
Part 4: Structural Decompositions

and Algorithms

Friedrich Slivovsky

1

Dynamic Programming

on Tree Decompositions

2

Dynamic Programming on
Tree Decompositions

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.
3. Retrieve solution from root table.

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.
3. Retrieve solution from root table.

Treewidth k

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.
3. Retrieve solution from root table.

f(k) p(n) Treewidth k

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.
3. Retrieve solution from root table.

f(k) p(n) Treewidth k

width k

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.
3. Retrieve solution from root table.

f(k) p(n) Treewidth k

f(k) { width k

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.
3. Retrieve solution from root table.

f(k) p(n)

g(k) p′￼(n)

Treewidth k

f(k) { width k

3

Dynamic Programming on
Tree Decompositions

1. Compute a (nice) tree decomposition.
2. Go from leaves to root and compute table for each node.
3. Retrieve solution from root table.

f(k) p(n)

g(k) p′￼(n)

Treewidth k

h(k) p′￼′￼(n)

f(k) { width k

3

Independent Set

Definition
An independent set of a graph is a subset
of vertices such that no two vertices are
adjacent.

4

Independent Set

Definition
An independent set of a graph is a subset
of vertices such that no two vertices are
adjacent.

4

Independent Set

Definition
An independent set of a graph is a subset
of vertices such that no two vertices are
adjacent.

4

Independent Set

Definition
An independent set of a graph is a subset
of vertices such that no two vertices are
adjacent.

Input: A graph and an integer . G k
Question: Does have an IS of size ?G k

INDEPENDENT SET

4

Independent Set on Trees

5

Independent Set on Trees
r

5

Independent Set on Trees
r

Sl

5

Independent Set on Trees
r

Sl Sr

5

Independent Set on Trees
r

Sl Sr

 is an ISSl ∪ Sr

5

Independent Set on Trees
r

Sl Sr

v

 is an ISSl ∪ Sr

5

Independent Set on Trees
r

Sl Sr

v w

 is an ISSl ∪ Sr

5

Independent Set on Trees
r

Sl Sr

v w

 is an ISSl ∪ Sr

 is an IS if and Sl ∪ Sr ∪ {r} v ∉ Sl w ∉ Sr

5

Independent Set on Trees
r

Sl Sr

v w

 is an ISSl ∪ Sr

 is an IS if and Sl ∪ Sr ∪ {r} v ∉ Sl w ∉ Sr

5

Independent Set on Trees

v w

r

6

Independent Set on Trees
 max IS of the subtree containing .n(u) u

v w

r

6

Independent Set on Trees
 max IS of the subtree containing .n(u) u

 max IS of the subtree not containing .n′￼(u) u

v w

r

6

Independent Set on Trees
 max IS of the subtree containing .n(u) u

 max IS of the subtree not containing .n′￼(u) u

v w

r

6

Independent Set on Trees
 max IS of the subtree containing .n(u) u

 max IS of the subtree not containing .n′￼(u) u

v w

r

6

Independent Set on Trees
 max IS of the subtree containing .n(u) u

 max IS of the subtree not containing .n′￼(u) u

v w

r

6

Independent Set on Trees
 max IS of the subtree containing .n(u) u

 max IS of the subtree not containing .n′￼(u) u

v w

r
n(r) = n′￼(v) + n′￼(w) + 1

6

Independent Set on Trees
 max IS of the subtree containing .n(u) u

 max IS of the subtree not containing .n′￼(u) u

v w

r
n(r) = n′￼(v) + n′￼(w) + 1

6

Independent Set on Trees
 max IS of the subtree containing .n(u) u

 max IS of the subtree not containing .n′￼(u) u

v w

r
n(r) = n′￼(v) + n′￼(w) + 1

6

Independent Set on Trees
 max IS of the subtree containing .n(u) u

 max IS of the subtree not containing .n′￼(u) u

v w

r
n(r) = n′￼(v) + n′￼(w) + 1

n′￼(r) = max(n(v), n′￼(v)) + max((n(w), n′￼(w))

6

Independent Set on Trees
 max IS of the subtree containing .n(u) u

 max IS of the subtree not containing .n′￼(u) u

v w

r
n(r) = n′￼(v) + n′￼(w) + 1

n′￼(r) = max(n(v), n′￼(v)) + max((n(w), n′￼(w))

 is the size of the largest IS.max(n(r), n′￼(r))
6

Tree Decomposition

7

Tree Decomposition

7

Tree Decomposition
“node”

7

Tree Decomposition
“node”

7

Tree Decomposition
“node”

“bag”

7

Tree Decomposition

1. Each vertex appears in a bag.
“node”

“bag”

7

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.vw

“node”

v w

“bag”

7

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.vw

3. The set of nodes in whose bags

appears form a connected subtree.

v

“node”

v w

“bag”

7

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.vw

3. The set of nodes in whose bags

appears form a connected subtree.

v

“node”

v v w

“bag”

7

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.vw

3. The set of nodes in whose bags

appears form a connected subtree.

v

“node”

v v w

v
“bag”

7

Tree Decomposition

1. Each vertex appears in a bag.

2. Each edge is contained in a bag.vw

3. The set of nodes in whose bags

appears form a connected subtree.

v

“node”

v v w

v

The width of a tree decomposition
is the size of its largest bag - .1

“bag”

7

Independent Set with

Tree Decompositions

…

Node t

8

Independent Set with

Tree Decompositions

…

Node t

8

Independent Set with

Tree Decompositions

…

Node t

8

Independent Set with

Tree Decompositions

…

Node t

8

Independent Set with

Tree Decompositions

…

Node t

Gt

8

Independent Set with

Tree Decompositions

…

Node t For each subset of bag vertices,

 = | max. IS of containing |.

S ⊆ χ(t)
nt(S) Gt SGt

8

Independent Set with

Tree Decompositions

…

Node t

Treewidth k

For each subset of bag vertices,

 = | max. IS of containing |.

S ⊆ χ(t)
nt(S) Gt SGt

8

Independent Set with

Tree Decompositions

…

Node t

Treewidth k

For each subset of bag vertices,

 = | max. IS of containing |.

S ⊆ χ(t)
nt(S) Gt SGt

8

Independent Set with

Tree Decompositions

…

Node t

Treewidth k subsets≤ 2k+1

For each subset of bag vertices,

 = | max. IS of containing |.

S ⊆ χ(t)
nt(S) Gt SGt

8

Nice Tree Decompositions

9

Nice Tree Decompositions
“Leaf”

9

Nice Tree Decompositions
“Leaf”

9

Nice Tree Decompositions
“Leaf” “Introduce”

9

Nice Tree Decompositions
“Leaf” “Introduce”

“Forget”

9

Nice Tree Decompositions
“Leaf” “Introduce”

“Forget” “Join”

9

Leaf Nodes

Node t

10

Leaf Nodes

for :S ⊆ χ(t)Node t

10

Leaf Nodes

for :S ⊆ χ(t)Node t

if is an independent set S

10

Leaf Nodes

for :S ⊆ χ(t)Node t

if is an independent set S
then nt(S) := |S |

10

Leaf Nodes

for :S ⊆ χ(t)Node t

if is an independent set S

else nt(S) := 0
then nt(S) := |S |

10

Introduce Nodes

Node t′￼

Node t
v

11

Introduce Nodes

for : S ⊆ χ(t)

Node t′￼

Node t
v

11

Introduce Nodes

for : S ⊆ χ(t)

Node t′￼

Node t
v

if v ∉ S

11

Introduce Nodes

for : S ⊆ χ(t)

Node t′￼

Node t
v

if v ∉ S
 then nt(S) := nt′￼

(S)

11

Introduce Nodes

for : S ⊆ χ(t)

Node t′￼

Node t
v

if v ∉ S

else if and is not an ISv ∈ S S
 then nt(S) := nt′￼

(S)

11

Introduce Nodes

for : S ⊆ χ(t)

Node t′￼

Node t
v

if v ∉ S

else if and is not an ISv ∈ S S
 then nt(S) := nt′￼

(S)

then nt(S) := 0

11

Introduce Nodes

for : S ⊆ χ(t)

else nt(S) := nt′￼
(S∖v) + 1

Node t′￼

Node t
v

if v ∉ S

else if and is not an ISv ∈ S S
 then nt(S) := nt′￼

(S)

then nt(S) := 0

11

Bags are Separators
v3 v4

v4 v6

v2

v2

v4 v6

v5 v8 v9
v7 v6

v7

v1

v5

Bags are Separators
v3 v4

v4 v6

v2

v2

v4 v6

v5 v8 v9
v7 v6

v7

v1

v5 t′￼

Bags are Separators
v3 v4

v4 v6

v2

v2

v4 v6

v5 v8 v9
v7 v6

v7

v1

v5

t

t′￼

Bags are Separators
v3 v4

v4 v6

v2

v2

v4 v6

v5 v8 v9
v7 v6

v7

v1

v5

t

t′￼

Bags are Separators
v3v2

v2

v5 v8 v9
v7

v7

v1

v5

t

t′￼

Bags are Separators
v3v2

v2

v5 v8 v9
v7

v7

v1

v5

t

t′￼

Bags are Separators
v3v2

v2

v5 v8 v9
v7

v7

v1

v5

t

t′￼

Introduce Nodes

v
for : S ⊆ χ(t)

else nt(S) := nt′￼
(S∖v) + 1

if v ∉ S

else if and is not an ISv ∈ S S
 then nt(S) := nt′￼

(S)

then nt(S) := 0Node t′￼

Node t

14

Introduce Nodes

v

…

for : S ⊆ χ(t)

else nt(S) := nt′￼
(S∖v) + 1

if v ∉ S

else if and is not an ISv ∈ S S
 then nt(S) := nt′￼

(S)

then nt(S) := 0Node t′￼

Node t

14

Introduce Nodes

v

…

for : S ⊆ χ(t)

else nt(S) := nt′￼
(S∖v) + 1

if v ∉ S

else if and is not an ISv ∈ S S
 then nt(S) := nt′￼

(S)

then nt(S) := 0Node t′￼

Node t

14

Introduce Nodes

v

…

for : S ⊆ χ(t)

else nt(S) := nt′￼
(S∖v) + 1

if v ∉ S

else if and is not an ISv ∈ S S
 then nt(S) := nt′￼

(S)

then nt(S) := 0Node t′￼

Node t

14

Forget Nodes

Node t′￼

Node t

v

15

Forget Nodes

for S ⊆ χ(t)

Node t′￼

Node t

v

15

Forget Nodes

for S ⊆ χ(t)

Node t′￼

Node t

v

nt(S) := max(nt′￼
(S), nt′￼

(S ∪ {v}))

15

Join Nodes
Node t

Node t′￼ Node t′￼′￼

16

Join Nodes
Node t

Node t′￼ Node t′￼′￼

… …

16

Join Nodes
Node t

Node t′￼ Node t′￼′￼

… …

16

Join Nodes
Node t

Node t′￼ Node t′￼′￼

… …

16

Join Nodes

for S ⊆ χ(t)

Node t

Node t′￼ Node t′￼′￼

… …

16

Join Nodes

for S ⊆ χ(t)

Node t

Node t′￼ Node t′￼′￼

… …

nt(S) := nt′￼
(S) + nt′￼′￼

(S)

16

Join Nodes

for S ⊆ χ(t)

Node t

Node t′￼ Node t′￼′￼

… …

nt(S) := nt′￼
(S) + nt′￼′￼

(S)

16

Join Nodes

for S ⊆ χ(t)

Node t

Node t′￼ Node t′￼′￼

… …

nt(S) := nt′￼
(S) + nt′￼′￼

(S)

16

Join Nodes

for S ⊆ χ(t)

Node t

Node t′￼ Node t′￼′￼

… …

nt(S) := nt′￼
(S) + nt′￼′￼

(S) − |S |

16

The Algorithm

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes
for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

nt(U) := |U |
for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

nt(U) := |U | if is an ISU
for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

nt(U) := |U | if is an ISU
nt(U) := 0

for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes Introduce Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes Introduce Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

for each U ⊆ χ(t) for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

Introduce Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

for each U ⊆ χ(t) for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

Introduce Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

for each U ⊆ χ(t) for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

if v ∈ U

Introduce Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

for each U ⊆ χ(t) for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

if v ∈ U

Introduce Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

nt(U) := nt′￼
(U∖{v}) + 1

for each U ⊆ χ(t) for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

if v ∈ U

Introduce Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

nt(U) := nt′￼
(U∖{v}) + 1 if is an ISU

for each U ⊆ χ(t) for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

if v ∈ U

Introduce Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

nt(U) := nt′￼
(U∖{v}) + 1 if is an ISU

nt(U) := 0

for each U ⊆ χ(t) for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

if v ∈ U

Introduce Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

nt(U) := nt′￼
(U∖{v}) + 1 if is an ISU

nt(U) := 0 otherwise

for each U ⊆ χ(t) for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

if v ∈ U

Introduce Nodes

Forget Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

nt(U) := nt′￼
(U∖{v}) + 1 if is an ISU

nt(U) := 0 otherwise

for each U ⊆ χ(t) for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

if v ∈ U

Introduce Nodes

Forget Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

nt(U) := nt′￼
(U∖{v}) + 1 if is an ISU

nt(U) := 0 otherwise

for each U ⊆ χ(t) for each U ⊆ χ(t)

for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

if v ∈ U

Introduce Nodes

Forget Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

nt(U) := nt′￼
(U∖{v}) + 1 if is an ISU

nt(U) := 0 otherwise

nt(U) := max(nt′￼
(U), nt′￼

(U ∪ {v}))

for each U ⊆ χ(t) for each U ⊆ χ(t)

for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

if v ∈ U

Introduce Nodes

Forget Nodes Join Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

nt(U) := nt′￼
(U∖{v}) + 1 if is an ISU

nt(U) := 0 otherwise

nt(U) := max(nt′￼
(U), nt′￼

(U ∪ {v}))

for each U ⊆ χ(t) for each U ⊆ χ(t)

for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

if v ∈ U

Introduce Nodes

Forget Nodes Join Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

nt(U) := nt′￼
(U∖{v}) + 1 if is an ISU

nt(U) := 0 otherwise

nt(U) := max(nt′￼
(U), nt′￼

(U ∪ {v}))

for each U ⊆ χ(t) for each U ⊆ χ(t)

for each U ⊆ χ(t) for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)

Leaf Nodes

if v ∉ U

if v ∈ U

Introduce Nodes

Forget Nodes Join Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

nt(U) := nt′￼
(U∖{v}) + 1 if is an ISU

nt(U) := 0 otherwise

nt(U) := max(nt′￼
(U), nt′￼

(U ∪ {v})) nt(U) = nt′￼
(U) + nt′￼′￼

(U) − |U |

for each U ⊆ χ(t) for each U ⊆ χ(t)

for each U ⊆ χ(t) for each U ⊆ χ(t)

The Algorithm
1. Compute a nice tree decomposition of (T, χ) G
2. For each and , initialize t ∈ T U ⊆ χ(t) nt(U)
3. Update by dynamic programming …nt(U)
4. Output max{nr(U) |U ⊆ χ(r)}

Leaf Nodes

if v ∉ U

if v ∈ U

Introduce Nodes

Forget Nodes Join Nodes

nt(U) := |U | if is an ISU
nt(U) := 0 otherwise

nt(U) := nt′￼
(U)

nt(U) := nt′￼
(U∖{v}) + 1 if is an ISU

nt(U) := 0 otherwise

nt(U) := max(nt′￼
(U), nt′￼

(U ∪ {v})) nt(U) = nt′￼
(U) + nt′￼′￼

(U) − |U |

for each U ⊆ χ(t) for each U ⊆ χ(t)

for each U ⊆ χ(t) for each U ⊆ χ(t)

Independent Set Parameterized by Treewidth

18

Independent Set Parameterized by Treewidth

18

Independent Set Parameterized by Treewidth

For each subset of bag vertices,

 = | max. IS of containing |.

S ⊆ χ(t)
nt(S) Gt S

18

Independent Set Parameterized by Treewidth

For each subset of bag vertices,

 = | max. IS of containing |.

S ⊆ χ(t)
nt(S) Gt S

Root Node r

18

Independent Set Parameterized by Treewidth

For each subset of bag vertices,

 = | max. IS of containing |.

S ⊆ χ(t)
nt(S) Gt S

Root Node r

18

Independent Set Parameterized by Treewidth

For each subset of bag vertices,

 = | max. IS of containing |.

S ⊆ χ(t)
nt(S) Gt S

Root Node r

Gr = G

18

Independent Set Parameterized by Treewidth

Theorem
INDEPENDENT SET is FPT parameterized

by the treewidth of the input graph.*

For each subset of bag vertices,

 = | max. IS of containing |.

S ⊆ χ(t)
nt(S) Gt S

Root Node r

Gr = G

18

Independent Set Parameterized by Treewidth

Theorem
INDEPENDENT SET is FPT parameterized

by the treewidth of the input graph.*

*If we can compute a nice tree decomposition of width in FPT time.g(k)

For each subset of bag vertices,

 = | max. IS of containing |.

S ⊆ χ(t)
nt(S) Gt S

Root Node r

Gr = G

18

3-Colorability

19

3-Colorability

20

3-Colorability

21

3-Colorability

21

3-Colorability

Input: A graph . G
Question: Does have a vertex-coloring with colors?G 3

3-COLORABILITY

21

3-Colorability on

Tree Decompositions

…

Node t

22

3-Colorability on

Tree Decompositions

…

Node t for σ : χ(t) → {red, green, blue}

22

3-Colorability on

Tree Decompositions

…

Node t for σ : χ(t) → {red, green, blue}

22

3-Colorability on

Tree Decompositions

…

Node t for σ : χ(t) → {red, green, blue}

22

3-Colorability on

Tree Decompositions

…

Node t for σ : χ(t) → {red, green, blue}

22

3-Colorability on

Tree Decompositions

…

Node t for σ : χ(t) → {red, green, blue}

Gt

22

3-Colorability on

Tree Decompositions

…

Node t for σ : χ(t) → {red, green, blue}

nt(σ) =

Gt

22

3-Colorability on

Tree Decompositions

…

Node t for σ : χ(t) → {red, green, blue}

true, if can be extended to σ Gtnt(σ) =

Gt

22

3-Colorability on

Tree Decompositions

…

Node t for σ : χ(t) → {red, green, blue}

false, otherwise
true, if can be extended to σ Gtnt(σ) =

Gt

22

3-Colorability on

Tree Decompositions

…

Node t

width k

for σ : χ(t) → {red, green, blue}

false, otherwise
true, if can be extended to σ Gtnt(σ) =

Gt

22

3-Colorability on

Tree Decompositions

…

Node t

width k

for σ : χ(t) → {red, green, blue}

false, otherwise
true, if can be extended to σ Gtnt(σ) =

Gt

22

3-Colorability on

Tree Decompositions

…

Node t

width k colorings≤ 3k+1

for σ : χ(t) → {red, green, blue}

false, otherwise
true, if can be extended to σ Gtnt(σ) =

Gt

22

Leaf Nodes

Node t

23

Leaf Nodes

Node t
for σ : χ(t) → {red, green, blue}

23

Leaf Nodes

Node t

if is a proper coloring of σ Gt

for σ : χ(t) → {red, green, blue}

23

Leaf Nodes

Node t

if is a proper coloring of σ Gt

for σ : χ(t) → {red, green, blue}

then truent(σ) :=

23

Leaf Nodes

Node t

if is a proper coloring of σ Gt

for σ : χ(t) → {red, green, blue}

then truent(σ) :=

else falsent(σ) :=

23

Introduce Nodes

Node t′￼

Node t
v

24

Introduce Nodes

Node t′￼

Node t
v

…

24

Introduce Nodes

Node t′￼

Node t
v

…

24

Introduce Nodes

Node t′￼

Node t
v

…

24

Introduce Nodes

Node t′￼

Node t
v

…

for σ : χ(t) → {red, green, blue}

24

Introduce Nodes

Node t′￼

Node t
v

…

for σ : χ(t) → {red, green, blue}

if is a proper coloring of σ G[χ(t)]

24

Introduce Nodes

Node t′￼

Node t
v

…

for σ : χ(t) → {red, green, blue}

if is a proper coloring of σ G[χ(t)]

then nt(σ) := nt′￼
(σ′￼)

24

Introduce Nodes

Node t′￼

Node t
v

…

for σ : χ(t) → {red, green, blue}

if is a proper coloring of σ G[χ(t)]

then nt(σ) := nt′￼
(σ′￼)

else false nt(σ) :=

24

Forget Nodes

Node t′￼

Node t

v

25

Forget Nodes

Node t′￼

Node t

v

for σ : χ(t) → {red, green, blue}

25

Forget Nodes

Node t′￼

Node t

v

for σ : χ(t) → {red, green, blue}

then nt(σ) := ⋁
c∈red,green,blue

nt′￼
(σ′￼∪ {v ↦ c})

25

Join Nodes
Node t

Node t′￼ Node t′￼′￼

26

Join Nodes
Node t

Node t′￼ Node t′￼′￼

… …

26

Join Nodes
Node t

Node t′￼ Node t′￼′￼

… …

26

Join Nodes
Node t

Node t′￼ Node t′￼′￼

… …

26

Join Nodes

for σ : χ(t) → {red, green, blue}

Node t

Node t′￼ Node t′￼′￼

… …

26

Join Nodes

for σ : χ(t) → {red, green, blue}

Node t

Node t′￼ Node t′￼′￼

… …

nt(σ) := nt′￼
(σ) ∧ nt′￼′￼

(σ)

26

3-Colorability

Theorem
3-COLORABILITY is FPT parameterized

by the treewidth of the input graph.*

27

3-Colorability

Theorem
3-COLORABILITY is FPT parameterized

by the treewidth of the input graph.*

*If we can compute a nice tree decomposition of width in FPT time.g(k)

27

Pros and Cons

Pros and Cons
For Dominating Set, see

Pros and Cons

Cygan et al., Parameterized Algorithms
For Dominating Set, see

Pros and Cons

Cygan et al., Parameterized Algorithms

Pro: hand-crafted dynamic programming algorithm yields best running time

For Dominating Set, see

Pros and Cons

Cygan et al., Parameterized Algorithms

Pro: hand-crafted dynamic programming algorithm yields best running time

Con: involves (repeating) tedious arguments

For Dominating Set, see

Pros and Cons

Cygan et al., Parameterized Algorithms

Pro: hand-crafted dynamic programming algorithm yields best running time

Con: involves (repeating) tedious arguments

Con: coming up with the right notion of “partial solution” () is difficultnt(U)

For Dominating Set, see

Computing Treewidth

29

Treewidth is FPT

Input: A graph and an integer . G k
Question: Does have treewidth ?G ≤ k

TREEWIDTH

Parameter: k

30

Treewidth is FPT

Theorem (Bodlaender)

There is a function and an algorithm that computes
a tree decomposition of a graph in time
or decides that its treewidth is greater than .

f A
G f(k) |V(G) |

k

Input: A graph and an integer . G k
Question: Does have treewidth ?G ≤ k

TREEWIDTH

Parameter: k

30

FPT 2-Approximation

31

Theorem (Korhonen 2021)

There is an algorithm that, given an -vertex graph
and an integer , in time either outputs a tree
decomposition of width at most or determines
that the treewidth of is larger than .

n G
k 2O(k)n

2k + 1
G k

Heuristics

32

Elimination Orderings

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Elimination Orderings

v1 v2 v3 v4 v5 v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Elimination Orderings

v1 v2 v3 v4 v5 v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Elimination Orderings

v2 v3 v4 v5 v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Elimination Orderings

v3 v4 v5 v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Elimination Orderings

v4 v5 v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Elimination Orderings

v5 v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Elimination Orderings

v6

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

Elimination Orderings

Let be a graph. An elimination ordering of

is simply an ordering of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

The width of is the maximum degree of a

vertex upon elimination.

σv1 v2 v3 v4 v5 v6

Tree Decompositions from Orderings

Tree Decompositions from Orderings
DecompositionFromOrdering():G, ⟨v1, …, vn⟩

Tree Decompositions from Orderings
DecompositionFromOrdering():G, ⟨v1, …, vn⟩
if |V(G) | = 1

Tree Decompositions from Orderings
DecompositionFromOrdering():G, ⟨v1, …, vn⟩
if |V(G) | = 1
return T = ({t}, ∅), χ = {t ↦ {v1}}

Tree Decompositions from Orderings
DecompositionFromOrdering():G, ⟨v1, …, vn⟩
if |V(G) | = 1
return T = ({t}, ∅), χ = {t ↦ {v1}}

eliminate from G′￼ := v1 G

Tree Decompositions from Orderings
DecompositionFromOrdering():G, ⟨v1, …, vn⟩
if |V(G) | = 1
return T = ({t}, ∅), χ = {t ↦ {v1}}

eliminate from G′￼ := v1 G
DecompositionFromOrdering()T, χ := G′￼, ⟨v2, …, vn⟩

Tree Decompositions from Orderings
DecompositionFromOrdering():G, ⟨v1, …, vn⟩
if |V(G) | = 1
return T = ({t}, ∅), χ = {t ↦ {v1}}

eliminate from G′￼ := v1 G
DecompositionFromOrdering()T, χ := G′￼, ⟨v2, …, vn⟩

node of such that t := T NG(v1) ⊆ χ(t)

Tree Decompositions from Orderings
DecompositionFromOrdering():G, ⟨v1, …, vn⟩
if |V(G) | = 1
return T = ({t}, ∅), χ = {t ↦ {v1}}

eliminate from G′￼ := v1 G
DecompositionFromOrdering()T, χ := G′￼, ⟨v2, …, vn⟩

node of such that t := T NG(v1) ⊆ χ(t)
new nodet′￼ :=

Tree Decompositions from Orderings
DecompositionFromOrdering():G, ⟨v1, …, vn⟩
if |V(G) | = 1
return T = ({t}, ∅), χ = {t ↦ {v1}}

eliminate from G′￼ := v1 G
DecompositionFromOrdering()T, χ := G′￼, ⟨v2, …, vn⟩

node of such that t := T NG(v1) ⊆ χ(t)
new nodet′￼ :=

χ′￼ := χ ∪ {t′￼ ↦ NG[v1]}

Tree Decompositions from Orderings
DecompositionFromOrdering():G, ⟨v1, …, vn⟩
if |V(G) | = 1
return T = ({t}, ∅), χ = {t ↦ {v1}}

eliminate from G′￼ := v1 G
DecompositionFromOrdering()T, χ := G′￼, ⟨v2, …, vn⟩

node of such that t := T NG(v1) ⊆ χ(t)
new nodet′￼ :=

χ′￼ := χ ∪ {t′￼ ↦ NG[v1]}
add the edge to T′￼ := tt′￼ T

Tree Decompositions from Orderings
DecompositionFromOrdering():G, ⟨v1, …, vn⟩
if |V(G) | = 1
return T = ({t}, ∅), χ = {t ↦ {v1}}

eliminate from G′￼ := v1 G
DecompositionFromOrdering()T, χ := G′￼, ⟨v2, …, vn⟩

node of such that t := T NG(v1) ⊆ χ(t)
new nodet′￼ :=

χ′￼ := χ ∪ {t′￼ ↦ NG[v1]}
add the edge to T′￼ := tt′￼ T

return T′￼, χ′￼

Greedy Heuristics

Greedy Heuristics
GreedyOrderingX():G

Greedy Heuristics
GreedyOrderingX():G
π := ()

Greedy Heuristics
GreedyOrderingX():G
π := ()
for to i := 1 n

Greedy Heuristics
GreedyOrderingX():G
π := ()
for to i := 1 n

vertex of optimal with respect to Xv := G

Greedy Heuristics
GreedyOrderingX():G
π := ()
for to i := 1 n

vertex of optimal with respect to Xv := G
π := π, v

Greedy Heuristics
GreedyOrderingX():G
π := ()
for to i := 1 n

vertex of optimal with respect to Xv := G
π := π, v

 graph obtained from by eliminating G := G v

Greedy Heuristics
GreedyOrderingX():G
π := ()
for to i := 1 n

vertex of optimal with respect to Xv := G
π := π, v

 graph obtained from by eliminating G := G v
return π

Greedy Heuristics

1. Min Degree/Size minimum degree

GreedyOrderingX():G
π := ()
for to i := 1 n

vertex of optimal with respect to Xv := G
π := π, v

 graph obtained from by eliminating G := G v
return π

Greedy Heuristics

1. Min Degree/Size minimum degree
2. Min Fill fewest fill-in edges

GreedyOrderingX():G
π := ()
for to i := 1 n

vertex of optimal with respect to Xv := G
π := π, v

 graph obtained from by eliminating G := G v
return π

Min Degree and Min Fill

Min Degree and Min Fill

Min Degree and Min Fill

Min Degree and Min Fill

Min Degree and Min Fill

Min Degree and Min Fill

Maximum Cardinality Search

Maximum Cardinality Search
MCS():G

Maximum Cardinality Search
MCS():G
π := ()

Maximum Cardinality Search
MCS():G
π := ()
for to i := n 1

Maximum Cardinality Search
MCS():G
π := ()
for to i := n 1

vertex of with most neighbors in v := G π

Maximum Cardinality Search
MCS():G
π := ()
for to i := n 1

vertex of with most neighbors in v := G π
π := v, π

Maximum Cardinality Search
MCS():G
π := ()
for to i := n 1

vertex of with most neighbors in v := G π
π := v, π

return π

Heuristics in Practice

Heuristics in Practice

•These heuristics do surprisingly well in practice.

Heuristics in Practice

•These heuristics do surprisingly well in practice.

•Min-Fill generates better (in terms of width) orderings.

Heuristics in Practice

•These heuristics do surprisingly well in practice.

•Min-Fill generates better (in terms of width) orderings.

•Can generate good elimination orderings for large graphs.

Heuristics in Practice

 1

 10

 100

 1000

 1 10 100 1000

w
 (M

in
Fi

ll)

w*

Fig. 2. The width obtained with MinFill vs the treewidth.

database1. First, as we aim to compare the decomposition
methods, we limit our study to instances whose primal graph
is not a complete graph. Then, the selection is refined accord-
ing to solver restrictions. So, only instances with intention,
extension, all-different, sum or element constraints are kept.
The selected instances have between 6 and 28,161 variables
(vertices) and between 5 and 285,685 constraints (edges or
hyperedges) whose arity ranges between 2 and 931. It results
that the primal graphs have between 5 and 12,547,224 edges.
The experiments are performed with Intel Xeon processors 2.4
GHz and we allocated a slot of 30 minutes for decomposing
each instance as for the PACE 2017 challenge.

Figure 1 shows the cumulative number of decomposed
instances for each decomposition method. Unlike PACE 2017,
no exact method is able to decompose all the instances. Then
tamaki, which finishes at the second place at PACE 2017, is
clearly the best exact method with about 79% of the considered
instances which are decomposed against 75% for bannach
and larisch. Afterwards, the gap between exact methods and
heuristic ones remains important. Indeed, heuristic methods
are able to decompose significantly more instances since the
percentage of decomposed instances ranges between 98%
(MinFill) and 100% (Small-sep).

Regarding the runtime, we can note that all the methods are
quite efficient. Indeed, all the methods (including exact ones)
require less than 120 s to process most of the decomposed
instances. Finally, the main drawback of exact methods is the
scalability. If the exact methods treat 92% of the instances
having at most 300 vertices, they only decompose 7% of the
instances with more than 300 vertices.

We now consider the structural parameters of the produced
tree decompositions. If, by construction, the width of a tree
decomposition produced by Connected or Small-sep are often
far than the treewidth, we can note that the obtained widths for
MinFill or MCS are often close. For example, if we consider
the 5,996 instances which are optimally decomposed by one
of the exact methods, we observe that MinFill computes an
optimal decomposition for 3,638 instances. For illustration,
we provide in Figure 2 a comparison between the width
obtained with MinFill and the treewidth. So, MinFill turns

1See http://xcsp.org/series

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000 1200 1400 1600 1800

#i
ns

ta
nc

es

runtime (s)

larisch
tamaki

bannach
MCS

MinFill
Connected

Small-sep
VBS

Fig. 3. The cumulative number of solved CSP instances.

to be a good solution for computing a relevant approximation
of the treewidth. Concerning the parameter sep of the largest
intersection between two clusters, we notice that sep is equal
to the width for many decompositions produced by exact
methods (more than 60% of the instances), MinFill or MCS
(about 30%). For Connected and Small-sep, this phenomenon
may occur but is more seldom (e.g. 0.6% for Small-sep).

IV. EVALUATION FROM CSP SOLVING VIEWPOINT

A. Experimental Protocol

As indicated in the previous section, we used the same
instances, that is to say, the benchmark 7,597 instances coming
from XCSP3 database. Among these instances, some are real-
world instances (e.g. RLFAP or Renault) or have a size similar
to one of real-world instances.

We consider two solving algorithms, based on BTD, namely
BTD-MAC+RST [23] and BTD-MAC+RST+Merge [21]. The
latter is the solving algorithm exploiting tree decomposition
which leads to solve the largest number of instances. However,
to reach this goal, it may alter the considered decomposition
by merging some clusters together. So, it may endanger the op-
timality of the initial decomposition (if so) during the solving.
That is why we also assess the behavior of BTD-MAC+RST
for which the decomposition remains unchanged during the
search (except the root cluster which may be modified at each
restart). Note that the setting of BTD (variable heuristic, root
cluster heuristic, . . .), except the tree decomposition method, is
one described in [24]. We exploit the implementation of BTD-
MAC+RST+Merge and Small-sep [24] available from the first
XCSP3 Competition2. We add to it the ability to handle the
optimal tree decompositions produced by larisch, tamaki and
bannach methods.

As indicated before, the experiments are performed with
Intel Xeon processors 2.4 GHz and for each pair decomposi-
tion/solving algorithm, we allocated a slot of 30 minutes for
decomposing and solving each instance within the limit of 12
GB of memory.

2See http://www.cril.univ-artois.fr/XCSP17 for more details.

���

Jegou et al. ICTAI 2018

