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v w

r
n(r) = n′￼(v) + n′￼(w) + 1

n′￼(r) = max(n(v), n′￼(v)) + max((n(w), n′￼(w))

  is the size of the largest IS.max(n(r), n′￼(r))
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1. Each vertex appears in a bag.

2. Each edge  is contained in a bag.vw

3. The set of nodes in whose bags  

appears form a connected subtree.

v

“node”

v v w

v

The width of a tree decomposition 
is the size of its largest bag - .1

“bag”
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3-Colorability

Input: A graph .  G
Question: Does  have a vertex-coloring with  colors?G 3

3-COLORABILITY
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…

Node t

width k   colorings≤ 3k+1
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false, otherwise
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Introduce Nodes 

Node t′￼

Node t
v

…

for σ : χ(t) → {red, green, blue}

if  is a proper coloring of  σ G[χ(t)]

then  nt(σ) := nt′￼
(σ′￼)

else false nt(σ) :=

24
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Node t
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Forget Nodes

Node t′￼

Node t

v

for σ : χ(t) → {red, green, blue}

then  nt(σ) := ⋁
c∈red,green,blue

nt′￼
(σ′￼∪ {v ↦ c})
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for σ : χ(t) → {red, green, blue}

Node t

Node t′￼ Node t′￼′￼

… …

nt(σ) := nt′￼
(σ) ∧ nt′￼′￼

(σ)
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27



Pros and Cons



Pros and Cons
For Dominating Set, see



Pros and Cons

Cygan et al., Parameterized Algorithms
For Dominating Set, see



Pros and Cons

Cygan et al., Parameterized Algorithms

Pro: hand-crafted dynamic programming algorithm yields best running time

For Dominating Set, see



Pros and Cons

Cygan et al., Parameterized Algorithms

Pro: hand-crafted dynamic programming algorithm yields best running time

Con: involves (repeating) tedious arguments

For Dominating Set, see



Pros and Cons

Cygan et al., Parameterized Algorithms

Pro: hand-crafted dynamic programming algorithm yields best running time

Con: involves (repeating) tedious arguments

Con: coming up with the right notion of “partial solution” ( ) is difficultnt(U)

For Dominating Set, see
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Treewidth is FPT

Input: A graph  and an integer .  G k
Question: Does  have treewidth ?G ≤ k

TREEWIDTH

Parameter: k

30



Treewidth is FPT

Theorem (Bodlaender)

There is a function  and an algorithm  that computes 
a tree decomposition of a graph  in time  
or decides that its treewidth is greater than .

f A
G f(k) |V(G) |

k

Input: A graph  and an integer .  G k
Question: Does  have treewidth ?G ≤ k

TREEWIDTH

Parameter: k

30



FPT 2-Approximation

31

Theorem (Korhonen 2021)

There is an algorithm that, given an -vertex graph  
and an integer , in time  either outputs a tree 
decomposition of width at most  or determines 
that the treewidth of  is larger than .

n G
k 2O(k)n

2k + 1
G k
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Elimination Orderings

Let  be a graph. An elimination ordering of   

is simply an ordering  of .

G = (V, E) G
σ = (v1, …, vn) V

Definition

The width of  is the maximum degree of a

vertex upon elimination. 

σv1 v2 v3 v4 v5 v6
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Tree Decompositions from Orderings
DecompositionFromOrdering( ):G, ⟨v1, …, vn⟩
if |V(G) | = 1
return T = ({t}, ∅), χ = {t ↦ {v1}}

eliminate  from G′￼ := v1 G
DecompositionFromOrdering( )T, χ := G′￼, ⟨v2, …, vn⟩

node of  such that t := T NG(v1) ⊆ χ(t)
new nodet′￼ :=

χ′￼ := χ ∪ {t′￼ ↦ NG[v1]}
add the edge  to T′￼ := tt′￼ T

return T′￼, χ′￼



Greedy Heuristics



Greedy Heuristics
GreedyOrderingX( ):G



Greedy Heuristics
GreedyOrderingX( ):G
π := ()



Greedy Heuristics
GreedyOrderingX( ):G
π := ()
for  to i := 1 n



Greedy Heuristics
GreedyOrderingX( ):G
π := ()
for  to i := 1 n

vertex of  optimal with respect to Xv := G



Greedy Heuristics
GreedyOrderingX( ):G
π := ()
for  to i := 1 n

vertex of  optimal with respect to Xv := G
π := π, v



Greedy Heuristics
GreedyOrderingX( ):G
π := ()
for  to i := 1 n

vertex of  optimal with respect to Xv := G
π := π, v

 graph obtained from  by eliminating G := G v



Greedy Heuristics
GreedyOrderingX( ):G
π := ()
for  to i := 1 n

vertex of  optimal with respect to Xv := G
π := π, v

 graph obtained from  by eliminating G := G v
return π



Greedy Heuristics

1. Min Degree/Size minimum degree

GreedyOrderingX( ):G
π := ()
for  to i := 1 n

vertex of  optimal with respect to Xv := G
π := π, v

 graph obtained from  by eliminating G := G v
return π



Greedy Heuristics

1. Min Degree/Size minimum degree
2. Min Fill fewest fill-in edges

GreedyOrderingX( ):G
π := ()
for  to i := 1 n

vertex of  optimal with respect to Xv := G
π := π, v

 graph obtained from  by eliminating G := G v
return π
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Maximum Cardinality Search
MCS( ):G
π := ()
for  to i := n 1

vertex of  with most neighbors in v := G π
π := v, π

return π
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Heuristics in Practice

•These heuristics do surprisingly well in practice.

•Min-Fill generates better (in terms of width) orderings.

•Can generate good elimination orderings for large graphs.
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Fig. 2. The width obtained with MinFill vs the treewidth.

database1. First, as we aim to compare the decomposition
methods, we limit our study to instances whose primal graph
is not a complete graph. Then, the selection is refined accord-
ing to solver restrictions. So, only instances with intention,
extension, all-different, sum or element constraints are kept.
The selected instances have between 6 and 28,161 variables
(vertices) and between 5 and 285,685 constraints (edges or
hyperedges) whose arity ranges between 2 and 931. It results
that the primal graphs have between 5 and 12,547,224 edges.
The experiments are performed with Intel Xeon processors 2.4
GHz and we allocated a slot of 30 minutes for decomposing
each instance as for the PACE 2017 challenge.

Figure 1 shows the cumulative number of decomposed
instances for each decomposition method. Unlike PACE 2017,
no exact method is able to decompose all the instances. Then
tamaki, which finishes at the second place at PACE 2017, is
clearly the best exact method with about 79% of the considered
instances which are decomposed against 75% for bannach
and larisch. Afterwards, the gap between exact methods and
heuristic ones remains important. Indeed, heuristic methods
are able to decompose significantly more instances since the
percentage of decomposed instances ranges between 98%
(MinFill) and 100% (Small-sep).

Regarding the runtime, we can note that all the methods are
quite efficient. Indeed, all the methods (including exact ones)
require less than 120 s to process most of the decomposed
instances. Finally, the main drawback of exact methods is the
scalability. If the exact methods treat 92% of the instances
having at most 300 vertices, they only decompose 7% of the
instances with more than 300 vertices.

We now consider the structural parameters of the produced
tree decompositions. If, by construction, the width of a tree
decomposition produced by Connected or Small-sep are often
far than the treewidth, we can note that the obtained widths for
MinFill or MCS are often close. For example, if we consider
the 5,996 instances which are optimally decomposed by one
of the exact methods, we observe that MinFill computes an
optimal decomposition for 3,638 instances. For illustration,
we provide in Figure 2 a comparison between the width
obtained with MinFill and the treewidth. So, MinFill turns

1See http://xcsp.org/series
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Fig. 3. The cumulative number of solved CSP instances.

to be a good solution for computing a relevant approximation
of the treewidth. Concerning the parameter sep of the largest
intersection between two clusters, we notice that sep is equal
to the width for many decompositions produced by exact
methods (more than 60% of the instances), MinFill or MCS
(about 30%). For Connected and Small-sep, this phenomenon
may occur but is more seldom (e.g. 0.6% for Small-sep).

IV. EVALUATION FROM CSP SOLVING VIEWPOINT

A. Experimental Protocol

As indicated in the previous section, we used the same
instances, that is to say, the benchmark 7,597 instances coming
from XCSP3 database. Among these instances, some are real-
world instances (e.g. RLFAP or Renault) or have a size similar
to one of real-world instances.

We consider two solving algorithms, based on BTD, namely
BTD-MAC+RST [23] and BTD-MAC+RST+Merge [21]. The
latter is the solving algorithm exploiting tree decomposition
which leads to solve the largest number of instances. However,
to reach this goal, it may alter the considered decomposition
by merging some clusters together. So, it may endanger the op-
timality of the initial decomposition (if so) during the solving.
That is why we also assess the behavior of BTD-MAC+RST
for which the decomposition remains unchanged during the
search (except the root cluster which may be modified at each
restart). Note that the setting of BTD (variable heuristic, root
cluster heuristic, . . . ), except the tree decomposition method, is
one described in [24]. We exploit the implementation of BTD-
MAC+RST+Merge and Small-sep [24] available from the first
XCSP3 Competition2. We add to it the ability to handle the
optimal tree decompositions produced by larisch, tamaki and
bannach methods.

As indicated before, the experiments are performed with
Intel Xeon processors 2.4 GHz and for each pair decomposi-
tion/solving algorithm, we allocated a slot of 30 minutes for
decomposing and solving each instance within the limit of 12
GB of memory.

2See http://www.cril.univ-artois.fr/XCSP17 for more details.
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