From e0ffe99d7efc976b431e36d90403689b9e9e0702 Mon Sep 17 00:00:00 2001 From: freiler <54753719+freiler@users.noreply.github.com> Date: Mon, 17 Jun 2024 16:53:59 -0600 Subject: [PATCH] Apply suggestions from code review @tanoret #27800 #27887 #27888 --- .../source/fvbcs/INSFVTurbulentViscosityWallFunction.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/modules/navier_stokes/doc/content/source/fvbcs/INSFVTurbulentViscosityWallFunction.md b/modules/navier_stokes/doc/content/source/fvbcs/INSFVTurbulentViscosityWallFunction.md index 0df2d34f9ece..c42aa2a15336 100644 --- a/modules/navier_stokes/doc/content/source/fvbcs/INSFVTurbulentViscosityWallFunction.md +++ b/modules/navier_stokes/doc/content/source/fvbcs/INSFVTurbulentViscosityWallFunction.md @@ -17,7 +17,7 @@ $\mu_w = \mu + \mu_t $ , such that the wall shear stress $\tau_w$ is accurately without the need of fully resolving the gradients at the near wall region. \begin{equation} - \tau_w = /frac{ \mu_w u_p}{y_p} + \tau_w = \frac{ \mu_w u_p}{y_p} \,, \end{equation} where: @@ -28,7 +28,7 @@ where: - $\tau_w$ is the wall-shear stress - $u_p$ is the wall-parallel velocity at the centroid - $y_p$ is the wall normal distance to the centroid - + To impose a correct boundary condition for $\mu_t$, as seen in the Equation above, we need to compute $\tau_w$ using analytical relationships between the wall shear stress and the dimensionless wall distance $y^+$. For this purpose, four different formulations are supported as defined by the [!param](/FVBCs/INSFVTurbulentViscosityWallFunction/wall_treatment) parameter. @@ -48,7 +48,7 @@ for the turbulent viscosity. \mu_t = \begin{cases} 0 & \text{if } y^+ \le 5 \\ - \frac{\rho u_{\tau}^2 y_p}{u_p} - \mu & \text{if } y^+ \ge 30 + \frac{\rho u_{\tau}^2 y_p}{u_p} - \mu & \text{if } y^+ \ge 30 \,, \end{cases} \end{equation}