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Abstract: In this project couple of video       
processing related problems were attempted     
to be solved and hey are: denoising problem        
which removes noise from video and problem       
of converting grayscale to RGB video. Each       
problem is solved using two kinds of       
autoencoders and the results are compared. 

I. Introduction 
This project was created for the subject Neural        
networks on Faculty of Technical Sciences on       
Master studies.  
Neural network was made in ​Python ​language       
using ​Keras ​library. 

II. Artificial neural networks 
An artificial neural network (ANN) is an       
information processing system that is based on a        
mathematical model inspired by the complex      
non-linear and parallel neural structures of      
information in the brain of intelligent beings that        
acquire knowledge through experience. 

 
Image 1: Perceptron 

A large ANN may contain hundreds and event        
the thousands of processing units, while the       
mammalian brain contains several billions of      
neurons. In the human brain neural networks are        
able to organize their neurons and find solutions        
for very complex problems, such as recognizing       
standards. With only a few stimuli the human        
brain processes neural structures responsible for      
very fast and high quality responses, which it        
may never be possible to replicate artificially.       
However, the progress achieved in studies      
involving ANNs in a very short time and in         
several fields is amazing. Using neurobiological      
analogy as inspiration and the wealth of       
accumulated theoretical and technological tools,     
it is likely that our understanding of ANNs will         
soon be much more sophisticated than today       
(Haykin, 2001). ANNs are similar to the brain in         
at least two respects: knowledge is acquired by        
the network from its environment through a       
learning process; and the connection strength      
among neurons, known as synaptic weights, is       
used to store acquired knowledge.     
Neurocomputers, connectionist, and parallel    
distributed processing are also called ANNs. 

 
Image 2: Artificial neural network 
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III. Autoencoders 
“Autoencoding” is a data compression algorithm      
where the compression and decompression     
functions are: 

1. data-specific; 
2. lossy; 
3. learned automatically from examples; 

rather than engineered by a human.      
Additionally, in almost all contexts where the       
term “autoencoder” is used, the compression and       
decompression functions are implemented with     
neural networks. 
 
1. Autoencoders are data-specific, which means      
that they will only be able to compress data         
similar to what they have been trained on. This         
is different from, say, the MPEG-2 Audio Layer        
III (MP3) compression algorithm, which only      
holds assumptions about “sound” in general, but       
not about specific types of sounds. An       
autoencoder trained on pictures of faces would       
do a rather poor job of compressing pictures of         
trees, because the features it would learn would        
be face-specific. 
 
2. Autoencoders are lossy, which means that the        
decompressed outputs will be degraded     
compared to the original inputs (similar to MP3        
or JPEG compression). This differs from lossless       
arithmetic compression. 
 
3. Autoencoders are learned automatically from      
data examples, which is a useful property: it        
means that it is easy to train specialized        
instances of the algorithm that will perform well        
on a specific type of input. It doesn’t require any          
new engineering, just appropriate training data. 
 
To build an autoencoder, you need three things: 

1. Encoding function 
2. Decoding function 

3. Distance function between the amount     
of information loss between the     
compressed representation of your data     
and the decompressed representation    
(i.e. a “loss” function).  

The encoder and decoder will be chosen to be         
parametric functions (typically neural networks),     
and to be differentiable with respect to the        
distance function, so the parameters of the       
encoding/decoding functions can be optimized     
to minimize the reconstruction loss, using      
Stochastic Gradient Descent. ​It’s simple! And      
you don’t even need to understand any of these         
words to start using autoencoders in practice. 
 
Autoencoders are not really good at data       
compression They are used in practical      
applications. In 2012 they briefly found an       
application in greedy layer-wise pretraining for      
deep convolutional neural networks, but this      
quickly fell out fashion as we started realizing        
that better random weight initialization schemes      
were sufficient for training deep networks from       
scratch. In 2014, batch normalization started      
allowing for event deeper networks, and from       
late 2015 we could training arbitrarily deep       
networks from scratch using residual learning. 
 
Today two interesting practical applications of      
autoencoders are ​data denoising ​and     
dimensionality reduction for data    
visualization. ​With appropriate dimensionality    
and sparsity constraints, autoencoders can learn      
data projections that are more interesting than       
PCA or other basic techniques. 

Image 3: Basic autoencoder 
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IV. Training data 
The data this system uses are the frames of some          
video file. I used an episode of American TV         
show ​New Girl S01E01​ which has 720p quality. 
 
Each frame is split into grid with each cell is          
(10x10x3) pixels which is flatten into one       
dimensional array with shape (300, 1) and also        
all values are scaled on 0 to 1. 

V. Denoising 
Input data for denoising is some video frame        
where specific pixels are changed and that acts        
like the noise in the video. 
 
In each frame noise is put using this python         
code: 
 

noise_factor = ​0.2 
 

temp = temp + noise_factor * 

np.random.normal(loc=​0.0​, 
scale=​1.0​,size=temp.shape) 
 

temp = np.clip(temp, ​0.​, ​1.​) 

 
Output data is original video frame split into a         
grid, without any changes.  
 
Training deep autoencoder ​is done using this       
python code: 
 

# defining autoencoder 

# encoder 

input = Input((​300​, )) 
encoder = Dense(​100​)(inpt) 
encoder = Activation(​'relu'​)(encoder) 
encoder = Dense(​10​)(encoder) 
encoder = Activation(​'relu'​)(encoder) 
 

 

# decoder 

decoder = Dense(​10​)(encoder) 
decoder = Activation(​'relu'​)(decoder) 
decoder = Dense(​100​)(decoder) 
decoder = Activation(​'relu'​)(decoder) 
decoder = Dense(​300​)(decoder) 
decoder = Activation(​'sigmoid'​)(decoder) 
 

# encoder and decoder 

model = Model(input=input, 

output=decoder) 

 

model.compile(loss=​'mse'​, 
optimizer=​'adam'​, metrics=[​'accuracy'​]) 
batch_size = ​32 
nb_epoch = ​300 
 

# training autoencoder 

model.fit(input_array, output_array, 

batch_size=batch_size, 

nb_epoch=nb_epoch, 

shuffle=​True​, 
validation_data=(test_input_array, 

test_output_array)) 

 

model.save(​'denoising.h5'​) 

 
Training convolutional autoencoder ​starts by     
splitting input and output data by channels.       
Instead of having data in format (10, 10, 3) now          
we have three matrix with shape (10, 10).        
Training is done using this code: 
 

input_img=Input(shape=(factor,factor,​1​)) 
 

x = Conv2D(​16​, (​3​, ​3​), activation=​'relu'​, 
padding=​'same'​)(input_img) 
x = MaxPooling2D((​2​, ​2​), 
padding=​'same'​)(x) 
x = Conv2D(​8​, (​3​, ​3​), activation=​'relu'​, 
padding=​'same'​)(x) 
x = MaxPooling2D((​2​, ​2​), 
padding=​'same'​)(x) 
x = Conv2D(​8​, (​3​, ​3​), activation=​'relu'​, 
padding=​'same'​)(x) 
encoded = MaxPooling2D((​2​, ​2​), 
padding=​'same'​)(x) 
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# at this point the representation is (4, 

4, 8) i.e. 128-dimensional 

 

x = Conv2D(​8​, (​3​, ​3​), activation=​'relu'​, 
padding=​'same'​)(encoded) 
x = UpSampling2D((​2​, ​2​))(x) 
x = Conv2D(​8​, (​3​, ​3​), activation=​'relu'​, 
padding=​'same'​)(x) 
x = UpSampling2D((​2​, ​2​))(x) 
x = Conv2D(​16​, (​3​, ​3​), 
activation=​'relu'​)(x) 
x = UpSampling2D((​2​, ​2​))(x) 
x = Conv2D(​16​, (​3​, ​3​), 
activation=​'relu'​)(x) 
decoded = Conv2D(​1​, (​3​, ​3​), 
activation=​'relu'​, padding=​'same'​)(x) 
 

autoencoder = Model(input_img, decoded) 

autoencoder.compile(optimizer=​'adam'​, 
loss=​'mse'​, metrics=[​'accuracy'​]) 
 

autoencoder.fit(input_array, 

output_array, 

epochs=​50​, 
batch_size=32, 

shuffle=​True​, 
validation_data=(test_input_array, 

test_output_array)) 

 

autoencoder.save(​'gray_to_color_convoluti
onal.h5'​) 

Testing ​is done at the same time for deep         
autoencoder and convolutional autoencoder and     
that is saved into “output.avi”. That file is just         
representative example how the system works. 
 

● Top row shows how the deep      
autoencoder works  

● Bottom row represents convolutional    
autoencoder. 

 
● Left frame is frame with noise; 
● Middle frame is output of neural      

network; 
● Right frame is original frame. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Image 4: Output of denoising algorithms 
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VI. Grayscale to color 
Input data for denoising is some video frame        
on which OpenCV’s method rgb to grayscale is        
applied.  
Now the grid cells have shape (10, 10) pixels. 
 

gray=cv2.cvtColor(rgb,cv2.COLOR_BGR2GRAY) 

 
Output data is original video frame split into a         
grid, without any changes.  
 
Training deep autoencoder is same as it was in         
denoising part except instead of encoder input       
shape being (300, ) now is (100, ). 
 
Training convolutional autoencoder ​is the     
same as it was in denoising part except now the          
input is put in encoder in format (10, 10) and the           
output is put in format (10, 10, 3) since we have           
to generate three times bigger matrix on output        
comparing to input. 
 
 
 
 
 

 
Testing ​is done at the same time for deep         
autoencoder and convolutional autoencoder and     
that is saved into “output.avi”. That file is just         
representative example how the system works. 
 

● Top row shows how the deep      
autoencoder works  

● Bottom row represents convolutional    
autoencoder. 

 
● Left frame is grayscale frame; 
● Middle frame is output of neural      

network; 
● Right frame is original frame. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Image 5: Output of gray to color algorithm 
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VII. Conclusion 
For this project two problems are solved and        
each has two ways of doing it. One way is          
ordinary deep autoencoder and another one is       
convolutional autoencoder.  
 
Outputs do not represent the original data       
exactly because autoencoders are “lossy”.  
 
For denoising problem deep autoencoder gives      
better results because convolutional sometimes     
leaves some of the noise. 
 
 
For grayscale to RGB problem convolutional      
autoencoder gives better results comparing to      
deep autoencoders in terms of color transitions       
because gray area can be seen around girls lips         
in deep autoencoder. But on the other hand there         
is also blue shine above girl’s left shoulder in         
convolutional autoencoder. 
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