Top-down programming
assistant

There are many ways for a new
programmer to get “stuck” while learning to
code, and require the help of a more
experienced programmer to get them
“unstuck.” For example, it’s virtually
impossible for a new programmer to spot a
missing closing-bracket. That's why a
block-based coding platform like Scratch is
so wonderful. By eliminating syntax errors, it
allows new programmers to spend more
time learning, being productive, and
enjoying coding. One way to optimize a
programming environment is minimizing the
time learners are stuck.

In this vein, I'd like to discuss a problem that
my students encounter while coding in
WoofJS, and a prototype that I'm working
on to solve it that | call “WoofJS Workflow”.
For reference, these students are aged
8-14, and attend classes at my after school
program, The Coding Space. We built
WoofdS (woofjs.com) to be “the next step
after Scratch” for our more advanced
students. It's a JavaScript framework and
IDE for students to make games and
animations. For each block in Scratch,
there’s an equivalent JavaScript command
in Woof that does the same thing. In this
way, WoofJS is an alternative to

ProcessingJS.

o

As simple as it sounds, I've found that the
most common way students get stuck is
when they lose track of what they’re working
on. Thus when any student asks for help,
we first ask, “What are you trying to
accomplish here?” More often than not, the
student will have entirely forgotten what
she’s trying to do, and respond with a
shoulder shrug.

If the student is working through one of our
guided tutorials, which have numbered
steps, we can then follow up with, “What
number step are you on?” and then, “Could
you read it aloud?” Sometimes, simply
re-focusing the student’s attention on the
problem at hand allows her to solve her
issue herself with no further teacher input.
But even if the student needs more
guidance, the conversation is much more
productive now that teacher and student are
aligned on the goal.

However, when students are working on
creative projects of their own devising, there
is no numbered list of steps for them to refer
back to. While I'm constantly begging
students to write their steps out for
themselves on paper, it's a losing struggle
that almost never happens. Many creative
student projects never see the light of day
because students get stuck, frustrated, and
quit, going back to our guided projects.

While staying on task is vital to many
constructive endeavors, it's particularly
difficult in programming because our tasks
have subtasks with subtasks with subtasks
with subtasks. When a student gets stuck
on a subtask 3 levels deep, they often lose
sight of the larger picture and what they’re
even trying to accomplish in the first place.
Luckily, programming has a technique for
dealing with breaking down problems into
subproblems - top-down programming.


https://medium.com/@stevekrouse/woof-d9adf2110fc6
https://medium.com/@stevekrouse/woof-d9adf2110fc6
http://thecodingspace.com/

WoofJS Workflow

While top-down programming is indisputably
a core programming competency, our
tooling doesn’t lend itself well to it, which is
why we often resort to whiteboards, pieces
of paper, or github issues. What would it
look like to integrate a top-down
programming assistant into an IDE?

-

y_-

| think it would look like a nested To Do list
right at the top of the screen. That way,
what the student is working on now is
always top of mind. Even better, the
breadcrumb trail explaining how what
they’re working on now plays in the larger
picture is also right there.

Then, when you've completed a To Do task,
you simply hit “Merge” to merge this branch
with its parent branch.

= e =

The merge process shows you the parent
and child versions of the code side by side
and allows you to selectively move sections
from the child over to the parent.

Here’s where it gets interesting. Each To Do
item represents a separate isolated branch
of code. When you drill into a To Do item
(by clicking its bullet), you see the code only
for that branch and can edit it without
affecting the other branches.

When you are done merging, you hit “Done”
to complete the merge. (Have you ever
thought it strange that in git you first decide
what to work on, then do it, and at the end
write about what you did? Doesn’t that
seem backwards?)



As you can see, this workflow skips the “git
add” and “git push” steps. It also makes it
much easier to switch between branches --
no need to stash changes before checking
out a new branch. Those changes will be
waiting for you at this branch whenever you
come back to it.

While this tool is technically no more
powerful than git and github, | think it would
enable greater collaboration, because by
encouraging you to break your problems
down explicitly, it allows teammates to go
directly to a sub-problem 6 levels deep and
help you there. Currently, we only
collaborate with pull requests one level
deep, but | think a tool like this could
change this, enabling deeper collaboration
without much thought for coordination.



