
expsagetex – a fully expandable interface for

SageTeX∗

Florent Rougon†

January 11, 2020

Abstract

This package is based on sagetex.sty, the style file for SageTeX. One
deficiency of current sagetex.sty (version 3.3 from 2019/01/09) is that
it doesn’t provide any user-accessible way to retrieve a result computed
by Sage in places where only expansion happens. This packages uses the
low-level SageTeX machinery to implement a set of commands that can
“record” results computed by Sage and a fully expandable command that
can yield any such result wherever you need it, even in expansion-only
contexts.

Contents

1 Quick start 2

2 Examples 2
2.1 Integers . 2

2.1.1 Local assignments . 2
2.1.2 Global assignments . 3

2.2 Floating point numbers . 4
2.3 Strings . 4
2.4 Using array data . 5
2.5 Displaying lists . 6
2.6 Plotting with TikZ based on Sage computations 6

3 Expandable commands work everywhere! 6

4 Troubleshooting 7

5 Technical details 8

∗This file describes expsagetex v0.1, last revised 2020-01-11.
†E-mail: mailto:f.rougon@free.fr

1

mailto:f.rougon@free.fr

Besides the Quick start section below, there is introductory material to expsage-
tex on TeX.stackexchange.com.

1 Quick start

Getting a result from Sage using expsagetex involves three steps in the LATEX
code:

1. Recording a Python expression to be written to the .sagetex.sage file.
This step is done with one of the \est*Record functions.

2. Using the result where you need it. This is done with \estGet and works
in many places, in particular in expansion-only contexts (inside \edef,
\message, \write, etc.).

3. Declaring that you use the result, so that a warning can be displayed if the
result isn’t available yet (\estGet can’t print the warning itself because it
must work in expansion-only contexts). This is done with \estRefUsed.

Step 3 can be done before or after step 2, but must come after step 1. When you
run sage on the .sagetex.sage file written by step 1, the Python expression
is evaluated, converted to a Python string and written to the .sagetex.sout

file. This file is in turn read by sagetex.sty at startup, which makes the result
available for \estGet.

Thus, a very simple example can be 456 ≡ 1 (mod 7). This was obtained with:

\estRecordFormatted{\littleFermatExple}{(45**6) \percent 7}%

\estRefUsed{\littleFermatExple}%

$45^6 \equiv \estGet{\littleFermatExple} \pmod 7$

For compiling, use the same method as with sagetex (which expsagetex relies
on): you need one LATEX run, one sage run on the .sagetex.sage file followed
by at least one more LATEX run (if more are needed, warnings are printed by
LATEX as usual).

2 Examples

2.1 Integers

2.1.1 Local assignments

When using \estRecordFormatted{〈macro〉}{〈expr〉} with a Python expres-
sion 〈expr〉 that evaluates to an integer, \estGet[〈fallback〉]{〈macro〉} should
give (i.e., expand to) the expected result. This is because calling str() on a
Python integer doesn’t use any exponent notation, thus latex() should not
add any formatting. Let’s execute the following Python statement using the
sageblock environment:

2

https://tex.stackexchange.com/questions/521319/sagetex-1000sep-for-sage-calculated-number-siunitx/521389#521389

x = 2**333

Now, record the value of x and associate it with macro \mymacro. This makes
\mymacro a kind of reference to the saved value, but to retrieve the tokens as-
sociated to this reference, you have to use \estGet instead of \ref (this can be
done in an expansion-only context like inside \edef, which is impossible with
\ref). See section 5 below for more details on this. Recover the saved value
and format it with the \num macro of siunitx:
17 498 005 798 264 095 394 980 017 816 940 970 922 825 355 447 145 699 491 406 164 851 279 623 993 595 007 385 788 105 416 184 430 592.
This was achieved with the following calls:

\estRecordFormatted{\mymacro}{x}

\num{\estGet[-1]{\mymacro}}

\estRefUsed{\mymacro}

Another way to do the same without having Sage call latex() at all is to use
\estRecordStr to record a string representation of the integer we are interested
in:

\estRecordStr{\mymacro}{str(x)}

\num{\estGet[-1]{\mymacro}}

\estRefUsed{\mymacro}

Notes:

• \estGet wraps its return value within \unexpanded (\exp_not:n), which
implies that it won’t expand further when used in \edef or an expl3 x-type
argument.

• In order to use the result of evaluating a Python expression in the LATEX
document, it is not necessary to store it in a Python variable. Example:

210 = 1024

Another example with variables:

x = 23 % 8 # That is, x = 7.

y = 2*x

Save the value of 1000000 × (y − 10) (as computed by Sage) and associate it
with macro \numberBasedOnY.

1000000× (y − 10) = 4 000 000

2.1.2 Global assignments

While \estRecordFormatted assigns locally to the macro given by its first
argument, all \est*Record functions have a global variant that performs a
global assignment instead. The global variant of \estRecordFormatted is
\estGRecordFormatted, that of \estRecordStr is \estGRecordStr, that of
\estARecordFormatted is \estGARecordFormatted, etc. Example:

3

x = 3+4

Save the value of x and globally assign macro \Iamseven to allow us to retrieve
the saved value. Get it back from outside the group where this was done, and
format it with \num: the result is 7.

2.2 Floating point numbers

\estRecordFormatted works with floating point numbers, but it uses LATEX
markup if the string representation of the result (in Python) uses exponent
notation. When this is not desirable—i.e., when you just want a numerical
result without any formatting—use \estRecordFloat or one of its variants.
Example:

x = 3.1415927

x rounded to two decimal places is 3.14. This was rounded by Python. Thanks
to the expandable nature of \estGet, one can also do this: x rounded to four
decimal places is 3.1416. This was rounded by siunitx.

Of course, one can also compute a float with Sage without storing it into a
Python variable. Here is an approximation of π using an expression based on
Machin’s formula and the power series expansion of arctan:

π = 4

+∞∑
n=0

(−1)n

(2n+ 1)

(
4
(1

5

)2n+1

−
(1

239

)2n+1
)

≈ 3.141593

2.3 Strings

Functions working on Python strings are the most general here. For instance,
\estRecordFormatted first evaluates latex(...) in Sage (Python), where ...

is the Python expression you entered; this results in a string with LATEX math-
mode formatting commands (e.g., if evaluating str(...) in Python string yields
something containing brackets or exponents); then this string is written to the
.sout file inside an argument of \newlabel, which sagetex reads at startup.
Similarly, \estRecordFloat causes Python to convert a float to a string using
the user-specified format, then this string is written to the .sout file inside an
argument of \newlabel, just as with \estRecordFormatted. This applies to
global and array variants of the expsagetex functions as well.

So, \estRecordStr and its variants can be very useful in case your Python
code returns a data type that isn’t handled in a satisfactory way by functions
belonging to the families of \estRecordFormatted or \estRecordFloat. All
you have to do is to make your Python code format your data as a string with
a syntax that is convenient for the LATEX document; you record this string
with \estRecordStr or one of its variants, use \estGet and \estRefUsed as
usual and voilà, your new data type is nicely handled by expsagetex. We’ll

4

see an example of this approach in section 2.6, where Python code generates
a large amount of (xi, yi) coordinates from two lists of floats [x1, . . . , xn] and
[y1, . . . , yn]. The Python code formats the list of (xi, yi) coordinates in a form
that is suitable for the TikZ plot coordinates operation, which allows one to
plot the data right away.

Here is a very simple example with \estRecordStr used to record a Sage
(Python) string:

some_string = "abc def"

Xabc defY

The two spaces between abc and def are present in the .sout file, but get coa-
lesced into a single space token when \newlabel tokenizes its second argument.
If this is not desired, the easiest way is probably to use another character instead
of space (e.g., ~).

2.4 Using array data

expsagetex offers variants of \estRecordFormatted, \estGRecordFormatted,
\estRecordFloat, \estGRecordFloat, \estRecordStr and \estGRecordStr

that allow one to easily use an index inside the macro name given for the record-
ing operation. These variants all have the letter A (standing for “array”) right
before Record.

Where the non-array versions of the \est*Record* commands take one ar-
gument specifying the destination macro name, the array versions accept two
arguments 〈base〉 and 〈index〉 and determine the destination macro name as the
result of expanding \csname 〈base〉@〈index〉\endcsname. As a consequence, the
〈base〉 and 〈index〉 arguments are recursively expanded, which can be used to
dynamically compute a numeric index using for instance \numexpr, or whatever
you want.

Here is an example that uses Python to evaluate the elements of a Vandermonde
matrix:

V
(

2,

√
2

2
,

2

7
,

4

3
,

1

5

)
=

1 2 4 8 16

1 1
2

√
2 1

2
1
4

√
2 1

4

1 2
7

4
49

8
343

16
2401

1 4
3

16
9

64
27

256
81

1 1
5

1
25

1
125

1
625

This technique can be used to plot curves with TikZ based on coordinates
computed by Python, but this is rather wasteful. We’ll see a better method in
section 2.6.

5

2.5 Displaying lists

\estRecordFormatted is fine for a list of integers:

[2, 5, 8, 11, 14, 17, 20]

It may do what you want for floats too:

[2.0, 5.0, 8.0, 11.0, 14.0, 17.0, 20.0]

But beware: if you use \estRecordFormatted, floats are formatted by Sage’s
latex() function:[

1.00000000000000 × 10−10, 5.00000000000000, 3.00000000000000 × 10−14
]

Here is a way to use a Python list of floats formatted with no exponent and
using a chosen number of decimal places:

[0.00000000010000, 5.00000000000000, 0.00000000000003]

2.6 Plotting with TikZ based on Sage computations

Plotting functions based on coordinates computed by Sage can be done using
array-style functions of expsagetex (see section 2.4), however such an approach
is vastly inefficient if the plot uses a significant number of points. A better
approach is to prepare one string on the Python side containing all needed
coordinates in a format that the LATEX plotting code can easily handle. This
way, only one reference—as in \label and \ref—is used to pass data for the
whole plot. As an example, here is a part of the Euler spiral where all coordinates
are computed by Sage and transferred in one go to the LATEX side (for the full
Euler Spiral, you need to make t vary from −∞ to +∞).

x(t) =

∫ t

0

cos s2 ds

y(t) =

∫ t

0

sin s2 ds

, t ∈ [− 5π
2 ,

5π
2]

3 Expandable commands work everywhere!

Since \estGet is expandable and we have \usepackage{xfp} in the preamble,
we can do:

$\fpeval{3*\estGet[-1]{\Iamseven}}$

This expands to 21, since \Iamseven contains the last value of x computed
by Sage, which is 7 (if Sage hasn’t been run yet, it expands to −3 due to the
fallback value -1 specified in the optional argument of \estGet).

6

Given that TEX expands the right-hand side of integer, dimen and glue assign-
ments until this yields the proper syntactic element, one can also use \estGet

like this:

\count2=4

\multiply \count2 by \estGet[-1]{\Iamseven}

\the\count2

\estRefUsed{\Iamseven}% just to be clean

→ 28

Same thing with a \dimen register:

\dimen0=1pt

\dimen0=\estGet[-1]{\Iamseven}\dimen0

\the\dimen0

\estRefUsed{\Iamseven}% just to be clean

→ 7.0pt

And since LATEX lengths are \skipdef tokens and \setlength is basically a
glue assignment, one can have fun with \estGet[-1]{\Iamseven} expanding
to the 〈factor〉 of a 〈normal dimen〉 (cf. TEXbook p. 270):

\dimen0=2pt

\dimen2=3pt

\newlength{\mylength}

\setlength{\mylength}{%

\estGet[-1]{\Iamseven}\dimen0

plus \estGet[-1]{\Iamseven}\dimen2}%

\the\mylength

\estRefUsed{\Iamseven}% just to be clean

→ 14.0pt plus 21.0pt

4 Troubleshooting

In case something goes wrong when using sagetex or expsagetex, you may get
stuck and unable to perform a full LATEX run. This can for instance happen
if one of your Python expressions is invalid. This kind of error is similar to
problems that may occur when something “bad” was written to the .aux file.
The cure is similar too: locate the error (inspecting the .sagetex.sage and
.sagetex.sout files can help; if the problem is an invalid Python expression, the
sage run will tell you), regenerate the files containing invalid things after fixing
their source, then rerun the LATEX and sage commands as usual. Typically,
you’ll fix a Python expression in your .tex file, remove the .sagetex.sout file
and rerun LATEX, sage and again LATEX. If you want to be really sure to restart

7

from a clean state, remove the .sagetex.sage, .sagetex.sout and .aux files
before redoing the LATEX & sage dance.

5 Technical details

Some comments about what a call such as \estRecordStr{\mymacro}{s} as
seen below really does (s must evaluate in Python to a string). Informally, one
might be tempted to say that this saves the value of s in the specified macro,
but that would be rather inaccurate. After the call to \estRecordStr, the
specified macro contains an integer which is used to form a reference name—a
label, if you wish—through which we can get the value of s using inner gears of
the \label and \ref machinery. The .sagetex.sout file written when running
Sage on the .sagetex.sage file contains \newlabel commands that define the
associated text (tokens) for reference names @sageinline0, @sageinline1, etc.
The trailing number is what is really stored by the above call to \estRecordStr

as the replacement text of \mymacro. sagetex.sty reads this .sagetex.sout

file at startup when it exists, which defines the labels from the point of view of
the LATEX kernel and allows us to retrieve the Sage output for each recorded ex-
pression (after the \newlabel commands have been executed, the Sage outputs
are available, after some simple data extraction, in macros \r@@sageinline0,
\r@@sageinline1, etc.).

8

	Quick start
	Examples
	Integers
	Local assignments
	Global assignments

	Floating point numbers
	Strings
	Using array data
	Displaying lists
	Plotting with TikZ based on Sage computations

	Expandable commands work everywhere!
	Troubleshooting
	Technical details

