Part 4: Structural Decompositions and Algorithms Friedrich Slivovsky

1. Compute a (nice) tree decomposition.

1. Compute a (nice) tree decomposition.

- **1.** Compute a (nice) tree decomposition.
- 2. Go from leaves to root and compute table for each node.

- **1.** Compute a (nice) tree decomposition.
- **2.** Go from leaves to root and compute table for each node.

- **1.** Compute a (nice) tree decomposition.
- **2.** Go from leaves to root and compute table for each node.

- **1.** Compute a (nice) tree decomposition.
- **2.** Go from leaves to root and compute table for each node.

- **1.** Compute a (nice) tree decomposition.
- **2.** Go from leaves to root and compute table for each node.

- **1.** Compute a (nice) tree decomposition.
- **2.** Go from leaves to root and compute table for each node.

- **1.** Compute a (nice) tree decomposition.
- **2.** Go from leaves to root and compute table for each node.

- **1.** Compute a (nice) tree decomposition.
- **2.** Go from leaves to root and compute table for each node.
- **3.** Retrieve solution from root table.

- **1.** Compute a (nice) tree decomposition.
- **2.** Go from leaves to root and compute table for each node.
- **3.** Retrieve solution from root table.

- 1. Compute a (nice) tree decomposition.
- 2. Go from leaves to root and compute table for each node.
- **3.** Retrieve solution from root table.

- 1. Compute a (nice) tree decomposition.
- **2.** Go from leaves to root and compute table for each node.
- **3.** Retrieve solution from root table.

- 1. Compute a (nice) tree decomposition.
- **2.** Go from leaves to root and compute table for each node.
- **3.** Retrieve solution from root table.

- 1. Compute a (nice) tree decomposition.
- **3.** Retrieve solution from root table.

- 1. Compute a (nice) tree decomposition.
- **2.** Go from leaves to root and compute table for each node. $\leftarrow g(k) p'(n)$

h(k) p''(n)

f(k)

3. Retrieve solution from root table.

Definition

An **independent set** of a graph is a subset of vertices such that no two vertices are adjacent.

Definition

An **independent set** of a graph is a subset of vertices such that no two vertices are adjacent.

Definition

An **independent set** of a graph is a subset of vertices such that no two vertices are adjacent.

Definition

An independent set of a graph is a subset of vertices such that no two vertices are adjacent.

INDEPENDENT SET

Input: A graph G and an integer k. **Question:** Does G have an **IS** of size k?

 $S_l \cup S_r \cup \{r\}$ is an **IS** if $v \notin S_l$ and $w \notin S_r$

 $S_l \cup S_r \cup \{r\}$ is an **IS** if $v \notin S_l$ and $w \notin S_r$

6

n(u) max **IS** of the subtree **containing** u.

 $n(u) \max \mathbf{IS}$ of the $n'(u) \max \mathbf{IS}$ of the

- $n(u) \max \mathbf{IS}$ of the subtree containing u.
- n'(u) max **IS** of the subtree not containing u.

 $n(u) \max \mathbf{IS}$ of the $n'(u) \max \mathbf{IS}$ of the

- $n(u) \max \mathbf{IS}$ of the subtree containing u.
- n'(u) max **IS** of the subtree **not containing** u.
$n(u) \max \mathbf{IS}$ of the $n'(u) \max \mathbf{IS}$ of the

- $n(u) \max \mathbf{IS}$ of the subtree containing u.
- n'(u) max **IS** of the subtree not containing u.

 $n(u) \max \mathbf{IS}$ of the $n'(u) \max \mathbf{IS}$ of the

- $n(u) \max \mathbf{IS}$ of the subtree containing u.
- n'(u) max **IS** of the subtree not containing u.

 $n(u) \max \mathbf{IS}$ of the $n'(u) \max \mathbf{IS}$ of the

n(r) = n'(v) + n'(w) + 1

- $n(u) \max \mathbf{IS}$ of the subtree containing u.
- n'(u) max **IS** of the subtree not containing u.

 $n(u) \max \mathbf{IS}$ of the $n'(u) \max \mathbf{IS}$ of the

n(r) = n'(v) + n'(w) + 1

- $n(u) \max \mathbf{IS}$ of the subtree containing u.
- n'(u) max **IS** of the subtree not containing u.

 $n(u) \max \mathbf{IS}$ of the $n'(u) \max \mathbf{IS}$ of the

n(r) = n'(v) + n'(w) + 1

- $n(u) \max \mathbf{IS}$ of the subtree containing u.
- n'(u) max **IS** of the subtree not containing u.

 $n(u) \max IS$ of the $n'(u) \max IS$ of the

n(r) = n'(v) + n'(w) + 1 $n'(r) = \max(n(v), n'(v)) + \max((n(w), n'(w)))$

- $n(u) \max \mathbf{IS}$ of the subtree containing u.
- n'(u) max **IS** of the subtree not containing u.

n(r) = n'(v) + n'(w) + 1 $n'(r) = \max(n(v), n'(v)) + \max((n(w), n'(w)))$

- $n(u) \max \mathbf{IS}$ of the subtree containing u.
- n'(u) max **IS** of the subtree not containing u.

 $\max(n(r), n'(r))$ is the size of the largest **IS**.

Tree Decomposition

Tree Decomposition

1. Each vertex appears in a bag.

- 1. Each vertex appears in a bag.
- 2. Each edge vw is contained in a bag.

- 1. Each vertex appears in a bag.
- 2. Each edge vw is contained in a bag.
- 3. The set of nodes in whose bags v appears form a connected subtree.

- 1. Each vertex appears in a bag.
- 2. Each edge vw is contained in a bag.
- 3. The set of nodes in whose bags v appears form a connected subtree.

- 1. Each vertex appears in a bag.
- 2. Each edge vw is contained in a bag.
- 3. The set of nodes in whose bags v appears form a connected subtree.

- 1. Each vertex appears in a bag.
- 2. Each edge vw is contained in a bag.
- 3. The set of nodes in whose bags v appears form a connected subtree.

The width of a tree decomposition is the size of its largest bag - 1.

 ${\rm Treewidth}\;k$

Treewidth *k*

Treewidth *k*

"Leaf"

"Leaf"

"Introduce"

"Leaf"

"Forget"

"Introduce"

"Leaf"

"Forget"

"Introduce"

Leaf Nodes

Leaf Nodes

Leaf Nodes

- for $S \subseteq \chi(t)$:
 - if S is an independent set

Leaf Nodes

- for $S \subseteq \chi(t)$:
 - if S is an independent set then $n_t(S) := |S|$

Leaf Nodes

for $S \subseteq \chi(t)$:

if S is an independent set then $n_t(S) := |S|$ **else** $n_t(S) := 0$

for $S \subseteq \chi(t)$:

for $S \subseteq \chi(t)$: if $v \notin S$

for $S \subseteq \chi(t)$: if $v \notin S$ then $n_t(S) := n_{t'}(S)$

for $S \subseteq \chi(t)$: if $v \notin S$ then $n_t(S) := n_{t'}(S)$ else if $v \in S$ and S is not an IS

for $S \subseteq \chi(t)$: if $v \notin S$ then $n_t(S) := n_{t'}(S)$ else if $v \in S$ and S is not an IS then $n_t(S) := 0$

Forget Nodes

Forget Nodes

for $S \subseteq \chi(t)$

Forget Nodes

for $S \subseteq \chi(t)$ $n_t(S) := \max(n_{t'}(S), n_{t'}(S \cup \{v\}))$

for $S \subseteq \chi(t)$

for $S \subseteq \chi(t)$ $n_t(S) := n$

 $n_t(S) := n_{t'}(S) + n_{t''}(S)$

 $n_t(S) := n_{t'}(S) + n_{t''}(S)$

 $n_t(S) := n_{t'}(S) + n_{t''}(S)$

$n_t(S) := n_{t'}(S) + n_{t''}(S) - |S|$

1. Compute a nice tree decomposition (T, χ) of G

1. Compute a nice tree decomposition (T, χ) of G 2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$

1. Compute a nice tree decomposition (T, χ) of G 2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$

3. Update $n_t(U)$ by dynamic programming ...
Leaf Nodes

1. Compute a nice tree decomposition (T, χ) of G 2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$

Leaf Nodes for each $U \subseteq \chi(t)$

1. Compute a nice tree decomposition (T, χ) of G 2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$

Leaf Nodes for each $U \subseteq \chi(t)$ $n_t(U) := |U|$

1. Compute a nice tree decomposition (T, χ) of G 2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$

Leaf Nodes for each $U \subseteq \chi(t)$ $n_t(U) := |U|$ if U is an IS

1. Compute a nice tree decomposition (T, χ) of G 2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$

Leaf Nodes for each $U \subseteq \chi(t)$ $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$

1. Compute a nice tree decomposition (T, χ) of G 2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$

Leaf Nodes for each $U \subseteq \chi(t)$ $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwise

1. Compute a nice tree decomposition (T, χ) of G 2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$

Leaf Nodes for each $U \subseteq \chi(t)$ $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwise

1. Compute a nice tree decomposition (T, χ) of G 2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$

3. Update $n_t(U)$ by dynamic programming ...

Introduce Nodes

Leaf Nodes for each $U \subseteq \chi(t)$ $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwise

1. Compute a nice tree decomposition (T, χ) of G 2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$

3. Update $n_t(U)$ by dynamic programming ...

Introduce Nodes for each $U \subseteq \chi(t)$

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwise

Introduce Nodes for each $U \subseteq \chi(t)$

 $v \notin U$

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwise

for each $U \subseteq \chi(t)$ $v \notin U \quad n_t(U) := n_{t'}(U)$

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwiseif V

$\begin{array}{l} \text{Introduce Nodes} \\ \text{for each } U \subseteq \chi(t) \\ v \notin U \quad n_t(U) := n_{t'}(U) \end{array}$

 $v \in U$

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwiseif V

Introduce Nodes for each $U \subseteq \chi(t)$ $v \notin U \quad n_t(U) := n_{t'}(U)$

 $v \in U \quad n_t(U) := n_t(U \setminus \{v\}) + 1$

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwiseif V

Introduce Nodes for each $U \subseteq \chi(t)$ $y \notin U \quad n_t(U) := n_{t'}(U)$

 $v \in U$ $n_t(U) := n_{t'}(U \setminus \{v\}) + 1$ if U is an IS

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwiseif V

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwiseif V

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwiseif v

Forget Nodes

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwiseif v

Forget Nodes for each $U \subseteq \chi(t)$

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwiseif v

Forget Nodes for each $U \subseteq \chi(t)$ $n_t(U) := \max(n_{t'}(U), n_{t'}(U \cup \{v\}))$

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwiseif v

Forget Nodes for each $U \subseteq \chi(t)$ $n_t(U) := \max(n_{t'}(U), n_{t'}(U \cup \{v\}))$

Introduce Nodes for each $U \subseteq \chi(t)$ $v \notin U$ $n_t(U) := n_t(U)$ $v \in U$ $n_t(U) := n_t(U \setminus \{v\}) + 1$ if *U* is an IS $n_t(U) := 0$ otherwise

Join Nodes

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwiseif v

Forget Nodes for each $U \subseteq \chi(t)$ $n_t(U) := \max(n_{t'}(U), n_{t'}(U \cup \{v\}))$

Introduce Nodes for each $U \subseteq \chi(t)$ $v \notin U$ $n_t(U) := n_t(U)$ $v \in U$ $n_t(U) := n_t(U \setminus \{v\}) + 1$ if U is an IS $n_t(U) := 0$ otherwise Join Nodes

for each $U \subseteq \chi(t)$

1. Compute a nice tree decomposition (T, χ) of G2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$ 3. Update $n_t(U)$ by dynamic programming ...

Leaf Nodesfor each
$$U \subseteq \chi(t)$$
 $n_t(U) := |U|$ if U is an IS $n_t(U) := 0$ otherwiseif v

Forget Nodes for each $U \subseteq \chi(t)$ $n_t(U) := \max(n_{t'}(U), n_{t'}(U \cup \{v\}))$

Introduce Nodes for each $U \subseteq \chi(t)$ $v \notin U \quad n_t(U) := n_{t'}(U)$ $v \in U \quad n_t(U) := n_t(U \setminus \{v\}) + 1$ if U is an IS $n_t(U) := 0$ otherwise **Join Nodes** for each $U \subseteq \chi(t)$ $n_t(U) = n_{t'}(U) + n_{t''}(U) - |U|$

- 1. Compute a nice tree decomposition (T, χ) of G
- 2. For each $t \in T$ and $U \subseteq \chi(t)$, initialize $n_t(U)$
- 3. Update $n_t(U)$ by dynamic programming ...
- 4. Output $\max\{n_r(U) \mid U \subseteq \chi(r)\}$

Leaf Nodes for each $U \subseteq \chi(t)$ $n_t(U) := |U|$ if U is an IS if V $n_t(U) := 0$ otherwise if v

Forget Nodes for each $U \subseteq \chi(t)$ $n_{t}(U) := \max(n_{t'}(U), n_{t'}(U \cup \{v\}))$

Introduce Nodes

for each
$$U \subseteq \chi(t)$$

$$v \notin U \quad n_t(U) := n_{t'}(U)$$

$$v \in U$$
 $n_t(U) := n_t(U \setminus \{v\}) + 1$ if U is an I
 $n_t(U) := 0$ otherwise

Join Nodes

for each $U \subseteq \chi(t)$ $n_t(U) = n_{t'}(U) + n_{t''}(U) - |U|$ S

For each subset $S \subseteq \chi(t)$ of bag vertices, $n_t(S) = | \max. \mathbf{IS} \text{ of } G_t \text{ containing } S |.$

Root Node r

For each subset $S \subseteq \chi(t)$ of bag vertices, $n_t(S) = | \max. \mathbf{IS} \text{ of } G_t \text{ containing } S |.$

Root Node r

For each subset $S \subseteq \chi(t)$ of bag vertices, $n_t(S) = | \max. \mathbf{IS} \text{ of } G_t \text{ containing } S |.$

Root Node r

For each subset $S \subseteq \chi(t)$ of bag vertices, $n_t(S) = | \max. \mathbf{IS} \text{ of } G_t \text{ containing } S |.$

$G_r = G$

Root Node r

INDEPENDENT SET is **FPT** parameterized by the treewidth of the input graph.*

For each subset $S \subseteq \chi(t)$ of bag vertices, $n_t(S) = |\max. \mathbf{IS} \text{ of } G_t \text{ containing } S|.$

$G_r = G$

Root Node r

INDEPENDENT SET is **FPT** parameterized by the treewidth of the input graph.*

*If we can compute a nice tree decomposition of width g(k) in FPT time.

For each subset $S \subseteq \chi(t)$ of bag vertices, $n_t(S) = | \max. \mathbf{IS} \text{ of } G_t \text{ containing } S |.$

$G_r = G$

3-COLORABILITY

Input: A graph G.

Question: Does *G* have a vertex-coloring with 3 colors?

3-Colorability on Tree Decompositions

for $\sigma : \chi(t) \rightarrow \{red, green, blue\}$

 $n_t(\sigma) =$

for $\sigma : \chi(t) \rightarrow \{red, green, blue\}$ $n_t(\sigma) =$ **true**, if σ can be extended to G_t

for $\sigma : \chi(t) \rightarrow \{red, green, blue\}$

 $n_t(\sigma) = {{{ true, if \sigma can be extended to G_t}} \over {{ false, otherwise}}}$

for $\sigma : \chi(t) \to \{red, green, blue\}$ $n_t(\sigma) =$ **true**, if σ can be extended to G_t

false, otherwise

width k

for $\sigma : \chi(t) \rightarrow \{red, green, blue\}$

 $n_t(\sigma) = {{ true, if \sigma can be extended to G_t} \over { false, otherwise}}$

for $\sigma : \chi(t) \rightarrow \{red, green, blue\}$ $n_t(\sigma) = \begin{array}{l} \text{true, if } \sigma \text{ can be extended to } G_t \\ \text{false, otherwise} \end{array}$

for $\sigma : \chi(t) \rightarrow \{red, green, blue\}$

if σ is a proper coloring of G_t

- for $\sigma: \chi(t) \rightarrow \{red, green, blue\}$
 - if σ is a proper coloring of G_t
 - then $n_t(\sigma) :=$ true

- for $\sigma : \chi(t) \rightarrow \{red, green, blue\}$
 - if σ is a proper coloring of G_t
 - then $n_t(\sigma) :=$ true
 - else $n_t(\sigma) :=$ false

for $\sigma : \chi(t) \rightarrow \{red, green, blue\}$

if σ is a proper coloring of $G[\chi(t)]$

- for $\sigma : \chi(t) \to \{red, green, blue\}$ if σ is a proper coloring of $G[\chi(t)]$
 - then $n_t(\sigma) := n_{t'}(\sigma')$

- for $\sigma : \chi(t) \rightarrow \{red, green, blue\}$
 - if σ is a proper coloring of $G[\chi(t)]$
 - then $n_t(\sigma) := n_{t'}(\sigma')$
 - else $n_t(\sigma) :=$ false

Forget Nodes

Forget Nodes

Forget Nodes

for $\sigma : \chi(t) \to \{red, green, blue\}$ then $n_t(\sigma) := \bigvee_{c \in red, green, blue} n_{t'}(\sigma' \cup \{v \mapsto c\})$

for $\sigma : \chi(t) \rightarrow \{red, green, blue\}$ $n_t(\sigma) := n_{t'}(\sigma) \wedge n_{t''}(\sigma)$

3-Colorability

Theorem by the treewidth of the input graph.*

3-COLORABILITY is **FPT** parameterized

3-Colorability

Theorem 3-COLORABILITY is FPT parameterized by the treewidth of the input graph.*

*If we can compute a nice tree decomposition of width g(k) in FPT time.

Pros and Cons
For **Dominating Set**, see

For **Domi** Cygan et al., **Para**

- For **Dominating Set**, see
- Cygan et al., Parameterized Algorithms

For **Dominating Set**, see Cygan et al., **Parameterized Algorithms**

Pro: hand-crafted dynamic programming algorithm yields best running time

For **Dominating Set**, see Cygan et al., **Parameterized Algorithms**

- **Pro:** hand-crafted dynamic programming algorithm yields best running time **Con:** involves (repeating) tedious arguments

For **Dominating Set**, see Cygan et al., **Parameterized Algorithms**

- **Pro:** hand-crafted dynamic programming algorithm yields best running time **Con:** involves (repeating) tedious arguments
- **Con:** coming up with the right notion of "partial solution" ($n_t(U)$) is difficult

Computing Treewidth

Treewidth is FPT

TREEWIDTH

Input: A graph *G* and an integer *k*. **Question:** Does *G* have treewidth $\leq k$? **Parameter:** *k*

Treewidth is FPT

TREEWIDTH

Input: A graph *G* and an integer *k*. **Question:** Does *G* have treewidth $\leq k$? **Parameter:** *k*

Theorem (Bodlaender)

There is a function f and an algorithm A that computes a tree decomposition of a graph G in time f(k) | V(G) |or decides that its treewidth is greater than k.

FPT 2-Approximation

Theorem (Korhonen 2021)

There is an algorithm that, given an *n*-vertex graph *G* and an integer k, in time $2^{O(k)}n$ either outputs a tree decomposition of width at most 2k + 1 or determines that the treewidth of *G* is larger than k.

Heuristics

Definition

Definition

Definition

Definition

Definition

Let G = (V, E) be a graph. An elimination ordering of G is simply an ordering $\sigma = (v_1, ..., v_n)$ of *V*.

> The width of σ is the maximum degree of a vertex upon elimination.

DecompositionFromOrdering($G, \langle v_1, ..., v_n \rangle$):

DecompositionFromOrdering($G, \langle v_1, ..., v_n \rangle$): if |V(G)| = 1

DecompositionFromOrdering($G, \langle v_1, ..., v_n \rangle$): if |V(G)| = 1return $T = (\{t\}, \emptyset), \chi = \{t \mapsto \{v_1\}\}$

DecompositionFromOrdering($G, \langle v_1, ..., v_n \rangle$): if |V(G)| = 1return $T = (\{t\}, \emptyset), \chi = \{t \mapsto \{v_1\}\}$ $G' := \text{eliminate } v_1 \text{ from } G$

DecompositionFromOrdering($G, \langle v_1, ..., v_n \rangle$): if |V(G)| = 1return $T = (\{t\}, \emptyset), \chi = \{t \mapsto \{v_1\}\}$ $G' := \text{eliminate } v_1 \text{ from } G$ $T, \chi :=$ **DecompositionFromOrdering** $(G', \langle v_2, ..., v_n \rangle)$

DecompositionFromOrdering($G, \langle v_1, ..., v_n \rangle$): if |V(G)| = 1return $T = (\{t\}, \emptyset), \chi = \{t \mapsto \{v_1\}\}$ $G' := \text{eliminate } v_1 \text{ from } G$ $T, \chi :=$ **DecompositionFromOrdering** $(G', \langle v_2, ..., v_n \rangle)$ t := node of T such that $N_G(v_1) \subseteq \chi(t)$

DecompositionFromOrdering($G, \langle v_1, ..., v_n \rangle$): if |V(G)| = 1return $T = (\{t\}, \emptyset), \chi = \{t \mapsto \{v_1\}\}$ $G' := \text{eliminate } v_1 \text{ from } G$ $T, \chi :=$ **DecompositionFromOrdering** $(G', \langle v_2, ..., v_n \rangle)$ t := node of T such that $N_G(v_1) \subseteq \chi(t)$ t' := new node

DecompositionFromOrdering($G, \langle v_1, ..., v_n \rangle$): if |V(G)| = 1return $T = (\{t\}, \emptyset), \chi = \{t \mapsto \{v_1\}\}$ $G' := \text{eliminate } v_1 \text{ from } G$ $T, \chi :=$ **DecompositionFromOrdering** $(G', \langle v_2, ..., v_n \rangle)$ t := node of T such that $N_G(v_1) \subseteq \chi(t)$ t' := new node $\chi' := \chi \cup \{t' \mapsto N_G[v_1]\}$

DecompositionFromOrdering($G, \langle v_1, ..., v_n \rangle$): if |V(G)| = 1return $T = (\{t\}, \emptyset), \chi = \{t \mapsto \{v_1\}\}$ $G' := \text{eliminate } v_1 \text{ from } G$ $T, \chi :=$ **DecompositionFromOrdering** $(G', \langle v_2, ..., v_n \rangle)$ t := node of T such that $N_G(v_1) \subseteq \chi(t)$ t' := new node $\chi' := \chi \cup \{t' \mapsto N_G[v_1]\}$ T' := add the edge tt' to T

DecompositionFromOrdering($G, \langle v_1, ..., v_n \rangle$): if |V(G)| = 1return $T = (\{t\}, \emptyset), \chi = \{t \mapsto \{v_1\}\}$ $G' := \text{eliminate } v_1 \text{ from } G$ $T, \chi :=$ **DecompositionFromOrdering** $(G', \langle v_2, ..., v_n \rangle)$ t := node of T such that $N_G(v_1) \subseteq \chi(t)$ t' := new node $\chi' := \chi \cup \{t' \mapsto N_G[v_1]\}$ T' := add the edge tt' to Treturn T', χ'

GreedyOrderingX(*G***)**:

GreedyOrderingX(*G***)**: $\pi := ()$

GreedyOrderingX(*G***)**: $\pi := ()$ for i := 1 to n
GreedyOrderingX(G): $\pi := ()$ for i := 1 to n

Greedy Heuristics

v := vertex of G optimal with respect to X

GreedyOrderingX(G): $\pi := ()$ for i := 1 to n $\pi := \pi, v$

Greedy Heuristics

v := vertex of G optimal with respect to X

- **GreedyOrdering**X(G): $\pi := ()$ for i := 1 to n $\pi := \pi, \nu$

Greedy Heuristics

v := vertex of G optimal with respect to X

G := graph obtained from G by eliminating v

GreedyOrderingX(G): $\pi := ()$ for i := 1 to n $\pi := \pi, \nu$ return π

Greedy Heuristics

v := vertex of G optimal with respect to X

G := graph obtained from G by eliminating v

GreedyOrderingX(*G***)**: $\pi := ()$ for i := 1 to n $\pi := \pi, \nu$ return π

Greedy Heuristics

v := vertex of G optimal with respect to X

G := graph obtained from G by eliminating v

1. Min Degree/Size minimum degree

GreedyOrderingX(G): $\pi := ()$ for i := 1 to n $\pi := \pi, \nu$ return π

2. Min Fill fewest fill-in edges

Greedy Heuristics

v := vertex of G optimal with respect to X

G := graph obtained from G by eliminating v

1. Min Degree/Size minimum degree

MCS(G):

MCS(*G*): $\pi := ()$

MCS(*G*): $\pi := ()$ for *i* := *n* to 1

MCS(G): $\pi := ()$ for i := n to 1 v := vertex of G with most neighbors in π

MCS(G): $\pi := ()$ for i := n to 1 v := vertex of G wi $\pi := v, \pi$

 $v := vertex of G with most neighbors in \pi$

MCS(G): $\pi := ()$ for i := n to 1 v := vertex of G wi $\pi := v, \pi$ return π

 $v := vertex of G with most neighbors in \pi$

•These heuristics do surprisingly well in practice.

- •These heuristics do surprisingly well in practice.
- Min-Fill generates better (in terms of width) orderings.

- •These heuristics do surprisingly well in practice.
- Min-Fill generates better (in terms of width) orderings.
- Can generate good elimination orderings for large graphs.

Fig. 2. The width obtained with MinFill vs the treewidth. Jegou et al. ICTAI 2018