
Algorithmics Part 4

Structural Decompositions and Algorithms

Friedrich Slivovsky

1

Elimination Orderings

2

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

2

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

2

Elimination Orderings

v1 v2 v3 v4 v5 v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

2

Elimination Orderings

v1 v2 v3 v4 v5 v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

2

Elimination Orderings

v2 v3 v4 v5 v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

2

Elimination Orderings

v3 v4 v5 v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

2

Elimination Orderings

v4 v5 v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

2

Elimination Orderings

v5 v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

2

Elimination Orderings

v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

2

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

2

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

fill-in edges

2

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σv1 v2 v3 v4 v5 v6

3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σv1 v2 v3 v4 v5 v6

2
3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σv2 v3 v4 v5 v6

2
3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σv2 v3 v4 v5 v6

2 2
3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σv3 v4 v5 v6

2 2
3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σv3 v4 v5 v6

2 2 3
3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σv4 v5 v6

2 2 3
3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σv4 v5 v6

2 2 3 2
3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σv5 v6

2 2 3 2
3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σv5 v6

2 2 3 2 1
3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σv6

2 2 3 2 1
3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σv6

2 2 3 2 1 0
3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σ

2 2 3 2 1 0
3

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Upon eliminating create edges between its neighbors.vi

The width of is the maximum degree of a

vertex upon elimination.

σ

2 2 3 2 1 0
3

Examples

4

Examples

4

Examples

4

Examples

4

Examples

4

Examples

4

Examples

4

Examples

4

Examples

4

Examples

width 1

5

Examples

width 1

5

Examples

width 1

5

Examples

width 1

5

Examples

width 1

5

Examples

width 1

5

Examples

width 1

5

Examples

width 1

5

Examples

width 1 width 2

6

Treewidth

7

Treewidth

7

The treewidth of a graph is the minimum width of an elimination
ordering of .

G
G

Definition

Treewidth

7

The treewidth of a graph is the minimum width of an elimination
ordering of .

G
G

Definition

Treewidth

7

The treewidth of a graph is the minimum width of an elimination
ordering of .

G
G

Definition

Treewidth

width 6
7

The treewidth of a graph is the minimum width of an elimination
ordering of .

G
G

Definition

Treewidth

width 6
7

The treewidth of a graph is the minimum width of an elimination
ordering of .

G
G

Definition

Treewidth

width 6
7

The treewidth of a graph is the minimum width of an elimination
ordering of .

G
G

Definition

Treewidth

width 6
7

The treewidth of a graph is the minimum width of an elimination
ordering of .

G
G

Definition

Treewidth

width 6
7

The treewidth of a graph is the minimum width of an elimination
ordering of .

G
G

Definition

Treewidth

width 6
7

The treewidth of a graph is the minimum width of an elimination
ordering of .

G
G

Definition

Treewidth

width 6
7

The treewidth of a graph is the minimum width of an elimination
ordering of .

G
G

Definition

Treewidth

width 6
7

The treewidth of a graph is the minimum width of an elimination
ordering of .

G
G

Definition

Treewidth

width 6 width 1
7

The treewidth of a graph is the minimum width of an elimination
ordering of .

G
G

Definition

Degree and Treewidth
If has minimum degree then .G d d ≤ tw(G)
Proposition

Degree and Treewidth
If has minimum degree then .G d d ≤ tw(G)
Proposition

…v1 v2 vn

Degree and Treewidth
If has minimum degree then .G d d ≤ tw(G)
Proposition

…v1 v2 vn

Degree and Treewidth
If has minimum degree then .G d d ≤ tw(G)
Proposition

…v1 v2 vn

d

Degree and Treewidth
If has minimum degree then .G d d ≤ tw(G)
Proposition

…v1 v2 vn

d

 treewidth Kn n − 1

Tree Decompositions

9

Tree Decomposition

10

Tree Decomposition

10

Tree Decomposition
“node”

10

Tree Decomposition
“node”

10

Tree Decomposition
“node”

“bag”

10

Tree Decomposition

1. Each vertex appears in a bag.
“node”

“bag”

10

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.vw

“node”

v w

“bag”

10

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.vw

3. The set of nodes in whose bags

appears form a connected subtree.

v

“node”

v w

“bag”

10

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.vw

3. The set of nodes in whose bags

appears form a connected subtree.

v

“node”

v v w

“bag”

10

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.vw

3. The set of nodes in whose bags

appears form a connected subtree.

v

“node”

v v w

v
“bag”

10

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.vw

3. The set of nodes in whose bags

appears form a connected subtree.

v

“node”

v v w

v

The width of a tree decomposition
is the size of its largest bag - .1

“bag”

10

Tree Decomposition
“node”

v v w

v
“bag”

11

Tree Decomposition
Let be a graph. A tree decomposition of

 is a pair consisting of a tree and
a mapping such that

G = (V, E)
G (T, χ) T = (V′￼, E′￼)

χ : V′￼ → 2V

Definition
“node”

v v w

v
“bag”

11

Tree Decomposition
Let be a graph. A tree decomposition of

 is a pair consisting of a tree and
a mapping such that

G = (V, E)
G (T, χ) T = (V′￼, E′￼)

χ : V′￼ → 2V

Definition
“node”

v v w

v

t ∈ V′￼

“bag”

11

Tree Decomposition
Let be a graph. A tree decomposition of

 is a pair consisting of a tree and
a mapping such that

G = (V, E)
G (T, χ) T = (V′￼, E′￼)

χ : V′￼ → 2V

Definition
“node”

v v w

v

t ∈ V′￼

“bag”
χ(t)

11

Tree Decomposition
Let be a graph. A tree decomposition of

 is a pair consisting of a tree and
a mapping such that

G = (V, E)
G (T, χ) T = (V′￼, E′￼)

χ : V′￼ → 2V

Definition
“node”

v v w

v

t ∈ V′￼

“bag”
χ(t)

1. ⋃
t∈V′￼

χ(t) = V

11

Tree Decomposition
Let be a graph. A tree decomposition of

 is a pair consisting of a tree and
a mapping such that

G = (V, E)
G (T, χ) T = (V′￼, E′￼)

χ : V′￼ → 2V

Definition
“node”

v v w

v

t ∈ V′￼

“bag”
χ(t)

2. For each there is a
with .

vw ∈ E t ∈ V′￼

v, w ∈ χ(t)

1. ⋃
t∈V′￼

χ(t) = V

11

Tree Decomposition
Let be a graph. A tree decomposition of

 is a pair consisting of a tree and
a mapping such that

G = (V, E)
G (T, χ) T = (V′￼, E′￼)

χ : V′￼ → 2V

Definition
“node”

v v w

v

t ∈ V′￼

“bag”
χ(t)

2. For each there is a
with .

vw ∈ E t ∈ V′￼

v, w ∈ χ(t)
3. is a
connected subtree for each .

T[{t ∈ V′￼|v ∈ χ(t)}]
v ∈ V

1. ⋃
t∈V′￼

χ(t) = V

11

Tree Decomposition
Let be a graph. A tree decomposition of

 is a pair consisting of a tree and
a mapping such that

G = (V, E)
G (T, χ) T = (V′￼, E′￼)

χ : V′￼ → 2V

Definition
“node”

v v w

v

t ∈ V′￼

“bag”
χ(t)

2. For each there is a
with .

vw ∈ E t ∈ V′￼

v, w ∈ χ(t)
3. is a
connected subtree for each .

T[{t ∈ V′￼|v ∈ χ(t)}]
v ∈ V

1. ⋃
t∈V′￼

χ(t) = V

The width of is .(T, χ) max
t∈V′￼

|χ(t) | − 1

11

Tree Decompositions and Treewidth

12

Tree Decompositions and Treewidth

12

A graph has a tree decomposition of width if, and only if, it has an
elimination ordering of width .

k
k

Fact

Tree Decompositions and Treewidth

12

A graph has a tree decomposition of width if, and only if, it has an
elimination ordering of width .

k
k

Fact

Tree Decompositions and Treewidth

12

A graph has a tree decomposition of width if, and only if, it has an
elimination ordering of width .

k
k

Fact

The treewidth of a graph is the minimum width of a tree decomposition of G G .

Examples

13

Examples
Forests

13

Examples

treewidth 1

Forests

13

Examples

treewidth 1

Forests Cycles

13

Examples

treewidth 1

Forests Cycles

treewidth 2

13

Trees

1

2 3

4 5

6 7

14

Trees

1

2 3

4 5

6 7

1

1 2 1 3

3 4 3 5

4 6 4 7

14

Cycles

5

1

4

3

26

15

Cycles

5

1

4

3

26

15

Cycles

5

1

4

3

26

1 2

15

Cycles

5

1

4

3

26

1 2

2 3

15

Cycles

5

1

4

3

26

1 2

2 3

3 4

15

Cycles

5

1

4

3

26

1 2

2 3

3 4

4 5

15

Cycles

5

1

4

3

26

1 2

2 3

3 4

4 5

5 6

15

Cycles

5

1

4

3

26

1 2

2 3

3 4

4 5

5 6

1 6

15

Cycles

5

1

4

3

26

1 2

2 3

3 4

4 5

5 6 1

1 6

15

Cycles

5

1

4

3

26

1 2

2 3

3 4

4 5

5 6 1

1

1 6

15

Cycles

5

1

4

3

26

1 2

2 3

3 4

4 5

5 6 1

1

1

1 6

15

Cycles

5

1

4

3

26

1 2

2 3

3 4

4 5

5 6

1

1

1

1

1 6

15

Another Example

16

h

f

e

g

cb

a

d

Another Example

16

h

f

e

g

cb

a

d

b d g

a b d d f g

c d f e f g f g h

Properties of Treewidth

17

Subgraphs

18

Subgraphs

If is a subgraph of then .H G tw(H) ≤ tw(G)
Observation

18

Subgraphs

If is a subgraph of then .H G tw(H) ≤ tw(G)
Observation

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.

3. The set of nodes in whose bags

appears form a connected subtree.

vw

v

18

Subgraphs

If is a subgraph of then .H G tw(H) ≤ tw(G)
Observation

5

1

4

3

26

1 2

2 3

3 4

4 5

5 6

1

1

1

1

1 6

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.

3. The set of nodes in whose bags

appears form a connected subtree.

vw

v

18

Subgraphs

If is a subgraph of then .H G tw(H) ≤ tw(G)
Observation

5

1

4

3

26

1 2

2 3

3 4

4 5

5 6

1

1

1

1

1 6

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.

3. The set of nodes in whose bags

appears form a connected subtree.

vw

v

18

Subgraphs

If is a subgraph of then .H G tw(H) ≤ tw(G)
Observation

5

4

3

26

1 2

2 3

3 4

4 5

5 6

1

1

1

1

1 6

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.

3. The set of nodes in whose bags

appears form a connected subtree.

vw

v

18

Subgraphs

If is a subgraph of then .H G tw(H) ≤ tw(G)
Observation

5

4

3

26

2

2 3

3 4

4 5

5 6

6

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.

3. The set of nodes in whose bags

appears form a connected subtree.

vw

v

18

Disjoint Union
Let be the disjoint union of graphs and .

Then .

G G1 G2
tw(G) = max(tw(G1), tw(G2))

Observation

G

19

Disjoint Union
Let be the disjoint union of graphs and .

Then .

G G1 G2
tw(G) = max(tw(G1), tw(G2))

Observation

G1

G

19

Disjoint Union
Let be the disjoint union of graphs and .

Then .

G G1 G2
tw(G) = max(tw(G1), tw(G2))

Observation

G1 G2

G

19

Disjoint Union
Let be the disjoint union of graphs and .

Then .

G G1 G2
tw(G) = max(tw(G1), tw(G2))

Observation

G1 G2

G

19

Disjoint Union
Let be the disjoint union of graphs and .

Then .

G G1 G2
tw(G) = max(tw(G1), tw(G2))

Observation

G1 G2

The treewidth of a graph is the maximum
treewidth of a connected component of .

G
G

Corollary

G

19

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

20

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

There is a polynomial-time algorithm that turns any

tree decomposition into a small tree decomposition.

Proposition

20

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

There is a polynomial-time algorithm that turns any

tree decomposition into a small tree decomposition.

Proposition

20

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

There is a polynomial-time algorithm that turns any

tree decomposition into a small tree decomposition.

Proposition

t

20

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

There is a polynomial-time algorithm that turns any

tree decomposition into a small tree decomposition.

Proposition

t t′￼

20

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

There is a polynomial-time algorithm that turns any

tree decomposition into a small tree decomposition.

Proposition

t t′￼

χ(t) ⊆ χ(t′￼)

20

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

There is a polynomial-time algorithm that turns any

tree decomposition into a small tree decomposition.

Proposition

t t′￼

χ(t) ⊆ χ(t′￼)

χ(t)

20

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

There is a polynomial-time algorithm that turns any

tree decomposition into a small tree decomposition.

Proposition

t t′￼

χ(t) ⊆ χ(t′￼)

χ(t) χ(t)

20

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

There is a polynomial-time algorithm that turns any

tree decomposition into a small tree decomposition.

Proposition

t t′￼

χ(t) ⊆ χ(t′￼)

χ(t) χ(t) χ(t)

20

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

There is a polynomial-time algorithm that turns any

tree decomposition into a small tree decomposition.

Proposition

t t′￼

χ(t) ⊆ χ(t′￼)

χ(t) χ(t) χ(t) χ(t)

20

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

There is a polynomial-time algorithm that turns any

tree decomposition into a small tree decomposition.

Proposition

t t′￼

χ(t) ⊆ χ(t′￼)

χ(t) χ(t) χ(t) χ(t)
t′￼′￼

20

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

There is a polynomial-time algorithm that turns any

tree decomposition into a small tree decomposition.

Proposition

t t′￼

χ(t) ⊆ χ(t′￼)

χ(t) χ(t) χ(t) χ(t)
t′￼′￼

χ(t) ⊆ χ(t′￼′￼)

20

Small Tree Decompositions
A tree decomposition is small if there is no
pair of distinct nodes such that .

(T, χ)
t, t′￼ χ(t) ⊆ χ(t′￼)

Definition

There is a polynomial-time algorithm that turns any

tree decomposition into a small tree decomposition.

Proposition

t t′￼

χ(t) ⊆ χ(t′￼)

χ(t) χ(t) χ(t) χ(t)
t′￼′￼

χ(t) ⊆ χ(t′￼′￼)

21

Separators

22

Separators

22

Let be a graph. The set separates and
 if every path contains a vertex from .

G = (V, E) X ⊆ V A ⊆ V
B ⊆ V A − B X

Separators

22

Let be a graph. The set separates and
 if every path contains a vertex from .

G = (V, E) X ⊆ V A ⊆ V
B ⊆ V A − B X

A

Separators

22

Let be a graph. The set separates and
 if every path contains a vertex from .

G = (V, E) X ⊆ V A ⊆ V
B ⊆ V A − B X

A B

Separators

22

Let be a graph. The set separates and
 if every path contains a vertex from .

G = (V, E) X ⊆ V A ⊆ V
B ⊆ V A − B X

A BX

Separators

22

Let be a graph. The set separates and
 if every path contains a vertex from .

G = (V, E) X ⊆ V A ⊆ V
B ⊆ V A − B X

A BX

Separators

22

Let be a graph. The set separates and
 if every path contains a vertex from .

G = (V, E) X ⊆ V A ⊆ V
B ⊆ V A − B X

A BX

Separators

22

Let be a graph. The set separates and
 if every path contains a vertex from .

G = (V, E) X ⊆ V A ⊆ V
B ⊆ V A − B X

A BX

Separators

22

Let be a graph. The set separates and
 if every path contains a vertex from .

G = (V, E) X ⊆ V A ⊆ V
B ⊆ V A − B X

A BX

Separators

22

Let be a graph. The set separates and
 if every path contains a vertex from .

G = (V, E) X ⊆ V A ⊆ V
B ⊆ V A − B X

A BX

Separators

22

Let be a graph. The set separates and
 if every path contains a vertex from .

G = (V, E) X ⊆ V A ⊆ V
B ⊆ V A − B X

A BX

Separators

22

Let be a graph. The set separates and
 if every path contains a vertex from .

G = (V, E) X ⊆ V A ⊆ V
B ⊆ V A − B X

A BX

Separators

22

Let be a graph. The set separates and
 if every path contains a vertex from .

G = (V, E) X ⊆ V A ⊆ V
B ⊆ V A − B X

A BX

Bags are Separators

23

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼N1

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼N1

N2

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼N1

N2

t1

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼N1

N2

t1

t2

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼N1

N2

t1

t2

v

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼N1

N2

t1

t2

v

v′￼

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼N1

N2

t1

t2

v

v′￼

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼N1

N2

t1

t2

v

v′￼v

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼N1

N2

t1

t2

v

v′￼v v′￼

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼N1

N2

t1

t2

v

v′￼v v′￼

v′￼

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼N1

N2

t1

t2

v

v′￼v v′￼

v′￼ v′￼

Bags are Separators

23

Let be a tree decomposition of , and distinct nodes of .(T, χ) G t, t′￼ T
Let and denote the components of .N1 N2 T − tt′￼

Then separates and .χ(t) ∩ χ(t′￼) V1 = ⋃
t1∈N1

χ(t1) V2 = ⋃
t2∈N1

χ(t2)

t t′￼N1

N2

t1

t2

v

v′￼v v′￼

v′￼ v′￼ v′￼

Graph Minors and Treewidth

Graph Minors
Let be a graph. A graph is called a minor of if it can be obtained
from by successive applications of the following operations:

G H G
G

Definition

Graph Minors

1. Deleting an edge.

Let be a graph. A graph is called a minor of if it can be obtained
from by successive applications of the following operations:

G H G
G

Definition

Graph Minors

1. Deleting an edge.
2. Deleting an isolated vertex.

Let be a graph. A graph is called a minor of if it can be obtained
from by successive applications of the following operations:

G H G
G

Definition

Graph Minors

1. Deleting an edge.
2. Deleting an isolated vertex.
3. Contracting an edge.

Let be a graph. A graph is called a minor of if it can be obtained
from by successive applications of the following operations:

G H G
G

Definition

Graph Minors

1. Deleting an edge.
2. Deleting an isolated vertex.
3. Contracting an edge.

Let be a graph. A graph is called a minor of if it can be obtained
from by successive applications of the following operations:

G H G
G

Definition

Graph Minors

1. Deleting an edge.

2. Deleting an isolated vertex.

3. Contracting an edge.

Let be a graph. A graph is called a minor of if it can be obtained
from by successive applications of the following operations:

G H G
G

Definition

Forbidden Minors of Planar Graphs

Forbidden Minors of Planar Graphs

A graph is planar if it can be embedded in the plane
without edge crossings.

Definition

Forbidden Minors of Planar Graphs

A graph is planar if it can be embedded in the plane
without edge crossings.

Definition

Forbidden Minors of Planar Graphs

A graph is planar if it can be embedded in the plane
without edge crossings.

Definition

Forbidden Minors of Planar Graphs

A graph is planar if it can be embedded in the plane
without edge crossings.

Definition

Forbidden Minors of Planar Graphs

A graph is planar if it can be embedded in the plane
without edge crossings.

Definition

Forbidden Minors of Planar Graphs

A graph is planar if it can be embedded in the plane
without edge crossings.

Definition

Forbidden Minors of Planar Graphs

A graph is planar if it can be embedded in the plane
without edge crossings.

Definition

Theorem (Kuratowski’s Theorem)
A graph is planar if, and only if, it does not contain

 or as a minor.K5 K3,3

Treewidth and Minors

If is a minor of then .H G tw(H) ≤ tw(G)
Observation

Treewidth and Minors

If is a minor of then .H G tw(H) ≤ tw(G)
Observation

Treewidth and Minors

If is a minor of then .H G tw(H) ≤ tw(G)
Observation

Treewidth and Minors

 treewidth K5 4

If is a minor of then .H G tw(H) ≤ tw(G)
Observation

Treewidth and Minors

 treewidth K5 4treewidth ≥ 4

If is a minor of then .H G tw(H) ≤ tw(G)
Observation

Treewidth and Minors

Treewidth and Grid Minors

 Q4

Treewidth and Grid Minors

Theorem (Robertson and Seymour)
A graph class has bounded treewidth if, and only if, there
is a such that the grid is not a minor of any graph in .

𝒞
k Qk 𝒞

 Q4

Treewidth and Grid Minors

Theorem (Robertson and Seymour)
A graph class has bounded treewidth if, and only if, there
is a such that the grid is not a minor of any graph in .

𝒞
k Qk 𝒞

Theorem (Chekuri and Chuzhoy)
There is a polynomial such that every graph of treewidth

larger than contains as a minor.

p
p(k) Qk

 Q4

Cops and Robbers

31

Cops and Robbers

31

Cops and Robbers
 Copsk

…

31

Cops and Robbers
 Copsk

…

Robber

31

Cops and Robbers
 Copsk

…

Robber

1. First, cops position themselves on the graph.

31

Cops and Robbers
 Copsk

…

Robber

1. First, cops position themselves on the graph.

31

Cops and Robbers
 Copsk

…

Robber

1. First, cops position themselves on the graph.

31

Cops and Robbers
 Copsk Robber

1. First, cops position themselves on the graph.

31

Cops and Robbers
 Copsk Robber

1. First, cops position themselves on the graph.

2. Then the robber chooses a vertex.

31

Cops and Robbers
 Copsk Robber

1. First, cops position themselves on the graph.

2. Then the robber chooses a vertex.

31

Cops and Robbers
 Copsk Robber

31

Cops and Robbers
 Copsk Robber

- Cops may move anywhere, but have to “leave the graph” to do so.

31

Cops and Robbers
 Copsk Robber

- Cops may move anywhere, but have to “leave the graph” to do so.

31

Cops and Robbers
 Copsk Robber

- Cops may move anywhere, but have to “leave the graph” to do so.
- Robber moves along the edges at “infinite speed”, must avoid cops.

31

Cops and Robbers
 Copsk Robber

- Cops may move anywhere, but have to “leave the graph” to do so.
- Robber moves along the edges at “infinite speed”, must avoid cops.

31

Cops and Robbers
 Copsk Robber

- Cops may move anywhere, but have to “leave the graph” to do so.
- Robber moves along the edges at “infinite speed”, must avoid cops.

31

Cops and Robbers
 Copsk Robber

- Cops may move anywhere, but have to “leave the graph” to do so.
- Robber moves along the edges at “infinite speed”, must avoid cops.

31

Cops and Robbers
 Copsk Robber

Cops win the game if the robber is caught.

- Cops may move anywhere, but have to “leave the graph” to do so.
- Robber moves along the edges at “infinite speed”, must avoid cops.

31

Cops and Robbers

Cops Robber

32

Cops and Robbers

Cops Robber

32

Cops and Robbers

Cops Robber

32

Cops and Robbers

Cops Robber

32

Cops and Robbers

Cops Robber

32

Cops and Robbers

Cops Robber

32

Cops and Robbers

Cops Robber

32

Cops and Robbers

Cops Robber

32

Cops and Robbers

Cops Robber

32

Cops and Robbers

Cops Robber

Robber caught.

32

Another Definition

of Treewidth

The treewidth of a graph is the minimum such that
 cops have a strategy to catch a robber in .

G k
k + 1 G

33

Fact

Example

34

Example

35

Example

36

Example

37

Example

38

h

f

e

g

cb

a

d

b d g

a b d d f g

c d f e f g f g h

Example

38

h

f

e

g

cb

a

d

b d g

a b d d f g

c d f e f g f g h

Example

38

h

f

e

g

cb

a

d

b d g

a b d d f g

c d f e f g f g h

Example

38

h

f

e

g

cb

a

d

b d g

a b d d f g

c d f e f g f g h

Example

38

h

f

e

g

cb

a

d

b d g

a b d d f g

c d f e f g f g h

Example

38

h

f

e

g

cb

a

d

b d g

a b d d f g

c d f e f g f g h

Example

38

h

f

e

g

cb

a

d

b d g

a b d d f g

c d f e f g f g h

Example

38

h

f

e

g

cb

a

d

b d g

a b d d f g

c d f e f g f g h

Example

38

h

f

e

g

cb

a

d

b d g

a b d d f g

c d f e f g f g h

Example

38

h

f

e

g

cb

a

d

b d g

a b d d f g

c d f e f g f g h

Example

38

h

f

e

g

cb

a

d

b d g

a b d d f g

c d f e f g f g h

Grids have large Treewidth

Grids have large Treewidth

 cops cannot win on n − 1 Qn

Grids have large Treewidth

 cops cannot win on n − 1 Qn

Grids have large Treewidth

 cops cannot win on n − 1 Qn

Grids have large Treewidth

 cops cannot win on n − 1 Qn

Grids have large Treewidth

 cops cannot win on n − 1 Qn

In fact, the treewidth of is .Qn n

Application: Variable Elimination for SAT

40

Propositional Satisfiability

41

Propositional Satisfiability
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x3 ∨ ¬x2)

41

Propositional Satisfiability
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x3 ∨ ¬x2)

Input: A CNF formula . F
Question: Does have a satisfying assignment?F

SAT

41

Propositional Satisfiability
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x3 ∨ ¬x2)

Input: A CNF formula . F
Question: Does have a satisfying assignment?F

SAT

x1 x2 x3

41

Propositional Satisfiability
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x3 ∨ ¬x2)

Input: A CNF formula . F
Question: Does have a satisfying assignment?F

SAT

x1 x2 x3

41

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

“pivot”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

“pivot”

“resolvent”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

C1 ∨ x ¬x ∨ C2 both satisfied

“pivot”

“resolvent”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

 falsex

C1 ∨ x ¬x ∨ C2 both satisfied

“pivot”

“resolvent”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

 falsex

C1 ∨ x ¬x ∨ C2 both satisfied

“pivot”

“resolvent”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

 falsex

C1 ∨ x ¬x ∨ C2 both satisfied

 satisfiedC1

“pivot”

“resolvent”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

 falsex

C1 ∨ x ¬x ∨ C2 both satisfied

 satisfiedC1

“pivot”

“resolvent”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

 falsex

C1 ∨ x ¬x ∨ C2 both satisfied

 satisfiedC1 satisfiedC1 ∨ C2

“pivot”

“resolvent”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

 falsex

C1 ∨ x ¬x ∨ C2 both satisfied

 satisfiedC1 satisfiedC1 ∨ C2

 truex

“pivot”

“resolvent”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

 falsex

C1 ∨ x ¬x ∨ C2 both satisfied

 satisfiedC1 satisfiedC1 ∨ C2

 truex

“pivot”

“resolvent”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

 falsex

C1 ∨ x ¬x ∨ C2 both satisfied

 satisfiedC1 satisfiedC1 ∨ C2

 satisfiedC2 truex

“pivot”

“resolvent”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

 falsex

C1 ∨ x ¬x ∨ C2 both satisfied

 satisfiedC1 satisfiedC1 ∨ C2

 satisfiedC2 truex

“pivot”

“resolvent”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

 falsex

C1 ∨ x ¬x ∨ C2 both satisfied

 satisfiedC1 satisfiedC1 ∨ C2

 satisfiedC2 satisfiedC1 ∨ C2 truex

“pivot”

“resolvent”

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

 falsex

C1 ∨ x ¬x ∨ C2 both satisfied

 satisfiedC1 satisfiedC1 ∨ C2

 satisfiedC2 satisfiedC1 ∨ C2 truex

“pivot”

“resolvent”
Theorem
Resolution is sound.

42

The Resolution Rule

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

 falsex

C1 ∨ x ¬x ∨ C2 both satisfied

 satisfiedC1 satisfiedC1 ∨ C2

 satisfiedC2 satisfiedC1 ∨ C2 truex

“pivot”

“resolvent”
Theorem
Resolution is sound.

Adding resolvents does not make
a formula unsatisfiable.

42

Examples

43

Examples

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ x2)

43

Examples

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ x2)

43

Examples

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ x2)

(x2 ∨ ¬x3)

43

Examples

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ x2)

(x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x3) (x3 ∨ ¬x2)

43

Examples

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ x2)

(x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x3) (x3 ∨ ¬x2)

43

Examples

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ x2)

(x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x2)

(x3 ∨ ¬x2)

43

Examples

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ x2)

(x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x2)

(x3 ∨ ¬x2)

tautology (always satisfied)

43

Examples

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ x2)

(x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x2)

(x3 ∨ ¬x2)

tautology (always satisfied)

(x) (¬x)

43

Examples

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ x2)

(x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x2)

(x3 ∨ ¬x2)

tautology (always satisfied)

(x) (¬x)

43

Examples

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ x2)

(x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x2)

(x3 ∨ ¬x2)

tautology (always satisfied)

(x) (¬x)

()

43

Examples

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ x2)

(x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x2)

(x3 ∨ ¬x2)

tautology (always satisfied)

(x) (¬x)

()

“empty clause”

43

Examples

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ x2)

(x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x3)

(x1 ∨ x2 ∨ ¬x2)

(x3 ∨ ¬x2)

tautology (always satisfied)

(x) (¬x)

()

The empty clause cannot be satisfied.
Observation

“empty clause”

43

Refutations

The empty clause cannot be satisfied.
Observation Theorem

Resolution is sound.

44

Refutations

The empty clause cannot be satisfied.
Observation Theorem

Resolution is sound.

(¬x3)(¬x1 ∨ x2 ∨ x3)(x1 ∨ x2) (¬x2)

44

Refutations

The empty clause cannot be satisfied.
Observation Theorem

Resolution is sound.

(¬x3)(¬x1 ∨ x2 ∨ x3)(x1 ∨ x2) (¬x2)

(¬x1 ∨ x2 ∨ x3)(x1 ∨ x2)

44

Refutations

The empty clause cannot be satisfied.
Observation Theorem

Resolution is sound.

(¬x3)(¬x1 ∨ x2 ∨ x3)(x1 ∨ x2) (¬x2)

(¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3)

(x1 ∨ x2)

44

Refutations

The empty clause cannot be satisfied.
Observation Theorem

Resolution is sound.

(¬x3)(¬x1 ∨ x2 ∨ x3)(x1 ∨ x2) (¬x2)

(¬x3)

(¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3)

(x1 ∨ x2)

44

Refutations

The empty clause cannot be satisfied.
Observation Theorem

Resolution is sound.

(¬x3)(¬x1 ∨ x2 ∨ x3)(x1 ∨ x2) (¬x2)

(¬x3)

(¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3)

(x1 ∨ x2)

(x2)

44

Refutations

The empty clause cannot be satisfied.
Observation Theorem

Resolution is sound.

(¬x3)(¬x1 ∨ x2 ∨ x3)(x1 ∨ x2) (¬x2)

(¬x3)

(¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3)

(x1 ∨ x2)

(¬x2)(x2)

44

Refutations

The empty clause cannot be satisfied.
Observation Theorem

Resolution is sound.

(¬x3)(¬x1 ∨ x2 ∨ x3)(x1 ∨ x2) (¬x2)

(¬x3)

(¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3)

(x1 ∨ x2)

(¬x2)

()

(x2)

44

Refutations

The empty clause cannot be satisfied.
Observation Theorem

Resolution is sound.

(¬x3)(¬x1 ∨ x2 ∨ x3)(x1 ∨ x2) (¬x2)

(¬x3)

(¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3)

(x1 ∨ x2)

(¬x2)

()

(x2)

“refutation”

44

Refutations

The empty clause cannot be satisfied.
Observation Theorem

Resolution is sound.

(¬x3)(¬x1 ∨ x2 ∨ x3)(x1 ∨ x2) (¬x2)

(¬x3)

(¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3)

(x1 ∨ x2)

(¬x2)

()

(x2)

“refutation” Corollary
If a formula has a refutation it

is unsatisfiable.

44

Completeness
Theorem
Every unsatisfiable formula has a refutation.

45

Completeness
Theorem
Every unsatisfiable formula has a refutation.

45

Completeness
Theorem
Every unsatisfiable formula has a refutation.

Algorithm for SAT: decide if there is a refutation.

45

Davis-Putnam Resolution

46

Davis-Putnam Resolution
Davis & Putnam 1960

46

Davis-Putnam Resolution
Davis & Putnam 1960

Input: A CNF formula with clausesF m

46

Davis-Putnam Resolution
Davis & Putnam 1960

Pick an ordering of variablesσ := x1, …, xn

Input: A CNF formula with clausesF m

46

Davis-Putnam Resolution
Davis & Putnam 1960

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

Input: A CNF formula with clausesF m

46

Davis-Putnam Resolution
Davis & Putnam 1960

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

46

Davis-Putnam Resolution
Davis & Putnam 1960

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove clauses containing from xi F

46

Davis-Putnam Resolution
Davis & Putnam 1960

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove tautologies from F
remove clauses containing from xi F

46

Davis-Putnam Resolution
Davis & Putnam 1960

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove tautologies from F
return false contains the empty clause⇔ F

remove clauses containing from xi F

46

Davis-Putnam Resolution
Davis & Putnam 1960

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove tautologies from F
return false contains the empty clause⇔ F

remove clauses containing from xi F

46

Davis-Putnam Resolution
Davis & Putnam 1960

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove tautologies from F
return false contains the empty clause⇔ F

remove clauses containing from xi F

“variable elimination”

46

Davis-Putnam Resolution
Davis & Putnam 1960

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove tautologies from F
return false contains the empty clause⇔ F

remove clauses containing from xi F

Worst case: resolvents
in each iteration.

m2

“variable elimination”

46

Primal Graph
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4)

47

Primal Graph
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4)

x1

x2

x4

x3

47

Primal Graph
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4)

x1

x2

x4

x3

47

Primal Graph
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4)

x1

x2

x4

x3

47

Primal Graph
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4)

x1

x2

x4

x3

47

Primal Graph
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4)

x1

x2

x4

x3

47

Primal Graph
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4)

x1

x2

x4

x3

47

Primal Graph
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4)

x1

x2

x4

x3

(x3 ∨ ¬x2)

47

Primal Graph
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4)

x1

x2

x4

x3

(x3 ∨ ¬x2) (x1 ∨ x2 ∨ x4)

47

Primal Graph
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4)

x1

x2

x4

x3

(x3 ∨ ¬x2) (x1 ∨ x2 ∨ x4)

(x1 ∨ x3 ∨ x4)

47

Primal Graph
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4)

x1

x2

x4

x3

(x3 ∨ ¬x2) (x1 ∨ x2 ∨ x4)

(x1 ∨ x3 ∨ x4)

47

Resolution in the Primal Graph

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

48

Resolution in the Primal Graph

x

C1 ∨ x ¬x ∨ C2

C1 ∨ C2

48

Resolution in the Primal Graph

x

C1 ∨ x ¬x ∨ C2

C1 ∨ C2 x

48

Resolution in the Primal Graph

x

C1 ∨ x ¬x ∨ C2

C1 ∨ C2 x

48

Variable Elimination in the
Primal Graph

49

Variable Elimination in the
Primal Graph

xi

49

Variable Elimination in the
Primal Graph

xi

C1 ∨ xi C2 ∨ ¬xi C3 ∨ xi Cm ∨ ¬xi…

49

Variable Elimination in the
Primal Graph

xi

C1 ∨ xi C2 ∨ ¬xi C3 ∨ xi Cm ∨ ¬xi…

49

Variable Elimination in the
Primal Graph

xi

C1 ∨ xi C2 ∨ ¬xi C3 ∨ xi Cm ∨ ¬xi…

add all possible resolvents on pivot to xi F

49

Variable Elimination in the
Primal Graph

xi

C1 ∨ xi C2 ∨ ¬xi C3 ∨ xi Cm ∨ ¬xi…

add all possible resolvents on pivot to xi F

49

Variable Elimination in the
Primal Graph

xi

C1 ∨ xi C2 ∨ ¬xi C3 ∨ xi Cm ∨ ¬xi…

add all possible resolvents on pivot to xi F

49

Variable Elimination in the
Primal Graph

xi

C1 ∨ xi C2 ∨ ¬xi C3 ∨ xi Cm ∨ ¬xi…

add all possible resolvents on pivot to xi F

49

Variable Elimination in the
Primal Graph

xi

C1 ∨ xi C2 ∨ ¬xi C3 ∨ xi Cm ∨ ¬xi…

add all possible resolvents on pivot to xi F

49

Variable Elimination in the
Primal Graph

xi

add all possible resolvents on pivot to xi F

49

Variable Elimination in the
Primal Graph

xi

add all possible resolvents on pivot to xi F

49

Variable Elimination in the
Primal Graph

xi

add all possible resolvents on pivot to xi F
remove clauses containing from xi F

49

Variable Elimination in the
Primal Graph

add all possible resolvents on pivot to xi F
remove clauses containing from xi F

49

DP-Resolution and Elimination Orderings

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove tautologies from F
return false contains the empty clause⇔ F

remove clauses containing from xi F

50

DP-Resolution and Elimination Orderings

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove tautologies from F
return false contains the empty clause⇔ F

remove clauses containing from xi F

x1 x2 x3 xn…

50

DP-Resolution and Elimination Orderings

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove tautologies from F
return false contains the empty clause⇔ F

remove clauses containing from xi F

x2 x3 xn…

50

DP-Resolution and Elimination Orderings

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove tautologies from F
return false contains the empty clause⇔ F

remove clauses containing from xi F

x3 xn…

50

DP-Resolution and Elimination Orderings

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove tautologies from F
return false contains the empty clause⇔ F

remove clauses containing from xi F

x3 xn…

The size of any clause generated by
Davis-Putnam Resolution is at most
the width of the elimination
ordering in the primal graph.

k

Observation

50

DP-Resolution and Elimination Orderings

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove tautologies from F
return false contains the empty clause⇔ F

remove clauses containing from xi F

x3 xn…

The size of any clause generated by
Davis-Putnam Resolution is at most
the width of the elimination
ordering in the primal graph.

k

Observation

Worst case: resolvents
in each iteration.

3k

50

DP-Resolution and Elimination Orderings

Pick an ordering of variablesσ := x1, …, xn
for in :xi σ

add all possible resolvents on pivot to xi F

Input: A CNF formula with clausesF m

remove tautologies from F
return false contains the empty clause⇔ F

remove clauses containing from xi F

x3 xn…

The size of any clause generated by
Davis-Putnam Resolution is at most
the width of the elimination
ordering in the primal graph.

k

Observation

Worst case: resolvents
in each iteration.

3k

Theorem
SAT is FPT parameterized by the
treewidth of the primal graph.

50

