sets is also a convex set.

From the above remarks,one can easily conclude that,if each one of the functions
in the constraints in (C.29) is concave,then the feasible region is a convex one. This
is also valid if the constraints are linear, since a linear function can be considered
either as convex or concave. For more on these issues, the interested reader may
refer, for example, to [Baza 79].

The Karush–Kuhn–Tucker (KKT) Conditions
This is a set of necessary conditions, which a local minimizer !∗ of the problem
given in (C.29) has to satisfy. If !∗ is a point that satisfies the regularity condition,
then there exists a vector " of Lagrange multipliers so that the following are valid:

(1)
"

"!
L(!∗, ") ! 0

(2) 'i , 0, i ! 1, 2, . . . , m

(3) 'i fi(!∗) ! 0, i ! 1, 2, . . . , m (C.30)

Actually, there is a fourth condition concerning the Hessian of the Lagrangian func-
tion, which is not of interest to us. The above set of equations is also part of the
sufficiency conditions; however, in this case, there are a few subtle points and the
interested reader is referred to more specialized textbooks, for example, [Baza 79,
Flet 87, Bert 95, Nash 96].

Conditions (3) in (C.30) are known as complementary slackness conditions.
They state that at least one of the terms in the products is zero. In the case where,
in each one of the equations, only one of the two terms is zero, that is, either 'i or
fi(!∗), we talk about strict complementarity.

Remarks

■ The first condition is most natural. It states that the minimum must be a
stationary point of the Lagrangian, with respect to !.

“21-Appendix-C-SA272” 17/9/2008 page 940

940 APPENDIX C Cost Function Optimization

■ A constraint, (fi(!∗)), is called inactive if the corresponding Lagrange mul-
tiplier is zero. This is because this constraint does not affect the problem.
A constrained minimizer !∗ can lie either in the interior of the feasible
region or on its boundary. In the former case, the problem is equivalent to
an unconstrained one. Indeed, if it happens that a minimum is located within
the feasible region, then the value of the cost function in a region around this
point will increase (or remain the same) as one moves away from this point.
Hence, this point will be a stationary point of the cost function J (!). Thus
in this case, the constraints are redundant and do not affect the problem. In
words,the constraints are inactive and this is equivalent to setting the Lagrange
multipliers equal to zero. The nontrivial constrained optimization task is when
the (unconstrained) minimum of the cost function is located outside the fea-
sible region. In this case, the constrained minimum will be located on the
boundary of the feasible region. In other words, in this nontrivial case, there
will be one or more of the constraints for which fi(!∗) ! 0. These constitute
the active constraints. The rest of the constraints will be inactive with the
corresponding Lagrange multipliers being zero.

Figure C.7 illustrates a simple case with the following constraints:

f1(!) ! #1 " 2#2 $ 2 , 0

f2(!) ! #1 $ #2 " 2 , 0

f3(!) ! $#1 " 2 , 0

The (unconstrained) minimum of the cost function is located outside the feasi-
ble region. The dotted lines are the isovalue curves J (!) ! c,with c1) c2) c3.
The constrained minimum coincides with the point where an isovalue curve
“touches”the boundary of the feasible region for the first time (smallest value
of c). This point may belong to more than one of the constraints, for example,
it may be a corner point of the boundary.

■ The Lagrange multipliers of the active constraints are nonnegative. To under-
stand why this is so, let us consider for simplicity the case of linear constraints
A! , b,where A includes the active constraints only. If !∗ is a minimizer lying
on the active constraints, then any other feasible point can be written as

!̂ ! !∗ " p

Ap , 0

since this guarantees that A!̂ , b. If the direction p points into the feasible
region (Figure C.7) then Ap ̸! 0, that is, some of its components are strictly
positive. Since !∗ is a minimizer, from condition (1) in (C.30) we have that

"

"!
J (!∗) ! AT "

“21-Appendix-C-SA272” 17/9/2008 page 941

C.4 Optimization for Constrained Problems 941

#2

#1

f2(!) 5 0

f3(!) 5 0 f1(!) 5 0

feasible
region

unconstrained
minimum

c3

c2

c1

A

p

FIGURE C.7
An example of the nontrivial case, where the unconstrained minimum lies outside the feasible
region.

The change of the cost function along the direction of p is proportional to

pT "

"!
(J (!)) ! pT AT "

and since !∗ is a minimizer, this must be a direction of ascent at !∗. Thus "
must be nonnegative to guarantee that pT AT " , 0 for any p pointing into the
feasible region. An active constraint whose corresponding Lagrange multiplier
is zero is known as degenerate.

■ It can be shown that, if the cost function is convex and the feasible region is
also convex, then a local minimum is also a global one. A little thought (and a
look at Figure C.7) suffices to see why this is so.

Having now discussed all these nice properties, the major question arises: how
can one compute a constrained (local) minimum? Unfortunately, this is not always
an easy task. A straightforward approach would be to assume that some of the
constraints are active and some inactive, and check if the resulting Lagrange mul-
tipliers of the active constraints are nonnegative. If not, then choose another
combination of constraints and repeat the procedure until one ends up with non-
negative multipliers. However, in practice, this may require a prohibitive amount of
computation. Instead, a number of alternative approaches have been proposed. In
the sequel, we will review some basics from Game Theory and use these to refor-
mulate the KKT conditions. This new setup can be useful in a number of cases in
practice.

“21-Appendix-C-SA272” 17/9/2008 page 942

942 APPENDIX C Cost Function Optimization

Min-Max Duality
Let us consider two players, namely X and Y , playing a game. Player X will choose
a strategy, say, x and simultaneously player Y will choose a strategy y. As a result,
X will pay to Y the amount F(x, y), which can also be negative, that is, X wins.
Let us now follow their thinking, prior to their final choice of strategy, assuming
that the players are good professionals.

X: If Y knew that I was going to choose x, then, since he/she is a clever player,
he/she would choose y to make his/her profit maximum, that is,

F∗(x) ! max
y

F(x, y)

Thus, in order to make my worst-case payoff to Y minimum, I have to choose x so
as to minimize F∗(x), that is,

min
x

F∗(x)

This problem is known as the min-max problem since it seeks the value

min
x

max
y

F(x, y)

Y: X is a good player, so if he/she knew that I am going to play y, he/she would
choose x so that to make his/her payoff minimum, that is,

F∗(y) ! min
x

F(x, y)

Thus, in order to make my worst-case profit maximum I must choose y that
maximizes F∗(y), that is,

max
y

F∗(y)

This is known as the max-min problem, since it seeks the value

max
y

min
x

F(x, y)

The two problems are said to be dual to each other. The first is known to be the
primal, whose objective is to minimize F∗(x) and the second is the dual problem
with the objective to maximize F∗(y).

For any x and y, the following is valid:

F∗(y) ≡ min
x

F(x, y) . F(x, y) . max
y

F(x, y) ≡ F∗(x) (C.31)

which easily leads to

max
y

min
x

F(x, y) . min
x

max
y

F(x, y) (C.32)

“21-Appendix-C-SA272” 17/9/2008 page 943

C.4 Optimization for Constrained Problems 943

Saddle Point Condition
Let F(x, y) be a function of two vector variables with x ∈ X ⊆ Rl and y ∈ Y ⊆ Rl .
If a pair of points (x∗, y∗), with x∗ ∈ X , y∗ ∈ Y satisfies the condition

F(x∗, y) . F(x∗, y∗) . F(x, y∗) (C.33)

for every x ∈ X and y ∈ Y , we say that it satisfies the saddle point condition. It is
not difficult to show (e.g., [Nash 96]) that a pair (x∗, y∗) satisfies the saddle point
conditions if and only if

max
y

min
x

F(x, y) ! min
x

max
y

F(x, y) ! F(x∗, y∗) (C.34)

Lagrangian Duality
We will now use all the above in order to formulate our original cost function
minimization problem as a min-max task of the corresponding Lagrangian function.
Under certain conditions, this formulation can lead to computational savings when
computing the constrained minimum. The optimization task of our interest is

minimize J (!)

subject to fi(!) , 0, i ! 1, 2, . . . , m

The Lagrangian function is

L(!, ") ! J (!) $
m∑

i!1

'i fi(!) (C.35)

Let

L∗(!) ! max
"

L(!, ") (C.36)

However,since " ,0 and fi(!) , 0, the maximum value of the Lagrangian occurs
if the summation in (C.35) is zero (either 'i ! 0 or fi(!) ! 0 or both) and

L∗(!) ! J (!) (C.37)

Therefore our original problem is equivalent with

min
!

J (!) ! min
!

max
" , 0

L(!, ") (C.38)

As we already know, the dual problem of the above is

max
" , 0

min
!

L(!, ") (C.39)

Convex Programming
A large class of practical problems obeys the following two conditions:

(1) J (!) is convex (C.40)

(2) fi(!) are concave (C.41)

“21-Appendix-C-SA272” 17/9/2008 page 944

944 APPENDIX C Cost Function Optimization

This class of problems turns out to have a very useful and mathematically tractable
property.

Theorem Let !∗ be a minimizer of such a problem, which is also assumed to
satisfy the regularity condition. Let "∗ be the corresponding vector of Lagrange
multipliers. Then (!∗, "∗) is a saddle point of the Lagrangian function, and as we
know this is equivalent to

L(!∗, "∗) ! max
" , 0

min
!

L(!, ") ! min
!

max
" , 0

L(!, ") (C.42)

Proof. Since fi(!) are concave, $fi(!) are convex, so the Lagrangian function

L(!, ") ! J (!) $
m∑

i!1

'i fi(!)

for 'i , 0, is also convex. Note, now, that for concave function constraints of the
form fi(!) , 0, the feasible region is convex (see remarks above). The function J (!)
is also convex. Hence, as already stated in the remarks, every local minimum is also
a global one; thus for any !

L(!∗, "∗) . L(!, "∗) (C.43)

Furthermore, the complementary slackness conditions suggest that

L(!∗, "∗) ! J (!∗) (C.44)

and for any " , 0

L(!∗, ") ≡ J (!∗) $
m∑

i!1

'i fi(!∗) . J (!∗) ! L(!∗, "∗) (C.45)

Combining (C.43) and (C.45) we obtain

L(!∗, ") . L(!∗, "∗) . L(!, "∗) (C.46)

In other words, the solution (!∗, "∗) is a saddle point.

This is a very important theorem and it states that the constrained minimum of a
convex programming problem can also be obtained as a maximization task applied
on the Lagrangian. This leads us to the following very useful formulation of the
optimization task.

Wolfe Dual Representation
A convex programming problem is equivalent to

max
" , 0

L(!, ") (C.47)

subject to
"

"!
L(!, ") ! 0 (C.48)

The last equation guarantees that ! is a minimum of the Lagrangian.

“21-Appendix-C-SA272” 17/9/2008 page 945

References 945

Example C.1
Consider the quadratic problem

minimize
1
2

!T !

subject to A! , b

This is a convex programming problem; hence the Wolfe dual representation is valid:

maximize
1
2

!T ! $ "T (A! $ b)

subject to ! $ AT " ! 0

For this example, the equality constraint has an analytic solution (this is not, however, always
possible). Solving with respect to !, we can eliminate it from the maximizing function and the
resulting dual problem involves only the Lagrange multipliers,

max
"

{
$

1
2

"T AAT " " "T b
}

subject to " , 0

This is also a quadratic problem but the set of constraints is now simpler.

REFERENCES
[Baza 79] Bazaraa M.S., Shetty C.M. Nonlinear Programming: Theory and Algorithms,

John Wiley, 1979.

[Bert 95] Bertsekas, D.P., Belmont, M.A. Nonlinear Programming,Athenas Scientific, 1995.

[Flet 87] Fletcher, R. Practical Methods of Optimization, 2nd ed., John Wiley, 1987.

[Luen 84] Luenberger D.G. Linear and Nonlinear Programming,Addison Wesley, 1984.

[Nash 96] Nash S.G., Sofer A. Linear and Nonlinear Programming, McGraw-Hill, 1996.

“22-Appendix-D-SA272” 17/9/2008 page 946

APPENDIX

DBasic Definitions from Linear
Systems Theory

D.1 LINEAR TIME INVARIANT (LTI) SYSTEMS
A discrete linear time-invariant system is characterized uniquely by its impulse
response sequence, h(n). This is the output of the system when its input is excited
by the impulse sequence, !(n), that is,

!(n) !

{
1 for n ! 0

0 for n ̸! 1
(D.1)

When its input is excited by a sequence x(n), its output sequence is given by the
convolution of x(n) with h(n), defined as

y(n) !
"#∑

k!$#

h(k)x(n $ k) !
"#∑

k!$#

x(k)h(n $ k) ≡ h(n) ∗ x(n) (D.2)

For continuous time systems the convolution becomes an integral, that is,

y(t) !

∫ "#

$#
h(")x(t $ ") d"

!

∫ "#

$#
x(")h(t $ ") d" ≡ x(t) ∗ y(t) (D.3)

where h(t) is the impulse response of the system, that is, the output when its input
is excited by the Dirac delta function !(t), defined by

!(t) ! 0, for t ̸! 0, and
∫ "#

$#
!(t)dt ! 1 (D.4)

Linear time-invariant systems can be:

■ Causal: Their impulse response is zero for n % 0. Otherwise, they are known
as noncausal. Observe that only causal systems can be realized in real time.
This is because for noncausal systems, the output at time n would require
knowledge of future samples x(n " 1), x(n " 2), . . . , which in practice is not
possible.

“22-Appendix-D-SA272” 17/9/2008 page 947

D.2 Transfer Function 947

■ Finite impulse response (FIR): The corresponding impulse response is of
finite extent. If this is not the case, the systems are known as infinite
impulse response (IIR) systems. For a causal FIR system the input–output
relation becomes

y(n) !
L$1∑

k!0

h(k)x(n $ k) (D.5)

where L is the length of the impulse response. When a system is FIR but
noncausal, it can become causal by delaying its output. Take for example the
system with impulse response 0, . . . , 0, h($2), h($1), h(0), h(1), h(2), 0,
Then,

y(n $ 2) ! h($2)x(n) " h($1)x(n $ 1) " h(0)x(n $ 2)

" h(1)x(n $ 3) " h(2)x(n $ 4) (D.6)

That is, at time “n” the output corresponds to the delayed time “n $ 2.” The
delay is equal to the maximum negative index of nonzero impulse coefficient.

D.2 TRANSFER FUNCTION
The z-transform of the impulse response, defined as

H(z) !
"#∑

n!$#

h(n)z$n (D.7)

is known as the transfer function of the system. The free parameter z is a complex
variable. The definition in (D.7) is meaningful, provided that the series converges.
For most of the sequences of our interest this is true for some region in the com-
plex plane. It can easily be shown that for causal and FIR systems the region of
convergence is of the form

|z| & |R|, for some |R| % 1 (D.8)

that is, it is the exterior of a circle in the complex plane, centered at the origin, and
it contains the unit circle (|z| ! 1). Let X(z) and Y (z) be the z-transforms of the
input and output sequences of a linear time-invariant system. Then (D.2) is shown
to be equivalent to

Y (z) ! H(z)X(z) (D.9)

If the unit circle is in the region of convergence of the respective z-transforms (for
example, for causal FIR systems), then for z ! exp($j#) we obtain the equivalent
Fourier transform and

Y (#) ! H(#)X(#) (D.10)

If the impulse response of a linear time-invariant system is delayed by r samples,
for example, to make it causal in case it is noncausal, the transfer function of the
delayed system is given by z$rH(z).

“22-Appendix-D-SA272” 17/9/2008 page 948

948 APPENDIX D Basic Definitions from Linear Systems Theory

D.3 SERIAL AND PARALLEL CONNECTION
Consider two LTI systems with responses h1(n) and h2(n),respectively. Figure D.1a
shows the two systems connected in serial and Figure D.1b in parallel. The overall
impulse responses are easily shown to be

Serial h(n) ! h1(n) ∗ h2(n) (D.11)

Parallel h(n) ! h1(n) " h2(n) (D.12)

D.4 TWO-DIMENSIONAL GENERALIZATIONS
A two-dimensional linear time-invariant system is also characterized by its two-
dimensional impulse response sequence H(m, n), which in the case of images is
known as a point spread function. On filtering an input image array X(m, n) by
H(m, n) the resulting image array is given by the two-dimensional convolution

Y (m, n) !
∑

k

∑

l

H(m $ k, n $ l)X(k, l) ≡ H(m, n) ∗ ∗X(m, n)

!
∑

k

∑

l

H(k, l)X(m $ k, n $ l) (D.13)

X(z)

X(z)

H1(z)

H1(z)

H2(z)
Y(z)

Y(z)

H2(z)

H(z) 5 H1(z) H2(z)

H(z) 5 H1(z) 1 H2(z)

FIGURE D.1
Serial and parallel connections of LTI systems.

“23-index-sa272” 17/9/2008 page 949

Index

P statistic, 903
T -squared sampling tests, 902
! statistic, 870, 876
! statistic, 874
"-SVM, 135
k-medoids algorithms, 744–746
lp metric dissimilarity measures, 604–605
t -distribution, 272, 925
t -test, 273, 576
k Nearest neighbor density estimation,

56–57

A
Absolute moments, 414
Acceptance interval, 271
Activation function, 101
Active learning, 511
AdaBoost, 231
Adaline, 108
Adaptive fuzzy C-shells (AFCS) algorithm,

724
Adaptive momentum, 182
Adaptive resonance theory (ART2), 635
Agglomerative algorithms, 629

definitions, 655–658
generalized, 654–655
graph theory and, 667–676
implementation issues, 667
matrix theory and, 658–664
monotonicity and crossover, 664–667
proximity matrix, 676–679

Agglomerative hierarchical algorithms, 654
Akaike Information Criterion, 306,

310, 887
Algebraic distance, 719, see also distance

between a point and a quadratic
surface

Alternating Cluster Estimation (ACE), 733
Alternating Optimization (AO), 716
Alternative hypothesis, 268
Analysis filters, 377
Ancillary unit, 161
Angular second moment, 416
Any path method, 536
Approximation properties, 194–196
Arithmetic average rule, 224
Audio classification, 451–466
Auto-associative networks, 298
Autocorrelation matrix, 104, 430, 433
Autoregressive-moving average

(ARMA (p, m)), 429

Autoregressive processes (AR), 428
one-dimensional, 428–429
two-dimensional, 431

Average expected quantization error, 750
Average partition density (PA), 891
Average partition shell density, 892
Average proximity function, 616, 621
Average Risk, 16

minimizing, 16–18

B
Backpropagation algorithm, 162, 167

batch and pattern modes, 169
momentum term, 170

Bagging (bootstrap aggregating), 220, 226
Barlow’s hypothesis, 342
Barycentric correction procedure, 101
Basic sequential algorithmic scheme (BSAS),

633–634
modified, 637–638

Basis images, 325
Basis images (matrices), 325
Basis sequences, 365, 378
Basis vectors, 324
Batch mode, 168

algorithms, 780
Baum–Welch reestimation, 540
Bayes classification rule, 14

naive, 59–61
normal distributions and, 20–33

Bayes decision theory, 13
Bayes rule, 13
Bayesian Inference, 39
Bayesian Information Criterion (BIC),

310, 887
Bayesian learning, 175–176
Bayesian networks, 66
Bellman’s optimality principle, 484
Bending energy, 442
Best path method, 539
Beta distribution, 925
Between-class scatter matrix, 281
Bhattacharyya distance, 278
Bias–Variance Dilemma, 114
Binary morphology clustering algorithms

(BMCAs), 789
algorithmic scheme, 796–798
cluster determination in a discretebinary

set, 794–795
discretization, 790–791 949

“23-index-sa272” 17/9/2008 page 950

950 Index

Binary morphology clustering algorithms
(BMCAs) (continued)

feature vector assignment, 795–796
morphological operations, 791–794

Bioinformatics, 632
Biorthogonal expansion, 378
Biorthogonality condition, 381
BIRCH algorithm, 690
BLAST, 838
Boosting, 230
Bootstrap, 220, 572
Bootstrap aggregating, 220, 226
Bootstrap method, 572
Bootstrapping techniques, 866
Boundary detection algorithms (BDA),

630
Branch and bound, 288
Branch and bound clustering (BBC)

algorithms, 630, 805
Branch and bound methods, 803
Brownian motion, 446–447
BUBBLE and BUBBLE-FM algorithms, 690

C
c-means algorithm, see isodata algorithm
Cascade correlation, 181
Cauchy–Schwarz inequality, 499
Cell-based clustering method (CBF), 832
Center of mass, 442
Central limit theorem, 20, 923
Central moments, 413
Centroid condition, 750
Cepstrum, 456
Ceptral coefficients, 494
Chain codes, 439
Chaining effect, 660
Chameleon algorithm, 686
Channel equalization, 527
Character recognition, 1–2
Characteristic functions, 601
Chernoff bound, 278
Chi-square distribution, 274, 924–925
Circular backpropagation model, 184
CLARA algorithm, 748
CLARANS, 748
Class imbalance problem, 237
Class separability measures, 276–283
Classification error probability, 6, 15

minimizing, 15
Classification task, 5
Classification tree, 804
Classifiers, 4

Bayes decision theory and, 13–71
design stage, 6

generalization performance of, 120
linear, 91–141, 185–187
nonlinear, 151–239
polynomial, 189–190
soft margin, 209

CLIQUE algorithm, 825
Closing, 793
CLTree algorithm, 832
Cluster, 595, 600

compact, 701
linear-shaped, 701
ring-shaped, 701, 708
shell-shaped, 701
spherical, 728

Cluster-based graph formulation (CBGF), 841
Cluster detection algorithm for

discrete-valued sets (CDADV), 794
Cluster validity, 863

hypothesis testing and, 866–876
of individual clusters, 893–896

Cluster variation, 889
Clustering algorithms, see also

under name of
categories of, 629–632

Clustering algorithms, cost function
optimization, 629, 701, 930, see also
under name of

branch and bound, 630, 803–807
deterministic annealing, 765, 808–810
fuzzy, 630, 712–733
genetic, 630, 810–811
hard, 630, 739–749
mixture decomposition schemes, 703–712
possibilistic, 630, 733–739
simulating annealing, 765, 807–808
vector quantization, 749–751

Clustering algorithms, hierarchical, see also
under name of

agglomerative, 629, 654–679
applications, 653
cophenetic matrix, 679–680
divisive, 629, 680–682
for large data sets, 682–690
selecting the best, 690–692

Clustering algorithms, sequential, 629,
633–641, see also under name of

basic, 633–635
modified basic, 637–638
neural network implementation, 643–646
number of possible, 627–628, 635–636
refinement stages, 641–643
role of, 629
two-threshold scheme, 638–641

Clustering/clusters, 7–8, 600–601, 627
applications, 598–599

“23-index-sa272” 17/9/2008 page 951

Index 951

compact and hyperellipsoidal, 705–709
criterion, 595–597
definitions, 600–601
proximity measures, 602–622

Clustering criterion, 595–596, 597
Clustering hypothesis, 896
Clustering tendency, 597, 863, 896–905

applications, 896
tests for spatial randomness, 900–905

Co-association matrix, 841
Code vector,749, see also reproduction vector
Combination of clusterings, 839
Combining classifiers, 10, 222–230
Compactness and separation validity function,

8, 890, see also Xie–Beni index
Competitive learning algorithms,631,780,789

applications, 782
basic, 782–783
conscientious, 784–785
cost functions and, 785–786
generalized, 781
leaky, 783–784
self-organizing maps, 786–788
vector quantization, 788–789

Competitive learning associated with cost
functions, 785

Complementary slackness, 122, 124,
939, 944

Complete link algorithm, 659, 671–672
Computer-aided diagnosis, 2
Computer storage utilization, 749
Concordant pair, 875
Confidence intervals, 271–272
Confusion matrix, 573, 707, 718
Conjugate gradient algorithm, 171, 934
Conscientious competitive learning

algorithms, 784
Constant-Q filter banks, 382
Constrained problems, optimization for,

935–945
Constraint-based clustering algorithms,

839
Constraint clustering, 839
Constraints, 497
Constructive techniques, 160, 178, 181
Content-Based Image Retrieval (CBIR), 509
Content-based retrieval, 508
Context-dependent classification, 521

Bayes classifier, 521–522
channel equalization, 527–532
hidden Markov models, 532–551
Markov chain models, 522–523
Markov random fields, 554–556
neural networks and training, 552–553
Viterbi algorithm, 523–527

Contingency table, 608
Continuous observation HMM, 543
Continuous speech recognition (CSR), 491
Contrast, 416
Convex function, 809, 937
Convex hull, 898
Convex programming, 123, 126, 943–944
Convex set, 126, 138, 938
Co-occurrence matrices, 414–417
Cophenetic correlation coefficient (CPCC),

874
Cophenetic distance, 679
Cophenetic matrix, 680
“Corrected”statistic, 872
Correlation, 104
Correlation matrix, 108, 928–929
Correlations, template matching and measures

based on, 498–504
Cosine similarity measure, 606
Cost function(s), 701, see also clustering

algorithms, cost function optimization
backpropagation algorithm and, 162–165
competitive learning algorithms, 780–781
convex, 123
cross-entropy, 173–174
least square, 172
penalty terms, 180
quadratic error, 174
selecting, 172–176

Co-training, 589
Covariance matrix, 21
Cox–Lewis test, 902
Cramer-Rao lower bound, 36, 923
Crisp clustering algorithm, see hard/crisp

algorithms
Critical bandwidth, 458
Critical interval, 269
Cross-correlation, 104
Cross-correlation coefficient, 499
Cross-entropy, 173, 545
Cross-entropy cost function, 173–174
Cross-validation with active pattern

selection, 572
Crossover, 665
Cumulants, 344–345, 917–918
CURE algorithm, 683
Curse of dimensionality, 55
Curvature features, 440

D
Data

missing, 263–265, 614–615
reduction, 598

Data compression, 598, 749

“23-index-sa272” 17/9/2008 page 952

952 Index

Data normalization, 263
Daubechies’ low-pass filters, 379
Davies–Bouldin (DB) index, 883–884
Davies–Bouldin like indices, 883–884
DBCLASD, 818
DBSCAN, 815
Decision surfaces, 19–20

hyperplanes, 26–30, 91–92
Decision trees, 215
Decomposition layers, 902
Decomposition technique, sparse, 902–905
Deformable template models, 504–508
Degrees of freedom, 273
Delta-bar-delta, 171
Delta-delta rule, 171
DENCLUE, 819
Dendrogram, 656, see also threshold

dendrogram
Density-based algorithms, 631

for large data sets, 815–821
Density function, 819
Deterministic annealing, 808–810
Diagnostic methods, 583
Diameter of a cluster, 882
Dilation, 791
Dimensionality reduction, 331, 350
Directed acyclic graph (DAG), 66
Directed graphs, 667
Directed path, 770
Directed tree, 770
Direction length features, 440
Discordant pairs, 875
Discrete binary (DB) set, 790
Discrete cosine transform (DCT), 366
Discrete Fourier transform (DFT), 363

one-dimensional, 364–366
short time, 454
two-dimensional, 366

Discrete observation HMM models, 539
Discrete sine transform (DST), 367
Discrete time wavelet coefficients, 378
Discrete time wavelet transform (DTWT), 375

many bands case, 380–384
two-band case, 376–380

Discrete wavelet frame, 394
Discriminant functions, 19
Discriminative learning, 174
Dispersion of a cluster, 883–884
Dissimilarity matrix, 655
Dissimilarity measure (DM)

between discrete-valued vectors, 608–609
between points, 620, 622
between real-valued vectors, 604–607
between sets, 603, 620
defined, 602

Distance between a point and a quadratic
surface, 719

Algebraic distance, 719
normalized radial, 721
perpendicular distance, 720
radial, 720

Distances
between two sequences, 483
Bhattacharyya, 278, 279
classifiers, 30–33
Euclidean, 30, 603
Mahalanobis, 30, 32
Minkowski, 716

Distortion function, 750
Distortion measure, 750
Distributed clustering, 846
Divergence, 276, 278, 283
Divisive hierarchical algorithm(s), 653,

680, 690
DNA microarray analysis, 632
DNA sequencing, 838
Downward closure property, 825, 827, 831
Dunn index, 882
Dunn-like indices, 882
Dynamic Bayesian networks, 545
Dynamic programming, 287, 484
Dynamic Similarity Measures, 610
Dynamic time warping in speech recognition,

491–498

E
Eccentricity, 442
Edge connectivity, 670
Edge cut set, 687
Edgeworth expansion, 346, 918–919
Edit distance, 487
EM-algorithm, 703
Empirical classification error, 299
ENCLUS algorithm, 830
End point constraints, 494
Entropy, 43, 330, 414, 417
Entropy estimation, maximum, 43–44
Epochs, 169, 175, 182
Erosion, 791
Error counting approach, 568
Euclidean dimension, 445
Euclidean distance, 30, 603
Exclusive OR (XOR) problem, 151–153
Expectation maximization (EM) algorithm, 45

description of, 45–46, 703, 751–752
mixture modeling problem and, 46–47

Extended self similar (ESS) processes, 451
External criteria, 864, 867–873
External energy, 505–507

“23-index-sa272” 17/9/2008 page 953

Index 953

F
FASTA, 838
Feature generation, audio analysis and, 412

cepstrum, 455–457
example, 463–466
mel-cepstrum, 457–460
short time processing of signals, 452–455
spectral features, 460–462
time domain features, 462–463

Feature generation, image analysis and
extraction, 421–423
fractals, 444–451
local linear transforms for texture, 421–423
moments, 423–427
parametric models, 427–435
shape and size characterization, 435–443
texture characterization, 412–421

Feature generation, linear transforms and
applications, 390–396
basis vectors and images, 324–326
discrete cosine and sine transforms,

366–368
discrete Fourier transform, 363–366
discrete time wavelet transform, 375–384
Haar transform, 369–375, 382–384
Hadamard transform, 368–369
independent component analysis, 342–349
Karhunen-Loève transform, 326–334
multiresolution interpretation, 384–386
singular value decomposition, 335–341
two-dimensional generalizations, 388–390
wavelet packets, 387–388

Feature generation methods, 822
Feature selection, 6, 261, 596

Bayesian information criterion, 309–310
class separability measures, 276–282
neural networks and, 298–299
optimal generation, 288–297
preprocessing, 262–265
receiver operating characteristics curve,

275–276
scalar, 283–284
statistical hypothesis testing and, 268–275
subset, 283–288
Vapnik-Chervonenkis learning theory,

300–309
vectors, 284–288

Feature selection methods, 822
Features, 4

defined, 5
interval scaled, 599
maps, 184
nominal, 599
ordinal, 599
ratio-scaled, 599, 676

vectors, 6
types of, 599

Filter approach, 285
Filter model, 823
Finite impulse response (FIR), 376, 947
Finite state automaton, 535
First-order statistics features, 412–414
Fisher’s discriminant ratio (FDR), 282, 289
Fisher’s linear discriminant, 204, 294
Floating search methods, 286–287
Fourier descriptors, 437–439
Fourier features, 436–439
Fourier transform, 455
Fowlkes and Mallows index, 870
Fractal dimension, 444–446
Fractals, 444–451
Fractional Brownian motion, 446–451
Frequency ratio, 50
Frobenius norm, 337, 350
Fukuyama-Sugeno index, 890
Fundamental frequency, 461–462
Fuzzifier, 713
Fuzzy approaches, 702, see also fuzzy

clustering algorithms
Fuzzy C ellipsoidal shells (FCES) algorithm,

726
Fuzzy C plano-quadric shells (FCPQS), 727
Fuzzy C quadric shells (FCQS) algorithm, 727
Fuzzy clustering algorithms, 630, 712–716

alternating cluster estimation, 733
convergence aspects, 732–733
generalized, 715
geometrical interpretation, 732
hyperplane representatives, 728–732
internal criteria, 894–896
point representatives, 617–619
quadric surface representatives, 718–724
relative criteria, 877–880
shell, 724–728

Fuzzy c-Means (FCM) algorithm, 717
Fuzzy decision trees, 221
Fuzzy density, 891
Fuzzy hypervolume, 891
Fuzzy k-means algorithm, 717
Fuzzy measures, 613
Fuzzy proximity measures, 613–614
Fuzzy shell clustering algorithms, 724–728
Fuzzy shell density, 892

G
Gabor filter, 394
Gabriel graphs (GG), 770, 882, 884
Gap statistic, 885
Gauss–Newton method, 717
Generalization error probability, 300

“23-index-sa272” 17/9/2008 page 954

954 Index

Generalization performance of classifiers, 120
Generalized agglomerative scheme (GAS), 654
Generalized competitive learning scheme

(GCLS), 781
Generalized divisive scheme (GDS), 681
Generalized fuzzy algorithmic scheme (GFAS),

715
Generalized hard algorithmic scheme (GHAS),

740
Generalized linear classifiers, 185
Generalized mixture decomposition

algorithmic scheme (GMDAS), 704
Generalized possibilistic algorithmic scheme

(GPAS), 735
Generalized XB index, 890
Generative models, 579
Genetic algorithms, 630, 765, 810, 811

crossover, 810
mutation, 810
reproduction, 810

Geometric average rule, 223–224
Geometric features, 442–443
Geometric moments, 423
Gibbs random fields, 554
Global constraints, 485, 495
Global convergence theorem, 732
Grade of membership, 601
Gradient descent algorithm, 95, 172, 930–933
Graph

complete, 766
edges, 667, 766
inconsistent edges, 766
vertices, 667

Graph embedding, 361
Graph theory, 765

agglomerative algorithms, and, 667–676
directed trees, 770–772
minimum spanning tree, 675–676, 766–770
regions of influence, 768–770

Graph theory–based algorithmic scheme
(GTAS), 670

Gray level run lengths, 417
Grid-based subspace clustering algorithms

(GBSCAs), 825
Gustafson–Kessel (G-K) algorithm, 728

H
Haar transform, 369, 384
Hadamard transform, 368
Hammersley-Clifford theorem, 554
Hamming distance, 608–609
Hamming window, 454
Hard clustering, 702
Hard/crisp clustering algorithms, 630, 739

CLARA and CLARANS algorithms, 748–749

generalized, 740–741
internal criteria, 867, 873–876
isodata, k-means, and c-means algorithms,

741–745
k-medoids algorithms, 745–749
PAM algorithm, 746–748
relative criteria, 877–880

Hermitian operation, 324
Hessian matrix, 123, 171, 933–934
Hidden layer, 156
Hidden Markov models (HMMs), 532

coin tossing example, 532–533
continuous observation, 543–545
discrete observation, 539–543
recognition, 536–539
state duration modeling and, 545–551
training, 539

Hierarchical clustering algorithms, 629
agglomerative algorithms, 629
divisive algorithms, 629

Hierarchical search, 502
High-dimensional data sets, clustering

algorithms for, 821–837
Higher order, 184
Hilbert space, 199
Histogram approximation, 50
Ho-Kashyap algorithm, 109
Holdout method, 570
Hopkins test, 901
Hu moments, 425–426
Hubert’s ! statistic, 870, see also ! statistic
Hughes phenomenon, 303
Hurst parameter, 447
Hybrid bipartite graph formulation (HBGF),

842
Hyperbolic tangent, kernels, 200
Hypercube, 709, 732
Hyperellipses, 30, 719
Hyperparameters, 202
Hyperplanes, 26–30, 91–92

margin, 106, 182, 266
representatives, 619, 728–732

Hyperquadrics, 25
Hypersphere, 867
Hyperspherical representatives, 619–620
Hypothesis generation, 598
Hypothesis testing, 598, 864–876

basics, 268–269
cluster analysis and, 598
cluster validity and, 866–876
feature selection and, 268–275
known variance case, 269–271
null, 268
t -test, 273–275
unknown variance case, 272–273

“23-index-sa272” 17/9/2008 page 955

Index 955

I
Images, basis, 324–326
Incomplete data set, 45
Independent component analysis (ICA),

342–343
based on mutual information, 345–348
based on second- and fourth-order

cumulants, 344–345, 917–918
identifying condition for, 343–344
simulation example, 348–349

Inequality constraints, 937–945
Influence function, 819
Information theory based criteria, 886–887
Inner product, 606
Input layer, 156
Instance-based graph formulation (IBGF), 841
Internal criteria, 864, 867, 873–876
Internal energy, 505–506
Interpoint distances, 900
Interpolation functions, 185–186

polynomial classifiers, 189–190
radial basis, 190–194

Interpretation of clustering results, 597
Intersymbol interference, 527
Interval scaled, 599
Intrinsic dimension, 331
Invariance, transformation, 183
Inverse difference moment, 417
Isodata algorithm, 742
Isolated word recognition (IWR), 491
ISOMAP, 359
Itakura constraints, 495, 496
Itakura global constraints, 495
Itakura–Saito distortion, 782
Iterative function optimization schemes, 629

J
Jaccard coefficient, 869–870
Jaccard measure, 842

K
k-means algorithm, see isodata algorithm
Kalman filtering approach, 171
Karhunen–Loève transform, 326, 822
Karush-Kuhn-Tucker (KKT) conditions, 121,

126, 939–941
Kernel clustering methods, 811
Kernel Euclidean distance classifier, 203
Kernel PCA, 351
Kernel perceptron algorithm, 205
Kernels, 51
Kesler’s construction, 101
Koch curve, 445–446
Kohonen self-organizing maps, 787

Kronecker’s delta, 18
Kruskal’s algorithm, 676
Kruskal-Wallis statistic, 274
Kullback-Leibler (KL) probability distance

measure, 223, 277, 350, 919–920
Kurtosis, 413

L
Label propagation, 586
Lagrange multipliers, 122, 124, 940–941
Lagrangian duality, 123, 943–945
Laplacian eigenmaps, 353
Laplacian matrix, 355
Laplacian regularized kernel least

squares, 585
Latent semantics indexing, 337
LBG algorithm, 751
Leaky learning algorithm, 783
Learning machines, perceptrons, 101, 114
Learning subspace methods, 333
Learning theory,Vapnik-Chervonenkis, 231,

300–309
Least squares methods (LSM), 103

algorithm, 105–107
cost function, 172
mean square error estimation, 103–105,

110–117
stochastic approximation, 105–108
sum of error squares estimation, 108–110

Leave-one-out method, 570
Levenberg–Marquardt (L-M) method, 717
Levenberg–Marquardt algorithm, 171, 717
Levenstein distance, 490
Levinson’s algorithm, 430
Lexicographic ordering, 324
Lifetime of a cluster, 690
Likelihood function, 24, 35
Likelihood ratio, 18
Likelihood ratio test, 57
Linear classifiers, 91

functions and decision hyperplanes, 91–92
generalized, 185–187
least squares methods, 103–110
logistic discrimination, 117–119
mean square estimation, 110–117
perceptron algorithm, 93–103
support vector machines, 119–133

Linear dichotomies, 187
Linear discriminant analysis (LDA), 33, 288
Linear discrimination, 288, 294
Linear time invariant (LTI) systems, 946–947
Linear transforms, see feature generation,

linear transforms and
Link graph, 686
Lloyd’s algorithm, 751

“23-index-sa272” 17/9/2008 page 956

956 Index

LMS algorithm, 105
Local constraints, 484, 495
Local feature extractor, 421
Local linear embedding, 357
Local linear transforms for texture extraction,

421–423
Log-likelihood function, 36–37, 46, 118
Logarithmic search, 501–502
Logistic discrimination, 117
Logistic function, 162
Long run emphasis, 420
Loss matrix, 17
Loss minimization algorithm, 101

M
Machine intelligence systems, 1
Machine vision, 1
MAFIA algorithm, 831
Mahalanobis distance, 32
Majority Voting Rule, 225
Manhattan norm, 605
Manhattan segmental distance, 833
Many-to-one mapping, 45
Marginalization, 916
Markov chain models, 522–523, see also

hidden Markov models
Markov chain Monte Carlo (MCMC)

techniques, 40
Markov edit distance, 490
Markov model, 522
Markov random fields, 434, 554
Masks, 422–423, 471–472
Matching score generator, 643
Matrix theory, 658–664
Matrix updating algorithmic scheme (MUAS),

658, 659
Max proximity function, 616, 620
Maximally complete subgraph, 668
Maximally connected subgraph, 668
Maximum a posteriori probability

estimation, 38
Maximum entropy estimation, 43
Maximum likelihood, 34
Maximum margin classifiers, 308
Maximum variance unfolding, 361
Maxmin algorithm, 638
MaxNet, 643, 644
McCulloch-Pitts neuron, 101, 162
Mean center, 617
Mean proximity function, 621
Mean square error (MSE)

bias-variance dilemma, 114–117
estimation, 103–104
Karhunen-Loève transform, 326–329
multiclass generalization, 104–105

posterior class probabilities, 112–113
regression, 110–111

Mean square error estimation, 103
Mean square error regression, 110
Mean value, 106, 182, 266
Mean vector/point, 617
Median center, 618
Median clustering, 843
Mel Cepstrum, 457
Mellin transforms, 500
Membership functions, 601
Mercer’s theorem, 199
Merging procedure, 641
Metric multidimensional scaling (MDS), 332
Min proximity function, 616, 620
Minimum cut bisector, 687
Minimum cut set, 687
Minimum Description Length (MDL), 887
Minimum distance classifier, 30
Minimum spanning tree (MST), 766, 882, 884,

900, 902
Minimum variance algorithm, 662, see also

ward’s algorithm
Minkowski distance, 716
Min-max duality, 942–943
Mixture decomposition, 702
Mixture decomposition schemes, 703–712
Mixture models, 44–45

expectation maximization (EM) algorithm
and, 45–49

Mixture of Experts, 230
Mixture scatter matrix, 281
Model sparsification, 205
Mode-seeking algorithms, 737, 772
Mode-seeking property, 737
Modified BSAS, 637
Modified fuzzy C quadric shells (MFCQS)

algorithm, 726, 727
Modified Hubert ! statistic, 880
Moment-based features, 441–442
Moment generating function, 917
Moments, 423–427

absolute, 414
central, 413, 424
geometric, 423–425
of Hu, 424
Zernike, 425–427

Momentum factor, 170
Monothetic algorithms, 682
Monotonicity, 496, 665
Monte Carlo techniques, 865
Moore machine model, 535
Morphological operations, 791–794

closing, 793
dilation, 791

“23-index-sa272” 17/9/2008 page 957

Index 957

erosion, 791
opening, 793
translation, 791

Morphological transformation techniques,
algorithms based on, 631

Motion compensation, 498
Motion estimation, 498
Mountain method, 837
Multiclass generalization, 104–105
Multi-class tasks, 127
Multifractional Brownian motion, 451
Multiple additive regression trees (MART),236
Multiresolution analysis, 386
Multiresolution decomposition, 375
Multiresolution interpretation, 384
Multispectral remote sensing, 7
Multivariate Gaussian, 920–921
Mutation, 810, 811
Mutual information, 545

ICA based on, 345–348

N
Naive-Bayes classifier, 59–61
Natural clusters, 600
Natural gradient, 347
Nearest Neighbor, 901–902

k Nearest Neighbor (kNN) density
estimation, 56

Nearest neighbor condition, 750
Nearest neighbor distances tests, 901
Nearest neighbor rule, 61–64, 161
Nested clusterings, 653
Nesting effect, 286
Network size selection, 176–181
Networks, 183
Neural networks, 552

basic sequential algorithmic scheme
and, 644–646

feature selection and, 298–299
training Markov models, 552–553

Neurocomputers, 169
Neurons, see perceptrons
Newton’s algorithm, 934
Neyman-Pearson decision rule, 18
Neyman–Scott procedure, 898
Noble identity, 372, 380
Node connectivity, 670
Node degree, 670
Node impurity, 218, 219, 220
Nonlinear classifiers

algorithms based on classification of
training set, 160–162

approximation properties, 194–196
backpropagation algorithm, 162–169
combining, 222–235

cost function, selecting, 172–176
decision trees, 215–222
linear dichotomies, 187–189
polynomial classifiers, 189–190
radial basis functions, 190–194
support vector machines, 198–203
three-layer perceptrons, 158–160
two-layer perceptrons, 153–158
XOR (exclusive OR) problem, 151–153

Nonlinear optimization iterative techniques,
44

Nonnegative matrix factorization (NMF), 349
Nonparametric estimation, 49–59
Normal distributions, Bayesian classification

for, 20–33
Normalization, 790

data, 263
Normalized central moments, 424
Normalized radial distance, 721–723, see also

distance between a point and a
quadratic surface

Normalized ! statistic, 870
Null hypothesis, 268, 864, 866

O
Octave-band filter banks, 382
One-dimensional DFT, 364
One-tailed statistical test, 865

left-tailed statistical test, 866
right-tailed statistical test, 866

Online mode, 168
Opening, 793
Optical character recognition (OCR),

435, 789
OPTICS, 818
OptiGrid, 801
Optimization, 935
ORCLUS algorithm, 834
Ordinal proximity matrices, 894
Ordinary binary classification trees (OBCTs),

216
Orientation, 442
Orthogonal projection, 104
Orthogonality condition, 104
Outliers, 262, 710, 732, 734
Output layer, 156
Overtraining, 177

P
PAC bounds, 301
PAC learning theory, 301
Packing density, 899
PAM algorithm, 746
Parallel connection, 948

“23-index-sa272” 17/9/2008 page 958

958 Index

Parametric models, 427
one-dimensional, 428–431
two-dimensional, 431–433

Paraunitary, 379
Partial clusterings, 804
Partition algorithmic schemes, 737
Partition coefficient (PC), 888, 891
Partition density, 891–893
Partition density (PD) index, 891
Partition entropy (PE), 888, 891
Partition entropy coefficient, 888
Partition shell density, 892
Parzen windows, 51, 802
Pattern mode algorithms, 780
Pattern recognition

importance of, 1–4
supervised versus unsupervised, 7–9
syntactic, 12

Peaking phenomenon, 265
Pearson’s correlation coefficient, 606
Penalty terms, 180
Perceptron(s), 100

description of, 100–101
three-layer, 158–160
two-layer, 153–158

Perceptron algorithm, 93
convergence proof, 95–97
pocket algorithm, 101
variants of, 98

Perceptron cost, 93
Perfect reconstruction, 378
Perpendicular Distance, 720, see also distance

between a point and a quadratic
surface

pFCM, 717
Pitch, 461

signal, 461, 462
Pocket algorithm, 101
Point representatives, 617–619, 716–718, 888
Point spread function, 948
Point-based subspace clustering algorithms

(PBSCA), 832
Poisson distribution, 899
Poisson process, 899
Polyhedra, 157–158
Polynomial classifiers, 189–190

kernels, 199
Polythetic algorithms, 682
Positive definite/symmetric matrices,

927–928
Possibilistic algorithms, 630, 738
Possibilistic clustering algorithms, 630,

733–739
Potential functions, 51
Power function, 864

Precision, 573
Prediction based on groups, 599
Prim’s algorithm, 676
Principal Component Analysis (PCA), see

Karhunen-Loève transform
Probabilistic clustering algorithms, 630
Probabilistic neural networks, 58, 196
Probability chain rule, 64
Probability density functions (pdf), 13

Edgeworth expansion, 346, 918
estimating unknown, 34–61
mixture models, 44–47
nonparametric estimation, 49–59
normal density function, 20–33,

920–921
PROCLUS algorithm, 832
Projection pursuit, 186
Proximity dendrogram, 656
Proximity function

between a point and a set
average proximity function, 616
maximum proximity function, 616
minimum proximity function, 616

between two sets
average proximity function, 621
maximum proximity function, 620
mean proximity function, 621
minimum proximity function, 620

Proximity graph, 669, 894
dissimilarity graph, 669

Proximity matrix, 655
Proximity measure, 597

between a point and a set, 616–620
between two points, 604–616
between two sets, 620–622
definitions, 602–604

Pruning techniques, 178
Pseudolikelihood function, 556
Psychoacoustics, 461
Pythagoras’ theorem, 333

Q
QROCK, 686
Quadrat analysis, 900
Quadratic classifier, 25
Quadratic discriminant analysis (QDA), 33
Quadric surface, 719

hyperellipses, 719
hyperparabolas, 719
representatives, 718–728, 731–732

Quasistationary signals, 452
Quefrency, 456
Query point method (QPM), 513
Quickprop, 171

“23-index-sa272” 17/9/2008 page 959

Index 959

R
Radial basis functions (RBFs), 190–194

kernels, 201
Radial distance, 720, see also distance

between a point and a quadratic
surface

Rand statistic, 869
Random fields, 428

Gibbs, 554
Markov, 434, 554–556

Random Forests, 221
Random graph hypothesis, 867
Random label hypothesis, 868
Random position hypothesis, 867
Random projections method, 823
Random variables, 5
Random walk, 446
Randomness hypothesis, 866, 896
Ratio-scaled proximity matrices, 895
Reassignment procedure, 642
Recall, 573
Receiver operating characteristics (ROC)

curve, 275
Receptive field, 184
Recognition, hidden Markov model,

536–539
Reduced Convex hull (RCH), 138
Redundancy reduction, 342
Regions of influence, 768

algorithms based on, 768–770
Regression, mean square error, 110–111
Regularity assumption, 935
Regularity hypothesis, 896
Regularization parameter, 180
Relative closeness, 688
Relative criteria, 864, 877–893
Relative edge consistency, 769
Relative interconnectivity, 687–688
Relative neighborhood graph (RNG), 770,

882, 884
Relevance Feedback (RF), 509
Relevance vector machines, 208
Representatives

hyperplane, 728
point, 716–717
quadric surfaces, 718

Reproducing kernel Hilbert space (RKHS),
199

Reproduction, 810
Reproduction set, 750
Reproduction vector, 749
Resubstitution method, 570
Reward and punishment schemes, 98
Ridge regression, 214
Right-tailed statistical test, 866

Risk or loss, 17
Risk, minimizing average, 16–18
Robbins–Monro iteration, 783
Robust statistics, 211
ROCK algorithm, 685
Rotation forest, 230
Roundness ratio, 442
Run length nonuniformity, 420
Run percentage, 421

S
Sakoe and Chiba, 497
Saliency, 179
Sample complexity, 302
Sample correlation matrix, 108
Sample mean, 270
Sampling frame, 897
Sampling window, 897
Scalar feature selection, 283–284
Scan test, 900
Scatter matrices, 280
Searching techniques

optimal, 287–288
suboptimal, 285–287

Second characteristic function, 917
Second moment structure, 900
Second-order statistics features, 414–417
Segment modeling, 551
Segmental k-means training algorithm, 542
Self-affine, 448
Self-Organizing Maps (SOM), 786
Self-similarity, 444
Self-training, 588
Semi-supervised learning, 577
Sequential backward selection, 285
Sequential clustering algorithms, see

clustering algorithms, sequential
Sequential decomposition, 902
Sequential forward selection, 286
Sequential Minimal Optimization (SMO), 129
Sequential search, 503
Serial connection, 948
Shannon’s information theory, 43, 218
Shape and size characterization, 435

chain codes, 439–441
Fourier features, 436–439
geometric features, 442–443
moment-based features, 441–442

Shell hypervolume, 892
Shell partition density, 892
Shell-shaped clusters, 892–893
Short run emphasis, 420
Short-time autocorrelation, 455
Short-time DFT, 454
Short-time Fourier transform, 386

“23-index-sa272” 17/9/2008 page 960

960 Index

Short time processing of signals, 452–455
Sigmoid functions, 162
Significance level, 269
Silhouette index, 885
Similarity matrix, 655
Similarity measure (SM)

between discrete-valued vectors, 607–608
between real-valued vectors, 606
defined, 602

Simple sequential inhibition (SSI), 899
Simulated annealing, 807–808
Sine transforms, 366
Single link algorithm, 659, 670–671
Singular value decomposition, 335, 822
Skewness, 413
Slack variables, 125
Small sample size problem, 295
Soft margin classifiers, 133
Softmax activation, 241
Softmax activation function, 174
Spanning tree, 675
Sparse decomposition technique, 902–905
Sparsification, see model sparsification
Spatial dependence matrix, see co-occurrence

matrices
Spatial randomness, tests for, 900–905
Speaker-dependent recognition, 491
Speaker-independent recognition, 491
Spectral clustering, 772
Spectral features, 460–462
Spectral representation, 335
Speech recognition, 2–3, 451, 789

dynamic time warping in, 491–498
Squashing functions, 162
Stacking, 226
State duration HMM, 545
Statistical hypothesis testing, 268–275

one-tailed, 865
two-tailed, 865

Statistical independence, 916
Statistically self-affine, 447
Step function, 154
Stirling numbers of the second kind, 628
Stochastic approximation, 105
Stochastic relaxation methods, 630–631
String patterns, 482
Structural graph tests, 900
Structural risk minimization, 303
Structuring element, 791–794
Subgraph, 668

complete, 668
connected, 668

Subsampling, 371
Subspace classification, 333

Subspace clustering algorithms (SCAs), 631,
824

grid-based, 825–832
point-based, 832–836

Sum of error squares estimation, 108
Support vector machines (SVMs)

geometric viewpoint, 136–138
nonlinear, 198–203
nonseparable classes, 124–127
reduced convex hulls, 138–142
separable classes, 119–124
Vapnik-Chervonenkis learning theory,

301–303
v-SVM, 133–136

Support vectors, 122
Surface density criterion, 895
SVMs, see support vector machines (SVMs)
Sweep, 807
Synapses, 101
Synthesis filters, 377
System evaluation, 6, 567

error counting, 568–569
finite size of data set, 569–573
medical imaging example, 573–577

T
Tabu search method, 837
Tanimoto measure/distance, 606–607
Tanimoto measure for discrete valued, 609
Template matching, 481

Bellman’s principle, 484–487
defined, 481
deformable models, 504–508
dynamic programming, 484–487
dynamic time warping in speech

recognition, 491–498
edit distance, 487–491
measures based on correlations, 498–504
measures based on optimal path searching,

482–498
Templates, 481
Test statistic, 269
Texture, 393, 412
Texture characterization, 393, 412–421
Texture classification, 393–396
Thermal perceptron algorithm, 101
Three-layer perceptrons, 158–160
Threshold dendrogram, 674
Threshold graph, 668, 904
Tied-mixture densities, 544
Tiling algorithm, 160
Time domain features, 462–463
Toeplitz matrix, 430, 433
Topological sorting, 66
Total fuzzy average shell thickness, 892

“23-index-sa272” 17/9/2008 page 961

Index 961

Total probability, 915
Total variation, 889
Touching clusters, 767–768
Training Markov models, 552–553
Training patterns/feature vectors, 6
Transductive inference, 577
Transductive SVM, 586
Transfer function, 947
Transformation invariance, 183
Transformed divergence, 278
Tree-structured filter bank, 374
Triangular inequality, 603
Truth tables, 152, 154
Two-dimensional AR models, 431
Two-dimensional DFT, 366
Two-dimensional parametric models, 431–433
Two-tailed statistical test, 865
Two-threshold sequential algorithmic scheme

(TTSAS), 639–640

U
Uncertainty principle, 395
Undirected graphs, 667
Universal approximators, 194
Universum, 590
Unsupervised learning, 595
Unsupervised pattern recognition, 7
Unweighted graphs, 667
Unweighted pair group method average

(UPGMA), 661
Unweighted pair group method centroid

(UPGMC), 661
Utility function, 843

V
Validation of clustering results, 597
Valley-seeking algorithms, 631, 801–803
Vapnik–Chervonenkis learning theory, 299
Variables, slack, 125
Variance, 916
Variance dilemma, bias-, 114–117, 228
Variational similarity, 487
Vector quantization, 749
Vector quantizer, 749

decoder, 750
encoder, 750

Vectors, 4

basis, 324–326
discrete-valued, 607–610
mixed-valued, 610–612
noisy feature, 710
quantization, 749–751, 788
real-valued, 604–607
selecting, 284–288
support, 122

Video coding, 481
Viterbi algorithm, 523
Viterbi reestimation, 542
Voronoi tessellation, 64

W
Ward’s/minimum variance algorithm,

662–663
WaveCluster algorithm, 838
Wavelet packets, 387
Web content mining, 632
Web data mining, 632, 838
Web mining, 590
Web usage mining, 632
Weierstrass theorem, 195
Weight elimination, 180
Weight sharing, 183–184
Weighted graphs, 667
Weighted pair group method average

(WPGMA), 661
Weighted pair group method centroid

(WPGMC), 661
Well-formed functions, 172
Widrow-Hoff algorithm, 107
Within-class scatter matrix, 280
Within scatter matrix, 741
Wolfe dual representation form, 123, 200,

214, 812, 944–945
Wrapper approach, 285
Wrapper model, 823

X
Xie–Beni (XB) index, 890
XOR problem, 151

Z
Zernike moments, 425
Zero-crossing rate, 462

