Generate Pandas frames, load and extract data, based on JSON Table Schema descriptors.
Python Makefile
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
data
jsontableschema_pandas
tests
.gitignore
.travis.yml
CONTRIBUTING.md
LICENSE.txt
MANIFEST.in
Makefile
README.md
pylama.ini
pytest.ini
setup.cfg
setup.py
tox.ini

README.md

jsontableschema-pandas

Travis Coveralls PyPi SemVer Gitter

Generate and load Pandas data frames based on JSON Table Schema descriptors.

Version v0.2 contains breaking changes:

  • removed Storage(prefix=) argument (was a stub)
  • renamed Storage(tables=) to Storage(dataframes=)
  • renamed Storage.tables to Storage.buckets
  • changed Storage.read to read into memory
  • added Storage.iter to yield row by row

Getting Started

Installation

$ pip install datapackage
$ pip install jsontableschema-pandas

Example

You can easily load resources from a data package as Pandas data frames by simply using datapackage.push_datapackage function:

>>> import datapackage

>>> data_url = 'http://data.okfn.org/data/core/country-list/datapackage.json'
>>> storage = datapackage.push_datapackage(data_url, 'pandas')

>>> storage.buckets
['data___data']

>>> type(storage['data___data'])
<class 'pandas.core.frame.DataFrame'>

>>> storage['data___data'].head()
             Name Code
0     Afghanistan   AF
1   Åland Islands   AX
2         Albania   AL
3         Algeria   DZ
4  American Samoa   AS

Also it is possible to pull your existing data frame into a data package:

>>> datapackage.pull_datapackage('/tmp/datapackage.json', 'country_list', 'pandas', tables={
...     'data': storage['data___data'],
... })
Storage

Storage

Package implements Tabular Storage interface.

We can get storage this way:

>>> from jsontableschema_pandas import Storage

>>> storage = Storage()

Storage works as a container for Pandas data frames. You can define new data frame inside storage using storage.create method:

>>> storage.create('data', {
...     'primaryKey': 'id',
...     'fields': [
...         {'name': 'id', 'type': 'integer'},
...         {'name': 'comment', 'type': 'string'},
...     ]
... })

>>> storage.buckets
['data']

>>> storage['data'].shape
(0, 0)

Use storage.write to populate data frame with data:

>>> storage.write('data', [(1, 'a'), (2, 'b')])

>>> storage['data']
id comment
1        a
2        b

Also you can use tabulator to populate data frame from external data file:

>>> import tabulator

>>> with tabulator.Stream('data/comments.csv', headers=1) as stream:
...     storage.write('data', stream)

>>> storage['data']
id comment
1        a
2        b
1     good

As you see, subsequent writes simply appends new data on top of existing ones.

API Reference

Snapshot

https://github.com/frictionlessdata/jsontableschema-py#snapshot

Detailed

Contributing

Please read the contribution guideline:

How to Contribute

Thanks!