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ABSTRACT

We have developed a derivation of a system of equations
for acoustic waves in a medium with transverse isotropy (TI)
in velocity and attenuation. The equations are derived from
Cauchy’s equation of motion, and the constitutive law is
Hooke’s generalized law. The anisotropic anelasticity is intro-
duced by combining Thomsen’s parameters with standard lin-
ear solids. The convolutional term in the constitutive law is
eliminated by the method of memory variables. The resulting
system of partial differential equations is second order in time
for the pseudopressure fields and for the memory variables.
We determine the numerical implementation of this system
with the finite-difference method, with second-order accuracy
in time and fourth-order accuracy in space. Comparison with
analytical solutions, and modeling examples, demonstrates
that our modeling approach is capable of capturing TI effects
in intrinsic attenuation. We compared our modeling approach
against an alternative method that implements the constitutive
law of an anisotropic visco-acoustic medium, with vertical
symmetry, in the frequency domain. Modeling examples us-
ing the two methods indicate a good agreement between both
implementations, demonstrating a good accuracy of the
method introduced herein. We develop a modeling example
with realistic geologic complexity demonstrating the useful-
ness of this system of equations for applications in seismic
imaging and inversion.

INTRODUCTION

Wave modeling is a key component for seismic inversion (Mora,
1989; Pratt, 1999; Virieux and Operto, 2009;da Silva et al., 2016)
and imaging (Claerbout, 1971; Baysal et al., 1983; Yao et al.,
2017a). The continuous development of new methods and comput-

ing capability enabled the solution of wave equations in more real-
istic representations of geologic media. On the one hand, recorded
seismic data are affected by velocity anisotropy (direction depen-
dent) due to the existence of microstructure (e.g., oriented fractures,
oriented minerals, or layering) with a typical spatial dimension
smaller than that of the typical wavelength of the propagating signal
(Backus, 1962; Thomsen, 1986). On the other hand, the existence of
layering, aligned fractures, crystal defect sliding, grain-boundary
processes, thermoelastic effects, fluid-filled cracks, or porosities
is also responsible for the anelastic response of geologic media,
which attenuates the propagating energy (Christensen, 1982; Aki
and Richards, 2002). This attenuation is generally quantified by
the quantity of energy that is lost per cycle through absorption,
and that is expressed by the quality factor Q. Attenuating media
have to be dispersive under the assumption of linear wave theory
(Futterman, 1962); otherwise, causality is violated even for a con-
stant Q (Aki and Richards, 2002). Seismic data suggest that Q is
generally constant for geologic media in the frequency range of
seismic recordings (McDonal et al., 1958).
Several theories have been introduced for explaining attenuation

based upon experimental work. Examples of such theories are mod-
els of friction (McDonal et al., 1958; Johnston et al., 1979), absorp-
tion based upon the Voigt-Ricker model (Ricker, 1953), generalized
Maxwell bodies (Emmerich and Korn, 1987), superimposing stan-
dard linear solid (SLS) elements, which allow a nearly constant Q
over a frequency band (Liu et al., 1976), and the constant-Q model
based on the creep function of t2γ with γ ≪ 1 (Scott-Blair, 1949;
Kjartansson, 1979).
Experimental and numerical studies demonstrated that seismic at-

tenuation depends on direction as reported in Tao and King (1990),
Zhubayev et al. (2016), and Carcione (1992), for example. These pre-
vious investigations also conclude that attenuation anisotropy has a
stronger impact than anisotropy of velocity (Hosten et al., 1987; Lynn
et al., 1999; Chichinina, 2004; Zhubayev et al., 2016).
Equations for seismic modeling in media with velocity

anisotropy, and in particular with an axis of symmetry, have been
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derived from dispersion relations (Alkhalifah, 2000; Hestholm,
2009; Xu and Zhou, 2014) and from the fundamental laws of
continuous mechanics (Cauchy’s law of motion and Hooke’s law)
(Duveneck and Bakker, 2011; Zhang et al., 2011). Fletcher et al.
(2009), Fowler et al. (2010), Bakker and Duveneck (2011), and
Bube et al. (2012a, 2012b) give a comprehensive overview on
seismic modeling with velocity anisotropy in vertically transverse
isotropic (VTI) and tilted TI (TTI) media.
Modeling approaches in the frequency domain have been intro-

duced for isotropic viscoacoustic media (Operto et al., 2007; Abuba-
kar and Habashy, 2013). The frequency domain is particularly
suitable when including attenuation because it allows defining veloc-
ity as an explicit function of frequency. However, the numerical sol-
ution of the wavefield in the frequency domain requires the solution
of large linear systems (sparse when using differential methods, and
dense when using integral equation methods). The solution of these
linear systems can be obtained with direct (Davis and Duff, 1997) or
iterative solvers (Greenbaum, 1987). Nonetheless, direct solvers can
scale poorly with the dimension of the linear system, whereas effec-
tive iterative solvers require the use of efficient preconditioning. Fre-
quency-domain methods can be efficient if results are only required at
a small number of frequencies, but they are prohibitively expensive
when full bandwidth seismograms are required.
On the other hand, time-domain simulation is more computation-

ally cost-effective but requires appropriate handling of the stress-
strain constitutive law of a medium with viscosity, to deal with the
convolution operator or fractional temporal derivative in the constit-
utive law (Caputo and Mainardi, 1971; Carcione et al., 2002), while
representing accurately the dispersive nature of the medium.
Seismic modeling in the time domain for isotropic viscoacoustic

media has been implemented by Day and Minster (1984) introducing
Padé approximants, Carcione et al. (1988) introduces the method of
memory variables, approximating the time response of the constitu-
tive law superimposing SLSs. Robertsson et al. (1994) and Bohlen
(2002) apply the method of memory variables to viscoelastic iso-
tropic media. The method of memory variables replaces the convo-
lution in the constitutive law by a set of additional partial differential
equations that carries the state of all the previous stresses along the
time stepping. The number of these additional partial differential
equations depends on the number of SLSs used to approximate a
constant Q. The higher the number of SLSs, the higher the accuracy
of the frequency response of the mimicked relaxation mechanism.
However, the number of SLSs can be decreased while keeping a good
accuracy of the frequency response of the superimposing SLSs. That
can be achieved by optimizing the relaxation times with the τ-method
(Blanch et al., 1995; Hestholm et al., 2006). The SLS model has also
been implemented in seismic modeling in transversely isotropic vis-
coelastic media, projecting stress and strains into principal states
(Robertsson and Coates, 1997), full anelastic anisotropic media (Ko-
matitsch and Tromp, 1999), orthorhombic viscoelastic media (Ruud
and Hestholm, 2005), and visco-elastic VTImedia (Bai and Tsvankin,
2016). Kjartansson’s Q-theory has been used in the numerical imple-
mentation of viscoacoustic (Zhu and Harris, 2014; Yao et al., 2017b)
and viscoelastic modeling (Zhu and Carcione, 2014) with fractional
Laplacians, and in the numerical solution of general visco-elastic
anisotropic media (Zhu, 2017) with fractional time derivatives.
This paper is concerned with seismic modeling in viscoacoustic

TI media. This type of rheology has received far less attention than
acoustic TI media. However, acoustic anisotropic modeling has

been the most widely used constitutive law in seismic exploration.
Hence, we find the analysis of viscoacoustic TI media relevant. Suh
et al. (2012) combine fractional Laplacians with the equation for
acoustic modeling in VTI media introduced in Fletcher et al.
(2008). Xu et al. (2015a) derive an equation for viscoacoustic
TTI media from a dispersion relation combining the equation of
Duveneck and Bakker (2011) and an attenuation model with one
SLS. Xu et al. (2015b) discuss viscoacoustic modeling in TTI media
using a pure P-wave equation, derived from Christoffel’s equation,
and introducing isotropic attenuation with one SLS. Sun et al.
(2015) introduce a pseudodifferential equation for VTI viscoacous-
tic media introducing viscosity in a system for qP-waves as derived
in Cheng and Kang (2014) with one SLS. Xie et al. (2015) present
an approach for viscoacoustic TTI modeling introducing the model
of viscosity in the equation of Duveneck and Bakker (2011) with a
fractional time derivative approximated with generalized Maxwell’s
bodies. It is important to note that all the approaches for viscoacous-
tic anisotropic modeling aforementioned consider an anisotropic
model of velocity and an isotropic model of attenuation.
Herein, we derive the equations for a general viscoacoustic TI

medium with anisotropy in velocity and in attenuation. We derive
the expressions from Hooke’s generalized law and from Cauchy’s
law of motion. The model of anisotropic attenuation is given by the
SLS for anisotropic media, and the convolution in the constitutive
relation is eliminated using memory variables. The derived system
of equations is equivalent to that introduced by Duveneck and Bak-
ker (2011) for TI anisotropic velocity when Q → ∞. In addition, it
can also model acoustic waves with TI anisotropy in the velocity
while keeping an isotropic model of attenuation as reported by
Sun et al. (2015) and Xie et al. (2015).
This paper is structured as follows: We introduce the theory and

derive a system of equations for seismic modeling in attenuating
TTI media. Then, we show numerical examples demonstrating
the validity of the method as well as the conditions for guaranteeing
the stability of the computations for a discretization with the finite-
difference method. The examples included in the outline demon-
strate the usefulness of the derived system of equations for seismic
modeling, imaging, and inversion, in media with TI anisotropy in
velocity and in attenuation.

THEORY

In general viscoelastic media, the relation between stress and
strain reads (Carcione, 2014)

σðtÞ ¼ CðtÞ � dεðtÞ
dt

; (1)

where σðtÞ,CðtÞ, and εðtÞ are the stress, stiffness, and strain tensors,
respectively, and * denotes the convolution in time. The model ofQ
depends on frequency; nonetheless, is it widely accepted as a flat
absorption band in the range of frequencies of interest in seismic
exploration (e.g., 1–100 Hz). This relation between Q and
frequency can be simulated combining several SLSs. The time re-
sponse for a combination of SLSs in general anelastic anisotropic
media is given by (Bland, 1960)

CijknðtÞ ¼ CR
ijkn

�
1 −

1

L

XL
l¼1

�
1 −

τεlijkn
τσl

�
e−t∕τ

σl

�
HðtÞ; (2)
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where CR
ijkn is the relaxed modulus, L is the number of SLSs, τεlijkn is

the strain relaxation time associated to each component, τσl is the
stress-relaxation time, and HðtÞ is the Heaviside step function.
Due to the symmetry of the strain and stress tensors

Cijkl ¼ Cjikl ¼ Cijlk ¼ Cjilk. In addition, energy constraints im-
pose Cijkl ¼ Cklij (Carcione, 2014). These relations between the
components of the tensor of anelasticity allow a further simplifica-
tion in the indexing using Voigt’s notation with I ¼ ij and J ¼ kl.
The range of indexes in capitals is I; J ¼ 1; 2; 3; 4; 5; 6,and the pairs
I, J maps into the pairs ij; kl ¼ 11; 22; 33; 23; 13; 12, respectively.
The components of the tensor of anelasticity then read

CIJðtÞ ¼ CR
IJ

�
1 −

1

L

XL
l¼1

�
1 −

τεlIJ
τσl

�
e−t∕τ

σl

�
HðtÞ; (3)

and in the particular case of a VTI medium, the anelasticity tensor
becomes

CðtÞ ¼

0
BBBBB@

C11 C11 − 2C66 C13

C11 − 2C66 C11 C13

C13 C13 C33

C44

C44

C66

1
CCCCCA:

(4)

Our work is concerned with modeling (pseudo-) pressure compo-
nents of the wavefield. Then, only the terms of equation 4 associ-
ated with compression and rarefaction are considered and the terms
associated to shear stress are eliminated: C44 ¼ C66 ¼ 0, σij ¼ 0,
and εij ¼ 0 for i ≠ j. It is important to note that seismic modeling
with acoustic velocity anisotropy cannot produce accurate ampli-
tude (Alkhalifah, 2000). Hence, the same issue affects acoustic
modeling with anisotropy in velocity and in attenuation. Nonethe-
less, seismic attenuation introduces dispersion. This changes the
speed of propagation of the energy envelope and consequently its
kinematics. Then, it is relevant taking into account the effect of
attenuation for improving the accuracy of the phases, even if the
amplitudes cannot be modeled exactly.
It is convenient representing the components of equation 4 in

terms of Thomsen’s (1986) parameters, similarly to the case of seis-
mic simulation in acoustic media without attenuation. Our aim is to
get a system of equations that uses the parameters commonly used
in seismic exploration, rather than an explicit dependency on the
anelastic moduli. The instantaneous response of a medium is given
by the unrelaxed modulus, CIJðt → 0Þ ¼ CU

IJ , and the identities

εU ¼ CU
11 − CU

33

2CU
33

; (5)

δU ¼ ðCU
13Þ2 − ðCU

33Þ2
2ðCU

33Þ2
; (6)

and

vU ¼
ffiffiffiffiffiffiffi
CU
33

ρ

s
; (7)

must hold because these are effectively the parameters in a perfectly
acoustic medium and correspond to the relations first introduced in
Thomsen (1986). We call the parameters εU , δU , and vU , the un-
relaxed Thomsen’s parameters. These parameters are the ones that
are used for numerical modeling in a medium without attenuation.
That means εU ¼ ε, δU ¼ δ, and vU ¼ vð0°Þ.
Note that we use the capital lettersU and R (in subscript or super-

script), through the text, to denote unrelaxed or relaxed physical
properties, respectively. Analogously, we can also establish the
relations between the Thomsen’s parameters and the moduli for
a relaxed medium (taking CIJðt → ∞Þ ¼ CR

IJ)

εR ¼ CR
11 − CR

33

2CR
33

; (8)

δR ¼ ðCR
13Þ2 − ðCR

33Þ2
2ðCR

33Þ2
; (9)

and

vR ¼
ffiffiffiffiffiffiffi
CR
33

ρ

s
; (10)

where εR, δR, and vR denote the relaxed Thomsen’s parameters.
Conversely, the components of the moduli are obtained as a function
of the Thomsen’s parameters reversing equations 8–10, yielding

CR
11 ¼ CR

33ð1þ 2εRÞ ¼ ρv2Rð1þ 2εRÞ; (11)

CR
13 ¼ CR

33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δR

p
¼ ρv2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δR

p
; (12)

CR
33 ¼ ρv2R: (13)

Expressions 11–13 show the relation between the relaxed moduli and
the Thomsen’s parameters, with εR associated to horizontal propaga-
tion, δR associated to moveout and vR is the relaxed vertical velocity
or vR ¼ vRð0°Þ, similarly to a nonattenuating medium. One can ob-
serve that as a result of eliminating the shear components, the number
of stiffness relaxation parameters is also reduced to three compo-
nents. Each one of the strain relaxation times is associated to a Thom-
sen’s parameter; i.e., τεl11, τ

εl
13, and τεl33 are associated to εR, δR, and

vRð0°Þ, respectively. Hence, to ease the notation, one can introduce
the terms horizontal strain relaxation, τεlh , normal strain relaxation,
τεln , and vertical strain relaxation, τεl0 , defined as

τεlh ¼ τεl11; (14)

τεln ¼ τεl13; (15)

τεl0 ¼ τεl33: (16)

Each one of the direction-depending strain relaxation times is then
associated to a direction-depending quality factor as

Viscoacoustic modeling TI media C43
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Q−1
IJ ðωÞ ≈

1

L

XL
l¼1

ωðτεlIJ − τσlÞ
1þ ω2ðτσlÞ2 ; (17)

where ω is the angular frequency. Then, one can define a horizontal
quality factor Qh associated to τεlh , a normal quality factor Qn

associated to τεln and a vertical quality factor Q0, associated to τεl0 .
Similarly to seismic anisotropy, one can also define Thomsen’s
parameters for attenuation (Chichinina et al., 2004; Zhu and Tsvan-
kin, 2006). In Appendix A, we briefly review attenuation Thomsen’s
parameters.
Eliminating the shear components and substituting expres-

sions 11–13 into equation 3, yields

CðtÞ¼

0
BBB@
C11 C11 C13

C11 C11 C13

C13 C13 C33

1
CCCA¼

0
BBB@
CR
11fhðtÞ CR

11fhðtÞ CR
13fnðtÞ

CR
11fhðtÞ CR

11fhðtÞ CR
13fnðtÞ

CR
13fnðtÞ CR

13fnðtÞ CR
33f0ðtÞ

1
CCCA

¼ρv2R

0
BBB@
ð1þ2εRÞfhðtÞ ð1þ2εRÞfhðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δR

p
fnðtÞ

ð1þ2εRÞfhðtÞ ð1þ2εRÞfhðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δR

p
fnðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2δR
p

fnðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δR

p
fnðtÞ f0ðtÞ

1
CCCA; (18)

where

fγðtÞ ¼
�
1 −

1

L

XL
l¼1

�
1 −

τεlγ
τσl

�
e−t∕τ

σl

�
HðtÞ; γ ¼ h; n; 0:

(19)

Expression 18 has a structure very similar to that of the stiffness
tensor in acoustic TI media (Duveneck and Bakker, 2011; Zhang
et al., 2011). The key differences are the Thomsen’s parameters
introduced in a relaxed medium and the temporal dependency of
the moduli. Note that we purposely chose the indexes h, n, and
0 because one can relate these to the horizontal velocity, normal
velocity, and vertical velocity.

APPLICATION OF THE τ-METHOD TO
ANISOTROPIC MEDIA

It is observed that Q is constant over the typical frequency band
of recorded seismic data. This behavior is generally mimicked com-
bining several SLSs. However, it was early recognized that a simple
combination of SLSs requires a relatively large number of solids to

obtain a constant quality factor over a wide frequency band.
Consequently, this can increase the computational load significantly
as the number of memory variables increases with the increasing
number of solids.
As demonstrated in Blanch et al. (1995), the response of the

relaxation mechanism based upon SLSs is substantially improved
by introducing a parameter τ defined as

τ ¼ τεl

τσl
− 1: (20)

As pointed out in that previous work, an optimal value of τ is
sufficient to control a constant (or quasiconstant) Q response over
a given frequency range of interest, while keeping fixed the stress-
relaxation times. Hence, it suffices computing a distribution of τ
corresponding to a given distribution of Q over a given frequency
band, keeping constant the stress-relaxation times. In all our exam-
ples, we use the stress-relaxation times as outlined in Blanch et al.
(1995) because these are adequate for the frequency band of
our seismic modeling examples. These relaxation times are τσ1 ¼
99.472 ms and τσ2 ¼ 7.2343 ms, when parameterizing the model
of attenuation with two SLSs, and they are τσ1 ¼ 265.26 ms,
τσ2 ¼ 52.203 ms, τσ3 ¼ 10.273 ms, τσ4 ¼ 2.0218 ms, and
τσ5 ¼ 0.39798 ms, when the model of attenuation is parameterized
with five SLSs. In Table 1, we show optimized values of τ for differ-
ent values of Q, following the τ-method and using the stress-relax-
ation times listed above. Figure 1 depicts the dependency of Q with
frequency, when parameterizing the model of attenuation with two
and five SLSs. This figure is obtained using the values of τ listed in
Table 1, and the respective values of stress relaxation mentioned
above. One can observe that using two and five SLSs gives a very
good frequency response over the selected frequency band. As one
would expect, approximating a constantQwith five SLSs is slightly
more accurate than using two SLSs.
The approach outlined above is entirely similar when dealing

with anisotropic attenuating media. Analogously to expression
20, one can associate an optimal parameter τγ to each Qγ (or fγ)
such that

Figure 1. Approximation of a constant Q over the frequency range
2.5–25 Hz. The continuous solid black line denotes the target qual-
ity factor. The dashed and dotted lines denoteQ approximated using
the τ-method with two and five SLSs, respectively.

Table 1. Optimized values of τ for different quality factors
Q, using two and five SLSs.

Q L ¼ 2 L ¼ 5

20 9.05 × 10−2 3.93 × 10−2

50 3.61 × 10−2 1.57 × 10−2

102 1.81 × 10−2 7.86 × 10−3

103 1.81 × 10−3 7.86 × 10−4

104 1.81 × 10−4 7.86 × 10−5

106 1.81 × 10−6 7.86 × 10−7

C44 da Silva et al.
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τγ ¼
τεlγ
τσl

− 1; with γ ¼ 0; h; n: (21)

The values of τγ are then computed for each Qγ using the same
approach as in the case of isotropic media. This means that each
independent value in Table 1 can be used for each component of
an anisotropic model of attenuation. Effectively, the estimation
of optimized values of τ only requires repeating the process for each
component γ of the anisotropic model of attenuation.

WAVE EQUATION IN VISCOACOUSTIC TI MEDIA

The Cauchy’s law of motion in continuous media reads (Sedov,
1994)

ρ
∂v
∂t

¼ ∇̄σþ f; (22)

where ρ is the density, v is the velocity of particles, σ is the stress
tensor, and f is the source term described by a density of force. In
the scope of this work, we consider TI media, which is defined
through a local orthogonal reference system, where the vertical axis
is oriented with the symmetry axis. The local reference system is
rotated with respect to a Cartesian reference system. This rotation is
obtained through the definition of the tilt θ and azimuth ϕ angles for
each point in space. Herein, we define the operator ∇̄ ¼ ð∂x̄; ∂ȳ; ∂z̄Þ
in a coordinate system x̄ ¼ ðx̄; ȳ; z̄Þ conforming to a local symmetry
axis along the coordinate z̄. For VTI media, the coordinate system x̄
matches a Cartesian coordinate system; i.e., x̄ ¼ x and ∇̄ ¼ ∇ ¼
ð∂x; ∂y; ∂zÞ. For TTI media, a mapping between the two systems
is defined as (Duveneck and Bakker, 2011; Zhang et al., 2011)

 x
y
z

!
¼
 
cosðϕÞ cosðθÞ − sinðϕÞ cosðϕÞ sinðθÞ
sinðϕÞ cosðθÞ cosðϕÞ sinðϕÞ sinðθÞ

− sinðθÞ 0 cosðθÞ

! x̄
ȳ
z̄

!
:

(23)

The system of equations for pseudopressure is derived by substitut-
ing expression 18 into equation 1, yielding the relation between
stress, strain, and physical properties

8<
:

σx̄ x̄ ¼ CR
11fh � ð_εx̄ x̄ þ _εȳ ȳÞ þ CR

13fn � _εz̄ z̄;
σȳ ȳ ¼ CR

11fh � ð_εx̄ x̄ þ _εȳ ȳÞ þ CR
13fn � _εz̄ z̄;

σz̄ z̄ ¼ CR
13fn � ð_εx̄ x̄ þ _εȳ ȳÞ þ CR

33f0 � _εz̄ z̄:
; (24)

Note that we derive the system of equations 24 using the anelastic
moduli as coefficients because this allows keeping a simpler nota-
tion along the several derivation steps. Defining the pseudopres-
sures σx̄ x̄ ¼ σȳ ȳ ¼ p and σz̄ z̄ ¼ q, and taking the definition of
strain rate _εζζ ¼ ð∂vζÞ∕ð∂ζÞ with ζ ¼ x̄; ȳ; z̄ (Sedov, 1994), equa-
tion 24 gives the identities8<

:
p ¼ CR

11fh �
�
∂vx̄
∂x̄ þ ∂vȳ

∂ȳ

�
þ CR

13fn � ∂vz̄
∂z̄ ;

q ¼ CR
13fn �

�
∂vx̄
∂x̄ þ ∂vȳ

∂ȳ

�
þ CR

33f0 � ∂vz̄
∂z̄ ;

; (25)

and equation 22 becomes

8>><
>>:

ρ ∂vx̄
∂t ¼ ∂p

∂x̄ þ fx̄;

ρ
∂vȳ
∂t ¼ ∂p

∂ȳ þ fȳ;

ρ ∂vz̄
∂t ¼ ∂q

∂z̄ þ fz̄:

: (26)

Applying the method of memory variables, as outlined in Appen-
dix B, we obtain the second-order-in-time system of partial differ-
ential equations

8>>>>>><
>>>>>>:

∂2p
∂t2 ¼KUð1þ2εUÞ∇̄H

�
1
ρ ∇̄

0
Hp
�
þKU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δU

p
∇̄v

�
1
ρ∇̄

0
vq
�
þ 1

L

P
L
l¼1 _rlþsðtÞ;

∂2q
∂t2 ¼KU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δU

p
∇̄H

�
1
ρ ∇̄

0
Hp
�
þKU∇̄v

�
1
ρ∇̄

0
vq
�
þ 1

L

P
L
l¼1 _wlþ s 0ðtÞ;

∂_rl
∂t ¼− 1

τσl
_rl −

τh
τσl
KRð1þ2εRÞ∇̄H

�
1
ρ∇̄

0
Hp
�
− τn

τσl
KR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δR

p
∇̄v

�
1
ρ∇̄

0
vq
�
;

∂ _wl
∂t ¼− 1

τσl
_wl−

τn
τσl
KR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δR

p
∇̄H

�
1
ρ ∇̄

0
Hp
�
− τ0

τσl
KR∇̄v

�
1
ρ ∇̄

0
vq
�
;

;

(27)

where rl and wl are the memory variables associated to the lth solid.
The dot on top of the variables denotes derivative with respect to
time. We use this notation because it is more convenient for deriving
a numerical discretization for the memory variables, as will become
clear in the next section.
The coefficients in equation 27 are obtained taking CIJðt ¼ 0Þ ¼

CU
IJ, and defining KU ¼ CU

33 (the unrelaxed bulk modulus), and
KR ¼ CR

33 (the relaxed bulk modulus). Then, the relations

KUð1þ 2εUÞ ¼ KRð1þ 2εRÞ
�
1 −

1

L

XL
l¼1

�
1 −

τεlh
τσl

��
; (28)

KU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δU

p
¼KR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δR

p �
1−

1

L

XL
l¼1

�
1−

τεln
τσl

��
; (29)

KU ¼ KR

�
1 −

1

L

XL
l¼1

�
1 −

τεl0
τσl

��
: (30)

hold. The symbols sðtÞ and s 0ðtÞ are the source terms. The operators
∇̄H ¼ ð∂x̄; ∂ȳÞ and ∇̄v ¼ ∂z̄ denote the horizontal and vertical gra-
dients, respectively, and the operators ∇̄ 0

H = ð∂ 0̄
x; ∂ 0̄

yÞ and ∇̄ 0
z ¼ ∂ 0̄

z

are their respective conjugates. In TI media, the partial derivatives
are explicitly defined as (Bube et al., 2012b)

∂x̄ ¼ cos θ cos ϕ∂x þ cos θ sin ϕ∂y − sin θ∂z;

∂ȳ ¼ − sin ϕ∂x þ cos ϕ∂y;

∂z̄ ¼ sin θ cos ϕ∂x þ sin θ sin ϕ∂y þ cos θ∂z;

∂ 0̄
x ¼ ∂xðcos θ cos ϕÞ þ ∂yðcos θ sin ϕÞ − ∂zðsin θÞ;
∂ 0̄
y ¼ −∂xðsin ϕÞ þ ∂yðcos ϕÞ;
∂ 0̄
z ¼ ∂xðsin θ cos ϕÞ þ ∂yðsin θ sin ϕÞ þ ∂zðcos θÞ: (31)

One can observe that all variables are expressed in terms of second-
order partial differential equations. However, the two first equation
of equation 27 depend explicitly on the time rate of each respective
associated memory variables, i.e., _rl and _wl. This means that the
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memory-variable fields r and w, do not need to be explicitly known
at each time step. Instead, only the time rates of the memory var-
iables need to be computed, and these are expressed with first-order
partial differential equations. We use that fact to time-stepping the
time rate of the memory variables with the Crank-Nicolson method
(Crank and Nicolson, 1947).

NUMERICAL DISCRETIZATION

Previous work (Robertsson et al., 1994) has discussed the impor-
tance of having high numerical accuracy when modeling seismic
waves with attenuation because these numerical solutions are
affected by dispersion. It also points out that a good compromise
between numerical accuracy and computational cost for simulation
in viscoelastic media is obtained discretizing the wave equation
with second-order accuracy in time and fourth-order accuracy in
space. In their case, the discretization is obtained staggering the
derivatives in space and time, and the memory variables are
time-stepped with the Crank-Nicholson method.
We also discretize our system of equation 31 with second-order

accuracy in time, and fourth-order accuracy in space using the
finite-difference method. However, the time and space derivatives
are approximated with centered finite differences, leading to the dis-
cretized system of equations

pnþ1
m ¼ 2pn

m − pn−1
m þ δt2KU

�
ð1þ 2εUÞDhðpn

mÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δU

p
DvðqnmÞ

�

þ δt2

2L

XL
l¼1

ð_rnþ1
l;m þ _rn−1l;m Þ þ δt2snm; (32a)

qnþ1
m ¼ 2qnm − qn−1m þ δt2KU

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δU

p
Dhðpn

mÞ þDvðqnmÞ
�

þ δt2

2L

XL
l¼1

ð _wnþ1
l;m þ _wn−1

l;m Þ þ δt2s 0nm ; (32b)

δ̄þl _r
nþ1
l;m ¼ δ̄−l _r

n−1
l;m

−
KR

τσl

�
τhð1þ 2εRÞDhðpn

mÞ þ τn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δR

p
DvðqnmÞ

�
; (32c)

δ̄þl _wnþ1
l;m ¼ δ̄−l _w

n−1
l;m

−
KR

τσl

�
τn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δR

p
Dhðpn

mÞ þ τ0Dvðpn
mÞ
�
; (32d)

where δt is the time interval, δ̄�l ¼ 1∕ð2δtÞ � 1∕ð2τσlÞ, and the op-
erators Dh

mð·Þ and Dv
mð·Þ denote the discrete forms of ∇̄hð1ρ ∇̄ 0

HÞ and
∇̄vð1ρ ∇̄ 0

vÞ, respectively. The indices m ¼ ðl; j; kÞ and n denote the
position in the spatial-grid and time-step, respectively. One can ob-
serve that the structure of equation 32a–32d remains unchanged re-
gardless of the model of attenuation being isotropic or TI. Hence,
there is no additional computational load when considering a
medium with anisotropic attenuation, in comparison to a medium
with isotropic attenuation.

Dependency of attenuation with angle and stability

In this section, we present modeling examples using expres-
sion 32a–32d, showing the dependence of the attenuation with
direction. In addition, we validate throughout these examples the
conditions for stability. Those conditions are derived from an
approximate dispersion relation as outlined in Appendix C (equa-
tion C-14a and C-14b).
The medium is homogeneous with velocity v ¼ 2000 m∕s,

ε ¼ 0.2, and δ ¼ 0.1. Hence, the second condition of equa-
tion C-14b is always met in the examples outlined in this section.
We ran tests for the cases in which attenuation is isotropic, setting
Q0 ¼ 20, Qh ¼ 20, Qn ¼ 20 (note that equation 32a–32d are re-
duced to a single coefficient for attenuation in this case), and aniso-
tropic attenuation, settingQ0 ¼ 20,Qh ¼ 106,Qn ¼ 20. We set the
attenuation model with two SLSs using the stress-relaxation times
listed above and the values of τ listed in Table 1. We ran examples
for different tilt and azimuth angles. A model with anisotropy in
velocity and isotropy in the quality factor simultaneously means
that the relaxation times do not depend on direction. However,
the speed of energy propagation is still dependent on the direction
of propagation. The anisotropic model of attenuation is chosen such
that the energy propagating along the symmetry axis is strongly
attenuated, whereas the energy propagating orthogonally to the axis
of symmetry is not attenuated.
The domain is 2D, with 5.2 km of length and depth, and it is

discretized with grid spacing of 5 m along the vertical and horizon-
tal directions. The grid has a total of 10412 nodes. The source is
placed at the center of the model, and its time history is given
by a Ricker wavelet with peak frequency at 10 Hz.
First, we consider a vertical symmetry axis setting the tilt and

azimuth angles to zero, corresponding to a VTI medium. Equa-
tion C-14a determines that the computation of the wavefield for this
medium with equation 32a–32d, and for the chosen order or accu-
racy in time and space, it is stable for δt ≤ 1.42 ms. Figure 2a and
2b shows a snapshot of the wavefield computed with a time-step
length of 1.42 ms after 600 time steps, using the anisotropic and
isotropic models of attenuation, respectively. One can observe that
the computation of the wavefield remains stable for the two models
of attenuation. In both cases, the wavefront is elliptical as a conse-
quence of anisotropy in the velocity. Furthermore, Figure 2a shows
that the amplitude of the wavefront is weaker for energy propagat-
ing along the vertical direction (the direction of the symmetry axis)
than that propagating along the horizontal direction (the direction
orthogonal to the symmetry axis). This is expected because it is the
energy propagating along the vertical direction that gets attenuated
the most for the chosen anisotropic model of attenuation, as afore-
mentioned. Figure 2b shows the same level of attenuation along the
entire wavefront because the model of attenuation is isotropic.
We then compute the wavefield with a time step of 1.43 ms for

both models of attenuation. Note that the chosen time step is in this
case larger than the maximum time-step determined from equa-
tion C-14a for the computation to be stable. Figure 2c and 2d shows
snapshots of the wavefield after 200 time steps, for the anisotropic
and isotropic models of attenuation, respectively. One can observe
that the computation becomes unstable when carrying out the wave-
field computation with the isotropic and anisotropic models of
attenuation, as determined from expression C-14a.
In the second case, we consider a tilt angle, θ ¼ 45° and an

azimuth angle, ϕ ¼ 0°. The maximum length of the time-step,
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determined from expression C-14a, allowing a stable computation
is 1.53 ms. Figure 2e and 2f shows a stable wavefield for the aniso-
tropic and isotropic models of attenuation, after 600 time steps,
respectively. In this example, similarly to the previous one, it is the
energy that propagates along the symmetry axis (tilted 45°) that gets
attenuated the most when the model of attenuation is anisotropic.
On the other hand, Figure 2f shows the same level of attenuation
along the wavefront. We then carry out the computation of the
wavefield with a time step of 1.54 ms, for which the stability cri-
terion (equation C14a) is not satisfied. Figure 2g and 2h depicts
snapshots of the wavefield after 200 time steps, when attenuation
is anisotropic and isotropic, respectively. Clearly, in both cases, the
computation of the wavefield is unstable as a consequence of not
satisfying the condition (equation C14a).
In the third case, we consider a tilt angle θ ¼ 45° and an azimuth

angle, ϕ ¼ 21°. In this case, expression C-14a imposes a maximum
time step of 1.58 ms for the computation to be stable. Figure 2i and
2j depicts snapshots of the wavefield after 600 time steps for aniso-
tropic and isotropic attenuation, respectively. One can observe that
the computation remains stable for both models of attenuation. As
in the previous examples, when the model of attenuation is aniso-
tropic, the attenuation of the wavefield is stronger along the sym-
metry axis. We then set the length of the time step to 1.59 ms, and
we repeat the computation of the wavefield for the two models of
attenuation. Figure 2k and 2l shows snapshots of the wavefield after
200 time steps, when attenuation is anisotropic and isotropic, re-
spectively. In both cases, the computation of the wavefield becomes
unstable, as predicted by equation C-14b.
One can observe that anisotropic attenuation in the vicinity of the

source leads to the existence of strong pseudo S-waves, propagating
from the source (as in Figure 2a, 2e, and 2i). When attenuation is
isotropic (Figure 2b, 2f, and 2j), these events are much weaker.
Ruud and Hestholm (2005) also report generation of strong S-waves
at the source position when modeling in viscoelastic orthorhombic

media. We point out that the simulations did not become unstable as
a result of these S-wave events.
All the examples demonstrated an excellent agreement between

the condition C14a and the limit setting the stability in the numeri-
cal examples. This is a meaningful result especially because the
condition C14a is derived from an inexact dispersion relation of
equation 32a–32d. One can also observe that expression C-14a also
predicted the stability limit accurately when dealing with tilt and
azimuth parameters. Note that in all the examples, the condition
C14b is always satisfied. Even though we do not show it herein,
not satisfying this condition leads to unstable solutions.
Figure 2a, 2e, and 2i shows a clear dependency of amplitude with

the direction of the axis of symmetry. This is explained by the TI
behavior of the model of attenuation as pointed out before.

COMPARISON WITH A FREQUENCY-DOMAIN
SOLUTION

In this section, we compare the numerical solution of the wave-
field using the discretized TTI system 32a–32d, against a 2D fre-
quency-domain solution (Štekl and Pratt, 1998) that was previously
benchmarked. The 2D frequency domain code can compute solu-
tions for acoustic, viscoacoustic, and anisotropic media. Anisotropy
of velocity is implemented with coordinate stretching (Dellinger
and Muir, 1988), and attenuation results from explicitly defining
a complex-valued velocity as a function of frequency. The ap-
proaches for representing the rheology in the TTI system and in
the 2D frequency-domain code are entirely independent, even
though they are equivalent in theory. Disregarding errors related
with finite arithmetic precision, one expects that any errors in
the 2D frequency-domain solution will be mainly associated with
dispersion errors resulting from the discretization of the spatial
derivatives. On the other hand, any errors in the implementation
of the TTI system introduced here are mainly related with

Figure 2. Stability of the wavefield: (a) θ ¼ 0°
and ϕ ¼ 0°, anisotropic attenuation,
δt ¼ 1.42 ms, (b) θ ¼ 0° and ϕ ¼ 0°, isotropic at-
tenuation, δt ¼ 1.42 ms, (c) θ ¼ 0° and ϕ ¼ 0°,
anisotropic attenuation, δt ¼ 1.43 ms ,(d) θ ¼ 0°
and ϕ ¼ 0°, isotropic attenuation, δt ¼ 1.43 ms,
(e) θ ¼ 45° and ϕ ¼ 0°, anisotropic attenuation,
δt ¼ 1.53 ms, (f) θ ¼ 45° and ϕ ¼ 0°, isotropic at-
tenuation, δt ¼ 1.53 ms, (g) θ ¼ 45° and ϕ ¼ 0°,
anisotropic attenuation, δt ¼ 1.54 ms, (h) θ ¼ 45°
and ϕ ¼ 0°, isotropic attenuation, δt ¼ 1.54 ms,
(i) θ ¼ 45° and ϕ ¼ 21°, anisotropic attenuation,
δt ¼ 1.58 ms, (j) θ ¼ 45° and ϕ ¼ 21°, isotropic
attenuation, δt ¼ 1.58 ms, (k) θ ¼ 45° and
ϕ ¼ 21°, anisotropic attenuation, δt ¼ 1.59 ms
and, (l) θ ¼ 45° and ϕ ¼ 21°, isotropic attenua-
tion, δt ¼ 1.59 ms.

Viscoacoustic modeling TI media C47

D
ow

nl
oa

de
d 

02
/1

9/
19

 to
 1

55
.1

98
.1

00
.1

89
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



dispersion due to time and space discretization and with the
approximation of the attenuation model with SLSs. It is also impor-
tant to note that even though both implementations have the same
order of accuracy for discretization in space, the stencils used in the
frequency-domain code are implemented with optimized rotated
stencils (Štekl and Pratt, 1998), whereas our discretization of the TI
system 32a–32d uses a Taylor’s series expansion. Hence, the grid-
dispersion errors related with the discretization in space are smaller
in the frequency-domain implementation, when compared with
those in the implementation of the TTI system 32a–32d, for the
same grid spacing. Because the two implementations have very dif-
ferent numerical approaches and representations of the constitutive
law, the 2D frequency-domain code is a very good benchmark for
assessing the accuracy of the numerical solutions given by equa-
tion 32a–32d.
In this example, the medium is homogeneous with a P-wave

velocity of 2000 m∕s and velocity Thomsen’s parameters
ε ¼ δ ¼ 0.1. The tilt and azimuth angles are set to zero when using
the TI system. The sources and receivers are at the same depth, and
the source time history is given by a Ricker wavelet with a peak
frequency at 8 Hz. The model of attenuation in the frequency-
domain code is isotropic. For this reason, we compare solutions
of the wavefield, obtained with the different methods setting
Q0 ¼ Qh ¼ Qn ¼ Q. Hence, all components have equal relaxation
times. We benchmark the solutions introducing the model of attenu-
ation in the TI system with two and five SLSs. Note that increasing
the number of SLSs aims to improve the accuracy of the attenuation
model. However, this comes at the cost of increasing the computa-
tional overhead because it means a larger number of memory
variables to be stored and stepped in time. In both cases, and to
keep consistent with previous studies, we use the stress-relaxation

times as listed above. The optimized values of τ are the ones listed
in Table 1 when approximating Q ¼ 20 with two or five SLSs.
In this example, the wavefield is computed using absorbing boun-

daries around the entire modeling domain. The frequency-domain
code uses a perfectly matched layer (Berenger, 1994), whereas the
numerical implementation of our viscoacoustic TTI system uses
absorbing boundaries (Cerjan et al., 1985; Yao et al., 2018).
The time-harmonic solution of the frequency-domain code is

obtained solving a linear-system of equations with the nested dis-
section method (Lipton et al., 1979). The respective time-domain
response is computed applying an inverse discrete Fourier transform
(Cooley and Turkey, 1965; Winograd, 1978) to the time-harmonic
solutions for the series of frequency-bins needed to compute the
time-domain signal up to the desired spectral content. The time-
domain solution is obtained with a time step of 1 ms for all cases,
and the total time of the simulation is 2 s.
Figure 3a and 3b compares the records of the wavefield at a

source-receiver offset of 1000 m, when implementing the model of
attenuation in the TTI system using two and five SLSs, respectively.
Figure 3c and 3d compares the records of the wavefield at a source-
receiver offset of 2000, when implementing the model of attenua-
tion in the TTI system using two and five SLSs, respectively. Both
plots show a very good agreement between the frequency-domain
solutions and the solutions obtained with the TTI system. Note that
we are showing the simulated records between 0.4 and 1.3 s. Table 2
shows the run time and the root-mean-square (rms) of the difference
between the traces simulated with the frequency-domain code and
those simulated with the TTI system, when using two and five
SLSs. Comparing the run times, one can observe that with five
SLSs, the run time increased by 20% when compared with that
when using two SLSs. In contrast, the improvement of the solu-
tion’s accuracy when using two and five SLSs is 3% and 6% at
1 and 2 km of offset, respectively. That represents a nominal im-
provement in the accuracy of the simulated traces with five SLSs
in comparison with the additional computational overhead. One can
note that we carried out the simulations for a trace length of 2 s. In a
realistic case, the simulated trace length will increase typically by a
factor of at least three or four. When adding that to a 3D geometry, a
20% increase in computational overhead becomes unreasonable
when compared with such a small improvement in the accuracy
of the solution. Hence, and in agreement with the conclusions re-
ported in Blanch et al. (1995), setting the model of attenuation with
two SLSs yields a good trade-off between accuracy and computa-
tional load.

Figure 3. Responses of the medium with the frequency domain
(solid black line) compared with the solution of the TTI system
(dashed red line) setting ε ¼ δ ¼ 0.1 and Q0 ¼ Qn ¼ Qh ¼
Q ¼ 20, for receivers placed at 1 km and defining the model of
attenuation with (a) two SLSs and (b) five SLSs; for receivers
placed at 2 km and using(c) two SLSs and (d) five SLS’s. The solid
gray line represents the residual between the records simulated in
the frequency domain and the TTI system.

Table 2. Comparison of relative run times and benchmark of
numerical solutions using two and five SLSs. The run-time
benchmark is given by the run-time with 2 SLS’s. This
means that the computational cost for five SLSs is a factor
with respect to using two SLS’s. The rms error is computed
for the traces recorded at 1 km (Figure 3a and 3b) and for
the traces recorded at 2 km (Figure 3c and 3d).

Run time rms (at 1 km) rms (at 2 km)

Two SLSs 1 0.00172 0.00144

Five SLSs 1.2 0.00167 0.00135

Relative change (%) 20 −3 −6
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COMPARISON BETWEEN NUMERICAL
SOLUTION AND THEORETICAL Q VALUES

Herein, we validate the numerical solutions and the TI behavior
of the viscoacoustic wave equation. We set a 2D homogeneous
model with 8 km of extension along the vertical and horizontal
directions. The grid spacing is constant and equal to 5 m along both
directions yielding a total of 16012 nodes. We place one single
source at the center of the model. Its time history is a Ricker wavelet
with peak frequency at 10 Hz. All the simulations carried out in this
example use a time step of 1 ms. Figure 4 depicts the source-
receiver configuration. The recording array is formed by two rings
or receivers distributed equidistantly from the source position.
The receivers in the outer ring are at a distance of 2.1 km from the
source, and the receivers in the inner ring are at 1.6 km from the
source. The angular distance between consecutive receivers in
the same ring is 10°. The distance between two receivers along
the same radial direction (the same polar angle) is 500 m. The inner
ring contains the reference station for each receiver in the outer ring.
The reference station for a given receiver has the same angular
coordinate as that of the former. Figure 4 illustrates the relative po-
sitions of an arbitrary receiver, denoted with R, and its respective
reference station denoted with Rr. We estimate Q with the spectral-
ratio method (Bath, 1974; Tonn, 1991), using the recordings at each
pair receiver-reference station, and in the band of frequencies be-
tween 2 and 20 Hz. The estimated Q is then compared against
the theoretical values given by equation A-3.
The velocity of the P-waves is 2000 m∕s, and the Thomsen’s

parameters of the velocity anisotropy are ε ¼ 0.05 and δ ¼ 0.025.
These parameters remain unchanged for all of the numerical sim-
ulations. The anisotropy of Q as well as the tilt and the azimuth
angles are the only changing variables.

Figure 5a–5d compares the estimated Q (black dots) against its
theoretical values (black line) for different models of attenuation:
(Figure 5a) the model of attenuation is isotropic and equal to 50;
(Figure 5b) the model of attenuation is VTI, and it is defined setting
Q0 ¼ 50, Qh ¼ 80, and Qn ¼ 40; (Figure 5c) the model of attenu-
ation is TI, and it is defined settingQ0 ¼ 50,Qh ¼ 80,Qn ¼ 40, tilt
angle equal to 45°, and azimuth angle equal to 0°; (Figure 5d) the
model of attenuation is TI, and it is defined setting Q0 ¼ 50,
Qh ¼ 80,Qn ¼ 40, tilt angle equal to 30°, and azimuth equal to 50°.
All cases show excellent agreement between the estimated at-

tenuation and the values predicted by the theoretical curve. Hence,
this example demonstrates that seismic data simulated with equa-
tion 27 can predict the response of a viscoacoustic medium with TI
attenuation.

ANISOTROPIC VISCOACOUSTIC BP2007 MODEL

In this section, we apply our code to the modeling of pseudopres-
sure waves using a more realistic setting with the 2D TTI
BP2007 model. We selected a region of this model and extended
it to include anisotropic attenuation. Figure 6a–6f depicts the ex-
tended BP2007 model. The grid spacing of the extended model
is 12 m. One can observe that the vertical and normal components
of the attenuation model are the most attenuating, whereas the hori-
zontal component of attenuation is the least attenuating. That type
of rheology can be found in geologic settings with horizontal
layering for example. The rapid variation of the tilt angle is known

Figure 4. Source-receiver configuration. The source is represented
with a star at the center. The receivers are represented with the in-
verted gray triangles. The label R denotes an arbitrary receiver and
Rr its reference station.

Figure 5. Dependency of the estimated Q with azimuth and tilt an-
gles for a homogeneous medium: (a) The model of attenuation is
isotropic and equal to 50, (b) the model of attenuation has VTI and
is defined settingQ0 ¼ 50,Qh ¼ 80, andQn ¼ 40, (c) the model of
attenuation is TI and is defined setting Q0 ¼ 50, Qh ¼ 80, and
Qn ¼ 40; the tilt angle is equal to 45°; and the azimuth angle is
equal to 0°, (d) the model of attenuation is TI and is defined setting
Q0 ¼ 50, Qh ¼ 80, and Qn ¼ 40; the tilt angle is equal to 30°; and
the azimuth is equal to 50°. The black line represents the values ofQ
estimated from the analytical expression A-3. The black dots re-
present the values of Q estimated from the data generated using
equation 32a–32d.
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to cause instability as a consequence of setting the S-wave velocity
to zero. Hence, we smoothed the model of tilt angle (Figure 6f) with
a Gaussian filter with a kernel length of five samples, prior to carry-
ing out numerical simulations.
Herein, we discuss the results of numerical simulations using two

sources placed at 12 m of depth. One of the sources is placed at
2400 m from the leftmost boundary, and the other is placed at
2500 m from the rightmost boundary. The white stars at the top of
Figure 6a indicate the position of the two sources. The time depend-
ency of the source is given by a Ricker wavelet with the peak fre-
quency at 8 Hz, and the recording length is 6 s. The synthetic data
for each shot are recorded with an array of 1190 receivers at the
same depth as the sources. The receiver spacing is 12 m. A free-
surface boundary condition is imposed at the top of the model and
absorbing boundaries are used at the lateral and at the bottom
boundaries.
We generated shot gathers for each one of the sources considering

three different cases for the model of attenuation. In the first case,
the model of attenuation is isotropic and it is obtained setting Qn

andQ0 equal toQh (Figure 6b). In the second case, the components
Qh and Qn are set equal to Q0 (Figure 6b). In the third and final
case, the model of attenuation is fully anisotropic and each of the
components Q0, Qh, and Qn is given by the models depicted in
Figure 6b–6d, respectively. In the first case, the medium is not
strongly attenuating as the values of Qh are on average greater than
300 with the exception of the transitioning region just below the sea
bottom. In the second case, the medium is more attenuating than in
the first case, as the quality factor is averagely well below 100 in the
regions of the model excluding the seawater and salt bodies. Finally,
in the third case, one can expect the energy to be less attenuated than
in the second case, but more attenuated than in the first case. In

addition, because the model of attenuation is anisotropic, directional
effects are also introduced. The synthetic data are generated using
two SLSs in all of the examples presented in this section.
Figure 7a–7c shows shot gathers generated for each one of the

mentioned models of attenuation, and for the source placed at the
leftmost position. Figure 7d–7f depicts shot gathers generated for
each one of the different models of attenuation, and for the shot
placed at the rightmost position. The data generated for the shot at
the leftmost position are characterized by the existence of strong
multiples due to energy bouncing between the free surface and the
hard boundary at the top of the salt diapir structure, as well as, due
to internal reflections occurring within the salt diapir. Figure 7b and
7c does not show evidence of attenuation in the energy recorded at
the shorter offsets. This is because at this range, the recordings are
mainly dominated by multiples and internal reflections in the salt,
where the value of Q is relatively high. Hence, the effect of attenu-
ation is not noticeable in this case. However, at longer offsets and
larger recording times, the effect of attenuation becomes noticeable
because the energy has propagated throughout the more attenuating
regions.
The same phenomenon is not observed with the data that are gen-

erated with the shot placed at the rightmost position. This is because
the values of attenuation are relatively low over the region closer to
the position of this shot. For that reason, attenuation affects the re-
cordings at the shorter offsets. For example, the event labeled as A
in Figure 7d–7f shows evidence of attenuation occurring. In addi-
tion, the energy has been attenuated before crossing the salt diapir.
Hence, one can observe a difference in the amplitude of the events
recorded at the receivers above the salt diapir.
The isotropic attenuating medium defined by Q0 (the second

case) is the most attenuating, and the isotropic model of attenuation

Figure 6. Extended BP2007 model: (a) vertical
velocity, (b) vertical attenuation, (c) horizontal
attenuation, (d) normal attenuation, (e) epsilon,
(f) delta, and (g) tilt angle in degrees. The models
of the quality factor are plotted in logarithmic scale
(base 10). The white stars denote the position of
shots.
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defined with Qh (the first case) is the least attenuating, within the
three cases. Hence, Figure 7a and 7d shows the waveforms with the
strongest amplitudes and Figure 7b and 7e shows the weakest
amplitudes.
One can observe that the generated traces have very small

differences at short offsets (3.8 km). Particularly in the case of
the traces depicted in Figure 8a, this difference is unnoticeable.
That is expected because the selected receiver records energy
that has propagated mainly in the region of the salt body, where
the overall effect of attenuation is weak. In the case of the traces
depicted in Figure 8c, one can see that the anisotropic model of
attenuation and the isotropic model of attenuation Qh yield very
similar recorded events. By comparison, only the trace generated
with Q0 is noticeably attenuated. One can then make the observa-
tion that any of the models of attenuation can explain the data re-
corded at the shorter offsets, for the shot placed in the leftmost
position. In addition, the isotropic model of attenuation Qh can ex-
plain the data at the shorter offsets, for the shot in the rightmost
position. That would lead to inherent ambiguities if inverting only
data recorded at short offsets. However, at the larger offsets, the
phase and amplitude differences are very pronounced (Figure 8b
and 8d). The traces corresponding to the anisotropic attenuating
medium (the red line) have an amplitude and phase delay that is
in between that of the least attenuating medium (attenuation given
by Qh) and that of the most attenuating medium (attenuation given
by Q0). The isotropic models of attenuation given by Q0 and Qh

cannot explain the data generated by the anisotropic model (com-

bining Q0, Qh, and Qn). Furthermore, one can observe that in Fig-
ure 8b, the trace in red is closer to the trace in gray, whereas in
Figure 8d, the trace in red is closer to the trace in black. Then,
the energy propagating toward the left region of the model was
more attenuated than the energy propagating toward the right region
of the model. This shows the complexity of the interaction between
the propagating energy and the model properties. We emphasize
that these shot gathers are generated keeping the vertical velocity
and anisotropy of velocity unchanged. Hence, the anisotropy in
the model of attenuation is the only factor responsible for these
differences in the generated data. One can then make the observa-
tion that if the data depicted in Figure 7c and 7f were field data, then
one would have to consider an anisotropic model of attenuation to
explain the data at long and short offsets. That statement is similar to
Thomsen’s (1986) conclusions regarding velocity anisotropy.
Figure 9a–9d compares the effect of attenuation in the amplitude
spectrum for each one of traces in Figure 8a–8d, over the range
0–30 Hz, respectively. One can observe that the behavior of the
spectra is in clear agreement with the discussion outlined regarding
the traces depicted in Figure 8a–8d. The amplitude spectra are very
similar at the near offset (Figure 9a and 9c), whereas at the long
offset, the spectrum becomes damped with the increasing fre-
quency. The amplitude spectrum for the full anisotropic attenuating
medium sits in between that of the data generated with the isotropic
model of attenuation Q0 (the most attenuating medium) and that
of the data generated with the isotropic model of attenuation Qh

(the least attenuating medium).

Figure 7. Shot gather for shot 1 (placed at the left-
most position) computed with (a) isotropic attenu-
ation, setting Q equal to Qh (Figure 6c) for all
components, (b) isotropic model of attenuation
setting Q ¼ Q0 (Figure 6b) for all components,
and (c) anisotropic model of attenuation (as de-
picted in Figure 6b–6d); shot gather for shot 2
(placed at the rightmost position) computed with
(d) isotropic attenuation, setting Q equal to Qh
(Figure 6c) for all components, (e) isotropic model
of attenuation setting Q ¼ Q0 (Figure 6b) for all
components and (f) anisotropic model of attenua-
tion (as depicted in Figure 6b–6d).
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CONCLUSION

In this paper, we proposed an approach for modeling pseudopres-
sure waves in heterogeneous viscoacoustic TI media. We derived
expressions for that type of rheology eliminating the shear

components of the constitutive law and introducing anelasticity
with the SLS model. The convolution operator in the constitutive
law is eliminated with the method of memory variables. This leads
to a system of equations that is second-order in time for the pseu-
dopressure and the memory variables. However, in our formulation,
we use the time-rate of the memory variables because this yields a
formulation that is consistent with the use of the Crank-Nicholson
method for time stepping these variables. In the limit when the qual-
ity factor (isotropic or anisotropic) is very large, the equations re-
duce to a system of equations for acoustic TI media without
attenuation. Thus, our formulation is consistent with previous work
when only the velocity is anisotropic.
Our modeling approach preserves the TI attenuation. We demon-

strated this by comparing the dependency on the direction of Q es-
timated from data generated with our approach against that obtained
with an analytical solution.
We introduced a criterion for controlling the grid spacing and

size of the time step as a function of the physical properties
for a homogeneous medium. That criterion is derived from an
approximate dispersion relation, which is that of a TI medium
without attenuation. Even though the derived dispersion relation
is based on simplifying the physics of waves propagating in
viscoacoustic TI media, by eliminating the dependence on
attenuation, our examples demonstrated that the derived criterion
matches the transition of numerically stable into numerically
unstable computations with remarkable accuracy. That criterion
is useful when dealing with applications of our simulation ap-
proach. The dispersion relation outlined in this paper is valid for
2D and 3D and for any order of accuracy of discretization in space,
and its extension to higher order temporal discretization is straight-
forward.
The examples showed a very good agreement between our ap-

proach and an alternative implementation for modeling seismic
waves in media with anisotropy and attenuation. In addition, our
proposed approach is stable in media with a strong contrast in
the physical properties as well as in cases with varying degrees
of complexity.
We point out that our system in viscoacoustic TI media is out-

lined for a 3D geometry. The 2D examples presented are particular
cases of our expressions. Extending the examples to 3D is straight-
forward. The proposed method is useful for seismic modeling, im-
aging, and inversion, and our future research aims toward its
application on the analysis of real seismic data.
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Figure 9. Comparison of the amplitude spectrum for the traces at an
offset of (a) 2.6 km, (b) 10.8 km for the shot located at the leftmost
position and for each one of the different models of attenuation;
comparison of the amplitude spectrum for the traces at an offset
of (a) −2.6 km, (b) −10.8 km for the shot located at the rightmost
position and for each one of the different models of attenuation.

Figure 8. (a) Traces at an offset of 2.6 km and (b) at an offset of
10.8 km for the shot at position 1; (c) traces at an offset of −2.6 km
and (d) at an offset of −10.8 km for the shot at position 2. The traces
represented with gray are extracted from the shot gathers in Fig-
ure 7a and 7c, the traces in black are extracted from the shot gathers
in Figure 7b and 7e, and the traces in red are extracted from the shot
gathers in Figure 7c and 7f, for each respective shot.
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APPENDIX A

THOMSEN’S PARAMETERS IN
VISCOACOUSTIC MEDIA

For a viscoacoustic medium with a vertical axis of symmetry, one
can define a set of parameters that quantify the deviation of the
strength of attenuation along a direction with respect to the strength
of attenuation along the vertical axis of symmetry. This set of
parameters is similar to the Thomsen’s parameters for velocity
anisotropy. It is defined as the ratio between the P-wave attenuation
coefficients in the horizontal and vertical directions (Chichinina
et al., 2004; Zhu and Tsvankin, 2006)

εQ ¼
1
Qh

− 1
Q0

1
Q0

¼ Q0 −Qh

Qh
; (A-1)

and

δQ ¼

�
1
Qn

�
2

−
�

1
Q0

�
2

2

�
1
Q0

�
2

¼ Q2
0 −Q2

n

2Q2
n

: (A-2)

We do not use the attenuation Thomsen’s parameters in the scope of
this work because our system of equations depends explicitly on
relaxation times. As such, Q0, Qn, and Qh are converted into
the relaxation times and into the parameter τ instead. Nonetheless,
one may choose to use a system using a reference model of vertical
attenuation and the eccentricities defined in equations A-1 and A-2.
The dependency of the normalized attenuation coefficient, for

P-waves, with a deviation from the axis of symmetry, is given by
(Zhu and Tsvankin, 2006)

AP ¼ AP0
ð1þ δQ sin2 θ cos2 θ þ εQ sin4 θÞ: (A-3)

APPENDIX B

METHOD OF MEMORY VARIABLES APPLIED TO
THE TI SYSTEM

The convolution operator is eliminated with the method of
memory variables. This is accomplished first by differentiating
equation 25 with respect to time and then by taking the identity
ða � bÞ 0 ¼ a 0 � b ¼ a � b 0, where the prime denotes time differen-
tiation. Substituting equation 19 into equation 25, where appropri-
ate, gives

∂p
∂t

¼ CR
11

�
1 −

1

L

XL
l¼1

�
1 −

τεlh
τσl

���
∂vx̄
∂x̄

þ ∂vȳ
∂ȳ

�

þ CR
13

�
1 −

1

L

XL
l¼0

�
1 −

τεln
τσl

��
∂vz̄
∂z̄

þ 1

L

XL
l¼1

rl; (B-1)

∂q
∂t

¼ CR
13

�
1 −

1

L

XL
l¼1

�
1 −

τεlh
τσl

���
∂vx̄
∂x̄

þ ∂vȳ
∂ȳ

�

þ CR
33

�
1 −

1

L

XL
l¼0

�
1 −

τεl0
τσl

��
∂vz̄
∂z̄

þ 1

L

XL
l¼1

wl; (B-2)

where

rl ¼ CR
11

�
1

τσl

�
1 −

τεlh
τσl

�
e−t∕τ

σl �HðtÞ �
�
∂vx̄
∂x̄

þ ∂vȳ
∂ȳ

�

þ CR
13

�
1

τσl

�
1 −

τεln
τσl

�
e−t∕τ

σl �HðtÞ � ∂vz̄
∂z̄

; (B-3)

and

wl ¼ CR
11

�
1

τσl

�
1 −

τεln
τσl

�
e−t∕τ

σl

�
HðtÞ �

�
∂vx̄
∂x̄

þ ∂vȳ
∂ȳ

�

þ CR
33

�
1

τσl

�
1 −

τεl0
τσl

�
e−t∕τ

σl

�
HðtÞ � ∂vz̄

∂z̄
; (B-4)

are the memory variables. The convolution operator is eliminated
differentiating expressions B-3 and B-4 with respect to time giving

∂rl
∂t

¼ −
1

τσl
rl þ

1

τσl
CR
11

�
1 −

τεlh
τσl

��
∂vx̄
∂x̄

þ ∂vȳ
∂ȳ

�

þ 1

τσl
CR
13

�
1 −

τεln
τσl

�
∂vz̄
∂z̄

; (B-5)

and

∂wl

∂t
¼ −

1

τσl
wl þ

1

τσl
CR
13

�
1 −

τεln
τσl

��
∂vx̄
∂x̄

þ ∂vȳ
∂ȳ

�

þ 1

τσl
CR
33

�
1 −

τεl0
τσl

�
∂vz̄
∂z̄

: (B-6)

Finally, the particle velocity is eliminated first differentiating
equations B-1, B-2, B-5, and B-6 with respect to time and then
substituting the identities in expression 26, giving the system of
equation 27.

APPENDIX C

APPROXIMATE DISPERSION RELATION

We derive a criterion for setting a relation between the grid spac-
ing, size of the time-step, and physical properties in a homogeneous
medium for equation 32a–32d. That criterion, also known as the
Courant-Friedrichs-Lewy (CFL) condition, is a necessary but not
sufficient condition to guarantee stability (Durran, 2010). Often-
times, the CFL condition is derived from a dispersion relation
(Levander, 1988). Herein, the dispersion relation is obtained sub-
stituting plane-wave solutions into expression 32a–32d. This leads
to a homogeneous system of six equations (two equations for pseu-
dopressure plus four equations for the memory variables). Comput-
ing the determinant of such system analytically is lengthy.
Furthermore, the solution is not general for an arbitrary number
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of SLSs. These issues can be circumvented, showing that the
dispersion relation of a system that has attenuation is very close
to that of system that does not have attenuation. We demonstrate
this statement to be valid in isotropic media using two SLSs, show-
ing that such an approach can significantly simplify the derivation
of a dispersion relation that has the essential characteristics of the
true one. We then use this result to derive an inexact, yet relatively
accurate, dispersion relation for the system of equation 32a–32d.
A set of discrete equations for an isotropic, homogeneous, and

viscoacoustic medium is8>><
>>:

pnþ1
m −2pn

mþpn−1
m

δt2 −v2UDðpn
mÞ−1

2
ð_rnþ1

1m þ _rn−11m Þ−1
2
ð_rnþ1

2m þ _rn−12m Þ¼0
_rnþ1
1m −_rn−1

1m
2δt þ 1

τσ1
_rnþ1
1m þ_rn−1

1m
2

þv2U
τ
τσ1
Dðpn

mÞ¼0
_rnþ1
2m −_rn−1

2m
2δt þ 1

τσ2
_rnþ1
2m þ_rn−1

2m
2

þv2U
τ
τσ2
Dðpn

mÞ¼0

;

(C-1)

where Dðpn
mÞ denotes the discrete spatial differential operator over

of pressure. The plane-wave solutions of the pressure and of the
memory variables read8<

:
pn
m ¼ pðx; nδtÞ ¼ p0eiðnωδtþk·xÞ;

_rn1m ¼ r1ðx; nδtÞ ¼ _r1;0eiðnωδtþk·xÞ;

_rn2m ¼ r2ðx; nδtÞ ¼ _r2;0eiðnωδtþk·xÞ;
; (C-2)

where x ¼ ðlΔ; jΔ; kΔÞ andΔ denotes the grid spacing. Substituting
these plane-wave solutions into equation C-1 gives a linear system

Mψ0 ¼ 0; (C-3)

where ψT
0 ¼ ðp0; _r1;0; _r2;0Þ and

M¼

0
BB@
−4sin2

�
ωδt
2

�
−v2Uδt

2Dðeik·xÞ − 1
2
δt2 cosðωδtÞ − 1

2
δt2 cosðωδtÞ

v2U
τ

τσ1ð1þτÞDðeik·xÞ cosðωδtÞ
τσ1

þ i sinðωδtÞδt 0

v2U
τ

τσ2ð1þτÞDðeik·xÞ 0
cosðωδtÞ

τσ2
þ i sinðωδtÞδt

1
CCA:

(C-4)

The linear system C-3 has nonnull solutions if and only if the
determinant of M is zero, yielding8><
>:
sin2
�
ωδt
2

�
¼− 1

4
ðvUδtÞ2Dðeik·xÞ;

sin2
�
ωδt
2

�
¼− 1

4
ðvUδtÞ2 1

1þτDðeik·xÞ¼− 1
4
ðv̄UδtÞ2Dðeik·xÞ;

;

(C-5)

where v̄U ¼ vU∕
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
is an effective velocity. The identities in

equation C-5 have real solutions if	 ðvUδtÞ2jDðeik·xÞj ≤ 4;
ðv̄UδtÞ2jDðeik·xÞj ≤ 4:

: (C-6)

We take as an example a fourth-order accurate in space stencil
ð−pmþ2 þ 16pmþ1 − 30pm þ 16pm−1 − pm−2Þ∕ð12Δ2Þ þOðΔ4Þ.
Its response in the wavenumber domain is

Dðeik·xÞ ¼ N
32 cosðkΔÞ − 2 cosð2kΔÞ − 30

12Δ2
; (C-7)

where the integer N ¼ 1; 2; 3 defines the dimension of space.
Substituting equation C-7 into equation C-6 and taking the Nyquist
limit (k → kN ¼ π∕Δ) yields

8<
:
�
vUδt
Δ

�
2
≤ 3

4N ;�
v̄Uδt
Δ

�
2
≤ 3

4N :
; (C-8)

One can observe that the first expression in equation C-8 matches the
stability condition reported in Lines et al. (1999) for the second-order
acoustic wave equation in isotropic media. As vU ≥ v̄U , then the first
condition in equation C-8 is more restrictive than the second and it
imposes a smaller time step. This means that if the attenuation is in-
cluded in the constitutive law, then the time step can be larger. This is
expected because the relaxation mechanism slows down the velocity
of energy propagation. In addition, the more attenuating the medium
is, the larger can be the time step. However, it is relevant to determine
how much larger that time step can be. That can be assessed first
noting that v̄U ¼ vU∕

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
and taking extreme values for τ. For

example in a medium without attenuation (in practice) τ ≈ 10−6,
and in a medium with very strong attenuation, one can get
τ ≈ 10−1. This range leads to an effective difference of approximately
5% between v̄U and vU . We can verify this with a numerical example.
Taking an isotropic medium with strong attenuation given by a qual-
ity factor Q ¼ 20, and a weakly attenuating medium with a quality
factor, Q ¼ 10−6. When the relaxation mechanism is introduced
with two SLSs, the effective velocity for the former is
v̄U ¼ 1915.65 m∕s (τ ¼ 0.0904) and for the latter it is
v̄U ¼ 1999.998 m∕s (τ ¼ 1.81 × 10−6). Taking a 2D grid with a
spacing of 5 m, the time stepping is δt ≤ 1.531 mswhen the medium
is nonattenuating (computed using the first condition in equation C-
8), δt ≤ 1.531 ms when Q ¼ 10−6 (effectively, the medium is non-
attenuating; computed using the second condition in equation C-8)
and, δt ≤ 1.598 ms when Q ¼ 20 (computed using the second con-
dition in equation C-8). Then, one can conclude that even when the
attenuation is very strong, the effect of attenuation over the required
time stepping is meaningless, when compared with the case of a
medium without attenuation. In this example, a time stepping of δt ≤
1.531 ms satisfies the dispersion relation in both cases (the attenuat-
ing and nonattenuating medium). One can then conclude that numeri-
cally the dispersion relation for a medium without attenuation
approximates well that of a medium with attenuation. We then use
this result to derive an equivalent dispersion relation when the
medium is anisotropic. Eliminating the memory variables in equa-
tion 32a–32d and taking plane-wave solutions for p and q into equa-
tion 32a–32b gives

�
4X þ α21D

hðeik·xÞ α22D
vðeik·xÞ

α22D
hðeik·xÞ 4X þ α20D

vðeik·xÞ
��

p0

q0

�
¼
�
0

0

�
;

(C-9)

where X ¼ sin2ðωnδt∕2Þ, α20 ¼ ðvUδtÞ2, α21 ¼ ðvUδtÞ2ð1þ 2εUÞ,
and α22 ¼ ðvUδtÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δU

p
. Note that the differential operators

Dh and Dv encapsulate the information on the tilt and azimuth an-
gles. The pseudopressure amplitudes p0 and q0 are nonnull if and
only if the determinant of the linear system in equation C-9 is zero.
Then, the relation
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16X2 þ 4Xðα21Dhðeik·xÞ þ α20D
vðeik·xÞÞ

þ ðα20α21 − α42ÞDhðeik·xÞDvðeik·xÞ ¼ 0; (C-10)

must hold. The solution of the quadratic equation C-10 is straightfor-
ward, and it is given by

X¼ 1

4
ðvUδtÞ2

�
−AðkÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðkÞ−2ðεU − δUÞDhðeik·xÞDvðeik·xÞ

q �
;

(C-11)

where 2AðkÞ ¼ Dvðeik·xÞ þDhðeik·xÞð1þ 2εUÞ.Taking ε; δ → 0,
the expression of the solution with the plus sign (before the square
root) is identically zero. On the other hand, the expression with the
minus sign will reduce to the well-known expressions reported in
Lines et al. (1999) for isotropic media. Hence, the general solution
for the dispersion relation is derived from the expression with the
minus sign (before the square root). As X ¼ sin2ðωnδt∕2Þ, then
the absolute value of X must be less than the unity, jXj ≤ 1, then it
follows from equation C-11 that

ðvUδtÞ2j−AðkÞ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðkÞ−2ðεU −δUÞDhðeik·xÞDvðeik·xÞ

q
j≤ 4:

(C-12)

We are only interested in real solutions of equation C-12. The
absence of nonreal solutions associated to nonphysical growing
modes imposes

2ðεU − δUÞDhðeik·xÞDvðeik·xÞ ≤ A2ðkÞ: (C-13)

As discussed in Bube et al. (2012b), the stability of a TI system with
the dispersion relation C-9 must satisfy η ¼ ðε − δÞ∕ð1þ 2δÞ ≥ 0 (η
is the Alkhalifah-Tsvankin parameter), and this condition is equiva-
lent to εU ≥ δU . At the Nyquist limit, the approximate dispersion
relation C-12 is

ðvUδtÞ2jAðkNÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðkNÞ−2ðεU −δUÞDhðeikN ·xÞDvðeikN ·xÞ

q
j≤ 4;

(C-14a)

and stability requires

εU ≥ δU: (C-14b)

These conditions do not guarantee numerical stability per se; however,
condition C14b must be strictly satisfied, and expression C-14a gives
a very good estimation of the CFL limit. Numerical tests showed that
satisfying condition C-14a–C-14b lead to stable computations when
carrying out numerical simulations with expression 32a–32d, as dem-
onstrated in the examples included. A thorough analysis on stability
can be found in Bube et al. (2012b) or Blanch (1995).
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