Part 4: Structural Decompositions

and Algorithms
Friedrich Slivovsky
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INDEPENDENT SET

Input: A graph G and an integer k.
Question: Does G have an IS of size k?
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n(u) max IS of the subtree containing u.

n'(u) max IS of the subtree U.

n(ry=n'(v) + n'(w) + 1

n'(r) = max(n(v),n’'(v)) + max((n(w), n’'(w))

®
=

max(n(r), n'(r)) is the size of the largest IS.
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Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge vw Is contained in a bag.

3. The set of nodes in whose bags v

appears form a connected subtree.

The width of a tree decomposition
is the size of its largest bag - 1.
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Node ¢
For each subset $ C y(7) of bag vertices,

n(S) = | max. IS of G, containing S |.

G,

o

Treewidth & » < 2K+l gubsets
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Node for S C #(7)
or S C y(?):
@ ifv &S
then n,(S) :=n, (S)
QE elseif v € $and Sisnotan IS
Node 7 then n,(S) := 0

else n,(S) :=n, (S\v) + 1
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Node ¢

@ for S C y(1)
n(S) := max(n, (S),n, (SU {v}))
@eo

Node ¢’
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Independent Set Parameterized by Treewidth

Root Node r
@ For each subset § C y(7) of bag vertices,

n(S) = | max. IS of G, containing S |.
(e0e) (e00e”
see) (see) (oo | Or=C

INDEPENDENT SET is FPT parameterized
by the treewidth of the input graph.”
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Independent Set Parameterized by Treewidth

Root Node r
@ For each subset § C y(7) of bag vertices,

n(S) = | max. IS of G, containing S |.
(e0e) (e00e”
G.=G

INDEPENDENT SET is FPT parameterized
by the treewidth of the input graph.”

*If we can compute a nice tree decomposition of width g(k) in FPT time.
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3-Colorability

3-COLORABILITY

Input: A graph G.
Question: Does G have a vertex-coloring with 3 colors?
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3-Colorability on
Tree Decompositions

Node 7 | foro : y(t) — {red, green, blue}

() true, if 6 can be extended to G,
n(o) =
t false, otherwise

width k » < 31 colorings
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Leaf Nodes

Node ¢
foro : y(t) — {red, green, blue}
if o is a proper coloring of G,

then n,(0) := true

else n(o) := false
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foro : y(t) — {red, green, blue}
if o is a proper coloring of G| y(7)]

thenn (o) := n, (o)
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Introduce Nodes

foro : y(t) — {red, green, blue}
if o is a proper coloring of G| y(7)]
thenn (o) := n, (o)

else n,(o) := false
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Forget Nodes

Node ¢

@ foro : y(t) — {red, green, blue}

then (o) := \/ n.(c'U{v e c})

@) cEred,green,blue
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]
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Join Nodes

Node t
Node ¢’ @ @ Node ¢”

]

foro : y(t) — {red, green, blue}

n(o) :=n, (o) An. (o)

20



3-Colorability

3-COLORABILITY is FPT parameterized
by the treewidth of the input graph.”
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3-Colorability

3-COLORABILITY is FPT parameterized
by the treewidth of the input graph.”

*If we can compute a nice tree decomposition of width g(k) in FPT time.
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Pros and Cons

For Dominating Set, see

Cygan et al., Parameterized Algorithms

Pro: hand-crafted dynamic programming algorithm yields best running time
involves (repeating) tedious arguments

coming up with the right notion of “partial solution” (n,(U)) is difficult



Computing Treewidth



Treewidth i1s FP1T

TREEWIDTH

Input: A graph G and an integer k.

Question: Does G have treewidth < k?
Parameter: k
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Treewidth i1s FP1T

TREEWIDTH

Input: A graph G and an integer k.

Question: Does G have treewidth < k?
Parameter: k

There is a function f and an algorithm A that computes
a tree decomposition of a graph G in time f(k) | V(G) |
or decides that its treewidth is greater than k.

30



FPT 2-Approximation

There is an algorithm that, given an n-vertex graph G
and an integer k, in time 295 either outputs a tree

decomposition of width at most 2k + 1 or determines
that the treewidth of G is larger than k.

31
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Elimination Orderings

Definition
Let G = (V, E) be a graph. An elimination ordering of G
is simply an ordering 6 = (vy, ..., v,) of V.

The width of o is the maximum degree of a
vertex upon elimination.
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Tree Decompositions from Orderings

DecompositionFromOrdering(G, (v;, ..., V,)):
if |[V(G)| =1
return 7= ({1}, @),z = {t — {v}]
G’ := eliminate v, from G
T, y := DecompositionFromOrdering(G’, (v», ..., V,))
t := node of T such that N;(v;) C y(¥)
' := new node
Y =y VUt = Nglvl}
1" := add theedge tt'to T
return 17, )’
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Greedy Heuristics

GreedyOrderingX(G):
7= ()
fori ;= 1ton
v := vertex of G optimal with respect to X
T =T,V
G := graph obtained from G by eliminating v
return 7

1. Min Degree/Size minimum degree
2. Min Fill fewest fill-in edges



Min Degree and Min Fill




Min Degree and Min Fill




Min Degree and Min Fill




Min Degree and Min Fill




Min Degree and Min Fill




Min Degree and Min Fill




Maximum Cardinality Search



Maximum Cardinality Search

MCS(G):



Maximum Cardinality Search

MCS(G):
7= ()



Maximum Cardinality Search

MCS(G):
7= ()

fori :=ntol



Maximum Cardinality Search

MCS(G):
7= ()
fori:=ntol
v := vertex of G with most neighbors in 7



Maximum Cardinality Search

MCS(G):

7= ()

fori:=ntol
v := vertex of G with most neighbors in 7
T:=V,T



Maximum Cardinality Search

MCS(G):

= ()

fori :=ntol
v := vertex of G with most neighbors in 7
T.:=V,T

return 7
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Heuristics In Practice

* These heuristics do surprisingly well in practice.
* Min-Fill generates better (in terms of width) orderings.

«Can generate good elimination orderings for large graphs.
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Fig. 2. The width obtained with MinFill vs the treewidth.
Jegou et al. ICTAI 2018



