Skip to content

funkygao/gafka

master
Switch branches/tags
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
cmd
 
 
ctx
 
 
 
 
 
 
sla
 
 
 
 
zk
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

gafka Build Status

                   __   _            
                  / _| | |           
   __ _    __ _  | |_  | | __   __ _ 
  / _` |  / _` | |  _| | |/ /  / _` |
 | (_| | | (_| | | |   |   <  | (_| |
  \__, |  \__,_| |_|   |_|\_\  \__,_|
   __/ |                             
  |___/                              

A full ecosystem for kafka/redis/PubSub/ElasticSearch/Zookeeper/haproxy.

Hope it can help you.

Components

  • ehaproxy

    Elastic haproxy that sits in front of kateway.

  • kateway

    A fully-managed real-time secure and reliable RESTful Cloud Pub/Sub streaming message/job service.

  • actord

    kateway job scheduler and webhook dispatcher.

  • gk

    Unified multi-datacenter multi-cluster kafka swiss-knife management console.

  • zk

    A handy zookeeper CLI that supports recursive operation without any dependency.

  • es

    ElasticSearch console.

  • kguard

    Kafka clusters body guard that emits health info to InfluxDB and exports key warnings to zabbix for alerting.

Install

export PATH=$PATH:$GOPATH/bin

#========================================
# install go-bindata and go annotations
#========================================
go install github.com/jteeuwen/go-bindata/go-bindata
go install github.com/funkygao/goannotation

#========================================
# install gafka
#========================================
go get github.com/funkygao/gafka
cd $GOPATH/src/github.com/funkygao/gafka
./build.sh -a # build all components

#========================================
# try the gafka command 'gk'
#========================================
gk -h

Status

Currently gafka manages:

  • 4 data centers
  • 50+ kafka clusters
  • 100+ kafka brokers
  • 500+ kafka topics
  • 2000+ kafka partitions
  • 10Billion messages per day
  • peak load
    • 1Million message per second
    • 8TB transfered per hour
  • 5TB redis