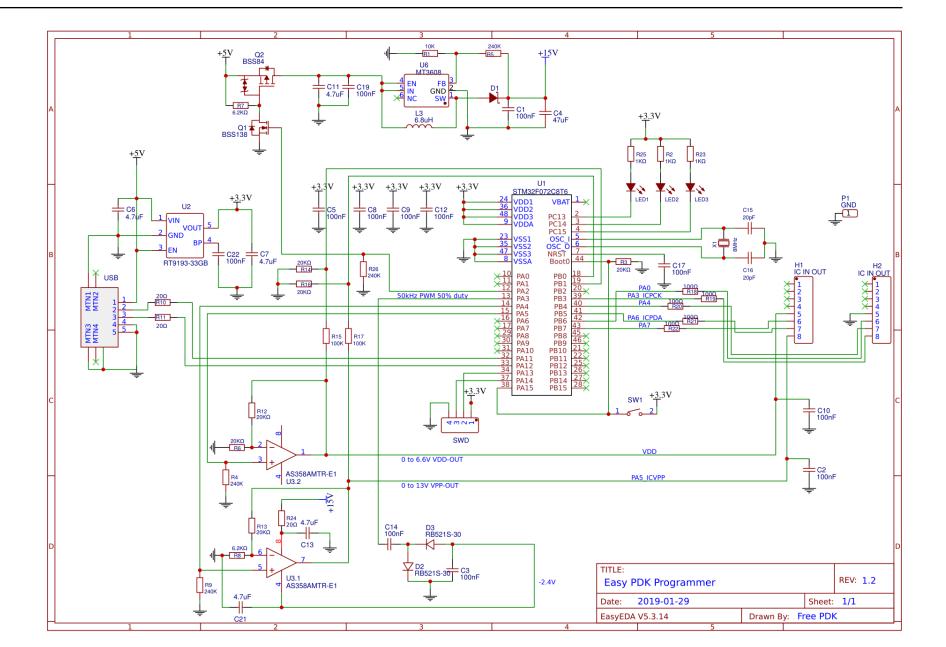
EASYPDKPROG Lite

A simplified version of the EASYPDKPROG that is manufacturable at JLCPCB

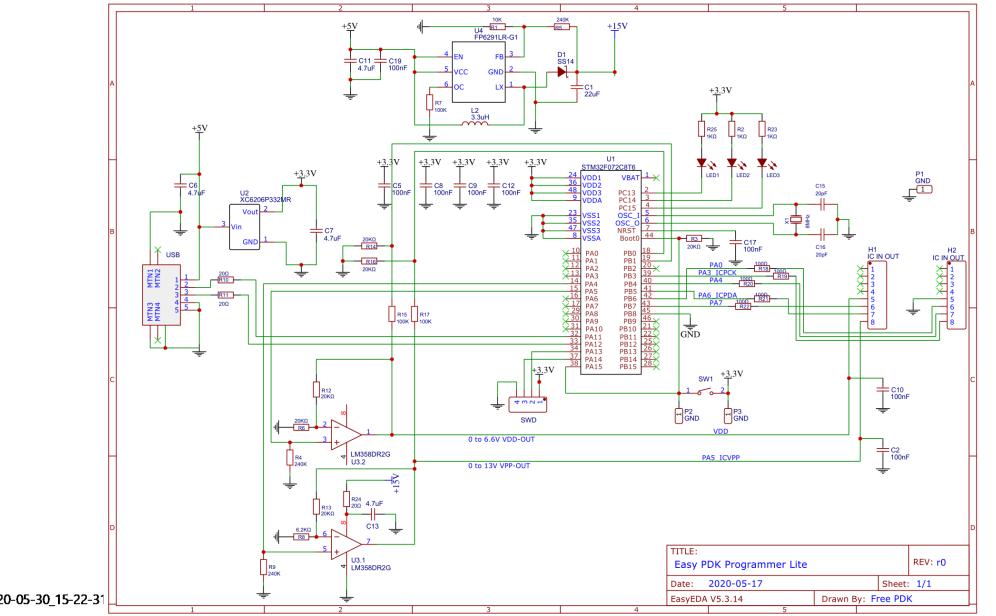

Design goals

- 1. Retain functionality of the original
- 2. Reduce types of different components in BOM, whereever possible
- 3. Try to use only parts from the "Basic" parts catalogue of JLCPCB
- 4. Reduce component count whereever possible
- 5. Allow depop of some parts, e.g. Pushbutton, XTAL
- 6. Relax spacing between component to ease assembly, especially for USB connector
- 7. Add silk screen

Schematic of original

easypdkprog_easyedaproject12.zip

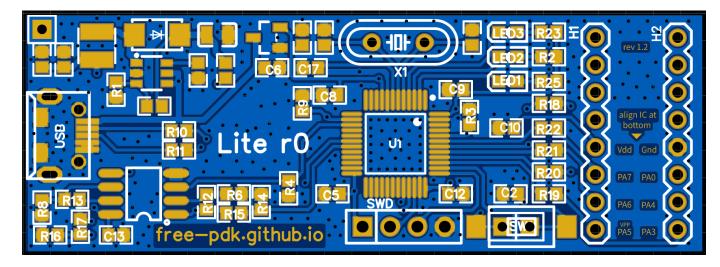
Ideas

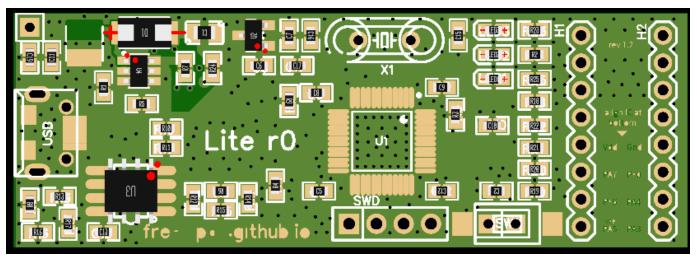

- Remove negative power supply to OPAMPS -> output can go 20mV to ground, this should be sufficient
- Remove input switch from DC-DC converter -> Opamps can do power gating
- Remove additional RC filter for OPAMP supply -> loop gain should be high enough to tolerate some power noise. PSRR of opamp is xx dB anyways.
- Replace step-up converter with one from basic components at JLCPCB
- Replace inductor with SMD type (or two?) from basic selection. -> there is no suitable power inductor.
- Extra clearance for USB connector to allow for easier soldering
- More regular layout for resistors with more spacing
- Remove XTAL? -> no, needs adaption of software

XC6206P332MR	LOW DROPOUT RI	EGULATORS(LDO) F	OSITIVE FIXED 68(Basic Part	TOREX SEM	/ICON 50542	1+ \$0.0948
	Torex Semicon XC6	206P332MR	JLCPCB Warehouse	Sales Unit: Piece	Full Reel: 50542	
	Manufacturer	Torex Semicon		Qty.	Unit Price	
	MFR.Part #	XC6206P332MR		1+	\$0.0948	
Oca Oca	LCSC Part #	C5446		100+	\$0.0562	
	Package	SOT-23-3L				
	Description		EGULATORS(LDO) 80MV @ 100MA 6V 3-3L ROHS			
	Datasheet	Torex-Semicon- XC6206P332MR_C				
	EasyEDA Libraries:	CosyEDA				

Change log original -> r0

- Removed negative Bias generator and connected Opamp to ground (C3,C14,C21,D2,D3 removed)
- Removed enable circuit for 12 V boost generator (Q1,Q2,R7,R26)
- Increased width of 5V rail to 20mil
- Moved R10,R11 to allow easier soldering of the USB connector
- Moved C5, C9, C12 to allow easier soldering of MCU
- Added "Lite r0" silk screen
- Moved C10 for better alignment with resistors
- Added optional pins for buttonless activiation of the bootlader
- Replace D1 with SS14 in different package (basic part)
- Replace RT9193 with XC6206P33 (basic part), remove bandgap cap (not needed for XC6206)
- Replace C4 with 22μF cap instead of 47μF. No 47μ cap as basic part available, 22μ is still sufficient according to datasheet. C1 removed, since it is redundant with the additional RC filter.
- Replaced AS358 with LM358 (Basic part)
- Replace MT3680 with FP6291, add 100k current limiting resistor, to limit to 480mA current. Replaced L1 with 3.3μH. (3.3μm is recommended in datasheet, 6.8μH seems too high for FP6291)
- Connected PB8 (Pin 45) of the MCU to ground to be able to detect the lite version from software.


Revision 0 Design, Schematics



Schematic_EasyPDKPROGlite_2020-05-30_15-22-31

PDF

Revision 0 design, PCB

List of parts not populated

Designator	Name	Footprint	Quantity	Note
SW1	1TS002E-2700-2500	KEY-TACT-SMD-6.1*3.7*2.5	1	Optional, can use wire bridge to invoke bootloader
X1	8MHZ	HC-49S	1	Optional, need to update firmware to use internal oscillator
H1	IC IN OUT	210S-1X8P	1	Mandatory, programming header
Н2	IC IN OUT	210S-1X8P	1	Mandatory, programming header
L2	3.3UH	IND-SMD_L3.0-W3.0	1	l Mandatory
USB	MICRO USBFEMALE	MICRO-USB-1	1	l Mandatory
SWD	SWD	DIP-1X4P-2.54MM-M	1	Optional, only needed for development

Note

- X1,H1,H2 are through hole parts and cannot be populated by JLCPCB
- L2 is not available at JLCPCB and needs to be mounted manually
- USB cannot be be populated by JLCPCB

Cost at JLCPCB

50 pc

Review Parts Placement			_	Charge Details Engineering fee:	\$8.00
				Board:	\$3.10
				SMT Price:	
				Setup fee:	\$7.00
				Stencil:	\$1.50
				Panel:	\$0.00
8	Lite r0 🛛 🚍			Components:	\$83.32
				Extended components fee: 📀	\$3.00
	pgithule is			Assembly: 📀	\$0.00
				Build Time:	
				PCB: 🧿 5-6 days	\$0.00
				SMT: 48 hours	
The parts placement is for reference purpose only. If you continue placing your order.	are sure the rotation an	d polarity of your design are correct, y	ou can omit the preview and	Total Price:	\$105.92
Selected Parts(18 items) ()				Weight:	280.33g
Part Detail	Selected By	Designator	Price	SAVE TO CAR	π

ON Semicon/ON LM358DP2G

PCB: 💿 5-6 days	\$(
SMT: 48 hours	
Total Price:	\$105
Weight:	280.
SAVE TO	CART

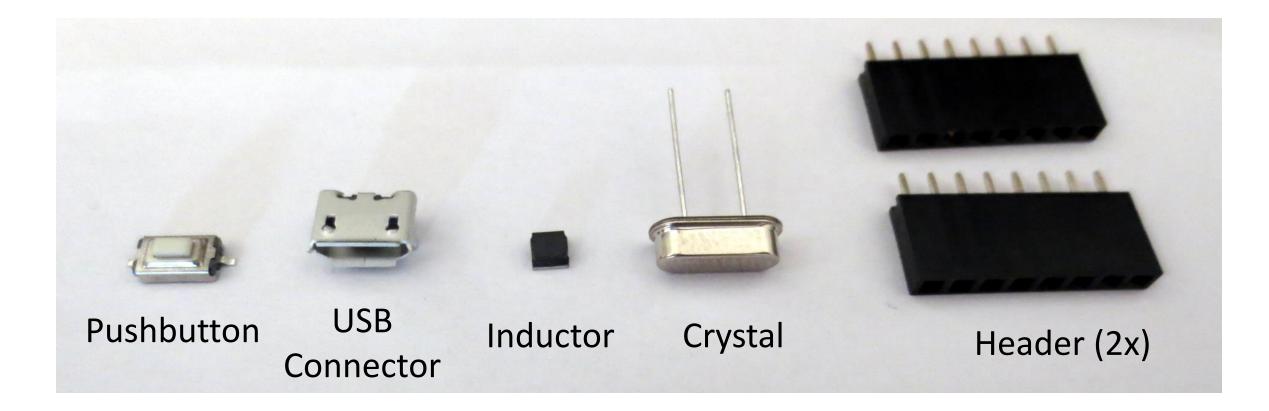
5 pc

The parts placement is for reference purpose only. If you are sure the rotation and polarity of your design are correct, you can omit the preview and continue placing your order.

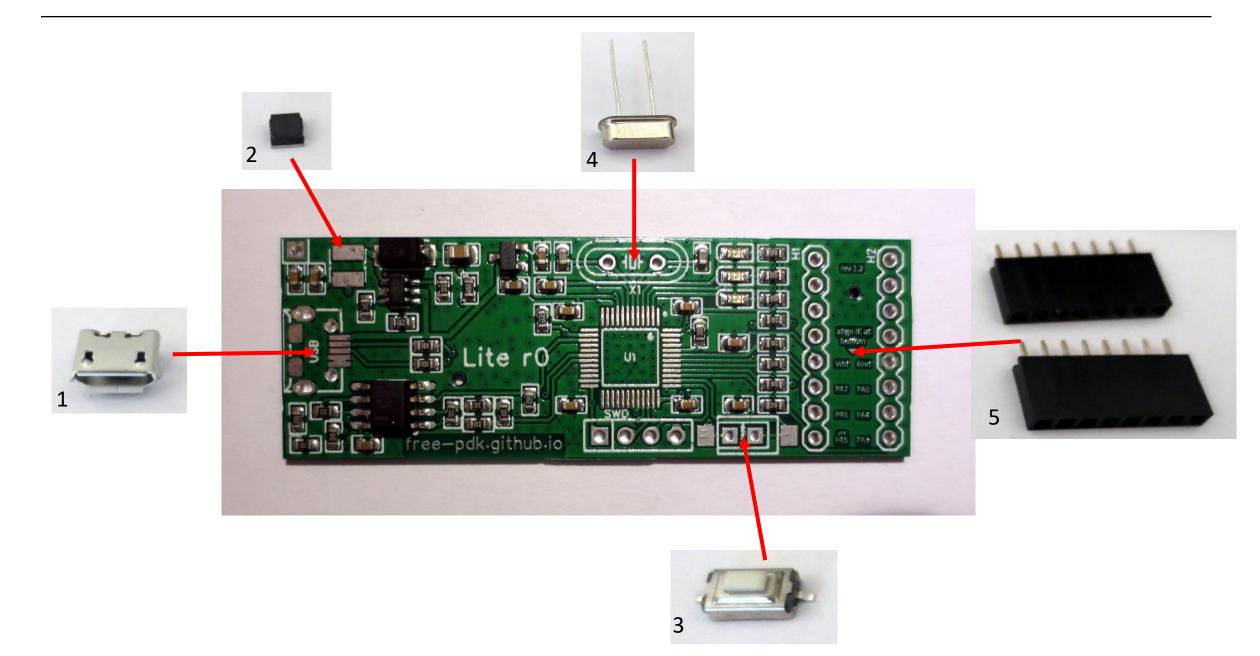
Selected Parts(18 items) 🔞

Part Detail		

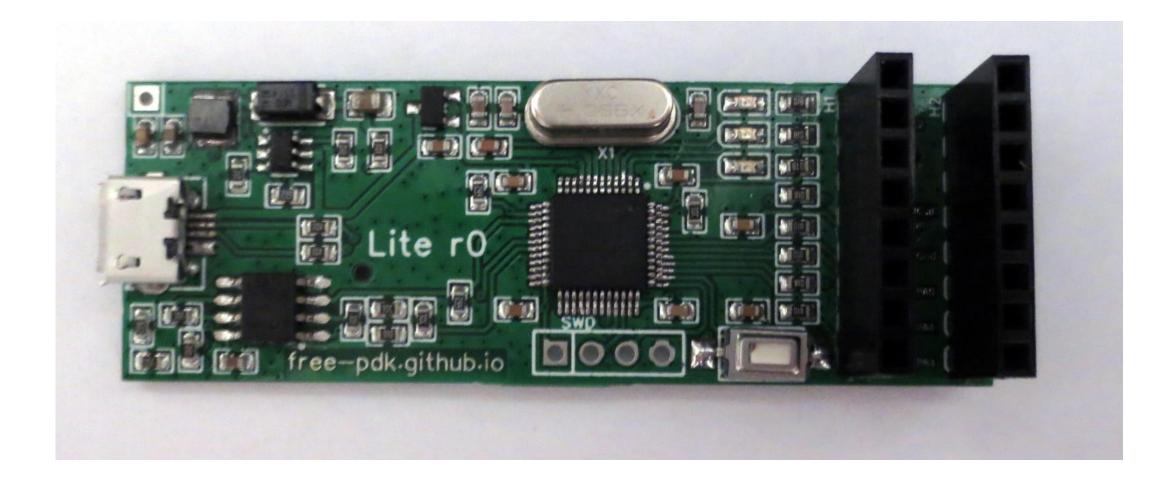
Special Offer:	\$2.0
SMT Price:	
Setup fee:	\$7.00
Stencil:	\$1.50
Panel:	\$0.00
Components:	\$13.24
Extended components fee: 3	\$3.00
Assembly: 🜖	\$0.00
Build Time:	
PCB: I-2 days	\$0.00
SMT: 48 hours	
Total Price:	\$26.74
Weight:	36.41


Charge Details	
Special Offer:	\$5.00
SMT Price	
Setup fee:	\$7.00
Stencil:	\$1.50
Panel:	\$0.00
Components:	\$21.37
Extended components fee: 📀	\$3.00
Assembly: 🚱	\$0.00
Build Time:	
PCB: () 1-2 days	\$0.00
SMT: 48 hours	
Total Price:	\$37.87
Weight:	54.41g
SAVE TO CART	

Special
SMT Pri
Setup fee
Stencil:
Panel:
Compone
Extended
Assembly
Build Tir

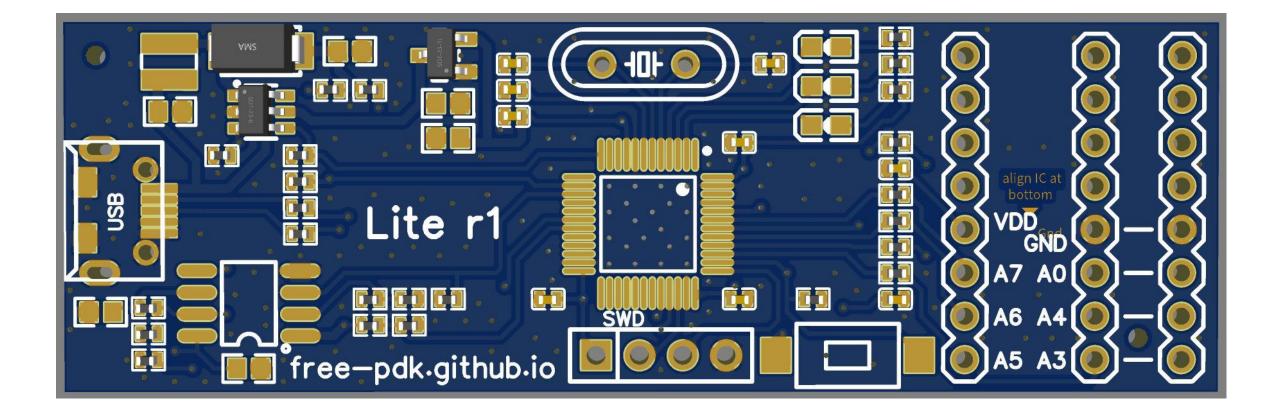

Part Detail

RO Assembly

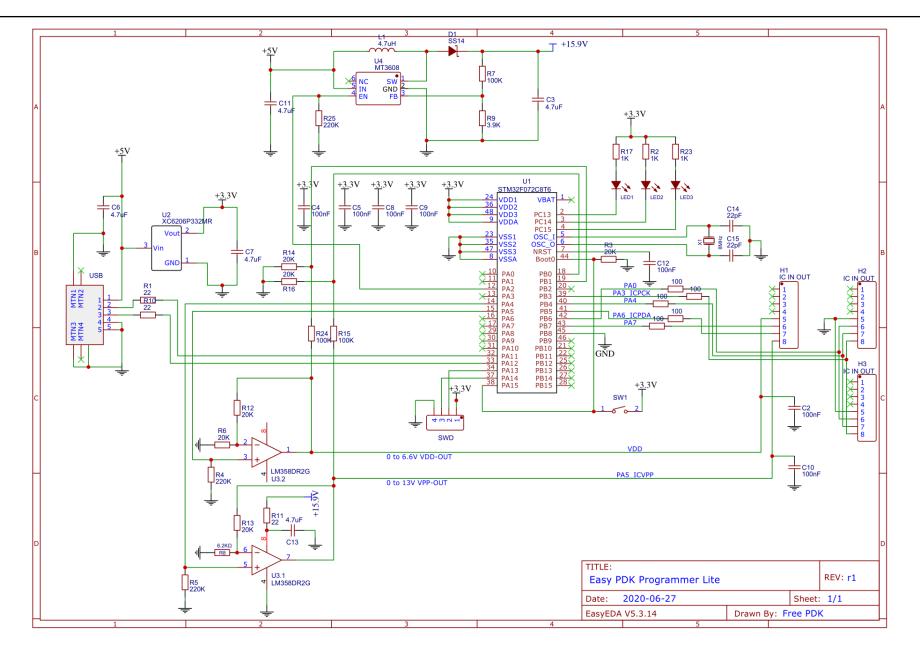

Components that need to be manually assembled

Assembly locations

Assembled programmer



R1 Design


Change log r0 -> r1

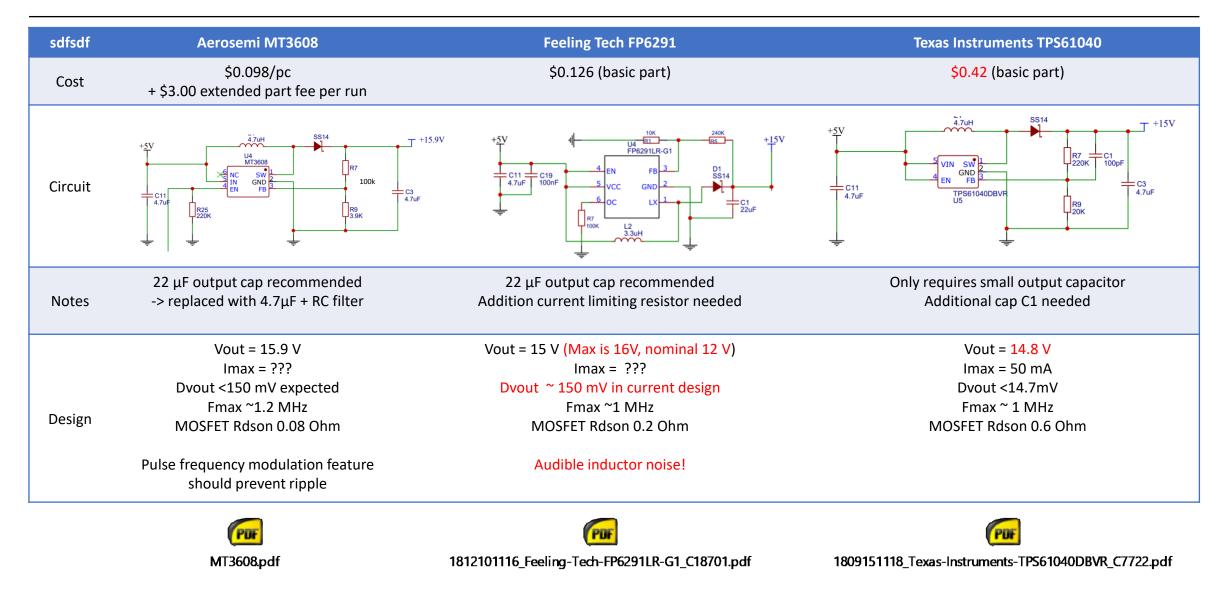
- Added keepout area to avoid direct connection between the two GND pins on the USB plug. This prevents formation of solder bridges during manual soldering.
- Removed "rev 1.2" metallization mark to avoid confusion
- Corrected mistake: Change name of P2 in schematics to "Boot" instead of GND.
- Create space for tooling holes during JLCPCB assembly:
 - Removed PINs to shortcut button -> Make button mandatory, allow space for mounting hole (It's a cheap part and more convenient to have when updating the firmware)
 - Removen GND pin header in top left corner to allow placement of mounting hole -> scope gnd can also be taken from SWD header or many other places.
- Converted "free-pdk.github.io" inscription to silk screen for better visibility.
- Converted pin descriptions to silk screen for better visibility.
- Replaced almost all 0603 parts with 0402 parts to de-crowd layout and for some cost down.
- Went back to MT3608 boost converter, but with simplified filtering
- Connected enable pin of boost converter to MCU
- Rearranged current loop in boost converter to reference a single GND point.
- Added second row of headers to allow plugging in wide breakout boards
- Added fiducial holes for assembly

R1 lite programmer, PCB

R1 lite programmer, schematics

Limitation given by LM358 voltage buffer

- Max output current: 20 mA min, 40 mA typ.
- Out voltage high limit: 1.5 2 V below VCC


- -> Max booster current 2x*40 mA
- -> VPPmax is 10.5V, so VCCopamp ~13 V
- Ripple not so critical due to PSRR of LKM358. Lets assume <50mV Vpp Limitation given by reference voltage divider (R8/R13 in original design)
- 3.3 V *(20 kohm + 6.2 kohm) / (6.2 kohm) = 13.9 V -> VCCopamp ~ 15 V

Requirements for boost converter

Vout>=15 V, Imax~2*40mA, <50 mVpp ripple</p>

Boost converter options

Pick this

Boost converter design with TPS61040

- L=4.7 µH
- Vd of SS14 schottky diode is ~0.3V
- Vout=14.8 V, R1= 220 kOhm, R2= 20 kOhm, Co=4.7 μF
- Ipeak= 400 mA + 5 V/4.7 μH*100 nS = 400 mA + 152 mA = 506 mA
- Fsmax= 1.4 MHz (1 MHz is allowed fsmax, booster should not be loaded above 50 mA)
- Fsload(20 mA)= 0.297 MHz
- Fsload(0.5 mA)=7.43 kHz (this is the quiescent current of the LM358)
- Iloadmax= 68 mA
- CFF ~ 86 pF -> 82 pF (Assuming 10 m)
- dVOUT=14.7mV

ESR value but tantalum capacitors can be used as well, depending on the application. Assuming the converter does not show double pulses or pulse bursts on the switch node (SW), the output voltage robe can be calculated as:

$$V_{out} = \frac{I_{out}}{C_{out}} \times \left(\frac{1}{fS(Iout)} - \frac{I_P \times L}{Vout + Vd - Vin}\right) + I_P \times ESR$$

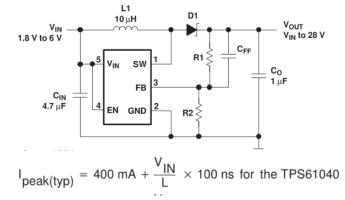
where: $I_P = \text{Peak current as described in the $Peak Current Control section$$L = Selected inductor value$}$

- I_{out} = Nominal load current
- $fS (I_{out}) = Switching frequency at the nominal load current as calculated previously \\ Vd = Rectifier diode forward voltage (typically 0.3 V)$
- C_{out} = Selected output capacitor
- ESR = Output capacitor ESR value

(7)

The lower the switching frequency of the converter, the larger the feedforward capacitor value required. A good starting point is to use a 10-pF feedforward capacitor. As a first estimation, the required value for the feedforward capacitor at the operation point can also be calculated using the following formula:

$$\mathsf{FF} = \frac{1}{2 \times \pi \times \frac{\mathsf{fS}}{20} \times \mathsf{R1}}$$


Where:

C

R1 = Upper resistor of voltage divider

fS = Switching frequency of the converter at the nominal load current (See the Inductor Selection, Maximum Load Current section for calculating the switching frequency)

 C_{FF} = Choose a value that comes closest to the result of the calculation

By selecting the TPS61040 or TPS61041, it is possible to tailor the design to the specific application current limit requirements. A lower current limit supports applications requiring lower output power and allows the use of an inductor with a lower current rating and a smaller form factor. A lower current limit usually has a lower output voltage ripple as well.

$$fS_{max} = \frac{V_{IN(min)} \times (V_{OUT} - V_{IN})}{I_P \times L \times V_{OUT}}$$

Where:

I_P = Peak current as described in the *Peak Current Control* section

L = Selected inductor value

 $V_{\text{IN}(\text{min})}$ = The highest switching frequency occurs at the minimum input voltage

$$\mathrm{IS}(\mathrm{I}_{\mathrm{load}}) = \frac{2 \times \mathrm{I}_{\mathrm{load}} \times (\mathrm{V}_{\mathrm{OUT}} - \mathrm{V}_{\mathrm{IN}} + \mathrm{Vd})}{\mathrm{I}_{\mathrm{P}}^{2} \times \mathrm{L}}$$

Where:

 I_P = Peak current as described in the *Peak Current Control* section

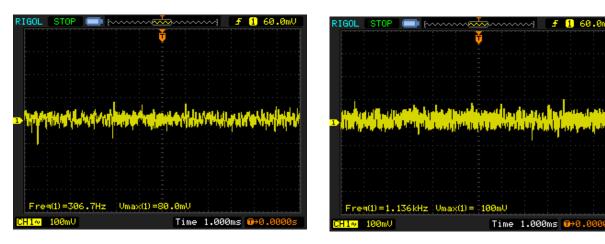
L = Selected inductor value

I_{load} = Nominal load current

Vd = Rectifier diode forward voltage (typically 0.3V)

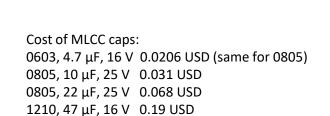
$$I_{\text{load max}} = \eta \frac{I_{\text{P}}^{2} \times L \times fS_{\text{max}}}{2 \times (V_{\text{OUT}} - V_{\text{IN}})}$$

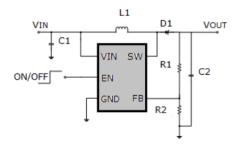
Where:


- I_P = Peak current as described in the *Peak Current Control* section
- L = Selected inductor value
- $\mathrm{fS}_{\mathrm{max}}$ = Maximum switching frequency as calculated previously
- η = Expected converter efficiency. Typically 70% to 85%

The output voltage is calculated as:

 $V_{OUT} = 1.233 V \times \left(1 + \frac{R1}{R2}\right)$


Boost converter design with MT3608


- L=4.7 µH
- Vd of SS14 schottky diode is ~0.3V
- Vout=15.9 V, R1= 100 kOhm, R2= 3.9 kOhm, Co=4.7 μF
- Output filtering
 - A 22 μF cap is large and expensive, especially since not used elsewhere
 - Use 4.7 μF instead in addition to existing RC filter, since PSRR of opamp will remove further noise: 22 Ohm/4.7μF -> fc= 1.54 kHz

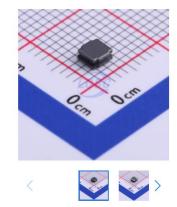
Original programmer with 47μ cap supply at OPAMP after RC-Filter

Original programmer with removed cap supply at OPAMP after RC-Filter

Setting the Output Voltage

The internal reference VREF is 0.6V (Typical).The output voltage is divided by a resistor divider,R1 and R2 to the FB pin. The output voltage is given by

 $V_{OUT} = V_{REF} \times (1 + \frac{R_1}{R_2})$


Inductor Selection

The recommended values of inductor are 4.7 to 22μ H. Small size and better efficiency are the major concerns for portable device, such as MT3608 used for mobile phone. The inductor should have low core loss at 1.2MHz and low DCR for better efficiency. To avoid inductor saturation current rating should be considered.

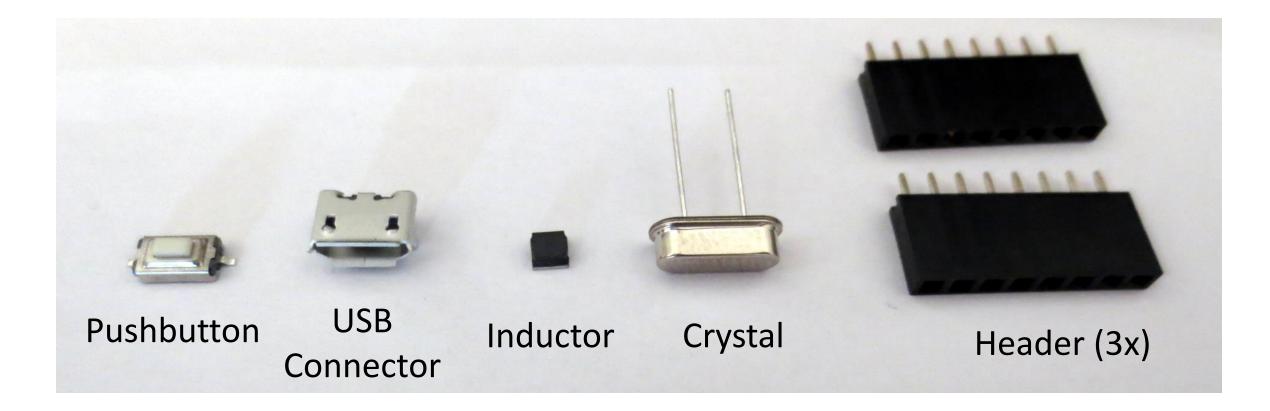
Capacitor Selection

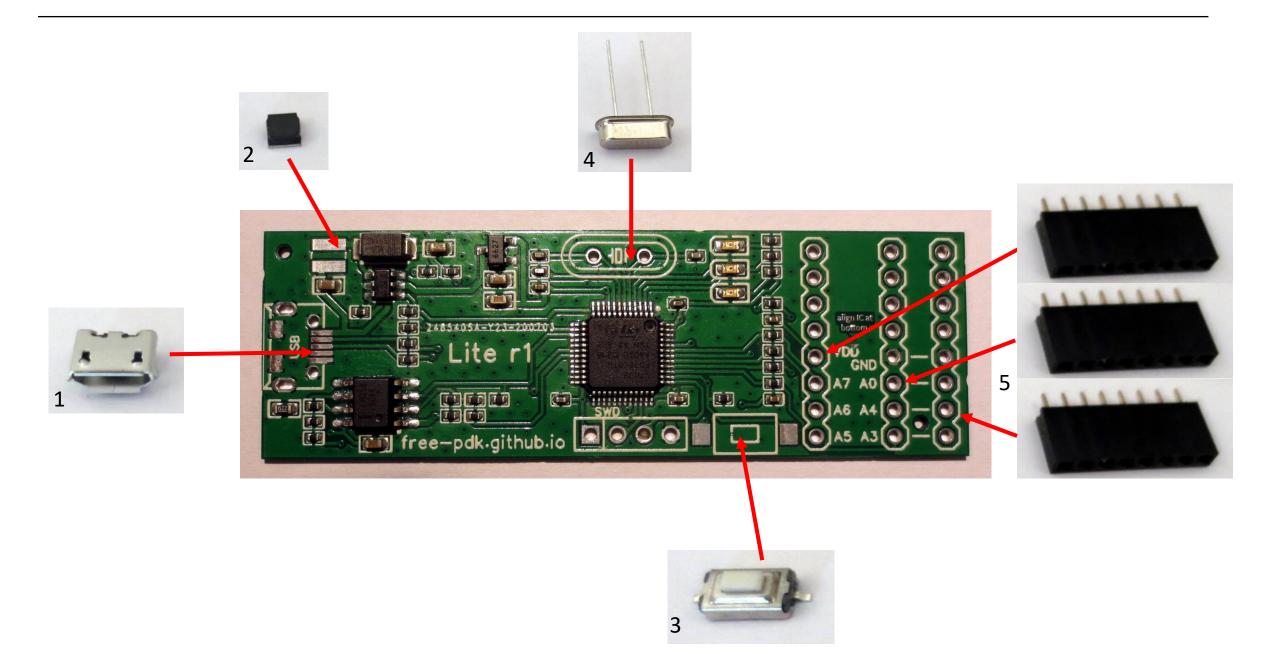
Input and output ceramic capacitors of 22μ F are recommended for MT3608 applications. For better voltage filtering, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wider voltage and temperature ranges.

Cables & Wires	ransformers / Power Inductors /	TAITEC HPC3015TF-4R7M			See an Error?
Capacitors					
Connectors	TAITEC HPC3	015TF-4R7M		T (1 5050	
Crystals	×			In stock: 5350	
Diodes	Manufacturer	TAITEC		Ship Immediately	
Embedded Processors & Controllers	Mfr.Part #	HPC3015TF-4R7M		Ship within 3 days 3	4100 1250
Filters	LCSC Part #	C155140		+	1250
Functional Modules	Package	SMD,3x3x1.5mm		10 -	Add to cart
Inductors & Chokes & Transformers				Minimum : 10 Multiples : 1	0
Interface ICs	Customer #	Customer Number			•
Optocouplers & LEDs & Infrared	Datasheet	▶ TAITEC HPC3015TF-4R7M		Packaging: Cut Tape Unit Price	
Power Management ICs	EasyEDA Libraries	EasyEDA Model		Ext. Price	US\$ 0.039254
Pushbutton Switches & Relays	Description	4.7uH ±20% 1.2A 144mΩ SMD.3x3x1.5	nun Bouron Industana BoUS	Ext. Plice	US\$0.39
Resistors	> Description	4.70H ±20% 1.2A 1441122 SMD,5X5X1.5	min rower inductors Rons	Pricing(USD)	
Sensors				Thenig(05D)	
Transistors				Sales Unit: Piece Full R	eel: 2000
View All Products				Sales Onit. Piece Full R	eei. 2000
				Qty. Unit Price	Ext. Price

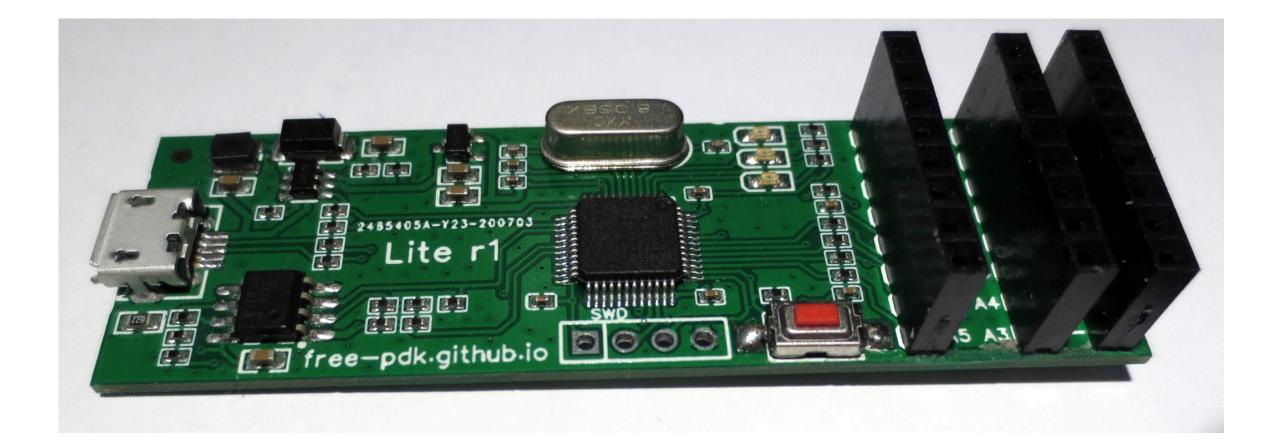
Images are for reference only. ♥ Add to Favourites

Manufacturer	Ceaiya
Mfr.Part #	CR3015-6R8M
LCSC Part #	C520295
Package	SMD,3.0x3.0x1.5mm
Customer #	Customer Number
Datasheet	A Ceaiya CR3015-6R8M
Description	6.8uH ±20% 0.85A 200mΩ SMD,3.0x3.0x1.5mm Power Inductors RoH5


In stock: 1910


Sales Uni	t: Piece	Full Reel: 3	2000
Qty.	Unit	Price	Ext. Price
10+	US\$0	.031865	US\$0.32

R1 Assembly


Components that need to be manually assembled

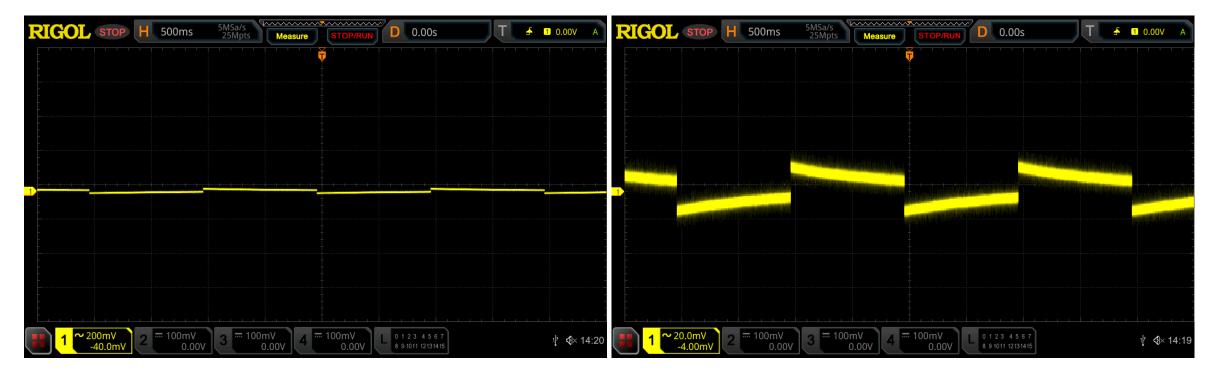
Assembly locations

Assembled programmer

R1 Design Validation

EasyPDKProg lite R1 – Design Validation

Power supply


Test point	Measured	Expected	Result	Comment
5V Supply (@ USB port)	4.98 V	5.0 V	Pass	Ok, lower voltage since this is a different computer
15 V Boosted (@U3_18)	32.0 V	15.9 V	Fail	R7 was incorrectly set to 220k, switched to 100k
15 V Boosted (@U3_18)	15.8 V	15.9 V	Pass	With R7=100k
3.3 V LDO (@U2_2)	3.3 V	3.3 V	Pass	Ok
VDD idle (@ header)	5 mV	0 V	Pass	Offset voltage of Opamp due to non-negative supply. Still within acceptable limits.
VPP idle (@ header)	5 mV	0 V	Pass	Offset voltage of Opamp due to non-negative supply. Still within acceptable limits.
VDD test mode (@ header)	4.98 V	5.0 V	Pass	Using EASYPDKPROGTEST.EXE
VPP test mode (@ header)	4.97 V	5.0 V	Pass	Using EASYPDKPROGTEST.EXE

Programming

Device	Test case (command)	Result	Comment		
PFS173-S08	probe	Pass			
PFS173-S08	-n pfs173 erase	Pass			
PFS173-S08	-n pfs173 read out.txt	Pass			
PFS173-S08	-n pfs175 write main.ihx	Pass	uartsend – including IHRC calibration		
PFS173-S08	-n pfs173 start	Pass	uartsend		

Boost converter loading

15 V power supply ripple (U3_18) Loaded with blinky (lite r1 version)

- Very low visible ripple, even at 20 mV setting.
- = > Boost converter filtering perfoms fine

Padauk Flash MCU Breakout Boards

CPLDCPU – June 27th, 2020

Summary of Flash Variants and Datasheets

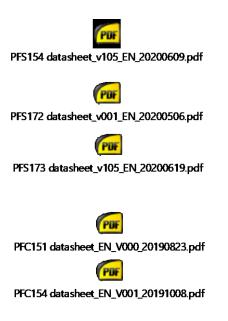
PFS (RapiDragon)

Product Name	FPPA	ADC (max)	IO (max)	ROM (word)	RAM (byte)	LCD (VDD/2)	PWM	Special Functions	Remarks
PFS154	1		14	2KW	128	4	8bit x 2 / 11bit x 3	CMP x 1	
Product Name	FPPA	ADC (max)	IO (max)	ROM (word)	RAM (byte)	LCD (VDD/2)	PWM	Special Functions	Remarks
PFS172	1	8bit x 12ch	14	2KW	128		8bit x 2	CMP x 1	
PFS173	1	8bit x 13ch	18	ЗКW	256	5	8bit x 2 / 11bit x 3	CMP x 1	

PFC (LeapDragon)

PFC161

Product Name	FPPA	ADC (max) (I	IO max)	ROM (word)	RAM (byte)	LCD (VDD/2)	PWM	Special Functions	Remarks
PFC151	1		8	2KW	128		8bit x 2	CMP x 1	
PFC154	1		14	2KW	128	4	8bit x 2 / 11bit x 3	CM₽ x 1	
Product Name	FPPA	ADC (max)	l0 (max	ROM) (word		LCD (VDD/2)	PWM	Special Functions	Remarks
PFC232	2	12bit x 12ch	14	2KW	128	5	8bit x 2 / 11bit x 3	3	
Product Name	FPPA	ADC (max)	IO (max)	ROM (word)	RAM (byte)	LCD (VDD/2	PWM 2)	Special Functions	Remarks


128

8bit x 2

CMP x 1

Touch CH: 7

2KW

(PUF) PFC232 datasheet_V000_EN_20190823.pdf

For PFC161 datasheet_EN_V000_20190823.pdf

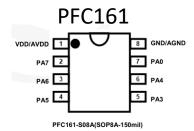
Pinouts SO8 Flash variants

Type II Type I PFS154 **PFC151 PFC232 PFS172** VDD 1 8 GND VDD/AVDD 1 8 GND/AGND VDD/AVDD 1 8 GND/AGND VDD/AVDD 1 PA7/X1 2 PA0/INT0/COM2/CO/PG0PWM 7 PA6 2 7 PA0 7 PA4/AD9/CIN+/CIN-/INT1 PA7 2 PA6/X2 2 PA6/X2 3 PA4/COM3/CIN+/CIN4-/PG1PWM PA5 3 6 PA6 3 6 PA4 PA5/PRSTB 3 6 PA3/AD8/CIN0-/TM2PWM PA5 5 PA3 PB7/AD7/CIN5-/TM3PWM 4 PB7 4 PA5/PRSTB/PG2PWM 4 PA3/TM2PWM/COM4/CIN1-/PG2PWM 5 5 PB1/AD1 PFS154-S08:SOP8 (150mil) PFC232-S08 (SOP8-150mil) PF \$172-\$08 (SOP8-150mil) PFC151-S08A(SOP8A-150mil) PFC232-D08 (DIP8-300mil) **PFS173 PFC154** 8 GND/AGND VDD 1 8 GND PA7/X1 2 PA0/AD10/CO/INT0/PG0PWM PA7 2 7 PA0 PA6/X2 3 A4/AD9/CIN+/CIN1-/INT1/PG1PWM PA6 3 6 PA4 PA5/PRSTB/PG2PWM 5 PA3/AD8/CIN0-/TM2PWM/PG2PWM PA5 4 5 PA3 PF \$173-\$08 (SOP8-150mil) PFC154-S08: SOP8 (150mil) PFC154-D08: DIP8 (300mil)

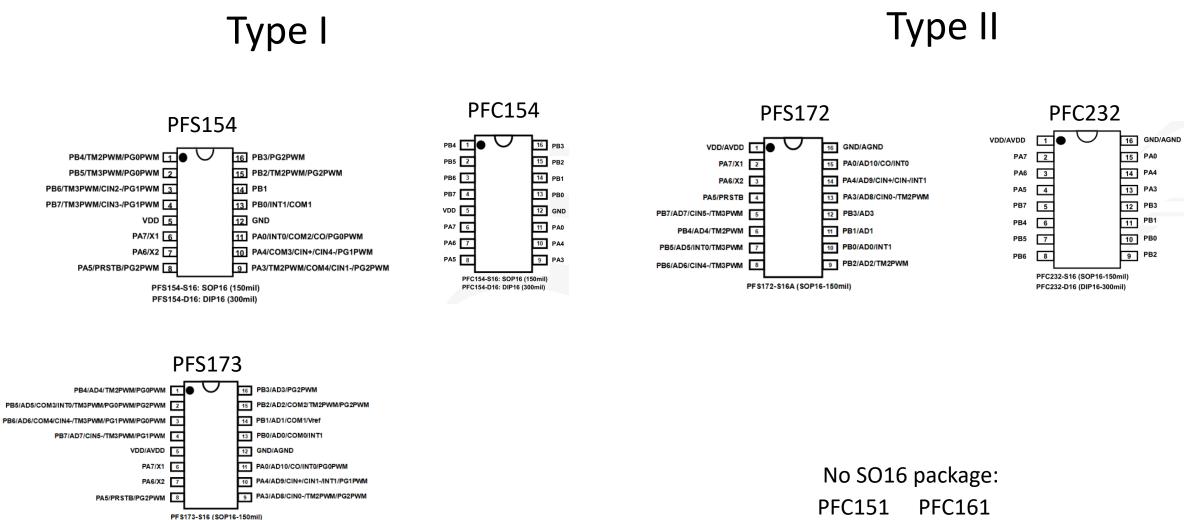
GND/AGND

PA4

PA3

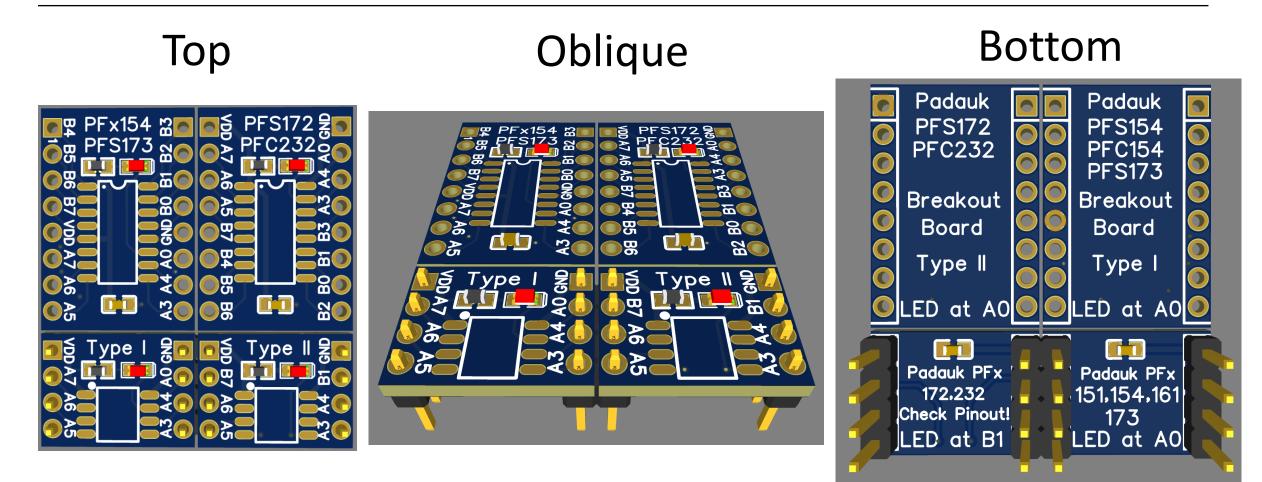

PB1

8

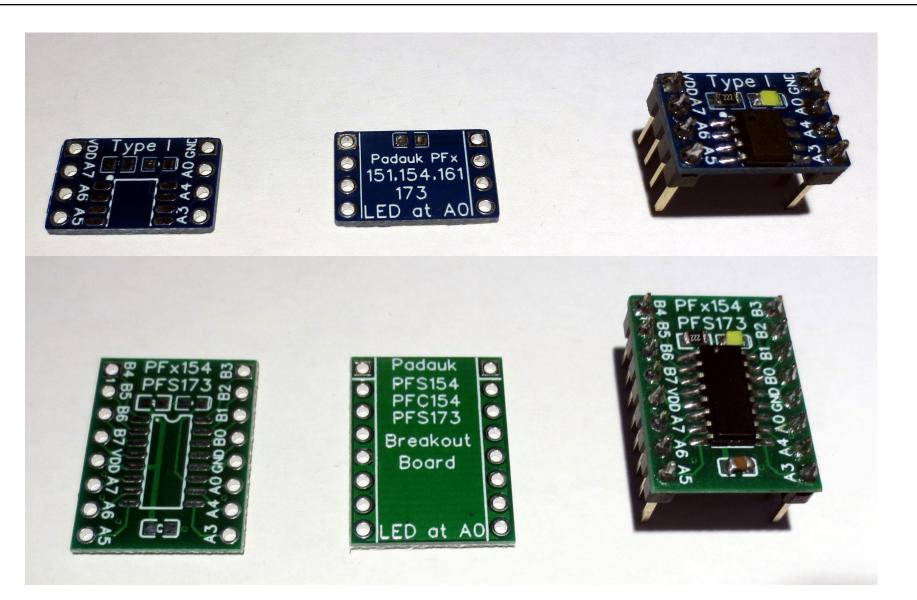

Z

6

5



Pinouts SO16 Flash variants



PFS173-D16 (DIP16-300mil)

Plug-in Breakout boards

Photos of boards (Type I only)

