
1

Inverse Problems

Semi-global inversion of vp to vs ratio  
for elastic wavefield inversion

Nuno V da Silva1 , Gang Yao  and Michael Warner

Department of Earth Science and Engineering, Imperial College London,  
Prince Consort Road, SW7 2BP, London, United Kingdom

E-mail: n.vieira-da-silva@imperial.ac.uk

Received 5 March 2018, revised 20 August 2018
Accepted for publication 31 August 2018
Published 20 September 2018

Abstract
We introduce an approach to estimate the ratio between P- and S-wave 
velocities, vp/vs, in the scope of elastic full waveform inversion (FWI). Elastic 
FWI is generally implemented with local optimization methods relying on 
initial estimates of the long wavelengths of P- and S-wave models. However, 
successful inversions can be hindered if an accurate enough relation between 
vp and vs velocities is not used as a constraint. This relation can be estimated 
from empirical relations. Herein, we introduce an alternative approach based 
upon a semi-global inversion scheme. We observe that for a large number of 
cases, and particularly in the context of FWI, vp/vs can be represented on a 
sparse basis. This sparse basis has a much smaller dimension than that of the 
typical model space in elastic FWI. This creates the possibility of using global 
optimization methods. The optimal estimate of vp/vs is obtained with quantum 
particle swarm optimization (QPSO). This method probes a population of 
possible models. The assessment of each model of vp/vs in the population 
is obtained with nested local iterations updating for vp only. Conventional 
elastic FWI is then carried out for jointly estimating high-resolution models 
of vp and vs. We demonstrate with synthetic examples that the estimates of 
vp are relatively robust to errors in the estimated vp/vs, and that effectively a 
sparse representation of the model of vp/vs is feasible for the reconstruction 
of a model of vs. We also demonstrate that the proposed approach performs 
better than constraining elastic FWI with an empirical relation between vp and 
vs, leading to improved estimates of models of vp and vs from seismic data.

Keywords: semi-global inversion, elastic inversion, full waveform inversion, 
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Introduction

Full waveform inversion (FWI) was introduced more than 30 years ago (Lailly 1983, Tarantola 
1984). Since its inception there has been a significant effort to make it practical for the inver-
sion of seismic data, especially for the inversion of industrial datasets (Sirgue et  al 2009,  
da Silva et al 2016, Routh et al 2017). FWI requires the solution of a wave equation multiple 
times. This can be carried out both in time- or frequency-domain (Tarantola 1984, Pratt and 
Shipp 1999).

It is also generally assumed that the Earth’s response is acoustic in the scope of industrial 
FWI. It is common practice taking into account seismic anisotropy (Warner et al 2013), and 
anelastic losses (Operto et al 2015). The implementation of elastic FWI has also been reported 
(Tarantola 1986, Mora 1987). Vigh et al (2014) and Raknes et al (2015) demonstrated the appli-
cation of elastic FWI to real industrial datasets. Queißer and Singh (2013) applied elastic FWI 
to time-lapse CO2 storage monitoring. However, the application of elastic FWI to large-scale 
industrial datasets is less common than acoustic FWI. Several factors are hindering practical 
elastic FWI, particularly the increasing computational cost when compared to acoustic FWI.

A more critical aspect is that elastic FWI aims to estimate a much larger number of param-
eters from the data when compared to acoustic FWI for example. This introduces a larger 
dimension of the model space and also a larger null-space. The existence of the null-space 
introduces ambiguity in the estimates of the parameters. Cross-talk between parameters is a 
manifestation of that ambiguity when jointly estimating different classes of parameters (Köhn 
et al 2012), and it affects the joint estimation of vp and vs with elastic FWI. This issue can 
be addressed constraining the elastic inversion with the Poisson ratio (Vigh et al 2014), for 
example. However, constraining the inversion in this manner requires assuming an empirical 
relation between vp and vs. These relations have been compiled from rock-physics and well-
logging data. Dvorkin et al (2014, chapter 2) gave a comprehensive overview of the different 
type of relations between vp and vs, depending on the type of lithology. Alternatively, one can 
also consider using a theoretical constraint derived from the laws of continuous media (Ikelle 
and Amundsen 2005). The Poisson ratio is one of such constraints as pointed out earlier.

We observe that FWI is generally carried out starting from models that contain only the long 
wavelength information. Hence, it is reasonable using only the long wavelength components 
of vp/vs to estimate a starting model of vs from the starting model of vp. The long-wavelength 
components have a smooth variation in space. Hence, they can be represented on a reduced, or 
sparse, basis. This reduced basis has a much lower dimension than that of a typical discretiza-
tion grid used in FWI (when using the finite difference method for example). The models of 
parameters typically used in FWI are discretized over a full basis. The distribution of vp/vs in 
space can then be determined by a very small number of coefficients. The parameters to be 
estimated are the coefficients associated with each basis function of the reduced basis. Hence, 
a space defined by this reduced basis is much more suitable for using global optimization, 
as the number of parameters to be estimated is significantly reduced when compared to that 
of a typical discretization grid used in conventional FWI. For example, Diouane et al (2016) 
and Datta and Sen (2016) used global inversion methods for estimating background velocity 
models from seismic data. Such approaches lead to models containing only long-wavelength 
components, and they can be used as initial models for carrying out conventional FWI.

Herein, we investigate the issue of estimating models of vp/vs with a semi-global algorithm 
in the scope of elastic FWI. These models are estimated from an initial population of uni-
formly distributed random models. The semi-global algorithm uses outer global iterations of 
quantum particle swarm optimization (QPSO) with nested local iterations of FWI. The semi-
global inversion is carried out at a frequency-band containing only low frequencies. Inverting 
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high-frequency components of the data is not necessary as only the long wavelengths of vp/vs 
are estimated. The vp/vs model estimated with the semi-global inversion is then used to con-
strain the iterative inversion with elastic FWI. The latter is then carried out over a wide band-
width to estimate high-resolution models of vp and vs. Our method requires, as in the case of 
acoustic FWI, a starting vp velocity field that predicts the seismic waveforms within half-cycle 
of the real data, and an initial population of vp/vs models. Such a population of models is 
generated randomly. We demonstrate throughout numerical examples, using the Marmousi 2 
(Versteeg 1994, Martin et al 2002) model, that our approach is adequate even when the true 
model of vp/vs ratio changes rapidly in space.

This paper is structured as follows. First, we introduce the theory of elastic FWI and the 
semi-global inversion algorithm. Then, we demonstrate with numerical examples the effec-
tiveness of our method followed by a discussion of the results.

Basis functions

The distribution of a model parameter, m(x), in space can be formally represented as the linear 
combination

m(x) =
N∑

k=1

mkψk(x), (1)

where ψk(x) is a basis function and mk its respective coefficient. The solution of the discrete 
inverse problem consists of estimating the coefficients of the basis functions, mk. Equation (1) 
is a general expression valid for any physical property. The number of basis functions necessary 
to represent the distribution of a model parameter in space gives the dimension of that space. For 
example, a basis function for a discretisation with equidistant grid-nodes distributed along the 
oriented axis, in a 3D space, can be defined as ψk (xk) = δ (x − xk) = δ (x − xk, y − yk, z − zk), 
where xk  is the position of the kth node and δ (x) is the Dirac delta function. In such case, the 
number of nodes in the grid gives the dimension of the model space.

The computational cost of QPSO increases with the increasing number of unknowns. In 
other words, the larger the dimension of the model parameter space, the larger the number of 
particles in the population needs to be. Consequently, using a space with a reduced order is 
paramount for a good performance of the global iterations. The wavelet transform (Press et al 
2007) is a feasible approach to reduce the dimension of the space of basis functions. Such 
an approach is particularly suitable when using second-order optimization as it reduces the 
computational cost as a result of reducing the number of unknowns (Abubakar et al 2012).

Herein, we define the basis functions of the reduced space using straightforward assump-
tions on the geology. These can be, for example, a vertical gradient, vertical and horizontal 
gradients, defining regions in space that correlate with the variation of the long wavelengths 
of the model of vp, or any combination of the above. It is important to note that we consider a 
reduced basis to represent vp/vs only. The models of vp and vs are represented on the full basis.

Theory

Elastic FWI with local optimization

In this section, we review elastic waveform inversion with local minimization. FWI aims 
to estimate physical properties of the subsurface, inverting seismic data recorded with a 
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multi-source experiment, d = (d1, d2, . . .), where the subscript denotes each unique source 
experiment. The inverse problem for elastic waveform inversion is formulated as the mini-
mization of the least squares norm of the data residuals (Tarantola 1984, 1986, Mora 1987)

J (p (w)) =
1
2
‖Rp (w)− d‖2

2 , (2)

where R = diag (R1, R1, . . .) interpolates the synthetically generated data, p = ( p1, p2, . . .), 
into each receiver position. The indexes in subscript denote a unique source identifier. The 
P- and S-wave velocities discretised over a grid are denoted with w = (vp, vs). Note that we 
formulate the inverse problem in a discretised form. Hence, both data and model parameters 
are denoted in bold. The simulated data is generated utilising the Cauchy’s law of motion

ρ(x)
∂v(x, t)

∂t
= ∇σ(x, t) + f(x, t), (3)

coupled with the constitutive law

σ(x, t) = C(x)ε(x, t), (4)

where x = (x, y, z) is the position vector, t denotes time, v is the particle velocity, σ is the 
stress tensor, ε is the strain tensor, f  denotes the body forces, ρ  is the density, and C is the 
stiffness tensor. All the symmetries and energy considerations of the tensors have been taken 
into account (Sedov 1994) hence

v = (v1, v2, v3) , (5a)

σ = (σ11,σ22,σ33,σ23,σ13,σ12) , (5b)

ε = (ε11, ε22, ε33, ε23, ε13, ε12) , (5c)

and the stiffness tensor C in elastic isotropic media is parameterized with vp and vs

C =




ρv2
p ρ
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p − v2
s
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 (6)
In our numerical implementation, we discretized the elastic wave equations with a staggered 
finite difference method, second-order accurate in time and fourth-order accurate in space 
(Levander 1988). The pressure field, p(x, t), is given at the receiver points by

p = −σ11 + σ22 + σ33

3
. (7)

The local iterations of elastic FWI are carried out with the preconditioned steepest-descent 
method. The estimates of the model parameters are given by

wk+1 = wk − αkH−1
k ∇wJ, (8)
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where k denotes the iteration number, αk is the step-length, Hk  is an approximation of the 
diagonal of the Hessian (Pratt et al 1998), and ∇wJ  is the gradient of the objective function 
1 with respect to the model parameters. The gradient ∇wJ  is computed with the adjoint-state 
method (Fernández-Berdaguer 1998, Fichtner et al 2006, Vigh et al 2014). In appendix, we 
outline a brief description of the adjoint-state method for the computation of ∇wJ .

Quantum particle swarm optimization

In this work, the outer global iterations are carried out with the QPSO algorithm. We point 
out that other meta-heuristic methods could have been chosen as for example genetic algo-
rithms (GA) (Sen and Stoffa 2013). However, it was reported higher efficiency (Debens 2015) 
and suitability for continuous optimization (Kachitvichyanukul 2012) of QPSO over GA. 
QPSO belongs to a class of meta-heuristic optimization algorithms known as particle-swarm 
optim ization (Kennedy and Eberhart 1995). The latter emulates the dynamics of a swarm of 
particles ruled by the laws of classical mechanics. On the other hand, QPSO emulates the 
dynamics of particles with quantum behavior. Hence, it does not need a velocity field asso-
ciated to each particle, as in the case of particle swarm optimization. Instead, QPSO uses a 
quantum potential similarly to quantum systems (Kennedy and Eberhart 1995, Kennedy and 
Eberhart 2001, Sun et al 2004a, 2004b). An important aspect of particle swarm optimization 
algorithms, including QPSO, is that particles are assumed to be dimensionless. Hence, they 
do not have a volume.

In our particular application of QPSO, the position of the particles defines a model of vp to 
vs ratio. The initial population of models is generated randomly, and it has a uniform distribu-
tion. The level of misfit for the model represented by each particle is assessed at each iteration. 
The algorithm keeps track of the best model estimated for each particle, and the best model 
in the population, along the successive iterations. These quantities are then used statistically 
to update the models represented by each particle. Along successive iterations, the position of 
each one of the particles tends to cluster around the best overall position. This position is, at 
least in principle, if the algorithm converged, the minimum of the objective function.

Semi-global inversion method

Semi-global methods combine characteristics of global and local optimization methods. The 
former has the potential of searching the entire model space while not using information of the 
topography of the misfit function (Fernández Martínez et al 2012). Global optimization meth-
ods can be ineffective if realizations of the model space are computationally demanding. This 
happens for the vast majority of applications of geophysical inversion because the solution 
of the forward problem is obtained throughout the numerical solution of partial differential 
equations with the finite-difference or the finite element method, for example. On the other 
hand, local optimization methods require less model space searches. However, these searches 
are carried out in a smaller portion of that space. In addition, they rely upon the topography 
of the misfit function. The successful application of local optimization methods requires an 
initial estimate of the model parameters that places the successive searching iterations within 
the basin of attraction of the global minimum. Otherwise, the algorithm can converge into 
local minima and the model estimates are sub-optimal. Semi-global methods allow searching 
large portions of the model space while using some of the information on the topography of 
the misfit function to guide that model search (Afanasiev et al 2014).

N V da Silva et alInverse Problems 34 (2018) 115011
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Herein is outlined a semi-global inversion method combining QPSO iterations with local 
gradient-descent iterations. This algorithm aims to recover long wavelengths of models of 
vp/vs ratio. The estimated model then can be used for generating a starting vs model and carry-
ing out conventional elastic FWI.

The key entity associated to the QPSO algorithm is the concept of the particle. The whole 
set of particles forms a population of particles or particle swarm. Each particle k (the index 
identifying the particle) has associated a position mk with dimension N. The position of a 
particle is effectively the model parameter(s) estimated over the successive iterations. In the 
scope of this paper, the position of each particle is the model of vp/vs. The set of all the position 
vectors for the Np particles in the swarm is formally represented as M =

{
m1, m2, . . . , mNp

}
. 

Effectively, each element of M is a set of coefficients of the reduced basis. Another key aspect 
is that the elements of M0, the set of all initial positions, are uniformly distributed. It is 
important to note that this property is not met along the successive iterations, Mn, as the 
models tend to cluster along with the convergence of the successive iterations. This means 
that there will be models that have a higher likelihood than others. Each one of the elements 
of Mn has a misfit associated. The set of misfits for the population at a given iteration n is 
Jn =

{
J1,n, J2,n, . . . , JNp,n

}
. The element Jk,n corresponds to the misfit of the kth particle at nth 

outer iteration. The elements of Jn are estimated with local nested iterations of FWI, updat-
ing only for vp. At any given outer iteration, each particle has a best-estimated position. That 
position is the one corresponding to the lowest value of the objective function attained by that 
particle up to that iteration. This means that the best position for a given particle at any given 
outer iteration can be the current estimate, or it can be any of the previous ones. The set of 

the best estimates of each particle is defined as M∗ =
¶

m∗
1 , m∗

2 , . . . , m∗
Np

©
. Each one of its 

elements has a misfit associated which is in the set J ∗ =
¶

J∗1 , J∗2 , . . . , J∗Np

©
. In addition, at 

any given outer iteration the population has a best overall position m∗
g = m∗

k. The best overall 

position has a corresponding misfit J∗k , with the index k given by argmink∈{1,..,Np}(J ∗). The 
chief assumption is that the position with the least value of misfit is also the position with the 
highest likelihood of being the optimal solution. The position with the smallest level of misfit 
is selected as the optimal solution upon completing the set of outer global iterations. We out-
line a pseudo-code of the semi-global inversion method in algorithm 1.

Table 1. Comparison between the computational cost of local elastic FWI, O(L), and 
that of semi-global inversion, O(G). The first row shows the absolute computational 
cost for local and semi-global inversion. The second row relates O(L) and O(G) when 
the number of outer global iterations is of the same order as that of the number of 
frequency bands in local inversion, and the number of nested local iterations is the same 
as the number of local iterations per frequency-band. The third row compres O(L), and 
O(G) when only a subset of the whole set of sources is utilised at each local iteration; 
Nskip is the number of shots skipped.

Approximation Local inversion Semi-global inversion

None O(L)  =  Nf NL O(G)  =  Np NLn Ng

Ng ~ Nf; NL ~ NLn — O(G)  =  Np O(L)
Skip Nskip shots — O(G)  =  Np O(L)/Nskip

Np ~ Nskip — O(G) ~ O(L)

N V da Silva et alInverse Problems 34 (2018) 115011
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Dependency on the starting model

The semi-global inversion algorithm introduced herein relies on local nested iterations of 
FWI within each outer global iteration. When carrying out FWI, the level of data misfit can 
be reduced even when the starting model of vp is not adequate. In such a case, the inversion 
converges towards a local minimum. A criterion used for enhancing the possibility of converg-
ing towards the global minimum is guaranteeing that the time difference between observed 
and computed waveforms is less than half a cycle. When this condition is not met, the data 
is referred to as being cycle-skipped. In such a case, conventional FWI does not converge 
towards the global minimum. A comprehensive review on some of the latest developments on 
this topic can be found in da Silva and Yao (2018).

Algorithm 1. Semi-global inversion of vp/vs ratio; Ng is the number of global outer 
iterations, Np is the number of particles, NLn is the number of nested local iterations, Nf 
is the number of frequency bands, n indicates global outer iterations, k indexes a particle, 
l indexes nested local iterations, f indexes the frequency band, ε is the threshold for the 
level of misfit, β is the contraction-expansion coefficient. For mono-modal solutions β 
is set equal to 0.75 (Sun 2012).

n = 0
Select a starting model of the velocity of compressional waves, vP

Generate a uniform population of starting models of vp/vs, Mn =
{

m1,n, . . . , mNp,n
}

while min
m

{J } > ε and n < Ng and f < Nf:
   for each particle k ∈ {1, . . . , Np}:
       compute vS,k  from vP and mk,n ∈ Mn

       w0 = {vP; vS,k}
       for l ∈ {0, . . .NLn − 1} (nested local iterations):
           compute ∇vp Jk,n (wl) as outlined in appendix

           wl+1 = wl − αlH−1
l ∇vp Jk,n(wl)

   store Jn =
{

J1,n, . . . , JNp,n
}

 and Vn =
{

vP,1, . . . , vP,Np

}
   if n > 0 (ignore models that did not improve):
      for each particle k ∈ {1, . . . , Np}:
           if Jk,n > Jk,n−1:
              mk,n = mk,n−1

              Jk,n = Jk,n−1

   select the best model for each particle so far, M∗ = {m∗
1 , m∗

2 , . . . , m∗
M}

   select the best model in the population so far, m∗
g

   select the coefficient β
   for each particle k:
      generate a diagonal matrix ϕ with random values uniformly distributed
      determine a local attractor qk = ϕm∗

k + (1 −ϕ)m∗
g

      lk = 2β |m∗
k − mk,n|

      generate a diagonal matrix φ with random values uniformly distributed
      generate random r with a normal distribution with zero mean and unit variance
      if r < 0.5 then:

           mk,n+1 = qk − 0.5 ln(φ−1)lk

      else:

           mk,n+1 = qk + 0.5 ln(φ−1)lk

      compute the weighted average of velocity models vP = 1∑
k

Jk,n

∑
k Jk,nvP,k

   n ← n + 1

N V da Silva et alInverse Problems 34 (2018) 115011
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In the approach introduced herein, the assessment of each model of vp/vs ratio at each outer 
global iteration is carried out with nested local iterations. Hence, the initial model of vp must 
satisfy the cycle-skipping criterion for the nested local iterations. Not meeting this criterion 
along the successive global iterations is not critical, as long as, there are models in the popula-
tion that generate data that is not cycle-skipped. The rationale for this statement is that models 

Figure 1. P-wave velocity model: (a) true model, (b) model inverted with the average 
vp/vs ratio of 2.87, (c) model inverted constraining with the ‘mud-rock’ model, (d) model 
inverted constraining with the vertical gradient of vp/vs, (e) model inverted with the vp/vs 
determined from the structure of the starting model of vp and (f) starting vp model.

Figure 2. S-wave velocity model: (a) true model, (b) model inverted constraining 
the inversion with the average vp/vs ratio of 2.87, (c) model inverted constraining the 
inversion with the ‘mud-rock’ model, (d) model inverted constraining the inversion 
with a vertical gradient of vp/vs and (e) model inverted constraining the inversion with 
the vp/vs determined from the structure of the starting model of vp/vs.

N V da Silva et alInverse Problems 34 (2018) 115011
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that generate cycle-skipped data should have, at least in principle, a data misfit higher than 
that of data that is in phase. Hence, these models have a lesser role in the overall dynamics of 
the swarm. However, inversions should be carried out using adequate starting models. In such 
a case, the initial model of vp has to predict the data within half of a cycle, and the successive 
estimates of vp/vs are obtained with small incremental steps. Then, it is very unlikely that the 
data generated over the successive iterations becomes cycle-skipped. The overall conv ergence 
of the algorithm depends principally on ensuring that the starting models generate data that is 
not cycle-skipped.

Marmousi 2—noise-free data

In this section, we demonstrate the application of the semi-global inversion method outlined 
herein. Our examples utilise the synthetic elastic model Marmousi 2 (Versteeg 1994, Martin 
et al 2002). This model includes both distributions of vp and vs, as depicted in figures 1(a) 
and 2(a), respectively. It is characterized by its complex structure and the existence of two 
low-velocity anomalies highlighted with (i) and (ii) in figure 1(a). The low-velocity anomalies 
labeled (i) and (ii) do not correlate with the low-velocity anomalies in the true vs model (figure 
2(a)). In addition, the Marmousi 2 model is also characterized by the existence of a reservoir 
in its central part with the top of the anticline at a depth of about 2.75 km.

The true vp/vs ratio is depicted in figure 3(a). One can observe a very detailed model of 
vp/vs with a smooth variation of the long-wavelength components along the vertical direction 
and with almost no variation along the horizontal direction. We refer to the long wavelengths 
components as the background model. The semi-global method is suitable for estimating the 
background model as it relies upon the use of a sparse basis. The rationale of our approach 
is based on the fact that elastic FWI starts from smooth models of vp and vs. Hence, one 
only has information on the long wavelength components prior to carrying out elastic FWI. 
Accordingly the same happens for the model of vp/vs.

Once the starting model of vp and the constraining model of vp/vs are obtained, one can 
estimate high-resolution models for vp and vs with conventional elastic FWI utilising a local 
optimization method.

The models of velocity are discretized with a grid spacing of 12.5 m along the vertical and 
horizontal directions. The model of density is determined from the velocity of compressional 

Figure 3. vp/vs ratio: (a) true ratio, (b) ratio determined from ‘mud-rock’ model,  
(c) ratio estimated with semi-global inversion and assuming a vertical gradient and 
(d) ratio estimated with semi-global inversion following the structure of the starting vp 
model (figure 4).

N V da Silva et alInverse Problems 34 (2018) 115011
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waves using Gardner’s law (Gardner 1974), with the exception of the region corre sponding to 
the seawater where the density is set equal to 1000 kg m−3.

We generate a synthetic data set of pressure comprising 323 shots spaced of 50 m, and at 
a depth of 12.5 m. We apply a free-surface boundary condition at the top of the model, and 
we suppress the energy outgoing through the lateral and bottom boundaries with an absorbing 
layer (Yao et al 2018).

The time dependency of the source wavelet is defined with a Ricker wavelet with a peak 
frequency of 8 Hz. The synthetic data are generated recording the wavefield with a fixed 
receiver configuration. The array of receivers comprises 1290 receivers spaced of 12.5 m. The 
depth of all receivers is 12.5 m. In all the examples presented, the starting model of vp (figure 
1(f)) is obtained smoothing the true model of vp (figure 1(a)) utilising a Gaussian filter. The 
kernel of the Gaussian filter has a length of 25 cells.

In all the examples, the semi-global inversions are carried out with four nested local steep-
est-descent iterations. We set a population size of ten particles. The initial models are selected 
randomly and follow a uniform distribution. We carried out ten outer global iterations for each 
particle. The semi-global inversion ran at a low-frequency band, filtering the data with a low-
pass filter with cut-off at 2.5 Hz. We use only every fourth shot at each nested local iteration. 
This means that every three shots are skipped, and that each nested local iteration uses one-
fourth of all the available data. After completing four local iterations, each shot has been used 
once. Hence, all the data has been used after completing each outer global iteration. The shot 
distribution does not need to be very dense as long as the receiver distribution is dense enough 
and only the long wavelengths of the anomalies are estimated. Effectively, the semi-global 
inversion is carried out at low frequencies and over a sparse basis. Hence, only anomalies of 
vp/vs with long wavelengths are estimated, and the condition for decimating the data, by skip-
ping shots, is satisfied.

After completing the semi-global iterations, we jointly estimate vp and vs carrying out 
conventional elastic FWI. The local elastic FWI inversion starts from the same vp model as 
the semi-global inversion. The starting vs model is determined by the vp/vs ratio estimated 
with the semi-global inversion. Elastic FWI is carried out in blocks of 5 iterations for each 
frequency band. After completing each block of iterations the frequency band is widened. The 
first frequency band has a cut-off filter at 2.5 Hz, the second has a cut-off filter at 3 Hz and 
all the subsequent bands of frequency are widened by 1 Hz up to 10 Hz. All the data are used 
when carrying out local elastic FWI iterations. The local inversion algorithm runs 45 steepest-
descent iterations in total.

Elastic FWI constrained with average vp/vs

We carry out this FWI example in order to demonstrate that in this particular case it is not 
sufficient to consider a simple relation between vp and vs. In the region corresponding to the 
sea-water the ratio is set equal to zero, and in the region corresponding to the geological for-
mations we take the average value of vp/vs which is 2.87. This value is determined from the 
starting models of vp and vs and agrees with the relation vP � 1.4vS (Ikelle and Amundsen 
2005), which is derived from the relations of continuous mechanics.

The model of vp estimated with FWI is depicted in figure 1(b). The corresponding model 
of vs is depicted in figure 2(b). One can observe that both inverted models are inaccurate. 
The shallower part of the vp model shows the main features reconstructed with good acc-
uracy. However, the accuracy of the inverted model degrades significantly with depth. The 
deeper high-velocity dipping layer in the left region of the model is poorly reconstructed. 
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Without complementary information, and if the true model is not known, one cannot deter-
mine whether such a structure is real or not. In addition, both the reservoir and the region 
below the reservoir show a poor reconstruction.

The inverted vs model shows the spatial structure of the true model. However, it is quanti-
tatively inaccurate and the estimated vs is averagely lower than that of the true model. In 
addition, there is also evidence of crosstalk as the inverted model of vs shows low-velocity 
anomalies correlating with the structures (i) and (ii) in the model of vp. Suppressing this ambi-
guity requires either constraining the model of vp/vs ratio capturing these particular anomalies 
or constraining the inversion with complementary data.

One can conclude that the assumption made on a constant and average value of the vp/vs 
ratio is not accurate enough for this particular case. One can also observe from this test that 
the estimates of vp are less sensitive to errors in vp/vs than the estimates of vs.

Constraining with the vp/vs ratio determined with the mud-rock model

In this example, we carry out elastic FWI constraining the inversion with the ‘mud-rock’ 
model (Castagna 1985)

vs = 0.862vp − 1172, (9)
where the units of both vp and vs are in m s−1. Figure 3(b) shows the vp/vs model obtained 
from the starting model of vp and from equation (9). The resulting inverted vp and vs models 
are depicted in figures 1(c) and 2(c), respectively. The main features in the model of vp are 
reconstructed accurately. The inverted model of vs is also reasonably well reconstructed, both 
qualitatively and quantitatively. However, in the shallower region, the structures are poorly 
resolved. In addition, there is not a noticeable ‘leakage’ of structure (i) into the reconstructed 
vs. The ‘mud-rock’ model demonstrated to be relatively effective as a constraint. This is par-
ticularly relevant considering that the ‘mud-rock’ model is derived from laboratory experi-
ments, whereas the example outlined herein utilises synthetic data only. This suggests that the 
relation between vp and vs in the Marmousi 2 model obeys a realistic rock physics relation.

Semi-global inversion of vp/vs assuming vertical gradient variation

The previous examples demonstrated that it is necessary a relatively accurate vp/vs constraint 
in order to carry out elastic FWI successfully. In this example, we use the semi-global inver-
sion method in order to determine a sensible vp/vs ratio. As demonstrated with the ‘mud-rock’ 
model, empirical relationships can be effective to achieve this goal. However, we aim to esti-
mate these parameters exclusively from available seismic data. Then, the use of empirical 
relations can be avoided as these depend upon lithology, and lithology changes significantly 
with geographical location.

As pointed out, the semi-global inversion scheme requires the use of a space of basis 
functions with a small dimension. Hence, one needs to make assumptions in order to gener-
ate a suitable sparse basis. One such option is assuming that the vp/vs ratio changes linearly 
with depth. We find this assumption reasonable for this particular example. For example, 
 figure 3(a) shows that the highest values of vp/vs ratio are closer to the sea-bottom. The vp/vs 
ratio decreases gradually with depth down to the deepest part of the model. On the other hand, 
the horizontal variation is very smooth. Then, the distribution in space of vp/vs ratio can be 
approximated with a vertical gradient and a constant
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m(x) = m0 +∇zm(x)z. (10)

The basis functions are then

{ψi} = {1, z} . (11)

The vertical gradient of vp/vs ratio is defined as

∇zm(x) =
m1 − m0

L
, (12)

where L is the vertical extension of the model excluding the seawater. Hence, effectively the 
semi-global algorithm estimates two coefficients: m0, and ∇zm(x). The model of vp/vs is deter-
mined over the whole domain of interest with the expression (12).

The lower and upper bounds of the searching space are set to 1.5 and 5, respectively. The 
ratio vp/vs is set to zero in the seawater region. This range encompasses the range of values of 
vp/vs of the true model. The model of vp/vs estimated with the semi-global inversion method 
(figure 3(c)) is then used to estimate an initial model of vs prior to inverting the data with con-
ventional elastic FWI. The local inversion is carried out as outlined above.

Figures 1(d) and 2(d) depict the inverted models of vp and vs, respectively. As in the previ-
ous cases, the inversion of vp is more robust to errors in vp/vs than the inversion of vs. One 
can observe that the inverted model of vp is very similar to that obtained with the mud-rock 
constraint (figure 1(c)). However, the inverted vs model is less accurate than that inverted with 
the ‘mud-rock’ model. In addition, it also shows evidence of crosstalk, as anomalies (i) and 
(ii) are present in the inverted model of vs. Even though the inverted model of vs (figure 2(d)) 
is not as accurate as the one obtained with the ‘mud-rock’ model, it still leads to a reasonably 
accurate estimate. This is relevant, considering that it is assumed a very simple distribution in 
space of the vp/vs ratio.

Semi-global inversion of vp/vs following the structure of the vp model

In this example, we estimate a model of the long wavelengths of the vp/vs ratio using the 
structure of the starting vp model as a prior. We use the structure of the starting model of vp 
to define a sparse basis. This assumption is made as it seems reasonable to assume a correla-
tion between the long wavelengths of the model of vp and vs. One can observe that the start-
ing model of vp (figure 1(f)) is essentially a vertical gradient of velocity with smooth lateral 
variation. We take advantage of this observation postulating that one can define a structure for 
the model of vs (and vp/vs) that is identical in some degree to that of the vp model. Figure 4(a) 
shows how these subdomains are distributed in space. We define these subdomains clipping 
regions within a pre-selected range of values of vp. In each one of these subdomains, we also 
allow horizontal variation defining a horizontal gradient of vp/vs. Then, we can define for each 

Figure 4. Domain of the basis functions determined from the starting vp model:  
(a) without Gaussian smoothing applied, (b) with Gaussian smoothing applied. The 
range of vp/vs is just for illustrative purposes.
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subdomain Ωi  a basis ψΩi = {1, x}Ωi
. The sparse basis over the entire domain is defined as 

{ψi} =
⋃4

i=1 ψΩi. The distribution of vp/vs in each subdomain Ωi  is given by

mi(x) =
®

m0,i + x∇xmi(x), x ∈ Ωi

0, x /∈ Ωi
. (13)

Each subdomain Ωi  has two coefficients associated, and the coefficients of the basis functions 
mj ∈ {m0,i,∇xmi(x)}i=1,4. Given that all the subdomains have the same horizontal extension, 
L, and defining m0,i = mi(x = 0), and m1,i = mi(x = L), then the horizontal gradient of mi(x) 
is given by

∇xmi(x) =
m1,i − m0,i

L
. (14)

Finally, the distribution of vp/vs in space is defined in the whole domain throughout

m̃(x) =
4∑

i=1

mi(x). (15)

In this example, we also applied Gaussian smoothing in order to avoid discontinuity of the 
estimates across the boundaries of each subdomain Ωi . These discontinuities are undesirable 
as they can create spurious reflections. The Gaussian smoothing is formally defined as

m(x) = GK [m̃(x)] = GK

[
4∑

i=1

mi(x)

]
, (16)

where K is the length of the kernel of the Gaussian filter. In this example, we selected the length 
of the kernel K  =  5. Figure 4 illustrates how we construct the basis functions. Figure 4(a) 

Figure 5. Comparison between the vertical log of the true vs model (in grey), inverted 
vs model constrained with the mud-rock model (in black), and inverted vs model 
constrained with the vp/vs model (in blue) in figure 4(d) (using structure of the starting 
vp model) at: (a) 3700 m and at (b) 12 500 m.
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shows a model defined using expression 15. One can observe smooth variation along the 
horizontal directions and the existence of a discontinuity across the border between each sub-
domain. The discontinuities are eliminated after applying Gaussian smoothing, as depicted in 
figure 4(b).

In this example, we also set an initial population of 10 uniformly distributed models of 
vp/vs. The lower and upper bounds of these models range between 1.5 and 5. The best esti-
mated model of vp/vs (figure 3(d)) was then used to constrain elastic FWI. The local elastic 
FWI is carried out using the setting described at the beginning of this section. Figures 1(e) and 
2(e) depict the final inverted models of vp and vs, respectively.

One can observe that the inverted vp model is well reconstructed. There is not a noticeable 
‘leakage’ of structure (i) into the reconstructed vs. Furthermore, the inverted vs model is well 
reconstructed both quantitatively and qualitatively. In fact, the reconstructed model is more 
accurate than that estimated using the ‘mud-rock’ constraint. This improvement is especially 
visible in the shallower region and at the central and rightmost regions. This statement is sup-
ported comparing vertical profiles of the different models. Figures 5(a) and (b) show vertical 
profiles of the true vs model, inverted vs model using the mud-rock model, and inverted vs 
model with the semi-global inversion algorithm. These vertical profiles are extracted at the 
distance of 3.7 and 12.5 km from the leftmost boundary. One can observe an improved fitting 
of the model inverted with semi-global inversion.

Marmousi 2—noisy data

The inversion of real observations is affected by noise. The existence of noise in the data 
affects the stability of the solution of the inverse problem. In this example, we investigate the 
effect of noise in the robustness of the semi-global inversion method. The noise is generated 
randomly and follows a Gaussian distribution with zero mean and unit variance. We then con-
volve this randomly generated noise with the source wavelet in order to match its bandwidth 

Figure 6. Shot gather generated placing a source at 6.25 km from the leftmost boundary 
of the Marmousi 2 model: (a) noise-free data, (b) data after adding random noise with 
SNR  =  −0.2 dB (the black line denotes the recording time defining the transition from 
noise-only to signal affected by noise) and (c) data affected by noise with SNR  =  −0.2 
dB after applying a mute to the recording times earlier than those defined by the black 
line in (b).
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to that of the recorded signal. The filtered noise is then added to the synthetically generated 
seismic data setting the Signal to Noise Ratio (SNR) to  −0.22 dB. This corresponds to a loss 
of 5% of the power of useful signal. Useful signal means the component of the record that 
contains information on the physical properties of the medium.

Figure 6 depicts a shot gather generated using the Marmousi 2 model with different levels 
of noise. The shot gather is generated placing a source at 6.25 km from the leftmost boundary. 
The source depth and its time dependency is the same as in the previous examples. Figure 6(a) 
depicts the resulting noise-free modelled data. The shot gather in figure 6(b) results from add-
ing random noise (as described above) to the shot gather in figure 6(a). The black line in fig-
ure 6(b) marks the transition between pure random noise and the recording of signal and noise. 
This line is used to set a mute to the region of the signal that only contains noise. Figure 6(c) 
shows the shot gather depicted in figure 6(b) after applying the mute. We carried out a similar 
procedure to all shot gathers in the dataset. We point out that muting noise from data is a com-
mon practice in real data applications.

We then carried out the semi-global inversion of the data affected by noise. We chose to 
estimate a model of vp/vs ratio using the structure of the initial model of vp as a prior. We only 
considered this option in this case as it leads to the best estimates of vp and vs as demonstrated 
in the previous example. We used the same number of global iterations, the same number of 
local nested iterations, the same number of particles in the swarm, and the same frequency 
band, as in the case when the data is not affected by noise. After completing the semi-global 
inversion we then upscaled the inversion in frequency with local elastic FWI. We carried out 
elastic FWI with the same number of iterations and the same frequency bands as used in the 
previous example.

Figures 7(a) and (b) compare the estimated vp/vs ratio, when the data is not affected by 
noise and when the data is affected by noise, respectively. Figure 7(a), depicts the same model 
as that in figure 3(d). One can observe that both vp/vs models are very similar both in the 
shallower and deeper regions. The vp/vs ratio is slightly higher on the second layer in the 
case when the data is affected by noise. One can then observe that the semi-global inversion 
algorithm was robust for the level of noise added to the data. This statement is supported by 
the fact that the estimates remain bounded, and the inversion converged towards a model that 
keeps much of the same properties of the model inverted with noise-free data.

We then carried out elastic FWI generating the initial vs model with the vp/vs model depicted 
in figure 7(b). Figures 8(a) and (b) show the true vp and vs models, respectively. Figures 8(c) 
and (d) show the inverted models of vp and vs, respectively, when the data is not affected by 
noise (they are the same as figures 1(e) and 2(e)). Figures 8(e) and (f) depict the inverted 
models of vp and vs, when the data is affected by noise. One can observe that the main features 
of the models are recovered accurately. The reconstructed models are more accurate in the 
central regions. Towards the edges and the bottom of the models, the reconstruction is less 

Figure 7. vp/vs ratio estimated with semi-global inversion following the structure of 
the starting vp: (a) without noise in the data (same as figure 4(d)), and (b) with noise in 
the data.

N V da Silva et alInverse Problems 34 (2018) 115011



16

accurate. The main reason for this is that these regions of the model are less illuminated than 
the central region of the model. The acquisition geometry imposes a limitation on the range 
of angles within which energy that has propagated close to the edges can be recorded. For this 
reason, there is less redundancy in the data carrying information on the physical properties 
in the regions closer to the edges. Then the estimates of the quantities within these regions 
become more sensitive to noise. This example demonstrates that the proposed semi-global 
inversion method is robust to the existence of noise in the data and it can estimate models of 
vp/vs ratio in realistic settings.

Computational aspects

In this section, we compare the computational cost of the semi-global inversion algorithm, 
O(G), with that of conventional FWI, O(L). Local iterations of FWI require computing wave-
fields numerically. Generally, this computation is carried out over grids with several hundreds 
of thousands of grid nodes, in 2D, up to several million or even thousands of millions of 
grid nodes, when dealing with large-scale 3D applications. These wavefields are computed 
several times per local iteration, as the adjoint-state method requires both the solution of the 
state-variable (wavefields) and of the adjoint-variable. In addition, a large amount of memory 
needs to be allocated in order to store these wavefields as well as the physical parameters 
(vp vs, ρ), and model updates. On the other hand, the key operations carried out at each outer 
global iteration are generating a set of random numbers, and carry out the update of a small 
set of parameters for each particle. The number of these parameters varies. However, it is in 
the order of a few tens. The computational intensity of operations carried out at each outer 
global iteration is much less than that of each nested local iteration. The most computation-
ally intensive part of each semi-global iteration are the nested local iterations. Hence, our key 
estimator for the computational cost of the semi-global inversion is that of the local nested 
iterations. Then, the computational cost of the semi-global inversion can be directly compared 

Figure 8. True models of (a) vp and (b) vs; inverted models of (c) vp and (d) vs when 
the data is noise-free; inverted models of (e) vp and (f) vs when the data is contaminated 
with noise with a SNR  =  −0.2 dB. Figures (c) and (d) are the same as figures 1(e) and 
2(e), respectively.

N V da Silva et alInverse Problems 34 (2018) 115011



17

to that of conventional FWI using a single factor. Consequently, the relations we present here 
are general and independent of the constitutive law, e.g. acoustic, elastic or attenuating.

The computational cost of a semi-global inversion is quantified by the number of global 
iterations, Ng, the number of local nested iterations, NLn, and the number of particles, Np, for 
each frequency band, and for each shot. Note that in the case of semi-global inversion, it suf-
fices to carry out the inversion for one frequency-band only. As pointed out earlier, the fact 
that the model parameters are estimated with a sparse support means that its spatial resolu-
tion is very low. Hence, up-scaling the semi-global inversion in frequency is unnecessary. 
In addition, it would represent a very unfavorable trade-off between cost and benefit. The 
computational cost of elastic FWI is parameterized by the number of NL local iterations per 
frequency band, and the number of frequency bands, Nf, for each shot. In table 1, we compare 
the computational cost of semi-global and local inversions per shot.

When comparing the computational cost of each type of inversion in a crude fashion, it 
may seem that O(G) is much higher than O(L). Nonetheless, when comparing all the factors 
contributing to each type of inversion one can obtain a relation that is, in fact, favorable to 
semi-global inversion.

First, the empirical experience obtained when applying this algorithm to the examples out-
lined before, shows that in general the number of outer global iterations is about the order of 
the number of frequency bands utilised in conventional FWI: Ng ∼ Nf . In addition, the num-
ber of nested local iterations is of the same order as that of the number of local iterations, per 
frequency band, in conventional FWI: NL ∼ NLn. Then, O(L) outperforms O(G) by a factor 
given by the number of particles (second row of table 1), or O(G)  =  Np O(L), per shot. Second, 
we do not need to use all the data when carrying out each nested local iteration. What we do 
instead is skipping a portion of the data such that after completing the set of nested iterations, 
all the data has been used. This means that within each global iteration all the data have been 
used but at a fraction of the computational cost. We take advantage of the fact that the semi-
global inversion is carried out at a relatively low-frequency and the parameters are estimated 
over a sparse basis. Hence, as long as the receiver spacing is dense enough, spatial aliasing 
due to shot skipping does not occur. Using this approach is very effective for alleviating the 
computational load. Contrarily to increasing the number of shots, increasing the number of 
receivers does not contribute noticeably to the computational load. When carrying out conven-
tional FWI one can also apply the same strategy. However, as the inversion progresses in fre-
quency less and less data can be skipped. The relation between O(G) and O(L) then becomes 
O(G)  =  Np O(L)/Nskip (third row of table 1), where Nskip is the number of shots skipped, or the 
proportion between the number of shots used in elastic FWI and that used in the semi-global 
inversion. Depending on the acquisition geometry, if the number of shots is very large and the 
number of skipped shots is comparable to that of the number of particles, then O(G) ∼ O(L) 
(fourth row of table 1). If the number of bands of frequency is larger than the number of global 
iterations and NL is larger than NLn, then this relation becomes more favorable to semi-global 
inversion. Then one can run semi-global inversion for a larger number of particles, or a larger 
number of outer global iterations, at about the same cost as that of large bandwidth conven-
tional elastic FWI. It is important to note that these relations do not translate into run-times. 
The run-time depends upon the availability of computational resources, and how the tasks are 
distributed. In our implementation we distribute the computations over the number of particles 
and shots. This allows having a quasi-linear scaling of computational resources with increas-
ing number of particles and shots. The main obstacle to scaling are limited bandwidth of the 
network, and typical bottlenecks of message passing between working nodes, when using 
a distributed memory system. In conclusion, O(G) per shot and per frequency is given by a 
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factor of O(L) for one shot and upscaling in frequency. This factor is more or less favorable to 
semi-global inversion depending on the number of shots and bandwidth used in the inversions.

In the previous examples, we set Np = 10, Ng = 10, Nf = 9, NLn = 4, and NL = 5. Then, 
we can set the following relations: Ng = 10Nf/9 and NLn = 4NL/5. As we use one-fourth of 
the data, at each nested local iteration, the computational cost is reduced by the same factor  
and O(G) ≈ 2.2O(L). The computational cost of estimating a model of vp/vs ratio for our 
examples is about a factor of 2.2 of that of running a local elastic FWI up to 10 Hz. We point 
out that increasing the bandwidth of the inversion requires decreasing the grid spacing in order 
to prevent numerical dispersion. Accordingly, the time-stepping of the numerical simulation 
also has to be decreased, in order to guarantee numerical stability. Hence that factor will 
become closer to the unity or even smaller very rapidly with increasing inversion bandwidth 
in elastic FWI.

Conclusion

We introduced a new approach for estimating vp/vs ratio from seismic data using a semi-global 
inversion algorithm. This new approach combines QPSO with a nested local optimization 
algorithm. The models of vp/vs are represented on a sparse basis. This sparse-basis can be cho-
sen arbitrarily, however, it is most suited when a degree of structural information is introduced 
as a prior. The semi-global inversion algorithm estimates the coefficients of that sparse basis. 
The model of vp/vs is then determined in the full space of inversion (generally the grid where 
elastic FWI is carried out) from the mapping between the sparse basis and the inversion grid 
used in FWI.

Our synthetic examples demonstrated that this approach is suitable for determining a vp/vs 
constraint that is accurate enough for carrying out elastic FWI. Our method was more accurate 
than using an empirical relation derived from rock physics experiments. In addition, we also 
demonstrated that the semi-global inversion method is robust even when the data are contami-
nated by noise. This demonstrates its potential for inverting real data without the knowledge of 
an empirical relation between vp and vs. Our method can only determine the long wavelengths 
of vp/vs. However, the examples outlined herein demonstrated that the long wavelengths of 
vp/vs estimated with the semi-global inversion method are accurate for determining a suit-
able initial model of vs, to be used as a prior in wideband elastic FWI, and to estimate high-
resolution vp and vs models.

Our future research will be focused on applying this method to the inversion of real field 
data with elastic FWI.
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Appendix. Adjoint-state method

The forward modelling operator is defined as

F(p, w) = diag (A(w)p1 − s1, A(w)p2 − s2, . . .) = 0, (A.1)
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where A(w)pe = se is the discretized wave equation for a given source se term. The state-
variable, p = (p1, p2, . . .) contains the discretized wavefield, both in time and space, for all 
sources, and the source term s = (s1, s2, ...) contains the whole time history of a source func-
tion, and its respective distribution in space.

The gradient of the data misfit term (equation (2)), is computed in a  discretize-then-optim ize 
approach introducing the Lagrangian functional

L ( p,λ, w) = J ( p) +
¨
λT , F( p, w)

∂
S
,

 (A.2)
where w is the control parameter, and λ = (λ1,λ2, . . .) is the adjoint-variable. When carrying 
out local nested iterations in semi-global inversion the control parameter is w = vp, and when 
carrying out elastic FWI w = (vp, vs). The angle brackets denote an inner product defined over 
the space of source functions S, and the condition 〈a, b〉 < ∞, ∀a, b ∈ S  must hold. The super-
script T denotes the transpose of a mathematical object. The relations for the adjoint, state, 
and control parameter variables, are determined from the first-order optimality conditions, 
∇p,λ,mL( p,λ, w) = 0, yielding





A(w)p = s
ATλ = −∇pJ (p (w)) .
∇wJ (p (w)) = 〈λ, [∇wF] p〉S

 (A.3)

The first equation is the discrete forward modeling operator, the second equation determines 
the adjoint field and the third is the decision equation determining the update of the control 
parameters. The third expression in equation (A.3) determines the updates in equation (8). 
The mathematical operations defined in equation (A.3) are carried out at each preconditioned 
gradient descent iteration.
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