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A graph is planar if it can be embedded in the plane 
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Definition

Theorem (Kuratowski’s Theorem)
A graph is planar if, and only if, it does not contain
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Treewidth and Grid Minors

Theorem (Robertson and Seymour)
A graph class  has bounded treewidth if, and only if, there 
is a  such that the grid  is not a minor of any graph in .

𝒞
k Qk 𝒞

Theorem (Chekuri and Chuzhoy)
There is a polynomial  such that every graph of treewidth

larger than  contains  as a minor.

p
p(k) Qk

 Q4
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Cops Robber

Robber caught.
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Another Definition 

of Treewidth

The treewidth of a graph  is the minimum  such that 
 cops have a strategy to catch a robber in . 

G k
k + 1 G

33
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Grids have large Treewidth

 cops cannot win on n − 1 Qn

In fact, the treewidth of  is .Qn n
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 satisfiedC2  satisfiedC1 ∨ C2 truex

“pivot”

“resolvent”  
Theorem
Resolution is sound.

Adding resolvents does not make 
a formula unsatisfiable.
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The empty clause cannot be satisfied.
Observation
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(x2)

“refutation”  Corollary
If a formula has a refutation it

is unsatisfiable.
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Completeness
Theorem
Every unsatisfiable formula has a refutation.
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Completeness
Theorem
Every unsatisfiable formula has a refutation.

Algorithm for SAT: decide if there is a refutation.
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Pick an ordering  of variablesσ := x1, …, xn
for  in  :xi σ

add all possible resolvents on pivot  to xi F

Input: A CNF formula  with  clausesF m

remove tautologies from F
return false   contains the empty clause⇔ F

remove clauses containing  from xi F

Worst case:  resolvents 
in each iteration.

m2

“variable elimination”  
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Theorem
SAT is FPT parameterized by the 
treewidth of the primal graph.
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