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Deep Learning and Neural Nets 

Linear algebra and probability/statistics and optimization are the mathematical pillars 
of machine learning. Those chapters will come before the architecture of a neural net. 
But we find it helpful to start with this description of the goal : To construct a function 
that classifies the training data correctly, so it can generalize to unseen test data. 

To make that statement meaningful, you need to know more about this learning 
function. That is the purpose of these three pages-to give direction to all that follows. 

The inputs to the function F are vectors or matrices or sometimes tensors-one input 
v for each training sample. For the problem of identifying handwritten digits, each input 
sample will be an image-a matrix of pixels. We aim to classify each of those images as a 
number from 0 to 9. Those ten numbers are the possible outputs from the learning function. 
In this example, the function F learns what to look for in classifying the images. 

The MNIST set contains 70, 000 handwritten digits. We train a learning function on part;i 
of that set. By assigning weights to different pixels in the image, we create the function. · 
The big problem of optimization (the heart of the calculation) is to choose weights so 
that the function assigns the correct output 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. And we don't ask 
for perfection ! (One of the dangers in deep learning is overfitting the data,) 

Then we validate the function by choosing unseen MNIST samples, and applying 
the function to classify this test data. Competitions over the years have led to major 
improvements in the test results. Convolutional nets now go below 1% errors. In fact 
it is competitions on known data like MNIST that have brought big improvements in 
the structure of F. That structure is based on the architecture of an underlyi~g neural net. 

Linear and Nonlinear Learning Functions 

The inputs are the samples v, the outputs are the computed classifications w = F(v). 
The simplest learning function would be linear: w = Av. The entries in the matrix A 
are the weights to be learned : not too difficult. Frequently the function also learns a 
bias vector b, so that F(v) = Av +b. This function is "affine". Affine functions can be 
quickly learned, but by themselves they are too simple. 
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More exactly, linearity is a very limiting requirement. IfMNIST used Roman numerals, 
then II might be halfway between I and III (as linearity demands). But what would be 
halfway between I and XIX? Certainly affine functions Av +bare not always sufficient. 

Nonlinearity would come by squaring the components of the input vector v. That step 
might help to separate a circle from a point inside-which linear functions cannot do. 
But the construction ofF moved toward "sigmoidal functions" with S-shaped graphs. 
It is remarkable that big progress came by inserting these standard nonlinear S-shaped 
functions between matrices A and B to produce A(S(Bv )). Eventually it was discovered 
that the smoothly curved logistic functions S could be replaced by the extremely simple 
ramp function now called ReLU(x) =max (0, x). The graphs of these nonlinear 
"activation functions" Rare drawn in Section VII. I. 

Neural Nets and the Structure ofF ( v) 

The functions that yield deep learning have the form F(v) = L(R(L(R( ... (Lv))))). 
This is a composition of affine functions Lv = Av + b with nonlinear functions R
which act on each component of the vector Lv. The matrices A and the bias vectors b 
are the weights in the learning function F. It is the A's and b's that must be learned 
from the training data, so that the outputs F( v) will be (nearly) correct. Then F can be 
applied to new samples from the same population. If the weights (A's and b's) are well 
chosen, the outputs F( v) from the unseen test data should be accurate. More layers 
in the function F will typically produce more accuracy in F( v ). 

Properly speaking, F(x, v) depends on the input v and the weights x (all the A's and 
b's). The outputs v1 = ReLU(A1 v + b1) from the first step produce the first hidden 
layer in our neural net. The complete net starts with the input layer v and ends with the 
output layer w = F(v ). The affine part Lk(vk-l) = Akvk-l + bk of each step uses the 
computed weights Ak and bk. 

All those weights together are chosen in the giant optimization of deep learning : 

Choose weights Ak and bk to minimize the total loss over all training samples. 

The total loss is the sum of individual losses on each sample. The loss function for 
least squares has the familiar form I IF( v) - true outputW. Often least squares is not 
the best loss function for deep learning. 

One input v = ~ One output w = 2 
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Here is a picture of the neural net, to show the structure of F( v ). The input layer 
contains the training samples v = vo. The output is their classification w = F(v). 
For perfect learning, w will be a (correct) digit from 0 to 9. The hidden layers 
add depth to the network. It is that depth which has allowed the composite function F 
to be so successful in deep learning. In fact the number of weights Aij and bj in the 
neural net is often larger than the number of inputs from the training samples v. 

This is a feed-forward fully connected network. For images, a convolutional neural net 
(CNN) is often appropriate and weights are shared-the diagonals of the matrices A 
are constant. Deep learning works amazingly well, when the architecture is right. 

Input sample Hidden Layer Hidden Layer Output 

Each diagonal in this neural net represents a weight to be learned by opti}Jlization. 
Edges from the squares contain bias vectors b1 , b2 , b3 • The other weights are in A 1 , A2 , A 3 • 

Linear Algebra and Learning from Data Wellesley-Cambridge Press 
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Linear algebra has moved to the center of machine learning, and we need to be there. 

A book was needed for the 18.065 course. It was started in the original 2017 class, 
and a first version went out to the 2018 class. I happily acknowledge that this book owes its 
existence to Ashley C. Fernandes. Ashley receives pages scanned from Boston and sends 
back new sections from Mumbai, ready for more work. This is our seventh book together 
and I am extremely grateful. 

Students were generous in helping with both classes, especially William Loucks and 
Claire Khodadad and Alex LeN ail and Jack Strang. The project from Alex led to his online 
code alexlenail.me/NN-SVG/ to draw neural nets (an example appears on page v). 
The project from Jack on http://www.teachyourmachine.com learns to recognize hand
written numbers and letters drawn by the user: open for experiment. See Section VII.2. 

MIT's faculty and staff have given generous and much needed help: 

Suvrit Sra gave a fantastic lecture on stochastic gradient descent (now an 18.065 video) 

Alex Postnikov explained when matrix completion can lead to rank one (Section IV.8) 

Tommy Poggio showed his class how deep learning generalizes to new data 

Jonathan Harmon and Tom Mullaly and Liang Wang contributed to this book every day 

Ideas arrived from all directions and gradually they filled this textbook. 

The Content of the Book 

This book aims to explain the mathematics on which data science depends : Linear algebra, 
optimization, probability and statistics. The weights in the learning function go into 
matrices. Those weights are optimized by "stochastic gradient descent". That word 
stochastic ( = random) is a signal that success is governed by probability not certainty. 
The law of large numbers extends to the law of large functions : If the architecture is 
well designed and the parameters are well computed, there is a high probability of success. 

Please note that this is not a book about computing, or coding, or software. Many books 
do those parts well. One of our favorites is Hands-On Machine Learning (2017) 
by Aun!lien Geron (published by O'Reilly). And online help, from Tensorftow and Keras 
and Math Works and Caffe and many more, is an important contribution to data science. 

Linear algebra has a wonderful variety of matrices.: symmetric, orthogonal, triangular, 
banded, permutations and projections and circulants. In my experience, positive definite 
symmetric matrices S are the aces. They have positive eigenvalues >.. and orthogonal 
eigenvectors q. They are combinations S = .A1q1 Qf + .A2 q2 q'f + · · · of simple rank-one 
projections qq T onto those eigenvectors. And if >..1 2 >..2 2 ... then >.. 1 q1 Qf is the most 
informative part of S. For a sample covariance matrix, that part has the greatest variance. 
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Chapter I In our lifetimes, the most important step has been to extend those ideas from 
symmetric matrices to all matrices. Now we need two sets of singular vectors, u's and v's. 
Singular values a replace eigenvalues .A. The decomposition A = a1 u1 v '[ + a2u2vi + · · · 
remains correct (this is the SVD). With decreasing a's, those rank-one pieces of A still 
come in order of importance. That "Eckart-Young Theorem" about A complements what 
we have long known about the symmetric matrix AT A: For rank k, stop at akukvi. 

II The ideas in Chapter I become algorithms in Chapter II. For quite large matrices, the 
a's and u's and v's are computable. For very large matrices, we resort to randomization: 
Sample the columns and the rows. For wide classes of big matrices this works well. 

III-IV Chapter III focuses on low rank matrices, and Chapter IV on many important 
examples. We are looking for properties that make the computations especially fast (in III) 
or especially useful (in IV). The Fourier matrix is fundamental for every problem with 
constant coefficients (not changing with position). That discrete transform is superfast 
because of the FFT : the Fast Fourier Transform. 

V Chapter V explains, as simply as possible, the statistics we need. The central ideas are 
always mean and variance: The average and the spread around that average. Usually 
we can reduce the mean to zero by a simple shift. Reducing the variance (the uncertainty) 
is the real problem. For random vectors and matrices and tensors, that problem becomes 
deeper. It is understood that the linear algebra of statistics is essential to machine learning. 

VI Chapter VI presents two types of optimization problems. First come the nice problems 
of linear and quadratic programming and game theory. Duality and saddle points are 
key ideas. But the goals of deep learning and of this book are elsewhere : Very large 
problems with a structure that is as simple as possible. "Derivative equals zero" is stilll 
the fundamental equation. The second derivatives that Newton would have used are 
too numerous and too complicated to compute. Even using all the data (when we take 
a descent step to reduce the loss) is often impossible. That is why we choose only 
a mini batch of input data, in each step of stochastic gradient descent. 

The success of large scale learning comes from the wonderful fact that randomization 
often produces reliability-when there are thousands or millions of variables. 

VII Chapter VII begins with the architecture of a neural net. An input layer is connected 
to hidden layers and finally to the output layer. For the training data, input vectors v 
are known. Also the correct outputs are known (often w is the correct classification of v). 
We optimize the weights x in the learning function F so that F ( x, v) ·is close to w 
for almost every training input v.- · 

Then F is applied to test data, drawn from the same population as the training data. 
IfF learned what it needs (without overfitting: we don't want to fit 100 points by 99th 
degree polynomials), the test error will also be low. The system recognizes images and 
speech. It translates between languages. It may follow designs like ImageNet or AlexNet, 
winners of major competitions. A neural net defeated the world champion at Go. 
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The function F is often piecewise linear-the weights go into matrix multiplications. 
Every neuron on every hidden layer also has a nonlinear "activation function". The 
ramp function ReLU(x) = (maximum of 0 and x) is now the overwhelming favorite. 

There is a growing world of expertise in designing the layers that make up F(x, v ). 
We start with fully connected layers-all neurons on layer n connected to all neurons on 
layer n + 1. Often CNN's are better-Convolutional neural nets repeat the same weights 
around all pixels in an image: a very important construction. Other layers are different. 
A pooling layer reduces the dimension. Dropout randomly leaves out neurons. Batch 
normalization resets the mean and variance. All these steps create a function that closely 
matches the training data. Then F(x, v) is ready to use. 
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THE MATRIX ALPHABET 
A Any Matrix Q Orthogonal Matrix 
c Circulant Matrix R Upper Triangular Matrix 
c Matrix of Columns R Matrix of Rows 
D Diagonal Matrix s Symmetric Matrix 
F Fourier Matrix s Sample Covariance Matrix 
I Identity Matrix T Tensor 
L Lower Triangular Matrix u Upper Triangular Matrix 
L Laplacian Matrix u Left Singular Vectors 
M Mixing Matrix v Right Singular Vectors 
M Markov Matrix X Eigenvector Matrix 
p Probability Matrix A Eigenvalue Matrix 
p Projection Matrix ~ Singular Value Matrix 

Video lectures: OpenCourseWare ocw.mit.edu and YouTube (Math 18.06 and 18.065) 

Introduction to Linear Algebra (5th ed) by Gilbert Strang, Wellesley-Cambridge Press 

Book websites: math.mit.edullinearalgebra and math.mit.edu/learningfromdata 
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Part I : Highlights of Linear Algebra 

Part I of this book is a serious introduction to applied linear algebra. If the reader's 
background is not great or not recent (in this important part of mathematics), 
please do not rush through this part. It starts with multiplying Ax and AB using the 
columns of the matrix A. That might seem only formal but in reality it is fundamental. 

Let me point to five basic problems studied in this chapter. 

Ax= b Ax= .Ax Av = uu Minimize IIAxll2/llxll 2 Factor the matrix A 

Each of those problems looks like an ordinary computational question : 

Find x Find x and>.. Find v, u, and u Factor A= columns times rows 

You will see how understanding (even more than solving) is our goal. We want to know 
if Ax = b has a solution x in the first place. "Is the vector b in the column space of A ?" 
That innocent word "space" leads a long way. It will be a productive way, as you will see.~ , 

The eigenvalue equation Ax = .Ax is very different. There is no vector b-we are 
looking only at the matrix A. We want eigenvector directions so that Ax keeps the 
same direction as x. Then along that line all the complicated interconnections of A have 
gone away. The vector A2x is just .A2x. The matrix eAt (from a differential equation) 
is just multiplying x by e>-t. We can solve anything linear when we know every x and .A. 

The equation Av = uu is close but different. Now we have two vectors v and u. 
Our matrix A is probably rectangular, and full of data. What part of that data matrix is 
important? The Singular Value Decomposition (SVD) finds its simplest pieces uuvT. 
Those pieces are matrices (column u times row vT). Every matrix is bu\lt from these 
orthogonal pieces. Data science meets linear algebra in the SVD. 

Finding those pieces uuv T is the object of Principal Component Analysis (PCA).' 

Minimization and factorization express fundamental applied problems. They lead to 
those singular vectors v and u. Computing the best x in least squares and the principal 
component v 1 in PCA is the algebra problem that .fits the data. We won't give codes
those belong online-we are working to explain ideas. 

When you understand column spaces and nullspaces and eigenvectors and singular 
vectors, you are ready for applications of all kinds: Least squares, Fourier transforms, 
LASSO in statistics, and stochastic gradient descent in deep learning with neural nets. 

1 



2 Highlights of Linear Algebra 

1.1 Multiplication Ax Using Columns of A 

We hope you already know some linear algebra. It is a beautiful subject-more useful 
to more people than calculus (in our quiet opinion). But even old-style linear algebra 
courses miss basic and important facts. This first section of the book is about matrix-vector 
multiplication Ax and the column space of a matrix and the rank. 

We always use examples to make our point clear. 

Example 1 Multiply A times x using the three rows of A. Then use the two columns : 

inner products 
By rows 2xi +4x2 of the rows [H] [ XI 

X2 ] 
[ 2x,+3x, 

3xl + 7x2 l with x = (xi,x2) 

[~ n[~:] m [n 
combination 

XI +x2 of the columns 
ai and a2 

By columns 

You see that both ways give the same result. The first way (a row at a time) produces 
three inner products. Those are also known as "dot products" because of the dot notation : 

(1) 

This is the way to find the three separate components of Ax. We use this for computing
but not for understanding. It is low level. Understanding is higher level, using vectors. 

The vector approach sees Ax as a "linear combination" of a I and a 2 . This is the funda
mental operation of linear algebra ! A linear combination of a 1 and a 2 includes two steps : 

(1) Multiply the columns a 1 and a2 by "scalars" XI and x2 

(2) Add vectors XI a I + x2a2 = Ax. 

Thus Ax is a linear combination of the columns of A. This is fundamental. 

This thinking leads us to the column space of A. The key idea is to take all combina
tions of the columns. All real numbers x1 and x2 are allowed-the space includes Ax for 
all vectors x. In this way we get infinitely many output vectors Ax. And we can see those 
outputs geometrically. 

In our example, each Ax is a vector in 3-dimensional space. That 3D space is called 
R3 . (The R indicates real numbers. Vectors with three complex components lie in the 
space C3 .) We stay with real vectors and we ask this key q'uestion: 

All combinations Ax = XI a I + x2a 2 produce what part of the full 3D space? 

Answer : Those vectors produce a plane. The plane contains the complete line in the 
direction of a 1 = (2, 2, 3), since every vector XIai is included. The plane also includes 
the line of all vectors x2a2 in the direction of a2. And it includes the sum of any vector 
on one line plus any vector on the other line. This addition fills out an infinite plane 
containing the two lines. But it does not fill out the whole 3-dimensional space R3 . 
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Definition The combinations of the columns fill out the column space of A. 

Here the column space is a plane. That plane includes the zero point (0, 0, 0) which is 
produced when x1 = x2 = 0. The plane includes (5, 6, 10) = a 1 +a2 and ( -1, -2, -4) = 

a 1 - a 2. Every combination x1a1 + x2a 2 is in this column space. With probability 1 it 
does not include the ra~dom point rand(3, 1) ! Which points are in the plane? 

b = (bb b2 , b3 ) is in the column space of A exactly when Ax= b has a solution (x1, x2) 

When you see that truth, you understand the column space C(A): The solution x shows 
how to express the right side bas a combination x1a 1 + x2a 2 of the columns. For some b 
this is impossible-they are not in the column space. 

Example 2 b = [ ~] is not in C(A). Ax = [ ~~~! ~~~] = [ ~] is unsolvable. 
1 3xl + 7x2 1 

The first two equations force x 1 = ~ and x2 = 0. Then equation 3 fails: 3 ( ~ )+7(0) = 1.5 

(not 1). This means that b = (1, 1, 1) is not in the column space-the plane of a 1 and a2. 

Example 3 What are the column spaces of A2 = [ ~ ! ~ ] and A3 = [ ~ ! ~ ] ? 
3 7 10 3 7 1 

Solution. The column space of A2 is the same plane as before. The new column (5, 6, 10) 
is the sum of column 1 + column 2. So a 3 = column 3 is already in the plane and adds 
nothing new. By including this "dependent" column we don't go beyond the original plane.\ 

The column space of A3 is the whole 3D space R3. Example 2 showed us that the new 
third column (1, 1, 1) is not in the plane C(A). Our column space C(A3) has grown bigger. 
But there is nowhere to stop between a plane and the full 3D space. Visualize the x - y 
plane and a third vector (x3, y3, z3) out of the plane (meaning that Z3 #- 0). They combine 
to give every vector in R3. 

Here is a total list of all possible column spaces inside R3. Dimensions 0, 1, 2, 3: 

Subspaces of R3 The zero vector (0, 0, 0) by itself 
A line of all vectors x1 a1 
A plane of all vectors x1a1 + x2a2 
The whole R3 with all vectors x1 a1 + x2a2 + x3a~ 

In that list we need the vectors a 1, a 2, a 3 to be "independent". The only combination'that 
gives the zero vector is Oa1 + Oa2 + Oa3. So a 1 by itself gives a line, a1 and a2 give a 
plane, a 1 and a 2 and a 3 give every vector b in R3. The zero vector is in every subspace ! 
In linear algebra language : 

o Three independent columns in R 3 produce an invertible matrix : AA - 1 =A--: 1 A= I. 
o Ax= 8requires x = (0,0,0). Then Ax= bhasexactlyonesolutionx = A-1 b. 

You see the picture for the columns of an n by n invertible matrix. Their combinations 
fill its column space: all of Rn. We needed those ideas and that language to go further. 



4 Highlights of Linear Algebra 

Independent Columns and the Rank of A 

After writing those words, I thought this short section was complete. Wrong. With 
just a small effort, we can find a basis for the column space of A, we can factor A into 
C times R, and we can prove the first great theorem in linear algebra. You will see the 
rank of a matrix and the dimension of a subspace. 

All this comes with an understanding of independence. The goal is to create a matrix C 
whose columns come directly from A-but not to include any column that is a combination 
of previous columns. The columns of C (as many as possible) will be "independent". 
Here is a natural construction of C from the n columns of A : 

If column 1 of A is not all zero, put it into the matrix C. 

If column 2 of A is not a multiple of column 1, put it into C. 

If column 3 of A is not a combination of columns 1 and 2, put it into C. Continue. 

At the end C will haver columns (r ::=:; n). 

They will be a "basis" for the column space of A. 

The left out columns are combinations of those basic columns in C. 

A basis for a subspace is a full set of independent vectors : All vectors in the space are 
combinations of the basis vectors. Examples will make the point. 

Example 4 If A = [ ~ ~ ~ ] then C = [ ~ ~ ] n : 3 columns ~n A 
0 1 2 0 1 r - 2 columns m C 

Column 3 of A is 2 (column 1) + 2 (column 2). Leave it out of the basis in C. 

Exampk! 5 If A ~ [ ~ ~ : ] fuen C ~ A 
n = 3 columns in A 
r = 3 columns in C 

This matrix A is invertible. Its column space is all of R3 . Keep all 3 columns. 

Example 6 If A ~ [ : ~ ~ ] fuen C ~ [ 
~ ] n = 3 columns in A 
1 r = 1 column in C 

The number r is the "rank" of A. It is also the rank of C. It counts independent columns. 
Admittedly we could have moved from right to left in A, starting with its last column. 
This would not change the final count r. Different basis, but always the same number of 
vectors. That number r is the "dimension" of the column space of A and C (same space). 

The rank of a matrix is the dimension of its column space. 
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The matrix C connects to A by a third matrix R: A = CR. Their shapes are 
(m by n) = (m by r) (r by n). I can show this "factorization of A" in Example 4 above: 

When C multiplies the first column [ ~] of R, this produces column 1 of C and A. 

When C multiplies the second column [ ~] of R, we get column 2 of C and A. 

(2) 

When C multiplies the third column[;] of R, we get 2(column 1) + 2(column2). 

This matches column 3 of A. All we are doing is to put the right numbers in R. 
Combinations of the columns of C produce the columns of A. Then A = C R stores this 
information as a matrix multiplication. Actually R is a famous matrix in linear algebra: 

R = rref(A) = row-reduced echelon form of A (without zero rows). 

Example 5 has C = A and then R = I (identity matrix). Example 6 has only one 
column inC, so it has one row in R: 

2 5 ] 
=CR 

All three matrices have rank r = 1 
Column Rank = Row Rank 

\ 

The number of independent columns equals the number of independent rows 

This rank theorem is true for every matrix. Always columns and rows in linear algebra ! 
The m rows contain the same numbers aij as the n columns. But different vectors. 

The theorem is proved by A = CR. Look at that differently-by rows instead of 
columns. The matrix R has r rows. Multiplying by C takes combinations of those rows. 
Since A = C R, we get every row of A from the r rows of R. And those r rows are 
independent, so they are a basis for the row space of A. The column space ~nd row space · 
of A both have dimension r, with r basis vectors--columns of C and rows of R. 

One minute: Why does R have independent rows ? Look again at Example 4. 

A = [ ~ ~ ~ l = [ ~ ~ l [ ~ ~ ; ] := ~~~;~~~nt 
012 01 tt 

ones and zeros 
" It is those ones and zeros in R that tell me : No row is a combination of the other rows. 

The big factorization for data science is the "SVD" of A-when the first factor C 
has r orthogonal columns and the second factor R has r orthogonal rows. 
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Problem Set 1.1 

1 Give an example where a combination of three nonzero vectors in R4 is the zero 
vector. Then write your example in the form Ax = 0. What are the shapes of A and 
x and 0? 

2 Suppose a combination of the columns of A equals a different combination of those 
columns. Write that as Ax = Ay. Find two combinations of the columns of A that 
equal the zero vector (in matrix language, find two solutions to Az = 0). 

3 (Practice with subscripts) The vectors a1, a2, ... , an are in m-dimensional space 
Rm, and a combination c1 a 1 + · · · + en an is the zero vector. That statement is at 
the vector level. 

(1) Write that statement at the matrix level. Use the matrix A with the a's in its 
columns and use the column vector c = (c1 , ... , cn)-

(2) Write that statement at the scalar level. Use subscripts and sigma notation to 
add up numbers. The column vector aj has components a 1j, a 2 j, ... , amj. 

4 Suppose A is the 3 by 3 matrix ones(3, 3) of all ones. Find two independent vec
tors x andy that solve Ax = 0 and Ay = 0. Write that first equation Ax = 0 
(with numbers) as a combination of the columns of A. Why don't I ask for a third 
independent vector with Az = 0 ? 

5 The linear combinations of v = (1, 1, 0) and w = (0, 1, 1) fill a plane in R3 . 

(a) Find a vector z that is perpendicular to v and w. Then z is perpendicular to 
every vector cv + dw on the plane: (cv + dw)T z = cvT z + dwT z = 0 + 0. 

(b) Find a vector u that is not on the plane. Check that u T z =f. 0. 

6 If three corners of a parallelogram are (1, 1), (4, 2), and (1, 3), what are all three of 
the possible fourth corners? Draw two of them. 

7 Describe the column space of A = [v w v + 2w]. Describe the nullspace of A: 
all vectors x = (x1, x2 , x3 ) that solve Ax = 0. Add the "dimensions" of that plane 
(the column space of A) and that line (the nullspaceof A): 

dimension of column space + dimension of nullspace = number of columns 

8 A = C R is a representation of the columns of A in the basis formed by the columns 
of C with coefficients in R. If Aij = P is 3 by 3, write down A and C and R. 

9 Suppose the column space of an m by n matrix is all of R3 . What can you say about 
m ? What can you say about n ? What can you say about the rank r ? 
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10 Find the matrices C1 and C2 containing independent columns of A1 and A2 : 

A1 = [ ~ ~ =~ l 
2 6 -4 

11 Factor each of those matrices into A = CR. The matrix R will contain the numbers 
that multiply columns of C to recover columns of A. 

This is one way to look at matrix multiplication : C times each column of R. 

12 Produce a basis for the column spaces of A1 and A2 . What are the dimensions of 
those column spaces-the number of independent vectors ? What are the ranks of 
A1 and A2 ? How many independent rows in A1 and A2 ? 

13 Create a 4 by 4 matrix A of rank 2. What shapes are C and R? 

14 Suppose two matrices A and B have the same column space. 

(a) Show that their row spaces can be different. 

15 

16 

17 

(b) Show that the matrices C (basic columns) can be different. 

(c) What number will be the same for A and B? 

If A = C R, the first row of A is a combination of the rows of R. Which part of 
which matrix holds the coefficients in that combination-the numbers that multiply 
the rows of R to produce row 1 of A ? 

The rows of R are a basis for the row space of A. What does that sentence mean ? 

For these matrices with square blocks, find A = CR. What ranks ? 

A _ [ zeros ones ] 
1 - ones ones 4 x 4 

A _ [ A1 ] 
2- Al 8 X 4 

A _ [ A1 
3 - A1 

\ 

18 If A = C R, what are the C R factors of the matrix [ ~ ~ ] ? 

19 "Elimination" subtracts a number eij times row j from row i : a "row operation." 
Show how those steps can reduce the matrix A in Example 4 to R (except ·that 
this row echelon form R has a row of zeros). The rank won't change! 

---t ---t R = [ ~ ~ ~ ] = rref(A)._ 
0 0 0 
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This page is about the factorization A = C R and its close relative A = C MR. 
As before, C has r independent columns taken from A. The new matrix R has r 
independent rows, also taken directly from A. The r by r "mixing matrix" is M. 
This invertible matrix makes A = C M R a true equation. 

The rows of R (not bold) were chosen to produce A = CR, but those rows of 
R did not come directly from A. We will see that R has the form M R (bold R). 

Rank-1 example 
A=CR=CMR 

In this case M is just 1 by 1. How do we find M in other examples of A = C M R? 
C and Rare not square. They have one-sided inverses. We invert cT C and RRT. 

IA=CMRj cT ART =eTc M RRT jM =(cTc)-1(cT ART)(RRT)-11 (*) 

Here are extra problems to give practice with all these rectangular matrices of rank r. 
eTc and RRT have rank r so they are invertible (see the last page of Section 1.3). 

20 Show that equation ( *) produces M = [ ~ ] in the small example above. 

21 The rank-2 example in the text produced A= CR in equation (2): 

A~ [ i H l [ i ~ F ~ ~ n ~ CR 

Choose rows 1 and 2 directly from A to go into R. Then from equation ( * ), find the 
2 by 2 matrix M that produces A = C MR. Fractions enter the inverse of matrices : 

Inverse of a 2 by 2 matrix [ a b ] - 1 1 [ d -b ] 
c d - ad - be -c a 

22 Show that this formula ( **) breaks down if [ ~ ] = m [ ~ ] : dependent columns. 

23 Create a 3 by 2 matrix A with rank 1. Factor A into A= CR and A= CMR. 

24 Create a 3 by 2 matrix A with rank 2. Factor A into .A = C MR. 

The reason for this page is that the factorizations A = C R and A = C M R have 
jumped forward in importance for large matrices. When C takes columns directly 
from A, and R takes rows directly from A, those matrices preserve properties 
that are lost in the more famous Q R and SVD factorizations. Where A = Q R and 
A = UI:VT involve orthogonalizing the vectors, C and R keep the original data: 

If A is nonnegative, so are C and R. If A is sparse, so are C and R. 
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1.2 Matrix-Matrix Multiplication AB 

Inner products (rows times columns) produce each of the numbers in AB = C: 

row2 of A 
column3of B 
give c23 inC 

That dot product c23 = (row 2 of A) • (column 3 of B) is a sum of a's times b's: 

3 

c23 = a21 b13 + a22 b23 + a23 b33 = L a2k bk3 

k=l 

n 

and Cij = L aik bkj . 

k=l 

This is how we usually compute each number in AB = C. But there is another way. 

9 

(1) 

(2) 

The other way to multiply AB is columns of A times rows of B. We need to see this ! 
I start with numbers to make two key points : one column u times one row v T produces a 
matrix. Concentrate first on that piece of AB. This matrix uvT is especially simple: 

"Outer 
product" 

[ 3 4 6 l "rank one 
matrix" 

" An m by 1 matrix (a column u) times a 1 by p matrix (a row v T) gives an m by p matrix! 
Notice what is special about the rank one matrix uv T: 

All column' of uv T ""' multipl"' of u ~ [ ~ ] All mw' ""' multipl"' of v T ~ [ 3 4 6] 

The column space of uv T is one-dimensional: the line in the direction of u. 
The dimension of the column space (the number of independent columns) is the rank 
of the matrix-a key number. All nonzero matrices uv T have rank one. They are the 
perfect building blocks for every matrix. · 

Notice also: The row space of uv T is the line through v. By definition, the. row 
space of any matrix A is the column space C( AT) of its transpose AT. That way we stay 
with column vectors. In the example, we transpose uv T (exchange rows with columns) 
to get the matrix vu T : 

12] T 
12 

6 
[ ~ 

12 

6 
8 

12 

[ 2 2 1 l 
=VUT. 
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We are seeing the clearest possible example of the first great theorem in linear algebra: 

Row rank = Column rank r independent columns {::} r independent rows 

A nonzero matrix uv T has one independent column and one independent row. All columns 
are multiples of u and all rows are multiples of v T. The rank is r = 1 for this matrix. 

AB = Sum of Rank One Matrices 

We tum to the full product AB, using columns of A times rows of B. Let a 1 , a 2 , ... , an 
be the n columns of A. Then B must have n rows b~, b;, ... , b~. The matrix A can 
multiply the matrix B. Their product AB is the sum of columns ak times rows b~ : 

Column-row multiplication of matrices 

(3) 

Here is a 2 by 2 example to show the n = 2 pieces (column times row) and their sum AB : 

[ 1 0] [ 2 4] = [ 1] [ 2 4] [ 0] [ 0 5] = [ 2 4] [ 0 0] = [ 2 4] (4) 
3 1 0 5 3 + 1 6 12 + 0 5 6 17 

We can count the multiplications of number times number. Four multiplications to get 
2, 4, 6, 12. Four more to get 0, 0, 0, 5. A total of 23 = 8 multiplications. Always there 
are n 3 multiplications when A and Bare n by n. And rnnp multiplications when AB = 

( m by n) times ( n by p) : n rank one matrices, each of those matrices is m by p. 
The count is the same for the usual inner product way. Row of A times column of B 

needs n multiplications. We do this for every number in AB : mp dot products when AB 
ism by p. The total count is again rnnp when we multiply (m by n) times (n by p). 

rows times columns rnp inner products, n multiplications each rnnp 
columns times rows n outer products, rnp multiplications each rnnp 

When you look closely, they are exactly the same multiplications aik bkj in different 
orders. Here is the algebra proof that each number Cij in C = AB is the same by outer 
products in (3) as by inner products in (2): 

n 

The i, j entry of akb~ is aikbkj. Add to find Cij = L aik bkj = row i · column j. 
k=l 
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Insight from Column times Row 

Why is the outer product approach essential in data science ? The short answer is : We are 
looking for the important part of a matrix A. We don't usually want the biggest number 
in A (though that could be important). What we want more is the largest piece of A. And 
those pieces are rank one matrices u v T. A dominant theme in applied linear algebra is : 

Factor A into CR and look at the pieces ckr~ of A= CR. 

Factoring A into C R is the reverse of multiplying C R = A. Factoring takes longer, 
especially if the pieces involve eigenvalues or singular values. But those numbers have 
inside information about the matrix A. That information is not visible until you factor. 

Here are five important factorizations, with the standard choice of letters (usually A) 
for the original product matrix and then for its factors. This book will explain all five. 

I A=LU A=QR A= XAX-1 A= U:EVT 

At this point we simply list key words and properties for each of these factorizations. 

1 A = LU comes from elimination. Combinations of rows take A to U and U back 

to A. The matrix L is lower triangular and U is upper triangular as in equation ( 4). 

2 A = Q R comes from orthogonalizing the columns a 1 to an as in "Gram-Schmidt". 

Q has orthonormal columns ( QT Q = I) and R is upper triangular. 

3 s = Q AQT comes from the eigenvalues A1' 0 0 0 ' An of a symmetric matrix s = sT 0' 

Eigenvalues on the diagonal of A. Orthonormal eigenvectors in the columns of Q. 

4 A = X AX- 1 is diagonalization when A is n by n with n independent eigenvectors. 

Eigenvalues of A on the diagonal of A. Eigenvectors of A in the columns of X. 

5 A = U~VT is the Singular Value Decomposition of any matrix A (square or not). 

Singular values a 1 , ... , a r in ~. Orthonormal singular vectors in U and V. 

Let me pick out a favorite (number 3) to illustrate the idea. This special.factorization 
QAQT starts with a symmetric matrix S. That matrix has orthogonal unit eigenvectors 
q 1 , ... , qn. Those perpendicular eigenvectors (dot products= 0) go into the columns of Q. 

S and Q are the kings and queens of linear algebra: 

Symmetric matrix S 

Orthogonal matrix Q 

All Sij = Sji 

All Qi • q3· = { 0 for i i= j-
1 for i = j 
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The diagonal matrix A contains real eigenvalues A1 to An. Every real symmetric matrix 
S has n orthonormal eigenvectors q 1 to qn. When multiplied by S, the eigenvectors keep 
the same direction. They are just rescaled by the number A : 

I Eigenvector q and eigenvalue .X Sq= Aq (5) 

Finding A and q is not easy for a big matrix. But n pairs always exist when S is symmetric. 
Our purpose here is to see how SQ = QA comes column by column from Sq = Aq: 

Multiply SQ = QA by Q-1 = QT to getS= QAQT =a symmetric matrix. Each 
eigenvalue Ak and each eigenvector qk contribute a rank one piece Akqkqf to S. 

All symmetric The transpose of qiqT is qiqT (8) 

Please notice that the columns of QA are A1q1 to Anqn. When you multiply a matrix on 
the right by the diagonal matrix A, you multiply its columns by the A's. 

We close with a comment on the proof of this Spectral Theorem S = QAQT : 
Every symmetric S has n real eigenvalues and n orthonormal eigenvectors. Section 1.6 
will construct the eigenvalues as the roots of the nth degree polynomial Pn(A) =deter
minant of S- AI. They are real numbers when S = ST. The delicate part of the proof 
comes when an eigenvalue Ai is repeated- it is a double root or an Mth root from a factor 
(A - Aj )M. In this case we need to produce M independent eigenvectors. The rank of 
S - Aj I must be n - M. This is true when S = ST. But it requires a proof. 

Similarly the Singular Value Decomposition A = UEVT requires extra patience when 
a singular value a- is repeated M times in the diagonal matrix E. Again there are M 
pairs of singular vectors v and u with Av = a-u. Again this true statement requires proof. 

Notation for rows We introduced the symbols bi, ... , b; for the rows of the second 
matrix in AB. You might have expected bi, ... , b; and that was our original choice. But 
this notation is not entirely clear-it seems to mean the transposes of the columns of B. 
Since that right hand factor could be U or R or QT or x- 1 or VT, it is safer to say 
definitely : we want the rows of that matrix. 

G. Strang, Multiplying and factoring matrices, Amer. Math. Monthly 125 (2018) 223-230. 

G. Strang, Introduction to Linear Algebra, 5th ed., Wellesley-Cambridge Press (2016). 
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Problem Set 1.2 

1 Suppose Ax = 0 and Ay = 0 (where x andy and 0 are vectors). Put those two 
statements together into one matrix equation AB = C. What are those matrices B 
and C ? If the matrix A is m by n, what are the shapes of B and C? 

2 Suppose a and b are column vectors with components all ... , am and b1 , ... , bp. 
Can you multiply a times b T (yes or no) ? What is the shape of the answer ab T ? 
What number is in row i, column j of ab T ? What can you say about aa T ? 

3 (Extension of Problem 2: Practice with subscripts) Instead of that one vector a, 
suppose you have n vectors a 1 to an in the columns of A. Suppose you have n 
vectors b'[, .. . , b~ in the rows of B. 

(a) Give a "sum of rank one" formula for the matrix-matrix product AB. 

(b) Give a formula for the i, j entry of that matrix-matrix product AB. Use sigma 
notation to add the i,j entries of each matrix akbf, found in Problem 2. 

4 Suppose B has only one column (p = 1). So each row of B just has one number. 
A has columns a1 to an as usual. Write down the column times row formula 
for AB. In words, the m by 1 column vector AB is a combination of the __ . 

5 Start with a matrix B. If we want to take combinations of its rows, we premultiply 
by A to get AB. If we want to take combinations of its columns, we postmultiply by 
C to get BC. For this question we will do both. 

Row operations then column operations First AB then (AB)C ' 

Column operations then row operations First BC then A(BC) 

The associative law says that we get the same final result both ways. 

Verify (AB)C = A(BC) for A= [ ~ ~] B = [ ~: ~~] C = [ ~ ~ l 
6 If A has columns a1, a2, a3 and B = I is the identity matrix, what are the rank one 

matrices a1b~ and a2b; and a 3bi? They should add to AI= A. 

7 Fact: The columns of AB are combinations of the columns of A. Then the column 
space of AB is contained in the column space of A. Give an exampla of A and B 
for which AB has a smaller column space than A. 

8 To compute C = AB = ( m by n) ( n by p ), what order of the same three commands 
leads to columns times rows (outer products)? 

Rows times columns 
Fori= 1 tom 

~ For j = 1 top 
Fork= 1 ton 

C(i,j) = C(i,j) + A(i, k) * B(k,j) 

Columns times rows 
For .. . 
For .. . 
For .. . 
C= 
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1.3 The Four Fundamental Subspaces 

This section will explain the "big picture" of linear algebra. That picture shows how every 
m by n matrix A leads to four subspaces-two subspaces of Rrn and two more of Rn. 
The first example will be a rank one matrix uvT, where the column space is the line 
through u and the row space is the line through v. The second example moves to 2 by 3. 

The third example (a 5 by 4 matrix A) will be the incidence matrix of a graph. 
Graphs have become the most important models in discrete mathematics-this example 
is worth understanding. All four subspaces have meaning on the graph. 

Example 1 A = [ ! ~ ] = uv T has m = 2 and n = 2. We have subspaces of R2 • 

1 The column space C(A) is the line through u = [ ~ ] . Column 2 is on that line. 

2 The row space C( AT) is the line through v = [ ; ] . Row 2 of A is on that line. 

3 The null space N (A) is the line through x = [ _ ~ ] . Then Ax = 0. 

4 The left nullspace N(AT) is the line through y = [ _ i ] . Then AT y = 0. 

I constructed those four subspaces in Figure 1.1 from their definitions : 

The column space C(A) contains all combinations of the columns of A 

The row space C(AT) contains all combinations of the columns of AT 

The nullspace N(A) contains all solutions x to Ax= 0 

The left nullspace N (AT) contains all solutions y to AT y = 0 

Nullspace 
N(A) 

Column space 
C(A) 

Figure 1.1: The four fundamental subspaces ( 4 infinite lines) for A = [ ~ ~ ] . 
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That example had exactly one u and v and :z: andy. All four subspaces were !-dimensional 
Gust lines). Always the u's and v's and :z:'s andy's will be independent vectors-they give 
a "basis" for each of the subspaces. A larger matrix will need more than one basis vector 
per subspace. The choice of basis vectors is a crucial step in scientific computing. 

[ 1 -2 -2] 3 2 Example 2 B = 3 _ 6 _ 6 has m = 2 and n = 3. Subspaces in R and R . 

Going from A to B, two subspaces change and two subspaces don't change. The column 
space of B is still in R2. It has the same basis vector. But now there are n = 3 numbers in 
the rows of B and the left half of Figure 1.2 is in R3 . There is still only one v in the row 
space ! The rank is still r = 1 because both rows of this B go in the same direction. 

With n = 3 unknowns and only r = 1 independent equation, B:z: = 0 will have 
3 - 1 = 2 independent solutions :z:1 and :z:2 . All solutions go into the nullspace. 

B:z:- [ 1 - 3 
-2 
-6 =~ ] [ ~ ] ~ [ ~ ] bas solutlons x, ~ [ ~ ] and x, ~ [ ~ ] 

In the textbook Introduction to Linear Algebra, those vectors :z:1 and :z:2 are called 
"special solutions". They come from the steps of elimination-and you quickly see that 
B:z:1 = 0 and B:z:2 = 0. But those are not perfect choices in the nullspace of B because 
the vectors :z:1 and :z:2 are not perpendicular. 

This book will give strong preference to perpendicular basis vectors. Section 11.2 shows 
how to produce perpendicular vectors from independent vectors, by "Gram-Schmidt" . 

Our nullspace N(B) is a plane in R3 . We can see an orthonormal basis v 2 and v 3 

in that plane. The v2 and V3 axes make a 90 ° angle with each other and with v1. 

. , 

Row space = infinite line through v 1 

Nullspace = infinite plane of v2 and v 3 

n = 3 columns of B 

rowof B 

1 
V3 =-

3 

r = 1 independent column 

orthonormal 
basis for R3 ' 

Figure 1.2: ~ow space and nullspace of B = [ ! =~ =~ ] : Line perpendicular to plane ! 
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Counting Law : r independent equations Ax = 0 have n - r independent solutions 

Example 3 from a graph Here is an example that has five equations (one for every 
edge in the graph). The equations have four unknowns (one for every node in the graph). 
The matrix in Ax = b is the 5 by 4 incidence matrix of the graph. 

A has 1 and -1 on every row, to show the end node and the start node for each edge. 

-Xl +x2 = bl 

Differences Ax = b -Xl +x3 = b2 

across edges 1, 2, 3, 4, 5 -X2 +x3 = b3 
between nodes 1, 2, 3, 4 -X2 +x4 = b4 

-X3 +x4 = bs 

When you understand the four fundamental subspaces for this incidence matrix (the column 
spaces and the nullspaces for A and AT) you have captured a central idea of linear algebra. 

X1 edges 
-1 1 0 

~I 
1 

-1 0 1 2 
X2 X3 A= 0 -1 1 3 

0 -1 0 4 
0 0 -1 5 

X4 
nodes 1 2 3 4 

This "graph" has 5 edges and 4 nodes. A is its 5 by 4 incidence matrix. 

The nullspace N(A) To find the nullspace we set b = 0 in the 5 equations above. 
Then the first equation says x1 = x2. The second equation is X3 = x 1 . Equation 4 is x2 = X4. 

All four unknowns x1, x2, x3, X4 have the same value c. The vector x = (1, 1, 1, 1) and 
all vectors x = ( c, c, c, c) are the solutions to Ax = 0. 

That nullspace is a line in R4 • The special solution x = (1, 1, 1, 1) is a basis for N(A). 
The dimension of N(A) is 1 (one vector in the basis, a line has dimension 1). The rank of 
A must be 3, since n - r = 4 - 3 = 1. From the rank r = 3, we now know the dimensions 
of all four subspaces. 

dimension of row space = r = 3 
dimension of nullspace = n - r = 1 

dimension of cplumn space = r = 3 
dimension of nullspace of AT = m - r = 2 
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The column space C(A) There must be r = 4- 1 = 3 independent columns. 
The fast way is to look at the first 3 columns. They give a basis for the column space of A : 

Columns 
-1 1 0 

Column 4 
1,2,3 

-1 0 1 
is a combination 

0 -1 1 
of this A are 

0 -1 0 
of those three 

independent 
0 0 -1 

basic columns 

"Independent" means that the only solution to Ax = 0 is (x1, x2, x3) = (0, 0, 0). 
We know x3 = 0 from the fifth equation Ox1 + Ox2 - x3 = 0. We know X2 = 0 from 
the fourth equation Ox1 - x2 + Ox3 = 0. Then we know x1 = 0 from the first equation. 

Column 4 of the incidence matrix A is the sum of those three columns, times -1. 

The row space C( AT) The dimension must again be r = 3, the same as for columns. 
But the first 3 rows of A are not independent: row 3 = row 2 - row 1. The first three inde
pendent rows are rows 1, 2, 4. Those rows are a basis (one possible basis) fortherow space. 

Edges 1, 2, 3 form a loop in the graph: Dependent rows 1, 2, 3. 
Edges 1, 2, 4 form a tree in the graph: Independent rows 1, 2, 4. 

~I 1 2 

Y3 = 1 

This y solves AT y = 0 Trees have no loops! 

' The left nullspace N(AT) Now we solve ATy = 0. Combinations of the rows 
give zero. We already noticed that row 3 = row 2 - row 1, so one solution is y = 

(1, -1, 1, 0, 0). I would say: this y comes from following the upper loop in the graph: 
forward on edges 1 and 3 and backward on edge 2. 

Another y comes from going around the lower loop in the graph : forward on 4, back 
on 5 and 3. This y = (0, 0, -1, 1, -1) is an independent solution of ATy = 0. The 
dimension of the left nullspace N(AT) is rn- r =5-3= 2. So those two y's are a basis 
for the left nullspace. 

You may ask how "loops" and "trees" got into this problem. That didn't have to happen. 
We could have used elimination to solveATy = 0. The4 by 5 matrix AT wouldhavet):rree 
pivots. The nullspace of AT has dimension two: m - r = 5 - 3 = 2. But loops and trees 
identify dependent rows and independent rows in a beautiful way. 
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The equations AT y = 0 give "currents" Y1, Yz, Y3, Y4, Y5 on the five edges of the graph. 
Flows around loops obey Kirchhoff's Current Law : in = out. Those words apply 
to an electrical network. But the ideas behind the words apply all over engineering and 
science and economics and business. Balancing forces and flows and the budget. 

Graphs are the most important model in discrete applied mathematics. You see graphs 
everywhere: roads, pipelines, blood flow, the brain, the Web, the economy of a country 
or the world. We can understand their incidence matrices A and AT. In Section 111.6, 
the matrix AT A will be the "graph Laplacian". And Ohm's Law will lead to AT CA. 

Four subspaces for a connected graph with rn edges and n nodes : incidence matrix A 

N(A) 
C(AT) 

C(A) 
N(AT) 

The constant vectors (c, c, ... , c) make up the !-dimensional nullspace of A. 
The r edges of a tree give r independent rows of A : rank = r = n - 1. 

Voltage Law: The components of Ax add to zero around all loops. 

Current Law: ATy = (flow in)- (flow out)= 0 is solved by loop currents. 

There are rn - r = rn - n + 1 independent small loops in the graph. 

The big picture 

dimension n - r 

N(AT) 
dimension rn - r 

Figure 1.3: The Four Fundamental Subspaces: Their dimensions add ton and m. 
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The Ranks of AB and A + B 

This page establishes key facts about ranks : When we multiply matrices, the rank 
cannot increase. You will see this by looking at column spaces and row spaces. And there 
is one special situation when the rank cannot decrease. Then you know the rank of AB. 
Statement 4 will be important when data science factors a matrix into UV or CR. 

Here are five key facts in one place : inequalities and equalities for the rank. 

1 Rank of AB ~ rank of A Rank of AB ~ rank of B 

2 Rank of A + B ~ (rank of A) + (rank of B) 

3 Rank of AT A = rank of AA T = rank of A = rank of AT 

4 If A is m by r and B is r by n-both with rank r-then AB also has rank r 

Statement 1 involves the column space and row space of AB : 

C(AB) is contained in C(A) 

Every column of AB is a combination of the columns of A (matrix multiplication) 
Every row of AB is a combination of the rows of B (matrix multiplication) 

Remember from Section 1.1 that row rank = column rank. We can use rows or columns. 
The rank cannot grow when we multiply AB. Statement 1 in the box is frequently used. 

Statement 2 Each column of A+ B is the sum of (column of A) + (column of B). 

rank (A+ B) :::; rank (A)+ rank (B) is always true. It combines bases for C(A) and C(B}l 

rank (A + B) = rank (A) + rank (B) is not always true. It is certainly false if A = B = I. 

Statement 3 A and AT A both have n columns. They also have the same nullspace. 
(This is Problem 6.) So n - r is the same for both, and the rank r is the same for both. 
Then rank( AT) :::; rank( AT A) =rank( A). Exchange A and AT to show their equal ranks. 

Statement 4 We are told that A and B have rank r. By statement 3, AT A and BBT have 
rank r. Those are r by r matrices so they are invertible. So is their product AT ABET. Then 

r = rankof(ATABBT):::; rankof(AB) byStatementl: AT,BTcan'tincreaserank 

We also know rank (AB):::; rank A= r. So we have proved that AB has rank exactly r. 

Note This does not mean that every product of rank r matrices will have rank r. 
Statement 4 assumes that A has exactly r columns and B has r rows. BA can easily fail. 

B = [ 1 2 -3 ] AB has rank 1 But BA is zero! 
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Problem Set 1.3 

1 Show that the nullspace of AB contains the nullspace of B. If Bx = 0 then •.• 

2 Find a square matrix with rank (A2 ) <rank (A). Confirm that rank (AT A) =rank (A). 

3 How is the nullspace of C related to the nullspaces of A and B, if C = [ ~ ] ? 

4 If row space of A= column space of A, and also N(A) = N(AT), is A symmetric? 

5 Four possibilities for the rank r and size m, n match four possibilities for Ax = b. 

Find four matrices A1 to A4 that show those possibilities: 

r=m=n 
r=m<n 
r=n<m 
r < m, r < n 

Atx = b has 1 solution for every b 
A2x = b has 1 or oo solutions 
A3x = b has 0 or 1 solution 
A4x = b has 0 or oo solutions 

6 (Important) Show that AT A has the same nullspace as A. Here is one approach : 

First, if Ax equals zero then AT Ax equals __ . This proves N(A) C N(AT A). 

Second, if AT Ax= 0 then xT AT Ax= IIAxW = 0. Deduce N(AT A)= N(A). 

7 Do A2 and A always have the same nullspace? A is a square matrix. 

8 Find the column space C(A) and the nullspace N(A) of A= [ ~ ~ ] . Remember 

that those are vector spaces, not just single vectors. This is an unusual example 
with C(A) = N(A). It could not happen that C(A) = N(AT) because those two 
subspaces are orthogonal. 

9 Draw a square and connect its corners to the center point: 5 nodes and 8 edges. 
Find the 8 by 5 incidence matrix A of this graph (rank r = 5 - 1 = 4). 
Find a vector x in N(A) and 8- 4 independent vectors yin N(AT). 

1 0 If N (A) is the zero vector, what vectors are in the nullspace of B = [A A A] ? 

11 For subspaces SandT of R10 with dimensions 2 and 7, what are all the possible 
dimensions of 

(i) S n T = {all vectors that are in both subspaces} 

(ii) S + T = {all sums s + t with sinS and tinT} 

(iii) S.L = {all vectors in R 10 that are perpendicular to every vector in S}. 
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1.4 Elimination and A = LU 

The first and most fundamental problem of linear algebra is to solve Ax = b. We are given 
the n by n matrix A and the n by 1 column vector b. We look for the solution vector x. 
Its components x 1 , x2 , ... , Xn are the n unknowns and we have n equations. Usually 
a square matrix A means only one solution to Ax = b (but not always). We can find 
x by geometry or by algebra. 

This section begins with the row and column pictures of Ax = b. Then we solve the 
equations by simplifying them-eliminate x 1 from n- 1 equations to get a smaller system 
A2 x 2 = b2 of size n- 1. Eventually we reach the 1 by 1 system AnXn = bn and we know 
Xn = bn/An. Working backwards produces Xn-l and eventually we know x2 and x 1 . 

The point of this section is to see those elimination steps in terms of rank 1 matrices. 
Every step (from A to A2 and eventually to An) removes a matrix fu*. Then the 
original A is the sum of those rank one matrices. This sum is exactly the great factorization 
A = LU into lower and upper triangular matrices L and U -as we will see. 

A = L times U is the matrix description of elimination without row exchanges. 
That will be the algebra. Start with geometry for this 2 by 2 example. 

2 equations and 2 unknowns 
2 by 2 matrix in Ax = b 

X- 2y = 1 
2x + 3y = 9 

(1) 

Notice! I multiplied Ax using inner products (dot products). Each row of the matrix A 
multiplied the vector x. That produced the two equations for x andy, and tlle two straight 
lines in Figure I.4. They meet at the solution x = 3, y = 1. Here is the row picture. 

y 

3 

2 
2x + 3y = 9 A X b 

1 
7y = 7 X- 2y = 1 

At the solution 

-1 

Figure I.4: The row picture of Ax = b: Two lines meet at the solution x = 3, y = 1. 

Figure I.4 also includes the horizontal line 7y = 7. I subtracted 2 (equation 1) from 
(equation 2). The unknown x has been eliminated from 7y = 7. This is the algebra: 

[ ~ -2 
3 

becomes 
x=3 
y=l 
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Column picture One vector equation instead of two scalar equations. We are looking 
for a combination of the columns of A to match b. Figure 1.5 shows that the right combi
nation (the solution x) has the same x = 3 andy= 1 that we found in the row picture. 

Ax is a combination of columns 
The columns combine to give b 

Adding 3 (column 1) to 1 (column 2) gives bas a combination of the columns. 

column 2 = [ - ~ ] 

-2 

I 
I 

I 
I 

9 
I 

I 

b= 
\ 

\ 
\ 

\ 
\ 

\ 

\ 3 (column 1) = [ ~ ] 

3 

Figure 1.5: The column picture: 3 times (column 1) + 1 times (column 2) gives b. 

For n = 2, the row picture looked easy. But for n ~ 3, the column picture wins. 
Better to draw three column vectors than three planes! Three equations for x = (x, y, z). 

Row picture in 3D Three planes meet at one point. A plane for each equation. 

Column picture in 3D Three column vectors combine to give the vector b. 

Solving Ax = b by Elimination 

To visualize three planes meeting in R3 is not easy. And n "hyperplanes" meeting at a 
point in Rn is truly mind-bending. A combination of the column vectors is simpler: The 
matrix A must have 3 (or n) independent columns. The columns must not all lie in the 
same plane in R3 (or the same hyperplane in Rn). This translates to a statement in algebra: 

Independent columns The only solution to Ax = 0 is the zero vector x = 0. 

In words, independence means that the only combination that adds to the zero vector has 
zero times every column. Then the only solution to Ax = 0 is x = 0. When that is true, 
elimination will solve Ax = b to find the only combination of columns that produces b. 
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Here is the whole idea, column by column, when elimination succeeds in the usual order: 

Column 1. Use equation 1 to create zeros below the first pivot. Pivots can't be zero! 

Column 2. Use the new equation 2 to create zeros below the second pivot. 

Columns 3 to n. Keep going to find the upper triangular U: n pivots on its diagonal. 

[ 
::z: ::z: ::z: ::z: l 

Ste 1 0 x x x . 
p 0 X X X 

0 X X X 

[ 
::z: ::z: ::z: ::z: l 0 ::z: ::z: ::z: 

Step 2 0 0 x x . 

0 0 X X 

r ::z: ::z: ::z: ::z:] 
F. I U= I ::z: ::z: ::z: 

ma l . ::z: ::z: 
::z: 

Row 1 is the first pivot row-it doesn't change. I multiplied that row by numbers .€21, .€31, .€41 

and subtracted from rows 2, 3, 4 of A. The numbers to get zeros in the first column were 

Multipliers 0 _ a21 031 __ aa1 0 _ a41 
.C.21-- .{. .C.41--

au au au 

If the corner entry is an = 3 =first pivot, and a21 below it is 12, then .€21 = 12/3 = 4. 

Step 2 uses the new row 2 (the second pivot row). Multiply that row by .€32 and .e42· 

Subtract from rows 3 and 4 to get zeros in the second column. Continue all the way to U. 

So far we have worked on the matrix A (not on b). Elimination on A needs ~n3 

separate multiplications and additions-far more than the n 2 steps for each right hand 
side b. We need a record of that work, and the perfect format is a product A = LU 
of triangular matrices : lower triangular L times upper triangular U. \ 

The Factorization A = LU 

How is the original A related to the final matrix U ? The multipliers .eij got us there 
in three steps. The first step reduced the 4 by 4 problem to a 3 by 3 problem, by removing 
multiples of row 1 : 

Key idea : Step 1 
removes £1 u~ 

What have we done? The first matrix on the right was removed from A. That removed 
matrix is a column vector 1, .€21, .€31 , .€41 times row 1. It is the rank 1 matrix i 1 u~ ! 

3 by 3 ~xample 

Remove rank 1 matrix 

Column I row to zero 
[ ~ ~ ~]-[~ ~ ~]=[~ ~ ~]=[~ 0 0] 

2 7 8 2 4 6 0 3 2 0 A 2 
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The next step deals with column 2 of the remaining matrix A2. The new row 2 is 
u2 = second pivot row. We multiply it by £12 = 0 and £22 = 1 and £32 and £42· Then 
subtract i 2 u; from the four rows. Now row 2 is also zero and A2 shrinks down to A3 . 

Step 2 [ 
0 times pivot row 2] [ 0 0 0 0 l 

A = .e * 1 times pivot row 2 0 0 0 0 
1 ul + £32 times pivot row 2 + 0 0 !A-l · 

£42 times pivot row 2 0 0 L.::J 
(4) 

That step was a rank one removal of i2u; with £2 = (0, 1, £32 , £42) and u; =pivot 
row 2. Step 3 will reduce the 2 by 2 matrix A3 to a single number A4 (1 by 1). At this point 
the pivot row uj = row 1 of A3 has only two nonzeros. And the column £3 is (0, 0, 1, £43). 

This way of looking at elimination, a column at a time, directly produces A= L U. 
That matrix multiplication LU is always a sum of columns of L times rows of U : 

A= £1 u~ +i2u; +iau; +i4u: = [ ~:: 
.e41 

0 l [ pivot row 1 l 
0 p~vot row 2 =L U. (S) 
0 p1votrow 3 
1 pivot row 4 

Elimination factored A = LU into a lower triangular L times an upper triangular U 

Notes on the LU factorization We developed A = LU from the key idea of elimina
tion: Reduce the problem size from n to n - 1 by eliminating x1 from the last n - 1 
equations. We subtracted multiples of row 1 (the pivot row). So the matrix we removed 
had rank one. After n steps, the whole matrix A is a sum of n rank one matrices. That 
sum-by the column times row rule for matrix multiplication-is exactly L times U. 

This proof is not in my textbook Introduction to Linear Algebra. The idea there was to 
look at rows of U instead of working with columns of A. Row 3 came from subtracting 
multiples of pivot rows 1 and 2 from row 3 of A : 

Row 3 of U = (row 3 of A)- £31 (row 1 of U)- £32 (row 2 of U). (6) 

Rewrite this equation to see that the row [£31 £32 1 J of L is multiplying the matrix U : 

Row 3 of A= £31 (row 1 of U) + £32 (row 2 ~f U) + 1 (row 3 of U). (7) 

This is row 3 of A= LU. The key is that the subtracted rows were pivot rows, and 
already in U. With no row exchanges, we have again found A= LU. 
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The Solution to Ax = b 

We must apply the same operations to the right side of an equation and to the left side. 
The direct way is to include bas an additional column-we work with the matrix [A b]. 
Now our elimination steps on A (they multiplied A by L -l to give U) act also on b: 

Start from [A b] = [ LU b] Elimination produces [ U L -lb] = [ U c] . 
The steps from A to U (upper triangular) will change the right side b to c. Elimination 
on Ax = b produces the equations U x = c that are ready for back substitution. 

~~ ! ~~ : 1~ ~ [ ~ ~ 1~ ] ~ [ ~ ~ ~ ] = [ u c] 0 
(8) 

L subtracted 2 times row 1 from row 2. Then the triangular system U x = c is solved 
upwards-back substitution-from bottom to top : 

2x + 3y = 8 
1y= 2 

gives y = 2 and then X= 1. Ux = c gives X= u-1c. 

Looking closely, the square system Ax = b became two triangular systems : 

Ax= b split into Lc = b and U x =c. Elimination gave c and back substitution gave x. 

The final result is X = u-l c = u-l L -l b = A-lb. The correct solution has been found. l 

Please notice Those steps required nonzero pivots. We divided by those numbers. 
The first pivot was au. The second pivot was in the comer of A2, and the nth pivot was in 
the 1 by 1 matrix An. These numbers ended up on the main diagonal of U. 

What do we do if a 11 = 0 ? Zero cannot be the first pivot. If there is a nonzero 
number lower down in column 1, its row can be the pivot row. Good codes will choose the 
largest number to be the pivot. They do this to reduce errors, even if au is not zero. 

We look next at the effect of those row exchanges on A = LU. A matrix P will enter . 

. 
Row Exchanges (Permutations) 

Here the largest number in column 1 is found in row 3 : a31 = 2. Row 3 will be the first 
pivot row ui. That row is multiplied by .e21 = ~ and subtracted from row 2. 

u~ = row 3 of A 
= first pivot row 

[ 
0 1 

A= 1 3 
2 4 

(9) 
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Again that elimination step removed a rank one matrix .e1 ui. But A2 is in a new place. 

[ ~ ~ ~ l [ 1~2] ( 2 4 8 ) + [ ~ [] l +-- A2 (10) 
248 1 000 

Elimination on A2 produces two more rank one pieces. Then A = LU has three pieces : 

[ 1][0 1 1] [0](0 0 2] [ 0 1 0][2 4 8] 
l1u~+ ~ + ~ = 1{2 ~ ~ ~ ~ ; . (11) 

That last matrix U is triangular but the L matrix is not ! The pivot order for this A was 
3, 1,2. If we want the pivot rows to be 1, 2, 3 we must move row 3 of A to the top : 

Row exchange by 

a permutation P PA=[~ ~ ~][~! ~] [~ ~ ~] 
010 248 137 

When both sides of Ax= b are multiplied by P, order is restored and P A = LU: 

~ ~ l [ ~ i ~ l = L U. 
1 1 0 0 2 

(12) 

Every invertible n by n matrix A leads to P A = LU : P = permutation. 

There are six 3 by 3 permutations : Six ways to order the rows of the identity matrix. 

1 exchange 
(odd P) 

0 or 2 exchanges 
(even P) 

P.,.~ [~ ~ ~] 

P.,~ [~ ~ ~] 

P, •• ~ [~ ~ n 
P,., ~ [ ~ ~ n 

The inverse of every permutation matrix P is its transpose pT. The row exchanges 
will also apply to the right hand side b if we are solving Ax = b. The computer just 
remembers the exchanges without actually moving the rows. 

There are n! (n factorial) permutation matrices of size n: 3! = (3) (2) (1) = 6. 
When A has dependent rows (no inverse) elimination leads to a zero row and stops short. 
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Problem Set 1.4 

1 Factor these matrices into A = LU : 

2 If au, ... , a1n is the first row of a rank-1 matrix A and au, ... , am1 is the first 
column, find a formula for aij. Good to check when au = 2, a12 = 3, a21 = 4. 
When will your formula break down ? Then rank 1 is impossible or not unique. 

3 What lower triangular matrix E puts A into upper triangular form EA = U? 
Multiply by E-1 = L to factor A into LU: 

A~[~:~] 
4 This problem shows how the one-step inverses multiply to give L. You see this 

best when A = Lis already lower triangular with 1 'son the diagonal. Then U = I : 

Multiply A= [~ ~ ~] by E 1 = [-~ 1 ] and then E2 = [~ ~ ~] 
b c 1 -b 0 1 0 -c 1 

(a) Multiply E2E1 to find the single matrix E that produces EA = I. 

(b) Multiply E!1 E21 to find the matrix A= L. 

The multipliers a, b, care mixed up in E = L -l but they are perfect in L. 

5 When zero appears in a pivot position, A = LUis not possible! (We are requiring 
nonzero pivots in U.) Show directly why these LU equations are both impossible: 

[~ ~] = [~ ~] [ ~ f] [ 1 1 0] [ 1 l [d e gl 112 = £1 .! ~. 
121 mn1 t 

These matrices need a row exchange by a permutation matrix P. 

6 Which number c leads to zero in the second pivot position? A row exchange is 
needed and A = LU will not be possible. Which c produces zero in the third pivot 
position? Then a row exchange can't help and elimination fails: 
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7 (Recommended) Compute L and U for this symmetric matrix A: 

8 

9 

10 

A= [: ~ ~ ~]-a b c c 
a b c d 

Find four conditions on a, b, c, d to get A = LU with four nonzero pivots. 

Tridiagonal matrices have zero entries except on the main diagonal and the two adja
cent diagonals. Factor these into A = LU. Symmetry further produces A = LD LT: 

[
a a 0 l andA=aa+b b. 
0 b b+ c 

A= 

Easy but important. If A has pivots 5, 9, 3 with no row exchanges, what are the pivots 
for the upper left 2 by 2 submatrix Az (without row 3 and column 3)? 

Which invertible matrices allow A = LU (elimination without row exchanges)? 
Good question! Look at each of the square upper left submatrices A1 , A2 , ... , An. 

All upper left submatrices Ak must be invertible: sizes 1 by 1, 2 by 2, ... , n by n. 

Explain that answer: Ak factors into __ because LU = [ ~k ~ ] [ ~k : ] . 

11 In some data science applications, the first pivot is the largest number laii I in A. 
Then row i becomes the first pivot row ui. Column j is the first pivot column. 
Divide that column by aii so £1 has 1 in row i. Then remove that .f.1 ui from A. 

This example finds azz = 4 as the first pivot (i = j = 2). Dividing by 4 gives £1 : 

[1 2]=[1/2][3 4] [-1/2 o]=.e * .e *=[1/2 1][ 3 4] 3 4 1 + 0 0 1 u 1 + zUz 1 0 -1/2 0 

For this A, both L and U involve permutations. P1 exchanges the rows to give L. 
Pz exchanges the columns to give an upper triangular U. Then P1 AP2 = LU. 

Permuted in advance 

Question for A= [; ! ] : Apply complete pivo~ng to produce P1AP2 = LU. 

12 If the short wide matrix A has m < n, how does elimination show that there are 
nonzero solutions to Ax = 0 ? What do we know about the dimension of that 
"nullspace of A" containing all solution vectors x ? The nullspace dimension is at 
least 

Suggestion: First create a specific 2 by 3 matrix A and ask those questions about A. 



1.5. Orthogonal Matrices and Subspaces 29 

1.5 Orthogonal Matrices and Subspaces 

The word orthogonal appears everywhere in linear algebra. It means perpendicular. 
Its use extends far beyond the angle between two vectors. Here are important extensions of 
that key idea : 

1. Orthogonal vectors x and y. The test is xTy = X1Y1 + · · · + XnYn = 0. 

If x andy have complex components, change to :z:T y = X1Y1 + · · · + XnYn = 0. 

2. Orthogonal basis for a subspace : Every pair of basis vectors has v [vi = 0. 

Orthonormal basis: Orthogonal basis of unit vectors: every v[ Vi = 1 (length 1). 

From orthogonal to orthonormal, just divide every basis vector vi by its length II vi 11-

3. Orthogonal subspaces R and N. Every vector in the space R is orthogonal to 
every vector in N. Notice again! The row space and nullspace are orthogonal: 

Ax= 0 means 

each row • x = 0 [ row 1 of A l [ l [ 0 l 
row~ofA x ~ . 

(1) 

Every row (and every combination of rows) is orthogonal to all x in the nullspace. 

4. Tall thin matrices Q with orthonormal columns: QT Q = I. 

(2) 

If this Q multiplies any vector x, the length of the vector does not change: 

If m > n them rows cannot be orthogonal in Rn. Tall thin matrices haye Q QT i= I. 

5. "Orthogonal matrices" are square with orthonormal columns: QT = Q-1-. 

For square matrices QT Q = I leads to QQT = I 
For square matrices Q, the left inverse QT is also a right inverse of Q. 

The columns of this orthogonal n by n matrix are an orthonormal basis for Rn. 

The r.ows of Q are a (probably different) orthonormal basis for Rn. 

The name "orthogonal matrix" should really be "orthonormal matrix". 

The next pages give examples of orthogonal vectors, bases, subspaces and matrices. 
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1. Orthogonal vectors. The test xTy = 0 connects to right triangles by c2 = a2 + b2 : 

Pythagoras Law for right triangles llx- YW = llxW + IIYII 2 . (4) 

The left side is (x- y)T (x- y). This expands to xT x + yTy- xTy- yTx. When 
the last two terms are zero, we have equation (4): x = (1, 2, 2) andy = (2, 1, -2) have 
xT y = 0. The hypotenuse is x - y = ( -1, 1, 4). Then Pythagoras is 18 = 9 + 9. 

Dot products x T y and y T x always equal II x II II y II cos (), where () is the angle 
between x and y. So in all cases we have the Law of Cosines c2 = a2 + b2 - 2ab cos() : 

Law of Cosines llx- Yll 2 = llxW + IIYII 2 - 2llxiiiiYII cosO. (5) 

Orthogonal vectors have cos() = 0 and that last term disappears. 

2. Orthogonal basis. The "standard basis" is orthogonal (even orthonormal) in Rn: 

Standard basis i, j, k in R3 

Here are three Hadamard matrices Hz, H4, Hs containing orthogonal bases ofR2, R4, R8 . 

Hadamard matrices 
Orthogonal columns 

sizes 2, 4 and 8 
[ ~ -~ ~ -~] 

1 1 -1 -1 
1 -1 -1 1 

Are those orthogonal matrices? No. The columns have lengths .J2, J4, )8. If we 
divide by those lengths, we have the beginning of an infinite list : orthonormal bases 
in 2, 4, 8, 16, 32, ... dimensions. 

The Hadamard conjecture proposes that there is a ± 1 matrix with orthogonal columns 
whenever 4 divides n. Wikipedia says that n = 668 is the smallest of those sizes without 
a known Hadamard matrix. The construction for n = 16, 32, ... follows the pattern above. 

Here is a key fact: Every subspace of Rn has an orthogonal basis. Think of a 
plane in three-dimensional space R3 . The plane has two independent vectors a and b. 
For an orthogonal basis, subtract away from b its component in the direction of a : 

aTb 
Orthogonal basis a and c c = b - -- a. (6) 

aT a 

The inner product aT c is aT b - aT b = 0. This idea of "orthogonalizing" applies to any 
number of basis vectors: a basis becomes an orthogonal basis. That is the Gram-Schmidt 
idea in Section 11.2. 
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3. Orthogonal subspaces. Equation (1) looked at Ax = 0. Every row of A is multiplying 
that nullspace vector x. So each row (and all combinations of the rows) will be orthogonal 
toxin N(A). The row space of A is orthogonal to the nullspace of A. 

[ row 1 ].[ l [ 0 l T [ (column 1) T l [ l [ 0 l Ax= : x = : A y= : y = : 
row m 0 (column n)T 0 

(7) 

From AT y = 0, the columns of A are all orthogonal to y. Their combinations (the whole 
column space) will also be orthogonal toy. The column space of A is orthogonal to the 
nullspace of AT. This produces the "Big Picture of Linear Algebra" in Figure 1.6. 

Notice the dimensions rand n- r addington. The whole space Rn is accounted for. 
Every vector v in Rn has a row space component Vr and a nullspace component Vn with 
v = Vr + Vn. A row space basis (r vectors) together with a nullspace basis (n- r vectors) 
produces a basis for all of Rn (n vectors). 

dimension 
=r 

row 
space 
of A 

nulls pace 
of A 

dimension 
=n-r 

row space to column space 

AXrow = b 

Axnul! = 0 

nullspace to 0 

column 
space 
of A 

=m-r 

dimension 
=r 

Figure 1.6: Two pairs of orthogonal subspaces. The dimensions add to n and add to m. 
This is the Big Picture-two subspaces in R n and two sub spaces in R m. 

I will mention a big improvement. It comes from the Singular Value Decomposition. 
The SVD is the mostimportanttheoremin data science. It finds orthonormal bases v 1 , ... , Vr 

for the row space of A and u 1 , ... , Ur for the column space of A. Well, Gram-Schmidt 
can do that. The special bases from the SVD have the extra property that each pair 
(v and u) is connected by A: 

Singular vectors (8) 

In Figure !.6, imagine the v's on the left and the u's on the right. For the bases from the 
SVD, multiplying by A takes an orthogonal basis of v's to an orthogonal basis of u's. 
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4. Tall thin Q with orthonormal columns : QT Q = I. 
Here are three possible Q's, growing from (3 by 1) to (3 by 2) to an orthogonal matrix Q3. 

Q2 =- 2 -1 1 [ 2 2] 
3 -1 2 

Q3 = ~ 2 -1 2 . (9) [ 
2 2 -1 l 

3 -1 2 2 

Each one of those matrices has QTQ =I. So QT is a left inverse ofQ. Only the last matrix 
has Q3Qj = I. Then Qj is also a right inverse. Q3 happens to be symmetric as well as 
orthogonal. It is a king and also a queen, truly a royal matrix. 

Notice that all the matrices P = QQT have P 2 = P : 

(10) 

In the middle we removed QT Q = I. The equation P 2 = P signals a projection matrix. 

If P 2 = P = pT then Pb is the orthogonal projection of b onto the column space of P. 

Example 1 To project b = (3, 3, 3) on the Q1 line, multiply by P1 = Q 1 QJ. 

p 1 b = ~ [ ; ] [ 2 2 - 1 ] [ ~ ] = ~ [ ; ] 9 = [ ; ] = projec~ion 
9 _ 1 3 9 _ 1 _ 1 on a lme 

That matrix splits b in two perpendicular parts : projection P1 b and error e = (I - P1) b. 

0 

b ~ [ ~ l 
erro<e ~ [ n 

llell = JI8 
line 

Figure 1.7: Projection of b onto a line by P1 = Q1QT and onto a plane by P2 = Q2QI. 

Now project the same b = (3, 3, 3) on the column space of Q2 (a plane). The error vector 
b - P2 b is shorter than b - P1 b because the plane contains the line. 

p2 b = ~ ,[ ; -~ l [; -~ 
9 -1 2 
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Question: What is P3 b = Q3Qj b? Now you are projecting b onto the whole space R3. 
Answer: P3 b = b. In fact P3 = Q3Qj =identity matrix! The errore is now zero. 
Projections lie at the heart of "least squares" in Section Il.2. 

5. Orthogonal matrices: Now Q is square: QT Q = I and QQT = I. So Q- 1 = QT. 
These Q's are truly important. For 2 by 2, they are rotations of the plane or reflections. 

When the whole plane rotates around (0, 0), lengths don't change. Angles between 
vectors don't change. The columns of Q are orthogonal unit vectors, with cos2 Btsin2 () = 1: 

[ cos () - sin () ] . Q tat - () = rotation through an angle (). ( 11) ro e - sin () cos 

And if I multiply a column by -1, the two columns are still orthogonal of length 1. 

[ 
cos() 

Qreflect = sin() 
sin () ] ft . th () 1" 

() = re ecbon across e - - me. 
-c~ 2 

(12) 

Now Q reflects every vector in a mirror. It is a reflection with determinant -1 instead of a 
rotation with determinant + 1. The x-y plane rotates or the x-y plane flips over. 

It is important that multiplying orthogonal matrices produces an orthogonal matrix. 

Rotation times rotation = rotation. Reflection times reflection = rotation. Rotation times 
reflection = reflection. All still true in Rn. 

[ c~s()] sm() --- () 1" "2 me 

[~] 
Q [ 0 ] '= [ sin() ] 

1 -cos() 

Figure 1.8: Rotate the whole plane by (). Reflect every vector across the line at angle () /2. 

The figure shows how the columns of Q come from Q [ ~ ] and Q [ ~ ] . 
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Orthogonal Basis = Orthogonal Axes in Rn 

Suppose then by n orthogonal matrix Q has columns q 1 , ... , qn. Those unit vectors are 
a basis for n-dimensional space Rn. Every vector v can be written as a combination of the 
basis vectors (the q' s) : 

(13) 

Those c1q1 and c2q2 and enqn are the components of v along the axes. They are the 
projections of v onto the axes ! There is a simple formula for each number c1 to Cn : 

Coefficients in 
an orthonormal basis 

(14) 

I will give a vector proof and a matrix proof. Take dot products with q 1 in equation (13): 

qfv = c1qfq1 + · · · +cnqfqn = c1 (15) 

All terms are zero except cl q I ql = cl. So qJ v = Cl and every q r v = Ck. 

If we write (13) as a matrix equation v = Qc, multiply by QT to see (14): 

QT v = QT Qc = c gives all the coefficients Ck = qJ v at once. 

This is the key application of orthogonal bases (for example the basis for Fourier series). 
When basis vectors are orthonormal, each coefficient c1 to Cn can be found separately ! 

Householder Reflections 

Here are neat examples of reflection matrices Q = Hn . . Start with the identity matrix. 
Choose a unit vector u. Subtract the rank one symmetric matrix 2uu T. Then I - 2uu T 

is a "Householder matrix". For example, choose u = (1, 1, ... , 1)/ y'n. 

Householder example I Hn ~I- 2uuT ~I-~ ones (n,n).l (16) 

With uu T, Hn is surely symmetric. Two reflections give H 2 = I because u T u = 1: 

HTH = H 2 =(I- 2uuT) (I- 2uuT) =I- 4uuT + 4uuTuuT =I. (17) 

The 3 by 3 and 4 by 4 examples are easy to remember, and H4 is like a Hadamard matrix: 

[ 1 -2 -2] 
H 3 = I- ~ ones = ~ -2 1 -2 

3 3 -2 -2 1 

2 1 
H4 = I-- ones = -

4 2 [ -~ -~ =~ =~] -1 -1 1 -1 
-1 -1 -1 1 

Householder's n by n reflection matrix has Hnu = (I- 2uuT)u = u- 2u = -u. 
And Hnw = +w whenever w is perpendicular to u. The "eigenvalues" of H are 
-1 (once) and +1 (n- 1 times). All reflection matrices have eigenvalues -1 and 1. 
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Problem Set 1.5 

1 If u and v are orthogonal unit vectors, show that u + v is orthogonal to u - v. 
What are the lengths of those vectors ? 

2 Draw unit vectors u and v that are not orthogonal. Show that w = v - u( u Tv) is 
orthogonal to u (and add w to your picture). 

3 Draw any two vectors u and v out from the origin (0, 0). Complete two more sides 
to make a parallelogram with diagonals w = u + v and z = u- v. Show that 
w T w + z T z is equal to 2u T u + 2v Tv. 

4 Key property of every orthogonal matrix: 11Qxll2 = llxll 2 for every vector x. 
More than this, show that ( Qx) T ( Qy) = x T y for every vector x and y. So 
lengths and angles are not changed by Q. Computations with Q never overflow! 

5 If Q is orthogonal, how do you know that Q is invertible and Q-I is also orthogonal? 

If Q[ = Q;:-I and Q;f = Q2I, show that QIQ2 is also an orthogonal matrix. 

6 A permutation matrix has the same columns as the identity matrix (in some order). 

7 

8 

Explain why this permutation matrix and every permutation matrix is orthogonal: 

p = rH ~ ~ 1 has orthonormal columns so pT p = __ and p-I= __ . 

1 0 0 0 

When a matrix is symmetric or orthogonal, it will have orthogonal eigenvectors. 'i 
This is the most important source of orthogonal vectors in applied mathematics. 

Four eigenvectors of that matrix P are XI = (1, 1, 1, 1), x 2 = (1, i, i2 , i3 ), 

x 3 = (1,i2 ,i4 ,i6),andx4 = (1,i3 ,i6 ,i9 ). MultiplyPtimeseachvectortofind 
AI, >.2 , >.3 , >.4 . The eigenvectors are the columns of the 4 by 4 Fourier matrix F. 

F 1 r ~ ~ -~ -~ 1 -T Show that Q = 2 = "2 1 i2 1 _ 1 has orthonormal columns : Q Q = I 
1 i 3 -1 i 

Haar wavelets are orthogonal vectors (columns of W) using only 1, -1, an«;J. 0. 

1 
1 n=4W=r~ 

1 -1 
1 -1 

Find WTW and w-I and the 
eight Haar wavelets for n = 8. 
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1.6 Eigenvalues and Eigenvectors 

The eigenvectors of A don't change direction when you multiply them by A. The output 
Ax is on the same line as the input vector x. 

x = eigenvector of A 
A = eigenvalue of A 

Ax=Ax (1) 

The eigenvector x is just multiplied by its eigenvalue .\. Multiply again by A, to see that 
xis also an eigenvector of A 2 : A2 x = .\2x. 

x = same eigenvector 
A 2 = squared eigenvalue 

A(Ax) = A(.\x) =.\(Ax)= .\2 x 

Certainly Akx = >.kx for all k = 1, 2, 3, ... And A -Ix = ±x provided.\-/=- 0. 

(2) 

These eigenvectors are special vectors that depend on A. Most n by n matrices have 
n independent eigenvectors XI to Xn with n different eigenvalues AI to An. In that case 
every n-dimensional vector v will be a combination of the eigenvectors : 

Every v 

Multiply by A 

Multiply by Ak 

V = CIXI + · · · + CnXn 

Av = CIAIXI + · · · + CnAnXn 

Akv = C1A~X1 + · · · + CnA~Xn 

(3) 

Here you see how eigenvalues and eigenvectors are useful. They look into the heart of 
a matrix. If I.AII > 1 then the component ci.\fxi will grow as n increases. If I.A2I < 1 
then that component c2 .\~x2 will steadily disappear. Follow each eigenvector separately! 

Example 1 s = [ ~ ~ ] has eigenvectors S [ ~ ] = 3 [ ~ ] and S [ _ ~ ] = [ _ n 
Then AI = 3 and A2 = 1. The powers sk will grow like 3k. Those eigenvalues and 
eigenvectors have four properties to notice : 

(Trace of S) The sum .\I+ .\2 = 3 + 1 equals the diagonal sum 2 + 2 = 4 

(Determinant) The product .\1.\2 = (3)(1) = 3 equals the determinant 4- 1 

(Real eigenvalues) Symmetric matrices S = ST always have real eigenvalues 

(Orthogonal eigenvectors) If .\I-/=- .\2 then XI· x2 = 0. Here (1, 1) · (1, -1) = 0. 

Symmetric matrices S are somehow like real numbers (every .\ is real). Orthogonal ma
trices Q are like complex numbers eie = cos e + i sine of magnitude 1 (every I .AI = 1). 
The powers of Q don't grow or decay because Q2 , Q3 , ... are orthogonal matrices too. 
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Example 2 [ 0 -1 ] The rotation Q = 1 0 has imaginary eigenvalues i and -i: 

Q [ -~ ] = [ ~ - ~ ] [ -~ ] = ( i) [ -~ ] and Q [ ~ ] = [ ~ - ~ ] [ ~ ] = ( -i) [ ~ ] 
Certainly >.1 + >.2 = i - i agrees with the trace 0 + 0 from the main diagonal of Q. 
And (.Al)(.X2) = (i)( -i) agrees with the determinant of Q = 1. The eigenvectors of Q 
are still orthogonal when we move (as we should) to the dot product of complex vectors. 
Change every i in X1 to -i. This produces its conjugate x1 . 

xT x 2 = [ 1 i ] [ ~ ] = 1 + i 2 = 0 : orthogonal eigenvectors. 

Warnings about eigenvalues and eigenvectors 
The eigenvalues of A+ Bare not usually >.(A) plus >.(B). 
The eigenvalues of ABare not usually >.(A) times >.(B). 
A double eigenvalue >.1 = >.2 might or might not have two independent eigenvectors. 
The eigenvectors of a real matrix A are orthogonal if and only if AT A = AAT. 

The matrix A also controls a system of linear differential equations dujdt = Au. The 
system starts at an initial vector u(O) when t = 0. Every eigenvector grows or decays or 
oscillates according to its own eigenvalue >.. Powers >. n are changed to exponentials e>.t : 

Starting vector u(O) = c1x 1 + · · · + CnXn 

Solution vector u(t) = c1e>.1 tx1 + · · · + Cne>.ntxn 

The difference between growth and decay is now decided by Re >. > 0 or Re >. < 0, 
instead of I .XI > 1 or I .XI < 1. The real part of>. = a + ib is Re >. = a. The absolute 
value of e>.t is eat. The other factor eibt = cos bt + i sin bt has cos2 bt + sin2 bt = 1. 
That part oscillates while eat grows or decays. 

Computing the Eigenvalues (by hand) 

Notice that Ax = .Ax is the same as (A - AI)x = 0. Then A - AI is n.ot invertible: 
that matrix is singular. The determinant of A - >.I must be zero. This gives an nth 
degree equation for>., and this equation det(A - .XI) = 0 has n roots. Here n = 2' and 

A = [ ~ ~ ] has two eigenvalues : 

Determin~nt of A- >.I= I a:>. d ~>.I = >.2 - (a+ d)>.+ (ad -·be)= 0 

This quadratic equation might factor easily into (.X- >.1 ) (.X- >.2). The "quadratic formula" 
will always give the two roots .A1 and >.2 of our equation, from the + sign and the - sign. 
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A= Ha + d ±-/(a+ d)2- 4 (ad- be) J =~[a+ d ± .J(a- d)2 + 4bc J. 

You see that A1 + A2 equals a+ d (the trace of the matrix). The ± square roots cancel out. 
Notice also that the eigenvalues are real when A is symmetric (b = c). Then we 

are not taking the square root of a negative number to find A. When be is very negative, 
the eigenvalues and eigenvectors go complex ! 

Example 3 Find the eigenvalues and eigenvectors of A = [ ~ ~ ] : not symmetric. 

ThedeterminantofA-AJis 1
8 ;A 7 ~A I=A2 -15A+50=(.X-10)(.X-5). 

[ 8-210 A1 = 10 has 

[ 8 -2 5 A2 = 5 has 

7 ! 10 ] [ ~~ ] = [ ~ ] Eigenvector x1 = [ ~~ ] = [ ~ ] 

7 ~ 5 ] [ ~~ ] = [ ~ ] Eigenvector x2 = [ ~~ ] = [ _ ~ ] 
10 + 5 = 8 + 7. These eigenvectors are not orthogonal. Increase 3 to 30 for complex A's. 

Question: If A is shifted to A+ sl, what happens to the x's and A's? 
Answer: The eigenvectors x stay the same. Every eigenvalue A shifts by the number s : 

Shift in A => shift in every .X (A+ sl) x =AX+ sx = (.X+ s) x (5) 

Similar Matrices 

For every invertible matrix B, the eigenvalues of BAB-1 are the same as the eigenvalues 
of A. The eigenvectors x of A are multiplied by B to give eigenvectors Bx of BAB-1 : 

I If Ax = AX then (BAB- 1 ) (Bx) = BAx = BAx = A(Bx) ·I (6) 

The matrices BAB-1 (for every invertible B) are "similar" to A: same eigenvalues. 

We use this idea to compute eigenvalues of large matrices (when the determinant of 
A- AI would be completely hopeless). The idea is to make BAB-1 gradually into a 
triangular matrix. The eigenvalues are not changing and they gradually show up on the 
main diagonal of BAB-1 : 

The eigenvalues of any triangular matrix [ ~ : ] are .X1 = a and .X2 = d. (7) 

You can see that A - al and A - dl will have determinant zero. So a and dare the 
eigenvalues of this triangular matrix. 
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Diagonalizing a Matrix 

Suppose A has a full set of n independent eigenvectors. (Most matrices do, but not all 
matrices.) Put those eigenvectors a:1 , ... , Xn into an invertible matrix X. Then multiply 
AX column by column to get the columns >.1a:1 to AnXn. Important! That matrix splits 
into X times A. 

A [ x, Xn l ~ [Ax, Ax. l ~ [ A,x, ~x. l ~ [ x, Xn l [A, . J 
(8) 

The eigenvalue matrix A goes on the right of X, because the A's in A multiply the columns 
of X. That equation AX = X A tells us that A = X AX - 1 . If we know the eigenvalues 
and eigenvectors, we know the matrix A. And we can easily compute powers of A : 

A = diagonal eigenvalue matrix 
X = invertible eigenvector matrix 

A = XAX- 1 

A2 = (XAX-1) (XAX-1) = XA2X-1 

A= XAX-1 [ 8 3] _ [ 3 1] [ 10 ] 1 [ 1 1] _ (eigenvectors) times (A's) 
in Example 3 2 7 - 2 -1 5 5 2 -3 - times (left eigenvectors) 

The equation Ak = XAk x- 1 is telling us what we already knew. The eigenvalues of Ak 
are >.f, ... , >.~. The eigenvectors of A k are the same as the eigenvectors of A. Three steps 
compute Akv. 

Step 1: x- 1 v 

Step 2: Ak x-1 v 

This gives the c's in v = c1a:1 + · · · + CnXn 

This gives the A's in c1>.fa:1 + · · · + CnA~Xn 

Example 4 If we divide Example 3 by 10, all eigenvalues are divided by 10. Then 
>.1 = 1 and >.2 = ~. In this case A is a Markov matrix, with positive columns adding to 1. 

A= [ 0.8 0.3] 
0.2 0.7 

We can follow each eigenvector separately. Its growth or decay depends on the eigenvalue 
>.. The action of the whole matrix A is broken into simple actions Gust multiply by >.) 
on each eigenvector. To solve a differential equation dujdt =Au we would multiply 
each eigenvector by e>..t. 
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N ondiagonalizable Matrices (Optional) 

Suppose A is an eigenvalue of A. We discover that fact in two ways: 

1. Eigenvectors (geometric) There are nonzero solutions to Ax = AX. 

2. Eigenvalues (algebraic) The determinant of A- >.I is zero. 

The number A may be a simple eigenvalue or a multiple eigenvalue, and we want to know its 
multiplicity. Most eigenvalues have multiplicity M = 1 (simple eigenvalues). Then there 
is a single line of eigenvectors, and det(A- >.I) does not have a double factor. 

For exceptional matrices, an eigenvalue can be repeated. Then there are two different 
ways to count its multiplicity. Always GM ::; AM for each >.: 

1. (Geometric Multiplicity = GM) Count the independent eigenvectors for >.. 
Look at the dimension of the nulls pace of A - >.I. 

2. (Algebraic Multiplicity = AM) Count the repetitions of..\ among the eigenvalues. 
Look at the roots of det(A - AI) = 0. 

If A has >. = 4, 4, 4, then that eigenvalue has AM = 3 and GM = 1 or 2 or 3. 
The following matrix A is the standard example of trouble. Its eigenvalue >. = 0 is 

repeated. It is a double eigenvalue (AM = 2) with only one eigenvector (GM = 1) . 

AM=2 
GM=l [0 1] ~->. A= 0 0 has det(A- >.I) = 0 

..\ = 0, 0 but 
1 eigenvector 

There "should" be two eigenvectors, because A 2 = 0 has a double root. The double 
factor >.2 makes AM = 2. But there is only one eigenvector x = (1, 0). So GM = 1. 
This shortage of eigenvectors when GM < AM means that A is not diagonalizable. 
There is no invertible eigenvector matrix. The formula A = X AX -l fails. 

These three matrices all have the same shortage of eigenvectors. Their repeated eigen
value is A = 5. Traces are 10 and determinants are 25: 

A= [~ ~] [6 -1] and A= 1 4 and A = [_ ~ ~] . 

Those all have det(A- AI) = (>. - 5f. The algebraic multiplicity is AM = 2. But 
each A - 5I has rank r = 1. The geometric multiplicity is GM = 1. There is only one 
line of eigenvectors for A = 5, and these matrices are not diagonalizable. 
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Problem Set 1.6 

Th . Q [cos() -sinO]h 1 . al , ()± .. () 1 e rotation = . () () as comp ex etgenv ues .1\ = cos z sm : 
sm cos 

Q [ -~ ] =(cos()+ isinO) [ -~ ] and Q [ ~ ] =(cosO- isinO) [ ~ ] . 

Check that At + A2 equals the trace of Q (sum Qn + Q22 down the diagonal). 
Check that (Al)(A2) equals the determinant. Check that those complex eigenvectors 
are orthogonal, using the complex dot product x1 • x 2 (not just x 1 • x 2 !). 

What is Q-1 and what are its eigenvalues? 

2 Compute the eigenvalues and eigenvectors of A and A-1• Check the trace! 

A -l has the __ eigenvectors as A. When A has eigenvalues A1 and A2, its inverse 
has eigenvalues __ . 

3 Find the eigenvalues of A and B (easy for triangular matrices) and A+ B: 

A = [ i ~] and B = [ ~ ! ] and A + B = [ i ! ] . \ 
Eigenvalues of A+ B (are equal to)(are not equal to) eigenvalues of A plus eigen
values of B. 

4 Find the eigenvalues of A and B and AB and B A: 

A = D ~] and B = [ ~ ~] and AB = D ~] and BA = [ i n . 
(a) Are the eigenvalues of AB equal to eigenvalues of A times eigenvalues of B? 

(b) Are the eigenvalues of AB equal to the eigenvalues of BA? 

5 (a) If you know that xis an eigenvector, the way to find A is to __ . 

(b) If you know that A is an eigenvalue, the way to find x is to __ . 

6 Find the eigenvalues and eigenvectors for both of these Markov matrices A and A 00 • 

Explain from those answers why A100 is close to A00 : 

A= [·6 .2] 
.4 .8 

d Aoo [1/3 1/3] 
an = 2/3 2/3 · 
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7 The determinant of A equals the product .\1.\2 ···An. Start with the polynomial 
det(A- >.I) separated into its n factors (always possible). Then set>.= 0: 

det(A- AI) = (>.I - .\)(.\2 -.\)···(.An - >.) so det A = 

Check this rule in Example 1 where the Markov matrix has >. = 1 and ~. 

8 The sum of the diagonal entries (the trace) equals the sum of the eigenvalues: 

A= [ ~ ~] has det(A- AI) = .\2 - (a+ d)>.+ ad- be= 0. 

The quadratic formula gives the eigenvalues>.= (a+d+ V)/2 and>.= __ . 
Their sum is __ . If A has .\1 = 3 and .\2 = 4 then det( A - >.I) = __ . 

9 If A has >.I = 4 and .\2 = 5 then det(A- >.I) = (>.- 4)(>.- 5) = .\2 - 9.\ + 20. 
Find three matrices that have trace a + d = 9 and determinant 20 and >. = 4, 5. 

10 Choose the last rows of A and C to give eigenvalues 4, 7 and 1, 2, 3: 

Companion matrices A= [~ :] [0 1 0] c = 0 0 1 

* * * 
11 The eigenvalues of A equal the eigenvalues of AT. This is because det(A- >.I) 

equals det(AT- >.!). That is true because __ . Show by an example that the 
eigenvectors of A and AT are not the same. 

12 This matrix is singular with rank one. Find three .A's and three eigenvectors: 

13 Suppose A and B have the same eigenvalues AI, .. . , An with the same independent 
eigenvectors x 1 , ... , Xn. Then A = B. Reason: Any vector xis a combination 
c1x1 + · · · + CnXn. What is Ax? What is Bx? 

14 Suppose A has eigenvalues 0, 3, 5 with independent eigenvectors u, v, w. 

(a) Give a basis for the nullspace and a basis fQr the column space. 

(b) Find a particular solution to Ax= v + w. Find all solutions. 

(c) Ax= u has no solution. If it did then __ would be in the column space. 

15 (a) Factor these two matrices into A= XAX- 1 : 

A = [ ~ ; ] and A = [ ~ ~] . 

(b) If A = X AX - 1 then A 3 = ( ) ( _ ) ( ) and A - 1 = ( ) ( ) ( ) . 
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16 Suppose A = X AX- 1. What is the eigenvalue matrix for A + 2/? What is the 
eigenvector matrix? Check that A + 2I ='= ( ) ( ) ( ) - 1 . 

17 True or false: If the columns of X (eigenvectors of A) are linearly independent, then 

(a) A is invertible (b) A is diagonalizable 

(c) X is invertible (d) X is diagonalizable. 

18 Write down the most general matrix that has eigenvectors [ l] and [_~]. 

19 True or false: If the eigenvalues of A are 2, 2, 5 then the matrix is certainly 

(a) invertible (b) diagonalizable (c) not diagonalizable. 

20 True or false: If the only eigenvectors of A are multiples of (1, 4) then A has 

(a) noinverse (b) arepeatedeigenvalue (c) nodiagonalizationXAX-1. 

21 A k = X A k X - 1 approaches the zero matrix as k -+ oo if and only if every >- has 
absolute value less than . Which of these matrices has A k -+ 0? 

A1 = [·6 .9] 
.4 .1 

and A = [·6 .9] 
2 .1 .6 0 

22 Diagonalize A and compute X A k x-1 to prove this formula for A k: 

A= [ 2 -1] 
-1 2 

has 

23 The eigenvalues of A are 1 and 9, and the eigenvalues of B are -1 and 9: 

and 

Find a matrix square root of A from R = X VA x- 1. Why is there no real matrix 
square root of B? 

24 Suppose the same X diagonalizes both A and B. They have the same eigenvectors 
in A= XA1X-1 and B = XA2X-1. Prove that AB = BA. 

25 The transpose of A = X AX - 1 is AT = (X - 1) T AXT. The eigenvectors in AT y = 
>.y are the columns of that matrix (X - 1) T. They are often called left eigenvectors of 
A, because y T A = >.y T. How do you multiply matrices to find this formula for A? 

Sum ofrank-1 matrices A= XAX-1 = >-1x 1yf + · · · + AnXnY~· 

26 When is a matrix A similar to its eigenvalue matrix A? 

A and A always have the same eigenvalues. But similarity requires a matrix B with 
A = BAB-1• Then B is the __ matrix and A must haven independent __ . 
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I. 7 Symmetric Positive Definite Matrices 

Symmetric matrices s = sT deserve all the attention they get. Looking at their eigenvalues 
and eigenvectors, you see why they are special : 

1 All n eigenvalues A of a symmetric matrix S are real numbers. 

2 Then eigenvectors q can be chosen orthogonal (perpendicular to each other). 

The identity matrix S = I is an extreme case. All its eigenvalues are ,\ = 1. Every 
nonzero vector x is an eigenvector: I x = 1x. This shows why we wrote "can be cho
sen" in Property 2 above. With repeated eigenvalues like ,\1 = ,\2 = 1, we have a choice 
of eigenvectors. We can choose them to be orthogonal. And we can rescale them to be 
unit vectors (length 1). Then those eigenvectors q1 , ... qn are not just orthogonal, they are 
orthonormal. The eigenvector matrix for S has QT Q = I : orthonormal columns in Q. 

T {0 i=/:j 
Qi Qj = 1 i = j lead' to [ 

We write Q instead of X for the eigenvector matrix of S, to emphasize that these 
eigenvectors are orthonormal: QT Q = I and QT = Q-1. This eigenvector matrix is an 
orthogonal matrix. The usual A = X AX - 1 becomes S = Q AQT : 

Spectral Theorem Every real symmetric matrix has the form S = Q AQT. 

Every matrix of that form is symmetric : Transpose Q AQT to get QTT AT QT = Q AQT. 

Quick Proofs : Orthogonal Eigenvectors and Real Eigenvalues 

Suppose first that Sx = ,\x and Sy = Oy. The symmetric matrix S has a nonzero 
eigenvalue A and a zero eigenvalue. Then y is in the nullspace of S and x is in the column 
space of S (x = Sxj ,\ is a combination of the columns of S). But S is symmetric: 
column space = row space ! Since the row space and nullspace are always orthogonal, 
we have proved that x is orthogonal to y. 

When that second eigenvalue is not zero, we have Sy = ay. In this case we look at 
the matrix S- ai. Then (S- al)y = Oy and (S- ad)x = (.X- a)x with A- a =I= 0. 
Now y is in the nullspace and x is in the column space (= row space!) of S - ai. 
So y T x = 0 : Orthogonal eigenvectors whenever the eigenvalues ,\ =/: a are different. 

Those paragraphs assumed real eigenvalues and real eigenvectors. To prove this, 
multiply Sx = AX by the complex conjugate vector a:T (every i changes to -i). Then 
a:T Sx = AXT x. When we show that x-T x and a:T Sx are real, we know that A is real. 
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Also real: xTSx = Snxlxl + sl2(XlX2 + XlX2) + ... and again XlXl is real 

x 1x2 + x 1x2 =(a- ib)(c + id) +(a+ ib)(c- id) = 2ac + 2bd = real 

Since xT x > 0, the ratio ..\ is real. And (S - >..I)x = 0 gives a real eigenvector. 

Complex comment: Transposing Sx = >..x and taking complex conjugates gives 

xTfJT ="X xT. For our real symmetric matrices, ST is exactly S. It is this double step, 
transpose and conjugate, that we depend on to give back S. Since the proof only needs 

ST = S, it allows for complex matrices too : When ST = S all eigenvalues of S are real. 

[ 2 3- 3i] -T Complex example S = 3 + 3i 5 = S has real eigenvalues 8 and -1. 

The key is 3 + 3i = 3- 3i. The determinant is (2) (5)- (3 + 3i) (3- 3i) = 10-18 = -8. 
The eigenvectors of this matrix are x 1 = (1, 1 + i) and x 2 = (1 - i, -1). Those 
vectors are orthogonal when we adjust complex inner products to x{ x 2 . This is the 
correct inner product for complex vectors, and it produces x{ x 2 = 0 : 

Change x{ x 2 = [ 1 1 + i ] [ 1 - i ] _ 2 . -T _ [ 1 -- z to x 1 Xz--1 
1-i][1-i]= 

-1 0. 

Systems like MATLAB and Julia get the message: The vector x 1 and the matrix A 1 are'i 
automatically conjugated when they are transposed. Every i changes to -i. Then x 1 is 

T -T T -T x and A 1 is A . Another frequently used symbol for x and A is a star: x* and A*. 

Positive Definite Matrices 

We are working with real symmetric matrices S = sT. All their eigenvalues are real. 
Some of those symmetric matrices (not all) have a further powerful property that puts them 
at the center of applied mathematics. Here is that important property: 

Test 1 A positive definite matrix has all positive eigenvalues. 

We would like to check for positive eigenvalues without computing those numbers >... 
You will see four more tests for positive definite matrices, after these examples. 
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1 S = [ ~ ~ ] is positive definite. Its eigenvalues 2 and 6 are both positive 

2 S = Q [ ~ ~ ] QT is positive definite if QT = Q-1 : same .A = 2 and 6 

3 8 = C [ ~ ~ ] CT is positive definite if Cis invertible (not obvious) 

4 S = [ ~ ~ ] is positive definite exactly when a > 0 and ac > b2 

5 S = [ ~ ~ ] is only positive semidefinite : it has .X ~ 0 but not .A > 0 

The Energy-based Definition 

May I bring forward the most important idea about positive definite matrices ? This new 
approach doesn't directly involve eigenvalues, but it turns out to be a perfect test for .A > 0. 
This is a good definition of positive definite matrices : the energy test. 

S is positive definite if the energy x T S x is positive for all vectors x :f. 0 ( 1) 

Of course S = I is positive definite: All Ai = 1. The energy is x T I x = x T x, positive 
if x :j; 0. Let me show you the energy in a 2 by 2 matrix. It depends on x = (x1 , x 2 ). 

Energy , TS,. = [ X1 X2 ] [ 2 4 ] [ X1 ] 2 ,.2 + S,. ,. + g ,.2 .._ .._ 4 9 X2 = .._1 .._1.._2 .._2 

Is this positive for every x1 and x2 except (x1, x2) = (0, 0)? Yes, it is a sum of squares: 

x T Sx = 2xf + 8x1x2 + 9x~ = 2 (x1 + 2x2)2 + x~ = positive energy. 

We must connect positive energy x T Sx > 0 to positive eigenvalues >. > 0: 

That line only tested the energy in each separate eigenvector x. But the theory says that if 
every eigenvector has positive energy, then all nonzero vectors x have positive energy : 

If x T Sx > 0 for the eigenvectors of S, then x T Sx > 0 for every nonzero vector x. 

Here is the reason. Every x is a combination c1 x 1 + · · · + CnXn of the eigenvectors. 
Those eigenvectors can be chosen orthogonal because S is symmetric. We will now show : 
x T Sx is a positive combination of the energie~ AkXf Xk > 0 in the separate eigenvectors. 
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xT8x = (clXf +···+cnx;)8(c1Xl +···+cnXn) 

= (ciXf + · · · + Cnx;) (c1A1X1 + · · · + CnAnXn) 

= c~AlXfXl + · · · + c;>.nx;xn > 0 if every Ai > 0. 

From line 2 to line 3 we used the orthogonality of the eigenvectors of 8: xr Xj = 0. 
Here is a typical use for the energy test, without knowing any eigenvalues or eigenvectors. 

If sl and s2 are symmetric positive definite, so is sl + s2 
Proof by adding energies : xT(81 + 82 ) x = xT81 x + xT82 x > 0 + 0 

The eigenvalues and eigenvectors of 8 1 + 82 are not easy to find. Energies just add. 

Three More Equivalent Tests 

So far we have tests 1 and 2 : positive eigenvalues and positive energy. That energy test 
quickly produces three more useful tests (and probably others, but we stop with three): 

Test 3 S = AT A for a matrix A with independent columns 

Test 4 All the leading determinants D 1 , D 2 , ••• , Dn of S are positive 

Test 5 All the pivots of S are positive (in elimination) 

Test 3 applies to 8 = AT A. Why must columns of A be independent in this test? 
Watch these parentheses : l 

(2) 

Those parentheses are the key. The energy is the length squared of the vector Ax. 
This energy is positive provided Ax is not the zero vector. To assure Ax =f. 0 when x =f. 0, 
the columns of A must be independent. In this 2 by 3 example, A has dependent columns : 

[ 
2 3 
3 5 
4 7 

~ ] is not positive definite. 
10 

This A has column 1 +column 3 = 2 (column 2). Then x = (1, -2, 1) has zero en~rgy. 
It is an eigenvector of AT A with >. = 0. Then 8 = AT A is only positive semidefinite. 

Equation (2) says that AT A is at least semidefinite, because xT 8x = IIAxW is never 
negative. Semidefinite allows energy I eigenvalues I determinants I pivots of S to be zero. 

Determinant Test and Pivot Test 

The determinant test is the quickest for a small matrix. I will mark the four "leading 
determinants" D1, D2, D3, D 4 in this 4 by 4 symmetric second difference matrix. 
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_:j -11 
~-1 

-1 2 -1 

-1 2 

has 
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1st determinant D 1 = 2 

2nd determinant Dz = 3 

3rd determinant D3 = 4 

4th determinant D4 = 5 

The determinant test is here passed ! The energy x T Sx must be positive too. 
Leading determinants are closely related to pivots (the numbers on the diagonal 

after elimination). Here the first pivot is 2. The second pivot ~ appears when ~(row 1) 
is added to row 2. The third pivot ~ appears when ~(new row 2) is added to row 3. 

Those fractions f, ~, ~ are ratios of determinants ! The last pivot is ~. 

The kth pivot equals the ratio .!..:!..!:._ of the leading determinants (sizes k and k - 1) 
Dk-1 

So the pivots are all positive when the leading determinants are all positive. 
I can quickly connect these two tests (4 and 5) to the third testS = AT A. In fact 

elimination on S produces an important choice of A. Remember that elimination = 
triangular factorization (S = LU). Up to now L has had 1 's on the diagonal and 
U contained the pivots. But with symmetric matrices we can balance S as LD L T : 

[ ~ 
-1 -!] [ 

1 
2 1 

-2 
-1 0 

pull out [ 1 
the pivots = 1 1 -2 

in D 0 2 1 -3 

[
v'2 

share those pivots _ _ fi. 
between AT and A - V 2 

0 

][2 -1 n 1 3 S = LU (3) 2 
2 1 -3 

][ 2 

~][~ 
1 

-n -2 
3 1 = LDLT (4) 
2 

I am sorry about those square roots-but the pattern S = AT A is beautiful : A = VD LT. 

Elimination factors every positive definite S into AT A (A is upper triangular) 

This is the Cholesky factorization S = AT A with y/pivots on the main diagonal of A. 
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The Test S = AT A : Two Special Choices for A 

To apply the S = AT A test when S is positive definite, we must find at least one 
possible A. There are many choices for A, including (1) symmetric and (2) triangular. 

1 If S = QAQT, take square roots of those eigenvalues. Then A= Q/A.QT =AT. 

2 If S = LU = LDLT with positive pivots in D, then S = (LvD) (vDLT). 

Summary The five tests for positive definiteness of S involve different parts of 
linear algebra-pivots from elimination, determinants, eigenvalues, and S = AT A. 
Each test gives a complete answer by itself: positive definite or semidefinite or neither. 

Positive energy x T Sx > 0 is the best definition: it connects them all. 

Positive Definite Matrices and Minimum Problems 

Suppose S is a symmetric positive definite 2 by 2 matrix. Apply four of the tests: 

S=[~ ~] determinants a > 0, ac - b2 > 0 
eigenvalues A1 > 0, A2 > 0 

pivots a> 0, (ac- b2 )1a > 0 
energy ax2 + 2bxy + cy2 > 0 

I will choose an example with a = c = 5 and b = 4. This matrix S has A = 9 and A = 1. 

Energy E = xTSx 

The graph of that energy function E ( x, y) is a bowl opening upwards. The bottom point 
of the bowl has energy E = 0 when x = y = 0. This connects minimum problems in 
calculus with positive definite matrices in linear algebra. 

Part VI of this book describes numerical minimization. For the best problems, the 
function is strictly convex-like a parabola that opens upward. Here is a perfect test : 
The matrix of second derivatives is positive definite at all points. We are in high dimen
sions, but linear algebra identifies the crucial properties of the second derivative matrix. 

For an ordinary function f(x) of one variable x, the test for a minimum is famous: 

M . . "f fi t d . . df 0 d d d . . d2 f 0 . 1mmum 1 rs envatiVe dx = an secon envatlve dx2 > at x = xo_ 

For f ( x, y) with two variables, the second derivatives go into a matrix: positive definite ! 

Minimum 8 f = 0 and 8 f = 0 and [ fP f I 8x2 8 2 f I 8x8y ] is positive definite 
at Xo, Yo ox oy 8 2 f I 8x8y 8 2 f I 8y2 at xo, Yo 

The graph of z = f(x,y) is fiat at that point x0 ,y0 because of lox= 8fl8y = 0. 
The graph goes upwards whenever the second derivative matrix is positive definite. 
So we have a minimum point of the function f ( x, y). 
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Second 
derivatives 

a > 0 and ac > b2 
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)2x:Sx>O 
The graph of 2f = ax2 + 2bxy + cy2 is a bowl when Sis positive definite. 

If S has a negative eigenvalue A < 0, the graph goes below zero. There is a 
maximum if S is negative definite (all A < 0, upside down bowl). Or a saddle point 
when S has both positive and negative eigenvalues. A saddle point matrix is "indefinite". 

Optimization and Machine Learning 

Part VI of this book will describe gradient descent. Each step takes the steepest direction, 
toward the bottom point x* of the bowl. But that steepest direction changes as we descend. 
This is where calculus meets linear algebra, at the minimum point x*. 

Calculus The partial derivatives of f are all zero at x* : 

Linear algebra Th . s f dd . . 02! . . . d fi . e matnx o secon envatives OXi OXj IS positive e mte 

If S is positive definite (or semidefinite) at all points x = (x1 , ... , xn). then the 
function f(x) is convex. If the eigenvalues of S stay above some positive number 8, 
then the function f(x) is strictly convex. These are the best functions to optimize. 
They have only one minimum, and gradient descent will find it. 

Machine learning produces "loss functions" with hundreds of thousands of variables. 
They measure the error-which we minimize. But computing all the second derivatives 
is completely impossible. We use first derivatives to tell us a direction to move-the error 
drops fastest in the steepest direction. Then we take another descent step in a new direction. 

This is the central computation in least squares and neural nets and deep learning. 

The Ellipse ax2 + 2bxy + cy2 = 1 

Stay with a positive definite matrix S. The graph of its energy E = xT Sx is a bowl 
opening upwards. Cut through that bowl at height xT_Sx = 1. Then the curve that goes 
around the cut is an ellipse. 

S = [ ~ : ] has A = 9 and 1 Energy ellipse 5x2 + Sxy + 5y2 = 1 in Figure 1.9 
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y y 

1 ( 1 1 ) 
3 v'2'v'2 (~.o) 

X X 
-1 -1 1 

xTSx = 1 XTAX = 1 

A1 = 9 A2 = 1 

-1 (~.- ~) 
Figure 1.9: The tilted ellipse 5x2 + 8xy + 5y2 = 1. Lined up it is 9X2 + Y 2 = 1. 

The eigenvectors are q 1 = (1, 1) and q 2 = (1, -1). Divide by ../2 to get unit vectors. 
Then S = QAQT. Now multiply by xT = [ x y] on the left and x on the right 
to get the energy xTSx = (xTQ)A(QT x). The eigenvalues of S are 9 and 1. 

x T Sx = sum of squares 
x+y x-y ( )2 ( )2 

5x2 +8xy+5y2 = 9 ../2 +1 ../2 (6) 

9 and 1 come from A. Inside the squares you see q 1 = (1, 1)/../2 and q 2 = (1, -1)/ ../2. ;' 

The axes of the tilted ellipse point along those eigenvectors of S. This explains why 
S = QAQT is the "principal axis theorem"-it displays the axes. Not only directions 
(from the eigenvectors) but also the axis lengths (from the >..'s): Length = 1/ v'>... 
To see it all, use capital letters for the new coordinates X, Y that line up the ellipse : 

Lined up and 
x-y 
--=Y 

../2 
and 

The largest value of X 2 is 1/9. The endpoint of the shorter axis has X = 1/3 andY = 0. 
Notice: The bigger eigenvalue >..1 = 9 gives the shorter axis, of half-length 1/ A = 1/3. 
The smaller eigenvalue >..2 = 1 gives the greater length 1/ ..;>::;, = 1: Y axis in Figure 1.9. 

In the xy system, the axes are along the eigenvectors of S. In the XY system,. the 
axes are along the eigenvectors of A-the coordinate axes. All from S = QAQT. 

S = QAQT is positive definite when all >..i > 0. The graph of x T Sx 1 
is an ellipse, with its axes pointing along the eigenvectors of S. 

Ellipse • [x y] QAQT [:]=[X Y] A[~]= A1X 2 + A2Y2 = 1. 

(7) 
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Problem Set I. 7 

1 Suppose sT =sand Sx =AX and Sy = ay are all real. Show that 

yTSx = AyTx and xTSy = axTy and yTSx = xTSy. 

Show that y T x must be zero if A -1 a : orthogonal eigenvectors. 

2 Which of S1 , S2 , S3 , S4 has two positive eigenvalues? Use a test, don't compute the 
A's. Also find an X so that X T Slx < 0, so sl is not positive definite. 

- [-1 -2] s2- -2 -5 [ 1 10] s3 = 10 1oo [ 1 10] s4 = 10 101 · 

3 For which numbers band care these matrices positive definite? 

s = [! ~] 
With the pivots in D and multiplier in L, factor each A into LD LT. 

4 Here is a quick "proof" that the eigenvalues of every real matrix A are real: 

, xT Ax real 
False proof Ax = Ax gives x TAx = Ax T x so "' - -- xTx -real· 

Find the flaw in this reasoning-a hidden assumption that is not justified. You could 
test those steps on the 90° rotation matrix [ 0 -1; 1 0 ] with A = i and x = ( i, 1). 

5 WriteS and Bin the form A1x 1xi + A2X2x:f of the spectral theorem QAQT: 

s = [i ~] [ 9 12] 
B = 12 16 

6 (Recommended) This matrix M is antisymmetric and also __ . Then all its 
eigenvalues are pure imaginary and they also have I A I = 1. (II M x II = II x II for every 
x so II Axil = llxll for eigenvectors.) Find all four eigenvalues from the trace of M: 

r 
0 1 

1 -1 0 
M=.J3 -1 1 

-1 -1 -~ -i1 can only have eigenvalues i or - i. 

7 Show that this A (symmetric but complex) has only one line of eigenvectors: 

A = [ ~ -~] is not even diagonalizable: eigenvalues A = 0 and 0. 

AT = A is not such a special property for complex matrices. The good property is 

AT = A. Then all eigenvalues are real ;md A has n orthogonal eigenvectors. 
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8 This A is nearly symmetric. But its eigenvectors are far from orthogonal: 

A=[~ 10-15 ] 

1 + 10-15 
has eigenvectors 

What is the angle between the eigenvectors? 

and [?] 
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9 Which symmetric matrices s are also orthogonal? Then sT = s and sT = s-1 . 

(a) Show how symmetry and orthogonality lead to S 2 =I. 

(b) What are the possible eigenvalues of S? Describe all possible A. 

Then S = Q AQT for one of those eigenvalue matrices A and an orthogonal Q. 

10 If Sis symmetric, show that AT SA is also symmetric (take the transpose of AT SA). 
Here A ism by nand Sis m by m. Are eigenvalues of S =eigenvalues of ATSA? 

In case A is square and invertible, AT SA is called congruent to S. They have 

the same number of positive, negative, and zero eigenvalues: Law of Inertia. 

11 Here is a way to show that a is in between the eigenvalues A1 and A2 of S : 

det ( S - M) = A 2 - a>. - c.>. + ac - b2 

is a parabola opening upwards (because of >. 2 ) 

\ 
Show that det (S - >.I) is negative at >. = a. So the parabola crosses the axis left" 
and right of >. = a. It crosses at the two eigenvalues of S so they must enclose a. 

The n- 1 eigenvalues of A always fall between the n eigenvalues of S = [ ;)r : ] . 
Section 111.2 will explain this interlacing of eigenvalues. 

12 The energy xT Sx = 2x1x2 certainly has a saddle point and not a minimum at (0, 0). 
What symmetric matrix S produces this energy? What are its eigenvalues? 

13 Test to see if AT A is positive definite in each case: A needs independe)lt columns. 

and A= [~ 1 2] 
2 1 . 

14 Find the 3 by 3 matrix S and its pivots, rank, eigenvalues, and determinant: 
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15 Compute the three upper left determinants of S to establish positive definiteness. 
Verify that their ratios give the second and third pivots. 

Pivots = ratios of determinants 

16 For what numbers c and dareS and T positive definite? Test their 3 determinants: 

[
c 1 1] s = 1 c 1 
1 1 c 

and 

17 Find a matrix with a > 0 and c > 0 and a + c > 2b that has a negative eigenvalue. 

18 A positive definite matrix cannot have a zero (or even worse, a negative number) 
on its main diagonal. Show that this matrix fails to have x T Sx > 0: 

[ Xl X2 X 3 ] [ 4~ ~1 ;1] [x~~ll is not positive when ( x1, x2, X3) = ( , ). 

19 A diagonal entry Bjj of a symmetric matrix cannot be smaller than all the A's. If it 
were, then S- Bjji would have __ eigenvalues and would be positive definite. 
ButS- Bjji has a __ on the main diagonal, impossible by Problem 18. 

20 From S = QAQT compute the positive definite symmetric square root Q...(AQT 
of each matrix. Check that this square root gives AT A = S: 

and [10 6] s = 6 10 . 

21 Draw the tilted ellipse x 2 + xy + y2 = 1 and find the half-lengths of its axes from 
the eigenvalues of the corresponding matrix S. 

22 In the Cholesky factorization S = AT A, with A = v'f5 L T, the square roots of the 
pivots are on the diagonal of A. Find A (upper triangular) for 

[9 0 0] s = 0 1 2 
0 2 8 

and 

23 Suppose C is positive definite (so y T Cy > 0 whenever y =f. 0) and A has indepen
dent columns (so Ax =f. 0 whenever x =f. 0). Apply the energy test to xT ATCAx 
to show that S = ATCA is positive definite: the crucial matrix in engineering. 
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The Minimum of a Function F(x, y, z) 

What tests would you expect for a minimum point? First come zero slopes : 
. d . . aF aF aF 0 h . . . 

First envatives are zero ax = ay = az = at t e m1mmum pomt. 

Next comes the linear algebra version of the usual calculu[ s ~s~ d2 ~:x2 ~~ :] 

Second derivative matrix His positive definite H = Fyoo Fyy Fyz 

Fzoo Fzy Fzz 

F a (a F) a (a F) F . , . , d d . . Here my = ax ay = ay ax = yoo lS a illlXed secon envatlve. 

24 For F1 (x, y) = ~x4 +x2y+y2 and F2 (x, y) = x3 +xy-x find the second derivative 
matrices H1 and H2 (the Hessian matrices): 

[ 
a2Fjax2 a2Fjaxayl 

Test for minimum H = 2 2 / 2 is positive definite 
a Fjayax a F ay 

H 1 is positive definite so F1 is concave up (=convex). Find the minimum point of F1 . 

Find the saddle point of F2 (look only where first derivatives are zero). 

25 Which values of c give a bowl and which c give a saddle point for the graph of 
z = 4x2 + 12xy + cy2 ? Describe this graph at the borderline value of c. 

26 Without multiplying S = 

(a) the determinant of S 
(c) the eigenvectors of S 

[c~s e - sine] [2 OJ [ c~s e sine] , find 
sill e cos e o 5 - sill e cos e 

(b) the eigenvalues of S 
(d) a reason whyS is symmetric positive definite. 

27 For which a and c is this matrix positive definite? For which a and c is it positive 
semidefinite (this includes definite)? 

[ 
a a a l 

S= a a+c a-c 

a a-c a+c 

All 5 tests are possible. 

The energy x T Sx equals 

a (x1 + X2 + x3) 2 + c (x2 - 'x3) 2 . 

28 Important! SupposeS is positive definite with eigenvalues )11 ;:::: A2 ;:::: ... ;:::: An· 

(a) What are the eigenvalues of the matrix A11- S? Is it positive semidefinite? 

(b) How does it follow that A1 x T x ;:::: x T Sx for every x? 

(c) Draw this conclusion: The maximum value of xT SxjxT xis A. 

Note Another way to 28 (c): Maximize x T Sx subject to the condition xT x = 1. 

This leads to a~ [xTSx-A (xT x-1)] =0 and then Sx= AX and A= Al. 
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1.8 Singular Values and Singular Vectors in the SVD 

The best matrices (real symmetric matrices S) have real eigenvalues and orthogonal 
eigenvectors. But for other matrices, the eigenvalues are complex or the eigenvectors 
are not orthogonal. If A is not square then Ax = Ax is impossible and eigenvectors 
fail (left side in Rm, right side in Rn). We need an idea that succeeds for every matrix. 

The Singular Value Decomposition fills this gap in a perfect way. In our applications, 
A is often a matrix of data. The rows could tell us the age and height of 1000 children. 
Then A is 2 by 1000: definitely rectangular. Unless height is exactly proportional to age, 
the rank is r = 2 and that matrix A has two positive singular values cr1 and cr2 . 

The key point is that we need two sets of singular vectors, the u's and the v's. 
For a real m by n matrix, the n right singular vectors v 1 , ... , Vn are orthogonal in Rn. 
The m left singular vectors u 1 , ... , Um are perpendicular to each other in Rm. 
The connection between n v's and m u's is not Ax = AX. That is for eigenvectors. 
For singular vectors, each A v equals 17U : 

jAvl = 171Ul .. Avr = 17rUr I IAvr+l = 0 .. Avn = oj (1) 

I have separated the first r v's and u's from the rest. That number r is the rank of A, the 
number of independent columns (and rows). Then r is the dimension of the column space 
and the row space. We will have r positive singular values in descending order 
171 ~ 172 ~ ••• ~ 17r > 0. The last n- r v's are in the nullspace of A, and the 
last m- r u's are in the nullspace of AT. 

Our first step is to write equation (1) in matrix form. All of the right singular vectors 
v 1 to Vn go in the columns of V. The left singular vectors u 1 to Um go in the columns 
of U. Those are square orthogonal matrices (VT = v-l and UT = u-1) because 
their columns are orthogonal unit vectors. Then equation (1) becomes the full SVD, 
with square matrices V and U : 

AV=U~ 

(2) 
You see Avk = CTkUk in the first r columns above. That is the important part ofthe SVD. 
It shows the basis of v's for the row space of A and then u's for the column space. 
After the positive numbers cr1 , ... , CTr on the main diagonal of L:, the rest of that matrix 
is all zero from the nullspaces of A and AT. 

The eigenvectors give AX = X A. But AV = UL: needs two sets of singular vectors. 
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Example 1 
AV=U~ 

[30]1[1 
4 5 J2 1 

-1 ] 1 [ 1 
1 =VIO 3 
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The matrix A is not symmetric, so Vis different from U. The rank is 2, so there are two 
singular values a 1 = 3.;5 and a2 = .;5. Their product 3 · 5 = 15 is the determinant of A 
(in this respect singular values are like eigenvalues). The columns of V are orthogonal and 
the columns of U are orthogonal. Those columns are unit vectors after the divisions by J2 
and VIO. so v and u are orthogonal matrices: vT = v- 1 and uT = u-1 . 

That orthogonality allows us to go from A V = UE to the usual and famous 
expression of the SVD: Multiply both sides of AV = UE by v-1 = VT. 

The Singular Value Decomposition of A is A = U~ VT. (3) 

Then column-row multiplication of UE times VT separates A into r pieces of rank 1 : 

Pieces of the SVD (4) 

In the 2 by 2 example, the first piece is more important than the second piece because 
a 1 = 3.;5 is greater than a2 = .;5. To recover A, add the pieces a1 u1 vJ + a2u2v:f: 

3.;5 [ 1 ] [ 1 1 l + -15 [ -3] [ -1 1 l = ~ [ 1 1 ] +_! [ 3 -3 ] = [ 3 0 l 
VIOJ2 3 VIOJ2 1 2 3 3 2 -1 1 4 5} 

This simplified because -15/ VlO J2 equals 1/2. Notice that the right singular vectors 
(1, 1) and ( -1, 1) in V are transposed to rows vi, v:f of VT. We have not yet explained 
how V and U and E were computed ! 

The Reduced Form of the SVD 

The full form A V = UE in equation (2) can have a lot of zeros in E when the rank of A 
is small and its nullspace is large. Those zeros contribute nothing to matrix multiplication. 
The heart of the SVD is in the first r v's and u's and a's. We can reduce AV =,UE 
to AVr = Ur'Er by removing the parts that are sure to produce zeros. This leaves the 
reduced SVD where ~r is now square : 

A [ V1 . . Vr 

row space 
l [ l [ a1 l 

U1 ·. Ur 

column space O"r 

(5) 
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We still have v;_T Vr = Ir and U:f Ur = Ir from those orthogonal unit vectors v's and u's. 
But when Vr and Ur are not square, we can no longer have two-sided inverses: Vr V7 -1- I 
and Ur U:f -1- I. 

Example Vr = 2/3 and V7 Vr = [ 1] but Vr V7 = - 2 4 4 =rank 1. [1/3] 1 [1 2 2] 
2/3 9 2 4 4 

Problem 21 shows that we still have A= Ur ~r VrT· The rest of U~VT contributes 
nothing to A, because of those blocks of zeros in ~- The key formula is still A = 
a 1 u 1 vi + · · · + arurv'{:. The SVD sees only the r nonzeros in the diagonal matrix ~-

The Important Fact for Data Science 

Why is the SVD so important for this subject and this book? Like the other factorizations 
A = LUandA = QR and S = QAQT, it separates the matrix into rank one pieces. 
A special property of the SVD is that those pieces come in order of importance. 
The first' piece a 1 u 1 vi is the closest rank one matrix to A. More than that is true: 
The sum of the first k pieces is best possible for rank k. 

Ak = u 1 u 1 vi + · · · + ukukv'[ is the best rank k approximation to A: 

Eckart-Young I If B has rank k then I lA- Akll :::; I lA- Bll·l (6) 

To interpret that statement you need to know the meaning of the symbol I lA - Ell· 
This is the "norm" of the matrix A - B, a measure of its size (like the absolute value 
of a number). The Eckart-Young theorem is proved in Section 1.9. 

Our first job is to find the v's and u's for equation (1), to reach the SVD. 

First Proof of the SVD 

Our goal is A = U~VT. We want to identify the two sets of singular vectors, the u 's and 
the v's. One way to find those vectors is to form the symmetric matrices AT A and AAT: 

(7) 

(8) 

Both (7) and (8) produced symmetric matrices. Usually AT A and AAT are different. 
Both right hand sides have the special form QAQT. Eigenvalues are in A = ~T~ or 
~~T. Eigenvectors are in Q = V or Q = U. So we know from (7) and (8) how V and 
U and ~ connect to the symmetric matrices A~ A and AAT. 
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V contains orthonormal eigenvectors of AT A 

U contains orthonormal eigenvectors of AA T 

ui to u; are the nonzero eigenvalues of both AT A and AAT 
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We are not quite finished, for this reason. The SVD requires that Avk = ukuk. 
It connects each right singular vector Vk to a left singular vector Uk, fork = 1, ... , r. 
When I choose the v's, that choice will decide the signs of the u's. If Su = .Au then 
also S( -u) = .A( -u) and I have to know the correct sign. More than that, there is 
a whole plane of eigenvectors when >. is a double eigenvalue. When I choose two v's 
in that plane, then Av = CJU will tell me both u's. This is in equation (9). 

The plan is to start with the v's. Choose orthonormal eigenvectors v1, ... , Vr 
of AT A. Then choose uk = -y~Xk. To determine the u's we require Av = uu: 

v's then u's T 2 Avk 9 A Avk=ukvk andthen uk=-- for k=l, ... ,r () 
O'k 

This is the proof of the SVD! Let me check that those u's are eigenvectors of AAT: 

The v's were chosen to be orthonormal. I must check that the u's are also orthonormal:,~ 

if j = k 
if j i= k 

(II) 

Notice that (AAT)A = A(AT A) was the key to equation (10). The law (AB)C = 

A(BC) is the key to a great many proofs in linear algebra. Moving the parentheses is a 
powerful idea. This is the associative law. 

Finally we have to choose the last n- r vectors Vr+l to Vn and the last m- r vectors 
ur+l to um. This is easy. These v's and u's are in the nullspaces of A and AT. 
We can choose any orthonormal bases for those nullspaces. They will autGmatically be 
orthogonal to the first v's in the row space of A and the first u's in the column sp.ace. 
This is because the whole spaces are orthogonal: N(A) _L C(AT) and N(AT) _L C(A). 
The proof of the SVD is complete. 

Now we have U and V and ~ in the full size SVD of equation (1). You may have 
noticed that the eigenvalues of AT A are in ~T~, and the same numbers CJf to CJ; are 
also eigenvalues of AAT in ~~T. An amazing fact: BA always has the same nonzero 
eigenvalueS' as AB : 5 pages ahead. 
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Example 1 (completed) Find the matrices U, E, V for A= [ ! ~ J. 
With rank 2, this A has two positive singular values a 1 and a2 • We will see that a 1 is larger 
than Amax = 5, and a2 is smaller than Amin = 3. Begin with AT A and AAT : 

AT A= [ 25 20] 
20 25 

AAT = [ 9 12 ] 
12 41 

Those have the same trace (50) and the same eigenvalues a~ = 45 and a~ = 5. The square 
roots are a 1 = v'45 and a2 = v'5. Then a1a2 = 15 and this is the determinant of A. 

A key step is to find the eigenvectors of AT A (with eigenvalues 45 and 5): 

[ ~~ ~~ ] [ - ~ ] = 5 [ - ~ ] 

Then v 1 and v 2 are those orthogonal eigenvectors rescaled to length 1. Divide by .J2. 

Ri h . 1 [ 1 ] 1 [-1 ] f . A vi g t smgular vectors v 1 = .J2 1 v2 = .J2 1 Le t smgular vectors ui = O"i 

~ [ ! ] 
~ [ -~] J5-1 [ -3] 

vitO 1 

The division by JlO makes u1 and u2 orthonormal. Then a 1 J45 and a2 J5 
as expected. The Singular Value Decomposition of A is U times E times VT. 

v ~ ~ [ : -: l I (12) 

U and V contain orthonormal bases for the column space and the row space of A 
(both spaces are just R2). The real achievement is that those two bases diagonalize A: 
AV equals UE. The matrix A = UEVT splits into two rank-one matrices, 
columns times rows, with J2 JlO = J20. 

Every matrix is a sum of rank one matrices with orthogonal u's and orthogonal v's. 
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Question: If S = QAQT is symmetric positive definite, what is its SVD? 

Answer: The SVD is exactly UEVT = QAQT. The matrix U = V = Q is orthogonal. 
And the eigenvalue matrix A becomes the singular value matrix E. 

Question: If S = QAQT has a negative eigenvalue (Sx = -ax), what is the singular 
value and what are the vectors v and u ? 

Answer: The singular value will be u = +a (positive). One singular vector (either u 
or v) must be -x (reverse the sign). Then Sx = -ax is the same as Sv = au. 
The two sign changes cancel. 

Question: If A = Q is an orthogonal matrix, why does every singular value equal1 ? 

Answer: All singular values are a = 1 because AT A = QTQ = I. Then E I. 
But U = Q and V = I is only one choice for the singular vectors u and v : 

Q = UEVT can be Q = QIIT or any Q = (QQ1)IQJ. 

Question : Why are all eigenvalues of a square matrix A less than or equal to u 1 ? 

Answer: Multiplying by orthogonal matrices U and VT does not change vector lengths : 

IIAxll = IIUEVTxll = IIEVTxll::; a1IIVTxll = u1llxll for all x. (13) 

An eigenvector has IIAxll = IAIIIxll- Then (13) gives IAIIIxll:::; a1llxll and I..XI ::; a-1. 

Question: If A = xyT has rank 1, what are u 1 and v 1 and a 1 ? Check that I..X11 ::; u 1• 

Answer: Thesingularvectorsu1 = x/llxll andv1 = Y/IIYII have length 1. Then u1 =·~ 
llxiiiiYII is the only nonzero number in the singular value matrix E. Here is the SVD: ' 

Rank 1 matrix 
T X YT T 

xy = llxll (llxiiiiYII) IIYII = u1a1v1. 

Observation The only nonzero eigenvalue of A = xyT is A = yTx. The eigenvector 
is x because (xyT) x = x (yTx) = AX. Then IA1I = lyTxl :::; 0"1 = IIYIIIIxii-

The key inequality IA1I :::; a1 becomes exactly the Schwarz inequality. 

Question: What is the Karhunen-Loeve transform and its connection to the SVD? 

Answer: KL begins with a covariance matrix V of a zero-mean random process. V is 
symmetric and positive definite or semidefinite. In general V could be an infinite m~trix 
or a covariance function. Then the KL expansion will be an infinite series. 

The eigenvectors of V, in order of decreasing eigenvalues a~ ~ a~ ~ . . . ~ 0, are the 
basis functions Ui for the KL transform. The expansion of any vector v in an orthonormal 
basis u 1, u2, ... is v = l:(u[ v)ui. 

In this stochastic case, that transform decorrelates the random process : th~ Ui are 
independent. More than that, the ordering of the eigenvalues means that the first k terms, 
stopping at ( ur v )uk, minimize the expected square error. This fact corresponds to the 
Eckart-Young Theorem in the next section 1.9. 

The KL transform is a stochastic (random) form of Principal Component Analysis. 
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The Geometry of the SVD 

The SVD separates a matrix into A = U:EVT: (orthogonal) x (diagonal) x (orthogonal). 
In two dimensions we can draw those steps. The orthogonal matrices U and V rotate the 
plane. The diagonal matrix :E stretches it along the axes. Figure 1.11 shows rotation 
times stretching times rotation. Vectors x on the unit circle go to Ax on an ellipse. 

A 

-.... Ax 

Figure 1.10: U and V are rotations and possible reflections. :E stretches circle to ellipse. 

This picture applies to a 2 by 2 invertible matrix (because a 1 > 0 and a 2 > 0). First 
is a rotation of any x to VT x. Then :E stretches that vector to :EVT x. Then U rotates to 
Ax = U:EVT x. We kept all determinants positive to avoid reflections. The four numbers 
a, b, c, din the matrix connect to two angles() and¢ and two numbers a 1 and a 2 . 

-sin() ] [ a1 
cos() ] [ cos¢ sin¢ ] 

a2 - sin¢ cos¢ · 
(14) 

Question. If the matrix is symmetric then b = c and A has only 3 (not 4) parameters. 
How do the 4 numbers (), ¢, a1, a2 reduce to 3 numbers for a symmetric matrix S? 

The First Singular Vector v 1 

The next page will establish a new way to look at v 1 . The previous pages chose the v's 
as eigenvectors of AT A. Certainly that remains true. But there is a valuable way to 
understand these singular vectors one at a time inste~d of all at once. We start with v 1 

and the singular value a1. 

JJAxJJ 
Maximize the ratio Txll" The maximum is u 1 at the vector x = v1 • (15) 

The ellipse in Figure I.lO showed why the maximizing x is v 1 . When you follow v 1 

across the page, it ends at Av1 = a1 u1 (the longest axis of the ellipse). Its length started 
at lJv11J = 1 and ended at IJAv11J = a1. 
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But we aim for an independent approach to the SVD ! We are not assuming that we 
already know U orE or V. How do we recognize that the ratio IIAa:ll/lla:ll is a maximum 
when x = VI ? Calculus tells us that the first derivatives must be zero. The derivatives will 
be easier if we square our function : 

IIAxW xTATAx xTSx 
Problem : Find the maximum value A of lfXI12 = x T x = x T x . ( 16) 

This "Rayleigh quotient" depends on XI. ... , Xn· Calculus uses the quotient rule, so we 
need 

The quotient rule finds 8j8xi (xT Sxja:T x). Set those n partial derivatives of(l6) to zero: 

(xTa:) 2(sx)i- (xTsx) 2 (x)i = 0 fori= l, ... ,n (19) 

Equation (19) says that the best x is an eigenvector of S = AT A ! 

xTSx IIAxll2 
2Sx = 2Ax and the maximum value of xTx = lfXI12 is an eigenvalue A of S. 

The search is narrowed to eigenvectors of S = AT A. The eigenvector that maximizes is 
X = VI. The eigenvalue is AI = ar. Calculus has confirmed the solution (15) of 
the maximum problem-the first piece of the SVD. 

For the full SVD, we need all the singular vectors and singular values. To find v 2 

and a 2 , we adjust the maximum problem so it looks only at vectors x orthogonal to VI. 

Maximize 111~~~11 under the condition v'f x = 0. The maximum is u2 at a: = v2 • 

"Lagrange multipliers" were invented to deal with constraints on x like v[ x = 0. 
And Problem 3 gives a simple direct way to work with this condition v[ x = 0. ' 

In the same way, every singular vector Vk+l gives the maximum ratio over all vectors 
x that are perpendicular to the first vI, ... , v k. The left singular vectors would come from 
maximizing IIATyii/IIYII· We are always finding the axes of an ellipsoid and the 
eigenvectors of symmetric matrices AT A or AAT. 
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The Singular Vectors of AT 

The SVD connects v's in the row space to u's in the column space. When we transpose 
A = UEVT, we see that AT = V:ETUT goes the opposite way, from u's to v's: 

AT uk = 0 for k = r + 1, ... , rn (20) 

A Different Symmetric Matrix Also Produces the SVD 

We created the SVD from two symmetric matrices AT A and AAT. Another good way 
uses one symmetric block matrix S. This matrix has r pairs of plus and minus eigenvalues. 
The nonzero eigenvalues of this matrix S are O"k and -ub and its size is m + n: 

[ 0 A ] [ UVkk ] and [ -VUkk ] . S = AT 0 has eigenvectors 

We can check those eigenvectors directly, remembering Avk = ukuk and AT Uk = O"kVk: 

[ JT ~] [ ±v:k] = [ ±~~~k] = O"k [ ~:] and - O"k [ -v:k] · (21) 

That gives 2r eigenvalues. The eigenvectors are orthogonal: -ui uk +vi vk = -1 + 1. 
Can you see the other ( m - r) + ( n - r) eigenvectors with A = 0 for that block matrix ? 
They must involve the remaining u's and v's in the nullspaces of AT and A. 

AB and B A : Equal Nonzero Eigenvalues 

If A is rn by nand B is n by rn, then AB and BA have the same nonzero eigenvalues. 

Start with ABx = .Ax and A =I 0. Multiply both sides by B, to get BABx = .ABx. 
This says that Bx is an eigenvector of BA with the same eigenvalue .A-exactly what we 
wanted. We needed .A f' 0 to be sure that this eigenvector Bx is not zero. 

Notice that if B is square and invertible, then B- 1 (BA)B = AB. This says that 
BA is similar to AB: same eigenvalues. But our first proof allows A and B to be m by n 
and n by m. This covers the important example of the SVD when B = AT. In that case 
AT A and AAT both lead to the singular values of A. 

If m > n, then AB has m- n extra zero eigenvalues compared to BA. 
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Submatrices Have Smaller Singular Values 

The approach to IIAII = CT1 by maximizing IIAxll/llxll makes it easy to prove this use
ful fact. The norm of a submatrix cannot be larger than the norm of the whole matrix : 
o-1 (B) :::; o-1 (A). 

If B keeps M:::; rn rowsand N:::; n columns of A, then IIBII:::; IIAII. (22) 

Proof Look at vectors y with nonzeros only in the N positions that correspond to 
columns in B. Certainly maximum of IIBYII/IIYII :<:::maximum of IIAxll/llxll. 

Reduce II BY II further by looking only at theM components that correspond to rows 
of B. So removing columns and rows cannot increase the norm CJ1, and IIBII :<::: IIAII. 

The SVD for Derivatives and Integrals 

This may be the clearest example of the SVD. It does not start with a matrix (but we will 
go there). Historically, the first SVD was not for vectors but for functions. Then A is not 
a matrix but an operator. One example is the operator that integrates every function. 
Another example is the (unbounded) operator D that takes the derivative: 

Operators on functions 
Integral and derivative 

s 

Ax(s) = j x(t)dt and Dx(t) = ~~· 
0 

(23) 

Those operators are linear (or calculus would be a lot more difficult than it is). In some 
way D is the inverse of A, by the Fundamental Theorem of Calculus. More exactly D is a 
left inverse with D A = I : derivative of integral equals original function. ~ 

But AD =/=- I because the derivative of a constant function is zero. Then D has a 
nullspace, like a matrix with dependent columns. D is the pseudoinverse of A ! Sines 
and cosines are the u's and v's for A= integral and D =derivative: 

1 
Av = CJU is A( cos kt) = -(sinkt) 

k 
Then D(sinkt) = k (cos kt). (24) 

The simplicity of those equations is our reason for including them in the book. We are 
working with periodic functions: x ( t + 27r) = x ( t). The input space to A contains the 
even functions like cost = cos( -t). The outputs from A (and the inputs to D) are the 
odd functions like sint = -sin( -t). Those input and output spaces are like Rn and Rm 
for an m by n matrix. · 

The special property of the SVD is that the v's are orthogonal, and so are the u's. 
Here those singular vectors have become very nice functions-the cosines are orthogonal 
to each other and so are the sines. Their inner products are integrals equal to zero : 

' 2,.-

vivj= j(coskt)(cosjt)dt=O 
0 

211" 

and uiuj = J(sinkt) (sinjt)dt = 0. 

0 
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Notice that the inner product of functions x 1 and x 2 is the integral of x 1 (t) x 2 (t). 
This copies into function space (Hilbert space) the dot product that adds y · z = ~YiZi. 

In fact the symbol J was somehow created from~ (and integrals are the limits of sums). 

Finite Differences 

The discrete form of a derivative is a finite difference. The discrete form of an integral 
is a sum. Here we choose a 4 by 3 matrix D that corresponds to the backward difference 
f(x)- f(x- b.x): 

[ _: 1 _:] DT~ [I -1 _J D= 
-1 

with 1 -1 (25) 
1 

To find singular values and singular vectors, compute DT D (3 by 3) and DDT (4 by 4): 

DTD~ [ -~ -1 -n [ -~ 
-1 0 

-n 2 and DDT= 2 -1 
(26) 

-1 2 
-1 

0 -1 

Their nonzero eigenvalues are always 
"th . ( 1 1 1 1) w1 eigenvector u4 = 2• 2• 2• 2 · 

the same ! DDT also has a zero eigenvalue 
This is the discrete equivalent of the function 

f(x) =~with df jdx = 0. 
The nonzero eigenvalues of both symmetric matrices DT D and DDT are 

AI = 0"~ (D) = 2 + V2 A2 = u~ (D) = 2 (27) 

The eigenvectors v of DT D are the right singular vectors of D. They are discrete sines. 
The eigenvectors u of DDT are the left singular vectors of D. They are discrete cosines: 

. 271" . 37r 
cos.!_.'!!: cos.!_ 271" cos.!_ 371" 1 . 7r 24 2 4 2 4 sm 4 sm4 sm4 
cos~.'!!: 3 271" 3 371" 

hv = 
• 271" • 471" • 611" J2U= 24 cos24 cos 24 1 

sm4 sm4 sm4 
cos QE: 5 271" 5 371" 1 

sin 371" • 611" • 97r 24 cos24 cos24 

4 
sm 4 sm4 • 7 7r 7 271" 7 371" 1 cos24 cos24 cos24 

These are the famous DST and DCT matrices-Discrete Sine Transform and Discrete 
Cosine Transform. The DCT matrix has been the backbone of JPEG image compression. 
Actually JPEG increases U to 8 by 8, which reduces the "blockiness" of the image. 
8 by 8 blocks of pixels are transformed by a two-dimensional DCT -then compressed and 
transmitted. Orthogonality of these matrices is the key in Section IV.4. 
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Our goal was to show the discrete form of the beautiful Singular Value Decomposition 
D (sin kt) = k (cos kt). You could correctly say that this is only one example. But Fourier 
is always present for linear equations with constant coefficients-and always important. 

In signal processing the key letters are L T I : Linear Time Invariance. 

The Polar Decomposition A = QS 

Every complex number x + iy has the polar form rei6 • A number r ~ 0 multiplies 
a number ei0 on the unit circle. We have x + iy = r cos(} + ir sin(} = rei0 . 

Think of these numbers as 1 by 1 matrices. Then ei0 is an orthogonal matrix Q and 
r ~ 0 is a positive semidefinite matrix (call itS). The polar decomposition extends the 
same idea ton by n matrices: orthogonal times positive semidefinite, A = QS. 

Every real square matrix can be factored into A = QS, where Q is orthogonal 
and S is symmetric positive semidefinite. If A is invertible, S is positive definite. 

Polar decomposition (28) 

The first factor UVT is Q. The product of orthogonal matrices is orthogonal. The second 
factor V~VT isS. It is positive semidefinite because its eigenvalues are in~. 

If A is invertible then ~ and S are also invertible. S is the symmetric positive 
definite square root of AT A, because 8 2 = V~2 VT = AT A. So the eigenvalues of 
S are the singular values of A. The eigenvectors of S are the singular vectors v of A. 

There is also a polar decomposition A = K Q in the reverse order. Q is the same but 
now K = U~UT. Then K is the symmetric positive definite square root of AAT. ·~ 

Example Find Q and S (rotation and stretch) in the polar decomposition of A = [ ! ~ ] . 
Solution The matrices U and ~ and V were found above equation (3) : 

Q = uvT = _1 [ 1 -3] [ 1 V26 3 1 -1 
-1] 1 [4 -2] 1 [2 -21] 1=yl262 4=J51 

In mechanics, the polar decomposition separates the rotation (in Q) from the stretching. 
The eigenvalues of S give the stretching factors in Figure 1.10. The eigenvectors of S 
give the stretching directions (the principal axes of the ellipse). Section IV.9 on the 
orthogonal Procrustes problem says that Q is the nearest orthogonal matrix to A. 
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Problem Set 1.8 

1 A symmetric matrix s = sT has orthonormal eigenvectors VI to Vn. Then any 
vector x can be written as a combination x = c1 v 1 + · · · + Cn Vn. Explain these two 
formulas: 

T 2 2 
X X= C1 + · · · + Cn 

2 Problem 1 gives a neat form for the Rayleigh quotient xTSxjxTx: 

Why is the maximum value of that ratio equal to the largest eigenvalue ..X1 ? 
This may be the simplest way to understand the "second construction" of the SVD 
in equation (15). You can see why the ratio R(x) is a maximum when c1 = 1 and 
C2 = C3 = · · · = Cn = 0. 

3 Next comes >.2 when x = v2. We maximize R(x) = xTSxjxTx under the con
dition that xTv 1 = 0. What does this condition meanfor c1 ? Why is the ratio in 
Problem 2 now maximized when c2 = 1 and c1 = c3 = · · · = Cn = 0 ? 

4 Following Problem 3, what maximum problem is solved by x = v 3 ? The best c's are 
C3 :::: 1 and C1 = C2 = C4 • • • = 0. 

xTSx 
The maximum of R( x) = -T- is ..Xa subject to what two conditions on x ? 

X X 

5 Show that AT has the same (nonzero) singular values as A. Then [[A[[ = [[AT[[ 
for all matrices. But it's not true that [[Ax[[ = [[AT x[[ for all vectors. That needs 
ATA=AAT. 

6 Find the a's and v's and u's in the SVD for A·= [ ~ : ] . Use equation (12). 

7 What is the norm II A-a! u1vFII when that largest rank one piece of A is removed? 
What are all the singular values of this reduced matrix, and its rank ? 

8 Find the a's and v's and u's, and verify that A = = UEVT. For this [ 0~ ~2 0~] 
matrix, the orthogonal matrices U and. V are permutation matrices. 
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9 To maximize ~:z:TS:z: with :z:Tx = 1, Lagrange would work with L = ~xTSx + 
.A(:z:T:z: -1). Show that VL = (8Ljox1, ... ,8Lj8xn) = 0 is exactly Sx =.Ax. 
Once again max R(x) = .A1. 

10 Prove II B II :::; II All in equation (22) by a slightly different approach. Remove first 
theN- n columns of A. The new matrix has II Gil :::; IIAII· (Why?). Then transpose 
C : no change in norm. Finally remove M - m columns of cT to produce BT 
with no increase in norm. Altogether IIBII = IIBTII:::; IICTII = IICII:::; IIAII· 

11 Check that the trace of S = [ JT ~ ] from adding up its diagonal entries agrees 

with the sum of its eigenvalues in equation (21). If A is a square diagonal matrix 
with entries 1, 2, ... , n, what are the 2n eigenvalues and eigenvectors of S? 

12 FindtheSVDoftherank1matrixA= [ ~ ~ J.FactorATAintoQAQT. 

13 Here is my homemade proof of the SVD. Step 2 uses the factorizations 
AT A = V AVT and AAT = U AUT (same eigenvalues in A). 

1 A(AT A) = (AAT)A 
2 AVAVT = UAUTA 
3 (UTAV)A = A(UT AV) 
4 UT AV must be diagonal 

Step 3 multiplied Step 2 on the left by __ and on the right by 
Then the matrix UT AV commutes with the diagonal matrix A in Step 3. How 
does this force the matrix UTA V = :E to be also a diagonal matrix? Try 3 by 3. 

Compare the first rows. When can you conclude that 0'12 = 0 and 0'13 = 0? This 
shows the limitation on my proof: It needs the eigenvalues of AT A to be __ . 

The same bug appears in simple proofs of the spectral theoremS = QAQT. 
This is easy when S has no repeated A's. The SVD is easy when A has no repeated O"'s. 

Both S = QAQT and A = U:EVT remain true when .A's or O"'s happen to be 
repeated. The problem is that this produces a whole plane of eigenvectors 
or singular vectors. You have to choose the singular vectors u specifically as· Av / 0'

which is the real proof in equation (9). 
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14 Figure 1.10 showed how a 2 by 2 matrix with four entries a, b, c, d produces an SVD 
with four parameters e, ¢,a I, az. Move to A = UI;VT = 2 by 3 with six entries. 

How many a's for a 2 by 3 matrix? Then U (2 by 2) only needs one angle. 
To recover A, that leaves how many angles for the 3 by 3 orthogonal matrix V? 

The row space of A is a plane in R3 . It takes __ angles for the position of that plane. 
It takes __ angle in the plane to find VI and v 2 • A total of __ angles for V. 

15 Every 3 by 3 matrix has 9 entries. So UI;VT must have 9 parameters. How many 
parameters in U and I; and V ? Answer the same questions for 4 by 4. How many 
parameters describe a rotation in 4-dimensional space ? 

16 __ numbers will give the direction of a unit vector vi in R5 . Then the direction 
of an orthogonal unit vector v2 takes __ numbers. How many for v 3 , v 4 , v 5 ? 
Total 

17 If v is an eigenvector of AT A with >. i= 0, then __ is an eigenvector of AA T. 

18 If A = UI; VT is square and invertible, then A -I = __ . Find all singular values 
of AT A (not of A). 

19 If s = sT has orthogonal columns ui, Uz, U3 in R3 oflengths 2, 3, 4, find its SVD. 

20 The reasons for the success of eigenvalues and eigenvectors are in Ak = X A k X -l : 

a) The eigenvalues of Ak are A~, ... , A~ 

b) An eigenvector x of A is also an eigenvector of A k. 

Show that a) and b) are false for singular values and singular vectors of [-~ -6] 
2 • 

21 Show that the singular values of AAT A are ( a 1 ) 3 to ( ar )3 . 

22 Equation (5) is AVr = Uri;r· Multiply by V7 to get A = Uri;r V7 (reduced SVD). 

For that step we cannot use Vr V,T = I (which is false when m > r). Show instead 
that this matrix A = Uri;r V7 satisfies equation (1). 

23 Show that an m by n matrix of rank r has r( m + n - r) free parameters in its SVD: 
A= UI;VT = (m x r) (r x r) (r x n). Why. do r orthonormal vectors u 1 toUr 
have (m- 1) + (m- 2) + · · · + (m- r) parameters? 

Another approach uses A = C R = ( m x r) ( r x n) from Section 1.1. The matrix R 
contains an r by r identity matrix, removing r2 parameters from rm + rn. That 
count is repeated in an appendix of this book. 
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1.9 Principal Components and the Best Low Rank Matrix 

The principal components of A are its singular vectors, the columns Uj and v j of the 
orthogonal matrices U and V. Principal Component Analysis (PCA) uses the largest u's 
connected to the first u's and v's to understand the information in a matrix of data. 
We are given a matrix A, and we extract its most important part Ak (largest u's): 

Ak = u1u1v'f + · · · + ukukvr with rank (Ak) = k. 

Ak solves a matrix optimization problem-and we start there. The closest rank k matrix 
to A is Ak. In statistics we are identifying the pieces of A with largest variance. This puts 
the SVD at the center of data science. 

In that world, PCA is "unsupervised" learning. Our only instructor is linear algebra
the SVD tells us to choose Ak. When the learning is supervised, we have a big set of 
training data. Deep Learning (Section VII.l) constructs a (nonlinear!) function F that 
correctly classifies most of that training data. Then we apply F to new data, as you will see. 

Principal Component Analysis is based on matrix approximation by Ak. The proof that 
Ak is the best choice was begun by Schmidt (1907). His theorem was written for operators 
A in function space, and it extends directly to matrices in vector spaces. Eckart and Young 
gave a new proof in 1936 (using the Frobenius norm for matrices). Then Mirsky found a 
more general proof in 1955 that allows any norm IIAII that depends only on the singular 
values-as in the definitions (2), (3), and (4) below. 

Here is that key property of the special rank k matrix Ak = a1u1vT + · · · + akukvi: 

Eckart-Young If B has rank k then I lA- Bll ~I lA- Akll· 

Three choices for the matrix norm II All have special importance and their own names: 

IIAxll 
Spectral norm II All2 = max~ = u 1 (often called the £2 norm) (2) 

Frobenius norm II AI IF= J af +···+a¢ (12) and (13) also define IIAIIF (3) 

Nuclear norm II AI IN= u1 + u2 + · · · + Ur (the trace norm). (4) 

These norms have different values already for the n by n identity matrix : 

IIIIIN =n. (5) 

Replace I by any orthogonal matrix Q and the norms stay the same (because all ai = 1): 

IIQII2 = 1 IIQIIF = v'n IIQIIN=n. (6) 

More than this, the spectral and Frobenius and nuclear norms of any matrix stay 
the same when A is multiplied (on either side) by an orthogonal matrix. 
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The singular values don'tchange when U and V change to Q1 U and Q2 V. For complex 

matrices the word unitary replaces orthogonal. Then QT Q = I. These three norms are 

unitarily invariant: IIQ 1AQ~ II = IIAII- Mirsky's proof of the Eckart-Young theorem in 
equation (1) applies to all unitarily invariant norms: IIAII is computable from~-

All three norms have IIQlAQi II = II All for orthogonal Q1 and Q2 (7) 

We now give simpler proofs of (1) for the £ 2 norm and the Frobenius norm. 

Eckart-Young Theorem : Best Approximation by Ak 

It helps to see what the theorem tells us, before tackling its proof. In this example, 
A is diagonal and k = 2 : 

[
4 0 0 0] . 0 3 0 0 

The rank two matnx closest to A= 0 0 2 0 

0 0 0 1 

This must be true! You might say that this diagonal matrix is too simple, and not typical. 
But the £ 2 norm and Frobenius norm are not changed when the matrix A becomes Q 1 AQ2 

(for any orthogonal Q1 and Q2). So this example includes any 4 by 4 matrix with singular 
values 4, 3, 2, 1. The Eckart-Young Theorem tells us to keep 4 and 3 because they are 
largest. The error in £2 is I lA- A2ll = 2. The Frobenius norm has I lA- A2IIF = v'5. 

The awkward part of the problem is "rank two matrices". That set is not convex. 
The average of A2 and B2 (both rank 2) can easily have rank 4. Is it possible that 
this B2 could be closer to A than A2 ? 

Could this B2 be 

a better rank 2 

approximation to A ? 

3.5 3.5 [ 

3.5 3.5 

1.5 1.5]· 
1.5 1.5 

The errors A - B 2 are only 0.5 on the main diagonal where A - A2 has errors 2 and 1. 
Of course the errors 3.5 and 1.5 off the diagonal will be too big. But maybe there is 
another choice that is better than A2 ? 

No, A2 is best with rank k = 2. We prove this for the £ 2 norm and then for Frobenius. 

Eck~:Joung If rank (B):::; k then I lA- Bll =max II(A l~x~) xll 2': lTk+l· (8) 
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We know that IIA- Akll = ak+l· The whole proof of I lA- Ell ~ ak+l depends on a 
good choice of the vector x in computing the norm II A - B II : 

k+l 

Choose x =f. 0 so that Bx = 0 and x = L CiVi 

1 

(9) 

First, the nullspace of B has dimension ~ n - k, because B has rank :::; k. Second, the 
combinations of Vt to Vk+l produce a subspace of dimension k + 1. Those two subspaces 
must intersect! When dimensions add to (n- k) + (k + 1) = n + 1, the subspaces must 
share a line (at least). Think of two planes through (0, 0, 0) in R3 -they share a line since 
2 + 2 > 3. Choose a nonzero vector x on this line. 

Use that x to estimate the norm of A-Bin (8). Remember Bx = 0 and A vi = aiui: 

k+l 

II(A- B) xW = IIAxll2 =II I::ciaiuill2 = L:c~a?. (10) 

That sum is at least as large as (2:: en a~+l' which is exactly llxWa~+l· Equation (10) 
proves that II(A- B)xll ~ O"k+tllxll· This x gives the lower bound we want for IIA-BII: 

II(A- B)xll 
llxll ~ O"k+l means that I lA- Bll ~ lTk+l =I lA- Akll· Proved! (11) 

The Frobenius Norm 

Eckart-YoungFrobeniusnorm Now we go to the Frobenius norm, to show that Ak is the best~ 
approximation there too. 
It is useful to see three different formulas for this norm. The first formula treats A as a 
long vector, and takes the usual e2 norm of that vector. The second formula notices that the 
main diagonal of AT A contains the e2 norm (squared) of each column of A. 

For example, the 1,1 entry of AT A is laul2 + · · · + lamtl 2 from column 1. 
So (12) is the same as (13), we are just taking the numbers lai112 a column at a time. 

Then formula ( 14) for the Frobenius norm uses the eigenvalues a; of AT A. (The trace 
is always the sum of the eigenvalues.) Formula (14) also comes directly from the SVD
the Frobenius norm of A = UEVT is not affected by U and V, so IIAII~ = 11~11~· 
Th. . 2 + + 2 ' IS IS lT l • • • lT r . 

IIAII~ = laul2 + la12l2 + · · · + lamnl2 (every a~3 ) 

IIAII~ =trace of AT A= (AT A)u +···+(AT A)nn 

IIAII~ = uf + u~ + · · · + u~ 

(12) 

(13) 

(14) 
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Eckart-Young in the Frobenius Norm 

For the norm I lA- BIIF, Pete Stewart has found and generously shared this neat proof. 

Suppose the matrix B of rank ::; k is closest to A. We want to prove that B = Ak. 
The surprise is that we start with the singular value decomposition of B (not A) : 

B = U [ ~ ~ ] VT where the diagonal matrix Disk by k. (15) 

Those orthogonal matrices U and V from B will not necessarily diagonalize A: 

A-u[ L+E+R F ]vT - G H (16) 

Here L is strictly lower triangular in the first k rows, E is diagonal, and R is strictly upper 
triangular. Step 1 will show that L, R, and Fare all zero by comparing A and B with this 
matrix C that clearly has rank::; k: 

(17) 

This is Stewart's key idea, to construct C with zero rows to show its rank. Those 
orthogonal matrices U and VT leave the Frobenius norm unchanged. Square all matrix 
entries and add, noticing that A - C has zeros where A- B has the matrices L, R, F: 

I lA- Bll} =I lA- Gil}+ IlLII} + IIRII} + IIFII}. (18) 

Since I lA- Bll} was as small as possible we learn that L, R, Fare zero! Similarly we 
find G = 0. At this point we know that UTA V has two blocks and E is diagonal (like D): 

UTA V = [ ~ ~ ] and UT BV = [ ~ ~ ] . 

If B is closest to A then uT BV is closest to UTA V. And now we see the truth. 

The matrix D must be the same as E = diag (a1 , .. ·., ak). 

The singular values of H must be the smallest n - k singular values of A. 

The smallest error IIA- BIIF must be IIHIIF = J a~+l + · · · +a; =Eckart-Young. 

In the 4 by 4 example starting this section, A2 is best possible: IIA - A2ll F = J5. 
It is exceptional to have this explicit solution Ak for a non-convex optimization. 
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Minimizing the Frobenius Distance II A - B II~ 

Here is a different and more direct approach to prove Eckart-Young: Set derivatives 
ofiiA- Ell} to zero. Every rank k matrix factors into B = CR = (m x k) (k x n). 
By the SVD, we can require r orthogonal columns in C (so cT C = diagonal matrix D) 
and r orthonormal rows in R (so RRT =I). We are aiming for C = UkL.k and R = V?. 

Take derivatives of E = II A - C Rll::,. to find the matrices C and R that minimize E : 

~~ = 2(CR- A)RT = o ~~ = 2(RTcT- AT) c = o (19) 

The first gives ART= CRRT =C. Then the second gives RT D =ATe= AT ART. 
Since D is diagonal, this means : 

The columns of RT are eigenvectors of AT A. They are right singular vectors v 1 of A. 
Similarly the columns of C are eigenvectors of AA T : AA T C = ART D = CD. Then C 
contains left singular vectors u 1. Which singular vectors actually minimize the error E? 

E is a sum of all the a 2 that were not involved in C and R. To minimize, those should 
be the smallest singular values of A. That leaves the largest singular values to produce 
the best B = CR = Ak, with I lA- CRII} = a~+l +···+a;. This neat proof is in 
Nathan Srebro's MIT doctoral thesis: ttic.uchicago.edu/-nati/Publications/thesis.pdf 

Principal Component Analysis 

Now we start using the SVD. The matrix A is full of data. We have n samples. For 
each sample we measure m variables (like height and weight). The data matrix A0 has n., 
columns and m rows. In many applications it is a very large matrix. ' 

The first step is to find the average (the sample mean) along each row of A0 . Subtract 
that mean from all m entries in the row. Now each row of the centered matrix A has 
mean zero. The columns of A are n points in Rm. Because of centering, the sum of the 
n column vectors is zero. So the average column is the zero vector. 

Often those n points are clustered near a line or a plane or another low-dimensional 
subspace of Rm. Figure 1.11 shows a typical set of data points clustered along a line in R2 

(after centering A0 to shift the points left-right and up-down for mean (0, 0) in A). 

How will linear algebra find that closest line through (0, 0)? It is in the direction of 
the first singular vector u 1 of A. This is the key point of PCA ! ' 

A is 2 x n (large nullspace) 

AAT is 2 x 2 (small matrix) 

AT A is n x n (large matrix) 

1\vo singular values a-1 > a-2 > 0 

Figure 1.11: Data points (columns of A) are often close to a line in R2 or a subspace in Rm. 
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Let me express the problem (which the SVD solves) first in terms of statistics and 
then in terms of geometry. After that come the linear algebra and the examples. 

The Statistics Behind PCA 

The key numbers in probability and statistics are the mean and variance. The "mean" is 
an average of the data (in each row of A0 ). Subtracting those means from each row of 
Ao produced the centered A. The crucial quantities are the "variances" and "covariances". 
The variances are sums of squares of distances from the mean-along each row of A. 

The variances are the diagonal entries of the matrix AA T. 

Suppose the columns of A correspond to a child's age on the x-axis and its height on the 
y-axis. (Those ages and heights are measured from the average age and height.) 
We are looking for the straight line that stays closest to the data points in the figure. 
And we have to account for the joint age-height distribution of the data. 

The covariances are the off-diagonal entries of the matrix AA T. 

Those are dot products (row i of A) · (row j of A). High covariance means that increased 
height goes with increased age. (Negative covariance means that one variable increases 
when the other decreases.) Our example has only two rows from age and height: the 
symmetric matrix AAT is 2 by 2. As the number n of sample children increases, we divide 
by n - 1 to give AAT its statistically correct scale. 

AAT 
The sample covariance matrix is defined by S = --. 

n-1 

The factor is n-1 because one degree of freedom has already been used for mean = 0. Here 
is an example with six ages and heights already centered to make each row add to zero : 

A=[~ -4 
-6 

7 1 
8 -1 

-4 -3] 
-1 7 

For this data, the sample covariance matrix S is easily computed. It is positive definite. 

Variances and covariances S = _I_AAT = [ 20 25 ] 
6- 1 25 40 . . . 

The two orthogonal eigenvectors of S are u1 and u2. Those are the left singular vectors 
(principal components) of A. The Eckart-Young theorem says that the vector u 1 points 
along the closest line in Figure 1.11. Eigenvectors of S are singular vectors of A. 

The second singular vector u2 will be perpendicular to that closest line. 

Important note PCA can be described using the symmetric S = AAT / ( n - 1) or the 
rectangular A. No doubt S is the nicer matrix. But given the data in A, computing S 
would be a computational mistake. For large matrices, a direct SVD of A is faster and 
more accurate. 
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In the example, S has eigenvalues near 57 and 3. Their sum is 20 + 40 = 60, the trace 
of S. The first rank one piece V'57u 1 v[ is much larger than the second piece J3u2v:f. 
The leading eigenvector u 1 ~ (0.6, 0.8) tells us that the closest line in the scatter plot 
has slope near 8/6. The direction in the graph nearly produces a 6-8- 10 right triangle. 

I will move now from the algebra of PCA to the geometry. In what sense will the line 
in the direction of u1 be the closest line to the centered data? 

The Geometry Behind PCA 

The best line in Figure 1.11 solves a problem in perpendicular least squares. This is also 
called orthogonal regression. It is different from the standard least squares fit to n data 
points, or the least squares solution to a linear system Ax = b. That classical problem 
in Section Il.2 minimizes I lAx- bjj 2 . It measures distances up and down to the best line. 
Our problem minimizes perpendicular distances. The older problem leads to a linear 
system AT Ax = AT b. Our problem leads to eigenvalues a 2 and singular vectors ui 
(eigenvectors of S). Those are the two sides of linear algebra: not the same side. 

The sum of squared distances from the data points to the u 1 line is a minimum. 

To see this, separate each column aj of A into its components along u 1 and u2 : 

n n n 

L llajll2 = L laju1i2 + L laju2i2- (20) 

The sum on the left is fixed by the data. The first sum on the right has terms u[ ajaj u1 :~ 
It adds to uf(AAT)u1• So when we maximize that sum in PCA by choosing the top 
eigenvector u 1 of AA T, we minimize the second sum. That second sum of squared 
distances from data points to the best line (or best subspace) is the smallest possible. 

The Linear Algebra Behind PCA 

Principal Component Analysis is a way to understand n sample points a 1 , ... , an in 
m-dimensional space-the data. That data plot is centered : all rows of A add to zero 
(AI = 0). The crucial connection to linear algebra is in the singular values ai and the 
singular vectors ui of A. Those come from the eigenvalues Ai = al and the eigenvectors 
of the sample covariance matrix S = AAT j ( n - 1). 

The total variance in the data comes from the Frobenius norm (squared) of A : 

Total variance T = IIAII~/(n- I)= (ilalll 2 + · · · + llanll 2)/(n -1). (21) 

This is the trace of S-the sum down the diagonal. Linear algebra tells us that the trace 
equals the ,.sum of the eigenvalues u"f j(n- I) of the sample covariance matrix S. 
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The trace of S connects the total variance to the sum of variances of the principal 
components u 1 , ... , Ur : 

Total variance T = (u~ + · · · + u~)/(n- 1). (22) 

Exactly as in equation (20), the first principal component u1 accounts for (or "explains") 
a fraction a~ jT of the total variance. The next singular vector u 2 of A explains the next 
largest fraction aVT. Each singular vector is doing its best to capture the meaning in a 
matrix-and together they succeed. 

The point of the Eckart-Young Theorem is that k singular vectors (acting together) 
explain more of the data than any other set ofk vectors. So we are justified in choosing u1 

to Uk as a basis for the k-dimensional subspace closest to the n data points. 
The reader understands that our Figure I.ll showed a cluster of data points 

around a straight line ( k = 1) in dimension m = 2. Real problems often have k > 1 
andm > 2. 

The "effective rank" of A and S is the number of singular values above the point 
where noise drowns the true signal in the data. Often this point is visible on a "scree plot" 
showing the dropoff in the singular values O"i (or their squares af'). Figure 1.12 shows 
the "elbow" in the scree plot where signal ends and noise takes over. 

In this example the noise comes from roundoff error in computing singular values of 
the badly conditioned Hilbert matrix. The dropoff in the true singular values remains very 
steep. In practice the noise is in the data matrix itself--errors in the measurements of Ao. 
Section III.3 of this book studies matrices like H with rapidly decaying a's. 

' 
100[•·. 

• 
t • • 

10-5 f • 
i 

10"10 i 

Singular values of hilb( 40 ) 
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• • . 

• • • ········ ·; •••••••••••••• j ~ . ~ 
10-20 ~-----w---:io ____ 30 ___ ---;\o 
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Hij = 3 4 5 = 
(i + j- 1) 

Figure 1.12: Scree plot of a 1, ... , 0"39 (a4o = 0) for·the evil Hilbert matrix, with elbow 
at the effective rank: r ~ 17 and O"r ~ w- 16. 

One-Zero Matrices and Their Properties 

Alex Townsend and the author began a study of matrices with 1 's inside a circle and 
O's outside. As the matrices get larger, their rank goes up. The graph of singular values 
approaches a limit-which we can't yet predict. But we understand the rank. 
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Three shapes are drawn in Figure 1.13: square, triangle, quarter circle. Any square 
of 1 's will have rank 1. The triangle has all eigenvalues A = 1, and its singular values are 
more interesting. The rank of the quarter circle matrix was our first puzzle, solved below. 

1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 

Rankl 

1 
1 1 
1 1 1 
1 1 1 1 
1 1 1 1 

RankN 

1 
1 
1 

RankCN? 

l's l's 

y"j,N 
2 

Figure I.13: Square and triangle and quarter circle of 1 's in matrices with N = 6. 

Reflection of these figures in the x-axis will produce a rectangle and larger triangle 
and semicircle with side 2N. The ranks will not change because the new rows are copies 
of the old rows. Then reflection in the y-axis will produce a square and a diamond and a 
full circle. This time the new columns are copies of the old columns : again the same rank. 

From the square and triangle we learn that low rank goes with horizontal-vertical 
alignment. Diagonals bring high rank, and 45 a diagonals bring the highest. 

What is the "asymptotic rank" of the quarter circle as the radius N = 6 increases ? 
We are looking for the leading term C N in the rank. 

The fourth figure shows a way to compute C. Draw a square of maximum size in the 't 
quarter circle. That square submatrix (all1's) has rank 1. The shape above the square has 

N - ::/,} N rows (about 0.3N) and the shape beside it has N - :IJ. N columns. Those rows 
and those columns are independent. Adding those two numbers produces the leading term 
in the rank-and it is numerically confirmed: 

Rank of quarter circle matrix~ (2 - v'2) N as N -+ oo. 

We turn to the (nonzero) singular values of these matrices-trivial for the square, 
known for the triangle, computable for the quarter circle. For these shapes and others, 
we have always seen a "singular gap". The singular values don't approach zero. All 
the u's stay above some limit L-and we don't know why. 

The graphs show u's for the quarter circle (computed values) and the triangle (exact 
values). For the triangle of 1 's, the inverse matrix just has a diagonal of 1 's above a 
diagonal of -1's. Thenui = ~ sin8for N equallyspacedangles0i=(2i-1)7r/(4N+2). 
Therefore the gap with no singular values reaches up to umin :::::l ~sin~ = ~· The quarter 
circle also has umin :::::l ~· See the student project on math.mit.edullearningfromdata • .. 
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Figure 1.14: The (nonzero) singular values for the triangle and quarter circle matrices. 

Problem Set 1.9 

1 What are the singular values (in descending order) of A - Ak? Omit any zeros. 

2 Find a closest rank-1 approximation to these matrices (£2 or Frobenius norm): 

A=[~~] 
3 F. d 1 k 1 · · · h £2 A [ cos (} - sin (} ] m a c osest ran - approximatiOn m t e norm to = . (} (} 

sm cos 

4 The Eckart-Young theorem is false in the matrix norm IIA II 00 = max row sum: 

A= [ ~ ~ ] has IIAIIoo =max Ill~~~~= = max(lal + lbl, lei+ ldl) 

Find a rank-1 matrix closer to A= [ ~ ~ ] than AI = ~ [ ~ ~ ] . 

5 Show that this norm IIAIIoo = max(lal + lbl, lei + ldl) is not orthogonally invariant: 

Find a diagonal matrix A where IIQAIIoo =/= IIAIIoo for Q = [c~s(}(} -sin(}(}]. 
sm cos 

6 If S = QAQT is a symmetric positive definite matrix, explain from Eckart-Young 
why q 1 >.1 qi is the closest rank-1 approximation in the £ 2 matrix norm IISII2· 

7 Explain the derivatives fJEjfJC and fJEjfJR fn equation (19) for size n = 2. 

8 Whichrank-3 matrices have I lA- A1ll2 =I lA- A2ll2? A2 is cr1u1vi + cr2u2vi. 

9 Replace the quarter circle in Figure 1.13 by the parabola y = 1 - x 2 • Estimate 
the rank CN with all1's under the parabola (N 1's along the axes). First remove 
a rectangle of 1 's, touching the parabola where slope = -1. 

10 If A is a 2 by 2 matrix with cr1 2: cr2 > 0, find IIA - 1ll2 and IIA - 111}. 
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1.10 Rayleigh Quotients and Generalized Eigenvalues 

This section picks up and extends a theme from Section I.8. There we connected the 
eigenvalues and eigenvectors of a symmetric matrix S to the Rayleigh quotient R( x) : 

xTSx 
R(x) = -. -T-. 

X X 
(1) 

The maximum value of R(x) is the largest eigenvalue .X1 of S. That maximum is 
achieved at the eigenvector x = q1 where Sq1 = Aq1 : 

R(q ) - q[Sql - q[Alql -.X 
1 - T - T - 1· 

ql ql ql ql 
Maximum (2) 

Similarly the minimum value of R(x) equals the smallest eigenvalue An of S. That 
minimum is attained at the "bottom eigenvector" x = qn. More than that, all the 
eigenvectors x = qk of S for eigenvalues between An and A1 are saddle points of R(x). 
Saddles have first derivatives = zero but they are not maxima or minima. 

Saddle point (3) 

These facts connected to the Singular Value Decomposition of A. The connection was 
through S = AT A. For that positive definite (or semidefinite) matrix S, the Rayleigh1 
quotient led to the norm (squared) of A. And the largest eigenvalue of Sis at(A): 

In this way a symmetric eigenvalue problem is also an optimization : Maximize R( x). 

Generalized Eigenvalues and Eigenvectors 

Applications in statistics and data science lead us to the next step. Application's in 
engineering and mechanics point the same way. A second symmetric matrix M enters 
the denominator of R( x) : 

Generalized Rayleigh quotient (5) 

" In dynamical problems M is often the "mass matrix" or the "inertia matrix". In statistics 
M is generally the covariance matrix. The construction of covariance matrices and 
their application to classifying data will come in the chapter on probability and statistics. 
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Here our goal is to see how the eigenvalue problem Sx = >.x changes to Sx = >.M x, 
when R( x) becomes x T Sx / x T M x. This is the generalized symmetric eigenvalue problem. 

If M is positive definite, the maximum of R( x) is the largest eigenvalue of M-1 S. 

We will reduce this generalized problem Sx = >.M x to an ordinary eigenvalue problem 
Hy = >.y. But you have to see that the choice H = M-Is is not really perfect. The 
reason is simple: M-IS is not usually symmetric! Even a diagonal matrix M will make 
this point clear. The square root MI/2 of that same diagonal matrix will suggest the right 
way to hold on to symmetry. 

M-I 8 = [ mi 0 ] -I [a b] 
0 m2 b c [ a/mi bjrn1 ] is not symmetric 

bjrn2 cjm2 

Those matrices M- 1 s and H = M-112 SM- 1 12 have the same eigenvalues. This 
H looks awkward, but symmetry is saved when we choose the symmetric square root of 
M and M-I. Every positive definite M has a positive definite square root. 

The diagonal example above had MI/2 = diag (Jml, .,jm2). Its inverse is M-I/2 . 

In all cases, we just diagonalize M and take the square root of each eigenvalue: 

If M = QAQT has A > 0 then M 1 12 = QA 1 12 QT has A 112 > 0. (6) 

Squaring MI/2 recovers QAI12QTQAI12 QT = QAQT which isM. We will not use 
MI/2 or M-I/2 numerically! The generalized eigenvalue problem Sx = >.Mx is solved 
in MATLAB by the command eig(S, M). Julia and Python and R and all full linear 
algebra systems include this extension to Sx = >.M x. 

A Rayleigh quotient with :z: T M :z: is easily converted to a quotient with y T y : 

Set x = M-112 y Then 
yT(M-If2)TSM-If2y 

yTy 
(7) 

This changes the generalized problem S:z: = >.M :z: to an ordinary symmetric problem 
Hy = >.y. If S and M are positive definite, so is H = M- 112 sM- 112 . 

The largest Rayleigh quotient still gives the largest eigenvalue AI. And we see the top 
eigenvector y I of H and the top eigenvector XI of M-IS: 
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Example 1 Solve Sx = >..M x when S = [ 4 -2] _ 2 4 and M = 

Solution Our eigenvalue problems are (S- >..M) x = 0 and (H- >..!) y = 0. We will 
find the same A's from both determinants: det(S- >.M) = 0 and det(H- >.I) = 0. 

[ 4- >. -2 ] 2 . /<J det(S->.M)=det _ 2 4 _ 2>. =2>. -12>.+12=0 gives .X=3±v3. 

If you prefer to work with one matrix H = M- 112SM- 112, we must first compute it: 

[ 1 0 ] [ 4 -2 ] [ 1 0 ] [ 4 -V2 ] 
H = 0 1/V2 -2 4 0 1/V2 = -V2 2 . 

Then its eigenvalues come from the determinant of H - >.I : 

[ 4 - >.. -V2 ] 2 (;; det -V2 2 _ >. = >.. - 6>.. + 6 = 0 also gives >. = 3 ± v 3. 

This equation is just half ofthe previous 2>..2 -12>.. + 12 = 0. Same >.'s for Hand M-18. 
In mechanical engineering those >..'s would tell us the frequencies w = J>. for two 

oscillating masses m1 = 1 and m 2 = 2 in a line of springs. S tells us the stiffness in the 
three springs that connect these two masses to fixed endpoints. 

The differential equation is Newton's Law M d2uj dt2 = -Bu. 

'i 
Generalized Eigenvectors are M -orthogonal 

A crucial fact about a symmetric matrix S is that any two eigenvectors are orthogonal 
(when the eigenvalues are different). Does this extend to Sx1 = >.M x 1 with two symmet
ric matrices ? The immediate answer is no, but the right answer is yes. For that answer, 
we have to assume that M is positive definite, and we have to change from xf x2 = 0 to 
"M -orthogonality" of X 1 and X2. Two vectors are M -orthogonal if X r M X2 = 0. 

Proof Multiply one equation by xi and multiply the other equation by xf : 

x:fSx1 = >..1x:fMx1 and x[Sx2 = >.2xfMx2 

Because Sand Mare symmetric, transposing thefirstequationgives xf Sx2 = >.1xf Mx2. 
Subtract the second equation : 

Then also xf Sx2 =0. We can test this conclusion on the matrices Sand Min Example 1. 



Example 2 Find the eigenvectors for AI = 3+.J3 and A2 = 3- .J3. Test x T My = 0. 

Theeigenvectorsx andy are in thenullspaces where (S-AIM)x=O and (S- >.2 M)y=0. 

(S- AIM) X= [ 4 - (3 + .J3) 
-2 

(S- A2M) y = [ 4 - (3 - .J3) 
-2 

-2 ] [ XI ] 
4 - 2(3 + .J3) X2 

-2 ] [ YI ] 
4 - 2(3 - .J3) Y2 

gives x = c [ 1 +2 v'3 ] 

gives y = c [ 1 } v'3 ] 

Those eigenvectors x and y are not orthogonal. But they are M -orthogonal because 

xTMy= [2 l+.J3)[1 OJ[ 2 ]=O 
0 2 1-.J3 . 

Positive Semidefinite M : Not Invertible 

There are important applications in which the matrix M is only positive semidefinite. 
Then x T M x can be zero ! The matrix M will not be invertible. The quotient 
xTSxjxTMx can be infinite. The matrices M- 112 and H do not even exist. The 
eigenvalue problem Sx = AMx is still to be solved, but an infinite eigenvalue A = oo 
is now very possible. 

In statistics M is often a covariance matrix. Its diagonal entries tell us the separate 
variances of two or more measurements. Its off-diagonal entries tell us the "covariances 
between the measurements". If we are foolishly repeating exactly the same observations
or if one experiment is completely determined by another-then the covariance matrix M 
is singular. Its determinant is zero and it is not invertible. The Rayleigh quotient (which 
divides by x T M x) may become infinite. 

One way to look at this mathematically is to write Sx = AM x in a form with a and (3. 

a.Sx = (3Mx with a. ~ 0 and (3 ~ 0 and eigenvalues A= (3 . (10) 
a. 

A will be an ordinary positive eigenvalue if a > 0 and (3 > 0. We can even normalize those 
two numbers by a 2 + (3 2 = 1. But now we see three other possibilities in equation (10): 

a > 0 and (3 = 0 Then A = 0 and Sx = Ox: a normal zero eigenvalue of S 

a = 0 and (3 > 0 Then A = co and M x = 0 : M is not invertible 

a = 0 and (3 = 0 Then A = ~ is undetermineo: M x = 0 and also Sx == 0. 

a = 0 can occur when we have clusters of data, if the number of samples in a cluster is 
smaller than the number of features we measure. This is the problem of small sample size. 
It happens. 

You will understand that the mathematics becomes more delicate. The SVD approach 
(when you factor a data matrix into A = U~VT with singular vectors v coming from 
eigenvectors of S = AT A) is not sufficient. We need to generalize the SVD. We need 
to allow for a second matrix M. This led to the GSVD. 
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The Generalized SVD (Simplified) 

In its full generality, this factorization is complicated. It allows for two matrices S and M 
and it allows them to be singular. In this book it makes sense to stay with the usual and 
best case, when these symmetric matrices are positive definite. Then we can see the 
primary purpose of the GSVD, to factor two matrices at the same time. 

Remember that the classical SVD factors a rectangular matrix A into UL:VT. It begins 
with A and not with S = AT A. Similarly here, we begin with two matrices A and B. 
Our simplification is to assume that both are tall thin matrices of rank n. Their sizes are 
m A by nand m B by n. Then S = AT A and M = BT B are n by nand positive definite. 

Generalized Singular Value Decomposition 

A and B can be factored into A= UA~AZ and B = UB~BZ(same Z) 

U A and U B are orthogonal matrices (sizes mA and m B) 

~A and ~B are positive diagonal matrices (with L:~L:A + L:~L:B = Inxn) 

Z is an invertible matrix (size n) 

Notice that Z is probably not an orthogonal matrix. That would be asking too much. 
The remarkable property of Z is to simultaneously diagonalize S =AT A and M = BT B : 

AT A= zTE~uruAL:AZ = zT <~1~A) z and BTB = zT (~~:EB) z. (11) 

So this is a fact of linear algebra: Any two positive definite matrices can be diagonalized't 
by the same matrix Z. By equation (9), its columns can be x 1 , ... , Xn! That was known 
before the GSVD was invented. And because orthogonality is not required, we can scale 
Z so that L:~L:A + L:~L:B = I. We can also order its columns Xk to put then positive 
numbers a A in decreasing order (in L:A). 

Please also notice the meaning of "diagonalize". Equation (11) does not contain z-l 
and Z, it contains zT and Z. With z-l we have a similarity transformation, preserving 
eigenvalues. With zT we have a congruence transformation zT s z' preserving symmetry. 
(Then the eigenvalues of S and zT S Z have the same signs. This is Sylvester's Law of 
Inertia in PSet III.2. Here the signs are all positive.) The symmetry of S = ~ T A and the 
positive definiteness of M = BT B allows one Z to diagonalize both matrices. 

The Problem Set (Problem 5) will guide you to a proof of this simplified GSVD. 
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Fisher's Linear Discriminant Analysis (LDA) 

Here is a nice application in statistics and machine learning. We are given samples from 
two different populations and they are mixed together. We know the basic facts about 
each population-its average value m and its average spread u around that mean m. So we 
have a mean m1 and variance u1 for the first population and m2, u2 for the second 
population. If all the samples are mixed together and we pick one, how do we tell if it 
probably came from population 1 or population 2 ? 

Fisher's "linear discriminant" answers that question. 
Actually the problem is one step more complicated. Each sample has several features, 

like a child's age and height and weight. This is normal for machine learning, to have a 
"feature vector" like f = (age, height, weight) for each sample. If a sample has feature 
vector f, which population did it probably come from? We start with vectors not scalars. 

We have an average age ma and average height mh and average weight mw for each 
population. The mean (average) of population 1 is a vector m1 =(mat, mh1, mwt). 
Population 2 also has a vector m2 of average age, average height, average weight. 
And the variance u for each population, to measure its spread around its mean, becomes a 
3 X 3 matrix E. This "covariance matrix" will be a key to Chapter V on statistics. 
For now, we have mt, m 2, El> E2 and we want a rule to discriminate between the 
two populations. 

Fisher's test has a simple form: He finds a separation vector v. If the sample has 
v T f > c then our best guess is population 1. If v T f < c then the sample probably came 
from population 2. The vector v is trying to separate the two populations (as much as 
possible). It maximizes the separation ratio R: 

Separation ratio R = (xTm1 - xTm2)2 (12) 
xTE1x + xTE2x 

That ratio R has the form xTSxjxTMx. The matrix Sis (m1 - m 2)(m1 - m 2)T. 
The matrix M is E 1 + E2. We know the rule Sv = >..Mv for the vector x = v that 
maximizes the separation ratio R. 

Fisher could actually find that eigenvector v of M-1 S. So can we, because the matrix 
S = (m1 - m2)(m1- m 2)T has rank one. So Sv is always in the direction m 1 - m 2. 
Then Mv must be in that direction, to have Sv = >..Mv. So v = M-1 (m1 - m 2 ). 

This was a nice problem because we found the eigenvector v. It makes sense that when 
the unknown sample has feature vector f = (age, height, weight), we would look at the 
numbers mi f and m;f f. If we were ready for a full statistical discussion (which we are 
not), then we could see how the weighting matrix M = Eo + E 1 enters into the final test 
on v T f. Here it is enough to say : The feature vectors f from the two populations are 
separated as well as possible by a plane that is perpendicular to v. 

Summary. We have two clouds of points in 3-dimensional feature space. We try to 
separate them by a plane-not always possible. Fisher proposed one reasonable plane. 

Neural networks will succeed by allowing separating surfaces that are not just planes. 
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Problem Set 1.10 

1 Solve (S - )..M) x = 0 and (H - )..I) y = 0 after computing the matrix 
H = M-l/2sM-1/2: 

S=[~ ~] M=[~ ~] 
Step 1 is to find ).. 1 and )..2 from det (S- )..M) = 0. The equation det (H- AI) = 0 
should produce the same ).. 1 and )..2 . Those eigenvalues will produce two eigenvec
tors x1 and x2 of S- )..M and two eigenvectors y 1 and y 2 of H- )..I. 

Verify that xi x2 is not zero but xi M x2 = 0. His symmetric so YI y 2 = 0. 

2 (a) For x =(a, b) andy= (c, d) write the Rayleigh quotients in Problem 1 as 

R*(x)= xTSx = (5a2 +8ab+5b2) andR(y)= yTHy = 5c2 +16cd+20d2 

xTMx (···+···+···) yTy (-··+···) 

(b) Take the c and d derivatives of R(y) to find its maximum and minimum. 

(c) Take the a and b derivatives of R* ( x) to find its maximum and minimum. 

(d) Verify that those maxima occur at eigenvectors from (S - )..M) x = 0 and 
(H- )..I)y = 0. 

3 How are the eigenvectors x 1 and x2 related to the eigenvectors y 1 and y 2 ? 

4 Change M to [ ~ ~ ] and solve Sx = )..M x. Now M is singular and one of thd 

eigenvalues ).. is infinite. But its eigenvector x 2 is still M -orthogonal to the other 
eigenvector x1. 

5 Start with symmetric positive definite matrices S and M. Eigenvectors of S fill an 
orthogonal matrix Q so that QT SQ =A is diagonal. What is the diagonal matrix D 
so thatDTAD =I? Now we haveDTQTSQD =I and we look at DTQT MQD. 

Its eigenvector matrix Q2 gives Q~ IQ2 = I and Q~ DTQT MQDQ2 = A2 . 

Show that z = Q DQ2 diagonalizes both congruences zT s z and zT M z in the 
GSVD. 

6 (a) Why does every congruence zT SZ preserve the symmetry of S? 

(b) Why is zT S Z positive definite when S is positive definite and Z is square and 
invertible? Apply the energy test to zT S Z. Be sure to explain why Z x is 
not the zero vector. 

7 Which matrices zT I Z are congruent to the identity matrix for invertible Z 7 

8 Solve~ this matrix problem basic to Fisher's Linear Discriminant Analysis: 

If R( x) = x ;Msx and S = uu T what vector x minimizes R( x) ? 
X X 



1.11 Norms of Vectors and Functions and Matrices 

The norm of a nonzero vector vis a positive number llvll· That number measures the 
"length" of the vector. There are many useful measures of length (many different norms). 
Every norm for vectors or functions or matrices must share these two properties of the 
absolute value lei of a number: 

Multiply v by c (Rescaling) lie vii = lclllv!l 
All norms 

Add v tow (Triangle inequality) llv + wll ::; !lv!l + llwll 

We start with three special norms-by far the most important. They are the .f_2 norm and 
£1 norm and £00 norm of the vector v = (v1, ... , vn)· The vector vis in Rn (real vi) 
or in Cn (complex Vi): 

£2 norm = Euclidean norm llvll2 = vlv11 2 + ... + lvnl 2 

£1 norm = 1-norm !lvll1 !v1! + !v2l + · · · + lvnl 
£00 norm = max norm llv!loo = maximum of !v11, ..• , lvnl 

The all-ones vectorv = (1, 1, ... , 1) has norms llvll2 = yn and !1vll1 =nand !lvl!oo = 1. 
These three norms are the particular cases p = 2 and p = 1 and p = oo of the £P norm 

llviiP = (lv1IP + .. · + lvniP) 11P. This figure shows vectors with norm 1: p = ~is illegal. 

£1 norm 
!v1! + !v2! ~ 1 

diamond 

£00 norm rnv2 (1, 1) 

!v1! ~ 1, !v2! ~ 1 
square 

V2 = -1 

£2 norm 
v2 + v2 < 1 1 2-

circle 

(0, 1) 

£'12 nonn ~) 
vlfVJ + JrV;T ~ 1 (1, 0) 

not convex 

Figure I.15: The important vector norms llvll1, llvll2, llvlloo and a failure (p = 0 fails too). 

The failure for p = ! is in the triangle inequality: (1, 0) and (0, 1) have norm 1, but their 
sum (1, 1) has norm 21/P = 4. Only 1 ::; p::; oo produce an acceptable norm llvllp· 

(1) 

(2) 
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The Minimum of llviiP on the line a1v1 + a 2v2 = 1 

Which point on a diagonal line like 3v1 + 4v2 = 1 is closest to (0, 0)? The answer (and 
the meaning of "closest") will depend on the norm. This is another way to see important 
differences between £1 and £2 and £=. We will see a first example of a very special feature : 
Minimization in £1 produces sparse solutions 

To see the closest point to (0, 0), expand the £1 diamond and £2 circle and£= square 
until they touch the diagonal line. For each p, that touching point v* will solve our 
optimization problem : 

Minimize llviiP among vectors (v1, v2) on the line 3v1 + 4v2 = 1 

(0, ~)has llv*lll = ~ (;5 , 2~) has llv*ll2 = ~ 

Figure 1.16: The solutions v* to the £1 and £2 and £=minimizations. The first is sparse. 

The first figure displays a highly important property of the minimizing solution to 
the £1 problem: That solution v* has zero components. The vector v* is "sparse". 
This is because a diamond touches a line at a sharp point. The line (or hyperplane 
in high dimensions) contains the vectors that solve the m constraints Av = b. The 
surface of the diamond contains vectors with the same £1 norm. The diamond expands 
to meet the line at a corner of the diamond ! The Problem Set and also Section III.4 will 
return to this "basis pursuit" problem and closely related £1 problems. 

The essential point is that the solutions to those problems are sparse. They have few 
nonzero components, and those components have meaning. By contrast the least squares 
solution (using £2 ) has many small and non-interesting components. By squa,ring, those 
components become very small and hardly affect the £2 distance. 

One final observation: The "£0 norm" of a vector v counts the number of nonzero 
components. But this is not a true norm. The points with llvllo = 1 lie on the x axis or 
y axis-one nonzero component only. The figure for p = ~ on the previous page becomes 
even more extreme-just a cross or a skeleton along the two axes. 

Of course this skeleton is not at all convex. The "zero norm" violates the fundamental 
requirement that ll2vll = 2llvll- In fact ll2vllo = llvllo = numberofnonzeros in v. 

The wonderful observation is that we can find the sparsest solution to Av = b 
by using the £1 norm. We have "convexified" that £0 skeleton along the two axes. We 
filled in the skeleton, and the result is the £1 diamond. 

~ 
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Inner Products and Angles 

The £2 norm has a special place. When we write llvll with no subscript, this is the norm 
we mean. It connects to the ordinary geometry of inner products ( v, w) = v T w and 
angles B between vectors : 

Inner product = length squared (3) 

Angle (} between vectors v and w (4) 

Then v is orthogonal to w when B = 90° and cos B = 0 and v T w = 0. 
Those connections (3) and (4) lead to the most important inequalities in mathematics: 

Cauchy-Schwarz lvTwl ~ llvll llwll Triangle Inequality llv + wll ~ llvll + llwll 

The Problem Set includes a direct proof of Cauchy-Schwarz. Here in the text we connect it 
to equation (4) for the cosine: Ieos Bl ~ 1 means that ivTwl ~ llvll llwll. And this 
in tum leads to the triangle inequality in equation (2)-connecting the sides v, w, 
and v + w of an ordinary triangle in n dimensions : 

Equality 

Inequality llv + wW ~ llvll 2 + 2 llvll llwll + llwll 2 = (llvll + llwll) 2 (5) 

This confirms our intuition : Any side length in a triangle is less than the sum of the other 
two side lengths: llv + wll ~ llvll + llwll· Equality in the £2 norm is only possible when 
the triangle is totally flat and all angles have I cos B I = 1. 

Inner Products and S-Norms 

A final question about vector norms. Is £2 the only norm connected to inner products 
(dot products) and to angles? There are no dot products for f. 1 and eoo. But we can find 
other inner products that match other norms : 

Choose any symmetric positive definite matrix S 

II vii;= vTSv gives a norm for v in R.,(called the S-norm) 

(v, w)s = vTSw gives the S-innerproductforv, win Rn 

(6) 

(7) 

The inner product (v,v) 8 agrees with llvll~- We have angles from (4). We have 
inequalities from (5). The proof is in (5) when every norm includes the matrix S. 

We know that every positive definite matrix S can be factored into AT A. Then the 
S-norm and S-inner product for v and w are exactly the standard £2 norm and the 
standard inner product for Av and Aw. 
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(v,w)s = vTSw = (Av)T(Aw) because S =AT A (8) 

This is not an impressive idea but it is convenient. The matrices S and A are "weighting" 
the vectors and their lengths. Then weighted least squares is just ordinary least squares in 
this weighted norm. 

Einstein needed a new definition of length and distance in 4-dimensional space-time. 
Lorentz proposed this one, which Einstein accepted ( c = speed of light) : 

v = (x, y, z, t) llvll2 = ::c2 + y 2 + z 2 - c2 t 2 Is this a true nonn in R4 ? 

Norms and Inner Products of Functions 

A function f(x) is a "vector in function space". That simple idea gives linear algebra 
an importance that goes beyond n-dimensional space Rn. All the intuition associated with 
linearity carries us from finite dimensions onward to infinite dimensions. The fundamental 
requirement for a vector space is to allow linear combinations cv + dw of vectors v and 
w. This idea extends directly to linear combinations cf + dg of functions f and g. 

It is exactly with norms that new questions arise in infinite dimensions. 
Think about the particular vectors Vn = ( 1' ~' ... ' ( ~) n '0, 0, ... ) in the usual e2 norm. 
Those vectors come closer together since llvn - vNII ---t 0 as n ---t oo and N ----+ oo. 
For a vector space to be "complete", every converging sequence Vn must have a limit 
V 00 in the space: llvn - Voo II ----+ 0. 

1. The space of infinite vectors v = (vi, ... ,vN,O,O, ... ) ending in all zeros is,t 
not complete. 

2. The space of vectors with llv 11 2 = lvii2 + lv2l2 + · · · < oo is complete. A vector like 
V 00 = (1, ~. ~' -k, ... ) is included in this space but not in 1. It doesn't end in zeros. 

Two famous names are associated with complete infinite-dimensional vector spaces : 

A Banach space is a complete vector space with a norm llvll satisfying rules (1) and (2) 
A Hilbert space is a Banach space that also has an inner product with ( v, v) equal to llv 11 2 

Those spaces are infinite-dimensional when the vectors have infinitely many components : 

£1 is a Banach space with norm llvll1 = lvii + lv2l + · · · 
£2 is a Hilbert space because it has an inner product ( v, w) = VI WI + v2w2 + · · · · 
£00 is a Banach space with norm llv II 00 = supremum of the numbers I vii, lv2l, ... 

Our special interest is in function spaces. The vectors can be functions f ( x) for 0 ::::; x ::::; 1. 

L 1 [0, 1] is a Banach space with II/III = f0I lf(x)ldx 

L 2 [0, 1j is a Hilbert space with (f, g) = foi f(x) g(x) dx and 11!11~ = f0IIf(x)j2dx 

L 00 [0, 1] is a Banach space with llflloo =supremum of lf(x)l. 
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Notice the parallel between sums of components in £1 and integrals of functions in L 1 . 

Similarly for sums of squares in £2 and integrals of lf(x)i2 in L 2 • Add or integrate. 

Smoothness of Functions 

There are many types of function spaces. This part of mathematics is ''functional analysis". 
Often a function space brings together all functions with a specific level of smoothness. 
An outstanding example is the space C[O, I] containing all continuous functions: 

f belongs to C[O, 1] and 11/llc =max lf(x)l if f(x) is continuous for all 0 ~ x ~ 1. 

The max norm in the function space C is like the £00 norm for vectors. We can 
increase the level of smoothness to C 1 [0, I] or C 2 [0, I]. Then the first derivative or 
second derivative must also be continuous. These are Banach spaces but not Hilbert spaces. 
Their norms do not come from inner products-compare (9) and (1 0) : 

lillie'~ 11/lle+ ll!llc lillie• ~lillie+ 11::::.11c (9) 

If we want a Hilbert space H 1 , then we build on the usual L 2 space (which is H 0 ): 

We bring this wild excursion in function space to an end with three examples. 

1. The infinite vector v = (I,~,k•t•···) is in £2 and £00 • But it is not in £1. 

The sum of its components is infinite. 

2. A step function is in L 1 and L 2 and L 00 , but not in C. The function has a jump. 

3. The ramp function max (0, x) is inC and H 1 but not in C 1 . The slope has a jump. 

Norms of Matrices : The Frobenius Norm 

A space of matrices follows all the rules for a vector space. So a matrix norm II A II must 
follow the three rules for a vector norm, and also a new rule when A multiplies B : 

IIAII > 0 if A is not the zero matrix 

llcAII = lciiiAII and I lA + Bll::; IIAII + IIBII 
• Newruleforamatrixnorm IIABII::; IIAIIIIBII 

(11) 

(12) 

(13) 

We need to verify (13) for the Frobenius norm, which treats matrices as long vectors. 
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Frobenius is the £2 norm (Euclidean norm) for a vector with mn components. So (11) 
and (12) are sure to be true. And when AB is a column vector a times a row vector bT
in other words AB is a rank one matrix abT -the norm inequality (13) is an exact 
equality llabTIIF = llaiiFIIbTIIF: 

(15) 

This leads to a first proof that IIABIIF~ II AI IF IIBIIF· AB is a sum ofrank-1 matrices. 

IIABIIF = lla1bi + · · · + anb;IIF by column-row multiplication 

::; lla1b'fiiF + · · · + llanb;;:IIF by the triangle inequality (12) 

= lla1IIFIIb1IIF + · · · + llaniiFIIbniiF by equation (15) 

:S (I Ialii} + · · · + llanll}) 112 (llb1ll} + · · · + I Ibn II}) 112 by Cauchy-Schwarz 

= II A II F II B II F by the definition ( 14) of the Frobenius norm 

The Problem Set finds a different and quicker proof, multiplying AB by rows times columns~ 

When Q is an orthogonal matrix, we know that Qx has the same £2 length as x : 

Orthogonal Q 11Qxll2 = llxll2 Q multiplies columns of B IIQBIIF = IIBIIF 

This connects the Frobenius norm of A = U~VT to its singular values in ~ : 

Here is another way to reach that good formula for the Frobenius norm_ 

Multiplying AT A brings all the numbers laij 12 onto the main diagonal 

IIAII} =trace of AT A =sum of eigenvalues =a~ + · · · +a; (17) 

The Frobenius norm (squared) of A is easy to compute: Just square the entries and add. 

The inequality IIABII < IIAIIIIBII will be built in for the matrix norms that come next. 
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Matrix Norms II All from Vector Norms llvll 
Start with any norm !!vii for the vectors in Rn. When we compare IIAvll to !!vii. this 
measures the growth factor-the increase or decrease in size produced when we multiply 
by A. If we choose the vector v with the largest growth factor, that gives an important 
matrix norm !!All· 

Vector norm 
leads to a 
matrix norm 

!!All = max I!Avll = largestgrowth 
v # 0 !!vii factor 

(18) 

The largest ratio !!All automatically satisfies all the conditions for a matrix norm-because 
!!vii satisfied all the conditions for a vector norm. The identity matrix will have !III I = 1 
because its growth factor is always III vll/llvll = 1. The key point of (18) is that 
I!Avll:::; IIAIII!vll because IIAII is the largest value reached by IIAvll/llvll· 
Then IIABvll ~ IIAIII!Bvll ~ IIAIIIIBII!Ivll- Therefore IIABII ~ IIAIIIIBII-

We think of llvll2 and llvlh and llvlloo as the important vector norms. Then (19), 
(20), (21) produce the three matrix norms IIAII2 and IIAII1 and IIAIIoo· They all have 
IIABII ~ IIAIIIIBII· For a given matrix A, how do we compute those three norms
how do we maximize the ratio I!Avll/llvll? 

f? norm IIAII2 = largest singular value o-1 of A 

£1 norm IIAih = largest£1 norm of the columns of A 

.e= norm IIAII oo = largest £1 norm of the rows of A 

(19) 

(20) 

(21) 

This book has emphasized IIAII2 =largest ratio 11Av112/llvll2 = a1. That comes from 
A = UI:VT, because orthogonal matrices U and VT have no effect on £2 norms. This 
leaves the diagonal matrix I: which has £2 norm = a 1. Notice that AT A has norm a~ 
(again no effect from U and V). 

The three matrix norms have two especially beautiful connections : 

(22) 

The rows of A are the columns of AT. So IIAIIoo = IIATih comes directly from (20)-(21). 
For the inequality (22) that involves all three norms, look at the first singular vector 

v of A. That vector has AT Av = a~v. Take the £1 norm of this particular v and use 
IIA!Ioo = jjATjh: 

a~ llvl!1 = IIAT Avll1 ~ IIATih IIAvlh ~ IIA!Ioo IIAII1IIvll1· 

Since a1 = IIAib this tells us that !!All~~ IIAIIoo IIAih· 
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The Nuclear Norm 

IIAIInuclear comes directly from the singular values of A. It is also called the trace norm. 

Along with £2 and Frobenius, IIAIIN starts from A = U:EVT (the SVD). Those three 
norms are not affected by U and V ("unitary invariance"). We just take the £1 and f.2 and 
£00 norms of the vector O" = (a 1 , a2, ... , a r) on the main diagonal of :E : 

IIAIInuclear = 0"1 + · · · + O"r IIAII~ = (J"~ + · · · + (J"~ 

In III.4, the nuclear norm is the key to matrix completion, when data is missing. 
A remarkable fact: IIAIIN is the minimum value of I lUI IF IIVIIF subject to UV = A. 
And a related but much easier fact: IIAT AI IN= IIAII~-

Notice that IIAIIoo = maxjjAvlloo/llvlloo is entirely different from IIIAIIIoo = maxlaijl· 
We calliiiAIIIoo the medical norm because lilA- Bllloo is small only when every entry 
(every pixel) aij in A is close to bij in B. Then I lA- Blloo is also small. 

Example1 A=[~ ~JhasiiAII2=VWbecauseATA=[ 1~ !~]has>.1=50. 
The £1 and £00 norms are IIAII1 = 8 (column sum) and IIAIIoo = 9 (row sum). 

A= [ ~ ~ ] has IIAII2 = VlO and IIAII1 = 4 (column 2) and IIAIIoo = 3 (rows). 

The£2 norm is v'lObecauseAT A= [ ~ ~] has eigenvalues 0 and 10. And 10 < (4)(3)." 
'# 

Important The largest eigenvalue l.>..lmax of A is not on our list of matrix norms! 

The Spectral Radius 

That number l.>..lmax =max l.>..il fails on all of the three main requirements for a norm. 
A and B can have all zero eigenvalues when they are not zero matrices (A and B below). 
The tests on A + B and AB (triangle inequality and II AB II :S: II A II II B II) also fail for the 
largest eigenvalue. Every norm has II All ~ l>.lmax-

Amax(A +B) = 1 > Amax(A) + Amax(B)' = (0) + (0) 

Amax(AB) = 1 > Amax(A) x Amax(B) = (0) x· (0) 

This number IAimax is the "spectral radius". It is not a norm but it is important for this 
reason: IIAnll --+ 0 exactly when l.>..lmax < 1. 

When we multiply again and again by a matrix A (as we will do for Markov chains 
in Section V.6) the largest eigenvalue l>.lmax of A begins to dominate. This is the basis 
of the "power method" to compute I >.!max. 
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Problem Set 1.11 

1 Show directly this fact about £1 and €2 and eoo vector norms: llvll~ ~ llvlh llvlloo· 
2 Prove the Cauchy-Schwarz inequality lvTwl ~ llvll2llwll2 for vectors in Rn. 

You could verify and use this identity for a length squared: 

0< v---w,v---w =vTv- . ( 
VTW VTW ) lvTwl2 

- wTw wTw wTw 

3 Show that always llvll2 ~ fo llvll=· Also prove llvll1 ~ fo llvll2 by choosing a 
suitable vector w and applying the Cauchy-Schwarz inequality. 

4 The fP and eq norms are "duaf' if p-I + q-l = 1. The fl and eoo vector norms 
are dual (and €2 is self-dual). HOlder's inequality extends Cauchy-Schwarz to 
all those dual pairs. What does it say for p = 1 and q = oo ? 

HOider,s inequality 

5 What rules should be satisfied by any "inner product" of vectors v and w ? 

6 The first page of I. 11 shows unit balls for the fi and €2 and eoo norms. Those 
are the three sets of vectors v = (VI, v2) with llv III ~ 1, llvll2 ~ 1, llvlloo ~ 1. 
Unit balls are always convex because of the triangle inequality for vector norms : 

If llvll ~ 1 and llwll ~ 1 show that II¥+~ II~ 1. 

7 A short proof of IIABIIF ~ IIAIIF IIBIIF starts from multiplying rows times columns: 

I (AB)ij 12 ~ II row i of All2 II column j of Bll2 is the Cauchy-Schwarz inequality 

Add up both sides over all i and j to show that I lAB II} ~ IIAII} IIBII}. 
8 Test IIABIIF ~ IIAIIF IIBIIF for A= B =I and A= B ="all ones matrix". 

9 (Conjecture) The only matrices with IIABIIF = IIAIIF IIBIIF and no zero entries 
have the rank one form A = uv T and B = vw T with a shared vector v. 

10 The space of m by n matrices with the Frobenius norm is actually a Hilbert space
ithasaninnerproduct (A,B) =trace(ATB). Show that IIAII~ = (A,A). 

11 Why is (21) a true formula for IIAIIoo? Which v with ±l's has IIAvlloo = IIAIIoo? 
12 Suppose A, B, and AB are m by n, n by p, and m by p. The "medical norm" of A 

is its largest entry: IIIAIII= = maxlaij I· 
Show that IIIABIII= ::; n IIIAIII= IIIBIII= (this is false without the factor n). 

Rewrite that in the form (JmPIIIABIIIoo) ~ (vmniiiAIIIoo)(.;nPIIIBIIIoo)· 
The rescaling by those square roots gives a true matrix norm. 
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1.12 Factoring Matrices and Tensors : Positive and Sparse 

This section opens a wider view of factorizations for data matrices (and extends to tensors). 
Up to now we have given full attention to the SVD. A = U:EVT gave the perfect factors 
for Principal Component Analysis-perfect until issues of sparseness or nonnegativity 
or tensor data enter the problem. For many applications these issues are important. 
Then we must see the SVD as a first step but not the last step. 

Here are factorizations of A and T with new and important properties : 

Nonnegative Matrices 

Sparse and Nonnegative 

CP Tensor Decomposition 

mini!A- UV!I~ 
with U 2: 0 and V 2: 0 

min !lA- UVI!~ + >.!!UVI!N 
with U 2: 0 and V 2: 0 

R 

min !IT- Lai obi o Cill 
i=l 

We will work with matrices A and then tensors T. A matrix is just a two-way tensor. 

To compute a factorization A = UV, we introduce a simple alternating iteration. 
Update U with V fixed, then update V with U fixed. Each half step is quick because 
it is effectively linear (the other factor being fixed). This idea applies to the ordinary SVD, 
if we include the diagonal matrix I; with U. The algorithm is simple and often effective .• 
Section 111.4 will do even better. 1 

This UV idea also fits the famous k-means algorithm in Section IV.7 on graphs. The 
problem is to put n vectors a 1 , ... , an into r clusters. If ak is in the cluster around UJ, 

this fact ak ~ Uj is expressed by column k of A ~ UV. Then column k of V is column 
j of the r by r identity matrix. 

Nonnegative Matrix Factorization (NMF) 

The goal of NMF is to approximate a nonnegative matrix A 2: 0 by a lower rank product 
UV of two nonnegative matrices U 2: 0 and V 2: 0. The purpose of lower rank is 
simplicity. The purpose of nonnegativity (no negative entries) is to produce numbers that 
have a meaning. Features are recognizable with no plus-minus cancellation. A negative 
weight or volume or count or probability is wrong from the start. 

But nonnegativity can be difficult. When A 2: 0 is symmetric positive definite, we 
hope for a matrix B 2: 0 that satisfies BT B = A. Very often no such matrix exists. 
(The matrix A= AT with constant diagonals 1 + J5, 2, 0, 0, 2 is a 5 x 5 example.) We are 
forced to atcept the matrix BT B (with B 2: 0) that is closest to A (when A 2: 0). The 
question is how to find B. The unsymmetric case, probably not square, looks for U and V. 

Lee and Seung focused attention on NMF in a letter to Nature 401 (1999) 788-791. 
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The basic problem is clear. Sparsity and nonnegativity are very valuable properties. For 
a sparse vector or matrix, the few nonzeros will have meaning-when 1000 or 100, 000 
individual numbers cannot be separately understood. And it often happens that numbers 
are naturally nonnegative. But singular vectors in the SVD almost always have many small 
components of mixed signs. In practical problems, we must be willing to give up the 
orthogonality of U and V. Those are beautiful properties, but the Lee-Seung essay urged 
the value of sparse PCA and no negative numbers. 

These new objectives require new factorizations of A. 

NMF Find nonnegative matrices U and V so that A ~ UV ( 1) 

SPCA Find sparse low rank matrices B and C so that A ~ BC. (2) 

First we recall the meaning and purpose of a factorization. A = BC expresses every 
column of A as a combination of columns of B. The coefficients in that combination are 
in a column of C. So each column aj of A is the approximation c1jb1 + · · · + Cnjbn. 
A good choice of BC means that this sum is nearly exact. 

If C has fewer columns than A, this is linear dimensionality reduction. It is fundamental 
to compression and feature selection and visualization. In many of those problems it can 
be assumed that the noise is Gaussian. Then the Frobenius norm I lA- BCIIF is a natural 
measure of the approximation error. Here is an excellent essay describing two important 
applications, and a recent paper with algorithms and references. 
N. Gillis, The Why and How of Nonnegative Matrix Factorization, arXiv: 1401.5226. 
L. Xu, B. Yu, andY. Zhang, An alternating direction and projection algorithm for structure
enforced matrix factorization, Computational Optimization Appl. 68 (2017) 333-362. 

Facial Feature Extraction 

Each column vector of the data matrix A will represent a face. Its components are the 
intensities of the pixels in that image, so A ~ 0. The goal is to find a few "basic faces" in 
B, so that their combinations come close to the many faces in A. We may hope that a few 
variations in the geometry of the eyes and nose and mouth will allow a close reconstruction 
of most faces. The development of eigenfaces by Turk and Pentland finds a set of basic 
faces, and matrix factorization A~ BC is another good way. 

Text Mining and Document Classification 

Now each column of A represents a document. Each row of A represents a word. A simple 
construction (not in general the best: it ignores the ordering of words) is a sparse nonneg
ative matrix. To classify the documents in A, we look for sparse nonnegative factors : 

Document aj ~~)importance Cij) (topic bi) (3) 

Since B ~ 0, each topic vector bi can be seen as a document. Since C > 0, we are 
combining but not subtracting those topic documents. Thus NMF identifies topics and 
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classifies the whole set of documents with respect to those topics. Related methods are 
"latest semantic analysis" and indexing. 

Note that NMF is an NP"hard problem, unlike the SVD. Even exact solutions A = BC 
are not always unique. More than that, the number of topics (columns of A) is unknown. 

Optimality Conditions for Nonnegative U and V 

Given A 2 0, here are the conditions for U 2 0 and V 2 0 to minimize I lA- UVII}: 

y = UVVT -AVT 2 0 with Yij or uij = 0 for all i,j 

z = uTuv -uTA 2 0 with Zij or Vij = 0 for all i, j 

Those last conditions already suggest that U and V may tum out to be sparse. 

(4) 

Computing the Factors : Basic Methods 

Many algorithms have been suggested to compute U and V and B and C. A central 
idea is alternating factorization: Hold one factor fixed, and optimize the other factor. 
Hold that one fixed, optimize the first factor, and repeat. Using the Frobenius norm, each 
step is a form of least squares. This is a natural approach and it generally gives a good 
result. But convergence to the best factors is not sure. We may expect further develop
ments in the theory of optimization. And there is a well-established improvement of this 
method to be presented in Section III.4 : Alternating Direction Method of Multipliers. 

This ADMM algorithm uses a penalty term and duality to promote convergence. 

Sparse Principal Components 

Many applications do allow both negative and positive numbers. We are not counting or 
building actual objects. In finance, we may buy or sell. In other applications the zero point 
has no intrinsic meaning. Zero temperature is a matter of opinion, between Centigrade and 
Fahrenheit. Maybe water votes for Centigrade, and super-cold physics resets 0°. 

The number of nonzero components is often important. That is the difficulty with the 
singular vectors u and v in the SVD. They are full of nonzeros, as in least, squares. We 
cannot buy miniature amounts of a giant asset, because of transaction costs. If we learn 
500 genes that affect a patient's outcome, we cannot deal with them individually. Th be 
understood and acted on, the number of nonzero decision variables must be under control. 

One possibility is to remove the very small components of the u's and v's. But if we 
want real control, we are better with a direct construction of sparse vectors. A good number 
of algorithms have been proposed. 

H. Zou, T. Hastie, R. Tibshirani, Sparse principal component analysis, J. Computational 
and Graphical Statistics 15 (2006) 265-286. See https://en.wikipedia.org/wiki!Sparse_PCA 
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Sparse PCA starts with a data matrix A or a positive (semi)definite sample covariance 
matrix S. GivenS, a natural idea is to include Card (a:) =number of nonzero components 
in a penalty term or a constraint on a: : 

Maximize T Maximize T . 
lla:ll = 1 a: Sa:- pCard(a:) or lla:ll = 1 a: Sa: subJect to Card(a:):::; k. (5) 

But the cardinality of a: is not the best quantity for optimization algorithms. 

Another direction is semidefinite programming, discussed briefly in Section Vl.3. The 
unknown vector a: becomes an unknown symmetric matrix X. Inequalities like a: ~ 0 
(meaning that every Xi ~ 0) are replaced by X ~ 0 (X must be positive semidefinite). 
Sparsity is achieved by including an £1 penalty on the unknown matrix X. Looking ahead 
to IV.5, that penalty uses the nuclear norm IIXIIN: the sum of singular values ai. 

The connection between £1 and sparsity was in the figures at the start of Section 1.11. 
The £1 minimization had the sparse solution a: = (0, i). That zero may have looked 

accidental or insignificant, for this short vector in R2• On the contrary, that zero is the 
important fact. For matrices, replace the £1 norm by the nuclear norm IIX liN. 

A penalty on II a: ll1 or II X II N produces sparse vectors a: and sparse matrices X. 

In the end, for sparse vectors a:, our algorithm must select the important variables. 
This is the great property of £1 optimization. It is the key to the LASSO : 

n 

LASSO Minimize IIAa:- bll2 +A L lxkl (6) 
1 

Finding that minimum efficiently is a triumph of nonlinear optimization. The ADMM and 
Bregman algorithms are presented and discussed in Section III.4. 

One note about LASSO : The optimal a:* will not have more nonzero components than 
the number of samples. Adding an £2 penalty produces an "elastic net" without this disad
vantage. This £1 + ridge regression can be solved as quickly as least squares. 

Elastic net Minimize IIAa:- bll~ + Alla:lll + .BIIxll~ (7) 

Section III.4 will present the ADMM algorithm that splits £1 from £2 • And it adds a penalty 
using Lagrange multipliers and duality. That combination is powerful. 

1. R. Tibshirani, Regression shrinkage and selection via the Lasso, Journal of the Royal 
Statistical Society, Series B 58 (1996) 267-288. 

2. H. Zou and T. Hastie, Regularization and variable selection via the elastic net, 
Journal of the Royal Statistical Society, Series B 67 (2005) 301-320. 
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Tensors 

A column vector is a 1-way tensor. A matrix is a 2-way tensor. Then a 3-way tensor T 
has elements Tijk with three indices: row number, column number, and "tube number". 
Slices of T are two-dimensional sections, so the 3-way tensor below has three horizontal 
slices and four lateral slices and two frontal slices. The rows and columns and tubes are the 
fibers ofT, with only one varying index. 

We can stack m by n matrices (p of them) into a 3-way tensor. And we can stack 
m by n by p tensors into a 4-way tensor = 4-way array. 

D 
vector 
xinR3 

§±[] 
matrix 

AinR3 x 4 

///// 
/ / / / /; 

vv 
V; 
v 

tensor 
TinRa x 4 x 2 

Example 1 : A Color Image is a Tensor with 3 Slices 

A black and white image is just a matrix of pixels. The numbers in the matrix are the 
grayscales of each pixel. Normally those numbers are between zero (black) and 255 (white). 
Every entry in A has 28 = 256 possible grayscales. 

A color image is a tensor. It has 3 slices corresponding to red-green-blue. Each slice 
shows the density of one of the colors RGB. Processing this tensor T (for example in 
deep learning: Section VII.2) is not more difficult than a black-white image. ~ 

Example 2 : The Derivative 8w / 8A of w = Av 

This is a tensor that we didn't see coming. Them x n matrix A contains "weights" to 
be optimized in deep learning. That matrix multiplies a vector v to produce w = Av. 
Then the algorithm to optimize A (Sections VI.4 to VII.3) involves the derivative of each 
output Wi with respect to each weight Ajk· So we have three indices i, j, k. 

In matrix multiplication, we know that row j of A has no effect on row i of w = Av. 
So the derivative formula includes the symbol §ij, which is 1 if i = j and 0 otherwise. In 
proper tensor notation that symbol becomes 5j (our authority on tensors is Pavel Grinfeld). 
The derivatives of the linear function w = Av with respect to the weights Ajk are in T: 

as in Tu1 = v1 and T122 = 0 (8) 
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Section Vl1.3 has a 2 x 2 x 2 example. This tensor Tijk = Vk8ii is of particular interest: 

1. The slices k = constant are multiples Vk of the identity matrix. 

2. The key function of deep learning connects each layer of a neural net to the next layer. 
If one layer contains a vector v, the next layer contains the vector w = (Av + b)+· 
A is a matrix of "weights". We optimize those weights to match the training data. 
So the derivatives of the loss function L will be zero for the optimal weights. 

Using the chain rule from calculus, the derivatives of L are found by multiplying the 
derivatives OW I oA from each layer to the next layer. That is a linear step to Av + b, 
followed by the nonlinear ReLU function that sets all negative components to zero. 
The derivative of the linear step is our 3-way tensor VkDij. 

All this will appear again in Section VII.3. But we won't explicitly use tensor calculus. 
The idea of backpropagation is to compute all the derivatives of L "automatically". 
For every step in computing L, the derivative of that step enters the derivative of L. 
Our simple formula (8) for an interesting tensor will get buried in backpropagation. 

Example 3 : The Joint Probability Tensor 

Suppose we measure age a in years and height h in inches and weight w in pounds. 
We put N children into I age groups and J height groups and K weight groups. 
So a typical child is in an age group i and a height group j and a weight group k
where the numbers i, j, k are between 1, 1, 1 and I, J, K. 

Pick a random child. Suppose the I age groups contain a 1, a2, ... , a1 children 
(adding to N children). Then a random child is in age group i with probability ai/ N. 
Similarly the J height groups contain hi, h2, ... , hJ children and the K weight groups 
contain w1 , w2 , ... , w K children. For that random child, 

Probability of height group j is ~ Probability of weight group k is v;:; 
Now comes our real goal: joint probabilities Pijk· For each combination i, j, k we 

count only the children who are in age group i and also height group j and also weight 
group k. Each child has I times J times K possibilities. (Possibly Pill is zero
no oldest children with the lowest height and weight.) Suppose Niik children are found 
in the intersection of age group i and height group j and weight group k : 

N··k 
The joint probability of this age-height-weight combination is PiJk = ___.!!.._. (9) 

N 
We have I times J times K numbers Piik· All those numbers are between 0 and 1. 

They fit into a 3D tensor T of joint probabilities. This tensor T has I rows and J columns 
and K "tubes". The sum of all the entries Niik/N is 1. 

To appreciate this I by J by K tensor, suppose you add all the numbers p 2jk· You are 
accounting for all children in age group 2 : 

J K 

L L P2Jk = p~ = probability that a child is in age group 2. (10) 
j=l k=l 
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We are seeing a 2D slice of the tensor T. Certainly the sum Pt + p~ + · · · + p'} equals 1. 
Similarly you could add all the numbers P2jS· Now you are accounting for all children 

in age group 2 and weight group 5 : 

J 

L P2j5 = p~~ = probability of age group 2 and weight group 5. (11) 
j=l 

These numbers are in a column ofT. We could combine columns to make a slice ofT. 
We could combine slices to produce the whole tensor T : 

I K I 

LLPik'='L:Pi= 1 
i=l k=l i=l 

By measuring three properties we were led to this 3-way tensor T with entries Tijk· 

The Norm and Rank of a Tensor 

In general a tensor is a d-way array. In the same way that a matrix entry needs two 
numbers i, j to identify its position, ad-way tensor needs d numbers. We will concentrate 
here on d = 3 and 3-way tensors (also called tensors of order 3). After vectors and matrices, 
d = 3 is the most common and the easiest to understand. The norm of T is 
like the Frobenius norm of a matrix: Add all Ti;k to find IITII2 • 

The theory of tensors is still part of linear algebra (or perhaps multilinear algebra). 
Just like a matrix, a tensor can have two different roles in science and engineering: .. 

1 A tensor can multiply vectors, matrices, or tensors. Then it is a linear operator.' 

2 A tensor can contain data. Its entries could give the brightness of pixels in an image. 
A color image is 3-way, stacking RGB. A color video will be a 4-way tensor. 

The operator tensor could multiply the data tensor-in the same way that a permutation 
matrix or a reflection matrix or any orthogonal matrix operates on a data matrix. 

The analogies are clear but tensors need more indices and they look more complicated. 
They are. We could succeed with tensor multiplication (as for matrices, the operations 
can come in different orders). We will not succeed so well for tensor factorization. 
This has been and still is an intense research direction-to capture as mueh as possible 
of the matrix factorizations that are so central to linear algebra: LU, QR, QAQT, ur;vT. 

Even the definition and computation of the "rank of a tensor" is not so simple or 
successful as the rank of a matrix. But rank one tensors = outer products are still the 
simplest and clearest: They are created from three vectors a, b, c. 

3-way tensor T = a o b o c of rank one (12) 
~ 

This outer product a o b o c is defined by the m + n + p numbers in those three vectors. 
The rank of a tensor is the smallest number of rank-1 tensors that add to T. 
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If we add several of these outer products, we have a convenient low rank tensor
even if we don't always know its exact rank. Here is an example to show why. 

T = uo u ov + u o v o u + v o uo u (three ran~-1 tensors with I lull= llvll = 1) 

T seems to have rank 3. But it is the limit of these rank-2 tensors Tn when n -t oo : 

Why could this never happen for matrices ? Because the closest approximation to A by 
a matrix of rank k is fixed by the Eckart-Young theorem. That best approximation is Ak 
from the k leading singular vectors in the SVD. The distance from rank 3 to rank 2 is fixed. 

Unfortunately there seems to be no SVD for general 3-way tensors. But the next 
paragraphs show that we still try-because for computations we want a good low rank 
approximation toT. Two options are CP and Tucker. 

The CP Decomposition of a Tensor 

A fundamental problem in tensor analysis and fast tensor computations is to approximate 
a given tensor T by a sum of rank one tensors : an approximate factorization. 

CP Decomposition (14) 

This decomposition has several discoverers : Hitchcock, Carroll, Chang, and Harshman. 
It also has unfortunate names like CANDECOMP and PARAFAC. Eventually it became 
a CP Decomposition ofT. 

This looks like an extension to tensors of the SVD. But there are important differences. 
The vectors a1, ... , aR are not orthogonal (the same for b's and c's). We don't have 
orthogonal invariance (which gave Q1AQ;f the same singular values as A). And the 
Eckart-Young theorem is not true-we often don't know the rank R tensor closest 
to T. There are other approaches to tensor decomposition-but so far CP has been 
the most useful. Kruskal proved that closest rank-one tensors are unique (if they exist). 
If we change R, the best a, b, c will change. 

So we are faced with an entirely new problem. From the viewpoint of computability, 
the problem is N P-hard (unsolvable in polynomial time unless it turns out that P = N P, 
which would surprise almost everyone). Lim and Hitlar have proved that many simpler
sounding problems for tensors are also N P-hard. The route of exact computations is closed. 

C. Hillar and L.-H. Lim, Most tensor problems are NP-hard, J. ACM 60 (2013) Article 45. 

We look for an algorithm that computes the a, b, c vectors in a reasonably efficient way. 
A major step in tensor computations is to come close to the best CP decomposition. 
A simple idea (alternating least squares) works reasonably well for now. The overall 
problem is not convex, but the subproblems cycle in improving A then B then C
and each subproblem (for A and B and C) is convex least squares. 
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Alternate (a) Fix B, C and vary A 

A, B, and C (b) Fix A, C and vary B 

Minimize !ITt- A(C o B)Tii~ 
(c) Fix A, B and vary C 

(15) 

This alternating algorithm is using the three matricized forms T1, T2, T3, described next. 
Co B is the "Khatri-Rao product" coming in equation (17). Then (15) is all matrices. 

Matricized Form of a Tensor T 

Suppose A, B, C are the matrices whose columns are the a's and b's and c's in (14). 
Each matrix has R columns. If the third order tensor T has dimensions I, J, K then the 
three matrices are I by R, J by R, and K by R. It is good to "matricize" the tensor T, 
so as to compute the CP decomposition. 

Start by separating off the a's in the I by R matrix A. Then we look for an R by J K 
matrix M1 so that AM1 expresses our sum (14) of rank-one tensors. M1 must come from 
the b's and c's. But in what way will a matrix product AM1 express a 3-way tensor? 
The answer is that we have to unfold the tensor T into a matrix T1 . After that we can 
compare T1 with AM1. 

An example of Kolda and Bader shows how tensors unfold into matrices. We have 
I x J x K = 3 x 4 x 2 = 24 numbers in T. The matrix unfolding ofT can be 3 x 8 
or 4 x 6 or 2 x 12. We have three unfoldings T1, T2, T3, slicing T three ways: 

[ ~ 10 16 19 22] First way 4 7 13 
Front and back slices Tt = 5 8 11 14 17 20 23 (16) 
IxJK=3x8 6 9 12 15 18 21 24 

Second way 

T, ~ [ ~ 
2 3 13 14 15] 5 6 16 17 18 

J X IK = 4 X 6 
8 9 19 20 21 

Same 24 numbers 
10 11 12 22 23 24 

Third way 
Ts = [ 113 

2 3 4 5 6 7 8 9 10 11 12 ] KxiJ=2x12 
14 15 16 17 18 19 20 21 22 23 2.4 

Same 24 numbers 

The Khatri-Rao Product A 0 B 

Section IV.3 will introduce the Kronecker product K = A ® B of matrices A and B. 
It contains all the products aij times bkl of entries in A and B (so it can be a big· matrix). 
If A and B~are just column vectors (J by 1 and K by 1 matrices) then A® B is a long 
column: J K by 1. First comes au times each entry in B, then a21 times those same 
K entries, and finally aJ1 times those K entries. A 0 B has R of these long columns. 

• ) 
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Khatri-Rao multiplies all aijblj to find column j. A and Band A 0 B haveR columns: 

Khatri-Rao Column j of A 0 B = (column j of A)® (column j of B) (17) 

Thus C and B (K by Rand J by R) produce C 8 B with R long columns (J K by R). 

Summary T is approximated by I: ai o bi o ci. We are slicing T in three directions 
and placing the slices next to each other in the three matrices T1, T2, T3. Then we look 
for three matrices M 1 , M2, M3 that give us nearly correct equations by ordinary matrix 
multiplication : 

(18) 

Recall that A is I by R, with columns a1 to aR. Tt is I by J K. So the correct M1 must 
be R by J K. This M 1 comes from the matrices B and C, with columns bj and Ck. 

M 1 is the transpose of the Khatri-Rao product C 0 B which is J K by R. 

The ith column of C 0 B comes from the ith columns of C and B (for i = 1 to R). 
That ith column of C 0 B contains all of the J K numbers Cki and bji, for 1 ::;: k ::;: K 
and 1 ::;: j ::;: J. C 0 B contains all J K R products of Cki and bji, coming from the 
ith columns of C and B for i = 1 to R. 

The three matricized forms Tt, T2, T3 of T are now approximate matrix products. 
The Khatri-Rao definition was invented to make equation (19) true. 

(19) 

Computing the C P Decomposition ofT 

We aim to compute the a's and b's and c's in the approximation (14) to the tensor T. 
The plan is to use alternating minimizations. With the b's and c's in the matrices 
Band C fixed, we solve a linear least squares problem for the a's in A. 

Put T in its matricized form T1. That matrix is I by J K. By equation (19), we are 
aimingforT1 ~ A(C0B)T =(I x R)(R x JK). FixE andCfornow. 

Choose the best A in I ITt- A (C 8 B)TIIi,.·= liT{- (C 8 B) ATIIi,.. (20) 

Here C 0 B is the J K x R coefficient matrix. It multiplies each of the I columns of AT. 
With the Frobenius norm, we have I ordinary least squares problems to solve for A : 
one for every column of AT ( = row of A). 

Please note : A is not in its usual position Ax = b for least squares. The rows of A 
are the unknowns! The coefficient matrix is C 8 B (not A). We expect that matrix 
to be tall and thin, with J K ~ R. Similarly we will want I K ~ R and I J ~ R when 
the unknowns are alternated to become B al).d C. 
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The solution to a least squares problem Ax = b is given by the pseudoinverse x = A+ b. 

If that matrix A has independent columns (as least squares often assumes), 
A+ is a left inverse (AT A) - 1 AT of the matrix A. There you see the coefficient matrix 
AT A in the usual normal equations for the best x. In our case that coefficient matrix is not 
A but the Khatri-Rao product C 8 B. By good fortune the pseudoinverse of our coefficient 
matrix C 8 B can be expressed as 

(21) 

This formula is borrowed from equation (2.2) of Kolda and Bader. It allows us to form 
cT c and BT B in advance (R by R matrices). The symbol • * (or frequency 0) represents 
the element-by-element product (the Hadamard product). Transposing, the least squares 
problem (20) with fixed B and C is solved by the matrix 

I A= T1 (C 8 B) (CTC ·* BT B)+ I (22) 

Next we use this A together with C to find the best B. One cycle of the alternating 
algorithm ends by finding the best C, with A and B fixed at their new values. 

The Thcker Decomposition 

The SVD separates a matrix (a 2-tensor) into UL:VT. The columns of U and V are 
orthonormal. That decomposition is generally impossible for higher-order tensors. This 
is the reason for the CP approximation and now the Tucker approximation. 

Tucker allows P column vectors ap and Q column vectors bq and R column vectors c.-~ 
Then all rank-one combinations ap o bq o Cr are allowed. A core tensor G with dimensions 
P, Q, R determines the coefficients in those combinations: 

Thcker decomposition ofT 
p Q R 

T ~ L L L gpqr Up o bq o Cr 
1 1 1 

(23) 

With this extra freedom in G-which was just a diagonal tensor in the CP decomposition
we can ask that the a's and b's and c's be three sets of orthonormal columns. So Tucker is 
a combination of PQ R rank-one tensors, instead of only R. 

Remember that (23) is an approximation and not an equality. It generalizes to d7way 
tensors. The 3-way case has a matricized form, where Tt, T2, T3 and similarly G1, G2, G3 
are the unfolding matrices in equation (16). The CP matrices in (14) change to Tucker 
matrices, and now we have Kronecker products instead of Khatri-Rao: 

The higher-order SVD (HOSVD) is a particular Tucker decomposition. Its properties and 
its computation are best explained in the work of De Lathauwer. 
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Decomposition and Randomization for Large Tensors 

This section has described basic steps in computing with tensors. Data is arriving in tensor 
form. We end with two newer constructions (since CP), and with references. 

1. Tensor train decomposition (Oseledets and Tyrtyshnikov) The problem is to handle 
d-way tensors. The full CP decomposition would approximate T by a sum of rank-one 
tensors. For large dimensions d, CP becomes unworkable. A better idea is to reduce T to a 
train of 3-way tensors. Then linear algebra and CP can operate in this tensor train format. 

2. CURT decompositions (Song, Woodruff, and Zhong) This is low rank approximation 
for tensors. This paper aims to compute a rank k tensor within E of the closest to T. 
For matrices, this is achieved (withE = 0) by the SVD and the Eckart-Yaung Theorem. 
For tensors we have no SVD. Computations are based instead on a column-row CUR 
approximation (Section III.3) with a mixing tensor U. 

The algorithm comes near the goal of nnz steps : equal to the number of nonzeros 
in T. It uses randomized factorizations-the powerful tool in Section II.4 for very large 
computations. Tensors are at the frontier of numerical linear algebra. 

1. T. Kolda and B. Bader, Tensor decompositions and applications, SIAM Review 52 
(2009) 455-500. 

2. M. Mahoney, M. Maggioni, and P. Drineas, Tensor-CUR decompositions for tensor-
based data, SIAM J. Matrix Analysis Appl. 30 (2008) 957-987. 

3. B. Bader and T. Kolda, MATLAB Tensor Toolbox, version 2.2 (2007). 

4. C. Andersson and R. Bro, TheN-Way Toolbox for MATLAB (2000). 

5. R. A. Harshman, http://www.psychology.uwo.ca/faculty/harshman 

6. P. Paatero and U. Tapper, Positive matrix factorization, Environmetrics 5 (1994) 
111-126. 

7. D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix 
factorization, Nature 401 (1999) 788-791. 

8. L. De Lathauwer, B. de Moor, and J. Vandewalle, SIAM J. Matrix Anal. Appl. 21 
(2000) 1253-1278 and 1324-1342 (and more recent papers on tensors). 

9. S. Ragnarsson and C. Van Loan, Block tensor unfoldings, SIAM J. Matrix Anal. 
Appl. 33 (2013) 149-169, arXiv: 1101.2005..2 Oct 2011. 

10. C. Van Loan, www.alm.unibo.it/rvsimoncin/CIME/vanloan1.pdf-vanloan4.pdf 

11. I. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comp. 33 (2011) 2295-2317. 

12. Z. Song, D. P. Woodruff, and P. Zhong, Relative error tensor low rank approximation, 
arXiv: 1704.08246, 29 Mar 2018. 

13. P. Grinfeld, Introduction to Tensor Calculus and the Calculus of Moving Suifaces, 
Springer (2013). 
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Problem Set 1.12 

The first 5 questions are about minimizing IIA - UVII} when UV has rank 1. 

Problem MiWnllre II [ ~ ~ ]- [ :: ] [ "' ~ ]I[ 
1 Look at the first column of A - UV with A and U fixed: 

Minimire I [ :::::: lll' ~(a- v1u,)' + (b- v1u,)' 

Show by calculus that the minimizing number Vi has (u~ + u~) vi = uia + u2 b. 
In vector notation u T u Vi = u T ai where ai is column 1 of A. 

2 Which point vi u in this picture minimizes llai -Vi uil2? 

•U 
ViU 

The error vector ai - Vi u is __ to u. 

From that fact, find again the number Vi. 

3 The second column of A - UV is [ ~ ] - [ ~~ ] v2 = a2 - v2u. Which number 

v2 minimizes lla2 - v2ull2 ? ·~ 

Vector form 

4 Problems 1 to 3 minimized IIA- UVII} with fixed U, when UV has rank 1. 

With fixed V = [Vi v2 ] , which U = [ ~~ ] gives the minimum of IIA- UVII}? 

5 (Computer) Starting from any Uo, does this alternating minimization converge 
to the closest rank 1 matrix Ai = O"i ui v'[ from the SVD? 

Minimize 
v 

Minimize 
u 

Ais3x3 

Uis3xl 

IIA- UVnll} at U = Un+i Vis 1 X 3 

Note :' These questions are also an introduction to least squares (Section 11.2). For 
fixed V or fixed U, each minimization is a least squares problem--even when 
the rank of UV increases beyond 1. But requiring nonnegativity or sparsity of 
U and V makes each minimization more difficult and new methods are needed. 
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Problems 6 to 11 are about tensors. We are not doing calculus (with derivatives) 
or tensor algebra (with spaces of tensors). Our focus is on a single tensor T that 
contains multidimensional data. If we have samples 1 to n and each sample is an 
image (a matrix) then we have a tensor of order 3. How can we approximate this 
tensor T by a combination of simple tensors ? This is the data science question. 

First we must decide: Which tensors are simple? Our answer: a ® b ® c is 
a simple (rank 1) tensor. Its i, j, k entry is the number ai times bj times Ck-just 
as a rank-1 matrix abT has entries aibj. A sum of simple tensors approximates T. 

6 Given an m by n matrix A, how do you decide if A has rank 1 ? 

7 Given an m by n by p tensor T, how do you decide if T has rank 1 ? 

8 The largest possible rank of a 2 by 2 by 2 tensor is 3. Can you find an example? 

9 (a) Suppose you know the row sums r 1 to rm and the column sums c1 to Cn 

of an m by n matrix A. What condition must be satisfied by those numbers? 

(b) For an m by n by p tensor, the slices are n by p matrices and m by p matrices 
and m by n matrices. Suppose you add up the entries in each of those m slices 
and n slices and p slices. What conditions would be guaranteed to connect 
those m numbers and n numbers and p numbers ? 

10 Suppose all entries are 1 in a 2 x 2 x 2 tensor T, except the first entry is Tn1 = 0. 
Write T as a sum of two rank-1 tensors. What is the closest rank-1 tensor to T 
(in the usual Frobenius norm)? 

11 A 2 by 2 by 2 tensor T times a vector v in R2 should produce a matrix A in R2 x2 . 

How could you define that output A = Tv ? 
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II : Computations with Large Matrices 

This part of the book discusses Ax = b in its many variations. Ordinary elimination might 
compute an accurate x--or maybe not. There might be too many equations ( m > n) 
and no solution. A square matrix might be singular. The solution might be impossible 
to compute (A is extremely ill-conditioned, or simply too large). In deep learning we 
have too many solutions-and we want one that will generalize well to unseen test data. 

These two pages will try to separate those sources of difficulty. We are like doctors 
performing triage- identify the problem and suggest a course of action for each one. The 
"pseudoinverse" of A proposes an inverse for every matrix-but this might not help. 

0. Every matrix A= U~VT has a pseudoinverse A+= VI:+uT. For the diagonal 
matrix ~ the pseudoinverse ~+ contains 1/ O"k for each nonzero singular value. But the 
pseudo inverse of 0 is 0. To know when a number is exactly zero is an extremely rigid 
requirement-impossible in many computations. 

The pseudoinverse in Section 11.2 is one way to solve Ax = b. Here are other ways.~ 

1. Suppose A is square and invertible, its size is reasonable, and its condition number 
ad an is not large. Then elimination will succeed (possibly with row exchanges). We 
have P A = LU or A = LU (row exchanges or no row exchanges) as in Section 1.4. 

The backslash command A\ b is engineered to make A block diagonal when possible. 

2. Suppose m > n = r: There are too many equations Ax = b to expect a solution. 
If the columns of A are independent and not too ill-conditioned, then we solve the 
normal equations AT Ax = AT b to find the least squares solution x. 

The vector b is probably not in the column space of A, and Ax = b is probably 
impossible. Ax is the projection of b onto that column space in Section 11.2. 

Those are two good problems to have-an invertible A or an invertible AT A, well 
conditioned and not too large. The next page describes four computations (still linear 
equations) that are more difficult. 

113 
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3. Suppose m < n. Now the equation Ax = b has many solutions, if it has one. 
A has a nonzero nullspace. The solution x is underdetermined. We want to choose the 
best x for our purpose. Two possible choices are x+ and x 1 : 

x = x+ = A+b. The pseudoinverse A+ gives the minimum 1..2 norm solution 
with nullspace component = zero. 
x = x 1 = minimum 1..1 norm solution. This solution is often sparse (many zero 
components) and very desirable. It comes from "basis pursuit" in Section III.4. 

4. The columns of A may be in bad condition. Now the ratio crtfcrr is too large. 
Then x is not well determined (as in high-order interpolation: Section 111.3). The usual 
remedy is to orthogonalize the columns by a Gram-Schmidt or Householder algorithm. 
Create orthonormal vectors q1, ... , qn from the columns a 1, ... , an. 

Section 11.2 explains two important forms of Gram-Schmidt. The standard way is to 
orthogonalize each column ak+l against the known directions q1 to qk. The safer way 
orthogonalizes all then- k remaining columns against qk as soon as that vector is found. 
Then a small column k + 1 can be exchanged for a later column when necessary. The 
very safest way picks the largest available column at each step. 

5. A may be nearly singular (as in 4). In this case AT A will have a very large inverse. 
Gram-Schmidt may fail. A different approach is to add a penalty term : 

As the penalty 62 approaches zero, (AT A + 62 I) -l AT approaches the pseudoinverse A+ 
(Section 11.2). We achieve invertibility by adding 62 I to make AT A more positive. This 
connects to ridge regression in statistics. 

Penalty terms like 62 llxll2 are common in inverse problems, which aim to reconstruct 
a system from knowledge of its outputs. Usually we know the system (like an electri
cal network) and we find its outputs (currents and voltages). The inverse problem starts 
with outputs (like CT or MRI scans). Reconstructing the system is ill-conditioned. 

6. Suppose A is way too big. It spills outside fast memory. We can ask to see a few 
columns but we cannot go forward with elimination. Multiplying AT times A would 
be impossible, even on the petascale computer that is expected at Oak Ridge and the 
exascale machine planned for Argonne (New York Times, 28 February 2018). What to do 
for such a large matrix ? 

The best solution is random sampling of the columns (Section 11.4 ). If A is oversize 
but reasonably coherent, each Ax will be a useful sample of the column space. The re
sults from random sampling are never certain, but the probability of going wrong is low. 
Randomized numerical linear algebra has led to algorithms with a secure statistical base. 

This is a necessary evolution or revolution based on deep results in probability. 
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11.1 Numerical Linear Algebra 

This section summarizes the central ideas of (classical) numerical linear algebra. They 
won't be explained at length, because so many books do this well. Their aim is to solve 
Ax = b or Ax = >.x or Av = au. They are the foundation on which new computational 
methods are built. 

It is those new methods-aiming to extract information from the data in a matrix or 
a tensor-that are the real goals of this part of the book. When a matrix or a tensor is 
really large ("big data") we will often have to sample the matrix. It may seem impossible 
that random sampling would give a reliable answer. But in fact this is highly probable. 

The bible for numerical linear algebra is Matrix Computations. Its authors are Gene 
Golub and Charles Van Loan. The fourth edition was published in 2013 by Johns Hopkins 
University Press. Gene lectured at Johns Hopkins more than 30 years earlier and that led to 
the first edition-! don't think the publisher had any idea of a 2013 book with 750 pages. 

Many other books are listed on math.mit.edullearningfromdata. Here we choose 
one outstanding textbook: Numerical Linear Algebra by Trefethen and Bau. Its chapter 
titles provide a good outline of the central ideas and algorithms: 

I. Fundamentals (reaching the SVD and Eckart-Young) 

II. QRFactorizationand Least Squares (all3 ways: A+ and (AT A)-1 AT and QR) 

,. 
III. Conditioning and Stability (condition numbers, backward stability, perturbations):; 

IV. SystemsofEquations (directelimination: PA = LUandCholesky'sS = ATA) 

V. Eigenvalues (reduction to tridiagonal-Hessenberg-bidiagonal; QR with shifts) 

VI. Iterative Methods (Arnoldi, Lanczos, GMRES, conjugate gradients, Krylov). 

Our plan in this section is to outline those important iterative algorithms from parts VI 
and V. All these are included in major codes to solve Ax = band Sq = >.q and Ax = >.x 
and Av = au. That word "iterative" indicates that we repeat a simple and fast s"tep, 
aiming to approach the solution to a larger and more difficult problem. 

A model for iteration (but not a specially fast algorithm !) is to split A into A = S- T : 

Prepare for iteration Rewrite Ax = b as Sx = Tx + b. (1) 

Start with any x 0 and solve Sx 1 = Tx0 + b. Continue to Sx2 = Tx 1 + b. A hundred 
iterations are very common. If S is well chosen, each step Sxk+I = Txk + b is fast. 



116 Computations with Large l\1atrice~ 

Subtracting the iteration Sxk+l = Txk + b from the exact Sx = Tx + b, the error 
x- Xk obeys the error equation (and b cancels out): 

Error equation (2) 

Every step multiplies the error by s-1T. When IIS-1TII < < 1 the convergence is fast. 
But in practice s-1T often has an eigenvalue near 1. Then a better idea will be needed
like the conjugate gradient method. 

Let me add this note first. A textbook might find eigenvalues by solving det(A- >.I) = 0. 
It might find singular values by working with the matrix AT A. In reality, those deter
minants are unthinkable and a large AT A can be numerically very unwise. Ax = >.x 
and Av = au are serious problems. We solve them in this section for matrices of size 
100 or more. For n = 104 , read onward to Section 11.4. 

Krylov Subspaces and Arnoldi Iteration 

Key idea: Matrix-vector multiplication Ab is fast, especially if A is sparse. 
If we start with A and b, we can quickly compute each of the vectors b, Ab, ... , An-lb. 
(Never compute A2 or A3 • Only compute vectors.) The combinations of those n vectors 
make up the nth Krylov subspace. We look inside this subspace Kn for a close 
approximation to the desired solution x. 

The first problem is to find a much better basis than those vectors b, Ab, ... , An-lb. 
An orthogonal basis q 1, ... , qn is usually best! The Gram-Schmidt idea of subtracting 
off the projections of v = Aqk onto all the earlier vectors q 1 , ... , qk is so natural. 
This is Arnoldi's method to find qk+l· 

Arnoldi Iteration 

v =Aqk 

for j = 1 to k 

hjk = qJv 

v = v- hjkqj 

hk+l,k = llvll 
qk+l = v/hk+l,k 

ql =b/llbll, q2 , ... ,qkareknown 

Start with new v 

For each known q 

Compute inner product 

Subtract projection 

Compute norm 

New basis vector with norm 1 

You have to see this in matrix language. The last column is Aq k = combination of q 1 to q k+ 1: 

This is AQk = Qk+lHk+l,k· Multiply both sides by Qr. The result is important. 
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The square matrix Hk has lost the last row that was in equation (3). This leaves an upper 
triangular matrix plus one subdiagonal containing h21 to hk,k-1· Matrices with only one 
nonzero subdiagonal are called Hessenberg matrices. This H k has a neat interpretation : 

Hk = Qr AQk is the projection of A onto the Krylov space, using the basis of q's. 

The Arnoldi process to find H k is one of the great algorithms of numerical linear 
algebra. It is numerically stable and the q's are orthonormal. 

Eigenvalues from Arnoldi 

The numbers in H k = QI AQ k are computed during the Arnoldi process. If we go all the 
way to k =size of A, then we have a Hessenberg matrix H = Q-1 AQ that is similar to 
A : same eigenvalues. We compute those eigenvalues by the shifted Q R algorithm below, 
applied to H. 

In reality we don't go all the way with Arnoldi. We stop at a decent value of k. Then 
the k eigenvalues of Hare (usually) good approximations to k extreme eigenvalues of A.~ 
Trefethen and Bau emphasize for non-symmetric A that we may not want eigenvalues of A 
in the first place ! When they are badly conditioned, this led Trefethen and Embree to the 
theory of pseudospectra. 

Linear Systems by Arnoldi and GMRES 

Arnoldi has given us a great basis (orthonormal q's) for the growing Krylov subspaces 
spanned by b, Ab, ... , Ak-1b. So Arnoldi is the first step. In that subspace, the GMRES 
idea for Ax = b is to find the vector Xk that minimizes II b - Axk II : the Generalized 
Minimum RESidual. With an orthonormal basis, we can compute a~curately and safely : 

GMRES with Arnoldi's basis q 1 , ... , qk 

Find y k to minimize the length of H k+I,k y - (II bll, 0, ... , 0) T. 

Then Xk = QkYk 
~ 

Finding Yk is a least squares problem with a k + 1 by k Hessenberg matrix. The zeros 
below the first subdiagonal of Hk+l,k make GMRES especially fast. 
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Symmetric Matrices : Arnoldi Becomes Lanczos 

Suppose our matrix is symmetric: A = S. In this important case, two extra facts are true. 

1. Hk = Qr SQk is also symmetric. Its transpose is clearly Hk. 

2. Hk is tridiagonal: only one diagonal above because only one diagonal below. 

A tridiagonal matrix H gives a major saving in cost-the Arnoldi iteration needs only one 
orthogonalization step. The other orthogonalities are built in because H is symmetric 
Hessenberg (so it is tridiagonal). 

Here is Lanczos with simpler letters a 1 to ak (on the main diagonal) and b1 to bk-1 (on 
the diagonals above and below). The a's and b's in T replace the h's of Arnoldi's matrix H. 

Lanczos iteration for Sx = .>.x (symmetric Arnoldi) 

Qo = 0, q1 = b/llbll 
For k = 1, 2, 3, ... 

v = Sqk 

ak = qTv 

v = v- bk-1Qk_1 - ak qk 

bk = llvll 
qk+1 = v/bk 

Orthogonalize b, Sb, Sb2 , ... 

Start with new v 

Diagonal entry in T is ak 

Orthogonal to earlier q's 

Off-diagonal entry in T is bk 

Next basis vector 

Writing T for tridiagonal instead of H for Hessenberg, here are the key facts for Lanczos. 
They are simply copied from Arnoldi : 

Equations (3) and (4) (5) 

"The eigenvalues of Tk (fast to compute) approximate the eigenvalues of S." If only that 
were exactly and always true ! Trefethen and Bau create a diagonal matrix S with 201 
equally spaced eigenvalues from 0 to 2, and also two larger eigenvalues 2.5 and 3.0. 
Starting from a random vector b, Lanczos at step k = 9 approximates .X = 2.5 and 3.0 
exponentially well. The other 7 eigenvalues of T9 = Q§' SQ9 bunch near 0 and 2. But 
they don't capture individual eigenvalues in that gro.up of 201 A's. 

The problem comes from non-orthogonal q's when exact Lanczos iterations would 
guarantee orthogonal q's. Lanczos is valuable. But special care is needed to keep all 
the q's orthogonal in practice-which was true also of Gram-Schmidt. 
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Eigenvalues of Tridiagonal T by the Q R Iteration 

How to compute the eigenvalues of a symmetric tridiagonal matrix T? This is the key 
question for the symmetric eigenvalue problem. The original matrix S has been simplified 
by Lanczos to the tridiagonal T = QTSQ = Q-1SQ (no change in eigenvalues because 
Tis similar to 8). Or those zeros could also come from 2 by 2 "Givens rotations". 

At this point we have a tridiagonal symmetric matrix T = To. To find its eigenvalues, 
an amazing idea appeared almost from nowhere : 

1. By Gram-Schmidt or Householder, factor To into QR. Notice R = Q-1T0 • 

2. Reverse those factors Q and R to produce T 1 = RQ = Q-1T0 Q. 

3. Repeat. . . Repeat. . . Repeat. .. 

The new T1 = Q-1ToQ is similar to T: same eigenvalues. More than that, the new 
T 1 is still tridiagonal (Problem 1). So the next step and all the later steps are still fast. 
And best of all, the similar matrices T, T 1 , T2 , ••• approach a diagonal matrix A. 
That diagonal matrix reveals the (unchanged) eigenvalues of the original matrix T. 
The first eigenvalue to appear is in the last entry Tnn· 

This is the "Q R algorithm" to compute eigenvalues. As it gradually became known, it 
caused a sensation in numerical linear algebra. But numerical analysts are serious people. 
If you give them a good algorithm, they immediately start to make it better. In this case 
they succeeded triumphantly, because the improvements came at virtually no cost 
(and they really worked). 

The improved algorithm is shifted Q R, or Q R with shifts. The "shift" subtracts a a, 
multiple ski of the identity matrix before the Q R step, and adds it back after the RQ step: 

Q R algorithm 

with shifts 

to find eigenvalues 

Choose a shift sk at step k 

Factor Tk - ski = QkRk 

Reverse factors and shift back: Tk+l = RkQk + ski 

The T's all have the same eigenvalues because they are similar matrices. Each new 
Tk+l is Qf: 1TkQk. It is still symmetric because Q-,; 1 = Q'f: 

Rk = Qf:1(Tk- ski) and then Tk+1 = Qf: 1(n- ski)Qk +ski= Q~1TkQk. (6) 

Well-chosen shifts Sk will greatly speed up the approach of the T's to a diagonal matrix A. 
A good shift is s = Tnn· A shift suggested by Wilkinson is based on the last 2 by 2 
submatrix of Tk : 

Wilkinson shift Sk = the eigenvalue of [ ban- 1 

n-1 
bn- 1 ] closest to an. 
an · 

Shifted QR achieves cubic convergence (very rare). In the example that follows, 
the off-diagonal goes from sin() to -(sin 0)3 . Then eigenvalues of a typical tridiagonal T 
take only O(n3 /t:) flops for accuracy f. 
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T. _ [cosO sinO] Shift = 0 
0 - sinO 0 

T1 = Ro Q = [cos 0(1 :- sin2 0) 
O - Sin3 0 

Computations with Large Malric~~ . 

[ cosO -sinO] 
Qo = sin 0 cos 0 

Ro = [1 sinOcosO] 
0 - sin2 0 

- sin3 0 ] . 
• 2 0 0 has cubed the error m one step. 

-sm cos 

Computing the SVD 

What is the main difference between the symmetric eigenvalue problem Sx =AX 
and A = U:EVT ? How much can we simplify S and A before computing ..\'s and a-'s? 

Eigenvalues are the same for Sand Q-1SQ = QTSQ because Q is orthogonal. 

So we have limited freedom to create zeros in Q-1SQ (which stays symmetric). 
If we try for too many zeros in Q-1s, the final Q can destroy them. The good 
Q-1 SQ will be tridiagonal: only three diagonals. 

Singular values are the same for A and Q 1AQ:f even if Q1 is different from Q2. 

We have more freedom to create zeros in Q 1AQ:f. With the right Q's, this will be 
bidiagonal (two diagonals). We can quickly find Q and Q1 and Q2 so that 

d2 l 
0 c~ 

(7) 

The reader will know that the singular values of A are the square roots of the 
eigenvalues of S = AT A. And the unchanged singular values of Q 1AQ:f are the 
square roots of the unchanged eigenvalues of (Q 1AQi)T(Q1AQ:f) = Q2AT AQi. 
Multiply (bidiagonal)T(bidiagonal) to see tridiagonal. 

This offers an option that we should not take. Don't multiply AT A and find its eigen
values. This is unnecessary work and the condition of the problem will be unnecessarily 
squared. The Golub-Kahan algorithm for the SVD works directly on A, in two steps: 

1. Find Q1 and Q2 so that Q1AQ:f is bidiagonal as in (8). 

2. Adjust the shifted Q R algorithm to preserve singular values of this bidiagonal matrix. 

Step 1 requires O(mn2 ) multiplications to put an m by n matrix A into bidiagonal form. 
Then later steps will work only with bidiagonal mfitrices. Normally it then takes O(n2 ) 

multiplications to find singular values (correct to nearly machine precision). The full 
algorithm is described on pages 489 to 492 of Golub-Van Loan (4th edition). 

Those operation counts are very acceptable for many applications-an SVD is com
putable. Other algorithms are proposed and successful. But the cost is not trivial (you can't 
just do SVD's by the thousands). When A is truly large, the next sections of this book 
will introduce methods which including "random sampling" of the original matrix A-this 
approach can handle big matrices. With very high probability the results are accurate. 
Most gamblers would say that a good outc9me from careful random sampling is certain. 
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Conjugate Gradients for S x = b 

The conjugate gradient algorithm applies to symmetric positive definite matrices S. 
It solves Sx = b. Theoretically it gives the exact solution in n steps (but those steps are 
slower than elimination). Practically it gives excellent results for large matrices 
much sooner than the nth step (this discovery revived the whole idea and now CG is one of 
the very best algorithms). Such is the history of the most celebrated of all Krylov methods. 

Key point: Because S is symmetric, the Hessenberg matrix H in Arnoldi becomes 
the tridiagonal matrix T in Lanczos. Three nonzeros in the rows and columns ofT makes 
the symmetric case especially fast. 

And now Sis not only symmetric. It is also positive definite. In that case JJxJJ~ = 
xTSx gives a very appropriate norm (the S-norm) to measure the error after n steps. 
In fact the kth conjugate gradient iterate Xk has a remarkable property: 

Xk minimizes the error llx- xklls over the kth Krylov subspace 
Xk is the best combination of b, Sb, ..• 'sk-lb 

Here are the steps of the conjugate gradient iteration to solve Sx = b: 

Conjugate Gradient Iteration for Positive Definite S 
xo = O,ro = b,do = ro 

fork= 1 toN 
ak = (r'f-1 Tk-1)/(dL1 Sdk-d 
Xk = Xk-1 + O!kdk-1 
rk = rk-1 - akSdk-1 
f3k = (rirk)/(r'f- 1 Tk-d 
dk = Tk + f3kdk-1 

step length Xk-1 to Xk 
approximate solution 
new residual b - Sxk 
improvement this step 
next search direction 

%Notice: only 1 matrix-vector multiplication Sd in each step 

Here are the two great facts that follow (with patience) from those steps. Zigzags are gone! 

1. The error residuals rk = b - Sxk are orthogonal: r'{;, r i = 0 

2. The search directions dk areS-orthogonal: d'J;, Sd; = 0 
. 

Notice Solving Sx- b = 0 is the same as minimizing the quadratic ~xTSx- xTb. 
One is the gradient of the other. So conjugate gradients is also a minimization algorithm. 
It can be generalized to nonlinear equations and nonquadratic cost functions. It could be 
considered for deep learning in Part VII of this book-but the matrices there are simply too 
large for conjugate gradients. 

We close with the cleanest estimate for the error after k conjugate gradient steps. 
The succes&, is greatest when the eigenvalues A of S are well spaced. · 

k 

(~-~) !lx- xklls :=:; 2JJx- xo!ls ~ ~ 
Amax + Amin 

CGMethod (8) 
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Preconditioning for Ax = b 

The idea of preconditioning is to find a "nearby" problem that can be solved quickly. 
Explaining the idea is fairly easy. Choosing a good preconditioner is a serious problem. 
For a given matrix A, the idea is to choose a simpler matrix P that is close to A. Those 
matrices may be close in the sense that A - P has small norm or it has low rank. Working 
with p-1 A is faster : 

Preconditioned p-1 Ax = p-1b instead of Ax = b. (9) 

The convergence test (for whichever algorithm is used) applies to p-1 A in place of A. 
If the algorithm is conjugate gradients (which works on symmetric positive definite 

matrices) we likely change from A to p-1/ 2 AP- 112 • 

Here are frequent choices of the preconditioner P : 

1 P =diagonal matrix (copying the main diagonal of A): Jacobi iteration 

2 P =triangular matrix (copying that part of A): Gauss-Seidel method 

3 P = L0 U0 omits fill-in from A= LU (elimination) to preserve sparsity: incomplete LU 

4 P = same difference matrix as A but on a coarser grid : multigrid method 

Multigrid is a powerful and highly developed solution method. It uses a whole sequence 
of grids or meshes. The given problem on the finest grid has the most meshpoints (large 
matrix A). Successive problems on coarser grids have fewer meshpoints (smaller matrices). 
Those can be solved quickly and the results can be interpolated back to the fine mesh. 
Highly efficient with fast convergence. 

Kaczmarz Iteration 

Equation (10) is fast to execute but not easy to analyze. Now we know that convergence 
is exponentially fast with high probability when each step solves one random equation of 
Ax = b. Step k of Kaczmarz gets the ith equation right: 

Xk+1 satisfies aJ x = bi (10) 

Each step projects the previous Xk onto the plane aJ x = bi. Cycling through the m 
equations in order is classical Kaczmarz. The randomized algorithm chooses row i with 
probability proportional to llaill2 (norm-squared sampling in 11.4). 

Kaczmarz iteration is an important example of stochastic gradient descent (stochastic 
because equation i is a random choice at step k). We return to this algorithm in Section 
VI.5 on optimizing the weights in deep learning. 

T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponential 
convergence, J. Fourier Anal. Appl. 15 (2009) 262-278; arXiv: math/0702226. 
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Problem Set 11.1 

These problems start with a bidiagonal n by n backward difference matrix D =:= I- S. 
Two tridiagonal second difference matrices are DDT and A = - S + 2I- ST. The shift S 
has one nonzero subdiagonal Si,i-1 = 1 fori = 2, ... , n. A has diagonals -1, 2, -1. 

1 Show that DDT equals A except that 1 =/= 2 in their (1, 1) entries. Similarly 
DT D = A except that 1 =/= 2 in their ( n, n) entries. 

Note Au corresponds to -d2ufdx2 for 0 ~ x ~ 1 with fixed boundaries 
u(O) = 0 and u(1) = 0. DDT changes the first condition to dufdx(O) = 0 (free). 
DT D changes the second condition to duf dx(1) = 0 (free). Highly useful matrices. 

2 Show that the inverse of D =I-S is D-1 =lower triangular "sum matrix" of l's. 
DD-1 =I is like the Fundamental Theorem of Calculus: derivative of integral off 
equals f. Multiply (D-1)T times D-1 to find (DDT)- 1 forn = 4. 

3 Problem 1 says that A = DDT+ eeT where e = (1, 0, ... , 0). Section 111.1 will 
show that A-1 = (DDT)- 1 - zzT. For n = 3, can you discover the vector z? 
Rank-one change in DDT produces rank-one change in its inverse. 

4 Suppose you split A into -S + 2I (lower triangular) and -ST (upper triangular). 
The Jacobi iteration to solve Ax = b will be ( -S + 2I) Xk+l = sT Xk +b. 

This iteration converges provided all eigenvalues of ( -S + 2!)-1 sT have 1-"1 < 1. 
Find those eigenvalues for sizes n = 2 and n = 3. ~ 

5 Forb = (1, 0, 0) and n = 3, the vectors b, Ab, A 2b are a non-orthogonal basis for 
R3 . Use the Arnoldi iteration with A to produce an orthonormal basis q 1 , q2 , q3 . 

Find the matrix H that gives AQ2 = Q3H as in equation (3). 

6 In Problem 5, verify that Q:f AQ2 is a tridiagonal matrix. 

7 Apply one step of the QR algorithm to the 3 by 3 second difference matrix A. 
The actual eigenvalues of A are A= 2- -/2, 2, 2 + -/2. 

8 Try one step of the Q R algorithm with the recommended shift s = A3~ = 2. 

9 Solve Ax = (1, 0, 0) by hand. Then by computer using the conjugate gradient 
method. 
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11.2 Least Squares : Four Ways 

Many applications lead to unsolvable linear equations Ax = b. It is ironic that this is 
such an important problem in linear algebra. We can't throw equations away, we need to 
produce a best solution x. The least squares method chooses x to make lib- Axll 2 

as small as possible. Minimizing that error means that its derivatives are zero : those are 
the normal equations AT Ax = AT b. Their geometry will be in Figure 11.2. 

This section explains four ways to solve those important (and solvable!) equations: 

1 The SVD of A leads to its pseudoinverse A+. Then x = A+ b : One short formula. 

2 AT Ax= ATb can be solved directly when A has independent columns. 

3 The Gram-Schmidt idea produces orthogonal columns in Q. Then A = Q R. 

4 Minimize lib -Aa:ll 2 + ~2 lla:ll 2 . That penalty changes the normal equations to 
(AT A+ ~2 I)a:0 = ATb. Now the matrix is invertible and a:0 goes to x as o-+ 0. 

AT A has an attractive symmetry. But its size may be a problem. And its condition 
number-measuring the danger of unacceptable roundoff error-is the square of the 
condition number of A. In well-posed problems of moderate size we go ahead to solve 
the least squares equation AT Ax = ATb, but in large or ill-posed problems we find 
another way. 

We could orthogonalize the columns of A. We could use its SVD. For really large 
problems we sample the column space of A by simply multiplying Av for random vectors 
v. This seems to be the future for very big computations: a high probability of success. 

First of all, please allow us to emphasize the importance of AT A and AT CA. 
That matrix C is often a positive diagonal matrix. It gives stiffnesses or conductances or 
edge capacities or inverse variances 1/a2-the constants from science or engineering or 
statistics that define our particular problem: the "weights" in weighted least squares. 

Here is a sample of the appearances of AT A and AT C A in applied mathematics : 

In mechanical engineering, AT A (or AT C A) is the stiffness matrix 

In circuit theory, AT A (or AT C A) is the conductance matrix 

In graph theory, AT A (or ATCA) is the (wei~hted) graph Laplacian 

In mathematics, AT A is the Gram matrix: inner products of columns of A 

In large problems, AT A is expensive and often dangerous to compute. We avoid it if 
we can! The Gram-Schmidt way replaces A by QR (orthogonal Q, triangular R). Then 
AT A is the same as RTQTQR = RT R. And the fundamental equation AT Ax = ATb 
becomes RT Rx = RTQTb. Finally this is Rx = QTb, safe to solve and fast too. 

Thus AT A and AT C A are crucial matrices-but paradoxically, we try not to compute them. 
Orthogonal matrices and triangular matrices.: Those are the good ones. 
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A+ is the Pseudoinverse of A 

I will first describe the pseudoinverse A+ in words. If A is invertible then A+ is A- 1 . 

If A is m by n then A+ is n by m. When A multiplies a vector x in its row space, this 
produces Ax in the column space. Those two spaces have equal dimension r (the rank). 
Restricted to these spaces A is always invertible-and A+ inverts A. Thus A+ Ax = x 
exactly when x is in the row space. And AA + b = b when b is in the column space. 

The nullspace of A+ is the nullspace of AT. It contains the vectors yin Rm with 
AT y = 0. Those vectors y are perpendicular to every Ax in the column space. For these 
y, we accept x+ = A+y = 0 as the best solution to the unsolvable equation Ax = y. 
Altogether A+ inverts A where that is possible : 

The pseudoinverse of A= [ ~ g ] is A+ = [ 1~2 g ] . 
The whole point is to produce a suitable "pseudoinverse" when A has no inverse. 

Rule 1 If A has independent columns, then A+ = (AT A) - 1 AT and so A+ A = I. 
Rule 2 If A has independent rows, then A+ = AT ( AA T) - 1 and so AA + = I. 
Rule 3 A diagonal matrix .E is inverted where possible--otherwise r:+ has zeros : 

:E+ = [ 1/;1 1/00"2 ~ l 
0 0 0 
0 0 0 

On the four subspaces 

.. 
All matrices The pseudoinverse of A = U:EVT is A+ = V:E+ UT. (1)' 

A Row space to column space 
A+ Column space to row space 

nullspace of AT 
= nul/spaCe of A+ 

A+ A = [ 10 0 ] row space 
0 nullspace 

Figure Il.l: Vectors p = Ax+ in the column space of A go back to x+ in the row space. 
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This pseudoinverse A+ (sometimes written At with a dagger instead of a plus sign) 
solves the least squares equation AT Ax = ATb in one step. This page verifies that x+ = 
A+ b = VE+ UT b is best possible. At the end of this section, we look in more detail at A+. 

Question: The formula A+ = VE+ UT uses the SVD. Is the SVD essential to find A+ ? 
Answer: No, A+ could also be computed directly from A by modifying the elimination 
steps that usually produce A - 1 . However each step of arithmetic would have to be exact ! 
You need to distinguish exact zeros from small nonzeros. That is the hard part of A+. 

The Least Squares Solution to Ax= b is x+ = A+b 

I have written x+ instead of x because the vector x+ has two properties: 

1 x = x+ = A+b makes Jib- AxJJ 2 as small as possible. Least squares solution 

2 If another x achieves that minimum then JJx+ II < llx JJ. Minimum norm solution 

x+ = A+b is the minimum norm least squares solution. When A has independent 
columns and rank r = n, this is the only least squares solution. But if there are nonzero 
vectors x in the nullspace of A (so r < n), they can be added to x+. The error 
b- A(x+ + x) is not affected when Ax = 0. But the length JJx+ + xJJ 2 will grow 
to JJx+ 11 2 + JlxJJ2 • Those pieces are orthogonal: Row space l_ nullspace. 

So the minimum norm (shortest) solution of ATAx = ATb is x+ = A+b, 
x+ has a zero component in the nullspace of A. 

Example 1 The shortest least squares solution to [ ~ ~ ] [ ~~ ] = [ ~ ] is x+ 

x+ = A+b = [ 1~3 ~ ] [ ~ ] = [ ~ ] . All vectors [ ~2 ] are in the nullspace of A. 

All the vectors x = [ : 2 ] minimize Jib- AxJJ 2 = 64. But x+ = [ ~ ] is shortest. 

That example shows the least squares solutions when A is a diagonal matrix like E. 
To allow every matrix UEVT, we have to account for the orthogonal matrices U and V. 
We can freely multiply by uT without changing any lengths, because uTu = I: 

Squared error (2) 

Set w = VT x to get IIUTb- EwW. The best w is E+UTb. And finally x+ is A+ b: 

w = VTx+ = E+uTb and yT = v- 1 lead to x+ = v~+uTb = A+b. (3) 

The SVD solved the least squares problem in one step A+ b. The only question is the 
computational cost. Singular values and singular vectors cost more than elimination. 
The next two proposed solutions work directly with the linear equations AT Ax = AT b. 
This succeeds when AT A is invertible-and then x is the same as x+. 
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When is AT A Invertible? 

The invertibility (or not) of the matrix AT A is an important question with a nice answer: 

AT A is invertible exactly when A has independent columns. If Aa: = 0 then a: = 0 

Always A and AT A have the same nullspace ! This is because AT Aa: = 0 always leads to 
a:TATA:z: = O.ThisisiiAa:ll2 = O.ThenAa: = Oanda:isinN(A).Forallmatrices: 

N(AT A)= N(A) and C(AAT) = C(A) and rank (AT A)= rank (AAT) =rank (A) 

We now go forward when AT A is invertible to solve the normal equations AT Ax = AT b. 

The Normal Equations AT A$= ATb 

Figure 11.2 shows a picture of the least squares problem and its solution. The problem is 
that b is not in the column space of A, so Aa: = b has no solution. The best vector p = Ax 
is a projection. We project b onto the column space of A. The vectors @ and p = Ax 
come from solving a famous system of linear equations: AT Ax= AT b. To invert AT A, 
we need to know that A has independent columns. 

The picture shows the all-important right triangle with sides b, p, and e. 

Figure II.2: The projection p = Ax is the point in the column space that is closest to b. 

Everybody understands that e is perpendicular to the plane (the column space of A). 
This says that b - p = b - A@ is perpendicular to all vectors Aa: in the c@lumn space : 

(Aa:)T(b-Ax)=a:TAT(b-Ax)=O foralla: forces AT(b-Ax)=O. · (4) 

Everything comes from that last equation, when we write it as AT A x = AT b. 

Normal equation for @ 

Least squ!lres solution to Aa: = b 

Projection of b onto the column space of A 

Projection matrix that multiplies b to give p 

ATA@ = ATb (5) 

@ = (AT A)- 1 ATb (6) 

p=Ax=A(ATA)- 1 ATb (7) 

p =A( AT A)- 1 AT (8) 
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A now has independent columns : r = n. That makes AT A positive definite and invertible. 
We could check that our x is the same vector x+ = A+ b that came from the pseudoinverse. 
There are no other x's because the rank is assumed to be r = n. The nullspace of A only 
contains the zero vector. 

Projection matrices have the special property P 2 = P. When we project a second 
time, the projection p stays exactly the same. Use equation (8) for P: 

The Third Way to Compute x : Gram-Schmidt 

The columns of A are still assumed to be independent: r = n. But they are not assumed 
to be orthogonal ! Then AT A is not a diagonal matrix and solving AT Ax = AT b needs 
work. Our third approach orthogonalizes the columns of A, and then x is easy to find. 

You could say: The work is now in producing orthogonal (even orthonormal) columns. 
Exactly true. The operation count is actually doubled compared to AT Ax = ATb, but 
orthogonal vectors provide numerical stability. Stability becomes important when AT A is 
nearly singular. The condition number of AT A is its norm IIAT All times II(AT A)-111· 
When this number af /a~ is large, it is wise to orthogonalize the columns of A in advance. 
Then work with an orthogonal matrix Q. 

The condition number of Q is IIQII times IIQ-111· Those norms equal!: best possible. 

Here is the famous Gram-Schmidt idea, starting with A and ending with Q. 
Independent columns a 1 , ... , an lead to orthonormal q1 , ... , qn. This is a fundamental 
computation in linear algebra. The first step is q1 = al/lla1ll· That is a unit vector: 
llq1ll = 1. Then subtract from a2 its component in the q1 direction: 

Gram-Schmidt step Orthogonalize 
Normalize 

A2 = a2- (ai ql)ql 
q2 = A2/IIA2II 

Subtracting that component ( ai q1) q1 produced the vector A2 orthogonal to q1 : 

(a2 - (ai q1 ) q1)T q1 = ai q1 - ai q1 = 0 since q'f q1 = 1. 

(10) 
(11) 

The algorithm goes onward to aa and A3 and Qa, normalizing each time to make llqll = 1. 
Subtracting the components of a3 along q1 and q2 leaves A3: 

Orthogonalize A3 = a3- (aj q1) q1 - (aj q2) q2 

Ajq1 = Ajq2 = 0 and llqall = 1 

Normalize 

Each Qk is a combination of a1 to ak. Then each ak is a combination of q1 to Qk· 

a1 = lla1ll ql 

a's from q's a2 = (ai ql) ql + IIA2II q2 

a3 = (aj"ql) ql + (aj q2) q2 + IIA3II Q3 

(13) 
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Those equations tell us that the matrix R = QT A with rij = q'[ aj is upper triangular: 

r1a l r2a is A= QR. 
raa 

(14) 

Gram-Schmidt produces orthonormal q's from independent a's. Then A = QR. 

If A= QR then R = QT A= inner products of q's with a's! Later a's are not 
involved in earlier q's, so R is triangular. And certainly AT A = RTQTQR = RTR: 

The least squares solution to Ax = b is x = R-1 QTb. 

The MATLAB command is [Q, R] = qr(A). Every Tij = q'[a1 because R = QT A. 
The vector x =(AT A)- 1 ATb is (RT R)-1 RTQTb. This is exactly x = R-1 QTb. 

Gram-Schmidt with Column Pivoting 

That straightforward description of Gram-Schmidt worked with the columns of A in their 
original order a1, a2, aa, ... This could be dangerous! We could never live with a code 
for elimination that didn't allow row exchanges. Then roundoff error could wipe us out. 

Similarly, each step of Gram-Schmidt should begin with a new column that is as 
independent as possible of the columns already processed. We need column exchanges 
to pick the largest remaining column. Change the order of columns as we go. 

l 
To choose correctly from the remaining columns of A, we make a simple change in 

Gram-Schmidt: 

Old Accept column aj as next. Subtract its components in the directions q1 to qj-l 

New When %-1 is found, subtract the q1_ 1 component from all remaining columns 

This might look like more work, but it's not. Soonerorlaterwehad to remove (a'[ q1_1)qj_1 
from each remaining column ai. Now we do it sooner-as soon as we know q 1_ 1 . Then 
we have a free choice of the next column to work with, and we choose the largest. 

Elimination 
Gram-Schmidt 

Row exchanges on A left us with P A = LU (permutation matrix P) 
Column exchanges leave us with AP = Q R (permutation matrix P) 

Here is the situation after j - 1 Gram-Schmidt steps with column pivoting. We h'ave 
j- 1 orthogonal unit vectors q 1 to q1_ 1 in the columns of a matrix Qj_1• We have the 
square matrix Rj-1 that combines those columns of Qj-1 to produce j- 1 columns of A. 
They might not be the first j - 1 columns of A-we are optimizing the column order. 
All the remaining columns of A have been orthogonalized against the vectors q1 to qj-l· 

Step j. Choose the largest of the remaining columns of A. Normalize it to length 1. 

This is Qj. Then from each of the n - j vectors still waiting to be chosen, subtract the 
component in the direction of this latest %. Ready now for step j + 1. 
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We will follow Gunnar Martinsson's 2016 course notes for APPM 5720, to express 
step j in pseudocode. The original A is A0 and the matrices Q0 and Ro are empty. 

Step j is the following loop, which starts with A1 _1 and ends at A1. The code stops 
after j reaches min( m, n). Here is column pivoting in Gram-Schmidt: 

i = argmax II A j _ 1 (:, f) II finds the largest column not yet chosen for the basis 

q1 = Aj-1 (:, i)/IIAj-1 (:, i) II normalizes that column to give the new unit vector q1 

Q1 = [ Q1_ 1 q1 ] updates Q1_ 1 with the new orthogonal unit vector q1 

r 1 = q 'J A1 _ 1 finds the row of inner products of q 1 with remaining columns of A 

R1 = [ ~; 1 ] updates R1_ 1 with the new row of inner products 

A1 = A1_1 - q1r 1 subtracts the new rank-one piece from each column to give A1 

When this loop ends, we have Q and R and A = Q R. This R is a permutation of an upper 
triangular matrix. (It will be upper triangular if the largest columns in Step 1 come first, 
so each i = j.) The actual output can be an upper triangular matrix plus a vector 
with the numbers 1, ... , n in the permutation order we need to know, to construct R. 

In practice, this Q R algorithm with pivoting is made safer by reorthonormalizing: 

% =%- Qj-1(Q'J-1 qj) 

qj = qj / llqj II (to make sure!) 

There is a similar reordering for "Q R with Householder matrices" to reduce roundoff error. 
You have seen the essential point of pivoting: good columns come first. 

Question : Both Q from Gram-Schmidt and U from the SVD contain an orthonormal basis 
for the column space C(A). Are they likely to be the same basis? 

Answer: No, they are not the same. The columns of U are eigenvectors of AAT. You 
cannot find eigenvectors (or eigenvalues) in a finite number of exact "arithmetic" steps 
for matrices of size n > 4. The equation det(A- >-.I) = 0 will be 5th degree or higher: No 
formula can exist for the roots >. of a 5th degree equation (Abel). Gram-Schmidt 
just requires inner products and square roots so Q must be different from U. 

In the past, computing a nearly accurate eigenvalue took a much larger multiple of n3 

floating-point operations than elimination or Gram-Schmidt. That is not true now. 
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Another Way to Q : Householder Reflections 

Without column exchanges, Gram-Schmidt subtracts from each vector aj its components 
in the directions q 1 to %-I that are already set. For numerical stability those subtractions 
must be done one at a time. Here is q 3 with two separate subtractions from a 3 : 

Compute aa- (aiq1 ) q 1 =a; and a;- (a;Tq2 ) q2 = A3 and qa = Aa/IIAall· 

But still the computed q3 won't be exactly orthogonal to q 1 and q2 • That is just hard. 
The good way to create an exactly orthogonal Q is to build it that way, as Householder did : 

Householder reflection matrix 
vvT 

H =I -2 llvll2 =I -2uuT. (15) 

u is the unit vector v/llvll· Then uuT = vvT /llvll 2. His symmetric and orthogonal. 

HT H =(I- 2uu T) 2 =I- 4uuT + 4u(uTu) u T =I. (16) 

Key point: Ifv =a-rand llall = llrll then Ha = r (see Problem6). To produce zeros 
in column k below the main diagonal, use this Hk with v = (alower- rlower) and 
u = v / llv II· We are creating zeros in H A. And we have a choice of signs in r : 

[ ] [ ] [ 
aupper l I aupper 

Hk[columnk] = I- 2uuT a = ±lialowerll =rk 
lower n - k zeros 

(17) 

A1 is the original matrix A. The first step produces H 1A and the next step finds H2H1A. 
By marching across the columns, the reflections H1 to Hn-l multiply to give Q. Andl, 
in opposite order, those reflections create zeros in A and produce a triangular matrix R : 

The key is to keep a record of the H1 by storing only the vectors v j = aj - r j, not the 
matrix. Then every Hj = I- 2vjvj /llvJW is exactly orthogonal. To solve Ax = b 
by least squares, you can start with the matrix [A b] as in elimination. M;ultiply by all 
the H's to reach [R QTb]. Then solve the triangular system Rx = QTb by ordinary 
back substitution. You have found the least squares solution x = R-1 QTb. 

Example 

Choose 

A=[::] has 

v=a-r= [ -~] 

a = [ : ] and r = [ ~ ] arid 

and u = ll:ll = )m [ -~ ] 

llall = llrll 
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Least Squares with a Penalty Term 

If A has dependent columns and Ax = 0 has nonzero solutions, then AT A cannot be 
invertible. This is where we need A+. A gentle approach will "regularize" least squares : 

This fourth approach to least squares is called ridge regression. We will show that x 
approaches the shortest solution x+ = A+b as the penalty disappears (8 goes to zero). 

Section III.4 describes a different penalty : Add the £1 norm A II x ll1· That has a 
beautiful result: Instead of x+ with minimum norm, the £1 norm leads to sparse solutions. 

The Pseudoinverse A+ is the Limit of (AT A + t5 2 I) -l AT 

Equation (19) creates the pseudoinverseA+ from the positive definite matrices AT A+ 82 I. 
Those are invertible matrices up to the very last minute when 8 = 0. At that moment we 
have a sudden split in A+. You see it best if A is a 1 by 1 matrix (just a single number O"): 

For 6 > 0 Now let 6-+ 0 

1 1 
The limit is zero if u = 0. The limit is - if u =I= 0. This is exactly A+ = zero or -. 

u u 
Now allow any diagonal matrix ~. This is easy because all matrices stay diagonal. 

We are seeing the 1 by 1 case at every position along the main diagonal. ~ has positive 
entries 0"1 to O"T and otherwise all zeros. The penalty makes the whole diagonal positive: 

u· 
(~T~ + 82 J)-l~T has positive diagonal entries 2 z and otherwise all zeros. 

ui +62 

Positive numbers approach ; .• Zeros stay zero. When 6 -+ 0 the limit is again :E+. 
t 

To prove that the limit is A+ for every matrix A, bring in the SVD: A = U~VT. 
Substitute this matrix A into (AT A + 82 I)- 1 AT. The orthogonal matrices u and v 
move out of the way because UT = u- 1 and VT = v- 1 : 

AT A+ 82 I = v~TuTu~vT + 82 I= v(~T~ +52 I)VT 

(AT A+ 82 n-1 AT= V(~T~ + 82 n-1vTv~TuT = v [(~T~ +52 n-1~T] uT 

Now is the moment for 8 -+ 0. The matrices V and UT stay in their places. The diagonal 
matrix in brackets approaches :E+ (this is exactly the diagona) case established above). 
The limit of (AT A + 62 I) -l AT is our pseudoinverse A+. · 
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The difficulty of computing A+ is to know if a singular value is zero or very small. 
The diagonal entry in I;+ is zero or extremely large ! I;+ and A+ are far from being 
continuous functions of I; and A. The value of A+ is to warn us when >. or u is very close 
to zero- then we often treat it as zero without knowing for sure. 

Here are small matrices and their pseudoinverses, to bring home the point that A+ does 
not follow all the rules for A - 1 . It is discontinuous at the moment when singular values 
touch zero. 

From 0 [ 02 00 ] + 
to 2 10 

but [ ~ ] + [ 1/2 0 ] 
0 210 

It is not true that (AB)+ = B+ A+. Pseudoinverses do not obey all the rules 
of inverse matrices! They do obey (AT)+= (A+)T and (ATA)+ = A+(AT)+. 

If A = [ 1 0 ] and B = [ ~ ] then ( AB) + is not equal to B+ A+ : 

AB=[1] and (AB)+=[l] but B+=[~ ~]and A+=[~] and B+A+=[~]. 

If C has full column rank and R has full row rank then (CR)+ = R+c+ is true. 

This is a surprisingly useful fact. It means that the pseudoinverse of any matrix 
can be computed without knowing its SVD (and without computing any eigenvalues). 
Here is the reasoning. The first step came in Section I.l, page 4 of the book. 

Every m by n matrix A of rank r can be factored into A = C R = ( m x r) ( r x n). ~ 

The matrix C gives a column space basis. R gives a row space basis. 

c+ = ( cT C) - 1 cT = left inverse of c and R+ = RT ( RRT) - 1 =right inverse of R. 

Then A = C R has A+ = R+ c+ computed without eigenvalues or singular values. 

The catch is that we need exact computations (no roundoff) to know the exact rank r. 
The pseudo inverse is discontinuous when the rank suddenly drops. The large number 1/ u 
suddenly becomes zero. Always o+ = 0. 

In the example above with ( AB) + =1- B+ A+, you could verify that if we put those 
matrices in reverse order then ( B A)+ = A+ B+ is true. 

The pseudoinverse is also called the Moore-Penrose inverse. In MATLAB it is pinv ('A). 
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Weighted Least Squares 

By choosing to minimize the error lib- Axll 2 , we are implicitly assuming that all the 
observations b1 , ... , bm are equally reliable. The errors in bi have mean = average value 
= 0, and the variances are equal. That assumption could be false. Some bi may have less 
noise and more accuracy. The variances o-i, ... , a-;, in those m measurements might not 
be equal. In this case we should assign greatest weight to the most reliable data (the b's 
with the smallest variance). 

The natural choice is to divide equation k by o-k. Then bkl o-k has variance 1. All 
observations are normalized to the same unit variance. Note that a- is the accepted notation 
for the square root of the variance (see Section V.l for variances and V.4 for covariances). 
Here a- is a variance and not a singular value of A. 

When the observations bk are independent, all covariances are zero. The only nonze
ros in the variance-covariance matrix C are o-i, ... a-;, on the diagonal. So our weights 
1lo-k have effectively multiplied Ax= b by the matrix c-112 . 

Multiplying by c-1 12 is still the right choice when C has nonzeros off the diagonal. 

We are "whitening" the data. The quantity to minimize is not II b - Ax 11 2 • That error 
should be weighted by c-1 

0 

Weighted least squares minimizes IIC- 112 (b- Ax)ll 2 = (b- Ax)T c-1 (b- Ax). 

Now the normal equation AT Ax= AT b for the best X includes c-1 =inverse covariances : 

Weighted normal equation AT c-1 Ax = ATc-1 b. (21) 

Example 2 Suppose x = b1 and x = b2 are independent noisy measurements of the 
number x. We multiply those equations by their weights 1lo-. 

Solve Ax= [ ~] x = [ ~~] by weighted least squares. The weights are 1 I o-1 and 1 I o-2. 

[ 1 1 ] ~ bl b2 
2+2 x=2+2· 
0'1 0'2 0'1 0'2 

Weighted normal equation (22) 

The statistically best estimate of x is a weighted average of b1 and b2 : 
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Problem Set 11.2 

1 (A new proof that N(AT A) = N(A)) Suppose AT Ax = 0. Then Ax is in the 
nullspace of AT. But always Ax is in the column space of A. Those two subspaces 
are orthogonal, so if AT Ax= 0 then Ax= 0. 

Prove the opposite statement to reach N(AT A) = N(A). 

2 Why do A and A+ have the same rank? If A is square, do A and A+ have the same 
eigenvectors? What are the eigenvalues of A+ ? 

3 From A and A+ show that A+ A is correct and (A+ A) 2 = A+ A = projection. 

4 Which matrices have A+ = A ? Why are they square ? Look at A+ A. 

5 Suppose A has independent columns (rank r = n; nullspace =zero vector). 

(a) Describe them by n matrix~ in A= U~VT. How many nonzeros in~? 

(b) Show that ~T~ is invertible by finding its inverse. 

(c) Write down then by m matrix (~T~)-l~T and identify it as~+. 

(d) Substitute A = U~VT into (AT A) -l AT and identify that matrix as A+. 

AT Ax= ATb leads to A+ = (AT A)- 1 AT, but only if A has rank n. 

6 The Householder matrix H in equation ( 17) chooses v = a - r with II a 11 2 = II r 11 2 • 10 

Check that this choice of the vector v always gives H a = r : ' 

(a-r)(a-r)T 
Verify that Ha =a- 2 ( )T( ) a reduces to r. 

a-r a-r 

7 According to Problem 6, which n by n Householder matrix H gives H a = [ llall ] ? 
zeros 

8 What multiple of a = [ ~ ] should be subtracted from b = [ ~] to make the result 
A 2 orthogonal to a? Sketch a figure to show a, b, and A 2 . 

9 Complete the Gram-Schmidt process in Problem 8 by computing q1 ~ a/ II all and 
Az = b- (aTq1)q1 and q2 = A2/IIA2II and factoring into QR: 

[1 4] = [ ] [llall 1 0 ql q2 0 

10 If A = Q R then AT A = RT R = __ triangular times __ tr\angular. 
Gram~Schmidt on A corresponds to elimination on AT A. 

11 IfQTQ=I showthatQT =Q+. If A=QRforinvertible R, showthatQQ+ =AAT. 
On the last page 155 of Part II, this will be the key to computing an SVD. 



136 Computations withLar~e Matrices .. 

This page is devoted to the simplest and most important application of least squares : 
Fitting a straight line to data. A line b = C + Dt has n = 2 parameters C and D. 
We are given m > 2 measurements bi at m different times ti. The equations Ax = b 
(unsolvable) and AT Ax= ATb (solvable) are 

The column space C(A) is a 2-dimensional plane in Rm. The vector b is in this column 
space if and only if them points (ti, bi) actually lie on a straight line. In that case only, 
Ax = b is solvable: the line is C + Dt. Always b is projected to the closest pin C(A). 

The best line (the least squares fit) passes through the points (ti, Pi)· The error 
vector e = Ax - b has components bi - Pi· And e is perpendicular to p. 

There are two important ways to draw this least squares regression problem. One way 
shows the best line b = C + Dt and the errors ei (vertical distances to the line). The second 
way is in Rm = m-dimensional space. There we see the data vector b, its projection p onto 
C(A), and the error vector e. This is a right triangle with IIPII2 + llell2 = llbll2 • 

Problems 12 to 22 use four data points b = (0, 8, 8, 20) to bring out the key ideas. 

b = (0, 8, 8, 20) 
' ' e' , error vector 

' 
)p=Ca1+Da2 

/ ~r~jection of b 

a2 = (0, 1,3,4) 

P1 e 1 
bl = 0 ....... ---1---+---+--~ 

t1 = 0 t2 = 1 t3 = 3 t4 = 4 

Figure II.3: The closest line C + Dt in the t- .b plane matches Ca1 + Da2 in R4 • 

12 With b = 0, 8, 8, 20 at t = 0, 1, 3, 4, set up and solve the normal equations 
AT Ax = AT b. For the best straight line in Figure II.3a, find its four heights Pi 
and four errors ei. What is the minimum squared errorE= e~ + e~ + e~ + e~? 
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13 (Line C + Dt does go through p's) With b = 0, 8, 8, 20 at times t = 0, 1, 3, 4, 
write down the four equations Ax = b (unsolvable). Change the measurements to 
p = 1, 5, 13, 17 and find an exact solution to Ax = p. 

14 Check that e = b- p = (-1,3, -5,3) is perpendicular to both columns of the 
same matrix A. What is the shortest distance II ell from b to the column space of A? 

15 (By calculus) Write down E = I lAx - bll 2 as a sum of four squares-the last one 
is (C + 4D- 20)2• Find the derivative equations 8Ej8C = 0 and 8Ej8D = 0. 
Divide by 2 to obtain the normal equations AT Ax= AT b. 

16 Find the height C of the best horizontal line to fit b = (0, 8, 8, 20). An exact fit 
would solve the unsolvable equations C = 0, C = 8, C = 8, C = 20. Find the 
4 by 1 matrix A in these equations and solve AT Ax = AT b. Draw the horizontal 
line at height x = C and the four errors in e. 

17 Project b = (0, 8, 8, 20) onto the line through a= (1, 1, 1, 1). Find x = aTbjaTa 
and the projection p = xa. Check that e = b - p is perpendicular to a, and find the 
shortest distance II ell from b to the line through a. 

18 Find the closest line b = Dt, through the origin, to the same four points. An exact 
fit would solve D · 0 = 0, D · 1 = 8, D · 3 = 8, D · 4 = 20. Find the 4 by 1 
matrix and solve AT Ax= AT b. Redraw Figure IL3a showing the best line b = Dt. 

19 Project b = (0, 8, 8, 20) onto the line through a = (0, 1, 3, 4). Find x = D and 
p = xa. The best~C)n Problem 16 and the best Din Problem 18 do not,. 
agree with the best (C, D) in Problems 11-14. That is because the two columns' 
(1, 1, 1, 1) and (0, 1,3,4) are __ perpendicular. 

20 For the closest parabola b = C + Dt + Et2 to the same four points, write down the 
unsolvable equations Ax = bin three unknowns x = (C, D, E). Set up the three 
normal equations AT Ax = AT b (solution not required). In Figure 11.3a you are now 
fitting a parabola to 4 points-what is happening in Figure 11.3b? 

21 For the closest cubic b = C + Dt + Et2 + Ft3 to the same four points, write down 
the four equations Ax = b. Solve them by elimination. In Figure II.3a this cubic 
now goes exactly through the points. What are p and e? 

22 The averages of the ti and bi are t = 2 and b = 9. Verify that C + Dt =b. Expfain ! 

(a) Verify that the best line goes through the center point (t, b) = (2, 9). 

(b) Explain why C + Dt = b comes from the first equation in AT Ax = AT b. 
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11.3 Three Bases for the Column Space 

This section touches on serious computational questions. The matrices get large. Their rank 
is also large if there is random noise. But the effective rank, when the noise is removed, 
may be considerably smaller than m and n. Modern linear algebra has developed fast 
algorithms to solve Ax = b and Ax = >.x and Av = au for large matrices. 

Mostly we will leave special algorithms to the professionals. Numerical linear algebra 
has developed quickly and well-we are safe with the experts. But you and I can recognize 
some basic rules of common computational sense, including these two : 

1. Don't use AT A and AAT when you can operate directly on A. 

2. Don't assume that the original order of the rows and columns is necessarily best. 

The first warning would apply to least squares and the SVD (and computational statistics). 
By forming AT A we are squaring the condition number atfan. This measures the 
sensitivity and vulnerability of A. And for really large matrices the cost of computing 
and storing AT A is just unthinkable. It is true that the stiffness matrix of mechanics and 
the conductance matrix of electronics and the graph Laplacian matrix for networks have 
the form AT A or ATCA (with physical constants in C). But for data matrices we want 
"square root algorithms" that work directly with the basic matrix A. 

What do we really need from A ? Often the answer goes to the heart of pure and applied 
algebra: We need a good basis for the column space. From that starting point we can do 
anything ! For Ax = b, we can find a combination of basic columns that comes near b. 
For Av = au, we can compute accurate singular vectors. 

Again, what we cannot do is to accept the first r independent columns of A as automat
ically a good basis for computations in the column space C(A). 

Three Good Bases 

Let me reveal immediately the three bases that we propose to study. You may be tempted 
to put them in the order gold, silver, bronze. 

In part those three prizes represent the guaranteed quality of the three bases. But 
they also suggest that the SVD has highest cost. All three are winners in the construction 
of a basis for the column space. 

1. Singular vectors ul> ... , Ur from the SVD, with a 1 ~ a 2 ~ ... ~ CTr. 

2. Orthonormal vectors q 1 , ... , qr from Gram-Schmidt. Use column pivoting! 

3. Independent columns c1, ... , Cr taken directly from A after column exchanges. 

Each choice of basis for C(A) gives the column matrix in a "rank-revealing factorization" 

A = column matrix times row matrix: ( m by n) equals ( m by r) ( r by n). 
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1. The factors of A in the reduced SVD are Ur times :Er VrT 

2. The factors of A in Gram-Schmidt are Qrnxr times Rrxn 

3. The factors of A in pivoted elimination are Crnxr times Zrxn 

Let me comment right away on the properties of these three important factorizations 

1. The column basis u 1 , ... , Ur in U is orthonormal. It has the extra property that also 
the rows akvi ofthe second factor Er V7 are orthogonal. 

2. The column basis q 1 , .•. , qr in Q is orthonormal. The rows of the second factor R 
are not orthogonal but they are well-conditioned (safely independent). 

3. The column basis c1 , ... , Cr in C is not orthogonal. But both C and the second 
factor Z can be well conditioned. This is achieved by allowing column exchanges. 
(Not just allowing but insisting.) C contains r "good columns" from A. 

The third factorization A = C Z can be called an Interpolative Decomposition 
(ID rather than SVD or QR). Since this is the new idea for this section, I will focus now 
on its properties. Notes and articles by Gunnar Martinsson and distinguished coauthors 
are the basis for this exposition of ID. 

The columns of C come directly from A, but the rows of Z do not. That is asking 
too much. Later we will have C M R with columns of A in C and rows of A in R
and an invertible mixing matrix M to make the product close to A. 

Interpolative Decomposition = Column I Row Factorization 

Here are four important advantages of CZ compared to QR and UEVT. Remember that 
the columns of C are actual columns of A-thoughtfully chosen. That gives serious 
advantages to A = C Z. 

• A= C Z takes less computing time and less storage than A= UEVT and A= Q R. 

• When A is sparse or nonnegative or both, so is C. C comes directly from A. 

• When A comes from discretizing a differential or integral equation, the columns in 
C have more meaning than the orthonormal bases in U and Q. 

• When A is a matrix of data, the columns kept in C have simple interpretations. 

Those last three points can make a major difference in our understanding of the output, 
after the computations are complete. This has been a criticism of the SVD: the singular 
vectors are algebraically and geometrically perfect but they are "humanly" hard to. know. 

When tfie numbers in A are intrinsically positive, the goal may be a Nonnegative 
Matrix Factorization (NMF). Then both factors in A ~ M N have entries ::=: 0. This is 
important for moderate sizes but it is asking a lot in the world of big data. 

A = C Z is right for large matrices when Z has small entries (say lzij I ::; 2). 
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Factoring A into C Z 

When C contains a basis for the column space of A, the factor Z is completely determined. 
Every column of A is a unique combination of those basic columns in C : 

(columnj of A)= (matrix C) (column vector Zj)· (1) 

This is exactly the statement A = CZ, column by column. This idea was in Section 1.1 
(with R instead of Z). It gave a neat proof of row rank= column rank. But the columns for 
that C were possibly not very independent. This section will soon become serious about 
choosing C quickly and well (but not yet). 

First we can take a step beyond A = C Z, by looking at the row space of C. Somewhere 
C has r independent rows. If we put those rows y'[, .. . , y'[ into an r by r matrix B, then 
B is invertible. Every row of C is a unique combination of those basic rows in B : 

(row i of C) = (row vector y[) (invertible matrix B). (2) 

This is exactly the statement C = Y B, row by row. Combine it with A CZ: 

I Arnxn = Crnxr Zrxn = Yrnxr Brxr Zrxn (3) 

All those matrices have rank r. 
Now use the fact that the columns of C came directly from A and the rows of B 

came directly from C. For those columns and rows, the vectors Zj in (1) and y[ in (2) 
came from the identity matrix Ir! If you allow me to suppose that Zj and y[ are the 
first r columns and rows in A and C, then A = Y B Z has a special form: 

B = submatrix of A Z = [ Ir B- 1 Zn-r ] (4) 

We are just supposing that the upper left r by r corner B of A is invertible. Every matrix 
A of rank r has an invertible r by r submatrix B somewhere ! (Maybe many such B's.) 
When B is in that upper left corner, elimination finds Y and Z. 

Example 1 This 3 by 4 matrix of rank 2 begins with an invertible 2 by 2 matrix B : 

[ 
1 2 

A= 0 1 
1 3 

2][1000] 
1 0 1 2 1 = YBZ (5) 

(3 X 2)(2 X 2)(2 X 4) 
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Please understand. If Cm-r or Zn-r or both happen to contain large numbers, the 
factors in (5) are a bad choice. We are happiest if those other entries of Y and Z are small. 
The best is IYii I :S 1 and lzij I :S 1. And we can find a submatrix B that makes this true! 

Choose B as the r by r submatrix of A with the largest determinant. 

Then all entries of Y and Z have I Yij I ::; 1 and I Zij I ::; 1. 

Proof. Those Yij and Zij are the numbers in Cm-rB- 1 and in s-1 Zn-r· We start with 
the Zij· Since B(B-1 Zn-r) = Zn-r. we know that every column Zj of s-1 Zn-r solves 
this system of linear equations : 

Bzj = columnj of Zn-r· 

By Cramer's Rule, the numbers Zij in the solution z 3 are ratios of determinants: 

det(B with its ith column replaced by that column j) 
Zi· = 

1 determinant of B 

Remember that B is the r by r submatrix of A with largest determinant. The matrix in 
the numerator is one of the many submatrices that we did not choose. Its determinant is 
smaller than det B. So lzii I s; 1. 

Similarly the rows of Y come from Cm-rB-1 . Since ( Cm-rB-1 )B = Cm-ro 
those rows solve the linear equations y[ B =row i of Cm-r· When we transpose and use 
Cramer's Rule, the components Yii of Yt are again ratios of determinants. And det B 
is again the denominator! Since det B is as large as possible, we have IYii I s; 1. 

We admit to one big problem. We said that "we can find B so that IYii I s; 1 and-~ 
lziil s; 1." This is not true. In reality, we can't find the submatrix B with maximum 
determinant. Not without a quantum computer (which doesn't yet exist). B is somewhere 
inside A, but we have no idea which sub matrix it is. 

The amazing thing is that by randomization we can identify a good sub matrix B. 
Then there is a very high probability (not a certainty) that all IYii I s; 2 and lzij I s; 2. 
So the next section will complete this presentation of Interpolative Decomposition (when 
columns or rows come directly from A). The selection of columns or rows will be random 
with carefully chosen probabilities. 

Example 2 The matrix in Example 1 has this Bmax with maximum dete~:minant = 2. 
Then IYii I s; 1 and lzij I s; 1: 

[ 
1 2 

A= 0 1 
1 3 

4 2] [1 0][1 4][1 2 1 = 0 1 0 2 0 
6 3 1 1 

0 
-.5 

0 
1 (6) 
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C M R Factorization : Selecting C and R 

Now we describe a recommended choice of columns and rows of A to go directly into C 
and R. A mixing matrix M is always needed to achieve A ~ C MR. This can be an 
equality A = C M R if A actually has low rank. For large matrices that are approximately 
low rank (this is what we assume) we can start with approximate singular vectors in A ~ 
UEVT. We will use U and V to achieve a rank r factorization C M R that is close to A. 

Our guide is D. C. Sorensen and M. Embree, A DEIM induced CUR factorization, 
arXiv: 1407.5516v2, 18 Sep 2015; SIAM J. Scientific Computing 38 (2016) 1454-1482. 

The Discrete Empirical Interpolation Method chooses C and R. We write Min place of U. 
It seems a little strange that C M R (which uses columns and rows directly from A) 

begins with UEVT (which finds orthonormal combinations of those columns and rows). 
And the approximate computation of UEVT often begins with QR, to get one orthogonal 
matrix Q in a fast way. So the bases C, U, Q for the column space of A (approximate !) 
are all linked by fast algorithms. 

The accuracy of the final approximation is controlled by the next singular value cr r+ 1 in . 
A = UEVT -and the r columns of U and V corresponding to our choices for C and R : 

(r,n X r)(r X r)(r X r,n) 

Selection of Columns from A to Enter C 

Start with the r columns of Umxr (the approximate left singular vectors of A). Suppose 
s columns of Emxr come directly from Imxr· If ETU is an invertible matrix, then 

1 P = U(ETu)- 1 ET has P 2 = P =projection matrix 

2 Px equals x in those s chosen positions, so P is an interpolatory projection 

The crucial property is 2 (see Sorensen and Embree for all proofs). For s = 1, the DEIM 
algorithm chooses the largest entry in the first singular vector u 1 • That leads to P 1 • The 
next choice (leading to P2) is decided by the largest entry in u 2 - P 1 u 2. Every later Pj 

is decided by the largest entry in Uj - Pj-lUj. This corresponds to maximizing 
each pivot in ordinary elimination. A simple pseudocode is in [Sorensen-Embree]. 

The rows of A to enter R are selected in the same way. A big advantage comes from 
this sequential processing, compared to norm-squared sampling based on all the row norms 
of u and v. The next step is to estimate the error in interpolatory projection : 

and 

In practice, those constants rye and 'TJR are modest (of order less than 100). Again this is 
similar to partial pivoting : fast growth is possible in theory but never seen in practice. 
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The Mixing Matrix M 

The final decision is the mixing matrix in A ~ C MR. Without that matrix M, the product 
C R is normally not close to A. The natural choice for M is 

On the last page of Section 1.1, this is the choice that produced equality in A = C MR. 
On that page the rank of A was exactly r (we were innocent then). Now r is only the 
approximate rank of a large matrix A. 

For the randomized algorithms of the next section II.4 (where A is too large for the 
DEIM algorithm) you will see that Halko-Martinsson-Tropp and Mahoney-Drineas also 
made this choice. The early analysis of Stewart (Numerische Math. 83 (1999) 313-323) 
pointed the way to the error estimate in (8). 

Starting from A = Q R with Column Pivoting 

The Q R factorization is a favorite starting point for numerical linear algebra with large 
matrices. At reasonable cost, it produces an orthonormal basis in Q for the column space 
of A. From Q we can go quickly and accurately to the other two fundamental bases : 

Columns of C (coming directly from A : Interpolatory Decomposition A = C M R) 

Columns of U (orthonormal vectors: Singular Value Decomposition A= U"EVT) 

Please understand that good choices for C and U will depend on a good choice for Q. ,, 
Since that matrix is orthogonal (thus perfectly conditioned) it is the other factor R that '1 

decides the quality of A= QR. 
The ordinary Gram-Schmidt process in Section II.2 kept the columns of A in their 

original order. Pivoted Q R chooses the largest remaining column at the start of each new 
step (column pivoting). This produces a permutation II so that the first k columns of AIT 
(and Q) are the important columns: 

All = QR = Qmxm [ ~ ~ ] with triangular Akxk (10) 

A "strong rank-revealing factorization" has this form with extra conditions on the blocks: 
ai(A) is not small, aj(C) is not large, A- 1 B is not large. Those propertie~ are valuable 
in finding a basis for the (computational) nullspace of A. Allow us to assume that these 
properties hold, and go forward to use the first k columns of Q in the C M R 
and UEVT factorizations of A. 
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Low Rank Approximation by a Partial Q R 

The previous pages assumed that the rank r of the matrix A is relatively small. Often this 
assumption is false but effectively true. We mean that 

A = (matrix Ar of low rank r) + (matrix E of small norm). 

We want to find and compute with the low rank matrix Ar. We can estimate the error in Ar 
that comes from ignoring the matrix E (large matrix, small norm). 

Martinsson proposes that the low rank approximation Ar can be computed using Q R. 
The first r steps of that algorithm (with column pivoting) produce QrRr : 

A= QrRr + E = (r columns qj)(r rows rj)+(n-r columns orthogonal to those qj)· 

IIAn-r II is small ! Since this algorithm includes column exchanges, those columns in 
An-r might not be the last n - r columns of A. But an n by n column permutation P will 
move those columns to the back of AP. The r important columns are QrRr at the front: 

QrRrPT is the good rank r approximation to A. Fortunately the QR algorithm with 
pivoting computes the column norms, so we know when IIAn-riiF is below our preset 
bound E. Then we stop. 

This is an effective algorithm. But it surrendered on the goal of choosing columns 
directly from A. It succeeded on the goal of orthonormal columns (in Q). 

We come back to low rank approximation in IL4 and in Part III of this book. 

An Approximate SVD from the Partial Q R 

To complete the circle we aim now for a good approximation to the SVD. This comes from 
the close approximation in equation ( 11) to A = Q R. The error matrix E has II E II F < €. 

Small error E 
(A) _ (Qr) 

mxn mxr 
(R,. pT) + (E) 
rxn mxn 

{12) 

Two quick steps are enough to produce an SVD very close to A, with the same error E : 

First, find the SVD of the matrix RrPT with only r rows: R,.PT = Ur:EVT . 
Second, multiply Qr times Ur to find U = QrUr = orthogonal times orthogonal: 

Approximate SVD 
with errorE 

So a small SVD and a large QR give a large (approximate) SVD. 

(13) 
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Problem Set 11.3 

1 The usual measure of dangerfromroundofferroris the condition number IIAIIIIA-1 jj. 
Show why that number is squared if we work with AT A instead of A. 

2 Write down a 2 by 2 matrix A with condition number> 1000. What is A - 1 ? Why 
does A - 1 also have condition number > 1000 ? 

3 The reason that !IA!I and IIA- 1 11 both appear is that we work with relative error. 
If Ax = b and A( x + D.x) = b + D.b then A D.x = D. b. Show that 

4 Why does >-max/ Amin equal the condition number for positive definite A? 

5 Important What is the condition number of an orthogonal matrix Q ? 

6 Suppose the columns of C contains an orthonormal basis for the column space of A 
and the rows of R contains an orthonormal basis for the row space. Will those bases 
contain the singular vectors v and u in the SVD ? 

7 If C and R contain bases for the column space and row space of A, why does 
A = C M R for some square invertible matrix M ? 

8 Here is a matrix whose numerical rank is 2. The number E = machine epsilon 
is 2-16. What orthonormal vectors q1 and q2 will give a good basis for the column". 
space-a basis that pivoted Q R will probably choose? 

1 1 l 1 + E 0 
1 0 

9 Approximate that matrix A as QRPT +(order E) for a permutation matrix P. 

10 Which 2 by 2 submatrix Bmax of A (rank 2) has the largest determinant? 

Factor A = Y BmaxZ as in equation (6). 



146 Computations with Large Matrices 

11.4 Randomized Linear Algebra 

This section on randomization will be incomplete. The first reason is that it is not 
written by an expert. This book cannot be a detailed guide to computing the SVD or Q R. 
Yet it still seems possible-and very worthwhile-to report on key ideas and algorithms 
that have made those computations possible for large matrices. 

Among those ideas are important new approaches that begin with random vectors x. 
Then the products Ax are random samples from the column space of A. With r 
of those vectors (orr + 10 to be on the safe side, protecting against random accidents) 
we have a potentially thin matrix to compute. The speedup is impressive. (This is also 
the starting point in Section III.5 for "compressed sensing" that speeds up acquisition and 
processing of digital signals.) 

This section will introduce and describe the basic steps of randomized computations. 
That idea has brought a revolution in numerical linear algebra for big matrices. 

The first example is matrix multiplication. If A and B are m by n and n by p, then 
C = AB normally needs mnp individual multiplications : n multiplications for each of 
the mp inner products in AB, or mp multiplications for each of the n outer products 
(columns times rows). Multiplying very large matrices is expensive. 

Suppose we just sample A and B instead of using the complete matrices. A few 
entries aii and bik don't tell us much. Buts columns ak from A and s corresponding rows 
bf from B will give us s rank one matrices akbf, If those are "typical" outer products, 
we can multiply their sum by n/ s-to estimate the true AB = sum of n products. 
Notice that this uses column-row products (highly recommended) and not row-column 
inner products (low level). 

There is more to this idea. Random sampling uses some basic statistics. Large products 
akbf obviously make greater contributions to C = AB. We can and will increase the 
chances of those larger samples by changing from uniform probability to "norm-squared 
sampling". We have to compensate in our formulas, which aim to have the correct 
expected value and the lowest variance. You will see the value of statistical ideas ! 

Our presentation will mostly follow Michael Mahoney's lecture notes for his course 
at UC Berkeley. They are well organized and well written-a generous and important 
contribution. The 2013 course notes were posted in 2016 and they begin with this 
quick overview of random matrix multiplication : 

A sampling matrix S will act on the columns of A and rows of B to produce C and R : 

C = AS and R = ST B and C R = AS ST B ~ AB. (1) 

We multiply C and R instead ofthe full and correct matrices A and B. It will not be true 
that ssT is close to I. But it will be true that the expected value of ssT is I. There you 
see the key to randomization. 
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1 Column-row sampling Each column of S has one nonzero entry (call it sk). 
Then AS picks out individual columns ak directly from A, and sT B picks out the 
corresponding rows bE of B. Multiplying AS times sT B gives a sum of column
row products akb'f weighted by the numbers s~. 

One product s~akbE comes from one column of AS and one row of ST B : 

Altogether AB is approximated by the weighted sum C R = I: s~akbE of a random 
selection of s rank -one matrices. The selection is random, but we choose the weights. 

2 Sampling by random projections S The matrix S is still thin, so AS has many 
fewer columns than A. The columns of S now contain multiple nonzeros, so AS 
mixes columns as it projects C(A) into lower dimensions. Then ASST B is a 
more uniform approximation to AB. 

We start with random sampling. Later we describe random projections. Those can produce 
fast and useful preconditioners for the original matrix AB-and they may reduce the 
computational cost of graph clustering. 

Practice with Computing Mean and Variance 

Here is a greatly simplified sampling problem. Instead of a matrix, we start with a vector~ 
v = (a, b). We will sample it twice (2 independent trials). Then we compute the mean m ' 
and the variance o-2 • Section V.l will describe many more examples of m and o-2 . 

First sample: With probabilities~ and~. choose (a, 0) or (0, b) 
Second sample: Repeat exactly. Then add the two samples to get (x1 , x2) 

Computing the mean m = E[ ( x1 , x2 )] = expected value = average output ( x 1 , x 2 ) 

First way: The average value of sample 1 is ~ (a, 0) + ~ (0, b) = ~ (a, b) 
We have two independent identical trials (two samples). Add their means: 

1 1 
Overall mean m = E[(x1, x 2 )] = -(a, b)+ -(a, b) =(a, b) 

2 2 ' 

Our two-sample experiment was unbiased. The desired mean was achieved. 
Second way : The experiment had the following 4 outcomes each with probability :! 
(a, O)+(a, 0) = (2a, 0) (a, 0)+(0, b) =(a, b) = (0, b)+(a, 0) (0, b)+(O, b) = (0, 2b) 

The mean is the sum of all four outputs weighted by their probabilities (all ~) : 
1 1 1 1 . 

Overall mean m = 4(2a, 0) + 4(a, b)+ 4(a, b)+ 4(0, 2b) =(a, b) as before 
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The variance o-2 = weighted average of the squared distances from outputs to mean. 
We will use two equivalent ways to compute a 2 = E [(x-mean)F = E [x2]- (mean)2 . 

First way to find variance : Add all (outputs - mean)2 weighted by their probabilities t 

~[(2a,o)-(a,b)f +~[(a,b)-(a,b)f +~[(a,b)-(a,b)f +~[(o,2b)-(a,b)f = 

1 1 1 1 1 
4(a2,b2) + 4(0,0) + 4(0,0) + 4(a2,b2) = 2(a2,b2) 

Second way: Add all (outputs)2 weighted by their probabilities and subtract (mean)2 

(3) 

Observation : If b is larger than a, we could keep the correct mean (a, b) and reduce the 
variance a 2 by giving greater probability to choosing the larger samples (0, b). 
Matrix sampling will do this (see Problem 7 at the end of this Section II.4). 

This page used s = 2 trials for n = 2 numbers a, b. Not useful, no time was saved. The 
next pages use s < < n trials for a matrix with n columns. The mean of AB stays correct. 

Random Matrix Multiplication with the Correct Mean AB 

Then by s sampling matrix S will contain s columns. Each column of S has one nonzero. 
For column j of S, the position of that nonzero is random! If the random choice is 
row k = k(j), the nonzero in row k, column j of S is Bkj. The sampled matrix is AS: 

Columns 1 to sofAS are numbers Ski tinies columns k(l) to k(s) of A. 

Here is an example with s = 2 trials. It samples columns k(1) = 1 and k(2) = 3 from A: 

The key question is: How do we choose those numbers Skj ? The answer is: They 
come from probabilities ! We intend to do random sampling. So we must choose those 
s columns of A in a random way (allowing all columns a chance) in random multiplication: 

Assign probabilities Pi to all of then columns of A, with Pl- + · · · + Pn = 1 

Chooses columns with replacement (so columns can be chosen more than once) 

If column k of A is chosen (with row k of B), multiply both of those by 1/ y'i:iPk 

Then (column k of A) (row k of B)/ spk goes into our random product AB. 
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Conclusion to be verified:· The expected value of the n by n matrix SsT is I 

Same conclusion in other words : The expected value of AS ST B is AB 

Thus random sampling computes the matrix product with the correct mean AB 

Proof There are 8 identical trials. Each trial chooses a column-row pair of A and B with 
probabilities p1 to Pn (column from A times row from B divided by JSPj 2 = 8Pi). 
Then the expected value = mean = average outcome from each trial is 

(column 1 of A) (row 1 of B) (column n of A) (row n of B) (4) 
Pl + · · · + Pn · 

8P1 8Pn 

The p's cancel. This is exactly AB / s. And since there are 8 trials, the expected value 
for the randomized multiplication (AS)(ST B) is AB. 

Conclusion All well so far-but we have to choose the probabilities Pl to Pn· 
Any choice (adding to 1) gives the correct expected value AB (the mean). But the choice 
of the p's can strongly affect the variance! 

Uniform sampling would choose equal probabilities p = 1/n. This is reasonable if 
the columns of A (and also the rows of B) have similar lengths. But suppose that 
(column 1 of A) (row 1 of B) makes up most of AB-it dominates the other column-row 
outer products. Then we don't want to randomly miss it. 

Our approach here is to use unequal probabilities Pi. We now state and compute the 
best p's. And we mention an entirely different option: Introduce a mixing matrix M 
and work with AM and M-1 B. Then use equal probabilities Pi for the randomly mixed ,, 
columns of A and rows of B. '' 

Norm-squared Sampling Minimizes the Variance 

Norm-squared sampling chooses the probabilities Pi proportional to the numbers 
!!column j of Allllrow j of Ell- In the important case B = AT, the Pi are proportional 
to !!column j of All 2 • The name "norm-squared" or "length-squared" is then natural. 
We still have to scale all the probabilities Pi by a suitable constant C so they add to 1 : 

1 llaillllb~ll n ' Pi= C llcolumnj of Allllrow j of Bll= C 3 with C=L:i=lllaillllb]ll- (5) 

Now we will painstakingly compute the variance for randomized matrix multiplication 
using any probabilities Pi-and we will verify that the choice of p's in equation (5) 
minimizes the variance. Best to choose large columns and rows more often. The line 
after equation (4) showed that all choices give the correct mean E [ASST B] = AB. 
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Each of the s trials produces a matrix Xi = aibJ I spi with probability Pi· Its i, k 
entry is (Xi )ik = aiibikl BPi· In each trial we compute the mean: the Pi cancel. 

Mean 

The variance for one trial is by definition E[X2 ] - (E[X])2 . Adding the results for 
s independent trials multiplies the one-trial mean and also the one-trial variance by s. The 
mean becomes AB as we know. The variance will be computed in the Frobenius norm 
(sum of squares of matrix entries). Compare the correct AB with the random C R: 

Variance E [iiAB- CRII~] = L tP1 a~i b}k - ~ IIABII~ 
i,k i=1 spi 8 

n llaill 2 llbTII 2 1 2 
(sum first over i and k) = L 3 - -II AB II F 

i=1 BPi 8 

(6) 

Finally we choose probabilities P1, ... , Pn to minimize this variance. Equation (5) reveals 

the minimizing choice, proved below. For that choice Pi = llaillllbJIIIC from (5), 

the terms llaiW llbJWIPi in equation (6) become CllaillllbJII· Their sum is C2 . 

The smallest variance (using those optimal Pi) is our final result: 

Here is the proof that (5) gives the probabilities Pi that minimize the variance in (6). 
Multiply the constraint P1 + · · · + Pn = 1 by a Lagrange multiplier A. Add it to the 
function in (6). This is the key to Lagrange multipliers: 

n llaill 2 llbJW 1 2 ( n ) 
L(p1, · · · ,pn, A)= L 8 . - -;IIABIIF +A LPj- 1 

1=1 PJ 1 

Take the partial derivatives f) L I apj to find the minimizing Pi (the optimal probabilities) : 

(8) 

This says that pi = llai llllbJIII-v's>.". Choose the Lagrange multiplied so that l":Pi = 1. 

n n llaillllbTII . llailll1bTII . . LPi = L .JS);"J = 1 g1ves v'8X = C and pi= C 3 as pred1cted m (5). 
1 1 SA 

Norm-squared sampling uses the optimal probabilities p1 for minimum variance. 
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For very large matrices, stored outside of Random Access Memory (RAM), norm-squared 
sampling may ask to read the matrix twice. The first pass computes the squared length 
of each column of A and row of B. Then (inside RAM) the probabilities Pi are found, 
and s columns and rows are chosen for sampling. The second pass puts the sampling 
approximation C R into fast memory. 

Applications of Randomized Matrix Multiplication 

Norm-squared sampling = length-squared sampling can help to solve these central 
problems of numerical linear algebra: 

1 Interpolative approximation A ~ C M R : C and R use columns and rows of A 

2 Approximation of A by a low rank matrix 

3 Approximation ofthe SVD of A 

C 1'11 R aims to produce an accurate "sketch" of A from k of its columns and its rows. 
The columns will go into C and the rows will go into R. Then a mixing matrix 1\1 connects 
C with R to produce CM R ~A. The dimensions are (m x k) (k x k) (k x n) = (m x n). 
If A is sparse then C and R will be sparse, because they come directly from A. 

Notice the fast multiplication ( C ( M ( Rv))). We never explicitly multiply C MR. 

Understand first that A ~ CR is probably not true. The column space of A will be 
accurately captured by C (we hope). The row space of A will be captured by R. 
"The spaces are right but not the matrix." Every matrix of the form CM R has the same 
good column and row spaces (for invertible M). We want to choose M so that CM R is 0, 

close to A. We still avoid the notation CUR and reserve the letter U for the SVD. 

To start, I will look for the mixing matrix M that is theoretically best. Good choices 
of M have been developed and tested in the sampling literature. Here are six important 
references to randomized linear algebra: 

N. Halko, P. -G. Martinsson, and J. A. Tropp, Finding structure with randomness: proba
bilistic algorithms for constructing approximate matrix decompositions. SIAM Review 53 
(2011) 217-288. 
R. Kannan and S. Vempala, Randomized algorithms in numerical linear algebra, Acta 
Numerica 26 (2017) 95-135. 
E. Liberty, F. Woolfe, P. -G. Martinsson, V. Rokhlin, M. Tygert, Randomized algorithms 
for the low-rank approximation of matrices, PNAS 104 (2007) no. 51, 20167-20172. 
M. W. Mahoney, Lecture Notes on Randomized Linear Algebra. arXiv :1608.04481. 
P.-G. Martinsson, Compressing rank-structured matrices via randomized sampling, 
arXiv :1503.07152. 
D. P. Woodruff, Sketching as a tool for numerical linear algebra. Foundations and Trends 
in Theoretical Computer Science 10 (2014) 1-157. 
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Best M in A ~ C M R: Frobenius Norm and L 2 Norm 

We are given A, C, R. Suppose Qc contains an orthonormal basis for the column space 
of C. Then QcQ'[; is the projection matrix onto that subspace. Similarly QR contains 
an orthonormal basis for C(RT) and QRQ'];_ is the projection matrix onto that row space. 
Q~ contains an orthonormal basis for the nullspace N(R), and Q~ for N(CT). 

By definition, the projection of A into row/column spaces is A = Q'f:AQ R· The 
purpose of these projections is to separate the subspaces where we choose M from 
the subspaces that we cannot change. Yuji Nakatsukasa clarified and solved this problem 
(conversations in Oxford). In the Frobenius norm, that solution is especially neat. 

The orthogonal matrices [ Qc Q~ ] and [ QR Q~ ] won't change the Frobenius and 
L 2 norms of A- CMR. But they help us to see the optimal M to minimize this error. 

Should we choose M so that A = C M fi? In the Frobenius norm, this is optimal ! 

Frobenius deals separately with every entry in each block of these matrices. The error 
is smallest when the top comer is exactly right: C M R = A. This corner is the (only) 
problem that we control. We have found the same M as in sections Il.3 and 1.1. 

Frobenius norm (10) 

In the L 2 matrix norm, we might expect the same plan to succeed. But a zero block in the 
corner may not give the smallest L 2 norm ! 

Example (11) 

On the left, the columns are orthogonal with length J2. Both singular values have a 2 = 2. 
On the right, the larger singular value has a? = ~(3 + J5) > 2. The zero submatrix 
produced a larger £ 2 norm for the whole matrix. 

The optimal submatrix is a beautiful problep so~ed bi' Davis, Kahan, and Weinberger 
in 1982. The optimal M often does not make C M R = A. But it reduces the L 2 norm to 
the larger of II [Y ZJII and II [XT zTJII- a smaller L 2 norm is clearly impossible in (10). 

In the example the smallest L 2 norm was achieved by that submatrix -1 (not zero). 

Randomized Matrix Factorizations 
Now we come to a summary of our subject. Orthogonal matrices are the goal in A = QR 
and A = U~VT. The matrix A is too large for exact factorizations-maybe too large to 
read every entry aij. If we start from an ( m x k) ( k x n) approximation A ~ C B, then 
Halko-Martinsson-Tropp find the QR and_U~VT factorizations quickly and accurately. 
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Here are fast decompositions starting from a randomized A ~ C B. 

(A~ QR) FactorC into Q1R1. Factor RtB intoQ2R2. Then A~ (Q1Q2)R2. 

(A ~ U:EVT) From C = Q1R1 factor RtB into U2~VT. Choose U = Q1U2. 

Projections J and Projection Matrices P 

A "projection" of m-dimensional space Rm to k-dimensional space Rk is a k by m matrix. 
In case that matrix J has full row rank k, then k ~ m and the projections fill all of Rk. 

A specially nice case is when the k rows of J are orthonormal. This means that 
J JT = I. Then the rank is certainly k and the column space C( J) is all of Rk. 

Notice that a projection J is different from a projection matrix P. P is square 
(m by m). Its rank is k < m (except when P = 1). Its column space is a k-dimensional 
subspace of Rm (quite different from the vector space Rk). And the key property of the 
projection matrix is P 2 = P. If we project perpendicularly onto the column space, 
the projection Pb is closest tobin the usual norm lib- Pbll- Then Pis also symmetric. 

J and P have one nice connection. In case J has orthonormal rows, then JT J 
is a symmetric projection matrix P. You see that P 2 = JT(JJT)J = JTJJ = P. 

Example 1 Projection J = [ cos(} sin(} ] with J JT = [cos2 (} + sin2 (}] = [1] 

• • • T [ cos2 (} cos (} sin (} ] 2 ProJeCtiOn matnx P = J J = n . (} . 2 (} = P 
COSuSln Slll 

'i 

A symmetric P projects orthogonally onto its column space. Here that is C(JT). ' 

Random Projections 

Suppose the entries of a k by m projection J are independent random variables. In the 
simplest case they are drawn from a normal distribution (a Gaussian) with mean m = 0 
and variance u2 = 1/ k. We will show that the expected value of P = JT J is the 
identity matrix. In other words, the expected length of the projection v = J u equals 
the length of u. 

1. The ( i, i) entry on the diagonal of JT J is the sum J{i + · · · + Jti. Those squares 
are independent samples, each with mean 1/k. (With zero mean for each entry of J, 
the expected value of the square is the variance u2 = 1/k.) Then the mean (the 
expected value) of the sum of k terms is k(l/k) = 1. 

2. The (i,j) entry off the diagonal of JT J is the sum J1J 1j + · · · + JkiJkj· Each of 
those terms is the product of two independent variables with mean zero. So the mean 
of eaCh term is zero, and the mean of their sum ( JT J)ij is also zero. 

Thus E [ JT J] = I = identity matrix of size m. 
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Using columns times rows, each matrix (row i of J) T (row i of J) has expectation I/ k. 
The sum has expectation I. Please notice what that means. 

"In expectation" the m columns of J are orthonormal. 
Therefore in expectation J x has the same length as x : 

(12) 

This random projection shows why linear algebra and probability sometimes seem to be 
different worlds within mathematics. In linear algebra, a k by m matrix J with k < m 
could not have rank m. Then JT J could not have rank m. But now take expected 
values! E[ J] can be the zero matrix and E[ JT J] can be the identity matrix. For 1 by 1 
matrices this would be the most ordinary thing in the world: mean zero and variance one. 

Here is the key point. On average, the squared distance between x and y in Rm is the 
same as the squared distance between Jx and Jy in Rk. "The projection J into a lower 
dimensional space preserves distances in an average sense." What we really want is to 
preserve the actual distances within a factor 1 + e, for a set of n given points in R =. 

That property of J is the subject of the famous Johnson-Lindenstrauss Lemma. 
It seems amazing that points in a high dimension can be transformed linearly to points 
in a low dimension, with very small change in the distance between every pair of points. 

How low can the low dimension be? This is a crucial question. 

Dimension k = 1 is Too Low 

Suppose we haven = 3 points x 1, x 2 , x 3 in the plane R2 . Is there a 1 by 2 matrix J that 
nearly preserves their distances? We can certainly achieve IIJx1- Jxzll = llx1- xzii
If the third point X3 = ~(x1 + xz) is halfway between, then by linearity Jx3 will be 
HJx 1 + Jxz) and all distances are perfect. But if X1, x 2 , x 3 give an equilateral triangle, 
then x 3 has a component in the nullspace of J. That component will be lost (projected 
to zero). The lengths IIJx1- Jx311 and IIJxz- Jx311 will be seriously reduced. 

Johnson-Lindenstrauss looked at random k by m projections of n points in R=. 
They proved that if the dimension k is large enough, then one of those projections 
(in fact most of them) will nearly preserve distances between the n points. 

"In high dimensions, random vectors are orthogonal with probability near 1." 

The Johnson-Lindenstrauss Lemma 

Suppose x 1 , ... , Xn are any n points in Rm, and k 2 (8logri)/e2 . Then there is 
a projection J from R m to R k so that all distances between then points are nearly 
preserved: 

(1- e) llxi- xill 2 ~ IIJxi- Jxill2 ~ (1 +e) llxi- xill 2 (13) 
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A key point is that the dimension k must grow like (log n) / €2 • An amazing step in the 
proof shows that a random k by m projection J is very likely to keep the n points apart. 
Then there must be many specific J's that confirm equation (13) in the Lemma. 

If a random choice has a positive probability 
of success then a successful choice must exist. 
Probabilistic hypothesis, deterministic conclusion. 

That is the "probabilistic method". Multiple proofs of Johnson-Lindenstrauss are easily 
found, and we liked the one on this website: cseweb.ucsd.edu/rvdasgupta/papers/jl.pdf. 

One of the 18.065 class projects chose an example in which the Lemma requires 
k > 2800. The accuracy of distances !I xi - Xj II did break down for k = 2700. Also 
interesting : Clustering of points survived even when distances went wrong. 

Randomized Matrix Approximation 

To summarize this topic we will follow Per-Gunnar Martinsson : Randomized methods for 
matrix computations, arXiv: 1607.01649. First we identify the goals. 

1 Rank k factorizations A~ Y(Y+ A) and S ~ UDUT and A~ (QU)DVT. 

2 Interpolative decompositions A ~ C M R and A ~ C Z using columns of A in C. 

The randomized m by k factor Y is AG, for an n by k Gaussian random matrix G. 
Always yy+ is the orthogonal projection onto the column space of Y. So yy+ A is 
almost surely a very good rank k approximation to A. This is the random part. 

How does an approximate SVD follow from A ~ yy+ A ? For an orthonormal column-, 
basis, first apply the QRfactorization toY. QQT is the same projection as yy+. Then 
find the SVD of the small matrix QT A= U DVT. The desired SVD is A~ (QU)DVT. 

Notice the two-stage construction of that SVD. First we fix an approximate column 
space, reducing the problem to "size k". Then any desired factorization is deterministic 
and fast and essentially exact. Martinsson shows how those stages can combine into a 
streaming algorithm that accesses each entry of A only once. The price is ill-conditioning 
and the remedy is over-sampling. 

For positive semidefinite S, an extra Nystrom step improves the factors at low cost. 
Finally we look at A ~ C Z or C M R, where C contains actual columns of A : 

preserving sparsity and nonnegativity. The accuracy of a deterministic algorithm is the 
same as pivoted AP ~ QR (not always as close as Eckart-Young). Randomized algo
rithms are faster and better, if A has rapidly decaying singular values as in Section III.3. 

For a clear picture of randomized matrix algorithms, read Martinsson's paper and 
Kannan-Vempala: Randomized algorithms in numerical linear algebra, Acta Numerica 
(2017), 95-135. These authors discovered norm-squared sampling. 
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Problem Set 11.4 

1 Given positive numbers a1, ... , an find positive numbers P1 ... , Pn so that 

V af a; h . . . ( )2 P1 +· · ·+Pn = 1 and = -+· · ·+- reac es 1ts mm1mum a1 +···+an . 
P1 Pn 

The derivatives of L(p, ..\) = V- .A(p1 + · · · + Pn- 1) are zero as in equation (8). 

2 ifor functions) Given a(x) > 0 find p(x) > 0 by analogy with Problem 1, so that 

11 
p(x) dx = 1 and 11 (:~~r dx is a minimum. 

3 Prove that n(ai +···+a;) ~ (a1 + · · · + an)2• This is Problem 1 with Pi= 1/n. 
Back in Problem Set 1.11 you proved that llall1 ~ v'nJiall2· 

4 If M = 11 T is then by n matrix of 1 's, prove that nl - M is positive semidefinite. 
Problem 3 was the energy test. For Problem 4, find the eigenvalues of nl- M. 

5 In case B = AT show that the "norm-squared" or "length-squared" probabilities p1 

in the text equation (5) are llai 11 2 /IIAII}. Why is C = I: llaJ llllbJ II = IIAII}? 
6 The variance computed in equation (7) cannot be negative ! Show this directly : 

JIABII} ~ (L IJajllllbJIJ?. 

Problem 7 returns to the example in the text of sampling (a, b) to get (a,O) or (O,b). 
If b > a then the variance will be reduced when b is chosen more often. This is 
achieved by optimizing the probabilities p and 1 - p to minimize cr2 : 

a2 b2 
Variance cr2 = p 2 + (1- p) ( )2 - (mean)2 

p 1-p 

7 Show that p = aj (a + b) and 1 - p = b j (a + b) minimize that variance. (The mean 
is the same for all p.) This optimal p agrees with equation (5) when applied to the 
small matrix multiplication AB = [1] [a b]. In this case C = a+ bin equation (5). 

8 In the randomized construction on the previous page, show why (QU)DVT 
(the approximate SVD in italics) is close tQ A. Use the steps A ~. yy+ A and 
Y ~ Q R and QT A = U DVT. Problem II.2.11 on page 135 is a key. 
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Part III : Low Rank and Compressed Sensing 

This part of the book looks at three types of low rank matrices : 

1. Matrices that truly have a small rank (uvT is an extreme case with rank= 1) 

2. Matrices that have exponentially decreasing singular values (low effective rank). 

3. Incomplete matrices (missing entries) that are completed to low rank matrices. 

The first type are not invertible (because rank < n). The second type are invertible in 
theory but not in practice. The matrix with entries (i + j - 1)-1 is a famous example. 
How can you recognize that this matrix or another matrix has very low effective rank ? 

The third question-matrix completion-is approached in Section III.5. We create 
a minimization problem that applies to recommender matrices : 

Minimize II A II N over all possible choices of the missing entries. 

That "nuclear norm" gives a well-posed problem to replace a nonconvex problem : 
minimizing rank. Nuclear norms are conjectured to be important in gradient descent. 

The rank of a matrix corresponds in some deep way to the number of nonzeros in a 
vector. In that analogy, a low rank matrix is like a sparse vector. Again, the number 
of nonzeros in x is not a norm ! That number is sometimes written as II x II o, but this 
"£0 norm" violates the rule ll2xll = 2llxll· We don't double the number of nonzeros. 

It is highly important to find sparse solutions to Ax = b. By a seeming miracle, 
sparse solutions come by minimizing the £1 norm llxlll = lx1l + · · · + lxnl· This fact 
has led to a new world of compressed sensing, with applications throughout engineering 
and medicine (including changes in the machines for Magnetic Resonance Imag~ng). 
Algorithms for £1 minimization are described and compared in III.4. 

Section 111.1 opens this chapter with a famous formula for (I - uvT)-1 and 
(A - uvT)-1. This is the Sherman-Morrison-Woodbury formula. It shows that the 
change in the inverse matrix also has rank 1 (if the matrix remains invertible). This 
formula with its extension to higher rank perturbations (A - UVT)- 1 is fundamental. 

We also'compute the derivatives of A(t)- 1 and .X(t) and O"(t) when A varies with t. 

159 
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111.1 Changes in A-1 from Changes in A 

Suppose we subtract a low rank matrix from A. The next section estimates the change 
in eigenvalues and the change in singular values. This section finds an exact formula 
for the change in A - 1. The formula is called the matrix inversion lemma by some 
authors. To others it is better known as the Sherman-Morrison-Woodbury formula. 
Those names from engineering and statistics correspond to updating and downdating 
formulas in numerical analysis. 

This formula is the key to updating the solution to a linear system Ax = b. The change 
could be in an existing row or column of A, or in adding/removing a row or column. 
Those would be rank one changes. We start with this simple example, when A = I. 

T 
The inverse of M =I- uvT is M-1 = I+ uv T (1) 

1- v u 

There are two striking features of this formula. The first is that the correction to M-1 is 
also rank one. That is the final term u v T j ( 1-v T u) in the formula. The second feature 
is that this correction term can become infinite. Then M is not invertible: no M-1. 

This occurs if the number v T u happens to be 1. Equation (1) ends with a division by 
zero. In this case the formula fails. M =I- uvT is not invertible because Mu = 0: 

Mu=(I-uvT)u=u-u(vTu)=O if vTu=l. (2) 

The simplest proof of formula (1) is a direct multiplication of M times M-1 : 

(3) 
You see how the number v T u moves outside the matrix uv T in that key final step. 

Now we have shown that formula (1) is correct. But we haven't shown where it came 
from. One good way is to introduce an "extension" of I to a matrix E with a new row 
and a new column: 

Extended matrix E = [ :T ~ ] has determinant D = 1 - v T u 

Elimination gives two ways to find E-1. First, subtract v T times row 1 of E from row 2 : 

0 I u _1 I u I 
] [ ] [ ] 

-1 [ 

1 E = O D . Then E = O D- -v T ~ ] (4) 
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The second way subtracts u times the second row of E from its first row : 

Now compare those two formulas for the same E-1 . Problem 2 does the algebra: 

Two forms 
ofE-1 (6) 

The 1,1 blocks say that M-1 =I+ uD-1vT. This is formula (1), with D = 1- vTu. 

The Inverse of M = I - UVT 

We can take a big step with no effort. Instead of a perturbation uv T of rank 1, suppose we 
have a perturbation uvT of rank k. The matrix u is n by k and the matrix yT is k by n. 
So we have k columns and k rows exactly as we had one column u and one row v T. 

The formula for M-1 stays exactly the same! But there are two sizes In and h: 

This brings out an important point about these inverse formulas. We are exchanging 
an inverse of size n for an inverse of size k. Since k = 1 at the beginning of this section, 
we had an inverse of size 1 which was just an ordinary division by the number 1 - v T u. ": 
Now VTU is (k x n) (n x k). We have a k by k matrix Ik- VTU to invert, not n by n. 

The fast proof of formula (7) is again a direct check that M M-1 = I: 

Un -UVT)(In +U(h-yTu)-lVT) =In -UVT +(In- UVT)U(Ik- vTu)- 1VT. 

Replace (In - UVT)U in that equation by U(Ik - VTU). This is a neat identity! 
The right side reduces to In - UVT + UVT which is In. This proves formula (7). 

Again there is an extended matrix E of size n + k that holds the key : 

E =[ ~;. X ] hasdeterminant= det(In- UVT) = det(Ik- 'vTU). (8) 

If k < < n, the right hand side of (7) is probably easier and faster than a direct attack 
on the left hand side. The matrix yT U of size k is smaller than UVT of size n. 

Example .1 What i"he inve<Se of M ~ I- [: : n ?In this care u ~ v ;= [ n · 
Solution Here vTu ~ 3 '"'dM-' ~I+;::. So M-' equals I-~ [: : n 
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Example 2 IfM=I- [ 0~ ~1 011] =I- UVT then M-1 = 

That came from Writing the first displayed matrix as UVT and reversing to VTU: 

[
1 0] [0 1 1] [0 1 1] [1 0] 

uvT = ~ ~ o o 1 and vT u = o o 1 ~ ~ = [ ~ ~ J . 

Then M-1 above is / 3 + U [ 12 - VTU] -l yT = I 3 + U [ ~ -~ J -1 
vT. 

The whole point is that the 3 by 3 matrix M-1 came from inverting that bold 2 by 2. 

Perturbing any Invertible Matrix A 

Up to now we have started with i:he identity matrix I = In. We modified it to I - uv T 

and then to I - UVT. Change by rank 1 and then by rank k. To get the benefit of the full 
Sherman-Mon-ison-Woodbury idea, we now go further: Start with A instead of I. 

Perturb any invertible A by a rank k matrix UVT. Now M = A - UVT. 

Sherman-Morrison-Woodbury formula 

M-1 =(A- UVT)- 1 = A-1 + A-1U(I- yT A- 1u)- 1 VT A-1 
(9) 

Up to now A was In. The final formula (9) still connects to an extension matrix E. 

Suppose A 
is invertible E = [ :T ~ ] is invertible when M = A - uvT is invertible. 

To find that inverse of E, we can do row operations to replace VT by zeros: 

Multiply row 1 by VT A - 1 and subtract from row 2 to get [ ~ I _ V~ A -1 U ] 

Or we can do column operations to replace U by zeros : 

Multiply column 1 by A - 1 U and subtract from column 2 to get [ :T I _ V~ A -1 U ] 

As in equation (6), we have two ways to invert E. These two forms of E-1 must be equal. 

Here Cis I- VT A-1u and M is A- UVT. The desired matri~ is M-1 (the inverse 
when A is perturbed). Comparing the (1, 1) blocks in equation (10) produces equation (9). 

Summary Then by n inverse of M = A-UVT comes from then by n inverse of A and 
the k by k inverse of C =I- VT A- 1U. For.a fast proof, multiply (9) by A- UVT. 



III.l. Changes in A -l from Changes in A 163 

This is a good place to collect four closely related matrix identities. In every case, a 
matrix B or AT or U on the left reappears on the right, even if it doesn't commute with 
A or V. As in many proofs, the associative law is hiding in plain sight: B ( AB) = ( B A)B. 

B(Im + AB) = (In + BA)B 

B(Im + AB)-1 = (In+ BA)- 1 B 

AT(AAT + >.In)-1 =(AT A+ )..Im)-1 AT 

U(Ik - VTU) = (In - UVT)U 

A is m by n and B is n by m. The second identity includes the fact that I+ AB is invertible 
exactly when I + B A is invertible. In other words, -1 is not an eigenvalue of AB exactly 
when -1 is not an eigenvalue of BA. AB and BA have the same nonzero eigenvalues. 

The key as in Section 1.6 is that (I+ AB)x = 0 leads to (I+ BA)Bx = 0. 

The Derivative of A -I 

In a moment this section will turn to applications of the inverse formulas. First I turn to 
matrix calculus ! The whole point of derivatives is to find the change in a function f ( x) 
when xis moved very slightly. That change b..x produces a change b..f. Then the ratio of 
b..f to b..x approaches the derivative df I dx. 

Here x is a matrix A. The function is f (A) = A -l. How does A -l change when 
A changes? Up to now the change uv T or uvT was small in rank. Now the desired 
change in A will be infinitesimally small, of any rank. 

I start with the letter B = A + b..A, and write down this very useful matrix formula: 

I n-1 - A- 1 = n-1 (A- B) A- 1 1 (11) 

You see that this equation is true. On the right side AA-1 is I and s- 1 B is I. In fact 
(11) could lead to the earlier formulas for (A - UVT)- 1• It shows instantly that if A - B 
has rank 1 (or k), then s-1 - A- 1 has rank 1 (or k). The matrices A and Bare assumed 
invertible, so multiplication by s- 1 or A - 1 has no effect on the rank. 

Now think of A = A(t) as a matrix that changes with the time t. Its derivative at 
each timet is dAidt. Of course A- 1 is also changing with the timet. We want'to find its 
derivative dA -l I dt. So we divide those changes b..A = B- A and .b..A -l = s-1 -A -.1 

by b..t. Now insert A+ b..A forB in equation (11) and let b..t-+ 0. 

For a 1 by 1 matrix A = t, with dAidt = 1, we recover the derivative of 1lt as -11t2 . 

Problem 7 points out that the derivative of A2 is not 2AdAidt! 



164 Low Rank an~ C::<>mpressed ~e11si11g __ 

Updating Least Squares 

Section 11.2 discussed the least squares equation AT Ax = ATb---the "normal equations" 
to minimize II b - Ax 11 2 • Suppose that a new equation arrives. Then A has a new row r 
(1 by n) and there is a new measurement bm+l and a new x: 

The matrix in the new normal equations is AT A + r T r. This is a rank one correction 
to the original AT A. To update x, we do not want to create and solve a whole new set of 
normal equations. Instead we use the update formula : 

[AT A+ TTT r 1 =(AT A)-1-c (AT A)-1 TTT (AT A)-1 with c = 1/(1+r(AT A)-1 TT) 

To find c quickly we only need to solve the old equation (AT A) y = r T. 
(14) 

Problem 4 will produce the least squares solution Xnew as an update of x. The same 
idea applies when A has M new rows instead of one. This is recursive least squares. 

The Kalman Filter 

Kalman noticed that this update idea also applies to dynamic least squares. That word 
dynamic means that even without new data, the state vector x is changing with time. 
If x gives the position of a GPS satellite, that position will move by about .6x = v.6t 
(v = velocity). This approximation or a better one will be the state equation for Xn+l 
at the new time. Then a new measurement bm+1 at timet+ .6t will further update that 
approximate position to Xnew- I hope you see that we are now adding two new equations 
(state equation and measurement equation) to the original system Ax ~ b : 

Original 
State update 
Measurement update 

Anew = [-~ ~ ] [ xold ] = [ !.6t ]· 
0 r Xnew b 

m+1 

(15) 

We want the least squares solution of (15). And there is one more twist that makes 
the Kalman filter formulas truly impressive (or truly complicated). The state equation 
and the measurement equation have their own covariance matrices. Those equations are 
inexact (of course). The variance or covariance V measures their different reliabilities. 
The normal equations AT Ax = ATb should properly be weighted by v- 1 to become 
ATV-1 Ax= ATV-1b. And in truth V itself has to be updated at each step. 

Through all this, Kalman pursued the goal of using update formulas. Instead of solving 
the full normal equations to learn xnew. he updated xold in two steps. 

The prediction Xstate comes from the state equation. Then comes the correction to 
Xnew. using the new measurement bm+1: zero correction. 

K = Kalman gain matrix Xnew = Xstate + K(bm+l- r Xstate) (16) 

The gain matrix K is created from A and rand the covariance matrices Vstate and Vb. 
You see that if the new bm+l agrees perfectly with the prediction Xstate• then there is a 
zero correction in (16) from Xstate to Xnew- . 
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We also need to update the covariance of the whole system-measuring the reliability 
of iinew. In fact this V is often the most important output. It measures the accuracy of the 
whole system of sensors that produced Xfinal· 

For the GPS application, our text with Kai Borre provides much more detail : 
Algorithms for Global Positioning (Wellesley-Cambridge Press). The goal is to estimate 
the accuracy of GPS measurements : very high accuracy for the measurement of tectonic 
plates, lower accuracy for satellites, and much lower accuracy for the position of your car. 

Quasi-Newton Update Methods 
A completely different update occurs in approximate Newton methods to solve f(x) = 0. 
Those are n equations for n unknowns x 1 , .•. ,xn. The classical Newton's method uses 
the Jacobian matrix J ( x) containing the first derivatives of each component of f : 

8fi 
Newton Jik =- and xnew = Xold- J(xold)- 1f(x0 ld)· (17) 

8xk 
That is based on the fundamental approximation J ~x = ~~ of calculus. Here il.f = 
f(xnew) - f(xold) is - f(xold) because our whole plan is to achieve f(xnew )~0. 

The difficulty is the Jacobian matrix J. For large n, even automatic differentiation 
(the key to backpropagation in Chapter VII) will be slow. Instead of recomputing J at 
each iteration, quasi-Newton methods use an update formula J(xnew) = J(xold) + ~J. 

In principle ~J involves the derivatives of J and therefore second derivatives of f. 
The reward is second order accuracy and fast convergence of Newton's method. But 
the price of computing all second derivatives when n is large (as in deep learning) 
may be impossibly high. ~ 

Quasi-Newton methods create a low rank update to J(xold) instead of computing 
an entirely new Jacobian at Xnew. The update reflects the new information that comes 
with computing Xnew in (17). Because it is J-1 that appears in Newton's method, the 
update formula accounts for its rank one change to Jfiiw-without recomputing J-1 . 

Here is the key, and derivatives of !1, ... , f n are not needed: 

Quasi-Newton condition Jnew (xnew- Xold) =!new-fold (18) 

This is information J ~x = il.f in the direction we moved. Since equation (17) uses 
J-1 instead of J, we update J-1 to satisfy (18). The Sherman-Morrison forll}.ula will do 
this. Or the "BFGS correction" is a rank-2 matrix discovered by four authors at the same 
time. Another approach is to update the LU or the LDLT factors of Jold· 

Frequently the original n equations f ( x) = 0 come from minimizing a function 
F(xt, ... ,xn). Then f = (8Fj8x 1 , ... ,8Fj8xn) is the gradient of this function F, and 
f = 0 at the minimum point. Now the Jacobian matrix J (first derivatives of f) becomes 
a Hessian matrix H (second derivatives of F). Its entries are Hjk = 82 Fj8xj 8xk·. 

If all goes well, Newton's method quickly finds the point x* where F is minimized and 
its derivatives are f(x*) = 0. The quasi-Newton method that updates J approximately 
instead of recomputing J is far more affordable for large n. For extremely large n (as in 
many problems of machine learning) the cost may still be excessive. 
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Problem Set 111.1 

1 Another approach to (I - uv T)-1 starts with the formula for a geometric series: 
(1- x)- 1 = 1 + x + x 2 + x3 + · · · Apply that formula when x = uvT =matrix: 

(I- uvT)-1 =I+ uvT + uvTuvT + uvTuvTuvT + · · · 

=I +u[1 + vTu+ vTuvTu+ · · ·]vT. 

T 

Takex=vTutoseei+ 1 uv T .Thisisexactlyequation(l)for(I-uvT)-1. 
-v u 

2 Find E- 1 from equation ( 4) with D = 1 - v T u and also from equation (5) : 

From(4) E-1 = [ ~ -~1!_; 1 
] [ -~T ~] = [ ] 

From (5) E- 1 = [ -~~(! ~v:~;;_ 1 ~ ] [ ~ - 1u ] = [ ] 

Compare the 1,1 blocks to find M-1 = (I- uvT)- 1 in formula (1). 

3 The final Sherman-Morrison-Woodbury formula (9) perturbs A by UVT (rank k). 
Write down that formula in the important case when k = 1 : 

Test the formula on this small example: 

A=[~~] u=[~] v=[~] T [ 2 0 ] A- uv = O 2 

4 Problem 3 found the inverse matrix M- 1 = (A- uvT)- 1 . In solving the equation 
My= b, we compute only the solution y and not the whole inverse matrix M-1. 

You can find y in two easy steps : 

Step 1 Solve Ax = b and Az = u. Compute D = 1 - v T z. 
T 

Step 2 Then y = x + v Dx z is the so~ution to My= (A- uvT)y =b. 

Verify (A -uv T)y =b. We solved two equations using A, no equations using M. 

5 Prove that the final formula (9) is correct! Multiply equation (9) by A - UVT. 

Watch for the moment when (A- UVT)A - 1u becomes U(I- VT A - 1u). 

6 In the foolish case U = V = In. equation (9) gives what formula for (A- J)- 1 ? 
Can you prove it directly ? 
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7 Problem4 extends to a rank k change M-1 =(A- UVT)- 1• To solve the equation 
My = b, we compute only the solution y and not the whole inverse matrix AJ- 1. 

8 

9 

Step 1 Solve Ax= band the k equations AZ = U (U and Z are n by k) 

Step 2 Form the matrixC = I - VT z and solve Cw = vT X. The desired 
y = M- 1b is y = x + Zw. 

Use (9) to verify that (A- UVT) y =b. We solved k + 1 equations using A 
and we multiplied yT Z, but we never used M =A- UVT. 

dA 
What is the derivative of (A(t))2 ? The correct derivative is not 2 A(t) -. 

dt 
You must compute (A + Ll.A)2 and subtract A2 • Divide by Ll..t and send Ll.t to 0. 

Test formula (12) for the derivative of A-1 (t) when 

A(t)=[~ t:] and A- 1 (t)=[~ -t2 ] 
1 . 

10 Suppose you know the average Xotd of b1o b2, ... , bggg. When b10oo alTives, check 
that the new average is a combination of Xotd and the mismatch b10oo - Xotd: 

~ _ b1 + · · · + b10oo _ b1 + · · · + bggg _1_ ( _ b1 + · · · + bggg) 
Xnew - 1000 - 999 + 1000 b1000 999 · 

This is a "Kalman filter" Xnew = Xotd + uioo (b10oo - Xotd) with gain matrix 10100 . • 

11 The Kalman filter includes also a state equation Xk+ 1 = Fxk with its own error 
variance s2 . The dynamic least squares problem allows x to "drift" as k increases : 

With F = 1, divide both sides of those three equations by CT, s, and CT. Find xo and 
Xi by least squares, which gives more weight to the recent b1 . 

Bill Hager's paper on Updating the Inverse of a Matrix was extremely usefuJ in 
writing this section of the book: SIAM Review 31 (1989). 
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111.2 Interlacing Eigenvalues and Low Rank Signals 

The previous section found the change in A - 1 produced by a change in A. We could 
allow infinitesimal changes dA and also finite changes D. A = - UVT. The results were an 
infinitesimal change or a finite change in the inverse matrix : 

This section asks the same questions about the eigenvalues and singular values of A. 

How do each A and each u change as the matrix A changes? 

You will see nice formulas for dAI dt and du I dt. But not much is linear about 
eigenvalues or singular values. Calculus succeeds for infinitesimal changes d).. and da, 
because the derivative is a linear operator. But we can't expect to know exact values in 
the jumps to .A( A + D. A) or a( A + D.A). Eigenvalues are more complicated than inverses. 

Still there is good news. What can be achieved is remarkable. Here is a taste for a 
symmetric matrix S. SupposeS changes to S + uuT (a "positive" change of rank 1). 
Its eigenvalues change from .>..1 2: .>..2 2: . . . to z1 2: z2 2: . . . We expect increases 
in eigenvalues since uu T was positive semidefinite. But how large are the increases ? 

Each eigenvalue Zi of S + uu T is not smaller than Ai or greater than Ai-l· 

So the A's and z 's are "interlaced". Each z 2 , ••• , Zn is between two A's : 

Z1 ~ Al ~ Z2 ~ A2 ~ • • • ~ Zn ~ An· (2) 

We have upper bounds on the eigenvalue changes even if we don't have formulas for D..A. 
There is one point to notice because it could be misunderstood. Suppose the change uu T 

in the matrix is Cq2q'f (where q2 is the second unit eigenvector of 8). Then Sq2 = .A2q2 
will see a jump in that eigenvalue to .>..2 + C, because (S + Cq2 q'f)q2 = (.>..2 + C)q2. 
That jump is large if C is large. So how could the second eigenvalue of S + uu T 

possibly have z2 = .>..2 + C ~ .>..1 ? 

Answer: If C is a big number, then )..2 + C is not the second eigenvalue of S + uu T ! 
It becomes z1. the largest eigenvalue of the new.matrix S + Cq2q'f (and its eigenvector 
is q2). The original top eigenvalue .>..1 of S is now the second eigenvalue z2 of the new 
matrix. So the statement (2) that z2 ~ )..1 :=:; z1 is the completely true statement (in this 
example) that z2 = .>..1 is below z1 = .>..2 +C. 

We will connect this interlacing to the fact that the eigenvectors between )..1 = .Amax 
and An = )..min are all saddle points of the ratio R( x) = x T S xI x T x. 
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The Derivative of an Eigenvalue 

We have a matrix A(t) that is changing with the timet. So its eigenvalues A(t) are also 
changing. We will suppose that no eigenvalues of A(O) are repeated-each eigenvalue 
A(O) of A(O) can be safely followed for at least a short time t, as A(O) changes to an 
eigenvalue A ( t) of A ( t). What is its derivative d>.. / dt ? 

The key to dAjdt is to assemble the facts we know. The first is A(t)x(t) = A(t)x(t). 
The second is that the transpose matrix AT(t) also has the eigenvalue A(t), because 
det(AT - >..!) = det(A - >..!). Probably AT has a different eigenvector y(t). When 
x is column k of the eigenvector matrix X for A, y is column k of the eigenvector matrix 
(X-1)TforAT. (ThereasonisthatA = x-1AXleadstoAT = XTA(X-1)T). The 
lengths of x andy are normalized by x-1 X= I. This requires yT(t)x(t) = lforall t. 

Here are these facts on one line with the desired formula for dA/ dt on the next line. 

Facts A(t) x(t) = >..(t) x(t) yT(t)A(t) = >..(t)yT(t) yT(t) x(t) = 1 (3) 

Formulas >..(t) = yT(t)A(t) x(t) and 
d>.. dA 
- = yT(t)- x(t) 
dt dt 

(4) 

To find that formula A = y TAx, just multiply the first fact Ax = AX by y T and 
use y T x = 1. Or multiply the second fact y T A = AY T on the right side by x. 

Now take the derivative of>.. = y TAx. The product rule gives three terms in dA/ dt : 

~- dyT A GdAJ TA dx (5)'; @J- dt x+~+y dt 

The middle term is the correct derivative dA/ dt. The first and third terms add to zero : 

dyT dx (dyT dx) d d 
dtAx+yTAdt=A dtx+yTdt =Adt(yTx)=Adt(l)=O. (6) 

There are also formulas for d2 A/ dt2 and dx / dt (but they are more complicated). 

Example A= [ ;~ ; J hasA2 -2(1+t)A+2t = Oand>.. = l+t.±v'1+t2. 
At t = 0, A1 = 2 and A2 = 0 and the derivatives of A1 and A2 are 1 ± t(l + t2)-112 =:= 1. 

The eigenvectors for A1 = 2 at t = 0 are y'f = [ 0 1 J and x 1 = [ 1{2 ]. 

The eigenvectors for A2 = 0 at t = 0 are Yi = [ 1 -~ J and x2 = [ ~]. 

• d>..1 dA [ 2 0] [ 1/2] Now equation (5) confirms that dt = yJ dtx1 = [ 0 1 ] 2 0 1 = 1. 
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The Derivative of a Singular Value 
A similar formula for dajdt (derivative of a non-repeated a(t)) comes from Av =au: 

uT AV = :E u T (t) A(t) v(t) == u T (t) a(t) u(t) = a(t). (7) 

The derivative of the left side has three terms from the product rule, as in (5). The first 
and third terms are zero because Av = au and ATu = av and uTu = vTv = 1. 
The derivatives of u T u and v Tv are zero, so 

~ ~ T ~ T ~ dt A(t) v(t) = a(t) dt u(t) = 0 and u (t) A(t) dt = a(t) v (t) dt = 0. (8) 

The third term from the product rule for u T Av gives the formula for da / dt : 

Derivative of a Singular Value 
dA du 

uT(t) -v(t) =-
dt dt 

(9) 

When A(t) is symmetric positive definite, u(t) = .A(t) and u = v = y = x in (4) and (9). 

Note First derivatives of eigenvectors go with second derivatives of eigenvalues-not 
so easy. The Davis-Kahan bound on the angle() between unit eigenvectors of SandS+ T 
is sin() :::; IITII/d (dis the smallest distance from the eigenvalue of S + T to all other 
eigenvalues of 8). Tighter bounds that use the structure of S and T are highly valuable for 
applications to stochastic gradient descent (see Eldridge, Belkin, and Wang). 

C. Davis and W. M. Kahan, Some new bounds on perturbation of subspaces, Bull. 
Amer. Math. Soc. 75 (1969) 863 - 868. 

J. Eldridge, M. Belkin, and Y. Wang, Unperturbed: Spectral analysis beyond Davis
Kahan, arXiv: 1706.06516v1, 20 Jun 2017. 

A Graphical Explanation of Interlacing 
This page owes everything to Professor Raj Rao Nadakuditi of the University of Michigan. 
In his visits to MIT, he explained the theory and its applications to the 18.065 class. 
His OptShrink software to find low rank signals is described in IEEE Transactions on 
Information Theory 60 (May 2014) 3002 - 3018. 

What is the change in the .A's, when a low rank matrix ()uuT is added to a full rank 
symmetric matrix S? We are thinking of S as noise and Buu T as the rank one signal. 
How are the eigenvalues of S affected by adding that signal ? 

Let me make clear that all the eigenvalues of S can be changed by adding Buu T, 

not just one or two. But we will see that only one or two have changes of order B. 
This makes them easy to find. If our vectors represent videos, and Buu T represents a 
light turned on or off during filming (a rank-one signal), we wi~l see the effect on the Xs. 

Start with an eigenvalue z and its eigenvector v of the new matrix S + Buu T : 

(S + Buu T)v = zv. (10) 
Rewrite that equation as 

(zl- S)v = Bu(uTv) or v = (zl- S)- 1Bu(uTv). (11) 
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Multiply by uT and cancel the common factor uTv. This removes v. Then divide by(). 
That connects the new eigenvalue z to the change ()uuT in the symmetric matrix S. 

I~= uT(zi- s)- 1u.l (12) 

To understand this equation, use the eigenvalues and eigenvectors of S. If Sqk = >.kqk 
then (zl- S)qk = (z- >.k)qk and (zl- S)...., 1qk = qkf(z- >.k): 

u = L Ckqk leads to (zl- s)-1u = L Ck(zl- s)-1qk = L zc~q~k. (13) 

Finally equation (12) multiplies (zl- s)- 1u by uT = L_ckq'f The result is 1/0. 
Remember that the q's are orthogonal unit vectors: 

Secular 
equation 

(14) 

We can graph the left side and right side. The left side is constant, the right side blows 
up at each eigenvalue z = Ak of S. The two sides are equal at then points z1 , ... , Zn 

where the flat 1/() line meets the steep curves. Those z's are the n eigenvalues of 
S + Ouu T. The graph shows that each Zi is above Ai and below Ai-l: Interlacing. 

The top eigenvalue z1 is most likely above >.1. The z's will increase as ()increases, 
because the 1/ () line moves down. 

Of course the z's depend on the vector u in the signal (as well as ()). If u happened 
to be also an eigenvector of S, then its eigenvalue Ak would increase by exactly ();f, 

All other eigenvalues would stay the same. It is much more likely that each eigenvalue Ak 
moves up a little to Zk. The point of the graph is that Zk doesn't go beyond Ak-1· 

1j() --------

A4Z4 A3 Z3 A2 Z2 Al Zl 

Figure nq: Eigenvalues Zi of S + ()uuT where the ~ line meets the curves in (14). 

Raj Rao Nadakuditi, When are the most informative components for inference 
also the principal components? arXiv: 1302.1232,5 Feb 2013. 
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The Largest Eigenvalue of S + T 

The largest eigenvalue of a symmetric matrix S is the maximum value of x T Sx / x T x. 
This statement applies also toT (still symmetric). Right away we know about the largest 
eigenvalue of S + T. 

I Amax(S + T) ~ Amax(S) + Amax(T) I (15) 

The left side is the maximum value of xT(S: T)x. That maximum is reached at an 
X X 

eigenvector v of S + T : 

vT(S + T)v vTSv vTTv xTSx xTTx 
As+T = T = -T- + -T- ~ max-T- + max-T- = As + AT. 

VV VV VV XX XX 

The eigenvector v of S + T maximizes that first ratio. But it probably doesn't maximize 
the last two. Therefore A.s + >.r can only increase beyond A.s+T· 

This shows that a maximum principle is convenient. So is a minimum principle 
for the smallest eigenvalue. There we expect >.min(S + T) 2: Amin(S) + >.min(T). 
The same reasoning will prove it-the separate minimum principles for S and Twill bring 
us lower than >.min (S + T). Or we can apply the maximum principle to -Sand - T. 

The difficulties come for the in-between eigenvalues >.2 to An- 1 . Their eigenvectors 
are saddle points of the function R(x) = xT Sx/xT x. The derivatives of R(x) are all 
zero at the eigenvectors q2 to qn_1 . But the matrix of second derivatives of R is indefinite 
(plus and minus eigenvalues) at these saddle points. That makes the eigenvalues hard to 
estimate and hard to calculate. 

We now give attention to the saddle points. One reason is their possible appearance in 
the algorithms of deep learning. We need some experience with them, in the basic problem 
of eigenvalues. Saddle points also appear when there are constraints. If possible we want 
to connect them to maxima of minima or to minima of maxima. 

Those ideas lead to the best possible bound for each eigenvalue of S + T : 

Weyl upper bounds (16) 

Saddle Points from Lagrange Multipliers 

Compared to saddle points, computing a maximum or minimum ofF ( x) is relatively easy. 
When we have an approximate solution x, we know that F(x) is not below the minimum 
of F and not above the maximum: by definition. But we don't know whether F(x) is 
above or below a saddle point value. Similarly, the matrix H ( x) of second derivatives of 
F is positive definite (or semidefinite) at a minimum and negative definite at a maximum. 

The second derivative matrix H at a saddle point is symmetric but indefinite. 

H has both positive and negative eigenvalues-this makes saddle points more difficult. 
The conjugate gradient method is not usually available to find saddle points of x T H x. 
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Lagrange is responsible for a lot of saddle point problems. We start by minimizing 
a positive definite energy ~x T Sx, but there are m constraints Ax = b on the solution. 
Those constraints are multiplied by new unknowns )q, ... , Am (the Lagrange multipliers) 
and they are built into the Lagrangian function: 

1 
Lagrangian L(x, .X) = 2xT Sx +.X T (Ax- b). 

Them+ n equations 8Ljax = 0 and 8L/8.X = 0 produce an indefinite block matrix: 

A small example would be H = [ ~ ~ ] with negative determinant -1 : its eigenvalues 

have opposite signs. The Problem Set confirms that this "KKT matrix" in equation (17) 
is indefinite. The solution (x, .X) is a saddle point of Lagrange's function L. 

Saddle Points from Rayleigh Quotients 

The maximum and minimum of the Rayleigh quotient R(x) =xTSxjxTx are A1 and An: 

Our question is about the saddle points-the other points where all derivatives of the 
quotient R( x) are zero. We will confirm that those saddle points occur at the other ~ 
eigenvectors q2 to qn-1 of S. Our goal is to see .X2 to An-1 as maxima of minima. 
That max-min insight is the key to interlacing. 

Notice that the vectors x and 2x and ex ( c I- 0) all produce the same quotient R: 

R(2x) = (2x)TS(2x) = 4xTSx = xTSx =R(x). 
(2x)T(2x) 4xTx xTx 

So we only need to consider unit vectors with x T x = 1. That can become a constraint: 

xTSx . th TS b. T (18) max -T- 1s e same as max x x su ~ect to x x = 1. 
X X 

The constraint x T x = 1 can be handled by one Lagrange multiplier ! 

Lagrangian (19) 

The max-min-saddle points will have 8Ljax = 0 and aLjaA = 0 (as in Section 1.9): 

{)£ {)£ 
OX = 2Sx- 2AX = 0 and OA = 1- XT x = 0. (20) 

This says that the unit vector x is an eigenvector with Sx = AX. 
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Example SupposeS is the diagonal matrix with entries 5, 3, 1. Write x as ( u, v, w) : 

maximum value 5 at x = (1, 0, 0) 

minimum value 1 at x = (0, 0, 1) 

saddle point value 3 at x = (0, 1, 0) 

By looking at R, you see its maximum of 5 and its minimum of 1. All partial derivatives of 
R(u, v, w) are zero at those three points (1, 0, 0), (0, 0, 1), (0, 1, 0). These are eigenvectors 
of the diagonal matrix S. R(x) equals the eigenvalues 5, 1, 3 at those three points. 

Maxima and Minima over Subspaces 

All the middle eigenvectors q2 , ... , qn_ 1 of S are saddle points of the quotient 
xT SxlxT x. The quotient equals .X2 , ... , An- 1 at those eigenvectors. All the middle 
singular vectors v2, ... , Vn-1 are saddle points of the growth ratio IIAxlllllxll- The ratio 
equals a 2 , ... , an-l at those singular vectors. Those statements are directly connected by 
the fact that xT Sx = xT AT Ax= IIAxW. 

But saddle points are more difficult to study than maxima or minima. A function moves 
both ways, up and down, as you leave a saddle. At a maximum the only movement is down. 
At a minimum the only movement is up. So the best way to study saddle points is to 
capture them by a "max-min" or "min-max" principle. 

Max-min for A2 A _ max min xTSx 
2 -all 2D spaces Y x is in Y ~ 

(21) 

In the 5, 3, 1 example, one choice of the 2D subspace Y is all vectors x = ( u, v, 0). 
Those vectors are combinations of q 1 and q 2 . Inside this Y, the minimum ratio x T S xI x T x 
will certainly be .X2 = 3. That minimum is at x = q2 = (0, 1, 0) (we understand minima). 

Key point: Every 2D space Y must intersect the 2D space of all vectors (0, v, w). 
Those 2D spaces in R3 will surely meet because 2 + 2 > 3. For any x = (0, v, w) 
we definitely know that x T Sx I x T x :S A2 . So for each Y the minimum in (21) is :S .X2 . 

Conclusion: The maximum possible minimum is A2 in (21) and Ai in (22). 

max 
Ai(S) = dim V =i 

min xT Sx 
x inV xTx 

max 
u,·(A __ ) = . dim W=i 

min IIAxll 
X inW~ (22) 

Fori = 1, the spaces V and Ware one-dimensional lines. The line V through x = q1 

(first eigenvector) makes xT SxlxTx = .X1 a maximum. The line W through x = v 1 

(first singular vector) makes IIAxlllllxll = a1 a maximum. 
For i = 2, the spaces V and W are two-dimensional planes. The maximizing V con

tains the eigenvectors q 1 , q2 and the maximizing W contains the singular vectors v 1 , v2. 

The minimum over that Vis .X2 , the minimum over that W is a 2 . This pattern continues 
for every i. It produces the Courant-Fischer max-min principles in equation (22). 
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Interlacing and the Weyl Inequalities 

For any symmetric matrices SandT, Weyl found bounds on the eigenvalues of S + T. 

Weyl inequalities (23) 

(24) 

The interlacing of the z's that we saw in Figure III.l is also proved by equation (23). 
The rank one matrix Tis Ouu T and its largest eigenvalue is .X1 (T) = 0. All of the other 
eigenvalues A.; (T) are zero. Then for every j = 2, 3, ... Weyl's inequality gives 
Ai+1(S + T) :::; Ai(S). Each eigenvalue Zi+I of S + T cannot go past the next 
eigenvalue Ai of S. And for j = 1 we have ..\1 (S + T) :::; ..\1 (S) +f): an upper bound 
on the largest eigenvalue of signal plus noise. 

Here is a beautiful interlacing theorem for eigenvalues, when the last column and row 
of a symmetric matrix S are removed. That leaves a matrix Bn-1 of size n- 1. 

The n -1 eigenvalues ai of the matrix Bn- 1 interlace the n eigenvalues of S. 

The idea of the proof is that removing the last row and column is the same as forcing all 
vectors to be orthogonal to (0, ... , 0, 1 ). Then the minimum in (22) could move below Ai. 
But ai won't move below Ai+I, because Ai+I allows a free choice with dim V = i + 1. 

Example 
Ai ~ Oi ~ Ai+1 [ -~ -~ =~ l 

-1 -1 2 
.X= 3, 3, 0 

[ 2 -1 ] 
-1 2 [ 2 ] 

0=3, 1 3>2>1 

Interlacing of Singular Values 
Suppose A is not square and symmetric-so its singular values are involved. Each 
column of A represents one frame in a video. We want to identify a rank one signal 
(3xy T hidden in those columns. That signal is obscured by random noise. If a light 
was turned on or off during the video, the goal is to see when that happened. 

This leads us to ask : How much do the singular values change from A to A + B ? 
Changes in eigenvalues of symmetric matrices are now understood. So we can study 
AT A or AAT or this symmetric matrix of size m + n with eigenvalues CJi and -ui: 

1i 
.i 

Instead we recommend the amazing notes by Terry Tao: https://terrytao.wordpress.com/ 
2010/0l/12f254a-notes-3a-eigenvalues-and-sums-of- hermitian-matrices/ 

Weyl inequalities 

i:s;m::;n 
ui+;-1(A +B) :::; ui(A) + u;(B) 

lui(A +B)- CTi(A)I :::; IIBII 

(26) 

(27) 
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Problem Set 111.2 

1 A unit vector u( t) describes a point moving around on the unit sphere u T u = 1. 
Show that the velocity vector du I dt is orthogonal to the position : u T ( du I dt) = 0. 

2 Suppose you add a positive semidefinite rank two matrix to S. What interlacing 
inequalities will connect the eigenvalues A of S and a of S + uu T + vv T ? 

3 (a) Find the eigenvalues A1 (t) and A2 (t) of A= [ i ~ ] + t [ ~ ~ ] . 

(b) At t = 0, find the eigenvectors of A(O) and verify ~~ = yT ~~ x. 

(c) Check that the change A(t) - A(O) is positive semidefinite fort > 0. Then 
verify the interlacing law A1 (t) ;:::: A1 (0) ;:::: Az(t) ;:::: Az(O). 

4 Sis a symmetric matrix with eigenvalues A1 > Az > ... > An and eigenvectors 
q1 , q2 , .•. , qn. Which i of those eigenvectors are a basis for an i-dimensional 
subspace Y with this property: The minimum of x TSxlxT x for x in Y is Ai. 

5 Find the eigenvalues of A3 and Az and A1. Show that they are interlacing: 

[ 1 -1 ] 
Az = -1 2 A1 = [ 1 J 

6 SupposeD is the diagonal matrix diag (1, 2, ... , n) and Sis positive definite. 

1) Find the derivatives at t = 0 of the eigenvalues A(t) of D + tS. 

2) For a small t > 0 show that the A's interlace the numbers 1, 2, ... , n. 

3) For any t > 0, find bounds on Amin (D + tS) and Amax (D + tS). 

7 SupposeD is again diag (1, 2, ... , n) and A is any n by n matrix. 

1) Find the derivatives at t = 0 of the singular values a(t) of D + tA. 

2) What do Weyl's inequalities say about amax (D + tA) and a min (D + tA)? 

8 (a) Show that every i-dimensional subspace V contains a nonzero vector z that is 
a combination of qi, qi+ 1, ... , qn. (Those q's span a space Z of dimension 
n - i + 1. Based on the dimensions i and n - i + 1, why does Z intersect V ?) 

(b) Why does that vector z have z T S z I z T z s; Ai ? Th~n explain - : 

max 
Ai = dim V = i 

min 
zin V 
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The Law of Inertia 

Definition If s is symmetric and c is invertible, then the matrix cT sc is 
"congruent to S". This is not similarity B-1 SB! Eigenvalues of CT SC can change 
from eigenvalues ofS, but they can't change sign. That is called the "Law of Inertia": 

CT SC has the same number of (positive) (negative) (zero) eigenvalues asS. 

My favorite proof starts with C = QR (by Gram-Schmidt). As R changes gradually to I, 
CTSC changes gradually to QTSQ = Q- 1SQ. Now we do have similarity (Q- 1SQ 
has the same eigenvalues as S). If R is invertible all the way to I, then no eigenvalues 
can cross zero on the way. Their signs are the same for CT SC and Q-1 SQ and S. 

The max-min principles also prove the Law of Inertia. 

9 If S = LDLT has n nonzero pivots in elimination, show that the signs of the pivots 
of S (in D) match the signs of the eigenvalues of S. Apply the Law to Sand D. 

10 Show that this 2n x 2n KKT matrix H has n positive and n negative eigenvalues : 

S positive definite 
C invertible 

The first n pivots from S are positive. The last n pivots come from -CTS- 1C. 

11 The KKT matrix H is symmetric and indefinite-this problem counts eigenvalues : 

H = [ ~ ~T ] ~ as in equation (17) 

n m 

H comes from minimizing ~xT Sx (positive definite) with m constraints Ax = b. 
Elimination on H begins with S. We know its n pivots are all positive. 

Then elimination multiplies AS- 1 times [ S AT ] and subtracts from [ A 0 ] 
to get [ 0 - AS-1 AT ] . That Schur complement - As-1 AT is negative definite. 
Why? Then the last m pivots of H (coming from -As-1 AT) are negative. 

12 If x T Sx > 0 for all x -=1- 0 and C is invertible, why is ( Cy) T S ( Cy) also positive? 
This shows again that if s has all positive eigenvalues, so does cT sc. 
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111.3 Rapidly Decaying Singular Values 

There are important matrices whose singular values have ak ~ Ce-ak. Those numbers 
decay quickly. Often the matrices are invertible (their inverses are incredibly large). 
And often we have a family of matrices of all sizes-Hilbert and Vandermonde matrices, 
Hankel and Cauchy and Krylov and spectral difference matrices and more. 

These matrices are at the same time easy and also hard to work with. Easy because 
only a few singular values are significant. Not easy when the inverse has a giant norm, 
increasing exponentially with the matrix size N. We will focus on two of many examples : 

1 The nonuniform discrete Fourier transform (NUDFT) has U =A.* F in place ofF. 

2 The Vandennonde matrix V fits a polynomial of degree N - 1 to N data points. 

Actually those examples are connected. A standard DFT fits N values fo to !N-1 at the 
N points wk = e-21rikjN. The Fourier matrix is a Vandermonde matrix! But instead of 
real points between -1 and 1, the DFT is interpolating at complex points-equally spaced 
around the unit circle lei01 = 1. The real case produces terrible Vandermonde matrices 
(virtually singular). The complex case produces a beautiful Fourier matrix (orthogonal). 

We start with that complex Fourier matrix F (equal spacing as usual). Multiplying by 
F is superfast with the Fast Fourier Transform in Section IV.l : ! N log2 N operations. 

For nonuniform spacing Xj =/:- j / N, the special identities behind the FFT are gone. 
But Ruiz-Antolin and Townsend showed how you can recover almost all of the speed: 
Write the nonuniform U as AjkFjk where A is near a low rank matrix: 

Fjk = e-2"frikj/N and Ujk = e-2"frika:j = AjkFjk 

When U = F is the DFT with equal spacing, every Ajk = 1. A has rank one. With un
equal spacing, a low rank matrix virtually agrees with A, and fast transforms are possible. 
Here are symbols for element by element multiplication AjkFjk and division U;k/ Fjk: 

Multiplication U = A . * F = A 0 F Division A = U 0 F. (1) 

The operation to execute quickly is the NUDFT : U times c. The Fast Fourier Transform 
computes F times c. The ratios Uik/ Fjk give a matrix A that is nearly low rank. 
So the nonuniform transform U comes from a correction A to the Fourier matrix F : 

Yi and Zi are diagonal N by N matrices with Yi and zi along their main diagonals. 
Equal spacing has U = F and A =ones and y 1 = Zt = (1, ... , 1) and Y1 = Z1 = I. 
For unequal spacing, r is determined by the nonuniformity of the sampling points Xi· 
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Sample Points xi near j / N 

In this "lightly perturbed" case, we can match the unequally spaced x3 with the equally 
spaced fractions jfN for 0 s j < N. For each entry of U, Ajk is a correction to Fjk: 

Then the key step for a fast algorithm is to find a close approximation to this matrix A 
(we know F is fast). The Eckart-Yaung theorem would suggest to use the SVD of A. 
But the SVD is a more expensive step than the rest of the fast unequally spaced transform. 

A is an interesting matrix. All its entries in equation (3) have the form ei8 • If we replace 
Ajk = e-ie by its power series 1 - i(} + · · · then A will begin with the all-ones matrix. 

The rest of this section finds low rank approximations by working with the Sylvester 
equation. Here Townsend takes a different route: Approximate the function e-ixy. 

The key idea is to replace the Taylor series for each of those matrix entries by a 
Chebyshev expansion. This reflects a rule of great importance for numerical analysis : 

Fourier series are good for periodic functions on an interval like I() I :::::; 1r. 

Chebyshev series are good for nonperiodic functions on an interval like I xI :::::; 1. 

The connection between Fourier and Chebyshev is cos() = x. The Fourier basis function 
cos nO becomes the Chebyshev polynomial Tn(x) = cos(n arccosx). The Chebyshev 
basis starts with To = 1 and T1 = x and T2 = 2x2 - 1 because cos 20 = 2 cos2 (} - 1. 
All those basis functions have max ITn(x)l = max I cosnOI = 1 from x = -1 to x = 1. 

An important point is that the n solutions of Tn(x) = 0 are not equally spaced. 
The zeros of cos nO are equally spaced, but in the x-variable those points come close 
together near the boundaries -1 and 1. Interpolation at these x = cos(';r(2k- 1)/2n) 
is far more stable than equally spaced interpolation. 

The highly developed computational system at chebfun.org is based on Chebyshev 
polynomials (for functions in one or more dimensions). It computes a polynomial 
very close to f(x). Then all operations on functions produce new polynomials as finite 
Chebyshev series. The degree needed for high accuracy is chosen by the chebfun code. 

This approach to the matrix A leads Ruiz-Antolin and Townsend to. a proof of 
low effective rank (close approximation to A by a low rank matrix). Their paper provides 
a very efficient code for the nonuniform Fourier transform. 

-~ 
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The Sylvester Equation 

We turn to the central problem of the subject: Which families of matrices have low 
effective rank ? The goal is to find a test that will reveal this property. To the 
examples of the Hilbert matrix and the NUDFf matrix A we want to add Vandermonde. 
And we hope for a test that can be applied to much wider classes of matrices-going 
far beyond the Vandermonde example. 

Here is the "Sylvester test" = "A, B, C test" developed by Beckermann and Townsend. 
The words low displacement rank and structured matrix are often applied to X. 

If AX - X B = C has rank r for normal matrices A, B with no shared eigenvalues, 
then the singular values of X decay at an exponential rate decided by A, B, and C. 

A matrix is normal if AT A = AA T. Then A has orthogonal eigenvectors: A = Q AQ T. 

Symmetric and orthogonal matrices are normal, because the test gives 8 2 = 8 2 and I= I. 
The Sylvester matrix equation AX - X B = C is important in control theory, and the 

particular case when B = -AT is called the Lyapunov equation. 

This Sylvester test requires us to find A, B, and C! That has been done for highly 
important families of Toeplitz and Hankel and Cauchy and Krylov matrices (including 
the Vandermonde matrix V). All those matrices solve Sylvester's equation for simple 
choices of A, B, C. We take V as our prime example: 

I : 
xr 

n-> I X1 ... x1 

X~ n-1 

Vandermonde matrix V= 
X2 ... x2 (4) 

Xn x2 n-i 
n Xn 

V is the n by n "interpolation matrix". It is invertible as long as the points x1 , ... , Xn are 
all different. We solve V c = f when we want the coefficients of a polynomial 
p = co + c1x + · · · + cn_ 1xn- 1 • Multiplying V times c gives us the value of p at the 
points x = x1, ... , Xn. Then V c = f says that the interpolating polynomial 
has the desired values h, ... , f n at those n points. The polynomial exactly fits the data. 

We noted that V becomes the Fourier matrix F when we choose complex points 
Xi = w = e-21ri/N and Xk = wk. This F has full rank. In that Fourier case A and B 
(below) have the same eigenvalues wk: not allowed. A and B don't satisfy our require
ment of well-separated eigenvalues and all the singular values have equal size : no decay. 

It is Vandermonde matrices with real numbers xi to Xn th?t have exponential decay 
in their singular values. To confirm this, apply the A, B, C test using these matrices : 

0 
0 
1 
0 

-~] C=[~~ 
0 0 0 

r o o o 

0 
0 

~ ~~:: l 
0 X~+ 1 

(5) 
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Those matrices A and B are certainly normal. (This requirement could be weakened but 
here it's not necessary.) The eigenvalues of B are equally spaced around the unit circle. 
Those A's are at angles 1r jn, 31f jn, ... , (2n - 1)7r jn, so they are not real numbers 
provided n is even. Then they don't touch the real eigenvalues x 1 , ... , Xn of A. 
And C has rank 1. The A, B, C Sylvester test is passed. 

The graph of singular values confirms that Vis highly ill-conditioned. So is K. 
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Figure Il1.2: Vandermonde and Krylov singular values for V and K = [b Ab ... An-1b]. 
Here b = all ones and Aij =random numbers (standard normal). V equals K when 
A= diag (1/n, 2/n, ... , 1). 

An Improved Sylvester Test 

The requirement that AX -X B = C has low rank is much more strict than the conclusion 
that X has rapidly decaying singular values. A perfect theorem would match the hypoth
esis on the Cn with the conclusion about Xn. Certainly it is not true that Vandermonde 
or Krylov matrices Xn of increasing size n have bounded rank. So we have to weaken l, 
that low rank requirement on Cn, while preserving the rapid singular value decay for Xn. 

Townsend has found such a theorem: "log-rank" for C leads to "log-rank" for X. 
And a recent paper with Udell establishes that log-rank is a very widespread property. 
Here is the definition (and many log-rank examples have q = 0 or q = 1). 

A family of matrices Cn has log-rank if I ( Cn - En)ij I < € 

for nearby matrices En that have rank (En) < c (log n) q 
(6) 

Example 1 The radial basis function kernel is often used in support ve£tor machines : 

RBFKernel K(x,x') =exp ( _llx~u~'ll2 ) 
For a set of feature vectors Xi, this produces the entries 0 < Kij < 1 of a full matrix K. 
Calculating all of them is impossible. With good approximations, we solve nonlinear 
classification problems by the "kernel trick" in VII.5. That matrix has low effective rank. 

1. M. D~Buhmann, Radial basis functions, Acta Numerica 9 (2000) 1-38. 

2. B. Fornberg and N. Flyer, A Primer on Radial Basis Functions, SIAM (2015). 

3. T. Hofmann, B. Scholkopf, and A. J. Smola, Kernel methods in machine learning, 
Annals of Statistics 36 (2008) 1171-1220 (with extensive references). 
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ADI and the Zolotarev Problem 

In a short paragraph we can point to two ideas that lead to fast decay for the singular 
values of X. The first is an ADI iteration to solve Sylvester's equation AX - X B = C. 
The Alternating Direction Implicit algorithm gives a computationally efficient solution. 
The second idea connects the eigenvalues of A and B (they are required not to overlap) 
to a problem in rational approximation. 

That "Zolotarev problem" looks for a ratio r(x) = p(x)jq(x) of polynomials that 
is small at the eigenvalues of A and large at the eigenvalues of B. Approximating by 
rational functions r(x) can be exponentially better than polynomials-a famous example 
is Newman's approximation of the absolute value lxl. The exponential accuracy of r(x) 
becomes connected to the exponential decay of singular values of X. 

ADI solves AX- XB = C 

Matrices Xi+l/2 and Xi+l 

Xi+1/2(B- Pi!)= C- (A- Pi!) Xi 

(A- qii)XJ+l = C- Xi+1/2(B- qii) 

The good rational function r(x) = p(x)jq(x) has roots Pi in the numerator and qj in 
the denominator. It was Zolotarev in 1877 (!) who found the best p's and q's in a model 
problem. With A and Bin the Sylvester test, the bound on al+kr(X) is the "Z-number" 
times a1 (X)-which means exponential decay of singular values. 

Townsend and Fortunato developed this idea into a superfast Poisson solver on a square. 
When X is the usual 5-point finite difference approximation to iJ2uj&x2 + 82uj&y2, 

fast solvers are already known. Their goal was a spectral method with optimal complexity. 

1. B. Beckermann, The condition number of real Vandermonde, Krylov, and positive 
definite Hankel matrices, Numerische Mathematik 85 (2000) 553-577. 

2. B. Beckermann and A. Townsend, On the singular values of matrices with displace
ment structure, SIAM J. Matrix Analysis, arXiv: 1609.09494v1, 29 Sep 2016. 

3. P. Benner, R.-C. Li, and N. , On the ADI method for Sylvester equations, 
J. Comput. Appl. Math. 233 (2009) 1035-1045. 

4. D. Fortunato and A. Townsend, Fast Poisson solvers for spectral methods, 
arXiv: 1710.11259v1, 30 Oct 2017. 

5. D. Ruiz-Antolin and A. Townsend, A nom,miform fast Fourier transform based 
on low rank approximation, arXiv: 1701.04492, SIAM J. Sci. Comp. 40-1 (2018). 

6. A. Townsend and H. Wilber, On the singular values of matrices with high 
displacement rank, arXiv :17120.5864, Linear Alg. Appl. 548 (2018) 19-41. 

7. A. Townsend, www.math.cornell.edu/rv ajt/presentations!LowRankMatrices.pdf 

8. M. Udell and A. Townsend, Nice latent variable models have log-rank, 
arXiv: 1705.07474v1, SIAM J. Math. of Data Science, to appear. 
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Problem Set 111.3 

1 Verify that a Krylov matrix K = [b Ab ... An-1b] satisfies a Sylvester equation 
AK - K B = C with B as in equation (6). Find the matrix C. 

2 Show that the evil Hilbert matrix H passes the Sylvester test AH - H B = C 

H-·- __ 1 __ 
•J- i + j- 1 A= ~diag (1, 3, ... , 2n-1) B=-A C = ones(n) 

3 A Toeplitz matrix T has constant diagonals (IV.5). Compute AT- TAT =C: 

[ 
to L1 · ·] 

T = h to L1 · 
• t1 to · . . . . 

4 A Hankel matrix H has constant antidiagonals, like the Hilbert matrix. Then Hii 
depends only on i + j. When H is symmetric positive definite, Beckermann and 

Townsend show that H = KT K for a Krylov matrix K (as in Problem 1 above). 
Then <Tj(H) = laj (K)I2 (why?) and the singular values of H decay quickly. 

5 A Pick matrix has entries Pjk = (sj + sk)/(xj + Xk) where :z: = (x1 , ... , xn) > 0 
and s = (s1, ... , sn) can be complex. Show that AP- P( -A) = sl T +1sT 
where 1 T = [1 1 ... 1] and A = diag ( x 1, ... , Xn). A has positive eigenvalues, ·• 
B = -A has negative eigenvalues, and the Sylvester test is passed. 

6 If an invertible matrix X satisfies the Sylvester equation AX - X B C, 
find a Sylvester equation for X - 1 . 

7 If A = Q AQ T has complex orthogonal eigenvectors q 1, ... , q n in the columns of Q, 
verify that AT A = AAT : then A is normal. The eigenvalues can be complex. 

8 If sT =Sand zT = -Z and SZ = ZS, verify that A= S + Z is normal. Since 
S has real eigenvalues and Z has imaginary eigenvalues, A = S + Z p,robably has 
complex eigenvalues. 

9 Show that equation (3) for U c follows from equation (2) for A. 
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111.4 Split Algorithms for £2 + £1 

These topics are truly important. They deserve a whole book. They include basis pursuit 
and LASSO optimization-plus matrix completion and compressed sensing in III.5. 
What we can do here is to present basic ideas and successful algorithms. 

Start with a linear system Ax = b. Suppose A has many more columns than rows 
(m << n). Then Axn = 0 has many solutions (A has a large nullspace). If Ax= b has 
one solution, then every x + Xn is another solution. Which one to choose? 

To minimize the £2 norm of x, we remove its nullspace component. That leaves the 
minimum norm solution x+ = A+b, coming from the pseudoinverse of A. This is the 
solution in 11.2 that uses the SVD. But x+ will generally have many small components
it can be very difficult to interpret. In MATLAB, pinv(A) * b finds x+. Backslash A\b 
finds a fairly sparse solution-but probably not the optimal x for basis pursuit. 

A solution to Ax = b with many zero components (a sparse solution, if it exists) 
comes from minimizing the £1 norm instead of the £2 norm : 

Basis pursuit Minimize llxll1 = lx1l + · · · + lxnl subject to Ax= b. (1) 

This is a convex optimization problem, because the .e1 norm is a convex function of x. 
The .e1 norm is piecewise linear, unlike .e2 and all other .eP norms except llxlloo = maxi xi I· 
Basis pursuit is not solved by the SVD of A, which connects to the .e2 norm. But .e1 

has become famous for giving sparse solutions, and fast algorithms have now been found. 

The sparsest solution of Ax = b minimizes llxllo = number of nonzero components 
of x. But this is not a true norm: ll2xllo = llxllo. The vectors with llxllo = 1 and only 
one nonzero component lie along the coordinate axes, like i = (1, 0) and j = (0, 1). 
So we "relax" or "convexify" the £ 0 problem to get a true norm-and that norm is £1 . 

The vectors with llxll1 = lx1l + lx2l :::; 1 fill the diamond with comers at ±i and ±j. 

A related problem allows for noise in Ax = b; an exact solution is not required. 
Now the £1 norm enters as a penalty Allxlll or a constraint llxll1 :::; t: 

LASSO (in statistics) 
Minimize ~I lAx- bll~ + Allxlb or 

Minimize ~IIAx- bll~ with llxll1:::; t 
(2) 

LASSO was invented by Tibshirani to improve on least squares regression. It has sparser 
solutions than "ridge regression" which uses .e2 norms in the penalty and the constraint. 
Geometrically, the difference between llxlb :::; 1 and llxll2 :::; 1 is in the shape of those 
two sets : diamond for £1 versus sphere for £2 . Please see both figures in Section 1.11. 

A convex set I lAx- bll~ = C has a good chance to hit that diamond at one of its 
sharp points. The sharpest points are sparse vectors. But the sphere has no sharp points. 
The optimal x is almost never sparse in .e2 optimization. Since that round convex set can 
touch the sphere anywhere, the .e2 solution has many nonzeros. 
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Split Algorithms for £1 Optimization 

Sparse solutions are a key reason for minimizing in £1 norms. The small nonzeros 
that appear in £2 will disappear in £1 . This was frustrating to know, in the days when 
£1 algorithms were very slow. Now the numerical implementation of £1 optimization 
has essentially caught up with the theory. 

Here is the picture. Many important optimization problems combine two terms : 

Convex F1 and F2 Minimize F 1 (m) + F 2 (m) form in a convex set K (3) 

Ft involves an £1 -type norm and F2 involves an £2 -type norm. Their convexity is very 
valuable. But they don't mix well-the £2 iterations (ordinarily fast enough) are slowed 
down waiting for £1 to learn which components should be nonzero. 

The solution is to "split" the algorithm. Alternate between £2 steps and £1 steps. 
In important cases, it becomes possible to solve £1 problems explicitly by a "shrinkage" 
operation. The split iterations are much faster and more effective than a mixed £1 -£2 step. 
Among the leading algorithms are ADMM and split Bregman and split Kaczmarz 
(all described below). 

One way to start is to see key words that describe the development of the algorithms. 
Those words describe forward steps that improved on the previous method-and made the 
final ADMM algorithm a success: 

Dual decomposition 

Augmented Lagrangian 

Method of multipliers 
ADMM : Alternating direction method of multipliers 

This step-by-step presentation is following the plan established by Boyd, Parikh, Chu, 
Peleato, and Eckstein in their excellent online book on ADMM : Distributed Optimiza
tion and Statistical Learning via the Alternating Direction Method of Multipliers. It was 
published in Foundations and Trends in Machine Learning, 3 (2010) 1-122. 

Those authors include a neat history (with references) for each of the four steps to ADMM. 
Here is a statement of the problem, leaving ample freedom in the convex function f(x). 

I Minimize f ( m) subject to Am = b : A is m by n I (4) 

This is the primal problem form = (x1 , .. . , Xn). The first step is to combine Am = b 
with the cost function f ( m) by introducing Lagrange multipliers y1 , ... , Ym : 

Lagrangian (5) 
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The combined solution x*, y* is a saddle point of L : min max L = max min L. 
X y y X 

The equations to solve are 8Ljox = 0 and 8Ljoy = 0. In fact 8Ljoy = 0 gives 
us back exactly the constraint Ax = b. This is a fundamental idea in optimization with 
constraints. In Chapter VI, the y's are seen as the derivatives 8Ljob at the optimal x*. 

Now comes the key step from the primal problem for x = (x1, ... , xn) to the dual 
problemfory = (y1 , ... ,ym)· MinimizeL(x,y) overx. Theminimumoccursata 
point x* depending on y. Then the dual problem is to maximize m(y) = L(x*(y), y). 

Steepest Increase of m (y) 

To maximize a function m(y), we look for a pointy* where all the partial derivatives 
are zero. Inotherwords,thegradientiszero: Vm = (8mjoy1 , ... ,8mj8ym) = 0. 
The present problem has a neat formula for those y-derivatives of m: Vm = Ax* - b. 

How to maximize a function m(y) when we know its first derivatives? This will be 
the central question of Chapter VI, leading to the algorithm that optimizes the weights 
in deep learning. There we will minimize a loss function; here we are maximizing m(y). 
There we will follow the gradient downhill (steepest descent). Here we will follow the 
gradient uphill (steepest ascent). In both cases the gradient tells us the steepest direction. 

Steepest increase for max min L = max m 

Find xk+l and follow Vm = Axk+l- b 

Xk+l = argminL(x,yk) 

Yk+I = Yk + sk(Axk+l -b) 

(6) 

(7) 

That number skis the stepsize. It determines how far we move in the uphill direction Vm. 
We do not expect to hit the maximum of m in one step ! We just take careful steps upward. 
It is a common experience that the first steps are successful and later steps give only small 
increases in m. In financial mathematics that dual variable y often represents "prices". 

Note that "argmin" in equation (6) is the point x where that function Lis minimized. 
This introduction of duality-minimizing over x and maximizing over y, in either 
order-was not just a wild impulse. The reason comes next. 

Dual Decomposition 

Suppose that the original function f(x) is separable: f(x) = JI(x1 ) + · · · + !N(xN)
Those Xi are subvectors of x = (x1 , ... , xn)· We partition the columns of A in the 
same way, so that A = [At ... AN]· Then Lagrange's function L(x,y) splits into 
N simplerLagrangians, £1 to LN: 

(8) 

Now the x-minimization of L splits into N minimizations to be solved in parallel. 
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Decomposed dual problem 

N dual problems in parallel 

187 

(9) 

(10) 

TheN new x:+1 from (9) are gathered into Axk+l in (10). Then the resulting yk+l is 
distributed to the N processors that execute separate minimizations in the next iteration 
of (9). This can give an enormous saving compared to one large minimization (6) when 
f(x) is not separable. 

Augmented Lagrangians 

To make the iterations (9)-(10) more robust-to help them converge if f(x) is not strictly 
convex-we can augment f(x) by a penalty term with a variable factor p: 

Augmented Lagrangian Lp(x,y) = f(x) + yT(Ax- b)+~ pI lAx- bll~- (11) 

This is the Lagrangian for minimizing f ( x) + ~ p II Ax - bll2 with constraint Ax = b. 
The same steps still lead to maximization as in (6)-(7). And the penalty constant p 

becomes an appropriate step size s : We can show that each new ( x k+ 1 , y k+ 1 ) satisfies 
V f(xk+d + ATyk+l = 0. But there is a big drawback to adding the penalty term with p: 
The Lagrangian Lp is not separable even if f(x) is separable! 

We need one more step to keep the advantage of separability (leading to N simpler 
maximizations solved in parallel) together with the greater safety that comes from including 
the penalty term~ pI lAx- bW. • 

ADMM : Alternating Direction Method of Multipliers 

The key new idea is splitting. The original f(x) is broken into two parts (possibly an 
£1 part and an £2 part). We could call these parts fi and f2, but to avoid subscripts they 
will be f and g. And we allow g to have a new variable z (instead of x), but we recover 
the original problem by adding the constraint x = z. This dodgy but legal maneuver 
allows us to keep a separable problem, with the big advantage of parallel computations
the pieces of Xk+l and Zk+ 1 are distributed to separate computers. 

That new constraint x = z joins the original Ax = b in a total of p linear constraints 
Ax+ Bz =c. We are now maximizing f(x) + g(z). And as before, we augment,the 
Lagrangian for safer convergence : 

Lp(x, z, y) = f(x) + g(z) + yT(Ax +By- c)+~ pI lAx+ By- cW. (12) 

Now we have an extra equation to update z at each step. As before, the stepsize s 
can be the regularizing coefficient p. The key advantage of ADMM is that x and z are 
updated sequentially and not jointly. The two functions f(x) and g(z) are alternated. 
A separable f or g will allow the distribution of pieces, for minimization in parallel. 
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Here are the three steps that reach a new x, z, y closer to x*, z*, y*: 

Xk+l = argmin Lp (x, zk, Yk) (13) 
X 

ADMM Zk+l = argmin Lp (xk+I, z, Yk) (14) 
z 

Yk+l = Yk + p (Axk+l + Bzk+I -c) (15) 

In practice, ADMM can be slow to reach high accuracy-but surprisingly fast to achieve 
acceptable accuracy. We mention here (looking ahead to Chapter VII on deep learning) 
that modest accuracy is often sufficient and even desirable-in situations where overfitting 
the training data leads to unhappy results on test data. 

We continue to follow Boyd et al. by rescaling the dual variable y. The new variable is 
u = y j p and the linear and quadratic terms are combined in the Lagrangian. This produces 
a scaled ADMM that has advantages in practice. 

Xk+I = argmin (f(x) + t pI lAx+ Bzk- c + ukW) 
X 

Zk+l = argmin (g(x) + t p IIAxk+l + Bz- c + ukW) 
z 

Uk+l = Uk + Axk+l + Bzk+l - c 

(16) 

(17) 

(18) 

In any optimization, and certainly in this one, we should identify the equations we are 
solving. Those equations are satisfied (as we wanted) by the optimal x*, z* in the primal 
problem and y* or u * in the dual problem: 

0 = Vf(x*) + ATy* 

0 = Vg(z*) + BTy* 

Gradients V f and V g 

0 E 8f(x*) + ATy* 

0 E 8g(z*) + BTy* 

Subdifferentials 8 f and 8g 

(19) 

(20) 

A proper treatment of this problem (and a convergence proof for ADMM) would require 
more convex analysis than we are prepared for. But the reader will see why each step 
was taken, in reaching the scaled ADMM in (16)-(18). Convergence holds (see recent 
papers of Hajinezhad) even if f and g are not strictly convex. (They must be closed and 
proper. This allows f = 0 on a closed nonempty convex set and f = +oo otherwise. 
Subdifferentials = multivalued derivatives enter for such a function, at the edge of K.) 
And the unaugmented Lagrangian must have a saddle point. 

The next pages follow Boyd's ADMM book by developing four major examples. 

1 D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, 
Athena Scientific (1986). 

2 M. Fortin and R. Glowinski, Augmented Lagrangian Methods, North-Holland (1983-5). 

3 D. Hajinezhad and Q. Shi, ADMM for a class of nonconvex bilinear optimization, 
Journal of Global Optimization 70 (2018) 261-288. 
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Example 1 This classical problem of convex optimization will be the starting point 
of Chapter VI. The function f ( :z:) is convex. The set K is closed and convex. 

I Minimize f(x) for :z: in K.J (21) 

ADMM rewrites ":z: in K" as a minimization of g. It connects :z: to z by a constraint. 

I Minimize f ( :z:) + g( z) subject to :z: - z = o.J (22) 

g is the indicator function of the set K: g(z) = 0 or +oo for z in or out of K. 
So g = 0 at the minimum, which forces the minimizer to be in K. The indicator func
tion g(z) is closed and convex, because the "cylinder" above its graph (above K) is closed 
and convex. The scaled augmented Lagrangian includes the penalty term: 

1 
L ( :z:' z' u) = f ( :z:) + g ( z) + 2 p II :z: - z + u 11 2 • (23) 

Notice how the usual A. T (:z: - z) was folded into equation (23) by the scaling step. 
Then ADMM splits (22) into a minimization alternated with a projection : 

Xk+l = argmin [f(:z:) + ~ p ll:z:- Zk + ukll 2] 

ADMM Zk+l = projection of Xk+l + Uk+l onto K 

Uk+l = Uk + Xk+l - Zk+l 

Example 2 Soft thresholding An important £1 problem has an exact solution. 

f(x) = All:z:lll = Alx1l + · · · + Alxnl splits into n scalar functions A lxli· • 
Separation by ADMM leads to the minimization of each special function h to fn: 

fi(xi) =AI xi I+ ~ p (xi - vi) 2 with Vi = Zi - Ui 

The solution xi is the "soft thresholding" of Vi drawn in Section Vl.4 : 

(24) 

Not only is this thresholding function xi an explicit solution to an important nonlinear 
problem, it is also a shrinkage operator: every Vi moves toward zero. 

We will soon see this soft thresholding as a "proximal" operator. 
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Example 3 Nonnegative Matrix Factorization A ~ C R with Cii 2: 0 and Rii 2: 0 

ADMM begins with an alternating minimization--our favorite way to factor a matrix. 

Find C 2: 0 

Find R 2: 0 

Minimize I lA- CRII} with R 2: 0 fixed 

Minimize I lA- CRII} with C 2: 0 fixed 

Boyd et al. point out an equivalent problem with C and R in the constraint X = C R : 

NMF Minimize I lA- XII}+ h(C) + h(R) with X= CR 

ADMM adds a third step that updates the dual variable U. And it introduces a new variable 
X constrained by X = CR 2: 0. The indicator function J+(C) is zero for C 2: 0 and 
infinite otherwise. Now ADMM splits into a minimization over X and C, alternating with 
a minimization over R : 

(Xk+l, ck+l) = argmin [I lA- XII}+~ p IIX- CRk + Ukll}] with X 2: 0, c 2: 0 

Rk+l = argminiiXk+l- Ck+1R+ Ukll} with R 2:0 

The rows of Xk+l• Ck+1 and then the columns of Rk+l can all be found separately. 
The splitting promotes parallel computation. 

Example 4 LASSO aims for a sparse solution to Ax = b by including an £1 penalty : 

LASSO Minimize ~IIAx-bW+>-.IIxlh (25) 

Immediately that problem splits into f(x) + g(z) with the constraint x - z = 0. The 
subproblem for x is least squares so we meet AT A. Augment with ~pI lAx - bll 2 • 

Scaled ADMM Xk+l =(AT A+ pJ)- 1 (ATb + p (zk- uk)) 

Soft thresholding zk+l = S>.;p(xk+l + uk) 

Dual variable uk+l = uk + Xk+l - Zk+l 

By storing the LU factors of AT A + pi, the first step reduces to back substitution. 
Boyd et al remark that replacing llxll1 = L lxil by.IIFxlh = L lxi+l - xil converts 
this example into "total variation denoising". Their online book offers excellent and con
vincing examples of ADMM. 
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Matrix Splitting and Proximal Algorithms 

A first connection of Ax = b to ADMM comes from splitting that matrix into A = B +C. 
In classical examples B could be the diagonal part of A or the lower triangular part of A 
(Jacobi or Gauss-Seidel splitting). Those were improved by Douglas-Rachford and 
Peaceman-Rachford, who regularized by adding al and alternated between B and C: 

(B + al)xk+l = b + (al- C)zk 

(C + al)zk+l = b+ (al- B)xk+l 
(26) 

This idea appeared in 1955, when problems were linear. It led to deeper nonlinear ideas: 
proximal operators and monotone operators. A special feature is the appearance of exact 
formulas for several important proximal operators-particularly the .e1 minimization that 
led to soft thresholding and shrinkage in Example 2. We will define the Prox operator and 
connect it to ADMM. 

In optimization, the analog to those matrix equations (26) has b = 0 and B = V F2. 
Here F2 is the .e2 part and its gradient V F2 (or its subgradient 8F2 ) is effectively linear. 
Then 8F2 + al corresponds to B + al and its inverse is a "proximal operator": 

ProxF(v) = argmin (F(x) + ~llx- vii~) (27) 

The key facts to justify this proximal approach (and the splitting into F1 + F2) are 

1 The .e2 problem is well understood and fast to solve 

2 The .e1 problem often has a closed form solution (by shrinkage). 

The double-step combination-the analog for optimization of the double-step matrix ·~ 
equations (26)-is the "proximal version" of ADMM with scaling factor a : 

ADMM 

Xk+l = (8F2 + al)-1(azk- auk) 

Zk+l = (8F1 + al)- 1 (axk+l +auk) 

Uk+l = Uk + Xk+l - Zk+l 

(28a) 

(28b) 

(28c) 

Overall, proximal algorithms apply to convex optimization. For the right problems 
they are fast. This includes distributed problems-minimizing a sum of terms in parallel 
(as for ADMM). Parikh and Boyd remark that Prox compromises between miJ}.imizing a 
function and not moving too far. They compare it to gradient descent x- aVF(x) in 
which a plays the role of the stepsize. The fixed points of Prox are the minimizers of F. 

Here are two excellent references and a website with source code for examples : 

P. Combettes and J.- C. Pesquet, Proximal splitting methods in signal processing, in 
Fixed-Point Algorithms for Inverse Problems, Springer (2011). arXiv: 0912.3522 

N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends in Optimiza
tion 1 (2013) 123-321. 

Book and codes: http://stanford.edu/"' boyd/papers/pdf/prox_algs.pdf 
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Figure II1.3: Smooth function f(x): One tangent at each point with slope V f. Pointed 
function f(x) = lxl: Many tangents with slopes aj (the subgradient) at the sharp point. 

Bregman Distance 

The name Bregman is appearing for the first time in this book. But "Bregman distance" 
is an increasingly important idea. Its unusual feature is the lack of symmetry: 
D(u,v) =/=- D(v,u). And the distance from u to v depends on a function f. 
We do have D 2 0 and also D(w, v) S D(u, v) along a straight line with u < w < v: 

Bregman Distance D Dt(u, v) =f(u)- f(v) -(V f(v), u-v) (29) 

Always the gradient V f is replaced by a subgradient 8 f at points where the graph of 
f ( x) has a comer. Then 8 f can be the slope of any tangent plane that stays below the 
convex function f(x). The standard examples in one dimension are the absolute value 
lxl and the ReLU function max (0, x) = i<x + lxl) with comers at x = 0. The tangent 
planes to lxl can have slopes 8lxl between -I and 1. For8(ReLU) the slopes are between 
0 and I. These subgradients make a f an effective (but multivalued) replacement for V f. 

Split Bregman and Split Kaczmarz 

For minimization with an £1 penalty term (like basis pursuit), two iterative algorithms 
need to be seen. Start from Ax = b : 

Linearized Bregman iteration with parameter A ~ 0 

Yk+l = Yk- SkAT(Axk- b) 

Xk+l = S(yk+1 ) = sign (Yk+l) max (IYk+ll - A, 0) 

(30) 

(31) 

(30) is a normal adjustable step to reduce I lAx - biJ 2 • Its stepsize is s > 0. Then the soft 
thresholding functionS applies to each component of the vector Yk+l· If Yk+l = (I, -3) 
and A= 2, the output xk+ 1 from this nonlinear functionS in (31) will be the vector Xk+l: 

Xk+l =((I) max (I- 2, 0), (-I) max (3- 2, 0)) = (0, -1). 

If Ax= b has a solution and if sAmax(AT A) < I, the Bregman vectors Xk will converge 
to the optimal vector x* : 

x* minimizes 
1 

Allxlll + -llxll~ subject to Ax= b. 
2 

(32) 
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Kaczmarz iteration is effective for big data with sparse vectors. The standard steps 
solve Ax = b. They cycle sequentially or randomly through those n equations a[ x = bi 
(where a[ is row i of A). Each step adjusts Xk by a multiple cai of one column of AT, 
to satisfy the ith equation a[ Xk+l = bi: 

bi - a[ Xk T T T bi - a[ Xk 
Xk+l = Xk + lla,ll 2 ai solves ai Xk+l = ai Xk + ai ai llaill 2 = bi. (33) 

The sparse Kaczmarz steps combine (33) with the soft threshold in (31): 

Sparse Kaczmarz Yk+l = Xk- skai and XkH = S(yk+1). (34) 

There is always freedom in the step size s k. The choice s k = (a[ x k - bi) j II ai 11 2 is 
consistent with Kaczmarz. Lin and Zhou have proposed an online learning algorithm 
for the same problem. This means that the step k -+ k + 1 is taken as soon as the new 
observation bk and the new equation a I x = bk arrive to join the computation. Then the 
learning algorithm (34) immediately computes Yk+l and xk+l· 

1 T. Goldstein and S. Osher, The split Bregman method for £ 1 regularized problems, 
SIAM Journal oflmaging Sciences 2 (2009) 323- 343. 

2 W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for £1 

minimization with applications to compressed sensing, SIAM J. Imaging Sciences 1 
(2008) 143-168. 

3 Y. Lei and D.-X. Zhou, Learning theory of randomized sparse Kaczmarz method,*; 
SIAM J. Imaging Sciences 11 (2018) 547-574. 

Bounded Variation : L 1 Norm for the Gradient 

Natural images have edges. Across those edges, the defining function u(x, y) can have 
a jump. Its gradient Vu = (8uj8x, 8uj8y) can be smooth in the edge direction, but 
Vu has a delta function in the perpendicular direction. The energy norm of u is infinite 
but its bounded variation norm is finite : 

IIVull~ =Jj(u;+u;)dxdy=oo but lluiiBv=IIVulh=jj~tlxdy<oo 

In one dimension u( x) could be a unit step function. Its derivative is a delta function 8 ( x). 
The integral of 8(x) 2 is infinite. But the integral of 8(x) is 1. We can't work with the 
L 2 norm of the derivative <5(x), but the L 1 norm of 8(x) is good. 

In applications to image denoising, that BV norm is a very successful penalty term. 
We fit the data, and we use the BV norm to prevent wild oscillations. The image can be 
smooth or piecewise smooth, but it can't have random "speckled" noise. 

L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal 
algorithms, Physica D 60 (1992) 259-268. (This paper was fundamental in applying BV.) 
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Problem Set 111.4 

1 What vector x minimizes f(x) = llxll2 for x on the line x Tv = 1? 

2 Following Example 1 in this section, write Problem 1 as a minimization of 
f(x) + g(z) with x = z. Describe that 0-1 indicator function g(z), and take 
one ADMM step starting from x = 0, z = 0, u = 0. 

3 Which vector x minimizes >.jlxlh on the line xTw = 1 if w = (2, 3)? 

4 

5 

6 

Following Example 2, take one ADMM step in Problem 3 from x = (1, 1). 

What matrices C ~ 0 and R ~ 0 minimize IIA- CRII} if A = [ -~ 
Following Example 3 in this section, take one ADMM step in Problem 5 : 

1 ] ? 2 . 

FromA=[ -~ ~] Ro=[~ n Uo=[~ n compute X1.Cl,Rl.Ul. 

7 Find the LASSO vector x that minimizes ~I lAx- bll~ + >.llxll1 with 

A=[~ ~] b=U] >.=2 

8 Following Example 4, take one ADMM step in Problem 7 from uo = (1, 0) = zo 
withp = 2. 

9 Find Proxp(v) = argmin a11xjj 2 + !llx- vjj 2) in equation (27). This is the 

proximal operator for F(x) = ~ llxll2• It is a function of v. 

Here are three function spaces (each contained in the next) and three examples of u(x, y): 

Smooth u(x, y) Lipschitz (slope can jump) Bounded variation (u can jump) 

Bowl x2 +y2 Flatbase max(x2 +y2 -1,0) Cylinderbase (addstepupalongr=1) 

A neat "coarea formula" expresses the BV norm of u as the integral of the lengths of 
the level sets L(t) whereu(x,y) = t. JJ jjgrad ull dxdy = J(Iengthof L(t)) dt. 

Example Compute both sides of the coarea formuta for a bowl: u(x, y) = x2 + y2 • 

On the left side, jjgrad uil = ll(2x, 2y)ll = 2r. The bowl area integrates from 0 toR: 
lluiiBv = llgrad uill = ff(2r) rdrdB = 47rR3 /3. 

On the right side, the level set where u = t is the circle x2 + y2 = t with length 21r.,ft. 
The integral of that length L( t) from t = 0 to R 2 is J 21r.,ft dt = 47f R 3 /3. 

10 What is lluiiBV ifu(x, y) = x+y in the triangle with sides x = 0, y = 0, x+y = 1? 
What is lluliBV if u = 0 in a unit square and u = 1 outside? 
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111.5 Compressed Sensing and Matrix Completion 

The basic principle of compressed sensing is that a sparse signal can be exactly recovered 
from incomplete data. It is a remarkable experience to see a perfect image emerging 
from too few measurements. The geometry of an £1 diamond versus an £2 sphere is one 
way to explain it. Now mathematical analysis has identified the conditions on A and the 
minimum number of measurements. We will summarize. 

The reader will understand that the Nyquist-Shannon theorem is still in force. To 
recover a noisy signal exactly, you must sample with at least twice its top frequency. 
Otherwise part of that signal is missed. But sparse signals are not noisy ! If a signal 
is expressed by a small number of sinusoids or wavelets, then that sparse signal can be 
recovered (with probability extremely close to 1) by a small number of measurements. 

It is important to remember: Sparsity depends on the basis v1 , ••• , Vn in which the 
signal is represented. It uses only a few v's. And the signal can be sensed in a different 
basis w 1 , ... , w n. The v 's are the columns of a representing matrix V, and the w 's are the 
columns of an acquiring matrix W. A common example: The v's are a Fourier basis and 
thew's are a spike basis. Then Vis the Fourier matrix F and W is the identity matrix I. 

A key requirement for compressed sensing is "incoherence" of V and W : the 
entries of VTW are small. Those are the inner products v[ Wj. Luckily we do have 
low coherence for F and I : all entries of F have equal size. And even luckier: 
Random matrices with llcolumnsll = 1 are almost sure to be incoherent with any fixed 
basis. So randomness and probabilities close to 1 are key ideas in compressed sensing. 

The sensing step produces only m < n nonzero coefficients Yk of the unknown signal f : ~ 
y = WT f. To reconstruct f* = V x* close to this f, we use £1 optimization to find x* : .. 

Minimize llxlll subject to WTVx = y (1) 

This is a linear programming problem (it is basis pursuit). That tells us again to expect 
a sparse solution x* (at a comer of the set of vectors with WTV x = y). So the simplex 
method is a potential algorithm for locating x*. And there are faster ways to solve (1). 

The basic theorem was established by Candes and Tao and Donoho: 

Suppose V and Ware incoherent and x* is sparse (:S S nonzeros). The probability 
is overwhelming that if m > C Slog n, the solution to (1) will reproduce f exactly. 

Note One unusual situation arises when the true signal is supersparse in the basis of w's. 
Maybe it is exactly one of the w's. Then probes might find only zeros and we totally 
miss that win x*. This is one reason that probability enters into compressed sensing. 
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The basic theorem above is not the full story. The system will have noise. So we are 
recovering a vector x that solves Ax = b + z, where z can be stochastic and unknown. 
The sparse problem is nearby, but it doesn't perfectly match the noisy data. We want 
stable recovery : Solve (I) with noisy data and obtain an x* that is near the sparse x** 
(:s; S nonzeros) that would have come from noiseless data. 

This conclusion is true when A has the "restricted isometry property" with ~ < V2 - 1 : 

(RIP) (1- ~) JJxJJ~ 5 JJAxJJ~ 5 (1 + ~) JJxJJ~ if x is S-sparse. (2) 

Fortunately, the matrix A can have columns chosen randomly on the unit sphere
or chosen randomly from the normal distribution N(O, 1/m)--or with independent 
random entries equal to ±1/ fo-or in other random ways. The RIP requirement is 
almost surely satisfied if m > C Slog(n/ S). 

This finally connects the number of measurements m with the sparsity S. And the 
noisy data leads us to replace basis pursuit (where Ax exactly equals b) with LASSO: 

LASSO with noise Minimize JJxJ h subject to JJAx - bll2 ::; e: (3) 

This exposition of compressed sensing has followed the article by Candes and Wakin : 
IEEE Signal Processing Magazine 21 (March 2008). That article refers to the early work 
of Candes, Tao, and Donoho-which achieved a highly valuable goal. Instead of acquir
ing massive accounts of data and then compressing it all (as a camera does), only m = 
O(S log n/ S) is acquired and used. A one-pixel camera becomes possible, with no lens, 
as Rich Baraniuk has shown. Perhaps the medical applications are the most valuable
we will start and end with those. 

The start was an unexpected observation by Candes in 2004. The Logan-Shepp test 
image (an abstract model of the human head) was corrupted by noise. It looked as if 

Magnetic Resonance Imaging (MRI) had been stopped too soon. To improve the image, 
Candes tried an idea using £1 . To his surprise, the phantom image became perfect 
(even though the data was incomplete). It was almost an online equivalent of Roentgen's 
discovery of X -rays in 1895-an accident that gave birth to an industry. 

Incredibly, in the week of writing these words, an essay by David Donoho appeared 
in the online Notices of the American Math Society (January 2018). It describes how 
compressed sensing has accelerated MRI. Scan times are reduced from 8 minutes to 70 
seconds, with high quality images. Dynamic heart imaging becomes feasible even for 
children. Michael Lustig was a pioneer in this MRI "Success, and a host of mathematicians 
contributed to the theory and the algorithms. The FDA has approved a change that will 
come gradually in the United States, as thousands of scanners are upgraded. 

The purpose of Donoho's essay was to show that funding and collaboration and theory 
and experiment (and a little luck) have produced something wonderful. 
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Matrix Completion in the Nuclear Norm 

The rank of a matrix is like the number of norizeros in a vector. In some way the rank 
measures sparsity. For low rank, the matrix E of singular values is literally sparse 
(r nonzeros). Just as the number of nonzeros is a "0-norm" for vectors, the rank is a 
"0-norm" for matrices. But llvllo and IIAIIo are not true vector and matrix norms, 
because llvllo = ll2vllo and rank(A) = rank(2A). Multiplying by 2 doesn't change the 
count of nonzeros or the rank-but it always doubles any true norm. 

Nevertheless we often want sparsity for vectors and low rank for matrices. The matrix 
completion problem starts with missing entries in a matrix Ao. We want to complete A0 

to A, keeping the rank as low as possible. We are introducing a minimum of unexplained 
data. This problem of missing data is widespread in all areas of observational science. 
Some assumption about the completed A is needed to fill in the blanks, and minimum rank 
is a natural choice. Look at these examples : 

A =[1 2] 
0 * * Bo = [ ! :] G=[l 2] 

0 3 * 
All can be completed with rank 1. A0 allows any multiple of (1, 2) in the second row. 
B0 allows any numbers band c with be = 4. Co allows only 6 in its last entry. 

With vectors, we relaxed the sparsity norm llvllo to the £1 norm llvlll· With matrices, 
we now relax the rank norm II A II 0 to the nuclear norm II All N. This nuclear norm is 
the £1 norm of the. diagonal of E. We are minimizing the sum of the singular values: 

!Nuclear norm IIAIIN = 0"1 +u2+· ··+urI (4) >, 

Now we have a convex norm, but not strictly convex: IIB1 + B2IIN = IIB1IIN + IIB2IIN 
is possible in the triangle "inequality". In fact the example matrix B0 could be completed 
symmetrically by any b = c between -2 and 2. The nuclear norm IIBIIN stays at 5 
(singular values = eigenvalues and IIBIIN = trace for this positive semidefinite B). 
Rank one matrices are roughly analogous to sharp points in the diamond llxll1 = 1. 

A famous example for matrix completion was the Netflix competition. The ratings 
of m films by n viewers went into A0 • But the customers didn't see all movies. Many 
ratings were mtssmg. Those had to be predicted by a recommender system. The 
nuclear norm gave a good solution that needed to be adjusted for human psychology-
Netflix was not a competition in pure mathematics. · 

Another application is computing the covariance matrix from a lot of sampled data. 
Finding all covariances aij can be expensive (typical case: the covariances of all stocks 
over 365 days). We may compute some and estimate the rest by matrix completion. 
A scientific example: All the covariances in measuring the ocean surface at 104 p,ositions. 

~ 

Here is the "convex relaxation" of rank minimization to nuclear norm minimization: 

Matrix completion Minimize II A II N subject to A = Ao in the known entries. 
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The mathematical question is: By knowing K entries in ann by n matrix of rank r, 
can we expect a perfect recovery of the whole matrix? The remarkable answer is yes
provided K is large enough. Candes and Recht proved that if K > C n 514 r logn, 
then with high probability (in a suitable model !) the recovery of A is perfect. 

Here are a few comments on their 20-page proof, followed by references. 

1. "With high probability" does not mean "certain". We must work with a model for ran
dom matrices A. One choice takes U and V as random orthogonal matrices in A = UEVT. 

2. The analysis and proof use matrix versions of the key inequalities of statistics in V.3. 

3. Finding A with smallest nuclear norm can be expressed as a semidefinite program: 

M. . . th f [ W1 X ] X contains the known entries 
mtmtze e trace o X TXT W TXT • • 'd fi · 

vv2 1, vv2 are positive serm e mte 

1. D. Donoho, Compressed sensing, IEEE Trans. Inform. Th. 52 (2006) 1289-1306. 

2. E. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal 
reconstruction from highly incomplete Fourier information, IEEE Transactions on 
Information Theory 52 (2006) 489-509. 

3. E. Candes and B. Recht, Exact matrix completion via convex optimization, Founda
tions ofComp. Math. 9 (2009) 717- 736; arXiv: 0805.4471v1, 29 May 2008. 

4. T. Hastie, B. Mazumder, J. Lee, and R. Zadeh, Matrix completion and low-rank SVD 
via fast alternating least squares, arXiv: 1410.2596, 9 Oct 2014. 

Algorithms for Matrix Completion 

We need an algorithm that completes the matrix A, with fixed entries A known. 
Reference 4 above traces the development of three alternating iterations-each new 
method improving on the previous algorithm. This is how numerical analysis evolves. 

1 (Mazumder et. al) Soft-threshold the SVD of Ak (see Section VI.5 for S >..): 

Ak = UkEk VkT and Bk = UkS>..(Ek)V? with S>..(CJ) =max (CJ- >.., 0) 

S>.. sets the smaller singular values of Bk to zero, reducing its rank. Then 

Ak+l minimizes ~II(A- Bk)knownll} + .A.IIBkiiN (5) 

The drawback is the task of computing the SVD of Ak at each step. In the Netflix compe
tition, A had 8 x 109 entries. The authors succeeded to reduce this heavy cost. And each 
previous SVD gives a warm start to the next one. And new ideas kept coming. 

2 (Srebro et. al) These authors write the solution matrix as CRT = ( m x r) ( r x n) : 

~i!7~ ~II(A- CRT)knownll} + ~(IICII} + IIRII}) (6) 
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This is convex inC alone and in R alone (so biconvex). An alternating algorithm is natural: 
Update C and then update R. Each problem is an £2 ridge regression for each column of 
C and then each column of R. This produces a "maximum margin" factorization CR. 

3 (Hastie et. al, see 4 above) The third algorithm came in 2014. It is a variation on the 
first-but it alternates between C and R as in the second. The minimization now includes 
all entries of A - CRT, not only those in the known positions. This greatly simplifies 
the least squares problem, to work with full columns of both known and unknown entries. 

Start with this (alternating) least squares problem, when A is fully known: 

Minimize 
C and R 

(7) 

An explicit solution is C = UrS>.('Er )112 and R = VrS>. (E •. )112 . All solutions including 
this one have CRT = UrS>.('Er)V7 =soft SVD of A. The soft thresholding S>. shows 
the effect of the penalty term in (7). Amazingly and beautifully, that product B = CRT 
solves this rank r nuclear norm problem: 

Minimize 
rank(B):::; r ~I lA- Bll} +>-liB! IN 

This connection to (7) yields the following fast alternating computation of B = CRT. 

(8) 

For the moment assume all entries of A are known : none missing. Start with 
C =random m x rand D = Ir. Each step updates R, C, and D. 

1. Minimize over R (n x r) I lA- CRT II}+ >-IIRII} (9) 

2. Compute this SVD RD = UEVT Set D = ~and Rnew = V D 

3. Minimize over C (m x r) I lA- CRT! I}+ >-IICII} (10) 

4. Compute this SVD CD = UEVT Set D = ~and Cnew = U D 

Repeat those steps until CRT converges to the solution B of (8). 
Now Hastie et. al return to the real problem, in which A has missing entries: not known. 

At each iteration, those are taken from the current matrix CRT. This produces a very 
efficient sparse plus low rank representation of A. 

A= Aknown + (CRT)unknown =(A- CRT)known +CRT. (11) 

The final algorithm is a slight modification of (9)-(10), by using A from equation (13). 
The solutions to (9)-(10) have remarkably simple forms, because those problems are 
essentially ridge regressions (least squares): 

Altogether the algorithm is described as Soft-impute Alternating Least Squares. 
Hastie et al analyze its convergence and numerical stability. They test an implementation 
on the data for the Netflix competition-with success. 

~ 
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Problem Set 111.5 

1 For one or more of these examples in the text, can you find the completion that 
minimizes IIAIIN? 

A =[1 2] 
0 * * B =[1 *] 

0 * 4 
C=[1 2] 

0 3 * 
2 Corresponding to the important Figure 1.16 near the start of Section 1.11, can you 

find the matrix with smallest "sum norm" I JAils= lai + Jbl + Jel + Jdl so that 

3 For 2 by 2 matrices, how would you describe the unit ball I JAils :::; 1 in that sum 

norm Jal + Jbl + Jel + Jdl? 

4 Can you find inequalities that connect the sum norm to the nuclear norm for n by n 
matrices? 

IIAIIN:::; e(n) IIAIIs and I JAils:::; d(n) IIAIIN 

5 If only one entry of a matrix A is unknown, how would you complete A to minimize 

I JAils or IIAIIN? 

Here are two neat formulas for the nuclear norm (thank you to Yuji Nakatsukasa). 

6 Start from A = U:EVT = (U:E112 ) (:E112VT). If you rename those two factors 
2 2 

U* and V*, so thatA=U*V*, show that JIU*IIF =I IV* IIF = IIAIJN: equality in(*). 

7 If A is positive semidefinite then IIAIIN = trace of A (why?). Then if A = UV, 
explain how the Cauchy-Schwarz inequality gives 
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Part IV : Special Matrices 

This chapter develops two large topics : the key matrices for Discrete Fourier Transforms 
and for graphical models. Both topics appear in machine learning when the problem has 
special structure-which is reflected in the architecture of the neural net. 

Fourier is for problems with shift invariance. The operations on one pixel of an image 
are the same as the operations on the next pixel. In that case the operation is a convolution. 
Each row of the underlying matrix is a shift of the previous row. Each column is a shift of 
the previous column. Convolutional nets use the same weights around each pixel. 

With that shift-invariant structure, a convolution matrix (a ''filter" in image processing) 
has constant diagonals. TheN by N matrix in a !-dimensional problem is fully determined 
by its first row and column. Very often the matrix is banded-the filter has finite length
the matrix has zeros outside a band of diagonals. For 2-dimensional problems with repeated 
one-dimensional blocks the saving is enormous. 

This makes it possible to use a Convolutional Neural Net (CNN or ConvNet) when an ~ 

N 2 by N 2 matrix full of independent weights would be impossible. A major breakthrough 
in the history of CNN's was this NIPS 2012 paper: 

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton: ImageNet Classification with 
Deep Convolutional Neural Networks. Their neural net had 60 million parameters. 

Graphs have a different structure. They consist of n nodes connected by m edges. 
Those connections are expressed by the incidence matrix A : m rows for the edges 
and n columns for the nodes. Every graph is associated with four important matrices : 

Incidence matrix A m by n with -1 and 1 in .each row . 
Adjacency matrix M n by n with aij = 1 when nodes i and j are connected 

Degree matrix D n by n diagonal matrix with row sums of M 

Laplacian matrix L = AT A = D - M positive semidefinite matrix 

From the viewpoint of deep learning, Fourier problems are associated with CN~'s and 
graphical models lead to graphical nets. Graph theory has become our most valuable tool 
to understand discrete problems on networks. 
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Iv.l Fourier Transforms : Discrete and Continuous 

The classical Fourier transforms apply to functions. The discrete Fourier transform (OFT) 
applies to vectors : 

Real Fourier series: real periodic functions f(x + 21r) = f(x) 

Complex Fourier series : complex periodic functions 

Fourier integral transforms: complex functions f ( x) for -oo < x < oo 

Discrete Fourier series : complex vectors f = Uo, it, ... , f N -d 
Our focus is on the last one-transforming vectors to vectors. That is achieved by an 
N by N matrix. The inverse transform uses the inverse matrix. And all these transforms 
share basis functions of the same type that Fourier used : 

Real Fourier series : cosines cos nx and sines sin nx 

Complex Fourier series: complex exponentials ein:z: for n = 0, ±1, ±2, ... 

Fourier integral transforms: complex exponentials eik:z: for -oo < k < oo 

Discrete Fourier series: N basis vectors bk with (bk)j = e 2-rrijk/N = (e2-rri/N) jk_ 

Each function and each vector is expressed as a combination of Fourier basis functions. 
What is the "transform"? It is the rule that connects f to its coefficients ak, bk, Ck, f(k) 
in these combinations of basis functions: 

Real series f(x) = ao + a1 cosx + b1 sinx + az cos2x + bz sin2x + · · · 

Complex series f(x) =co+ c1ei"' + c_le-i"' + cze2i"' + c_2e-Zi:z: + · · · 

Fourier integrals f(x) = /_: f(k)eikx dk 

Discrete series f = eobo + clbl + ... +cN-lbN-1 = FouriermatrixF timesc 

Each Fourier transform takes f in "x-space" to its coefficients in "frequency space". 
The inverse transform starts with the coefficients and reconstructs the original function. 

Computing coefficients is analysis. Reconstructing the original f (shown in the box) 
is synthesis. For vectors the commands f f t and iff t produce c from f, f from c. 
Those commands are executed by the Fast Fourier·Transform. 
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Orthogonality 

In all four transforms, the coefficients have nice formulas. That is because the basis 
functions are orthogonal. Orthogonality is the key to all the famous transforms (often 
the basis contains the eigenfunctions of a symmetric operator). This allows us to find 
each number Ck separately. For vectors, we just take the (complex!) dot product (bk, f) 
between f and each of the orthogonal basis vectors bk. Here is that key step: 

All inner products (bk, bi) are zero in equation (1), except (bk, bk). Those denominators 
( bk, b k) = II b k 11 2 = -rr or 2-rr or N are a pleasure to compute for Fourier basis functions : 

Real series: I(cosnx)2 dx = -rr and I(sin nx)2 dx = -rr and I(1) 2dx = 2-rr 

Complex series: I eikxe-ikxdx =I 1 dx = 2-rr 

Discrete series: br bk = 1·1 + e21rik/N. e-21rik/N + e41rik/N. e-41rik/N + ... = N 

If we normalize basis vectors to II bk II = 1 then Fourier matrices are orthogonal. 

The Fourier integral case is the subtle one and we stop after writing down equation (2). 
Its infinite integrals come from Fourier series when the period 211" increases to 27rT with 
T-too: 

(2) 

Fourier Matrix F and DFT Matrix n 
The matrices FN and nN are N by N. They are both symmetric (but complex). They 
have the same columns, but the order of columns is different. FN contains powers of 
w = e21r:i/N and nN contains powers ofthe complex conjugate w = w = e-21r:i/N. 

RomanwandGreekw. Infactthetwomatricesarecomplexconjugates: FN = nN. 
Here are F4 and 0.4 , containing powers of w = e21r:i/4 = i and w = e-21ri/4 = -z. 
We count rows and columns starting at zero, so F and 0. have rows 0, 1, 2, 3 : 

Fouri~ F ~ [: 

1 1 ;.] [I 1 1 

(-~)'] i i2 DFT n _ 1 -i ( -i)2 
matrax 4 1 i2 i4 i6 matrix 4 - ~ (-i)2 ( -i)4 ( -i)6 

1 i3 i6 i9 ( -i)3 ( -i)6 ( -i)9 

(3) 

0 times f produces the discrete Fourier coefficients c 
F times vc brings back the vector 4/ = N f because FO. = N I 

'~ 
.I 
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If you multiply FN times nN' you discover a fundamental identity for discrete Fourier 
transforms. It reveals the inverse transform : 

(4) 

To see this, look closely at theN numbers 1, w, ... , wN-l in the second column of F. 
Those numbers all have magnitude 1. They are equally spaced around the unit circle in the 
complex plane (Figure IV.l). They are theN solutions to the Nth degree equation zN = 1. 

Their complex conjugates 1, w, ... , wN - 1 are the same N numbers. These powers 
of w go around the unit circle in the opposite direction. Figure IV.l shows 8 powers of 
w = e21rijB and w = e-21ri/B. Their angles are 45 ° and -45 °. 

i i 
N=8 

Figure IV.l: The powers of w are also the powers of w. They are the N solutions to zN = 1. 

To prove that FNnN = N I, here is the property we need. TheN points add to zero! 

For every N the sum S = 1 + w + w2 + .. · + wN-I is zero. (5) 

The proof is to multiply S by w. This produces w + · · · + wN. That is the same as S, 
because wN at the end is the same as 1 (at the start). Then Sw = S. So S must be zero. 

You see right away that the eight numbers around the circle in Figure IV.l add to 
zero, because opposite pairs already add to zero. For odd N that pairing doesn't work. 

This factS = 0 tells us that every off-diagonal entry in FNnN is zero. The diagonal 
entries (sum of 1's) are certainly N. So FN ON= NI. If we divide F and n by .,fiii, 
then the two matrices are inverses and also complex conjugates: they are unitary. 

Unitary matrices are the complex version of orthogonal matrices. Instead of QT == Q-1 

we have QT = Q-1. It is appropriate to take complex conjugates when you transpose a 
complex matrix (and most linear algebra codes do that automatically). In the same way, 

the complex version of a real symmetric matrix is a Hermitian matrix with ST = S. 
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The DFT Matrix !l is a Permutation of the Fourier Matrix F 

The matrices F and n have the same columns. So F and n are connected by a per.., 
mutation matrix. That permutation P leaves the zeroth columns alone: the column of 1 's 
in both matrices. Then P exchanges the next column (1, w, w2 , ••• , wN-1) ofF for its 
last column (1,w,w2 , .•• ,wN-1). After the 1 in its zeroth row and column, P contains 
the reverse identity matrix J (with 1's on the antidiagonal): 

P=[1 OJ= 0 0 0 1 [1 0 0 0] 
0 J 0 0 1 0 P 2 = I and 0 = F P and OP = F P 2 = F 

0 1 0 0 

Here are the full matrices for 0 = F P when N = 4 : 

[1 1 1 1 l [1 - 1 -i ( -i)2 ( -i)3 - 1 
n - 1 ( -i)2 ( -i)4 ( -i)6 - 1 

1 ( -i)3 (-i)6 ( -i)9 1 

1 = 1 
-i = i 3 

because ( -i)2 = i 2 

( -i)3 = i 

These matrix identities lead to the remarkable fact that F 4 = 0 4 = N 2 I. 
Four transforms bring back the original vector (times N 2). Just combine Fn = N I 
and F P = n with P 2 = I: 

I F 2 P = FO = NI so PF2 = NI and F 4 = F 2PPF2 = N 2 I.1 
From F 4 = N 2 I, it follows that the Fourier matrix F and the DFT matrix n have only 
four possible eigenvalues ! They are the numbers .X = -IN and i -IN and --IN and 
-i/"N that solve .X4 = N 2. For sizes N > 4 there must be and will be repeated A's. 
The eigenvectors of F are not so easy to find. 

The Discrete Fourier Transform 

Start with any N-dimensional vector f = (!0 , ... , ]N-1). The Discrete Fourier Transform 
expresses f as a combination of eo bo + c1 b1 + · · · + c N -1 b N -1 of the Fourier pasis vectors. 
Those basis vectors are the columns b (containing powers of w) in the Fourier matrix FN: 

[ ~0 ] = [ bo · · · bN-1 ] [ 7 ] 
/N-1 CN-1 

f=FNc 

c = F!V 1f 
1 

c = NnNt 

(7) 

The forward transform c = fft (f) multiplies f by the OFT matrix n (and divides by N). 
That is the analysis step, to separate f into N orthogonal pieces. The OFT finds the coef
ficients in a finite Fourier series f =cabo+···+ CN-1bN-1· 
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The synthesis step is the inverse transform f = ifft (c) = F c. It starts with those 
coefficients c = (co, ... , CN-1). It carries out the matrix-vector multiplication Fe to 
recover f. 

Thus ifft (fft (f)) =f. Examples will throw light on the two vectors f and c. 

Example 1 The transform off= (1, 0, ... , 0) is c = ~ (1, 1, ... , 1). 

That vector f with one spike is a discrete delta function. It is concentrated at one point. 
Its transform c spreads out over all frequencies. Multiplying r!f picks out the zeroth 
column of n. Therefore c shows the same Fourier coefficients 1/N from all frequencies. 
HereN=4: 

1 1 1 . . . 0 1 1 1 1 i i 2 i 3 0 . 

[ 1 .• '1[11 [11 ([11 [11 [11 [11) [1] c = 4n f = 4 ~ : : : ~ = 4 ~ f =Fe = 4 ~ + ~: + :: + !: . = ~ . 

This transform c of a "delta vector" f is like the continuous transform of a "delta function". 
The delta function concentrates everything at x = 0. Its Fourier transform spreads out flat: 

00 . 1 171" . 1 
6(:z:) = ~::::cketkx has Ck = -2 O(x)e-tkxdx =- for every frequency k. 

-oo 7f -71" 27r 

(8) 
You see how 27f in the continuous transform matches N in the discrete transform. 

Example 2 f = (1, 1, ... , 1) will transformbacktothedeltavectorc = (N, 0, ... ,0). 

Example 3 A shift in the delta vector to f = (0, 1, 0, ... , 0) produces a "modulation" 
in its transform. This shifted f picks out the next column (1, w,. 0 0, wN - 1 ) of F: 

c= ~r!Nf=~[ ~ 1 andf=Fc=~[~ ~ •• w~- 1 
][ ~ ]=[~10 

wN-1 1 wN-1 •• w(N-1) 2 wN-1 0 

(9) 

Fourier series would have a shift from f ( x) to f ( x - s). Each coefficient Ck is 
multiplied by e-ikso This is exactly like the multiplications of (1, 1,. 0., 1) in Example 1 
to produce (1,w, 0 0 0 ,wN-1) in Example 30 

Shift rule A shift in x-space is multiplication of the coefficients in k-space. 
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One Step of the Fast Fourier Transform 

We want to multiply F times c as quickly as possible. Normally a matrix times a vector . 
takes N 2 separate multiplications-the matrix has N 2 entries. You might think it is im
possible to do better. (If the matrix has zeros then multiplications can be skipped. But the 
Fourier matrix has no zeros!) By using the special patterns wik and w3k for their entries, 
n and F can be factored in a way that produces many zeros. This is the FFT. 

The key idea is to connect FN with the half-size Fourier matrix FN/2· Assume that 
N is a power of 2 (for example N = 210 = 1024). F 1o24 connects to F512• 

When N = 4, the key is in the relation between F 4 and two copies of F2 : 

and 

On the left is F 4 , with no zeros. On the right is a matrix that is half zero. The work 
is cut in half. But wait, those matrices are not the same. We need two sparse and simple 
matrices to complete the FFT factorization: 

TheFFThas 
three matrices I J . (10) 

The last matrix is a permutation. It puts the even c's (eo and c2) ahead of the odd c's (c1 
and c3). The middle matrix performs half-size transforms F2 and F2 on the even c's and 
odd c's separately. The matrix at the left combines the two half-size outputs-in a way that 
produces the correct full-size output y = F4c. 

The same idea applies when N = 1024 and M = !N = 512. The number w is 
e21ri/1024. It is at the angle (} = 27r /1024 on the unit circle. The Fourier matrix F1024 is 
full of powers of w. The first stage of the FFf is the great factorization discovered by 
Cooley and Tukey (and foreshadowed in 1805 by Gauss): 

p 1024 = [ 1ls12 DD512] [F512 '1:1 ] [ even-o~d ] . 
512 - 512 r512 permutatlon 

(11) 

ls12 is the identity matrix. D 512 is the diagonal matrix with entries (1, w, ... , w511 ). The 
two copies of F512 are what we expected. Don't forget that they use the 512th root of unity 
(which is nothing but w2!!) The permutation matrix separates the incoming vector c into 
its even and odd parts c' = (eo, c2, ... , c1022) and c" = ( c1 , c3, ... , c1023). · 

l 
.'i 
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Here are the algebra formulas which say the same thing as that factorization of F1024: 

(One step of the FFT) Set M = ~ N. The first M and last M components of y = FNc 
combine the two half-size transforms y 1 = FMd and y" = FMc". Equation (11) 
shows this step from N to M = N /2 as I y 1 + Dy" and I y 1 - Dy": 

I + ( )j II Yi = Yj WN Yj, 
I ( )j II YJ+M = Yj - WN Yj' 

j = o, ... ,M -1 

j = o, ... ,M -1. 
(12) 

Split c into c1 and c". Transform them by FM into y 1 andy". Then (12) reconstructs y. 
Those formulas come from separating Co ... , CN-1 into even c2k and odd c2k+l in (13). 

N-1 M-1 M-1 

"""' .k """' 2 .k """' .(2k+l) 1 Yj = L..J w Ck = L..J w 3 c2k + L..J w C2k+l with M =2N,w = WN. 

0 0 0 

Even c's go into c 1 = (eo, c2, ... ) and odd c's go into c" = (c1, c3, ... ). Then come 
the transforms FM c1 and FMc". The key is w~ = w M. This gives w'#k = wf;. 

Rewrite (13) 

(13) 

For j ~ M, the minus sign in (12) comes from factoring out ( w N) M = -1 from ( w N )i. 

MATLAB easily separates even c's from odd c's and multiplies by w1v. We use 
conj(F) or equivalently MATLAB's inverse transform ifft to produce y = Fe. Remem
ber that fft is based on W = W = e-21ri/N and it produces C from y using !1. 

FFTstep 
fromNtoN/2 
inMATLAB 

Transform even c's 
Transform odd c's 
Vector 1, w, ... is d 
Combine y 1 and y 11 

y1 = ifft (c(O: 2: N- 2)) * N/2; 
y" = ifft (c(1: 2: N -1)) * N/2; 
d = w."(O: N/2 -1)'; 
y = [y1 +d.* y"; y1 - d.* y"]; 

The flow graph on the next page shows c1 and c" going through the half-size F2. Those 
steps are called "butterflies," from their shape. Then the outputs y 1 andy" are combined 
(multiplying y" by 1, i from D and also by -1, -i from -D) to produce y = F4c. 

This reduction from FN to two FM's almost cuts the work in half-you see the zeros 
in the matrix factorization. That 50% reduction is good but not great. The complete FFT 
is much more powerful. It saves much more than htilf the time. The key idea is recursion. 

And the factorization ofF applies equally to the conjugate matrix n = F. 
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00 00 

10 10 

01 01 

11 11 

The Full FFT by Recursion 

If you have read this far, you probably guessed what comes next. We reduced F N to 
FN/2· Keep on going to FN/4· Every F512 leads to F256· Then 256leads to 128. That is 
recursion. 

Recursion is a basic principle of many fast algorithms. Here is step 2 with four copies 
of F255 and D (256 powers ofw512). Evens of evens eo, c4, cs, ... come before c2, c5, c10, ... 

[ l [I D l [F l [pick 0, 4, 8, .. ·1 F512 I -D F pick 2, 6, 10, ... 
= F512 I D F pick 1,5,9,... . 

I -D F pick 3, 7, 11, ... 
1 

We will count the individual multiplications, to see how much is saved. Before the FFT ' 
was invented, the count was the usual N 2 = (1024)2. This is about a million multiplica
tions. I am not saying that they take a long time. The cost becomes large when we have 
many, many transforms to do-which is typical. Then the saving by the FFf is also large: 

The final count for size N = 2t is reduced from N 2 to ~ N £. 

The number 1024 is 210, so f = 10. The original count of (1024) 2 is reduced to 
(5)(1024). The saving is a factor of 200. A million is reduced to five thousand. That is why 
the FFf has revolutionized signal processing. 

Here is the reasoning behind ! N f. There are f levels, going from N ~ 2£ down to 
N = 1. Each level has N /2 multiplications from the diagonal D's, to reassemble the half
size outputs from the lower level. This yields the final count ! N f, which is ! N log2 N. 

One last note about this remarkable algorithm. There is an amazing rule for the order 
that the c's enter the FFf, after all the even-odd permutations. Write the numbers 0 to n- 1 
in binary (like 00, 01, 10, 11 for n = 4). Reverse the order of those digits: 00, 10, 01, 11. 
That gives t!;te bit-reversed order 0, 2, 1, 3 with evens before odds. · 

The complete picture shows the c's in bit-reversed order, the f = log2 N steps of the 
recursion, and the final output Yo, ... , y N _ 1 which is F N times c. 

The FFf recursion for the DFT matrix n = F uses exactly the same ideas. 
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Problem Set IV.l 

1 After S = 0 in equation (5), the text says that all off-diagonal entries of FnDN 

are zero. Explain (row i of F)· (column j of D) = complex dot product = 0? 

Why is (1, wi, w 2i, ... , w(N-l)i) • (1, wj ,w2j, ... , w(N-l)j) = 0 if i =1- j? 

You must use the dot product for complex vectors, not x 1y1 + · · · + XNYN· 

2 If M = ~N show that (wN )M = -1. This is used in the FFf equation (12). 

3 What are the matrices F3 and D3 (using w = e2ni/3 and w = w)? What 3 by 3 
permutation matrix P will connect them by n = F P and F = DP ? 

4 Find the Discrete Fourier Transform c off = (0, 1, 0, 0). Verify that the inverse 
transform of c is f. 

5 Connect F6 to two copies of F3 by a matrix equation like ( 1 0) and ( 11 ). 

6 For N = 6, how do you see that 1 + w + w2 + w3 + w4 + w5 = 0 ? 

7 Suppose f(x) = 1 for lxl ~ 1r /2 and f(x) = 0 for 1r /2 < lxl ~ 1r. This function 
is "even" because J( -x) = f(x). Even functions can be expanded in cosine series: 

f(x) = ao + a1 cosx + a2 cos2x + · · · 
Integrate both sides from x = -1r to 1r, to find a0 . Multiply both sides by cos x and 
integrate from -1r to 1r, to find a 1 . 

8 Every real matrix A with n columns has AAT x = a1(aJx) + · · · + an(a;x). 

If A is an orthogonal matrix Q, what is special about those n pieces ? 

For the Fourier matrix (complex), what is changed in that formula? 

9 What vector x has F4 x = (1, 0, 1, 0)? What vector has F4 y = (0, 0, 0, 1)? 
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IV.2 Shift Matrices and Circulant Matrices 

When this matrix P multiplies a vector x, the components of x shift upward: 

Upward shift 
Cyclic permutation 

213 

(1) 

The words "cyclic" and "circular" apply to P because the first component x1 moves to 
the end. If we think of numbers x1 , x2 , x3 , x4 around a circle, P moves them all by one 
position. And P2 turns the circle by two positions : 

p2x= [~ ~ ~ ~] [~ ~ ~ ~] [~~] = [~ ~ ~ ~] [~~] = [:=] (2) Q 0 0 1 0 0 0 1 X3 1 0 0 0 X3 X1 

1 0 0 0 1 0 0 0 X4 0 1 0 0 X4 X2 

Every new factor P gives one additional shift. Then P 4 gives a complete 360 ° turn : 
P 4 x = x and P 4 = I. The next powers P 5 , P 6 , P7 , P 8 repeat the pattern and cycle 
around again. Notice that P 3 is the inverse of P, because (P3 ) (P) = P 4 =I. 

The next matrix is called a circulant. It is simply a combination of P, P 2 , P 3 , and 
P 4 = I. It has constant diagonals: 

Each diagonal in that matrix cycles around exactly like the 1's in P. The diagonal with 
c1 , c1 , c1 is completed by the fourth c1 at the bottom. Important : If you multiply two 
circulant matrices C and D, their product CD= DC is again a circulant matrix. 

When you multiply CD, you are multiplying powers of P to get more powers of P. 
And DC is doing exactly the same. This example has N = 3 and P 3 = I : 

CD= [ ! ~ ~ ] [ : ~ ~ ] = [ ~~ ~~ ~~ ] = circulant (4) 
2 3 1 0 4 5 22 19 13 

(I+ 2P + 3P2 ) (51+ 4P2 ) 2 3 4 2 
(5/ + 4p2) (I+ 2P+ 3P2) = 51+10P+(15+4)P +8P +12P = 131+22P+19P 
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At that last step, I needed and used the circular facts that P 3 = I and P 4 = P. So the 
vectors (1, 2, 3) for C and (5, 0, 4) forD produce the vector (13, 22, 19) for CD and DC. 
This operation on vectors is called cyclic convolution. 

To summarize: When we multiply N by N circulant matrices C and D, we take the 
cyclic convolution of the vectors (co, c1, ... , CN-1) and (do, d1, ... , dN_I). Ordinary con
volution finds the coefficients when we multiply (eo I + c1P + · · · + eN _1PN - 1) times 
(d0 I +d1P+· · +dN _1pN-l ). Then cyclic convolution uses the crucial factthat pN = I. 

Convolution (1, 2, 3) * (5, 0, 4) = (5, 10, 19, 8, 12) (5) 

Cyclic convolution (1, 2, 3) ® (5, 0, 4) = (5+8, 10+ 12, 19) = (13, 22, 19) (6) 

Ordinary convolution is the multiplication you learned in second grade (made easier be
cause there is no "carrying" to the next column) : 

1 2 3 

5 0 4 

4 8 12 

0 0 0 

5 10 15 

5 10 19 8 12 = c * d 

The cyclic step combines 5 + 8 because P 3 = I. It combines 10 + 12 because P 4 = P. 
The result is (13, 22, 19). 

Practice (0,1,0) ® (do,dt,d2) = (dt,d2,do) 

(1, 1, 1) ® (do, d1, d2) =(do+ d1 + d2, do+ d1 + d2, do+ dt + d2) 

(eo,c1,c2) ® (do,d1,d2) = (do,d1,d2)® (co,c1,c2) 

That last line means that CD= DC for circulant matrices and c ® d = d ® c for cyclic 
convolutions. Powers of P in C commute with powers of P in D. 

If you add 1 + 2 + 3 = 6 and 5 + 0 + 4 = 9, you have a quick check on convolution. 
Multiply 6 times 9 to get 54. Then 54 should be (and is) equal to 5 + 10 + 19 + 8 + 12 = 54. 
And also 13 + 22 + 19 = 54 for cyclic convolution .. 

The sum of the c's times the sum of the d's equals the sum of the outputs. That is 
because every c multiplies every d in c * d and in c ® d. 
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Eigenvalues and Eigenvectors of P 

With N = 4, the equation Px = >.x leads directly to four eigenvalues and eigenvectors: 

[ ~ 
1 0 

n r ~; l r~n~~r~~l 
X2 = AXl 

Px= 0 1 
gives X3 = AX2 

. (7) 
0 0 X4 = AX3 

0 0 Xl = AX4 

Start with the last equation x1 = AX4 and work upwards : 

Xl = AX4 = >.2x3 = >.3x2 = >.4xl leading to >.4 = 1. 

The eigenvalues of Pare the fourth roots ofl. They are all the powers i, i2, i 3, 1 of w = i. 

>.=i, >.=i2 =-1, >.=i3 =-i, and .X=i4 =1. (8) 

These are the four solutions to det(P- >.I) = >.4 - 1 = 0. The eigenvalues i, -1, -i, 1 
are equally spaced around the unit circle in the complex plane (Figure IV.2). 

When P is N by N, the same reasoning leads from pN = I to >. N = 1. The N 
eigenvalues are again equally spaced around the circle, and now they are powers of the 
complex number w at 360 IN degrees = 21r IN radians. 

The solutions to zN = 1 are >. = w, w 2 , ••• , wN -t, 1 with w = e27ri/N. (9) 

In the complex plane, the first eigenvalue w is ei0 = cos()+ i sin() and the angle () is 21r IN. 
The angles for the other eigenvalues are 2(), 3(), ... , N (). Since () is 21r IN, that last angle is ~ 
N () = 21r and that eigenvalue is >. = e21ri which is cos 21r + i sin 21r = 1. 

For powers of complex numbers, the polar form with eie is much better than 
using cos () + i sin (). 

imaginary axis 

Figure IV.2: Eigenvalues of PN : The 4 powers of >. = i for N = 4 will add to zero. 
The 8 powers of>. = w = e2ni/B for N = 8 must also add to zero. 
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At that last step, I needed and used the circular facts that P 3 = I and P 4 = P. So the 
vectors (1, 2, 3) for C and (5, 0, 4) forD produce the vector (13, 22, 19) for CD and DC. 
This operation on vectors is called cyclic convolution. 

To summarize: When we multiply N by N circulant matrices C and D, we take the 
cyclic convolution of the vectors (co, c1, ... , CN-d and (do, d1, ... , dN-d· Ordinary con
volution finds the coefficients when we multiply (col+ c1P + · · · + CN-lpN-l) times 
(dol +d1P+· · ·+dN-lpN-l ). Then cyclic convolution uses thecrucialfactthatPN =I. 

Convolution (1, 2, 3) * (5, 0, 4) = (5, 10, 19, 8, 12) (5) 

Cyclic convolution (1, 2, 3) ® (5, 0,4) = (5+8, 10+ 12, 19) = (13, 22, 19) (6) 

Ordinary convolution is the multiplication you learned in second grade (made easier be
cause there is no "carrying" to the next column) : 

1 2 3 

5 0 4 

4 8 12 

0 0 0 

5 10 15 

5 10 19 8 12 = c * d 

The cyclic step combines 5 + 8 because P 3 =I. It combines 10 + 12 because P4 = P. 
The result is (13, 22, 19). 

Practice (0, 1,0) ® (do,d1,d2) = (d1,d2,do) 

(1, 1, 1) ® (do, d1, d2) =(do+ d1 + d2, do+ d1 + d2, do+ d1 + d2) 

(co,cloc2) ® (do,d1,d2) = (do,d1,d2)® (co,cl,c2) 

That last line means that CD= DC for circulant matrices and c ® d = d ® c for cyclic 
convolutions. Powers of P in C commute with powers of P in D. 

If you add 1 + 2 + 3 = 6 and 5 + 0 + 4 = 9, you have a quick check on convolution. 
Multiply 6 times 9 to get 54. Then 54 should be (and is) equal to 5+ 10+ 19+8+12 =54. 
And also 13 + 22 + 19 =54 for cyclic convolution._ 

The sum of the c's times the sum of the d's equals the sum of the outputs. That is 
because every c multiplies every d in c * d and in c ® d. 
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Eigenvalues and Eigenvectors· of P 

With N = 4, the equation Px = >.x leads directly to four eigenvalues and eigenvectors: . 

u 
1 0 n [~n [~n~~[~;1 

X2 = AXl 

Px= 
0 1 

gives 
X3 = AX2 

. (7) 
0 0 = 

X4 = AX3 

0 0 Xl = AX4 

Start with the last equation x1 = AX4 and work upwards : 

x1 = AX4 = A2X3 = >.3x2 = A4X1 leading to A4 = 1. 

The eigenvalues of Pare the fourth roots ofl. They are all the powers i, i2, i3, 1 of w = i. 

A= i, A= i2 = -1, >. = i3 = -i, and A = i4 = 1. (8) 

These are the four solutions to det(P- >.I) = >.4 - 1 = 0. The eigenvalues i, -1, -i, 1 
are equally spaced around the unit circle in the complex plane (Figure IV.2). 

When Pis N by N, the same reasoning leads from pN = I to >.N = 1. TheN 
eigenvalues are again equally spaced around the circle, and now they are powers of the 
complex number w at 360 IN degrees = 2n IN radians. 

The solutions to zN = 1 are A = w, w 2 , ••• , wN -l, 1 with w = e 27ri/N. (9) 

In the complex plane, the first eigenvalue w is ei6 = cos()+ i sin() and the angle () is 2n IN. 
The angles for the other eigenvalues are 20, 30, ... , N (). Since () is 2n IN, that last angle is ~ 
N () = 2n and that eigenvalue is A = e21ri which is cos 2n + i sin 2n = 1. 

For powers of complex numbers, the polar form with ei6 is much better than 
using cos () + i sin (). 

imaginary axis 

Figure IV.2: Eigenvalues of PN : The 4 powers of >. = i for N = 4 will add to zero. 
The 8 powers of A = w = e21rijB for N = 8 must also add to zero. 
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Knowing theN eigenvalues A= 1, w, ... , wN- 1 of PN, we quickly find N eigenvectors: 

Set the first component of q to 1. The other components of q are A and A2 and A 3 : 

We have started the numbering at zero, as Fourier people always do. The zeroth eigenvector 
has eigenvalue A = 1 = w0 • The eigenvector matrix has columns 0, 1, 2, 3 containing 
q0 , q1 , q2 , q3 • That eigenvector matrix for Pis the Fourier matrix. 

Eigenvector matrix 
N=4 

Fourier matrix 

-T 
has F F = 4!. (11) 

The pattern stays the same for any size N. The kth eigenvalue is wk = (e21rifN)k = 
e21fik/N. Again the count starts at zero: Ao = w 0 = 1, A1 = w, ... , AN-1 = wN- 1• 

The kth eigenvector contains the powers of wk. The eigenvector matrix contains 

all N eigenvectors. It is theN by N Fourier matrix with FT F = N I. 

FN~[ 
1 1 1 . 1 

l Fourier matrix 1 w w2 wN-1 

1 w2 w4 . w2{N-1) 
Eigenvectors of P . . . 

1 wN-1 w2(N-1) . w(N-1) {N-1) 

(12) 

We see again that the columns of the Fourier matrix are orthogonal. We must use the 
complex inner product ( x, y) = x-T y. Here is the new proof of orthogonality: 

Orthogonal matrices like P have orthogonal eigenvectors. 

Then P = F AFT/ N with its diagonal eigenvalue matrix A = diag ( 1, w, ... , wN - 1). 

The next page moves from the special permutation P to any circulant matrix C. 
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Eigenvalues and Eigenvectors of a Circulant C 

The eigenvectors of a circulant matrix Care especially easy. Those eigenvectors are the. 
same as the eigenvectors of the permutation P. So they are the columns q0 , q1, ... , q N _ 1 
of the same Fourier matrix F. Here is C q k = >..q k for the kth eigenvector and eigenvalue : 

Remember that .Xk = wk = e21rikjN is the kth eigenvalue of P. Those numbers are in 
the Fourier matrix F. Then the eigenvalues of C in equation (13) have an almost magical 
formula: Multiply F times the vector c in the top row of C to find the eigenvalues. 

Co+ C1W + · · · + C~-1WN-l c1 
>..2(C) I ~~~g~ [

Co+ C1 + ... + CN 1 I I Co I 
= Co+~1~2 .+ .. ·+cN-1W2{N-1) =F ~2 =Fe. (14) 

AN-1(C) Co+ C1WN-1 + ... + CN-1W(N-1) (N-1) CN-1 

TheN eigenvalues of C are the components of Fe = inverse Fourier transform of c. 

Example for N = 2 with w = e27ri/2 = -1 in the Fourier matrix F 

P=[~ ~] and C = [ Co c1 ] 
C1 Co and c=[~~] and F = [ ~ 1 ] ~ 

-1 

The eigenvectors of P and also Care the columns of F. The eigenvalues of Pare ±1. 
The eigenvalues of C = col+ c1P are eo+ c1 and eo- c1. These eigenvalues of Care 
the components ofF times c : 

Eigenvalues of C Fe = [ 1 1 ] [ co ] = [ co + c1 ] . 
1 -1 C1 Co- C1 

For any N, the permutation Pis a circulant matrix C with c = (0, 1, 0, ... , 0).. 
The eigenvalues of P are in the column vector F c with this c. 
That is the column (1, w, w2 , •.. , wN - 1) of the Fourier matrix F. 
This agrees with the eigenvalues 1, i, i2 , i3 of P in equation (8), for N = 4. 

(15) 
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The Convolution Rule 

This rule compares convolution with multiplication. Please understand that they are quite 
different. But they are beautifully connected by the Fourier matrix F. 

I will start with two circulant matrices C and D. Their top rows are the vectors e and d. 
Equation ( 4) at the start of this section showed an example of the top row of CD : 

Top row of CD = cyclic convolution = e ® d. (16) 

Then the eigenvalues of CD according to equation (14) are in the vector F( e ~ d). 
Now find those eigenvalues of CD in another way. The eigenvalues >.(C) are in the 

vector Fe. The eigenvalues >.(D) are in the vector Fd. The eigenvectors qk are the same 
for C and D ! They are the columns of F. So each eigenvalue .\k (CD) is just .\k (C) 
times .\k(D). This term by term "Hadamard product" is denoted in MATLAB by·* 

That notation • * denotes component-by-component multiplication of two vectors. 

The convolution rule compares our two formulas for the eigenvalues of CD : 

Convolve vectors 
Multiply transforms I Convolution Rule F(e@ d)= (Fe).*(Fd).l (17) 

Left side Convolve e and d first, then transform by F 
Right side Transform by F first, then multiply Fe times Fd component by component. 

This is the fundamental identity of signal processing! Transforms are fast by the FFT. 

Another way to see the convolution rule is by multiplying the diagonal matrices A(C) 
and A( D) thatcontaintheeigenvaluesofC and D. C isdiagonalizedby F-1CF =A( C): 

(F- 1CF) (F- 1 DF) = F- 1(CD)F is exactly A( C) A( D) =A( CD). (18) 

This succeeds because all circulant matrices have the same eigenvectors (columns of F). 
The convolution rule can be checked directly (Problem 1). Good to see it for N = 2: 

F =[1 1] 
1 -1 

Fe =[co+ c1] 
co- c1 

Fd =[do+ d1] 
do- dl 

The convolution rule (17) says that F(e ® d) is the component by component product. 

F(e® d)= [eodo +c1d1 +eod1 +c1do] =[(eo +cl)(do +di)] =(Fe).* (Fd) 
codo + c1d1- eod1- c1do (eo- c1)(do- dl) 



JY,_2, Shift Matrices and Circulant Matrices 219 

Multiplication and Convolution of Functions 

If f(x) = :Eckeikre and g(x) = :Ed..,.eirnre, what are the Fourier coefficients of 
f(x) g(x)? We are multiplying the 2?r-periodic functions f and g. 

The multiplication fg is in "x-space". By the convolution rule, we expect to convolve 
c * d in "frequency space". These are periodic functions f and g ( -?r :::; x :::; 1r) and their 
Fourier series are infinite (k = 0, ±1, ±2, ... ). So cyclic convolution is gone and we are 
multiplying two infinite Fourier series : 

When does eikx times eimx produce einx? The requirement is k + m = n. 

The coefficient hn combines all products ckdm with k+m= n. Then m = n - k: 
00 

hn = L ckdn-k is convolution h = c * d for infinite vectors. 
k=-oo 

Next we multiply coefficients Ckdk in k-space. So we convolve f * g in x-space ! 

Convolution of 
21t'-periodic functions 

Convolution rule 
for periodic functions 

1T 

(f * g)(x) = I f(t) g(x- t) dt 

t=-?T 

The Fourier coefficients off * g are 21t'ckdk 

(20) 

(21) 

-~ 

(22) 

To see that f * g = g * f in equation (21 ), change variables to T = x - t and t = x - T. 

The delta function a ( x) is the identity for convolution-like I for multiplication: 

(a* g) (x) = j c5(t) g(x- t) dt = g(x) and (1, 0, 0) ®(a, b, c)= (a, b, c). 

Cross-correlation and Autocorrelation 

Cross-correlation is like convolution, but an important difference is indicated here by *. * 
[Not n - k] hn = L Ckdn + k is cross-correlation h = c * * d for vectors (23) 

k 

(f * * g) ( x) =If ( t) g ( x + t) dt = f ( x) * g (-x) is cross-correlation for functions (24) 

We are shifti'hg the vector d and taking its dot products with c. We are sliding the function 
g along the x-axis and taking its inner products with f. These dot products will be largest 
when the vectors c, d and the functions f, g are best aligned. 

It is valuable to have this simple way to find the best alignment. 
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The special cases e = d and f = g are the most important and certainly the best aligned. In 
those cases, the cross-correlations e * * e and f * * f are called autocorrelations. 

Convolution and cross-correlation correspond perfectly to matrix multiplications ! 

e * d gives the entries in CD (infinite constant-diagonal matrices) 

e i) d gives the entries in CD (finite circulant matrices) 

c * * d gives the entries in cT D and a * * a gives the entries in AT A 

Problem Set IV.2 

1 Find e * d and e ® d fore = (2, 1, 3) and d = (3, 1, 2). 

2 Prove the convolution rule for N = 3 : The kth component of F( c ® d) equals 
(Fc)k times (Fd)k. Start from (c® d)p = eodv + c1dp-1 + c2dp-2· 

Prove t, wkp ( e ® d)p = (~ wkm Cm) (t. wkn dn) with w3 = 1 

3 If c * d = e, why is (E Ci) (E di) = (E ei) ? Why was our check successful? 
(1 + 2 + 3) (5 + 0 + 4) = (6) (9) = 54= 5 + 10 + 19 + 8 + 12. 

4 Any two circulant matrices of the same size commute: CD = DC. They have 
the same eigenvectors qk (the columns of the Fourier matrix F). Show that the 
eigenvalues Ak (CD) are equal to Ak (C) times >..k (D). 

5 What are the eigenvalues of the 4 by 4 circulant C = I + P + P 2 + P 3 ? Connect 
those eigenvalues to the discrete transform Fe fore= (1, 1, 1, 1). For which three 
real or complex numbers z is 1 + z + z2 + z3 = 0? 

6 "A circulant matrix Cis invertible when the vector Fe has no zeros." Connect that 
true statement to this test on the frequency response: 

N-1 

C( ei6 ) = L CjeiiO :f: 0 at the N points (} = 27r IN, 47r IN, ... , 27r. 
0 

7 How would you solve for d in a convolution equation e * d = e or e ® d = e ? 
With matrices this is CD = E and then D = c-1 E. But deconvolution is 
often faster using the convolution rule (Fe).*(Fd) = (Fe). Then Fd =?? 

8 The nth component of the autocorrelation e * * c is the dot product of the vectors 
e and sne (the vector e shifted by n places). Why is eT sne :::; eT e? Then the 
largest component of e * * e is the zeroth component e T e (with no shift). 
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IV.3 The Kronecker Product A ® B 

Section IV.l described the Discrete Fourier Transform of a !-dimensional signal f. 
This section will describe the 2-dimensional DFT-which is needed for image processing. 
When the !-dimensional transform uses a matrix of size N, the 2-dimensional transform 
needs a matrix of size N 2 (and video will introduce a third dimension). The 2D matrices 
will be large. We hope to construct them easily from the lD Fourier matrices F and n. 

This construction uses the Kronecker products F ® F and n ® n. The earlier word 
was tensor product. The MATLAB command is kron(F, F) and kron(n, n). 

This operation is extremely convenient for many purposes. So this section develops 
the key ideas and operations on K = A® B: to invert K, to solve (A® B) x = y, 
and to find the eigenvalues and eigenvectors and SVD of A ® B. 

The first thing to know about Kronecker products is the size of A® B = kron(A, B): 

1 If A and Bare n by n, then A® B is n 2 by n 2 . 

2 If A is m by nand B is M by N, then A® B has mM rows and nN columns. 

The entries of A® Bare (all mn entries of A) times (all M N entries of B). 

The next fact is the position of those products in the large matrix. The rule is to 
multiply each entry of A times the whole matrix B. Then A® B is a block matrix. 
Every block is a multiple of B : 

Kronecker product 

The simplest case has identity matrices for A and B : (2 by 2) ® (3 by 3) = 6 by 6. 

[ 1 OJ [ 1 O Ol [1fa Ofa] 
0 1 ® ~ ~ ~ = 0 I3 1 I3 = I 6 . 

A harder case (but not impossible) comes from multiplying two Kronecker products : 

A ® B times C ® D equals AC ® BD 

A® B times A- 1 ® n-1 equals I® I 

(1) 

(2) 

(3) 

(4) 

Equation (3) allows rectangular matrices. Equation (4) is for invertible square matrices. 
I® I is the identity matrix of size nN. So the inverse of A® B is A - 1 ® n-1 • 
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The proof of equation (3) comes from block multiplication of Kronecker products: 

[anB a12B][cnD c12D]=[(ancn +a12c21)BD (anc12 +a12c22)BDJ· (S) 
a21B a22B c21D c22D (a21cn + a22c21) BD (a21c12 + a22c22) BD 

That is exactly AC®BD. A matrix of size N 2 times a matrix of size N 2 is still a matrix 
of size N 2 • The final basic identity produces the transpose of A ® B : 

(6) 

Two-dimensional Discrete Fourier Transforms 

Start with an N by N image. It could be a photograph with N 2 small pixels, taken by 
your phone. It could be a painting by Chuck Close (who realized that your eyes merge the 
small squares into a continuous image-this is how the phone camera works too). 
We have N 2 numbers. 

And we have a choice. We could unfold those numbers into a long vector of length N 2 • 

Or we could keep them in an N by N matrix, so that pixels which are close in the image 
remain close. The unfolding into a vector (by an operator called vee) will be described later 

2 

in this section. For now we think of a vector f in Rn with its n2 components in a square. 

We intend to apply a 2D Discrete Fourier Transform to f. The result will be a 
2D vector c. You could think of this process in two steps: 

Row by row Apply the lD DFT to each row of pixels separately. 
Column by column Rearrange the output by columns and transform each column. 

The matrix for each step is N 2 by N 2. First think of the N 2 pixels a row at a time and 
multiply each row in that long vector by the one-dimensional DFT matrix flN : 

l [
rowll row2 

· row3 
f1N row4 

(f and f!row f have length N 2) (7) 

That matrix is flrow = IN® nN. It is a Kronecker product of size N 2. 
Now the output f!rowf is (mentally not electronically) rearranged into columns. The 

second step of the 2D transform multiplies each column of that "halfway" image f!row f 
by flN. Again we are multiplying by a matrix f!column of size N 2. The full 2D transform 
is nN ® nN. 

That matrix ncolumn is the Kronecker product nN ® IN. 

The 2D transform puts the row and column steps together into nN x N. 

nNxN = ncolumn f!row = (nN ®IN )(IN® nN) = nN ® nN. (8) 
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Example 1 With N = 4 there are N 2 = 16 pixels in a square. The block matrix S14x4 

for the 2D transform is 16 by 16: 

[ 
n4 n4 
n4 -in4 

o4x4 = o4 ® o4 = n 4 (-i)2n4 
n4 (-i)3 n4 

n4 
( -i)2 n4 
(-i)4 n4 
( -i)6 n4 

That matrix has to be divided by 4 times 4 = 16 to correctly match the 1D transform !"24 /4. 
Then the inverse of this 16 by 16 matrix gives the two-dimensional inverse OFf
which is F4 ® F4. Apply the inverse formula (4) for Kronecker products: 

( 
1 \-1 

The 2D inverse is 16 04 ® 0 4) = F 4 ® F4 = Kronecker product of 1D inverses. 

The Kronecker Sum A EB B 

The 2D Fourier transform is the product of two steps : transform by rows and transform 
the result by columns. Those steps were I ® n and n ® I. In other problems we want the 
sum instead of the product. That produces a different matrix. Its size is still N 2 or M N. 

AisMby M . 
B is N by N The Kronecker sum AE9B=A®IN+IM®B ISMNby MN. (9) 

This construction is natural for Laplace's equation (or Poisson's equation) in 2D: 

82 u 82u ~ 
Laplaceequationinasquare - ax2 - ay2 = F(x,y) forO::; x::; 1,0::; y::; 1 

Divide that unit square into N 2 small squares with sides h = 1/ N. Put nodes or mesh points 
at the comers of those squares. There will be (N + 1)2 nodes. Then replace Laplace's 
second order differential equation by a second order difference equation that connects the 
values Ujk at the nodes: 

. . EPu . -u(x +h)+ 2u(x)- u(x- h) 
In one d1mens10n - ox2 becomes a second difference h 2 

For a line of N + 1 nodes those second differences go into a matrix ~ of size N + 1 : 

1 -1 

N=4 1 
-1 2 -1 

h = 1/4 .6.s = (1/4)2 -1 2 -1 (10) 
-1 2 -1 

-1 1 

Notice the first and last entries on the diagonal: 1 and not 2. Those reflect the bound
ary conditions at the ends of the row. We are choosing the free condition ouf ox = 0 
in rows 1 and 5. (Fixed conditions u = 0 would lead to 2's on the whole diagonal.) 
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The second difference matrix ~5 is positive semidefinite. Its nullspace contains the 
column vector 1 = (1, 1, 1, 1, 1). 

This matrix ~5 replaces -82 l8x2 along each row and -82 l8y2 down each column. 
We want the 25 x 25 matrix Arow that finds second differences along all rows at once, 
plus second differences Acolumn down all columns at once : 

·.. ] =Is® As 
~5 

Acolumn = (column at a time) = As ® Is 

So far this is like the discrete Fourier transform: all-row operation and all-column. 
The difference is that we add these matrices. We are aiming to approximate -82 I 8x2 

plus -821 8y2 . The overall 2D finite difference matrix is the 25 x 25 Kronecker sum : 

(11) 

The same matrix ~5 x 5 comes from the finite element method (for linear finite elements). 
This matrix is also a graph Laplacian ! The graph is the 5 by 5 square array of 25 

nodes. It has 20 horizontal edges and 20 vertical edges. Its incidence matrix A is 40 x 25. 
Then its graph Laplacian AT A is the same 25 x 25 matrix ~5x5 • This matrix is positive 
semidefinite but not invertible. We study graph Laplacians in Section IV.6. 

The nullspace of ~5x5 contains the vector of 25 ones. That vector is 1 ® 1. 

Eigenvectors and Eigenvalues of A ® B and A EB B 

Supposex is an eigenvector of A :Ax= >.x. Supposeyis an eigenvector of B: By= J.lY· 
Then the Kronecker product of x and y is an eigenvector of A®B. The eigenvalue is AJ.L : 

(A® B)(x ® y) =(Ax)® (By)= (>.x) ® (!lY) = AJ.L(x ® y). (12) 

Here A is n by n and B is N by N. Therefore x is n by 1 and y is N by 1. So A ® B 
is a square matrix of size nN and x ® y is a vector of length nN. The same pattern also 
succeeds for Kronecker sums-with the same eigenvector x ® y : 

(A E9 B)(x ® y) =(A® IN )(x ® y) +(In® B)(x ® y) = (.>. + !l)(x ® y). (13) 

The eigenvalue of A EB B is >. + f..L. The vector y is certainly an eigenvector of 
the identity matrix IN (with eigenvalue 1). The vector xis certainly an eigenvector of In 
(with eigenvalue 1). So equation (13) for the Kronecker sum just comes from 
two applications of equation (12) for the Kronecker product. A® IN has eigenvalue .>. 
times 1, and In ® B has eigenvalue 1 times ll· The eigenvector in both cases is x ® y. 
So we add to see equation (13) with eigenvalue.>.+ ll· 
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Separation of Variables 

The last page was very formal. But the idea is simple and important. It is the matrix 
equivalent of the most useful trick for eigenfunctions of Laplace's equation-and all similar 
equations that have x-derivatives added to y-derivatives. 

Eigenvalues a of the Laplacian 
82u 82u 
- 2 + l'l 2 = au(x,y). 
OX uy 

(14) 

The trick is to lookforu in the separated form u(x, y) = v(x) w(y). Substitute vw for u 
in Laplace's eigenvalue equation (14): 

Separation of variables x andy (~:~) w(y) + v(x) ~y~ = av(x) w(y). (15) 

Ordinary derivatives instead of partials, v depends only on x and w depends only on y. 
Divide equation (15) by v times w. The result on the left side is a function only of x 

plus a function only of y. 

(16) 

If this is true for every x andy then each term is a constant (think about this!): 

d2v d2w 
Separated equations dx2 = A v and dyz = f.L w with A+ f.L = a. (17) • 

So A + f.L is an eigenvalue of Laplace's equation (14). The Laplacian on the left side of 
(14) is just the Kronecker sum of A = 8 2 j8x2 and B = 8 2 joy2 . The key point is 
that the eigenfunction u(x, y) is the product of two lD eigenfunctions v(x) and w(y), 
This is continuous instead of discrete, with derivatives instead of difference matrices and 
eigenfunctions instead of eigenvectors. 

The partial differential equation is reduced to two ordinary differential equations (17). 

The Matrix to Vector Operation vee( A) 

We often want to vectorize a matrix. Starting with an m by n matrix A, we stack its n 
columns to get one column vector vee( A) of length mn: 

vec(A) = [ 
column 1 l 
colu~n n 

vee ( [ ~ ! ]) rn (18) 
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This vector of length N 2 is multiplied by the 2D Fourier matrix (a Kronecker product 
of size N 2) to produce the vector of N 2 Fourier coefficients. And this vector of length· 
(N + 1)2 is multiplied by the graph Laplacian matrix (a Kronecker sum) in the finite 
difference approximation to Laplace's equation on a square. 

So we need to see how this simple vee operation interacts with matrix multiplication. 
Here is the key identity, when a matrix B is multiplied on the left by a matrix A and 
on the right by a matrix C : 

.-I v-e-e(_A_B_C_)_=_(_c_T_0_A_) v_ec_(_B_).-.1 (19) 

First check dimensions when all three matrices A, B, C are n by n. Then ABC is n by n 
and vee makes it n 2 by 1. The Kronecker product is n 2 by n 2 and it multiplies the n 2 by 1 
vector vee(B). So the right hand side of (19) also has length n 2. And if ABC ism by p 
then the matrix cT 0 A has mp rows as it should. Good. 

But notice a big difference in the operation count. In the n by n case, the two multi
plications in ABC need 2n3 separate multiply-adds. The Kronecker product on the right 
has n4 entries! So if we don't notice that it is a Kronecker product, this matrix-vector 
multiplication needs n4 multiply-adds. Reshaping is essential to take advantage of the 
Kronecker structure : 

A ism x nand mn = M N B =reshape (A, M, N) isM x N vee (B) = vee (A) 

If A is 3 x 2 then B =reshape (A, 1, 6) produces B = [au a21 a31 a12 a22 a32]. 

We need to understand the vee identity (19). Start with the case when B = [x1 x2] has 
2 columns and Cis 2 by 2. The right side of (19) is simply a matrix-vector multiplication 
K X where X = vee (B) and we have recognized that K is a Kronecker product cT 0 A. 
That multiplication produces a vector y : 

This vector y is exactly the left side of the identity (19): vee (ABC) with B = [x1 x 2] is 

vee ( [ Ax1 Ax2] [ ~~~ ~~~]) =vee [ cuAx1 + c21Ax2 c12Ax1 + c22Ax2] 

So if we have a linear system Kx = b with a Kroneekermatrix K, (19) will reduce its size. 
The pixel values in a 2D image (n by n) are stacked by vee into a column vector 

(length n 2 or 3n2 with RGB color). A video with T frames has a sequence of images at T 
different times. Then vee stacks the video into a column vector of length Tn 2. 

Reference 

C. Van Loan, The ubiquitous Kronecker product, J. Comp. Appl. Math. 123 (2000) 85-100. 
Also The Kronecker Product, https://www.cs.cornell.edu/cv/ResearchPDF/KPhist.pdf 
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Problem Set IV3 

1 A matrix person might prefer to see all n eigenvectors of A in an eigenvector matrix : 
AX= XAA. Similarly BY= YAB. Then the Kronecker product X® Y of size 
nN is the eigenvector matrix for both A (8) B and A EB B : 

The eigenvalues of A® B are the nN products Aif..lj (every A times every f..L). 
The eigenvalues of A EBB are the nN sums Ai + /-tj (every A plus every f..L). 

If A and Bare n by n, when is A EBB invertible? What if (eigenvalue of A)= 
- (eigenvalue of B)? Find 2 x 2 matrices so that A EBB has rank 3 and not rank 4. 

2 Prove : If A and B are symmetric positive definite, so are A ® B and A EB B. 

3 Describe a permutation P so that P(A ®B) = (B ® A)P. Do A® Band B ®A 
have the same eigenvalues? 

4 Suppose we want to compute y = (F ®G) x where x = vec(X). The matrix F is 
m by nand G is p by q. The matrix F 0 G is mp by nq, the matrix X is q by n, 
the vector x is nq by 1. Show that this code finds the correct y = ( F ® G) x : 

Y = B®X®AT 

y =reshape(¥, mp, 1) 

'i 
5 Suppose we want to solve (F ®G) x = b when F and G are invertible matrices ' 

(n by n). Then band x are n 2 by 1. Show that this is equivalent to computing 

X= G-1 B(F-1 )T with x =vee( X) and b =vee( B). 

In reality those inverse matrices are never computed. Instead we solve two systems : 

Find Z from GZ = B 

Find X from X pT = Z or F XT = zT 

Show that the cost is now O(n3 ). The larger system (F ®G) x = b costs O(n6 ). 

6 What would an image look like if its pixels produced a Kronecker product A ® f1 ? 

7 How would you create a two-dimensional FFT ? For an n by n image, how many 
operations will your 2D Fast Fourier Transform need? 
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This section of the book presents an outstanding example of a Kronecker sum 
K = I® D + D ®I. The 1, -2,1 matrix D approximates the secondderivatived2 ldx2 

in one dimension (along a line). The Kronecker sum raises it to two dimensions (in a 
square). This big matrix K of size N 2 approximates the Laplacian (]2 I 8x2 + 82 I 8y2 • 

For Kronecker, all is normal-a very convenient way to create an important matrix K. 
The next steps make it practical to work with this large matrix. We are approximating 
Laplace's partial differential equation by N 2 difference equations: 

Discrete Laplace 
1 
-KU=F 
h2 

(1) 

The N 2 components of U will be close to the true u(x, y) at the N 2 points x = ph, 
y = qh inside a square grid. Here p = 1 to N along a row of the grid and q = 1 to N up a 
column, with h = Llx = Lly = mesh width of the grid. 

The difficulty is the size of the matrix K. The solution to this difficulty is to know 
and use the N 2 eigenvectors of this matrix. 

It is exceptional that we know those eigenvectors. It is even more exceptional (this is 
virtually the only important example we have seen) that linear equations KU = h2 F are 
quickly solved by writing h2 F and U as combinations of the eigenvectors vi of K : 

(2) 

When K multiplies U, the A's cancel because each Kvi = AiVi. So KU matches h2 F. 
The eigenvectors u1 of the one-dimensional!, -2, 1 matrix D happen to be discrete 

sine vectors. They are sample points taken from the eigenfunctions sinj1rx of d2 ldx2 : 

Continuous d2 

and - 2 sinj7rx=-P1f2 sinj7rx 
Discrete dx 

[ 
sinj1rhi(N + 1) l 

Duj =D sinj?rN~I(N + 1) =Ajuj (3) 

Eigenvectors v of the large matrix K = I ® D + D ® I were found in the Kronecker 
section IV.3. Eigenvectors of K are Kronecker products Vjk = Uj ® uk of the 
sine eigenvectors of D. This is true in the cbntinuous case (for eigenfunctions). 
It remains true in the discrete case (for eigenvectors). The components of Vjk are 
components of u 1 times components of Uk : 

Discrete ( . 1rjp ) ( . 1rkq ) v· - sm-- sm--eigenvectors Jk(P, q)- N + 1 N + 1 
Continuous Vjk(x, y) = 

eigenfunctions (sin j 1rx) (sin k?ry) 

The final step to success is the most crucial of all. We can compute with these eigen
vectors using the Fast Fourier Transform. The Fourier matrix in Section IV.l had com
plex exponentials. Its real part has cosines (which enter the Discrete Cosine Transform). 
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The imaginary part ofF produces the Discrete Sine Transform. That DST matrix contains 
the eigenvectors u 1 of D. The two-dimensional DST matrix contains the eigenvectors Vjk 

of the Laplace difference matrix K. 

The FFf executes the computational steps of equation (2) in O(N2 log2 N) operations: 

(1) A fast 2D transform FFf ® FFf to find the sine coefficients bjk of h2 F 

(2) Adivisionofeachbjk bytheeigenvalueAjk = >.1(D) >.k(D) 

(3) A fast 2D inverse transform to find U from its sine coefficients b1k/ Ajk· 

This algorithm solves Laplace's equation in a square. Boundary values are given on 
the four edges. It is coded in FISHPACK. That name is a terrible pun on the translation of 
Poisson-who added a source term to Laplace's equation: 82ujox2 +82ujoy2 = f(x, y). 
FISHPACK also allows the "free" or "natural" or "Neumann" boundary condition 
ouj on = 0 with cosine eigenvectors, as well as the "fixed" or "essential" or "Dirichlet" 
boundary condition u = u0 with sine eigenvectors. 

The difference between fixed and free appears in the first and last rows of D in one 
dimension-and then in all the boundary rows of the Kronecker sum K = D EB D in two 
dimensions : 

Dfixed = 1 r 
-2 1 

-2 1 

1 

Drree = 1 r 
-1 1 

-2 1 

1 

(4) 

The eigenvectors of Dfixed led us to the Discrete Sine Transform. The eigenvectors of Drree 

would lead us to the Discrete Cosine Transform. But a different application is too interest
ing to miss. Instead of solving Laplace's difference equation with free boundary conditions, 
we will apply the two-dimensional Discrete Cosine Transform to image compression. 

In that world the DCT-based algorithm is known as JPEG (jaypeg). 

The Discrete Cosine Transform in JPEG 

The letters JPEG stand for Joint Photographic Experts Group. This group ~stablished a 
family of algorithms that start with pixel values (grayscale numbers from 0 to 255, or the 
Red-Blue-Green intensities for each pixel). The code produces a compressed image file in 
the .jpg format. The algorithm can be seen in two stages : 

Step 1 is a linear transformation of the matrix of pixel values. At the start, grayscale 
values are highly correlated-nearby pixels tend to have nearby values. The trans
form produces numbers with more independent information. 

Example : Take the average and difference of two neighboring values. When the difference 
is small, we can transmit fewer bits and the human visual system will never know. 
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Step 2 is a nonlinear compression and quantization of the transformed signal. 
The compression keeps only numbers that are visually significant. The quantization 
converts the compressed signal into a sequence of bits-to get ready for fast 
transmission. Then the receiver uses those bits to reconstruct an image that is very 
close to the original. 

Step 1 most often uses a Discrete Cosine Transform. It acts separately on 8 x 8 blocks 
of the image. (JPEG2000 offers a wavelet transform but this option has not been widely 
adopted.) Each block of 64 grayscale values leads to a block of 64 cosine coefficients
a lossless transform. The inverse transform will recover the original blocks of the image. 

But before inverting we will compress and quantize those 64 numbers. This step 
loses information that our eyes can't see anyway. 

Discrete Cosine Transforms are described in SIAM Review for 1999 (volume 41, 
pages 135-147). They differ in their boundary conditions. The most popular choice is 
DCT-2 with these 8 orthogonal basis vectors in each dimension: 

DCT-2 The jth component of the kth vector is cos (j + ~) k i j, k = 1, ... , 8 

Those 64 numbers go into an 8 by 8 matrix C. Then the matrix for the 2D cosine transform 
is the Kronecker product C l8l C of size 82 . Its columns are orthogonal. It acts on each 8 x 8 
block of the image to give an 8 x 8 block of Fourier cosine coefficients-which tell us the 
right combination of cosine basis vectors to reconstruct the original block in the image. 

But we don't aim for perfect reconstruction. Step 2 discards information that we don't 
need. Step 1 has produced cosine coefficients Cjk of very different sizes-usually smaller 
numbers c for higher frequencies j, k. The file https://cs.stanford.edulpeopleleroberts/ 
courses/soco/projectsldata-compressionllossy/jpeg/dct.htm shows a typical 8 x 8 block 
before and after the DCT step. The cosine coefficients are ready for Step 2, which is 
compression and quantization. 

First, each block of 64 coefficients goes into a 64 x 1 vector-but not by the vee 
command. A zig-zag sequence is better at keeping larger coefficients first. If we end with 
a run of near-zeros, they can be compressed to zero (and we only transmit the length of 
the run : the number of zeros). Here is the start of the zig-zag order for the 64 coefficients : 

1 2 6 7 
/ / / 

3 5 8 
/ / 

4 9 
/ 

10 

Higher frequencies come later in the zig-zag order and usually with smaller coefficients. 
Often we can safely rescale those numbers before the rounding step gives Qjk: 

Quantization example 
Cjk 

Qjk = j + k + 3 rounded to nearest integer 
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Now each block is represented by 64 integers Qjk· We transmit those numbers after encod
ing for efficiency. The receiver reconstructs each block of the image-approximately. 

In a color image, 64 becomes 192. Every pixel combines three colors. But Red-Green
Blue are probably not the best coordinates. A better first coordinate tells us the brightness. 
The other two coordinates tell us "chrominance". The goal is to have three statistically 
independent numbers. 

When the blocks are assembled, the full reconstruction often shows two unwanted 
artifacts. One is blocking: the blocks don't meet smoothly. (You may have seen this 
in an overcompressed printed image.) The second artifact is ringing: fast oscillations 
along edges inside the image. These oscillations are famous in the "Gibbs phenomenon" 
when eight cosines approximate a step function. 

For a high quality picture after DCT compression, we can mostly cancel those blocking 
and ringing artifacts. For high definition TV, compression is essential (too many bits to 
keep up). 

The DCT standard was set by the JPEG experts group. Then equipment was built and 
software was created to make image processing into an effective system. 

Problem Set IV.4 

1 What are the eigenvalues A1 of Din equation (3)? 

2 What are the eigenvalues .Ai and eigenvectors vi of K = I® D + D ® I = I EB D? 

3 What would be the Laplace operator K3 on a cubic grid in 3D ? 

4 What would be the N 3 by N 3 Fourier matrix F3 in 3D ? In 2D it was F ® F. 



232 

IV.S Toeplitz Matrices and Shift Invariant Filters 

A Toeplitz matrix has constant diagonals. The first row and column tell you the rest of 
the matrix, because they contain the first entry of every diagonal. Circulant matrices are 
Toeplitz matrices that satisfy the extra "wraparound" condition that makes them periodic. 
Effectively c_3 is the same as c1 (for 4 x 4 circulants) : 

[ 

ao a-1 a-2 a-3 l 
Toepl~tz A = a1 ao a-1 a-2 

matrax a2 a1 ao a-1 

a3 a2 a1 ao 

[ 

Co C3 

Circul:mt C = c1 eo 
matnx c2 c1 

C3 C2 

~~ ~~ l 
Co C3 

c1 co 

Circulant matrices are perfect for the Discrete Fourier Transform. Always CD = DC. 
Their eigenvectors are exactly the columns of the Fourier matrix in Section IV.2. 
Their eigenvalues are exactly the values of C(B) = 'L; ckeikl! at the n equally spaced 
angles B = 0, 271" jn, 471" jn, ... (where einl! = e21ri = 1). 

Toeplitz matrices are nearly perfect. They are the matrices we use in signal processing 
and in convolutional neural nets (CNNs). They don't wrap around, so the analysis of A 
is based on the two-sided polynomial A( B) with coefficients a1-n ... ao ... an-1: 

Frequency response= symbol of A A(8) = L ak eikB 

A( 8) is real when A is symmetric ak eikl! + ak e-ikl! = 2ak cos kB 

C(8) is nonzero when Cis invertible The symbol for c-1 is 1/C(B) 

A( B) =1- 0 is not correct as a test for the invertibility of A ! And A - 1 is not Toeplitz 
(triangular matrices are the exception). Circulants C are cyclic convolutions. But Toeplitz 
matrices are noncyclic convolutions with a = ( a1-n ... an-I) followed by projections: 

x-space Ax =convolve a* x, then keep components 0 ton- 1 

8-space Ax( B) =multiply A(B)x(B), then project back ton coefficients 

We want to use the simple polynomial A( B) to learn about the Toeplitz matrix A. 

In many problems the Toeplitz matrix is banded. The matrix only has w diagonals 
above and below the main diagonal. Only the coefficients from a_w to aw can be nonzero. 
Then the "bandwidth" is w, with a total of 2w + 1 nonzero diagonals: 

Tridiagonal Toeplitz 
Bandwidth w = 1 

A = [ ~~ ~~ 1 
a-1 ] 

a1 ao a-1 

a1 ao 

We understand tridiagonal Toeplitz matrices (and their eigenvalues) for large size n by 
studying the symbol A( B) = a_le-ili + ao + a1ei11 . It is built from a-1. a0, a 1. 
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Toeplitz Matrices : Basic Ideas 

In signal processing, a Toeplitz matrix is a filter. The matrix multiplication Ax in the time 
domain translates into ordinary multiplication A(e)x(e) in the frequency domain. That is 
the fundamental idea but it is not exactly true. So Toeplitz theory is on the edge of simple 
Fourier analysis (one frequency at a time), but boundaries interfere. 

A finite length signal x = (xo, ... , Xn) has boundaries at 0 and n. Those boundaries 
destroy a simple response to each separate frequency. We cannot just multiply by A(e). 
In many applications-but not all-this inconvenient fact can be suppressed. Then a 
Toeplitz matrix essentially produces a convolution. If we want a bandpass filter that 
preserves frequencies a ::::; e ::::; b and removes all other frequencies, then we construct 
A( e) to be near 1 in that band and near zero outside the band. (Again, an ideal filter 
with A exactly 1 and 0 is impossible until n = oo.) 

Linear finite difference equations with constant coefficients produce Toeplitz matrices. 
The equations don't change as time goes forward (LTI = Linear Time Invariant). 
They don't change in space (LSI = Linear Shift Invariant). The familiar -1, 2,-1 
second difference matrix is an important example : 

Tridiagonal - 1, 2,-1 matrix with symbol A( B) = -e-iB + 2- ei(J = 2- 2 cos 8. 

The fact that A( e) ~ 0 tells us that A is symmetric positive semidefinite or definite. 
The fact that A = 2 - 2 = 0 when e = 0 tells us that A min (A) will approach zero 
as n increases. The finite Toeplitz matrix A is barely positive definite and the infinite 
Toeplitz matrix is singular, all because the symbol has A( e) = 0 ate = 0. 

The inverse of a Toeplitz matrix A is usually not Toeplitz. For example, 

-1 
2 

-1 

0 l- 1 
[ 3 2 1 l -1 ~ 2 4 2 

2 4 1 2 3 
is not Toeplitz 

But Levinson found a way to use the Toeplitz pattern in a recursion-reducing the usual 
O(n3 ) solution steps for Ax = b to O(n2 ). Superfast algorithms were proposed later, 
but the "Levinson-Durbin recursion" is better for moderate n. Superfast algorithms give 
accurate answers (not exact) for large n--one way is a circulant preconditioner 

One more general comment. It frequently happens that the first and last rows do ~ot 
fit the Toeplitz pattern of "shift invariance". The entries in those boundary rows can be 
different from a0 and a 1 and a_ 1 . This change can come from boundary conditions 
in a differential equation or in a filter. When A multiplies a vector x = (x1, ... , xn), 
the Toeplitz matrix (sharp cutoff) is assuming x 0 = 0 and XnH = 0 (zero-padding). 

Zero padding may give a poor approximation at the endpoints. Often we cha!lge the 
boundary rows for a better approximation. A close analysis of those changes can be 
difficult, because tlle constant-diagonal pattern in the Toeplitz matrix is perturbed. 
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Fast Multiplication by the FFT 

For tridiagonal matrices, we don't need a special algorithm to multiply Ax. This requires 
only 3n separate multiplications. But for a full dense matrix, the Toeplitz and circulant 
properties allow major speedup in 0-space by using the Fast Fourier Transform. 

Circulants are cyclic convolutions. In 0-space, the matrix-vector multiplication 
Cx becomes (2:: ckeik11 )(2: xkeikll). This product will give powers of ei11 that go outside 
the range from k = 0 to k = n - 1. Those higher frequencies and negative frequencies 
are "aliases" of standard frequencies-they are equal at every 0 = p2n / n : 

Aliasing einll = 1 and ei(n+l)ll = eill and ei(n+p)ll = eipll at 0 = 2n' 4n' . .. 
n n 

Cyclic convolution c ® x brings every term of (2:: ckeik11 )(2: xkeikll) back to a 
term with 0 :::; k < n. So a circulant multiplication Cx needs only O(nlog2 n) steps 
because of convolution by the Fast Fourier Transform. 

Cyclic convolution c ® x and c ® d give the entries ofCx and CD. 

A Toeplitz matrix multiplication Ax is not cyclic. Higher frequencies in A(O)x(O) 
don't fold back perfectly into lower frequencies. But we can use cyclic multiplication 
and a circulant by a doubling trick: embed A into a circulant matrix C. 

A= ~~~· · a1:n 

· ~a-1 
an-1 · · a1 ao 

To compute Ax of size n, we can use this circulant matrix C of size 2n + 1. 

1. Add n - 1 zeros to extend x to a vector X of size 2n - 1. 

2. Multiply CX using the Fast Fourier Transform (cyclic convolution). 

3. Then the first n components of C X produce the desired Ax. 

If size 2n is preferred for C, a diagonal of a0 's c'an go between a1_n and an_1. 

Toeplitz Eigenvalues and Szego's Theorem 

The exact eigenvalues of circulant matrices were found in Section IV.2. The eigenvectors 
are known in advance-always the same ! They are the columns of the Fourier matrix F. 
The eigenvalues of C are the components of the vector F c. They are the values of C ( 0) at 
n equally spaced points. In other words, the eigenvalues are the discrete Fourier transform 
of column 0 of the circulant matrix C. 
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As always, circulant formulas are exact and Toeplitz formulas are close. You will see 
integrals instead of point values of A( 8). The formulas only become exact as the size of 
the Toeplitz matrix becomes infinite. So there is a limit as n ~ oo included in Szego's· 
Theorem about the eigenvalues of A. Two special cases and then the full theorem. 

Szego As n ~ oo, the trace and the log determinant of a Toeplitz matrix A satisfy 

1 
- trace(A) 
n 

1 12" =- A(B)d8 = ao 
27r 0 

1 1 12" lim - log( det A) = - log( A( 8)) d8 
n-too n 27r 0 

(1) 

(2) 

The trace and determinant of any matrix are the sum and product of the eigenvalues. 
We are seeing their arithmetic mean in ( 1) and their geometric mean in (2) : log determinant 
=sum oflog Ak. Those two limits are the most important cases F(>..) =A and F(>..) =log>.. 
of the full theorem, which allows any continuous function F of the eigenvalues of A : 

Szego's Theorem 
1 n-1 1 12" 

limn-too - L F(>..k) = 2 F(A(8)) d8. 
n k=O 7r o 

(3) 

The control on A(8) comes from Wiener's condition that L:: lakl < oo. Excellent notes l. 

are posted on the Stanford website ee.stanford.edu/-gray/toeplitz.pdf. 
Those notes by Professor Gray also develop a major application to discrete time 

random processes. When the process is weakly stationary, the statistics stay the same 
at every time step. The covariance matrix between outputs at times t and T depends only 
on the difference T - t. Then the covariance matrix is Toeplitz = shift invariant. 

Before applications, we mention three more key topics in Toeplitz matrix theory : 

• The Gohberg-Semencul formula for A -l (Gohberg was truly remarkable) 

• The Wiener-Hopf factorization of infinite systems A00x = b (so was Wiener!) 

• The test for invertibility of Aoo is Aoo ( 8) =f. 0 and winding number = 0 

An infinite one-step shift models the difficulties that come with n = oo. It has a 
diagonal of 1 's above or below the main diagonal. Its symbol is just ei9 or e-ie (never 
zero). But ei9 winds around zero as () goes from 0 to 21r, and the infinite shift matrix 
S(xo, x1, ... ) = (x1, x2, ... ) or Sx = (0, xo, x1, ... ) is not invertible. 
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Lowpass Filters in Signal Processing 

A filter is a convolution : Multiply by a Toeplitz matrix. Going through a "lowpass 
filter", the constant vector x = ( ... , 1, 1, 1, 1, ... ) can come out unchanged: Ax = x. 
But an oscillating high-frequency signal like y = ( ... , -1, 1, -1, 1, ... ) has Ay ~ 0. 
Those are the outputs if A(O) = Eak = 1 and A(1r) ~ 0. Here is a lowpass example. 

1 1 1 
Lowpass averaging filter (Ax)n =- Xn+l +- Xn +- Xn-1· 

4 2 4 

That Toeplitz matrix A is symmetric. Its three diagonals have entries ~, ~, ~. Its symbol 
A(O) (frequency response) is real and A(O) = 1 at frequency 0 = 0: lowpass filter. 

Frequency response A(O) = ~ (e-iO + 2 + ei11 ) = ~ (1 +cosO);:::: 0. 

The highest frequency 0 = 1r produces the infinitely long plus-minus signal y 
( ... , -1, 1, -1, 1, ... ) . That signal has Ay = 0. It is filtered out. A typical component of 
Ay is - ~ + ~ - ~ = 0. And we see this also from the symbol: A( 0) = ~ (1 + cos 0) 
is zero at 0 = 1r. 

Figure IV.3: Frequency responses A( 0) : Short lowpass filter, ideallowpass, ideal highpass. 

You see two ideal filters in Figure IV.3. They are achievable only with infinitely many 
nonzero diagonals in the matrix A because an ordinary polynomial can't stay constant. 
The numbers ak down the diagonals of A are the Fourier coefficients of A(O). 

In practice, filters are a compromise between short and ideal. Equiripple filters are a 
natural favorite-they oscillate around 1 and around 0. The ripples (oscillations around 
the ideal) all have the same height. That height decreases as we use more coefficients ak. 

The filter gets sharper-the drop from 1 to 0 is steeper-but computing Ax takes longer. 

Averages and Differences and Wavelets 

Lowpass filters are running averages. Highpass filters are running differences. That word 
"running" means that a window moves along the vector x. Suppose the window lets only 
3 components of the signal x show through. The lowpass filter multiplies them by ~, ~, ~ 
and adds, to find the averaged signal Ax. A highpass filter could alternate those signs to 
produce - ~, ~, - ~. Then A is taking second differences instead of averages of averages. 
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The moving window creates a convolution = Toeplitz matrix A or D : 

1 1 1 
(Ax)n = 4 Xn-1 + 2 Xn + 4 Xn+I 

The idea of "wavelets" is to use both filters: averages A and differences D. 
Downsample the outputs: Delete (Ax)n and (Dx)n for odd n. Keep half-signals. 
Now send the half-length signal (Ax hn through both filters A, D. Downsample again. 

Wavelet transform with downsampling (x)n ~(Axhn -(AAx)4n 
A for low frequencies, D for high frequencies ~ ( Dx hn-.......,.. ( D Ax )4n 

The total signal length is unchanged by its wavelet transform (A2 x)4n, (DAx)4n, (Dxhn· 
But the signal is separated into frequency blocks low-low, high-low, and high. We compress 
those pieces separately-and the high frequencies are compressed most. 

To invert the wavelet transform, go backwards in the flow chart. Upsample each piece 
of the transform by inserting zeros. Then reverse the arrows and assemble the original 
signal (x)n from the blocks AAx, DAx, Dx of its transform: 

Inverse wavelet transform (AAx)4n -(Axhn ---..(x)n .,.,..., ___. 
(DAx)4n (Dxhn 

This process uses carefully chosen filters A and D to reduce the length of a signal 
without losing the information that we want to see and hear. The best wavelet transforms 
are adjusted so that A and D produce orthogonal matrices or symmetric matrices. The 
Daubechies 4-coefficient filters are a favorite, with these diagonals in A and D : 

As always, finite Toeplitz matrices with these diagonal entries have to be adjusted at the 
boundaries. Toeplitz has zeros outside the matrix, but good wavelets often use reflections . . 
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Problem Set IV.S 

1 Show that equations (2) and (3) are the same when F(.A) =log.>... 

2 Suppose F(.A) = >.2 . Then Szego's Theorem (3) gives the limit of the average 
eigenvalue of A2 . 

(a) Show by squaring A with diagonals a_ 1 , a0 , a1 thatthe symbol of A2 is (A(B)) 2 . 

(b) Integrating that polynomial (A(B)f from 0 to 2n produces its constant term. 
What is that term for the -1, 2, -1 matrix ? 

The A = LU factorization of the -1, 2, -1 symmetric second difference matrix ( n = 4) is 

3 Verify that (LU) 44 = 2 as required and detA = 5 = n + 1. 

-1 l 3/2 -1 
4/3 -1 

5/4 

4 These factors of the -1, 2, -1 Toeplitz matrix are not Toeplitz matrices. But as n 
increases the last row of Land the last column of U nearly end with -1, 1. Verify 
that the limit symbols ( -e-ie + 1) and ( -eie + 1) multiply to give the correct symbol 
of A. 

5 The symbolS - 2eie - 2e-ie factors into 2 - eie times 2 - e-w. When the sym
metric Toeplitz matrix S with diagonals -2, 5, -2 is factored into S = AT A with 
upper triangular A, what would you expect the last column to approach as n ---+ oo ? 
(A will only have two nonzero diagonals.) 

6 Use the Cholesky command A= choi(S) with the -2, 5 - 2 matrix S in Problem 5, 
to verify that the last row and column of AT and A approach the predicted limits. 
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IV.6 Graphs and Laplacians and Kirchhoff's Laws 

A graph consists of a set of nodes and a set of edges between those nodes. This is 
the most important model for discrete applied mathematics simple, useful, and general. 
That word discrete is. used in contrast to continuous : we have vectors instead of functions, 
we take differences and sums instead of derivatives and integrals, we depend on linear 
algebra instead of calculus. 

Start with the incidence matrix of the graph. With m edges and n nodes, the incidence 
matrix A is m by n. Row i of A corresponds to edge i in the graph. If that edge goes from 
node j to node k, then row i of A has -1 in column j and + 1 in column k. So each row 
of A adds to zero and (1, 1, ... , 1) is in the nullspace. 

The nullspace of A contains all constant vectors x = (c, c; ... , c). 
We assume the graph is connected-if there is no edge from node j to node k, there is at 
least a path of edges connecting them. Here are the dimensions of the four subspaces : 

dim N(A) = 1 dim C(A) =dim C(AT) = n- 1 dim N(AT) = m- n + 1 
The constant vector 1 = (1, 1, ... , 1) is the simplest choice for the nullspace basis. Then 
the row space contains all vectors x with x1 + xz + · · · + Xn = 0 (sox is orthogonal to 1). 
To find bases for all four subspaces, we can use trees and loops : 

C(AT) n- 1 rows of A that produce a tree in the graph (a tree has no loops) 

C(A) the first n- 1 columns of A (or any n- 1 columns of A) 

N (AT) flows around the m - n + 1 small loops in the graph : see equation (3) 

If orthogonal bases are desired, choose the right and left singular vectors in A = UEVT. " 

Example from Section 1.3 m = 5 edges and n = 4 nodes 

X1 edges 
-1 1 0 0 1 
-1 0 1 0 2 

Xz xa A= 0 -1 1 0 3 
0 -1 0 1 4 
0 0 -1 1 5 

X4 nodes 1 2 3 4 

The graph Laplacian matrix L = AT A is square and symmetric and positive semidefi
nite. 
AT A has n- 1 positive eigenvalues A = u2 and one zero eigenvalue (because A1 = 0). 
The special form AT A = D - B stands out in our example with 5 edges and 4 nodes : 

ATA~ [ 

2 -1 -1 

-~ l • Laplacian -1 3 -1 =D-B 
One missing edge -1 -1 3 -1 

0 -1 -1 2 
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The degree matrix is D = diag (2, 3, 3, 2). It counts the edges into nodes 1, 2, 3, 4. 
The adjacency matrix B has entries 0 and 1. An edge from j to k produces bik = 1. 
A complete graph (all edges present) has D = (n- 1) I and B =all ones minus I. 

If every pair of nodes is connected by an edge, the graph is complete. It will have 
m = (n- 1) + (n- 2) + · · · + 1 = ~n(n- 1) edges. B is the all-ones matrix (minus I). 
All degrees are n- 1, soD= (n- 1)I. At the other extreme, there are only n- 1 edges. 
In this case there are no loops in the connected graph: the graph is a tree. The number 
m of edges in any connected graph is between m = n - 1 and m = ~n( n - 1). 

4 

(Dnl ® 
2 3 

® G) 

1 

Figure IV.4: Complete graph and two trees, all with n = 4 nodes : m = 6 or 3 edges. 
The middle figure shows the numbering of the four nodes in all three graphs. 

Those graphs are connected to linear algebra by their m by n incidence matrices A, A2 , A3 

-1 1 0 0 

[ 
-1 1 0 n [ 

-1 1 0 n -1 0 1 0 -1 0 1 -1 0 1 
0 -1 1 0 0 -1 0 -1 0 0 
0 -1 0 1 
0 0 -1 1 first tree second tree 

-1 0 0 1 incidence matrix A 2 incidence matrix A 3 

Our convention is that -1 comes before + 1 in each row. But these are not directed graphs ! 
Flows on the edges (the currents Yl to Ym.) can be positive or negative. And all information 
about a graph (its nodes and edges) is revealed by its incidence matrix. 

The incidence matrix has n columns when the graph has n nodes. Those column vectors 
add up to the zero vector. Say that in a different way : The all-ones vector x = ( 1, 1, 1, 1) is 
in the nullspace of all three incidence matrices. The nullspace of A is a single line through 
that all-ones vector. Ax = 0 requires x 1 = x2 .= x3 = x4 so that x = (c, c, c, c). 

-x1 +xz = 0 (then x1 = x2) 

-Xl +x3 =0 (then x1 = xa) 

-xz +x3 =0 
jAx=O 

I =0 (then x 2 = x4) 
(1) 

-xz +x4 

-X3 +x4 =0 

-x1 +x4 =0 
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Kirchhoff's Current Law 

The equation Ax = 0 is not very interesting. All its solutions are constant vectors. The 
equation AT y = 0 is extremely interesting : a central equation of applied mathematics. 
We need to see what it means and to find a full set of n - m + 1 independent solutions. 

Y1 

[ -~ -1 0 0 0 

-~] 
Y2 

~m-Kirchhoff's Current Law 0 -1 -1 0 Y3 
KCLisATy = 0 1 1 0 -1 Y4 

(2) 

0 0 1 1 Ys 
Y6 

First, count the solutions. With m = 6 unknown y's and r = 3 independent equations, 
there are 6 - 3 independent solutions. The nullspace of AT has dimension m - r = 3. 
We want to identify a basis for that subspace of R 6 . 

What is the meaning of the four equations in Kirchhoff's Current Law AT y = 0? 
Each equation is a balance law for currents going in or out of a node: 

KCL = Balance of currents : Flow into each node equals flow out from that node. 

At node 4, the last equation in (2) is y4 + y5 + y6 = 0. The total net flow into node 4 is zero 
(or electrons would pile up). This balance of currents or forces or money occurs everywhere 
in engineering and science and economics. It is the balance equation of equilibrium. 

The key to solving AT y = 0 is to look at the small loops in the graph. A loop'~ 
is a "cycle" of edges-a path that comes back to the start. The first graph in Figure IV.4 
has three small loops. Going around those loops are these edges : 

loop 1 : Forward on edge 2, backward on edges 3 and 1 
loop 2 : Forward on edges 3 and 5, backward on edge 4 
loop 3 : Forward on edge 6, backward on edges 5 and 2 

Flow around a loop automatically satisfies Kirchhoff's Current Law. At each node in the 
loop, the flow into the node goes out to the next node. The three loops in the graph produce 
three independent solutions to ATy = 0. Each y gives six edge currents around a loop: . 

-1 0 0 
1 0 -1 

ATy=D for 
-1 

and 
1 

and 
0 

(3) Y1 = 0 Y2 = -1 Y3 = 0 
0 1 -1 
0 0 1 

There are "110 more independent solutions even if there are more (larger) loops ! 
The large loop around the whole graph is exactly the sum of the three small loops. So 
the solution y = ( -1, 0, 0, -1, 0, 1) for that outer loop is exactly the sum y 1 + y 2 + y 3 . 
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The subspace dimensions lead to a fundamental identity in topology (discovered by Euler): 

(Number of nodes) - (Number of edges) + (Number of loops) -

(n)- (m) + (m- n + 1) = 1. 
(4) 

The reader will already know that a tree has no loops. Our second and third graphs were 
trees with 4 nodes and 3 edges. Then Euler's count is ( 4) - (3) + ( 0) = 1. And AT y = 0 
has only the solution y = 0. The rows of A are independent for every tree. 

-1 
-1 

0 

1 
0 

-1 

0 
1 
0 

[ 
-1 

and A3 = -1 
-1 

1 
0 
0 

0 
1 
0 

The AT C A Framework in Applied Mathematics 

Graphs are perfect examples for three equations that I see everywhere in engineering 
and science and economics. Those equations describe a system in steady state equilibrium. 
For flows in an electrical network (currents along the six edges of our first graph) 
the three equations connect the voltages x = (x1 , x 2 , x3, x4 ) at the four nodes and the 
direct currents y = (y1, Y2, y3, y4, y5, Y6) along the six edges. 

Voltage differences 
across edges 

Ohm's Law 
on each edge 

Kirchhoff's Law 
with current sources 

e=Ax 

y=Ce 

e1 = voltage at end node 2 
- voltage at start node 1 

current Y1 = c1 times e1 
= (conductance)(voltage) 

current sources f into nodes 
balance the internal currents y 

Those three equations e = Ax and y = Ce and f = AT y combine into one 
equilibrium equation AT C Ax = f. This is the form of so many fundamental laws. 
The beauty is in the appearance of both A and AT. The result is that the governing 
matrix AT C A is symmetric. AT C A is positive semidefinite because Ax = 0 has the 
all-ones solution x = (1, ... , 1). 

With a boundary condition such as X4 = 0 (which grounds node 4 and removes the 
last column of A) the reduced matrix AT C A bec~mes symmetric positive definite. 

The grounded network has n - 1 = 3 unknown voltages (x4 = 0 is known) 

The reduced incidence matrix A is now 6 by 3 : full rank 3. 

ThesystemmatrixATCAis (3 x 6)(6 x 6)(6 x 3) = 3 x 3 

The energy is positive: x T ATCAx = (Ax )T C(Ax) > 0 if x -1- 0 

Now AT C A is symmetric and invertible and positive definite. 
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This ATCA framework is the foundation of my MIT course 18.085 on Computational 
Science and Engineering. It is the point where linear algebra has an important message for 
large-scale computations (like the finite element method). The video lectures and textbook 
emphasize the applications of AT A and AT CA. 

By preserving the symmetric positive definite structure of the governing equations
which are often partial differential equations-the format of AT C A fits the laws of science. 
Kirchhoff's Current Law AT y = 0 becomes a model for all balance laws : conservation 
of charge, balance of forces, zero net income in economics, conservation of mass and 
energy, continuity of every kind. 

The same ATCA matrix enters in linear regression (least squares applied to Ax = b). 

AT.AX =ATb 

ATC.AX = ATCb 

minllb- Axil~ 

Normal equation for the vector x that best fits the data b 

Least squares weighted by the inverse covariance matrix C = v- 1 

Minimum squared error ( b - Ax) T C ( b - Ax) 

Deep learning in the final chapter will again be an optimization problem. Find the 
weights between each layer of neurons so the learning function F correctly classifies 
the training data. In the 20th century, when F was linear, this was not so successful. 
In this century, each neuron also applies a nonlinear activation function like ReLU(x) 
(the larger of 0 and x). Deep learning has now become amazingly powerful. 

The overall function F that classifies the data is continuous and piecewise linear. 
Its graph has an astonishing number of small fiat pieces. Every application of ReLU(x) 
adds a fold to the graph of F. That fold crosses the other folds to divide feature space 1 

into many many pieces. Please see Section VII.l on deep neural nets. ) 
Constructing all these fiat pieces provides the mathematical power for deep learning. 

The Graph Laplacian Matrix 

K = AT C A is a weighted graph Laplacian-the weights are in C. The standard 
Laplacian matrix is G = AT A, with unit weights ( C = I). Both Laplacians are crucial 
matrices for theory and applications. The main facts about AT A and AT C A apply to every 
connected graph. K can be a stiffness matrix or a conductance matrix in engineering. 

1 Every row and column of G and K adds to zero because x = ( 1, ... , 1) has Ax =. 0. 

2 G = AT A is symmetric because edges go both ways (undirected graph). 

3 The diagonal entry (AT A)ii counts the edges meeting at node i : the degree. 

4 The off-diagonal entry is (AT A)ij = -1 when an edge connects nodes i and j. 

5 G and [( are positive semidefinite but not positive definite (because Ax = 0 in 1). 

AT A= diagonal+ off-diagonal= degree matrix- adjacency matrix= D-B. 
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Problem Set IV.6 

1 What are the Laplacian matrices AT A for a triangle graph and a square graph ? 
The incidence matrix A reverses sign if all arrows are reversed-but signs in AT A 
don't depend on arrows. 

2 What is AT A for a complete graph (all ten edges between n = 5 nodes)? 

3 For a triangle graph with weights c1, c2, c3 on edges 1 ---+ 2, 1 ---+ 3, 2 ---+ 3, show 
by matrix multiplication that 

[ 
c1 + c2 -c1 

K=ATCA= -c1 c1+c3 
-C2 -c3 

4 That matrix K = AT C A is the sum of m = 3 "element matrices" : 

1 0 
0 0 

-1 0 

-1 l [ 0 0 0 +c3 0 1 
1 0 -1 

Show that those rank-1 matrices come from K = AT(CA) =columns times rows. 

5 Draw a tree with n = 4 nodes and m = 3 edges. There should be m - n + 1 = 0 
solutions to the current law ATw = 0. Explain this conclusion: Rows of A that 
correspond to a tree in the graph are independent. 

6 A complete graph with n = 4 nodes and m = 6 edges apparently can't be drawn in 
a plane. Can you prove (after experiment) that edges will intersect? 

7 (a) For that complete graph with 4 nodes and 6 edges, find the matrix AT A. 

(b) Also find 6-4 + 1 solutions (from loops) to Kirchhoff's Law ATw = 0. 

8 Explain Euler's formula (the beginning of topology) for any graph in a plane: 

(number of nodes) - (number of edges)+ (number of small loops) = 1 

9 For a triangle graph, find the eigenvalues and eigenvectors of G = AT A. The 
eigenvectors are not completely determined because G has a repeated ___ _ 
Find one choice for the SVD : A = UEVT. 
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IV.7 Clustering by Spectral Methods and k-means 

How to understand a graph with many nodes (and not all possible edges)? An important 
starting point is to separate the nodes into two or more clusters-like groups of friends. 
Edges are more likely within the clusters than between different clusters. We hope the 
clusters have similar size so that we are not just picking off a few loners. Identifying 
these clusters will give a first rough understanding of our graph. 

A key step in decoding genetic data is to cluster genes that show highly correlated 
(and sometimes anti-correlated!) expression levels. Clustered genes may lie in the same 
cellular pathway. The great achievement of the Human Genome project was to tell us the 
pieces in the puzzle of life: the rows of G. We now face the greater problem of fitting those 
pieces together to produce function: such as creating proteins. 

An Example with Two Clusters 

The figure below shows n = 5 nodes. Those nodes are separated into k = 2 clusters. 
The points marked by* are the centroids (2, 1) and ( -1, 2/3) of the two clusters. The 
first centroid is the average ~(1, 1) + ~(3, 1) of the two points, and the second centroid is 
the average H(O, 0) + ( -3, 0) + (0, 2)]. Those centroids c1 and c2 minimize the sum of 
squared distances lie - aj 11 2 to the points ai in the clusters. 

These clusters were produced by the famous k-means algorithm with k = 2. This is 
a simple way to cluster the nodes-but not the only way. (And probably not the fastest or 
best way for a large set of nodes.) Before using eigenvalues and cuts to produce clusters, 
we show how k-means is one more excellent example of a central theme in this book: " 

-:i 

Approximate an m X n matrix A by CR = (m X k)(k X n) (1) 

The rank of C R is low because C has only k columns and R has k rows. In the k-means 
approximation, the columns ofC are the centroids of the clusters. What is R? 

Each column of R has a single 1 and k - 1 zeros. More exactly, Rij = 1 (or 0) if 
centroid i is closest (or not) to the point Xj. Then the 1's in row i of R tell us the cluster 
of nodes around the centroid (marked by *) in column i of C. 

For 5 nodes and 2 clusters, R has only two different columns (centroids) in A ~ CR. 

L::::r~-~ · • [ 0 1 3 0 -3 ] [ -1 2 2 1 1 ] 
0 1 1 2 0 ~ 2/3 1 1 03 03 

(-3,0) (0,0) (1,1) 
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Four Methods for Clustering 

Out of many applications, we start with this one: to break a graph in two pieces. · 
Those pieces are clusters of nodes. Most edges should be inside one of the clusters. 

1. Each cluster should contain roughly half of the nodes. 

2. The number of edges between clusters should be relatively small. 

For load balancing in high performance computing, we are assigning equal work to 
two processors (with small communication between them). For social networks we are 
identifying two distinct groups. We are segmenting an image. We are reordering rows 
and columns of a matrix to make the off-diagonal blocks sparse. 

Many algorithms have been and will be invented to partition a graph. I will 
focus on four successful methods that extend to more difficult problems : Spectral 
clustering (using the graph Laplacian or the modularity matrix), minimum cut, 
and weighted k-means. Here are those four methods : 

I. Find the Fiedler vector z that solves ATCAz = >..Dz. The matrix ATCA is the 
graph Laplacian. Its diagonal D contains the total weights on edges into each of the 
nodes. D normalizes the Laplacian. The Fiedler vector has 

The eigenvector for >..1 = 0 is (1, ... , 1). The Fiedler eigenvalue comes next: >..= >..2 . 

Positive and negative components of its eigenvector indicate the two clusters of nodes. 

II. Replace the graph Laplacian matrix ATCA by the modularity matrix M. Choose 
the eigenvector that comes with the largest eigenvalue of M. Again it will be the 
positive and negative components that indicate the two clusters : 

Modularity matrix M = (adjacency matrix) - - 1- ddT 
2m 

The vector d gives the degrees of the n nodes (the number of edges adjacent to the 
nodes). Each row and column of A1 = MT adds to zero, so one eigenvector of M is 
again (1, 1, ... , 1). If its eigenvalue>.. = 0 happens to be the largest-so M has no 
positive eigenvalues- then all nodes will and should go into one cluster. 

The article by Mark Newman in PNAS 103 (2006) 8577-8582 makes a strong case 
for the modularity matrix in clustering the nodes. 

III. Find the minimum normalized cut that separates the nodes in two clusters P and 
Q. The unnormalized measure of a cut is the sum of edge weights Wij across that 
cut. Those edges connect a node in P to a node outside P: 

Weight across cut links ( P) = I: Wij for i in P and j not in P. (2) 

By this measure, a minimum cut could have no nodes in P. So we normalize 
by the sizes of P and Q. These are sums of weights inside clusters : 

Size of cluster size(P) = 2:: Wij for i in P. (3) 
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Note that an edge inside Pis counted twice, as Wij and Wji· The unweighted size 
would just count the nodes, and lead to "ratio cut." Here we divide weight across the 
cut by the weighted sizes of P and Q, to normalize the key quantity Ncut: 

Normalized cut weight Ncut(P, Q) = li~ks(P) + links(Q). 
s~ze(P) size( Q) 

(4) 

Shi and Malik found that minimizing Ncut(P, Q) gives a good partitioning of the graph. 
That application was to segmentation of images. They uncovered the connection to the 
Laplacian L. 

The definition of Ncut extends from two clusters P and Q to k clusters P1 , ... , Pk : 

~ links(Pi) 
Ncut(P1, ... , Pk) = L....- . ( ) 

i=l s~ze pi 
Normalized K-cut (5) 

We are coming close to k-means clustering. Start with k = 2 clusters (P and Q). 

IV. k-means Represent the nodes in the graph as vectors a1, ... , an. The clusters P 
and Q have centers cp and CQ. We minimize the total squared distance from nodes 
to those "centroids". 

2-means clustering 
cp, CQ =centroids Minimize E= L llai-cPII2+ L llai-cQII2 (6)·~ 

i in P iin Q 

The centroid is the average cp = (L ai)/IPI of the vectors in cluster P. 

The vector ai may or may not represent the physical location of node i. So the clustering 
objective E is not restricted to Euclidean distance. The more general kernel k-means 
algorithm works entirely with a kernel matrix K that assigns inner products Kij = a[ aj. 
Distances and means are computed from a weighted K. 

The distance measure E will also be weighted, to improve the clusters P and Q. 

The Normalized Laplacian Matrix 

The first step to L is AT A. This A is the m by n incidence matrix of the graph. Off the 
diagonal, the i, j entry of AT A is -1 if an edge connects nodes i and j. The diagonal 
entries make all row sums zero. Then (AT A)ii = number of edges into node i =degree 
of node i. With all weights equal to one, AT A = degree matrix - adjacency matrix. 

The edge weights in C can be conductances or spring constants or edge lengths. 
They appear on and off the diagonal of AT C A = D - W = node weight matrix -
edge weight matrix. Off the diagonal, the entries of - W are minus the weights Wij. 

The diagonal entries distill make all row sums zero: D = diag(sum(W)). 
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The all-ones vector 1 = ones(n, 1) is in the nullspace of ATCA, because Al = 0. 
Each row of A has 1 and -1. Equivalently, Dl cancels Wl (all row sums are zero). 
The next eigenvector is like the lowest vibration mode of a drum, with A2 > 0. 

For the normalized weighted Laplacian, multiply AT C A on the left and right by 
D- 112 , preserving symmetry. Row i and column j are divided by Jdi and Jdj, so the i, j 
entry of ATCA is divided by .JJ;dj. Then L has di/di = 1-along its main diagonal. 

[ 

Normali.zed La~lacian L L = n-1/2 ATCA n-1/2 = 1 _ N 
Normalized weights nii 

(7) 

A triangle graph has n = 3 nodes and m = 3 edge weights c1, c2, c3 = w12, w13, w23: 

W12 + W13 -Wt2 -w,, l L~ [ -~, -n12 -nl3] 
-W21 W21 + W23 -W23 1 -n23 (8) 
-W31 -W32 W31 + W32 -n31 -n32 1 

ATCA=D-W L = n-1/2ATCAD-1/2 

The normalized Laplacian L = I - N is like a correlation matrix in statistics, with unit 
diagonal. Three of its properties are crucial for clustering: 

1. L is symmetric positive semidefinite: orthogonal eigenvectors, eigenvalues A 2:: 0. 

2. The eigenvector for A= 0 is u = ( .,;J:;, ... , ffn). Then Lu=D-112 AT CAl= 0. 

3. The second eigenvector v of L minimizes the Rayleigh quotient on a subspace: 

.X2 = smallest nonzero eigenvalue of L 
Minimize subject to x T u = 0 

xTLx vTLv 
min -- = -- = .X2 at x = v 

xTx vTv 

(9) 
The quotient x T Lx / x T x gives an upper bound for A2, for any vector x orthogonal to the 
first eigenvector D 1121. A good lower bound on A2 is more difficult to find. 

Normalized versus Unnormalized 

The algorithms of clustering could use the unnomialized matrix AT CA. But L usually 
gives better results. The connection between them is Lv = n-112 ATCAD-112v = AV. 
With z = n-112v this has the simple and important form ATCAz =ADz: 

Normalized Fiedler vector z (10) 

For this "generalized" eigenvalue problem, the eigenvector for A = 0 is still the all-ones 
vectorl = (1, ... , 1). The next eigenvector?' is D-orthogonalto 1, which means IT D z = 
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0 (Section 1.10). By changing x to D 112 y, the Rayleigh quotient will find that second 
eigenvector z: 

(11) 
In Ay, the incidence matrix A gives the differences Yi- Yi· C multiplies them by Wij· 

Note For some authors, the Fiedler vector v is an eigenvector of AT CA. We prefer 
z = D- 112v. Then ATCAz = >..2Dz. Experiments seem to give similar clusters from v 
and z. Those weighted degrees di (the sum of edge weights into node i) have normalized 
the ordinary AT C A eigenvalue problem, to improve the clustering. 

Why would we solve an eigenvalue problem Lv = >..v (usually expensive) as a first 
step in reordering a linear system Ax=b? One answer is that we don't need an accurate 
eigenvector v. A "hierarchical" multilevel method combines nodes to give a smaller L 
and a satisfactory v. The fastest k-means algorithms coarsen the graph level by level, and 
then adjust the coarse clustering during the refinement phase. 

Example 1 A 20-node graph has two built-in clusters P and Q (to find from z). The 
MATLAB code creates edges within P and within Q, with probability 0.7. Edges between 
nodes in P and Q have smaller probability 0.1. All edges have weights Wij = 1, soC = I. 
P and Q are obvious from the graph but not from its adjacency matrix W. 

With G =AT A, the eigenvalue command [V, E] = eig(G, D) solves AT Ax= >..Dx. ,. 
Sorting the A's leads to >..2 and its Fiedler vector z. Des Higham's third graph shows how ' 
the components of z fall into two clusters (plus and minus), to give a good reordering. 
He provided this MATLAB code. 

N = 10; W = zeros(2*N, 2*N); 

rand('state', 100) 

for i = 1 : 2 * N- 1 

for j = i+l:2*N 

p = 0.7-0.6 * mod(j -i, 2); 

W(i,j) =rand< p; 

end 

end 

W = W + W'; D = diag(sum(W)); 

G = D-W; [V, E] = eig(G, D); 
[a, b] = sort(diag(E)); z = V(:, b(2)); 

plot(sort(z), '.-'); 

% Generate 2N nodes in two clusters 

% rand repeats to give the same graph 

% p = 0.1 whenj- i is odd, 0.7 alse 

% Insert edges with probability p 

% The weights are Wij = 1 (or zero) 

% So far W is strictly upper triangular 

%Adjacency matrix W, degrees in D 

% Eigenvalues of Gx = >..Dx in E 

% Fiedler eigenvector z for >..2 

% Show + - groups of Fiedler components 
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Graph 

0 

-1 

-1 0 2 

Fiedler components 
0.2 

0.1 0 0 0 0 0 0 
0 0 0 <D 

0 

* * 
-0.1 * * * * * * * 
-0.2 L,__--~-----' 
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Special Matrices 

Adjacency matrix W 
0 .--------..-, a.• • .•r •.e: ........... • • • • • 
5 • • '•'••• •'• I. • • • •••• •• • • • • • • 10 • • •••• • •••••• 

.. · a:··· a:···: 
15 ···:·:·.···=- ·.·. •.a ••• •• •• • 
20 a.•.•: •••• •• •• 

0 10 20 
nz = 142 

Reordered Matrix W 
0 .--------..-, •" :a-.•. 
5 ~,::'11• .... I' • ...... .I 

10 • •••• • •• 
... .a• =· •• • • •• '1111' 

15 
'I"'"" •• , • u= .a • .: 
i~'aiHO 20 L,_-~--__._j 

0 10 20 
nz = 142 

Application to Microarray Data 

Microarray data comes as a matrix M from m genes and n samples. Its entries mij record 
the activity (expression level) of gene i in sample j. Then by n weight matrix MT M 
measures the similarity between samples (the nodes in a complete graph). 

The off-diagonal entries of MT Menter W. The row sums of W go into D. Then 
D- W is the weighted Laplacian matrix AT CA. We solve ATCAz = >..Dz. 

Higham, Kalna, and Kibble report tests on three data sets. Those involve leukemia 
(m = 5000 genes, n = 38 patients), brain tumors (m = 7129, n = 40), and lymphoma. 
"The normalized spectral algorithm is far superior to the unnormalized version at revealing 
biologically relevant information." 

The experiments also show how the next eigenvector after Fiedler helps to produce 
k = 3 clusters. The k lowest eigenvalues provide eigenvectors to identify k clusters. 
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Cuts Connected to Eigenvectors 

How is the graph cut separating P from Q related to the Fiedler eigenvector in AT C Az = 
>..Dz? The crucial link comes from comparing Ncut(P, Q) in (5) with the Rayleigh quo
tient yT ATCAyjyT Dy in (11). The perfect indicator of a cut would be a vector y with 
all components equal top or -q (two values only): 

Two values Node i goes in P if Yi = p Node i goes in Q if Yi = -q 

1 T Dy will multiply one group of di by p and the other group by -q. The first di add to 
size(P) = sum of Wij (i in P) = sum of di (i in P). The second group of di adds to 
size(Q). The constraint lTDy = 0 becomesp size(P) = q size(Q). 

When we substitute this y into the Rayleigh quotient, we get exactlyN cut(P, Q) ! The 
differences Yi - y j are zero inside P and Q. They are p + q across the cut: 

Numerator (12) 

Denominator yT Dy=p2 size(P)+q2 size(Q) =p (psize(P))+q (psize(P)). (13) 

That last step used p size(P) = q size( Q). Cancel p + q in the quotient: 

Rayl~igh (p + q) l_inks(P, Q) = p lin~s(P, Q) + q lin~s(P, Q) = Ncut(P, Q). (14) 
quotient p szze(P) p szze(P) q szze(Q) 

The Ncut problem is the same as the eigenvalue problem, with the extra constraint that 
y has only two values. (This problem is NP-hard: there are so many choices of P and Q .) 
The Fiedler vector z will not satisfy this two-value condition. But its components in that 
specially good example clearly separated into two groups. Clustering by z is a success if 
we can make it efficient. 

Clustering by k-means 

The most basic problem begins with n points a 1 , ... , an in d-dimensional space. 
The goal is to partition those points into k clusters. The clusters P1 , ... Pk have centroids 
c1, ... , Ck. Each centroid c minimizes the total distance 2:: lie - aj 11 2 to points aj i11 its 
cluster. The centroid is the mean (the average) of those nj points: 

Centroid of Pi sum of a's . . . ~ II ll2 -" , . 1 p 
Cj = mmmuzes L..... c- a ~or as m custer j· 

number of a's 

The goal is to find the partition P1, ... , Pk with minimum total distance D to ce1_1troids : 

Clustering 
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Key idea Each clustering into P1, ... , Pk of the nodes produces k centroids (step 1). 
Each set of centroids produces a clustering (step 2), where a moves into Pj if Cj is 
the closest centroid to a. (In case of equally close centroids, choose one arbitrarily.) 
The classical "batch k-means algorithm" iterates from a clustering to its centroids to 
a new clustering. In eqn. (1) it is a factorization A = CR by alternating least squares! 

k-means 
1. Find the centroids Cj of the (old) clustering P 1, ... , Pk. 

2. Find the (new) clustering that puts a in P1 if Cj is the closest centroid. 

Each step reduces the total distance D. We reset the centroids c1 for each P1, and then 
we improve to new P1 around those c1. Since D decreases at both steps, the k-means 
algorithm converges. But it might not converge to the global minimum. 

It is hard to know much about the limit clusters. Non-optimal partitions can give 
local minima. Better partitions come from weighted distances. 

Step 1 is the more expensive, to compute all the distances I lei - ai 11 2 . The complexity 
is normally O(n2 ) per iteration. When the algorithm is extended below to kernel k-means, 
generating a kernel matrix K from the data can cost O(n2d). 

Step 2 is the "Voronoidal idea" of finding the set closest to each centroid. 

Weights and the Kernel Method 

When we introduce weights in the distances, they appear in the centroids : 

· d( ) II 11 2 C 'd fP LWiai( · P) (16) Distances x, ai = wi x - ai entrm o j Cj = L Wi aon j 

The weighted distance D1 = 2::: Wi llx- aill 2 is minimized by x = Cj in step 1. To reduce 
the total D = D1 + · · · + Dk. step 2 resets the clusters. Each ai goes with the closest 
centroid. Then iterate step 1 (new centroids) and step 2 (new clusters). 

A key point is that distances to centroids only require dot products ai · aj : 

Each i in Pi (17) 

Kernel method The weighted kernel matrix K has entries ai · ae. Those vectors ai 
need not be actual positions in space. Each application can map the nodes of the graph 
to vectors ai in a linear or nonlinear way, by its own rule. When the nodes are points Xi 

in input space, their representing vectors ai = ¢(xi).can be points in a high-dimensional 
feature space. Three kernels are commonly used: 

In vision 

In statistics 

In neural networks 

Polynomial 

Gaussian 

Sigmoid 

Kie = (xi · xe + c)d 

Kie = exp( -II xi- xell 2 /2a2 ) 

Ki£ = tanh(cxi · xe +B) 

The distance in (17) needs only the kernel matrix because of the centroid formula ( 16). 
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• "' 
1

2 I.:I.:wiweKie I.:wiKu "' Sum over nodes m P3 ~ llcj - ai I = 2 - 2 I.: + ~ Kii. (18) 
(I.: wi) Wi 

The kernel batch k-means algorithm uses the matrix K to compute this total distance. 

For large data sets, k-means and eig( AT C A, D) will be expensive. Here are two 
approaches that create a sequence of more manageable problems. Random sampling 
finds the best partition for a sample of the nodes. Use its centroids to partition all nodes, 
by assignment to the nearest centroid. Sampling has become a major research direction, 
aiming to prove that with high probability the partition is good. 

Dhillon's graclus code uses multilevel clustering: graph coarsening, then clustering 
at the base level, and then refinement. Coarsening forms supernodes with the sum of edge 
weights. For the small supergraph at base level, spectral clustering or recursive 2-means 
will be fast. This multilevel approach is like algebraic multigrid. 

Applications of Clustering 

The reason for this section is the wide variety of applications. Here is a collection that 
goes far beyond clustering. This part of applied mathematics has grown very quickly. 

1. Learning theory, training sets, neural networks, Hidden Markov Models 

2. Classification, regression, pattern recognition, Support Vector Machines 

3. Statistical learning, maximum likelihood, Bayesian statistics, spatial statistics, kriging, 
time series, ARMA models, stationary processes, prediction , 

4. Social networks, small world networks, six degrees of separation, organization theory, 
probability distributions with heavy tails 

5. Data mining, document indexing, semantic indexing, word-document matrix, image 
retrieval, kernel-based learning, Nystrom method, low rank approximation 

6. Bioinformatics, microarray data, systems biology, protein homology detection 

7. Cheminformatics, drug design, ligand binding, pairwise similarity, decision trees 

8. Information theory, vector quantization, rate distortion theory, Bregman divergences 

9. Image segmentation, computer vision, texture, min cut, normalized cuts ' 

10. Predictive control, feedback samples, robotics, adaptive control, Riccati equations. 
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Problem Set IV. 7 

1 If the graph is a line of 4 nodes, and all weights are 1 ( C = I), the best cut is down 
the middle. Find this cut from the ± components of the Fiedler vector z: 

ATCAz = - 1 2 [ 

1 -1 

-1 
-1 

2 
-1 

Here ~2 = ~·Solve for z by hand, and check [ 1 1 1 1] Dz = 0. 

2 For the same 4-node tree, compute links(P) and size(P) and N cut(P, Q) for the 
cut down the middle. 

3 Starting from the same four points 1, 2, 3, 4 find the centroids cp and CQ and the 
total distance D for the clusters P = { 1, 2} and Q = { 3, 4}. The k-means algorithm 
will not change P and Q when it assigns the four points to nearest centroids. 

4 Start the k-means algorithm with P = {1, 2, 4} and Q = {3}. Find the two centroids 
and reassign points to the nearest centroid. 

5 For the clusters P = {1,2,3} and Q = {4}, the centroids are cp = 2 and 
CQ = 4. Resolving a tie the wrong way leaves this partition with no improvement. 
But find its total distance D. 

6 If the graph is a 2 by 4 mesh of 8 nodes, with weights C = I, use eig( AT A, D) to find 
the Fiedler vector z. The incidence matrix A is 10 by 8 and D = diag ( diag (AT A)). 
What clusters come from the ± components of z ? 

7 Use the Fiedler code with probabilities narrowed from p = 0.1 and 0.7 to 
p = 0.5 and 0.6. Compute z and plot the graph and its partition. 

ProblemsS-11 areabouttbegraph with nodes (0, 0), (1, 0), (3, 0), (0, 4), (0, 8). 

8 Which clusters P and Q maximize the minimum distanceD* between them? 

9 Find those best clusters by the greedy algorithm. Start with five clusters, and combine 
the two closest clusters. What are the best k clusters fork= 4, 3, 2? 

1 0 The minimum spanning tree is the shortest group of edges that connects all nodes. 
There will be n - 1 edges and no loops, or the total length will not be minimal. 

Dijkstra's algorithm Start with any node like (0, 0). At each step, include the 
shortest edge that connects a new node to the partial tree already created. 

11 The minimum spanning tree can also be found by greedy inclusion. With the edges 
in increasing order of length, keep each edge unless it completes a loop. 
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IV.8 Completing·Rank One Matrices 

Filling up missing entries in arank -1 matrix is directly connected to finding (or not finding) · 
cycles in a graph. This theory of rank -1 completion developed from the following question : 

We are given m + n - 1 nonzero entries in an m by n matrix A. 

When does the requirement rank (A) = 1 determine all the other entries? 

The answer depends on the positions of those m+n-1 nonzeros. Here are three examples: 

X 

success 

X 

X 

failure 

X 

X X 
X 

failure 

In A1 , we are given column 1 with no zeros. Columns 2 and 3 must be multiples of 
column 1, if A has rank 1. Since we are given the first entries in columns 2 and 3, those 
columns are completely determined. 

Here is another approach to A1. In any rank 1 matrix, every 2 by 2 determinant must 
be zero. So the 2, 2 entry of A1 is decided by a22au = a12a21· 

In A2, the first four entries might not satisfy determinant= 0. Then we are doomed 
to failure. If that determinant is zero, we could choose any a31 of- 0 in column 1, and 
complete A2 to rank 1. This is the usual situation : no solution or infinitely many solutions. 

That example shows failure whenever we know all four entries of a 2 by 2 submatrix. 
>; 

Does every failure occur this way? No, A3 has a different failure. 

In A3 , that leading 3 by 3 submatrix has too many specified entries. There are 6 instead 
of 3 + 3 - 1 = 5. For most choices of those 6 entries, rank 1 is impossible for a 3 by 3: 

[ : : ; ] leadsiD [ ~ ~ ~ ] and ilie rnnk is 2 

Spanning Trees in _a Graph 

Alex Postnikov explained the right way to look at this problem of rank-1 completion. 
He constructed a graph with m nodes for them rows and n nodes for then columns. 
For each prescribed entry Aij, the graph has an edge connecting row node i to column 
node j. Then the pattern of x 's in the matrices above becomes a pattern of edges in their 
row-column graphs (next page). 
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The A 1 and A3 examples produce these two graphs : 

2 2 rows ~ 2s: ~ columm 
1~1 

rows 3 3 columns 

Prescribed nonzeros in A1 and A 3 4••----••4 
These are bipartite graphs because all their edges go from one part to the other part. 
Success for A1 and failure for A3 can be explained by these graphs. 

Graph A1 The 5 edges form a spanning tree. It is a tree because that graph has no 
closed loop (no cycle). The tree is spanning because it connects all 6 nodes. If we want 
to discover the 3, 3 entry of A1 (in a rank-1 completion), we add that dotted line edge to 
complete a cycle. Then A33 is determined by A 11 , A13 , and A31 in the cycle. Those four 
numbers produce a zero determinant. 

Graph A 3 The 7 edges do not form a spanning tree. It is not a tree because there is 
a cycle (in the top six edges). The cycle imposes a requirement on those six entries of A3: 

T . . • AuA22A33 (u1v1)(u2v2)(u3v3) 
If A3 = uv has rank 1, 1ts entnes must satisfy A A A = ( )( )( ) = 1. 

12 23 31 U1 V2 U2V3 U3V1 

If this condition happens to hold, there are infinitely many ways to complete A3 with rank 1. 

Conclusion The partial matrix A has a unique rank-1 completion if and only if the 
m + n- 1 prescribed entries Aij produce m + n- 1 edges (row i to column j) that 
form a spanning tree in the row-column graph. The tree reaches all nodes with no loops. 

Open problem Which ( m + n- 2) 2 entries of A can be specified, to allow a unique com
pletion to a rank-2 matrix? Appendix C to this book confirms (m + n - 2)2 
as the correct number of independent parameters for a rank 2 matrix. 

Problem Set IV.8 

1 Draw the bipartite graph with 3 row and column nodes for the example matrix A2. 
Do the 5 edges from A2 make up a spanning tree? 

2 Construct a 5 by 5 matrix A4 with 5 + 5 - 1 = 9 nonzeros in a cycle of length 8. 
What equation like AuA22A33 = A12A23A31 must hold for completion to a rank-1 
matrix? 

3 For a connected graph with M edges and N nodes, what requirement on M and N 
comes from each of the words spanning tree? 

4 How do you know that a graph with N nodes and N - 1 edges is a spanning tree ? 
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IV.9 The Orthogonal Procrustes Problem 

Here is a neat (and useful) application of the SVD. It starts with vectors x 1 , ... , Xn and 
y 1 , • •• , Yn· Which orthogonal matrix Q will multiply the y's to come as close as 
possible to the x's? This question turns up in a surprising number of applications. 

Notice the limitation to an orthogonal matrix Q. That doesn't allow for translation and 
it doesn't allow for rescaling. If the mean of the y's equals the mean of the x's, then no 
translation is needed. Otherwise most codes will subtract those mean values to achieve new 
x's andy's with :L Xi = LYi =zero vector. Then the two sets are centered with mean 
zero. And if we allow rescaling of the vectors to equalize their lengths in advance, that 
leads to the "generalized Procrustes problem". 

I have to tell you about Procrustes and the myth. Procrustes himself was famous 
for rescaling. He invited passing strangers to spend a comfortable night in his 
special bed. He claimed that the bed would adjust its length to match the visitor. 
But the reality was that Procrustes adjusted the length of the visitor to fit the bed. 
(Short visitors were stretched on the rack, tall visitors had their legs chopped 
off. I am not sure what this myth tells us about the Greeks, but it isn't good.) 
Theseus was up to the challenge, and he adjusted Procrustes to fit his own bed. 
Unfortunately fatal. 

They solved the generalized problem and we solve the standard problem: orthogonal Q. 

Solution 1. Construct matrices X and Y with columns x 1 , •.. , Xn and y 1 , ••• , Yn 

2. Form the square matrix yT X 

3. Find the singular value decomposition yT X = U~VT 

4. The orthogonal matrix Q = VTU minimizes IIX - YQII~ 

Discussion 
The distance between the columns Xk and ykQ is the usual Euclidean length 

llxk - YkQii· For the (squared) distance from all the x's to all the yQ's, it is natural 
to add up the squares of those column lengths. This produces the (squared) Frobenius 
norm IIX- YQII}. We must show that Q = VTU in Step 4 minimizes this norm-
it is the best possible Q. ' 

Three small observations will be helpful in the proof: 

(i) The squared Frobenius norm IIAII} is the trace of AT A. 

(ii) The trace of AT B equals the trace of BT A and also the trace of BAT. 

(iii) The squared norm IIAII} is the same as IIAQII} and IIATII}. 
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The trace of a square matrix is the sum of the entries on the main diagonaL It is also 
the sum of the eigenvalues. Then the three observations are easily explained. 

(i) The diagonal entries of AT A are the squared column lengths-so they add to IIAII1c. 

(ii) AT B and its transpose BT A have the same diagonal-and therefore the same trace. 

AT Band BAT have the same nonzero eigenvalues. Their diagonals include all aijbij. 

(iii) AQ has the same column lengths as A, because Q is an orthogonal matrix. 

Both IIAII1c and IIATII1c add up the squares of all the entries of A, so they are equal. 

Proof that Q = VT U is the orthogonal matrix that minimizes II X - Y Q IIi,.. 

We minimize trace (X-YQ)T(X -YQ) =trace (XT X)+trace (YTY)-2 trace (QTyT X). 

XT X and yTy are fixed. So we maximize that last trace. This is the moment for the 
SVD: YTX = U~VT. 

The matrix Z = VT QTU is a product of orthogonal matrices and therefore orthogonal. 
~is a diagonal matrix of positive numbers a 1 , ... , ar. So the trace of that matrix Z~ 
is zua1 + · · · + ZrrO"r. To maximize that number, the best choice is Z = I. 

z = VTQTU =I means that Q = uvT solves the Procrustes problem 

In case the original X and Y were orthogonal matrices, the perfect rotation to produce 
X = YQ (with zero error X- YQ) is clearly Q = yT X. This agrees with the answer 
Q = uvT. The singular values of an orthogonal matrix are all 1, so the decomposition 
yT X= u~vT in equation (1) is exactly uvT. 

Notes The Procrustes problem was originally solved in Schoneman's 1964 thesis. 
Procrustes Problems by Gower and Dijksterhuis (Oxford University Press, 2004) 
develops many of its applications. We have borrowed the proof given above from 
Golub and Van Loan (Matrix Computations 4th edition, page 328). That page also begins 
the important applications of the SVD to angles between subspaces. 

Problem Set IV.9 

1 Which orthogonal matrix Q minimizes IIX- YQII}? Use the solution Q = uvT 
above and also minimize that norm as a function of 0 (set the 0-derivative to zero): 

X=[~~] Y=[~ ~] Q=[c~sO 
smO 

-sinO ] 
cosO 
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IV.lO Distance Matrices 

Suppose n points are at positions x1 to Xn in d-dimensional space. Then by n distance 
matrix D contains the squared distances Dij = II xi - Xj 11 2 between pairs of points. 
Thus Dis symmetric. The main diagonal of D has zeros from llxi- xill2 = 0. Here is 
the key question about extracting information from D : 

Can we recover the positions x 1 , ••. , Xn from the Euclidean distance matrix D ? 

The immediate answer is no. Suppose we find one solution-one set of possible positions 
Xi· Then we could shift those positions by a constant x 0 . We could multiply all x's 
by any orthogonal matrix. Those are rigid motions and they don't change the distances 
llxi- Xjil· Recognizing that one solution will lead to this family of equivalent solutions, 
the key question remains (and we answer it) : 

Are there always positions x 1 to Xn consistent with the distance matrix D? Yes. 

There is always a position matrix X (with columns x 1 to Xn) that produces the given 
distances in D. The matrix X has d rows when the points are in d-dimensional space 
(d = 2 for a map, d = 3 for our world, d > 3 is allowed and it happens). One problem is 
to determine the minimum dimension d. 

This problem of finding X from D has a long history. At first this was a purely 
mathematical question. But applications soon appeared. We mention just three of them : 

1. Wireless sensor networks : Measuring the travel times between pairs of sensors . 
yields D. Then we solve for the sensor positions X (the network topology). ~ 

2. Shapes of molecules: Nuclear magnetic resonance gives distances between atoms. 
Then we know the matrix D. We solve for position matrices X. This example 
and many others will involve noise (errors in D) and even missing entries. 

3. Machine learning: The examples in a training set are converted to feature vectors 
in high dimensions. Those vectors might lie close to a plane or a curved surface 
that has much lower dimension. Finding that surface (approximately) is a giant step 
toward understanding the data and classifying new examples. Then the kernel trick 
reduces the dimension. Again this can involve a very noisy environment. 

In preparing this section of the book, we relied on a wonderful paper "Euclidean Dis
tance Matrices" posted in 2015 to the arXiv: 1502.07541 v2 [cs.OH]. Its authors are Ivan 
Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. This paper is full of ideas, 
algorithms, codes, and many applications. They are clearly explained ! Please find it on the 
Web to learn more. 
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Positions X from Distances D 

Here is the key observation that simplifies the problem. It connects each (distance)2 in D 
to four entries in the matrix XT X (dot products of the desired vectors xi and x 1) : 

The first term x[ Xi produces a matrix with constant rows (no dependence on j). The last 
term xJ x1 produces a matrix with constant columns (no dependence on i). The numbers 

llxiW and llxJII2 in both of those matrices are on the main diagonal of G = XTX. 
Those are the numbers in the column vector diag(G). 

The middle terms -2x[ x 1 in (1) are exactly the numbers in -2G = -2XT X. 
So we can rewrite (1) as an equation for the matrix D, using the symbol 1 for the 
column vector of n ones. That gives constant columns and 1 T gives constant rows. 

I D = 1diag(G)T- 2G + diag(G) 1T.J (2) 

Our problem is to recover G from D. Then the positions in X will come from 
XT X = G. You see that a solution X can be multiplied by any orthogonal matrix Q, 
and still (QX)T(QX) =G. Rotations are expected and allowed by Q. 

Solving xT X = G for the d by n matrix X will tell us that the points XI to Xn 

can be placed in the space Rd. The rank of G will be the spatial dimension-this is the 
smallest dimension consistent with the given distance matrix D. 

Since two terms in equation (2) are rank 1 matrices, we learn that D has rank at most 
d + 2. Note that our points could all be shifted by a constant vector without changing 
squared distances in D. SoD is an affine dimension (shift allowed) instead of a subspace 
dimension. 

Now we solve equation ( 2) for G = XT X. Place the first point at the origin : 
XI = 0. Then every II xi - xiii 2 is just II xi 11 2 . The first column di of D (which is given) 
is exactly the same as diag(XT X) = diag( G) = (llxiii2, llx2ll2 , ... , llxnll2 ). 

diag(G) = di and diag(G) 1T = d11T. (3) 

Now G comes from D. G will be positive semidefinite provided the distances in Dobey 
the triangle inequality (see Menger: Amer. J. Math. 53; Schoenberg: Annals Math. 36): 

I XT X= G = -~(D- J:d'i- dl1T)., (4) 

Once we know G we find X from XT X = G. Use elimination on G or use its eigenvalues 
and eigenvectors. Both of those give a position matrix X with XI = 0: 

If G = QAQT (eigenvalues and eigenvectors) then X can be Vf,._QT 

If G = UTU (elimination= Cholesky factorization) then X can be U (upper triangular) 

In both cases we can keep only rank( G) rows in X. The other rows are all zero, coming 
from zero eigenvalues in A or from an early_ end to elimination. 
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We remove zero rows from X to see the dimension d of the point set of a:'s. 
If the squared distances in D include measurement noise, set small eigenvalues to zero. 

This is the classical MDS algorithm: MultiDimensional Scaling with first point a:1 = 0. 

Centering X or Rotating to Match Anchor Points 

Centering: Often we might prefer to place the centroid of the a:'s at the origin. 
The centroid of a:1, ... , a:n is just the average of those vectors : 

Centroid 
1 1 

C = -(a:l + · · · + Xn) = -X 1. 
n n 

(5) 

Just multiply any position matrix X by the matrix I-~ 11 T to put the centroid at 0. 

Anchor points : Possibly a few of the positions have been selected in advance : 
N anchor points Yi in a matrix Y. Those positions may not agree with the computed a:i. 
So we choose the corresponding N columns from the computed position matrix X, 
and then find the rotation Q that moves those columns closest to Y. 

The best orthogonal matrix Q solves the Procrustes problem in Section 111.9. 
It is found from the singular value decomposition XN yT = Ul:VT. The orthogonal 
matrix Q that moves theN positions in XN closest to the anchor points in y is Q = vuT. 

J. C. Gower, Properties of Euclidean and non-Euclidean distance matrices, Linear Algebra 
and Its Applications 67 (1985) 81-97. 

Problem Set IV. tO 

1 lla:1 - a:2ll2 = 1 and lla:2 - a:3ll2 = 1 and lla:1 - a:3ll2 = 6 will violate the triangle 
inequality. Construct G and confirm that it is not positive semidefinite : no solution 
XtoG=XTX. 

2 lla:1 - a:2ll2 = 9 and lla:2 - a:3ll 2 = 16 and lla:1 - a:3W = 25 do satisfy the 
triangle inequality 3 + 4 > 5. Construct G and find points a:1 , a:2, a:3 that match 
these distances. 

3 If all lla:i - a:i 11 2 = 1 for a:1, a:2, a:3, a:4, find G and then X. The poi'nts lie in Rd 
for which dimension d? 
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Part V : Probability and Statistics 

These subjects have jumped forward in importance. When an output is predicted, we need 
its probability. When that output is measured, we need its statistics. Those computations 
were restricted in the past to simple equations and small samples. Now we can solve 
differential equations for probability distributions (master equations). We can compute the 
statistics of large samples. This chapter aims at a basic understanding of these key ideas : 

1 Mean m and variance a2 : Expected value and sample value 

2 Probability distribution and cumulative distribution 

3 Covariance matrix and joint probabilities 

4 Normal (Gaussian) distribution: single variable and multivariable 

5 Standardized random variable ( x - m) /a 

6 The Central Limit Theorem 

7 Binomial distribution and uniform distribution 

8 Markov and Chebyshev inequalities (distance from mean) 

9 Weighted least squares and Kalman filter : x and its variance 

10 Markov matrix and Markov chain 

263 
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V.l Mean, Variance, and Probability 

We are starting with the three fundamental words of this chapter : mean, variance, and 
probability. Let me give a rough explanation of their meaning before I write any formulas: 

The mean is the average value or expected value 

The variance cr2 measures the average squared distance from the mean m 

The probabilities of n different outcomes are positive numbers p 1 , ... , Pn adding to 1. 

Certainly the mean is easy to understand. We will start there. But right away we have two 
different situations that you have to keep straight. On the one hand, we may have the results 
(sample values) from a completed trial. On the other hand, we may have the expected 
results (expected values) from future trials. Let me give examples of both: 

Sample values Five random freshmen have ages 18, 17, 18, 19, 17 

Sample mean g(18 + 17 + 18 + 19 + 17) = 17.8 

Probabilities The ages in a freshmen class are 17 (20%), 18 (50%), 19 (30%) 

A random freshman has expected ageE [x] = (0.2) 17 + (0.5) 18 + (0.3) 19 = 18.1 

Both numbers 17.8 and 18.1 are correct averages. The sample mean starts with N samples 
x 1 , ... , x N from a completed trial. Their mean is the average of the N observed samples : 

I sample mean (1) 

The expected value of x starts with the probabilities p1 , ... , Pn of the ages x 1 , ... , Xn : 

I Expected value m = E[x] = P1X1 + P2X2 + · · · + PnXn·l (2) 

This is p · x. Notice that m = E[x] tells us what to expect, m = p, tells us what we got. 

Afaircoinhas probability Po=~ of tails andp1 =~of heads. Then E[x] = (~) 0+!(1). 

The fraction of heads in N flips of the coin is the sample mean, expected to approach 
E[x] = !· By taking many samples (large N), the sample results will come close to the 
probabilities. The "Law of Large Numbers" says that with probability 1, the sample mean 
will converge to its expected value E[x] as the sample size N increases. 

This does not mean that if we have seen more tails than heads, the next sample is likely 
to be heads. The odds remain 50-50. The first 100 or 1000 flips do affect the sample mean. 
But 1000 flips will not affect its limit-because you are dividing by N --+ oo. 
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Variance (around the mean) 

The variance CT2 measures expected distance (squared) from the expected mean E[x] . . 
The sample variance S 2 measures actual distance (squared) from the actual sample mean. 
The square root is the standard deviation CT or S. After an exam, I email JL and 8 to the 
class. I don't know the expected mean and variance because I don't know the probabilities 
p1 to Pwo for each score. (After teaching for 50 years, I still have no idea what to expect.) 

The deviation is always deviation from the mean-sample or expected. We are looking 
for the size of the "spread" around the mean value x = m. Start with N samples. 

Sample variance 1 [ 2 2] 8 2 = (x1 -m) +···+(xN-m) 
N-1 

(3) 

The sample ages x = 18, 17, 18, 19, 17have mean m = 17.8. That sample has variance 0.7: 

8 2 = ~ [(.2)2 + (-.8)2 + (.2)2 + (1.2) 2 + (-.8)2] = ~(2.8) = 0.7 

The minus signs disappear when we compute squares. Please notice ! Statisticians divide 
by N - 1 = 4 (and not N = 5) so that 8 2 is an unbiased estimate of a 2• One degree of 
freedom is already accounted for in the sample mean. 

An important identity comes from splitting each (x- m)2 into x 2 - 2mx + m 2 : 

sum of (xi - m) 2 = (sum of x~) -2m( sum of xi)+ (sum of m 2 ) 

= (sum of x~) - 2m(Nm) + Nm2 

sumof(xi-m)2 =(sumofx~)-Nm2 . (4) 

This is an equivalent way to find (x1 - m) 2 + · · · + (xN - m 2 ) by adding xi+···+ x'Jv. ~ 
To find the sample variance 8 2 , divide this by N - 1. 

Now start with probabilities Pi (never negative !) instead of samples. We find expected 
values instead of sample values. The variance a 2 is the crucial number in statistics. 

Variance CT2 = E [(x- m)2 ] = P1(x1- m)2 + · · · + Pn(Xn- m)2 • (5) 

We are squaring the distance from the expected value m = E[x]. We don't have samples, 
only expectations. We know probabilities but we don't know experimental outcomes. 

Example 1 Find the variance a 2 of the ages of college freshmen. 

Solution The probabilities of ages xi = 17, 18,19 were Pi = 0.2 and 0.5 and 0.3. 
The expected value was m = 2:: PiXi = 18.1. The variance uses those same probabilitif.':S: 

CT2 = (0.2)(17- 18.1)2 + (0.5)(18- 18.1)2 + (0.3)(19- 18.1)2 

= (0.2)(1.21) + (0.5)(0.01) + (0.3)(0.81) = 0.49. 

The standard deviation is the square root CT = 0. 7. 
This measures the spread of 17, 18, 19 around E[x], weighted by probabilities 0.2, 0.5, 0.3. 

Equation. ( 4) gives another way to compute the variance a 2 : 

I a 2 = E [x2]- (E [x]) 2 = LPi x~- (LPi Xi) 2 1 
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Continuous Probability Distributions 

Up to now we have allowed for n possible outcomes x1 , . .. , Xn· With ages 17, 18, 19, 
we only had n = 3. If we measure age in days instead of years, there will be a thousand 
possible ages (too many). Better to allow every number between 17 and 20-a continuum 
of possible ages. Then the probabilities PI. P2, P3 for ages x1o x2, X3 have to move to a 
probability distribution p( a:) for a whole continuous range of ages 17 ::; x ::; 20. 

The best way to explain probability distributions is to give you two examples. They 
will be the uniform distribution and the normal distribution. The first (uniform) is easy. 
The normal distribution is all-important. 

Uniform distribution Suppose ages are uniformly distributed between 17.0 and 20.0. 
All ages between those numbers are "equally likely". Of course any one exact age has no 
chance at all. There is zero probability that you will hit the exact number x = 17.1 or 
x = 17 + J2. What you can truthfully provide (assuming our uniform distribution) is 
the chance F( a:) that a random freshman has age less than a: : 

The chance of age less than x = 17 is F(17) = 0 x ::; 17 won't happen 
The chance of age less than x = 20 is F(20) = 1 x ::; 20 will happen 
The chance of age less than x is F (a:) = ~ (a: - 1 7) F goes from 0 to 1 

That formula F(x) = Hx- 17) gives F = 0 at x = 17; then x ::; 17 won't happen. 
It gives F(x) = 1 at x = 20; then x ::; 20 is sure. Between 17 and 20, the graph of the 
cumulative distribution F(x) increases linearly for this uniform model. Let me draw 
the graphs of F(x) and its derivative p(x) ="probability density function". 

17 20 

cumulative F(x) = 
probability that a 
sample is below a: 

F(x) = ~(a:- 17) 
-

"pdf" p (a:) 
probability that a 
sample is near x 

dF 
~----, p(x) = dx 

P -.! 
-3 

Figure V.l: F(x) is the cumulative distribution and its derivative p(x) = dFjdx is the 
probability density function (pdf). For this uniform distribution, p(x) is constant 
between 17 and 20. The total area under the graph of p( x) is the total probability F = 1. 

You could say that p(x) dx is the probability of a sample falling in between x and 
x + dx. This is "infinitesimally true": p(x) dx is F(x + dx) - F(x). Here is the full 
connection of F(x) to p(x): 

b 

F =integral of p Probability of a~ a: ~ b = j p(x) dx = F(b) - F(a) (6) 

a 

F(b) is the probability of x ::; b. I subtract F(a) to keep x ?: a. That leaves a ::; x ::; b. 
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Mean and Variance of p( x) 

What are the mean m and variance a2 for a probability distribution? Previously we added . 
Pi Xi to get the mean (expected value). With a continuous distribution we integrate xp( x) : 

20 

Mean m = E[x] = j xp(x) dx = j (x) (~) dx = 18.5 
<~:=17 

For this uniform distribution, the mean m is halfway between 17 and 20. Then the proba
bility of a random value x below this halfway point m = 18.5 is F( m) = ~. 

In MATLAB, x = rand (1) chooses a random number uniformly between 0 and 1. 
Then the expected mean ism = ~· The interval from 0 to x has probability F(x) = x. 
The interval below the mean m always has probability F(m) = ~· 

The variance is the average squared distance to the mean. With N outcomes, a 2 is the 
sum of Pi (Xi - m )2 • For a continuous random variable x, the sum changes to an integral. 

Variance (7) 

When ages are uniform between 17 :::; x :::; 20, the integral can shift to 0 :::; x :::; 3 : 

20 3 lx=3 
a 2 = j ~(x- 18.5)2 dx = j ~(x- 1.5)2 dx = ~(x- 1.5)3 = ~(1.5)3 = ~· 

17 0 x=O , 
That is a typical example, and here is the complete picture for a uniform p(x), 0 to a. 

Uniform distribution for 0 ~ x ~ a 

1 X 
Density p(x) = - Cumulative F(x) = -

a a 

a a 1 ( a)2 a 2 
Mean m = - halfway Variance u 2 = f - x - - dx = -

2 0 a 2 12 
(8) 

The mean is a multiple of a, the variance is a multiple of a2 • For a = 3, a 2 = 192 =· £. 
For one random number between 0 and 1 (mean ~) the variance is a 2 = 112 • 

Normal Distribution : Bell-shaped Curve 

The normal distribution is also called the "Gaussian" distribution. It is the most important 
of all probability density functions p( x). The reason for its overwhelming importance 
comes from repeating an experiment and averaging the outcomes. The experiments have 
their own distribution (like heads and tails). The average approaches a normal distribution. 
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Central Limit Theorem (informal) The average of N samples of "any" probability 
distribution approaches a normal distribution as N ----t oo (proved in Section V.3). 

Start with the "standard normal distribution". It is symmetric around x = 0, so its mean 
value ism = 0. It is chosen to have a standard variance u 2 = 1. It is called N (0, 1). 

Standard normal distribution 1 2/ p(x) = -- e-"' 2 • 

V21r 
(9) 

The graph of p( x) is the bell-shaped curve in Figure V.2. The standard facts are 

00 00 

Total probability = 1 J p(x) dx = vk J e-x2
/ 2 dx = 1 

-(X) -00 
00 

MeanE[x] = 0 rn = vk J xe-x2 12 dx = 0 
-(X) 

Variance E [x2 ] = 1 
-(X) 

The zero mean was easy because we are integrating an odd function. Changing x to -x 
shows that "integral= -integral". So that integral must be m = 0. 

The other two integrals apply the idea in Problem 12 to reach 1. Figure V.2 shows 
a graph of p(x) for the normal distribution N (0, u) and also its cumulative distribution 
F(x) =integral of p(x). From the symmetry of p(x) you see mean= zero. From F(x) 
you see a very important practical approximation for opinion polling : 

2 
The probability that a random sample falls between -u and u is F(a') - F( -u) ::::::: -. 

3 
u cr -u 

Thisisbecause J p(x)dxequals J p(x)dx- J p(x)dx=F(u)-F(-u). 
-(j -(X) -(X) 

Similarly, the probability that a random x lies between -2u and 2u ("less than 
two standard deviations from the mean") is F(2u) - F( -2u) ::::; 0.95. If you have an 
experimental result further than 2u from the mean, it is fairly sure to be not accidental: 
chance = 0.05. Drug tests may look for a tighter confirmation, like probability 0.001. 
Searching for the Higgs boson used a hyper-strict test of 5u deviation from pure accident. 

The normal distribution with any mean m and standard deviation u comes by shifting 
and stretching the standard N (0, 1 ). Shift x to x - rn. Stretch x - rn to ( x - rn) / u. 

Gaussian density p ( x) 

Normal distribution N ( rn, a) 
p(x) = _1_ e-(x- rn)2 /2u2 (10) 

uv'21f 
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The integral of p(x) is F(x)-the probability that a random sample will fall below x. 
The differential p(x) dx = F(x + dx) - F(x) is the probability that a random sample 
will fall between x and x + dx. There is no simple formula to integrate e-x2 12 , so 
this cumulative distribution F(x) is computed and tabulated very carefully . 

. 98 

;84 !"' F(x) = p(x) dx 

F(O) = ~ 
-oo 

.16 

.02 -.=.---'-----'------<---____J 

-2a- -(T 0 2a- -2a- -a- 0 2a-

Figure V.2: The standard normal distribution p ( x) has mean m = 0 and a- = 1. 

N Coin Flips and N --+ CX) 

Example 2 Suppose x is 1 or -1 with equal probabilities P1 = P-1 = ! . 
The mean value ism= !(1) + !( -1) = 0. The variance is u 2 = !(1)2 + !( -1)2 = 1. ~ 

The key question is the average AN = (x1 + · · · + xN)/N. The independent Xi 

are ±1 and we are dividing their sum by N. The expected mean of AN is still zero. 
The law of large numbers says that this sample average approaches zero with probability 1. 
How fast does AN approach zero? What is its variance u'fv. ? 

a-2 a-2 ~ a-2 1 
By linearity u'fv. = N 2 + N 2 + · · · + N 2 = N N 2 = N since a-2 = 1. (11) 

Example 3 Change outputs from 1 or -1 to x = 1 or x = 0. Keep P1, = p 0 = !· 
The new mean value m = ! falls halfway between 0 and 1. The variance moves to u 2 -:- ~ : 

1 1 1 1 ( 1) 2 1 ( 1) 2 
m = -(1) + -(0) =- and u 2 =- 1-- +- 0--

2 2 2 2 2 2 2 

1 

4 

1 1 1 1 . 
The average ~N now has mean- and variance N 2 + · · · + --2 =- = a-'fv.. (12) 

2 4 4N 4N 
This lTN is half the size of lTN in Example 2. This must be correct because the new range 
0 to 1 is half as long as -1 to 1. Examples 2-3 are showing a law of linearity. 
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The new 0- 1 variable xnew is~ :z:old + ~- So the mean m is increased to~ and 

the variance is multiplied by ( ~) 2 . A shift changes m and the rescaling changes a2 • 

Linearity Xnew = aXotd + b has fflnew =arnold + b and o-2 new = a 2 u 2 otd (13) 

Here are the results from three numerical tests: random 0 or 1 averaged over N trials. 

[48 1's from N = 100] (5035 1's from N = 10000] [19967 1's from N = 40000]. 

The standardized X= (x- m)ja = (AN-~)/ 2-.fN was [-.40] [. 70] [-.33]. 

The Central Limit Theorem says that the average of many coin flips will approach a 
normal distribution. Let us begin to see how that happens: binomial approaches normal. 

The "binomial" probabilities p 0 , ••• , p N count the number of heads in N coin flips. 

For each (fair) flip, the probability of heads is ~- For N = 3 flips, the probability 

of heads all three times is ( ~) 3 = ~. The probability of heads twice and tails once is 
i. from three sequences HHT and HTH and THH. These numbers~ and i are pieces of 

a+ ~) 3 = ~ + i + i + ~ = 1. The average number of heads in 3fiips is 1.5. 

1 3 3 3 6 3 
Mean m = (3 heads) 8 + (2 heads) 8 + (1 head)8 + 0 = 8 + 8 + 8 = 1.5 heads 

With N flips, Example 3 (or common sense) gives a mean of m = E XiPi = ~ N heads. 

The variance a 2 is based on the squared distance from this mean N /2. With N = 3 
the variance is a 2 = ~(which is N/4). To find a 2 we add (xi- m)2 Pi with m = 1.5: 

u2 = (3- 1.5)2 ~ + (2- 1.5)2 ~ + (1-1.5)2 ~ + (0- 1.5? ~ = 9 + 3 + 3 + 9 = ~. 
8 8 8 8 32 4 

For any N, the variance for a binomial distribution is u~ = N/4. Then O"N = .fN /2. 
Figure V.3 shows how the probabilities of 0, 1, 2, 3, 4 heads inN = 4 flips come close 

to a bell-shaped Gaussian. That Gaussian is centered at the mean value m = N /2 = 2. 
To reach the standard Gaussian (mean 0 and variance 1) we shift and rescale that graph. 
If x is the number of heads in N flips-the average of N zero-one outcomes-then x is 
shifted by its mean m = N /2 and rescaled by a = .fN /2 to produce the standard X : 

Shifted and scaled 
x-m x- !N 

X= = 2 

u VN/2 
(N = 4 has X = x - 2) 

Subtracting m is "centering" or "detrending". The mean of X is zero. 

Dividing by o- is "normalizing'' or "standardizing". The variance of X is 1. 
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It is fun to see the Central Limit Theorem giving the right answer at the center point 
X = 0. At that point, the factor e-X2

/ 2 equals 1. We know that the variance for N coin 
flips is CT2 = N/4. The center of the bell-shaped curve has height 1/v'2nCT2 = ...j2jN1r. · 

What is the height at the center of the coin-flip distribution Po to PN (the binomial 

distribution)? For N = 4, the probabilities for 0, 1, 2, 3, 4 heads come from G + ~t 

6 
Center probability --

16 

p(x) = 1 

uniform 

PN/2 ~ ...j2fiN /,. ... , 
I ' 

f binomial ', 
1 approaches \ M heads 

area= 1 

---L--------~------~--

0 
1 
2 

/ Gaussian \ N flips 
1 1 / ' 
16=2~~ ~' 

M=O N/2 N 

Figure V.3: The probabilities p = (1, 4, 6, 4, 1)/16 for the number of heads in 4 flips. 
These Pi approach a Gaussian distribution with variance CT2 = N /4 centered at m = N /2. 
For X, the Central Limit Theorem gives convergence to the normal distribution N(O, 1). 

The binomial theorem in Problem 8 tells us the center probability p N 12 for any even N : 

The center probability ( ~ heads, ~ tails) is 
1 N! 

2N (N/2)! (N/2)! 

For N = 4, those factorials produce 4!/2! 2! = 24/4 = 6. For large N, Stirling's formula 
v'2nN(N/e)N is a close approximation toN!. Use this formula for Nand twicefor N/2: 

Limit of coin-flip 
Center probability 

1 V'Fif\i(Nje)N 
PN/2 ~ 2N nN(N/2e)N = -,;:iN-nN- = -y'2;-2~-CT. 

y'2 1 
(14) 

The last step used the variance CT2 = N/4 for coin-tossing. The result 1/...,/2iiCT matches 
the center value (above) for the Gaussian. The Central Limit Theorem is true: 

The centered binomial distribution approaches the normal distribution p( x) as N -? oo. 

.. 
J 
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Monte Carlo Estimation Methods 

Scientific computing has to work with errors in the data. Financial computing has to work 
with unsure numbers and predictions. So much of applied mathematics meets this problem : 
accepting uncertainty in the inputs and estimating the variance in the outputs. 

How to estimate that variance? Often probability distributions p(x) are not known. 
What we can do is to try different inputs b and compute the outputs x and take an average. 
This is the simplest form of a Monte Carlo method (named after the gambling palace 
on the Riviera, where I once saw a fight about whether the bet was placed in time). 
Monte Carlo approximates an expected value E[x] by a sample average ( X1 + · · · + x N) / N. 

Please understand that every Xk can be expensive to compute. We are not flipping coins. 
Each sample comes from a set of data bk. Monte Carlo randomly chooses this data bk. 
it computes the outputs Xk, and then it averages those x's. Decent accuracy for E[x] 
often requires many samples band huge computing cost. The error in approximating E[x] 
by (x1 + · · · +xN)/N is usually of order 1/VN. Slow improvement as N increases. 

That 1/VN estimate came for coin flips in equation (11). Averaging N independent 
samples x k of variance cr2 reduces the variance to cr2 / N. 

"Quasi-Monte Carlo" can sometimes reduce this variance to cr2 / N 2 : a big difference! 
The inputs bk are selected very carefully-not just randomly. This QMC approach is 
surveyed in the journal Acta Numeric a 2013. The newer idea of "Multilevel Monte Carlo" 
is outlined by Michael Giles in Acta Numerica 2015. Here is how it works. 

Suppose it is simpler to simulate another variable y(b) which is close to x(b). Then 
use N computations of y(bk) and only N* < N computations of x(bk) to estimate E[x]. 

2-level Monte Carlo 

The idea is that x- y has a smaller variance cr* than the original x. Therefore N* can 
be smaller than N, with the same accuracy for E[x]. We doN cheap simulations to find 
the y's. Those cost C each. We only do N* expensive simulations involving x's. Those 
cost C* each. The total computing cost is NC + N*C*. 

Calculus minimizes the overall variance for a fixed total cost. The optimal ratio N* / N 
is JC/C* cr* fer. Three-level Monte Carlo would simulate x, y, and z: 

N N* N** 
1 1 1 

E[x] ~ N L z(bk) + N* L [y(bk) - z(bk)] + N** L [x(bk) - y(bk)]. 
1 1 1 

Giles optimizes N, N*, N**, ... to keep E[x] ::; fixed Eo, and provides a MATLAB code. 
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Review: Three Formulas for the Mean and the Variance 

The formulas for m and a 2 are the starting point for all of probability and statistics. There 
are three different cases to keep straight: sample values Xi, expected values (discrete Pi), 
expected values (continuous p(x)). Here are the mean m and the variance S2 or a 2 : 

Samples xl to XN 

Sum of outputs Xi 

times probabilities Pi 

m= X1+···+XN S 2 = (X1-m)2 +···+(XN-m)2 

N N-1 
n 

u 2 = L Pi(Xi - m) 2 

1 

Integral of outputs x 
"h b bil" d . m=fxp(x)dx wit pro a 1ty ens1ty 

Problem Set V.l 

1 The previous table has no probabilities p on line 1. How can these formulas be 
parallel? Answer: We expect a fraction Pi of the samples to be X = Xi. If this is 

2 

exactly true, X = Xi is repeated ___ times. Then lines 1 and 2 give the same m. 

When we work with samples, we just include each output X as often as it comes. 
We get the "empirical" mean (line 1) instead of the expected mean. 

Add 7 to every output x. What happens to the mean and the variance? What are the 
new sample mean, the new expected mean, and the new variance? 

3 We know: ~ of all integers are divisible by 3 and ~ of integers are divisible by 7. 
What fraction of integers will be divisible by 3 or 7 or both ? 

4 Suppose you sample from the numbers 1 to 1000 with equal probabilities 1/1000. 
What are the probabilities p0 to pg that the last digit of your sample is 0, ... , 9? 
What is the expected mean m of thatlast digit? What is its variance a 2 ? 

5 Sample again from 1 to 1000 but look at the last digit of the sample squared. That 
square could end with x = 0, 1, 4, 5, 6, or 9. What are the probabilities po,pl,P4, p5, 
p6,p9? What are the (expected) mean m and variance a 2 of that number x? 

6 (a little tricky) Sample again from 1 to 1000 with equal probabilities and let x be the 
first digit (x = 1 if the number is 15). What are the probabilities p1 to p9 (adding 
to 1) of x = 1, ... , 9? What are the mean and variance of x? 

7 Suppose you have N = 4 samples 157, 312, 696, 602 in Problem 5. What are the 
first digits xt to x 4 of the squares? What is the sample mean f1? What is the sample 
variance S2 ? Remember to divide by N - 1 = 3 and not N = 4. 
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8 Equation (4) gave a second equivalent form for 82 (the variance using samples): 

1 1 
8 2 = N- 1 sumof(xi-m)2 = N- 1 [(sumofxD-Nm2]. 

Verify the matching identity for the expected variance a2 (using m = :E Pi Xi): 

u 2 = sum of Pi (xi - m)2 = (sum of Pi a:~) - m 2 . 

9 If all 24 samples from a population produce the same age x = 20, what are the 
sample mean J.L and the sample variance 82 ? What if x = 20 or 21, 12 times each? 

10 Computer experiment: Find the average Awooooo of a million random 0-1 samples ! 
What is your value of the standardized variable X = (AN - ~) /2../N? 

11 The probability Pi to get i heads in N coin flips is the binomial number bi = ( ~) 
divided by 2N. The bi add to (I + 1 )N = 2N so the probabilities Pi add to 1. 

( 1 l)N 1 . N! 
Po + · · · + PN = 2 + 2 = 2N (bo + · · · + bN) With bi = i! (N _ i)! 

24 24 24 1 
N=4leadstobo = 24 , b1 = (I)(6) = 4, b2 = (2)(2) = 6, Pi= 16 (1,4,6,4,1). 

Notice bi = bN-i· Problem: Confirm that the mean m = Opo+· · ·+NPN equals~· 

12 For any function f(x) the expected value is E[/] = L::Pi f(xi) or I p(x) f(x) dx 
(discrete or continuous probability). The function can be x or (x - m) 2 or x 2 • 

If the mean is E[x] = m and the variance is E[(x - m) 2] = a2 what is E[:z:2 ]? 

13 Show that the standard normal distribution p( x) has total probability I p( x) dx = 1 
as required. A famous trick multiplies I p(x) dx by I p(y) dy and computes the 
integral over all x and ally ( -oo to oo). The trick is to replace dx dy in that double 
integral by r dr d() (polar coordinates with x2 + y2 = r 2). Explain each step: 

00 00 00 27!" 00 

27r Jp(x) dx Jp(y) dy = J J e-(x2+y2 )12dxdy = J J e-r2
/ 2 rdrd() = 2-rr. 

-oo -oo -oo () = 0 r = 0 
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V.2 Probability Distributions 

The applications of probability begin with the numbers Po, Pl, P2 . . . that give the 
probability of each possible outcome. For continuous probability we have a density 
functionp(x). Thetotalprobabilityisalways l:::Pi = 1 or fp(x)dx = 1. 

There are dozens of famous and useful possibilities for p. We have chosen seven 
that are specially important : two with discrete probabilities Po, P1 , P2 . , . and five with 
continuous probabilities p( x) or p( x, y). 

Binomial 

Poisson 

Exponential 

Gaussian = Normal 

Log-normal 

Chi-squared 

Multivariable Gaussian 

Tossing a coin n times 

Rare events 

Forgetting the past 

Averages of many tries 

Logarithm has normal distribution 

Distance squared in n dimensions 

Probabilities for a vector (in V.5) 

Each of those has a mean, and a variance around that mean. You will want to know those 
fundamental numbers 1-L and a 2 • On this topic, Wikipedia is organized in a useful way
with graphs of p(x) and its integral lfl(x) (the cumulative distribution= total probability 
up to x). There is a systematic list of other properties of those seven special probability 
distributions, and others too. ~ 

1. Binomial distribution 

For each trial the outcome is 1 or 0 (success or failure, heads or tails). The probability of 
success is Pl,l = p. The probability of failure is Po,1 = 1 - p = q. A fair coin hasp = ~. 

The probabilities of 0, 1, 2 successes in n = 2 trials are 

Po,2 = (1- p)2 P1,2 = 2p(1- p) 2 
P2,2 = P 

The probability of exactly k successes inn trials involves the binomial coeffi<;ient (~) : 

(n) n! 
k - k!(n-k)! 

and 0!=1 

For n = 2 those binomial coefficients are 1, 2, 1 as shown in equation (1): 

(2) 2! 
1 =1! 1!= 2 (2) 2! 

2 =2! o!=l 

(1) 

(2) 

For a fair coin, k = 0, 1, 2 successes inn= 2 trials have Po,2 = i and P1,2 = ~ and P2,2 = i. 
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Mean value in one trial p = (O)po + (1)pl = (0){1- p) + (1)p p = E[x] = p (3) 

Binomial distribution Mean value ILn in n trials is np ILn = np (4) 

Variance in one trial u 2 =E[(X- J.£) 2 ] = (1- p)(O- J.£) 2 + p(1- J.£) 2 

=(1- p)p2 +p(1- p)2 =p(1- p)(p+ 1- p) u 2 = p(1- p) (5) 

Binomial distribution Variance u~ in n trials is nu2 u~ =np(1- p) (6) 

The answers for n independent trials came quickly: Multiply by n. The same answers 
come more slowly from the binomial probabilities Pk,n in equation (2) for k successes. 
The sum of kpk,n is stillpn = np and the sum of (k - JLn) 2 Pk,n is u~ = np(1 - p ). 

2. Poisson Distribution 

The Poisson distribution is fascinating, because there are different ways to approach it. 
One way is to connect it directly to the binomial distribution (probability p of success in 
each trial and Pk,n fork successes inn trials). Then Poisson explains this limiting situation 
of rare events but many trials with A successes : 

p -+ 0 The success probability p is small for each trial (going to zero) 
n -+ oo The number of trials n is large (going to infinity) 
np = A The average (expected) number of successes inn trials is A = np =constant 

What are the probabilities of 0, 1, 2 successes inn trials when p---+ 0 and np =A? 

n failures, 0 successes Probability Po,n = (1 - p)n = (1- ~) n ---+ e-A 

n - 1 failures, 1 success Probability p 1 n = np(1- p)n-l = _A_ (1 - ~) n---+ Ae-A 
' 1-p n 

n- 2 failures, 2 successes Probability p 2,n = ~n(n- 1) p2 (1- p)n-2 

= ~ (A2- Ap) (1- ~)n---+ ~A2e-A 
2 (1-p)2 n 2 

At every step we applied the same key facts from a calculus course : 
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Fork successes inn trials with probability p = >..fn each time, the binomial probability 
Pn,k approaches the Poisson probability Pk = >..ke->-. jk! 

).k 
Poisson probability P; = -e-.>.. 

k k! 

The sum of those Poisson probabilities Pk is verified to equal 1 : 

Now comes the calculation of the Poisson mean(>..) and the variance (also>..). 

The mean of the Poisson distribution is >... The slow way to find it is 

(7) 

/LP = OPo + 1P1 + 2P2 + · · · = e->-. (o +)... + )...2 + )...3 + ... ) = e->-.(>..e>-.) =). 
1! 2! 

Fast way: Poisson mean /LP =limit of binomial mean np. So /LP = ). 

Variance l7;, = limit of binomial variance np( 1 - p). So l7;, = ). 

Applications of Poisson 

We associate Poisson with rare events (they have p ---+ 0). But we wait a long time, 
or we include a large population, to produce a decent chance that one or more events ·~ 

will actually occur. Poisson is not for the probability that you will be struck by lightning : 
say one in a million, over your lifetime. It is for the probability that someone in a city of 
100,000 will be struck. In this case ). = pn = 100,000/1,000,000 = 110" This is the 
expected number of lightning strikes. 

The Poisson distribution is often applied to counting rare events over a long time : 

The number of big meteors striking the Earth 

The number of campers attacked by mountain lions 

The number of failures of big banks 

Poisson assumes independent events ! Those examples might not fit. One of the most 
difficult aspects of applied probability is to estimate the dependence of one event on 
other events. One bank failure may mean more bank failures. 

The assumption i i d means independent and identically distributed-not always true. 
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3. Exponential distribution 

The exponential distribution is continuous (not discrete). It describes the waiting time in a 
Poisson process. How long until lightning strikes your city ? The key assumption is : 

The waiting time is independent of the time you have already waited. 

The future is independent of the past. Is this true for a television set to fail ? It is true 
for a computer to fail ? If failure depends on a random disaster, the waiting time has 
exponential distribution. The failure rate >. is constant. If failure comes from slow decay, 
the independence requirement will not hold. 

The probability density function (pdf) for an exponential distribution is 

p(x) = Ae-.x"' for x;:::: 0 (8) 

The cumulative distribution (probability of an event before time t) is the 
integral of p : 

F(t) =fat >.e--\x dx = [- e-hJ::~t = 1- e-.Xt 

The mean of p( x) is the average waiting time : 

f..£= xp(x)dx= x>.e--\xdx=-100 100 1 

0 o A 
The variance of p(x) is the expected value of (x- f..L) 2 : 

r= ( 1 ) 2 1 u2 = Jo x- );" >.e--\x dx = A2 

(9) 

(10) 

(11) 

That equation for the mean f..l = 1/ >. is not a surprise. If tables at a restaurant open up at an 
average rate of 3 tables per hour (night and day) then the average wait (expected waiting 
time) is 20 minutes. 

1 
Note that this number {3 = - is often used instead of>. itself. 

A 
1 

Exponential distribution p(x) = -e-.X/(3 Mean f..£ = {3. (12) 
{3 

The exponential distribution has no memory.: The probability of waiting at least 
y hours more for a table is unfortunately not affected by already having waited x hours : 

No memory Prob{ t > x + y given that t > x} = Prob{ t > y }. (13) 

This reduces to a simple statement about integrals of p(t) = >.e--\t: 
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Another remarkable fact. What if your phone ?.nd computer have failure rates Ap and 
Ac? Assume that their failures are independent. What is the probability distribution p( tmin) 
of the time tmin of the first failure ? Answer: This distribution is exponential with failure 
rate Ap + Ac. Look at survival instead of failure in equation (9), and multiply: 

If failures only occur at integer times t = 0, 1, 2, 3, ... then the exponential distribution 
(which has continuous time) is replaced by the geometric distribution (discrete time). 

The probability of failure attime n is Pn = ( 1 - a) an. (14) 

The factor 1- a is included so thatp0 + p1 + · · · = (1- a)+ (a- a2 ) + · · · = 1. The 
total probability is 1. 

4. Normal Distribution (Gaussian Distribution) 

The normal distribution is right at the center of probability theory. It is produced when we 
average the results from another distribution. At the same time it leads to new distributions 
that we will see next: log-normal and multivariate normal and "chi-squared". 

Nice formulas are often possible, even though the integral of e-x2 is not an elementary 
function. That integral (from 0 to x) cannot be expressed in terms of exponentials and 
powers of x. The saving grace is that integrals from -oo to +oo do have simple forms. 
The integral of e-x2 12 is v'27r, so we divide by that number. 

Mean 0, variance 1 

Mean p, variance o-2 

1 2 • 

The standard normal distribution N(O, 1) has p(x) = . ~e-"' 12 

v27r 
1 

The distribution N(p, o-2 ) has p(x) = ---e-(::c-p.)2 /2u2 (15) 
v'21ru 

These distributions .are symmetric around the point x = f.L. The function p( x) increases up 
to that point and decreases for x > f.L. The second derivative is negative between x = f.L- (J 

and f.L + (]". Those are points of inflection where d2pjdx2 = 0. Outside that interval the 
function is convex (d2pjdx2 > 0). 67% of the area under p(x) is in that interval. So the 
probability of lx- JLI < (J is 0.67. 

The probability of lx- JLI < 2(]" is 95% (xis less than 2 standard deviations from its 
mean value f.L). This is the famous bell-shaped curve (Figure V.2). It is not heavy-tatled. 

Question If p(x) = e-ax2 +bx+c is a probability distribution, what are f.L and (J? 

Answer Complete that exponent -ax2 + bx + c to a square -a ( x - 2ba) 2 plus a con
stant. In this form we identify the mean f.L as bj2a. The number a outside the parentheses 
is 1 j ( 2(]"2 ). The role of the constant c is to make J p( x) dx = 1. 

Normal distributions are symmetric around their center point x = f.L· So they are not 
suitable for variables x that are never negative. A log-normal distribution might succeed. 

The cumulative distribution is the integral from -oo to x of p(x). When p(x) IS 

standard normal (f.L = 0 and (]"2 = 1), its integral from -oo is often written <I>(x): 



280 Probability and Statistics 

Cumulative distribution q>(:z:) = _1_1x e-t2/2dt 
...j27i -oo 

This is very closely related to the well-tabulated "error function" erf( x) : 

2 r 2 
Error function erf( a:) = y'1i J 

0 
e -s ds 

(16) 

(17) 

We can change that variable s to t I J2, and add t for the integral from -oo to 0. Then 

Integral of p( x) = q; (a:) = ~ [ 1 + erf ( ~)] = shifted and scaled error function 

For the normal distribution N (J.L, a) just change x to ( x - J.L) I a. 
The next pages will describe two more probability distributions-important in their 

own right-that come directly from this one-variable normal distribution p(x): 

1. When x has a normal distribution, the exponential ex has a log-normal distribution. 

2. If x has the standard N(O, 1) distribution, then x2 has a chi-squared distribution. 

If x 1 , ... , Xn are independent normals with mean zero and variance 1, then 

3. Their sum x1 + · · · + Xn has a normal distribution with mean zero and varianc_e n 

4. xr + 0 0 0 + X~ has the chi-squared distribution X~ with n degrees of freedom. 

Ratios of sums of squares have the F-distribution (not studied here). 
What we want most is to allow random variables that are not independent. In this 

situation we will have covariances as well as variances. The mean values are J.ll, ... , J.ln : 

Variances =expected values of (xi - JLi)2 

Co variances = expected values of (Xi - JLi) ( x 3 - JL;) 

Those numbers fill the variance-covariance matrix C in Section V.5. When the variables 
x 1, ... , Xn are independent, the covariances are zero' and C is diagonal. When the vari
ables are not independent, like stocks and bonds, C is symmetric and positive definite 
(in an extreme case, semidefinite). Then the joint distribution of Gaussian variables 
a:~, :z:2, ... , Xn is "multivariate Gaussian": 

p(:z:) = p(:z:l, ••• 'Xn) = y'27r nl..;de[C e-(X-JL)Tc-1(X-JL) (18) 
( 27r) det C 

For n = 1, the 1 by 1 covariance matrix is.C = [a2] and p(x) is the usual Gaussian. 
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5. Log-normal Distribution 

The distribution of x is log-normal when the distribution of y = log x is normal. This 
requires x > 0. The log-normal distribution only enters for positive random variables. 

The normal distribution appears (from the central limit theorem) when you average 
many independent samples of a random variable y. You center and rescale by (x - J.L), 
to approach the standard normal N(O, 1) with f.L = 0 and 0'2 = 1. Similarly the log
normal distribution appears when you take the product of many positive sample values. 
The arithmetic mean for normal compares with the geometric mean for log-normal. 

To see the formula for p( x), start with a normal distribution for y = log x. The total 
probability must be 1. Change variables and remember that dy = dxjx. This brings a 
factor 1/ x into the log-normal distribution p(x): 

1 = !00 _1_ e-(y-JJ-)2 /2o-2 dy = r= 1 e-(logx-JJ-)2 /2o-2 dx = r= p(x) dx. 
-oo O"~ Jo O"~X la 

(19) 

The applications of log-normal distributions always involve the requirement that x > 0. 

6. Chi-squared Distribution 

Start with this question: If x has a standard normal distribution with J.L = 0 and 0'2 = 1, 
what is the probability distribution of s = x 2 ? This will be the xi distribution of s, 
where the Greek letter chi and the subscript 1 tell us that we are squaring one standard 
normal variable x. Certainly s = x 2 ~ 0. 

We need the probability that sis between y andy+ dy. This happens two ways. 
Either vfs is between y'Y and Jy + dy or vfs is between -Jy + dy and -y'Y. 
Those are equally likely since the standard normal is symmetric across zero. 
And Jy + dy = v1J + dy/2v1J +terms in (dy) 2 : 

Prob {y < s < y + dy} = 2 Prob { v1J < vis< Jy + _!}jj_} = _ 2_ e-(fo) 2 /2 dy 
2v1J ~ 2v1J 

This answers our first question. The distribution of probabilities for s = y 2 is p 1 ( s) : 

x~ distribution 
1 

PI(s) = -- e-s/2 , s > 0 vz;rs (20) 

Note: We mention that the cumulative distribution for s = x2 connects directly to the 
standard normal cumulative distribution .P ( x) in equation (16) : 

Prob{s < y} = Prob{-Jy < x < Jy} = q>(Jy)- (1- q>(Jy)). 

By definition, the derivative at y = s is the xi probability distribution, agreeing with (20) : 

New approach 
Same formula 

d [ ( ) ] = _1 ___ 1_ e-s/2 Pl ( s) = dy 2q> VY - 1 Vs ~ . 

• ; 
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Move now to the sum of two squares. This is 8 2 = x~ + x~. The standard normal 
variables x1 and x2 are independent. We have to look at all combinations x~ = 8 and 
x~ = 82 - 8 that add to 82. The probability distribution P2 for 82 is the integral over all 
those combinations: 

P2 ( 82) = 182 
P1 ( 8) P1 ( 82 - 8) d8 = "convolution of P1 with P1". (21) 

Then formula (20) for P1(8) leads to (22) for P2(82)-it is an exponential distribution! 

. Chi-squared with n = 2 is exponential : 82 = x~ + x~ 

This convolution gives a successful approach to x; for every n = 3, 4, 5, ... The vari
able 8n is the sum of squares of n independent standard normals. We can think of 8n as 
81 + 8n-1 =one square plus n - 1 squares. Then use the same idea as in equation (21): 

Pn ( 8n) = 1sn P1 ( 8) Pn-1 ( 8n - 8) d8 = "convolution of P1 with Pn-1" 

This integralpn has the form C8~n-2)/2 e-Sn/2. The number C must make the total prob
ability J Pnd8n equal to 1. Integration by parts will steadily reduce the exponent (n- 2)/2 
until we reach -1/2 or 0. Those are the two cases we have completed (for n = 1 and 
n = 2). So we know how to find C- and we have the x; probability distribution for 
8n = X~ + · · · + x; : 

sn = x~ = sum of squares 
of n standard normals 

Integral of 
Pn must be 1 

(23) 

The Gamma function f(n) = (n-1)f(n-1) is (n-1)! and for n = ~this is r ( ~) = ...jii. 

Typical Application of x2 

We manufacture something. Then we test it. We have sample values x 1, ... , Xn of its 
thickness. We compute the average thickness x and the sample variance 82 : 

and 2 1 Ln -2 8 = -- (xi - x) . 
n-1 

1 

82 is a sum of squares with n - 1 degrees of freedom. One degree of freedom was used 
by the mean x. For n = 1, xis X1 and 8 = 0. For n = 2, xis ~ (x1 + x2) and 

82 = ~ (x1- x2) 2. 8 2 has the probability distribution Pn-1 for X;-l given by (23). 
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Problem Set V.2 

1 
1 2/2 2 1 2/2 2 If P1(x) = e-x a 1 and p2 (x) = e-x a 2 show that p1p2 

~0"1 ~0"2 
is also a normal distribution : mean = zero and variance = a 2 = af a~/ ( af + a~). 
The product of Gaussians is Gaussian. If p1 and P2 have means m1 and m2 then 

P1P2 will have mean (m1a~ + m2af)j(at +a~). 

2 Important : The convolution of those Gaussians P1 ( x) and P2 ( x) is also Gaussian : 

3 

(Pl*P2)(x)=100 P1(t)p2(x-t)dt = J ~ 2 e-x2 /2(a~+a~) 
-oo 27r(a1 + a 2 ) 

A good proof takes Fourier transforms F and uses the convolution theorem : 

This is a success because the transforms F(pi(x)) are multiples of exp ( -a~k2 /2). 
Multiplying those transforms gives a product as in Problem 1. That product involves 
af + a~. Then the inverse Fourier transform produces P1 * P2 as another Gaussian. 

Question What is the variance a~ for the convolution of n identical Gaussians N ( 0, a 2 ) ? 

Verify that the convolution P(x) = J p(t) p(x- t) dt has J P(x) dx = 1: 

1:_
00 

P(x) dx = 11 p(t) p(x- t) dt = 11 p(t) p(x- t) dt = __ . 

4 Explain why the probability distribution P(x) for the sum oftwo random variables 
is the convolution P = p1 * p2 of their separate probability distributions. 
An example comes from rolling two dice and adding the results : 

Probabilities for sum 

Probabilities of 2 to 12 

(~, ~, ~, ~, ~, ~) * (~, ~, ~, ~, ~, ~) = 

(
1 2 3 4 5 6 5 4 3 2 1) 
36'36'36'36'36'36'36'36'36'36'36 
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V.3 Moments, Cumulants, and Inequalities of Statistics 

Suppose we know the average value (the mean X = E[X]) of a random variable X. 
What we want to know is something about its probabilities : the probability that X is 
greater than or equal to a. A larger cutoff a will make that probability smaller. 

Markov found a simple bound X/ a on the probability that X ;:::: a, for any nonnega
tive random variable X. As an example we could choose a = 2X. Then Markov says : 
A random sample will be larger than or equal to 2X with probability not greater than ~. 

Markov's inequality assumes that X 2::: 0 : no samples are negative 

E[X) mean of X X 
Then the probability of X ( s) 2::: a is at most -- = = -

a a a 

An example will show why Markov's inequality is true (and what it means). Suppose 
the numbers 0, 1, 2, ... (all nonnegative!) appear with probabilities po, p~, P2, ... And 
suppose that this distribution has mean E[X] = X = 1 : 

Mean value 

Then Markov's inequality with a= 3 says that the probability of X ;:::: 3 is at most~: 

Markov 
1 

Pa + P4 + Ps + · · · ~ a· 
Proof of Markov: Write equation (1) in a more revealing way: 

(1) 

(2) 

Opo + 1pl + 2p2 + 3{pa + P4 + Ps + · · · ) + P4 + 2ps + · · · = 1. (3) 

Every term in equation (3) is greater than or equal to zero. Therefore the bold term could 
not be larger than 1 : 

3(pa + P4 + Ps + · · ·) ~ 1 which is Markov's inequality (2). (4) 

Equation (3) tells us even more. When could Pa + P4 + Ps + · · · be equal to i? 
Now the bold term in equation (3) is equal to 1, so every other term must be zero: 

P1 = 0 P4 = 0 • 2ps = 0 ... 

This leaves only Po and P3· So it forces Pa = ~ and Po = ~ because the p's must add to 1. 

Conclusions First, Markov is correct. Second, if there is equality and Prob{ x ;:::: a} is 
equal to E[x]/ a, then all probabilities are actually zero except for these two : 

Prob{x =a}= E[x] and Prob{x = 0} = 1- E[xJ. 
a a 

Now we give a formal proof, allowing continuous as well as discrete probabilities. 
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The proof of Markov's inequality takes four quick steps. 

X= E [X] = L X(s) times (Probability of X(s)) 
all s 

> L X ( s) times (Probability of X ( s)) 
X(s) ~a 

> L a times (Probability of X ( s)) 
X(s) ~a 

= a times (Probability that X ( s) ~ a) 
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Dividing by a produces Markov's inequality: (Probability that X ( s) ~ a) ::; X/ a. 

The second useful inequality is Chebyshev's. This applies to all random variables X ( s ), 
not just to nonnegative functions. It provides an estimate for the probability of events that 
are far from the mean X -so we are looking at the "tail" of the probability distribution. 
For "heavy-tailed" distributions a large deviation IX(s) - XI has higher than usual 
probability. The probability of IX - XI :;::: a will decrease as the number a increases. 

Chebyshev's inequality for any probability distribution X ( s) 

- u2 
The probability of I X ( s) - X I ~ a is at most 2 a 

The proof is to apply Markov's inequality to the nonnegative function Y(s) = (X(s) -X)2 . 

By the definition of variance, the mean of that function Y is u 2 ! We are interested in 
the events with I X ( s) - X I :;::: a. Square both sides to get Y ( s) :;::: a 2 . Then use Markov : 

Chebyshev from Markov 
meanofY a 2 

Prob (Y(s)::::: a 2 ) :::::; 2 = 2· 
a a 

(5) 

Those are easy inequalities. They could be improved. Sometimes they are enough to estab
lish that a particular randomized algorithm will succeed. When they are not enough, you 
generally have to go beyond the mean and variance to higher "moments" and "cumulants". 
Often the key idea (as in Chernoff's inequality) is to use a generating function, which 
connects all those moments. 

Connecting a list of numbers to a function is a powerful idea in mathematics. · 
One real function f(x) = ~anxn or one complex function F(x) = ~aneinx contains 
(in a different form) the information in all the numbers an. Those numbers could be 
probabilities or "moments" or "cumulants". Then f will be their generating function. 
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Moments and Central Moments 

The mean and variance are fundamental numbers, for a discrete set of probabilities Pi 
and for probability density functions p(x). But the basic theory of statistics goes further. 
For every n, the moments are mn = E [:z:n]. So far we know mo, m1, m2: 

Zeroth moment= 1 Epi = 1 or J p(x) dx = 1 

First moment = mean = E [a::] 

Second moment (around 0) 

Eipi = mor fxp(x)dx = m 

E i2pi or J x2p(x) dx = u 2 + m 2 = E [x2 ] 

Second central moment (around m) E (i- m)2 Pi= u 2 or J(x- m)2 p(x) dx = u 2 

The nth moment mn is E inPi or J xn p(x) dx. But the central moments (around m) 
are more useful. They are J.Ln =expected value of (x- m)n. 

nth central moment P.n = :E (i- m)n Pi or J(x- m)n p(x) dx (6) 

nth normalized central moment = P.n/ un (7) 

Every symmetric distribution with Pi = P-i or p(x) p( -x) will have mean zero. 
All odd moments will be zero, because the terms left of zero and right of zero will cancel. 

When p(x) is symmertic around its mean value, the odd central moments J.LI,f . .Ls, ... 
will all be zero. [Best example = normal distribution.] The normalized third central 
moment "Y = p.a / u 3 is called the skewness of the distribution. 

Question: What is the skewness of Bernoulli's coin flip probabilities Po = 1 - p and . 
Pt =p? 

Answer: First, the mean is p. The variance is 112 = a 2 = ( 1-p )p2 +p( 1-p )2 = p( 1 - p). 
The third central moment is /13. and it depends on distances from the mean p: 

p.a = (1-p)(O-p)3+p(1-p)3 = p(1-p)(1-2p) 
/13 1- 2p 

skewness "Y = - = -;=;:::::======7 
a3 Jp(1- p) 

Moments are larger when you are far from the "center". For a seesaw, that is the center 
of mass. For probability, the center is the mean m. A heavy-tailed distribution will have a 
large value of J.L4 • We generally use the fourth moment of a normal distribution (it is 3a4 ) 

as a basis for comparison. Then the kurtosis of any distribution is called kappa : 

Kurtosis 
l-'4 - 3u4 P,'a 

,., = u4 = u4 - 3. (8) 
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Generating Functions and Cumulants 

Four key functions are created from the probabilities and the moments and the cumulants. 
We start with a discrete random variable X. The event X = n has probability Pn· Those 
numbers Pn lead to the first three functions. Then K ( t) = log M ( t). . 

00 

Probability generating function G(z) =I: PnZn (9) 
0 

00 

Characteristic function cp(t) = L Pneitn (10) 
0 

oo tn 
M(t) = L mn-

o n! 
Moment generating function (11) 

oo tn 
K(t) = L "-n! 

o n. 
Cumulant generating function (12) 

All probabilities Pn and moments mn and cumulants K,n can be recovered from the 
nth derivatives of the functions G, M, K at z = 0 and t = 0 : 

1 dnG 
P -- -(0) 
n- I d n n. z 

(13) 

And there is a very revealing way to connect the four generating functions to expectations : 

G(z) = E [zX] cp(t) = E [eitX] M(t) = E (etX] K(t) = logE (etX] (14) 

Of course there must be a purpose behind these four functions. We are capturing an infinite 
set of coefficients in each function. The key point of cumulants is that they lead to this 
property of K ( t) = log M ( t) : 

Kx+y(t) = Kx(t) + Ky(t) for independent random variables X andY. 

Examples One coin flip gives the Bernoulli distribution with probabilities Po = 1 - p 
andp1 = p. Thenp = E [x] = E [x2 ] = E [x3 ] =···and M(t) = 1- p +pet. 

Cumulative generating function K(t) = log(1 - p +pet). 

The first cumulant is "-l = dK = [ pet t] = p. 
• dt 1 - p + pe t=O 

For the binomial distribution (N independent coin flips) multiply every cumulant by N. 

For the Poisson distribution Pn = e- ,\ >. n j 7!! the function K ( t) is >. ( et - 1). All K,n = >.. 

• I 
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Generating Functions for Continuous Distributions 

We cannot leave out the normal distribution ! For a continuous distribution, all the 
generating functions have integrals involving p(x) instead of sums involving Pn: 

¢(t) =I: p(x) eit'JJ dx K(t) =log M(t). (15) 

The moment generating function for a normal distribution (mean f..L, variance CT2 ) is M(t) = 
e~-'tea2 t2 / 2 . The cumulant generating function is its logarithm K(t) = J.Lt + u 2 t 2 /2. 
So the normal distribution is highly exceptional with only those two nonzero cumulants: 

I Normal distribution "'3 = "'4 = ... = o 1 

Key facts about 3 cumulants K1 = mean K 2 = variance K3 = third central moment 

Because the cumulants of independent processes can be added, they appear throughout 
combinatorics and statistics and physics. Higher cumulants are more complicated than K,3 . 

The Central Limit Theorem 

In a few lines, we can justify the great limit theorem of probability. It concerns the 
standardized averages Zn = 2:: (X k - m) I CTVN of N independent samples X 1 , ... , X N 

with mean m and variance CT2 • The central limit theorem says : The distribution of Zn 
approaches the standard normal distribution (mean zero, variance 1) as N-+ oo. 

The proof uses the characteristic function of the standardized variable Y = (X -m)ICT: 

E [eitYJ =E [l+itY-~t2Y2 +0(t3 )] =1+0-~t2 +0(t3 ) (16) 

Certainly Z N = (Y1 + Y2 + · · · + Y N) I v'N. So its characteristic function is a product of 
N identical characteristic functions of Y I VN : the number t is fixed. 

That limit e-t2 12 is the characteristic function of a stanoard normal distribution N (0, 1). 

Chernoff's Inequality for Sums 

The mean value of a sum X = X1 + · · · + Xn is always X = X 1 + · · · + Xn. 
If those variables are independent, then also the variance CT2 of X is CT2 = O"i + · · · + CT~. 

At the start of this section, Chebyshev's inequality gave a bound on the probability of 
samples Xi that are far from their means Xi. It applies also to their sums X and X. 
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- . lT2 + ... + lT2 
Chebyshev for a sum Prob (IX- XI 2:: a) :::; 1 

2 n (18) 
a 

The inequality is tight for n = 1. Can the inequality be improved for a sum? I would have 
guessed no. Chernoff says yes. There is a subtle point here. Chernoff assumed not just 
independence of each pair Xi and Xi, but joint independence of all the Xi together: 

Multiply probabilities p( X1, ... , Xn) = Pl ( X1) · · · Pn ( Xn). (19) 

A diagonal covariance matrix only needs pairwise independence. Equation (19) says more. 
And it leads to much stronger bounds (20) for a sum than Chebyshev's inequality (18). 

The key point about Chernoff's inequality is its exponential bound. Sums X that are 
far from their mean X are exponentially unlikely. That is because an exceptional sum 
X= X1 + · · · + Xn usually needs several Xi to be far from their means Xi. 

An example is the number of heads in tossing n coins. Then Xi = Pi for each coin. 
The total number X of heads will have mean value X = P1 + · · · + Pn· 

Upper Chernoff Prob (X 2:: (1 +d) X) :::; e-xo2 /(2+6) 

Lower Chernoff Prob (X :::; (1 - d)X) :::; e-xo2 /2 
(20) 

In his online notes for the MIT class 18.310, Michel Goemans points out how strong this 
is. Suppose we have n flips of a fair coin. Then X = n/2 (half heads and half tails). 
Now take a small <52 = (4logn)jn, and compare the Chernoff bounds (20) for J and 2<5. 

The probability that X :::; (1 - 2J)X is very much smaller than the probability ., 
of X:::; (1- J)X. By doubling J, the <52 in Chernoff's exponent changes to 4<52 • 

The probability drops from 1/n to 1/n4 : 

XJ2/2 = logn gives abound e-logn = 1/n 

X(2J)2 /2 = 4logn gives a bound e-4 logn = 1/n4 

Chebyshev would have had 1/4n where Chernoff has 1/n4 : an exponential difference! 
We can point to the key step in proving Chernoff bounds. First center X so that X = 0 : 

Usual Chebyshev Prob (lXI 2:: a) = Prob (X2 2:: a2 ) 

Upper Chernoff Prob (X 2:: a) = Prob ( e8 X 2:: e8a) :::; E [ e8 X J j e8 a 

Lower Chernoff Prob (X :::; a) = Prob (e-sX 2:: e-sa) :::; E [e-sX] je-sa 

We need both exponentials (plus and minus). Especially we need the moment generating 
function. This tells us M(s) = E[e8 x] and M(-s) = E[e-sx]. Then Chernoff will 
follow from a careful choice of s. It has many applications in randomized linear algebra. 

To work with non-independent samples we need covariances as well as variances. 
And we also need Markov-Chebyshev-Chernoff inequalities for matrices. Those come now. 
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Markov and Chebyshev Inequalities for Matrices 

Stochastic gradient descent (Section Vl.5) is the established algorithm for optimizing the 
weights in a neural net. Stochastic means random-and those weights go into matrices. 
So an essential step in the statistics of deep learning is to develop inequalities for the 
eigenvalues and the trace of random matrices. 

We will not aim for an exhaustive presentation : just the basic facts. We will write 
X :::; A when A - X is positive semidefinite: energy ;:=: 0 and all eigenvalues ;:=: 0. 
Otherwise X i A. In this case A - X has a negative eigenvalue. 

Markov's inequality Suppose X 2:: 0 is a semidefinite or definite random matrix 
with mean E [X] = X. If A is any positive definite matrix, then 

Prob {X i A} = Prob {A- X is not positive semidefinite } :::; Trace of X A -l. (21) 

If X and A are scalars x and a, compare with Markov's inequality Prob { x ;::: a} S xja. 

Proof If A 112 is the positive definite square root of A, here is the key step: 

(Trace of A~ 1 12 XA~ 112 ) > 1 if X f;_ A. (22) 

When A - X is not positive semidefinite, there must be a vector v with negative energy 
vT(A- X)v < 0. Set w = A 112v so that WTW < WT A~ 1 12 xA~ 1 12w. Then the largest 
eigenvalue of A~ 112 X A~ 112 is >-max > 1 : 

Rayleigh quotient 
YT A~1/2 XA~1f2y 

>-max = max T > 1 
y y 

No eigenvalues of A ~ 1 12 X A ~ 1 12 are negative, so its trace is larger than 1. This is (22). 
Then taking expectations of both sides of (22) will produce Markov's inequality (21): 

Prob {Xi A} S E[trace (A~ 1 /2 XA ~ 1 ;2 )] =trace (A~ 1/2 XA ~ 112 ) =trace (XA~ 1 ). 

Now we turn to Chebyshev's inequality Prob {I X - X I 2:: a} S a2 ja2 . For a 
symmetric matrix A= QAQT, we will use a fact about its absolute value IAI = QIAIQT: 

If A 2 - B 2 is positive semidefinite then IAI - IBI is also positive semidefinite. 

The proof is not completely simple. The opposite statement is not true. We save examples 
for the Problem Set and use this fact now : 

Chebyshev's inequality for a random matrix X with mean 0 

If Aispositivedefinitethen Prob{IXI i A}< trace(E(X2 ]A-2 ). (23) 

If A -lXI is not positive semidefinite then A2 - X 2 is not positive semidefinite (as above): 

Prob{IXI i A} S Prob{X2 i A2 } <trace(E[X2]A~2 ). 

That last step was Markov's inequality for the positive semidefinite matrix X 2 • 
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Wikipedia offers a multidimensional Chebyshev inequality for a random x in RN. 
Suppose its mean is E [ x] = m and its covariance matrix is V = E [ ( x - m) ( x - m) T] : 

If Vis positive definite and t > 0 then Prob{(x- m)T v-1(x- m) > t 2} :5 Nft2 • 

Matrix Chernoff Inequalities 

Chernoff inequalities deal with a sum Y of random variables Xk-previously scalars 
and now n by n positive semidefinite (or positive definite) matrices. We look at the 
smallest and largest eigenvalues of that sum. The key point of Chernoff is that for 
a sum to be far from its mean value, it normally needs several terms in the sum to be 
fairly far off-and that combination of unusual events is exponentially unlikely. 

So we get exponentially small bounds for tail probabilities (distances from the mean). 

Matrix Chernoff Suppose each matrix Xk in Y = :E Xk has eigenvalues 0 :5 .X :5 C. 
Let Jlmin and JLmax be the extreme eigenvalues of the average sum Y = :EX k· Then 

E[.Xmin(Y)]2: (1-~)ILmin-Clogn (24) 

E[-Xmax(Y)] :5 (e-1) JLmax+Clogn (25) 

Eigenvalues of the sum Y far from their mean are exponentially unlikely : 

Prob{.X · (Y) < tu · } < ne-(l-t)2 JLmin/2C nun - r-mm - (26) 

( e)tJLmax/C 
Prob {A max (Y) 2: t JLmax} :5 n t for t 2: e (27) , 

Joel Tropp's online textbook is an excellent presentation of matrix inequalities. His book 
proves sharper estimates for the expectations and exponential bounds in (24-27). 

Joel Tropp, An Introduction to Matrix Concentration Inequalities, arXiv :1501.01591. 

There are many more inequalities after Chernoff! We stop with an application of the 
inequality (26) to the probability that a graph with edges at random is connected. 

Erdos-Renyi Random Graphs 

This is a chance to define random graphs. Start with n nodes. Each edge is present with 
probability p. Then the question is : For which p is the graph likely to be connected?. 

Then by n adjacency matrix has Mjk = Mkj = 1 when nodes j and k are connected. 
The random variable Xjk for that two-way edge is 0 or 1, with probability 1 - p and p: 

Adjacency matrix M = sumofrandommatrices = I::Xjk(Ejk +Ekj)· (28) 
j<k 

Ejk is the matrix with a single 1 in position (j, k ). The Laplacian matrix is L = D - M. 

Row sums minus M L = L Xjk ( Ejj + Ekk - Eik - Ekj) (29) 
j<k 
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For every edge (meaning Xjk = 1), the degree matrix D has two 1's from Ejj + Ekk· 

The adjacency matrix M has two 1 's from Ejk + Ekj. Together those four entries 
have A= 2 and 0. SoL is positive semidefinite and A= 0 has the eigenvector (1, ... , 1). 

The second smallest eigenvalue of L will be positive when the graph is connected. 
With two pieces, we can number nodes in one part before nodes in the other part. Then 
L has separate blocks from the two parts. Each block has an all-ones eigenvector, and 
L has A1 = A2 = 0 (two zero eigenvalues with separate eigenvectors of 1 's). 

We need a random matrix Y of size n-1 whose smallest eigenvalue is .\1 (Y) = .\2 ( L). 
Then a connected graph will have A1 (Y) > 0. A suitable Y is ULUT, where then- 1 
rows of U are orthogonal unit vectors that are perpendicular to the all-ones vector 1. 
Y is like L, but with that all-ones eigenvector and its zero eigenvalue removed. 

We now apply the matrix Chernoff theorem to discover when Amin (Y) > 0 and 
the graph is connected. Y is the sum of random matrices Xi k (for all j < k) : 

Y = uLuT = L Xjk u (Ejj + Ekk- Ejk- Ekj) uT = L xjk (30) 

Each Xi k is semidefinite with eigenvalues $ 2 as above, since IIU II = II UT II = 1. 

Then C = 2 in the Chernoff theorem. We also need the smallest eigenvalue JLmin 
of the average matrix Y. The expected value of each random number x J k is p--the proba
bility of including that edge in the graph. The expected value of Y = L Xjk is p n In- 1 : 

= pU[(n -1)In- (llT- ln)]UT = pnln-1 (31) 

That term (n- 1)In came from adding all the diagonal matrices Ejj and Ekk· The off
diagonal matrices Ejk and Ekj add to llT- In =all-ones matrix with zero diagonal. 
UUT = ln-1 produced p n ln-1, and we have found the smallest eigenvalue J.l.min = p n. 

Now apply the inequality (26) in Chernoff's theorem with C = 2: 

Prob{A2(L) $ tpn} = Prob {A1 (Y) $ tpn} $ (n -1) e-<1-t)2 pn/4 . (32) 

As t ~ 0, the crucial quantity is (n- 1)e-pn/4 • This is below 1 if its logarithm is below 
zero. . 

1 4log(n-1) 
log(n-1)- 4pn<O or p> n · (33) 

Edges in the random graph are included with probability p. If p is large enough to satisfy 
(33), the graph is probably connected. A tighter argument would remove the factor 4. 
That produces the optimal cutoff value of p for connected random graphs. 
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Problem Set V.3 

1 Find the probability generating function G(z) for Poisson's Pn = e-.x _xn jn! 

2 Independent random variables x andy have p(x,y) = p(x)p(y). Derive the 
special property Kx+y(t) = Kx(t)+Ky(t) oftheircumulantgeneratingfunctions. 

3 A fair coin flip has outcomes X = 0 and X = 1 with probabilities~ and~· What 
is the probability that X ;:::: 2X? Show that Markov's inequality gives the exact 
probability X /2 in this case. 

4 Throwing two ordinary dice has an outcome between X = 2 and X = 12 (two 1 's or 
two 6's). The mean value is 7. What is the actual probability p that X ;:::: 12? Show 
that Markov's X /12 overestimates that probability pin this case where a = 12. 

5 Here is another proof of Markov's basic inequality for a nonnegative variable X. 

For a > 0, the random variable Y = { ~ ifX<a ? 
.f X - has Y <X. Why . 
1 >a -

Explainthefinalstep aProb [X~ t] =E [Y]::; E [X] to Markov's bound E [X]/ a. 

6 Show that the largest eigenvalue of a random Y = yT is a convex function of Y : 

7 Show that A - B is positive semidefinite but A 2 - B 2 is not: 

A=[~~] B=[~ ~] 
8 Prove this amazing identity when random samples 0 < x 1 < x2 < · · · < Xn have 

probabilities P1 to Pn : 

mean= E[x] = tPiXi = 1= (Probability that x > t) dt. 
1 t=O 

Hint: That probability is l:Pi = 1 up tot = x 1 and then it is 1-p1 as far as t = x2. 
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V.4 Covariance Matrices and Joint Probabilities 

Linear algebra enters when we run M different experiments at once. We might measure 
age and height and weight (M = 3 measurements of N people). Each experiment has 
its own mean value. So we have a vector m = (m1, m 2 , m 3 ) containing theM mean 
values. Those could be sample means of age and height and weight. Or m 1 , m 2 , m3 

could be expected values of age, height, weight based on known probabilities. 

A matrix becomes involved when we look at variances. Each experiment will have 
a sample variance Sf or an expected a? = E [(xi- mi) 2 ) based on the squared 
distance from its mean. Those M numbers a?, ... , air will go on the main diagonal 
of the "variance-covariance matrix". So far we have made no connection between the 
M parallel experiments. They measure different random variables, but the experiments 
are not necessarily independent! 

If we measure age and height and weight (a, h, w) for children, the results will be 
strongly correlated. Older children are generally taller and heavier. Suppose the means 
ma, mh, mw are known. Then a~, a~, a~ are the separate variances in age, height, weight. 
The new numbers are the covariances like u ah• which measures the connection of age 
to height. 

Covariance u ah = E [ (age - mean age) (height - mean height)]. ( 1) 

This definition needs a close look. To compute aah. it is not enough to know the 
probability of each age and the probability of each height. We have to know the joint 
probability of each pair (age and height). This is because age is connected to height. 

Pah = probability that a random child has age = a and height = h: both at once 

Pii = probability that experiment 1 produces Xi and experiment 2 produces Yi 

Suppose experiment 1 (age) has mean m 1 . Experiment 2 (height) has mean m 2 . The 
covariance in equation (1) between experiments 1 and 2 looks at all pairs of ages Xi and 
heights yj. We multiply by the joint probability Pij of that pair. 

Expected value of 
(x -mi)(y- m2) 

Covariance u12 = L L Pij(Xi- m1)(Yj - m2) (2) 
all i,j 

To capture this idea of "joint probability Pi/' we begin with two small examples. 

Example 1 Flip two coins separately. With 1 for heads and 0 for tails, the results can 

be (1, 1) or (1, 0) or (0, 1) or (0, 0). Those four outcomes all have probability ( ~) 2 = ~
For independent experiments we multiply probabilities : 

Pij =Probability of (i, j) = (Probability of i) times (Probability of j). 
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Example 2 Glue the coins together, facing the same way. The only possibilities are 
(1, 1) and (0, 0). Those have probabilities ~and~· The probabilities P10 and p01 are zero. 
(1, 0) and (0, 1) won't happen because the coins stick together: both heads or both tails. 

Joint probability matrices 
for Examples 1 and 2 and P = [! : ]· 

Let me stay longer with P, to show it in good matrix notation. The matrix shows the 
probability Pij of each pair (xi, Yj)-starting with (x1, Yl) =(heads, heads) and (x1, Y2) = 
(heads, tails). Notice the row sums p 1 ,p2 and column sums P1, P2 and the total sum= 1. 

Probability matrix p = [ Pu P12 ] Pu + P12 = P1 ( fir~t ) 
P21 P22 P21 + P22 = P2 com 

(second coin) column sums P 1 P 2 4 entries add to 1 

Those sums p 1, P2 and P1, P2 are the marginals of the joint probability matrix P: 

P1 = Pu + P12 =chance of heads from coin 1 (coin 2 can be heads or tails) 
P1 = Pu + P2l =chance of heads from coin 2 (coin 1 can be heads or tails) 

Example 1 showed independent random variables. Every probability Pij equals Pi times Pj 
( ~ times ~ gave Pij = ~ in that example). In this case the covariance u 12 will be zero. 
Heads or tails from the first coin gave no information about the second coin. 

Zero covariance u12 

for independent trials 
0

2 ] = diagonal covariance matrix V. 
0"2 

Independent experiments have a 12 = 0 because every Pij equals (Pi) (Pj) in equation (2): 

Example 3 The glued coins show perfect correlation. Heads on one means heads on 
the other. The covariance a 12 moves from 0 to u 1 times u 2 . This is the largest possible 
value of a 12 . Here it is ( ~) ( ~) = a 12 = ( ~), as a separate computation confirms : 

1 
Means=-

2 

Heads or tails from coin 1 gives complete information about heads or tails from the glued 
coin 2: 

Glued coins give largest possible covariances 
Singular covariance matrix: determinant = 0 
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Always u~u~ ~ (u12) 2. Thus o-12 is between -a1a2 and 0"10"2. The matrix V 
is positive definite (or in this singular case of glued coins, Vis positive semidefinite). 
Those are important facts about all M by M covariance matrices V for M experiments. 

Note that the sample covariance matrix S from N trials is certainly semidefinite. 
Every new sample X =(age, height, weight) contributes to the sample mean X (a vector). 
Each rank-one term (Xi- X)(Xi- X)T is positive semidefinite and we just add to reach 
the matrix S. No probabilities inS, just actual outcomes: 

X= _X-"-1_+_·_·_· _+_X....cN_ 
N 

(3) 

The Covariance Matrix V is Positive Semidefinite 

Come back to the expected covariance o-12 between two experiments 1 and 2 (two coins): 

o-12 expected value of [(output 1- mean 1) times (output2- mean 2)] 

l::: l:::Pij (xi- m1) (y3 - m2). The sum includes all i,j. 
(4) 

Pii :2: 0 is the probability of seeing outputs Xi in experiment 1 and Yi in experiment 2. 
Some pair of outputs must appear. Therefore the N 2 joint probabilities Pii add to 1. 

Total probability (all pairs) is 1 2: ~:::>ij = 1. (5) 

all i,j 

Here is another fact we need. Fix on one particular output Xi in experiment 1. Allow 
all outputs Yi in experiment 2. Add the probabilities of (Xi, Y1), (xi, Y2), ... , (xi, Yn) : 

n 
Row sum Pi of P l::: Pij = probability Pi of xi in experiment 1. (6) 

j=1 

Some Yi must happen in experiment 2! Whether the two coins are completely separate or 
glued, we get the same answer ~ for the probability pH = pH H + p HT that coin 1 is heads: 

1 1 1 
(separate) PHH + PHT = 4 + 4 = 2 

1 1 
(glued) PHH + PHT =- + 0 = -. 

. 2 2 
That basic reasoning allows us to write one matrix formula that includes the covariance 
o-12 along with the separate variances a? and a~ for experiment 1 and experiment 2. 
We get the whole covariance matrix V by adding the matrices Vii for each pair ( i, j) : 

Covariance matrix 
V = sum of all l/ij 
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Off the diagonal, this is equation (2) for the covariance cr12 . On the diagonal, we are 
getting the ordinary variances cr~ and cr~. I will show in detail how we get V11 = cr~ 
by using equation (6). Allowing all j just leaves the probability Pi of xi in experiment 1: 

Vn = "L:L:::>ij(xi- m1)2 = L (probability of xi) (xi- m1)2 = u~. (8) 
alli,j alli 

Please look at that twice. It is the key to producing the whole covariance matrix by 
one formula (7). The beauty of that formula is that it combines 2 by 2 matrices Vii. 
And the matrix Vii in (7) for each pair of outcomes i, j is positive semidefinite : · 

Vii hasdiagonalentriespij(Xi-m1)2 ~ 0 and Pij(Yj-m2? ~ 0 and det(\tij) = 0. 

That matrix Vii has rank 1. Equation (7) multiplies Pii times column U times row uT: 

(9) 

Every matrix PijUUT is positive semidefinite. So the whole matrix V (the sum of 
those rank 1 matrices) is at least semidefinite-and probably Vis definite. 

The covariance matrix V is positive definite unless the experiments are dependent. 

Now we move from two variables x and y to M variables like age-height-weight. 
The output from each trial is a vector X with M components. (Each child has an age
height-weight vector X with 3 components.) The covariance matrix Vis now M by M. 
The matrix V is created from the output vectors X and their average X = E [X] : 

Covariancematrix V=E[(x-X) (X-X)T]=EPij (X-X) (X-X)T (10) 

Remember that X xT and X X T = (column) (row) are M by M matrices. 

ForM = 1 (one variable) you see that X is the mean m and Vis the variance cr2. 
ForM = 2 (two coins) you see that X is (m1, m2) and V matches equation (7)'. The 
expectation always adds up outputs times their probabilities. For age-height-weight 
the output could be X = (5 years, 31 inches, 48 pounds) and its probability is P5,31,48. 

Now comes a new idea. Take any linear combination cT X= c1X 1 + · · · + cMXM. 
With c = (6, 2, 5) this would be cT X= 6 x age+ 2 x height+ 5 x weight. By linearity 
we know that its expected value E [cT X] is cTE [X] = cT X: 

E [cT X] = cTE [X] = 6 (expected age)+ 2 (expected height)+ 5 (expected weight). 
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More than the mean of cT X, we also know its variance u 2 = cTV c: 

Variance of cTX = E [(cTX- cTX) (cTX- cT X)T] 

=cTE [(X-XJ(X-X)T]c=cTVc 
(11) 

Now the key point: The variance of cT X can never be negative. So cTV c ~ 0. 
New proof: The covariance matrix Vis positive semidefinite by the energy test cTV c ~ 0. 

Covariance matrices V open up the link between probability and linear algebra: 
V equals QAQT with eigenvalues >.i ?: 0 and orthonormal eigenvectors qi to qM. 

Diagonalizing the covariance matrix V means finding M independent 
experiments as combinations of the original M experiments. 

Confession I am not entirely happy with that proof based on cTV c?: 0. The expectation 
symbol E is hiding the key idea of joint probability. Allow me to show directly that the 
covariance matrix Vis positive semidefinite (at least for the age-height-weight example). 
The proof is simply that V is the sum of the joint probability Pahw of each combination 
(age, height, weight) times the positive semidefinite matrix UUT. Here U is X - X : 

v = L PahwUUT with 
alla,h,w 

[ 
age l [ mean age l 

U = hei~ht - mean hei~ht 
weight mean weight 

(12) 

This is exactly like the 2 by 2 coin flip matrix V in equation (7). Now M = 3. 

The value of the expectation symbol E is that it also allows pdf's : probability density 
functions like p(x, y, z) for continuous random variables x andy and z. If we allow all 
numbers as ages and heights and weights, instead of age i = 0, 1, 2, 3 ... , then we need 
p(x, y, z) instead of Pijk· The sums in this section of the book would all change to integrals. 
But we still have V = E [UUT] : 

[ x -xl Covariance matrix v = J J J p(x, y, z) uuT dxdy dz 'with u = y- ~ . 
z-z 

(13) 

Always J J J p = 1. Examples 1-2 emphasized how p can give diagonal V or singular V: 

Independent variables x, y, z 

Dependent variables x, y, z 

p(x, y, z) = P1(x) P2(Y) P3(z). 

p(x, y, z) = 0 except when ex+ dy + ez = 0. 
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The Mean and Variance ofz = x + y 

Start with the sample mean. We haveN samples of x. Their mean(= average) is the 
number mx. We also haveN samples of y and their mean is my. The sample mean of 
z = x + y is clearly mz = mx + my : 

Mean of sum = Sum of means 

Nice to see something that simple. The expected mean of z = x + y doesn't look so simple, 
but it must come out as E[z) = E[x) + E[y). Here is one way to see this. 

The joint probability of the pair (Xi, Yi) is Pii. Its value depends on whether the experi
ments are independent, which we don't know. But for the expectation of the sum z = x +y, 
dependence or independence of x andy doesn't matter. Expected values still add: 

j j j 

All the sums go from 1 to N. We can add in any order. For the first term on the right side, 
add the Pii along row i of the probability matrix P to get Pi· That double sum gives E[x) : 

L LPijXi = L(Pil +···+PiN )xi = LPiXi = E[x). 
i j i i 

For the last term, add Pii down column j of the matrix to get the probability Pi of Yi· 
Those pairs (xl,Yj) and (x2,Yi) and ... and (xN,Yj) are all the ways to produceyj: 

LLPijYj = L(Plj + ... + PNj)Yj = 'L:Pjyj = E[y). 
i j j j 

Now equation (15) says that E[x + y) = E[x) + E[y). Mean of sum= Sum of means. 

What about the variance of z = x + y ? The joint probabilities Pij and the covariance 
a xy will be involved. Let me separate the variance of x + y into three simple pieces : 

0"~ = 2:: L:Pij(Xi + Yi- mx- my) 2 

= 2:: L:Pij(Xi- mx)2 + 2:: L:Pii(Yj- my) 2 + 2 2:: L:Pii(xi- mx)(Yi- my) 

The first piece is u~. The second piece is u~. The last piece is 2u "'Y. 

The v3riance of z = x + y is u~ = u~ + u~ + 2u.,y. (16) 



300 .. ... Pr()babilitJ_a,n4 _S~!i~J!~§ __ 

The Covariance Matrix for Z = AX 

Here is a good way to see a~ when z = x + y. Think of ( x, y) as a column vector X. 
Think of the 1 by 2 matrix A= [ 1 1 ] multiplying that vector X= (x, y). Then AX is 
the sum z = x + y. The variance u~ in equation (16) goes into matrix notation as 

which is u 2 = AV AT. z (17) 

You can see that a;= AV AT in (17) agrees with a;+ a~+ 2axy in (16). 

Now for the main point. The vector X could have M components coming from M 
experiments (instead of only 2). Those experiments will have an M by M covariance 
matrix V x. The matrix A could be K by M. Then AX is a vector with K combinations 
of theM outputs (instead of one combination x + y of 2 two outputs). 

That vector Z = AX of length K has a K by K covariance matrix V z. Then the great 
rule for covariance matrices-of which equation (17) was only a 1 by 2 example-is this 
beautiful formula: The covariance matrix of AX is A (covariance matrix of X) AT : 

I The covariance matrix of Z =AX is Vz = AVxAT I (18) 

To me, this neat formula shows the beauty of matrix multiplication. I won't prove this 
formula, just admire it. It is constantly used in applications. 

The Correlation p 

Correlation Pxy is closely related to covariance axy· They both measure dependence or 
independence. Start by rescaling or "standardizing" the random variables x and y 
The new X = xfum andY = yjuy have variance ui- = u} = 1. This is just like 
dividing a vector v by its length to produce a unit vector v /llvll of length 1. 

The correlation of x and y is the covariance of X and Y. If the original covariance 
of x andy was axy• then rescaling to X andY will divide by ax and ay: 

Correlation Pmy = u my = covariance of _::._ and .!!_ 
O"mO"y O'm O'y 

Always -1 ~ Pmy ~ 1 

Zero covariance gives zero correlation. Independent random variables produce Pxy = 0. 

We know that always (Pxy) 2 ~ a;a~ (the covariance matrix V is at least positive 
semidefinite). Then (umy} 2 ~ 1. Correlation near p = +1 means strong dependence in 
the same direction : often voting the same. Negative correlation means that y tends to be 
below its mean when x is above its mean : Voting in opposite directions when p is near -1. 
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Example 4 Suppose that y is just -x. A coin flip has outputs x = 0 or 1. The same flip 
has outputs y = 0 or -1. The mean mx is ~ for a fair coin, and my is - ~. The covariance 
of x andy is <Txy = -<Tx<Ty. The correlation divides by <Tx<Ty to get Pmy = -1. In this 
case the correlation matrix R has determinant zero (singular and only semidefinite): 

Correlation matrix R = [ P~y Piy ] R= [ 1 
-1 

-1] 1 wheny = -x 

R always has 1's on the diagonal because we normalized to ux = uy = 1. R is the 
correlation matrix for x andy, and it is also the covariance matrix for X = xfux and 
y = yj<Ty. 

That number Pxy is also called the Pearson coefficient. 

Example 5 Suppose the random variables x, y, z are independent. What matrix is R? 

Answer R is the identity matrix. All three correlations Pxx, Pyy, Pzz are 1 by definition. 
All three cross-correlations Pxy, Pxz, Pyz are zero by independence. 

The correlation matrix R comes from the covariance matrix V, when we rescale every 
row and every column. Divide each row i and column i by the ith standard deviation <Ti· 

(a) R=DVD forthediagonalmatrix D = diag [1/<TI. ... , 1/uM]· Then every ~i = 1. 

(b) If covariance Vis positive definite, correlation R = DV Dis also positive definite. 

• WORKED EXAMPLE • 

Suppose x and y are independent random variables with mean 0 and variance 1. Then 
the covariance matrix Vx for X = (x, y) is the 2 by 2 identity matrix. What are the 
mean m z and the covariance matrix Vz for the 3-component vector Z = ( x, y, ax+ by) ? 

Solution 

Z is connected to X by A z~[ax~byl [~ n[;]=~ 
The vector m x contains the means of the M components of X. The vector m z contains 
the means of the K components of Z = AX. The matrix connection between the means 
of X and Z has to be linear: mz =A mx. The mean of ax+ by is amx + bmy. 
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The covariance matrix for Z is Vz = AAT, when Vx is the 2 by 2 identity matrix: 

covariance matrix for 
Vz= Z = (x, y, ax+ by) 

Interpretation: x and y are independent with covariance O" xy = 0. Then the covariance of 
x with ax + by is a and the covariance of y with ax + by is b. Those just come from 
the two independent parts of ax + by. Finally, equation ( 18) gives the variance of ax + by : 

Use Vz = AVxAT 2 2 2 2 2b20 O"ax+by =()"ax+ O"by + O"ax,by =a + + . 

The 3 by 3 matrix Vz is singular. Its determinant is a2 + b2 - a2 - b2 = 0. The third 
component z = ax + by is completely dependent on x and y. The rank of Vz is only 2. 

GPS Example The signal from a GPS satellite includes its departure time. The receiver 
clock gives the arrival time. The receiver multiplies the travel time by the speed of light. 
Then it knows the distance from that satellite. Distances from four or more satellites will 
pinpoint the receiver position (using least squares!). 

One problem: The speed of light changes in the ionosphere. But the correction will be 
almost the same for all nearby receivers. If one receiver stays in a known position, we can 
take differences from that one. Differential GPS reduces the error variance by fixing one 
receiver: 

Difference matrix 
A=[l -1] 

Covariance matrix 
Vz = AVxAT Vz = [ 1 -1 l [ ()"? 

0"12 ] [ -~ ] 
= ui - 2u12 + u~ 

Errors in the speed of light are gone. Then centimeter positioning accuracy is achievable. 
(The key ideas are on page 320 of Algorithms for Global Positioning by Borre and Strang.) 
The GPS world is all about time and space and .amazing accuracy. 

Problem Set V.4 

1 (a) Compute the variance 0"2 when the coin flip probabilities are p and 1 - p 
(tails = 0, heads = 1). 

(b) The sum of N independent flips (0 or 1) is the count of heads after N tries. 
The rule ( 16-17 -18) for the variance of a sum gives 0"2 = __ . 

2 What is the covariance O"kl between the results x 1, ... , Xn of Experiment 3 and the 
results y1 , ... , Yn of Experiment 5 ? Your formula will look like 0"12 in equation (2). 
Then the (3, 5) and (5, 3) entries of the covariance matrix V are 0"35 = 0"53 . 

3 For M = 3 experiments, the variance-covariance matrix V will be 3 by 3. There 
will be a probability PiJk that the three outputs are Xi and y1 and Zk. Write down a 
formula like equation (7) for the matrix V. 
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4 What is the covariance matrix V for M = 3 independent experiments with means 
d . 2 2 2? m1, m 2 , m 3 an vanances a 1 , a2 , a3 • 

5 When the covariance matrix for outputs X is V, the covariance matrix for outputs 
Z = AX is AVA T. Explain this neat formula by linearity : 

Z = E [(AX- AX)(AX- AX)T] = AE [(X- X)(X- X)T) AT. 

Problems 6-10 are about the conditional probability that Y = Yi when we know X= rei. 
Notation: Prob (Y = Yi IX = IDi) =probability of the outcome Y1 given that X = Xi. 

Example 1 Coin 1 is glued to coin 2. Then Prob (Y = heads when X = heads) is 1. 
Example 2 Independent coin flips : X gives no information about Y. Useless to know X. 

Then Prob (Y =heads IX =heads) is the same as Prob (Y =heads). 

6 Explain the sum rule of conditional probability: 

Prob (Y = yj) = sum over all outputs Xi ofProb (Y = Y1IX =xi)· 

7 Then by n matrix P contains joint probabilities Pii = Prob (X =Xi andY= Yj)· 

8 

Explain why the conditional Prob (Y = y1 IX = xi) equals Pij = Pij 
Pil + · · · +Pin Pi 

For this joint probability matrix with Prob (x1 , y2 ) = 0.3, find Prob (Y21x!) and Prob (xi). 

p = [ Pn P12 ] = [ 0.1 0.3 ] 
P21 P22 0.2 0.4 

The entries Pii add to 1. 
Some i,j must happen. 

9 Explain the product rule of conditional probability: 

Pij = Prob(X =Xi andY= Yj) equalsProb(Y = Y1IX =xi) times Prob(X =Xi)· 

10 Derive this Bayes Theorem for Pij from the product rule in Problem 8: 

P b(y _ . d X_ ·) _ Prob(X = xiiY = y1) Prob(Y = y1) 
ro - y3 an - x, - , 

Prob(X =xi) 

"Bayesians" use prior information. "Frequentists" only use sampling information. 
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The normal probability density p(x) (the Gaussian) depends on only two numbers: 

Mean m and variance u 2 (1) 

The graph of p(x) is a bell-shaped curve centered at x = m. The continuous variable x 
can be anywhere between -oo and oo. With probability close to~. that random x will lie 
between m- a- and m +a- (less than one standard deviation a- from its mean value m). 

00 

j p(x)dx = 1 (2) 

-oo 

That integral has a change of variables from x to X ( x - m) /a-. This simplifies 
the exponent to - X 2 /2 and it simplifies the limits of integration to -1 and 1. Even 
the 1/a- from p(x) disappears because dX equals dxja-. Every Gaussian becomes a 
standard Gaussian with mean m = 0 and variance a-2 = 1 : 

ThestandardnormaldistributionN(O,l) has p(x) = - 1 - e-X2 /2. (3) 
V27T 

Integrating p(x) from -oo to x gives the cumulative distribution F(x): the probability 
that a random sample is below x. That probability will be F = ~ at x = 0 (the mean). 

Two-dimensional Gaussians 

Now we have M = 2 Gaussian random variables x andy. They have means m1 and m2. 
They have variances a-~ and a-~. If they are independent, then their probability density 
p(x, y) isjustp1 (x) times P2(y). Multiply probabilities when variables are independent: 

lndependentxandy p(x,y)= 1 e-(x-m1)2/2a-~e-(y-m2)2 /2a-~ (4) 
21ra-1a-2 

The covariance of x and y will be u12 = 0. The covariance matrix V will be diagonal. 
The variances a-~ and a-~ are always on the main diagonai of V. The exponent in p(x, y) is 
just the sum of the x-exponent and the y-exponent. Good to notice that the two exponents 
can be combined into -~ (x- m)T v- 1 (x- m) with the inverse covariance matrix 
v-1 in the middle. This exponent is -[x- m]Tv-1[x- m]/2: 

(5) 
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Non-independent x and y 

We are ready to give up independence. The exponent (5) with v- 1 is still correct when Vis 
no longer a diagonal matrix. Now the Gaussian depends on a vector m and a matrix V. 

When M = 2, the first variable x may give partial information about the second 
variable y (and vice versa). Maybe part of y is decided by x and part is truly independent. 
It is the M by M covariance matrix V that accounts for dependencies between the M 
variables x = x1, ... , x M. The inverse covariance matrix v-1 goes into p( x) : 

Multivariate Gaussian 
probability distribution 

The vectors x = (XI, •.. , x M) and m = ( m1, ... , mM) contain the random variables and 
their means. The M square roots of 27!" and the determinant of V are included to make the 
total probability equal to 1. Let me check by linear algebra. I use the eigenvalues >. and the 
orthonormal eigenvectors q of the symmetric matrix V = QAQT. So v- 1 = QA -IQT: 

X= x -m (x -m)TV-1 (x -m) = XTQA-1 QTX = YTA-1Y 

Notice! The combinations Y = QT X = QT ( x - m) are statistically independent. 
Their covariance matrix A is diagonal. 

This step of diagonalizing V by its eigenvector matrix Q is the same as "uncorrelating" 
the random variables. Covariances are zero for the new variables Y1, ... Y M. This is 
the point where linear algebra helps calculus to compute multidimensional integrals. ·•. 

The integral of p( x) is not changed when we center the variable x by subtracting m 

to reach X, and rotate that variable to reach Y = QT X. The matrix A is diagonal ! 
So the integral we want splits into M separate one-dimensional integrals that we know : 

J j e_yTr1Yf2dy ~ Cl e-Yi/2>" dy,) ... Cl e-Y';.,/2AM dyM) 

= ( ~) ... ( V27rAM) = (y'2;)M VdetV. (7) 

The determinant of V (also the determinant of A) is the product (>.1) ... (>.M) ef 
the eigenvalues. Then (7) gives the correct number to divide by so that p( x1, ... , x M) 
in equation (6) has integral= 1 as desired. 

The mean and variance of p( x) are also M -dimensional integrals. The same idea 
of diagonalizing V by its eigenvectors q1 to qM and introducing Y = QT X will find 
those integrals : 

Vector m of means j ... j xp(x) dx = (m1,m2, ... ) = m (8) 

Covariance matrix V j ... j (x- m)p(x)(x- m)T dx = V (9) 
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Conclusion: Formula (6) for the probability density p(x) has all the properties we want. 

Weighted Least Squares 

In Chapter 4, least squares started from an unsolvable system Ax = b. We chose x to 
minimize the error lib - Ax 11 2 • That led us to the least squares equation AT Ax = AT b. 
The best Ax is the projection of b onto the column space of A. But is this squared distance 
E = lib - Ax 11 2 the right error measure to minimize? 

If the measurement errors in b are independent random variables, with mean m = 0 
and variance a 2 = 1 and a normal distribution, Gauss would say yes: Use least squares. 
If the errors are not independent or their variances are not equal. Gauss would say no : 
Use weighted least squares, 

This section will show that the good measure of error is E = ( b-Ax) Ty-1 ( b- Ax). 
The equation for the best x uses the covariance matrix V : 

J Weighted least squares (10) 

The most important examples have m independent errors in b. Those errors have 
variances af, ... , a~. By independence, V is a diagonal matrix. The good weights 
1/ af, ... , 1/ a~ come from v- 1 . We are weighting the errors in b to have variance= 1 
(and covariance = 0). 

Weighted least squares 
Independent errors in b 

M.. . E ~ (b-Ax)~ 
mmnze = u 2 

i=l ai 
(11) 

By weighting the errors, we are "whitening" the noise. White noise is a quick description 
of independent errors based on the standard Gaussian N(O, 1) with mean zero and a 2 = 1. 

Let me write down the steps to equations (10) and (11) for the best x: 
Start with Ax= b (m equations, n unknowns, m > n, no solution) 

Each right side bi has mean zero and variance at. The bi are independent 

Divide the ith equation by ai to have variance= 1 for every bi/ ai 

That division turns Ax= b into v- 112 Ax= v-112b with v- 1/ 2 = diag (1/a1, ••. , 1/am) 

Ordinary least squares on those weighted equations has~--+ v- 112 A and b--+ v-112 b 

w-1/2 A)T(V-1/2 A)x = w-1/2 A)Ty-1/2 b is ATv-1 Ax= ATv-1b. (12) 

Because of 1/a2 in v-1, more reliable equations (smaller a) get heavier weights. 
This is the main point of weighted least squares. 

Those diagonal weightings (uncoupled equations) are the most frequent and the 
simplest. They apply to independent errors in the bi. When these measurement errors are 
not independent, Vis no longer diagonal-but (12) is still the correct weighted equation. 

In practice, finding all the covariances can be-serious work. Diagonal V is simpler. 
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The Variance in the Estimated x 
One more point : Often the important question is not the best x for a particular b. 
This is only one sample! The real goal is to know the reliability of the whole experiment. 
This is measured (as reliability always is) by the variance in the estimate x. 
First, zero mean in b gives zero mean in x. Then the formula connecting variance V 
in the inputs b to variance W in the outputs x turns out to be beautiful : 

Variance-covariancematrixforx W=E[(x- x)(x- x)T]=(ATv-1A)-1 . (13) 

That smallest possible variance comes from the best possible weighting, which is v-1. 

This key formula is a perfect application of Section V.4. If b has covariance matrix 
V, then x = Lb has covariance matrix LVLT. The matrix Lis (ATv- 1A)-1 ATv-1, 

because x = Lb solves the weighted equation (ATv- 1 A) x = ATV-1b. Substitute 
this into LV LT and watch equation ( 13) appear: 

LVLT = (ATv- 1A)-1ATv-1 v v-1A(ATv-1A)-1 = (ATv- 1A)-1 • 

This is the covariance W of the output x. It is time for an example. 

Example 1 Suppose a doctor measures your heart rate x three times ( m = 3, n = 1) : 

[
(j2 0 0] 

and V= 0 a~ 0 
0 0 (j~ 

The variances could be af = 1/9 and a~ = 1/4 and a~ = 1. The weights are 3 then 2 
then 1. You are getting more nervous as measurements are taken: b3 is less reliable than 
b2 and b1. All three measurements contain some information, so they all go into the best 
(weighted) estimate x: 

3x = 3b1 
v-112 Ax= v-112b is 2x = 2b2 leading to ATv-1 Ax= ATV-1 b 

lx = lb3 

[ 1 1 [ 1 1 1 ] 

9b1 + 4b2 + b3 x = is the best weighted average of b1, b2, b3 
14 
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Most weight is on b1 since its variance a1 is smallest. The variance of x has the beautiful 
formula W = (ATV- 1 A)-1 . That variance W = 114 went down from~ by including 
b2 and bg: 

1 
Variance of x 1 

14 
is smaller than 

1 
9 

The BLUE theorem of Gauss (proved on the website) says that our x = Lb is the 
Best Linear Unbiased Estimate of the solution to Ax = b. For any other unbiased choice 
x* = L * b, the variance W* = L * V L *T will be greater than our W = LV LT. 
Note: Greater means that W* - W will be positive semidefinite. Unbiased means 
L *A = I. So an exact Ax = b will produce the right answer x = L * b = L *Ax. 

I must add that there are reasons not to minimize squared errors in the first place. One 
reason : This x often has many small components. The squares of small numbers are very 
small, and they appear when we minimize. It is easier to make sense of sparse vectors
only a few nonzeros. Statisticians often prefer to minimize unsquared errors: the sum 
of I (b - Ax )i I· This error measure is .e1 instead of .e2 . Because of the absolute values, 
the equation for x using the £1 norm becomes nonlinear. 

Fast new algorithms are computing a sparse x quickly and the future belongs to £1• 

Section IV.4 on compressive sensing was an impressive application of regression in £1. 

The Kalman Filter 

The "Kalman filter" is the great algorithm in dynamic least squares. That word dynamic 
means that new measurements bk keep coming. So the best estimate Xk keeps changing 
(based on all of bo, ... , bk). More than that, the matrix A is changing. So x2 will be 
our best least squares estimate of the latest solution to the whole history of observation 
equations and update equations (state equations). Up to time 2, there are 3 observations 
and 2 state equations : 

Aoxo = bo (14) 

The Kalman idea is to introduce one equation at a time. There will be errors in each 
equation. With every new equation, we update the best estimate Xk for the current Xk. But 
history is not forgotten! This new estimate Xk uses all the past 'Observations bo to bk-l and 
all the state equations Xnew =Fold Xold· A large and growing least squares problem. 

One more important point about (14). Each least squares equation is weighted using 
the covariance matrix Vk for the error in bk. There is even a covariance matrix Ck for 
errors in the update equations Xk+1 = Fkxk. The best x1 then depends on bo, b1 and F1 
and Vo, V1 and C1 . The good way to write x1 is as an update to the previous x1 . 
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Let me concentrate on a simplified problem, without the matrices Fk and the covari
ances Ck. We are estimating the same true x at every step. How do we get x1 from x0 ? 

OLD Ao xo = bo leads to the weighted equation AJ V0- 1 Ao xo = AJ VQ- 1 b0 • (15) 

NEW [ ~~] x1 = [ :~] leads to the following weighted equation for x1 : 

Yes, we could just solve that new problem and forget the old one. But the old solution Xo 
needed work that we hope to reuse in x1 . What we look for is an update to xo : 

Kalman update gives x1 from x0 (17) 

The update correction is the mismatch b1 - A1xo between the old state Xo and the new 
measurements b1-multiplied by the Kalman gain matrix K 1. The formula for K 1 comes 
from comparing the solutions x1 and x 0 to (15) and (16). And when we update xo to X1 
based on new data b1 , we also update the covariance matrix W 0 to W 1 . 

Remember Wo = (AJ VQ- 1 Ao)- 1 from equation (13). Update its inverse from W0- 1 

to w1- 1 : 

Covariance W1 of errors in x1 

Kalman gain matrix K 1 

W 1- 1 = W 0 1 + A'[ V1- 1 A1 

K1 = W1 A'[ v1- 1 

(18) 

(19) 

This is the heart of the Kalman filter. Notice the importance of the covariance matrices Wk. 
Those matrices measure the reliability of the whole process, where the vector Xk estimates 
the current state based on the particular measurements bo to bk. 

Whole chapters and whole books are written to explain the dynamic Kalman filter, 
when the states Xk are also changing (based on the matrices Fk). There is a prediction of 
Xk using F, followed by a correction using the new data b. Perhaps best to stop here! 

This page was about recursive least squares : adding new data bk and updating the 
best current estimate Xk based on all the data-and updating its covariance matrix Wk. 
The updating idea began with the Sherman-Morrison-Woodbury formula for (A- UVT) -l 
in Section III. I. Numerically that is the key to Kalman's success--exchanging inverse 
matrices of size n for inverse matrices of size k. 
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Problem Set V.S 

1 Two measurements of the same variable x give two equations x = b1 and x = b2. 
Suppose the means are zero and the variances are a~ and a~, with independent 
errors: V is diagonal with entries a~ and a~. Write the two equations as Ax = b 
(A is 2 by 1). As in the text Example 1, find this best estimate x based on b1 and b2: 

~~T 1 1 ( )
-1 

E [x X ] = CT~ + CT~ 
2 (a) In Problem 1, suppose the second measurement b2 becomes super-exact and its 

variance cr2 -+ 0. What is the best estimate x when cr2 reaches zero? 

(b) The opposite case has cr2 -+ oo and no information in b2. What is now the best 
estimate x based on b1 and b2 ? 

3 If x andy are independent with probabilities Pl(x) and P2(y), then p(x,y) = 
p1 (x) P2(y). By separating double integrals into products of single integrals 
(-ootooo)showthatffp(x,y)dxdy=l and JJ(x+y)p(x,y)dxdy=ml + m2. 

4 Continue Problem 3 for independent x, y to show that p(x, y) = p 1 (x) P2(Y) has 

JJ (x- m1)2p(x, y) dxdy = u~ J J (x- m1)(y- m2)p(x,y) dxdy = 0. 

So the 2 by 2 covariance matrix V is diagonal and its entries are __ . 

5 Suppose Xk is the average of b1, ... , bk. A new measurement bk+l arrives. The 
Kalman update equation (17) gives the new average Xk+l: 

Verify that Xk+l = Xk+-k 1 (bk+l - Xk) is the correct average of b1 ... , bk+l· 
+1 

Also check the update equation (18) for the variance Wk+l = u 2 /(k + 1) of this 
average x assuming that Wk = cr2 / k and bk+l has variance V = cr2. 

6 (Steady model) Problem 5 was static least squares. All the sample averages Xk were 
estimates of the same x. To make the Kalman filter dynamic, include also a state 
equation Xk+l = Fxk with its own error variance s2. The dynamic least squares 
problem allows x to "drift" as k increases : 

With F = 1, divide both sides of those three equations by a, s, and cr. Find 
xo and X1 by least squares, which gives more weight to therecent b1. The Kalman 
filter is developed in Algorithms for Global Positioning (Borre and Strang). 
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V.6 Markov Chains 

The key facts about Markov chains are illustrated by rental cars! Start with 100 cars in 
Chicago. Every month, cars move between Chicago and Denver. 

80% of the Chicago cars stay in Chicago 30% of the Denver cars move to Chicago 
20% of the Chicago cars move to Denver 70% of the Denver cars stay in Denver 

In matrix language, the movement of cars from month n ton+ 1 is given by Yn+ 1 = Pyn: 

= [ Chicago cars ] = [ 0.8 0.3 ] [ Chicago cars ] = p (1) 
Yn+1 Denver cars n + 1 0.2 0. 7 Denver cars n Yn 

Every month we multiply by that "Markov matrix" P. Both columns add to 1. After n 
months the distribution of cars is Yn = pny0 . Our example has Yo = (100, 0) since all 
cars start in Chicago : 

- [ 100 ] Yo- 0 Y1 = [ ~~ ] Y2 = [ ~~ ] Y3 = [ ~~ ] · · · Yoo = [ :~ ] · 

Suppose that a11100 cars start in Denver instead of Chicago: 

Yo= [ 1~0 ] Y1 = [ ~~ ] Y2 = [ :~ ] 
[ 52.5 ] 

y 3 = 47.5 · · · Yoo = [ :~ l· 
Both ways lead to the same 60-40 limiting distribution. It doesn't matter where tl:\e cars 
start. Since we are looking at powers pn of the matrix P, this is a problem for the 
eigenvalues and eigenvectors of P : 

Eigenvalues det [ :~- .>.. :~ _ .>..] = .>..2 - 1.5.>.. + 0.5 = (.>..- 1)(.>..- 0.5) ~: o.! 
Eigenvectors [ ~:~ ~:~ ] [ :~~ ] = [ ::~ ] [ ~:~ ~:~ ] [ -~ ] = ~ [ -~ ] 

Those explain everything. The limiting 60-40 distribution of cars is the steady state : 
eigenvalue .\1 = 1. So Yn = (60, 40) gives Yn+ 1 = (60,40). Then .>..2 = ~ means: 

Every month the distance to steady state is multiplied by~-

You see that in the numbers above: 100,80, 70,65 in Chicago has multiplied the distance 
to 60 (steady state) by ~ every month. Similarly 0, 20, 30,35 in Denver is halving the 
distance to 40 (steady state). In matrix notation, Pis diagonalized as X AX- 1 by using 
its eigenvectors and eigenvalues. Then pn = (XAX- 1) ... (XAX- 1) =X An x- 1 .: 

pn=XAnx-1=[·6 _1][1n .!. n][ 1 _ 1]=[·6 .6]+(~)n [_.4 -.6] 
.4 1 ( 2) .4 .6 .4 .4 2 .4 .6 
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For n = 1 we have P. For n = oo the limiting matrix poo has .6, .4 in both columns. 
The 100 cars could start in the Chicago column or the Denver column-always a 60-40 
split as n -+ oo. This is the outstanding feature of positive Markov matrices like P. 

The requirements for a positive Markov matrix are: 

All Pij > 0 and each column of P adds to 1 (so no car is lost). Then 1 T P = 1 T 

The matrix P has At = 1 (largest eigenvalue) and Xt > 0 (positive eigenvector). 

It is the Perron-Frobenius Theorem for positive matrices that guarantees At > 0 and Xt > 0. 
Then the fact that columns add to 1 tells us that pT1 = 1 and At = 1. And this produces 
the steady state y 00 as a multiple of Xt. Remember that row 1 of X -t is the left eigenvector 
[ 1 1 ... 1]: 

Convergence 
pn =XAnx-t 

As n -+ oo, only the 1 in that diagonal matrix An will survive. Columns times rows become 
column x 1 of X times [ 1 1 . . . 1]. The limiting matrix poo has Xt in every column! 
The steady state Yoo = P 00 y 0 has to be a multiple of that column vector Xt. 

The multiple was (60, 40) in our example because we started with 100 cars. A Markov 
chain doesn't destroy old cars or add new cars-it eventually distributes them according 
to the leading eigenvector Xt of P. 

Now we look at P as a matrix of probabilities. Then comes Perron-Frobenius. 

Transition Probabilities 

Markov chains are perfect examples of linear algebra within probability theory. The 
fundamental numbers are the probabilities Pij of moving from state j at time n to state i 
at time n + 1: 

Transition probabilities Pij =Probability that x(n + 1) = i if x(n) = j. (2) 

There are two key points hidden in that simple statement. First, the probability Pij does not 
depend on n. The rules stay the same at all times. Second, the probabilities Yn+t for the 
new state x(n + 1) depend only on the current state x(n)~not on any earlier history. 

One question is still to answer: What are the possible "states" of the Markov chain? 
In the example the states are Chicago and Denver (sorry, cities). Here are three options: 

Finite Markov Chain 
Infinite State Markov Chain 
Continuous Markov Chain 

Each state x(n) is one of the numbers 1, 2, ... , N 
Each state x(n) is an integer n = 0, 1, 2, .. . 
Each state x(n) is a real number. 
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We mostly choose finite chains with N possible states. The initial state x(O) could be 
given. Or we may only know the vector y 0 of probabilities for that initial state. Unlike 
differential equations, x(O) does not determine x(1). If x(O) = j, that only determines the 
N probabilities in y 1 for the new state x ( 1). That new state is a number from 1 to N. 

The probabilities for those new states are the numbers Pli, P2i, ... , p N i. Those 
probabilities must add to 1 : 

Columnj of P Plj + P2i + · · · + P N j = 1. (3) 

Those numbers go naturally into a matrix P = N by N matrix of probabilities Pii. 
Those are called transition probabilities and P is the transition matrix. It tells us 
everything we can know (only probabilities, not facts!) about the transition from state 
x(O) = j to state x(1) = i. And this same matrix P applies to the transition fromx(n) to 
x(n + 1) at every future time. 

Transition 
matrixP 

Yn+l= Pyn 

[
Prob{x(n+1)=1}] [Pu 

Yn+l = Prob{x(n ~ 1) =N} = ~Nl · · · 

PlN ][Prob{x(n)=1}] 

:PNN Prob{x(:n)=N} 
(4) 

All entries of the matrix P have 0 $ Pii $ 1. By equation (3), each column adds to 1: 

1 T =row vector of N ones 1 T P = 1 T and pT 1 = 1 1 =column vector of N ones 

So pT is a nonnegative matrix with eigenvalue.>.. = 1 and eigenvector 1 = (1, 1, ... , 1). 
And P is also a nonnegative matrix with eigenvalue .>.. = 1. But we must find the eigenvec
tor with Pv = v : 

Example 1 p = [0.8 0.3] 
0.2 0.7 [1 1]P=[1 1] Pv = [0.8 0.3] [0.6] = v 

0.2 0.7 0.4 

Thus v = (0.6, 0.4). The trace is 0.8 +0.7 = 1.5. So the second eigenvalue is .>..2 = 0.5. 
The second eigenvector v 2 of P is always orthogonal to the first eigenvector ( 1, 1) of pT. 

We return to the transition equation Yn+l = Pyn for the probabilities. Those vectors 
Yn and Yn+l contain the probabilities for theN different states, at time n and attime n + 1. 
At all times, the columns of pn add to 1 (and so do the probabilities in Yn) : 

(5) 

Here is the fundamental question for a Markov chain. The transition matrix P is fixed 
and known. The starting state x(O) or the vector y 0 of probabilities for that state may be 
known or unknowll. Key question: Do the probability vectors Yn = pny0 have a limit 
Yoo as n -+ oo? We expect Yoo to be independent of the initial probabilities in y 0 . We 
will see that Yoo often exists, but not for every P. When it exists, Yoo tells us how often 
we expect to be in each state. 
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Example 2 The transition matrix can be P = [ ~ ~ ] = switching matrix. 

This means : The system changes its state at every time step. State 1 at time n leads to State 
2 at time n + 1. If the initial probabilities were in Yo= G, ~)then y 1 = Py0 = (~, ~). 
The probabilities go back and forth between those two vectors. No steady state. 

Our matrices P always have the eigenvalue .>. = 1. Its eigenvector would be a steady 
state (nothing changes when we multiply by P). But this particular P also has the eigen
value .>. = -1. Its effect will not die out as n ~ oo. The only steadiness will be seen 
in Yo = y 2 = y 4 ... and separately in y 1 = y 3 = y 5 ... The powers of this matrix P 
oscillate between P and I. 

Other matrices P do have a steady state: pn ~ poo and Yn .~ Yoo· Notice that the 
actual states x are still changing-based on the probabilities Pii in P. The vector Yoo tells 
us the fraction (Yloo' ••• , YNoo) of time that the system is eventually in each state. 

Positive P or Nonnegative P 

There is a clear difference between our two examples: P1 > 0 and P2 2: 0. 

P1 = [ ~:~ ~:~ ] has eigenvalues 1 and ~. The powers ( ~) n approach zero. 

P2 = [ ~ ~ ] has eigenvalues 1 and -1. The powers ( -1r don't approach zero. 

Every column of P adds to 1. Then .>. = 1 is an eigenvalue, because the rows of P - I 
add to the zero row. And no entry of Pis negative. The two properties together ensure that 
no eigenvalue can have j.>.i > 1. But there is an important difference between P1 and P2. 

P2 has zero entries. This opens the possibility that the magnitude of .>.2 could be 1. 

P1 has strictly positive entries. This guarantees that the magnitude of .>.2 has I .>.2! < 1. 

The Perron-Frobenius Theorem for P 1 > 0 (strictly positive entries) guarantees success: 

1. The largest eigenvalue A1 of P and its eigenvector v1 are strictly positive. 

2. Allothereigenvalues.X2, •.. , AN have I.XI < A1. Markovmatriceshave.X1 = 1. 

A third example P3 shows that zeros in P don't always ruin the approach to steady state: 

Example 3 P 3 = [ ~ ~ ] has .>. = 1, ~ with v1 = [ ~ ] and v2 = [ _ ~ ]· 
Even with that zero in P3 , all columns of (P3 )n approach v 1 = first eigenvector: 

[1 lln [1 1-(lt] [1 1] 
( Pa) n = 0 ~ = 0 ( ~) ~ ~ 0 0 · (6) 

This is the steady state that we want and expect. Then Yn = (Pa)ny0 approaches that same 
eigenvector v1 = [ 1 0 ] . This Markov chain n:toves everybody to state 1 as n ~ oo. 
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Convergence to Steady State as n -+ oo 

For strictly positive Markov matrices, the best way to see the convergence pn --+ poo 
is by diagonalizing P. Assume for now that p has n independent eigenvectors. 
The eigenvalue matrix A starts with >.1 = 1. Its eigenvector matrix X has the leading 
eigenvector v 1 in its first column. As n increases, that eigenvector v 1 will appear in every 
column of pn. 

P = XAX- 1 means that pn = (XAX-1 ) ... (XAX-1) =X An x- 1 

The columns of X are the eigenvectors v 1 , ..• , Vn of P. The rows of x-1 are the 
eigenvectors of pT (starting with the all-ones vector 1 T). Because >.1 = 1 and all other 
eigenvalues have /A/ < 1, the diagonal matrix An will approach A 00 with just a single "1" 
in the top comer : 

Here are P, P 2 , P 3 , ... converging to the rank one matrix poo 
columns: 

[ .80 .30] 
.20 .70 [ .70 .45] 

.30 .55 
[ .65 

.35 
.525] [ .60 _4 75 approach .40 

.60] = [·6] [1 

.40 .4 
1] 

At this point we state and prove the Perron-Frobenius Theorem. Actually we prove 
Perron's part (strictly positive matrices). Then Frobenius allows zeros in P. This brings 
the possibility that / >.2 / equals >.1 . In that case pn will not converge (unless P = I) 
to the usual poo = v 11 T_ 

Perron-Frobenius Theorem 

One matrix theorem dominates this subject. The Perron-Frobenius Theorem applies when 
all aij ~ 0. There is no requirement that all columns add to 1. We prove the neatest form, 
when all aij > 0. Then the largest eigenvalue A max and also its eigenvector x are positive. 

Perron-Frobenius for A > 0 All numbers in Ax = >-max x are strictly positive. 

Proof Start with A > 0. The key idea is to look at all numbers t such that Ax ~ tx for 
some nonnegative vector x (other than x = 0). We are allowing inequality in Ax ~ tx 
in order to have many small positive candidates t. For the largest value tmax (which is 
attained), we will show that equality holds: Ax = tmax X. Then tmax is our eigenvalue 
Amax and x is the eigenvector-which we now prove. 
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If Ax > tmaxx is not an equality, multiply both sides by A. Because A > 0, 
that produces a strict inequality A2 x > tmaxAx. Therefore the positive vector y = Ax 
satisfies Ay > tmax y. This means that tmax could be increased. This contradiction 
forces the equality Ax = tmaxX, and we have an eigenvalue. Its eigenvector xis positive 
because on the left side of that equality, Ax is sure to be positive. 

To see that no eigenvalue can be larger than tmax. suppose Az = >.z. Since >. and z 
may involve negative or complex numbers, we take absolute values: 1>-llzl = IAzl :::; Alzl 
by the "triangle inequality." This lzl is a nonnegative vector, so this 1>-1 is one of the 
possible candidates t. Therefore 1>-1 cannot exceed tmax-which must be >.max-

Finer Points of Markov Theory 

Returning to Markov, we left two cases unresolved in proving pn ---+ poo = [v1 v1 ... v 1]. 

1. P > 0 could be strictly positive, but it might not have n independent eigenvectors. 

2. P ~ 0 might have zero entries. Then l>-2l = 1 becomes a possibility-not a certainty. 

Case 1 is a technical problem. The important fact pn ---+ poo is still true even if we don't 
have an invertible eigenvector matrix X. We do have separation between >.1 = 1 and all 
other eigenvalues. As long as the eigenvector with Pv 1 = v 1 goes in the first column 
of X, the first column of x-1 P X will still be (1, 0, ... , 0). The submatrix A in the last 
rows and columns of x-1 P X has the other eigenvalues of P. They all have 1>-1 < 1 by 
Perron-Frobenius. We will prove that An --+ 0. 

Main point from algebra: x- 1 P X can always be made triangular (usually diagonal). 

If I ..X2I < 1 then pn ---+ poo 

We want to prove that pn --+ poe = [ VI VI ••• VI ] whenever I..X2I < 1. The ma
trix P ~ 0 could contain zeros, as in Example 3. The matrix P might not have n indepen
dent eigenvectors, so we can't diagonalize P. But we can separate >.1 = 1 from the rest of 
the matrix with 1>-1 < 1. This will be enough to prove that pn approaches poo: 

x-1 PX = [ ~ ~ ] and the eigenvalues of A have l>-2l < 1, ... , 1>-nl < 1. 

. By isolating that matrix A, we get a clean result with many applications. 

pn = X(X-1 PX)n x-1 =X [ ~ 1n ] x-I converges to v11T and An--+ 0. 

If all eigenvalues of A have I .X I < 1, then An --+ 0 as n --+ oo 

Step 1 Find an upper triangular matrix S = M- 1 AM that has small norm IISII < 1. 

Step 2 Then An= (MSM-l)n = MSnM- 1 has [IAnll:::; IIMIIIISIIn IIM-1 11---+ 0. 
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We need to find that triangular matrix S-then the proof is complete. Since S = M-1 AM 
is similar to A, S will have the same eigenvalues as A. But the eigenvalues of a triangular 
matrix are seen on its main diagonal : 

: ] has IIBII < 1 if a, b, c are very small 
A4 

Key point: The largest eigenvalue is not a norm ! If a, b, c are large then the powers 
8 2 , 8 3 , 8 4 will start to grow. Eventually A~, A~, X4 do their part and sn falls back toward 
the zero matrix. If we want to guarantee no growth at the beginning then we want the norm 
of S to be IIBII < 1. Then I IBn II will stay below IIBIIn and go directly toward zero. 

We know that IA2I < 1, IA31 < 1, IA41 < 1. If a,b,c are small the norm is below 1: 

II Bll :$ II diagonal part II + II off-diagonal part II < 1. 

We reach this triangular S = M-1 AM in two steps. First, every square matrix A is similar 
to some upper triangular matrix T = Q-1 AQ. This is Schur's Theorem with an orthogo
nal matrix Q. Its proof is straightforward, on page 343 of Introduction to Linear Algebra. 
Then we reduce A, B, C in T by a diagonal matrix D to reach small a, b, c in S : 

For small d, the off-diagonal numbers dA and d2 Band dC become as small as we want. 
Then Sis n-1 ( Q-1 AQ)D = M-1 AM, as required for Step 1 and Step 2. 

If P ~ 0 is not strictly positive, everything depends on the eigenvalues of P. We face 
the possibility that I A2 1 = 1 and the powers pn do not converge. Here are examples : 

[ 
1 0 0 l p = 0 0.5 0.5 (A= 1, 1, 0) 
0 0.5 0.5 

"Gambler's Ruin" 

This matrix P is a classic Markov example. Two gamblers have $3 between them. The 
system has four states (3, 0), (2, 1), (1, 2), and (0, 3). The absorbing states are (3, 0) and 
(0, 3), when a player has won all the money-the game is over and there is no way to leav!! 
either of those states. With those two steady states we must expect A = 1 twice. 

The transient states are (2, 1) and (1, 2), when a $1 game is played-with probability p 
that Player 1 will win and probability q = 1 - p that Player 2 will win. The 4 by 4 transition 
matrix P has those numbers p and q in its middle columns, where Player 1 has $2 or $1. 
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Question : What are the four eigenvalues of P? 
Answer: A= 1, 1, ffi, and -.;pq. So IA2l = 1 and there is no unique steady state. 

Question : What is the probability that the game will continue forever with no winner? 
Answer: Zero. With probability 1 this game will end. 

Question: If the game starts at (2, 1 ), what is the probability p* that Player 1 wins? 
Answer: Good question ! Player 1 will win immediately in round 1 with probability p. The 
probability is q = 1 - p that Player 2 will win round 1 and change the status to ($1, $2). 
Then the probability is pthatPlayer 1 will win round 2 and return the status back to ($2, $1). 
From there Player 1 eventually wins with probability p*. From this we can find p* : 

p* = p + qpp* and p* = P 
1-qp 

Master Equations : Continuous Markov Processes 

Master equations are blessed with an impressive name. They are linear differential equa
tions dpfdt = Ap for a probability vector p(t) (nonnegative components that sum to 1). 
The matrix A is special : negative or zero on the diagonal, positive or zero off the diag
onal, columns add to zero. This continuous Markov process has probabilities eAtp(O). 

The probability of being in state j at timet is p3(t). The probability for the state to 
change from j to i in a small time interval dt is aij dt. Given p(O), the solution comes 
from a matrix exponentialp(t) = etAp(O). That matrix eAt will be a Markov matrix. 

Proof If n is large, I+ ( tA/ n) is an ordinary Markov matrix. Its columns add to 1. Then 
(I + t;;) n converges to P = etA which is also Markov. And as t -+ oo, etA converges in 
the usual way to a limit poo. 

An example is the matrix A with diagonals 1, -2, 1, except that A11 = ANN = -1. 
This is minus the graph Laplacian on a line of nodes. Finite difference approximations 
to the heat equation with Neumann boundary conditions use that matrix. 

This A appears in the master equation for the bimolecular reaction A+ B ~C. 
A molecule of A chemically combines with a molecule of ,B to form a molecule of C. 

@ CD ® ® @ 
@ -16 1 0 0 0 

CD 16 -10 2 0 0 Columns of A add to zero 

A= ® 0 9 -6 3 0 Columns of I + t: add to one 

® 0 0 4 -4 4 Then P = eAt is Markov 
@ 0 0 0 1 -4 
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Problem Set V.6 

1 Find a Markov matrix P ~ 0 that has a zero entry but P 2 is strictly positive. 
The columns of P add to 1 so Amax = 1. How do you know that the other eigenval
ues of P have I .XI < 1? Then pn approaches P 00 with v 1 in every column. 

2 If A has all positive entries then AT A and AAT have all positive entries. Use 
Perron's theorem to show: The rank 1 matrix a 1 u 1 vi closest to A is also positive. 

3 These matrices have IIAII > 1 and IIMII > 1. Find matrices B and C so that 
IIBAB-1 11 < 1 and IICMC-1 11 < 1. This is surely possible because the __ 
of A and M are below 1 in absolute value. Why is it impossible if M is Markov? 

A = [ ~ ~ l M = [ .8 .1 l 
0 2 .8 .1 

4 Why is IIBZB-1 11 $ 1 impossible for any B but IICYC-1 11 $ 1 is possible? 

5 If you take powers of A, what is the limit of An as n -+ oo ? 

A= [ 2/3 1/3] 
1/3 2/3 

1 [ 2 
and also A= 4 ~ 

6 Suppose that every year 99% of the people in New York and Florida go to Florida 
and New York-but 1% die off (I am sorry about this question). Can you create 
a 3 by 3 Markov matrix P corresponding to the three states New York-Florida-dead. 
What is the limit of the matrices pn as n -+ oo ? 
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Part VI : Optimization 

The goal of optimization is to minimize a function F( x1, ... , Xn )-often with many 
variables. This subject must begin with the most important equation of calculus : 
Derivative = Zero at the minimum point x*. With n variables, F has n partial derivatives 
8F/8xi. If there are no "constraints" that x must satisfy, we haven equations 8Fj8xi = 0 
for n unknowns xi, ... , x~. 

At the same time, there are often conditions that the vector x must satisfy. These 
constraints on x could be equations Ax = b or inequalities x ~ 0. The constraints 
will enter the equations through Lagrange multipliers A1, ... , Am· Now we have m + n 
unknowns (x's and A's) and m + n equations (derivatives= 0). So this subject combines 
linear algebra and multivariable calculus. We are often in high dimensions. 

This introduction ends with key facts of calculus : the approximation of F ( x + .O.x) 
by F(x) + .O.xTVF + ~xT Hx. Please see that important page. 

Evidently this is part of mathematics. Yet optimization has its own ideas and cer
tainly its own algorithms. It is not always presented as an essential course in the math
ematics department. But departments in the social sciences and the physical sciences
economics, finance, psychology, sociology and every field of engineering-use and teach 
this subject because they need it. 

We have organized this chapter to emphasize the key ideas of optimization : 

VI.l The central importance of convexity, which replaces linearity. Convexity involves 
second derivatives-the graph ofF( x) will bend upwards. A big question com
putationally is whether we can find and use all those second partial derivatives 
8 2 F / 8xi8Xj. The choice is between "Newton methods" that use .them and 
"gradient methods" that don't: second-order methods or first-order methods. 

Generally neural networks for deep learning involve very many unknowns. Then 
gradient methods (first order) are chosen. Often F is not convex! The last 
sections of this chapter describe those important algorithms-they move along 
the gradient (the vector of first derivatives) toward the minimum of F(x). 

VI.2 The meaning of Lagrange multipliers, which build the constraints into the 
equation derivative = zero. Most importantly, those multipliers give the 
derivatives of the cost with respect to the constraints. They are the Greeks 
of mathematical finance. 

321 
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VI.3 The classical problems LP, QP, SDP of "mathematical programming". The 
unknowns are vectors or matrices. The inequalities ask for nonnegative vectors 
x ~ 0 or positive semidefinite matrices X ~ 0. Each minimization problem has 
a dual problem-a maximization; The multipliers in one problem become the 
unknowns in the dual problem. They both appear in a 2-person game. 

VI.4 First-order algorithms begin with gradient descent. The derivative of the cost 
in the search direction is negative. The choice of direction to move and how 
far to move- this is the art of computational optimization. You will see crucial 
decisions to be made, like adding "momentum" to descend more quickly. 

Levenberg-Marquardt combines gradient descent with Newton's method. The 
idea is to get near x* with a first order method and then converge quickly with 
(almost) second order. This is a favorite for nonlinear least squares. 

VI.S Stochastic gradient descent. In neural networks, the function to minimize is 
a sum of many terms-the losses in all samples in the training data. The learning 
function F depends on the "weights". Computing its gradient is expensive. 
So each step learns only a minibatch of B training samples-chosen randomly 
or "stochastically". One step accounts for a part of the data but not all. We hope 
and expect that the part is reasonably typical of the whole. 

Stochastic gradient descent--often with speedup terms from "ADAM" to account 
for earlier step directions-has become the workhorse of deep learning. 
The partial derivatives we need from F are computed by backpropagation. 
This key idea will be explained separately in the final chapter of the book. 

Like so much of applied mathematics, optimization has a discrete form and a continuous 
form. Our unknowns are vectors and our constraints involve matrices. For the calculus 
of variations the unknowns are functions and the constraints involve integrals. The vector 
equation "first derivative = zero" becomes the Euler-Lagrange differential equation 
"first variation = zero". 

That is a parallel (and continuous) world of optimization but we won't go there. 

The Expression "argmin" 

. The minimum of the function F(x) = (x- 1)2 is zero: minF(x) = 0. That tells us how 
low the graph of F goes. But it does not tell us which number x* gives the minimum. 
In optimization, that "argument" x* is the number we usualiy solve for. The minimizing 
x for F = (x- 1)2 is x* = argminF(x) = 1. 

argmin F( x) = value(s) of x where F reaches its minimum. 

For strictly convex functions, argminF(x) is one point x*: an isolated minimum._ 
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Multivariable Calculus 

Machine learning involves functions F(x1, ... , xn) of many variables. We need basic facts 
about the first and second derivatives of F. These are "partial derivatives" when n > 1. 

The important facts are in equations (1)-(2)-(3). I don't believe you need a whole course 
(too much about integrals) to use these facts in optimizing a deep learning function F(x). 

One function F 
One variable x 

dF 1 d2 F 
F(x +ax) ~ F(x) +ax- (x) +- (ax)2 - 2 (a:) 

dx 2 dx 
(1) 

This is the beginning of a Taylor series-and we don't often go beyond that second-order 
term. The first terms F(x) + (t:lx)(dFjdx) give afirst order approximation to F(x+ t:lx), 
using information at x. Then the (D..x)2 term makes it a second order approximation. 

The t:lx term gives a point on the tangent line-tangent to the graph of F(x). The 
(tlx)2 term moves from the tangent line to the "tangent parabola". The function F will 
be convex-its slope increases and its graph bends upward, as in y = x2-when the second 
derivative of F(x) is positive: d 2 F f dx2 > 0. Equation (2) lifts (1) into n dimensions. 

O~efunctionF F(x +ax)~ F(x)+(ax)T VF+~ (ax)T H (ax) (2) 
Variables x1 to Xn 2 

This is the important formula ! The vector V F is the gradient ofF -the column vector 
of n partial derivatives 8Fj8x1 to 8Fj8xn. The matrix H is the Hessian matrix. 
His the symmetric matrix of second derivatives Hij = 8 2 Fj8xi 8xi = 8 2 Fj8xi 8xi. 

The graph of y = F(x1, ... ,xn) is now a surface in (n +I)-dimensional space. 
The tangent line becomes a tangent plane at x. When the second derivative matrix H 
is positive definite, F is a strictly convex function : it stays above its tangents. 
A convex function F has a minimum at x* iff = V F(x*) = 0: n equations for x*. 

Sometimes we meet m different functions h ( x) to f m ( x) : a vector function f : 

m functions f = (h, ... , frn) 

n variables x = (xb ... , Xn) 
(3) 

The symbol J(x) represents the m by n Jacobian matrix of f(x) at the point x. 
The m rows of J contain the gradient vectors of the m functions h ( x) to f m ( x). 

8h 8h 

[ 
(V ~.1 )T ]--Jacobian matrix J = 

(Vfrn)T 

(4) 

The Hessian matrix His the Jacobian J of the gradient f = V F! The determinant of J 
(when m = n) appears inn-dimensional integrals. It is the r in the area formula J J r dr dO. 
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VI.l Minimum Problems : Convexity and Newton's Method 

This part of the book will focus on problems of minimization, for functions F(x) with 
many variables: F(x) = F(x1 , ... , Xn)· There will often be constraints on the vectors x: 

Linear constraints Ax = b (the set of these x is convex) 

(the set of these xis convex) Inequality constraints x :::: 0 

Integer constraints Each Xi is 0 or 1 (the set of these xis not convex) 

The problem statement could be unstructured or highly structured. Then the algorithms to 
find the minimizing x range from very general to very specific. Here are examples : 

Unstructured Minimize F(x) for vectors x in a subset K ofRn 

Structured Minimize a quadratic cost F( x) = ~ x T Sx constrained by Ax = b 

Minimize a linear cost F( x) = c T x constrained by Ax = b and x :::: 0 

Minimize with a binary constraint: each Xi is 0 or 1 

We cannot go far with those problems until we recognize the crucial role of convexity. 
We hope the function F(x) is convex. We hope the constraint set K is convex. In the 
theory of optimization, we have to live without linearity. Convexity will take control 
when linearity is lost. Here is convexity for a function F(x) and a constraint set K: 

K is a convex set If x and y are in K, so is the line from x to y 

F is a convex function The set of points on and above the graph ofF is convex 

F is smooth and convex F(x) :::: F(y) + (V F(y), x- y) 

That last inequality says that the graph of a convex F stays above its tangent lines. 
A triangle in the plane is certainly a convex set in R2 . What about the union of two 

triangles? Right now I can see only two ways for the union to be convex: 

I) One triangle contains the other triangle. The union is the bigger triangle. 

2) They share a complete side and their union has no inward-pointing angles. 

y 

Figure Vl.l: Two convex sets and two non-convex sets in R2 : Inward-pointing at P. 
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For functions F there is a direct way to define convexity. Look at all points pre+ ( 1-p) y 
between re andy. The graph ofF stays on or goes below a straight line graph. 

Fisconvex F(pre+(l-p)y) ~pF(re)+(l-p)F(y) forO<p<l. (1) 

For a strictly convex function, this holds with strict inequality (replace ~ by <). Then 
the graph ofF goes strictly below the chord that connects the point re, F(re) toy, F(y). 

Interesting that the graph stays above its tangent lines and below its chords. 

Here are three examples of convex functions. Only F2 is strictly convex: 

F1 = ax+b 

The convexity of that function F3 is an important fact. This is where linearity fails but 
convexity succeeds ! The maximum of two or more linear functions is rarely linear. 
But the maximum F(re) of two or more convex functions Fi(re) is always convex. 
For any z =pre + (1 - p )y between re and y, each function Fi has 

Fi(z) ~ pFi(re) + (1- p)Fi(Y) ~ pF(re) + (1- p) F(y). (2) 

This is true for each i. Then F(z) =max Fi(z) ~ pF(re) + (1- p)F(y), as required. 

The maximum of any family of convex functions (in particular any family of linear 
functions) is convex. Suppose we have all the linear functions that stay below a convex 
function F. Then the maximum of those linear functions below F is exactly equal to F. ~ 

linear F3 

--~---s:;<.._ __ linear F2 

linear F1 

Figure VL2: A convex function F is the maximum of all its tangent functions. 

A convex set K is the intersection of all half-spaces that contain it. And the•intersection 
of any family of convex sets is convex. But the union of convex sets is not always conv,ex. 

Similarly the maximum of any family of convex functions will be convex. But the 
minimum of two convex functions is generally not convex-it can have a "double well". 

Here are two useful facts about matrices, based on pos def + pos def = pos def: 

The set of positive definite n by n matrices is convex. 

The set oi positive semidefinite n by n matrices is convex. 

The first set is "open". The second set is "closed". It contains its semidefinite limit points. 
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The Second Derivative Matrix 

An ordinary function f(x) is convex if d2 f ldx2 ~ 0. Reason: The slope df ldx is 
increasing. The curve bends upward (like the parabola f = x 2 with second derivative = 2). 
The extension to n variables involves the n by n matrix H ( x) of second derivatives. 
If F ( x) is a smooth function then there is an almost perfect test for convexity : 

F(x1 , ... , xn) is convex if and only if its second derivative matrix H(x) is positive 
semidefinite at all x. That Hessian matrix is symmetric because 8 2 F I 8xi8xi = 
8 2 F I 8x j 8xi. The function F is strictly convex if H ( x) is positive definite at all x. 

82FI8x18x2 
82FI8x~ : l 

A linear function F = c T x is convex (but not strictly convex). Above its graph is a half
space: flat boundary. Its second derivative matrix isH= 0 (very semidefinite). 

A quadratic F = ~x T Sx has gradient Sx. Its symmetric second derivative matrix is 
S. Above its graph is a bowl, when Sis positive definite. This function F is strictly convex. 

Convexity Prevents Two Local Minima 

We minimize a convex function F(x) for x in a convex set K. That double convexity has 
a favorable effect: There will not be two isolated solutions. If x andy are inK and they 
give the same minimum, then all points z on the line between them are also in K and give 
that minimum. Convexity avoids the truly dangerous situation when F has its minimum 
value at an unknown number of separate points in K. 

This contribution of convexity is already clear for ordinary functions F(x) with one 
variable x. Here is the graph of a non-convex function with minima at x and y and z. 

y i z 

F is not convex. It is concave after the inflection point i, where 8 2 F I 8x2 goes negative. 
And F is not defined on a convex set K (because of the gap between x and y ). To fix both 
problems, we could connect x to y by a straight line, and end the graph at i. 

For a convex problem to have multiple solutions x and y, the interval between them 
must be filled with solutions. Never two isolated minima, usually just a single point. 
The set of minimizing points x in a convex problem is convex. 

The CVX system provides MATLAB software for "disciplined convex programming". 
The user chooses least squares, linear and quadratic programming,... See cvxr.com/cvx. 
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The £1 and £2 and ,eoo Norms of x 

Norms F(x) = llxll are convex functions of x. The unit ball where llxll ~ 1 is a 
convex set K of vectors x. That first sentence is exactly the triangle inequality: 

Convexity of llxll llpx + (1- p) Yll :::; Pllxll + (1- P)IIYII 

There are three favorite vector norms .f.1, £2 ,£00 • We draw the unit balls llxll :::; 1 in R2 : 

(0, 1) 

~(1,0) 
w£1 norm 

(0, 1) 

~(1,0) 
w£2 norm 

(0, 1) 

E8(1,0) 

£=norm 

Figure VI.3: For all norms, the convex "unit ball" where llxll~ 1 is centered at x = 0. 

Newton's Method 

We are looking for the point x* where F(x) has a minimum and its gradient V F(x*) is 
the zero vector. We have reached a nearby point Xk. We aim to move to a new point Xk+l ~ 

that is closer than Xk to x* = argmin F(x ). What is a suitable step Xk+l - Xk to reach 
that new point Xk+l ? 

Calculus provides an answer. Near our current point Xk. the gradient V F is often 
well estimated by using its first derivatives-which are the second derivatives of F ( x). 
Those second derivatives [)2 F j 8xi ox j are in the Hessian matrix H : 

(3) 

We want that left hand side to be zero. So the natural choice for Xk+l comes when the 
right side is zero: we haven linear equations for the step 6.xk = Xk+l - Xk : · 

Newton's Method (4) 

Newton's method is also producing the minimizer of a quadratic function built from F and 
its derivatives V F and its second derivatives Hat the point Xk: 
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Newton's method is second order. It uses second derivatives (in H). There will still be 
an error in the new xk+l· But that error is proportional to the square of the error in Xk : 

Quadratic convergence (6) 

If Xk is close to x*, then xk+l will be much closer. An example is the computation of 
x* = J4 = 2 in one dimension. Newton is solving x 2 - 4 = 0: 

Minimize 

One step of Newton's method: H(xk)(b.xk) = 2xk(Xk+l- xk) = -x~ + 4. 

Then 2xkXk+l = x~ + 4. So Newton chooses Xk+l = !. (xk + ~). 
2 Xk 

Guess the square root, divide into 4, and average the two numbers. We can start from 2.5: 

xo = 2.5 Xl = 2.05 X2 = 2.0006 X3 = 2.000000009 

The wrong decimal is twice as far out at each step. The error Xk - 2 is squared: 

Xk+l - 2 = - Xk + - - 2 = - (Xk - 2) 1( 4) 1 2 

2 Xk 2Xk 

Squaring the error explains the speed of Newton's method-provided Xk is close. 
How well does Newton's method work in practice? At the start, x 0 may not be 

close to x*. We cannot trust the second derivative at x 0 to be useful. So we compute the 
Newton step b.x0 = x 1 - x 0 , but then we allow backtracking: 

Choose a < ~ and f3 < 1 and reduce the step b.x by the factor f3 until we 
know that the new Xk+l = Xk +tb.x is producing a sufficient drop in F(x): 

Reduce t until the drop in F satisfies F(xk +tax) ~ F(xk) +at V FT ax. (7) 

We return to backtracking in Section VI.4. It is a safety step in any search direction, 
to know a safe choice of Xk+l after the direction from Xk has been set. Or we can 
fix a small stepsize-this is the hyperparameter-and skip the search in training a large 
neural network. 

Summary Newton's method is eventually fast, because it uses the second derivatives 
of F(x). But those can be too expensive to compute-especially in high dimensions. 
Quasi-Newton methods in Section 111.1 allow the Hessian H to be built gradually 
from information gained as the algorithm continues. Often neural networks are simply 
too large to use H. Gradient descent is the algorithm of choice, to develop in VI.4-5. 

The next two pages describe a compromise that gets better near x*. 
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Levenberg-Marquardt for Nonlinear Least Squares 

Least squares begins with a set of m data points (ti, Yi)· It aims to fit those m points as 
well as possible by choosing the parameters p = (p1 , ... Pn) in a fitting function Y ( t, p). 
Suppose the parameters are the usual p = ( C, D) for a straight line fit by fj = C + Dt. 
Then the sum of squared errors depends on C and D : 

E(C,D) = (Yl- C- Dh)2 + · · · + (Ym- C- Dtm)2. (8) 

The minimum errorE is at the values C and D where 8EI8C = 0 and 8EI8D = 0. 
Those equations are linear since C and D appear linearly in the fitting function fj = C + Dt. 
We are finding the best least squares solution to m linear equations J p = y : 

mequations 
2unknowns 
no solution 

2 equations 
2 unknowns JT J [ g ] = JT y for the best parameters p = [ g ]· 

This is linear least squares. The fitting function fj is linear inC and D. J would normally 
be called A. But for nonlinear least squares the fitting function fj (p) depends in a 
nonlinear way on then parameters p = (PI. ... , Pn)· When we minimize the total erro~ 
E = sum of squares, we expect n nonlinear equations to determine the best parameters:·' 

m 

i=l (9) 

This is the "square loss" error function to minimize by choosing the best parameters p. 
Applications can include a weighting matrix or whitening matrix W. Often W is a 

diagonal matrix of inverse variances 1 I uf, ... , 1 I u~. Those enter thf: total error 
E = (y- y)TW(y- y). Therefore they enter the normal equations JTW )p = PWy. 
This gives more weight to data with smaller variance O"i: the data that is more reliable. 
For simplicity we go forward with W = I : unit weights. 

Our problem is to minimize E(p) in equation (9). So we compute its gradient vector 
8EI8p = V E. This gradient is constant for linear least squares-but V E depends 
on p for our nonlinear problem. The next page describes an algorithm to minimize E-
approxima~ng Newton but avoiding second derivatives of E. · 
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V E = 2JT(y- fi(pn))= 0 with m by n Jacobian matrix J = :: atp. (10) 

J was a constant m by 2 matrix when the fitting function y = C + Dt was linear in the 
parameters p = (C, D). The least squares equation for minimum error is V E = 0. In 
the linear case this was JT Jp = JT y. In the nonlinear case we have a first order method 
(gradient descent) and an approximate Newton's method to solve (10): 

Gradient descent 

Newton (approximate) 

Pn+l - Pn = -sJT (y - Y (Pn)) 

JT J (Pn+l- Pn) = JT (y- Y (Pn)) 

(11) 

(12) 

That symmetric matrix JT J is an approximation to the second derivative matrix ~ H 
(the Hessian of the function E). To see this, substitute the first order approximation 
y (p + tlp) >:::: y (p) + J t:J..p into the loss function E in (9) : 

E(p + tl..p) >:::: (y- y (p)- Jtl..p)T(y- y (p)- Jtl..p). (13) 

The second order term is D.pT JT J D.p. So 2JT J is acting like a Hessian matrix. 

The key idea of Levenberg and Marquardt was to combine the gradient descent 
and Newton update rules (11)-(12) into one rule. It has a parameter >... Small values 
of >.. will lean toward Newton, large values of >.. will lean more toward gradient descent. 
Here is a favorite (and flexible) method for nonlinear least squares problems: 

Levenberg-Marquardt (14) 

You start with a fairly large >... The starting Po is probably not close to the best choice p*. 
At this distance from the minimizing point p*, you cannot really trust the accuracy of 
JT J-when the problem is nonlinear and the Hessian of E depends on p. 

As the approximations p 1 , p 2 , ... get closer to the correct value p*, the matrix JT J 
becomes trustworthy. Then we bring >.. toward zero. The goal is to enjoy fast convergence 
(nearly Newton) to the solution of V E (p*) = 0 and the minimum of E(p). 

A useful variant is to multiply >..I in ( 14) by the diagonal matrix diag ( JT J). That 
makes >.. dimensionless. As with all gradient descents, the code must check that the error 
E decreases at each step-and adjust the stepsize as needed. A good decrease signals that 
>.. can be reduced and the next iteration moves closer to .Newton. 

Is it exactly Newton when >.. = 0 ? I am sorry but I don't think it is. Look back at (13). 

The quadratic term suggests that the second derivative matrix (Hessian) is 2JT J. 
But (13) is only a first order approximation. For linear least squares, first order was exact. 
In a nonlinear problem that cannot be true. The official name here is Gauss-Newton. 

To say this differently, we cannot compute a second derivative by squaring a first derivative. 

Nevertheless Levenberg-Marquardtis an enhanced first order method, extremely useful 
for nonlinear least squares. It is one way to traln neural networks of moderate size. 
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Problem Set Vl.l 

1 When is the union of two circular discs a convex set ? Or two squares ? 

2 The text proposes only two ways for the union of two triangles in R2 to be convex. 
Is this test correct? What if the triangles are in R3 ? 

3 The "convex hull" of any setS in Rn is the smallest convex set K that contains S. 
From the setS, how could you construct its convex hull K? 

4 (a) Explain why the intersection K 1 n K 2 oftwo convex sets is a convex set. 

(b) How does this prove that the maximum F3 of two convex functions F1 and F2 
is a convex function ? Use the text definition : F is convex when the set of points 
on and above its graph is convex. What set is above the graph of F3 ? 

5 Suppose K is convex and F(x) = 1 for x inK and F(x) = 0 for x not inK. 
Is F a convex function ? What if the 0 and 1 are reversed ? 

6 From their second derivatives, show that tMse functions are convex : 

(a) Entropy x log x 

(b) log (ex+ eY) 

(c)fP norm llxiiP = (lx1IP + lx21P)l/P, P 2: 1 

(d) >.max (S) as a function of the symmetric S 

• 
7 

xTSx x2 + 2y2 ; 
R( x) = -T- = 2 2 is not convex. It has a maximum as well as a minimum. 

X X X +y 
At a maximum point, the second derivative matrix H is __ . 

8 
. . min max max min 

Th1schaptermcludesstatementsoftheform K(x,y) = K(x,y). 
X y y X 

But minimax = maximin is not always true ! Explain this example : 

min max max min 
(x + y) and (x + y) are + oo and - oo. 

X y y X 

9 Suppose f(x, y) is a smooth convex function and f(O, 0) = !(1, 0) = f(O, 1) =. 0. 

(a) What do you know about f (!, ~)? 
(b) What do you know about the derivatives a = az! 1 ax2 , b = 82! 1 axay, 

c = 82 fl8y2 ? 

1 0 Could any smooth function f ( x, y) in the circle x 2 + y2 ~ 1 be written as the 
difference g(x, y)- h(x, y) of two convex functions g and h? Probably yes. 
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The next four problems are about Newton's method. 

11 Show that equation (5) is correct: Newton's .da:: minimizes tbat quadratic. 

12 What is Newton's method to solve x2 + 1 = 0? Since there is no (real) solution, 
the method can't converge. (The iterations give a neat example of "chaos".) 

13 What is Newton's method to solve sinx = 0? Since this has many solutions, 
it may be hard to predict the limit x* of the Newton iterations. 

14 From a::0 = (uo,vo) find a::1 = (u1,v1) in Newton's method for the equations 
u3 - v = 0 and v3 - u = 0. Newton converges to the solution (0, 0) or (1, 1) 
or ( -1, -1) or it goes off to infinity. If you use four colors for the starting points 
( u0 , v0 ) that lead to those four limits, the printed picture is beautiful. 

15 Iff is a convex function, we know that f(x/2 + y/2) :::; ~f(x) + V(y). If this 
"halfway test" holds for every x and y, show that the "quarterway test" 
f(3x/4 + yj4) :::; ~f(x) + tf(y) is also passed. This is a test halfway between 
x and x/2 + yj2. So two halfway tests give the quarterway test. 

The same reasoning will eventually give f(px + (1- p)y) :::; p f(x) + (1- p) f(y) 
for any fraction p = m/2n :::; 1. These fractions are dense in the whole interval 
0 :::; p :::; 1. Iff is a continuous function, then the halfway test for all x, y leads to 
the px + (1 - p)y test for all 0:::; p:::; 1. So the halfway test proves f is convex. 

16 Draw the graph of any strictly convex function f ( x). 

Draw the chord between any two points on the graph. 

Draw the tangent lines at those same two points. 

Between x andy, verify that tangent lines< f(x) <chord. 
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VI.2 Lagrange Multipliers . Derivatives of the Cost 

Unstructured problems deal with convex functions F(x) on convex sets K. This section 
starts with highly structured problems, to see how Lagrange multipliers deal with con
straints. We want to bring out the meaning of the multipliers A.1, ... , Am. After introducing 
them and using them, it is a big mistake to discard them. 

Our first example is in two dimensions. The function F is quadratic. The set K is linear. 

Minimize F(x) = x~ + x~ on the line K: a1x1 + a2x2 = b 

On the line K, we are looking for the point that is nearest to (0, 0). The cost F(x) is 
distance squared. In Figure Vl.4, the constraint line is tangent to the circle at the winning 
point x* = (xi, x2). We discover this from simple calculus, after we bring the constraint 
equation a1x1 + a2x2 = b into the function F = xy + x~. 

This was Lagrange's beautiful idea. 

Multiply a 1x 1 + a 2x 2 - b by an unknown multiplier A and add it to F(x) 

Lagrangian L(x, A) = F(x) + A.(a1x1 + a2x2- b) 

= x~ + x~ + A(a1x1 + a2x2- b) (1) 

Set the derivatives 8L/8x1 and 8L/8x2 and 8Lj8A to zero. 

Solve those three equations for xb x2, A. 

8Lj8x1 = 2x1 + Aal = 0 (2a) ~ 

8Lj8x2 = 2x2 + Aa2 = 0 (2b) 

8Lj8A = a 1x 1 + a2x2- b = 0 (the constraint!) (2c) 

The first equations give x1 = -~A.a1 and X2 = - ~A.a2. Substitute into a1x1 + a2x2 = b: 

1 2 1 2 -2b 
--2 A.a1 - -2 A.a2 = b and A= 2 2 . 

al +a2 
(3) 

Substituting A. into (2a) and (2b) reveals the closest point (xi, x2) and the minimum cost 
(xi)2 + (x2)2: 

The derivative of the minimum cost with respect to the constraint level b is minus 
the Lagrange multiplier : 

d ( b2 
) 

db ar +a~ 
2b 

----=------=- = -A. 
ar +a~ 

(4) 
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minimum cost 
(xr)2 + (x;)2 

constraint line 

a1x1 + a2x2 = b 
slope -ada2 

Figure VI.4: The constraint line is tangent to the minimum cost circle at the solution x*. 

Minimizing a Quadratic with Linear Constraints 

We will move that example from the plane R2 to the space Rn. Instead of one constraint 
on x we have m constraints AT x = b. The matrix AT will be m by n. There will be 
m Lagrange multipliers >-r, ... , Am: one for each constraint. The cost function F(x) = 
!x T Sx allows any symmetric positive definite matrix S. 

Problem: Minimize F = ~x T Sx subjectto AT x = b. (5) 

With m constraints there will be m Lagrange multipliers A = (>.1 , •.. , AmJ· They build 
theconstraintsATx = bintotheLagrangianL(x,.X) = !xTSx+.X (ATx-b). 
Then + m derivatives of L given + m equations for a vector x in Rn and A in Rm : 

x-derivatives of L : 
(6) 

A-derivatives of L : 

The first equations give X = - s-1 A.X. Then the second equations give -AT s-l A .X = b. 
This determines the optimal A* and therefore the optimal x* : 

Solution.X*,x* .X*= -(ATS-1A)-1b x* = s-1A(ATS-1A)-1b. (7) 

MinimumcostF* = ~(x*)TSx* = ~bT(ATS-1A)- 1ATS- 1SS- 1A(ATS- 1A)- 1 b. 
This simplifies a lot ! 

1 
Minimum cost F* = -bT (AT s-1 A)-1 b 

2 
8F* 

Gradient of cost--= (ATs-1A)-1b =-.X* 
8b 

(8) 

This is truly a model problem. When the constraint changes to an inequality AT x ~ b, 
the multipliers become >.i ~ 0 and the problem-becomes harder. 
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May I return to the "saddle point matrix" or "KKT matrix" in equation (6): 

(9) 

That matrix M is not positive definite or negative definite. Suppose you multiply the first 
block row [S A] by ATs-1 to get [AT AT s-1 A]. Subtract from the second block row 
to see a zero block: 

(10) 

This is just elimination on the 2 by 2 block matrix M. That new block in the 2, 2 position 
is called the Schur complement (named after the greatest linear algebraist of all time). 

We reached the same equation -ATs- 1 A.X = bas before. Elimination is just an 
organized way to solve linear equations. The first n pivots were positive because S is 
positive definite. Now there will be m negative pivots because -ATs- 1 A is negative 
definite. This is the unmistakable sign of a saddle point in the Lagrangian L(x, .A). 

That function L = ~x T Sx + .AT (AT x - b) is convex in x and concave in .A ! 

Minimax = Maximin 

There is more to learn from this problem. The x-derivative of L and the .A-derivative 
of L were set to zero in equation (6). We solved those two equations for x* and .A*. 
That pair (x*, ..\ *) is a saddle point of L in equation (7). By solving (7) we found the 
minimum cost and its derivative in (8). -~ 

Suppose we separate this into two problems : a minimum and a maximum problem. 
First minimize L(x, .A) for each fixed>.. The minimizing x* depends on .A. Then find the 
.A* that maximizes L(x*(.A), .A). 

MinimizeLatx* = -S-'1 A .A Atthatpointx*, min£=-~ .AT ATs-1 A.A-.ATb 

Maximize that minimum .A*= -(ATS-1A)-1b gives L = ~bT(ATs- 1A)-1 b 

I mlx rr;;n L = ~ bT (AT s-1 A)-1 b I 
This maximin was x first and ·.x second. The reverse order is minimax : .A first, x sec,ond. 

Themaximumover.AofL(x,.A) = -xTSx+.AT(ATx-b)is 1 T . T 
1 { +ooifATx#b 

2 2x Sx 1f A x = b 

The minimum over x of that maximum over .A is our answer ~bT (AT s-1 A)-1 b. 

I rr;;n mlx L = ~ bT (AT s-1 A)-1 b I 
8L 8L · · 

At the saddle point (x*, .A*) we have- = - = 0 and max mm L- mm max L ax 8.A A X - X A . 
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Dual Problems in Science and Engineering 

Minimizing a quadratic ~x T Sx with a linear constraint AT x = b is not just an abstract 
exercise. It is the central problem in physical applied mathematics-when a linear 
differential equation is made discrete. Here are two major examples. 

1 Network equations for electrical circuits 

Unknowns: Voltages at nodes, currents along edges 

Equations: Kirchhoff's Laws and Ohm's Law 

Matrices: ATS-1 A is the conductance matrix. 

2 Finite element method for structures 

Unknowns: Displacements at nodes, stresses in the structure 

Equations : Balance of forces and stress-strain relations 

Matrices: AT s-1 A is the stiffness matrix. 

The full list would extend to every field of engineering. The stiffness matrix and the 
conductance matrix are symmetric positive definite. Normally the constraints are equa
tions and not inequalities. Then mathematics offers three approaches to the modeling of 
the physical problem : 

(i) Linear equations with the stiffness matrix or conductance matrix or system matrix 

(ii) Minimization with currents or stresses as the unknowns x 

(iii) Maximization with voltages or displacements as the unknowns A 

In the end, the linear equations (i) are the popular choice. We reduce equation (9) to 
equation (10). Those network equations account for Kirchhoff and Ohm together. 
The structure equations account for force balance and properties of the material. 
All electrical and mechanical laws are built into the final system. 

For problems of fluid flow, that system of equations is often in its saddle point form. 
The unknowns x and A are velocities and pressures. The numerical analysis is well 
described in Finite Elements and Fast Iterative Solvers by Elman, Silvester, and Wathen. 

For network equations and finite element equations leading to conductance matrices 
and stiffness matrices AT C A, one reference is my textbook on Computational Science and 
Engineering. The video lectures for 18.085 are on ocw.mit.edu. 

In statistics and least squares (linear regression), the matrix ATE- 1 A includes 
E = covariance matrix. We divide by variances a-2 to whiten the noise. 

For nonlinear problems, the energy is no longer a quadratic ~xT Sx. Geometric non
linearities appear in the matrix A. Material nonlinearities (usually simpler) appear in 
the matrix C. Large displacements and large stresses are a typical source of nonlinearity. 
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Problem Set VI.2 

1 Minimize F(x) = ~xTSx = ~xf + 2x~ subject to AT x = x1 + 3x2 =b. 

(a) What is the Lagrangian L(x, .A) for this problem? 

(b) What are the three equations "derivative of L = zero" ? 

(c) Solve those equations to find x* = (xi, x2) and the multiplier .A*. 
(d) Draw Figure VI.4 for this problem with constraint line tangent to cost circle. 

(e) Verify that the derivative of the minimum cost is a F* I 8b = -A* 0 

2 Minimize F(x) = ~ (xf + 4x~) subject to 2x1 + x2 = 5. Find and solve the three 
equations 8Lj8x1 = 0 and 8Lj8x2 = 0 and 8Lj8.A = 0. Draw the constraint line 
2x1 + x2 = 5 tangent to the ellipse ~ (xf + 4x~) = Fmin at the minimum point 
(xi, x2). 

3 The saddle point matrix in Problem 1 is 

M~[:T ~J~[~: i]· 
Reduce M to a triangular matrix U by elimination, and verify that 

U= [ ~ -AT~-1A] · 
How many positive pivots for M ? How many positive eigenvalues for M ? 

4 For any invertible symmetric matrix S, the number of positive pivots equals the 
number of positive eigenvalues. The pivots appear in S = LDLT (triangular L) 
The eigenvalues appear inS = QAQT (orthogonal Q). A nice proof sends Land Q 
to either I or -I without becoming singular part way (see Problem Set 111.2). The 
eigenvalues stay real and don't cross zero. So their signs are the same in D and A. 

Prove this "Law of Inertia" for any 2 by 2 invertible symmetric matrix S : 
S has 0 or 1 or 2 positive eigenvalues when it has 0 or 1 or 2 positive pivots. 

I. Take the determinant of LD LT = Q AQT to show that det D and- det A have 
the same sign. If the determinant is negative then S has _ positive eigenvalue 
in A and_ positive pivot in D. 

2. If the determinant is positive then S could be positive definite or negative defi
nite. Show that both pivots are positive when both eigenvalues are positive. 

5 Find the minimum value of F(x) = ~ (xf + x~ + x~) with one c~nstraint 
x1 + :c2 + X3 = 3 and then with an additional constraint x 1 + 2x2 + 3x3 = 12. 
The second minimum value should be less than the first minimum value : Why ? 
The first problem has a _ tangent to a sphere in R3 . The second problem has a _ 
tangent to a sphere in R3 . 
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VI.3 Linear Programming, Game Theory, and Duality 

This section is about highly structured optimization problems. Linear programming comes 
first-linear cost and linear constraints (including inequalities). It was also historically first, 
when Dantzig invented the simplex algorithm to find the optimal solution. Our approach 
here will be to see the "duality" between a minimum problem and a maximum
two linear programs that are solved at the same time. 

An inequality constraint 3;k ~ 0 has two states-active and inactive. If the minimizing 
solution ends up with xic > 0, then that requirement was inactive-it didn't change any
thing. Its Lagrange multiplier will have .Xic = 0. The minimum cost is not affected by that 
constraint on Xk. But if the constraint Xk ~ 0 actively forces the best 3;* to have xic = 0, 
then the multiplier will have .Xic > 0. So the optimality condition is 3;k>.k = 0 for each k. 

One more point about linear programming. It solves all 2-person zero sum games. 
Profit to one player is loss to the other player. The optimal strategies produce a saddle point. 

Inequality constraints are still present in quadratic programming (QP) and semidefinite 
programming (SDP). The constraints in SDP involve symmetric matrices. The inequality 
S ~ 0 means that the matrix is positive semidefinite (or definite). If the bestS is actually 
positive definite, then the constraint S ~ 0 was not active and the Lagrange multiplier 
(now also a matrix) will be zero. 

Linear Programming 

Linear programming starts with a cost vector c = (c1 , ••. , en). The problem is to minimize 
thecostF(3;) = c1x1 +· · ·+Cnxn = cTx. TheconstraintsaremlinearequationsAx = b 
and n inequalities x1 ~ 0, ... , Xn ~ 0. We just write 3; ~ 0 to include all n components: 

Linear Program I Minimize c T x subject to Ax = b and x ~ 0 I (1) 

If A is 1 by 3, Ax = b gives a plane like x 1 + x2 + 2x3 = 4 in 3-dimensional space. 
That plane will be chopped off by the constraints x 1 ~ 0, x2 ~ 0, x3 ~ 0. This leaves 
a triangle on a plane, with comers at (x1,x2,x3) = (4,0,0) and (0,4,0) and (0,0,2). 
Our problem is to find the point x* in this triangle that minimizes the cost cT x. 

Because the cost is linear, its minimum will be reached at one of those corners. 
Linear programming has to find that minimum cost .comer. Computing all comers is 
exponentially impractical when m and n are large. So the simplex method finds one 
starting comer that satisfies A3; = b and 3; ~ 0. Then it moves along an edge of the 
constraint set K to another (lower cost) comer. The cost c T 3; drops at every step. 

It is a linear algebra problem to find the steepest edge and the next comer (where that 
edge ends). The simplex method repeats this step many times, from comer to comer. 
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New starting comer, new steepest edge, new lower cost comer in the simplex method. 
In practice the number of steps is polynomial (but in theory it could be exponential). 

Our interest here is to identify the dual problem-a maximum problem for y in Rm. 
It is standard to use y instead of A for the dual unknowns-the Lagrange multipliers. 

Dual Problem I Maximize y Tb subject to AT y ::::; c. I (2) 

This is another linear program for the simplex method to solve. It has the same inputs 
A, b, c as before. When the matrix A is m by n, the matrix AT is n by m. So AT y ::::; c 
has n constraints. A beautiful fact: y Tb in the maximum problem is never larger than c T x 
in the minimum problem. 

Maximizing pushes yTb upward. Minimizing pushes cT x downward. The great duality 
theorem (the minimax theorem) says that they meet at the best x* and the best y*. 

Duality The maximum of y T b equals the minimum of c T x. 

The simplex method will solve both problems at once. For many years that method had 
no competition. Now this has changed. Newer algorithms go directly through the set 
of allowed x's instead of traveling around its edges (from corner to corner). Interior 
point methods are competitive because they can use calculus to achieve steepest descent. '0 

The situation right now is that either method could win-along the edges or inside. ·' 

Max Flow-Min Cut 

Here is a special linear program. The matrix A will be the incidence matrix of a graph. 
That means that flow in equals flow out at every node. Each edge of the graph has a 
capacity Mj-which the flow yj along that edge cannot exceed. 

The maximum problem is to send the greatest possible flow from the source node s 
to the sink node t. This flow is returned from t to s on a special edge with unlimited 
capacity--drawn on the next page. The constraints on y are Kirchhoff's Current Law 
AT y = 0 and the capacity bounds IYj I ::::; Mj on each edge of the graph. The be~uty 
of this example is that you can solve it by common sense (for a small graph). 
In the process, you discover and solve the dual minimum problem, which is min cut. 
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M 3 
I 6 M Max flow problem 

MaximizeM 

source s «f----=:........;___,.__...;....__,4-~-, ,~..,__....::;.:::.___~ sink t 
4 

with flow Yi ::; Mi 
The capacity Mj is 
shown on every edge 

5 
17 15 

Figure VLS: The max flow M is bounded by the capacity of any cut (dotted line). 
By duality, the capacity of the minimum cut equals the maximum flow: M = 14. 

Begin by sending flow out of the source. The three edges from s have capacity 7 + 2 + 
8 = 17. Is there a tighter bound than M ::; 17 ? 

Yes, a cut through the three middle edges only has capacity 6 + 4 + 5 = 15. Therefore 
17 cannot reach the sink. Is there a tighter bound than M ::; 15 ? 

Yes, a cut through five later edges only has capacity 3 + 2 + 4 + 3 + 2 = 14. The 
total flow M cannot exceed 14. Is that flow of 14 achievable and is this the tightest cut? 

Yes, this is the min cut (it is an .e1 problem!) and by duality 14 is the max flow. 

Wikipedia shows a list of faster and faster algorithms to solve this important problem. 
It has many applications. If the capacities Mj are integers, the optimal flows Yi are integers. 
Normally integer programs are extra difficult, but not here. 

A special max flow problem has all capacities Mi = 1 or 0. The graph is bipartite 
(all edges go from a node in part 1 to a node in part 2). We are matching people in 
part 1 to jobs in part 2 (at most one person per job and one job per person). Then the 
maximum matching is M = max flow in the graph = max number of assignments. 

1 2 3 4 5 

This bipartite graph allows a perfect matching: 
M = 5. Remove the edge from 2 down to 1. 
Now only M = 4 assignments are possible, because 
2 and 5 will only be qualified for one job (5). 

For bipartite graphs, max flow= min cut is Konig's theorem and Hall's marriage theorem. 

Two Person Games 

Games with three or more players are very difficult to solve. Groups of players can 
combine against the others, and those alliances are unstable. New teams will often form. 
It took John Nash to make good progress, leading to his Nobel Prize (in economics!). 
But two-person zero-sum games were completely solved by von Neumann. We will see 
their close connection to linear programming and duality. 

The players are X and Y. There is a payoff matrix A. At every turn, player X 
chooses a row of A and player Y chooses a column. The number in that row 
and column of A is the payoff, and then the players take another turn. 
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To match with linear programming, I will make the payment go from player X to Y. 
Then X wants to minimize and Y wants to maximize. Here is a very small payoff matrix. 
It has two rows for X to choose and three columns for Y. 

Y1 Y2 Y3 

Payoff matrix ~~ 1.__! __ --~---~_JI 
Y likes those large numbers in column 3. X sees that the smallest number in that column 
is 2 (in row 1). Both players have no reason to move from this simple strategy of column 3 
for Y and row 1 for X. The payoff of 2 is from X to Y : 

2 is smallest in its column and largest in its row 

This is a saddle point. Y cannot expect to win more than 2. X cannot expect to lose 
less than 2. Every play of the game will be the same because no player has an incentive 
to change. The optimal strategies x* andy* are clear: row 1 for X and column 3 for Y. 

But a change in column 3 will require new thinking by both players. 

Y1 Y2 Y3 

New payoff matrix ~~I.___! __ --~--~--~~ 
X likes those small and favorable numbers in column 2. But Y will never choose that 
column. Column 3 looks best (biggest) for Y, and X should counter by choosing row 2 
(to avoid paying 4). But then column 1 becomes better than column 3 for Y, because 
winning 3 in column 1 is better than winning 2. >, 

You are seeing that Y still wants column 3 but must go sometimes to column 1. Sim
ilarly X must have a mixed strategy: choose rows 1 and 2 with probabilities x 1 and x 2 . 

The choice at each turn must be unpredictable, or the other player will take advantage. 
So the decision for X is two probabilities x 1 ~ 0 and x2 ~ 0 that add to x 1 + x2 = 1. 
The payoff matrix has a new row from this mixed strategy : 

row 1 1 0 4 
row 2 3 -1 2 

x1(row 1) + x2(row2) x1 + 3x2 -x2 4xl + 2x2 

X will choose fractions x1 and x 2 to make the worst (largest) payoff as small as possible. 
Remembering x2 = 1 - x1 , this will happen when the two largest payoffs are eq~al : 

x 1 + 3x2 = 4xl + 2x2 means x 1 + 3(1 - x 1) = 4x1 + 2(1 - x!). 

That equation gives xr = ~ and x; = ~· The new mixed row is 2.5, -. 75, 2.5. 

Similarly Y will choose columns 1, 2, 3 with probabilities y1 , y2 , y3 . Again they add to 1. 
That mixed strategy combines the three columns of A into a new column for Y. 

column 1 
1 
3 

column 2 
0 

-1 

column 3 
4 
2 

mix 1,2,3 
Y1 + 4y3 

3yl- Y2 + 2y3 
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Y will choose the fractions Y1 + Y2 + Y3 = 1 to make the worst (smallest) payoff as large 
as possible. That happens when Y2 = 0 and Y3 = 1 - Yl· The two mixed payoffs are equal : 

y1 + 4(1 - yi) = 3yt + 2(1 - yi) gives - 3yt + 4 = Y1 + 2 and y~ = y; = ~. 

The new mixed column has 2.5 in both components. These optimal strategies identify 
2.5 as the value of the game. With the mixed strategy xi = ~ and x2 = ~. Player X 
can guarantee to pay no more than 2.5. Player Y can guarantee to receive no less than 2.5. 
We have found the saddle point (best mixed strategies, with minimax payoff from X = 
maximin payoff toY= 2.5) of this two-person game. 

Yt Y2 Y3 ~coil + ~col 2 

row 1 1 0 4 2.5 
row2 3 -1 2 2.5 

~ rowl + ~row2 2.5 -.75 2.5 

Von Neumann's minimax theorem for games gives a solution for every payoff matrix. 
It is equivalent to the duality theorem min cT x =max yTb for linear programming. 

Semidefinite Programming (SDP) 

The cost to minimize is still cT x: linear cost. But now the constraints on x involve sym
metric matrices S. We are given So to Sn and S(x) =So +x1S1 + · · · +xnSn is required 
to be positive semidefinite (or definite). Fortunately this is a convex set of x's-the average 
of two semidefinite matrices is semidefinite. (Just average the two energies v T Sv ~ 0.) 

Now the set of allowed x 's could have curved sides instead of flat sides : 

: 2 ] is positive semidefinite when X1 ~ 0 and x1x2 ~ 1. 

Minimizing the maximum eigenvalue of S ( x) is also included with an extra variable t : 

Minimize t so that ti - S ( x) is positive semidefinite. 

And SDP could also minimize the largest singular value-the L2 norm of S ( x) : 

M. · · t th [ ti S(x) ] · · · 'd fi · tmm1ze so at S ( x) T ti ts poslttve sem1 e mte. 

For those and most semidefinite problems, interior-point methods are the best. We don't 
travel around the boundary of the constraint set (from corner to corner, as the simplex 
method does for linear programs). Instead we travel through the interior of the set. Essen
tially we are solving a least squares problem at each iteration-usually 5 to 50 iterations. 

As in linear programming, there is a dual problem (a maximization). The value of this 
dual is always below the value c T x of the original. When we maximize in the dual and 
minimize c T x in the primal, we hope to make those answers equal. But this might not 
happen for semidefinite programs with matrix inequalities. 

SDP gives a solution method for matrix pmblems that previously looked too difficult. 
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Problem Set VI.3 

1 Is the constraint x ~ 0 needed in equation (3) for weak duality? Is the inequality 
ATy:::; c already enough to prove that (ATy)Tx:::; cTx? I don't think so. 

2 Suppose the constraints are x 1 + x2 + 2x3 = 4 and x 1 ~ 0, X2 ~ 0, x3 ~ 0. 
Find the three comers of this triangle in R3 . Which comer minimizes the cost 
cT x = 5xl + 3x2 + 8x3? 

3 What maximum problem for y is the dual to Problem 2 ? One constraint in the primal 
problem means one unknown y in the dual problem. Solve this dual problem. 

4 Suppose the constraints are x ~ 0 and x1 + 2x3 + X4 = 4 and X2 + X3 - X4 = 2. 
Two equality constraints on four unknowns, so a comer like x = (0, 6, 0, 4) has 
4- 2 = 2 zeros. Find another comer with x = (x1, x2, 0, 0) and show that it costs 
more than the first comer. 

5 Find the optimal (minimizing) strategy for X to choose rows. Find the optimal 
(maximizing) strategy for Y to choose columns. What is the payoff from X to Y 
at this optimal minimax point x*, y* ? 

6 

Payoff 
matrices [ ! ~ ] 

If AT = -A (antisymmetric payoff matrix), why is this a fair game for X andY 
with minimax payoff equal to zero ? ~ 

7 Suppose the payoff matrix is a diagonal matrix I; with entries a 1 > a 2 > ... >an. 
What strategies are optimal for X and Y ? 

8 Convert ll(xi. x2 , x3 )lh :::; 2 in the £1 norm to eight linear inequalities Ax :::; b. 
The constraint llxll :::; 2 in the .e= norm also produces eight linear inequalities. 

9 In the £2 norm, llxll :::; 2 is a quadratic inequality xi + x~ + x5 :::; 4. But in 
semidefinite programming (SDP) this becomes one matrix inequality X XT :::; 4I. 

Why is this constraint X xT :::; 4I equivalent to X T X :::; 4 ? 

Note Duality offers an important option : Solve the primal or the dual. 
That applies to optimization in machine learning, as this paper shows : 

F. Bach, Duality between subgradient and conditional gradient methods, 
SIAM Journal of Optimization 25 (2015) 115-129; arXiv: 1211.6302. 
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This section of the book is about a fundamental problem: Minimize a function 
f(xll ... , Xn)· Calculus teaches us that all the first derivatives 8f l8xi are zero at the 
minimum (when f is smooth). If we have n = 20 unknowns (a small number in 
deep learning) then minimizing one function f produces 20 equations 8 f I 8xi = 0. 
"Gradient descent" uses the derivatives 8f l8xi to find a direction that reduces f(x). 
The steepest direction, in which f ( x) decreases fastest, is given by the gradient - V f : 

I Gradient descent (1) 

The symbol V f represents the vector of n partial derivatives of f : its gradient. 
So (1) is a vector equation for each step k = 1, 2, 3, ... and sk is the stepsize or the 
learning rate. We hope to move toward the point x* where the graph of f(x) hits bottom. 

We are willing to assume for now that 20 first derivatives exist and can be computed. 
We are not willing to assume that those 20 functions also have 20 convenient derivatives 
8l8x1(8f l8xi). Those are the 210 second derivatives off-which go into a 20 by 20 
symmetric matrix H. (Symmetry reduces n 2 = 400 to ~n2 + ~n = 210 computations.) 
The second derivatives would be very useful extra information, but in many problems 
we have to go without. 

You should know that 20 first derivatives and 210 second derivatives don't multiply the 
computing cost by 20 and 210. The neat idea of automatic differentiation-rediscovered 
and extended as backpropagation in machine learning-makes those cost factors much 
smaller in practice. This idea is described in Section VII.2. 

Return for a moment to equation (1). The step -sk V f(xk) includes a minus sign 
(to descend) and a factor Sk (to control the the stepsize) and the gradient vector V f 
(containing the first derivatives off computed at the current point Xk). A lot of thought 
and computational experience has gone into the choice of stepsize and search direction. 

We start with the main facts from calculus about derivatives and gradient vectors V f. 

The Derivative of f ( x) : n = 1 

The derivative of f(x) involves a limit-this is the key difference between calculus and 
algebra. We are comparing the values of f at two nearby points x and x + ~x. as ~x 
approaches zero. More accurately, we are watching the slope ~f I ~x between two points 
on the graph of f(x): 

Derivative off at x df =limitoft:J..f =limitof [f(x+t:J.x)-f(x)]· (2) 
dx t:J.x t:J.x 

This is a forward difference when ~x is positive and a backward difference when ~x < 0. 
When we have the same limit from both sides, that number is the slope of the graph at x. 

The ramp function ReLU(x) = f(x) = max(O, x) is heavily involved in deep learning 
(see VII.l). It has unequal slopes 1 to the right and 0 to the left of x = 0. So the derivative 
df I dx does not exist at that corner point in the graph. For n = 1, df I dx is the gradient V f. 
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ReLU = x for x 2: 0 
0 forx ~ 0 

slo e Af = f(O +Ax) - f(O) = l!J.xj l!J.x = 1 if Ax> 0 
p Ax Ax 0/ l!J.x = 0 if Ax< 0 

For the smooth function f ( x) = x 2 , the ratio Aj I Ax will safely approach the 
derivative df I dx from both sides. But the approach could be slow Gust first order). 
Look again at the point x = 0, where the true derivative dJ I dx = 2x is now zero : 

The ratio ~~ at x = 0 is f(Ax~: f(O) = (Axl:- 0 = l!J.x Then limit= slope= 0. 

In this case and in almost all cases, we get a better ratio (closer to the limiting slope df I dx) 
by averaging the forward difference (where Ax > 0) with the backward difference 
(where Ax < 0). The average is the more accurate centered difference. 

Centered ! [f(x +Ax)- f(x) + f(x- Ax)- f(x)] = f(x + l!J.x) - f(x - l!J.x) 
at x 2 Ax -Ax 2l!J.x 

For the example f ( x) = x2 this centering will produce the exact derivative df I dx = 2x. 
In the picture we are averaging plus and minus slopes to get the correct slope 0 at x = 0. 
For all smooth functions, the centered differences reduce the error to size (Ax)2. This is 
a big improvement over the error of size Ax for uncentered differences f ( x + Ax) - f ( x). 

~x)=x 
centered 2 

~~~f(x)=x 

slope 0 slope 1 backward forward 

Figure Vl.6: ReLU function= ramp from deep learning. Centered slope off= x2 is exact. 

Most finite difference approximations are centered for extra accuracy. But we are still 
dividing by a small number 2 Ax. And for a multivariable function F(x1 , x2, ... , Xn) we 
will need ratios t1F I t1xi in n different directions-possibly for large n. Those ratios 
approximate the n partial derivatives that go into the gradient vector grad F = V F. 

( 8F · 8F) The gradient of F(x1 , ••• , xn) is the column vector V F = --, ... , -- . 
8x1 Bxn · 

Its components are the n partial derivatives of F. V F points in the steepest direction. 

Examples 1-3 will show the value of vector notation (V F is always a column vector). 

Example 1 Foraconstantvectora= (a1 , ... , an), F(x) =aT x has gradient"Y F= a. 

The partial derivatives ofF = alXl + ... + anXn are the numbers BF I axk = ak. 

• i 
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Example 2 ForasymmetricmatrixS, the gradient of F(re) = reTSreis VF = 2 Sre. 
To see this, write out the function F(x1, x2) when n = 2. The matrix Sis 2 by 2: 

F =[x1 

Example 3 For a positive definite symmetric S, the minimum of a quadratic 
F(re) = ! reT Sre - aT re is the negative number F min = -!aT Sa at re* = s-1 a. 

This is an important example ! The minimum occurs where first derivatives of F are zero : 

[ 
8Fj8re1 l 

VF = : = Sre- a= 0 at re* = s-1 a = argminF. 
8F/8ren 

(3) 

As always, that notation arg min F stands for the point re* where the minimum of 

F ( re) = ! reT S re - aT re is reached. Often we are more interested in this minimizing re* 
than in the actual minimum value F min = F( re*) at that point: 

The graph ofF is a bowl passing through zero at re = 0 and dipping to its minimum at re* .. 

Example 4 The determinant F(re) = det X is a function of all n2 variables Xij· 
In the formula for det X, each Xij along a row is multiplied by its "cofactor" Cij. This 
cofactor is a determinant of size n- 1, using all rows of X except row i and all columns 
except column j-and multiplied by ( -1 )i+i : 

The partial derivatives B(~:::) = Cii in the matrix of cofactors of X give V F. 

Example 5 The logarithm of the determinant is a most remarkable function: 

L(X) =log (det X) has partial derivatives 8
8L = dCiJX. =j, i entry of x-1 . 
Xij et 

Thechainrulefor L =log F is (8Lj8F)(8Fj8xij)= (1/ F)(8Fj8xij) = (1/detX) Cij· 
Then this ratio of cofactors to determinant gives the j, i entries of the inverse matrix x-1 . 

It is neat that X - 1 contains the n 2 first derivatives of L = log det X. The second 
derivatives of L are remarkable too. We have n2 variables Xij and n2 first derivatives in 
V L = (X-1 )T. This means n 4 second derivatives! What is amazing is that the matrix 
of second derivatives is negative definite when X = S is symmetric positive definite. 
So we reverse the sign of L : positive definite second derivatives => convex function. 

- log ( det S) is a convex function of the entries of the positive definite matrix S. 
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The Geometry of the Gradient Vector V f 
Start with a function l(x, y). It has n=2 variables. Its gradient is v f = (8! I ax, 8f f8y). 
This vector changes length as we move the point x, y where the derivatives are computed : 

V/ = (a1, a1) ax ay ( a1)2 (a1)2 Length = II v /II = ax + ay = steepest slope of I 

That length II V f II tells us the steepness of the graph of z = I ( x, y). The graph is normally 
a curved surface-like a mountain or a valley in xyz space. At each point there is a slope 
a I I ax in the x-direction and a slope a I I ay in the y-direction. The steepest slope is in 
the direction of V f = grad f. The magnitude of that steepest slope is II V f 11-
Example 6 Thegraphofalinearfunctionl(x,y) = ax+byistheplanez = ax+by. 

The gradient is the vector V f = [ ~ ] of partial derivatives. The length of that vector is 

II V f II = ..j a 2 + b2 = slope of the roof. The slope is steepest in the direction of V f. 

That steepest direction is perpendicular to the level direction. The level direction 
z = constant has ax + by = constant. It is the safe direction to walk, perpendicular to 
V f. The component of V f in that flat direction is zero. Figure Vl.7 shows the two 
perpendicular directions (level and steepest) on the plane z = x + 2y = l(x, y). 

steepest direction [ ~ ] = V f l; 

slope is II V f II = v'5 in this direction 

slope is - J5 in this direction level direction [ _ ~ ] = (V f)J... 

I = x + 2y is constant in this direction 

Figure Vl.7: The negative gradient-V f gives the direction of steepest descent. 

For the nonlinear function I ( x, y) = ax2 + by2 , the gradient is V f = [ ~~: ] . 

That tells us the steepest direction, changing from point to point. We are on a curved 
surface (a bowl opening upward). The bottom of the bowl is at x = y = 0 where the 
gradient vector is zero. The slope in the steepest direction is II V f II- At the minimum, 
V f = (2ax~ 2by) = (0, 0) and slope= zero. 
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The level direction has z = a:v2 + by2 = constant height. That plane z = constant 
cuts through the bowl in a level curve. In this example the level curve ax2 + by2 = c is an 
ellipse. The direction of the ellipse (level direction) is perpendicular to the gradient vector 
(steepest direction). But there is a serious difficulty for steepest descent: 

The steepest direction changes as you go down! The gradient doesn't point to the bottom! 

z 

X 

steepest direction V f up and down the bowl ax2 + by2 = z 

flat direction (V f).l. along the ellipse ax2 + by2 =constant 

the steepest direction is perpendicular to the flat direction but 

the steepest direction is not aimed at the minimum point 

Figure VI.8: Steepest descent moves down the bowl in the gradient direction [ = ~:: ] . 
Let me repeat. At the point x0 , y0 the gradient direction for f = ax2 + by2 is along 

V f = (2axo, 2byo). The steepest line through xo, Yo is 2axo(Y- Yo) = 2byo(x - xo). 
But then the lowest point (x, y) = (0, 0) does not lie on the line! We will not find that 
minimum point in one step of "gradient descent". The steepest direction does not lead 
to the bottom of the bowl-except when b = a and the bowl is circular. 

Water changes direction as it goes down a mountain. Sooner or later, we must change 
direction too. In practice we keep going in the gradient direction and stop when our cost 
function f is not decreasing quickly. At that point Step 1 ends and we recompute the 
gradient V f. This gives a new descent direction for Step 2. 

An Important Example with Zig-Zag 

The example f(x, y) = !C:v2 + by2 ) is extremely useful for 0 < b :::; 1. Its gradient 
V f has two components f) f I fJx = :v and f) f I fJy = by. The minimum value of f is zero. 
That minimum is reached at the point (x*, y*) = (0, 0). Best of all, steepest descent with 
exact line search produces a simple formula for each point (xk, Yk) in the slow progress 
down the bowl toward (0, 0). Starting from (xo, y0 ) = (b, 1) we find these points: 
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If b = 1, you see immediate success in one step. The point (x1, yl) is (0, 0). The bowl 
is perfectly circular with f = ~(x2 + y2). The negative gradient direction goes exactly 
through (0, 0). Then the first step of gradient descent finds that correct minimizing point 
wheref = 0. 

The real purpose of this example is seen when b is small. The crucial ratio in 
equation (4) is r = (b- 1)l(b + 1). Forb= lo this ratio is r = -9111. Forb= 160 
the ratio is -991101. The ratio is approaching -1 and the progress toward (0,0) has 
virtually stopped when b is very small. 

Figure VI.9 shows the frustrating zig-zag pattern of the steps toward (0, 0). Every 
step is short and progress is very slow. This is a case where the stepsize Bk in Xk+l = 
Xk- Bk V f(a:k) was exactly chosen to minimize f (an exact line search). But the direction 
of-V f, even if steepest, is pointing far from the final answer (x*, y*) = (0, 0). 

The bowl has become a narrow valley when b is small, and we are uselessly crossing 
the valley instead of moving down the valley to the bottom. 

Gradient Descent 

The first descent step starts out perpendicular to the level 
set. As it crosses through lower level sets, the function 
f ( x, y) is decreasing. Eventually its path is tangent to 
a level set L. Descent has stopped. Going further will 
increase f. The first step ends. The next step is perpen
dicular to L. So the zig-zag path took a 90 ° tum. 

Figure VI.9: Slow convergence on a zig-zag path to the minimum off = x2 + by2 . 

Forb close to 1, this gradient descent is faster. First-order convergence means that the 
distance to ( x* , y*) = ( 0, 0) is reduced by the constant factor ( 1 - b) I ( 1 + b) 
at every step. The following analysis will show that linear convergence extends to all 
strongly convex functions /-first when each line search is exact, and then (mpre 
realistically) when the search at each step is close to exact. 

Machine learning often uses stochastic gradient descent. The next section will 
describe this variation (especially useful when n is large and a: has many components). 
And we recall that Newton's method uses second derivatives to produce quadratic 
convergence-the reduction factor (1 - b) I (1 +b) drops to zero and the error is squared at 
every step. (Our model problem of minimizing a quadratic ~a: T Sa: is solved in one step.) 
This is a gold standard that approximation algorithms don't often reach in practice. 

'i 
' 
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Convergence Analysis for Steepest Descent 

On this page we are following the presentation by Boyd and Vandenberghe in Convex 
Optimization (published by Cambridge University Press). From the specific choice of 
f(x,y) = Hx2 + by2), we move to any strongly convex f(x) in n dimensions. 
Convexity is tested by the positive definiteness of the symmetric matrix H = V 2 f of 
second derivatives (the Hessian matrix). In one dimension this is the number d? f I dx2 : 

Strongly convex 8 2 f 
m > 0 Hij = has eigenvalues between m < A < Mat all x 

8xi8Xj - -

The quadratic f = ~ ( x2 + by2 ) has second derivatives 1 and b. The mixed derivative 
{)2 f I oxoy is zero. So the matrix is diagonal and its two eigenvalues are m = b and 
M = 1. We will now see that the ratio m I M controls the speed of steepest descent. 

The gradient descent step is Xk+l = Xk - sV f k· We estimate f by its Taylor series: 

T M 2 
f(xk+l) ~ f(xk) + Vf (xk+l- Xk) + 21!xk+l- Xk/1 (5) 

= f(xk) - si!V !W + ~82 IIV !W (6) 

The bests minimizes the left side (exact line search). The minimum of the right side is at 
s = 11M. Substituting that number for s, the next point xk+1 has 

1 2 
f(xk+l) ~ f(xk)- 2M IIV f(xk)li . (7) 

A parallel argument uses m instead of M to reverse the inequality sign in (5). 

1 
f(x*) ~ f(xk) - 2m IIV f(xk)il 2. (8) 

Multiply (7) by M and (8) by m and subtract to remove IIV f(xk)/1 2 • Rewrite the result as 

Steady drop in f (9) 

This says that every step reduces the height above the bottom of the valley by at least 
c = 1 - ~. That is linear convergence : very slow when b = m I M is small. 

Our zig-zag example had m = b and M = 1. The estimate (9) guarantees that the 
height f(xk) above f(x*) = 0 is reduced by at least 1 - b. The exact formula in that 
totally computable problem produced the reduction factor (1 - b) 2 1(1 + b) 2 • When b is 
small this is about 1 - 4b. So the actual improvement was only 4 times better than the 
rough estimate 1 - b in (9). This gives us considerable faith that (9) is realistic. 
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Inexact Line Search and Backtracking 

That ratio m/ M appears throughout approximation theory and numerical linear algebra. 
This is the point of mathematical analysis-to find numbers like m/ M that control the rate 
of descent to the minimum value f(x*). 

Up to now alllirie searches were exact: Xk+ 1 exactly minimized f(x) along the line 
x = Xk - s VI k· Choosing s is a one-variable minimization. The line moves from Xk 
in the direction of steepest descent. But we can't expect an exact formula for minimizing 
a general function f(x), even just along a line. So we need a fast sensible way to find an 
approximate minimum (and the analysis needs a bound on this additional error). 

One sensible way is backtracking. Start with the full steps= 1 to X= Xk- V lk· 

Test If f(X) :$ f(xk)- ~I IV hW, with s = 1, stop and accept X as Xk+1· 

Otherwise backtrack: Reduces to ~ and try the test on X = Xk - ~VI k' 

If the test fails again, try the step size s = :1-. Since VI is a descent direction, the test 
is eventually passed. The factors ~ and ! could be any numbers a < ! and j3 < 1. 

Boyd and Vandenberghe show that the convergence analysis for exact line search 
extends also to this backtracking search. Of course the guaranteed reduction factor 
1 - (m/M) for each step toward the minimum is now not so large. But the new factor 
1 - min (2ma, 2ma,BjM) is still below 1. Steepest descent with backtracking search 
still has linear convergence-a constant factor (or better) at every step. 

Momentum and the Path of a Heavy Ball . 
~ 

The slow zig-zag path of steepest descent is a real problem. We have to improve it. Our 
model example f = !(x2 + by2 ) has only two variables x, y and its second derivative 
matrix His diagonal-constant entries fxx = 1 and jyy = b. But it shows the zig-zag 
problem very clearly when b = Amin/ Amax = mjM is small. 

Key idea: Zig-zag would not happen for a heavy ball rolling downhill. Its momentum 
carries it through the narrow valley-bumping the sides but moving mostly forward. So we 
add momentum with coefficient f3 to the gradient (Polyak's important idea). This gives 
one of the most convenient and powerful ideas in deep learning. 

The direction Zk of the new step remembers the previous direction Zk-1· 

Descent with momentum I Xk+I = xk- szk with Zk = V l(xk) + f3zk-1 I (10) 

Now we have two coefficients to choose-the stepsize sand also /3. Most important, 
the step to Xk+ 1 in equation (10) involves z k- 1 . Momentum has turned a one-step method 
(gradient descent) into a two-step method. To get back to one step, we have to rewrite 
equation (10) as two coupled equations (one vector equation) for the state at time. k + 1: 

Descent with 
momentum 

Xk+1 
zk+l - V l(xk+I) 

(11) 
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With those two equations, we have recovered a one-step method. This is exactly like re
ducing a single second order differential equation to a system of two first order equations. 
Second order reduces to first order when dyjdt becomes a second unknown along withy. 

2nd order equation 
1st order system 

d2y dy d [ y ] [ 0 1 ] [ y ] 
dt2 + b dt + ky=O becomes dt dyjdt = -k -b dyjdt . 

Interesting that this b is damping the motion while (3 adds momentum to encourage it. 

The Quadratic Model 

When f(x) = ~xTSx is quadratic, its gradient Vf = Sx is linear. This is the model 
problem to understand: Sis symmetric positive definite and Vf(xk+1 ) becomes Sxk+l 
in equation (11). Our 2 by 2 supermodel is included, when the matrix Sis diagonal with 
entries 1 and b. For a bigger matrix S, you will see that its largest and smallest eigenvalues 
determine the best choices for (3 and the stepsize s-so the 2 by 2 case actually contains 
the essence of the whole problem. 

To follow the steps of accelerated descent, we track each eigenvector of S. Suppose 
Sq = >..q and Xk = Ck q and Zk = dk q and V f k = Sxk = >.. Ck q. Then our equation 
(11) connects the numbers Ck and dk at step k to Ck+l and dk+1 at step k + 1. 

Following the ck+ 1 = ck - sdk 
eigenvector q - >.. ck+ 1 + dk+1 = (3 dk [ 1 o][ck+1]=[1 -s][ck](12) 

-.X 1 dk+1 0 f3 dk 

Finally we invert the first matrix (->..becomes +A.) to see each descent step clearly: 

Descent step 
multiplies by R [ ~::~] = [ l ~ ][ ~ -; ][ ~:] = [! f3 =8_x8 ][ ~:] = R [ ~:] 

(13) 
After k steps the starting vector is multiplied by Rk. For fast convergence to zero 
(which is the minimum off= ~xTSx) we want both eigenvalues e1 and e2 of R to be 
as small as possible. Clearly those eigenvalues of R depend on the eigenvalue >.. of S. 
That eigenvalue >.. could be anywhere between Amin ( S) and A max ( S). Our problem is : 

Choosesandf3tominimize max[lel(.X)I, le2(.X)I] for >..min(S) S >.. S Amax(S). 

• (14) 
It seems a miracle that this problem has a beautiful solution. The optimal s and (3 are 

and 
~-~ (3 - y /\max V /'miD ( )

2 

- J>..max + .J>;in 
(15) 
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Think of the 2 by 2 supermodel, when S has eigenvalues >.max = 1 and >.min = b : 

s- (-2-)
2 

and [3 = (l- v'b) 2 
(16) 

- l+Vb l+Vb 
These choices of stepsize and ·momentum give a convergence rate that looks like the 
rate in equation (4) for ordinary steepest descent (no momentum). But there is a crucial 
difference: b is replaced by .;b. 

Ordinary 
descent factor (~)2 1+b 

Accelerated 
descent factor ( 1- Vb) 2 

1+Vb 
(17) 

So similar but so different. The real test comes when b is very small. Then the ordinary 
descent factor is essentially 1 - 4b, very close to 1. The accelerated descent factor is 
essentially 1 - 4Vb, much further from 1. 

To emphasize the improvement that momentum brings, suppose b = 1/100. Then 
v'b = 1/10 (ten times larger than b). The convergence factors in equation ( 17) are 

( .99 ) 2 
( .9 ) 2 

Steepest descent -- = .96 Accelerated descent - = .67 
1.01 1.1 

Ten steps of ordinary descent multiply the starting error by 0.67. This is matched by 
a single momentum step. Ten steps with the momentum term multiply the error by 0.018. 

Notice that >.max/ >.min = 1/b = K is the condition number of S. This controls 
everything. For the non-quadratic problems studied next, the condition number is still 
the key. That number K becomes L / f.l as you will see. ~ 

A short editorial This is not part of the expository textbook. It concerns the rate 
of convergence for gradient descent. We know that one step methods (computing Xk+1 

from Xk) can multiply the error by 1 - 0 (1/ K). Two step methods that use Xk-1 in 
the momentum term can achieve 1-0( ..jl{K,). The condition number is K =>-max/ >.min 
for the convex quadratic model f = ~x T Sx. Our example had 1/ K = b. 

It is natural to hope that 1 - c,..,-l/n can be achieved by using n known values 
Xk, Xk- 1 , ... , Xk-n+l· This might be impossible-even if it is exactly parallel to finite 
difference formulas for dxjdt = f(x). Stability there requires a stepsize bpund on !::..t. 
Stability in descent requires a bound on the stepsize s. MATLAB's low order code ODE15S 
is often chosen for stiff equations and ODE45 is the workhorse for smoother solutions. 
Those are predictor-corrector combinations, not prominent so far in optimization. 

The speedup from momentum is like "overrelaxation" in the 1950's. David Young's 
thesis brought the same improvement for iterative methods applied to a class of 
linear equations Ax = b. In those early days of numerical analysis, A was separated into 
S - T and the iterations were Sxk+l = Txk + b. They took forever. Now overre1axation 
is virtually forgotten, replaced by faster methods (multigrid). Will accelerated steepest 
descent give way to completely different ideas for minimizing f ( x) ? 

This is possible but hard to imagine. 
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Nesterov Acceleration 

Another way to bring Xk- 1 into the formula for Xk+l is due to Yuri Nesterov. Instead of 
evaluating the gradient V fat Xk, he shifted that evaluation point to Xk + 'Yk(Xk- Xk-d· 
And choosing 'Y = f3 (the momentum coefficient) combines both ideas. 

Gradient Descent 

Heavy Ball 

Nesterov Acceleration 

Stepsize 8 {3 = 0 

Stepsize 8 Momentum {3 

Stepsize s Momentum {3 

Accelerated descent involves all three parameters s, {3, 1: 

1=0 

1=0 

shift 'V f by 'Y 6.x 

Xk+l = Xk + {3 (xk - Xk-1) - S V f (Xk +I (Xk - Xk-1)) (18) 

To analyze the convergence rate for Nesterov with 'Y = {3, reduce (18) to first order: 

Nesterov 

Suppose f ( x) = ~x T Sx and V f = Sx and S q = >..q as before. To track this eigenvector 
set Xk = Ckq and Yk = dkq and V f(Yk) = A.dkq in (19): 

ck+1 = (1- s>..)dk and dk+1 = (1 + f3)ck+1- f3ck = (1 + {3) (1- s>..)dk- f3ck becomes 

[ ~::: ] = [ ~{3 (1 + ~~;~ s>..) ] [ ~: ] = R [ ~: ] (20) 

Every Nesterov step is a multiplication by R. Suppose R has eigenvalues e1 and e2, 
depending on s and f3 and >... We want the larger of I e 1l and I e2l to be as small as possible 
for all>.. between >..min (S) and A.max(S). These choices for sand f3 give small e's: 

1 v'>..max-~ v'>..max-~ 
s = -\- and/3 = ~ ~ givemax(je1 1, je21) = ~ mm 

Amax >..max + >..min >..max 
(21) 

When S is the 2 by 2 matrix with eigenvalues >..max = 1 and >..min = b, that convergence 

factor (the largest eigenvalue of R) is 1 - v'b. 
This shows the same highly important improvement (from b to Vb) as the momentum 

(heavy ball) formula. The complete analysis by Lessa,_rd, Recht, and Packard discovered 
that Nesterov's choices for s and f3 can be slightly improved. Su, Boyd, and Candes 
developed a deeper link between a particular Nesterov optimization and this equation: 

d2 y 3 dy 
Model for descent dt2 + t dt + 'V f(t) = 0. 
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Functions to Minimize : The Big Picture 

The function f ( x) can be· strictly convex or barely convex or non-convex. Its gradient can 
be linear or nonlinear. Here is a list of function types in increasing order of difficulty. 

1. f(x, y) = lCx2 + by2 ). This has only 2 variables. Its gradient V f = (x, by) is 
linear. Its Hessian H is a diagonal 2 by 2 matrix with entries 1 and b. Those are the 
eigenvalues of H. The condition number is ,.., = 1 jb when 0 < b < 1. Strictly convex. 

2. f(xb ... , Xn) = ~xTSx- cTx. HereS is a symmetric positive definite matrix. 
The gradient V f = Sx - c is linear. The Hessian is H = S. Its eigenvalues are 
AI to An. Its condition number is,.., = Amax/ Amin· Strictly convex. 

3. f(x1 , ••• , xn) =smooth strictly convex function. Its Hessian H(x) is positive 
definite at all x (H varies with x). The eigenvalues of Hare AI (x) to An(x ), always 
positive. The condition number is the maximum over all x of A max/ Amin. 

An essentially equivalent condition number is the ratio L / Amin ( x) : 

L="Lipschitzconstant" in IIVf(x)-Vf(y)ll :::; Lllx-yll· (22) 

This allows comers in the gradient V f and jumps in the second derivative matrix H. 

4. f(xb ... , Xn) =convex but not strictly convex. The Hessian can be only semi
definite, with Amin = 0. A small exan1ple is the ranip function f = ReLU(x) = 
max (0, x ). The gradient V f becomes a "subgradient" that has multiple values 
at a comer point. The sub gradient of ReLU at x = 0 has all values from 0 to 1. ~ 
The lines through ( 0, 0) with those slopes stay below the ramp function ReLU ( x). 

Positive definite His allowed but so is Amin = 0. The condition number can be infinite. 

The simplest example with Amin = 0 has its minimum along the whole line x + y = 0: 

f(x,y)=(x+y) 2 = [ x Y J[ ~ ~] [ ~] withasemidefinitematrixS 

This degeneracy is very typical of deep learning. The number of weights used by the 
network often far exceeds the number of training samples that determine those weights. 
(The "MNIST" data set can have 60,000 training samples and 300,000 weig1tts.) 
Those weights are underdetermined but still gradient descent succeeds. Why do its weights 
generalize well-to give good answers for unseen test data ? 

When strict convexity is lost (Case 4), a convergence proof is still possible. 
But the condition number is infinite. And the rate of convergence can become sublinear. 
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Note. We speak about linear convergence when the error Xk -a;* (the distance to the 
minimizing point) is reduced by an approximately constant factor C < 1 at each step : 

Linear convergence (23) 

This means that the error decreases exponentially (like Ck or ek log c with log C < 0). 
Exponential sounds fast, but it can be very slow when C is near 1. 

In minimizing quadratics, non-adaptive methods generally converge to minimum 
norm solutions. Those solutions (like a;+ = A+b from the pseudoinverse A+) have 
zero component in the row space of A. They have the largest margin. 

Here are good textbook references for gradient descent, including the stochastic version 
that is coming in VI.S : 

1. D. Bertsekas, Convex Analysis and Optimization, Athena Scientific (2003). 

2. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press (2004). 

3. Yu. Nesterov, Introductory Lectures on Convex Optimization, Springer (2004). 

4. J. Nocedal and S. Wright, Numerical Optimization, Springer (1999). 

Four articles coauthored by Ben Recht have brought essential new ideas to the analysis of 
gradient methods. Papers 1 and 2 study accelerated descent (this section). Papers 3 and 4 
study stochastic descent and adaptive descent. Video 5 is excellent. 

1. L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization algorithms 
via integral quadratic constraints, arXiv: 1408.3595v7, 28 Oct 2015. 

2. A. C. Wilson, B. Recht, and M. Jordan, A Lyapunov analysis of momentum methods 
in optimization, arXiv: 1611.02635v3, 31 Dec 2016. 

3. A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, The marginal value of 
adaptive gradient methods in machine learning, arXiv : 1705.08292v 1, 23 May 2017. 

4. C. Zhang, S. Bengio, M. Hardt, B. Recht, and 0. Vinyals, Understanding deep 
learning requires rethinking generalization, arXiv :1611.03530v2, 26 Feb 2017, 
International Conference on Learning Representations (2017). 

5. https://simons.berkeley.edu/talkslben-recht-2013-09-04 

Section VI.S on stochastic gradient descent returns t.o these papers for this message : 
Adaptive methods can possibly converge to undesirable weights in deep learning. 
Gradient descent from Xo = 0 (and SGD) finds the minimum norm solution to least squares. 

Those adaptive methods (variants of Adam) are popular. The formula for Xk+I that 
stopped at Xk-1 will go much further back-to include all earlier points starting at x 0 . In 
many problems that leads to faster training. As with momentum, memory can help. 

When there are more weights to determine than samples to use (underdetermined prob
lems), we can have multiple minimum points for f (a;) and multiple solutions to V f = 0. 
A crucial question in VI.S is whether improved adaptive methods find good solutions. 
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Constraints and Proximal Points 

How does steepest descent deal with a constraint restricting x to a convex set K ? 
The projected gradient and proximal gradient methods use four fundamental ideas. 

1 Projection onto K The projection llx of x onto K is the point in K nearest to x. 

If K is curved then II is not linear. Think of projection onto the unit ball II x II :<:; 1. 
In this case llx = projK(x) = x/llxll for points outside the ball. A key property is 
that ll is a contraction. Projecting two points onto K reduces the distance between them : 

Projectionll=projK llllx-llzll:<:;llx-zll forallxandzinRn. (24) 

2 Proximal mapping Prox,(x) is the vector z that minimizes ~llx- zll 2 + f(z). 
In case f = 0 inside K and f = oo outside K, Prox f ( x) is exactly the projection llx. 

Important example Iff ( x) = ell x 11 1 then Prox f is the shrinkage function in statistics. 

X;- C The ith component of x leads to 

the ith component of Prox f ( x) 
This is soft thresholding S ( x) 

S(xi) =sign (xi) ·max (xi - c, 0) 

--~---f..--~-- Xi 
-c c 

We are denoising and regularizing, as in the f1 LASSO construction of Section III.4. 
The graph shows how small components are set to zero-producing zeros is the effect 
that the f1 norm already achieves compared to £2 . 

3 Projected gradient descent takes a normal descent step (which may go outside the~ 
constraint set K). Then it projects the result back onto K: a basic idea. 

Projected descent (25) 

4 Proximal gradient descent also starts with a normal step. Now the projection onto K 
is replaced by the proximal map to determines = Sk: a subtle idea. 

Proximal descent 

The LASSO function to minimize is f(x) = ~lib- Axil§+ >-llxlll· 
mapping decides the soft tlrresholding and the stepsize s at x by 

1 
prox8 (x) = argmin -llx- zll 2 + >-llxlh 

z 2s 

1 
arg~nin 2llx- zll 2 + >.sllxlll = B8 >,(x) 

(26) 

The proximal 

(27) 

That produces the soft-thresholding functionS in the graph above as the update Xk+l· 

Proximal gradients for LASSO (fast descent) Xk+l =S>,8 (xk+sAT(b -Axk)) 
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Problem Set VI.4 

1 For a 1 by 1 matrix in Example 3, the determinant is just det X = xn. 
Find the first and second derivatives of F(X) = -log( det X) = -log xn for 
x11 > 0. Sketch the graph ofF = - log x to see that this function F is convex. 

2 The determinant of a 2 by 2 matrix is det(X) = ad- be. Its first derivatives are 
d,-c,-b,a in VF. After dividing by detX, those fill the inverse matrix x-1 • 

That division by det X makes them the four derivatives of log( det X) : 

Derivatives VF=[ d -c] 
of F=detX -b a 

Inverse= _1_ [ d -b]= (VF)T 
of X detX -c a detX 

Symmetry gives b = c. Then F = -log( ad- b2) is a convex function of a, b, d. 
Show that the 3 by 3 second derivative matrix of this function F is positive definite. 

3 Show how equations (7) and (8) lead to the basic estimate (9) for linear convergence 
of steepest descent. (This extends to backtracking for another choice of c.) 

4 A non-quadratic example with its minimum at x = 0 and y = +oo is 

H = [1 0 ] 0 e-Y 

1 
K= -

e-Y 

5 Explain why projection onto a convex set K is a contraction in equation (24). 
Why is the distance llx- Yii never increased when x andy are projected onto K? 

6 What is the gradient descent equation Xk+I = Xk - Sk V f(xk) for the least squares 
problem of minimizing f(x) = ~IIAx- bW? 
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VI.S Stochastic Gradient Descent and ADAM 

Gradient descent is fundamental in training a deep neural network. It is based on a step of 
the form Xk+I = Xk - Bk V L(xk). That step should lead us downhill toward the point 
x* where the loss function L(x) is minimized for the test data v. But for large networks 
with many samples in the training set, this algorithm (as it stands) is not successful! 

It is important to recognize two different problems with classical steepest descent: 

1. Computing V L at every descent step-the derivatives of the total loss L with 
respect to all the weights x in the network-is too expensive. That total loss adds 
the individual losses £(x, vi) for every sample Vi in the training set-potentially 
millions of separate losses are computed and added in every computation of L. 

2. The number of weights is even larger. So V xL = 0 for many different choices x* 
of the weights. Some of those choices can give poor results on unseen test data. 
The learning function F can fail to "generalize". But stochastic gradient descent 
(SGD) does find weights x* that generalize-weights that will succeed on unseen 
vectors v from a similar population. 

Stochastic gradient descent uses only a "minibatch" of the training data at each step. 
B samples will be chosen randomly. Replacing the full batch of all the training data by 
a minibatch changes L ( x) = ~ L .ei ( x) to a SU!fi of only B losses. This resolves both 
difficulties at once. The success of deep learning rests on these two facts : 

1. Computing Vii by backpropagation on B samples is much faster. Often B = 1. 

2. The stochastic algorithm produces weights x* that also succeed on unseen data. " .; 

The first point is clear. The calculation per step is greatly reduced. The second point is 
a miracle. Generalizing well to new data is a gift that researchers work hard to explain. 

We can describe the big picture of weight optimization in a large neural network. 
The weights are determined by the training data. That data often consists of thousands 
of samples. We know the "features" of each sample-maybe its height and weight, or 
its shape and color, or the number of nouns and verbs and commas (for a sample of text). 
Those features go into a vector v for each sample. We use a minibatch of samples. 

And for each sample in the training set, we know if it is "a cat or a dog"-or if. 
the text is "poetry or prose". We look for a learning function F that assigns' good weights. 
Then for v in a similar population, F outputs the correct classification "cat" or "poetry". 

We use this function F for unidentified test data. The features of the test data are 
the new inputs v. The output from F will be the correct (?) classification-provided 
the function has learned the training data in a way that generalizes. 

Here is a remarkable observation from experience. We don't want to fit the training data 
too perfectly. That would often be overfitting. The function F becomes oversensitive. 
It memorized everything but it hasn't learned anything. Generalization by SGD is the 
ability to give the correct classification for unseen test data v, based on the weights x 
that were learned from the training data. 
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I compare overfitting with choosing a polynomial of degree 60 that fits exactly 
to 61 data points. Its 61 coefficients ao to a6o will perfectly learn the data. But that 
high degree polynomial will oscillate wildly between the data points. For test data at a 
nearby point, the perfect-fit polynomial gives a completely wrong answer. 

So a fundamental strategy in training a neural network (which means finding a func
tion that learns from the training data and generalizes well to test data) is early stopping. 
Machine learning needs to know when to quit l Possibly this is true of human learning too. 

The Loss Function and the Learning Function 

Now we establish the optimization problem that the network will solve. We need to define 
the "loss" L(x) that our function will (approximately) minimize. This is the sum of the 
errors in classifying each of the training data vectors v. And we need to describe the 
form of the learning function F that classifies each data vector v. 

At the beginning of machine learning the function F was linear-a severe limitation. 
Now F is certainly nonlinear. Just the inclusion of one particular nonlinear function 
at each neuron in each layer has made a dramatic difference. It has turned out that with 
thousands of samples, the function F can be correctly trained. 

It is the processing power of the computer that makes for fast operations on the data. 
In particular, we depend on the speed of GPU's (the Graphical Processing Units 
that were originally developed for computer games). They make deep learning possible. 

We first choose a loss function to minimize. Then we describe stochastic gradient 
descent. The gradient is determined by the network architecture-the "feedforward" 
steps whose weights we will optimize. Our goal in this section is to find optimization 
algorithms that apply to very large problems. Then Chapter VII will describe how the 
architecture and the algorithms have made the learning functions successful. 

Here are three loss functions-cross-entropy is a favorite for neural nets. Section VII.4 
will describe the advantages of cross-entropy loss over square loss (as in least squares). 

N 

1 Squareloss L(x) = ~ LIIF(x,vi)-truell 2 : sumoverthetrainingsamplesvi 
1 
N 

2 Hingeloss L(x) = ~'L:max(0,1-tF(x))forclassificationt = 1or-1 
1 

N • 

3 Cross-entropy loss L(x) =-~ L [Yi log fii+(1-yi) log (1-fii)] foryi=O or 1 
1 

Cross-entropy loss or "logistic loss" is preferred for logistic regression (with two 
choices only). The true label Yi = 0 or 1 could be -1 or 1 (fji is a computed label). 

For a minibatch of size B, replace N by B. And choose the B samples randomly. 

This section was enormously improved by Suvrit Sra's lecture in 18.065 on 20 April2018. 
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Stochastic Descent Using One Sample Per Step 

To simplify, suppose each minibatch contains only one sample Vk (so B = 1). 
That sample is chosen randomly. The theory of stochastic descent usually assumes that the 
sample is replaced after use-in principle the sample could be chosen again at step k + 1. 
But replacement is expensive compared to starting with a random ordering of the samples. 
In practice, we often omit replacement and work through samples in a random order. 

Each pass through the training data is one epoch of the descent algorithm. Ordinary 
gradient descent computes one epoch per step (batch mode). Stochastic gradient descent 
needs many steps (for minibatches). The online advice is to choose B ::::; 32. 

Stochastic descent began with a seminal paper of Herbert Robbins and Sutton Monro 
in the Annals of Mathematical Statistics 22 (1951) 400-407: A Stochastic Approximation 
Method. Their goal was a fast method that converges to x* in probability: 

To prove Prob (llxk- x*ll >E) approaches zero ask--+ oo. 

Stochastic descent is more sensitive to the stepsizes Sk than full gradient descent. 
If we randomly choose sample Vi at step k, then the kth descent step is familiar: 

I Xk+l = Xk - Sk V x l(xk, vi) I V x l =derivative of the loss term from sample vi 

We are doing much less work per step (B inputs instead of all inputs from the training 
set). But we do not necessarily converge more slowly. A typical feature of stochastic 
gradient descent is "semi-convergence" : fast convergence at the start. 

" Early steps of SGD often converge more quickly than GD toward the solution x*. 1 

This is highly desirable for deep learning. Section VI.4 showed zig-zag for full batch 
mode. This was improved by adding momentum from the previous step (which we may 
also do for SGD). Another improvement frequently comes by using adaptive methods like 
some variation of ADAM. Adaptive methods look further back than momentum-now all 
previous descent directions are remembered and used. Those come later in this section. 

Here we pause to look at semi-convergence: Fast start by stochastic gradient descent. 
We admit immediately that later iterations of SGD are frequently erratic. Convergence 
at the start changes to large oscillations near the solution. Figure VI.l 0 will show this. · 
One response is to stop early. And thereby we avoid overfitting the data. 

In the following example, the solution x* is in a specific interval I. If the current 
approximation Xk is outside I, the next approximation Xk+l is closer to I (or inside I). 
That gives semiconvergence-a good start. But eventually the Xk bounce around inside I. 
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Fast Convergence at the Start: Least Squares with n = 1 

We learned from Suvrit Sra that the simplest example is the best. The vector x has only 
one component X. The ith loss is ei = HaiX - bi)2 with ai > 0. The gradient of ei is 
its derivative ai(aix- bi). It is zero and .ei is minimized at x = bilai. The total loss over 
all N samples is L(x) = 2~ I: (aix- bi)2 : Least squares with N equations, 1 unknown. 

N 

The equation to solve is V L= ~ L ai(aix- bi) =0. The solution is x* = L:ai~i (1) 
1 :L~ 

Important If BIA is the largest ratio bi/ai, then the true solution x* is below BIA. 
This follows from a row of four inequalities : 

Similarly x* is above the smaUest ratio f3 I a. Conclusion: If Xk is outside the 
interval I from /3 I a to B I A, then the kth gradient descent step will move toward that 
interval I containing x*. Here is what we can expect from stochastic gradient descent: 

If Xk is outside I, then Xk+l moves toward the interval f3 I a :::; x :::; B I A. 

H Xk is inside I, then so is Xk+l· The iterations can bounce around inside I. 

A typical sequence xo,x1,X2, ... from minimizing IIAx- bll2 by stochastic gradient 
descent is graphed in Figure VI.lO. You see the fast start and the oscillating finish. 
This behavior is a perfect signal to think about early stopping or averaging (page 365) 
when the oscillations start. 

10of 
~ 

Cost Function 

10-2f. 
L ..... ~"'----'- -

5 m u w ~ w M ~ ~ 
Iterations 

Figure VI. I 0: The left figure shows a trajectory of stochastic gradient descent with two 
unknowns. The early iterations succeed but later iterations oscillate (as shown in the inset). 
On the right, the quadratic cost function decreases quickly at first and then fluctuates 
instead of converging. The four paths start from the same x 0 with random choices of i in 
equation (3). The condition number of the 40 by 2 matrix A is only 8.6. 
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Randomized Kaczmarz is Stochastic Gradient Descent for Ax = b 

Kaczmarz for Ax = b with random i( k) (3) 

We are randomly selecting row i of A at step k. We are adjusting Xk+l to solve equation i 
in Ax = b. (Multiply equation (3) by a[ to verify that a[ Xk+l = bi. This is equation i 
in Ax = b.) Geometrically, xk+1 is the projection of Xk onto one of the hyperplanes 
a[x = bi thatmeetatx* = A-1b. 

This algorithm resisted a close analysis for many years. The equations aT x = b1, 
ai x = b2 ... were taken in cyclic order with step s = 1. Then Strohmer and Vershynin 
proved fast convergence for random Kaczmarz. They used SGD with norm-squared sam
pling (importance sampling) as in Section 11.4: Choose row i of A with probability Pi 
proportional to II a[ 11 2 • 

The previous page described the Kaczmarz iterations for Ax= b when A was N by 1. 
The sequence x0 , x1 , x2 , ... moved toward the interval I. The least squares solution x* 
was in that interval. For an N by K matrix A, we expect the K by 1 vectors Xi to move 
into a K -dimensional box around x*. Figure VI. I 0 showed this for K = 2. 

The next page will present numerical experiments for stochastic gradient descent: 

A variant of random Kaczmarz was developed by Gower and Richtarik, with no less 
than six equivalent randomized interpretations. Here are references that connect the many 
variants from the original by Kaczmarz in the 1937 Bulletin de I' Academie Polonaise. 

1 T. Strohmer and R. Vershynin , A randomized Kaczmarz algorithm with exponentiall; 
convergence, Journal of Fourier Analysis and Applications 15 (2009) 262-278. 

2 A. Ma, D. Needell, and A. Ramdas, Convergence properties of the randomized 
extended Gauss-Seidel and Kaczmarz methods, arXiv: 1503.08235v3 1 Feb 2018. 

3 D. Needell, N. Srebro, and R. Ward, Stochastic gradient descent, weighted sam
pling, and the randomized Kaczmarz algorithm, Math. Progr. 155 (2015) 549-573. 

4 R. M. Gower and P. Richtarik, Randomized iterative methods for linear systems, 
SIAM 1. Matrix Analysis. 36 (2015) 1660-1690; arXiv: 1506.03296v5 6 Jan 2016. 

5 L. Bottou et al, in Advances in Neural Information Processing Systems, NIPS 16 
(2004) and NIPS 20 (2008), MIT Press. 

6 S. Ma, R. Bassily, and M. Belkin, The power of interpolation: Understanding the 
effectiveness of SGD in modern over-parametrized learning, arXiv: 1712.06559. 

7 S. Reddi, S. Sra, B. Poczos, and A. Smola, Fast stochastic methods for nonsmooth 
nonconvex optimization, arXiv: 1605.06900, 23 May 2016. 
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Random Kaczmarz and Iterated Projections 

Suppose Ax* = b. A typical step of random Kaczmarz projects the current error Xk - x* 
onto the hyperplane a[ x = bi. Here i is chosen randomly at step k (often with impor
tance sampling using probabilities proportional to llai 11 2 ). To see that projection matrix 
aia[ /a[ ai, substitute bi = a'[ x* into the update step (3) : 

b T T 
* * i - ai Xk ( *) aiai ( *) 

Xk+l- x = Xk- x + II ·ll 2 ai = Xk- x - ~ Xk- x 
a, ai a, 

(4) 

Orthogonal projection never increases length. The error can only decrease. The error 
norm llxk- x*ll decreases steadily, even if the cost function IIAxk- bll does not. But 
convergence is usually slow ! Strohmer-Vershynin estimate the expected error: 

E[11xk-x*l12] s (1- :2r llxo-x*W, c= conditionnumberofA. (5) 

This is slow compared to gradient descent (there 2 is replaced by c, and then vfC with 
momentum in VI.4). But (5) is independent of the size of A: attractive for large problems. 

The theory of alternating projections was initiated by von Neumann (in Hilbert space). 
See books and papers by Bauschke-Borwein, Escalante-Raydan, Diaconis, Xu, ... 

Our experiments converge slowly! The 100 by 10 matrix A is random with c ~ 400. 
The figures show random Kaczmarz for 600,000 steps. We measure convergence by the 
angle fh between Xk - x* and the row ai chosen at step k. The error equation (4) is 

(6) 

The graph shows that those numbers 1 - cos2 fh are very close to 1 : slow convergence. 
But the second graph confirms that convergence does occur. The Strohmer-Vershynin 
bound (5) becomes E [cos2 fh] ~ 1/c2 . Our example matrix has 1/2 ~ w-5 and 
often cos2 Bk ~ 2 · w-5 , confirming that bound. 
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Figure VI.ll: Convergence of the squared error for random Kaczmarz. Equation (6) with 
1 - cos2 Bk close to 1- w-5 produces the slow convergence in the lower graph. 
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Convergence in Expectation 
For a stochastic algorithm like SGD, we need 'a convergence proof that accounts for 
randomness-in the assumptions and also in the conclusions. Suvrit Sra provided us· 
with such a proof, and we reproduce it here. The function f(x) is a sum ~"Efi(x) of 
n terms. The sampling chooses i(k) at step k uniformly from the numbers 1 ton (with 
replacement !) and the stepsize is s = constant/ JT. First come assumptions on f ( x) 
and Vf(x), followed by a standard requirement (no bias) for the random sampling. 

1 Lipschitz smoothness of V f(x) IIV f(x)- V f(y)ll ::::; L llx- Yll 

2 Bounded gradients IIVfi(k)(x)ll::::; G 

E (Vfi(k)(x)- Vf(x)] = 0 3 Unbiased stochastic gradients 

From Assumption 1 it follows that 

f(xk+l)::::; f(xk) + (Vf(xk),xk+l- Xk) + ~ Ls2 11Vfi(k)(xk)W 

1 211 2 f(xk+d::::; f(xk) + (Vf(xk), -s Vfi(k)(xk)) + 2 Ls Vfi(k)(xk)ll 

Now take expectations of both sides and use Assumptions 2-5 : 
1 

E [f(xk+l)] ::::; E [f(xk)]- sE [ IIV f(xk)W] + 2 Ls2 G2 

2 1 1 2 2 
=>E[IIVJ(xk)ll]::::; :;E[f(xk)-f(xk+I)]+2Ls G. (7) 

Choose the stepsize s = c/VT, and add up (7) from k = 1 toT. The sum telescopes: 

~ t, E [ IIV f(xk)W] ::::; Jr ( f(xl) ~ f(x*) + ~c G2) = Jr. (8) ~ 
Here f(x*) is the global minimum. The smallest term in (8) is below the average: 

1::;~~T E[IIVf(xk)ll 2 ]::::; C/vT. (9) 

The conclusion of Sra's theorem is convergence in expectation at a sublinear rate. 

Weight Averaging Inside SGD 

The idea of averaging the outputs from several steps of stochastic gradient descent 
looks promising. The learning rate (step size) can be constant or cyclical over ~ach group 
of outputs. Gordon Wilson et al have named this method Stochastic Weight Averaging 
(SWA). They emphasize that this gives promising results for training deep networks, 
with better generalization and almost no overhead. It seems natural and effective. 

P. lzmailov, D. Podoprikhin, T. Garipov, D. Vetrov, A. Gordon Wilson, Averaging 
weights leads to wider optima and better generalization, arXiv: 1803.05407. 



366 Optimization 

Adaptive Methods Using Earlier Gradients 

For faster convergence of gradient descent and stochastic gradient descent, adaptive 
methods have been a major direction. The idea is to use gradients from earlier steps. 
That "memory" guides the choice of search direction D and the all-important stepsize s. 
We are searching for the vector x* that minimizes a specified loss function L(x). 
In the step from Xk to Xk+l• we are free to choose Dk and Sk: 

For a standard SGD iteration, Dk depends only on the current gradient V Lk (and sk might 
be s/Vk). That gradient V Lk(Xk, B) is evaluated only on a random minibatch B of the 
test data. Now, deep networks often have the option of using some or all of the earlier 
gradients (computed on earlier random minibatches): 

Adaptive Stochastic Gradient Descent (11) 

Success or failure will depend on Dk and Sk. The first adaptive method (called 
ADAGRAD) chose the usual search direction Dk = V L(xk) but computed the stepsize 
from all previous gradients [Duchi-Hazan-Singer]: 

ADAGRAD stepsbe SF ( ;,;) [ ~ diag ( ~ II'VL;Ii') ]"' (12) 

01/ .Jk is a typical decreasing step size in proving convergence of stochastic descent. 
It is often omitted when it slows down convergence in practice. The "memory factor" 
in (12) led to real gains in convergence speed. Those gains made adaptive methods 
a focus for more development. 

Exponential moving averages in ADAM [Kingma-Ba] have become the favorites. 
Unlike (12), recent gradients V L have greater weight than earlier gradients in both sk and 
the step direction Dk. The exponential weights in D and s come from <5 < 1 and f3 < 1: 

k 

Dk = (1-<5) L <Sk-i V L(xi) 
I, k ]1/2 

Sk =( ~) e- {3) diag 8 f3k-iiiV L (xi)ll 2 (13) 
i=l 

Typical values are <5 = 0.9 and f3 = 0.999. Small values of <5 and f3 will effectively kill off 
the moving memory and lose the advantages of adaptive methods for convergence speed. 
That speed is important in the total cost of gradient descent ! The look-back formula for 
the direction Dk is like including momentum in the heavy ball method of Section VI.4. 

The actual computation of Dk and Sk will be a recursive combination of old and new: 

(14) 

For several class projects, this adaptive method clearly produced faster convergence. 
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ADAM is highly popular in practice (this is written in 2018). But several authors have 
pointed out its defects. Hardt, Recht, and Singer constructed examples to show that its 
limit X 00 for the weights in deep learning could be problematic : Convergence may fail or 
(worse) the limiting weights may generalize poorly in applications to unseen test data. 

Equations (13)-(14) follow the recent conference paper of Reddi, Kale, and Kumar. 
Those authors prove non-convergence of ADAM, with simple examples in which the 
stepsize Sk increases in time-an undesired outcome. In their example, ADAM takes the 
wrong direction twice and the right direction once in every three steps. The exponential 
decay scales down that good step and overall the stepsizes Sk do not decrease. A large fJ 
(near 1) is needed and used, but there are always convex optimization problems on which 
ADAM will fail. The idea is still good. 

One approach is to use an increasing minibatch size B. The NIPS 2018 paper proposes 
a new adaptive algorithm YOGI, which better controls the learning rate (the stepsize). 
Compared with ADAM, a key change is to an additive update; other steps are unchanged. 
At this moment, experiments are showing improved results with YOGI. 

And after fast convergence to weights that nearly solve V L ( x) = 0 there is still the 
crucial issue : Why do those weights generalize well to unseen test data ? 
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We end this chapter by emphasizing : Stochastic gradient descent is now the leading method 
to find weights x that minimize the loss L(x) and solve V L(x*) = 0. Those weights 
from SGD normally succeed on unseen test data. 
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Generalization : Why is Deep Learning So Effective? 

We end Chapter VI-and connect to Chapter VII-with a short discussion of a central 
question for deep learning. The issue here is generalization. This refers to the behavior of 
a neural network on test data that it has not seen. If we construct a function F(x, v) that 
successfully classifies the known training data v, will F continue to give correct results 
when v is outside the training set ? 

The answer must lie in the stochastic gradient descent algorithm that chooses weights. 
Those weights x minimize a loss function L(x, v) over the training data. The question is: 
Why do the computed weights do so well on the test data? 

Often we have more free parameters in x than data in v. In that case we can expect 
many sets of weights (many vectors x) to be equally accurate on the training set. Those 
weights could be good or bad. They could generalize well or poorly. Our algorithm chooses 
a particular x and applies those weights to new data Vtest· 

An unusual experiment produced unexpectedly positive results. The components 
of each input vector v were randomly shuffled. So the individual features represented 
by v suddenly had no meaning. Nevertheless the deep neural net learned those randomized 
samples. The learning function F(x, v) still classified the test data correctly. Of course 
F could not succeed with unseen data, when the components of v are reordered. 

It is a common feature of optimization that smooth functions are easier to approximate 
than irregular functions. But here, for completely randomized input vectors, stochastic 
gradient descent needed only three times as many epochs (triple the number of iterations) 
to learn the training data. This random labeling of the training samples (the experiment 
has become famous) is described in arXiv: 1611.03530. 

The Kaczmarz Method in Tomographic Imaging (CT) 

A key property of Kaczmarz is its quick success in early iterations. This is called semi
convergence in tomography (where solving Ax = b constructs aCT image, and the method 
produces a regularized solution when the data is noisy). Quick semi-convergence for noisy 
data is an excellent property for such a simple method. The first steps all approach the 
correct interval from a/ f3 to A/ B (for one scalar unknown). But inside that interval, 
Kaczmarzjumps around unimpressively. 

We are entering here the enormous topic of ill-conditioned inverse problems (see the 
books of P. C. Hansen). In this book we can do no more than open the door. 
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Problem Set VI.5 

1 The rank-one matrix P = aa T j aT a is an orthogonal projection onto the line through 
a. Verify that P 2 = P (projection) and that Px is on that line and that x - Px is 
always perpendicular to a (why is aT x = aT Px ?) 

2 Verify that equation (4) which shows that xk+1 - x* is exactly P(xk - x*). 

3 If A has only two rows a 1 and a 2, then Kaczmarz will produce the alternating 
projections in this figure. Starting from any error vector eo = xo - x*, why does ek 
approach zero ? How fast? 

4 

eo= llxo- x*ll 

Suppose we want to minimize F(x, y) = y2 + (y - x) 2 . The actual minimum 
is F = 0 at (x*, y*) = (0, 0). Find the gradient vector V F at the starting point 
(x0 , y0 ) = (1, 1). For full gradient descent (not stochastic) with steps= !, where 
is(x1,y1)? 

5 In minimizing F(x) = I lAx - bll 2 , stochastic gradient descent with minibatch size 
B = 1 will solve one equation a'[' x = bi at each step. Explain the typical step for 
minibatch size B = 2. 

6 (Experiment) For a random A and b (20 by 4 and 20 by 1), try stochastic gradient 
descent with minibatch sizes B = 1 and B = 2. Compare the convergence rates
theratiosrk = llxk+l-x*ll/llxk -x*ll· 

7 (Experiment) Try the weight averaging on page 365 proposed in arXiv: 1803.05407. 
Apply it to the minimization of I lAx - bll2 with randomly chosen A (tO by 10) and 
b (20 by 1), and minibatch B = 1. 

Do averages in stochastic descent converge faster than the usual iterates Xk? 
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Part VII : Learning from Data 

This part of the book is a great adventure-hopefully for the reader, certainly for the author, 
and it involves the whole science of thought and intelligence. You could call it 
Machine Learning (ML) or Artificial Intelligence (AI). Human intelligence created it 
(but we don't fully understand what we have done). Out of some combination of ideas 
and failures, attempting at first to imitate the neurons in the brain, a successful approach 
has emerged to finding patterns in data. 

What is important to understand about deep learning is that those data-fitting computa
tions, of almost unprecedented size, are often heavily underdeterrnined. There are a great 
many points in the training data, but there are far more weights to be computed in a deep 
network. The art of deep learning is to find, among many possible solutions, one that will 
generalize to new data. 

It is a remarkable observation that learning on deep neural nets with many weights 
leads to a successful tradeoff: F is accurate on the training set and the unseen test set. f; 
This is the good outcome from minibatch gradient descent with momentum and the 
hyperparameters from Section VII.4 (including stepsize selection and early stopping). 

This chapter is organized in an irregular order. Deep learning comes first. Earlier 
models like Support Vector Machines and Kernel Methods are briefly described in VII.5. 
The order is anhistorical, and the reader will know why. Neural nets have become the 
primary architecture for the most interesting (and the most difficult) problems of 
machine learning. That multi-layer architecture often succeeds, but by no means always ! 
This book has been preparing for deep learning and we simply give it first place. 

Sections Vll.l-2 describe the learning function F(x,v) for fully conneeted nets and 
convolutional nets. The training data is given by a set of feature vectors v. The weights 
that allow F to classify that data are in the vector x. To optimize F, gradient descent 
needs its derivatives 8F / 8x. The weights x are the matrices A1 , ... , AL and bias vectors 
b1 , ... , b L that take the sample data v = v 0 to the output w = v L. 

Formulas for 8Fj8A and 8Fj8b are not difficult. Those formulas are useful to see. 
But real codes use automatic differentiation (AD) for backpropagation (Section Vll.3). 
Each hidden layer with its optimized weights learns more about the data and the population 
from which it comes-in order to classify new and unseen data from the same population. 

371 
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The Functions of Deep Learning 

Suppose one of the digits 0, 1, ... , 9 is drawn in a square. How does a person recognize 
which digit it is ? That neuroscience question is not answered here. How can a computer 
recognize which digit it is ? This is a machine learning question. Probably both answers 
begin with the same idea: Learn from examples. 

So we start with M different images (the training set). An image will be a set of 
p small pixels-or a vector v = (VI, ... , Vp). The component Vi tells us the "grayscale" 
of the ith pixel in the image : how dark or light it is. So we have M images each with 
p features : M vectors v in p-dimensional space. For every v in that training set we 
know the digit it represents. 

In a way, we know a function. We have M inputs in RP each with an output from 0 to 9. 
But we don't have a "rule". We are helpless with a new input. Machine learning proposes 
to create a rule that succeeds on (most of) the training images. But "succeed" means much 
more than that : The rule should give the correct digit for a much wider set of test images, 
taken from the same population. This essential requirement is called generalization. 

What form shall the rule take? Here we meet the fundamental question. Our first 
answer might be: F( v) could be a linear function from RP to R10 (a 10 by p matrix). 
The 10 outputs would be probabilities of the numbers 0 to 9. We would have lOp entries 
and M training samples to get mostly right. 

The difficulty is : Linearity is far too limited. Artistically, two zeros could make an 8. 
1 and 0 could combine into a handwritten 9 or possibly 6. Images don't add. In recognizing 
faces instead of numbers, we will need a lot of pixels-and the input-output rule is nowhere 
near linear. 

Artificial intelligence languished for a generation, waiting for new ideas. There is no 
claim that the absolutely best class of functions has now been found. That class needs to 
allow a great many parameters (called weights). And it must remain feasible to compute 
all those weights (in a reasonable time) from knowledge of the training set. 

The choice that has succeeded beyond expectation-and has turned shallow learning 
into deep learning-is Continuous Piecewise Linear (CPL) functions. Linear for sim
plicity, continuous to model an unknown but reasonable rule, and piecewise to achieve 
the nonlinearity that is an absolute requirement for real images and data. 

This leaves the crucial question of computability. What parameters will quickly de
scribe a large family of CPL functions? Linear finite elements start with a triangular mesh. 
But specifying many individual nodes in RP is expensive. Much better if those nodes are 
the intersections of a smaller number of lines (or hyperplanes). Please know that a regular 
grid is too simple. 

Here is a first construction of a piecewise linear function of the data vector v. Choose 
a matrix AI and vector bi. Then set to zero (this is the nonlinear step) all negative compo
nents of AI v + bi. Then multiply by a matrix A2 to produce 10 outputs in w = F(v) = 
A2(AI v + b!)+. That vector (AI v + bi)+ forms a "hidden layer" between the input v and 
the output w. 
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(Avh [(Av+bh]+ 

C[Av+b]+ =w 

r( 4, 3) = 15 linear pieces 

(Av)q 
inw=F(v) 

Actually the nonlinear function called ReLU (x) = x+ = max (x, 0) was originally 
smoothed into a logistic curve like 1/(1 +e-x). It was reasonable to think that continuous 
derivatives would help in optimizing the weights A1, b1, A2. That proved to be wrong. 

The graph of each component of (A 1 v + b1) + has two halfplanes (one is flat, from 
the zeros where A1 v + b1 is negative). If A1 is q by p, the input space RP is sliced by 
q hyperplanes into r pieces. We can count those pieces ! This measures the "expressivity" 
of the overall function F(v). The formula from combinatorics uses the binomial coeffi
cients (see Section VII. I): 

r(q,p) = ( ~) + ( ~) + ... + (;) 

This number gives an impression of the graph of F. But our function is not yet sufficiently 
expressive, and one more idea is needed. 

Here is the indispensable ingredient in the learning function F. The best way to create 
complex functions from simple functions is by composition. Each Fi is linear (or 
affine) followed by the nonlinear ReLU : Fi(v) = (Aiv + bi)+· Their composition is 
F(v) = FL(FL-1(· . . F2(F1(v)))). We now have L- 1 hidden layers before the final 
output layer. The network becomes deeper as L increases. That depth can grow quickly for 
convolutional nets (with banded Toeplitz matrices A). 

The great optimization problem of deep learning is to compute weights Ai and bi 
that will make the outputs F( v) nearly correct-close to the digit w( v) that the image v 
represents. This problem of minimizing some measure of F(v) - w(v) is solved by 
following a gradient downhill. The gradient of this complicated function is computed by 
backpropagation-the workhorse of deep learning that executes the chain rule. ' 

A historic competition in 2012 was to identify the 1.2 million images collected in' 
lmageNet. The breakthrough neural network in AlexNet had 60 million weights. Its 
accuracy (after 5 days of stochastic gradient descent) cut in half the next best error rate. 
Deep learning had arrived. 

Our goal here was to identify continuous piecewise linear functions as powerful 
approximators. 'That family is also convenient-closed under addition and maximization 
and composition. The magic is that the learning function F(Ai, bi, v) gives accurate 
results on images v that F has never seen. 

This two-page essay was written for SIAM News (December 2018). 

l 
.I 
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Bias vs. Variance : Underfit vs. Overfit 

A training set contains N vectors v1, ... , v N with m components each (them features of 
each sample). For each ofthose N points in Rm, we are given a value Yi· We assume there 
is an unknown function f ( x) so that Yi = f (Xi) + Ei, where the noise E has zero mean and 
variance a 2 . That is the function f ( x) that our algorithms try to learn. 

Our learning algorithm actually finds a function F(x) close to f(x). For example, 
F from our learning algorithm could be linear (not that great) or piecewise linear (much 
better)- this depends on the algorithm we use. We fervently hope that F( x) will be close 
to the correct f ( x) not only on the training samples but also for later test samples. 

The warning is often repeated, and always the same : Don't overfit the data. The 
option is there, to reproduce all known observations. It is more important to prevent large 
swings in the learning function (which is built from the weights). This function is going 
to be applied to new data. Implicitly or explicitly, we need to regularize this function F. 

Ordinarily, we regularize by adding a penalty term like .AJJxJJ to the function that we 
are minimizing. This gives a smoother and more stable solution as the minimum point. 
For deep learning problems this isn't always necessary! We don't fully understand 
why steepest descent or stochastic steepest descent will find a near minimum that 
generalizes well to unseen test data-with no penalty term. Perhaps the success comes 
from following this rule : Stop the minimization early before you overfit. 

IfF does poorly on the training samples with large error (bias), that is underfitting 

IfF does well on the training samples but not well on test samples, that is overfitting. 

This is the bias-variance tradeoff. High bias from underfitting, high variance from 
overfitting. Suppose we scale f and F so that E [F( x) J = 1. 

Bias= E [f(x)- F(x)] Variance= E [(F(x)) 2]- (E [F(x)]) 2 

We are forced into this tradeoff by the following identity for (Bias)2 +(Variance)+ (Noise?: 

E [(y- F(x))2] = (E [f(x)- F(x)])2 + E [(F(x)) 2J- (E [F(x)])2 + E [(y- f(x)) 2] 

Again, bias comes from allowing less freedom and using fewer parameters (weights). 
l!ariance is large when we provide too much freedom and too many parameters for F. 
Then the learned function F can be super-accurate on the training set but out of control 
on an unseen test set. Overfitting produces an F that does not generalize. 

Here are links to six sites that support codes for machine learning : 

Caffe: arXiv: 1408.5093 Keras: http://keras.io/ 

MatConvNet: www.vlfeat.org/matconvnet Theano: arXiv: 1605.02688 

Torch: torch.ch TensorFlow: www.tensorflow.org 
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VII.l The Construction of Deep Neural Networks 

Deep neural networks have evolved into a major force in machine learning. Step by step, 
the structure of the network has become more resilient and powerful-and more easily 
adapted to new applications. One way to begin is to describe essential pieces in the 
structure. Those pieces come together into a learning function F(x, v) with weights x 
that capture information from the training data v-to prepare for use with new test data. 

Here are important steps in creating that function F : 

1 Key operation Composition F = Fa ( F2 ( F1 ( x, v))) 

2 Key rule Chain rule for x-derivatives ofF 

3 Key algorithm Stochastic gradient descent to find the best weights x 

4 Key subroutine 

5 Key nonlinearity 

Backpropagation to execute the chain rule 

ReLU(y) = max(y, 0) =ramp function 

Our first step is to describe the pieces F1, F2, F3, ... for one layer of neurons at a time. 
The weights x that connect the layers v are optimized in creating F. The vector v = v 0 

comes from the training set, and the function Fk produces the vector vk at layer k. 
The whole success is to build the power of F from those pieces Fk in equation (1). 

Fk is a Piecewise Linear Function of vk-I 

The input to Fk is a vector Vk-1 of length Nk_ 1. The output is a vector Vk of length Nk. 
ready for input to Fk+1 . This function Fk has two parts, first linear and then nonlinear: 

1. The linear part of Fk yields Akvk-1 + bk (that bias vector bk makes this "affine") 

2. A fixed nonlinear function like ReLU is applied to each component of Akvk-1 + bk 

I Vk = Fk(Vk-d = ReLU (Akvk-1 + bk) I (1) 

The training data for each sample is in a feature vector v 0 • The matrix Ak has shape 
Nk by Nk-1· The column vector bk has Nk components. These Ak and bk are weights 
constructed by the optimization algorithm. Frequently stochastic gradient descent 
computes optimal weights x = (A1 , b1 , ... , AL, bL) in the central computation pf deep 
learning. It relies on backpropagation to find the x-derivatives of F, to solve V F = 0. 

The activation function ReLU(y) = max(y, 0) gives flexibility and adaptability. · 
Linear steps alone were of limited power and ultimately they were unsuccessful. 

ReLU is applied to every "neuron" in every internal layer. There are Nk neurons 
in layer k, containing the Nk outputs from Akvk-1 + bk. Notice that ReLU itself is 
continuous and piecewise linear, as its graph shows. (The graph is just a ramp with 
slopes 0 and 1. Its derivative is the usual step function.) When we choose ReLU, the 
composite function F = FL(F2 (F1 (x,v))) has an important and attractive property: 

The learning function F is continuous and piecewise linear in v. 

'l 
:; 
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One Internal Layer (L ~ 2) 
Suppose we have measured m = 3 features of one sample point in the training set. 
Those features are the 3 components of the input vector v = v 0 . Then the first function F1 

in the chain multiplies v 0 by a matrix A1 and adds an offset vector b1 (bias vector). 
If A 1 is 4 by 3 and the vector b1 is 4 by 1, we have 4 components of Aovo + bo. 

That step found 4 combinations of the 3 original features in v = v 0 . The 12 weights 
in the matrix A 1 were optimized over many feature vectors v 0 in the training set, to choose a 
4 by 3 matrix (and a 4 by 1 bias vector) that would find 4 insightful combinations. 

The final step to reach VI is to apply the nonlinear "activation function" to each of the 
4 components of A1 vo + bi. Historically, the graph of that nonlinear function was 
often given by a smooth "8-curve". Particular choices then and now are in Figure VII. I. 

ReLU(x) 

4, 
~ 

2~ 
0 f-' _____ ....., 

_, ---~-~---~--__j 

d 
! 

0.5[ 

i 

d/dxReLU(x) 

0 f--------' 

-4 -2 0 2 

tanh(x/2) 

1 .t ' ,.,-~----·-·-·-1 
_,. I 

o l _,_,.' e<IJ - 1 1 I _,. I 

r .-·,·'"' e<IJ + 1 i 
-1 r·-------·- ; 

d/dxtanh(x/2) 

Figure VII.l: The Rectified Linear Unit and a sigmoid option for nonlinearity. 

Previously it was thought that a sudden change of slope would be dangerous and pos
sibly unstable. But large scale numerical experiments indicated otherwise ! A better result 
was achieved by the ramp function ReLU(y) = max(y, 0). We will work with ReLU: 

Substitute A 1 v 0 + b1 into ReLU to find v1 

Now we have the components of VI at the four "neurons" in layer 1. The input layer held 
the three components of this particular sample of training data. We may have thousands or 
"millions of samples. The optimization algorithm found A 1 and bt. possibly by stochastic 
gradient descent using backpropagation to compute gradients of the overall loss. 

Suppose our neural net is shallow instead of deep. It only has this first layer of 4 
neurons. Then the final step will multiply the 4-component vector v 1 by a 1 by 4 matrix 
A2 (a row vector). It can add a single number b2 to reach the value v2 = A2v1 + b2. 
The nonlinear function ReLU is not applied to the output. 

Overall we compute v2 = F(x, v 0 ) for each feature vector v 0 in the training set. 

The steps are v2 = A2v1 + b2 = A2 (ReLU (A1 Vo + bl)) + b2 = F(x, vo). 
(3) 
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The goal in optimizing x = AI,b1,A2,~ is that the output values V£ = v2 at the 
last layer f = 2 should COrr~tly capture the important features of the training data VQ. 

4 x 3 matrix AI 1 x 4 matrix A2 
Add 4 x 1 vector bi 

Feature vector vo YI = AI Vo + bi VI at layer 1 
Three components for YI at layer 1 VI = ReLU (YI) 
each training sample Four components of YI and v1 

Outputw = v2 
v2 = A2vi 

Figure VII.2: A feed-forward neural net with 4 neurons on one internal layer. 
The output v2 (plus or minus) classifies the input vo (dog or cat). Then v2 is a composite 
measure of the 3-component feature vector v 0 . This net has 20 weights in Ak and bk. 

For a classification problem each sample vo of the training data is assigned 
1 or -1. We want the output v2 to have that correct sign (most of the time). 
For a regression problem we use the numerical value (not just the sign) of v2. 
We do not choose enough weights Ak and bk to get every sample correct. And we 
do not necessarily want to ! That would probably be overfitting the training data. 
It could give erratic results when F is applied to new and unknown test data. 

Depending on our choice of loss function L(x, v 2 ) to minimize, this problem 
can be like least squares or entropy minimization. We are choosing X = weight 
matrices Ak and bias vectors bk to minimize L. Those two loss functions
square loss and cross-entropy loss-are compared in Section VII.4. 

Our hope is that the function F has "learned" the data. This is machine learning. 
We don't want to choose so many weights in x that every input sample is sure to be 
correctly classified. That is not learning. That is simply fitting (overfitting) the data. 

We want a b~ance where the function F has learned what is important in recognizing 
dog versus cat-or identifying an oncoming car versus a turning car. 

Machine learning doesn't aim to capture every detail of the numbers 0, 1, 2 ... , 9. 
It just aims to capture enough information to decide correctly which number it is. 

... 
. I 
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The Initial Weights x 0 in Gradient Descent 

The architecture in a neural net decides the form of the learning function F(x, v). The 
training data goes into v. Then we initialize the weights x in the matrices A and vectors b. 
From those initial weights x 0 , the optimization algorithm (normally a form of gradient 
descent) computes weights x 1 and x 2 and onward, aiming to minimize the total loss. 

The question is : What weights x 0 to start with? Choosing x 0 = 0 would be a disaster. 
Poor initialization is an important cause of failure in deep learning. A proper choice of the 
net and the initial x 0 has random (and independent) weights that meet two requirements: 

1. xo has a carefully chosen variance a 2 . 

2. The hidden layers in the neural net have enough neurons (not too narrow). 

Hanin and Rolnick show that the initial variance a 2 controls the mean of the computed 
weights. The layer widths control the variance of the weights. The key point is this : 
Many-layered depth can reduce the loss on the training set. But if a 2 is wrong or width 
is sacrificed, then gradient descent can lose control of the weights. They can explode to 
infinity or implode to zero. 

The danger controlled by the variance a 2 of x 0 is exponentially large or exponentially 
small weights. The good choice is a 2 = 2/fan-in. The fan-in is the maximum number of in
puts to neurons (Figure VII.2 has fan-in= 4 at the output). The initialization "He uniform" 
in Keras makes this choice of a 2 . 

The danger from narrow hidden layers is exponentially large variance of x for deep 
nets. If layer j has n1 neurons, the quantity to control is the sum of 1/(layer widths nj). 

Looking ahead, convolutional nets (ConvNets) and residual networks (ResNets) 
can be very deep. Exploding or vanishing weights is a constant danger. Ideas from physics 
(mean field theory) have become powerful tools to explain and also avoid these dangers. 
Pennington and coauthors proposed a way to stay on the edge between fast growth 
and decay, even for 10,000 layers. A key is to use orthogonal transformations: Exactly as 
in matrix multiplication Q1 Q2Q3 , orthogonality leaves the size unchanged. 

For ConvNets, fan-in becomes the number of features times the kernel size (and not 
the full size of A). For ResNets, a correct a 2 normally removes both dangers. Very deep 
networks can produce very impressive learning. 

The key point: Deep learning can go wrong if it doesn't start right. 

K. He, X.Zhang, S. Ren, and J. Sun, Delving deep into rectifiers, arXiv: 1502.01852. 

B. Hanin and D. Rolnick, How to start training: The effect of initialization and architec
ture, arXiv: 1803.01719, 19 Jun 2018. 

L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington, Dynamical isometry 
and a mean field theory of CNNs : How to train 10, 000 layers, arXiv: 1806.05393, 2018. 
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Stride and Subsampling 

Those words represent two ways to achieve the same goal : Reduce the dimension. 
Suppose we start with a 1D signal of length 128. We want to filter that signal-multiply 
that vector by a weight matrix A. We also want to reduce the length to 64. Here are two 
ways to reach that goal. 

In two steps Multiply the 128-component vector v by A, and then discard 
the odd-numbered components of the output. This is filtering followed by 
subsampling. The output is ({. 2) Av. 

In one step Discard the odd-numbered rows of the matrix A. The new matrix 
A2 becomes short and wide: 64 rows and 128 columns. The "stride" of the 
filter is now 2. Now multiply the 128-component vector v by A2. Then A2v 
is the same as({. 2) Av. A stride of 3 would keep every third component. 

Certainly the one-step striding method is more efficient. If the stride is 4, the dimension 
is divided by 4. In two dimensions (for images) it is reduced by 16. 

The two-step method makes clear that half or three-fourths of the information is lost. 
Here is a way to reduce the dimension from 128 to 64 as before, but to run less risk of 
destroying important information: Max-pooling. 

Max-pooling 

Multiply the 128-component vector v by A, as before. Then from each even-odd pair of 
outputs like (Av h and (Av )3, keep the maximum. Please notice right away: Max-pooling 1 
is simple and fast, but taking the maximum is not a linear operation. It is a sensible :; 
route to dimension reduction, pure and simple. 

For an image (a 2-dimensional signal) we might use max-pooling over every 2 by 2 
square of pixels. Each dimension is reduced by 2, The image dimension is reduced by 4. 
This speeds up the training, when the number of neurons on a hidden layer is divided by 4. 

Normally a max-pooling step is given its own separate place in the overall architecture 
of the neural net. Thus a part of that architecture might look like this : 

weights in A max-pooling 

Vn, in layer n Vn+2 = max2 ( Vn+l) · 

Dimension reduction has another important advantage, in addition to reducing the 
computation. Pooling also reduces the possibility of overfitting. Average pooling would 
keep the average of the numbers in each pool : now the pooling layer is linear. 
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The Graph of the Learning Function F( v) 

The graph of F ( v) is a surface made up of many, many flat pieces-they are planes 
or hyperplanes that fit together along all the folds where ReLU produced a change of slope. 
This is like origami except that this graph has flat pieces going to infinity. And the 
graph might not be in R3 -the feature vector v = v 0 has No = m components. 

Part of the mathematics of deep learning is to estimate the number of flat pieces 
and to visualize how they fit into one piecewise linear surface. That estimate comes after 
an example of a neural net with one internal layer. Each feature vector v 0 contains 
m measurements like height, weight, age of a sample in the training set. 

In the example, F had three inputs in v 0 and one output v 2 . Its graph will be a piecewise 
flat surface in 4-dimensional space. The height of the graph is v2 = F(v0 ), over the 
point v 0 in 3-dimensional space. Limitations of space in the book (and severe limitations 
of imagination in the author) prevent us from drawing that graph in R4 . Nevertheless 
we can try to count the flat pieces, based on 3 inputs and 4 neurons and 1 output. 

Note 1 With only m = 2 inputs (2 features for each training sample) the graph ofF 
is a surface in 3D. We can and will make an attempt to describe it. 

Note 2 You actually see points on the graph of F when you run examples on 
playground.tensorflow.org. This is a very instructive website. 

That website offers four options for the training set of points v 0 . You choose the number of 
layers and neurons. Please choose the ReLU activation function! Then the program counts 
epochs as gradient descent optimizes the weights. (An epoch sees all samples on average 
once.) If you have allowed enough layers and neurons to correctly classify the blue and 
orange training samples, you will see a polygon separating them. That polygon shows 
where F = 0. It is the cross-section of the graph of z = F( v) at height z = 0. 

That polygon separating blue from orange (or plus from minus : this is classification) 
is the analog of a separating hyperplane in a Support Vector Machine. If we were limited 
to linear functions and a straight line between a blue ball and an orange ring around it, 
separation would be impossible. But for the deep learning function F this is not difficult. .. 

We will discuss experiments on this playground.tensorflow site in the Problem Set. 

Important Note: Fully Connected versus Convolutional 

We don't want to mislead the reader. Those "fully connected" nets are often not the most 
effective. If the weights around one pixel in an image can be repeated around all pixels 
(why not?), then one row of A is all we need. The row can assign zero weights to faraway 
pixels. Local convolutional neural nets (CNN's) are the subject of Section VII.2. 

You will see that the count grows exponentially with the number of neurons and layers. 
That is a useful insight into the power of deep learning. We badly need insight because 
the size and depth of the neural network make it difficult to visualize in full detail. 
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Counting Flat Pieces in the Graph : One Internal Layer 
It is easy to count entries in the weight matrices Ak and the bias vectors bk. Those numbers 
determine the function F. But it is far more interesting to count the number of flat pieces 
in the graph of F. This number measures the expressivity of the neural network. 
F(x, v) is a more complicated function than we fully understand (at least so far). 
The system is deciding and acting on its own, without explicit approval of its "thinking". 
For driverless cars we will see the consequences fairly soon. 

Suppose vo has m components and A1 v 0+b1 has N components. We haveN functions 
of Vo. Each of those linear functions is zero along a hyperplane (dimension m - 1) 
in Rm. When we apply ReLU to that linear function it becomes piecewise linear, with a 
fold along that hyperplane. On one side of the fold its graph is sloping, on the other side 
the function changes from negative to zero. 

Then the next matrix A2 combines those N piecewise linear functions of vo, so we 
now have folds along N different hyperplanes in Rm. This describes each piecewise linear 
component of the next layer A2(ReLU(A1 v 0 + b1 )) in the typical case. 

You could think of N straight folds in the plane (the folds are actually along N hyper
planes in m-dimensional space). The first fold separates the plane in two pieces. The next 
fold from ReLU will leave us with four pieces. The third fold is more difficult to visualize, 
but the following figure shows that there are seven (not eight) pieces. 

In combinatorial theory, we have a hyperplane arrangement-and a theorem of Tom 
Zaslavsky counts the pieces. The proof is presented in Richard Stanley's great textbook on 
Enumerative Combinatorics (2001). But that theorem is more complicated than we need, 
because it allows the fold lines to meet in all possible ways. Our task is simpler because 
we assume that the fold lines are in "general position"-m + 1 folds don't meet. For this 
case we now apply the neat counting argument given by Raghu, Poole, Kleinberg, Gangul, 
and Dickstein: On the Expressive Power of Deep Neural Networks, arXiv: 1606.05336v6: 
See also The Number of Response Regions by Pascanu, Montufar, and Bengio on arXiv 
1312.6098. 

Theorem For v in Rm, suppose the graph of F( v) has folds along N hyperplanes 
H1 , ... , HN. Those come from N linear equations a[v + bi = 0, in other words 
from ReLU at N neurons. Then the number of linear pieces ofF and regions bounded 
by theN hyperplanes is r(N, m): 

r(N,m) = ~ ( ~) = C~) + ( ~) + .. · + ( :). (4) 

These binomial coefficients are 

(N) _ N! . 1 _ (N) _ 
i - i !(N _ i)! wtth 0.- 1 and 0 - 1 and ( ~) = 0 fori > N. 

Example The function F ( x, y, z) = ReLU ( x) + ReLU (y) + ReLU ( z) has 3 folds along 
the 3 planes x =' 0, y = 0, z = 0. Those planes divide R3 into r(3, 3) = 8 pieces where 
F = x+y+ z and x + z and x andO (and4more). Adding ReLU (x +y+z -1) gives a 
fourth fold and r( 4, 3) = 15 pieces ofR3 . Not 16 because the new fold plane x + y + z = 1 
does not meet the 8th original piece where x < 0, y < 0, z < 0. 

l 
.I 
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George Polya's famous YouTube video Let Us Teach Guessing cut a cake by 5 planes. 
He helps the class to find r(5, 3) = 26 pieces. Formula (4) allows m-dimensional cakes. 

One hyperplane in Rm produces ( ~) + ( ~ ) = 2 regions. And N = 2 hyperplanes 

will produce r(2, m) = 1 + 2 + 1 = 4 regions provided m > 1. When m = 1 we have 
two folds in a line, which only separates the line into r(2, 1) = 3 pieces. 

The count r of linear pieces will follow from the recursive formula 

lr(N,m) = r(N -1,m) + r(N -1,m -1)., (5) 

To understand that recursion, start with N -1 hyperplanes in Rm and r(N -1, m) regions. 
Add one more hyperplane H (dimension m- 1). The established N- 1 hyperplanes 
cut H into r(N- 1, m- 1) regions. Each of those pieces of H divides one existing region 
into two, adding r(N- 1, m- 1) regions to the original r(N- 1, m); see Figure VII.3. 
So the recursion is correct, and we now apply equation (5) to compute r(N, m). 

The count starts at r(1, 0) = r(O, 1) = 1. Then (4) is proved by induction on N + m: 

m ( N 1) m-
1 

( N 1) r(N-1,m)+r(N-1,m-1)=~ ; + ~ ; 

= ( N ~ 1) + ~ [ ( N ; 1) + ( ~; 11)] 

( N) m-
1 

( N ) m ( N) 
= 0 + ~ i+1 = ~ i . (6) 

The two terms in brackets (second line) became one term because of a useful identity: 

( N; 1 ) + ( ~; 11 ) = ( i Z 1 ) and the induction is complete. 

Mike Giles made that presentation clearer, and he suggested Figure VII.3 to show 
the effect of the last hyperplane H. There are r = 2N linear pieces ofF( v) for N ::::; m 
and r ~ Nm / m ! pieces for N > > m, when the hidden layer has many neurons. 

4 

la 3a 

Start with 2 planes 

+--- r(2, 2) = 4 

Add new plane H 

-----,'-;.____--__.;~-- H +--- r(2, 1) = 3 
lb 3b 

Figure VII.3: The r(2, 1) = 3 pieces of H create 3 new regions. Then the count becomes 
r(3, 2) = 4 + 3 = 7 flat regions in the continuous piecewise linear surface v2 = F(vo). 
A fourth fold will cross all 3 existing folds and create 4 new regions, so r ( 4, 2) = 11. 
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Flat Pieces ofF ( v) with More Hidden Layers 

Counting the linear pieces of F( v) is much harder with 2 internal layers in the network. 
Again vo and v 1 have m and N 1 components. Now A1 v 1 + b1 will have N2 components 
before ReLU. Each one is like the function F for one layer, described above. Then appli
cation of ReLU will create new folds in its graph. Those folds are along the lines where a 
component of A1 v 1 + b 1 is zero. 

Remember that each component of A1 v 1 + b 1 is piecewise linear, not linear. So it 
crosses zero (if it does) along a piecewise linear surface, not a hyperplane. The straight 
lines in Figure VII.3 for the folds in v 1 will change to piecewise straight lines for the folds 
in v 2 • In m dimensions they are connected pieces of hyperplanes. So the count becomes 
variable, depending on the details of v 0 , At, b1 , A2, and b2. 

Still we can estimate the number of linear pieces .. We have N2 piecewise straight lines 
(or piecewise hyperplanes in Rm) from N2 ReLU's at the second hidden layer. If those 
lines were actually straight, we would have a total of N 1 + N 2 folds in each component of 
v3 = F(v0 ). Then the formula (4) to count the pieces would have N 1 + N2 in place of N. 
This is our estimate (open for improvement) with two layers between vo and v3. 

Composition F 3 ( F2 ( F1 ( v))) 

The word "composition" would simply represent "matrix multiplication" if all our 
functions were linear: Fk(v) = Akv. Then F(vo) = A3A2A1vo: just one matrix. 
For nonlinear Fk the meaning is the same: Compute v 1 = Fl(vo), then v2 = F2(vt), 
and finally v3 = F3(v2). This operation of composition F3(F2(F1(v0))) is far more 
powerful in creating functions than addition ! ~ 

For a neural network, composition produces continuous piecewise linear functions F( vo). 
The 13th problem on Hilbert's list of 23 unsolved problems in 1900 asked a question about 
all continuous functions. A famous generalization of his question was this : 

Is every continuous function F(x, y, z) of three variables the composition of 
continuous functions G 1 , ... , GN of two variables? The answer is yes. 

Hilbert seems to have expected the answer no. But a positive answer was given in 1957 
by Vladimir Arnold (age 19). His teacher Andrey Kolmogorov had previously created 
multivariable functions out of 3-variable functions. 

Related questions have negative answers. If F(x, y, z) has continuous' derivatives, it 
may be impossible for all the 2-variable functions to have continuous derivatives 
(Vitushkin). And to construct 2-variable continuous functions F(x, y) as compositions 
of 1-variable continuous functions (the ultimate 13th problem) you must allow addition. 
The 2-variable functions xy and xY use 1-variable functions exp, log, and log log: 

xy = exp(log x + logy) and xY = exp( exp(log y + log log x)). (7) 

So much to learn from the Web. A chapter of Kolmogorov's Heritage in Mathematics 
(Springer, 2007) connects these questions explicitly to neural networks. 

Is the answer to Hilbert still yes for continuous piecewise linear functions on Rm ? 
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Neural Nets Give Universal Approximation 

The previous paragraphs wandered into the analysis of functions f ( v) of several variables. 
For deep learning a key question is the approximation of f by a neural net-when the 
weights x are chosen to bring F ( x, v) close to f ( v). 

There is a qualitative question and also a quantitative question: 

1 For any continuous function f(v) with v in a cube in Rd, can a net with enough 
layers and neurons and weights x give uniform approximation to f within any 
desired accuracy € > 0? This property is called universality. 

If f(v) is continuous there exists x so that IF(x, v)- f(v)i <dor aU v. (8) 

2 If f(v) belongs to a normed spaceS of smooth functions, how quickly does the 
approximation error improve as the net has more weights? 

Accuracy of approximation to f ~n IIF(x, v)- f(v)ll ::=; Cllflls (9) 

Function spaces S often use the L 2 or L 1 or £'= norm of the function f and its 
partial derivatives up to order r. Functional analysis gives those spaces a meaning 
even for non-integer r. C usually decreases as the smoothness parameter r is 
increased. For continuous piecewise linear approximation over a uniform grid 
with meshwidth h we often find C = O(h2 ). 

The response to Question 1 is yes. Wikipedia notes that one hidden layer (with 
enough neurons!) is sufficient for approximation within €. The 1989 proof by 
George Cybenko used a sigmoid function rather than ReLU, and the theorem is 
continually being extended. Ding-Xu an Zhou proved that we can require the Ak to be 
convolution matrices (the structure becomes a CNN). Convolutions have many 
fewer weights than arbitrary matrices-and universality allows many convolutions. 

The response to Question 2 by Mhaskar, Liao, and Poggio begins with the degree 
of approximation to functions f( v1 , ... , vd) with continuous derivatives of order r. 
For n weights the usual error bound is cn-r/d. The novelty is their introduction 
of composite functions built from 2-variable functions, as in f( v1 , v2, v3, v4) = 
fg(JI (v1, v2), h(v3, v4)). For a composite function, the approximation by a 
hierarchical net is much more accurate. The error bound becomes Cn -r 12 • 

The proof applies the standard result ford = 2 variables to each function h, /2, fg. 
A difference of composite functions is a composite of 2-variable differences. 

1 G. Cybenko, Approximation by superpositions of a sigmoidal function, 
Mathematics of Control, Signals, and Systems 7 (1989) 303-314. 

2 K. Hornik, Approximation capabilities of multilayer feedforward networks, 
Neural Networks 4 (1991) 251-257. 

3 H. Mhaskar, Q. Liao, and T. Poggio, Learning functions: When is deep better 
than shallow, arXiv: 01603.00988v4; 29 May 2016. 
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4 D.-X. Zhou, Universality of deep convolutional neural networks, arXiv: 1805. 
10769, 20 Jul2018. 

5 D. Rolnick and M. Tegmark, The power of deeper networks for expressing 
natura/functions, arXiv: 1705.05502,27 Apr 2018. 

Problem Set VII.l 

1 In the example F = ReLU ( x) + ReLU (y) + ReLU ( z) that follows formula ( 4) 
for r(N, m), suppose the 4th fold comes from ReLU (x + y + z). Its fold plane 
x + y + z = 0 now meets the 3 original fold planes x = 0, y = 0, z = 0 at a 
single point (0, 0, 0)-an exceptional case. Describe the 16 (not 15) linear pieces of 
F = sum of these four ReLU's. 

2 Suppose we have m = 2 inputs and N neurons on a hidden layer, so F(x, y) 
is a linear combination of N ReLU's. Write out the formula for r(N, 2) to show 
that the count of linear pieces of F has leading term ~ N 2• 

3 Suppose we have N = 18 lines in a plane. If 9 are vertical and 9 are horizontal, 
how many pieces of the plane? Compare with r(18, 2) when the lines are in general 
position and no three lines meet. 

4 What weight matrix A1 and bias vector b1 will produce ReLU (x + 2y- 4) and 
ReLU (3x- y + 1) and ReLU (2x + 5y- 6) as theN= 3 components of the first 
hidden layer? (The input layer has 2 components x andy.) If the output w is the 
sum of those three ReLU's, how many pieces in w(x, y)? l; 

5 Folding a line four times gives r ( 4, 1) = 5 pieces. Folding a plane four times gives 
r (4, 2) = 11 pieces. According to formula (4), how many flat subsets come from 
folding R3 four times ? The flat subsets of R3 meet at 2D planes (like a door frame). 

N 

6 The binomial theorem finds the coefficients (~)in (a+ b)N = ~ ( ~) akbN-k_ 

For a = b = 1 what does this reveal about those coefficients and r ( N, m) for m 2: N ? 

7 In Figure VI1.3, one more fold will produce 11 flat pieces in the graph of z = F(x, y). 
Check that formula (4) gives r ( 4, 2) = 11. How many pieces after five folds? . 

8 Explain with words or show with graphs why each of these statements about 
Continuous Piecewise Linear functions (CPL functions) is true: 

M The maximum M(x, y) of two CPL functions F1 (x, y) and F2 (x, y) _is CPL. 

S 'The sum S(x, y) of two CPL functions F1 (x, y) and F2 (x, y) is CPL. 

C If the one-variable functions y = F1 ( x) and z = F2 (y) are CPL, 
so is the composition C(x) = z = (F2(F1 (x)). 
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9 How many weights and biases are in a network with m = No = 4 inputs in each 
feature vector v 0 and N = 6 neurons on each of the 3 hidden layers ? How many 
activation functions (ReLU) are in this network, before the final output? 

1 0 (Experimental) In a neural network with two internal layers and a total of 10 neurons, 
should you put more of those neurons in layer 1 or layer 2 ? 

Problems 11-13 use the blue ball, orange ring example on playground.tensorflow.org 
with one hidden layer and activation by ReLU (not Tanh). When learning succeeds, 
a white polygon separates blue from orange in the figure that follows. 

11 Does learning succeed for N = 4? What is thecountr(N, 2) of flat pieces in F(x)? 
The white polygon shows where flat pieces in the graph of F(x) change sign as they 
go through the base plane z = 0. How many sides in the polygon? 

12 Reduce to N = 3 neurons in one layer. Does F still classify blue and orange cor
rectly? How many flat pieces r(3, 2) in the graph ofF( v) and how many sides in 
the separating polygon? 

13 Reduce further to N = 2 neurons in one layer. Does learning still succeed? What is 
the count r(2, 2) of flat pieces? How many folds in the graph ofF( v)? How many 
sides in the white separator? 

14 Example 2 has blue and orange in two quadrants each. With one layer, doN = 3 
neurons and even N = 2 neurons classify that training data correctly ? How many 
flat pieces are needed for success ? Describe the unusual graph ofF( v) when N = 2. 

15 Example 4 with blue and orange spirals is much more difficult! With one hidden 
layer, can the network learn this training data? Describe the results as N increases. 

16 Try that difficult example with two hidden layers. Start with 4 + 4 and 6 + 2 and 
2 + 6 neurons. Is 2 + 6 better or worse or more unusual than 6 + 2 ? 

17 How many neurons bring complete separation of the spirals with two hidden layers? 
Can three layers succeed with fewer neurons than two layers ? 

I found that 4 + 4 + 2 and 4 + 4 + 4 neurons give very unstable iterations for that 
spiral graph. There were spikes in the training loss until the algorithm stopped trying. 
playground.tensorflow.org (on our back cover!) was a gift from Daniel Smilkov. 

18 What is the smallest number of pieces that 20 fold lines can produce in a plane? 

19 How many pieces are produced from 10 vertical and 10 horizontal folds? 

20 What is the maximum number of pieces from 20 fold lines in a plane? 
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VII.2 Convolutional Neural Nets 

This section is about networks with a different architecture. Up to now, each layer was 
fully connected to the next layer. If one layer had n neurons and the next layer had m 
neurons, then the matrix A connecting those layers is m by n. There were mn independent 
weights in A. The weights from all layers were chosen to give a final output that matched 
the training data. The derivatives needed in that optimization were computed by backprop
agation. Now we might have only 3 or 9 independent weights per layer. 

That fully connected net will be extremely inefficient for image recognition. First, the 
weight matrices A will be huge. If one image has 200 by 300 pixels, then its input layer has 
60, 000 components. The weight matrix A1 for the first hidden layer has 60,000 columns. 
The problem is : We are looking for connections between faraway pixels. Almost always, 
the important connections in an image are local. 

Text and music have a lD local structure : a time series 

Images have a 2D local structure: 3 copies for red-green-blue 

Video has a 3D local structure : Images in a time series 

More than this, the search for structure is essentially the same everywhere in the image. 
There is normally no reason to process one part of a text or image or video differently from 
other parts. We can use the same weights in all parts: Share the weights. The neural net of 
local connections between pixels is shift-invariant: the same everywhere. 

The result is a big reduction in the number of independent weights. Suppose each 
neuron is connected to only E neurons on the next layer, and those connections are the~ 
same for all neurons. Then the matrix A between those layers has only E independent 
weights x. The optimization of those weights becomes enormously faster. In reality 
we have time to create several different channels with their own E or E 2 weights. They 
can look for edges in different directions (horizontal, vertical, and diagonal). 

In one dimension, a banded shift-invariant matrix is a Toeplitz matrix or a filter. 
Multiplication by that matrix A is a convolution x * v. The network of connections 
between all layers is a Convolutional Neural Net (CNN or ConvNet). Here E = 3. 

A - [ xd ~~ ~~1 x~l ~ 000 l 
- 0 0 X1 Xo X-1 

0 0 0 X1 Xo X-1 

y=Av= 

N + 2 inputs and N outputs 

It is valuable to see A as a combination of shift matrices L, C, R: Left, Center, Right. 

Each shift has a diagonal of 1 's 

Then the derivatives of y = Av = x 1 Lv + x 0 Cv + x_1 Rv are exceptionally simple: 

oy = Cv 
oxo 

(1) 
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Convolutions in Two Dimensions 

When the input v is an image, the convolution with x becomes two-dimensional. The 
numbers x_ 1 , x 0 , x 1 change to E 2 = 32 independent weights. The inputs Vij have two 
indices and v represents (N + 2)2 pixels. The outputs have only N 2 pixels unless we pad 
with zeros at the boundary. The 2D convolution x * v is a linear combination of 9 shifts. 

[
xu 

Weights x10 

X1-1 

xo1 
xoo 
xo-1 

x -n l Input image vii 
X-10 Output image Yii 
X-1-1 Shifts L, C, R, U, D 

i,j from(O,O) to(N + 1,N + 1) 
i,j from (1, 1) to (N, N) 
= Left, Center, Right, Up, Down 

This expresses the convolution matrix A as a combination of 9 shifts. The derivatives 
of the output y = Av are again exceptionally simple. We use these nine derivatives 
to create the gradients V F and V L that are needed in stochastic gradient descent 
to improve the weights Xk. The next iteration Xk+l = xk - sV Lk has weights that 
better match the correct outputs from the training data. 

These nine derivatives of y = Av are computed inside backpropagation: 

ay = LUv 
8xu 

ay = CUv 
axOl 

ay =RDv 
8X-1-l 

(2) 

CNN's can readily afford to have B parallel channels (and that number B can vary as 
we go deeper into the net). The count of weights in x is so much reduced by weight sharing 
and weight locality, that we don't need and we can't expect one set of E 2 = 9 weights 
to do all the work of a convolutional net. 

Let me highlight the operational meaning of convolution. In 1 dimension, the formal 
algebraic definition Yi = 2:: XiVj-i = 2:: Xj-kVk involves a "flip" of the v's or the x's. 

This is a source of confusion that we do not need. We look instead at left-right shifts L 
and R of the whole signal (in lD) and also up-down shifts U and D in two dimensions. 
Each shift is a matrix with a diagonal full of 1 's. That saves us from the complication 
of remembering flipped subscripts. 

A convolution is a combination of shift matrices (producing a filter or Toeplitz matrix) 

A cyclic convolution is a combination of cyclic shifts (producing a circulant matrix) 

A continuous convolution is a continuous combination (an integral) of shifts 

In deep learning, the coefficients in the combination will be the "weights" to be learned. 
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Two-dimensional Convolutional Nets 
Now we come to the real success of CNN's: Image recognition. ConvNets and deep 
learning have produced a small revolution in computer vision. The applications are to 
self-driving cars, drones, medical imaging, security, robotics-there is nowhere to stop. 
Our interest is in the algebra and geometry and intuition that makes all this possible. 

In two dimensions (for images) the matrix A is block Toeplitz. Each small block 
is E by E. This is a familiar structure in computational engineering. The count E 2 of 
independent weights to be optimized is far smaller than for a fully connected network. 

The same weights are used around all pixels (shift-invariance). The matrix produces a 
2D convolution x * v. Frequently A is called a filter. 

To understand an image, look to see where it changes. Find the edges. Our eyes look 
for sharp cutoffs and steep gradients. Our computer can do the same by creating a filter. 
The dot products between a smooth function and a moving filter window will be smooth. 
But when an edge in the image lines up with a diagonal wall, we see a spike. Those dot 
products (fixed image)· (moving image) are exactly the "convolution" of the two images. 

The difficulty with two or more dimensions is that edges can have many directions. We 
will need horizontal and vertical and diagonal filters for the test images. And filters have 
many purposes, including smoothing, gradient detection, and edge detection. 

1 Smoothing For a 2D function f, the natural smoother is convolution with a Gaussian : 

1 ( 2 2)/2 2 1 2/2 2 1 2/2 2 Gf(x,y)=--e-x+y a *f=--e-x a *--e-y a *f(x,y) 
27ra2 V2if a V2if a ~ 

:i 

This shows G as a product of 1D smoothers. The Gaussian is everywhere positive, so it is 
averaging: G f cannot have a larger maximum than f. The filter removes noise (at a price 
in sharp edges). For small variance a 2 , details become clearer. 

For a 2D vector (a matrix /ij instead of a function f ( x, y)) the Gaussian must become 
discrete. The perfection of radial symmetry will be lost because the matrix G is square. 
Here is a 5 by 5 discrete Gaussian G ( E = 5) : 

G = - 7 26 41 26 7 
1 I ! 1: 2~ 1: ! 

273 4 16 26 16 4 
1 4 7 4 1 

1 4 I 1 

"' 289 ~ 

[ 1 4 7 4 1 ] 

(3) 

We also lost our exact product of 1D filters. To come closer, use a larger matrix G = xx T 

with x = (.006, .061, .242, .383, .242, .061, .006) and discard the small outside pixels. 

2 Gradient detection Image processing (as distinct from learning by a CNN) needs 
filters that .detect the gradient. They contain specially chosen weights. We mention some 
simple filters just to indicate how they can find gradients-the first derivatives of f. 
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One dimension 
E=3 [ ( ~, 0, - ~) in convolution form] 

In this case the components of Av are centered differences: (Av)i = ~ Vi+l - ~ Vi-1· 

When the components of v are increasing linearly from left to right, as in. vi = 3i, 
the output from the filter is ~ 3(i + 1) - ~ 3(i- 1) = 3 =correct gradient. 

The flip to (~, 0, -~) comes from the definition of convolution as E Xi-kVk· 

Two dimensions These 3 X 3 Sobel operators approximate 8 I ax and 8 I 8y : 

E=3 8 1 [ -1 0 1 l 
8x ~ 2 =i ~ i ~ ~! [ -~ -~ -~ l 

{}y 2 1 2 1 

For functions, the gradient vector g = gradf has IIYW = l8f l8xl 2 + l8f l8yl2• 

(4) 

Those weights were created for image processing, to locate the most important features 
of a typical image: its edges. These would be candidates forE byE filters inside a 20 
convolutional matrix A. But remember that in deep learning, weights like ~ and - ~ are 
not chosen by the user. They are created from the training data. 

Sections IV.2 and IV.5 of this book studied cyclic convolutions and Toeplitz matrices. 
Shift-invariance led to the application of discrete Fourier transforms. But in a CNN, 
ReLU is likely to act on each neuron. The network may include zero-padding-as well 
as max-pooling layers. So we cannot expect to apply the full power of Fourier analysis. 

3 Edge detection After the gradient direction is estimated, we look for edges-the most 
valuable features to know. "Canny Edge Detection" is a highly developed process. 
Now we don't want smoothing, which would blur the edge. The good filters become 
Laplacians of Gaussians: 

E f(x, y) = \72 [g(x, y) * f(x, y)] = [\72 g(x, y)] * f(x, y). (5) 

The Laplacian \72 G of a Gaussian is (x2 + y2 - 2a2 ) e-(x2 +Y2
)/2a 2 lna4 • 

The Stride of a Convolutional Filter 
Important The filters described so far all have a stride S = 1. For a larger stride, the 
moving window takes longer steps as it moves across the image. Here is the matrix A 
for a !-dimensional 3-weight filter with a stride of 2. Notice especially that the length 
of the output y = Av is reduced by that factor of 2 (previously four outputs and now two): 

StrideS= 2 A = [ x1 xo x-1 0 0 ] 
0 0 X1 Xo X-1 

(6) 

Now the nonzero weights like x 1 in L are two columns apart (S columns apart for strideS). 
In 20, a stride S = 2 reduces each direction by 2 and the whole output by 4. 
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Extending the Signal 

Instead of losing neurons at the edges of the image when A is not square, we can extend the 
input layer. We are "inventing" components beyond the image boundary. Then the output 
y = Av fits the image block: equal dimensions for input and output. 

The simplest and most popular approach is zero-padding: Choose all additional 
components to be zeros. The extra columns on the left and right of A multiply those zeros. 
In between, we have a square Toeplitz matrix as in Section IV.5. It is still determined by a 
much smaller set of weights than the number of entries in A. 

For periodic signals, zero-padding is replaced by wraparound. The Toeplitz matrix 
becomes a circulant (Section IV.2). The Discrete Fourier Transform tells its eigenvalues. 
The eigenvectors are always the columns of the Fourier matrix. The multiplication Av is 
a cyclic convolution and the Convolution Rule applies. 

A more accurate choice is to go beyond the boundary by reflection. If the last component 
of the signal is VN, and the matrix is askingforvN+l and VN+2• we can reuse VN and VN-1 

(or else VN-1 and VN-2). Whatever the length of v and the size of A, all the matrix entries 
in A come from the same E weights x_ 1 to x1 or x_2 to x2 (and E 2 weights in 20). 

Note Another idea. We might accept the original dimension (128 in our example) and 
use the reduction to 64 as a way to apply two filters C 1 and C 2 • Each filter output 
is downsampled from 128 to 64. The total sample count remains 128. If the filters are 
suitably independent, no information is lost and the original 128 values can be recovered. 

This process is linear. Two 64 by 128 matrices are combined into 128 by 128: square. 
If that matrix is invertible, as we intend, the filter bank is loss less. 

This is what CNN's usually do: Add more channels of weight matrices A in order tOt 
capture more features of the training sample. The neural net has a bank of B filters. :; 

Filter Banks and Wavelets 

The idea in those last paragraphs produces a filter bank. This is just a set of B different 
filters (convolutions). In signal processing, an important case combines a lowpass filter 
C1 with a highpass filter C2. The output of C1 vis a smoothed signal (dominated by low 
frequencies). The output C2 v is dominated by high frequencies. A perfect cutoff by ideal 
filters cannot be achieved by finite matrices c 1 and c2. 

From two filters we have a total of 256 output components. Then both outputs are 
subsampled. The result is 128 components, separated approximately into averages and 
differences-low frequencies and high frequencies. The matrix is 128 by 128. 

Wavelets The wavelet idea is to repeat the same steps on the 64 components of 
the lowpass output (.J_ 2) C1x. Then (.!.. 2) C1 (+ 2) C1x is an average of averages. Its 
frequencies are concentrated in the lowest quarter (Jwl :::; K/4) of all frequencies. The 
mid-frequency output (+ 2) C2 (.J_ 2) C1x with 32 components will not be s~bdivided. 
Then 128 = 64 + 32 + 16 + 16. 

In the limit of infinite subdivision, wavelets enter. This low-high frequency separation 
is an important theme in signal processing. It has not been so important for deep learning. 
But with multiple channels in a CNN, frequency separation could be effective. 
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Counting the Number of Inputs and Outputs 

In a one-dimensional problem, suppose a layer has N neurons. We apply a convolutional 
matrix withE nonzero weights. The stride isS, and we pad the input signal by P zeros at 
each end. How many outputs (M numbers) does this filter produce? 

I Karpothy's formula 
N-E+2P I M= +1 s 

(7) 

In a 2D or 3D problem, this 1D formula applies in each direction. 
Suppose E = 3 and the stride is S = 1. If we add one zero (P = 1) at each end, then 

M=N-3+2+1=N (input length= output length) 

This case 2P = E - 1 with stride S = 1 is the most common architecture for CNN's. 
If we don't pad the input with zeros, then P = 0 and M = N- 2 (as in the 4 by 6 

matrix A at the start of this section). In 2 dimensions this becomes M 2 = (N - 2)2 • 

We lose neurons this way, but we avoid zero-padding. 
Now suppose the stride isS = 2. Then N- E must be an even number. Otherwise 

the formula (4) produces a fraction. Here are two examples of success for strideS = 2, 
with N - E = 5 - 3 and padding P = 0 or P = 1 at both ends of the five inputs : 

Stride 
2 

[ 
X-I Xo XI 

0 0 X-I 

O O ] [ X-I Xo XI 
0 0 X-I 

Xo X1 O O O 

0 0 
Xo XI 

0 X-1 

Again, our counts apply in each direction to an image in 2D or a tensor. 

A Deep Convolutional Network 

Recognizing images is a major application of deep learning (and a major success). The 
success came with the creation of AlexNet and the development of convolutional nets. 
This page will describe a deep network of local convolutional matrices for image recog
nition. We follow the prize-winning paper of Simonyan and Zisserman from ICLR 2015. 
That paper recommends a deep architecture of L = 16-19layers with small (3 x 3) filters. 
The network has a breadth of B parallel channels (B images on each layer). 

If the breadth B were to stay the same at all layers, fllld all filters had E by E local 
weights, a straightforward formula would estimate the number W of weights in the net : 

L layers, B channels, E by E local convolutions (8) 

Notice that W does not depend on the count of neurons on each layer. This is because A 
has E 2 weights, whatever its size. Pooling will change that size without changing E 2 . 

But the count of B channels can change-and it is very common to end a CNN with 
fully-connected layers. This will radically change.the weight count W! 
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It is valuable to discuss the decisions taken by Simonyan and Zisserman, together with 
other options. Their choices led toW ~ 135, 000, 000 weights. The computations were on 
four NVIDIA GPU's, and training one net took 2-3 weeks. The reader may have 
less computing power (and smaller problems). So the network hyperparameters Land B 
will be reduced. We believe that the important principles remain the same. 

A key point here is the recommendation to reduce the size E of the local convolutions. 
5 by 5 and 7 by 7 filters were rejected. In fact a 1 by 1 convolutional layer can be a way 
to introduce an extra bank of ReLU's-as in the ResNets coming next. 

The authors compare three convolution layers, each with 3 by 3 filters, to a single layer 
of less local 7 by 7 convolutions. They are comparing 27 weights with 49 weights, and 
three nonlinear layers with one. In both cases the influence of a single data point spreads 
to three neighbors vertically and horizontally in the image or the RGB images (B = 3). 
Preference goes to the 3 by 3 filters with extra nonlinearities from more neurons per layer. 

Softmax Outputs for Multiclass Networks 
In recognizing digits, we have 10 possible outputs. For letters and other symbols, 26 or 
more. With multiple output classes, we need an appropriate way to decide the very last 
layer (the output layer w in the neural net that started with v). "Softmax" replaces the 
two-output case of logistic regression. We are turning n numbers into probabilities. 

The outputs w1 , ..• , Wn are converted to probabilities Pl, ... , Pn that add to 1 : 

Softmax 
n 

where S = L ewk 
k=l 

(9) 
~ 

Certainly softmax assigns the largest probability Pj to the largest output Wj. But ew is 
a nonlinear function of w. So the softmax assignment is not invariant to scale: If we 
double all the outputs Wj, softmax will produce different probabilities Pj· For small w's 
softmax actually deemphasizes the largest number wmax. 

In the CNN example ofteachyourmachine.com to recognize digits, you will see how 
softmax produces the probabilities displayed in a pie chart-an excellent visual aid. 

CNN We need a lot of weights to fit the data, and we are proud that we can compute them 
(with the help of gradient descent). But there is no justification for the numbe~ of weights to 
be uselessly large-if weights can be reused. For long signals in 1D and especially images 
in 2D, we may have no reason to change the weights from pixel to pixel. 

1. cs231 n.github.io/convolutional-networks/ (karpathy@cs.stanford.edu) 

2. K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale 
image recognition, ICLR (2015), arXiv: 1409.1556v6, 10 Apr 2015. 

3. A. JVizhevsky, I. Sutskever, and G. Hinton, ImageNet classification with deep 
convolutional neural networks, NIPS (2012) 1106-1114. 

4. Y. LeCun andY. Bengio, Convolutional networks for images, speech, and time-series, 
Handbook of Brain Theory and Neural Networks, MIT Press (1998). 
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Support Vector Machine in the Last Layer 

For CNN's in computer vision, the final layer often has a special form. If the previous layers 
used ReLU and max-pooling (both piecewise linear), the last step can become a difference
of-convex program, and eventually a multiclass Support Vector Machine (SVM). Then 
optimization of the weights in a piecewise linear CNN can be one layer at a time. 

L. Berrada, A. Zisserman, and P. Kumar, Trusting SVM for piecewise linear CNNs, 
arXiv: 1611.02185, 6 Mar 2017. 

The World Championship at the Game of Go 

A dramatic achievement by a deep convolutional network was to defeat the (human) world 
champion at Go. This is a difficult game played on a 19 by 19 board. In tum, two players 
put down "stones" in attempting to surround those of the opponent. When a group of one 
color has no open space beside it (left, right, up, or down), those stones are removed from 
the board. Wikipedia has an animated game. 

AlphaGo defeated the leading player Lee Sedol by 4 games to 1 in 2016. It had trained 
on thousands of human games. This was a convincing victory, but not overwhelming. 
Then the neural network was deepened and improved. Google's new version AlphaGo 
Zero learned to play without any human intervention-simply by playing against itself. 
Now it defeated its former self AlphaGo by 100 to 0. 

The key point about the new and better version is that the machine learned by itself. 
It was told the rules and nothing more. The first version had been fed earlier games, 
aiming to discover why winners had won and losers had lost. The outcome from the 
new approach was parallel to the machine translation of languages. To master a language, 
special cases from grammar seemed essential. How else to learn all those exceptions ? 
The translation team at Google was telling the system what it needed to know. 

Meanwhile another small team was taking a different approach : Let the machine figure 
it out. In both cases, playing Go and translating languages, success came with a deeper 
neural net and more games and no coaching. 

It is the depth and the architecture of AlphaGo Zero that interest us here. The hy
perparameters will come in Section VII.4 : the fateful decisions. The parallel history of 
Google Translate must wait until VII.5 because Recurrent Neural Networks (RNN's) 
are needed-to capture the sequential structure of text. 

It is interesting that the machine often makes opening moves that have seldom or never 
been chosen by humans. The input to the network is a board position and its history. The 
output vector gives the probability of selecting each move-and also a scalar that estimates 
the probability of winning from that position. Every step communicates with a Monte Carlo 
tree search, to produce reinforcement learning. 
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Residual Networks (ResNets) 
Networks are becoming seriously deeper with more and more hidden layers. Mostly these 
are convolutional layers with a moderate number of independent weights. But depth brings 
dangers. Information can jam up and never reach the output. The problem of "vanishing 
gradients" can be serious: so many multiplications in propagating so far, with the result 
that computed gradients are exponentially small. When it is well designed, depth is a good 
thing-but you must create paths for learning to move forward. 

The remarkable thing is that those fast paths can be very simple: "skip connections" 
that go directly to the next layer-bypassing the usual step Vn = (AnVn-1 + bn)+· 
An efficient proposal of Veit, Wilber, and Belongie is to allow either a skip or a normal 
convolution, with a ReLU step every time. If the net has L layers, there will be 2L possible 
routes- fast or normal from each layer to the next. 

One result is that entire layers can be removed without significant impact. The nth layer 
is reached by 2n-l possible paths. Many paths have length well below n, not counting 
the skips. 

It is hard to predict whether deep ConvNets will be replaced by ResNets. 

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, arXiv: 
1512.03385, 10 Dec 2015. This paper works with extremely deep neural nets by adding 
shortcuts that skip layers, with weights A= I. Otherwise depth can degrade performance. 

K. He, X. Zhang, S. Ren, and J. Sun, Identity mappings in deep residual networks, 
arXiv: 1603.05027, 25 Ju1 2016. 

A. Veit, M. Wilber, and S. Belongie, Residual networks behave like ensembles of relatively 
shallow networks, arXiv: 1605.06431, 27 Oct 2016. 

A Simple CNN : Learning to Read Letters 
One of the class projects at MIT was a convolutional net. The user begins by drawing 
multiple copies (not many) of A and B. On this training set, the correct classification 
is part of the input from the user. Then comes the mysterious step of learning this data
creating a continuous piecewise linear function F( v) that gives high probability to the 
correct answer (the letter that was intended). 

For learning to read digits, 10 probabilities appear in a pie chart. You quickly discover 
that too small a training set leads to frequent errors. If the examples had centered numbers 
or letters, and the test images are not centered, the user understands why those .errors appear. 

One purpose of teachyourmachine.com is education in machine learning at all levels 
(schools included). It is accessible to every reader. 

These final references apply highly original ideas from signal processing to CNN's: 

R. Balestriero and R. Baraniuk, Mad Max: Affine spline insights into deep learning, 
arXiv: 1805.06576. 

S. Mallat, [[nderstandingdeep convolutional networks, Phil. Trans. Roy. Soc. 374 (2016); 
arXiv: 1601.04920. 

C.-C. J. Kuo, The CNN as a guided multilayer RECOS transform, IEEE Signal Proc. Mag. 
34 (2017) 81-89; arXiv: 1701.08481. 
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Problem Set VII.2 

1 Wikipedia proposes a 5 x 5 matrix (different from equation (3)) to approximate a 
Gaussian. Compare the two filters acting on a horizontal edge (all1's above all O's) 
and a diagonal edge (lower triangle of 1 's, upper triangle of O's). 

2 What matrix--corresponding to the Sobel matrices in equation (4)-would you use 
to find gradients in the 45 o diagonal direction ? 

3 (Recommended) For image recognition, remember that the input sample v is a matrix 
(say 3 by 3). Pad it with zeros on all sides to be 5 by 5. Now apply a convolution as 
in the text (before equation (2)) to produce a 3 by 3 output Av. What are the 1, 1 and 
2, 2 entries of Av ? 

4 Here are two matrix approximations L to the Laplacian 82uj8x2 +82uj8y2 = V 2u: 

[ ~ -~ ~ l and [ ~ 4 1 l -20 4 0 

4 1 

What are the responses LV and LD to a vertical or diagonal step edge? 

V= [ ~ ~ ~ ~ ~ ~] 
2 2 2 6 6 6 
2 2 2 6 6 6 

[ 

0 0 0 0 

D= 0 0 0 1 
0 0 1 1 
0 1 1 1 

1 
1 
1 
1 

5 Could a convolutional net learn calculus? Start with the derivatives of fourth degree 
polynomials p(x). The inputs could be graphs of p = a0 + a1x + · · · + a4x4 for 
0 :S x :S 1 and a training set of a's. The correct outputs would be the coefficients 
0, a 1 , 2a2, 3a3 , 4a4 from dpjdx. Using softmax with 5 classes, could you design and 
create a CNN to learn differential calculus ? 

6 Would it be easier or harder to learn integral calculus? With the same inputs, the six 
outputs would be 0, ao, !a1, ~a2, ia3, ia4. 

7 How difficult is addition of polynomials, with two graphs as inputs? The training 
set outputs would be the correct sums ao + bo, ... , a4 + b4 of the coefficients. Is 
multiplication of polynomials difficult with 9 outputs a0bo, a0b1 + a 1 b0, .. . , a4b4 ? 

The inputs in 5-7 are pictures of the graphs. Cleve Moler reported on experiments : 

https://blogs.mathworks.com/cleve/2018/08/06/teaching-calculus-to-a-deep-learner 

Also .. 2018/1 0/22/teaching-a-newcomer-about-teaching-calculus-to-a-deep-learner 

A theory of deep learning for hidden physics is emerging: for example see arXiv: 1808.04327. 
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VII.3 Backpropagation and the Chain Rule 

Deep learning is fundamentally a giant problem in optimization. We are choosing 
numerical "weights" to minimize a loss function L (which depends on those weights). 
L(x) adds up all the losses £ (w- true) = f. (F(x, v) - true) between the computed 
outputs w = F(x, v) and the true classifications of the inputs v. Calculus tells us the 
system of equations to solve for the weights that minimize L : 

The partial derivatives of L with respect to the weights x should be zero. 

Gradient descent in all its variations needs to compute derivatives (components of 
the gradient of F) at the current values of the weights. The derivatives oF I ox lead to 
oLjox. From that information we move to new weights that give a smaller loss. 
Then we recompute derivatives of F and L at the new values of the weights, and repeat. 

Backpropagation is a method to compute derivatives quickly, using the chain rule : 

Chain 
rule 

One goal is a way to visualize how the function F is computed from the weights 
x 1, X2, ... , x N. A neat way to do this is a computational graph. It separates 
the big computation into small steps, and we can find the derivative of each step (each 
computation) on the graph. Then the chain rule from calculus gives the derivatives of 
the final output w = F(x, v) with respect to all the weights x. For a standard net, the,. 
steps in the chain rule can correspond to layers in the neural net. ~ 

This is an incredibly efficient improvement on the separate computation of each deriva
tive oFjoxi. At first it seems unbelievable, that reorganizing the computations can make 
such an enormous difference. In the end (the doubter might say) you have to compute 
derivatives for each step and multiply by the chain rule. But the method does work-and 
N derivatives are computed in far less than N times the cost of one derivative oFjox1• 

Backpropagation has been discovered many times. Another name is automatic 
differentiation (AD). You will see that the steps can be arranged in two basic ways: 
forward-mode and backward-mode. The right choice of mode can make a large difference · 
in the cost (a factor of thousands). That choice depends on whether you have many 
functions F depending on a few inputs, or few functions F depending on many inputs. 

Deep learning has basically one loss function depending on many weights. The right 
choice is "backward-mode AD". This is what we call backpropagation. It is the 
computational heart of deep learning. We will illustrate computational graphs and back
propagation by a small example. 

The computational graphs were inspired by the brilliant exposition of Christopher Olah, 
posted on his blog (colah.github.io). Since 2017 he has published on (https://distill.pub). 
And the new paper by Catherine and Desmond Higham (arXiv: 1801.05894, to appear in 
SIAM Review) gives special attention to backpropagation, with very useful codes. 
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Derivatives a F I ax of the Learning Function F ( x, v) 

The weights x consist of all the matrices A1 , ... , AL and the bias vectors b1 , ... , b£. 
The inputs v = v 0 are the training data. The outputs w = F(x, v 0 ) appear in layer L. 
Thus w = v L is the last step in the neural net, after v 1 , ... , v L-l in the hidden layers. 

Each new layer Vn comes from the previous layer by R (bn + AnVn-d· Here R 
is the nonlinear activation function (usually ReLU) applied one component at a time. 

Thus deep learning carries us from v = vo tow = V£. Then we substitute w into 
the loss function to measure the error for that sample v. It may be a classification error: 
0 instead of 1, or 1 instead of 0. It may be a least squares regression error Jjg - wW, 
with w instead of a desired output g. Often it is a "cross-entropy". The total loss L( x) is 
the sum of the losses on all input vectors v. 

The giant optimization of deep learning aims to find the weights x that minimize L. 
For full gradient descent the loss is L( x). For stochastic gradient descent the loss at each 
iteration is C(x )-from a single input or a minibatch of inputs. In all cases we need the 
derivatives ow I ax of the outputs w (the components of the last layer) with respect to 
the weights x (the A's and b's that carry us from layer to layer). 

This is one reason that deep learning is so expensive and takes so long--even on GPU's. 
For convolutional nets the derivatives were found quickly and easily in Section Vl1.2. 

Computation of aF I ax: Explicit Formulas 

We plan to compute the derivatives 8F I 8x in two ways. The first way is to present the 
explicit formulas : the derivative with respect to each and every weight. The second way 
is to describe the backpropagation algorithm that is constantly used in practice. 

Start with the last bias vector bL and weight matrix AL that produce the final 
output v L = w. There is no nonlinearity at this layer, and we drop the layer index L: 

[ VL = bL + ALVL-1 or simply w = b + Av.[ (1) 

Our goal is to find the derivatives 8wi/8bj and 8wi/8Ajk for all components of b + Av. 
When j is different from i, the ith output Wi is not affected by bj or Ajk· Multiplying 
A times v, row j of A produces Wj and not Wi. We introduce the symbol c5 which is 1 or 0: 

c5ij = 1 if i = j c5ij = 0 if i -=1- j The identity matrix I has entries c5ij. 

Columns of I are 1-hot vectors! The derivatives are 1 or 0 or vk (Section 1.12): 

Fully connected layer 

Independent weights Ajk 

Example There are six b's and a's in 

8wi 
--- 8·· and 8b· - •J 

J 

[ WWI2 ] 

(2) 
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Combining Weights band A into M 

It is often convenient to combine the bias vector b and the matrix A into one matrix M : 

Matrix of weights M- [ 1 oT] 
- b A has 

For each layer of the neural net, the top entry (the zeroth entry) is now fixed at 1. 
After multiplying that layer by M, the zeroth component on the next layer is still 1. 
Then ReLU(l) = 1 preserves that entry in every hidden layer. 

At the beginning of this book (page v), the big image of a neural net had squares 
for zeroth entries and circles for all other entries. Every square now contains a 1. 

This block matrix M produces a compact derivative formula for the last layer w = M v. 

M _ [ 1 oT] 
- b A (4) 

Both v and w begin with 1's. Then k = 0 correctly gives owofoMjo = 0 for j > 0. 

Derivatives for Hidden Layers 

Now suppose there is one hidden layer, soL = 2. The output is w = VL = v2, the 
hidden layer contains Vt, and the input is vo = v. The nonlinear R is probably ReLU, ,, 

:i 

Vt = R (bt + Atvo) and w = b2 + A2vt = b2 + A2R(bt + Atvo). 

Equation (2) still gives the derivatives of w with respect to the last weights b2 and A2. 
The function R is absent at the output and vis Vt. But the derivatives of w with respect 
to b1 and At do involve the nonlinear function R acting on bt + At vo. 

So the derivatives in owjoAt need the chain rule of fox= (of jog)(ogjox): 

Ch . 1 ow_o[A2R(bt+Atvo)]_AR'(b A )o(bt+Atvo) (5) 
am rue oAt - oAt - 2 1 + tVo oAt . 

That chain rule has three factors. Starting from v 0 at layer L - 2 = 0, the weights bt 
and At bring us toward the layer L - 1 = 1. The derivatives of that step are exactly like 
equation (2). But the output of that partial step is not VL-t· To find that hidden layer we 
first have to apply R. So the chain rule includes its derivative R 1• Then the final step (tow) 
multiplies by the last weight matrix A2 • 

The Problem Set extends these formulas to L layers. They could be useful. But with 
pooling and batch normalization, automatic differentiation seems to defeat hard coding. 

Very important Notice how formulas like (2) and (5) go backwards from w to v. 
Automatic backpropagation will do this too. "Reverse mode" starts with the output. 
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Details of the Derivatives 8wj8A1 

We feel some responsibility to look more closely at equation (5). Its nonlinear part R' 
comes from the derivative of the nonlinear activation function. The usual choice is the 
ramp function ReLU (x) = (x)+, and we see ReLU as the limiting case of an S-shaped 
sigmoid function. Here is ReLU together with its first two derivatives : 

ReLU(x) = max(O,x) = (x)+ RampfunctionR(x) 

dR/ dx = { 01 x < 0 Step function 
x > 0 H(x) = dR/dx 

x#O 
integral over all x 

Delta function 
8(x) = cPRjdx2 

The delta function represents an impulse. It models a finite change in an infinitesimal time. 
It is physically impossible but mathematically convenient. It is defined, not at every point 
x, but by its effect on integrals from -oo to oo of a continuous function g(x) : 

j 8(x) dx = 1 j 8(x) g(x) dx = g(O) j 8(x- a) g(x) dx = g(a) 

With ReLU, a neuron could stay at zero through all the steps of deep learning. This 
"dying ReLU" can be avoided in several ways-it is generally not a major problem. 
One way that firmly avoids it is to change to a Leaky ReLU with a nonzero gradient: 

{ x x>O 
Leaky ReLU (x) = .Olx x ~ 0 Always ReLU (ax) =aReLU (x) (6) 

Geoffrey Hinton pointed out that if all the bias vectors b1 , ... , b L are set to zero at every 
layer of the net, the scale of the input v passes straight through to the output w = F( v ). 
Thus F ( Av) = aF ( v). (A final softmax would lose this scale invariance.) 

LeakyReLU 

-50 0 50 100 0 50 100 

Figure VII.4: The graphs of ReLU and Leaky ReLU (two options for nonlinear activation). 

Returning to formula (5), write A and b for the matrix AL-l and the vector bL-l that 
produce the last hidden layer. Then ReLU and AL and b L produce the final output w = v L· 
Our interest is in ow/ 8A, the dependence of w on the next to last matrix of weights. 
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We think of R as a diagonal matrix of ReLU functions acting component by component 
on Av +b. Then J = R'(Av +b) is a diagonal matrix with l's for positive components 
and O's for negative components. (Don't ask about zeros.) Formula (7) has become (8): 

ow o(Av +b) 
w=ALR(Av+b) and oA =ALJ oA (8) 

We know every component ( vk or zero) of the third factor from the derivatives in (2). 

When the sigmoid function Ra replaces the ReLU function, the diagonal matrix 
J = R~(Av +b) no longer contains l's and O's. Now we evaluate the derivative dRa/dx 
at each component of Av + b. 

In practice, backpropagation finds the derivatives with respect to all A's and b's. 
It creates those derivatives automatically (and effectively). 

Computational Graphs 

Suppose F(x, y) is a function of two variables x andy. Those inputs are the first two nodes 
in the computational graph. A typical step in the computation-an edge in the graph
is one of the operations of arithmetic (addition, subtraction, multiplication, ... ). The final 
output is the function F(x, y). Our example will be F = :z:2 (:z: + y). 

Here is the graph that computes F with intermediate nodes c = x 2 and s = x + y : 

When we have inputs x andy, for example x = 2 andy = 3, the edges lead to c = 4 and 
s = 5 and F = 20. This agrees with the algebra that we normally crowd into one line : 
F = x 2 (x + y) = 22 (2 + 3) = 4(5) = 20. 

(F = cs = 2o) 
s=x+y=5 

Now we compute the derivative of each step-each edge in the graph. Begin with the 
x-derivative. At first we choose forward-mode, starting with the input x and moving 
toward the output function x 2 ( x + y). So the first steps use the power rule for c = x 2 

and the sum rule for s = x + y. The last step applies the product rule to F = c times s. 

• oc 
-=2x 
ox 

OS 
-=1 
ox 

oF 
-=s oc 

Moving through the graph produces the chain rule ! 

oF 
-=c 
os 
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aF oF oc oF os 
ax = oc ox + 8s ox 

= (s)(2x) + (c)(1) = (5)(4) + (4)(1) = 24 

Learning from Data 

The result is to compute the derivative of the output F with respect to one input x. 
You can see those x-derivatives on the computational graph. 

Forward 
mode 

aF 
to

ax 

oF 
-=s=5 
oc 

oF 
-=c=4 
OS 

There will be a similar graph for y-derivatives-the forward mode leading to 0 F I oy. 
Here is the chain rule and the numbers that would appear in that graph for x = 2 and 
y = 3 and c = x2 = 22 and s = x + y = 2 + 3 and F = cs : 

aF oF oc oF os 
-=--+-ay oc oy os oy 

= (s)(O) + (c)(1) = (5)(0) + (4)(1) = 4 

The computational graph for oF I oy is not drawn but the point is important: Forward mode 
requires a new graph for each input Xi, to compute the partial derivative oF I OXi. 

Reverse Mode Graph for One Output 

The reverse mode starts with the output F. It computes the derivatives with respect to 
both inputs. The computations go backward through the graph. 

That means it does not follow the empty line that started with oy I OX = 0 in the forward 
graph for x-derivatives. And it would not follow the empty line ox I oy = 0 in the forward 
graph (not drawn) for y-derivatives. A larger and more realistic problem with N inputs 
will have N forward graphs, each with N - 1 empty Jines (because the N inputs are 
independent). The derivative of Xi with respect to every other input Xj is oxd OXj = 0. 

Instead of N forward graphs from N inputs, we will have one backward graph 
from one output. Here is that reverse-mode computational graph. It finds the derivative 
ofF with respect to every node. It starts with oF I oF= 1 and goes in reverse. 

A computational graph executes the chain rule to find derivatives. The reverse mode 
finds all derivatives oF I oxi by following all chains backward from output to input. 
Those chains all appear as paths on one graph-not as separate chain rules for 
exponentially many possible paths. This is the success of reverse mode. 
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Figure VII.S: Reverse-mode computation of the gradient ( ~~, ~:) at x = 2, y = 3. 

Product of Matrices ABC : Which Order? 

The decision between forward and reverse order also appears in matrix multiplication ! 
If we are asked to multiply A times B times C, the associative law offers two choices 
for the multiplication order: 

AB first or BC first? Compute (AB) C or A(BC)? 

The result is the same but the number of individual multiplications can be very differe)\t. 
Suppose the matrix A is m by n, and B is n by p, and C is p by q. 1 

First way 
AB = (m x n) (n x p) has mnp multiplications 

(AB)C = (m x p) (p x q) has mpq multiplications 

Second way BC = (n x p) (p x q) has npq multiplications 

A(BC) = (m x n) (n x q) has mnq multiplications 

So the comparison is between mp(n + q) and nq(m + p). Divide both numbers by mnpq: 

The first way is faster when ! + .!. is smaller than ...!_ + ! . 
q n m p 

Here is an extreme case (extremely important). Suppose Cis a column vector: p by 1. 
Thus q = 1. Should you multiply BC to get another column vector (n by 1) and then 
A(BC) to find the output (m by 1)? Or should you multiply AB first? 

The qpestion almost answers itself. The correct A(BC) produces a vector at each step. 
The matrix-vector multiplication BC has np steps. The next matrix-vector multiplication 
A(BC) has mn steps. Compare those np + mn steps to the cost of starting with the 
matrix-matrix option AB (mnp steps !). Nobody in their right mind would do that. 
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But if A is a row vector, (AB)C is better. Row times matrix each time. 

This will match the central computation of deep learning : Training the network = 
optimizing the weights. The output F( v) from a deep network is a chain starting with v : 

F(v) = ALVL-1 = AL(RAL-1(· .. (RA2(RA1 v)))) is forward through the net. 

The derivatives of F with respect to the matrices A (and the bias vectors b) are easiest 
for the last matrix AL in ALVL-1· The derivative of Av with respect to A contains v's: 

aFi 
aAjk = bij Vk. Next is the derivative of AL ReLU (AL-l VL-l) with respect to AL-l· 

We can explain how that same reverse mode also appears in the comparison of 
direct methods versus adjoint methods for optimization (choosing good weights). 

Adjoint Methods 

The same question of the best order for matrix multiplication ABC comes up in a big 
class of optimization problems. We are solving a square system of N linear equations 
Ev = b. The vector b depends on design variables p = (p1, ... , p M). Therefore the 
solution vector v = E-1 b depends on p. The matrix av I ap containing the derivatives 
avd api will be N by M. 

To repeat: We are minimizing F( v). The vector v depends on the design variables p. 
So we need a chain rule that multiplies derivatives aFiavi times derivatives avdaPi· 
Let me show how this becomes a product of three matrices-and the multiplication order 
is decisive. Three sets of derivatives control how F depends on the input variables Pi : 

A = 8 F / 8vi The derivatives ofF with respect to v1, ... , v N 

B = 8vd 8bk The derivative of each Vi with respect to each bk 

C = 8bk/ 8p3 The derivative of each bk with respect to each Pi 

To see avd apj we take derivatives of the equation Ev = b with respect to the Pi : 

. ax -lab 
J = 1, ... , M so ap = E ap. (9) 

It seems that we have M linear systems of size N. Those will be expensive to solve 
over and over, as we search for the choice of p that minimizes F ( v). The matrix 8v I 8p 
contains the derivatives of v1, ... , v N with respect to the design variables p1, ... , p M. 

Suppose for now that the cost function F(v) = cTv is linear (so aFiav = cT). 
Then what optimization actually needs is the gradient of F( v) with respect to the p's. 
The first set of derivatives a F I 8v is just the vector c T : 

has three factors to be multiplied. (10) 
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This is the key equation. It ends with a product of a row vector cT times anN by N 
matrix E-1 times anN by M matrix 8bj8p. How should we compute that product? 

Again the question almost answers itself. We do not want to multiply two matrices. 
So we are not computing 8v I 8p after all. Instead the good first step is to find c T E-1 . 

This produces a row vector AT_ In other words we solve the adjoint equation ETA = c: 

Adjoint equation ETA= c gives .ATE= cT and AT= cTE-1 . (11) 

Substituting AT for c T E-1 in equation ( 1 0), the final step multiplies that row vector 
times the derivatives of the vector b (its gradient): 

Gradient of the cost F (1 by N times N by M). (12) 

The optimal order is ( AB) C because the first factor A is actually the row vector AT. 

This example of an adjoint method started with Ex = b. The right hand side b 
depended on design parameters p. So the solution x = E- 1b depended on p. Then 
the cost function F(x) = cT x depended onp. 

The adjoint equation AT A = c found the vector A that efficiently combined the last 
two steps. "Adjoint" has a parallel meaning to "transpose" and we can apply it also to 
differential equations. The design variables p 1 , ... ,PM might appear in the matrix E, 
or in an eigenvalue problem or a differential equation. 

Our point here is to emphasize and reinforce the key idea of backpropagation : 
The reverse mode can order the derivative computations in a faster way. 

Adjoints and Sensitivity for Deep Layers 

Coming closer to the problem of deep learning, what are the derivatives 8wl8xi of the 
outputs w = ( w1 , ... w M) at layer L with respect to the parameters x = ( x 1 , ... , x N) ? 
That output w = v L is seen after L steps from the input v 0 . We write step n as 

Vn = Fn ( Vn-l, Xn) where Fn depends on the weights (parameters) Xn. (13) 

(13) is a recurrence relation. And the same P parameters x could be used' at every step. 
Deep learning has new parameters for each new layer-which gives it "learning power" 
that an ordinary recurrence relation cannot hope for. In fact a typical recurrence (13) 
is just a finite difference analog of a differential equation dv I dt = f ( v, x, t). 

The analogy is not bad. In this case too we may be aiming for a desired output v(T), 
and we are choosing parameters x to bring us close. The problem is to. find the 
matrix of derivatives J = av N l8xM. We have to apply the chain rule to equation (13), 
all the way back from N to 0. Here is a step of the chain: 

VN = FN(vN-l,xN) = FN(FN-l(vN-2,XN-d,xN)· (14) 
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Take its derivatives with respect to x N _ 1, to see the rule over the last two layers : 

That last expression is a triple product ABC. The calculation requires a decision: 
Start with AB or start with BC ? Both the adjoint method for optimization and the 
reverse mode of backpropagation would counsel : Begin with AB. 

The last two pages developed from class notes by Steven Johnson: Adjoint methods 
and sensitivity analysis for recurrence relations, http://math.mit.edu/rv stevenj/18.336/ 
recurrence2.pdf. Also online: Notes on adjoint methods for 18.335. 

For deep learning, the recurrence relation is between layers of the net. 

Problem Set VII.3 

1 If x andy are column vectors in Rn, is it faster to multiply x(y T x) or ( xy T)x? 

2 If A is an m by n matrix with m > n, is it faster to multiply A( AT A) or (AAT)A? 

3 (a) If Ax = b, what are the derivatives axd 8b1 with A fixed? 

(b) What are the derivatives of 8xi/8Ajk with b fixed? 

4 For x and y in Rn, what are 8( x T y) I OXi and 8( xy T) I OXi ? 

5 Draw a computational graph to compute the function f(x, y) = x 3(x- y). Use the 
graph to compute !(2, 3). 

6 Draw a reverse mode graph to compute the derivatives {) f I ax and {) f I ay for 
f = x 3 (x- y). Use the graph to find those derivatives at x = 2 and x = 3. 

7 Suppose A is a Toeplitz matrix in a convolutional neural net (CNN). The number ak 

is on diagonal k = 1 - n, ... , n - 1. If w = Av, what is the derivative awd oak ? 

8 In a max-pooling layer, suppose Wi =max (v2i-l, V2i)· Find all 8wi/8vj. 

9 To understand the chain rule, start from this identity and let D.x ---* 0 : 

f(g(x + D.x))- f(g(x)) f(g(x + D.x))- f(g(x)) g(x + D.x)- g(x) 

D.x g(x + D.x) - g(x) D.x 

Then the derivative at x of f(g(x)) equals df ldg at g(x) times dgldx at x. 

Question: Find the derivative at x = 0 of sin (cos (sin x)). 

Backpropagation is essentially equivalent to AD (automatic differentiation) in reverse mode: 

A. Griewank and A. Walther, Evaluating Derivatives, SIAM (2008). 
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VII.4 Hyperparameters : The Fateful Decisions 

After the loss function is chosen and the network architecture is decided, there are still 
critical decisions to be made. We must choose the hyperparameters. They govern the algo
rithm itself-the computation of the weights. Those weights represent what the computer 
has learned from the training set : how to predict the output from the features in the input. 
In machine learning, the decisions include those hyperparameters and the loss function and 
dropout and regularization. 

The goal is to find patterns that distinguish 5 from 7 and 2-by looking at pixels. The 
hyperparameters decide how quickly and accurately those patterns are discovered. The 
stepsize Sk in gradient descent is first and foremost. That number appears in the iteration 
Xk+l = Xk - Sk V L (a:k) or one of its variants: accelerated (by momentum) or adaptive 
(ADAM) or stochastic with a random minibatch of training data at each step k. 

The words learning rate are often used in place of stepsize. Depending on the author, 
the two might be identical or differ by a normalizing factor. Also: 'f/k often replaces Sk. 

First we ask for the optimal stepsize when there is only one unknown. Then we point to 
a general approach. Eventually we want a faster decision. 

1. Choose sk=l/L 11 (a:k)· Newton uses the second derivative of L. That choice 
accounts for the quadratic term in the Taylor series for L(x) around the point Xk. 
As a result, Newton's method is second order: The error in Xk+I is proportional 
to the square of the error in Xk. Near the minimizing x*, convergence is fast. 

In more dimensions, the second derivative becomes the Hessian matrix H (a:) = 
V 2 L(a:k)· Its size is the number of weights (components of a:). To find Xk+l·~ 
Newton solves a large system of equations H(a:k) (a:k+l - Xk) = -VL(a:k).' 
Gradient descent replaces H by a single number 1/ Sk. 

2. Decide s k from a line search. The gradient V L (a: k) sets the direction of the line. 
The current point Xk is the start of the line. By evaluating L( a:) at points on the line, 
we find a nearly minimizing point-which becomes Xk+l· 

Line search is a practical idea. One algorithm is backtracking, as described 
in Section VI.4. This reduces the stepsize s by a constant factor until the decrease 
in Lis consistent with the steepness of the gradient (again within a chosen factor). 
Optimizing a line search is a carefully studied !-dimensional problem .. · 

But no method is perfect. We look next at the effect of a poor stepsize s. . 

Too Small or Too Large 

We need to identify the difficulties with a poor choice of learning rate : 

s k is too large 

Then gradient descent takes too long to minimize L (a:) 
Many steps Xk+l- Xk = -sk V L (xk) with small improvement 

We are overshooting the best choice Xk+l in the descent direction 
Gradient descent will jump around the minimizing a:*. 



408 Learning from Data 

Suppose the first steps s0 and s1 are found by line searches, and work well. We may 
want to stay with that learning rate for the early iterations. Normally we reduce s as the 
minimization of L(x) continues. 

Larger steps at the start Get somewhere close to the optimal weights x* 

Smaller steps at the end Aim for convergence without overshoot 

A learning rate schedule Sk = s0 /Vk or Bk = s 0 jk systematically reduces the steps. 
After reaching weights x that are close to minimizing the loss function L( x, v) we may 

want to bring new v 's from a validation set. This is not yet production mode. The purpose 
of cross-validation is to confirm that the computed weights x are capable of producing 
accurate outputs from new data. 

Cross-validation 

Cross-validation aims to estimate the validity of our model and the strength of our learning 
function. Is the model too weak or too simple to give accurate predictions and classifi
cations ? Are we overfitting the training data and therefore at risk with new test data? 
You could say that cross-validation works more carefully with a relatively small data set, 
so that testing and production can go forward quickly on a larger data set. 

Note Another statistical method-for another purpose-also reuses the data. This is the 
bootstrap introduced by Brad Efron. It is used (and needed) when the sample size is small 
or its distribution is not known. We aim for maximum understanding by returning to the 
(small) sample and reusing that data to extract new information. Normally small data sets 
are not the context for applications to deep learning. 

A first step in cross-validation is to divide the available data into K subsets. If K = 2, 
these would essentially be the training set and test set-but we are usually aiming for more 
information from smaller sets before working with a big test set. K-fold cross-validation 
uses each of K subsets separately as a test set. In every trial, the other K - 1 subsets form 
the training set. We are reworking the same data (moderate size) to learn more than one 
optimization can teach us. 

Cross-validation can make a learning rate adaptive: changing as descent proceeds. 
There are many variants, like "double cross-validation". In a standardized m by n least 

squares problem Ax= b, Wikipedia gives the expected value (m- n- 1)/(m + n- 1) 
for the mean square error. Higher errors normally indicate overfitting. The corresponding 
test in deep learning warns us to consider earlier stopping .• 

This section on hyperparameters was influenced and improved by Bengio's long chapter 
in a remarkable book. The book title is Neural Networks: Tricks of the Trade (2nd edition), 
edited by G. Montavon, G. Orr, and K.-R. MUller. It is published by Springer (2012) with 
substantial contributions from leaders in the field. 
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Batch Normalization of Each Layer 

As training goes forward, the mean and variance of the original population can change 
at every layer of the network. This change in the distribution of inputs is "covariate shift". 
We often have to adjust the stepsize and other hyperparameters, due to this shift in the 
statistics of layers. A good plan is to normalize the input to each layer. 

Normalization makes the training safer and faster. The need for dropout often disap
pears. Fewer iterations can now give more accurate weights. And the cost can be very 
moderate. Often we just train two additional parameters on each layer. 

The problem is greatest when the nonlinear function is a sigmoid rather than ReLU. 
The sigmoid "saturates" by approaching a limit like 1 (while ReLU increases forever 
as x -+ oo). The nonlinear sigmoid becomes virtually linear and even constant when 
x becomes large. Training slows down because the nonlinearity is barely used. 

It remains to decide the point at which inputs will be normalized. Ioffe and Szegedy 
avoid computing covariance matrices (far too expensive). Their normalizing transform 
acts on each input v 1 , ... , v B in a minibatch of size B : 

mean 

variance 

normalize 

f..£ =(vl+···+vs)/B 

<72 = (llvl- J.£11 2 + · · · + llvs- J.£11 2 ) / B 

vi= (vi- f..£) /v'a2 + f_ for small f_ > 0 

scale/shift Yi = 'Y Vi + {j ( 'Y and {j are trainable parameters) 

The key point is to normalize the inputs Yi to each new layer. What was good for thel, 
original batch of vectors (at layer zero) is also good for the inputs to each hidden layer. 

S. Ioffe and C. Szegedy, Batch normalization, arXiv: 1502.03167v3, 2 Mar 2015. 

Dropout 

Dropout is the removal of randomly selected neurons in the network. Those are components 
of the input layer v 0 or of hidden layers Vn before the output layer v L· All weights in 
the A's and b's connected to those dropped neurons disappear from the net (Figure VII.6). 
Typically hidden layer neurons might be given probability p = 0.5 of surviving, and 
input components might have p = 0.8 or higher. The main objective of random dropout 
is to avoid overfitting. It is a relatively inexpensive averaging method compared to 
combining predictions from many networks. 

Dropout was proposed by five leaders in the development of deep learning algorithms : 
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Their paper 
"Dropout" ,appears in: Journal of Machine Learning Research 15 (2014) Hi29-1958. 
For recent connections of dropout to physics and uncertainty see arXiv: 1506.02142 and 
1809.08327. 
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Figure VII.6: Crossed neurons have dropped out in the thinned network. 

Dropout offers a way to compute with many different neural architectures at once. 
In training, each new vo (the feature vector of an input sample) leads to a new thinned 
network. Starting with N neurons there are 2N possible thinned networks. 

At test time, we use the full network (no dropout) with weights rescaled from the 
training weights. The outgoing weights from an undropped neuron are multiplied by p 
in the rescaling. This approximate averaging at test time led the five authors to reduced 
generalization errors-more simply than from other regularization methods. 

One inspiration for dropout was genetic reproduction-where half of each parent's genes 
are dropped and there is a small random mutation. That dropout for a child seems more 
unforgiving and permanent than dropout for deep learning-which averages over many 
thinned networks. (True, we see some averaging over siblings. But the authors conjecture 
that over time, our genes are forced to be robust in order to survive.) 

The dropout model uses a zero-one random variable r (a Bernoulli variable). Then 
r = 1 with probability p and r = 0 with probability 1 - p. The usual feed-forward step 
to layer n is Yn = AnVn-1 + bn, followed by the nonlinear Vn = Ryn. Now a random 
r multiplies each component of Vn-1 to drop that neuron when r = 0. Component 
by component, Vn-1 is multiplied by 0 or 1 to give v~_ 1 . Then Yn = Anv~_ 1 + bn. 

To compute gradients, use backpropagation for each training example in the minibatch. 
Then average those gradients. Stochastic gradient descent can still include acceleration 
(momentum added) and adaptive descent and weight decay. The authors highly recommend 
regularizing the weights, for example by a maximum norm requirement II a II ::; c on the 
columns of all weight matrices A. 

Exploring Hyperparameter Space 

Often we optimize hyperparameters using experiments or e~perience. To decide the learn
ing rate, we may try three possibilities and measure the drop in the loss function. A ge
ometric sequence like .1, .01, .001 would make more sense than an arithmetic sequence 
.05, .03, .01. And if the smallest or largest choice gives the best results, then continue 
the experiment to the next number in the series. In this stepsize example, you would be 
considering computational cost as well as validation error. 

LeCun emphasizes that for a multiparameter search, random sampling is the way to 
cover many possibilities quickly. Grid search is too slow in multiple dimensions. 
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Loss Functions 

The loss function measures the difference betWeen the correct and the computed output 
for each sample. The correct output--often a classification y = 0, 1 or y = 1, 2, ... , n
is part of the training data. The computed output at the final layer is w = F(x, v) from the 
learning function with weights x and input v. 

Section Vl.5 defined three familiar loss functions. Then this chapter turned to the 
structure of the neural net and the function F. Here we come back to compare square 
loss with cross-entropy loss. 

1. Quadraticcost(squareloss): l(y,w) = ~IIY- wll 2 . 

This is the loss function for least squares-always a possible choice. But it is not a favorite 
choice for deep learning. One reason is the parabolic shape for the graph of l!(y, w), as 
we approach zero loss at w = y. The derivative also approaches zero. 

A zero derivative at the minimum is normal for a smooth loss function, but it frequently 
leads to an unwanted result: The weights A and b change very slowly near the optimum. 
Learning slows down and many iterations are needed. 

1 n 

2. Cross-entropy loss : l(y, w) = -- L [Yi logzi + (1- Yi) log (1- Zi)] (1) 
n 1 

Here we allow and expect that the N outputs Wi from training the neural net have been 
normalized to z( w ), with 0 < Zi < 1. Often those Zi are probabilities. Then 1 - Zi is also 
between 0 and 1. So both logarithms in ( 1) are negative, and the minus sign assures that 
the overall loss is positive: I! > 0. 

More than that, the logarithms give a different and desirable approach to z = 0 or 1.~ 
For this calculation we refer to Nielsen's online book Neural Networks and Deep Learning, 
which focuses on sigmoid activation functions instead of ReLU. The price of those smooth 
functions is that they saturate (lose their nonlinearity) near their endpoints. 

Cross-entropy has good properties, but where do the logarithms come from? The first 
point is Shannon's formula for entropy (a measure of information). If message i has prob
ability Pi· you should allow -logpi bits for that message. Then the expected (average) 
number of bits per message is best possible : 

m 

Entropy=- LPi log pi. Form= 2 this is -plogp- (1- p) log (1- p). (2) 
1 

Cross-entropy comes in when we don't know the Pi and we use fi; instead : 

m 

Cross-entropy=- LPi log pi. Form= 2 this is -plogp- (1- p) log (1-:- P). (3) 
' 1 

(3) is always larger than (2). The true Pi are not known and the Pi cost more. The difference 
is a very useful but not symmetric function called Kullback-Leibler (KL) divergence. 
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Regularization: £2 or £1 (or none) 

Regularization is a voluntary but well-advised decision. It adds a penalty term to the loss 
function L( x) that we minimize: an £2 penalty in ridge regression and £1 in LASSO. 

RR Minimize llb-Axii~+A211xll~ LASSO Minimize llb-Axii~+Al L lxil 
The penalty controls the size of :z:. Regularization is also called weight decay. 

The coefficient A2 or A1 is a hyperparameter. Its value can be based on cross-validation. 
The purpose of the penalty terms is to avoid overfitting (sometimes expressed as fitting the 
noise). Cross-validation for a given A finds the minimizing x on a test set. Then it checks 
by using those weights on a training set. If it sees errors from overfitting, A is increased. 

A small value of A tends to increase the variance of the error : overfitting. Large A 
will increase the bias: underfitting because the fitting term lib- Axll2 is less important. 

A different viewpoint ! Recent experiments on MNIST make it unclear if explicit 
regularization is always necessary. The best test performance is often seen with A = 0 
(then :z:* is the minimum norm solution A+b). The analysis by Liang and Rakhlin 
identifies matrices for which this good result can be expected-provided the data leads 
to fast decay of the spectrum of the sample covariance matrix and the kernel matrix. 

In many cases these are the matrices of Section 111.3 : Effectively low rank. 
Similar ideas are increasingly heard, that deep learning with many extra weights 
and good hyperparameters will find solutions that generalize, without penalty. 

T. Liang and A. Rakhlin, Just interpolate: Kernel "ridgeless" regression can generalize, 
arXiv: 1808.00387, 1 Aug 2018. 

The Structure of AlphaGo Zero 

It is interesting to see the sequence of operations in AlphaGo Zero, learning to play Go : 
1. A convolution of 256 filters of kernel size 3 x 3 with stride 1 : E = 3, S = 1 

2. Batch normalization 

3. ReLU 

4. A convolution of 256 filters of kernel size 3 x 3 with stride 1 

5. Batch normalization 

6. A skip connection as in ResNets that adds the input t? the block 

7. ReLU 

8. A fully connected linear layer to a hidden layer of size 256 

9. ReLU 

Training was by stochastic gradient descent on a fixed data set that contained the 
final 2 million games of self-played data from a previous run of AlphaGo Zero. 

The CNN includes a fully connected layer that outputs a vector of size 192 + 1. This 
accounts for all positions on the 19 x 19 board, plus a pass move allowed in Go. 
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VII.S The World of Machine Learning 

Fully connected nets and convolutional nets are parts of a larger world. From training data 
they lead to a learning function F(x,v). That function produces a close approximation 
to the correct output w for each input v (v is the vector of features of that sample). But 
machine learning has developed a multitude of other approaches-some long established
to the problem of learning from data. 

This book cannot do justice to all those ideas. It does seem useful to describe Recurrent 
Neural Nets (and Support Vector Machines). We also include key words to indicate the 
scope of machine learning. (A glossary is badly needed! That would be a tremendous 
contribution to this field.) At the end is a list of books on topics in machine learning. 

Recurrent Neural Networks (RNNs) 

These networks are appropriate for data that comes in a definite order. This includes time 
series and natural language: speech or text or handwriting. In the network of connections 
from inputs v to outputs w, the new feature is the input from the previous time t - 1. 
This recurring input is determined by the function h(t- 1). 

Figure VII. 7 shows an outline of that new step in the architecture of the network. 

timet -1 

timet 

Figure VII.7: The computational graph for a recurrent network finds loss-minimizing out
puts w at each time t. The inputs to h(t) are the new data v(t) and the recurrent data 
h( t- 1) from the previous time. The weights multiplying the data are Xin and xrecur 
and Xout• chosen to minimize the loss L(y - w). This network architecture is universal: 
It will compute any formula that is computable by a Turing machine. 

Key Words and Ideas 

1 Kernel learning (next page) 5 Graphical models 

2 Support Vector Machines (next page) 6 Bayesian statistics 

3 Generative Adversarial Networks 7 Random forests 

4 Independent Component Analysis 8 Reinforcement learning 
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Support Vector Machines 

Start with n points v 1 , ... , Vn in m-dimensional space. Each Vi comes with a classification 
Yi = 1 or Yi = -1. The goal proposed by Vapnik is to find a plane w Tv = b in m 
dimensions that separates the plus points from the minus points-if this is possible. That 
vector w will be perpendicular to the plane. The number b tells us the distance lbl/llwll 
from the line or plane or hyperplane in Rm to the point (0, ... , 0). 

v 1.-----------. v 2 , This separating line w Tv = b 
, ' maximizes the equal distance 

, '' (the margin) to + and - points. 
, ";' If v4 is inside the triangle, 

',,,' separation will be impossible 

•v4hasy4=-l 

Problem Find wand b so that w T vi- b has the correct sign Yi for all points i = 1, ... , n. 

If v 1 , v 2 , v3 are plus points (y = +1) in a plane, then v 4 must be outside the triangle of 
v 1 , v 2 , v3 . The picture shows the line of maximum separation (maximum margin). 

Maximum margin Minimize l!wll under the conditions Yi(wTvi- b)~ 1. 

This is a "hard margin". That inequality requires vi to be on its correct side of the separator. 
If the points can't be separated, then now and b will succeed. For a "soft margin" we go 
ahead to choose the best available w and b, based on hinge loss + penalty : 

Soft margin Minimize [ ~ t max (0, 1- Yi(wT vi- b))] + >. l!wll 2 • (1) 

That hinge loss (the maximum term) is zero when Vi is on the correct side of the separator. 
If separation is impossible, the penalty >-l!wW balances hinge losses with margin sizes. 

If we introduce a variable hi for that hinge loss we are minimizing a quadratic function 
of w with linear inequalities connecting w, b, Yi and hi. This is quadratic programming in 
high dimensions-well understood in theory but challenging in practice. 

The Kernel Trick 

SVM is linear separation. A plane separates + points from - points. The kernel trick 
allows a nonlinear separator, when feature vectors v are transformed to N(v). Then the 
dot product of transformed vectors gives us the kernel function K( vi, v1) = N( vi)T N( Vj ). 

The key is to work entirely with K and not at all with the function N. In fact we never 
see or need N. In the linear case, this corresponds to choosing a positive definite K and 
not seeing the matrix A inK= AT A. The RBF kernel exp( -II vi- v 1 11 2 /2a2 ) is in 111.3. 

M. Belkin, S. Ma, and S. Mandai, To understand deep learning we need to understand ker
nel/earning, arXiv:1802.01396. "Non-smooth Laplacian kernels defeat smooth Gaussians" 

T. Hofmann, B. SchtHkopf, and A. J. Smola, Kernel methods in machine learning, 
Annals of Statistics 36 (2008) 1171-1220 (with extensive references). 
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Google Translate 

An exceptional article about deep learning and the development of Google Translate ap
peared in the New York Times Magazine on Sunday, 14 December 2016. It tells how 
Google suddenly jumped from a conventional translation to a recurrent neural network. 
The author Gideon Lewis-Kraus describes that event as three stories in one: the work 
of the development team, and the group inside Google that saw what was possible, and 
the worldwide community of scientists who gradually shifted our understanding of how to 
learn: https://www.nytimes.com/2016/12/14/magazine/the -great-AI- awakening.html 

The development took less than a year. Google Brain and its competitors conceived the 
idea in five years. The worldwide story of machine learning is an order of magnitude longer 
in time and space. The key point about the recent history is the earthquake it produced in 
the approach to learning a language : 

Instead of programming every word and grammatical rule and exception in both 
languages, let the computer find the rules. Just give it enough correct translations. 

If we were recognizing images, the inputs would be many examples with correct 
labels (the training set). The machine creates the function F(x, v). 

This is closer to how children learn. And it is closer to how we learn. If you want to teach 
checkers or chess, the best way is to get a board and make the moves. Play the game. 

The steps from this vision to neural nets and deep learning did not come easily. 
Marvin Minsky was certainly one of the leaders. But his book with Seymour Papert 
was partly about what "Perceptrons" could not do. With only one layer, the XOR functim~ 
(A orB but not both) was unavailable. Depth was missing and it was needed. ' 

The lifework of Geoffrey Hinton has made an enormous difference to this subject. 
For machine translation, he happened to be at Google at the right time. For image recog
nition, he and his students won the visual recognition challenge in 2012 (with AlexNet). 
Its depth changed the design of neural nets. Equally impressive is a 1986 article in Nature, 
in which Rumelhart, Hinton, and Williams foresaw that backpropagation would become 
crucial in optimizing the weights: Learning representations by back-propagating errors. 

These ideas led to great work worldwide. The "cat paper" in 2011-2012 described train
ing a face detector without labeled images. The leading author was Quoc Le : Building 
high-level features using large scale unsupervised learning: arxiv.org/abs/1112.6209. 
A large data set of 200 by 200 images was sampled from YouTube. The size was managed 
by localizing the receptive fields. The network had one billion weights to be trained
this is still a million times smaller than the number of neurons in our visual cortex. 
Reading this paper, you will see the arrival of deep learning. 

A small team was quietly overtaking the big team that used rules. Eventually the 
paper with 31 authors arrived on arxiv.org/abs/1609.08144. And Google had to switch 
to the deep network that didn't start with rules. 
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Eigenvalues and Singular Values: Rank One 

A rank one matrix has the simple form A = xy T. Its singular vectors u 1 , v 1 and its only 
nonzero singular value a 1 are incredibly easy to find: 

X y 
u1 = llxll v1 = IIYII a1 = llxiiiiYII· 

You see immediately that A = xyT = u 1a 1 vf. One nonzero in them x n matrix E. 
All other columns of the orthogonal matrices U and V are perpendicular to u 1 and v1. 
The decomposition A= UEVT reduces to the first term A = u 1a 1 vf because rank= 1. 

Eigenvalues and eigenvectors are not quite that easy. Of course the matrix A must be 
square. To make life simple we continue with a 2 by 2 matrix A = xy T. Certainly x is an 
eigenvector ! 

Ax= xyTx = .X1x so .X1 is the number yTx. (2) 

The other eigenvalue is .X2 = 0 since A is singular (rank = 1). The eigenvector x 2 = yj_ 
must be perpendicular to y, so that Ax2 = xy T yj_ = 0. If y = (a, b) then yj_ is its 
90° rotation (b, -a). 

The transpose matrix AT = yx T has the same eigenvalues y T x and 0. Its eigenvectors 
are the "left eigenvectors" of A. They will be y and xj_ (because xy T has eigenvectors 
x and yj_ ). The only question is the scaling that decides the eigenvector lengths. 

The requirement is (left eigenvector)T(right eigenvector)= 1. Then the left eigenvec
tors are the rows of x- 1 when the right eigenvectors are the columns of X: perfection! 
In our case those dot products of eigenvectors now stand at y T x and ( xj_) T yj_. Divid~ 
both left eigenvectors y and xj_ by the number y T X, to produce X - 1 X = X x-1 = I : 

Finally there is one more crucial possibility, that y T x = 0. Now the eigenvalues of 
A = xyT are zero and zero. A has only one line of eigenvectors, because yj_ is in the 
same direction as x. The diagonalization (2) breaks down because the eigenvector matrix 
X becomes singular. We cannot divide by its determinant y T x = 0. · 

This shows how eigenvectors can go into a death spiral (or a fatal embrace x =· yj_). 
Of course the pairs of singular vectors x, xj_ andy, yj_ remain orthogonal. 

Question Inequation(2),verifythatX-1X = [ ::T] [ x yj_] = (yTx) [ ~ ~ ]· 
Question When does A = xy T have orthogonal eigenvectors? 
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Codes and Algorithms for Numerical Linear Algebra 

LAPACK is the first choice for dense linear algebra codes. 

ScaLAPACK achieves high performance for very large problems. 

COIN/OR provides high quality codes for the optimization problems of operations research. 

Here are sources for specific algorithms. 

Direct solution of linear systems 
Basic matrix-vector operations 

Elimination with row exchanges 

Sparse direct solvers (UMFPACK) 

QR by Gram-Schmidt and Householder 

Eigenvalues and singular values 
Shifted QR method for eigenvalues 

Golub-Kahan method for the SVD 

Iterative solutions 
Preconditioned conjugate gradients for Sx = b 
Preconditioned GMRES for Ax = b 
Krylov-Arnoldi for Ax = >.x 
Extreme eigenvalues of S 

Optimization 
Linear programming 

Semidefinite programming 

Interior point methods 

Convex Optimization 

Randomized linear algebra 
Randomized factorizations via pivoted QR 

A = C M R columns/mixing/rows 

Interpolative decomposition (ID) 

Fast Fourier Transform 

Repositories of high quality codes 

ACM Transactions on Mathematical Software 

Deep learning software (see also page 374) 

BLAS 

LAPACK 

SuiteSparse, SuperLU 

LAPACK 

LAPACK 

LAPACK 

Trilinos 

Trilinos 

ARPACK, Trilinos, SLEPc 

see also BLOPEX 

CLP in COIN/OR 

CSDP in COIN/OR 

IPOPT in COIN/OR 

CVX,CVXR 

users.ices.utexas.edu/ 

""pgm/main_codes.html 

FFTW.org 

GAMS ~nd Netlib.org 

TOMS 

Deep learning in Julia Fluxml.ai/Fiux.jl/stable 

Deep learning in MATLAB Mathworks.com/learn/tutorials/deep-learning-onramp.html 

Deep learning in Python and JavaScript 

Deep learning in R 
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Tensorflow.org, Tensorflow.js 

Keras, KerasR 



Counting Parameters in the Basic Factorizations 

A= LU A= QR S = QAQT A= XAX- 1 A= QS A= UEVT 

This is a review of key ideas in linear algebra. The ideas are expressed by those factor
izations and our plan is simple : Count the parameters in each matrix. We hope to see 
that in each equation like A = LU, the two sides have the same number of parameters. 

For A= LU, both sides have n 2 parameters. 

L : Triangular n x n matrix with 1 's on the diagonal 

U : Triangular n x n matrix with free diagonal 

Q : Orthogonal n x n matrix 

S : Symmetric n x n matrix 

A : Diagonal n x n matrix 

l n(n -1) 

ln(n+l) 

l n(n -1) 

ln(n+l) 

n 

X : n x n matrix of independent eigenvectors n 2 - n 

Comments are needed for Q. Its first column q1 is a point on the unit sphere in Rn. That 
sphere is an n - !-dimensional surface, just as the unit circle x 2 + y2 = 1 in R2 has 
only one parameter (the angle 0). The requirement llq1 ll = 1 has used up one of the n 
parameters in q 1. Then q2 has n - 2 parameters-it is a unit vector and it is orthogonal 
to q 1 . The sum (n- 1) + (n- 2) + · · · + 1 equals~ n(n- 1) free parameters in Q. 

The eigenvector matrix X has only n 2 - n parameters, not n2 • If x is an eigenvector 
then so is ex for any c # 0. We could require the largest component of every x to be ~ 
This leaves n- 1 parameters for each eigenvector (and no free parameters for x-1 ). 

The count for the two sides now agrees in all of the first five factorizations. 

For the SVD, use the reduced form A1nxn = U11txr:Erxr V..~n (known zeros are 
not free parameters!) Suppose that m::::; nand A is a full rank matrix with r = m. The 
parameter count for A is mn. So is the total count for U, ~. and V. The reasoning for 
orthonormal columns in U and V is the same as for orthonormal columns in Q. 

1 1 
U has - m{m -1) ~ has m V has (n-1)+ · +(n-m) = mn-- m(m + 1) 

2 2 
Finally, suppose that A is an m by n matrix of rank r. How many free parameters 

in a rank r matrix? We can count again for Umxr~rxr V..~n: 
1 1 

U has (m-1)+ · +(m-r) = mr-- r(r + 1) V has nr-- r(r + 1) ~ has r 
2 2 

The total parameter count for rank r is ( m + n - r) r. 

We reach the same total for A = C R in Section I. 1. The r columns of C ~ere taken 
directly from A. The row matrix R includes an r by r identity matrix (not free !). Then 
the count for CR agrees with the previous count for U~VT, when the rank is r: 

C has mr parameters R has nr - r 2 parameters Total ( m + n - r) r. 
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Steepest descent, 186, 347, 348, 350 
Step function, 193 
Stepsize, vii, 186, 344,407 
Stiffness matrix, 124, 336 
Stochastic descent, viii, 359, 361, 398 
Straight line fit, 136 
Stretching, 62, 67 
Strictly convex, 49, 323, 325, 355 
Stride,379,390 
Structured matrix, 180 
Subgradient, 188, 191, 192, 355 
Submatrix, 65 
Subsmpling, 379 
Sum of squares, 51 
Support Vector ~achine, 394 
SVD, vi, ix, 1, 5, 11, 31, 56, 57, 60, 144 
SVD for derivatives, 65 
sv~. 181, 3.94, 413,414 
SVVA, 365 
Sylvestertest, 180, 181, 183 
Symbol, 232, 238 
Symmetric matrix, 11, 36 
Szego,235 

Tangentline,324,325,332 
Tayl?r series, 323 
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Tensor, x, 101, 110 
Tensor train, 108 
Tensor unfolding, 105 
Tensorflow, viii, 374, 418 
Test, 47, 412 
Test data, iii, ix, 359 
Text mining, 98 
Three bases, 138 
Toeplitz matrix, 183, 232, 233, 373, 387, 
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Total probability, 268, 274 
Total variance, 77 
Total variation, 190, 193 
Trace, 36, 77 
Training, 412 
Training data, iii, 359 
Transition matrix, 313,314 
Tree, 17, 240, 244 
Triangle inequality, 88, 260 
Tridiagonal, 28, 118, 232 
Tucker form, 107 
Turing machine, 413 
Two person game, 340 

Unbiased, 308 
Underfitting, 374 
Unfolding, 108 
Uniform distribution, 266, 267 
Unit ball, 89, 96, 200 
Unitarily invariant, 72 
Unitary matrix, 206 
Universality, 384 
Unsupervised, 71 
Updating, 164-166 

Upper Chernoff, 289 
Upper triangular, 23, 129 

Vandermonde, 178, 180 
Vanishing weights, 378 

431 

Variance, ix, 76, 134, 147, 150,264, 
265,267 

Variance of x, 307 
Variance of sum, 299 
Vector norm, 327 
Vectorize (vee), 225 
Video, 226 
Voltage Law, 18 

Wavelet, 391 
Wavelet transform, 237 
Weak duality, 339, 343 
Weakly stationary, 235 
Weight averaging, 365 
Weight decay, 412 
Weight sharing, 388 
Weighted, 134,243 
Weighted average, 306, 307 
Weights, 375 
Weyl inequalities, 172, 175, 176 
White noise, 134, 306 
Wiener-Hopf, 235 
Wikipedia, 30, 275, 394, 408 
Wraparound, 391 

YOGI, 367 

Zero padding, 233, 391 
Zig-zag, 348, 349 
Zolotarev, 182 
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(AB) C or A(BC), 403 
-1, 2, -1 matrix, 238 
18.06-18.065, vi, viii, x, 155 
A= CMR, 8, 142, 151, 156 
A=CR,5,7,245 
A= LU, 11, 24,27 
A= QR, 11, 129, 143, 156 
A= QS, 67 
A= UV,97 
A= UEVT, 11, 57, 64, 69, 120 
A= XAx~r, 11,39 
AB, 9, 10,64 
AV = UE,56 
AVr = UrEr, 57 
A EBB, 223 
A® B, 221 
ATCA, 242,243 
A+= At= VE+UT, 125, 132 
Ak = XAk x~r, 39 

Hk = QJAQk. 117 
M -orthogonal, 83 
QQT, 32 
QR algorithm, 119, 123 
QTQ,32 
QT = Q~1, 29 
S-curve, 376 
S-norm, 90 
s = AT A, 4 7, 48 
s = ATCA, 54 

S = QAQT, 11, 12, 44, 51 
VF, 323,347 
a* *a, 220 
c * d, 214,220 
c@ d, 214,218 
xTSx,46, 55 
£0 norm, 89, 159 
£1 VS. £2 , 308 
£1 ,£2 , c= norms, 88, 94, 159, 327 
uvT, 9 
C(A), 3 
N (0, 1), 288,304 
N (m, a), 268 
S + T,S n T,S~,20 
Kron(A, B), 221 
vec,225-227 
C(AT), 9 
N(A), 14 
N(AT A) = N(A), 20, 135 
log(detX), 346,358 
8,105 
1>·11 :=::; 0'1, 61 
IIAxll/llxiJ, 62 

.//file, 92 
k-means,97,245,247,251,252,254 
MATLAB,45,82, 108,221,249,418 
Julia,45,82,418 
·*oro, 107,218 
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