
Video processing using autoencoders

Svetozar Stojković
Neural networks

Faculty of Technical Sciences
Email: ​svetozar.cvele.stojkovic@gmail.com

GitHub: ​https://github.com/svetozarstojkovic/video-processing

Abstract: In this project couple of video
processing related problems were attempted
to be solved and hey are: denoising problem
which removes noise from video and problem
of converting grayscale to RGB video. Each
problem is solved using two kinds of
autoencoders and the results are compared.

I. Introduction
This project was created for the subject Neural
networks on Faculty of Technical Sciences on
Master studies.
Neural network was made in ​Python ​language
using ​Keras ​library.

II. Artificial neural networks
An artificial neural network (ANN) is an
information processing system that is based on a
mathematical model inspired by the complex
non-linear and parallel neural structures of
information in the brain of intelligent beings that
acquire knowledge through experience.

Image 1: Perceptron

A large ANN may contain hundreds and event
the thousands of processing units, while the
mammalian brain contains several billions of
neurons. In the human brain neural networks are
able to organize their neurons and find solutions
for very complex problems, such as recognizing
standards. With only a few stimuli the human
brain processes neural structures responsible for
very fast and high quality responses, which it
may never be possible to replicate artificially.
However, the progress achieved in studies
involving ANNs in a very short time and in
several fields is amazing. Using neurobiological
analogy as inspiration and the wealth of
accumulated theoretical and technological tools,
it is likely that our understanding of ANNs will
soon be much more sophisticated than today
(Haykin, 2001). ANNs are similar to the brain in
at least two respects: knowledge is acquired by
the network from its environment through a
learning process; and the connection strength
among neurons, known as synaptic weights, is
used to store acquired knowledge.
Neurocomputers, connectionist, and parallel
distributed processing are also called ANNs.

Image 2: Artificial neural network

1

mailto:svetozar.cvele.stojkovic@gmail.com
https://github.com/svetozarstojkovic/video-processing

III. Autoencoders
“Autoencoding” is a data compression algorithm
where the compression and decompression
functions are:

1. data-specific;
2. lossy;
3. learned automatically from examples;

rather than engineered by a human.
Additionally, in almost all contexts where the
term “autoencoder” is used, the compression and
decompression functions are implemented with
neural networks.

1. Autoencoders are data-specific, which means
that they will only be able to compress data
similar to what they have been trained on. This
is different from, say, the MPEG-2 Audio Layer
III (MP3) compression algorithm, which only
holds assumptions about “sound” in general, but
not about specific types of sounds. An
autoencoder trained on pictures of faces would
do a rather poor job of compressing pictures of
trees, because the features it would learn would
be face-specific.

2. Autoencoders are lossy, which means that the
decompressed outputs will be degraded
compared to the original inputs (similar to MP3
or JPEG compression). This differs from lossless
arithmetic compression.

3. Autoencoders are learned automatically from
data examples, which is a useful property: it
means that it is easy to train specialized
instances of the algorithm that will perform well
on a specific type of input. It doesn’t require any
new engineering, just appropriate training data.

To build an autoencoder, you need three things:

1. Encoding function
2. Decoding function

3. Distance function between the amount
of information loss between the
compressed representation of your data
and the decompressed representation
(i.e. a “loss” function).

The encoder and decoder will be chosen to be
parametric functions (typically neural networks),
and to be differentiable with respect to the
distance function, so the parameters of the
encoding/decoding functions can be optimized
to minimize the reconstruction loss, using
Stochastic Gradient Descent. ​It’s simple! And
you don’t even need to understand any of these
words to start using autoencoders in practice.

Autoencoders are not really good at data
compression They are used in practical
applications. In 2012 they briefly found an
application in greedy layer-wise pretraining for
deep convolutional neural networks, but this
quickly fell out fashion as we started realizing
that better random weight initialization schemes
were sufficient for training deep networks from
scratch. In 2014, batch normalization started
allowing for event deeper networks, and from
late 2015 we could training arbitrarily deep
networks from scratch using residual learning.

Today two interesting practical applications of
autoencoders are ​data denoising ​and
dimensionality reduction for data
visualization. ​With appropriate dimensionality
and sparsity constraints, autoencoders can learn
data projections that are more interesting than
PCA or other basic techniques.

Image 3: Basic autoencoder

2

IV. Training data
The data this system uses are the frames of some
video file. I used an episode of American TV
show ​New Girl S01E01​ which has 720p quality.

Each frame is split into grid with each cell is
(10x10x3) pixels which is flatten into one
dimensional array with shape (300, 1) and also
all values are scaled on 0 to 1.

V. Denoising
Input data for denoising is some video frame
where specific pixels are changed and that acts
like the noise in the video.

In each frame noise is put using this python
code:

noise_factor = ​0.2

temp = temp + noise_factor *

np.random.normal(loc=​0.0​,
scale=​1.0​,size=temp.shape)

temp = np.clip(temp, ​0.​, ​1.​)

Output data is original video frame split into a
grid, without any changes.

Training deep autoencoder ​is done using this
python code:

defining autoencoder

encoder

input = Input((​300​,))
encoder = Dense(​100​)(inpt)
encoder = Activation(​'relu'​)(encoder)
encoder = Dense(​10​)(encoder)
encoder = Activation(​'relu'​)(encoder)

decoder

decoder = Dense(​10​)(encoder)
decoder = Activation(​'relu'​)(decoder)
decoder = Dense(​100​)(decoder)
decoder = Activation(​'relu'​)(decoder)
decoder = Dense(​300​)(decoder)
decoder = Activation(​'sigmoid'​)(decoder)

encoder and decoder

model = Model(input=input,

output=decoder)

model.compile(loss=​'mse'​,
optimizer=​'adam'​, metrics=[​'accuracy'​])
batch_size = ​32
nb_epoch = ​300

training autoencoder

model.fit(input_array, output_array,

batch_size=batch_size,

nb_epoch=nb_epoch,

shuffle=​True​,
validation_data=(test_input_array,

test_output_array))

model.save(​'denoising.h5'​)

Training convolutional autoencoder ​starts by
splitting input and output data by channels.
Instead of having data in format (10, 10, 3) now
we have three matrix with shape (10, 10).
Training is done using this code:

input_img=Input(shape=(factor,factor,​1​))

x = Conv2D(​16​, (​3​, ​3​), activation=​'relu'​,
padding=​'same'​)(input_img)
x = MaxPooling2D((​2​, ​2​),
padding=​'same'​)(x)
x = Conv2D(​8​, (​3​, ​3​), activation=​'relu'​,
padding=​'same'​)(x)
x = MaxPooling2D((​2​, ​2​),
padding=​'same'​)(x)
x = Conv2D(​8​, (​3​, ​3​), activation=​'relu'​,
padding=​'same'​)(x)
encoded = MaxPooling2D((​2​, ​2​),
padding=​'same'​)(x)

3

at this point the representation is (4,

4, 8) i.e. 128-dimensional

x = Conv2D(​8​, (​3​, ​3​), activation=​'relu'​,
padding=​'same'​)(encoded)
x = UpSampling2D((​2​, ​2​))(x)
x = Conv2D(​8​, (​3​, ​3​), activation=​'relu'​,
padding=​'same'​)(x)
x = UpSampling2D((​2​, ​2​))(x)
x = Conv2D(​16​, (​3​, ​3​),
activation=​'relu'​)(x)
x = UpSampling2D((​2​, ​2​))(x)
x = Conv2D(​16​, (​3​, ​3​),
activation=​'relu'​)(x)
decoded = Conv2D(​1​, (​3​, ​3​),
activation=​'relu'​, padding=​'same'​)(x)

autoencoder = Model(input_img, decoded)

autoencoder.compile(optimizer=​'adam'​,
loss=​'mse'​, metrics=[​'accuracy'​])

autoencoder.fit(input_array,

output_array,

epochs=​50​,
batch_size=32,

shuffle=​True​,
validation_data=(test_input_array,

test_output_array))

autoencoder.save(​'gray_to_color_convoluti
onal.h5'​)

Testing ​is done at the same time for deep
autoencoder and convolutional autoencoder and
that is saved into “output.avi”. That file is just
representative example how the system works.

● Top row shows how the deep
autoencoder works

● Bottom row represents convolutional
autoencoder.

● Left frame is frame with noise;
● Middle frame is output of neural

network;
● Right frame is original frame.

Image 4: Output of denoising algorithms

4

VI. Grayscale to color
Input data for denoising is some video frame
on which OpenCV’s method rgb to grayscale is
applied.
Now the grid cells have shape (10, 10) pixels.

gray=cv2.cvtColor(rgb,cv2.COLOR_BGR2GRAY)

Output data is original video frame split into a
grid, without any changes.

Training deep autoencoder is same as it was in
denoising part except instead of encoder input
shape being (300,) now is (100,).

Training convolutional autoencoder ​is the
same as it was in denoising part except now the
input is put in encoder in format (10, 10) and the
output is put in format (10, 10, 3) since we have
to generate three times bigger matrix on output
comparing to input.

Testing ​is done at the same time for deep
autoencoder and convolutional autoencoder and
that is saved into “output.avi”. That file is just
representative example how the system works.

● Top row shows how the deep
autoencoder works

● Bottom row represents convolutional
autoencoder.

● Left frame is grayscale frame;
● Middle frame is output of neural

network;
● Right frame is original frame.

Image 5: Output of gray to color algorithm

5

VII. Conclusion
For this project two problems are solved and
each has two ways of doing it. One way is
ordinary deep autoencoder and another one is
convolutional autoencoder.

Outputs do not represent the original data
exactly because autoencoders are “lossy”.

For denoising problem deep autoencoder gives
better results because convolutional sometimes
leaves some of the noise.

For grayscale to RGB problem convolutional
autoencoder gives better results comparing to
deep autoencoders in terms of color transitions
because gray area can be seen around girls lips
in deep autoencoder. But on the other hand there
is also blue shine above girl’s left shoulder in
convolutional autoencoder.

References
[1] - Nutritional Modeling for Pigs and Poultry -
N.K. Sakomura; R.M. Gous; I. Kyriazakis; L.
Hauschild;
- Artificial Neural Networks - A.S. Ferraudo

[2] - Building Autoencoders in Keras

6

