From 23a650a85b557a46faa1be13146ad1b6ad8de799 Mon Sep 17 00:00:00 2001 From: freiler <54753719+freiler@users.noreply.github.com> Date: Mon, 17 Jun 2024 10:59:34 -0600 Subject: [PATCH] Apply suggestions from code review #27800 #27887 #27888 Co-authored-by: Mauricio Tano --- .../doc/content/source/fvkernels/INSFVTKESourceSink.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/modules/navier_stokes/doc/content/source/fvkernels/INSFVTKESourceSink.md b/modules/navier_stokes/doc/content/source/fvkernels/INSFVTKESourceSink.md index 44853034fdba..9cf0e29493db 100644 --- a/modules/navier_stokes/doc/content/source/fvkernels/INSFVTKESourceSink.md +++ b/modules/navier_stokes/doc/content/source/fvkernels/INSFVTKESourceSink.md @@ -32,7 +32,7 @@ G_k = min \left( G_k , C_{PL} \rho \epsilon \right) \,, where: -- $C_{PL}$ it the limiter constant, and set to a recommended value of 10 . +- $C_{PL}$ it the limiter constant, and set by default to a recommended value of 10 \cite{durbin1996k}. ## Wall formulation: @@ -69,7 +69,7 @@ G_k = 0.0 \,, In the `logarithmic` boundary layers the production term is no longer negligible and is defined as: \begin{equation} -G_k = \tau_w ||\nabla \vec{u}|| = \left( \mu_t + \mu \right) ||\nabla \vec{u}|| \frac{ C_{\mu}^{0.25} \sqrt(k)}{\kappa y_p} \,, +G_k = \tau_w ||\nabla \vec{u}|| = \mu_w ||\nabla \vec{u}|| \frac{ C_{\mu}^{0.25} \sqrt(k)}{\kappa y_p} \,, \end{equation} where: @@ -84,7 +84,7 @@ The formulation assumes that the near wall value is already imposed in the $\mu_ When solving a linear problem, instead of the nonlinear formulation, the production term is formulated as: \begin{equation} -G_k = \left( \mu_t + \mu \right) ||\nabla \vec{u}|| \frac{ C_{\mu}^{0.25} k}{\sqrt{k_{old}} \kappa y_p} \,. +G_k = \mu_w ||\nabla \vec{u}|| \frac{ C_{\mu}^{0.25} k}{\sqrt{k_{old}} \kappa y_p} \,. \end{equation} where: