Part 4: Structural Decompositions

and Algorithms
Friedrich Slivovsky

Dynamic Programming
on Iree Decompositions

Dynamic Programming on
Tree Decompositions

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.

2. Go from leaves to root and compute table for each node.

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.

2. Go from leaves to root and compute table for each node.

S - - -
——
N—

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.

2. Go from leaves to root and compute table for each node.

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.

2. Go from leaves to root and compute table for each node.

v
—

3

)
—
—

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.

2. Go from leaves to root and compute table for each node.

a
——
—

3

w"
—
N—

—
—

)
—
—

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.

2. Go from leaves to root and compute table for each node.

= - = -
—— ——
N— —

w- w- v_

— — —

N— N— —
3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.

2. Go from leaves to root and compute table for each node.

>
—
N—

)
—
—
— ——
== ==
3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.

3. Retrieve solution from root table.

Dynamic Programming on
Tree Decompositions

Treewidth k

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.

3. Retrieve solution from root table.

Dynamic Programming on
Tree Decompositions

J(k) p(n) Treewidth &

—

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.

3. Retrieve solution from root table.

Dynamic Programming on
Tree Decompositions

J(k) p(n) Treewidth &

—

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.

3. Retrieve solution from root table.

Dynamic Programming on
Tree Decompositions

J(k) p(n) Treewidth &

—

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.

3. Retrieve solution from root table.

w-
—
N—

w-
—

N—
a, >
fo{ = =

3

Dynamic Programming on
Tree Decompositions

J(k) p(n) Treewidth &

—

1. Compute a (nice) tree decomposition.

2. Go from leaves to root and compute table for each node. -

3. Retrieve solution from root table.

w-
—
N—

w-
—

N—
a, >
fo{ = =

3

Dynamic Programming on
Tree Decompositions

J(k) p(n) Treewidth &

—

1. Compute a (nice) tree decomposition.

2. Go from leaves to root and compute table for each node. -

3. Retrieve solution from root table.

AN

h(k) p"(n)

w-
—

N—
a, >
fo{ = =

3

Independent Set

Definition
An independent set of a graph is a subset

of vertices such that no two vertices are
adjacent.

Independent Set

Definition
An independent set of a graph is a subset

of vertices such that no two vertices are
adjacent. ®

Independent Set

Definition
An independent set of a graph is a subset Q

of vertices such that no two vertices are
adjacent. ®

Independent Set

Definition
An independent set of a graph is a subset ‘

of vertices such that no two vertices are
adjacent. ®

INDEPENDENT SET

Input: A graph G and an integer k.
Question: Does G have an IS of size k?

Independent Set on Trees

Independent Set on Trees

r

Independent Set on Trees

Independent Set on Trees

Independent Set on Trees

S;US. isan IS

Independent Set on Trees

S;US. isan IS

Independent Set on Trees

S;US. isan IS

Independent Set on Trees

S;US. isan IS

r

S;US. U{r}isanlS ifv & Sandw & §,

Independent Set on Trees

S;US. isan IS

S;US. U{r}isanlS ifv & Sandw & §,

Independent Set on Trees

Independent Set on Trees

n(u) max IS of the subtree containing u.

Independent Set on Trees

n(u) max IS of the subtree containing u.

n'(u) max IS of the subtree U.

r

Independent Set on Trees

n(u) max IS of the subtree containing u.

n'(u) max IS of the subtree U.

Independent Set on Trees

n(u) max IS of the subtree containing u.

n'(u) max IS of the subtree U.

Independent Set on Trees

n(u) max IS of the subtree containing u.

n'(u) max IS of the subtree U.

(")

\

Independent Set on Trees

n(u) max IS of the subtree containing u.

n'(u) max IS of the subtree U.

nry=n'v)y+n'(w)+1 ﬂ

\

Independent Set on Trees

n(u) max IS of the subtree containing u.

n'(u) max IS of the subtree U.

n(ry=n'(v) + n'(w) + 1

Independent Set on Trees

n(u) max IS of the subtree containing u.

n'(u) max IS of the subtree U.

n(ry=n'(v) + n'(w) + 1

®
=0

Independent Set on Trees

n(u) max IS of the subtree containing u.

n'(u) max IS of the subtree U.

n(ry=n'(v) + n'(w) + 1

n'(r) = max(n(v),n’'(v)) + max((n(w), n’'(w))

™
=0

Independent Set on Trees

n(u) max IS of the subtree containing u.

n'(u) max IS of the subtree U.

n(ry=n'(v) + n'(w) + 1

n'(r) = max(n(v),n’'(v)) + max((n(w), n’'(w))

®
=

max(n(r), n'(r)) is the size of the largest IS.

6

Tree Decomposition

Tree Decomposition

()
L/ \
) (
_

-
N r \\(
Y. _ Y. _

Tree Decomposition

é)
/ xk
) () 4
J . Yy g

Tree Decomposition

)
N

““1

) [. .)
. y,

Tree Decomposition

o
\

“\
J

Tree Decomposition

1. Each vertex appears in a bag.

k

é I I) é
\. J .

o
\

“\
J

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge vw Is contained in a bag.

-

é I l) é
\. J .

o
\

“\
J

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge vw Is contained in a bag.

3. The set of nodes in whose bags v

appears form a connected subtree.

-

é l l) é
\. J .

o
\

“\
J

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge vw Is contained in a bag.

3. The set of nodes in whose bags v

appears form a connected subtree.

-

é l l) é
\. J .

o
\

“\
J

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge vw Is contained in a bag.

3. The set of nodes in whose bags v

appears form a connected subtree.

-

é l l) é
\. J .

o
\

“\
J

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge vw Is contained in a bag.

3. The set of nodes in whose bags v

appears form a connected subtree.

The width of a tree decomposition
is the size of its largest bag - 1.

(“N
\. J

Independent Set with
Tree Decompositions

Node ¢

Independent Set with
Tree Decompositions

Node ¢

Independent Set with
Tree Decompositions

Independent Set with
Tree Decompositions

Node ¢

o

Independent Set with
Tree Decompositions

Node ¢

G,

o

Independent Set with
Tree Decompositions

Node ¢
OUe For each subset $ C y(7) of bag vertices,

n(S) = | max. IS of G, containing S |.

G,

o

Independent Set with
Tree Decompositions

Node ¢
OUe For each subset $ C y(7) of bag vertices,

n(S) = | max. IS of G, containing S |.

G,

o

Treewidth &

Independent Set with
Tree Decompositions

Node ¢
OUe For each subset $ C y(7) of bag vertices,

n(S) = | max. IS of G, containing S |.

G,

o

Treewidth & »
8

Independent Set with
Tree Decompositions

Node ¢
For each subset $ C y(7) of bag vertices,

n(S) = | max. IS of G, containing S |.

G,

o

Treewidth & » < 2K+l gubsets

8

Nice Iree Decompositions

Nice Iree Decompositions

“Leaf”

coe

Nice Iree Decompositions

“Leaf”

TINO

Nice Iree Decompositions

“Leaf” “Introduce”

RO

o0

Nice Iree Decompositions

“Leaf” “Introduce”
@ @ e9°
0
“Forget”

e
ves

Nice Iree Decompositions

“Leaf” “Introduce”

xr
CONONS

“Forget” “Join”

Leaf Nodes

Node ¢

Leaf Nodes

Node ¢ for S C y(?):

Leaf Nodes

Node ¢ for S C y(?):
if S is an independent set

10

Leaf Nodes

Node ¢ for S C y(?):
if S is an independent set

then n,(S) := | S|

10

Leaf Nodes

Node ¢ for S C y(?):
if S is an independent set

then n,(S) := | S|
else n,(5) := 0

10

Introduce Nodes

Introduce Nodes

for S C y(7):

Introduce Nodes

for S C y(7):
ifv &S

Introduce Nodes

Node ¢

for S C y(7):
<§E:EE:::> ifv &S
then n,(S) :=n, (S)
oo

Node ¢’

Introduce Nodes

Node ¢ for S C #(7)
or S C y(7):
<§E:EE:::> ifv &S
then n,(S) :=n, (S)
QE elseif v € $and Sisnotan IS

Node ¢’

11

Introduce Nodes

Node ¢ for S C #(7)
or S C y(7):
@ ifv &S
then n,(S) :=n, (S)
QE elseif v € $and Sisnotan IS

Node 7 then n,(S) := 0

11

Introduce Nodes

Node for S C #(7)
or S C y(?):
@ ifv &S
then n,(S) :=n, (S)
QE elseif v € $and Sisnotan IS
Node 7 then n,(S) := 0

else n,(S) :=n, (S\v) + 1

11

Bags are Separators

0000 -

000
2%
(@

Bags are Separators

0000

000
%
(@

Bags are Separators

0000
@@ 0

000
%
(®>

Bags are Separators

Bags are Separators

000

Bags are Separators

Bags are Separators

Introduce Nodes

Node 1 for S C #(1
or S C y(?):
@ ifv &S
then n,(S) :=n, (S)
@ elseif v € Sand Sis notan IS
Node 7 then n,(S) := 0

else n,(S) :=n, (S\v) + 1

14

Introduce Nodes

for S C y(7):
ifv &S
then n,(S) :=n, (S)
elseif v € Sand Sis notan IS
then n,($) :=0
else n,(S) :=n, (S\v) + 1

14

Introduce Nodes

Node ¢
for S C y(7):

ifv &S
then n,(S) :=n, (S)

elseif v € Sand Sis notan IS
then n,($) :=0

else n,(S) :=n, (S\v) + 1

14

Introduce Nodes

for S C y(7):
ifv &S
then n,(S) :=n, (S)
elseif v € Sand Sis notan IS
then n,($) :=0
else n,(S) :=n, (S\v) + 1

14

Forget Nodes

Forget Nodes

for S C y(7)

Forget Nodes

Node ¢

@ for S C y(1)
n(S) := max(n, (S),n, (SU {v}))
@eo

Node ¢’

Join Nodes

NOde t
Node ¢’ @ @ Node ¢”

Join Nodes

e ee
oo

Join Nodes

NOde t
Node ¢’ @ @ Node ¢”

Join Nodes

NOde t
Node ¢’ @ @ Node ¢”

]

Join Nodes

NOde t
Node ¢’ @ @ Node ¢”

]

for S C y(7)

Join Nodes

Node t
Node ¢’ @ @ Node ¢”

]

for S C y(7)
n(S) :=n,(S) +n, (S)

Join Nodes

Node t
Node ¢’ @ @ Node ¢”

N

for S C y(7)
n(S) :=n,(S) +n, (S)

Join Nodes

Node t
Node ¢’ @ @ Node ¢”

Y

for S C y(7)
n(S) :=n,(S) +n, (S)

Join Nodes

Node t
Node ¢’ @ @ Node ¢”

Y

for S C y(7)
n(S) =n,(S)+n.,(S) —|9|

The Algorithm

The Algorithm

1. Compute a nice tree decomposition (7, y) of G

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € T'and U C y(¢), initialize n(U)

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € T'and U C y(¢), initialize n(U)

3. Update n,(U) by dynamic programming ...

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes
for each U C y(1)

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes
for each U C y(1)
n(U) :=|U|

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes
for each U C y(1)
n(U):=|U| ifUisanlS

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes
for each U C y(1)
n(U):=|U| ifUisanlS
n(U) =0

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes
for each U C y(1)
n(U):=|U| ifUisanlS
n(U) =0 otherwise

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1)
n(U):=|U| ifUisanlS
n(U) =0 otherwise

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS
n(U) =0 otherwise

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS ifve& U

n(U) =0 otherwise

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)

n(U) =0 otherwise

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)

n(U) :=0 otherwise ifve U

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)

n(U) :=0 otherwise ifve U n(U):=n(U\{v})+ 1

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)

n(U) =0 otherwise fve U n(U):=n({U\{v})+1 ifUisanlS

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)
n(U) =0 otherwise fve U n(U):=n({U\{v})+1 ifUisanlS

n(U) =0

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)
n(U) =0 otherwise fve U n(U):=n({U\{v})+1 ifUisanlS

n(U) :=0 otherwise

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)
n(U) =0 otherwise fve U n(U):=n({U\{v})+1 ifUisanlS
n(U) :=0 otherwise

Forget Nodes

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)
n(U) =0 otherwise fve U n(U):=n({U\{v})+1 ifUisanlS
n(U) :=0 otherwise

Forget Nodes
for each U C y(7)

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)
n(U) :=0 otherwise ifve U n(U):=n(U\{v})+ 1
n(U) :=0

Forget Nodes
for each U C y(7)
n(U) := max(n(U),n(U U {v}))

if U/ is an IS
otherwise

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)
n(U) :=0 otherwise ifve U n(U):=n(U\{v})+ 1
n(U) =0
Forget Nodes Join Nodes

for each U C y(7)
n(U) := max(n(U),n(U U {v}))

if U/ is an IS
otherwise

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)
n(U) :=0 otherwise ifve U n(U):=n(U\{v})+ 1
n(U) =0
Forget Nodes Join Nodes
for each U C y(7) for each U C y(7)

n(U) := max(n(U),n(U U {v}))

if U/ is an IS
otherwise

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)
n(U) :=0 otherwise ifve U n(U):=n(U\{v})+ 1
n(U) =0
Forget Nodes Join Nodes
for each U C y(7) for each U C y(7)

if U/ is an IS
otherwise

n(U) := max(nU),n(UU {v})) n(U)=nAU)+nAU)—|U]

The Algorithm

1. Compute a nice tree decomposition (7, y) of G
2.Foreacht € Tand U C (1), initialize n(U)

3. Update n,(U) by dynamic programming ...
4. Output max{n(U)| U C y(r)}

Leaf Nodes Introduce Nodes
for each U C y(1) for each U C y(7)
n(U):=|U| ifUisanlS fve U n(U) :=n(U)
n(U) :=0 otherwise ifve U n(U):=n(U\{v})+ 1
n(U) =0
Forget Nodes Join Nodes
for each U C y(7) for each U C y(7)

if U/ is an IS
otherwise

n(U) := max(nU),n(UU {v})) n(U)=nAU)+nAU)—|U]

Independent Set Parameterized by Treewidth

Independent Set Parameterized by Treewidth

O
o) eeee

Independent Set Parameterized by Treewidth

@ For each subset § C y(7) of bag vertices,
n(S) = | max. IS of G, containing S |.

o) eeee

18

Independent Set Parameterized by Treewidth

Root Node r

@ For each subset § C y(7) of bag vertices,
n(S) = | max. IS of G, containing S |.

o) eeee

18

Independent Set Parameterized by Treewidth

Root Node r

@ For each subset § C y(7) of bag vertices,
n(S) = | max. IS of G, containing S |.

ses) eeee

18

Independent Set Parameterized by Treewidth

Root Node r

@ For each subset § C y(7) of bag vertices,
n(S) = | max. IS of G, containing S |.

ORI
eos) (soe) (oo =0

18

Independent Set Parameterized by Treewidth

Root Node r
@ For each subset § C y(7) of bag vertices,

n(S) = | max. IS of G, containing S |.
(e0e) (e00e”
see) (see) (oo | Or=C

INDEPENDENT SET is FPT parameterized
by the treewidth of the input graph.”

18

Independent Set Parameterized by Treewidth

Root Node r
@ For each subset § C y(7) of bag vertices,

n(S) = | max. IS of G, containing S |.
(e0e) (e00e”
G.=G

INDEPENDENT SET is FPT parameterized
by the treewidth of the input graph.”

*If we can compute a nice tree decomposition of width g(k) in FPT time.

18

3-Colorability

3-Colorability

3-Colorability

3-Colorability

3-Colorability

3-COLORABILITY

Input: A graph G.
Question: Does G have a vertex-coloring with 3 colors?

21

3-Colorability on
Tree Decompositions

3-Colorability on
Tree Decompositions

Node 7 foro : y(t) — {red, green, blue}

3-Colorability on
Tree Decompositions

Node 7 | foro : y(t) — {red, green, blue}

3-Colorability on
Tree Decompositions

Node 7 | foro : y(t) — {red, green, blue}

3-Colorability on
Tree Decompositions

Node 7 | foro : y(t) — {red, green, blue}

(D

/

3-Colorability on
Tree Decompositions

Node 7 | foro : y(t) — {red, green, blue}

3-Colorability on
Tree Decompositions

Node 7 | foro : y(t) — {red, green, blue}

n(o) =

3-Colorability on
Tree Decompositions

Node 7 | foro : y(t) — {red, green, blue}

true, if 6 can be extended to G,
n(o) =

3-Colorability on
Tree Decompositions

Node 7 | foro : y(t) — {red, green, blue}

() true, if 6 can be extended to G,
n(o) =
t false, otherwise

22

3-Colorability on
Tree Decompositions

Node 7 | foro : y(t) — {red, green, blue}

() true, if 6 can be extended to G,
n(o) =
t false, otherwise

width &

22

3-Colorability on
Tree Decompositions

Node 7 | foro : y(t) — {red, green, blue}

() true, if 6 can be extended to G,
n(o) =
t false, otherwise

width £ »

22

3-Colorability on
Tree Decompositions

Node 7 | foro : y(t) — {red, green, blue}

() true, if 6 can be extended to G,
n(o) =
t false, otherwise

width k » < 31 colorings

22

Leaf Nodes

Node ¢

Leaf Nodes

Node f
@ foro : y(t) — {red, green, blue)

Leaf Nodes
Node ¢
@ foro : y(t) — {red, green, blue)
if o is a proper coloring of G,

23

Leaf Nodes

Node ¢
foro : y(t) — {red, green, blue)
if o is a proper coloring of G,

then n,(0) := true

23

Leaf Nodes

Node ¢
foro : y(t) — {red, green, blue}
if o is a proper coloring of G,

then n,(0) := true

else n(o) := false

23

Introduce Nodes

Node ¢

()

Node ¢’

Introduce Nodes

Node ¢

i

Introduce Nodes

Node ¢

LX)

Node ¢’ N /

Introduce Nodes

Introduce Nodes

foro : y(t) — {red, green, blue}

Introduce Nodes

foro : y(t) — {red, green, blue}
if o is a proper coloring of G| y(7)]

Introduce Nodes

foro : y(t) — {red, green, blue}
if o is a proper coloring of G| y(7)]

thenn (o) := n, (o)

24

Introduce Nodes

foro : y(t) — {red, green, blue}
if o is a proper coloring of G| y(7)]
thenn (o) := n, (o)

else n,(o) := false

24

Forget Nodes

Forget Nodes

Node ¢

@ foro : y(t) — {red, green, blue}

Forget Nodes

Node ¢

@ foro : y(t) — {red, green, blue}

then (o) := \/ n.(c'U{v e c})

@) cEred,green,blue

Join Nodes

NOde t
Node ¢’ @ @ Node ¢”

Join Nodes

e ee
oo

Join Nodes

NOde t
Node ¢’ @ @ Node ¢”

Join Nodes

NOde t
Node ¢’ @ @ Node ¢”

]

Join Nodes

Node t
Node ¢’ @ @ Node ¢”

]

foro : y(t) — {red, green, blue}

Join Nodes

Node t
Node ¢’ @ @ Node ¢”

]

foro : y(t) — {red, green, blue}

n(o) :=n, (o) An. (o)

20

3-Colorability

3-COLORABILITY is FPT parameterized
by the treewidth of the input graph.”

27

3-Colorability

3-COLORABILITY is FPT parameterized
by the treewidth of the input graph.”

*If we can compute a nice tree decomposition of width g(k) in FPT time.

27

Pros and Cons

Pros and Cons

For Dominating Set, see

Pros and Cons

For Dominating Set, see

Cygan et al., Parameterized Algorithms

Pros and Cons

For Dominating Set, see

Cygan et al., Parameterized Algorithms

Pro: hand-crafted dynamic programming algorithm yields best running time

Pros and Cons

For Dominating Set, see

Cygan et al., Parameterized Algorithms

Pro: hand-crafted dynamic programming algorithm yields best running time

involves (repeating) tedious arguments

Pros and Cons

For Dominating Set, see

Cygan et al., Parameterized Algorithms

Pro: hand-crafted dynamic programming algorithm yields best running time
involves (repeating) tedious arguments

coming up with the right notion of “partial solution” (n,(U)) is difficult

Computing Treewidth

Treewidth i1s FP1T

TREEWIDTH

Input: A graph G and an integer k.

Question: Does G have treewidth < k?
Parameter: k

30

Treewidth i1s FP1T

TREEWIDTH

Input: A graph G and an integer k.

Question: Does G have treewidth < k?
Parameter: k

There is a function f and an algorithm A that computes
a tree decomposition of a graph G in time f(k) | V(G) |
or decides that its treewidth is greater than k.

30

FPT 2-Approximation

There is an algorithm that, given an n-vertex graph G
and an integer k, in time 295 either outputs a tree

decomposition of width at most 2k + 1 or determines
that the treewidth of G is larger than k.

31

Heuristics

Elimination Orderings

Elimination Orderings

Definition
Let G = (V, E) be a graph. An elimination ordering of G
is simply an ordering 6 = (vy, ..., v,) of V.

Elimination Orderings

Definition
Let G = (V, E) be a graph. An elimination ordering of G
is simply an ordering 6 = (vy, ..., v,) of V.

Elimination Orderings

Definition
Let G = (V, E) be a graph. An elimination ordering of G
is simply an ordering 6 = (vy, ..., v,) of V.

Elimination Orderings

Definition
Let G = (V, E) be a graph. An elimination ordering of G
is simply an ordering 6 = (vy, ..., v,) of V.

Elimination Orderings

Definition
Let G = (V, E) be a graph. An elimination ordering of G
is simply an ordering 6 = (vy, ..., v,) of V.

Elimination Orderings

Definition
Let G = (V, E) be a graph. An elimination ordering of G
is simply an ordering 6 = (vy, ..., v,) of V.

«en

Elimination Orderings

Definition
Let G = (V, E) be a graph. An elimination ordering of G
is simply an ordering 6 = (vy, ..., v,) of V.

Elimination Orderings

Definition
Let G = (V, E) be a graph. An elimination ordering of G
is simply an ordering 6 = (vy, ..., v,) of V.

Elimination Orderings

Definition
Let G = (V, E) be a graph. An elimination ordering of G
is simply an ordering 6 = (vy, ..., v,) of V.

Elimination Orderings

Definition
Let G = (V, E) be a graph. An elimination ordering of G
is simply an ordering 6 = (vy, ..., v,) of V.

The width of o is the maximum degree of a
vertex upon elimination.

Tree Decompositions from Orderings

Tree Decompositions from Orderings

DecompositionFromOrdering(G, (v;, ..., V,)):

Tree Decompositions from Orderings

DecompositionFromOrdering(G, (v;, ..., V,)):
if |[V(G)| =1

Tree Decompositions from Orderings

DecompositionFromOrdering(G, (v;, ..., V,)):
if |[V(G)| =1
return T = ({1}, D),y = {t— {v;}}

Tree Decompositions from Orderings

DecompositionFromOrdering(G, (v;, ..., V,)):
if |[V(G)| =1

return T = ({¢},D),y = {t = {v{}}

G’ := eliminate v, from G

Tree Decompositions from Orderings

DecompositionFromOrdering(G, (v;, ..., V,)):
if |[V(G)| =1
return T = ({¢},D),y = {t = {v{}}
G’ := eliminate v, from G
T, y := DecompositionFromOrdering(G’, (v», ..., V,))

Tree Decompositions from Orderings

DecompositionFromOrdering(G, (v;, ..., V,)):

if |[V(G)| =1
return 7= ({1}, @),y = {1~ ()}

G’ := eliminate v, from G
T, y := DecompositionFromOrdering(G’, (v», ..., V,))
t := node of T such that N;(v;) C y(¥)

Tree Decompositions from Orderings

DecompositionFromOrdering(G, (v;, ..., V,)):
if |[V(G)| =1
return 7= ({1}, @),y = {1~ ()}
G’ := eliminate v, from G
T, y := DecompositionFromOrdering(G’, (v», ..., V,))
t := node of T such that N;(v;) C y(¥)
' := new node

Tree Decompositions from Orderings

DecompositionFromOrdering(G, (v;, ..., V,)):
if |[V(G)| =1
return 7= ({1}, @),y = {1~ ()}
G’ := eliminate v, from G
T, y := DecompositionFromOrdering(G’, (v», ..., V,))
t := node of T such that N;(v;) C y(¥)
' := new node
Y =y VUt = Nglvl}

Tree Decompositions from Orderings

DecompositionFromOrdering(G, (v;, ..., V,)):
if |[V(G)| =1
return 7= ({1}, @),y = {1~ ()}
G’ := eliminate v, from G
T, y := DecompositionFromOrdering(G’, (v», ..., V,))
t := node of T such that N;(v;) C y(¥)
' := new node
Y =y VUt = Nglvl}
1" := add theedge tt'to T

Tree Decompositions from Orderings

DecompositionFromOrdering(G, (v;, ..., V,)):
if |[V(G)| =1
return 7= ({1}, @),z = {t — {v}]
G’ := eliminate v, from G
T, y := DecompositionFromOrdering(G’, (v», ..., V,))
t := node of T such that N;(v;) C y(¥)
' := new node
Y =y VUt = Nglvl}
1" := add theedge tt'to T
return 17,)’

Greedy Heuristics

Greedy Heuristics

GreedyOrderingX(G):

Greedy Heuristics

GreedyOrderingX(G):
= ()

Greedy Heuristics

GreedyOrderingX(G):
= ()

fori:=1ton

Greedy Heuristics

GreedyOrderingX(G):
= ()
fori ;= 1ton
v := vertex of G optimal with respect to X

Greedy Heuristics

GreedyOrderingX(G):

= ()

fori ;= 1ton
v := vertex of G optimal with respect to X
T.=T,V

Greedy Heuristics

GreedyOrderingX(G):

= ()

fori ;= 1ton
v := vertex of G optimal with respect to X
T =T,V
G := graph obtained from G by eliminating v

Greedy Heuristics

GreedyOrderingX(G):
= ()
fori ;= 1ton
v := vertex of G optimal with respect to X
T.=T,V
G := graph obtained from G by eliminating v
return 7

Greedy Heuristics

GreedyOrderingX(G):
= ()
fori ;= 1ton
v := vertex of G optimal with respect to X
T.=T,V
G := graph obtained from G by eliminating v
return 7

1. Min Degree/Size minimum degree

Greedy Heuristics

GreedyOrderingX(G):
7= ()
fori ;= 1ton
v := vertex of G optimal with respect to X
T =T,V
G := graph obtained from G by eliminating v
return 7

1. Min Degree/Size minimum degree
2. Min Fill fewest fill-in edges

Min Degree and Min Fill

Min Degree and Min Fill

Min Degree and Min Fill

Min Degree and Min Fill

Min Degree and Min Fill

Min Degree and Min Fill

Maximum Cardinality Search

Maximum Cardinality Search

MCS(G):

Maximum Cardinality Search

MCS(G):
7= ()

Maximum Cardinality Search

MCS(G):
7= ()

fori :=ntol

Maximum Cardinality Search

MCS(G):
7= ()
fori:=ntol
v := vertex of G with most neighbors in 7

Maximum Cardinality Search

MCS(G):

7= ()

fori:=ntol
v := vertex of G with most neighbors in 7
T:=V,T

Maximum Cardinality Search

MCS(G):

= ()

fori :=ntol
v := vertex of G with most neighbors in 7
T.:=V,T

return 7

Heuristics In Practice

Heuristics In Practice

* These heuristics do surprisingly well in practice.

Heuristics In Practice

* These heuristics do surprisingly well in practice.

* Min-Fill generates better (in terms of width) orderings.

Heuristics In Practice

* These heuristics do surprisingly well in practice.
* Min-Fill generates better (in terms of width) orderings.

«Can generate good elimination orderings for large graphs.

w (MinFill)

Heuristics In Practice

1000 ¢ —— ——
100 ¢ T E
1 ' |
1 10 100 1000

Fig. 2. The width obtained with MinFill vs the treewidth.
Jegou et al. ICTAI 2018

