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Overview 

• FWI most often goes wrong because of: 

̶ cycle skipping 

̶ operator error 

    …we mostly know how to identify and deal with these 

• But can go wrong for less-obvious reasons: 

̶ FWI side-bands can be problematic 

̶ elastic effects are significant 
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OBC dataset, North Sea 

Example 1 

• Conventional shallow-water full-azimuth OBC 

• FWI normally works well on such datasets  

• Commercial FWI with leading contractor 

• Produces spurious low-velocities 

• Produces unrealistic velocity oscillations in depth 
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OBC Receivers 

No salt in  
starting  
model 

Starting model 
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OBC dataset, North Sea 

Commercial FWI 

 Matched transmitted arrivals within a 4-s window with offsets  
to 8500 m to update the shallow overburden down to 2000 m  

 Good waveform match is achieved within this window between 
the observed and synthetic data after 3 multi-scale FWI iterations 
at  5Hz, 6Hz and 7Hz   

 Migrated gathers show reduced RMO 

 Improved shallow channel definition 
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Observed data 

OBC dataset, North Sea 
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Synthetic data after 7-Hz FWI 

OBC dataset, North Sea 



8 

OBC dataset, North Sea 

7Hz commercial FWI 

150 m depth 

tomo start model 



9 

OBC Receivers 

No salt in  
starting  
model 

Starting model 
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7-Hz FWI model 

OBC Receivers 

Reduced  
velocities  
appearing  

in diapir 
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1. Strong velocity inversion below strong top-diapir reflection 
where seismic amplitude indicates a positive reflection. 

 

FWI result 
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Starting Model 

6 Hz FWI 

7 Hz FWI 

5 Hz FWI 1350 

2160 

540 

Sonic 
Checkshot 

Well velocities 
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7-Hz FWI model 

OBC Receivers 

Oscillations  
in depth  

within LVZ 
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1. Strong velocity inversion below strong top-diapir reflection 
where seismic amplitude indicates a positive reflection. 

2. High/low velocity oscillations, related to low velocity zone,  
increasing in magnitude with increasing FWI. 

 

FWI result 
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• Finite aperture can enhance side bands in FWI impulse response 

• Can occur when data are artificially truncated in offset, time,  
depth or lateral extent 

• Solution is to taper data, removing sharp edges to spatail and 
temporal aperture – i.e. taper the end of the array, and do not 
mute too harshly 

• And/or use an objective function that is less sensitive to this 

Explanation? 
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receivers shots 

Ray trace data coverage 
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receivers shots 

Ray trace data coverage 
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Ray trace data coverage 

receivers shots 
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Ray trace data coverage 

receivers shots 
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FWI update in homogeneous model 

contains strong negative sideband  
outside first Fresnel zone 
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FWI sidebands 

• With good data coverage, the sideband interferes away  
e.g. within the interior of a moving-streamer survey 

• At survey edges, the sideband can interfere constructively 
producing spurious velocity updates with the wrong sign 

• They are especially prominent at the edges of ocean-bottom 
surveys where the array is fixed 

• Can also occur in depth where offset is truncated 

• Can appear within low-velocity zones if using strong mutes 
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7-Hz FWI model 

OBC Receivers 

A multitude  
of edge effects 
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OBC dataset, North Sea 

Example 2 

• Conventional shallow-water full-azimuth OBC 

• Shallow, over-compacted chalk with sharp to 

• Acoustic FWI tries to destroy the chalk 

• Limited angles available below chalk 
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Survey geometry 
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20 km 

• shallow water 

• 300 m nodes 

• dense shots 
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PSDM with Vp overlay 
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Field data 
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Synthetic from VTI starting model 
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Vp after acoustic FWI 
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Start-model data 



32 

Field data 
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Final-model data 
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FWI behaviour 

• FWI tries to supress or remove the chalk 

• This is consistent independent of: 

- parameterisation 

- pre-processing 

- anisotropy model 

- density model 

- data selection 

- flavour of FWI ... 
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Field data, f-k filtered 
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Start data, f-k filtered 
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Final data, f-k filtered 
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Acoustic effects 

• FWI is trying to kill post-critical top-chalk 
reflections and their multiples 

• The inversion is acoustic, so post-critical  
p-wave reflection coefficients are ~100% 

• Surface multiple is also 100% 

• So little energy is lost from post-critical primaries 
and multiples in acoustic simulations 
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Top chalk acoustic reflection coefficient 
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Top chalk elastic reflection coefficient 
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Top chalk reflection coefficient 

• In elastic models, the post-critical top-chalk 
reflection coefficient is similar or less than  
the post-critical coefficient 

• Post-critical multiples are now much weaker 

→  purely acoustic FWI is not good enough  
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Why not a problem everywhere? 

• Requires a sharp simple boundary 

• Requires large Vs contrast 

• Requires large Vp contrast 

• Helped by large density contrast 

• Helped by shallow top-chalk 

• Chalk here buried, uplifted, eroded, subsided...  
...giving exactly these circumstances 

• We do not see this in Central North Sea 
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Solutions 

1. Elastic inversion – but typically unaffordable  
when Vs is low 

2. Affordable acoustic inversion: 

̶ Add post-critical primaries and multiples to field data, or 

̶ Supress post-critical primaries and multiples in predicted data 
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Summary 

Commercial FWI with cycle-skipping protection works out of 
the box at least 80% of the time 

• still needs insight and experience for the remaining 20% 

• not always obvious if a dataset will be in the 20% a priori 


