~ LINEAR ALGEBRA
awd Learww\.g

/ﬂ I"l':"“

v ‘r-,_-... J 15\ ‘j

GILBERT STRANG

LINEAR ALGEBRA AND
LEARNING FROM DATA

GILBERT STRANG

Massachusetts Institute of Technology

WELLESLEY - CAMBRIDGE PRESS
Box 812060 Wellesley MA 02482

Linear Algebra and Learning from Data
Copyright ©2019 by Gilbert Swrang
ISBN 978-0-692-19638-0

All rights reserved. No part of this book may be reproduced or stored or transmitted
by any means, including photocopying, without written permission from

Wellesley - Cambridge Press. Translation in any language is strictly prohibited —
authorized translations are arranged by the publisher.

BTEX typesetting by Ashiey C. Fernandes (info@ problemsolvingpathway.com)

Printed in the United States of America 987654321

Other texts from Wellesley - Cambridge Press
Iatroduction to Linear Algebra, Sth Edition, Gilberi Strang ~ ISBN 978-0-9802327-7-6

Computational Science and Engineering, Gilbert Strang ISBN 978-0-9614088-1-7
Wavelets and Filter Banks, Gilbert Strang and Truong Nguyen 1SBN 978-0-9614088-7-9
Introdiction to Applied Mathematics, Gilbert Strang ISBN 978-0-9614088-0-0
Caleulus Third edition (2017), Gilbert Strang ISBN 978-(-9802327-5-2
Algorithms for Global Positioning, Kai Borre & Gilbert Strang ISBN 978-0-9802327-3-8
Essays in Linear Algebra, Gilbert Strang ISBN 978-0-9802327-6-9

Differential Equations and Linear Algebra, Gilbert Strang ISBN 978-0-9802327-9-0

An Analysis of the Finite Element Method, 2017 edition, Gilbert Strang and George Fix
ISBN 978-0-9802327-8-3

Wellesley - Cambridge Press math.mit.edw/weborder.php (orders)
Box 812060 linearalgebrabook @gmail.com

Wellesley MA 02482 USA math.mit.edv/~gs
www.wellesleycambridge.com phone (781) 431-8488 fax (617) 253-4358

The website for this book is math.mit.edu/learningfromdata
That site will link to 18.065 course material and video lectures on YouTube and QCW

" The cover photograph shows a neural net on Inle Lake. It was taken in Myanmar.
From that photograph Lois Sellers designed and created the cover,
The snapshot of playground.tensorflow.org was a gift from its creator Daniel Smilkov.

Linear Algebra is included in MIT s OpenCourseWare site ocw.mit.edu
This provides video lectures of the full linear algebra course 18.06 and 18.06 SC

Deep Learning and Neural Nets

Linear algebra and probability/statistics and optimization are the mathematical pillars
of machine learning. Those chapters will come before the architecture of a neural net.
But we find it helpful to start with this description of the goal: To construct a function
that classifies the training data correctly, so it can generalize to unseen test data.

To make that statement meaningful, you need to know more about this learning
function. That is the purpose of ithese three pages—to give direction to all that foliows.

The inputs to the function F are vectors or matrices or sometimes tensors—one input
v for each training sample. For the problem of identifying handwritten digits, each input
sample will be an image——a matrix of pixels. We aim to classify each of those images as a
aumber from O to 9. Those ten numbers are the possible outputs from the learning function.
In this example, the function I learns what to look for in classifying the irnages.

The MNIST set contains 7{}, 000 handwritten digits, We train a learning function on parts,
of that set. By assigning weights to different pixels in the image, we create the function,
The big problem ef optimization (the heart of the calculation) is to choose weights so
that the function assigns the correct output 0,1,2,3,4,5,6,7,8, or 9. And we don’t ask
for perfection! (One of the dangers in deep learning is overfitiing the daia,)

Then we validate the function by choosing unseen MNIST samples, and applying
the function to classify this test data. Competitions over the years have led to major
improvements in the test results. Convolutional nets now go below 1% errors. In fact
it is competitions on known data like MNIST that have brought big improvements in
the structure of F'. That structure is based on the architecture of an underlying neural net.

Linear and Nonlinear Learning Functions

The inputs are the samples v, the ouiputs are the computed classifications w = F(v).
The simplest learning function would be linear: w = Aw. The entries in the matrix A
are the weights to be learned: not too difficult. Frequently the function also learns a
bias vector b, so that F(v) = Av + b. This function is “affine”. Affine functions can be
quickly learned, but by themselves they are too simple.

iv L_ Deep Leaming and Neural Nets

More exactly, linearity is a very limiting requirement. If MNIST used Roman numerals,
then IT might be halfway between I and II1 (as linearity demands). But what would be
halfway between I and XIX ? Certainly affine functions Av + b are not always sufficient.

Nonlinearity would come by squaring the components of the input vector v. That step
might help to separate a circle from a point inside—which linear functions cannot do.
But the construction of F' moved toward “sigmeoidal functions” with S-shaped graphs.
It is remarkable that big progress came by inserting these standard nonlinear S-shaped
functions between matrices A and B to produce A(S5(Bv)). Eventually it was discovered
that the smoothly curved logistic functions § could be replaced by the extremely simple
ramp function now called ReLU(x) = max (0,). The graphs of these nonlinear
“activation functions” K are drawn in Section VIL.1.

Neural Nets and the Structure of F'(v)

The functions that yield deep learning have the form F(v) = L{R(L{R(...{Lv))M).
This is a composition of affine functions Lv = Awv + b with nonlinear functions R—
which act on each component of the vector Lv. The matrices A and the hias vectors b
are the weights in the learning function F. 11 is the 4’s and b’s that must be learned
from the training data, so that the outputs F(v} will be {nearly) correct. Then F can be
applied to new samples from the same population. If the weights (A’s and #'s) are well
chosen, the owiputs F'(v) from the unseen test data should be accuraie. More layers
in the function F' will typically produce more accuracy in F'(v).

Properly speaking, F'(i, v} depends on the input v and the weights @ (all the A’s and
b’s). The outputs »1 = ReLU{A;v + by) from the first step produce the first hidden
Jayer in our neural net. The complete net starts with the input layer v and ends with the
output layer w = F(v). The affine part Ly(vi—1) = Axvr_1 + by of each step uses the
computed weights A, and by.

All those weights together are chosen in the giant optimization of deep learning :
Choose weights A; and b, to minimize the total loss over all training samples.

The total loss is the sum of individual losses on each sample. The loss function for
least squares has the familiar form ||F(v) — true output]|>. Often least squares is not
the best loss function for deep learning.

One input v = a_ One output w = 2

Deep Learning and Neural Nets v

Here is a picture of the neural net, to show the structure of F{v). The input layer
contains the training samples v = wvg. The output is their classification w = F(v).
For perfect learning, w will be a {(correct) digit from O to 9. The hidden layers
add depth to the network. It is that depth which has allowed the composite function F
to be so successful in deep leaming. In fact the number of weights A;; and b; in the
neural net is often larger than the number of inputs from the training samples v.

This is a feed-forward fully connected network. For images, a convolutional neural net
(CNN) is often appropriate and weights are shared—the diagonals of the matrices A
are constant. Deep learning works arnazingly well, when the architecture is right.

Input sample Hidden Layer Hidden Layer Cutput

Each diagonal in this neural net represenis a weight to be learned by optimization.
Edges from the squares contain bias vectors by, b2, bs. The other weightsare in Ay, A, A3,

Linear Algebra and Learning from Data Wellesley-Cambridge Press

viii e s o Preface and Acknowledgments

Linear algebra has moved to the center of machine learning, and we need to be there.

A book was needed for the 18.065 course. It was started in the original 2017 class,
and a first version went out to the 2018 class. T happily acknowledge that this book owes its
existence to Ashley C. Fernandes. Ashley receives pages scanned from Boston and sends

back new sections from Mumbai, ready for more work. This is our seventh book together
and I am extremely gratefy].

Students were generous in helping with both classes, especially William Loucks and
Claire Khodadad and Alex LeNail and Jack Strang. The project from Alex led to his online
code alexlenail.me/NN-SVG/ to draw neural neis (an example appears on page V).
The project from Jack on hitp://www.teachyourmachine.com learns to recognize hand-
written numbers and letters drawn by the user: open for experiment. See Section VIL2.

MIT’s faculty and staff have given generous and much needed help :
Suvrit Sra gave a fantastic lecture on stochastic gradient descent (now an 18.065 video)
Alex Postnikov explained when matrix completion can lead to rapk one (Section IV.8)
Tommy Poggio showed his class how deep learning generalizes to new data
Jonathan Harmon and Tom Mullaly and Liang Wang contributed to this book every day

Ideas arrived from all directions and gradually they filled this textbook.

The Content of the Book

This book aims to explain the mathematics on which data science depends : Linear algebra,
optimization, probability and staristics. The weights in the learning function go into
matrices. Those weights are optimized by “stochastic gradient descent”. That word
stochastic (= random) is a signal that success is governed by probability not certainty.
The law of large numbers extends to the law of large functions: If the architecture is
well designed and the parameters are well computed, there is a high probability of success.

Please note that this is not a book abaut computing, or coding, or software. Many books
do those parts well. Qne of our favorites is Hands-On Machine Learning (2017)
by Aurélien Géron (published by O’Reilly). And online help, from Tensorflow and Keras
and MathWorks and Caffe and many more, is an important contribution to data science.

Linear algebra has a wonderful variety of matrices : symmetric, orthogonal, triangular,
banded, permutations and projections and circulants. In my expertence, positive definite
Symmetric matrices S are the aces. They have positive eigenvalnes X and orthogonal
eigenvectors g. They are combinations § = A;q,9T + A2q,qT + - - of simple rank-one
projections gg* onto those eigenvectors. And if A; > Ap > ... then A1q,qT is the most
informative part of S. For a sample covariance matrix, that part has the greatest variance.

Preface and Acknowledgments ix

Chapter I In our lifetimes, the most important step has been to extend those ideas from
symunetric matrices to all matrices. Now we need two sets of singular vectors, w’s and v’s.
Singular values o replace eigenvalues \. The decomposition 4 = a1u19T +ouvd +- -
remains correct (this is the SVD). With decreasing ¢’s, those rank-one pieces of A still
come in order of importance. That “Eckart- Young Theorem™ about A complements what
we have long known about the symmetric matrix AT A: For rank k, stop at Jkukvz.

II The ideas tn Chapter I become aigorithms in Chapter IL. For quite large matrices, the
a's and «’s and v’s are computable. For very large matrices, we resort to randomization :
Sample the columns and the rows. For wide classes of big matrices this works well.

III-IV Chapter Il focuses on low rank matrices, and Chapter IV on many important
examples. We are looking for properties that make the computations especially fast (in II)
or especially useful (in 1V). The Fourier matrix is fundamental for every problem with
constant coefficients (not changing with position). That discrete transform is superfast
because of the FFT : the Fast Fourier Transform.

V Chapter V explains, as simnply as possible, the statistics we need. The central ideas are
always mean and variance: The average and the spread around that average. Usually
we can reduce the mean to zero by a simple shift. Reducing the variance (the uncertainty)
is the real problem. For random vectors and matrices and tensors, that problem becomes
deeper. It is understood that the linear algebra of statistics is essential to machine learning.

¥1 Chapter VI presents two types of optimization problems. First come the nice problems
of linear and quadratic programming and game theory. Duality and saddle points are
key ideas. But the goals of deep learning and of this book are elsewhere: Very large
problems with a structure that is as simple as possible. “Derivative equals zero” is still}
the fundamental equation. The second derivatives that Newton would have used are
too numerous and too complicated to compute. Even using all the data (when we take
a descent step to reduce the loss) is often impossible. That is why we choose only
a minibatch of input data, in each step of stochastic gradient descent.

The success of large scale learning comes from the wonderful fact that randomization
often produces reliability—when there are thousands or millions of variables.

VII Chapter VII begins with the architecture of a neural net. An input layer is connected
to hidden layers and finally to the output layer. For the training data, input vectors v
are known. Also the correct outputs are known (often w is the correct classification of »}.
We optimize the weights in the learning function F' so that F(x,v) is close to w
for almost every training input .- '

Thea F' is applied to resr data, drawn from the same population as the training data.
If F' learned what it needs (without overfitting: we don’t want to fit 100 points by 99th
degree polynomials), the test error will also be low. The system recognizes images and
speech. It translates between languages. It may follow designs like ImageNet or AlexNet,
winners of major competitions. A neural net defeated the world champion at Go.

X Preface and Acknowledgments

The function F is often piecewise linear—the weights go into matrix multiplications.
Every neuron on every hidden layer also has a nonlinear “activation function”. The
ramp function ReLU(z) = (maximum of 0 and =) is now the overwhelming favorite.

There is a growing world of expertise in designing the layers that make up F'(x, v).
We start with filly connecred layers—all neurons on layer n connected to all neurons on
layer n 4 1. Often CNN’s are better—Convolutional neural nets repeat the same weights
around all pixels in an image: a very important construction. Other layers are different.
A pooling layer reduces the dimension. Dropout randomly leaves out neurons. Batch
normalization resets the mean and variance. All these steps create a function that closely
matches the training data. Then F{x, v) is ready to use.

Acknowledgments
Above all, I welcome this chance to thank so many generous and encouraging friends :

Pawan Kumar and Leonard Berrada and Mike Giles and Nick Trefethen in Oxford
Ding-Xuan Zhou and Yunwen Lei in Hong Kong

Alex Townsend and Heather Wilber at Cornell

Nati Srebro and Srinadh Bhojanapalli in Chicago

Tammy Kolda and Thomas Strohmer and Trevor Hastie and Jay Kuo in California
Bill Hager and Mark Embree and Wotao Yin, for help with Chapter 111

Stephen Boyd and Lieven Vandenberghe, for great books

Alex Strang, for creating the best figures, and more

Ben Recht in Berkeley, especially,

Your papers and emails and lectures and advice were wonderful,

THE MATRIX ALPHABET

A Any Matrix @ Orthogonal Matrix

C Circulant Matrix R Upper Triangular Matrix
C Matrix of Columns R Matrix of Rows

D Diagonal Matrix s Symmetric Matrix

F Fourier Matrix s Sample Covartance Matrix
I Identity Matrix T Tensor

L Lower Triangular Matrix U Upper Triangular Matrix
L Laplacian Matrix U Left Singular Vectors
M Mixing Matrix Vv Right Singular Vectors
M Markov Matrix X Eigenvector Matrix

P Probability Matrix A Eigenvalue Matrix

P =

Projection Matrix Singular Value Matrix

Video lectures : OpenCourseWare ocw.mit.edu and YouTube (Math 18.06 and 18.065)
Introduction to Linear Algebra (5th ed) by Gilbert Strang, Wellesley-Cambridge Press
Book websites: math.mit.edu/linearalgebra and math.mit.edu/learningfromdata

Table of Contents

Deep Learning and Neural Nets

Preface and Acknowledgments

Part I : Highiights of Linear Algebra

L1
1.2
L3
L4
L5
16
1.7
1.8
1.9

Multiplication Az Using Columnsof 4
Matrix-Matrix Multiplication AB
The Four Fundamental Subspaces
Eliminationand A =LU
Orthogonal Matrices and Subspaces
Eigenvalues and Eigenvectors
Symmetric Positive Definite Matrices
Singular Values and Singular Vectors in the SVD . .

Principal Components and the Best Low Rank Matrix

1.10 Rayleigh Quotients and Generalized Eigenvalues . .

L1l

Norms of Vectors and Functions and Matrices

1.12 Factoring Matrices and Tensors : Positive and Sparse

Part Il : Computations with Large Matrices

1.1
1.2
IL3
4

Numerical Linear Algebra
Least Squares: FourWays
Three Bases for the Column Space

Randomized Linear Algebra,

..........

ifi

vi

Part lil: Low Rank and Compressed Sensing 159
IM.1 Changesin A~* from Changesin 4 160
III.2 Interlacing Eigenvalues and Low Rank Signals 168
1.3 Rapidly Decaying Singular Values 178
IML4 Split Algorithms for £2 + €1 184
IIL5 Compressed Sensing and Matrix Completion 195

Part IV: Special Matrices 203
IV.1 Fourer Transforms: Discrete and Continuous 204
IV.2 Shift Matrices and Circulant Matrices 213
IV3 The KroneckerProduct AR B 221
IV4 Sine and Cosine Transforms from Kronecker Sums 228
IV.5 Toeplitz Matrices and Shift Invariant Filters 232
IV.6 Graphs and Laplacians and Kirchhoff’sLaws 239
IV.7 Clustering by Spectral Methods and k-means 245
IV.8 Completing Rank OneMatrices 255
IV9 The Orthogonal ProcrustesProblem 257
IV.10 Distance Matrices L e 259

Part V: Probability and Statistics 263
V.1 Mean, Varance, and Probability 0. 264
V.2 Probability Distributions L., 275
V.3 Moments, Cumulants, and Inequalities of Statisties 284
V.4 Covariance Matrices and Joint Probabilicies 294
V.5 Multivariate Gaussian and Weighted Least Squares, .. 304

¥6 MakovChains e 311

Table of Contents Xiii

Part VI: Optimization 321
VI.1 Minimum Problems: Convexity and Newton’s Method 324
V1.2 Lagrange Multipliers = Derivativesof the Cost 333
VL3 Linear Programming, Game Theory, and Duality 338
V1.4 Gradient Descent Toward the Minimum 344
VL5 Stochastic Gradient Descentand ADAM 359

Part VII: Learning from Data 371
VIL.1 The Construction of Deep Neural Networks 375
VII.2 Convolutional Neural Nets 387
VIL.3 Backpropagationand the ChainRule 397
VIL.4 Hyperparameters: The Fateful Decisions 407
VILS5 The World of Machine Learning 413

Books on Machine Learning 416

Eigenvalues and Singular Values : Rank One 417

Codes and Algorithms for Numerical Linear Algebra 418

Counting Parameters in the Basic Factorizations ‘ 419

Index of Authors 420

Index 423

-

Index of Symbols 432

Part 1
Highlights of Linear Algebra

L1 Multiplication A2 Using Columns of A

1.2 Matrix-Maftrix Multiplication ADB

L3 The Four Fundamental Subspaces

L4 Elimination and A = LU

L5 Orthogonal Matrices and Subspaces

L6 Eigenvalues and Eigenvectors

1.7 Symmetric Positive Definite Matrices

L8 Singular Values and Singular Vectors in the SVD
L9 Principal Components and the Best Low Rank Matrix
.10 Rayleigh Quotienté and Generalized Eigenvalu;es
I.11 Norms of Vectors and Functions and Matrices

L1.12 Factoring Matrices and Tensors : Positive and Sparse

Part I : Highlights of Linear Algebra

Part T of this book is a serious introduction to applied linear algebra. If the reader’s

background is not great or not recent {in this important part of mathematics),

please do not rush through this part. It starts with multiplying Az and AB using the

columns of the matrix A. That might seem only formal but in reality it is fundamental.
Let me point to five basic problems studied in this chapter.

Az =b Ax =Xz Av=ocu Minimize | Ax|?/||z||? Factor the matrix A

Each of those problems looks like an ordinary computational question :
Findz FindzandA Findv,u,ande Factor A = columns times rows

You will see how understanding (even more than solving) is our goal. We want to know
if Az = b has a solution x in the first place. “Is the vector b in the column space of A?”
That innocent word “space” leads a long way. It will be a productive way, as you will see.

The eigenvalue equation Ax = Az is very different. There is no vector b—we are
looking only at the matrix 4. We want eigenvector directions so that Az keeps the
same direction as z. Then along that line all the complicated interconnections of A have
gone away. The vector A%x is just A?x. The matrix ! (from a differential equation)
is just multiplying @ by e*. We can solve anything linear when we know every x and A.

The equation Av = ou is close but different. Now we have two vectors v and u.
Our matrix A is probably rectangular, and full of data. What part of that data matrix is
important? The Singular Value Decomposition (SVD) finds its simplest pieces auwv™.
Those pieces are matrices (column u times row vT). Every matrix is built from these
orthogonal pieces. Data science meets linear algebra in the SVD.

Finding those pieces cuv7 is the object of Principal Component Analysis (PCA).

Minimization and factorization express fundamental applied problems. They lead to
those singular vectors v and «. Computing the best T in least squares and the principal
component v; in PCA is the algebra problem that fits the dara. We won’t give codes—
those belong online—we are working to explain ideas, .

When you understand column spaces and nullspaces and eigenvectors and singular
vectors, you are ready for applications of all kinds: Least squares, Fourier transforms,
LASSQ in statistics, and stochastic gradient descent in deep leamming with neurzl nets.

2 Highlights of Linear Algebra

L.l Multiplication Ax Using Columns of A

We hope you already know some linear algebra. It is a beautiful subject—more useful
to more people than calculus (in our quiet opinion). But even old-style linear algebra
courses miss basic and important facts. This first section of the book is about matrix-vector
multiplication Az and the column space of a matrix and the rank.

We always use examples to make our point clear.

Example 1 Muitiply A times z using the three rows of A, Then use the two columns :

2 3 :B 2z + s inner products
By rows 2 4 [:.':1] = | 2z +4z; = of the rows
| 3 7] 2 3z + Tz with © = (x1,22)
[2 3] 2 2 3 combination
By columns 2 4 [:cl] =zx1| 2 | +x | 4 = of the columns
| 3 7] 2 3 7 a1 and ap

You see that both ways give the same result. The first way (a row at a time) produces
three inner products. Those are also known as “dot products™ because of the dot notation :

row.column = (2, 3} (21, 22) = 23, + 3, (1)

This is the way to find the three separate components of Ax. We use this for computing—
but not for understanding. It is low level. Understanding is higher level, using vectors.

The vector approach sees Aw as a “linear combination” of @; and a,. This is the funda-
mental operation of linear algebra ! A linear combination of @, and as includes two steps :

(1) Multiply the columns a, and a3 by “scalars” 2, and x-
(2) Addvectors x1a1 + Zaa2 = Az,

Thus Az is a linear combination of the columns of A. This is Fundamental.

This thinking leads us to the column space of A. The key idea is to take all combina-
tions of the columns. All real numbers x, and x5 are allowed—the space inciudes Ax for
all vectors . In this way we get infinitely many output vectors Ax. And we can see those
outpois geometrically.

In our example, each Az is a vector in 3-dimensional space. That 3D space is called
R®. (The R indicates real numbers. Vectors with three complex components lie in the
space C®.) We stay with real vectors and we ask this key question ;

All combinations Az = z;a; + r2a, produce what part of the full 3D space ?

Answer: Those vectors produce a plane. The plane contains the complete line in the
direction of a; = (2,2, 3), since every vector 14, is included. The plane also includes
the line of all vectors xoa; in the direction of @2, And it includes the sum of any vector
on one line plus any vector on the other line. This addition fills out an infinite plane
containing the two lines. But it does not fill out the whole 3-dimensional space R®.

L1, Mubtiptication 4= Using Columns of A 3

Definition 'The combinations of the columns fill out the colummn space of A.

Here the column space is a plane. That plane includes the zero point (0,8, 0) which is
produced when z; = xz = 0. The plane includes (5, 6, 10) = @)+ az and (-1, -2, —4) =
a1 — az. Every combination z1a1 + 265 is in this column space. With probability 1 it
does not include the random point rand(3, 1) ! Which points are in the ptane ?

b= (b1, b2, b3} is in the column space of A exactly when Az = b has a solution (@1, £2)

When you see that truth, you understand the coturnn space C(A): The solution & shows
how to express the right side b as a combination z; a, + x2a2 of the columns. For some b
this s impossible—they are not in the column space.

1 2x) + 30 1
Example 2 b= | 1| isnotin C{A). Ax = | 22y + 4z, | = | 1 | is unsolvable.
1 3z + 7o i

The first two equations force z; = § and z3 = 0. Then equation 3 fails : 3()+T(0)
(not 1). This means that b= (1,1, 1} is not in the column space—the plane of &, and as.

2 3 5 2 31
Example 3 Whatarethecolumnspacesof Ao =2 4 6 |anddg=|2 4 117
3 7 10 3 71

Solution. The column space of A5 is the same plane as before. The new colamn (5, 6, 10)
is the sum of column 1 + column 2. So @3 = column 3 is already in the plane and adds
nothing new. By including this “dependeni” column we don’t go beyond the original plane. 8

The column space of As is the whole 3D space R®. Example 2 showed us that the new
third column (1, 1, 1) is not in the plane C{A}. Our column space C{As) has grown bigger.
But there is nowhere to stop between a plane and the full 3D space. Visuvalize the x — g
plane and a third vector (3, y3, z3) out of the plane (meaning that z5 # 0). They combine
to give every vector in R®,

Here is a total list of all possible column spaces inside R®. Dimensions 0,1,2, 3:

Subspaces of R> The zero vector (0,0, 0) by itself

A line of all vectors 1,

A plane of all vectors x1a, + 22a2

The whole R? with all vectors Tr1a1 + 202 + 3:30,3
In that list we need the vectors @y, €2, a3 to be “independent”. The only combination‘that
gives the zero vector is Oa; + Oaz + Oaz. So @) by itself gives a line, @; and a; give a
plane, @1 and a; and a3 give every vector b in R®. The zero vector is in every subspace !
In linear algebra language:

* Three independent columns in R® produce an invertibie matrix: A4~ =4714A= I.
+ Az = @requires = = (0,0,0). Then Az = b has exactly one solutionz = A~ 1b.

You see the picture for the columns of an n by n invertible matrix. Their combinations
fill its column space: all of R™. We needed those ideas and that language to go further.

4 Highlights of Linear Algebra

Independent Columns and the Rank of A

After writing those waords, [thought this short section was complete. Wrong. With
just a small effort, we can find a basis for the column space of A, we can factor A into
C times R, and we can prove the first great theorem in linear algebra. You will see the
rank of a matrix and the dimension of a subspace.

All this comes with an understanding of independence. The goal is to create a matrix C
whose columns come directly from A4—but not to include any column that is a combination
of previous columns. The columns of ' (as many as possible) will be “independent”.
Here is a natural construction of £ from the n columns of A :

If column 1 of A is not all zero, put it into the matrix C.

If column 2 of A is not a multiple of column 1, put it inte C.

If column 3 of A is not a combination of columns 1 and 2, put it into C. Continue.
At the end C will have r columns (r < n).

They will be a “basis” for the column space of A.

The left out columns are combinations of those basic columns in C.

A hasis for a subspace is a full set of independent vectors: All vectors in the space are
combinations of the basis vectors. Examples will make the point.

n = 3columnsin A
r = 2 columns in O

o B R

[1 3 8] 3
Exampled4 IfA=|1 2 6 |thenC = 2
0 1 2| 1

Column 3 of A is 2 (column 1) + 2 (column 2). Leave it out of the basis in C.

123 n =3 col sin A
Example5 1fA=|0 4 5 |thenC=A. = o coamnsin
00 6 r = 3 columns in C

This matrix A is invertible. Its column space is all of R®. Keep all 3 columns.

n = 3 columns in A

1
then C' = | 1 v = 1 column in C

1

| =T SN N
onoLn R

1
Example6 IfA=|1
1

The number r is the “rank® of A. It is also the rank of C. It counts independent columns.
Admittedly we could have moved from right to left in A, starting with its last column.
This would not change the final count r. Different basis, but always the same number of
vectors. That number r is the “dimension™ of the calumn space of 4 and C (same space).

The rank of a matrix is the dimension of its column space.

L1. Muitiplication Az Using Columns of A 5

The matrix C comnects to A by a third matix R: A = CR. Their shapes are
{(m by n} = {m by r){r by n). I can show this “factorization of A” in Example 4 above

13 8 1 3 1 0 2
A=|1 2 61=[1 2 0 1 2 |=CR (2)
01 2 0 1

When C' multiplies the first column [H of R, this produces column 1 of ' and A.

When C muttiplies the second column ?] of R, we get column 2 of € and A,

2
2
This matches column 3 of A. All we are doing is to put the right numbers in R.
Combinations of the columns of C produce the columns of A. Then 4 = CR stores this
information as a matrix multiplication. Actually R is a famous matrix in linear algebra:

When C' multiplies the third column] of R, we get 2(column 1} + 2(column 2).

R =rref(A) = row-reduced echelon form of A (without zero rows).

Example 5 has ¢ = A and then B = I (identity matrix). Example & has only one
column in ', s¢ it has one row in R :

4 i 3 2 B 1 [1 2 5] _CR All three matrices have rank » = 1
= Ly s = . - Column Rank = Row Rank
kS

The number of independent columns equals the number of independent rows

This rank theorem is true for every matrix. Always columns and rows in linear algebra!
The m rows contain the same numbers o.; as the i columns. But different vectors.

The theorem is proved by A = CR. Look at that differently—by rows instead of
columns. The matrix R has » rows. Multiplying by C' takes combinations of those rows.
Since A = CR, we get every row of A from the » rows of B. And those r rows are
independent, so they are a basis for the row space of A. The column space and row space
of A both have dimension r, with r basis vectors—columns of €' and rows of f.

One minute : Why does B have independent rows ? Look again at Example 4.

1 3 8 1 3 1 0 2 | + independent
A=(1 2 6 =1 2 0 1 2|+« rowsof R
01 2 01 o7

ones and zeros

It is those ones and zeros in R that tell me: No row is a combination of the other rows.
The big factorization for data science is the “SVD” of A—when the first factor
has r orthogonal columns and the second factor R has r orthogonal rows.

6 Highlights of Linear Algebra

Problem Set 1.1

1 Give an example where a combination of three nonzero vectors in R* is the zero
vector. Then write your example in the form Az = 0. What are the shapes of 4 and
T and 0?

2 Suppose a combination of the columns of 4 equals a different combination of those

columns. Write that as Ax = Ay. Find two combinations of the columns of A that
equal the zero vector (in matrix language, find two solutions to Az = 0).

3 {Practice with subscripts} The vectors ai,as,...,a, are in m-dimensional space
R™, and a combination ¢1@q + - - - + ¢, is the zero vector. That statement is at
the vector level.

(1) Write that statement at the matrix level. Use the matrix A with the a’s in its
columns and use the column vecter ¢ = (€1, ..., ¢}
(2) Write that statement at the scalar level. Use subscripts and sigma notation to

add up numbers. The column vector a; has components a1 5, @g;, . - -, Gonj.

4 Suppose A is the 3 by 3 matrix ones(3,3) of all ones. Find two independent vec-
tors o and ¥ that solve Ax = 0 and 4y = 0. Write that first equation Az = 0
{with numbers) as a combination of the columns of A. Why don’t I ask for a third
independent vector with Az = G?

5 The linear combinations of v = (1,1,0) and w = (0,1, 1) fill a plane in R%,

(a) Find a vector z that is perpendicular to v and w. Then z is perpendicular to
every vector cv + dw on the plane: (cv + dw) Tz = cvTz + dwT2=0+0.

{(b) Find a vector w that is not on the plane. Check that Tz # 0.

6 If three corners of a parallelogram are (1,1}, (4,2), and (1, 3), what are all three of
the possible fourth corners? Draw two of them.

7 Describe the column space of A = [v w v + 2w}, Describe the nullspace of A:
all vectors £ = (x1, 3, Ta) that solve Ax = 0. Add the “dimensions” of that plane
(the column space of A) and that line (the nullspace-of A):

dimension of column space 4+ dimension of nullspace = number of colurnns

8 A = C R is arepresentation of the columns of A in the basis formed by the celumns
of C with coefficients in R. If A;; = 72 is 3 by 3, write down A4 and C and R.

9 Suppose the column space of an m by n matrix is all of R*. What can you say about
m ? What can you say about n 7 What can you say about the rank r ?

I.L

10

11

12

13

14

15

16
17

18

19

Multiplication Az Using Columns of A 7

Find the matrices) and Cs containing independent columns of A4; and As:

1 3 -2 1 2 3
A=|3 9 -6 Ay=|4 5 6
2 6 —4 78 9

Factor each of those matrices into A = C'R. The matrix R will contain the numbers
that multiply columns of ' to recover columns of A,

This is one way to look at matrix multiplication: C times each column of R.
Produce a basis for the column spaces of A, and 45, What are the dimensions of

those column spaces—the number of independent vectors? What are the ranks of
A, and A, 7 How many independent rows in 4; and A3 ?

Create a 4 by 4 matrix A of rank 2. What shapes are ¢ and R ?

Suppose two matrices A and B have the same column space.

{a) Show that their row spaces can be different.

(b) Show that the matrices €' (basic columns) can be different.

{c) What number will be the same for 4 and B ?

If A = (R, the first row of A is a combination of the rows of R. Which part of

which matrix holds the coefficients in that combination—the numbers that multiply
the rows of R te produce row 1 of A?

£

The rows of R are a basis for the row space of A. What does that sentence mean 7

For these matrices with square blocks, find A = C'R. What ranks ?

Zeros ones Ay A A
L= on nes Az = A Az = A 4
ones o 4x4 1 1gxa 1 A1 lgxs

If A = CR, what are the C'R factors of the matrix { g ﬁ } ?

“Elimination” subtracts a number ¢;; times row j from row #: a “row operation.”
Show how those steps can reduce the matrix A in Example 4 to R (except that
this row echelon form R has a row of zeros}. The rank won’t change !

T
I
[

3 8 1 0 2
2 6 - = R=10 1 2| =rref(4).
1 2 00 0

21

22

23
24

Highlights of Linear Algebra

This page is about the factorization A = CR and its close relative A = CMR.
As before, C has r independent columns taken from A. The new matrix R has r
independent rows, also taken directly from A. The r by r “mixing matrix” is M.
This invertible matrix makes A = C M R a true equation.

The rows of R (not bold) were chosen to produce 4 = CR, but those rows of
R did not come directly from A. We will see that R has the form M R (bold R).

s, [3-[3]0 O-[3)ue

In this case M is just 1 by 1. How do we find M in other examples of A = CMR?
C and R are not square. They have one-sided inverses. We invert CTC and RRT.

CTART:CTCMRRT M=(CTC)_1(CTART)(RRT)_1| (*)

Here are extra problems to give practice with all these rectangular matrices of rank r.
CTC and RR” have rank r so they are invertible (see the last page of Section 1.3),

Show that equation (x) produces M = [3 | in the small example above.

The rank-2 example in the text produced A = C'R in equation (2)
1 3 8 1 3 1 0 2
A=(1 2 6)=|1 2 0 1 2|=CR
0 1 2 0 1

Choose rows 1 and 2 directly from A to go into B. Then from equation (*), find the
2 by 2 matrix M that produces A = CM R, Fractions enter the inverse of matrices

-1
. g b 1 d —b
Inverse of a 2 by 2 matrix [c d] = ad —be [< a] (%)

Show that this formula {(*#%) breaks down if [3] =m { i] : dependent columns.

Create a 3 by 2 matrix .4 with rank 1. Factor Ainto A = CRand 4 = CMR.
Create a 3 by 2 matrix A with rank 2. Factor Ainto A = CMR.

The reason for this page is that the factorizations A = CR and A = CM R have
jumped forward in importance for large matrices. When C takes colunms directly
from A, and R takes rows direcily from A, those matrices preserve properties
that are lost in the more famous @K and SVD factorizations. Where 4 = QR and
A = UZVT involve orthogonalizing the vectors, C' and R keep the original data:

If A is nonnegative, so are C and R. If A is sparse, so are C and K.

1.2. Matrix-Matrix Multiplication AB 9

1.2 Matrix-Matrix Multiplication AB

Inmner products (rows times columns) produce each of the numbersin AB = (':

row2of A . . . coc by
column 3 of B a1 o3 do3 « ¢ byy | =1+ - caz (1)
give ca3 in C . . . - - baa

That dot product co3 = (row 2 of A) - (column 3 of B} is a sum of a’s timmes b’s:

3 Y
€23 = 021 b1z + a2 boy + az3 baz = Z azpbrz and e = Z agg by (2)
k=1 k=1

This is how we usually compute each number in AB = €. But there is another way,

The other way to multiply AB is columns of A times rows of B. We need to see this!
I start with numbers to make twa key points : one column u times one row v produces a
matrix. Concentrate first on that piece of AB. This matrix uv is especially simple :

“Outer T _ 3 [3 4 6] _ 2 g g “rank one
duct” - - matrix®
pro 1 34 6

An m by 1 matrix (a column) times a 1 by p matrix (a row vT) gives an m by p matrix.”
Notice what is special about the rank one matrix uv T

2
All columns of wvT are multiples of w = | 2 | All rows are multiplesof vT = [3 4 6]
1

The column space of uw! is one-dimensional: the line in the direction of wu.
The dimension of the column space (the number of independent columns) is the rank
of the matrix—a key number. All nonzero matrices uvT have rank one. They are the
perfect building blocks for every matrix.

Notice also: The row space of #vT is the line through ». By definition, the. row
space of any mairix A is the column space C{AT) of its transpose AT. That way we stay
with column vectors. In the example, we transpose v (exchange rows with columnns)
to get the matrix v :

. [6 8 12 6 6 3 31 [2 2 1]
(uwT)YT=| 6 8 12 = 8 8 4 (=14 =vu’l.
3 4 6 12 12 6 6

10 Highlights of Linear Algebra

We are seeing the clearest possible example of the first great theorem in linear algebra:

Row rank = Column rank + independent columns < r independent rows

A nonzero matrix uv ™ has one independent column and one independent row. All columns
are multiples of u and all rows are multiples of ©T. The rank is r = 1 for this matrix.

AB = Sum of Rank One Matrices

We turn 1o the full product AB, using columns of A times rows of B. Let @1,82,...,an
be the columns of A. Then B must have n rows b],bs,...,b),. The matrix A can
multiply the matrix B. Their product AB is the sum of columns a, times rows b, :

Column-row multiplication of matrices

l | — b —
=a1b’f+a2b§+-»-+anb:;. (3)
] | — b, — sum of rank 1 matrices

Here is a 2 by 2 example to show the n = 2 pieces (column times row) and their sum AB

EH I R R R I FH A

We can count the muluplications of number times number. Four muitiplications to get
2,4,6,12. Four more to get 0,0,0,5. A total of 23 = 8 multiplications. Always there
are n® multiplications when A and B are n by n. And mnp multiplications when AB =
{m by) times {n by p) : nrank one matrices, each of those matrices is m by p.

The count is the same for the usual inner product way, Row of A4 times column of B
needs n multiplications. We do this for every number in 4B : mp dot products when AR
is m by p. The total count is again rrnp when we multiply (m by n) times (n by p).

rows times columns mp inner products, n multiplications each mnp
columns times rows n outer products, mp multiplications each mnp

When you look closely, they are exactly the same multiplications a;x bx; in different
orders. Here is the algebra proof that each number c;; in C = AB is the same by outer
products in (3} as by inner products in (2):

T
The ¢, 7 entry of agby, is ainbr;. Add tofind ¢5; = Z @ik De; = row ¢+ column j.
k=1

L2, Matrix-Matrix Multiplication AB 1

Insight from Column times Row

Why is the outer product approach essential in data science ? The short answer is: We are
looking for the important part of a matrix A, We don’t usually want the biggest number
in A (though that could be important). What we want more is the largest piece of A. And
those pieces are rank one matrices uv®. A dominant theme in applied linear algebra is :

Factor A into C R and look at the pieces crj, of A = CR.

Factoring 4 inte CR is the reverse of multiplying CR = A. Factoring takes longer,
especially if the pteces involve eigenvalues or singular values. But those numbers have
inside information about the matrix A. That information is not visible until you factor.

Here are five important factorizations, with the standard choice of letters {usually A)
for the ortginal product matrix and then for its factors. This book will explain all five.

A=LU A=QR S=QAQT A=XAX"! A=UxVT

At this point we simply list key words and properties for each of these factorizations.

1 A = LU comes from elimination. Combinations of rows take A to I/ and IF back

to A. The matrix L is lower triangular and I is upper triangular as in equation (4).

2 A = @)K comes from orthogonalizing the columns a, o a,, as in “Gram-Schmidt”.

@ has orthonormal columns {@TQ = I) and R is upper triangular.

3 § = QAQT comes from the eigenvalues A, . . ., A, of a symmetric matrix § = ST.%
Eigenvalues on the diagonal of A. Orthonormal eigenvectors in the columns of .

4 A = XAX™1is diagonalization when A is n by n with n independent eigenvectors.

Eigenvalues of A on the diagonal of A. Eigenvecrors of A in the columns of X

5 A =USVT is the Singular Value Decomposition of any matrix A (square or not).

Singular values ¢y, ¢, in . Orthonormal singular vectorsin U and V.,

Let me pick out a favorite (number 3) to illustrate the idea. This special factorization
QAQT starts with a symmetric matrix 5. That matrix has orthogonal unit eigenvectors
41, -- -, 4, Those perpendicular eigenvectors (dot products = 0) go into the columns of &

5 and (} are the kings and queens of linear algebra :

Symmetric matrix § ST = § All 845 = sy

0 fori#gj:

Orthogonal matrix Q QT =Q ! Allg;-g; = { | for i—j

12 Highlights of Linear Algebra

The diagonal matrix A contains real eigenvalues X to A,. Every real symmetric matrix
S has n orthonormal eigenvectors g; to ¢,. When multiplied by S, the eigenvectors keep
the same direction. They are just rescaled by the number X :

Eigenvector g and eigenvalue A Sq=Ag (5)

Finding X and ¢q is not easy for a big matrix. But n pairs always exist when S is symmetric.
Our purpose here is to see how 8Q = QA comes column by column from Sq = Ag:

Al

SQ=5(a; ... ¢, [=|Ma - An@n [=]a ... @, =QA (6)
An

Multiply SQ = QA by Q7! = Q7 to get § = QAQT = a symmetric matrix. Each
eigenvalue Ay, and each eigenvector g, contribute a rank one piece Arg.g; to S.

Rank one pieces S = (QA)QT = (Mgl + (A2@a)as + - + (nglar (D

All symmetric The transpose of q,q; is q,q7 (8)

Please notice that the columns of QA are A1g, to Angq,,. When you multiply a matrix on
the right by the diagonal matrix A, you multiply its columns by the A’s.

We close with a comment on the proof of this Spectral Theorem S = QAQT:
Every symmetric S has n real eigenvalues and n orthonormal eigenvectors. Section 1.6
will construct the eigenvalues as the roots of the nth degree polynomial P,{A) = deter-
minant of § — AI. They are real numbers when S = ST. The delicate part of the proof
comes when an eigenvalue A; is repeated— it is a double root or an Mth root from a factor
{A — A;)™. In this case we need to produce M independent eigenvectors. The rank of
S — A;I must be n — M. This is true when § = §". But it requires a proof.

Similarly the Singular Value Decomposition 4 = UV T requires extra patience when
a singular value & is repeated M times in the diagonal matrix X. Again there are M
pairs of singular vectors v and u with Av = gu. Again this true statement requires proof.

Notation for rows We introduced the symbols b7, ..., b, for the rows of the second
matrix in AB. You might have expected by , ..., b~ and that was our original choice. But
this notation is not entirely clear—it seems to mean the transposes of the columns of B,
Since that right hand factor could be & or Ror QT or X or VT, it is safer to say
definitely : we want the rows of that marrix.

G. Strang, Multiplying and factoring matrices, Amer. Math. Monthly 125 (2018) 223-230.
G. Strang, Introduction to Linear Algebra, 5th ed., Wellesley-Cambridge Press (2016).

L2, Matrix-Matrix Muttiptication AB 13

Problem Set 1.2

1 Suppose Az = 0 and Ay = 0 (where & and y and 0 are vectors). Put those two
statements together into one matrix equation AB = €. What are those matrices B
and C ? If the matrix 4 is m by », what are the shapes of B and C?

2 Suppose a and b are column vectors with components a;, ..., a, and bq,. .., by.
Can you multiply a times bT (yes or no) ? What is the shape of the answer ab® ?
What number is in row i, column 5 of ab™ ? What can you say about aaT ?

3 (Extension of Problem 2: Practice with subscripts) Instead of that one vector a,
suppose you have n vectors a; to @, in the columns of A. Suppose you have n
vectors bT ..., bY in the rows of B.

{a) Give a “sum of rank one” formula for the matrix-matrix product AB.

(b) Give a formula for the i, j entry of that matrix-matrix product AB. Use sigma
notation to add the i, j entries of each matrix akb’,f, found in Problem 2.

4 Suppose B has only one column (p = 1). So each row of B just has cne number.
A has columns @y to a, as usual. Write down the column times row formula
for AB. In words, the m by 1 column vector AB is a combination of the

5 Start with a matrix B. If we want to take combinations of its rows, we premultiply
by A to get AB. If we want to take combinations of its columns, we postmultiply by
C to get BC. For this question we will do both.

Row operations then column operations First AB then (AB}C
Column operations then row operations First BC then A{B()
The associative law says that we get the same final result both ways.

¢ 1 by by ¢ 1

6 If A has columns a1, a0, a; and B = I is the identity matrix, what are the rank one
matrices a1 b] and ayb; and a3b; ? They should add to AT = A.

Verify(AB)C:A(BC)forA:[l “] B=[l" "’2] c=[1 0]‘

7 Fact: The columns of AB are combinations of the columns of 4. Then the column
space of AB is contained in the column space of A. Give an example of 4 and B
for which AB has a smaller column space than A.

8 Tocompute & = AB = {m by =) (n by p), what order of the same three commands
leads to columns times rows (outer products) ?

Rows times columns Columns times rows
Fori=1iom For. ..
« Forj=1ltop For, ..
Fork=1lton For. ..

Cii,7) = Cli,J) + Al k) = B(k, 7) C=

14 Highlights of Linear Algebra

1.3 The Four Fundamental Subspaces

This section will explain the “big picture” of linear algebra. That picture shows how every
m by n matrix 4 leads to four subspaces—two subspaces of R™ and two more of R”.
The first example will be a rank one matrix uvT, where the column space is the line
through % and the row space is the line through v. The second example moves to 2 by 3.

The third example (a 5 by 4 matrix A} will be the incidence matrix of a graph.
Graphs have become the most important models in discrete mathematics—this example
is worth understanding. All four subspaces have meaning on the graph.

1 2

Example 1 A:[3 8

} = uvT hasm = 2 and n. = 2, We have subspaces of R%,

1 The column space C(A) is the line through u = [; } Column 2 is on that line.
2 The row space C{A%) is the line through v = [;] Row 2 of A is on that line.
3 The putlspace N{ A) is the line through = = { _?] Then Az = 0.

4 The left nuflspace N(AT) is the line through y = [_i’] Then ATy = 0.

I constructed those four subspaces in Figure 1.1 from their definitions ;

The column space C({A) contains all combinations of the columns of A
The row space C{AT) contains all combinations of the columns of AT
The nullspace N{.A) contains all solutions & to Az =0

The left nullspace N(AT) contains all solutions y to ATy = 0

1 —
T 1 | [3} -
Nullspace + [2] = Left nuHlspace
N(A) 1 N(AT)
Row space ¢ | [2}_32 —l]zy
C(AT) L= Column spaced
C(A)

Figure I.1: The four fundamental subspaces (4 infinite lines) for A = [é g]

1.3. The Four Fundamental Subspaces 15

That example had exactly one « and v and & and y. All four subspaces were 1-dimensional
(lust lines}, Always the u’s and ’s and &’s and y’s will be independent vectors—they give
a “basis” for each of the subspaces. A larger matrix will need more than one basis vector
per subspace. The choice of basis vectors is a crucial step in scientific computing.

1 -2 -2
3 -6 -6
Going from A to B, two subspaces change and two subspaces don’t change. The column
space of B is still in R?. It has the same basis vector. Bul now there are n = 3 numbers in
the rows of B and the left half of Figure L2 is in R®. There is still only one v in the row
space ! The rank is still » = 1 because both rows of this B go in the same direction.

Example 2 5 = [} has m = 2 and n = 3. Subspaces in R® and R2,

With n = 3 unknowns and only » = 1 independent equation, Bx = 0 will have
3 — 1 = 2 independent solutions z, and xz. All solutions go into the nullspace.

a 2 2
Bz = l -2 2 bl = 0 hassolutions ;= | 1 | andxs =] 0
3 -6 -6 0 0)

[

In the textbook Imtroduction to Linear Algebra, those vectors @1 and x» are called
“spectal solutions”. They come from the steps of elimination—and you quickly see that
Bz, = 0 and Bxz; = 0. But those are not perfect choices in the nullspace of B because
the vectors #; and x- are not perpendicular.

This book will give strong preference to perpendicular basis vectors. Section IL.2 shows
how to produce perpendicular vectors from independent vectors, by “GramASchmiclt“.i

Our nullspace N(B) is a plane in R®>. We can see an orthonormal basis v, and vy
in that plane. The v, and v axes make a 90 ° angle with each other and with v;.

1 2
=3 _; Row space = infinite line through v,
1 1 Nullspace = infinite plane of v; and v
w=g 2 = 3 col fB
g r = 1 independent column
row of B _
R orthonormal
5 VP27 basis for R?
1
U3 = - 2
31

-

Figure [.2: Row space and nullspace of B = [1 -2 -2] : Line perpendicular to plane !

3 —6 —6

16 Highlights of Linear Algebra

Counting Law : = independent equations Ax = 0 have n — r independent solutions

Example 3 from a graph Here is an example that has five equations {one for every
edge in the graph). The equations have four unknowns (one for every node in the graph).
The matrix in Az = b is the 5 by 4 incidence matrix of the graph.

Ahas 1 and —1 on every row, to show the end node and the start node for each edge.

~&1 4Tz =

Ditferences Az = b —a +x3 = b
across edges 1,2, 3,4.5 ~Zy 4T3 = b3
between nodes 1, 2, 3,4 —xy +z4 =by
—x3 +x4 =0y

When you understand the four fundamental subspaces for this incidence matrix (the column
spaces and the nullspaces for A and AT) you have captured a central idea of linear algebra.

) edges
-1 1 ¢ 0 1
-1 0 1 0 2
A= 0 —1 1 0 3
0 —1 01 4
0 0 —-1 1 3
Tq
nodes 1 2 3 4

This “graph” has 5 edges and 4 nodes. A is its 5 by 4 incidence matrix.

The nullspace N{(A) To find the nullspace we set b = 0 in the 5 equations above.
Then the first equation says 1 = 2. The second equation is x3 =z ;. Equation 4 is x2 =x4.
All four unknowns x1, £9, T3, &4 have the same value c¢. The vector = (1,1,1,1) and
all vectors x = (¢, ¢, ¢, ¢) are the solutions to Az = 0.

That nullspace is a line in R*. The special solution & = (1,1, 1, 1) is a basis for N(A4).
The dimension of N{A) is 1 (one vector in the basis, a line has dimension 1). The rank of
A must be 3, sincen — r = 4 —3 = 1. From the rank » = 3, we now know the dimensions
of all four subspaces.

dimension of row space =r = 3 dimension of column space = ¢ = 3
dimension of nullspace = n — r = 1 dimension of nullspace of AT =m —r =2

I.3. The Four Fundamental Subspaces 17

The column space C(A} There must be r = 4 — 1 = 3 independent columns.
The fast way is to look at the first 3 columns. They give a basis for the column space of A :

Columns -1 ! 0 Column 4
-1 0 1 . s
1,2,3 0 -1] is a combination
of this A are 0 -1 0 of those three
independent hasic columns
0 0 -1
“Independent” means that the only solution to Az = 0 is (z1,x2,23) = (0,0,0).

We know z3 = 0 from the fifth equation 0z; + Oze — z3 = 0. We know zz = {} from
the fourth equation 0z, — 5 + 0z3 = 0. Then we know x; = (from the first equation.
Column 4 of the incidence matrix A is the sum of those three columns, times —1.

The row space C{AT) The dimension must againbe r = 3, the same as for columns.
But the first 3 rows of A are not independent: row 3 = row 2 — row 1. The first three inde-
pendent rows are rows 1, 2,4, Those rows are a basis (one possible basis) for the row space.

Edges 1,2, 3 form a loop in the graph: Dependent rows 1, 2, 3,
Edges 1,2, 4 form a tree in the graph: Independent rows 1, 2, 4.

n=1 y2 = -1
loop

ya=1
This y solves ATy = 0

Trees have no IOOPSiE

The left nullspace N(AT) Now we solve ATy = 0. Combinations of the rows
give zero. We already noticed that row 3 = row 2 — row 1, so one solution is ¢y =
(1,—1,1,0,G). I would say: this ¥ comes from following the upper loop in the graph:
forward on edges 1 and 3 and backward on edge 2.

Another ¢ comes frem going around the lower loop in the graph: forward on 4, back
on 5 and 3. This y = (0,0, —1,1,—1) is an independent solution of ATy = 0. The
dimension of the left nullspace N(AT)is m — 7 = 5 — 3 = 2. So those two y's are a basis
for the left nullspace.

You may ask how “loops” and “trees” got into this problem. That didn’t have io happen.
We could have used elimination to solve ATy = 0. The 4 by 5 matrix AT would have three
pivots. The nullspace of AT has dimension two: m — r = 5 — 3 = 2. But loops and trees
identify dependent rows and independent rows in a beautiful way,

18 Highlights of Linear Algebra

The equations ATy = O give “currents” y1, Y=, 3. ¥4, ¥5 on the five edges of the graph.
Flows around loops obey Kirchhoff’s Current Law: in = out. Those words apply
10 an electrical network. But the ideas behind the words apply all over engineering and
science and econormics and business. Balancing forces and flows and the budget.

Graphs are the most important model in discrete applied mathematics. You see graphs
everywhere: roads, pipelines, blood flow, the brain, the Web, the economy of a country
or the world. We can understand their incidence matrices 4 and AT. In Section IIL86,
the matrix AT A will be the “graph Laplacian”. And Ohm’s Law will lead to ATC A.

Four subspaces for a connected graph with m edges and n nodes: incidence matrix A
N(A) The constant vectors (¢, ¢, .. ., c) make up the 1-dimensional nullspace of A.
C{AT) The r edges of a tree give r independentrows of 4 i rank = r =n — 1,

C(A) Voltage Law: The components of Ax add to zero around all loops.
N(AT) Current Law: ATy = (flow in) — {flow out) = 0 is solved by loop currents.
There are m — v = m — n + 1 independent sinall loops in the graph.

C(A™) C(4)

dim r

row space
all vectors ATy

column space
all vectors Ax

The big picture

left nullspace
nullspace ATy =0

Az =0

N(A)
dimension n — r

N(AT)
dimension m — r

Figure 1.3: The Four Fundamental Subspaces : Their dimensions add to n and m.

[.3. The Four Fundamental Subspaces 19

The Ranksof ABand A + B

This page establishes key facts about ranks: When we multiply matrices, the rank

cannot increase. You will see this by looking at column spaces and row spaces. And there

is one special situation when the rank cannot decrease. Then you know the rank of AB.

Statement 4 will be important when data science factors a matrix into UV or CR.
Here are five key facts in one place : inequalities and equalities for the rank.

1 Rankof AB <rankof A Rank of AB < rank of B

2 Rank of A 4+ B < (rank of A) 4+ (rank of B)

3 Rank of ATA — rank of AAT = rank of A = rank of AT

4 If Ais m by r and B is r by n—both with rank r—then A B also has rank r

Statement 1 involves the column space and row space of AB :
C{AB) is contained in C{A) C((AB)T) is contained in C(BT)

Every column of 4B is a combination of the columns of A (matrix multiplication)
Every row of AB is a combination of the rows of B (marrix multiplication)

Remember from Section 1.1 that row rank = column rank. We can use rows or ¢columns.
The rank cannot grow when we multiply AB. Statement 1 in the box is frequently used.

Statement 2 Each column of A + B is the sum of {column of A) + (column of B).
rank (A + B) < rank (A4) + rank (B) is always true. [t combines bases for C{A) and C(B)§
rank (A + B} = rank {A) + rank (B) is not always true. It is certainly false if A = B = 1.

Statement 3 A and AT A both have n colurnns. They also have the same nullspace.
(This is Problem 6.) So n — 7 is the same for both, and the rank r is the same for both.
Then rank{AT) < rank(A" A) = rank(A). Exchange A and AT to show their equal ranks.

Statement 4 We are told that A and B have rank . By statement 3, AT A and BBT have
rank . Those are » by r matrices so they are invertible. So is their product AT ABBT. Then

r = rank of (ATABBT) < rank of (AB) by Statement 1 : AT, BTcan"t,increase rank

We also know rank (AB) <rank A = r. So we have proved that AB has rank exactly ».
Note This does not mean that every product of rank r matrices will have rank r.

Staternent 4 assumes that 4 has exactly r columns and B has r rows. BA can easily fail.

1 _
A=1 1 B=[1 2 -3] AP has rank 1 But BA iszero!
1

20 Highlights of Linear Algebra

Problem Set 1.3

1 Show that the nullspace of AB contains the nullspace of B. If Bz = (@ then...

2 Find a square matrix with rank (4%) < rank (A). Confirm that rank { A* A) = rank (A4).

3 How is the nullspace of C related to the nutlspaces of A and B, if ¢ = [g } 7

4 If row space of A = column space of A4, and also N(A) = N{AT), is A symmetric ?

5 Four possibilities for the rank r and size m, n match four possibilities for Az = b.

Find four matrices A, to A4 that show those possibilities:

r=m=n Aiz = b has 1 solution for every b
r=m<n Asx = b has 1 or oc solutions
r=n<m Aszx = b has 0 or 1 solution
rlm, r<n Asx = b has 0 or co solutions

6 (Important) Show that AT A has the same nullspace as A. Here is one approach :
First, if Ax equals zero then AT Az equals . This proves N{A4) C N(ATA).
Second, if AT Az = 0 then 2T AT Az = ||Az||? = 0. Deduce N(AT A) = N(A4).

7 Do A? and A always have the same nullspace ? A is a square matrix.

0 0
that those are vector spaces, not just single vectors. This is an unusual example
with C{4) = N{A). It could not happen that C{A4) = N{AT) because those two
subspaces are orthogonal.

8 Find the column space C({ A} and the nullspace N{(A) of A = { 01 } . Remember

9 Draw a square and connect its corners to the center point: 5 nodes and 8 edges.
Find the 8 by 5 incidence matrix A of this graph (rank r = 5 — 1 = 4).
Find a vector x in N(A} and 8 — 4 independent vectors y in N(AT).

10 If N{A) is the zero vector, what vectors are in the nullspace of B = [A A A]?

11 For subspaces S and T of R'® with dimensions 2 and 7, what are all the possible
dirmensions of

{i) SN T = {all vectors that are in both subspaces}
(ii) S+ T = {all sums s + t with sinS and £ in T}

Gi) §t = {all vectors in R'? that are perpendicular to every vector in S}.

I.4. Elimination and A = LU 21

I.4 Elimination and A = LU

The first and most fundamental problem of linear algebra is to solve Ax = b. We are given
the n by n matrix A and the n by 1 column vector b. We look for the solution vector .
Its components z1,xg, ..., %y are the n unknowns and we have n equations. Usually
a square matrix A means only one solution to Az = b (but not always). We can find
i« by geometry or by algebra.

This section begins with the row and column pictures of Az = b. Then we salve the
equations by simplifying them—eliminate z; from n — 1 equations to get a smaller system
Az = by of size n — 1. Eventualty we reach the 1 by 1 system A, z, = b, and we know
In = bnp/An. Working backwards produces x,,_; and eventually we know zo and z;.

The point of this section is to see those elimination steps in terms of rank 1 matrices.
Every step (from A to A; and eventually to A,) removes a matrix £u*. Then the
original A is the sum of those rank one matrices. This sum is exactly the great factorization
A = LI into lower and upper triangular matrices L and U—as we will see.

A = L times U is the matrix description of elimination without row exchanges.
That will be the algebra. Start with geometry for this 2 by 2 example.

2 equations and 2 unknowns [1 -2] [T] _ [1 } r—-2y=1 (0

2 by 2 matrixin Az = b 2 3 Y 9 2r+3y=9

Notice ! T multiplied Az using inner products {dot products). Each row of the matrix A
multiplied the vector . That produced the two equations for x and y, and the two straight
lines in Figure 1.4. They meet at the solution z = 3, ¥ = 1, Here is the row picture,

Y
1 -2 T 1
: HIMEN
) | 2c4+3y =29 A x = b
rx—-2y=1
S vy . . At the selution
1 -2 37 _[1
} f } x 2 3 1 |[.9
1 2 3
_1--

Figure 1.4: The row picture of Ax = b: Two lines meet at the solution x = 3,y = 1.

Figure 1.4 alse includes the horizontal line 7y = 7. [subtracted 2 (equation 1) from
{(equation 2). The unknown & has been eliminated from 7y = 7. This is the algebra:

R Y e FR S PR B et

22 Highlights of Linear Algebra

Column picture One vector equation instead of two scalar equations. We are looking
for a combination of the columns of A to match b. Figure [.5 shows that the right combi-
nation {the solution ®) has the same x = 3 and y = 1 that we found in the row picture.

Az is a combination of columns I =2flz|_ |1 =21 |1 @)
The columns combine to give b 2 3|yl T2 TV 3|7
Adding 3 (column 1) to 1 {column 2} gives b as a combination of the columns.

73 (column 1) = [g’]

column 2 = { N

column 1 = [;]

-2 3

Figure L.5: The column picture: 3 times (column 1} 4 1 times (column 2) gives b.

For n = 2, the row picture looked easy. But for n > 3, the column picture wins.

Better to draw three column vectors than three planes | Three equations for @ = (z, y, 2).

Row picture in 3D Three planes meet at one point. A plane for each eguation.

Column picture in 3D Three column vectors combine to give the vector b.

Solving Ax = b by Elimination

To visualize three planes meeting in R> is not easy. And n “hyperplanes” meeting at a
point in R™ is truly mind-bending. A combination of the column vectors is simpler: The
matrix 4 must have 3 {or n) independent columns. The columns must not all lie in the
same plane in R® (or the same hyperplane in R™). This translates to a statement in algebra:

Independent columns The only solution to Ax = 0 is the zero vector x = 0.

In words, independence means that the only combination that adds to the zero vector has
zero times every column. Then the only solution to Ax = 0is # = 0, When that is true,
elimination will solve Az = b to find the only combination of columns that produces b.

[4. BEliminationand A = LU ' 23

Here is the whole idea, column by column, when elimination succeeds in the usual order:
Column 1. Use equation 1 to create zeros below the first pivot. Pivots can’t be zero !

Column 2. Use the new equation 2 to create zeros below the second pivot.

Colunns 3 to n. Keep going to find the upper triangular U : n pivots on its diagonal,

*rTExx T T e rx [mrccc;v
0 xzx Oxxx . T LT
Step 1 0z 7 x Step 2 00 z Final U = -
0 xzx =z 00z x ®

Row 1 is the first pivot row—it doesn’t change. I multiplied that row by numbers £5), £31, £4;
and subtracted from rows 2. 3,4 of A. The numbers to get zeras 1o the first column were
Multipliers ~ £3; = —2% gy, = 231 g, = 241
ad11 11 a11
If the corner entry is a;; = 3 = first pivot, and az; below it is 12, then £5; = 12/3 = 4.

Step 2 uses the new row 2 (the second pivot row). Multiply that row by £32 and £42.
Subiract from rows 3 and 4 te get zeros in the second column. Continue all the way to U,

So far we have worked on the matrix A (not on b). Elimination on A4 needs %n3
separate multiplications and additions—far more than the n® steps for each right hand
side b. We need a record of that work, and the perfect format is a product A = LU
of triangular matrices : lower triangular L times upper triangalar L7 %

The Factorization A —= LU

How is the original A related to the final matrix U ? The multipliers £;; got us there
in three steps. The first step reduced the 4 by 4 problem to a 3 by 3 problem, by removing
multiples of row 1:

1 tmesrow 1 0 0 0 ©0
Key idea: Step 1 A #5, times row 1 4 0 ' 3)
removes £u] €37 times row 1 0 Ax)
£4; times row 1 0 '

What have we done ? The first matrix on the right was removed from A. That removed
matrix is a column vector 1,421, £31, {4y times row 1. It is the rank 1 matrix £ju}!

3 by 3 example 1 2 3 1 2 3 00 0 00 O
Remove rank 1 matrix 2 5 7T|—12 4 6/=(0 1 1!=]|0 A
2 7 8 2 4 8 03 2 0 2

Column / row to zero

24 Highlights of Linear Algebra

The next step deals with column 2 of the remaining matrix As. The new row 2 is
u; = second pivot row. We multiply it by £;0 = 0 and £33 = 1 and #;3; and £4;. Then
subtract £2u from the four rows. Now row 2 is also zero and A shrinks down to Az.

0 times pivot row 2 0000
_ . 1 times pivot row 2 0000
Step2 A=t4ul+ £32 times pivot row 2 Tlo o A @
£42 times pivot row 2 00 8

That step was a rank one removal of £2uj with £2 = (0,1, £33, {42) and u} = pivot
row 2. Step 3 will reduce the 2 by 2 matrix 43 to a single number A4 (1 by 1). At this point
the pivot row u} = row 1 of Az has only twe nonzercs. And the column €5 is (0,0, 1, £43).

This way of locking at elimination, a column at a time, directly produces A=LU.
That matrix multiplication L is always a sum of columns of L times rows of I/ :

i 0 0 0 pivot row 1
" . £ 1 0 0 ivot 2

A= bul +lus+luy+0au) = fzi by 1 0 g]i:gtg::} =LI. (5
£ fy2 €43 1 pivot row 4

Elimination factored A = LU into a lower triangular L times an upper triangular [J

Notes on the LU factorization We developed 4 = LU from the key idea of elimina-
tion: Reduce the problem size from n to n — 1 by eliminating ; from the last n — 1
equations. We subtracted multiples of row 1 (the pivot row). So the matrix we removed
had rank one. After n steps, the whole matrix 4 is a sum of n rank one matrices. That
sum—by the column times row rule for matrix multiplication—is exactly L times U/,

This proof is not in my textbook Introduction to Linear Algebra. The idea there was to
lock at rows of U/ instead of working with columns of A. Row 3 came from subtracting
multiples of pivot rows 1 and 2 fromrow 3 of A:

Row 3of U = {row 3 of A} — €3, (row 1 of /) — £32 (row 2 of U). (6)

Rewrite this equation to see that the row [£5, f3z 1] of L is multiplying the matrix {7 :

Row 3 of A = £3; (row 1 of U) + £32 (row 2 of U} + 1 (row 3 of U). (7)

This is row 3 of A = LI/, The key is that the subtracted rows were pivot rows, and
already in I7. With ne row exchanges, we have again found A = LU,

4. Elimination and A = LU 25

The Solutionto Az = b

We must apply the same operations to the right side of an equation and to the left side.
The direct way is to include b as an additiona! column—we work with the matrix [A B].
Now our elimination steps on A (they multiplied A by L™! to give U) act also on b:

Startfrom[A b]:{LU b} Eliminationproduces[U L_lb]={U c}.

The steps from A to U (upper triangular) will change the right side b te ¢. Elimination
on Az = b produces the equations /:x = ¢ that are ready for back substitution,

r+3y= 8 2 3 8 2 3 8| _
4m+7y=18‘*[4718}‘*[012}‘[U C] ®)

L subtracted 2 times row 1 from row 2. Then the triangular system Uz = c is solved
upwards—back snbstitution—from bottom to top:

2z+ 3y =8

1y =2 gives y =2 andthen x=1 Uax=c gives z=0U""e

Looking closely, the square system Az = b became two triangular systems :

Az ="bsplit into Le=5 and Uz = ¢. Elimination gave ¢ and back substitution gave x.

The final resultis = U~'e = U~1L~1p = A~1b. The correct solution has been found. %

Please notice Those steps required nonzero pivots, We divided by those numbers.
The first pivot was ay;. The second pivot was in the corner of A, and the nith pivot was in
the by 1 matrix A,,. These numbers ended up on the main diagonal of [J.

What do we do if a,; = 0?7 Zero cannot be the first pivot, If there is a nonzero
number lower down in column 1, its row can be the pivot row. Good codes will choose the
largest number to be the pivot. They do this to reduce errors, even if a;; is not zero.

We look next at the effect of those row exchanges on A = LU, A matrix P will enter.

Row Exchanges (Perlilutations)

Here the largest number in column 1 is found in row 3; a3; = 2. Row 3 will be the first
pivot row «;. That row is multiplied by f2; = 5 and subtracted from row 2.

. 01 1 11
tilﬁ_rstr::fogtiif A=l13 7|50 1 3 ©
- 2 4 8 2 4 8 ’

-+

26 _ Highlights of Linear Algebra

Again that elimination step removed a rank one matrix £;u]. But A; is in a new place.

011 0 J[2 4 8] 01 1
13 7|=11/2 +10[1 3]|] « Az (10)
2 4 8 1 000

Elimination on Ay produces two more rank one pieces. Then A = LU has three pieces:

17[0 1 1] [0}[002]
+|1

0 1 072
Hul+ |1 =l12 1 1|]o (1)
0 1 0 o0flo

(=R =N
b b GO

0

That last matrix U/ is triangular but the L matrix is not! The pivot order for this 4 was
3,1,2. If we want the pivot rows to be 1, 2, 3 we must move row 3 of 4 to the top:

2 4

Row exchange by [0 0 1 011
Pa=|100||l1 3 7|=]0o
01 0l]2 438 1

B
1 1
a permutation P 3 7

When both sides of Ax = b are multiplied by P, order is restored and PA = LU :

2 4 8 [1 0 ¢ 7 4 8
PA={0 1 1|=| 0 10 01 1
1 38 7 [1/2 1 1 0 0 2

' Every invertible n» by n matrix A leads to PA = LU : P = permutation.

=Ll (12)

There are six 3 by 3 permutations : Six ways to order the rows of the identity matrix.

1 exchange 010 0 0 1] 1 00

(Odd P) FPoig=411 0 0 P321 =0 10 Pig2=]|0 0 1
00 1) (1 0 0] [0 1 0]

D or 2 exchanges 1 0 01 0 10

(even P) P123 = 1 P312 = 1 0 0 P231 = 0 01

1 010 i 00

The inverse of every permutation matrix P is its transpose PT. The row exchanges
will also apply to the right hand side & if we are solving Ax = b. The computer just
remembers the exchanges without actually moving the rows.

There are n! (n factorial) permutation matrices of size n: 3! = (3){2)(1) = 6.
When A has dependent rows {no inverse) elimination leads to a zero row and stops short,

14, Eliminationand A = LU 27

Problem Set 1.4
1 Factor these matrices into A = LU ;
9 1 111 2 -1 0
A:[ﬁ 7:| A=11 1 1 A= -1 2 -1
1 11 6 -1 2
2 If ai1,...,01, is the first row of a rank-1 mawix A and @;1,...,8m is the first
column, find a formula for o.;. Good to check when a;1 = 2,412 = 3,821 = 4.
When will your formula break down? Then rank 1 is impossible or not unique.
3 What lower triangular matrix E puts A into upper triangular form EA = U?
Multiply by E~! = L to factor A into LU :
210
A= 0 4 2
6 3 5
4 This problem shows how the one-step inverses multiply to give L. You see this
best when A = L is already lower triangular with 1's on the diagonal. Then T/ = I':
1 08 1 1 00
Multiply A= e 1 O0fj byE;=|—a 1 andthen B2 = |0 1 O
b ¢ 1 -5 0 1 0 —¢ 1
(a) Multiply 5 F4 to find the single matrix E that produces EA = I.
(b) Muitiply £, E; ! to find the matrix A = L.
The multipliers a, b, c are mixed up in £ = L~! but they are perfectin L.
5 When zero appears in a pivot position, A = LU is not possible! (We are requiring
nonzero pivots in UJ.) Show directly why these LU equations are both impossible:
0 1 1 0] [d e b o 1 d e g
1 21 m n 1 1
These matrices need a row exchange by a permuration matrix P.
6 Which number ¢ leads to zero in the second pivot position? A row exchange is

needed and A = LIJ will not be possible. Which ¢ produces zero in the third pivot
position? Then a row exchange can’t help and elimination fails :

1
A=]2
3

oo 0
= O

7

10

11

12

28 Highlights of Linear Algebra

(Recommended) Compute L and U for this symmeiric matrix A:

a & a a

¢ b b b
A_abcc
a b ¢ d

Find four conditions on a, b, ¢, d to get A = LU with four nonzere pivots.

Tridiagonal mairices have zero entries except on the main diagonal and the two adja-
cent diagonals. Factor these into A = LU, Symmetry further produces 4 = LDLT:

1 1 0 a a 0
A=1|1 2 1 and A= |a a+b b
01 2 0 b b+¢

Easy but important. If A has pivots 5, 9, 3 with no row exchanges, what are the pivots
for the upper left 2 by 2 submatrix A, {without row 3 and column 3)?

Which invertible matrices allow A = LU (elimination without row exchanges)?
Good guestion! Look at each of the square upper left submatrices A1, As. ..., 4.

All upper left submatrices Ay, must be invertible ! sizes 1by 1,20y 2,...,nn by 1.

Explain that answer: A, factors into because LU = [fk 2 } [gk :]
In some data science applications, the first pivot is the largest number |a;;| in A.
Then row 7 becomes the first pivot row %y, Column j is the first pivot column.
Divide that column by a;; se £1 has 1 in row ¢. Then remove that £y u] from A.

This example finds age = 4 as the first pivot (i = 7 = 2), Dividing by 4 gives £;

1 2] _[1/2][3 4] {-1/2 0]_, . . J1/2 1 3 4
[3 4]—[1 } +[0 o huiTEw =" gl 12 0
For this A4, both L and U involve permutations. P; exchanges the rows to give L.
P exchanges the columns to give an upper triangular I/, Then Py AP; = LIJ.

. 10 4 3 4 3
Permuted in advance PLAP, = {1/2 1] [0 _1/2] = [2 1}

. 1 3
Question for A = {2 4

] : Apply complete pivoting to produce Py AP, = LU,

If the short wide matrix A has m < n, how does elimination show that there are
nonzero solutions to Az = 07 What do we know about the dimension of that
“nullspace of A” containing all solution vectors 27 The nullspace dimension is at
least

Suggestion : First create a specific 2 by 3 matrix A and ask those questions about A.

1.5. Orthogonal Matrices and Subspaces 29

1.5 Orthogonal Matrices and Subspaces

The word orthogonal appears everywhere in linear algebra. It means perpendicular.
Its use extends far beyond the angle between two vectors. Here are important extensions of
that key idea:

T

1. Orthogonal vectors @ and . Thetestis® y=oy1 + - + Tnin = 0.

If and y have complex components, change to Ly = F1y1 + -+ + Enin = 0.

2. Orthogonal basis for a subspace : Every pair of basis vectors has v} v; = 0.
Orthonormal basis : Orthogonal basis of unit vectors: every v} v; = I (length 1).
From orthogonal to orthonormal, just divide every basis vector v; by its length {|us|}.

3. Orthogonal subspaces R and N. Every vector in the space R is orthogonal to
every vector in N. Notice again! The row space and nullspace are orthogonal:

rowlof A 0
: x |=1:|. (1)
row m of A 0

Az = 0 means
eachrow -z =0

Every row {and every combination of rows) is orthogonal to all = in the nulispace.

4. Tall thin matrices @} with orthonormal columns: QTQ = I.

— T —

1
QTQ: : q, -9, = 0
0

____q;l;_

[el e

0
0| =1 (2)
1

If this { multiplies any vector z, the length of the vector does not change :
1Qell = |||} because (Qz)"(Qx) = 2TQTQz =T (3)

If m > n the m rows cannot be orthogonal in R™. Tall thin matrices have Q QT # I.

5. “Orthogonal matrices” are square with orthonormal columns: QT = Q~%.
For square matrices QTQ = I'leads to QQT = 1
For square matrices @, the left inverse Q7 is also a right inverse of Q.
The columns of this orthogonal n by n matrix are an orthonormal basis for R™.
The rows of @ are a (probably different) orthonormal basis for R™. '

The name “orthogonal matrix™ should really be “crthonormal matrix™.

The next pages give examples of orthogonal vectors, bases, subspaces and matrices.

30 ‘Highlights of Linear Algebra

1. Orthogonal vectors. The test 7y = 0 connects to right triangles by ¢? = o2 + #°:
Pythagoras Law for right triangles ||z — y||® = ||||® + ||y]|>. 4)

The left side is (= — y)T (@ — y). ThisexpandstoxT & + ¢y Ty — Ty — yT2. When
the last two terms are zero, we have equation (4): @ = {1,2,2) and y = (2,1, —2} have
Ty = 0. The hypotenuse is & — y = {~1,1,4). Then Pythagorasis 18 = 9 + 9.

Dot products Ty and yTa always equal ||x||{|y|| cos®, where @ is the angle
between z and y. So in all cases we have the Law of Cosines ¢ = a? + b* — 2abcos§:

Law of Cosines || — y||* = [lz|l* + |ly||* - 2{|z]| |lyl| cos®.)

Orihogonal vectors have cos# = () and that last term disappears.

2. Orthogonal basis. The “standard basis™ is orthoganal (even orthonormal) in R™ :

1 0 0
Standard basis ¢, 7,k in R® i= | 0 j=11 k=
0 0 1

Here are three Hadamard matrices Ho, Hy, Hg containing orthogonal bases of R%, RYL,RE.

. 1 1 1 1
Hadamard matrices 11 1 -1 1 1 H, Hi
Orthogonal colwnns
. 1 -1 1 1 -1 —-1 H, —H,
sizes 2,4 and 8 1 1 1 1

Are those orthogonal matrices? No. The columns have lengths /2,4, V8. If we
divide by those lengths, we have the beginning of an infinite list: orthonormal bases
in 2,4, 8,16, 32,. .. dimensions.

The Hadamard conjecture proposes that there is a -1 matrix with orthogonal columns
whenever 4 divides n. Wikipedia says that n = 6068 is the smallest of those sizes without
a known Hadamard matrix. The construction for n = 16, 32, . .. follows the pattern above.

Here is a key fact: Every subspace of R™ has an orthogonal basis. Think of a
plane in three-dimensional space R®. The plane has two independent vectors @ and b.
For an orthogonal basis, subtract away from b its component in the direction of a ;

Orthogonal basis a and ¢ e=b———a. (6)
23

The inner product aTe is aTb — a¥h = 0. This idea of “orthagonalizing” applies to any
number of basis vectors : @ basis becomes an orthogonal basis. That is the Gram-Schmidt
idea in Section 11.2,

1.5, Orthogonal Matrices and Subspaces 3

3. Orthogonal subspaces. Equation (1) looked at Az = 0. Every row of A is multiplying
that nullspace vector z. So each row (and all combinations of the rows} will be orthogonal
to @ in N{A}. The row space of A is orthogonal to the nuflspace of A.

raw 1 0 {column 1)T 0
Ax = : z |=1: ATy = : yl=1:1®
row m 0 {column n)T 0

From ATy = 0, the columns of A are ail orthogonal to g. Their combinations (the whole
column space) will also be orthogonal to 4. The column space of A is orthogonal to the
nullspace of AT, This produces the *Big Picture of Linear Algebra” in Figure L6.

Notice the dimensions r and n — r adding to . The whole space R" is accounted for.
Every vector v in R™ has a row space component v, and a nullspace component »,, with
¥ = vy + V5. A row space basis (r vectors) together with a nullspace basis (n — v vectors)
produces a basis for all of R™ (n vectors).

dimension dimension

=T =7

row space to column space

Awmw = b i

Aﬂ‘.‘,m.n =0

nullspace to 0

nullspace
of A

. . dimension
dimension
=m—r
=n—1r

Figure 1.6: Two pairs of orthogonal subspaces. The dimensions add to n and add to m.
This is the Big Picture—two subspaces in R™ and two subspaces in R™,

I will mention a big improvement. It comes from the Singular Value Decomposition.
The SVD is the most important theorem in data science. It finds orthonormal bases vy, ..., vy
for the row space of A and w;,..., w, for the column space of A. Well, Gram-Schmidt
can do that, The special bases from the SVD have the extra property that each pair
(v and u) is conpected by A:

-

Singular vectors Avy = o1 Avy =gus -+ Av, =oru.. | (8)

In Figure 1.6, imagine the ’s on the left and the «’s on the right. For the bases from the
SVD, multiplying by A takes an orthogonal basis of v’s to an orthogonal basis of u’s.

32 Hightights of Linear Algebra

4. Tall thin @ with orthonormal columns: QTQ = I.
Here are three possible Q’s, growing from (3 by 1) to (3 by 2) to an orthogonal matrix Q3.

1 2 1 2 2 2 2 -1
@1 =5 2 Q2=§ 2 -1 Qs = 2 -1 2. 9
-1 -1 2 -1 2 2

Il =

Each one of those matrices has Q7 Q = I, So Q7 is a left inverse of (). Only the last matrix
has @3QT = I. Then QST is also a right inverse. ()3 happens to be symmetric as well as
orthogonal. It is a king and also a queen, truly a royal matrix.

Notice that ail the matrices P = Q@™ have P2 = P!

P2 =(QQN QRN =Q@QTQ) QT =QQT =P. (10)

In the middle we removed QTQ = I. The equation P? = P signals a projection matrix.

If P2 = P = PT then Pb is the orthogonal projection of & onto the column space of P.

Example 1 To project b = (3,3,3) on the @ line, multiply by P, = Q:1QT.

2] [2 2 1] [3 2 2 -
Pe=g)| 2 3 =g| 2o 2 |- ke
-1 3 -1 -1

That matrix splits b in two perpendicular parts : projection Pib anderrore = {I — P1) b.

[3]
b= 3
-3_
B
o errore = 1
-4_
2 lle|f = V18
Pb= 2 line

—1

Figure I.7: Projection of b onto a line by P; = Q1 QT and onto a plane by P, = Q»Q7.

Now project the same & = (3, 3, 3} on the column space of Q)2 (a plane). The error vector
b — P, bis shorter than b — Py b because the plane contains the [ine.

2o 22 2 —1][3] ([2 2][¢® 4
Pgb:— 2 -1 2 -1 2 3 =§ 2 -1 9 = 1
911 2 3 2 1

L5. Orthogonal Matrices and Subspaces 33

Question: What is P;b = Q3Q7 b? Now you are projecting b onto the whole space R®.
Answer: P3b = b. Infact P, = Q3Q7T = identity matrix ! The error e is now zero.
Projections lie at the heart of “least squares” in Section 11.2.

5. Orthogonal matrices: Now Q is square: QTQ =T and QQT = 1. So Q@ = QT.
These 's are truly important. For 2 by 2, they are rotations of the plane or reflections.

When the whole plane rotates around (0,1}, lengths don’t change. Angles between
vectors don’t change. The columns of @ are orthogonal unit vectors, with cos® &4sin? §=1:

Q | cos® —sind
rotate = | sin® cosd

And if I multiply a column by —1, the two columns are still orthogonal of length 1.

= potation through an angle 6. (11)

cos 6 sin @

: . g
Qreflect = { sinf — cos@ } = reflection across the 3~ line. (12)

Now @ reflects every vector in a mirror. It is a reflection with determinant — 1 instead of a
rotation with determinant 4-1. The z-y plane rotates or the -y plane flips over.
It is important that maltiplying orthogonal matrices produces an orthogonal matrix,

GhQzisorthogonal (Q1Q2)T(Q1Q2) = Q7 QT 1Q2=Q7Q2=I.

Rotation times rotation = rotation. Reflection times reflection = rotation. Rotation times
reflection = reflection. All still rue in R™.

sin g]

T | —cosé

Figure 1.8: Rotate the whole plane by 6. Reflect every vector across the line at angle #/2.

The figure shows how the columns of) come from Q) { é } and @ [(1]]

"

34 Highlights of Linear Algebra

Orthogonal Basis = Orthogonal Axes in R™

Suppose the n by n orthogonal matrix ¢} has columns g, ..., q,,. Those unit vectors are
a basis for n-dimensional space R™. Every vector ¢ can be written as a combination of the
basis vectors (the ¢'s) :

v=c1q) + gy (13)

Those c1q; and ¢.2q, and c,q,, are the components of v along the axes. They are the
projections of © onto the axes ! There is a simple formula for each number ¢; to ¢, ;

Coefficients in

— g1 _ T L _ 4T
an orthonormal basis =g v c2=4q;v Cn = qpv (14)

I will give a vector proof and a matrix proof. Take dot products with ¢, in equation (13):
qurv = clq}‘ql +- 1+ canqn =0 (15)
All terms are zero except ¢1¢+ ¢, = ¢1. S0 g1 v = ¢y and every g} v = cx.
If we write (13) as a matrix equation » = Qe, multiply by Q7T to see (14):
QTv = QTQe = ¢ gives all the coefficients ¢, = g} v at once.

This is the key application of orthogonal bases (for example the basis for Fourier series).
When basis vectors are orthonormal, each coefficient ¢; to ¢, can be found separately !

Householder Reflections

Here are neat examples of reflection matrices () = H,,. Start with the identity matrix.
Choose a unit vector u. Subtract the rank one symmetric matrix 2uz”. Then [— 2uu’
is a “Houscholder matrix™. For example, choose w = (1,1,...,1)//n.

2
Householder example H, =TI—2uuT =TI — — ones (n,n). (16)
Tt

With uu™, H,, is surely symmetric. Two reflections give H? = [because uTu = 1
HTH =H? = (I - 2uuT) (I - 2uu”) = [- duu” + duuTuuT=1. (17)

The 3 by 3 and 4 by 4 examples are easy to remember, and H is like a Hadamard matrix ;

1 -1 -1 -1
2 1 -2 -2 2 i1 1 -1 41
Hy=7I—-ones=-|-2 1 -2 Hy=71—-ones=-
3 9 9 1 4 2(—-1 -1 1 —1
-1 -1 -1 1
Householder’s 7. by n reflection matrix has Hpu = (I — 2uu™u = v — 2u = —u.
And Hyw = 4w whenever w is perpendicular to . The “ecigenvalues” of H are

—1 (once) and +1 (n — 1 times). All reflection matrices have eigenvalues —1 and 1.

I.5. Orthogonal Matrices and Subspaces 35

Problem Set 1.5

1

If v and v are orthogonal unit vectors, show that ©« 4 v is orthogonal to « — v.
What are the lengths of those vectors ?

Draw unit vectors u and v that are not orthogonal. Show that w = v — u(uTv) is
orthogonal to « {and add w to your picture).

Draw any two vectors ¢ and # out from the origin {0, 0). Complete two more sides
to make a paralielogram with diagonals w = « + v and 2 = u — ». Show that
wlw + 2Tz is equal to 2uTu + 207w,

Key property of every orthogonal matrix: ||Qz||* = ||z||* for every vector x.
More than this, show that (Qz)T(Qy) = aTy for every vector x and y. So
lengths and angles are not changed by . Computations with Q never overflow!
If Q is orthogonal, how do you know that (is invertible and @ ! is also orthogonal ?
QT = Q;' and QT = @5, show that Q,Q; is also an orthogonal matrix.

A permutation matrix has the same columns as the identity matrix (in some order}).
Explain why this permutation matrix and every permutation matrix is orthogonal :

0

has orthonormal columns so PTP= and P~ =

foner I e B
Lo R e

When a matrix is syminetric or orthogonal, it will have orthogonal eigenvectors. E
This is the most important source of orthogenal vectors in applied mathematics.

Four eigenvectors of that matrix P are @y = (1,1,1,1),20 = (1,4,4%,4%),
x3 = (1,3%,44,i%), and @4 = (1,43,4%,{%). Muldiply P times each vector to find
A1, A2, A3, Ay The eigenvectors are the columns of the 4 by 4 Fourier matrix F.
1 1 1 1
1 ¢ -1 -4
1 42 1 -1
1 8 -1 1

has orthonormal columns :aTQ =1

Show that ¢} =

v3] 'y

1
2

Haar wavelets are orthogonal vectors (columns of) using only 1, —1, and 0.

n=4 tr 1 1 0
wol|l 1 -1 0 Find WTW and W1 and the
i -1 0 1 eight Haar wavelets for n = 8.

1 -1 0 -1

1 1. 1 T
R

36 Highlights of Linear Algebra

1.6 Eigenvalues and Eigenvectors

The eigenvectors of A don’t change direction when you multiply them by A. The output
Az is on the same line as the input vector .

x = eigenvector of A

A = eigenvalue of A Az = Az M)

The eigenvector & is just multiplied by its eigenvalue A. Multiply again by A, to see that
x is also an eigenvector of A% : A’z = M.

T = same eigenvector _ _ _ 2
A2 = squared eigenvatue Aldz) = ADe) = NAz) = X'z . @

Certainly AFz = Mz forallk=1,2,3,... And A~z = 12 provided A # 0.

These eigenvectors are special vectors that depend on 4. Most n by n matrices have
n independent eigenvectors & to &, with n different eigenvalues A\; to A,. In that case
every n-dimensional vector v will be a combination of the eigenvectors:

Every v v=0& + -+ ey
Multiply by A Av = e+ + A Tn (3)
Multiply by A* ARy =g My + - e M,

Here you see how eigenvalues and eigenvectors are useful. They look into the heart of
a matrix, If JA;| > 1 then the component ¢; AT will grow as n increases. If || < 1
then that component ¢; A} 2o will steadily disappear. Follow each eigenvector separately !

2 1 . 1 1 1 1
Example 1 .S':[l 2] hdSEIgCHVECIOI‘SS|:] }:3[] }andS{_l]:{_l]

Then A; = 3 and A2 = 1. The powers S* will grow like 3*. Those eigenvalues and
eigenvectors have four properties to nofice :

(Trace of §) The sum Ay + A2 = 3 + 1 equals the diagonal sum 2 4 2 = 4
{Determinant) The product Ay Az = (3)(1} = 3 equals the determinant 4 — 1
(Real eigenvalues) Symmetric matrices § = ST always have real eigenvalues
{Orthogonal eigenvectors] If A; # Az then z; - @3 = {. Here (1,1) - (1,—1} = 0.
Symmetric matrices S are somehow like real numbers (every A is real). Orthogonal ma-

trices (Q are like complex numbers ¥ = cos# + isiné of magnitude 1 (every |A = 1)
The powers of () don’t grow or decay because @%, %, . .. are orthogonal matrices too.

1.6, Eigenvalues and Eigenvectors 37

0 —
1 0

o[][0 a] -0 2 me][2] [3] -0 1]

Certainly A1 + Az = i — { agrees with the trace 0 4 0 from the main diagonal of Q.
And (A){(A2)} = (i)(—1) agrees with the determinant of ¢ = 1. The eigenvectors of @
are siill orthogonal when we move (as we should) to the dot product of complex vectors.
Change every i in @) to —i. This produces its conjugate ;.

Example 2 The rotation @ = [] has imaginary eigenvalues ¢ and —%:

E}rmg = [1 4] [1 } =1+ = 0 : orthogonal eigenvectors.

Warnings about eigenvalues and eigenvectors
The eigenvalues of A + B are not usually A{ A) plus A(B).
The eigenvalues of AB are not usually A(A) times A(B).
A double eigenvalue Ay = Ao might or might not have two independent eigenvectors.
The eigenvectors of a real matrix A are orthogonal if and only if ATA = 44T,

The matrix A also controls a system of linear differential equations du/dt = Awu. The
system starts at an initial vector u(0) when t = (. Every eigenvector grows or decays or
oscillates according to its own eigenvalue A. Powers A" are changed to exponentials e :

Starting vector u(0) =ciz, + -+ cp2,)
%

Solution vector u(t) = c;e*tx, + -+ cpette,

The difference between growth and decay is now decided by Re A > O or Re) < 0,
instead of |A| > 1 or |A| < 1. The real part of A = a + ib is Re A = a. The absolute
value of e is €', The other factor e = cosbt + isinbt has cos® bt + sin? bt = 1.
That part oscillates while e2! grows or decays.

Computing the Eigenvalues (by hand)

Notice that Az = Az is the same as (A — AJ)x = 0. Then A — Al is not invertible :
that matrix is singular. The determinant of A — AT must be zero. This gives an nth
degree equation for A, and this equation det(A — AJ) = 0 has n roots. Here n = 2'and

A= { i 3 } has two eigenvalues

“;’\ b 1= X2 (a4 d)A+ (ad—bc) =0

Determmsint of A —-Al= d—

This quadratic equation might factor easily into (A — A;) (A— A2). The “quadratic formula”
will always give the two roots A; and Ay of our equation, from the + sign and the — sign.

38 Highlights of Linear Algebra

a-t+dx/(a—d)?2+4abe|.
|]

A= l[a—f—dd: \/(a+d)2—4(ad-—bc)] :%

2

You see that Ay + As equals a + d (the trace of the matrix). The & square roots cancel out.

Notice also that the eigenvalues are real when A is symmetric (b = ¢). Then we
are not taking the square root of a negative number to find A. When be is very negative,
the eigenvalues and eigenvectors go complex !

Example 3 Find the eigenvalues and eigenvectors of 4 = [83] : not symmetric.

27
B—2A 3
2 7-A

_ 8—-10 3 |90 . _lm |3
A1 =10 has [9 ?—IOH-:CJ_[O] Eigenvector wl—{xz]—[z}

_ 8-5 3 | _ [0 \ =] [1
A2 =95 has [9 7_5 :I[G‘L‘gjl —[0] Eigenvector :t:g—[m}—[_l}

10 4 5 = 8 4 7. These eigenvectors are not orthogonal. Increase 3 to 30 for complex A's.

The determinant of 4 — AT is ‘ =A%~ 15A4+50= (A — 10) (A — 5).

Question ; If A is shifted to A + sf, what happens to the &'s and X’s ?
Answer : The eigenvectors & stay the same. Every eigenvalue X shifts by the number s:

Shiftin A = shift in every A {(A+shiz=)z+sze={(A+3)x (5)

Similar Matrices

For every invertible matrix B, the eigenvalues of BAB™" are the same as the eigenvalues
of A. The eigenvectors x of A are multiplied by B to give eigenvectors Bx of BAB™!:

If Az = Az then (BAB™ 1) (Bz) = BAx = B\x = A\(Bz). (6)

The matrices BAB™' (for every invertible B) are “similar” to A: same eigenvalues.

We use this idea to compute eigenvalues of large matrices {when the determinant of
A — AI would be completely hopeless). The idea is to make BAB~! gradually into a
triangular matrix. The eigenvalues are not changing and they gradually show up on the
main diagonal of BAB~!;

b} are Ay —a and Ay =d. (7

The eigenvalues of any triangular matrix [g d

You can see that A — af and A — dI will have determinant zero. So g and d are the
eigenvalues of this triangular matnx. :

1.6. Eigenvalues and Eigeavectors 39

Diagonalizing a Matrix

Supposc A has a full set of » independent eigenvectors. (Most matrices do, but naot all
matrices.) Put those eigenvectors x1,. .., &, into an invertible matrix X. Then multiply
AX celumn by column to get the columns Ay to A,2,. Important! That matrix splits
into X times A.

A
Alxy .. xn|=Ax .. Az, | = Mx1 .. dnZu | =21 .. 2p
An,
(8}
The eigenvalue matrix A goes on the right of X, because the A’s in A multiply the columns

of X. That equation AX = XA tells us that A = X AX ~1, If we know the eigenvalues
and eigenvectors, we know the matrix A. And we can easily compute powers of A :

A = diagonal eigenvalue matrix A = XAX!
X = invertible eigenvector matrix A2 = (XAX) (XAX~1) = XA2X !

A=XAX1 {8 3} _ [3 1] {10] 1 [1 1]_ (eigenvectors) times (A’s)
5 —

in Example 3 |2 7 2 —1 512 -3 times (left eigenvectors)

The equation A* = X A¥X ! is telling us what we already knew. The eigenvalues of A*
are A¥, ..., Ak, The eigenvectors of A® are the same as the cigenvectors of A. Three steps

compute A*v.
5
Step 1: X1y This givesthe c'sinv = cj) + --- + ¢ @p ’

Step2: AFX 1o This gives the X’s in ¢ Mz, + - + ¢ Mz,
Step3: XA*®X v This adds those piecesin A¥v =) M@y + - + e iz,

Example 4 If we divide Example 3 by 10, all eigenvalues are divided by 10. Then
A=land \; = % In this case A is a Markov matrix, with positive columns adding to 1.

Ao [0.8 0.3 } Afy = o (1), +cz(%)k$2
0.2 0.7 As k increases, A" v approaches c,z, = steady state

We can follow each eigenvector separately. Its growth or decay depends on the eigenvalue
A. The action of the whole matrix A is broken into simple actions {just roultiply by A)
on each eigenvector. To solve a differential equation du/df = Au we would multiply
each eigenvector by e*?,

40 Hightights of Linear Algebra

Nondiagonalizable Matrices (Optional)

Suppose A is an eigenvalue of A. We discover that fact in two ways:
1. Eigenvectors {geometric) There are nonzero solutions to Ax = Ax.
2. Eigenvalues (algebraic) The determinant of 4 — AT is zero.

The number A may be a simple eigenvalue or a multiple etgenvalue, and we want to know its
multiplicity. Most eigenvalues have multiplicity A = 1 (simple eigenvalues). Then there
is a single line of eigenvectors, and det{4 — A} does not have a double factor.

For exceptional matrices, an eigenvalue can be repeated. Then there are two different
ways to count its multiplicity. Always GM < AM for each X

1. {(Geometric Multiplicity = GM) Count the independent eigenvectors for A.
Look at the dimension of the nullspace of 4 — 1.

2. {Algebraic Multiplicity = AM) Count the repetitions of A among the etgenvalues.
Look at the roots of det{A — AI) =10,

If Ahas A = 4,4, 4, then that eigenvalue has AM =3 and GM = 1 or 2 or 3.
The following matrix A is the standard example of wouble. Its eigenvalue A = 0 is
repeated. It is a double eigenvalue (AM = 2} with only one eigenvector {(GM = 1).

A 1
G —A

X = 0,0but

AM =2 {0
A= .
1 eigenvector

1 —
GM = 1 } has det(4 — AT} = ‘

32
0 1 -

There “should” be two eigenvectors, because A2 = (has a double root, The double
factor A2 makes AM = 2. But there is only one eigenvector & = (1, 0). So GM = 1.
This shortage of eigenvectors when GM < AM means that A is not diagonalizable.
There is no invertible eigenvector matrix. The formula A = X AX 1 fails.

These three matrices all have the same shortage of eigenvectors. Their repeated eigen-
value 1s A = 5. Traces are 10 and determinants are 25:

a1 6 —1 7 2
A=[0 5] and A=[l 4] and A:LQ 3].

Those all have det(4 — AT} = (A — 5)2. The algebraic multiplicity is AM = 2. But
each A — 57 has rank r = 1. The geometric multiplicity is GM = 1. There is only one
line of eigenvectors for A = 5, and these matrices are not diagonalizable.

I.6. Eigenvalues and Eigenvectors 41

Problem Set L6

cosf —sind

1 The rotation) = { sinf cos@

] has complex eigenvalues A = cos@ L isiné:
1 .. 1 1 .. 1
Q [_;] =(c039+zsm9){ s] and Q[; } ={cosﬁ—zsm8)[p }

Check that A; + Az equals the trace of @ (sum Q11 + Q22 down the diagonal).
Check that (A1){h2) equals the determinant. Check that those complex eigenvectors
are orthogonal, using the complex dot product &, - 23 (not just &1 - <2).

What is Q7! and what are its eigenvalues ?

2 Compute the eigenvalues and eigenvectors of A and A~1. Check the trace !

A= [[1) ﬂ and A7l = {_iﬁ H

A~ hasthe eigenvectors as A. When A has eigenvalues Ay and Ao, its inverse
has eigenvalues

3 Find the eigenvalues of A and B (easy for triangular matrices) and A + B:

3 0 1 1 4 1
A—[l]} and B-—{O 3] and A+B—{1 4]

Eigenvalues of A 4 B (are equal to)(are not equal to) eigenvalues of A plus eigen-
values of B.

4 Find the eigenvalues of A and B and AB and BA:

1 G 1 2 1 2 3 2
A—L J and B—[O 1] and AB—[l 3] and BA—[l 1].

(a) Are the eigenvalues of AFB equal to eigenvalues of A times eigenvalues of B?

(b) Are the eigenvalues of A5 equal to the eigenvalues of BA?

5 (a) If you know that @ s an eigenvector, the way to find X is to

(b} If you know that X is an eigenvalue, the way to find is to

6 Find the eigenvalues and eigenvectors for both of these Markov matrices A and A™.
Explain from those answers why A% js close to A:

a8 8] me a2]

10

11

12

13

14

15

42 Highlights of Linear Algebra
The determinant of A equals the product A,)y - -- A, Start with the polynomial
det{A — AI} separated into its n factors (always possible). Then set A = 0:

det{A - A} = (A = A(A2 = A)- (A, —A) so detd=
Check this rule in Example 1 where the Markov matrix has A = 1 and %

The sum of the diagonal entries (the trace) equals the sum of the eigenvalues:

AZ{{; 2] has det(d — A} =A% — (a+ d)A +ad — bc=0.

The quadratic formula gives the eigenvalues A = (a+d++/)/2and A=
Their sum is Af Ahas Ay = 3and Ay = 4 then det(A — M) =

If Ahas A; = 4and Ay = Sthendet(A — AJ) = (A~ 4)(A = 5) = A% — 9X + 20,
Find three matrices that have trace @ + d = % and determinant 20 and) = 4, 5.

Choose the last rows of A and C to give eigenvalues 4,7 and 1, 2, 3:
01 01 0
Companion matrices A= L *] C=1{0 0 1
L B

The eigenvalues of A equal the eigenvalues of AT, This is because det(A — AJ)
equals det(AT — AI). Thatis true because ___ . Show by an example that the
eigenvectors of A and AT are not the same.

This matrix is singular with rank one. Find three A's and three eigenvectors:

1 21 2
A=j2|[212]=|4 2 4
1 21 2
Suppose A and B have the same eigenvalues A, . . ., A, with the same independent

eigenvectors &y, . . .,Tn. Then A = B. Reason: Any vector is a combination
CiE) - -+ + cpn. Whatis Azx? What is Bx?

Suppose A has eigenvalues 0, 3, 5 with independent eigenvectors u, v, w.

(a) Give a basis for the nullspace and a basis for the column space.
{b) Find a particular solution to Az = v + w. Find all solutions.

(¢) Az = has no solution. If it did then __ would be in the column space.

{(a) Factor these two matrices into 4 = XAX %

1 2 1 1
A—[O 3} and A={3 3}.

(b) If A=XAX"Ythen A% =()()} Jand A~ =(¥))

L6.

16

17

18
19

20

21

22

23

24

25

26

Eigenvalues and Eigenvectors 43

Suppose A = XAX™'. What is the eigenvalue matrix for A + 27? What is the
eigenvector matrix? Check that A+ 27 = { } ¥)7L

True or false: If the columns of X (eigenvectors of A} are linearly independent, then

(a) A is invertible (b) Ais diagonalizable
(c) X is invertible (d) X is diagonalizable.

Write down the most general matrix that has eigenvectors [1] and [].
True or false: If the eigenvalues of A are 2, 2, 5 then the matrix is certainly
(a) invertible {b) diagonalizable {¢) notdiagonalizable.
True or false: If the only eigenvectors of A are multiples of (1, 4) then A has
(a) noinverse (b) arepeatedeigenvalue (¢} no diagonalization XAX ~1.

A* = X AF X1 approaches the zeroc matrix as k& — oo if and only if every A has

absolute value less than . Which of these matrices has A* — 07
£ .9 6 .9
A= [.4 .1] and A= {.1 .6] '

Diagonalize 4 and compute X A*X ~! to prove this formula for 4:

[2 -1 k 1[1+3 1-3%
A—[_l 2] has A —5[1_3k 1434

The eigenvalues of 4 are 1 and 9, and the eigenvalues of B are —1 and 9:

5 4 4 &
A:[4 5] and B=[5 4},

Find a matrix square root of A from B = X+/A X!, Why is there no real matrix
square root of B?

Suppose the same X diagonalizes both 4 and B. They have the same eigenvectors
inA=XAX"!and B = XA,X "L Prove that AB = BA.

The transpose of A = XAX "1is AT = (X "1)TAXT. The eigenvectorsin ATy =
My are the columns of that matrix (X ~!}T. They are often called left eigenvectors of
A, because yT A = AyT. How do you multiply matrices to find this formula for A?

Sum of rank-1 matrices A = XAX ! = /\I:clyrlr + e+)xnwn‘y;l;v

When is a matrix A similar to its eigenvalue matrix A?

A and A always have the same eigenvalues. But similarity requires a matrix B with
A= BAB™'. Then B is the matrix and A must have n independent __

44 Highlights of Linear Algebra

1.7 Symmetric Positive Definite Matrices

Symmetric matrices § = ST deserve all the attention they get. Looking at their eigenvalues
and eigenvectors, you see why they are special :

1 All n eigenvalues X of a symmetric matrix S are real numbers.

2 The n eigenvectors ¢ can be chosen orthogonal (perpendicular to each other).

The identity matrix 5 = [is an extreme case. All its eigenvalues are A = 1. Every
nonzero vector & is an eigenvector: J& = la. This shows why we wrote “can be cho-
sen” in Property 2 above. With repeated eigenvalues like Ay = Az = 1, we have a choice
of eigenvectors. We can choose them to be orthogenal. And we can rescale them to be
unit vectors (length 1). Then those eigenvectors ¢4, . . . g,, are not just orthogonal, they are
orthonormal. The eigenvector matrix for § has QTQ = I : orthonormal columns in Q.

qlT 1 0 - 0
T _J 0 i#Fj) _(o 10 -
% %‘{1 = leadsto v MeGn 1= 0010
qn 0 * O 1

We write ¢ instead of X for the eigenvector matrix of 5, to emphasize that these
eigenvectors are orthonormal: QTQ = I and QT = QL. This eigenvector matrix is an
orthogonal matrix. The usnal A = XAX ~! becomes § = QAQT:

Spectral Theorem Every real symmetric matrix has the form § = QAQT.

Every matrix of that form is symmetric : Transpose QAQT to get QTTATQT = QAQT.

Quick Proofs : Orthogonal Eigenvectors and Real Eigenvalues

Suppose first that Sz = Az and Sy = Qy. The symmetric matrix S has a nonzero
eigenvalue A and a zero eigenvalue. Then y is in the nullspace of S and ¢ is in the column
space of § {x = Sx/X is a combination of the columns of §). Buz S is symmetric:
column space = row space! Since the row space and nullspace are always oithogonal,
we have proved that & is orthogonal to y.

When that second eigenvalue is not zero, we have Sy = ay. In this case we look at
the matrix § — . Then (§ — ally = Oy and (S — ol)x = (A —a)z with A —a # 0.
Now y is in the nullspace and @ is in the column space (= row space!} of § — al.
So yTx = 0: Orthogonal eigenvectors whenever the eigenvalues X # « are different.

Those paragraphs assumed real eigenvalues and real eigenvectors. To prove this,
multiply Se = A& by the complex conjugate vector T (every ¢ changes to —i). Then
TSz = AT '@ When we show that £ and ' S are real, we know that A is real.

TTe = T2 + -+ TnZn andevery Tpzi is (a — ib){a + ib) = a® + b? (real)

1.7. Symmetric Positive Definite Matrices 45

Alsoreal: BT Sx = 8y1F1%; + S12(F122 + £1T2) + - -+ and again T 2 is real
F122 + 21F2 = (¢ — ih){e + id) + (a + ib}(c — id) = 2ac+ 2bd = real

Since Lz > 0, the ratio X is real. And (§ — AM)x = O gives a real eigenvector.

Complex comment: Transposing S& = Ax and taking complex conjugates gives
TS =X z7. For our real symmetric matrices, §T is exactly 5. It is this double step,
transpose and conjugate, that we depend on to give back 8. Since the proof only needs
§T = 9, it allows for complex matrices too : When §T = § all eigenvalues of § are real.

2 3—-3:

=T .
=343 5 = 8" hasreal eigenvalues 8 and —1.

Complex example S

The key is 3 + 3¢ = 3— 34. The determinantis (2) (5} - (3+3i)(3-3{}=10-18 = -8
The eigenvectors of this matrix are 2 = (1,1 + ¢) and 22 = (1 — ¢, -1}, Those
vectors are orthogonal when we adjust complex inner products to E?a:g. This is the
correct inner product for complex vectors, and it produces E}'mz =0:

Change wfmgz[l 1+i][1_;1:—2i to Echcgz[l 1—%’]{1_1—@'}=0.

Systems like MATLAB and Julia get the message: The vector «’ and the matrix A’ are?
automatically conjugated when they are transposed. Every i changes to —i. Then 2/ is

#T and A is A" . Another frequently used symbol for ZF and AT is astar: ©* and A*.

Positive Definite Matrices

We are working with real symmetric matrices S = ST. All their eigenvalues are real.
Some of those symmetric matrices (rot ali) have a further powerful property that puts them
at the center of applied mathematics. Here is that important property :

Test 1 A positive definite matrix has all positive eigenvalues.

We would like to check for positive eigenvalues without computing those numbers A,
You will see four more tests for positive definite matrices, after these examples.

46 Highlights of Linear Algebra

1 S = [3 g] is positive definite. Its eigenvalues 2 and 6 are both positive
2 S=Q [g g] Q7 is positive definite if QT = @~1: same A = 2 and 8
3 S=0C [g g } CT is positive definite if C is invertible (not obvious)

4 S = [(; i] is positive definite exactly when ¢ > 0 and ac > b2

5 S = [g 8 } is only positive semidefinite : it has A 2> 0 butnot A > 0

The Energy-based Definition

May [bring forward the most important idea about positive definite matrices 7 This new
approach doesn't directly involve eigenvalues, but it turns out to be a perfect test for A > 0.
This is a good definition of positive definite matrices : the energy test.

S is positive definite if the energy ™ Sz is positive for all vectors x # 0 (N

Of course § = I is positive definite: All A; = 1. The energy is Iz = xTax, positive
if £ # 0. Let me show you the energy in a 2 by 2 matrix. 1t depends on @ = (z,22).

2 4 :
Energy :I:TS:E=[3:1 3}2][4 9]{;;}:233%4—8:312‘324-9:3%

Is this positive for every x; and x5 except (z1,22) = (0,0)? Yes, it is a sum of squares :

xTSx = 227 + 8zyxs + 922 = 2(z1 + 232)? + 23 = positive energy.

We must connect positive energy 1 S > 0 to positive eigenvalues A > 0

If Sz = Ax then TSz = AxTz. So X > € leadsto TSz > 0.

That line only tested the energy in each separate eigenvector . But the theory says that if
every eigenvector has positive energy, then all nonzero vectors x have positive energy:

If 275z > 0 for the eigenvectors of S, then & Sx > 0 for every nonzero vector .

Here is the reason. Every x is a combination ¢;2; + -+ + cp,®, of the eigenvectors,
Those eigenvectors can be chosen orthogonal because S is symmetric. We will now show :
z T S is a positive combination of the energies Az} @ > 0 in the separate eigenvectors.

1.7. Symumetric Positive Definite Matrices a7

2TSz ={cxl +- - +ecaxl}S{a@ +--- +cpzn)
= (Clm'f + -+ Cnmz) (Clx\l:I:] + -+ CnAn{Bn)
=3NTLE) + -+ EInzrx, > Oifevery X; > 0.

From line 2 to line 3 we used the orthogonality of the eigenveciors of 5: @]x; = 0.
Here is a typical use for the energy test, without knowing any eigenvalues or eigenvectors.

If §1 and S5 are symmetric positive definite, so is 51 + S2
Proof by adding energies : :ET(Sl + Sz = 278 2+ 2TS2>0+0

The eigenvalues and eigenvectors of 87 + 5> are not easy to find. Energies just add.

Three More Equivalent Tests

So far we have tests 1 and 2 positive eigenvalues and positive energy. That energy test
quickly produces three more useful tests (and prebably others, but we stop with three) :

Test 3 S = AT A for a matrix A with independent columns
Test 4 All the leading determinants Iy, Da, ..., I, of § are positive

Test 5 All the pivots of S5 are positive (in elimination)

Test 3 applies to § = ATA. Why must columns of A be independent in this test?
Watch these parentheses: 4

§=ATA Energy =" Sz =z7ATAz = (Ax)" (A=) = ||A=|]®>. ()

Those parentheses are the key. The energy is the length squared of the vector Az.
This energy is positive provided A:x is not the zero vector. To assure Az # 0 when x # 0,
the columns of A must be independent. In this 2 by 3 example, A has dependent columns :

11 111 2 3 4
S=ATA=|1 2 1 2 3| ={3 5 7| is not positive definite.
1 3 4 7 10 '

This A has column 1 + column 3 = 2 (column 2). Then & = (1, —2, 1) has zero energy.

It is an eigenvector of AT A with A = 0. Then S = AT 4 is only positive semidefinite.
Equation (2) says that AT A is at least semidefinite, because 7Sz = || Az||? is never

negative. Semidefinite allows energy / eigenvalues / determinanis / pivots of S to be zero.

® Determinant Test and Pivot Test

The determinant tese is the quickest for a smail matrix. I will mark the four *leading
determinants” I}, Dy, Dy, Dy in this 4 by 4 symunetric second difference matrix.

48 Highlights of Linear Algebra

1st determinant Dy = 2

2nd determinant D, = 3
has
3rd deterrminant D3 = 4

4th determinant Dy =5

The determinant test is here passed ! The energy @ .Sx must be positive too.
Leading determinants are closely related to pivots (the numbers on the diagonal
after elimination). Here the first pivot is 2. The second pivot g appears when %(row D

is added to row 2. The third pivot % appears when %{ncw row 2) is added to row 3.

Those fractions %, %, % are ratios of determinanis ! The last pivot is g‘

Dy

The kth pivot equals the ratio of the leading determinants (sizes k and & — 1)

k1

So the pivots are 2ll positive when the leading determinants are all positive.

I can quickly connect these two tests (4 and 5) to the third test § = AT A, In fact
elimination on S produces an important choice of 4. Remember that elimination =
triangular factorization (8 = LU). Up to pow L has had 1's on the diagonal and
U contained the pivots, But with symmetric matrices we can balance § as LDLT:

2 -1 0 1 2 -1 0
~1 2 -1 |=|-3 1 ¢ -1 S=LU (3
0 -1 2 0 -2 1 2
- 3 3
pull out 1 2 1 -2 0
thepivots =| -1 1 3 1 -2 =LDLT (4)
in D 0 -3 1 2 1
V2 Vit o
share those pivots _ \ﬁ 3 3 2 AT
between AT and A 2 2 " . \/; _\/; =474 O
0 —\/; 3 4

I am sorry about those square roots—but the pattern § = AT A is beautiful: A = vV DLT.

Elimination factors every positive definite S into AT A (A is upper triangular)

This is the Cholesky factorization & = AT A with /pivots on the main diagonal of A.

1.7. Symmetric Positive Definite Matrices 49

The Test $ = AT A : Two Special Choices for A

To apply the S = AT A test when S is positive definite, we must find at least one
possible A. There are many choices for A, including (1) symmetric and (2) triangular.

1 If § = QAQT, take square roots of those eigenvalues. Then A = @vAQT = AT,
2 If § = LU = LDLT with positive pivots in D, then § = (LvD) (v DLT).

Summary The five tests for positive definiteness of S involve different parts of
linear algebra—pivots from elimination, determinants, eigenvalues, and § = ATA.
Each test gives a complete answer by itself : positive definite or semidefinite or neither.

Positive energy T Sz > 0 is the best definition : it connects them all.

Positive Definite Matrices and Minimum Problems
Suppose S is a symmetric positive definite 2 by 2 matrix. Apply four of the tests:

g_|a b determinants ¢ > 0,ac— b >0 pivets a > 0,{ac—b)/a >0
ST b e eigenvalues X; >0, Ay >0 energy ax® + 2bry + cy® > 0

I will choose an example witha = ¢ = 5 and & = 4. This matrix Shas A = 9and A = 1.

Energy E = 27 Sz [= y][i g]{;]:532+8my+5y2>0“
3

The graph of that energy function E(z, ¥) is a bowl opening upwards. The bottom point
of the bowl has energy E' = 0 when x = y = 0. This connects minimum problems in
calculus with positive definite matrices in linear algebra.

Part VI of this book describes numerical minimization. For the best problems, the
function is strictly convex—like a parabofa that opens upward. Here is a perfect test:
The matrix of second derivatives is positive definite at all points. We are in high dimen-
sions, but linear algebra identifies the crucial properties of the second derivative matrix.

For an ordinary function f{x) of one variable x, the test for a minimum is famous :

2

Minimum if first derivative -d—f = (and second derivative s >0 at =z
T A .

For f(x,y) with two vanables, the second derivatives go into a matrix : positive definite !

ini 2 2 2 * LS +
Minimum &f 0 and af — 0 and 8%f/0x* S%*f/0xOy | is positive definite

atxo, Yo Sr Ay 9%f/0x8y O8%f/0y? at zq, Yo

The graph of z = f{x,y) is flat at that point zg, g because @f/dz = 8f/Fy = 0.
The graph goes upwards whenever the second derivative matrix is positive definite.
So we have a minimum point of the function f{z, y).

50 Highlights of Linear Algebra

Second _|la b
derivatives b e

a > 0 and ac > b2

The graph of 2f = ax? 4 2bzy + cy? is a bowl when 5 is positive definite.

If § has a negative eigenvalue A < {}, the graph goes below zero. There is a
maximum if S is negative definite (all A < 0, upside down bowl). Or a saddle point
when S has both positive and negative eigeavalues. A saddle point matrix is “indefinite”.

Optimization and Machine Learning

Part V1 of this book will describe gradient descent. Each step takes the steepest direction,
toward the bottom point =™ of the bowl. But that steepest direction changes as we descend.
This is where calculus meets linear algebra, at the minirmum point ™.

Calculus The partial derivatives of f are all zero at @* : gf =1
€Lq
542
Linear algebra The matrix 5 of second derivatives 57 O is positive definite
(]
If S is positive definite (or semidefinite) at all points * = (z1,...,Z,), then the

function f(z) is convex. If the eigenvalues of S stay above some positive number 4,
then the function f(x) is strictly convex. These are the best functions to optimize.
They have only one minimum, and gradient descent will find it.

Machine learning produces “loss functions” with hundreds of thousands of variables.
They measure the error—which we minimize, But computing all the second derivatives
is completely impossible. We use frst derivatives to tell us a direction to move—the efror
drops fastest in the steepest direction. Then we take another descent step in a new direction.

This is the central computation in least squares and neural nets and deep learning.

The Ellipse az? + 2bzy + cy® =

Stay with a positive definite matrix §. The graph of its energy £ = zT Sz is a bowl
opening upwards. Cut through that bowl at height £ZSx = 1. Then the curve that goes
around the cut is an ellipse.

5= [i g] has A =9 and 1 Energy ellipse 52% + 8xy + 5y* = 1 in Figure L9

1.7. Symmetric Positive Definite Matrices 51

1 .
-

1 1
2t (@)
Figure 1.9; The tilted ellipse 5z + 8zy + 5y = 1. Lined up itis 9X% + Y2 = 1.

The eigenvectors are ¢, = (1,1) and g, = (1,—1). Divide by /2 to get unit vectors.
Then § = QAQT. Now multiply by T = [z y] on the left and @ on the right
to get the energy 1 Sz = (z7Q)A{QTz). The eigenvalues of $ are 9 and 1.

2 2
+y Tr—Y
TSz = sum of squares 52248 5 zzg(x—) +1() g6
xSz q +8zy+5y 7 7 (6)

9 and 1 come from A. Inside the squares you see ¢, = (1,1)/v/2 and g, = (1, —1}/v/2. .

The axes of the tilted ellipse point along those eigenvectors of S. This explains why
8 = QAQT is the “principal axis theorem”—it displays the axes. Not only directions
{from the eigenvectors) but also the axis lengths (from the A's): Length =1 j\/X
To see it all, use capital letters for the new coordinates X, Y that line up the ellipse

Tty E—¥ 2 2 _

7 =X and 7 =V and 9X“ 4+ Y“=1.
The largest value of X2 is 1/9. The endpoint of the shorter axis has X = 1/3and ¥ = 0.
Notice : The bigger eigenvalue A; = 9 gives the shorter axis, of half-length 1/v/A; = 1/3.
The smaller eigenvalue Xy = 1 gives the greater length 1/1/A; = 1: Y axis if Figure L.9.

In the xy system, the axes are along the eigenvectors of S. In the XY system, the
axes are along the eigenvectors of A—the coordinate axes. All from § = QAQT.

Lined up

S = QAQT is positive definite when all \; > 0. The graph of 2T Sz = 1
is an ellipse, with its axes pointing along the eigenvectors of S,

Ellipse [z y]QAQT X

()
;] —[x Y]aA [Y] —MX2 4+ AY2=1

52 Highlights of Linear Algebra

Problem Set 1.7

1 Suppose ST = § and Sz = Az and Sy = ay are all real. Show that
yTSz = yTe and 2TSy=oaxTy and y* Sz =="Sy.
Show that y T2 must be zero if A # o : orthogonal eigenvectors.

2 Which of 51, S2, S, S4 has two positive eigenvalues? Use a test, don’t compute the
Ns. Also find an z so that T Sy < 0, s0 S is not positive definite,

5 6 -1 =2 [1 10 1 10
Sl*[ﬁ 7] 52_[—2 —5 33‘_10 100] 54_[10 101]'

3 For which numbers b and ¢ are these matrices positive definite?
1 b 2 4] c b
S_[b 9} S_[4 ¢ Sﬂ[b c]'

With the pivots in D and multiplier in L, factor each A into LDLT,

4 Here is a quick “proof™ that the eigenvalues of every real matrix A are real:

zTAx real
xTz ~ real’

Find the fiaw in this reasoning—a hidden assumption that is not justified. You could

test those steps on the 90° rotation matrix [0 —1; 1 0]with A =iand z = (i, 1).

False proof Az =)z gives = Az =)z"z so A=

5 Write S and B in the form Ay, 2] + Aoaxoxd of the spectral theorem QAQT:

1 9 12
o [i 3] b= [12 16] (keep [j@1 | = [|la2]] = 1).

6 {Recommended) This matrix M is antisymmetric and also . Then all its
eigenvalues are pure imaginary and they also have [A = 1. {||Mz}| = ||2|| for every
x 50 ||Azx|| = ||z for eigenvectors.) Find all four etgenvalues from the trace of M
0 1 1 1
M= L can only have eigenvalues i or — ¢
Al-1 1 0 -1 : '
-1 -1 1 0

7 Show that this A (symmetric but complex) has only one line of eigenvectors:

A= [i _ﬂ is not even diagonalizable: eigenvalues A = 0 and 0.

AT = A is not such a special property for complex matrices. The good property is

A" = A. Thenall eigenvalues are real and A has »n orthogonal eigenvectors.

17.

10

"

12

13

14

Symmetric Positive Definite Matrices 53

This A is nearly symmetric. But its eigenvectors are far from orthogonal:

|1 10718 . 1 a
A—[O l+10‘15} has eigenvectors [0] and []

What is the angle between the eigenvectors?
Which symmetric matrices S are also orthogonal ? Then ST = S and 8T = §~1,

(a) Show how symmetry and orthogonality lead to 5% = I.
(b) What are the possible eigenvalues of 5 7 Describe all possible A.

Then S = QAQT for one of those eigenvalue matrices A and an orthogonal Q.

If S is symmetric, show that AT S A is also symmetric (take the transpose of AT.SA).
Here A is m by n and .S is m by m. Are eigenvalues of S = eigenvalues of ATSA?

In case A is square and invertible, AT S A is called congruent to S. They have

the same nuumber of positive, negative, and zero eigenvalues: Law of Inertia.
Here is a way to show that a is in berween the eigenvalues A; and A; of 5';

g_]a b det{S— X)) =X22—ar—ch+ac—b
b ¢ is a parabola opening upwards (because of A2)

|

Show that det (S — AJ) is negative at A = a. So the parabola crosses the axis left’
and right of A = a. It crosses at the two eigenvalues of S so they must enclose a.

A b

The nn— 1 eigenvalues of A always fall between the n eigenvaluesof § = [BT] .

Section IIL.2 will explain this interlacing of eigenvalues.

The energy £ S = 2,2, certainly has a saddie point and not a minimurmn at (0, Q).
What symrnetric matrix S produces this energy? What are its eigenvalues?

Test to see if AT A is positive definite in each case: A needs independent colunins.

1 2

A={0 3

11
} and A= |1 2| and A:{l L 2].
9 1

1 21

Find the 3 by 3 matrix 5 and its pivots, rank, eigenvalues, and determinant:
r
(21 22 x3] 3 ®y | = 4(x) — 25 + 223)°.
T3

15

16

17
18

19

20

21

22

23

54 Highlights of Linear Algebra

Compute the three upper left determinants of 5 to establish positive definiteness.
Verify that their ratios give the second and third pivots,

2.2 0
Pivots = ratios of determinants =12 5 3
¢ 3 8

For what numbers ¢ and d are 5 and T positive definite? Test their 3 determinants:
e 1 1 1 2 3
S=1|1 ¢ 1 and T=1|2 d 4
1 ¢ 3 4 5
Find a matrix with a > 0 and ¢ >> 0 and a + ¢ > 2b that has a negative eigenvalue.

A positive definite matrix cannot have a zero (or even worse, a negative number)
on its main diagonal. Show that this matrix fails to have 7 Sx > O

4 1 1 T
[zl 9 3:3] 1 & 2 |xz| isnotpositive when (zq,zz,23)=(, ,).
1 2 5 T3

A diagonal entry s;; of a symmetric matrix cannot be smaller than ail the X’s. If it
were, then 5 — s,;1 would have eigenvalues and would be positive definite.
ButS —s;;7 hasa on the main diagonal, impossible by Problem 18,

From § = QAQT compute the positive definite symmetric square root QvAQT
of ¢ach matrix, Check that this square root gives AT A = S

_f5 4 10 e
s_[4 5] and s_{ﬁm].

Draw the iilted ellipse x% + zy + ¢y = 1 and find the half-tengths of its axes from
the eigenvalues of ihe corresponding matrix .

In the Cholesky factorization S = AT A, with A = vDLT, the square roots of the
pivots are on the diagonal of A. Find A (upper triangular) for

5=

oo w
[
00 O

1
and S=11 2
2

-1 tJ —

Suppose C is positive definite (so yTCy > 0 whenever y # 0) and A has indepen-
dent columns (so Az # O whenever = # 0). Apply the energy test to 2T ATC Az
to show that § = ATC A is positive definite: the crucial matrix in engineering.

I.7. Symmetric Positive Definite Matrices 55

24

25

26

27

28

Note

The Minimum of a Function F'(x, y, z)

What tests would you expect for a minimam point ? First come zero slopes :
. o ar or aF - .
First derivatives arezero — = — = —— = 0 at the minimum point.
: dr Oy 0Oz

Next comes the linear algebra version of the usual calculus test d° f /dz% > 0
F ax F 2y F rz

Second derivative matrix I is positive definite H=| Fy, Fy, I,
F zx F zY F zz

F
Here Fypy = % (%5) = é% (Z—i) = Fy is a ‘mixed” secand derivative.

For Fi{z,y) = 1z° +2?y+y? and Fy(z,y) = 2% +zy—z find the second derivative
matrices i, and H; (the Hessian matrices):

GF/8z* O/ 0zdy

Test for minimum H = [aQF/Byax FF/9y?

] is positive definite
H 1s positive definite so F is concave up (= convex). Find the minimum point of F}.
Find the saddle point of F3 {look only where first derivatives are zero).

Which values of ¢ give a bowl and which ¢ give a saddle point for the graph of
z = 4x2 + 123y + cy*? Describe this graph at the borderline value of ¢.

: .o [cos® —sin@][2 0}] cosf sind 5
Without multiplying § = [sint? o8 9] {0 5} {_ sinf cos 8} find
{a) the determinant of 5§ (b} the eigenvalues of S
(¢} the eigenvectors of § {(d) a reason why S is symmetric positive definite,

For which a and c is this matrix positive definite? For which a and ¢ is it positive
semidefinite (this includes definite} ?

a) a All 5 tests are possible.
S=la a+c a-c The energy =1 Sz equals
G a~c¢ a+c af{z1 + xo + 723 + c{a2 — 73)%

Imporiant! Suppose S is positive definite with eigenvalues Ay > Ay = ... = ,\IHA
{a) What are the eigenvalues of the matrix A;.J — 57 Is it positive semidefinite?
(b) How does it follow that M, zTz > T Sz for every z?

{c) Draw this conclusion: The maximum value of z TSz /xTx is A.

Another way to 28 (¢): Maximize zT S subject to the condition 2Tz = 1.
This leads to 5% TSz —) (2Tz—1)] =0and then Sz = Az and X = A,.

56 Highlights of Linear Algebra

1.8 Singular Values and Singular Vectors in the SVD

The best matrices {real symmetric matrices .S) have real eigenvalues and orthogonal
cigenvectors. But for other matrices, the eigenvalues are complex or the eigenvectors
are not orthogonal. If A is not square then Az = Az is impossible and eigenvectors
fail (left side in R™, right side in R™). We need an idea that succeeds for every matrix.

The Singular Value Decomposition fills this gap in a perfect way. In our applications,
A is often a matrix of data, The rows could tell us the age and height of 1000 children.
Then A is 2 by 1000 : definitely rectangular. Unless height is exactly proportional to age,
the rank is r = 2 and that matrix A has two positive singular values g, and 2.

The key point is that we need tweo sets of singular vectors, the w’s and the v’s.
For a real m by n matrix, the n right singular vectors v, ..., %, are orthogonal in R".
The m left singular vectors tq,...,%m are perpendicular to each other in R™.
The connection between n ©’s and m w's is not Az = Az, That is for eigenvectors.
For singular vectors, each Av equals ou :

Avy =ouy - - Av. = Oply Avep1=0 -- Av, =0 (1)

1 have separated the first r ©’s and u’s from the rest. That number » is the rank of A, the
number of independent columns (and rows). Then r is the dimension of the column space
and the row space. We will have » positive singnlar values in descending order
a1 202> ...2> 0, >0 The last n — r ©’s are in the nullspace of 4, and the
last 72 — + 2’s are in the nullspace of AT.

Our first step is to write equation (1) in matrix form. All of the right singular vectors
v1 10 vy, go in the columns of V. The left singular vectors ¢ t0 %y, go in the columns
of U/. Those are square orthogonal matrices (VT = V~! and UT = U~1) because
their columns are orthogonal unit vectors. Then equation (1) becomes the full SVD,
with square matrices V and U :

AV =UZ Alvi . v v | =] w1 1wy

&
You see Avy = oguy in the first 7 columns above. That is the important part of the SVD.
It shows the basis of v’s for the row space of A and then w's for the column space.
After the positive numbers o1, ..., o, on the main diagonal of X, the rest of that matrix
is all zero from the nullspaces of A and AT.

The eigenvectors give AX = XA. But AV = UL needs two sets of singular vectors.

1.8. Singular Values and Singular Vectors in the SVD 57

Example 1 3 o1 |1 —1|_ 111 -3 3v5

AV =UZ [4 5]5[1 1] /08 1 NG
The matrix A is not symmetric, so V is different from IJ. The rank is 2, so there are two
singular values ¢; = 3v/5 and o2 = +/5. Their product 3 « 5 = 15 is the determinant of A
(in this respect singular values are like eigenvalues). The columns of ¥ are orthogaenal and
the columns of I/ are orthogonal. Those columns are unit vectors after the divisions by v/2
and v/10, so V and U are orthogonal matrices: VT = V-1 and UT = /1.

That orthogonality allows us to go from AV = UZX to the usval and famous
expression of the SVD : Multiply both sides of AV = UX by V! = VT,

The Singular Value Decompositionof Ais A =UXZ V7T, 3)

Then column-row multiplication of UY. times VT separates A into r pieces of rank 1:

Pieces of the SVD A=URVT = gyuy0T + - + opurvl. 4)

In the 2 by 2 example, the first piece is more important than the second piece because
o1 = 36 is greater than oy = /5. To recover A, add the pieces g ul'vrlr + Jgug’vQT:

R R e L e P I B

J10v3 |3 T ! “aiss|T2-1 1|7 (45

This simplified because v/5/+/10 /2 equals 1/2. Notice that the right singular vectors
(1, 1) and (—1,1) in V are transposed to rows v ,va of VT, We have not yet explained

how V and IV and % were computed !

The Reduced Form of the SVD

The full form AV = UZ in equation (2) can have a lot of zeros in £ when the rank of A
is small and its nullspace is large. Those zeros contribute nothing to matrix multiplication.
The heart of the SVD} is in the first # @’s and w’s and ¢’s. We can reduce AV = UX
to AV, = U,Z; by removing the parts that are sure to produce zeros. This [eaves the
reduced SVD where 32 is now square :

. a1
AV, =U,.Z. Al v .. v | =] w .. us K G

TOW space column space Tr

58 Highlights of Linear Algebra

We still have V.I V. = I, and UX U, = I, from those orthogonal unit vectors v’s and u’s.
But when ¥, and U, are not square, we can no longer have two-sided inverses: V, V.7 = I
and U . UT £ 1.

1/3 12 2
Example V.= [2/3| andV,TV, =[1] butliV,,ng 2 4 4|=rankl
2/3 2 4 4

Problem 21 shows that we still have A = U, %, V.T. The rest of US VT contributes
nothing to A, because of those blocks of zeros in £, The key formula is still A =
a1 ulv? 4+ -4 Jru,v?‘ The SVD sees only the » nonzeros in the diagonal matrix 2.

The Important Fact for Data Science

Why is the SVD so important for this subject and this book ? Like the other factorizations
A= LU and A = QR and S = QAQT, it separates the matrix into rank one pieces.
A special property of the SVD is that those pieces come in order of importance.
The first piece oyuw] is the closest rank one matrix to A. More than that is true

The sum of the first k pieces is best possible for rank k.

Ax = oyu 0] + -+ + opurvy is the best rank k approximation to A:

Eckart-Young If B hasrank & then ||A — A,|| < ||A — B||. (6)

To interpret that statement you need to know the meaning of the symbol |[A — Bj|.
This is the “norm” of the matrix A — B, a measure of its size (like the absolute value
of a number). The Eckart- Young theorem is proved in Section 1.9,

Qur first job is to find the ©’s and u's for equation (1), to reach the SVD.

First Proof of the SVD

Our goal is A = ULV'T. We want to identify the two sets of singular vectors, the u’s and
the ©’s. One way to find those vectors is to form the symmetric matrices AT A and AAT :

ATA = (vZ'UT) (UzvT) 2 vETZVT (7)
AAT = (UzvT) (vETUT) = UnxTUT ®)

Both {7) and (8) produced symmetric matrices. Usually AT A and AAT are different.
Both right hand sides have the special form QAQT. Eigenvalues are in A = TTE or
£ET. Eigenvectorsarein @ = V or Q@ = U, So we know from (7} and (8) how V" and
U and ¥ connect to the symmetric matrices AT 4 and AAT,

I.8. Singular Values and Singular Vectors in the SVD 59

V contains orthonormal eigenvectors of AT A
U contains orthonormal eigenvectors of AA7T

o2 to o? are the nonzero eigenvalues of both AT Aand AAT

We are not quite finished, for this reason. The SVD requires that Av, = o,us.
It connects each right singular vector vy, to a left singular vector ug, for k = 1,...,r.
When I choose the ©’s, that choice will decide the signs of the w's. If Su = Auw then
also S{—u) = A(—u) and I have to know the correct sign. More than that, there is
a whole plane of eigenvectors when A is a double eigenvalue. When I choose two v’s
in that plane, then Av = ¢u will tell me both w’s. This is in equation (9).

The plan is to start with the v’s. Choose orthonormal eigenvectors v;,... 2,
of AT A. Then choose &), = +/ k. To determine the u’s we require Av = ou;

v’s then u’s AT Ay, = olv;, andthen wuy = for k=1,...,r | 9

T

This is the proof of the SVD ! Let me check that those s are eigenvectors of AAT :

T 2
AATuk:AAT(fﬂ) :A(A A”’“) = ATk = 52, (10)

Tk Tk Tk

The v’s were chosen to be orthonormal. [must check that the u’s are also orthonormal :,%

Av\T [/ Ave\ vT(ATAw) oy 1 =k
T, = [222 =2 = 2Ty, = o 11
Uy Uk () (O’k) T; Ok a; Y5 Uk { 0 If_}#k an

Notice that (AAT)A = A(AT A) was the key to equation (10). The law (AB)C =
A(BC) is the key to a great many proofs in linear algebra. Moving the parentheses is a
powerful idea. This is the associative law.

Finally we have to choose the last n — r vectors v, 4, o v, and the last m — r veciors
Ury1 O Uy, This is easy. These v's and u’s are in the nullspaces of A and AT,
We can choose any orthonormal bases for those nullspaces. They will autamatically be
orthogonal to the first ¥’s in the row space of 4 and the first 's in the column space.
This is because the whole spaces are orthogonal: N(A4) 1 C(AT) and N(AT) L C(A).
The proof of the SVD is complete.

Now we have IJ and V' and ¥ in the full size SVD of equation (1). You may have
noticed that the eigenvalues of ATA are in T, and the same numbers o? to a2 are
also eigenvalues of AAT in TXT. An amazing fact: B A always has the same nonzero
eigenvalue§ as AB: 5 pages ahead.

60 Highlights of Linear Algebra
E . . 3 0
xample 1 (completed) Find the matrices U, 2, V for A = 15

With rank 2, this A has two positive singular valves o1 and ¢o. We will see that o is larger
than Amax = 5, and o is smaller than Ay, = 3. Begin with AT A and 44T :

25 20] 912}

T 4 _.
AA_[QO 25 12 41

AAT:{

Those have the same trace (50) and the same eigenvalues 62 = 45 and o2 = 5. The square
roots are o; = v45 and oy = \/3 Then ¢y = 15 and this 1s the determinant of A.

A key step is to find the eigenvectors of AT A (with eigenvalues 45 and 5):
25 20 1 1] 25 20 -1 -1
{20 25“1]‘45[1. [20 25“ 1}‘5[1]

Then v, and v, are those orthogonal eigenvectors rescaled to lengih 1. Divide by V2.

1 [1 1 [-1] Aw;
Right singular vectors v, = — vy = —= Left singular vectors u; =
Now compute Av, and Avs which will be g1u: = V451, and oous = VBug:
311 1 [1
Av, = — = V45— = qu
1 \/§ [3 j| ;—-—10 i 3 } 1 W]
| -3 1 -3
Ave = — = b} = g2
— } i Y] Juz

The division by +/10 makes 4, and us orthonormal. Then oy = +/45 and o7 = 5
as expected. The Singular Value Decomposition of A is I times ¥ times V'T.

GGt o[] sl]

TJ/iol3 ot
U/ and V coniain orthonormal bases for the column space and the row space of A
(both spaces are just R?). The real achievement is that those two bases diagonalize A :
AV equals UY. The matix A = USZV7T splits into two rank-one matrices,
columns times rows, with \/5 V10 = +/20.

IR IR A

Every matrix is 2 sum of rank one matrices with orthogonal w's and orthogonal »’s.

Jluiv;r + Jgugvg =

1.8. Singular Values and Singular Vectors in the SVD 61

Question : If § = QAQT is symmetric positive definite, what is its SVD ?

Answer: The SVD is exactly USVT = QAQ7. The matrix I/ = V = @ is orthogonal.
And the eigenvalue matrix A becomes the singular value matrix 2.

Question: If § = QAQT has a negative eigenvalue (Sz = —a), what is the singular
value and what are the vectors v and u ?

Answer: The singular value will be & = 4« (positive). One singular vector {either w
or v} must be —x (reverse the sign}). Then S& = —ax is the same as Sv = ou.
The two sign changes cancel.

Question : If A = () is an orthogonal matrix, why does every singular value equal 1?

Answer: All singular values are = 1 because A"A = QTQ = I. Then X = [
But IV = & and V = [is only one choice for the singular vectors « and v :

Q=UVT canbe Q =QIIT orany Q = (Q@1)IQT.
Question: Why are all eigenvalues of a square matrix A less than or equal to oy ?
Answer : Muitiplying by orthogonal matrices IJ and VT does not change vector lengths :
Azl = VSV 2| = 2V 2| < o0|[VT2]| = oull2|| forallz. (13)
An eigenvector has |[Az|| = |A| |jz|[.- Then (13) gives [A] ||z|| < o1 ||2|| and |A] < &y.
Question: If A = xyT has rank 1, what are %, and v, and o1 ? Check that | ;| < o,

Answer : The singular vectors w; = &/||x|{ and 1 = y/|{y|| have length 1. Then oy =
||| ||| is the only nonzero number in the singular value matrix £. Here is the SVD:

Rank 1 matrix ~ xyT = WEED) v u1o vy
= — —_— = 171 .
|1 |l '
Observation The only nonzero eigenvalue of A = ay” is A = y . The eigenvector
is @ because (zyT)x = z(yTz) = dx. Then |Mi| = lyTz| < & = ||yl ||l

The key inequality |A,| < o) becomes exactly the Schwarz inequality.

Question : What is the Karhunen-Leéve transform and its connection to the SVD ?

Answer: KL begins with a covariance matrix ¥ of a zero-mean random process. V is
symmetric and positive definite or semidefinite. In general V' could be an infinite matrix
or a covariance function. Then the KL expansion will be an infinite series.

The eigenvectors of V, in order of decreasing eigenvalues 62 > o3 > ... > 0, are the
basis functions w; for the KL transform. The expansion of any vector ¥ in an orthonormal
basis w1, ¥z, ... 15 v = X (w] v)u,.

In this stochastic case, that transform decorrelates the random process: the u, are
independent. More than that, the ordering of the eigenvalues means that the first & terms,
stopping at (uzv)uk, minimize the expected square error. This fact comresponds to the
Eckart-Young Theorem in the next section L9,

The KL transform is a siochastic {random) form of Principal Component Analysis.

62 Highlights of Linear Algebra

The Geometry of the SYD

The SVD separates a matrix into A = UZVT : (orthogonal) x (diagonal) x (orthogonal).
In two dimensions we can draw those steps. The orthogonal mairices [/ and V rotate the
plane. The diagonal matrix X stretches it along the axes. Figure L11 shows rotation
times strefching times retation. Vectors = on the unit circle go to Ax on an ellipse.

A
x ~ Ax
vT b U
vz oo
el 1 | T 2te
L N
Vv ity

Figure 1.10; {7 and V' are rotations and possible reflections. T stretches circle to ellipse.

This picture applies to a 2 by 2 invertible matrix (because o7 > ¢ and o¢ > (). First
is a rotation of any @ to V' Ta. Then T stretches that vector to 2V T, Then U rotates to
Az = UZV Tz, We kept all determinants positive to avoid reflections. The four numbers
a, b, ¢, d in the matrix connect to two angles 8 and ¢ and rwo numbers o1 and o5.

a b] _| cos# —sind o cos® sing (14)
e d | | sind cosf o2 —sing cos¢ |-
Question. H the matrix is symmetric ther & = ¢ and A has only 3 (not 4) parameters.
How do the 4 numbers 8, ¢, o1, oo reduce to 3 numbers for a symmetric matrix 57

The First Singular Vector v,

The next page will establish a new way to look at v1. The previous pages chose the v’s
as eigenvectors of AT A, Certainly that remains true. But there is 2 valuable way to
understand these singular vectors one at a time iustead of all at once. We start with v,
and the singular value o;.

|| Az]|

Maximize the ratio
|||

. The maximum jis &, at the vector # = »y. (15)

The eliipse in Figure I.10 showed why the maximizing @ is v;. When you follow v
across the page, it ends at Avy, = g1y (the longest axis of the ellipse). Its length started
at ||v1|] = 1 and ended at ||Awv,]| = o).

1.8. Singular Values and Singular Vectors in the SVD 63

But we aim for an independent approach to the SVD ! We are not assuming that we
already know U or X or V. How do we recognize that the ratio || A=|| /||| is a maximum
when & = v 7 Calculus tells us that the first derivatives must be zero. The derivatives will
be easier if we square our function:

|Az]|> «TATAz 2"Sx

Problem : Find the maximum value X of = . {16)
llz|)? Tz zTx
This “Rayleigh quotient” depends on 24, ..., .. Calculus uses the quotient rule, so we
need
3 (T & ¢ 2 2 2
xx)=—|zx --v+3-:-+--<+a:)=2:1:- 17
5 (%72) 3:1:,-(1+ i n) = 2xh an

ai- (2Ts) = %(ZZ Sywsz;) =23 Syz; =2(Sz) (8)
: ‘ j i)

i

The quotient rule finds #/8z; (¢ Sz/x™ x). Set those n partial derivatives of (16) to zero:

2Tz)2{Sx) — (2TSz)2(z) =0fori=1,...,n (19)
(272) 2(S2), - (a752)2 (),

1

Equation {19) says that the best z is an eigenvector of S = AT A!

zTSz ||Az|
aTe |||

25z = 22z and the maximum value of is an eigenvalue X of 5.

The search is narrowed to eigenvectors of § = AT A. The eigenvector that maximizes is
& = wvy. The eigenvalue is \; = ar%. Calculus has confirmed the solution (15) of
the maximum problem—the first piece of the SVD.

For the full SVD, we need all the singular vectors and singular values. To find vo

and oq, we adjust the maximum problem so it looks only at vectors & orthogonal to v;.

A= " . .
Maximize H under the condition ‘u'lr:t: = 0. The maximum is o5 at & = va.
T
“Lagrange multipliers” were invented to deal with constraints on @ like vT@ = 0.

T

And Problem 3 gives a simple direct way to work with this condition v 2 = 0.

In the same way, every singular vector vy gives the maximum ratio over all vectors
a that are perpendicular to the first #, . .., vg. The left singular vectors would come from
maximizing ||ATyl|/||yi]. We are always finding the axes of an ellipsoid and the
eigenvectors of symmetric matrices AT A4 or AAT.

El

64 Highlights of Linear Algebra

The Singular Vectors of AT

The SVD connects ©'s in the row space to u’s in the column space. When we transpose
A=UXVT, weseethat AT = VETUT goes the opposite way, from u’s to ©’s :

ATy, = opvpfork =1,...,7 ATy, =0fork=r+1,...,m (20
Multiply Avy = gy by AT. Remember AT Avy, = ¢}y in equation (9). Divide by oy

A Different Symmetric Matrix Also Produces the SVD

We created the SVD from two symmetric matrices AT A and AAY. Another good way
uses one symmetric block matrix S. This matrix has v pairs of plus and minus eigenvalues.
The nonzero eigenvalues of this matrix § are gy and —y, and its size is m + n.:

B g A . Ui —Ug
8= { AT 0o] has eigenvectors [o] and [-] .
We can check those eigenvectors directly, remembering Avy = opuy, and ATuy = ooy

0 A tTug | Awny . Uk _ —uy |
{ AT 0 } { Vi] - l £ ATy, | T %% v, and — o ve |’ en
That gives 2r eigenvalues. The eigenvectors are orthogonal : —u;fuk +vivy = -1+ 1.

Can you see the other (e — r) + {n — r) eigenvectors with A = 0 for that block matrix ?
They must involve the remaining #’s and »’s in the nullspaces of AT and A.

AB and B A : Equal Nonzero Eigenvalues

If Aism by n and B is n by m, then AB and B A have the same nonzero eigenvalues.

Start with AB>» = Ax and A # 0. Multiply both sides by B, to get BABx = ABz.
This says that B is an eigenvector of B A with the same eigenvalue A>—exactly what we
wanted. We needed A # 0 to be sure that this eigenvector Bz is not zero.

Notice that if B is square and invertible, then B~'(BA)B = AB. This says that
BA is similar to AB : same eigenvalues. But our first proof allows A and Btobe mby n
and n by m. This covers the imporiant example of the SVD when B = AT. In that case
AT A and AAT both lead to the singnlar values of A4.

If m > n, then AB has m — n extra zero eigenvalues compared to BA.

1.8. Singular Values and Singular Vectors in the SVD 65

Submatrices Have Smaller Singular Values

The approach to ||Al| = ¢y by maximizing ||Az||/||z|| makes it easy to prove this use-
ful fact. The norm of a submatrix cannot be larger than the norm of the whole matrix :
o1 (B) £ o1 (A).

If B keeps M < m rowsand N < n columns of A, then ||B]|| < {|A]]. (22)

Proof Look at vectors y with nonzeros only in the N positions that comespond to
columnns in B. Certainly maximum of || By||/||y|} € maximum of || A=z||/||x]|.

Reduce || By|| further by looking only at the A/ components that correspond to rows
of B. So removing columns and rows cannot increase the norm a3, and {|B|] < ||4]].

The SVD for Derivatives and Integrals

This may be the clearest example of the SVD. Tt does not start with a matrix (but we will
go there). Historically, the first 3VD was not for vectors but for functions. Then A is not
a matrix but an eperator. One example is the operator that integrates every function.
Anocther example is the (unbounded} operator D that takes the derivative :
3
' dx
Ax (s} = | 2{(t)dt and Da(f)= e (23}

u]

Operators on functions
Integral and derivative

Those operators are linear (or calculus would be a lot more difficult than it is). In some
way I is the inverse of A, by the Fundamental Theorem of Calculus. More exactly D is a
left inverse with D A = I : derivative of integral equals original function. %

But A} = I because the derivative of a constant function is zero. Then I} has a
nullspace, like a matrix with dependent columns. I is the pseudoinverse of A! Sines
and cosines are the ©’s and #’s for A = integral and I} = derivative :

1
Av = ou is A(coskt) = E(sin kt} Then D{sinkt) = k(coskt).| (24

The simplicity of those equations is our reason for including them in the book. We are
working with perfodic functions: x (t + 27) = x(t). The input space to A contains the
even funcrions like cost = cos(—t). The outputs from 4 (and the inputs to D) are the
odd functions like sint = — sin{—t), Those input and output spaces are like R™ and R™
for an m by n matrix. '

The special property of the SVD is that the s are orthogonal, and so are the 's.
Here those singular vectors have become very nice functions—the cosines are orthogonal
to each other and so are the sines. Thelr inner products are integrals equal to zero .

- 27 2n
viv; = /(cos kt)(cosjt)dt =0 and wuju; = f(sin ki) (singt)dt = 0.
0

66 Highlights of Linear Algebra

Notice that the inner product of functions @, and =3 is the integral of @, (t) ®o(#).
This copies into function space {Hilbert space) the dot product that adds y - z = Zy;z;.
In fact the symbol f was somehow created from X (and integrals are the limits of sums).

Finite Differences

The discrete form of a derivative is a finite difference. The discrete form of an integral
is a sum. Here we choose a 4 by 3 matrix D that corresponds to the backward difference

f(z) - flz - Az):

D= with DT = 1 -1 . 2%
-1
To find singular values and singular vectors, compute DTD (3 by 3)and DDT (4 by 4):

5 1 o 1 -1 0 0

p™p=!_-1 2 -1| and DDT=| L 2 -1 0 (26)

0 -1 2 ¢ -1 2 -1

0 0 1 1
Their nonzero eigenvalues are always the same! DDT also has a zero eigenvalue
with eigenvector s = (3,3.%,3). This is the discrete equivalent of the function

f(z) =L withdf /dz = 0.
The nonzero eigenvalues of both symmetric matrices DT D and DD7T are

AM=03(D)=2++vV2 Je=0i(D)=2 As=cdi(D)=2-v2 (27D

The eigenvectors v of DT D are the right singular vectors of I). They are discrete simes.
The eigenvectors u of DD are the left singular vectors of D, They are discrete cosines :

lx 12n 13x
coss5 cosz= cos== 1
sing sin%1T Sin‘%ﬂ' i‘l g; ;3‘1
w il £il
\/_ . ox . dn e \/_ oS3y COSHT CosET 1
2V = |sin“® sin® sin 20 =
4 4 4 S 5 2 53
(:0551 COSET COS§T 1
sin2E sin%E sinE
4 4 4 PN & 72m 73
_00824 cos 35~ coszT) 1

These are the famous DST and DCT matrices—Discrete Sine Transform and Discrete
Cosine Transform. The DCT mairix has been the backbone of JPEG image compression.
Acmally JPEG increases U to 8 by 8, which reduces the “blockiness” of the image.
& by 8 blocks of pixels are transformed by a two-dimensional DCT—then compressed and
wransritted. Orthogonality of these matrices is the key in Section IV.4,

1.8. Singular Values and Singular Vectors in the SVD 67

Qur goal was to show the discrete form of the beautiful Singular Value Decomposition
D (sinkt) = k{cos kt). You could correctly say that this is only one example. But Fourier
is always present for linear equations with constant coefficients—and always important.
In signal processing the key letters are L T1: Linear Time Invariance.

The Polar Decomposition A = QS

Every complex number -+ iy has the polar form re®*®. A number r > 0 multiplies
a number ¢ on the unmit circle. We have z + iy = rcosf + irsing = re¥.
Think of these numbers as 1 by 1 matrices. Then ¢ is an orthogonal matrix Q and
r > {} is a positive semidefinite matrix (call it §). The polar decomposition extends the
same idea to n by n matrices: orthogonal times positive sennidefinite, A = Q8.

Every real square matrix can be factored into A = @8, where Q) is orthogonal
and & is symumetric positive semidefinite. If A is invertible, & is positive definite.

Polar decomposition A=UVT =(@UVvTHVEVT)=(Q)S).| (28

The first factor UV'T is Q. The product of orthogonal matrices is orthogonal. The second
factor VEVT is 8. It is positive semidefinite because its eigenvalues are in .

If A is invertible then 3 and 5 are also invertible. & is the symmetric positive
definite square root of AT A, because $2 = VE?VT = ATA. So the eigenvalues of
S are the singular values of A. The eigenvectors of S are the singular vectors v of A.

There is also a polar decomposition A = K () in the reverse order. ¢ is the same but

now K = USUT. Then K is the symmetric positive definite square root of AAT. k

o

Example Find @ and 5 (rotation and stretch) in the polar decomposition of A = { i 5 } .

Solution The matrices U and ¥ and V' were found above equation (3):

U | KR i R
§ = vyt = ‘/5[1 _1} [3 1} [_1 1]:\/5{2 1].ThenA=QS.

2 |1 1 1 1 1 2

In mechanics, the polar decomposition separates the rotation (in Q) from the strefching.
The eigenvalues of S give the stretching factors in Figure 1.10. The eigenvectors of S
give the stretching directions (the principal axes of the ellipse). Section TV.9 on the
orthogonal Procrustes problem says that @ is the nearest orthogonal matrix to A.

68 Highlights of Linear Aigebra

Problem Set 1.8
1 A symmetric matrix § = ST has orthonormal eigenvectors v, to ©,. Then any
vector & can be written as a combination & = ¢jvy + - - - + ¢, v,. Explain these two
formulas :
eTe=cl+ - +c 2T8x = M+ + Al

2 Problem 1 gives a neat form for the Rayleigh quotient =T Sz /a Tz :

R(z) = zTSx el +-o + Aac?
2T 442

Why is the maximuam value of that ratio equal to the largest eigenvalue X, ?
This may be the simplest way to understand the “second construction” of the SVD
in equation (15). You can see why the ratio R{x) is a maximum when ¢; = 1 and
Co=¢3==---=¢p =1,

3 Next comes Ay when & = v,. We maximize R{z) = 7Sz /2T« under the con-
dition that 2T v, = 0. What does this condition mean for ¢, 7 Why is the ratio in
Problem 2 now maximized whencz = landey =cs =---=¢, =07

4 Following Problem 3, what maxirmum problem is solved by & = v3 ? Thebest¢’s are
cz=landecy =co=¢cq---=0.

T Sx

The maximum of RB(z) = —5— is Az subject to what two conditions on z 7
Tz

5 Show that AT has the same {nonzero) singular values as A. Then ||4(| = [|AT||
for all matrices. But it’s not true that [[Ax|| = |[ATz|| for all vectors. That needs
ATA = AAT
Y 1 7 » 3 3 4 .
6 Find the ¢’s and »’s and u’s in the SVD for A-= 05l Use equation (12).

7 Whatis the norm || A — oy wv] || when that largest rank one piece of A is removed ?
What are all the singular values of this reduced matrix, and its rank ?

0 20
8 Find the o’s and v’s and w’s, and verifythat A= | 0 0 3 | = UZVT. For this
c 00
n

matrix, the orthogonal matrices U/ and V' are permutation matrices.

I8.

10

1"

12

13

Singular Values and Singular Vectors in the SVD 69

To maximize &7 Sz with T2 = 1, Lagrange would work with L = 12TSz +
MzTx — 1). Show that VL = (8L/8z;,...,8L/8z,) = 0is exactly Sz = dx.
Once again max R{x)} = A;.

Prove ||B|| < || A]} in equation (22) by a slightly different approach. Remove first
the N — n columns of A. The new matrix has ||C|| < |JA||. (Why ?). Then transpose
C': no change in norm. Finally remove M — m columns of C'T to produce BT
with no increase in norm. Altogether || B|| = ||BT|| < [ICT{l = ||C| < [l A]l.

Check that the trace of § = 6 4] fram adding up its diagonal entries agrees

AT 0
with the sum of its eigenvalues in equation {21). If A is a square diagonal matrix
with entries 1,2, . .., n, what are the 2n eigenvalues and eigenvectors of 5 ?

2 4

Find the SVD of the rank 1 matrix A = [1 2

] . Factor AT A into QAQT.

Here is my homemade proof of the SVD. Step 2 uses the factorizations
ATA = VAVT and AAT = UAUT (same eigenvalues in A).

A(ATA) = (AAT)A
AVAVT =UAUTA
(UTAVIA = A(UTAV)
UT AV must be diagonal

S b

Step 3 multiplied Step 2 on the left by and on the right by .
Then the matrix UT AV commutes with the diagonal matrix A in Step 3. How
does this force the matrix UTAV = £ to be also a diagonal matrix ? Try 3 by 3.

o1 diz o3 || A Al ol Ji2 T3
SA=[oan o0 o Ag = Ao om U2 O3 [=AX
o3 U032 033 A3 Az || 031 032 o33

Compare the first rows. When can you conclude that 012 = 0 and 013 = 07 This
shows the limitation on my proof : Jt needs the eigenvalues of AT A to be

The same bug appears in simple proofs of the spectral theorem § = QAQT.
This is easy when S has no repeated A's. The SVD is easy when A has no repeated o’s.

Both § = QAQT and A = UZVT remain true when \’s or ’s happen to be
repeated. The problem is that this produces a whole plane of eigenvectors
or singular vectors. You have to choose the singular veciors w specifically as Av /o—
which is the real proof in equation (9).

70 Highlights of Linear Algebra

14 Figure 1.10 showed how a 2 by 2 matrix with four entries a, §, ¢, d produces an SVD
with four parameters #, ¢, 01, 02. Moveto A = U LVT = 2 by 3 with six entries,

How many ¢’s for a 2 by 3 matrix? Then U/ (2 by 2) only needs one angle.
To recover A, that leaves how many angles for the 3 by 3 orthogonal matrix V' ?

angles for the position of that plane.
angles for V.

The row space of A is a plane in R>. It takes
It takes angle in the plane to find v1 and vo. A total of

15 Every 3 by 3 matrix has 9 entries. So /ZVT must have 9 parameters. How many
parameiters in U7 and £ and V' ? Answer the same guesrions for 4 by 4. How many
parameters describe a rotation in 4-dimensional space ?

16 numbers wilt give the direction of a unit vector v; in R®. Then the direction
of an orthogonal unit vector v; takes numbers. How many for vs, vy, vs ?
Total .

17 Ifvis an eigenvector of AT A with A # 0, then is an eigenvector of AAT,

18 If A= UXVT is square and invertible, then A~! = . Find al! singular values
of AT A (not of A).

19 I 5 = ST has orthogonal columns 21, 1z, #3 in R® of lengths 2, 3, 4, find its SVD.
20 Thereasons for the success of eigenvalues and eigenvectorsare in A = XAFX 1
a) The eigenvalues of AF are A¥, ... A%
b} An eigenvector of 4 is also an eigenvector of A",

Show that a} and b) are false for singular values and singular vectors of l ﬂg _g} .

21 Show that the singular values of AAT A are {¢1) to (o,)%
22 Equation (5)is AV, = U, E,. Multiply by V.T to get A = U5, VT (reduced SVD).

For that step we cannot use V. V,* = I {which is false when m > r). Show instead
that this matrix A = [/, X, V,T satisfies equation (1).

23 Show that an m by n matrix of rank r has #(m + n — r) free parameters in its SVD
A=UXVT = (m x r){r x 7} {r x n). Why.do r orthonormal vectors w; to u,
have (m — 1)+ (m —2) + - - + (m — r) parameters?

Another approach uses 4 = CR = (m x) (v x n) from Section 1.1, The matrix B
contains an r by 7 identity matrix, removing v? parameters from rm + rn. That
count is repeated in an appendix of this book.

1.9. Principal Components and the Best Low Rank Matrix 71

1.9 Principal Components and the Best Low Rank Matrix

The principal companents of A are its singular vectors, the columns w; and v; of the
orthogonal matrices I/ and V. Principal Component Analysis (PCA) uses the largest o's
connected to the first w’s and v’s to understand the information in a matrix of data.
We are given a matrix A, and we extract its most important part A, (largest o’s):

A = o1mv] + - + opupvy withrank (Ag) = k.

Ay solves a matrix optimization problem—and we start there. The closest rank & matrix
to A is Ay In statistics we are identifying the pieces of .4 with largest variance. This puts
the SVD at the center of data science.

In that world, PCA is “unsupervised” learning. Our only instructor is linear algebra—
the SVD tells us to choose Ax. When the learning is supervised, we have a big set of
training data. Deep Learning (Section VIL.1) constructs a (nonlinear!) function F that
correctly classifies most of that training data. Then we apply F to new data, as you will see.

Principal Component Analysis is based on matrix approximation by 4. The proof that
Ay, is the best choice was begun by Schridt (1907). His theorem was written for operators
A in function space, and it extends directly to matrices in vector spaces. Eckart and Young
gave a new proof in 1936 (using the Frobenius norm for matrices). Then Mirsky found a
more general proof in 1955 that allows any norm || A|| that depends only on the singular
values—as in the definitions (2), (3), and (4) below.

Here is that key property of the special rank k matrix 4; = o1u1v] + - + opupv)

Eckart-Young If B hasrank k then ||4A — B|| = ||4A — Asl|. (1)§
Three choices for the matrix norm || A|| have special importance and their own names:
A
Spectral norm HAll2 = ma.x'l][:;;llf =gy (often catled the £2 norm) (2}
Frobeniusnorm ||A||r = /03 + -+ ¢? (12)and (13)also define || 4||F (3)
Nuclear norm lJAl[w =61+ 02+ +++ + o (the trace norm) . (4}
These norms have different values already for the n by » identity matrix :
=1 |Hllr=vn |lxv=n ()
Replace 7 by any orthogonal matrix ¢ and the norms stay the same (because all o, = 1):
IRllz=1 IQIlr=vn |Qlly=n - (®)

Mare than this, the spectral and Frobenius and nuclear norms of any matrix stay
the same when A is multiplied {on either side} by an orthogonal matrix.

72 Highlights of Linear Algebra

The singular values don't change when U and V change to 2,7 and 22 V. For complex
matrices the word unitary replaces orthogonal. Then QTQ = I. These three norms are

unitarily invariant: |/Q, A@QTH = || A||- Mirsky’s proof of the Eckart-Young theorem in
equation (1) applies to all unitarily invariant norms : || A|| is computable from Z.

All three norms have ||@1AQT|| = ||A|| fororthogonal @, and Q2 (7)

We now give simpler proofs of (1) for the L2 norm and the Frobenius norm.

Eckart-Young Theorem : Best Approximation by A,

It helps to see what the theorem tells us, before tackling its proof. In this exampie,
Ais diagonaland & = 2:

The rank two matrix closest to A= I3 As=

[R N N
[o it
o o O
[e i]
s Y e [RN
oo W o
o e [i
oo o S

This must be true ! You might say that this diagonal matrix is too simple, and not typical.
But the L? norm and Frobenius norm are not changed when the matrix 4 becomes Q1 AQ»
(for any orthogonal (), and J2). So this example includes any 4 by 4 matrix with singular
values 4, 3,2,1. The Eckart-Young Theorem tells us to keep 4 and 3 because they are
largest. The error in L2 is ||4 — Ag|| = 2. The Frobenius norm has || A — A||r = V5.

The awkward part of the problem is “rank two matrices”. Thar set is not convex.
The average of Az and By (both rank 2) can easily have rank 4. Is it possible that
this By could be closer to A than As ?

Could this B, be 32 g;
a better rank 2 15 15
approximationto A 7 1.5 1.5

The errors A — B, are only 0.5 on the main diagonal where 4 — A has errors 2 and 1.
Of course the errors 3.5 and 1.5 off the diagonal will be too big. But maybe there is
another choice that is better than A5 ?

No, As is best with rank k = 2. We prove this for the L? norm and then for Frobenius.

Eckart-Young
in L?

[[{4 — B) ||

If rank (B) < k then ||A — B|| = max el

> opt1. | (B

1.9. Principal Components and the Best Low Rank Mauix 73

We know that ||A — Ag|| = ox41. The whole proof of ||A — B|| = i1 depends on a
good choice of the vector in computing the norm |[4 — B||:
f+1
Choose £ #« 0sothat Bx = 0and & = Z it (9}
1

First, the nullspace of B has dimension > n — k, because B has rank < k. Second, the
combinations of vy t0 vg41 produce a subspace of dimension & + 1. Those two subspaces
must intersect ! When dimensions add to (»n — k) + (k + 1) = n + 1, the subspaces must
share a line (at least). Think of two planes through (0, 0, 0) in R®—they share a line since
2 + 2 > 3. Choose & nonzero vector = on this line.
Use that & to estimate the norm of 4 — B in (8), Remember Bx = 0 and Av; = o;u;
k+1

(A - BY=||? = |A=|]* = || Y ciowasl? =) _ 2ol (10)
1

That sum is at least as large as (3 ¢?) 0%, |, which is exactly [[€]|°cZ, ;. Equation (10)
proves that ||(A — B)z|| > giy1||x||. This gives the lower bound we want for || A~ B||:

(A — B) z||

izl > 041 means that || 4 — B|| > or41 = [|A — Agl|. Proved!| (11)

The Frobenius Norm
Eckart-YoungFrobenius norm Now we go to the Frobenius norm, to show that Ay, is the best %
approximation there t0o.

It s usefui to see three different formulas for this norm. The first formula treats A as a
long vector, and takes the usual #2 norm of that vector. The second formula notices that the
main diagonal of AT A contains the 2 norm (squared) of each column of A.

For example, the 1,1 entry of ATA is |a1|* + <+ + |ami|? from column 1.
So (12) is the same as (13), we are just taking the numbers |aij12 a column at a time.

Then formula (14) for the Frobenius norm uses the eigenvalues Jf of AT A. (The trace
is always the sum of the eigenvalues.) Formula (14) alse comes directly from the SVD—
the Frobenius norm of 4 = UZVT is not affected by U and V, so ||A[|2 = |[Z(]%.
Thisis 0% + -+« 4+ o2 ‘

HAIZ = a1l + lasz® + -+ Jemn[® (every) (12)
||All% = trace of ATA = (ATA)11+---+ (AT A)pn (13)
IAllz =of + 05+ + 02 (14)

"

74 Highlights of Linear Algebra

Eckart-Young in the Frobenius Norm

For the norm {|A — B||r, Pete Stewart has found and generously shared this neat proof.

Suppose the matrix B of rank < k is closest to A. We want to prove that B = Ag.
The surprise is that we start with the singular value decomposition of B (not A):

Do

B=U[0 0

} VT where the diagonal matrix Diskbyk. (15)

Those orthogonal matrices [and V from B will not necessarily diagonalize A :

A=U

L+E+R F]VT (16)

G H

Here L is strictly lower triangular in the first & rows, E is diagenal, and R is strictly upper
triangular, Step 1 will show that I, &, and F are all zero by comparing A and B with this
matox C' that clearly has rank < k:

an

C:U[L+D+R F}VT

0 0

This is Stewart’s key idea, to construct C' with zero rows to show #s rank. Those
orthogonal matrices U and VT leave the Frobenius norm unchanged. Square all matrix
entries and add, noticing that A — ' has zeros where A — B has the matrices I, R, F':

A — Bl[% = |4 — Cl[& + [|LIIZ + |RIE + || FllZ. (18)

Since [|JA — B||% was as small as possible we learn that L, R, F are zero! Similarly we
find G = 0. At this point we know that UT AV has two blocks and F is diagonal (like D)

E O

T —
UAV—[O H

} and UTBV:[D 0].

¢ o

If B is closest to A then UT BV is closest te UT AV . And now we see the truth.
The matrix I} must be the same as FE = diag (&, . .», 0%}

The singular values of H must be the smallest 7 — k singular values of A.

The smallest error || A — B||r mustbe ||[H]|r = /02, + - + 0 = Eckart-Young.

In the 4 by 4 example starting this section, A; is best possible: [[4 — Aul|r = V5.
It is exceptional to have this explicit solution A; for a non-convex optimization.

_ 19. Principal Components and the Best Low Rank Matrix 75

Minimizing the Frobenius Distance || A — B||3,

Here is a different and more direct approach to prove Eckart-Young: Set derivatives
of ||A — Bl|% to zero. Every rank k matrix factors into B = CR = (m x k) (k x n).
By the SVD, we can require r orthogonal columns in C' (so CTC = diagonal matrix D)
and r orthonormal rows in R (so RRT = I). We are aiming for C = UyZx and R = V[,

Take derivatives of B =|| A — CR||% to find the matrices C and R that minimize E :

aF T OF T AT Ty
BC_.Q(CR AR = IR =2{R"C"—AC=0 (19)
The first gives ART = CRRT = C. Then the second gives RTD = ATC = ATART.
Since 2 is diagonal, this means :
The columns of BT are eigenveciors of AT A. They are right singular vectors v, of A.
Sirilarly the columns of C are eigenvectors of AAT: AATC = ARTD = CD. ThenC
contains left singular vectors u;. Which singular vectors actually minimize the error £ ?

E is a sum of all the ¢ that were rot involved in C and R. To minimize, those should
be the smallest singular values of A. That leaves the largcst singular values to produce
the best B = CR = Ay, with [JA — CRI||% = of,, + -+ + o2, This neat proof is in
Nathan Srebro’s MIT doctoral thesis: ttic.uchicago.edu!-natl!Puhllcatlonsfthesm pdf

Principal Component Analysis

Now we start using the SVD. The matrix A is full of data. We have n samples. For
each sample we measure m variables (like height and weight). The data matrix Ag has Ty
columns and m rows. In many applications it is a very large matrix, '

The first step is to find the average (the sample mean) along each row of A4,. Subtract
that mean from all m entries in the row. Now each row of the centered matrix A has
mean zero. The columns of A are n points in R™. Because of centering, the sum of the
7 column vectors is zero. So the average column is the Zero vector.

Often those n points are clustered near a line or a plane or another low-dimensionat
subspace of R™. Figore 111 shows a typical set of data points clustered along a line in R®
(after centering Ag to shift the poinss left-right and up-down for mean (0, 0} in A).

How will linear algebra find that closest line through (0,0} 7 It is in the direction of
the first singular vector u, of A. This is the key point of PCA !

Ais 2 x n (large nullspace)

-\'x X
2 AAT js 2 x 2 (small matix)
X

%I AT Ais n x n (large matrix)

x-\:xk

>
4
-‘t';(xk’

4 Two singular values ¢y > o2 > 0

Figure 1.11; Data points (columns of 4) are ofien close to a line in R? or a subspace in R™.

76 Hightights of Linear Algebra

Let me express the problem (which the SVD solves) first in terms of statistics and
then in terms of geometry. After that come the linear algebra and the examples.

The Statistics Behind PCA

The key numbers in probability and statistics are the mean and variance. The “mean” is
an average of the data (in each row of Ag). Subtracting those means from each row of
Ay produced the centered A. The crucial quantities are the “variances™ and “covariances”.
The variances are sums of squares of distances from the mean—along each row of A.

The variances are the diagonal entries of the matrix AAT.

Suppose the columns of A correspond to 2 child’s age on the x-axis and its height on the
y-axis. (Those ages and heights are measured from the average age and height.)
We are looking for the straight line that stays closest to the data points in the figure.
And we have to account for the joinr age-height distribution of the data.

The covariances are the off-diagonal entries of the matrix AA7T,

Those are dot products (row i of A4) - (row j of 4). High covariance means that increased
height goes with increased age. {Negative covariance means that one variable increases
when the other decreases.) Our example has only two rows from age and height: the
symmetric matrix AAT is 2 by 2. As the number 7 of sample children increases, we divide
by n ~ 1 to give AAT its statistically correct scale.

T

The sample covariance matrix is defined by 5 =

n—1

The factor is n—1 because one degree of freedom has already been used for mean = 0. Here
is an example with six ages and heights already centered to make each row add to zero:

3 4 7 1 -4 -3
A=l7 -6 8 -1 -1 7}

For this data, the sample covariance matrix .S is easily computed. It is positive definite.

. . 1
Yariances and covariances §=——AAT =

20 25
6—-1 '

25 40

The two orthogonal eigenvectors of S are w; and wy. Those are the Yeft singular vectors

(principal components) of A. The Eckart-Young theoremn says that the vector u, points

along the closest line in Figure L11. Eigenvectors of § are singular vectors of A.
The second singular vector 4 will be perpendicular to that closest line.

Important note PCA. can be described using the symmetric § = AAT/(n — 1) or the
rectangular A. No doubt § is the nicer matrix. But given the data in A, computing S
would be a computational mistake. For large matrices, a direct SVD of A is faster and
more accurate.

1.9. Principal Components and the Best Low Rank Matrix 77

In the example, 5 has eigenvalues near 57 and 3. Their sum is 20 + 40 = 60, the trace
of §. The first rank one piece \/ﬁulvrf is much larger than the second piece \/gugtf{,
The leading eigenvector u; = (0.6, 0.8) tells us that the closest line in the scatter plot
has slope near 8/6. The direction in the graph nearly produces a 6 — 8 — 10 right triangle.

I will move now from the algebra of PCA tc the geometry. In what sense will the line
in the direction of w; be the closest line to the centered data ?

The Geometry Behind PCA

The best line in Figure 1.11 solves a problem in perpendicular least squares. This is also
called orthogonal regression. It is different from the standard least squares fit to n data
points, or the least squares sclution to a linear system Ax = b. That classical problem
in Section IL.2 minimizes || Az — b]|?. It measures distances up and down to the best line,
Qur problem minimizes perpendicular distances. The older problem leads to a linear
system ATAZ = ATb. Our problem leads to eigenvalues o2 and singular vectors u,
(eigenvectors of .5). Those are the two sides of linear algebra: not the same side.

The sum of squared distances from the data points to the u; line is a minimum.

To see this, separate each column a; of A inte its components along w; and ;¢

Z llasl* = Z |'11J-rrr’b51|2 + Z IGJTU2|2- (20}
1 1 1

The sum on the left is fixed by the data. The first sum on the right has terms u?aja}ul;‘g
It adds to u] (AAT)u;. So when we maximize that sum in PCA by choosing the top
eigenvector uq of AAT, we minimize the second sum. That second sum of squared
distances from data points to the best lipe (or best subspace) is the smallest possible.

The Linear Algebra Behind PCA

Principal Component Analysis is a way to understand n sample poinis @q,...,a, in
m-dimensional space—the data. That data plot is centered: all rows of A add to zero
(A1 = 0). The crucial connection to linear algebra is in the singular values ; and the
singular vectors u; of A. Those come from the eigenvalues A; = Jf and the eigenvectors
of the sample covariance matrix $ = AAT/{n — 1).

The total variance in the data comes from the Frobenius norm (squared) of A :

Total variance T = ||A||%/(n — 1) = (Jla1][* + - + ||@n|i®}/(n - 1). (21)

This is the trace of S—ihe sum down the diagonal. Linear algebra tells us that the trace
equals the sum of the eigenvalues #?/(n — 1) of the sample covariance matrix S.

78 Highlights of Linear Algebra

The trace of 5 connects the total variance to the sum of variances of the principal
components %y, Wy

Total variance T = (o3 +:--+0?)/(n—1). (22)

Exactly as in equation {20}, the first principal component w; accounts for (or “explains™)
a fraction o2 /T of the total variance. The next singular vector u- of A explains the next
largest fraction o2 /7. Each singular vector is doing its best to capture the meaning in a
matrix—and together they succeed.

The point of the Eckart-Young Theorem is that & singular vectors (acting together)
explain more of the data than any other set of k vectors. So we are justified in choosing w4
10 1) as a basis for the k-dimensional subspace closest to the n data points,

The reader understands that our Figure 111 showed a cluster of data points
around a straight line {¢ = 1) in dimension m = 2. Real problems often have & > 1
and m > 2.

The “effective rank” of A and § is the number of singular values above the point
where noise drowns the true signal in the data. Often this point is visible on a “seree plot”
showing the dropoff in the singular values ; (or their squares ¢2). Figure .12 shows
the “elbow™ in the scree plot where signal ends and noise takes over.

In this example the noise comes from roundoff error in computing singular values of
the badly conditioned Hilbert matrix. The dropoffin the true singular values remains very
steep. In practice the noise is in the data matrix itself—errors in the measurements of Ag.
Section I11.3 of this book studies matrices like H with rapidly decaying ¢'s.

107 e e e s o g
i Singular values of hilb{ 40)
oe [1 1 1 . 7
10 ey 2 3
., : 1 1 1)
: i 2 3 4
5 . K
10 i .. : H T 1 1 . 1
i . ' =] 3 4 & =
10 e : 7 ('?,-I-j—l)
077 . X N
-
. - . .
10'15i -
: aooo.ﬂloo........“.. - J
; o
-2 1 L »
L 10 20 3% 0
Figure 1.12: Scree plot of ¢1,...,039 {040 = 0} for-the evil Hilbert matrix, with elbow

at the effective rank : r & 17 and o, /= 107,

One-Zero Matrices and Their Properties

Alex Townsend and the author began a study of matrices with 1’s inside a circle and
(s outside. As the matrices get larger, their rank goes up. The graph of singular values
approaches a limit—which we can’t yet predict. But we understand the rank.

L9. Principal Components and the Best Low Rank Martrix 79

Three shapes are drawn in Figure [.13: square, triangle, quarter circle. Any square
of 1’s will have rank 1. The triangle has all eigenvalues A = 1, and its singular values are
mote interesting. The rank of the quarter circle matrix was our first puzzle, solved below.

———

e)
[SNy Y
el e
el
b b = st e et
b e
T
[]
Pt

=

—

1’s 1’s

oI

Rank 1 Rank ¥ Rank CINV? N

Figure I.13: Square and tnangle and quarter circle of 1’s in matnces with V = 6.

Reflection of these figures in the x-axis will produce a rectangle and larger triangle
and semicircle with side 2N. The ranks will not change because the new rows are copies
of the old rows. Then reflection in the y-axis will produce a square and a diamond and a
full circle. This time the new columns are copies of the old columns : again the same rank.

From the square and triangle we learn that low rank poes with horizontal-vertical
alignment. Diagonals bring high rank, and 45 ° diagonals bring the highest.

What is the “asymptotic rank™ of the quarter circle as the radivs N = 6 increases?
We are looking for the leading term CN in the rank.

The fourth figure shows a way to compuie C'. Draw a square of maximum size in the }
quarter circle. That square submatrix (all 1's) has rank 1. The shape above the square has
N - -";—iN rows (about 0.3/NV) and the shape beside it has N — %N columns. Those rows
and those columns are independent. Adding those two numbers produces the leading term
in the rank—and it is numerically confirmed :

Rank of quarter circle matrix = (2 — v/2) N as N — oo,

We turn to the (nonzero) singular values of these matrices—trivial for the square,
known for the triangle, computable for the guarter circle. For these shapes and others,
we have always seen a “singular gap”. The singular valoes don’t approach zero. All
the o's stay above some limit L—and we don’t know why. :

The graphs show o’s for the quarter circle (computed values) and the triangle (exact
values). For the triangle of 1’s, the inverse matrix just has a diagonal of 1’s above a
diagonalof —1’s. Theno; = % sin & for N equally spaced angles 8; = (2: —1)n /(4N +2).
Therefore the gap with no singular values reaches up to oy, = % sing = % The quarter
circle also tlas Cmin & % See the student project on math.mit.edu/learningfromdata.

80 Highlights of Linear Algebra

w 7 25 o -
g 195 ! g 1ofE "ttessrsccann PP 1
— 10l ! - i]
R = :
- i -
-] ! 1 :
= . S l
= : ‘s T
& 109 LN S i
= ! Tecaa, = !
n 08 Titeressasng i z.3e-15L . . .
0 5 0 15 20 25 20 o 5 16 15 20 25 30

Figure 1.14: The {nonzero) singular values for the triangle and quarter circle matrices.

Problem Set 1.9

1
2

10

What are the singular values {in descending order) of A — Az 7 Omit any zeros.

Find a closest rank-1 approximation to these matrices (Z? or Frobenius norm):

3 00

0 01
Find a closest rark-1 approximation in the L2 normto A = | % § —sind
sind cosd

The Eckart-Young theorem is false in the matrix norm || 4|, = max row sum:

b 1Al
A={a]has Aljoo = max = max(|e| + |b|,|c| + |d
® P has 4 T = max(lal + . el + 1d)

) . 30 311
Find a rank-1 matrix closerto A = [i 5 } than 4, = 3 [3 3]

Show that this norm || A}| = max{|a| + 8], |¢| + d|) is not orthogonally invariant:
cosf —sin 9}

Find a diagonal matrix A where ||QA||co 7 }A|oe for @ = { sind cosf

If § = QAQT is a symmetric positive definite matrix, explain from Eckart-Young
why g, 147 is the closest rank-1 approximation in the L2 matrix norm ||.S}|2.
Explain the derivatives 8E/dC and HE /O R in equation (19) for size n = 2.

Which rank-3 matrices have |4 — Ai||2 = {|A — Azl|2 7 Az is 19T + ougvl.

Replace the quarter circle in Figure 1.13 by the parabola y = 1 — @%. Estimate
the rank C'N with all 1’s under the parabola (N 1’s along the axes). First remove
a rectangle of 1's, touching the parabola where slope = ~1.

If A is a2 by 2 matrix with o1 > o2 > 0, find }[A7]z and ||A71]]%.

1.10. Rayleigh Quotients and Generalized Eigenvalues 81

1.10 Rayleigh Quotients and Generalized Eigenvalues

This section picks up and extends a theme from Section 1.8. There we connected the
eigenvalues and eigenvectors of a symmetric mairix S to the Rayleigh quotient R{x):

T Sx

eTe

R(z} = (1)
The maximum value of R(z) is the largest eigenvalue X; of §. That maximum is
achieved at the eigenvector ¢ = q, where Sq; = Agy:

T T
Maximum R(g,) = 459 _ M _ A1 2)

ata a1 4
Similarly the minimum value of R(x) equals the smallest eigenvalue A, of S. That
minimum is aftained at the “bottomn eigenvector” x = ¢q,,. More than that, afl the
eigenveciors & = g, of .S for eigenvalues berween A, and A, are saddle points of R{a).
Saddles have first derivatives = zero but they are not maxima or minima.

IR qr MG

Saddle point All — =0 at & =q, Then R(g,) = s =Ar. (3
1 k9

dx;

These facts connected 1o the Singular Value Decomposition of A. The connection was
through § = ATA. For that positive definite (or semidefinite) matrix S, the Rayleighs
quotient led to the norm (squared) of A. And the largest eigenvalue of S is ¢2(A4):

(Al _ aTATde _ aTSw
IEAIR zTx T

[1A]|* = max =M(8)=0f(4). | @&

In this way a symmetric eigenvalue problem is also an optimization: Maximize R(x).

Generalized Eigenvalues and Eigenvectors

Applications in statistics and data science lead us to the next step. Applications in
engineering and mechanics point the same way. A second symmetric mairix M enters
the denominator of R{x) :

TS5y

(Generalized Rayleigh quotient Rizx) = ——
yleigh q (®) = —Trra

(5)
In dynamical problems M is often the “mass matrix” or the “inertia matrix”. In statistics
M is generally the covariance matrix. The construction of covariance matrices and
their application te classifying data will come in the chapter on probability and statistics.

82 . Highlights of Linear Algebra

Here ocur goal is to see how the eigenvalue problem Sz = Ax changes to Sz = AMx,
when R(z) becomes 7 Sz/xT Mx. This is the generalized symmetric eigenvalue problem.

If M is positive definite, the maximum of R(x) is the largest eigenvalue of A/ ~1S5,

We will reduce this generalized problem Sz = AMx to an ordinary eigenvalue problem
Hy = Ay. But you have to see that the choice H = M 'S is not really perfect. The
reason is simple: M ~*S is not usually symmetric ! Even a diagonal matrix M will make
this point clear. The square root M/2 of that same diagonal matrix will suggest the right
way to hold on to symmetry.

—1 -
M-1§ — [Woll ﬂl} {‘; H - [g//:,lz g:’;: is not symmetric

a/my b/ /gy |

is symmetric.,
b/ /myimg c/mg | ¥

Those matrices M 1S and H = M~1/28A ~1/2 have the same eigenvalues, This
H looks awkward, but symmetry is saved when we choose the symmetric square root of
M and M 1. Every positive definite Af has a positive definite square root,

The diagonal example above had M'/2 = diag (/mr1, /iz). Its inverse is M/ ~1/2.
In all cases, we just diagonalize M and take the square root of each eigenvalue :

H=MYV2gp1/? = [

If M=QAQT has A >0 then M2 = QAV2QT has A2 > 0. (6)

Squaring M2 recovers QAY2QTQAY2QT = QAQT which is M. We will not use
M1/2 or M~1/2 numerically ! The generalized eigenvalue problem Sx = AMz is solved
in MATLAB by the command eig(5, M/). Julia and Pythen and R and all full linear
algebra systems include this extension to Sz = AMz.

A Rayleigh quotient with 22T M is easily converted to a guotient with 3Ty
;!:'TS:I: yT(M—I/Z)TSM—l/Ey _ yTHy

= -1/2 h = - -
Set £ = M 4y Then oy Ty oy (7

This changes the generalized problem Sz = AMx to an ordinary symmetric problem
Hy = Ay. M § and M are positive definite, so is H = M~ 1/28A—1/2,
The largest Rayleigh quotient still gives the largest eigenvalue A;. And we see the top
eigenvector y, of H and the top eigenvector ; of M 15

yTHy
yTy

max =X when Hy, = Ay, Then Sax; = MMz, for =My .

1.10. Rayleigh Quotients and Generalized Eigenvalues 83

Example 1 Solve Sz = AMx when § = [4 -2] and M = [10
-2 4 0 2
Sofution Our eigenvalue problems are {8 — MM)@ = Oand (H — Ay = 0. We will

find the same A’s from both determinants: det{(S — AM} = 0 and det(H — AI) = Q.

4-X -2

det(S—AM):det[IR

]=2A2—12A+12=0 gives A =313,
If you prefer to work with one matrix H = M ~1/25M ~1/2, we must first compute it :
g1 0 4 =211 o]_[4 -v2
“lo yv2 -2 4]lo 2|7 -v2 2 |
Then its eigenvalues come from the determinant of H — A7 :

4-X =2 2 _ ' _
d‘—’t{) 2_/\]—)\ — BA+6 =0 also gives A=3+3

This equation is just half of the previous 242 — 12X+ 12 = 0. Same \’s for H and M ~15.
In mechanical engineering those A’s would tell us the frequencies w = VA for two
oscillating masses m; = 1 and my = 2 in a line of springs. S tells us the stiffness in the
three springs that connect these two masses to fixed endpoints.
The differential equation is Newton’s Law M d?u/dt? = —Su.

Generalized Eigenvectors are M -orthogonal ‘

A crucial fact about a syminetric matrix S is that any two eigenvectors are orthogonal
(when the eigenvalues are different). Does this extend to Sz1 = AMx, with two symmet-
ric matrices? The immediate answer is no, but the right answer is yes. For that answer,
we have to assume that M is positive definite, and we have to change from] x> = 0 to

“M -orthogonality” of x; and x,. Two veciors are A -orthogonal if :cha:z =0

:E'II‘M:Bz = 0 if S:E1 = z\]_M:E]_ and S:I:z = AgM:I:Q and Al =,'é /\2. (8)

Proof. Multiply one equation by 7 and multiply the other equation by 7 :
2L 82 = MxlMz, and 2T Sz, = Ml Mz,

Because S and M are symmetric, transposing the first equation gives 7 Sz = Az Mxs.
Suobtract the second equation :

-

(A1 — Az} :ETM:I:Q =(and with X, # Az this requires w;FM:BZ =0. {9

Then also 1 Sx; =0. We can test this conclusion on the matrices S and M in Example 1.

84 _ Highlights of Linear Algebra

Example 2 Find the eigenvectors for \; = 3++/3and Ay = 3—+/3. Testz™ My = 0.
The eigenvectors and y are in the nullspaces where {S— X M)z =0and (§ — Ao M)y =0

B I | FA I

(S—;\2M)y=[4”(3_;‘/§) 4_2(;2_\/5)“&] gives y:c[lfﬁ]

Those eigenvectors x and ¥ are not orthogonal. But they are A -orthogonal because

= 2112

Positive Semidefinite M : Not Invertible

There are important applications in which the matrix A is only positive semidefinite.
Then £TAdz can be zero! The matrix M will not be invertible. The quotient
xTSax/xT Ma can be infinite. The matrices A/ ~'/% and H do not even exist. The
eigenvalue problem Sa = AMx is still to be solved, but an infinite eigenvalue A = co
is now very possible.

In statistics M i3 often a covartance matrix. Its diagonal entries tell us the separate
varances of two or more measurements. Its off-diagonal entries tell us the “covariances
between the measurements”. If we are foolishly repeating exactly the same observations—
or if one experiment is completely determined by another—then the covariance matrix M
ts singular. Its determinant s zerce and it is not invertible. The Rayleigh quotient (which
divides by 2T M) may become infinite.

One way to look at this mathematically is to write S = AM a in a form with @ and £.

aSz =AMz with & > 0 and 3 > 0 and eigenvalues X\ = ?- (10
[4]

A will be an ordinary positive eigenvalue if & > 0 and 3 > 0. We can even normalize those
two numbers by o2 + 52 = 1. But now we see three other possibilities in equation (10):

a>0and 5=0 Then A = 0and Sz = 0z a normal zero eigenvalue of 5
a=0and 8 >0 Then A = oo and Mo = 0: M is not invertible

a=0and3=0 ThenAi = % is undetermined : AMx = 0 and also Sz = 0.

a = 0 can occur when we have clusters of data, if the number of samples in a cluster is
smaller than the number of features we measure, This is the problem of small sample size.
It happens.

You will understand that the mathematics becomes more delicate. The SVD approach
(when you factor a data matrix into A = UZVT with singular veciors » coming from
eigenvectors of 5§ = AT A) is not sufficient. We need to generalize the SVD, We need
to allow for a second matrix Ad. This led to the GSVD,

1.10. Rayleigh Quotients and Generalized Eigenvalues 85

The Generalized SVD (Simplified)

In its full generatity, this factorization is complicated. It allows for two matrices § and A
and it allows them to be singular. In this book it makes sense to stay with the usual and
best case, when these symmetric matrices are positive definite. Then we can see the
primary purpose of the GSVD, to factor two matrices at the same time,

Remember that the classical SVD factors a rectangular matrix A into ULV, It begins
with A and not with S = AT A, Similarly here, we begin with two matrices A and B.
Our simplification is to assume that both are tall thin matrices of rank n. Their sizes are
mabynandmp byn. Then § = AT A and M = BT B are n by n and positive definite.

Generalized Singular Value Decomposition
A and B can be factoredinto A = U ¥ 4 Z and B = UpXpZ (same Z)
U4 and Ug are orthogonal matrices (sizes m 4 and mg)
5 4 and X g are positive diagonal matrices (with £ 4 + EFXp = Lhxn)

Z is an invertible matrix (size n)

Notice that Z is probably not an orthogonal matrix. That would be asking too much.
The remarkable property of Z is to simultaneously diagenalize S= AT A and M =BT 5"

AT4 = Z"5TUTUAEAZ = ZT (%% a)Z and BTB=ZT(ZLEE)Z. (11)

So this is a fact of linear algebra: Any two positive definite matrices can be diagcn'lalizedl:5
by the same matrix Z. By equation {9}, its columns can be x,,..., o, | That was known
before the GSVD was invented. And because orthogonality is not required, we can scale
Z sothat 2124 + ©LT5 = I. We can also order its columns z to put the n positive
numbers ¢ 4 in decreasing order (in 2 4).

Please also notice the meaning of “diagonalize”. Equation (11) does not contain Z*
and Z, it contains ZT and Z. With Z~! we have a similarity transformation, preserving
eigenvalues. With Z7 we have a congruence transformation Z* S Z, preserving symmetry.
(Then the eigenvalues of S and ZTSZ have the same signs. This is Sylvester's Law of
Inertia in PSet IT1.2. Here the signs are ail positive.) The symmetry of § = AT A and the
positive definiteness of A = BT B allows one Z to diagonalize both matrices.

The Problem Set {(Problem 5) will guide you to a proof of this simplified GSYD.

86 Highlights of Linear Algebra

Fisher’s Linear Discriminant Analysis (LDA)

Here is a nice application in statistics and machine learning. We are given samples from
two different populations and they are mixed together. We know the basic facts about
each population—its average value 1 and its average spread ¢ around that mean .. So we
have a mean m; and variance o, for the first population and ., o, for the second
population. If all the samples are mixed together and we pick one, how do we tell if ir
probably came from population 1 or population 27

Fisher’s “linear discriminant” answers that question.

Actually the problem is one step more complicated. Each sample has several features,
like a child’s age and height and weight. This is normal for machine learning, to have a
“feature vector” like f = (age, height, weight)} for each sample. If a sample has feature
vector f, which population did it probably come from ? We start with vectors not scalars.

We have an average age m,, and average height my, and average weight 1, for each
population. The mean (average) of population 1 is a vector mj = (mg1, M1, P).
Population 2 also has a vector mg of average age, average height, average weight.
And the variance o for each population, to measure its spread around its mean, becomes a
3 X 3 matrix X. This “covariance matrix” will be a key to Chapter V on statistics.
For now, we have iy, 79, X1, Y0 and we want a rule to discriminate between the
two populations,

Fisher’s test has a simple form: He finds a separation vector v. If the sample has
vT f > ¢ then our best guess is population 1. If v f < c then the sample probably came
from population 2. The vector v is rying to separate the two populations (as much as
possible). It maximizes the separation ratic R :

(Trmy — 2Tmg)?

2T 2+ oTE®

Separation ratio k= (£2)

That ratio R has the form =% S2/&T M. The matrix § is (m, — mg)(rm, — ma)T
The matrix M is ¥ + Xo. We know the rule Sv = AM v for the vector T = v that
maximizes the separation ratio R.

Fisher could actually find that eigenvector v of M ~15. So can we, because the matrix
8 = (1t — mg)(mq — ma)T has rank one. So Sv is always in the direction my — mia.
Then M must be in that direction, to have Sv = AMwv. Sev = M~ (m; — m3).

This was a nice problem because we found the eigenvector v. It makes sense that when
the unknown sample has feature vector f = (age, height, weight), we would lock at the
numbers m] f and mJ f. If we were ready for a full statistical discussion (which we are
not}, then we could see how the weighting matrix M = %3 + £ enters into the final test
on T f. Here it is enough to say: The feature vectors f from the two populations are
separated as well as possible by a plane that is perpendicular to v.

Summary. We have two clouds of points in 3-dimensional feature space. We try to
separate them by a plane-—not always possible. Fisher proposed one reascnable plane.
Neural networks will succeed by allowing separating surfaces that are not just planes.

___1.10. Rayleigh Quotients and Generalized Eigenvalues 87

Problem Set 110

1

Solve (8 — AM)x = 0 and {H — M)y = 0 after computing the matrix
H=M128M"1/2:

5 4 1 0
=lis] eeled]
Step 115 to find Ay and Mg from det (S — AM)} = 0. The equationdet {H — A} =0

should produce the same A; and Az. Those eigenvalues will produce two eigenvec-
tors &1 and &z of § — AM and two eigenvectors ¢, and y, of H — Al

Verify that =] 22 is not zero but 2T Mz, = 0. H is symmetric so y] y, = 0.

{(a) Forz = (a,b} and y = (c, d} write the Rayleigh quotients in Probiem 1 as

®TSx (5a® + 8ab + 5b%) _ yTHy 5c 4 16ed + 2042

R‘(w)::cTM:I:: (o) and A(y) = yTy (-

(b) Take the ¢ and d derivatives of R(y) to find its maximum and minimum.

{c) Take the a and b derivatives of R*{) to find its maximum and minimum.
{d) Verify that those maxima occur at eigenvectors from (S — AM)z = 0 and
(H-M)y=0.

How are the eigenvectors @1 and @5 related to the eigenvectors y, and y, ?

Change M to [(]i 8 } and solve S& = AMx. Now M is singular and one of the?

eigenvalues A is infinite. But its eigenvector @, is still M-orthogonal to the other
eigenvector ;.

Start with symmetric positive definite matrices S and M. Eigenvectors of S fill an
orthogonal matrix Q so that QTSQ = A is diagonal. What is the diagonal matrix D
so that DTAD = I'? Now we have DTQTSQD = I and we look at DTQTAMQD.

Iis eigenvector matrix Q- gives Qe 1Q: = [and QIDTQTMQDQ, = A

Show that Z = QDQs diagonalizes both congruences Z*SZ and ZYM Z in the
GSVD.)

{a) Why does every congruence ZT S Z preserve the symmetry of $?

(b) Why is ZT5Z positive definite when § is positive definite and Z is square and
invertible 7 Apply the energy test to ZTSZ. Be sure to explain why Zx is
not the zero vector.

Which matrices ZT 7 Z are congruent to the identity matrix for invertible Z ?

Solve this matrix problem basic to Fisher’s Linear Discrirninant Analysis :

Te
If Ria) = 5 2%

=" and § = uwu” what vector x minimizes K{x)?
eTMa (x)

88 Highlights of Linear Algebra

I.11 Norms of Vectors and Functions and Matrices

The norm of a nonzero vector ¥ is a positive number |jv||. That number measures the
“length” of the vector. There are many useful measures of length {many different norms}).
Every norm for vectors or functions or matrices must share these two properties of the
absolute value |¢| of a number :

Multiply © by ¢ (Rescaling) llew|| = |el]|#||
All norms
Add v to w (Triangle inequality) [|v 4+ w|| < izl + [|w]]

We start with three special norms—by far the most important. They are the £2 norm and
£1 norm and £°° norm of the vector v = (v1,...,v,). The vector v is in R™ (real v;)
orin C™ (complex u;):

£Znorm = Eudideannorm |jvllg = /|v1]2 4+ -+ + |v,|?
£ porm = 1—norm ol = lvil + |vz| + <+ - + |val
£ norm = max norm [[2ljoc = maximum of |v1],. .., |va|
The all-ones vector v = (1,1,..., 1) has norms |{v||z = ynand |jv|}i =nand|jvljec = 1.

These three norms are the particular cases p = 2 and p = 1 and p = oo of the £F norm
lollp = (forl? + - - + Jun[P)"/?. This figure shows vectors with norm 1: p = & is iltegal.

(3.3) (2. %)
£ norm . £2 norm
Ioa] + o] <1 vit vz <1
diamond circle
0,1
) €
1 1
£°° norm £1/2 norm (3 3)
jo1] < 1,0we| <1 Vi 4+ 0ve| €1 1,0
(1,0)
square not convex
e = -1

Figure 1.15: The important vector norms |[1]1, ||v||2, ||v|{« and a failure (p = 0 fails too).

The failure for p = % is in the triangle inequality : {1, 0) and (0, 1} have norm 1, but their
sum (1,1) has norm 2/7 = 4. Only 1 < p < oo produce an acceptable norm ||v||p.

(1)
2)

I.11. Morms of Vectors and Functions and Matrices 89

The Minimum of ||v||, on the line a; v, + azv; =1

Which point on a diagonal line like 3 4+ 4ve = 1 is closest to (0,0) 7 The answer (and
the meaning of “closest™) will depend on the norm. This is another way to see important
differences between £! and £2 and £°°. We will see a first example of a very special feature :
Minimization in £* produces sparse solutions

To see the closest point to (0,0}, expand the #! diamond and ¢ circle and £%° square
until they touch the diagonal line. For each p, that touching point v* will solve our
optimization problem:

Minimize ||v||, among vectors (v, v2) on the line 3v; + dvz =1

(0, %) has ||v*|l = § (as)hasilvilla=§ (G #)basllleo =7

Figure 1.16: The solutions »™ to the #* and ¢% and #°° minimizations. The first is sparse.

The first figure displays a highly important property of the minimizing solution to
the £' problem: That solution v* has zero components. The vector v* is “sparse”.
This is because a diamond touches a line at a sharp peint. The line (or hyperplane
in high dimensions) contains the vectors that solve the m coustraints Av = b, The
surface of the diamond contains vectors with the same #! norm. The diamond expands
to meet the line at a corner of the diamond! The Problem Set and also Section 1.4 will
retwrn to this “basis pursuit” problem and closely related ¢* problems.

The essential point is that the solutions to those problems are sparse. They have few
nonzero components, and those components have meaning. By contrast the least squares
solution (using #*) has many small and non-interesting components. By squaring, those
components become very small and hardly affect the ¢# distance.

One final observation: The “£” norm” of a vector v counts the number of nonzero
components, But this is not a true norm. The points with [l#[]lo = 1 lie on the z axis or
y axis—one nonzero component only. The figure for p = £ on the previous page becomes
even more extreme—just a cross or a skeleton along the two axes.

Of course this skeleton is not at all convex. The “zero norm™ violates the fundamental
requirement that ||2¢|| = 2 ||¢||. In fact ||2v]|o = |[#|lp = number of nonzeros in v.

The wonderful observatien is that we can find the sparsest solution to Av = b
by using the £ norm. We have “convexified” that # skeleton along the two axes. We
filled in the skeleton, and the result is the £* diamond.

PES

90 Highlights of Linear Algebra

Inner Products and Angles

The £2 norm has a special place. When we write |Jv|| with no subscript, this is the norm
we mean. It connects to the ordinary geometry of inner produets (v, w) = »Tw and

angles § between vectors

Inner product = length squared v-v=v"v=||v]|? (3)

Angle & between vectors v and w vTw = |jv] |lw]|| cos @ (4)

Then v is orthogonal to w when § = 90° and cos@ = 0 and vTw = 0.
Those connections (3) and (4) lead to the most important inequalities in mathematics :

Cauchy-Schwarz |vTw| < [|v|| ||w|| Triangle Inequality |[v + w|| < ||v|| + ||wl|

The Problem Set includes a direct proof of Cauchy-Schwarz. Here in the text we connect it
to equation (4) for the cosine: |cos #] < 1 means that |[vTw| < ||v|||]w|l. And this
in tum leads to the triangle inequality in equation (2)—connecting the sides v, w,
and v + w of an ordinary triangle in n dimensions :

Equality Nlo+w|*?=r+wv+w=vTv+oTw+wle+wTw
. 2
Inequality [[v + wl[* < [jv|[* + 2|0l |lwl} + jjo|* = (|lv|| + |lwl]) &)

This confirms our intuition: Any side length in a triangle is less than the sum of the other
two side lengths: [|v + w|| < [|z|| + ||w]|. Equality in the #2 norm is only possible when
the triangle is totally flat and all angles have | cos 8] = 1.

Inner Products and S-Norms

A final question about vector norms. Is £2 the only norm connected ta inner products
{dot products} and io angles ? There are no dot products for £* and £°°. But we can find
other inner products that match other norms :

Choose any symmetric positive definite matrix &

||v}|% = T S gives a norm for v in R™(called the S-norm) (6)

(v, w)s = vT Sw gives the S-inner product for v, w in R* (7N

The inner product (v, v}y agrces with l[v]|%4. We have angles from (4). We have
inequalities from (5). The proof is in {5) when every norm includes the matrix S.

We know that every positive definite matrix S can be factored into ATA. Then the
S-porm and S-inner product for v and w are exactly the standard ¢2 norm and the
standard inner product for Av and Aw,

L.L1. Norms of Vectors and Functions and Matrices o1

(v,w)s = vTSw = (Av)T(Aw) because S = ATA (8)

This is not an impressive idea but it is convenient. The matrices 5 and A are “weighting”
the vectors and their lengths. Then weighted least squares is just ordinary least squares in
this weighted norm.

Einstein needed a new definition of length and distance in 4-dimensicnal space-time.
Lorentz proposed this one, which Einstein accepted (¢ = speed of light):

v =(z,9,2,t) [||* = 2% + y* 4 2% — c?t? Isthisatrue normin R*?

Norms and Inner Products of Functions

A function f{x} is a “vector in function space”. That simple idea gives linear algebra
an importance that goes beyond n-dimensional space R™. All the intuition associated with
linearity carries us from finite dimensions onward to infinite dimensions. The fundamental
requirement for a vector space is to allow linear combinations cv + dw of vectors v and
w. This idea extends directly to linear combinations cf + dg of functions f and g.

It is exactly with norms that new questions arise in infinite dimensions.
Think about the particular vectors v, = (1,2....,{1)7,0,0,...) in the usual £; norm.
Those vectors come closer together since |Jv, — vy|| = O0asn — co and N — cc.
For a vector space to be “complete”, every converging sequence v, must have a limit
T in the space: ||v, — vo|| = 0.

1. The space of infinite vectors v = (vy,...,v5,0,0,...) ending in all zeros is.i5
not complete. '

2. Thc space of vectors with ||[v][|? = |v1]? +|we|® +- - - < 0o is complete. A vector like
= (1,3, 1. %...) is included in this space but not in 1. Tt doesn’t end in zeros.

Two famous names are associated with complete infinite-dimensional vector spaces :

A Banach space is a complete vector space with a norm ||v|| satisfying rules (1) and (2)
A Hilbert space is a Banach space that also has an inner product with (v, v} equal to | |v||?

Those spaces are infinite-dimensional when the vectors have infinitely many components:
£1 is a Banach space with norm ||v||y = |v1] + |va} + - - ’

#2 is a Hilbert space because it has an inner product (v, w) = v1w; + vawa + - - 8

£ is a Banach space with norm |{v||s = supremum of the numbers |2, [va]. . ..

Our special inierest is in function spaces. The vectors can be functions f{z) for0 < z < 1.
L]0, 1} is a Banach space with || f||; = fo‘ |f(93)|d:1:
L2(0, 1] is a Hilbert space with (£, g) = [f(z) g(z)dx and ||£]13 = [, |f(z)[*dz

L0, 1] is a Banach space with || f]|. = supremuam of |f{z)].

92 Highlights of Linear Algebra_

Notice the parallel between sums of components in £1 and integrals of functions in L.
Similarly for sums of squares in £2 and integrals of |f(z)[% in L% Add or integrate.

Smoothness of Functions

There are many types of function spaces. This part of mathematics is “functional analysis”.
Often a function space brings together all functions with a specific level of smoothness,
An ocutstanding example is the space C[0, 1] containing all continuous functions :

f belongs to C[0,1] and || f]| > = max | f(z}| if f{x)is continuous forall0 <z < 1.

The max norm in the function space C is like the £°° norm for vectors. We can
increase the level of smoothness to C[0,1) or C*[0,1). Then the first derivative or
second derivative must atso be continuous. These are Banach spaces but not Hilbert spaces.
Their norms do not come from inner products—compare (9) and (10):

a
dz

2
Ifllg = lIflic + =

I£lloz = ilflle + ®

C C
If we want a Hilbert space H?!, then we build on the usual L? space {which is H%):

df dgd

2 1
i (o) = [@@ [L

NI = (£ + (10)

We bring this wild excursion in function space to 2n end with three examples.

1. The infinite vector v = (1, 2.5, %5..-) is in £ and £°. But it is not in £'.
The sum of its components is infinite.

2. A step function is in L' and L? and £°°, but not in €. The function has a jump.

3. The ramp function max (0, z) is in C and H'! but notin C*. The slope has a jump.

Norms of Matrices : The Frobenius Norm

A space of matrices follows all the rules for a vector space. So a matrix norm || A|| must
follow the three rules for a vector norm, and also a new rule when 4 muliiplies B :

|| Afl > O if A is not the zero matrix (1)
lieA{l = lel{|Al} and [|A + B|| < [{All + {|B]| (12)
» New rule for amatrixnorm |[AB|| < [(|A]|||B]| (13)

We need to verify (13) for the Frobenius norm, which treats matrices as long vectors.

I.11. Nemms of Vectors and Functions and Matrices. 93

||A]|% = (Frobenius norm of A)2 =lau)P 4+ lemlP o F lama2 (14

Frobenius is the £ norm (Euclidean norm) for a vector with mn components. So (11)
and (12} are sure to be true. And when AB is a column vector a times a row vector pr—
in other words AR is a rank one matrix ab®—the norm inequality (13) is an exact
equality ||ab”||r = |lalir|b”[|r:

aflbr bl P (b o 1BP?)
ab”=| has [fab®|[p= ot =[lalR blE 3)
am Jaml® (Jbs[* 4+ + [t %)

This leads 1o a first preof that || AB|| » < || A|| g || B|| z. AB is a sum of rank-1 matrices.

[|AB|{g = [laib] + - + @b ||¢ by column-row multiplication
< |la1bT || + -+ + ||anbn||F by the triangle inequality (12)
= |la1||rl[b1lls + - - + |lax|[r]bal|F by equation (15)
< (Hladlg+-- +]laﬂH'f’z;\)l’!2 (oull% +- -+ I|bn||%,=)l’{2 by Cauchy-Schwarz
= {{A||p l{ B|| by the definition (14) of the Frobenius norm
The Problem Set finds a different and quicker proof, multiplying A B by rows times columns?

When Q is an orthogonal matrix, we know that Qz has the same £2 len gthas =
Orthogonal @ ||Qx||2 = ||z|]2 ¢ multiplies columns of B }|QB||r = ||B||F

This connects the Frobenius norm of A = UXVT (o its singular values in 3:

JAllr = lUSVT|r ={IZVT|r = |[Z|lr = /ol +--- + o2 (16)

Here is another way to reach that good formula for the Frobenius norm

Multiplying AT A brings all the numbers |a;;|? onto the main diagonal

||A|1§. = trace of AT.A = sum of eigenvalues = O'f R ‘73 (17

The Frobenius norm (squared) of A is easy to compute : Just square the entries and add.

The inequality |AB]| < ||A||||B]| will be built in for the matrix norms that come next.

94 Highlights of Linear Algebra

Matrix Norms || A|| from Vector Norms {{v]||

Start with any norm ||v|} for the vectors in R™. When we compare || Av|| to ||v]|. this
measures the growth factor—the increase or decrease in size produced when we multiply
by A. If we choose the vector v with the largest growth factor, that gives an important
matrix norm [} A||.

VYector norm
leads to a IlA|l = max AVl _ largest growth

matrix norm v#0 [l factor

(18)

The largest ratio ||.4|| automatically satisfies all the conditions for a matrix norm—because
||vl| satisfied all the conditions for a vector norm. The identity matrix will have ||I|} =1
because its growth factor is always |[I¢||/||v|| = 1. The key point of (18) is that
[lAw|| < ||A[|[|v|| because ||A|| is the largest value reached by {|Aw||/|lv||.
Then || ABv|| < |||} |Bvl| < ||AI||| B |[v]|. Therefore || AB]| < ||All |1 BI.

We think of |jv|}2 and ||#||; and ||v||e as the important vector norms. Then {(19),
(20), (21) produce the three matrix norms ||A||; and }|A||; and ||A}|ec. They all have
[|AB|| < ||A]|||B]|- For a given matrix A, how do we compute those three norms—
how do we maximize the ratio ||Av||/||v]]?

€2 norm ||A||lz = largest singular value o4 of A (19)
¢ norm ||A||; = largest #; norm of the columns of A (20
£° norm || A|| = largest £, norm of the rows of A 20

This book has emphasized || Al = largesi ratio ||Aw||2/|[v]|2 = o1. That comes from
A = UZVT, because orthogonal matrices I/ and V7 have no effect on £2 norms. This
leaves the diagonal matrix 3 which has £2 norm = ;. Notice that AT A has norm o?
{again no effect from I/ and V).

The three matrix norms have two especially beautiful connections;

|| Afloo = {|AT]}2 HALZ < [|AllL HAlloe- 22

The rows of A are the columns of AT. So ||A||oc = [|AT||; comes directly from (20)-(21).
For the inequality (22} that involves all three norms, look at the first singular vector

v of A. That vector has AT Av = ¢%?v. Take the £; norm of this particular v and use
1A4]loo = [fAT{[1:

o vl = 14T Av]ly < [|AT]|1 (1Av]ly < || Alleo [|Ally [0]]:-

Since o; = || A}|5, this tells us that || A}|3 < ||Al|e || Al}1-

1.11. Norms of Yectors and Functions and Matrices 95

The Nuclear Norm

|| Al puclear comes directly from the singular valves of A. Itis also called the trace norm.

Along with £2 and Frobenius, ||A||x starts from A = UZVT (the SVD). Those three
norms are not affected by IJ and V {““unitary invariance”). We just take the £! and £2 and
£°° norms of the vector & = {1,039, ...,) on the main diagonal of % :

[Allpuclear = 01 + - + or ||A||_%=O‘f+---+0‘f [|All2 = o1

In IIL4, the nuciear norm is the key to matrix completion, when data is missing.
A remarkable fact: [| Al is the minimon value of \\U||r |IV]|r subject to UV = A.
And a related but much easier fact: {[AT A||y = [|A](%.

Notice that ||A||ec = max||Av||x/||2||oo 15 entirely different from ||[4]||cc = maxa;;|.
We call |[|A]||co the medical norm because |||A — B||| is small only when every entry
(every pixel} a;; in A is close to b;; in B. Then || A — B|. is also small.

1 2 5 15

Example 1 A:[S p 15 45

] has ||A]|z =+v/50 because ATA = [] has A, =50,

The £ and £°° norms are [|A||x = 8 (column sum) and || A||oc = 9 (row sum).

A= [1 3 } has ||A]|2 = +/10 and |[|A]]x = 4 {column 2) and [| A||e = 3 (Tows).

The £2 norm is +/10 because AT A = [> 5] has eigenvalues 0 and 10. And 10 < (4}(3)

5 5

' %
Important The largest eigenvalue |A|max of A is not on our list of matrix norms!

The Spectral Radius

That nuinber |A|max = max |A;| fails on all of the three main requirements for a norm.
A and B can have all zero eigenvalues when they are nor zero matrices (A and B below).
The tests on A + B and AB (triangle inequality and [|AB]|| < [|A]] || B]]) alse {ail for the
largest eigenvalue. Every norm has ||A4|| > |A|max.-

A_[o 1] B?[o 0} Amax(A + B) = 12 Amax(4) + Amax(B) = (0) + (0)
“lo o0 {10 Amas(AB) = 12> Anax(A) X Aax(B) = (0) x(0)

This number |A|max is the “spectral radius”. It is not a norm but it is important for this
reason: |{A™|| — O exactly when |A|max < 1.

When we multiply again and again by a matrix A4 (as we will do for Markov chains
in Section V.6) the largest eigenvalue |A|max of A begins to dominate, This is the basis
of the “power method” to compute |A|max.

96 Highlights of Linear Algebra

Problem Set 1.11

1 Show directly this fact about £* and €2 and £*° vector norms : |22 < [[o{{1 ||2]|eo-

2 Prove the Cauchy-Schwarz inequality |vTw| < ||v||z||w||2 for vectors in R™,
You could verify and use this identity for a length squared :

T T
vt w viw v
US(U——wv— w):vT'v—-|

wlw wTlw
3 Show that always ||#||2 < /7 ||©||ec. Also prove ||v||x < +/7||v||2 by choosing a
suitable vector w and applying the Cauchy-Schwarz inequality.

4 The ¢7 and #9 norms are “dual” if p~1 + ¢~1 = 1. The £! and # vector norms
are dual (and £2 is self-dual). Holder’s inequality extends Cauchy-Schwarz to
all those dual pairs. What doesitsayforp=1landg =o00?

Holder’s inequality [vTw| < ||v||p ||w|lq when p~' + g~ 1 = 1.

5 What rules should be satisfied by any “inner product”™ of vectors v and e ?

6 The first page of 1.11 shows unit bails for the £' and £ and £°° norms. Those
are the three sets of vectors v = (v, w2} with |||, € L|j¢llz € Lol £ 1.
Unit balls are always convex because of the triangle inequality for vector norms

If [|v}] < 1and flw]|] < 1 show that {|§ + ¥|| < 1.
7 A short proof of || AB||r < || 4]| || B]|~ starts from multiplying rows times ¢olumns :
[{AB);]? < |[row i of A||? ||column j of B||? is the Cauchy-Schwarz inequality
Add up both sides over all ¢ and § to show that || 4Bj|% < ||4||% || B||%
8 Test ||AB||r < ||Allr [|B]|F for A = B =TI and A = B = “all ones matrix”.

9 (Conjecture) The only matrices with ||4B||p = |[Allr | B||r and no zero entries
have the rank one form 4 = wvT and B = vwT with a shared vector v.

10 The space of m by n matrices with the Frobenius norm is actually a Hilbert space—
it has an inner product (A4, B) = trace(AT B). Show that ||4]|2 = (A4, A).

11 Why is (21) a true formula for || A|oc ? Which v with £1°s has ||Av||oe = |[4]]ee?

12 Suppose 4, B, and AB are m by n, n by p, and m by p. The “medical norm” of 4
is its largest entry : {[| A]||co = max|ay].

Rewrite that in the form (/mpl||AB||le) < (Vmal|llA|llec)(7D |||B]||ce)-
The rescaling by those square roots gives a frue mateix norm.

Show that ||| AB|||oo < 1 || All]ec ||| B|]eo (this is false without the factor n).

1.12. Factoring Matrices and Tensors : Positive and Sparse 97

.12 Factoring Matrices and Tensors : Positive and Sparse

This section opens a wider view of factorizations for data matrices (and extends to tensors).
Up to now we have given full attention to the SVD. A = U VT gave the perfect factors
for Principal Component Analysis—perfect until issues of sparseness or nonnegativity
or tensor data enter the problem. For many applications these issues are important.
Then we must see the SVD as a first step but rot the last step.

Here are factorizations of A and T with new and important properties :

Nonnegative Matrices min||A - UV|%
with > 0and V = 0
Sparse and Nonnegative min ||A — UV[[% + AUVl
with/ > 0andV >0
R
CP Tensor Decomposition min }|T" — Z a; 0b; 0|
i=1

We will work with matrices A and then tensors T. A matrix is just a two-way tensor.

To compute a factorization 4 = UV, we introduce a simple alternating iteration.
Update U with V fixed, then update V' with [/ fixed. Each half step is quick because
it is effectively linear (the other factor being fixed). This idea applies ta the ordinary SVD,
if we include the diagonal matrix ¥ with /. The algorithm is simple and often effective;
Section I11.4 will do even better, '

This U7V idea also fits the famous k-means algorithm in Section IV.7 on graphs. The
problem is to put n vectors @y, ..., @, into ¢ clusters. If @y is in the cluster around 4,
this fact ay, = w; is expressed by column k of A = UV . Then column k of V is column
4 of the r by r identity matrix.

Nonnegative Matrix Factorization (NMF)

The goal of NMF is to approximate a nonnegative matrix A > { by a lower rank product
UV of two nonnegative matrices U = ¢ and V' = 0. The purpose of lower rank is
simplicity. The purpose of nonnegativity (no negative emiries) is to produce numbers that
have a meaning. Features are recognizable with no plus-minus cancellation. A negative
weight or volume or count or probability is wrong from the start.

But nonnegativity can be difficult. When A > 0 is symmetric positive definite, we
hope for a matrix B > 0 that satisfies BTB = A. Very often no such mairix exists.
(The matrix A = AT with constant diagonals 1 + \/5, 2,0,0,2is a5 x 5 example.) We are
forced to atcept the matrix BT B (with B > 0) that is closest to A (when A > 0). The
question is how to find 2. The unsymmetric case, probably not square, looks for U7 and V.

Lee and Seung focused attention on NMF in a letter to Narure 401 (1999) 783-791.

98 Highlights of Linear Algebra

The basic problem is clear. Sparsity and nonnegativity are very valuable properties. For
a sparse vector or matrix, the few nonzeros will have meaning—when 1000 or 100, 000
individual numbers cannot be separately vnderstood. And it often happens that numbers
are naturally nonnegative. Bui singular vectors in the SVD almost always have many small
components of mixed signs. In practical problems, we must be willing to give up the
orthogonality of I and V. Those are beautiful properties, but the Lee-Seung essay urged
the vatue of sparse PCA and no negative numbers.

These new objectives require new factorizations of A.

NMF Find nonnegative matrices I/ and V so that A = UV 9y
SPCA Find sparse low rank matrices B and C so that A = BC. 2

First we recall the meaning and purpose of a factorization. A = BC expresses every
column of A as a combination of columns of B. The coefficients in that combination are
in a column of C. So each column a; of A is the approximation ci;b1 + + -+ + Cn by,
A good choice of BC means that this sum is nearly exact.

If C has fewer columns than A, this is linear dimensionality reduction. It is fundamental
to compression and feature selection and visualization. In many of those problems it can
be assumed that the noise is Gaussian. Then the Frobenius norm ||4 — BC|| s a natural
measure of the approximation error. Here is an excellent essay describing two important
applications, and a recent paper with algorithms and references.

N. Gillis, The Why and How of Nonnegative Matrix Factorization, arXiv: 1401.5226.
L. Xu, B. Yu, and Y. Zhang, An alternating direction and projection algorithm for structure-
enforced matrix factorization, Computational Optimization Appl. 68 (2017) 333-362.

Facial Feature Extraction

Each column vector of the data matrix A will represent a face. Its componenis are the
intensities of the pixels in that image, so A > Q. The goal is to find a few “basic faces” in
B, so that their combinations come close to the many faces in A. We may hope that a few
variations in the geometry of the eyes and nose and mouth will allow a close reconstruction
of most faces. The development of eigenfaces by Turk and Pentland finds a set of basic
faces, and matrix factorization A = B(' is another good way.

Text Mining and Document Classification

Now each column of A represents a document. Each row of A represents a word. A simple
construction (not in general the best : it ignores the ordering of words) is a sparse nonneg-
ative matrix. To classify the documents in A, we look for sparse nonnegative factors :

Document a; =z Z(importance c;;) (topic b;) (3)

Since B > 0, each topic vector b; can be seen as a document. Since € > 0, we are
combining but rot subtracting those topic documents. Thus NMF identifies topics and

_ L12. Factoring Matrices and Tensors : Positive and Sparse 99

classifies the whole set of documents with respect to those topics. Related methods are
“latest semantic analysis™ and indexing.

Note that NMF is an NP-hard problem, unlike the SVD. Even exact solutions A = BC
are not always unique. More than that, the number of topics (columns of A4) is unkrown.

Optimality Conditions for Nonnegative U/ and V'

Given A > 0, here are the conditions for U/ > 0 and V' > 0 to minimize ||A — UV||%.:

YV =UVVT—AVT >0 with Yi;orUy =0foralli,j @
Z=UTUV -UTA>0 with Z; orV;;=0foralls,j
Those last conditions already suggest that U and V' may twrn out to be sparse.

Computing the Factors : Basic Methods

Many algorithms have been suggested to compute I/ and V and B and . A central
idea is alternating factorization: Hold one factor fixed, and optimize the other factor.
Hald that one fixed, optimize the first factor, and repeat. Using the Frobenius norm, each
step is a form of least squares, This is a patural approach and it generally gives a good
result. But convergence to the best factors is rot sure. We may expect further develop-
ments in the theory of optimization. And there is a well-established improvement of this
method to be presented in Section II1.4 : Alternating Direction Method of Multipliers.

This ADMM algorithm uses a penalty term and duality to promote convergence.

Sparse Principal Components

Many applications do allow both negative and positive numbers. We are not counting or
building actual objects. In finance, we may buy or sell. In other applications the zero point
has no intrinsic meaning. Zero temperature is a matter of opinion, between Centigrade and
Fahrenheit. Maybe water votes for Centigrade, and super-cold physics resets 0°.

The number of nonzero components is often important. That is the difficulty with the
singular vectors « and v in the SVD. They are full of nonzeros, as in least squares. We
cannot buy miniature amounts of a giant asset, because of transaction costs. If we learn
500 genes that affect a patient’s outcome, we cannot deal with them individually. To be
understood and acted on, the number of nonzero decision variables must be under control.

One possibility is to remove the very small components of the u's and ©’s. But if we
want real control, we are better with a direct construction of sparse vectors. A good number
of algorithms have been proposed.

H. Zou, T. Hastie, R. Tibshirani, Sparse principal component analysis, J. Computational
and Graphical Statistics 15 {2006) 265-286. See https:/fen.wikipedia.org/wiki/Sparse_PCA

100 Highlights of Linear Algebra

Sparse PCA starts with a data matrix A or a positive (semi)definite sample covarance
matrix 5. Given 5, a natural idea is to include Card {2} = number of nonzero components
in a penalty term or a constraint on x:

Maximize
]| =1

Maximize

2T5x — pCard(x) or |l = 1 x

Sx subjectto Card(x) < k. (5)

But the cardinality of @ is not the best quantity for optimization algorithms.

Ancther divection is semidefinite prograniming, discussed briefly in Section V1.3, The
unknown vector & becomes an unknown symmetric matrix X. Inequalities like & > 0
(meaning that every x; > {) are replaced by X > 0 (X must be positive semidefinite).
Sparsity is achieved by including an £! penalty on the unknown matrix X. Looking shead
to TV.5, that penalty uses the nuclear norm || X||w : the sum of singular values o;.

The connection between £ and sparsity was in the figures at the start of Section L11,
The €' minimization had the sparse solution = = (0, 1). That zero may have looked

accidental or insignificant, for this short vector in R%, On the contrary, that zero is the
important fact. For matrices, replace the £* norm by the nuclear norm || X{| .

A penalty on ||z||; er || X || v produces sparse vectors = and sparse matrices X.

In the end, for sparse vectors @, our algorithm rust select the important variables.
This is the great property of £ optimization. It is the key to the LASSO:

LASSO Minimize || Az — bl + A |z] (6)
1

Finding that minimum efficiently is a triumph of nonlinear optimization. The ADMM and
Bregman algorithms are presented and discussed in Section 1114,

One note about LASSO : The optimal 2* will not have more nonzero components than
the number of samples. Adding an £2 penalty produces an “elastic net” without this disad-
vantage. This £1+ ridge regression can be solved as quickly as least squares.

Elastic net Minimize ||Ax — (|2 + \|z||1 + A||x]|)2 (7}

Section 111.4 will present the ADMM algorithm that splits £! from £2. And it adds a penalty
using Lagrange multipliers and duality. That combination is powerful,

1. R. Tibshirani, Regression shrinkage and selection via the Lasso, Journal of the Royal
Statistical Society, Series B 58 (1996) 267-288,

2. H. Zou and T. Hastie, Regularization and variable selection via the elastic net,
Journal of the Roval Statistical Society, Series B 67 (2005) 301-320.

1.12. Factoring Matrices and Tensors : Positive and Sparse 101

Tensors

A column vector is a 1-way (ensor. A matrix is a 2-way tensor. Then a 3-way tensor T'
has elements T ;. with three indices: row number, column number, and “tube number”.
Slices of T are two-dimensional sections, so the 3-way tensor below has three horizontal
slices and four lateral slices and two frontal slices. The rows and columns and tubes are the
fibers of T, with only one varying index.

We can stack m by n matrices (p of them) into a 3-way tensor. And we can stack
m by n by p tensors into a 4-way tensor = 4-way array.

vecior matrix tensor
zinR3 AinR®X4 TinRE X4 X2

Example 1: A Color Image is a Tensor with 3 Slices

A black and white image is just a matrix of pixels. The numbers in the matrix are the
grayscales of each pixel. Normally those numbers are between zero (black) and 255 (white).
Every entry in A has 2% = 256 possible grayscales.

A color image is a tensor. It has 3 slices corresponding to red-green-blue. Each slice
shows the density of one of the colors RGB. Processing this tensor T (for example i in
deep learning : Section VIL2) is not more difficult than a black-white image. -

Example 2 : The Derivative dw /8 A of w = Av

This is a tensor that we didn’t see coming. The m X n matrix A contains “weights” to
be optimized in deep leaming. That matrix multiplies a vector v to produce w = Aw.
Then the atgorithm to optimize A (Sections V1.4 to VIL.3) invoives the derivative of each
output w; with respect to each weight A;;. So we have three indices ¢, j, k.

In matrix multiplication, we know that row j of A has no effect on row { of w = Awv.
So the derivative formula includes the symbol &;;, which is 1 if ¢ = 7 and 0 otherwise. In
proper tensor notation that symbol becomes 5* (our authority on tensors is Pavel Grinfeld).
The derivatives of the linear function w = Av with respect to the weights A, are in T:

dw;

Tijn =
* T BAm

= P 51‘,3: asin T111 =1 and T122 =0 (8)

102 Highlights of Linear Algebra

Section VIL.3 has a 2 x 2 x 2 example. This tensor T3, = vidy; is of particular interest

1. The slices k& = constant are multiples vy, of the identity matrix.

2. The key function of deep learning connects each layer of a neural net to the next layer.
If one layer contains a vector v, the next layer contains the vector w = (Av + b)4.
A is a matrix of “weights”. We optimize those weights to maich the training data.
So the derivatives of the loss function Z will be zero for the optimal weights.

Using the chain rule from calculus, the derivatives of L are found by multiplying the
derivatives Sw/8A from each layer to the next tayer. That is a linear step to Av + b,
followed by the nonlinear ReLU function that sets all negative components to zero.
The derivative of the linear step is our 3-way tensor vxd;;.

All this will appear again in Section VIL3. But we won’t explicitly use tensor calculus.
The idea of backpropagation is to compute all the derivatives of L “automatically”.
For every step in computing L, the derivative of that step enters the derivative of L.
Qur simple formula (8) for an interesting tensor will get buried in backpropagation,

Example 3 : The Joint Probability Tensor

Suppose we measure age & in years and height A in inches and weight 2 in pounds.
We put N children into [age groups and J height groups and K weight groups.
So a typical child is in an age group ¢ and a height group j and a weight group k—
where the numbers ¢, 7, & are between 1,1, 1and 7, J, K.

Pick a random child. Suppose the [age groups contain a,,as,...,ar children
(adding to N children). Then a random child is in age group ¢ with probability a;/N.
Similarly the J height groups contain h;, ks, ..., Ay children and the K weight groups
contain wi, Wy, . . . , W children. For that random child,

Wk
N

Now comes our real goal: joint preobabilities p;;z. For each combination ¢, j, k we
count only the children who are in age group ¢ and also height group 7 and also weight
group k. Each child bas T times J times K possibilities. (Possibly pri1 is zero—
no oldest children with the lowest height and weight.) Suppose N children are found
in the intersection of age group ¢ and height group 7 and weight group & :

h’ .
Probability of height group j is ﬁj Probability of weight group & is

N
The joint probability of this age-height-weight combination is p; ;. = ;k .9
We have [times J times K numbers p;;i. All those numbers are between 0 and 1.
They fit inte a 3D tensor T of joint probabilities, This tensor 7" has [rows and J columns

and K “tubes”. The sum of all the entries Nj;z /N is 1.

To appreciate this [by J by K tensor, suppose you add all the numbers pojr. You are
accounting for all children in age group 2:
J K
>~ > pajk = p§ = probability that a child is in age group 2. (10)
=1 k=1 :

1.12. Factoring Matrices and Tensors : Positive and Sparse 103

We are seeing a 2D slice of the tensor T'. Certainly the sum pf + p§ + -+ + p} equals 1.
Similarly you could add all the numbers p2;5. Now you are accounting for all children
in age group 2 and weight group 5:

J
Z P2js = Py = probability of age group 2 and weight group 5. (il)
=1

These numbers are in a columa of T. 'We could combine columns to make a slice of 7.
We could combine slices to produce the whole tensor T":

I K I
D) PR =) Pl
=1 k=1 i=1

By measuring three properties we were led to this 3-way tensor T with entries T} ;.

The Norm and Rank of a Tensor

In general a tensor is a d-way array. In the same way that a matrix entry needs two
numbers 1, j to identify its position, a d-way tensor needs d numbers. We will concentrate
here on d = 3 and 3-way tensors (also called tensors of erder 3). After vectors and matrices,
d = 3 is the most common and the easiest to understand. The norm of T is
like the Frobenius norm of a matrix : Add all Ték to find |{T||2.

The theory of tensors is still part of linear algebra (or perhaps multilinear algebra).
Just like a matrix, a tensor can have two different roles in science and engineering :

i

1 A tensor can multiply vectors, matrices, or tensors. Then it is a linear operator.

2 A tensor can contain data. lis entries could give the brightness of pixels in an image.

A color image is 3-way, stacking RGB. A color video will be a 4-way tensor.

The operator tensor could multiply the data tensor—in the same way that a permutation
matrix or a reflection matrix or any orthogonal matrix operates on a data matrix.

The analogies are clear but tensors need more indices and they look more complicated.
They are. We could succeed with tensor multiplication (as for mairices, the operations
can come in different orders). We will not succeed so well for tensor factorization,
This has been and still is an intense research direction—to capture as much as possible
of the matrix factorizations that are so central to linear algebra: LU, QR, QAQT, ULVT,

Even the definition and computation of the “rank of a tensor” is not so simple or
successful as the rank of a matrix. But rank one tensors = outer products are still the
simplest and clearest : They are created from three vectors a, b, ¢.

3-way tensor T = a o b o ¢ of rank one Tije = asbjc | (12)

This outer product a o bo ¢ is defined by the m + n + p numbers in these three vectors.
The rank of a rensor is the smallest number of rank-1 tensors that add to T.

104 Highlights of Linear Algebra

If we add several of these outer products, we have a convenient low rank tensor-—
even if we don’t always know its exact rank. Here is an example to show why.

T=uouov+uovou+vouou (three rank-1 tensors with ||u|| = ||v|| = 1)

T seems to have rank 3. But it is the limit of these rank-2 tensors T,, when n — o0

1
Tn:n(u+lv)o(u+-v)o(u+lv)—nuouou (13
n T n

Why could this never happen for matrices? Because the closest approximation to A by
a matrix of rank k is fixed by the Eckart-Young theorem. That best approximation is Ag
from the % leading singular vectors in the SVD, The distance from rank 3 to rank 2 is fixed.

Unfortunately there seems to be no SVD for general 3-way tensors. But the next
paragraphs show that we still try—because for computations we want a good low rank
approximation to T'. Two options are CP and Tucker.

The CP Decomposition of a Tensor

A fundamental problem in tensor analysis and fast tensor computations is to approximate
a given tensor T by a sum of rank one tensors ;: an approximate factorization.

CP Decomposition T~=aioboc+ -+ago bgro cr a4

This decomposition has several discoverers: Hitchcock, Carroli, Chang, and Harshman.
It also has unfortunate names like CANDECOMP and PARAFAC. Eventually it became

a CP Decomposition of T'.
This looks like an extension to tensors of the SVD. But there are important differences.
The vectors a,, ..., ay are not orthogonal (the same for b’s and ¢’s). We don’t have

orthogonal invariance (which gave QlAQzT the same singular values as A). And the
Eckart-Young theorem is not true—we often don’t know the rank R tensor closest
to T. There are other approaches to tensor decomposition—but so far CP has been
the most useful. Kruskal proved that closest rank-one tensors are unique (if they exist).
If we change R, the best a, b, ¢ will change,

So we are faced with an entirely new problem. From the viewpoint of computability,
the problem is IV P-hard (unsolvable in polynomial time unless it turns out that P = N P,
which would surprise almost everyone). Lim and Hillar have proved that many simpler-
sounding problems for tensors are also N P-hard. The route of exact computations is closed.

C. Hillar and L.-H. Lim, Most tensor problems are NP-hard, J. ACM 60 {2013) Article 45.

We look for an algorithm that computes the a, b, ¢ vectors in a reasonably efficient way.
A major step in tensor computations is to come close to the best CP decomposition.
A simple idea (aiternating least squares) works reasonably well for now. The overall
problem is not convex, but the subproblems cycle in improving A then B then C'—
and each subproblem (for A and B and C) is convex least squares.

1.12. Factoring Matrices and Tensors : Positive and Sparse

Alternate
A, B,and C

(a) Fix B, and vary A
(b} Fix A, and vary B

Minimize ||T3 — A(C o B)TII;
(c) Fix A, B and vary C

(15)

This alternating algorithm is using the three matricized forms T, T3, T, described next.
' o B is the “Khatri-Rao product” coming in equation (17}. Then (15} is all matrices.

Matricized Form of a Tensor T

Suppose A, B, C' are the matrices whose columns are the @’s and b’s and ¢’s in (14).
Each matrix has R columns. If the third order tensor T has dimensions I, .J, K then the
three matrices are I by R, J by R, and K by R. It is good to “matricize”™ the tensor T,
s0 as to compute the CP decomposition.

Start by separating off the @’s in the I by R matrix A. Then we look for an R by JK
matrix M, so that AM; expresses our sumn (14) of rank-one tensors. My must come from
the &’s and ¢’s. But in what way will a matrix product AM, express a 3-way tensor ?
The answer is that we have to unfeld the tensor T into a matrix Ty . After that we can
compare Th with AM;,

An example of Kolda and Bader shows how tensors unfold into matrices. We have
IxJx K =3x4x2 =24 numbers in T, The matrix unfolding of T can be 3 x 8§
or4 x 6 or2 x 12, We have three unfoldings T, T5, T3, slicing T three ways:

First way [1 4 7 10|13 16 19 22

Front and back slices Ti=|2 5 8 1111314 17 20 23 (16)

IxJK=3x8 |3 6 9 12{15 18 21 24

Second wa 1 2 3 13 14 15

T TH et 6 oo | 4 5 6 16 17 18

Same 24 munbers o8 9 1920 2

: | 10 11 12 22 23 24

E“;df‘;ay_gxlz p_| 123 456 7 8 9101112
— #7113 14 15 16 17 18 19 20 21 22 23 24

Same 24 numbers

The Khatri-Rao Product A &) B

Section IV.3 will introduce the Kronecker product K = A & B of matrices A and B.
It contains alt the products a; times by of entries in A and B (so it can be a big-matrix).
If A and B are just column vectors (J by 1 and K by 1 matrices) then A ® B is a long
column: JK by 1. First comes ap; times each entry in B, then a,; times those same
K entries, and finally ay, times those /A entries. A 5 B has R of these long columns.

106 Highlights of Linear Algebra

Khatri-Rao multiplies all a,;by; to find column j. A and B and 4 © B have i columns:

Khatri-Rao Column 7 of A @ B = (column 7 of A) ® (column 7 of B)| (17

Thus € and B (K by R and J by R) produce C' 3 B with R long columns (JK by R).

Summary T is approximated by " a; o b; o ¢;. We are slicing T in three directions
and placing the slices next to each other in the three matrices 73,74, T3. Then we look
for three matrices My, My, M3 that give us nearly correct equations by ordinary matrix
multiplication :

Ty~ AM, and Ty;=~BM;, and T3=CM,. (18)

Recall that 4 is I by K, with columns @) to ag. Ty is I by JK. So the correct M must
be R by JK. This M; comes from the matrices B and C, with columns b; and cx.

M is the transpose of the Khatri-Rao product C & B whichis JK by R,

The ith column of ¢ ® B comes from the #th columns of C' and B (fori = 1 to R).
That ith column of C' @ B contains all of the JK numbers cg; and by, for1 < kb < K
and1 < j € J. C @ B contains all JK R products of cg; and bj;, coming from the
4th columns of ' and B fori = 110 K.

The three matricized forms T3,7%,75 of T are now approximate matrix products.
The Khatri-Rao definition was invented to make equation (19) true.

N~ACOBT T=BCoAT T3r~CBeAT 19

Computing the C P Decomposition of T

We aim to compute the a's and b's and ¢’s in the approximation (14) to the tensor 7',
The plan is to vuse alternating minimizations. With the &’s and ¢’s in the matrices
B and C fixed, we solve a linear least squares problem for the @’s in A.

Put 7' in its matricized form 73. That matrix is [by JK. By equation (19), we are
aiming for Ty = A(C @ B)T = ({ x R)(R x JK). Fix B and C for now,

Choose the best A in |{Ty — A(C © B)T||%=||TT — (C ® B) AT||%. (20

Here C @ B is the JX x R coefficient matrix. It muitiplies each of the I columns of AT.
With the Frobenius norm, we have I ordinary least squares problems to solve for A:
ane for every column of AT (= row of A).

Please note: A is not in its usual position Az = b for least squares. The rows of 4
are the unknowns! The coefficient matrix is €' & B (not A}. We expect that matrix
to be tall and thin, with JK > R. Similarly we will want /K > R and IJ > R when
the unknowns are alternated (¢ become B and C.

1.12. Facloring Matrices and Tensors : Positive and Sparse - 107

The solution to a least squares problem Az = b is given by the pseudoinverse £ = ATb.

If that matrix A has independent columps (as least squares often assumes),
A%t is a left inverse (ATA)~1AT of the matrix A. There you see the coefficient matrix
AT A in the usual rormal equations for the best Z. In our case that coefficient matrix is not
A but the Khatei-Rao product C & B. By good fortune the pseudoinverse of our coefficient
matrix C' @ B can be expressed as

(Co Bt =[cTC).*(BTB)T(CoB)T. @n

This formula is borrowed from equation (2.2) of Kolda and Bader. It allows us to form
CTC and B" B in advance (R by R matrices). The symbol .* (or frequency o) represents
the element-by-element product (the Hadamard product). Transposing, the least squares
problem (20) with fixed B and C' is solved by the matrix

A=T(Co®B)(CTC.%« BTB)* (22)

Next we use this A together with C to find the best B. One cycle of the alternating
algorithm ends by finding the best C, with A and B fixed at their new values.

The Tucker Decomposition

The SVD separates a matrix (a 2-tensor) into ULVT. The columns of U and V are
orthonormal. That decomposition is generally impossible for higher-order tensors. This
is the reason for the CP approximation and now the Tucker approximation.

Tucker ailows P column vectors @, and ¢} column vectors b, and K column vectors ¢.3
Then all rank-one combinations a,, o by o ¢, are allowed. A core tensor G with dimensions
P, (), R determines the coefficients in those combinations :

P @ R
Tucker decompositionof T T > > Y gurapobgoc (23)
1 1 1

With this exira freedom in G-—which was just a diagonal tensor in the CP decomposition—
we can ask that the a’s and &’s and ¢’s be three sets of orthonormal columns. So Tucker is
a combination of PQ R rank-one tensors, instead of only R.

Remember that (23) is an approximation and not an equality. It generalizes to d-way
tensors. The 3-way case has 2 matricized form, where T, 75, T and similarly G, G2, G
are the unfolding matrices in equation (16). The CP matrices in (14) change to Tucker
matrices, and now we have Kronecker products instead of Khatri-Rao:

Tucker Ty~ AG,(C®B)T ThmBG(C8A)T Ty~CGs(BoA)T| 24)

The higher-order SVD (HOSVD) is a particular Tucker decomposition. Iis properties and
its computation are best explained in the work of De Lathauwer.

108 Highlights of Linear Algebra

Decomposition and Randomization for Large Tensors

This section has described basic steps in computing with tensors. Data is arriving in tensor
Jorm. We end with two newer constructions (since CP), and with references.

1. Tensor train decomposition (Oscledets and Tyrtyshnikov) The problemis to handle
d-way tensors. The full CP decompasition would approximate 7' by a sum of rank-one
tensors. For large dimensions d, CP becomnes unworkable. A better ideais toreduce T toa
train of 3-way tensors. Then linear algebra and CP can operate in this tensor train format.

2. CURT decompositions (Song, Woodruff, and Zhong) This is low rank approximation
for tensors. This paper aims to compute a rank k tensor within ¢ of the closest to 7.
For matrices, this is achieved (with e = @) by the SVD and the Eckart-Young Theorem.
For tensors we have no SVD. Computations are based instead on a column-row CUR
approximation (Section I11.3) with a mixing tensor U.

The algorithm comes near the goal of nnz steps: equal to the number of nonzeros
in T, It uses randomized factorizations—the powerful tool in Section I1.4 for very large
computations. Tensors are at the frontier of numerical linear algebra.

1. T. Kolda and B. Bader, Tensor decompositions and applications, SIAM Review 52
(2009) 455-500.

2. M. Mahoney, M. Maggioni, and P. Drineas, Tensor-CUR decompositions for tensor-
based data, SIAM J. Matrix Analysis Appl. 30 (2008) 957-987.

. B. Bader and T. Kolda, MATLAB Tensor Tootbox, version 2.2 (2007).
. C. Andersson and R. Bro, The N-Way Toolbox for MATLAB {2000).
. R. A. Harshman, http://www.psychology.uwo.caffaculty/harshman

Sy N R W

. P. Paatero and U. Tapper, Positive matrix factorization, Environmetrics 5 (1994)
111-126.

7. D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix
Jactorization, Nature 401 (1999) 7T88-T791.

8. L. De Lathauwer, B. de Moor, and J. Vandewalle, SIAM J. Matrix Anal. Appl. 21
(20000 1253-1278 and 1324-1342 (and more recent papers on tensors).

9. S. Ragnarsson and C. Van Loan, Block tensor unfoldings, SIAM J. Matrix Anal.
Appl. 33 (2013) 149-169, arXiv: 1101.2005, 2 Oct 2011.

10. C. Van Loan, www.alm.unibo.it/~ simoncin/CIME/vantoan1.pdi—vanloand.pdf
11. I Oseledets, Tensor-train decomposition, SIAM], Sci. Comp. 33 (2011) 2295-2317.

12, Z. Song, D. P. Woodruff, and P. Zhoug, Relative error tensor low rank approximation,
arXiv: 1704.08246, 29 Mar 2018.

13. P. Grinfeld, Introduction to Tensor Calculus and the Calculus of Moving Surfaces,
Springer (2013).

1.12. Factoring Matrices and Tensors : Positive and Sparse 109

Problem Set 1.12

The first 5 questions are about minimizing || 4 — UV||% when UV has rank 1.
2
o c U1
bod| ||l 2]
1 Look at the first column of A — UV with A and I fixed :
a4 — ¥uy
b— vt

Show by calculus that the minimizing number v; has {v? + u2)v; = wia + u2b.
In vector notation T v, = u T, where a is colomn 1 of A.

Problem Minimize

F

2

Minimize = (o —vu)® + (b—nug)®

2 Which point vy % in this picture minimizes ||a; — viu||? ?

a
The error vector @y — vyt i to 1.
From that fact, find again the number v;.
) - -
(N2

3 The second columnof A — UV is ; } - [21] Uy = @ — vorr. Which number
2

vp minimizes {|ay — vou|[2 7

Vector form Thebestv = [1 vz | solves (uTu)v =uTA

4 Problems 1 to 3 minimized ||A — UV||% with fixed U, when UV has rank 1.

Withfixed V = [v; v |, whichU = [21] gives the minimum of ||A - UV||% ?
2

5 (Computer) Starting from any Uy, does this alternating minimization converge
to the closest rank 1 matrix A; = 1w, v] from the SVD?

MInm2e A-U.VIE m V=V, Ais3x3
Uis3x1
Mﬂ?” JA-UViZ at U=Unp Vislx3

Note = These questions are also an introduction to least squares {Section I11.2). For
fixed V' or fixed U/, each minimization is a least squares problem—even when
the rank of UV increases beyond 1. But requiring nonnegativity or sparsity of
U and V makes each minimization more difficult and new methods are needed.

w o o~ M

10

1"

110 Highlights of Linear Algebra

Problems 6 to 11 are about tensors. We are not doing calculus (with derivatives)
or tensor algebra (with spaces of tensors). Qur focus is on a single tensor T that
contains mullidimensional data. If we have samples 1 to n and each sample is an
image (a matrix) then we have a tensor of order 3. How can we approximate this
tensor T' by a combination of simple tensors ? This is the data science question.

First we must decide: Which tensors are simple ? Our answer: a ® b® cis
a simple (rank 1) tensor. Its 4, §, k entry is the number @; times &; times cy—just
as a rank-1 matrix ab” has entries a;b;. A sum of simple tensors approximates T'.

Given an m by n matrix A, how do you decide if A hasrank 1 ?
Given an m by n by p tensor T, how do you decide if T has rank 17
The largest possible rank of a 2 by 2 by 2 tensor is 3. Can you find an example ?

(a) Suppose you know the row sums r; to r,, and the column sums ¢; to ¢,
of an m by n matrix A. What condition must be satisfied by those numbers?

(b) For anm by n by p tensor, the slices are n by p matrices and m by p matrices
and m by n matrices. Suppose you add up the entries in each of those m slices
and n slices and p slices. What conditions would be guaranteed to connect
those m numbers and n numbers and p numbers ?

Suppose all entries are 1 ina 2 x 2 x 2 tensor 7", except the first entry is 7114 = 0.
Write T as a sum of two rank-1 tensors. What is the closest rank-1 tensor to T
(in the usual Frobenius norm) ?

A 2by 2 by 2 tensor T times a vector v in R? should produce a matrix A in R**?,
How could you define that output A = Tv ?

Part 11

Computations with Large

11.1

I1.2

L3

114

Matrices

Numerical Linear Algebra
Least Squares : Four Ways
Three Bases for the Column Space

Randomized Linear Algebra

I1 : Computations with Large Matrices

This part of the book discusses Az = bin its many variations. Ordinary elimination might
compute an accurate x—or maybe not. There might be too many equations (rm > n)
and no solution. A square matrix might be singular. The solution might be impossible
to compute (A is extremely ili-conditioned, or simply too large). In deep learning we
have foo many selutions—and we want one that will generalize well to unseen test data.

These two pages will try to separate those sources of difficulty, We are like doctors
performing triage— identify the problem and suggest a course of action for each one. The
“pseudoinverse” of A proposes an inverse for every matrix—but this might not help.

0. Every matrix A = UTVT has a pseudoinverse AT = VE+TUT. For the diagonal
matrix ¥ the pseudoinverse ¥.* contains 1/o;. for each nonzero singular value. Bur the
pseudoinverse of O is). To know when a number is exactly zero is an extremely rigid
requirement—impossible in many computations.

The pseudoinverse in Section I1.2 is one way to solve Az = b. Here are other ways.*

1. Suppose A is square and invertible, its size is reasonable, and its condition number
a1/0y, is not large. Then elimination will succeed (possibly with row exchanges). We
have PA = LU or A = LU (row exchanges or no row exchanges} as in Section 1.4,

The backslash command A\b is engineered to make A4 block diagonal when possible.

2. Suppose m > m = r: There are too many equations Az = b to expect a solution.
If the columns of A are independent and not too ill-conditioned, then we solve the
normal equations AT AZ = ATb to find the least squares solution .

The vector b is probably not in the column space of A, and Ax = b is probably
impossible. A% is the projection of b onto that column space in Section i1.2.

Those are two good problems to have—an invertible A or an invertible AT A, well
conditioned and not too large. The next page describes four computations {still linear
equations) that are more difficult,

113

114 Computations with Large Matrices

3. Suppose m < n. Now the eguation Az = b has many solutions, if it has one.
A has a nonzero nulispace. The solution « is underdetermined. We want to choose the
best @ for our purpose. Two possible choices are ¢ and @ :

x = xt = ATh. The pseudoinverse A1 gives the minimum #2 norm selution
with nullspace component = zero.

= z; = minimum ¢' norm solution. This solution is ofien sparse (many zero
components) and very desirable. it comes from “basis pursuit” in Section I11.4.

4. The columns of A may be in bad condition. Now the ratio o1 /0. is too large.
Then & is not well determined (as in high-order interpolation: Section I11.3). The usual
remedy is to orthogonalize the columns by a Gram-Schmidt or Householder algorithim.
Create orthonormal vectors ¢4, . .., q,, from the columns a,, . .., @,.

Section I1.2 explains two important forms of Gram-Schmidt. The standard way is to
orthogonalize each column ay1 against the known directions g, to g,. The safer way
orthogonalizes all the » — % remaining columns against g; as soon as that vector is found.
Then a small column & + 1 can be exchanged for a later column when necessary, The
very safest way picks the largest available column at each step.

5. A may be nearly singular (as in 4). In this case AT A will have a very large inverse.
Gram-Schmidt may fail. A different approach is to add a penalty term:

Minimize ||Axz — b|[* +&%]|=||> Solve (ATA 4+ &%f)es = ATb

As the penalty 62 approaches zero, (AT A + §27)~1 AT approaches the pseudoinverse A*
(Section I1.2). We achieve invertibility by adding 62] to make AT A more positive. This
connects to ndge regression in statistics.

Penalty terms like 8%||z||* are common in inverse problems, which aim to reconstruct
a system from knowledge of its outputs. Usually we know the system (like an electri-
cal network) and we find its outputs (currents and voltages). The inverse problem starts
with outputs (like CT or MRI scans). Recenstructing the system is ifl-conditioned.

6. Suppose A is way too big. It spills cutside fast memory. We can ask to see a few
columns but we cannot go forward with elimination. Multiplying AT times A would
be impossible, even on the petascale computer that is expected at Oak Ridge and the
exascale machine planned for Argonne (New York Times, 28 February 2018). What to do
for such a large matrix ?

The best solution is random sampling of the columns (Section 11.4). If A is oversize
but reasonably coherent, each Az will be a useful sample of the column space. The re-
sults from random sampling are never certain, but the probability of going wrong is low.
Randomized numerical linear algebra has led to algorithms with a sccure statistical base.

This is a necessary evolution or revolution based on deep results in probability.

I.1. Numerical Linear Algebra 115

II.1 Numerical Linear Algebra

This section summarizes the central ideas of (classical) numerical linear algebra. They
won’t be explained at length, because so many books do this well. Their aim is to solve
Ax = bor Az = Ax or Av = gw. They are the foundation on which new computational
methods are built.

It is those new methods—aiming to extract information from the data in a matrix or
a tensor—that are the real goals of this part of the book, When a matrix or a tensor is
really large (“big data™) we will often have to sample the matrix. It may seem impossible
that random sampling would give a reliable answer. But in fact this is highly probable.

The bible for numerical linear algebra is Matrix Computations. Its authors are Gene
Golub and Charles Van Loan. The fourth edition was published in 2013 by Johns Hepkins
University Press. Gepe lectured at Johns Hopkins more than 30 years earlier and that Jed to
the first edition—1 don’t think the publisher had any idea of a 2013 book with 750 pages.

Many other books are listed on math.mit.edu/learningfromdata. Here we choose
one outstanding textbook: Numerical Linear Algebra by Trefethen and Bau. Its chapter
titles provide a good cutline of the central ideas and algorithms :

[. Fundamentals (reaching the SVD and Eckart- Young)

II. QR Factorization and Least Squares (all 3 ways: A" and (AT A)"* AT and QR)
II. Conditioning and Stability (condition numbers, backward stability, perturbations} '-"
IV. Systems of Equations (direct elimination: PA = LU and Cholesky’s § = AT A)

V. Eigenvalutes (reduction to tridiagonal-Hessenberg-bidiagonal; R with shifts)

VI. Iterative Methods (Arnoldi, Lanczos, GMRES, conjugate gradients, Krylov).

Our plan in this section is to outline those important iterative algorithms from parts VI
and V. All these are included in major codes to solve Ax = band Sqg = Ag and Ax = Az
and Av = owu. That word “iterative” indicates that we repeat a simple and fast step,
aitning to approach the solution to a larger and more difficult problem.

A model for iteration (but not a specially fast algorithm ') is to split Ainte A = 5 -T":

Prepare for iteration Rewrite Ax =b as Sz =Tx 1+ b. . (1}
Start with any @g and solve Sz, = Txg + b. Continue to Ses = Ty + b. A hundred
jterations are very common. If S is well chosen, each step Sxgy1 = Txp + b is fast.

116 _ Computations with Large Matrices

Subtracting the iteration Sxyxy1 = Toxr + b from the exact Sz = Tz + b, the error
x — &, obeys the error equation (and b cancels out) :

Error equation Sl — xp41) = Tz — ap) @

Every step multiplies the error by $717. When ||S~!T|| << 1 the convergence is fast.
But in practice ST often has an eigenvalue near 1. Then a better idea will be needed—
like the conjugate gradient method.

Let me add this note first. A textbook might find eigenvalues by solving det(A — AT} = 0.
It might find singular values by working with the matrix ATA. In reality, those deter-
minants are unthinkable and a large AT 4 can be numerically very unwise. Az = Az
and Av = cwu are serious problems. We solve them in this section for matrices of size
100 or more. For n = 10%, read onward to Section I1.4.

Krylov Subspaces and Arnoldi Iteration

Key idea: Matrix-vector multiplication Ab is fast, especially if A is sparse.
If we start with A and b, we can quickly compute each of the vectors b, Ab, ..., A" 1b,
(Never compute AZ or A3, Only compute vectors.) The combinations of those n vectors
make up the nth Krylov subspace. We look inside this subspace K, for a close
approximation (o the desired solution .

The first problem is to find a much better basis than those vectors b, Ab, ..., A" 1b.
An orthogonal basis g4, ..., g, is usvally best! The Gram-Schmidt idea of subtracting
off the projections of v = Agq, onto all the earlier vectors q,,...,q;, is so natural.
This is Arnoldi’s method to find g, _ ;.

Arnoldi Iteration q, = b/||bl|, g.. - . -, g; are known
v = Agq, Start with new v
forji=1to k For each known g
bk = qT v Compute inner product
v =v — hjrg; Subtract projection
Rk = [|v]] Compute norm
Grp1 = /ey New hasis vector with norm 1

You have to see this in matrix language. The last column is Ag, = combinationof q; to q;., ;:

hin ... hig

hat
A ¢ - Qx| =@ - Gk) . 3)

Ptk
This is AQp = Qut1Hr41,6. Multiply both sides by Q;f. The result is important.

ILt. Numerical Lincar Algebra 117

Hy

QFTAQ. = QI Qr+1Hirr e = [Tixr Orxr | [rowk + 1

] = Hk. (4)

The square matrix H}. has lost the last row that was in equation (3). This leaves an upper
triangular matrix plus one subdiagonal containing ha1 to hy x—_1. Matrices with only one
nonzero subdiagonal are called Hessenberg matrices. This ;. has a neat interpretation :

Hy = QF AQy. is the projection of A onto the Krylov space, using the basis of ¢’s.

The Amoldi process to find Hy is one of the great algonithms of numerical linear
algebra. It is numerically stable and the g’s are orthonormal.

Eigenvalues from Arnoldi

The numbers in H, = QF AQy are computed during the Arnoldi process. If we go all the
way to k = size of A, then we have a Hessenberg matrix H = Q1 AQ that is similar to
A same eigenvalues. We compute those eigenvalues by the shifted QR algorithm below,
applied to H.

In reality we don’t go all the way with Arnoldi. We stop at a decent value of k. Then
the % eigenvalues of H are (usually) good approximations to k extreme eigenvalues of A.°
Trefethen and Bau emphasize for non-symmetric A that we may not want eigenvalues of 4
in the first place ! When they are badly conditioned, this led Trefethen and Embree to the
theory of pseudospectra.

Linear Systems by Arnoldi and GMRES

Amoldi has given us a great basis (orthonormal ¢’s) for the growing Krylov subspaces
spanned by b, Ab, ..., A*~1b. So Arnoldi is the first step. In that subspace, the GMRES
idea for Az = b is to find the vector x,, that minimizes ||b — Axy{|: the Generalized
Minimum RESidual. With an orthonormal basis, we can compute accurately and safely :

GMRES with Arnoldi’s basis ¢, ..., g,

Find yj, to minimize the length of Hyy1.6 ¥ — (||8][,05. ..,)T,

Then xx = Quyx

Finding y, is a least squares problem with a £ + 1 by & Hessenberg matrix. The zeros
below the first subdiagonal of Hj 11 ; make GMRES especially fast.

118 Computations with Large Matrices

Symmetric Matrices : Arnoldi Becomes Lanczos

Suppese our matrix is symmeiric . A = S. In this important case, two extra facts are true.
1. Hy = QF SQy is also symmetric. lis transpose is clearly Hy.
2. H, is tridiagonal : only one diagonal above becaunse only one diagonal below,

A tridiagonal matrix H gives a major saving in cost—the Arnoldi iteration needs only one
orthogonalization step. The other orthogonalities are built in because H is symmetric
Hessenberg (so it is tridiagonal).

Here is Lanczos with simpler letters a) to ax (on the main diagonal) and b; to bx—; (on
the diagonals above and below). The a’s and b’s in T replace the h’s of Arnoldi’s matrix H.

Lanczos iteration for Sz = Az (symmetric Arnoldi)

g, =0, ¢, = b/||b|| Orthogonalize b, Sb, Sb, . ..
For k=1,2,3,...
v=S8gq, Start with new v
ar =qlv Diagonal entry in 7' is ax

v=v-by_1G;_| —onq; Orthogonal to earlier s
b = ||v]] Off-diagenal entry in T is by,
Gry1 = v/by Next basis vector

Writing T for tridiagonal instead of H for Hessenberg, here are the key facts for Lanczos.
They are simply copied from Arnoldi:

Equations (3) and (4) T =QF8Qw and SQx = Qr+1 Tht1,k (3)

“The eigenvalues of T} (fast to compute) approximate the eigenvalues of 5. If only that
were exactly and abways true! Trefethen and Bau create a diagonal matrix S with 201
equally spaced eigenvalues from 0 to 2, and also two larger eigenvalues 2.5 and 3.0.
Starting from 2 random vector b, Lanczos at step &£ = 9 approximates A = 2.5 and 3.0
exponentially well. The other 7 eigenvalues of Ty = Qg SQs bunch near 0 and 2. But
they don’t capture individual eigenvalues in that group of 201 XA’s.

The problem comes from non-orthogonal ¢’s when exact Lanczos iterations would
guarantee orthogenal ¢’s. Lanczos is valuable. But special care is needed to keep all
the ¢’s orthogonal in practice—which was true also of Gram-Schmidt.

IL1. Numerical Linear Algebra 119

Eigenvalues of Tridiagonal T by the QR Iteration

How to compute the eigenvalues of a symmetric tridiagonal matrix T ? This is the key
question for the symmetric eigenvalue problem. The original matrix 5 has been simplified
by Lanczos to the tridiagonal T = QTSQ = Q7'SQ (no change in eigenvalues because
T is similar to 8). Or those zeros could also come from 2 by 2 “Givens rotations”.

At this point we have a tridiagonal symimetric matrix 7" = Tp. To find its eigenvalues,
an amazing idea appeared aimost from nowhere :

1. By Gram-Schmidt or Householder, factor Ty inte QR. Notice R = Q™ 1Ty,
2. Reverse those factors 7 and R to produce 7) = RQ = @1 T,Q.
3. Repeat... Repeat... Repeat...

The new T3 = Q@ 'TpQ is similar to T': same eigenvalues. More than that, the new
T\ is sull tridiagonal (Problem 1), So the next step and all the later steps are still fast.
And best of all, the similar matrices T, Ty, 75, ... approach a diagonal matrix A.
That diagenal matrix reveals the (unchanged) eigenvalues of the original matrix 7.
The first eigenvalue to appear is in the last entry Ty,

This is the “C} R algorithm” to compute eigenvalues. As it gradually became known, it
caused a sensation in numerical linear algebra. But numerical analysts are serious people.
If you give them a good algorithm, they immediately start to make jt better. In this case
they succeeded triumphantly, because the improvemenis came at virtually no cost
{and they really worked). '

The improved algorithm is shifted QR, or QR with shifts. The “shift” subtracis a®
multiple si of the identity matrix vefore the Q)R step, and adds it back after the RQ} step

QR algorithm Choose a shift s, at step &
with shifts Factor T, — 5.1 = Qy Ry
to find eigenvalues Reverse factors and shift back: Ty 1 = Ry Qe + 57

The T’s all have the same eigenvalues because they are simifar matrices. Each new
Tyt 15 Qf ' TeQx. It is still symmetric because Q71 = Q} :

Ry = Q7 (T — sk} andthen Tir1 = Qf H(Tk — 861)Qk + 86 = Q7 Tk Qi (6)

Well-chosen shifts s will greatly speed up the approach of the T"s to a diagonal matrix A.
A good shift is s = T,,,,. A shift suggested by Wilkinson is based on the last 2 by 2
submatrix of T}, :

Gpa1 b'n—l

Wilkinson shift 83 = the eigenvalue of [
. b-n -1 an

] closest to g.,.
Shifted ()R achieves cubic convergence (very rare). In the example that follows,
the off-diagonal goes from sin € to —(sin #)3. The n eigenvalues of a typical tridiagonat T
take only O({n?/¢) fiops for accuracy «.

120 Computations with Large Matrices

cosf siné) cosfl —sind 1 sinfcosé
TO—[sinG 0 } Shift =0 QU_[sinﬁ cosﬁ] RO_[D —sin%9]
cosB(1 +sin*4) —sin’@
—sin® @ —sin® Hcos b

TIZROQOZ[

} has cubed the error in one step,

Computing the SVD

What is the main difference between the symmetric eigenvalue problem Sx =z
and A = UZVT ? How much can we simplify S and A before computing A’s and ¢’s ?
Eigenvalues are the same for $ and Q~1SQ = QTS because (is orthogonal.

So we have limited freedom to create zeros in Q'8 (which stays symmetric).
If we try for too many zeros in @19, the final @ can destroy them. The good
Q~15Q will be tridiagonal : only three diagonals.

Singular values are the same for 4 and Q) AQT even if Q) is different from Q5.

We have more freedom to create zeros in Q1 AQT. With the right Q’s, this will be
bidiagonal (two diagonals). We can quickly find @ and @1 and ¢J2 so that

ap by — for A's e
b b 0 d
QrsQ= |t P27 Q:14Q7 = A)
2 foro’s —
apn 0 cp

The reader will know that the singular values of A are the square roots of the
eigenvalues of § = ATA. And the unchanged singular values of @ AQI are the
square roots of the unchanged eigenvalues of (Q1AQT)T(Q1AQT) = Q.ATAQT.
Multiply (bidiagonal) T (bidiagonal) to see tridiagonal.

This offers an option that we should not take. Don’t multiply AT A and find its eigen-
values. This is unnecessary work and the condition of the problem will be unnecessarily
squared. The Golub-Kahan algorithm for the SVD works directly on A, in two steps:

1. Find @, and @; so that Q; 4Q7 is bidiagonal as in (8).
2. Adjust the shifted & R algorithm to preserve singular values of this bidiagonal matrix.

Step 1 requires O(mn?) multiplications to put an m by n matrix 4 into bidiagonal form.
Then later steps will work only with bidiagonal matrices. Normally it then takes O(n?)
multiplications to find singular values {(correct to nearly machine precision). The full
algorithm is described on pages 489 to 492 of Golub-Van Loan (4th edition).

Those operation counts are very acceptable for many applications—an SVYD is com-
putable., Other algorithms are proposed and successful. But the cost is not trivial (you can’t
just do SVD's by the thousands). When A is truly large, the next sections of this book
will introduce methods which including “random sampling” of the original matrix A—this
approach can handle big matrices. With very high probability the results are accurate.
Most gamblers would say that a goed outcome from careful random sampling is certain.

IL.1. Numerical Linear Algebra 121

Conjugate Gradients for Sz = b

The conjugate gradient algorithm applies to symmetric positive definite matrices 5.
It solves Sx = b. Theoretically it gives the exact solution in n steps (but those steps are
slower than elimination). Practically it gives excellent results for large matrices
much sooner than the nth step (this discovery revived the whole idea and now CG is one of
the very best algorithms). Such is the history of the most celebrated of all Krylov methods.

Key point: Because § is symmetric, the Hessenberg matrix A in Arnoldi becomes
the tridiagonal matrix T in Lanczos. Three nonzeros in the rows and columns of T' makes
the symmetric case especially fast.

And now S is not only symmetric. It is also positive definite. In that case [|z||% =
TSz gives a very appropriate norm (the S-norm) to measure the error after n steps.
In fact the kth conjugate gradient iterate @, has a remarkable property

2, minimizes the error ||z — xx|| g over the kth Krylov subspace
Xy is the best combination of b, §b, ..., 85715

Here are the steps of the conjugate gradient iteration to solve Sz = b:

Conjugate Gradient Iteration for Positive Definite S
o =010 =b,dy =79

fork=1to N
ag = {rf_rr_1)/(dr_,8dr_1) step length xi_1 to @
Xp = X1 + ogdi_, approximate solution
P = Pr_1 — apSde_1q new residual b — Sxy
Br = (rire)/(ri_ Tk—1) improvemeni this step
dr = ri + Spdi_s next search direction

% Notice : only 1 matrix-vector multiplication Sd in each step

Here are the two great facts that follow (with patience) from those steps. Zigzags are gone !

1. The error residuals rp, = b — Sxy are orthogonal ; rErj =0
2. The search directions d,, are S-orthogonal: df Sd; = 0

Notice Solving Sx — b = 0 is the same as minimizing the quadratic %:cTS:c —zTh.
One is the gradient of the other. So conjugate gradients is also a minimization algorithm.
It can be generalized to nonlinear equations and nonquadratic cost functions. It could be
censidered for deep learning in Part VII of this book—but the matrices there are simply too
large for conjugate gradients.

We close with the cleanest estimate for the error after & conjugate grad1ent steps.
The success, is greatest when the eigenvalues A of 5 are well spaced.

Vv Amax — v/ mm) @)

CG Method |lz — o¢|s < 2||& — zols (\/,\—+
max

122 Computatiens with Large Matrices _

Preconditioning for Az = b

The idea of preconditioning is to find a “nearby” problem that can be solved quickly.
Explaining the idea 1s fairly easy. Choosing a good preconditioner is a serious problem.
For a given matrix A, the idea is to choose a simpler matrix P that is close to A. Those
matrices may be close in the sense that A — F has small norm or it has low rank. Working
with P~1 A is faster :

Preconditioned P YAx = P7'b instead of Az = b. (N

The convergence test (for whichever algorithm is used) applies to P~14 in place of A,
If the algorithm is conjugate gradients (which works on symmetric positive definite
matrices) we likely change from A to P~Y/24P-1/2,
Here are frequent choices of the preconditioner P:

1 P = diagonal matrix {copying the main diagonal of A): Jacobi iteration

2 P = triangular matrix (copying that part of A): Gauss-Seidel method

3 P =LglUp omits fill-in from A = LU (elimination) to preserve sparsity : incomplete LU
4 P = same difference matrix as A but on a coarser grid : multigrid method

Multigrid is a powerful and highly developed solution method. It uses a whole sequence
of grids or meshes. The given problem on the finest grid has the most meshpoints (large
matrix A). Successive problems on coarser grids have fewer meshpoints (smaller matrices).
Those can be solved quickly and the resuits can be interpolated back to the fine mesh.
Highly efficient with fast convergence.

Kaczmarz Iteration

Equation (10) is fast to execute but not easy to analyze. Now we know that convergence
is exponentially fast with high probability when each step solves one random equation of
Az = b. Step k of Kaczmarz gets the ith equation right ;

b; — G}‘Ik
lla:]?
Each step projects the previous &y onto the plane alx = b;. Cycling through the m

equations in order is classical Kaczmarz. The randomized algorithm chooses row £ with
probability proportional to ||a;||? (norm-squared sampling in I14).

T satisfies a] @ = &; Tiyy =T + a; (10)

Kaczmarz iteration is an important example of stechastic gradient descent {stochastic
because equation ¢ is a random choice at step k). We return to this algorithm in Section
V1.5 on optimizing the weights in deep learning.

T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponential
convergence,]. Fourier Anal. Appl. 15 (2009) 262-278; arXiv : math/0702226,

_JL.1. Numerical Linear Algebra 123

Problem Set I1.1

These problems start with a bidiagonal n by n backward difference matrix D = T — §.
Two tridiagonal second difference matrices are DDT and 4 = —S + 27 — ST. The shift §
has one nonzero subdiagenal §;;_ 1 = 1 for¢ = 2,...,n. A has diagonals —1,2, —-1.

1 Show that DDT equals A except that 1 # 2 in their (1,1) entries. Similarly
DTD = Aexceptthat 1 # 2 in their (n, n) entries.
Note Aw corresponds to —d?u/dz? for 0 < x < 1 with fixed boundaries
u{0) = 0 and u(1) = 0. DD7 changes the first condition to du/dz{0) = 0 (free).
DT D changes the second condition to du/dz(1} = 0 (free). Highly useful matrices.

2 Show that the inverse of D = I — § is D! = lower triangular “sum matrix” of 1’s.
DD™! = I is like the Fundamental Theorem of Calculus : derivative of integral of f
equals f. Multiply (D~1)T times D~ to find (DDT)~! forn = 4.

3 Problem 1 says that A = DD7T + ee™ where € = (1,0,...,0). Section HI1 will
show that 471 = (DDT)~! —~ 22T, Forn = 3, can you discover the vector 2 ?
Rank-one change in D DT produces rank-one change in its inverse.

4 Suppose you split 4 into —5 + 27 (lower triangular) and —S7T (upper triangular).
The Jacobi iteration to solve Az = b willbe (—S + 2N} &g = STa + b.
This iteration converges provided all eigenvalues of (=S + 27)~! ST have |A| < 1.
Find those eigenvalues for sizes n = 2and n = 3. s

5 For b = (1,0,0) and n = 3, the vectors b, Ab, A%b are a non-orthogonal basis for
R3. Use the Arnoldi iteration with A to produce an orthonormal basis g, , @, @5.
Find the matrix H that gives AQs = Q3 H as in equation (3).

6 In Problem 5, verify that QT AQ- is a tridiagonal matrix.

7 Apply one step of the QR algorithm to the 3 by 3 second difference matrix A.
The actual eigenvalues of A are A = 2 — /2,2,2 + V2.

8 Try one step of the Q K algorithm with the recommended shift s = Azy = 2.

) Solve Az = {1,0,0} by hand. Then by computer using the conjugate gradient
method.

124 Computations with Large Matrices _

I1.2 Least Squares : Four Ways

Many applications lead to unsolvable linear equations Ax = b. It is ironic that this is
such an tmportant problem in linear algebra. We can’t throw equations away, we need to
produce a best solution Z. The least squares method chooses to make ||b — AT[|?
as small as possible. Minimizing that error means that its derivatives are zero: those are
the normal equations AT AZ = ATb. Their geometry will be in Figure T1L2.

This section explains four ways to solve those important (and solvable!) equations:

1 The SVD of A leads to its psendoinverse AT. Then & = Atbh: One short formula.
2 ATAZ = ATb canbe solved directly when A has independent columns.
3 The Gram-Schmidt idea produces orthogonal columns in ¢}. Then A = QR.

4 Minimize |{|b — Ax|{? + &%|jx||®. That penalty changes the normal equations to
{ATA + 6%2Nas = ATh. Now the matrix is invertible and z; goesto T as § — 0.

AT A has an attractive symmetry. But its size may be a problem. And its condition
number—measuring the danger of unacceptable roundoff error—is the square of the
condition pumber of A. In well-posed problems of moderate size we go ahead to solve
the least squares equation ATAZ = ATH, but in large or ili-posed problems we find
another way.

We could orthogonatize the columns of A. We could use its SVD. For really large
problems we sample the column space of A by simply multiplying A+ for random vectors
». This seemns to be the future for very big computations: a high probability of success.

First of all, please allow ns to emphasize the importance of ATA and ATCA.
That matrix C is often a positive diagonal matrix. Tt gives stiffnesses or conductances or
edge capacities or inverse variances 1/o°—the constants from science or engineering or
statistics that define our particular problem: the “weights” in weighted least squares.

Here is a sample of the appearances of AT A and ATC A in applied mathematics :

In mechanical engineering, AT A (or ATC A) is the stiffness matrix

In circuit theory, AT A (or ATC A) is the conductance matrix

In graph theory, AT A (or ATC'A) is the (weighted) graph Laplacian

In mathematics, AT A is the Gram matrix : inner products of columns of A

In large problems, AT A is expensive and often dangerous to compute. We avoid it if
we can ! The Gram-Schmidt way replaces A by QR (orthogonal), triangular R). Then
AT A is the same as RTQTQR = RTR. And the fundamental equation ATAZ = ATh
becomes RT RZ = RTQTh. Finally this is RT = Q7Tb, safe 1o solve and fast too.

Thus ATA4 and ATC A are crucial matrices—but paradoxically, we try not to compute them.
Orthogonal matrices and iriangular matrices: Those are the good ones.

__II.2. Least Squares : Four Ways

125

AT is the Pseudoinverse of 4

[will first describe the pseudoinverse A% in words. If A is invertible then At is A1,
If Ais m by nthen At is n by m, When A4 multiplies a vector z in its row space, this
produces Az in the column space. Those two spaces have equal dimension 7 (the rank).
Restricted o these spaces A is always invertible—and A* inverts 4. Thus At Az = ¢
exactly when x is in the row space. And AA*b = b when b is in the column space.

The nullspace of At is the nullspace of AT. It contains the vectors y in R™ with
ATy = 0. Those vectors ¥ are perpendicular to every Ax in the column space. For these
y, we accept ¥ = ATy = 0 as the best solution to the unsolvable equation Ax = y.
Altogether AT inverts A where that is possible :

The pseudoinverse of A = { 20] is At = [/2 0])

0o 0 a

The whole point is to produce a suitable “psendoinverse” when A has no inverse.
Rule 1 If A has independent columns, then AT = (ATA) "' AT andso 4t 4 = 1.

Rule 2 If A has independent rows, then A* = AT(AAT) ! andso AAT = 1.
Rule 3 A diagonal matrix 3 is inverted where possible—otherwise £+ has zeros:

a1 0]
= 0 o2
0 0

All matrices

0 0

0 0o

The pseudoinverse of A = USVT is At = vE+tUT.

nullspace
of A

A Row space to column space
A Column space to row space

Ate=10

Pseudoinverse A+ I

nullspace of AT
= nullspace of AT

A"’A::[I 0} TOW space

0 0 | nullspace

1/ 0 0 On the four subspaces
00| mt= 8 1/0"2 g stu =7 nst=1
0 6 0 Tt =0 It =0

@'

Figure [L1: Vectors p = Ax™ in the colurmn space of A go back to ™ in the row space.

126 Compusations with Large Matrices

This pseudoinverse At (sometimes written AV with a dagger instead of a plus sign)
solves the least squares equation AT AZ = ATbin one step. This page verifies that @ =
Atb = VETUThbis best possible. At the end of this section, we look in more detail at A*.

Question: The formula AT = VETUT uses the SVD. Is the SVD essential to find A1 ?
Answer: No, AT could also be computed directly from 4 by modifying the elimination
steps that usually produce A~L, However each step of arithmetic would have to be exact !
You need to distinguish exact zeros from small nonzeros. That is the hard part of 47.

The Least Squares Solution to Az = b is 7 = A1b

I have written =1 instead of # because the vector 2 has two properties :

1 & =xT = Atbmakes ||b — Ax||? as small as possible. Least squares solution

2 If another & achieves that minimum then ||z || <||Z||. Minimum porwm solution

&t = ATb is the minimum norm least squares solution. When A has independent
columns and rank » = n, this is the only least squares solution. But if there are nonzero
vectors in the nullspace of A (so r < n), they can be added to z+. The error
b — A{xT + @) is not affected when Az = 0. But the length ||zt + z||? will grow
to ||lat||® + |ja||*. Those pieces are orthogonal : Row space L nullspace.

S0 the minimum norm {shortest) solution of ATAF = AThb is T = Ath,
a7 has a zero component in the nullspace of A.

Example 1 The shortest least squares solution to [3 g } [il] = [g :| szt
2

1/3 0 & 2 0 .
+ — +h = =
T =A"h —[0 0 } { 3 } [0] Al] vectors [3:2] are in the nullspace of 4,

2] is shortest.

All the vectors £ = [1:2 } minimize |[b — AZ||? = 64. Butzt = [o
2

That example shows the least squares solutions when 4 is a diagonal matrix like X,
To allow every matrix ULV, we have to account for the orthogonal matrices I/ and V.
We can freely multiply by T without changing any lengths, because UTU = [:

Squared error ||b— Az|2 = [|b - USVT2|> = WTb-ZvT2|2. (D
Set w = VTz to get |JUTh — Zaw||®. The best w is U Th. And finally 21 is A*h:
w=VTet =S*UTh and VT = V7! leadio 2zt = VE+UTb = ATh. (3)

The SVD solved the least squares problem in one step A+, The only question is the
computational cost. Singular values and singular vectors cost more than elimination.
The next two proposed solutions work directly with the linear equations AT AZ = ATb.
This succeeds when AT 4 is invertible—and then Z is the same as xt.

112, Least Squares : Four Ways 127

When is AT A Invertible ?

The invertibility (or not) of the matrix AT A is an important question with a nice answer
AT A is invertible exactly when A has independent columns. If Az = 0 then x = 0

Always A and AT 4 have the same nullspace ! This is because AT Ax = 0 always leads to
zTAT Az = 0. Thisis ||Az]|? = 0. Then Az = 0 and x is in N(A). For all matrices:

N(AT A) = N(4) and C{4AT) = C(4) and rank (AT A) = rank (4AT) = rank (4)

We now go forward when AT 4 is invertible to solve the normal equations AT AZ = ATh,

The Normal Equations ATAZ = AT)

Figure I1.2 shows a picture of the least squares problem and its solution. The problem is
that b is not in the column space of A4, so Az = & has no solution. The best vector p = A%
is a projection. We project & onto the column space of A. The vectors & and p = AZ
come from solving a famous system of linear equations: ATAZF = ATH. To invert AT 4,
we need to know that A has independent columns.

The picture shows the all-important right triangle with sides b, p, and e.

b

e = b — p = error vector

p = projection of b :
= AZ in the column space '

Figure [1.2; The projection p = AZ is the point in the column space that is closest o b.

Everybody understands that e is perpendicular to the plane (the column space of A).
This says that & — p = b — AT is perpendicular to all vectors Az in the celumn space:

(Ax)T (b— A%) = xTAT(b — AT) = 0 forall & forces AT(b— AZ)=0. ' (&)

Everything comes from that last equation, when we write it as ATA T = ATb.

Nermal equation for & ATAZ = ATh 5)
Least squares solution to Az =b z=(ATA)"1ATh : (6)
Projection of & onto the column space of A p=AT=A(ATA) AT [(7
Projection matrix that multiplies b to give p P = A(ATA)"1AT (8)

128 Computations with Large Matrices

A now has independent columns : r = . That makes AT A positive definite and invertible.
We could check that our & is the same vector 2+ = At b that came from the pseudoinverse.
There are no other &'s because the rank is assumed to be r = n. The nullspace of A only
contains the zero vector.

Projection matrices have the special property P? = P. When we project a second
titne, the projection p stays exactly the same. Use equation (8) for P

P2 = A(ATAYTTATA(ATA) AT = A(ATA) AT = P (9

The Third Way to Compute Z : Gram-Schmidt

The columns of 4 are still assumed to be independent; r = n. But they are not assumed
to be orthogonal ! Then AT A is not a diagonal matrix and solving ATAZ = ATb needs
work. Our third approach orthogonalizes the columns of A, and then & is easy to find,

You could say : The work is now in producing orthogonal (even orthonormal) columns.
Exactly true. The operation count is actually doubled compared to ATAZ = ATb, but
orthogonal vectors provide numerical stability. Stability becomes important when AT A is
nearly singular. The condition number of AT A is its norm |[AT A|| times ||[{ATA) 7|
When this number o7 /o2 is large, it is wise to orthogonalize the colurnns of A in advance.
Then work with an orthogonal matrix ¢

The condition number of Q) is ||(|| times || Q@™ 1||. Those narms equal 1 : best possible.

Here is the famous Gram-Schmidt idea, starting with A and ending with Q.
Independent columns a4, . .., @, Iead to orthonormal g, ...,q,. This is a fundamental
computation in linear algebra. The first step is g; = a1/|la1||. That is a unit vector:
llg;|| = 1. Then subtract from @ its component in the g, direction:

Orthogonalize A; = a; — (e ¢,) q, (10)

Gram-Schmidt step .
Normalize a4y = Az/|| A2 (i1)

Subtracting that component (@ g,) g, produced the vector A, orthogonal to g, :

(az —(al q.)q,)Tq, = a ¢, —al q, = 0 since ¢} g, = 1.
The algorithm goes onward to az and A3 and gg, normalizing each time to make ||g|| = 1.
Subtracting the components of az along g, and g, leaves Aj:

Orthogonalize A; = a3z — (al q;)q, — (a] q,}q, Normalize g3 = ”j—d“- {(12)
3
ATq=Alg =0 and |lg3ll=1

Each g, is a combination of a; to ax. Then each a, isa conibination of q; to gr.
a1 = |lail| g,
a’s from ¢’s az = (af q1) a; + |42l g, (13)
a3 =(alq))q + (a3 g2) g + ”AS”qs_

(1.2, Least Squares : Four Ways 129

Those equations tell us that the matrix B = Q7 A with Ti; = q; @ is upper triangular :

11 Tiz Tis
a1 az az | =| g G 43 0 1792 723 35 A=QR (14
0 0 Tsa

Gram-Schmidt produces orthonormal ¢’s from independent a’s. Then A = QR.

If A= QR then R = QT A = inner products of g’s with a’s! Later a’s are not
involved in earlier ¢'s, so R is triangutar. And certainly ATA = RTQTQR = RTR:

The least squares solutionto Ax = b is # = R—1QTh.

The MATLAB command is (@, R] = qr(4). Every r;; = qla; because R = QTA.
The vector # = (ATA)~* AThis (RTR)~! RTQTb. This is exactly & = R~1QTb.

Gram-Schmidt with Column Pivoting

That straightforward description of Gram-Schmidt worked with the columns of A in their
original order a1, as, ag, ... This could be dangercus! We could never live with a code
for elimination that didn’t allow row exchanges. Then roundoff error could wipe us out.

Similarly, each step of Gram-Schmidt should begin with a new column that is as
independent as possible of the columns already processed. We need column exchanges
to pick the largest remaining column. Change the order of columns as we go.

To choose correctly from the remaining columns of A, we make a simple change in
Gram-Schmidt:
Old Accept column a; as next. Subtract its components in the directions g, o g;_;
New When g,_, is found, subtract the g;_, component from ail remaining columns

This might look like morc work, but it’s not. Sooner or later we had to remove (af q;_;)q;_,
from each remaining column a,. Now we do it sooner—as soon as we know g;_,. Then
we have a free choice of the next column to work with, and we choose the largest.

Elimination Row exchanges on A left us with PA = LI (permutation matrix F)
Gram-Schmidt Column exchanges leave us with AP = QR (permutation matrix P)

Here is the situation after 7 — 1 Gram-Schmidt steps with column pivoting. We have
J — 1 orthogonal unit vectors ¢, to g;_, in the columns of 2 matrix J;-1. We have the
square matrix /;_1 that combines those columns of ¢J;_1 to produce j — 1 columns of A.
They might not be the first § — 1 columns of A—we are optimizing the columa order.
All the remaining columas of A have been orthogonalized against the vectors ¢, to g,_;.

Step 7. Choose the largest of the remaining columns of A. Normalize it to Iéngth 1.

This is ¢;. Then from each of the n — j vectors still waiting to be chosen, subtract the
component in the direction of this latest g,. Ready now for step j + 1.

130 Computations with Large Matrices
We will follow Gunnar Martinsson’s 2016 course notes for APPM 5720, to express
step 7 in pseudocode. The original A is 4y and the matrices Qg and Ry are empty.

Step j is the following loop, which starts with A,_; and ends at A;. The code stops
after § reaches min(m, n). Here is column pivoting in Gram-Schrridt :

i = argmax||4;_1(:, ¢)}| finds the largest colomn not yet chosen for the basis
q; = Aj-1(s, 9)/1[A;-1(:, 7)|| normalizes that column to give the new unit vector g
Q; = [Qi-1 4,] updates (J;_; with the new orthogonal unit vector g,

7; = g} Aj—1 finds the row of inner products of ¢; with remaining columns of A

R; = [Rja } updates ft;_, with the new row of inner products
T;

Aj; = Aj_1 — q;7; subtracts the new rank-one piece from each column to give A;

When this loop ends, we have) and E and 4 = (JR. This R is a permutation of an upper
triangular matrix. (It will be upper triangular if the largest columns in Step 1 come first,
so each ¢ = j.) The actnal output can be an upper triangular matrix plus a vector
with the numbers 1,...,n in the permutation order we need to know, to construct R.

In practice, this @R algorithm with pivoting is made safer by reorthonormalizing
a; = q; — Q;-1{Q]_1 ;)
q; =4q; /llg;l! (to make sure!)

There is a similar reordering for “G}R with Householder matrices” to reduce roundoff error.
You have seen the essential point of pivoting : good colnmns come first.

Question : Both @ from Gram-Schmidt and I from the SVD contain an orthonormal basis
for the column space C(A). Are they likely to be the same basis?

Answer: No, they are not the same. The columns of U/ are eigenvectors of AAT. You
cannot find eigenveciors (or eigenvalues) in a finite number of exact “arithmetic” steps
for matrices of size n > 4. The equation det{A — A’} = 0 will be 5th degree or higher: No
Jormula can exist for the roots A of a Sth degree equation (Abel). Gram-Schrnidt
just requires inner products and square roots so ¢ must be different from IJ.

In the past, computing a nearly accurate eigenvalue took a much larger multiple of n3
floating-point operations than elimination or Gram-Schmidt. That is not true now,

11.2. Least Squares: Four Ways 131

Another Way to) : Householder Reflections

Without celumn exchanges, Gram-Schmidt subtracts from each vector a; its components
in the directions ¢, 1o g;_, that are already set. For numerical stability those subtractions
must be done one at a time. Here is g with two separate subtractions from ay :

Compute as — (a3q,)q, = a; and a) — (ajTq,y) g, = Az and ¢z = As/||As]|.

But still the computed g5 won't be exactly orthogonal to g, and g,. That is just hard.
The good way to create an exactly orthogonal ¢ is to build it that way, as Householder did :

T
Householder reflection matrix H=1-22" I ouuT. (13)

[t

= voT/||v|]2. H is symmetric and orthogonal.

w is the unit vector v/||v||. Then uwu™

HTH = (I — QuuT)2 =T duu’¥ —+ 4u(uTu)uT =1 (16)

Key point: If v = a —r and ||a|| =||r|| then Ha = r (see Problem 6). To produce zeros
in column % below the main diagonal, use this Hy with v = {(@1gwer — Tlower) 204
u = v/||v||. We are creating zeros in H.A. And we have a choice of signsin v :

Vi aupper | _ upper _
Hi[column k| = [I 2uuT] [“Iower] = :!a}coxiﬂsl =Ty a7

Ay is the original matrix A. The first step produces H; A and the next step finds Ho Hy A.
By marching across the columns, the reflections Hy to H,_; multiply to give Q. And?
in opposite order, those reflections create zeros in A and produce a triangular matrix R:

Ho_,.. HbHA=|ri ry .. v, | becomes QTA=R. (18)

The key is to keep a record of the H; by stering only the vectors v; = a@; — 75, not the
matrix. Then every H; = I — 2v;v] /||v;]|* is exactly orthogonal. To solve Ax = b
by least squares, you can start with the matrix [A b] as in elimination. Multiply by all
the H’s to reach [R Q7). Then solve the triangular system R@ = Q7Tb by ordmary
back substitution. You have found the least squares solution Z = R—1QTb.

4 4 5 .
Example A:[3 i] has a:[;’»] and 1”2[0} and |lal| = {[r||

R 1

3
—4

Lo =

Choose v=a-r= [-

Then H:I—QuuT:%[

o

]:QT and HA:{g ﬂ:R

132 Computations with Large Matrices

Least Squares with a Penalty Term

If 4 has dependent columns and Az = 0 has nonzero solutions, then AT A cannot be
invertible. This is where we need A1. A gentle approach will “regularize” least squares :

Penalty term Minimize ||Ax—b]|>+8%||z|[*> Solve (AT A + 621)%E = ATH| (19)

This fourth approach to least squares is called ridge regression. We will show that &
approaches the shortest solution %+ = A™b as the penalty disappears {§ goes to zero).

Section III.4 describes a different penalty: Add the £! norm A||x|[;. That has a
beautiful result ; Instead of 7 with minimum norm, the £! norm leads to sparse solutions.

The Pseudoinverse A7 is the Limit of (AT A + §21)71AT

Equation (19) creates the pseudoinverse A™ from the positive definite matrices AT A + 627
Those are invertible matrices up to the very last minute when § = 0. At that moment we
have a sudden split in AT, You see it best if A is a 1 by 1 matrix (just a single mumber ¢):

For § >0 (ATA+46*N7'AT = [is 1 byl Nowlet d »0

]
o? 442

1 1
The limit is zero if o = 0. The limit is — if & 7 0. This is exactly AT = zero or —.
o o

Now allow any diagonal matrix £. This is easy because all matrices stay diagonal.
We are seeing the 1 by 1 case at every position along the main diagonal. ¥ has positive
entries @1 to oy and otherwise ali zeros. The penalty makes the whole diagonal positive :

(BT + 6217 'ET has positive diagonal entries and otherwise alt zeros.

o;

o? + 82

Positive numhers approach ai Zeros stay zero. When § — 0 the limit is again =,
T

To prove that the limit is A" for every masrix A, bring in the SVD; A = UnvT.
Substitute this matrix 4 into (ATA + §21)"1AT. The orthogonal matrices I/ and V
move out of the way because UT = U land VT = V-1,

ATA+ 81 =viTUTUESVT 4+ 8% = v(2Tn + 82 0VT |
(ATA + 52I)_1AT = V(ETE I 521')—1 VTVETUT =V [(ETE + 52I)—IET] UT

Now is the moment for § — 0. The matrices V and I/ T stay in their places. The diagonal
matrix in brackets approaches X7 (this is exactly the diagonal case established above).
The limit of (AT A + §21)~* AT is our pseudoinverse A+,

limit

SV [(STE + ST ST UT = VERUT = A% 20

___JL2. Least Squares: Four Ways _ _ 133

The difficulty of computing A* is to know if a singular value is zero or very small.
The diagonal entry in X% is zero or extremely large! 27 and A% are far from being
continuous functions of ¥ and A. The value of A™ is to warn us when A or o is very close
to zero— then we often treat it as zero without knowing for sure.

Here are small matrices and their pseudoinverses, to bring horne the point that A* does
not follow all the rules for A™*. It is discontinuous at the moment when singular values
touch zero.

0 2 0 210

Fromo [2 0] _[1/2 o
w2 (o o] T| 0 o

- [2 —Owrz{m 0]

It is not true that (AB)T = BT AT, Psendoinverses do not obey all the rules
of inverse matrices! They do obey (AT)T = (AT)T and (ATA)T = A+ (AT)*.

fA=[1 0]and B= { 1 } then (AB)T isnotequalto BT A*;
AB=[1] and (AB)*=[1] but B =[5 1] and A+=[H and B¥At=[2].

If C has full column rank and R has full row rank then (CR)* = RTC* is true.

This is a surprisingly useful fact. It means that the pseudoinverse of any matrix
can be computed without knowing its SVD (and without computing any eigenvalues).
Here is the reasoning. The first step came in Section 1.1, page 4 of the book.

Every m by r mairix A of rank r can be factored into A = CR = {m X r){(r xn}. »
The matrix C gives a column space basis. R gives a row space basis.

+ = (CTCY 10T = leftinverse of C and Rt = RT(RRT)~! = right inverse of R.
Then A = CRhas AT = Rt C* computed without eigenvalues or singular values.

The catch is that we need exact computations {no roundoff) to know the exact rank r.
The pseudoinverse is discontinuous when the rank suddenly drops. The large number 1/«
suddenly becomes zero. Always 0 = 0.

In the example above with {AB)*t # BT AT, you could verify that 1f we put those
mairices in reverse order then (BA)T = AT B is true.

The pseudcinverse is also caljed the Moore-Penrose inverse, In MATLAR it is pinv (A).

134 Computations with Large Matrices

Weighted Least Squares

By choosing to minimize the error ||b — Awxf|?, we are implicitly assuming that all the
observations by, ..., by, are equally reliable. The errors in b; have mean = average value
= 0, and the variances are equal. That assumption could be false. Some b; may have less
noise and more accuracy. The variances o, ..., o2, in those m measurements might not
be equal. In this case we should assign greatest weight to the most reliable data {the ¥’s
with the smallest vartance).

The natural choice is to divide equation k by 1. Then by /gy, has variance 1. All
observations are normalized to the same unit variance, Note that o is the accepied notation
for the square root of the variance (see Section V.1 for variances and V.4 for covariances).
Here o is a variance and not a singular value of A.

When the observations b are independent, all covariances are zero. The only nonze-
ros in the variance-covariance matrix C are o%, ... o2, on the diagonal. So our weights

1/ have effectively multiplied Az = b by the matrix C~1/2,
Multiplying by C—1/2 s still the right choice when C has nonzeros off the diagonal.

We are “whitening” the data. The quantity to minimize is not [[b — Az||?. That error
should be weighted by C 1.

Weighted least squares minimizes ||C~1/2(b — Ax)||? = (b — Ax)T C~1(b — Ax).

Naow the normal equation AT A% = ATb for the best & includes C~! =inverse covariances:

Weighted normal equation AT C~1A4% = AT C—1b. 21

Example 2 Suppose z = b; and £ = b; are independent noisy measurements of the
number x. We multiply those equations by their weights 1/c.

Solve Az= “] = Hl] by weighted least squares. The weights are 1/0; and 1/75.
2

The equations become 2/ = b1 /o1 and /oy = by/o; : [1/01] T = [bl/gl]

1/09 ba/o2
Weighted I equati SR PV (22)
[R— —_— Tr= — —a -
ergnied normai €quanen 0'% o_% 0‘? 0,2

The statistically best estimate of = is a weighted average of by and bs :

Ec“:(o} o2)(b_1+b_g) _ c2by + ol b,

o +ot) \o? o} o+ o2

____[.2. Least Squares : Four Ways 135

Problem Set 11.2

1 (A new proof that N(ATA) = N{A)) Suppose AT Az = 0. Then Az is in the
nullspace of AT. But always Az is in the column space of A. Those two subspaces
are orthogonal, so if AT Az = 0 then Ax = 0.

Prove the opposite statement to reach N(AT A) = N(A).

2 Why do A and A™* have the same rank ? If A is square, do A and A* have the same
eigenvectors 7 What are the eigenvalues of A+ ?

3 From A and A* show that AT A is correct and (AT A)? = AT A = projection.

T
A= ZO’;{H@U? At = Z U;# ATA = Zvivf Adt = Zuﬁu}r
1
4 Which matrices have AT = A ? Why are they square 7 Look at AT A.

5 Suppose A has independent columns (rank v = r; nullspace = zero vector).
(a) Describe the m by n matrix ¥ in 4 = UXVT. How many nonzeros in X 7
{(b) Show that £ % is invertible by finding its inverse.
(c) Write down the n by m matrix (ZT2)~'E7 and identify it as I+,
{d) Substitute 4 = ULVT into (AT A) 7' AT and identify that matrix as AT,
ATAT = ATbh leadsto AT = (AT A)~ AT, but only if A has rank n.

6 The Houscholder matrix H in equation (17) chooses v = @ — r with [|a||* = ||| |2
Check that this choice of the vector v always gives Ha = r:

(a—r)la—7)T

Verify th =a-
erify that Ha = a z(a—r)T(a—*r}

a reducesto r.
_ : o lel|
7 According to Problem 6, which n by n Householder matrix H gives Ha = !

8 What multiple of @ = [] should be subtracted from b = [3] to make the result
’ Ag orthogonal to a? Sketch a figure to show a, b, and Ag.

9 Complete the Gram-Schmidt process in Problem 8 by computing ¢, = a/|all and
Ay =b— (a¥q,)q, and g, = Az/| Azl and factoring into QR:

[1 g]=[‘“ "2} “3" niﬂd'

10 If A = QR then ATA = RTR = triangular times trianguiar.
Gram-Schmidt on A corresponds to elimination on AT A.

M FQTQ =1 showthar QT =Q%. If A=QR for inveriible R, show that QQ+ = AAT.
On the last page 155 of Part 11, this wiil be the key to computing an SVD.

136 Computations with Large Matrices

This page is devoted to the simplest and most important application of least squares:
Fitting a straight line to data. A line b = € + Dt has n = 2 parameters C' and D.
We are given m > 2 measurements b; at m different times £;. The equations Az = b
(unsolvable) and AT AZ = ATb (solvable) are

1t b -~
C t; C b;
Aax=|t " —| Aag= | oL O) | 2k
: : D : Z t; Z £z D E bif;
1 tm by

The column space C{A4) is a 2-dimensional plane in R™. The vector b is in this column
space if and only if the 7 points (¢;, b;) actually lie on a straight line. In that case only,
Az = bis solvable : the line is C + Dt. Always b is projected to the closest p in C{A).

The best line (the least squares fit) passes through the points (¢;, p;). The error
vector e = AX — b has components b; — p;. And e is perpendicular to p.

There are two umportant ways to draw this least squares regression problem. One way
shows the best line b = C'+ Dt and the errors e; (vertical distances to the line). The second
way isin R™ == m-dimensional space. There we see the data vector b, its projection p onto
C(A), and the error vector e. This is a right triangle with ||p||* + |je||* = ||8][2.

Problems 12 to 22 use four data points & = (0, 8, 8, 20) to bring out the key ideas.

b=(0,88,20)

e «error vector
A

,p=Ca1+ Da;

by=b;=8 projection of b
a2 ="70,1,3,4)
p1 ¢o, a1=(1,1,1,1)
blzo - } { T Ir
31=0 32=] 33=3 t4=4

Figure I1.3: The closest line C' + Dt in the £ — b plane matches Ca; + Da, in R4

12 With b = 0,8,8,20 at ¢t = {,1,3,4, set up and solve the normal equations
ATAZ = ATb. For the best straight line in Figure H.3a, find its four heights p;
and four errors e;. What is the minimum squared etror £ = % + €3 + e3 + €2 ?

1.2, Least Squares: Four Ways 137

13

14

15

16

17

18

19

21

(Line C' + Dt does go through p's) With & = 0,8,8,20 at times ¢t = 0,1,3,4,
write down the four equations Az = b {(unsclvable). Change the measurements to
p=1,5,13,17 and find an exact solution to AZ = p.

Check that e = b — p = (—1,3, -5, 3) is perpendicular to both columns of the
same matrix 4. What is the shortest distance ||e|| from b to the column space of A?

(By calculus) Write down E' = ||Az — b||? as a sum of four squares—the last one
is (C' + 4D — 20)2. Find the derivative equations E/8C = 0 and 8E/8D = .
Divide by 2 to obtain the normal equations AT A% = ATb.

Find the height C of the best horizontal line to fit b = (0,8,8,20). An exact fit
would selve the unsolvable equations ¢ = 0, ¢ = 8, ' = 8, ¢ = 20. Find the
4 by 1 matrix A in these equations and solve AT AZ = ATbH. Draw the horizontal
line at height = C and the four errors in e.

Project b = (0,8, 8, 20) onto the line through a = (1,1,1,1). Find ¥ = aTb/aTa
and the projection p = Fa. Check that e = b — p is perpendicular to @, and find the
shortest distance | e|| from b to the line through a.

Find the closest line b = D1, through the origin, 10 the same four points. An exact
fit wouldsolve -0 = 0,0 .1 = 8,D.3 =8,D:4 = 20. Findthe 4 by 1
matrix and solve AT A7 = ATbh. Redraw Figure II.3a showing the best line b = Dt,

Project b = (0,8, 8,20) onto the line through @ = (0,1,3,4). Find T = D and
p = Za. The best ' in Problem 16 and the best D in Problem 18 do not,
agree with the best (C', D)} in Problems 11-14. That is because the two columns’
(1,1.1,1)and (0,1,3,4) are ____ perpendicular.

For the closest parabola b = C' + Dt + Eit? to the same four points, write down the
unsolvable equations Az = b in three uvnknowns x = (C, D, E). Set up the three
normal equations AT AT = ATb (solution not required). In Figure I1.3a you are now
fitting a parabola to 4 points—what is happening in Figure I1.3b7

For the closest cubic b = C + Dt + Et? + F£> to the same four points, write down
the four equations Az = b. Solve them by elimination. In Figure I1.3a this cubic
now goes exacily through the points. What are p and e? '

The averages of the ¢, and b; are T = 2 and b = 9. Verify that C + DT = 5. Explain !

(a) Verify that the best line goes through the center point (£,5) = (2, 9).
(b) Explain why C + DT = b comes from the first equation in ATAZ = ATb.

138 Computations with Large Matrices

II.3 Three Bases for the Column Space

This section touches on serious computational questions. The matrices get large. Theirrank
is also large if there is random noise. But the effective rank, when the noise is removed,
may be considerably smaller than m and n. Modern linear algebra has developed fast
algorithms to solve Az = band Az = Az and Av = ou for large matrices.

Mostly we will leave special algorithms to the professionals. Numerical linear algebra
has developed guickly and well—we are safe with the experts. But you and I can recognize
some basic rules of common computational sense, including these two :

1. Don’tuse AT 4 and AAT when you can operate directly on A.

2. Don’t assume that the original order of the rows and columnns is necessarily best.

The first warning would apply to least squares and the SVD (and computational statistics).
By forming ATA we are squaring the condition number o;/0,. This measures the
sensitivity and vulnerability of A. And for really large matrices the cost of computing
and storing AT A is just unthinkable. It is true that the stiffness matrix of mechanics and
the conductance matrix of electronics and the graph Laplacian matrix for networks have
the form AT A or ATC A (with physical constants in). But for data matrices we want
“square root algorithms” that work directly with the basic matrix A.

What do we really need from A 7 Often the answer goes to the heart of pure and applied
algebra: We need a good basis for the column space. From that starting point we can do
anything! For Az = b, we can find a combination of basic columns that comes near b.
For Av = gu, we can compute accurate singular vectors,

Again, what we cannot do is to accept the first r independent columns of A as antomat-
ically a good basis for computations in the column space C{A).

Three Good Bases

Let me reveal immediately the three bases that we propose to study. You may be tempted
to put them in the order gold, silver, bronze.

In part those three prizes represent the guaranteed quality of the three bases. But
they also suggest that the 3VD has highest cost. All three are winners in the construction
of a basis for the column space.

1. Singular vectors %5, . . ., U, from the SVD, withoy > 00 > ... = &,
2. Orthonormal vectors ¢, , . . ., g, from Gram-Schmidt. Use column pivoting !
3. Independent columns ¢y , . . ., e, taken directly from A after column exchanges.

Each choice of basis for C{ A} gives the column matrix in a “rank-revealing factorization”
A4 = column matrix times row matrix : (m by n) equals (m by r){r by n).

_IL3. Three Bases for the Column Space 139

1. The factors of A in the reduced SVD are I/, times E,.KT
2. The factors of 4 in Gram-Schmidt are @, x » times R,

3. The factors of A in pivoted elimination are Clpyxep times Zpyxn

Let me comment right away on the properties of these three important factorizations

1. The column basis %, ..., %, in I is orthonormal. It has the extra property that also
the rows g v} of the second factor &, VT are orthogonal.

2. The column basis g4, ..., g, in @ is orthonormal. The rows of the second factor R
are not orthogonal but they are well-conditioned (safely independent).

3. The column basis ¢),...,¢, in C is not orthogonal. But both ' and the second
factor Z can be well conditioned. This is achieved by allowing column exchanges.
{Not just allowing but insisting.) € contains r “good columns” from A.

The third factorization A = CZ can be called an Interpolative Decomposition
(ID rather than SVD or QR). Since this is the new idea for this section, I will focus now
on its properties. Noies and articles by Gunnar Martinsson and distinguished coauthors
are the basis for this exposition of ID.

The columas of C' come directly from A, but the rows of Z do not. That is asking
top much. Later we will have CM R with columns of A in C and rows of A in R—
and an invertible mixing matrix M to make the product close to A.

Interpolative Decomposition = Column/Row Factorization

Here are four important advantages of CZ compared to QR and UZV T, Remember that
the columns of C are actual columns of A—thoughtfully chosen. That gives serious
advantagesto A = CZ.

+ A= CZ 1akes less computing time and less storage than A= USV7T and A= QR.
» When A is sparse or nonnegative or both, so is C. C comes directly from A.

* When A comes from discretizing a differential or integral equation, the columns in
C' have more meaning than the orthonormal bases in U and Q.

* When A is a matrix of data, the columns kept in C' have simple interpretations.

Those last three points can make a major difference in our understanding of the output,
afier the computations are complete. This has been a criticism of the SVD : the singular
vectors are algebraically and geometrically perfect but they are “humaniy™ hard to know.

When the numbers in A are intrinsically positive, the goal may be a Nonnegative
Matrix Factorization (NMF). Then both factors in A =~ MN have entries > 0. This is
important for moderate sizes but it is asking a lot in the world of big data.

A = CZ isright for large matrices when Z has small entries (say |z;| < 2).

140 Computations with Large Matrices

Factoring A into C'Z

When (' contains a basis for the column space of A, the factor £ is completely determined.
Every column of A is a unique combination of those basic columns in C':

(column 7 of A} = (matrix C') (column vector z,). (1)

This is exactly the statement A = C'Z, column by cotumn. This idea was in Section I.1
(with R instead of Z). It gave a neat proof of row rank = column rank. But the columns for
that ' were possibly not very independent. This section will soon become serious about
choosing C' quickly and well (but not yet).

First we can take a step beyond A = C'Z, by looking at the row space of C. Somewhere
C has r independent rows. If we put those rows y1, ..., yY into an v by r matrix B, then
B is invertible. Every row of €' is a unique combination of those basic rows in B :

(row 7 of C') = (row vector y} } (invertible matrix B). (2)

This is exactly the statement C = Y B, row by row. Combine it with 4 = CZ:

Amxn = Cm)(r ern. = Yixr Brxr Zrxn 3

All those matrices have rank 7.

Now use the fact that the columns of C came directly from A and the rows of B
came directly from . For those columns and rows, the vectors z; in (1) and y;f in (2)
came from the identity matrix I, ! If you allow me to suppose that z; and y] are the
first columns and rows in A and C, then A = Y B Z has a special form:

I. . _
Y :[Con -1 } B = submatrix of 4 Z=[I, B'Z,_, || @&

We are just supposing that the upper left 7 by r corner B of A is invertible. Every matnx
A of rank r has an invertible r by r submatrix B somewhere! {Maybe many such B’s.)
When B is in that upper left corner, elimination finds ¥ and Z.

Example 1 This 3 by 4 matrix of rank 2 begins with an invertible 2 by 2 matrix B :

1 2 4 2 1 0][1 271[1 0 0 0
A=]l0o1 2 1f{=|0 1|0 t1]]o 12 1]|=YBZ (5
1 36 3 1 1

(3x 22 x 242 x4)

__fL3. Three Bases for the Column Space id1

Please understand. If C'r—; or Z,—, or both happen to contain large numbers, the
factors in (5) are a bad choice. We are happiest if those other entries of ¥ and Z are smali.
The best is fyi;| < 1 and |z;| < 1. And we can find a submatrix B that makes this true !

Choose B as the r by v submatrix of A with the largest determinant,
Then all entriesof ¥ and Z have |y;; | < 1 and |z | < 1.

Proof. Those y;; and z;; are the numbers in Cry—» B~ and in B~1Z,,_,. We start with
the z;;. Since BB~ Z,_;) = Zn_,, we know that every column z; of B™1Z,,_, solves
this system of linear equations:

Bz; = column jof Z,,_,.
By Cramer’s Rule, the numbers z;; in the solution z; are ratios of determinants:

o det(B with its {th column replaced by that column j)
v determinant of B

Remember that B 1s the r by r submatrix of 4 with largest determinant. The matrix in
the numerator is one of the many submatrices that we did not choose. Its determinant is
smaller than det B. So [2;;] < 1.

Similarly the rows of ¥ come from Cy,— B~ Since (Cpi—rB B = Cpior.
those rows solve the linear equations y! B = row ¢ of Crp—r. When we transpose and use
Cramer’s Rule, the components y;; of yi are again ratios of determinants. And det B
is again the denominator ! Since det B is as large as possible, we have |y;;| < 1.

We admit to one big problem. We said that “we can find B so that }y;| < 1 and 5
[zi] < 1 This is not true. In reality, we can’t find the submatrix B with maximum
determinant. Not without a quantum computer (which doesn’t yet exist). B is somewhere
inside A, but we have no idea which submatrix it is.

The amazing thing is that by randomization we can identify a good submatrix B.
Then there is a very high probability (not a certainty) that all |y;;| < 2 and |z;| < 2.
So the next section will complete this presentation of Interpolative Decomposition (when
columns or rows come directly from A). The selection of columns or rows will be random
with carefully chosen probabilities.

Example 2 The matrix in Example 1 has this Bpax with maximum determinant = 2.
Then Iyijl < 1 and]zij] < 1:

12 1 01t 471 @ o0 o0
A=|0 1 0 1|0 2||0 -5 1 —5|=YBmaxZ (6
1 3 1 1

o b ok
SRS X
Il

142 Computations with Large Matrices

C M R Factorization : Selecting C and R

Now we describe a recommended choice of columns and rows of 4 to go directly into C'
and R. A mixing matrix M is always needed to achieve A = C'MR. This can be an
equality A = CM R if A actually bas low rank. For large matrices that are approximately
low rank (this is what we assume) we can start with approximate singular vectors in A =
UXVT, We wilt use U and V to achieve a rank r factorization C'M R that is close to A.

Qur guide is D, C. Sorensen and M. Embree, A DEIM induced CU R factorization,
arXiv: 1407.5516v2, 18 Sep 2015; SIAM J. Scientific Computing 38 (2016) 1454-1482.

The Discrete Empirical Interpolation Method chooses €' and BE. We write M in place of U,

It seems a little strange that CM R (which uses columns and rows directly from 4)
begins with UXZVT (which finds orthonormal combinations of those columns and rows).
And the approximate computation of UL VT ofien begins with QR, to get one orthogonal
matrix ¢} in a fast way. So the bases C, U, @ for the column space of A (approximaie)
are ail linked by fast algorithms.

The accuracy of the final approximation is controlled by the next singuiar value o4 in .
A4 = UZV T —and the r columas of U/ and V corresponding to our choices for C and R:

(mxr)rxrirxm) ||[A-CMR||<{Ui+]IV.) orer (D

Selection of Columns from A to Enter C

Start with the r columns of Uy« (the approximate left singular vectors of A). Suppose
s columns of By, «, come directly from I, «,. If ETU is an investible matrix, then

1 P=U(ETU)'ET has P? = P = projection matrix
2 Pax equals ¢ in those s chosen positions, so P is an interpolatory projection

The crucial property is 2 (see Sorensen and Embree for all proofs). For ¢ = 1, the DEIM
algorithm chooses the largest entry in the first singular vecior ;. That leads to Py. The
next choice (teading to P2} is decided by the largest entry in 1y — Pyug. Every later B
is decided by the largest entry in w; — P;_juj;. This corresponds to maximizing
each pivot in ordinary elimination. A simple pseudocode is in [Sorensen-Embree].

The rows of A4 to enter R are selected in the same way. A big advantage comes from
this sequential processing, compared to norm-squared sampling based oa all the row norms
of U and V. The next step is to estimate the errof in interpolatory projection !

|A—C(CTC) ICT A|| < noorn and ||A- ART(RRT)"'R|| < npor41 ®

In practice, those constants no and g are modest (of order less than 100). Again this is
similar to partial pivoting : fast growth is possible in theory but never seen in practice.

[1.3. Three Bases for the Column Space 143

The Mixing Matrix M

The final decision is the mixing matrix in 4 ~ C'M R. Without that matrix M, the product
('R is normally not close to A. The natural choice for M 1s

M = {(CTCYICTART(RRT)~! = [left inverse of C) A [right inverse of B).| (9)

On the last page of Section L1, this is the choice that produced equality in 4 = CMR.
On that page the rank of A was exactly r (we were innocent then). Now r is only the
approximate rank of a large matrix 4.

For the randomized algorithms of the next section I1.4 (where A is too large for the
DEIM algorithm} you will see that Halko-Martinsson-Tropp and Mahoney-Drineas also
made this choice. The early analysis of Stewart (Numerische Marh. 83 (1999) 313-323)
pointed the way to the error estimate in (8).

Starting from A = QR with Column Pivoting

The)R factorization is a favorite starting point for numerical linear atgebra with large
matrices. At reasonable cost, it produces an orthenormal basis in @ for the column space
of A. From @ we can go qguickly and accurately to the other two fundamental bases :

Columns of C' (coming directly from A : Interpolatory Decomposition A = CM R)
Columns of U (orthonormal vectors: Singular Value Decomposition A = UXV'T)

Please understand that good choices for C' and U will depend on a good choice for Q.
Since that matrix is orthogonal (thus perfectly conditioned) it is the other factor R that’
decides the quality of A = QR.

The ordinary Gram-Schmidt process in Section I1.2 kept the columns of A in their
original order. Pivoted QR chooses the largest remaining column at the start of each new
step (cofumn pivoting). This produces a permutation I so that the first k columns of ATl

(and Q) are the important columns :

All=QR=Q,, ... { "3 'g] with triangular Ay« (10)

A “strong rank-revealing factorization” has this form with extra conditions on the blocks:
oi(A) isnotsmall, o;(C)isnotiarge, A~'B isnotlarge. Those properties are valuable
in finding a basis for the (computational} nullspace of A. Allow us to assume that these
properties hold, and go forward to use the first & columns of € in the CMR
and UXVT factorizations of A.

144 Computations with Large Matrices

Low Rank Approximation by a Partial QR

The previous pages assumed that the rank r of the matrix A is relatively smail. Often this
assumption is false but effectively true. We mean that

A = (matrix A, of low rank r) + (matrix E of small norm).

We want to find and compute with the low rank matrix 4,. We can estimate the error in A,
that comes from ignoring the matrix £ (large matrix, small norm}.

Martinsson proposes that the low rank approximation A, can be computed using Q.
The first r steps of that algorithm (with column pivoting) produce &, R, :

A= Q.R, 4 E = (r columns g, }(r rows r})+(n—r columns orthegonal to those g;).

[[An—r|| is small! Since this algerithm includes column exchanges, those columns in
Apn—r might not be the last n — r colurmns of A. But an n by n column permutation P will
move those columns to the back of AP. The r important columns are ¢/ R, at the front:

AP=[Q.R, An,] and A=[Q.R.PT A, PT].| (D

Q. R, PT is the good rank r approximation to A. Fortunately the QR algorithm with
pivoting computes the column norms, s¢ we know when ||A,_. || is below our preset
bound e. Then we stop.

This is an effective algorithm. But it surrendered on the goal of choesing columns
directly from A. It succeeded on the goal of orthonormal columns (in Q).

We come back to low rank approximation in I[.4 and in Part I1I of this book.

An Approximate SVD from the Partial QR

To complete the circle we aim now for a good approximation to the SVD. This comes from
the close approximation in equation {11) to A = QQR. The error matrix F has || E]|p < e.

smallerror B A _ (@) (R PY) (B (12)
mxn mxr rXn)

Two quick steps are enough to producc an 3VD very close to A, with the same error ' ;
First, find the SVD of the matrix R,.PT with only r rows: R,PT = U, ZVT
Second, multiply €, times U to find U = Q.U = orthogonal times orthogonal :

Approximate SVD

with error E A=QU.XVT L+ E=USVT L+ E (13)

So a small SVD and a large () R give a large (approximate) SVD.

Problem Set I1.3

1 The usual measure of danger from roundoff error is the condition number || A|| || A~ i
Show why that number is squared if we work with AT A instead of A4,

2 Write down a 2 by 2 matrix A with condition aumber > 1000. What is A~!? Why
does A also have condition number > 1000 ?

3 The reason that ||A4|| and ||A™|| both appear is that we work with relative error.
If Az = band A{x + Az} = b+ Abthen A Az = Ab. Show that

[|A|| 1y 18]
T S HATATH S
|l |l&l}

4 Why does Amax /A, equal the condition number for positive definite A?

5 Important What is the condition number of an orthogonal matrix ¢ ?

6 Suppose the columns of ¢ contains an orthonormal basis for the column space of A
and the rows of K contains an orthonormal basis for the row space. Will those bases
contain the singular vectors v and « in the SVD 7

7 If C' and R contain bases for the column space and row space of A, why does
A = CM R for some square invertible matrix A ?

8 Here is a matrix whose numerical rank is 2. The number ¢ = machine epsilon
is 2718, What orthonormal vecters g, and g, will give a good basis for the column *
space—a basis that pivoted QQ.R will probably choose ?

1 1 1
A=1|1 14¢ 0
L 1 0
] Approximate that matrix A as QRPT + (order ¢) for a permutation matrix P.
10 Which 2 by 2 submatrix Bmax of A (rank 2) has the largest determtinant ?

11.3. Three Bases for the Column Space 145

A=

I e o

51
3 5 Factor A = ¥ Bmax Z as in equation (6).
11

146 Computations with Large Matrices

I.4 Randomized Linear Algebra

This section on randomization will be incomplete. The first reason is that it is not
wriiten by an expert. This book cannot be a detailed guide to computing the SVD or QR.
Yet it still seems possible—and very worthwhile—to report on key ideas and algorithms
that have rnade those computations possible for large matrices.

Among those tdeas are important new approaches that begin with random vectors .
Then the products Ax are random samples from the column space of A, With r
of those vectors (or » 4+ 10 to be on the safe side, protecting against random accidents)
we have a potentially thin matrix to compute, The speedup is impressive. (This is also
the starting point in Section IIL5 for “compressed sensing” that speeds vwp acquisition and
processing of digital signals.)

This section will introduce and describe the basic steps of randomized computations.
That idea has brought a revolution in numerical linear algebra for big matrices.

The first example is matrix multiplication. If 4 and B are m by n and n by p, then
' = AB normally needs mnyp individual multiplications : n multiplications for each of
the mp inner products in AR, or mp multiplications for each of the n outer products
(columns times rows). Multiplving very large matrices is expensive.

Suppose we just sample A and B instead of using the complete matrices. A few
entries a;; and ;3 don’t tell us much. But s columns ay. from A4 and s comesponding rows
bE from B will give us s rank one matrices ay, ka. If those are “typical” outer products,
we can multiply their sum by n/s—to estimate the true AB = sum of n products.
Notice that this uses column-row products (highly recommended) and not row-column
inner products (low level).

There is more to this idea. Random sampling uses some basic statistics. Large products
akbf cbviously make greater contributions to ¢ = AB. We can and will increase the
chances of those larger samples by changing from uniform probability to “norm-squared
sampling”. We have to compensate in our formulas, which aim to have the correct
expected value and the lowest variance. You will see the value of statistical ideas !

Qur presentation will mostly follow Michael Mahoney's lecture notes for his course
at UC Berkeley, They are well organized and well written—a generous and important
contribution. The 2013 course notes were posted in 2016 and they begin with this
quick overview of random matrix multiplication :

A sampling matrix S will act on the columns of A and rows of 12 to produce C' and R:
C=AS and R=STB and CR= ASSTB ~ AB. (1)
We multiply C' and R instead of the full and correct matrices A and B, [t will not be true

that SS7 is close to I. But it will be true that the expected value of SST is I. There you
see the key to randomization.

1.4, Randomized Linear Algebra 147

1 Colummn-row sampling Each column of .5 has one nonzero entry (call it sg).
Then AS picks out individual columns a; directly from A, and ST B picks out the
corresponding rows b} of B. Multiplying AS times ST B gives a sum of column-
row products abl weighted by the numbers s7.

One product sZa.b;. comes from one column of AS and one row of STB ;

0 .
ap - 5 | = spag [0 5. 0] bg = Skb’_{ (2)
0 .

Altogether AB is approximated by the weighted sum CR = 3 s7axb; of a random
selection of s rank-one matrices. The selection is random, but we choose the weights.

2 Sampling by random projections § The matrix 5 is still thin, so AS has many
fewer columns than A. The columns of & now contain multiple nonzeros, so AS
mixes columns as it projects C{A) into lower dimensions. Then ASSTB is a
more uniform approximation to AB.

We start with random sampling. Later we describe random projections. Those can produce
fast and useful preconditioners for the original matrix AB—and they may reduce the
computational cost of graph clustering.

Practice with Computing Mean and Variance

Here is a greatly simplified sampling problem. Instead of a matrix, we start with a vector _
v = (a,b). We will sample it twice (2 independent trials). Then we compute the mean m
and the variance o2, Section V.1 will describe many more examples of m and o2,

First sample : With probabilities 3 and , choose {a,0) or (0, b)

Second sample : Repeat exactly. Then add the two samples to get (z1, z2)
Computing the mean m = E[{z, z3}] = expected value = average output (1, z)
First way: The average value of sample 1 is 3(a,0) + 3(0,b) = 3(a,b)
We have two independent identical trials (two samples). Add their means :
1
2
Our two-sample experiment was unbiased. The desired mean was achieved.
Second way : The experiment had the following 4 ocutcomes each with probability }1

(2,0)+{a,0) = (2a,0) (a,0)+(0,b) = {a,b) = (0,b)+{a,0) (0,b)+(0,b) = (0,2b)

Overall mean m = E[(z, ®2)] = =(a, b} + é(a, b =(a,b)

The mean is the sum of alt four outputs weighted by their probabilities (all %) :

Overall mean m = 3(20,, 0y + }l(a, by + i(a, by + 3(0, 2b) = (a, b) as before

148 Computations with Large Malrices

The variance o? = weighted average of the squared distances from outputs to mean.
We will use two equivalent ways to compute ¢? = E [{(z — mean))? = E [z?] — (mean)?.

First way to find variance : Add all (outputs — mean)® weighted by their probabilities £

2 2

i [(m, 0) - (a, b)] 2 + % [(a, b) — (a}b}} + 3 [(a, b) - (a, b)r + }1 {(o, 2b) — (e, b)] =

Yooy 1 1 L2 2y = Lig2 p2
3@ 5 + 0,00+ 1(0,0) + 7(a% %) = S (a?,8?)

Second way: Add all (outputs)? weighted by their probabilities and subtract (mean)?

1 1 1 1 (
2__ - 2 - 2 - 2 - 2 _ 2
o _4(2@0) +4(a,b) +4(a,b) +4(0,25) {(a,b)

_2@202 2b2b222_122
—(a+‘4—+z+0 a,0+4+4+b b)—2(a,b) (3)
Observation: If & is larger than a, we could keep the cerrect mezn (a, b) and reduce the
variance o2 by giving greater probability to choosing the larger samples (0,5).
Matrix sampling will do this (see Problem 7 at the end of this Section I1.4).

This page used 5 = 2 trials for n = 2 numbers a, b. Not useful, no time was saved. The
next pages use § << n trials for a matrix with n columns. The mean of AB stays correct.

Random Matrix Multiplication with the Correct Mean AB

The n by s sampling matrix S will contain s columns. Each column of S has one nonzero.
For column j of 5, the position of that nonzero is random! If the random choice is
row k& = k(j), the nonzero in row k, columm j of S is sz;. The sampled matrix is AS:

Columns 1 to s of AS are numbers s;; times columns k(1) to k(s) of A.

Here is an example with s = 2 trials. Tt samples columns £{1) = 1 and k{2) = 3 from A:

811 0
AS=| a; a» aj 0 0 = | si11G1 S3za3
0 sz

The key question is: How do we choose those numbers Si; ? The answer is: They
come from probabilities! We intend to do random sampling. So we must choose those
s columns of A in a random way (allowing all columns a chance) in random multiplication :

Assign probabilities p; to all of the n columns of A, withp, + - + p, = 1
Choose s columns with replacement (so columns can be chosen more than once)
If column k of A is chosen (with row & of B), multiply both of those by 1/ /3px
Then {column & of A} (row k of B)/sp goes into our random product AB.

11.4. Randomized Linear Algebra 149

Conclusion to be verified: The expected value of the . by n matrix ST is I
Same conclusion in other words : The expected value of ASSTBis AB
Thus random sampling computes the matrix praoduct with the correct mean AB

Proof. There are s identical! trials. Each trial chooses a column-row pair of A and B with
probabilities p; to p, (column from A times row from B divided by ,/57; 2 = 5p;).
Then the expected value = mean = average outcome from each trial is

| lof A lof B 1 f A f B
{column 1 o Sp) (row 1 of B) +_”+pn(coumnno Sp) (rown o) @
1 1

P1

The p's cancel, This is exactly AB/s. And since there are s trials, the expected value
for the randomized multiplication (AS){(ST B} is AB.

Conclusion All well so far—but we have to choose the probabilities p; to py.
Any choice (adding to 1) gives the correct expected value AB (the mean). But the choice
of the p’s can strongly atfect the variance !

Uniform sampling would choose equal probabilities p = 1/n. This is reasonable if
the columns of A (and also the rows of B} have similar [engths. But suppose that
(column 1 of A} (row 1 of B) makes up most of AB-—it dominates the other column-row
outer products. Then we don’t want to randomly miss it.

Cur approach here is 0 use unequal probabilities p;. We now state and compute the
best p's. And we mention an entirely different option: Iatroduce a mixing matrix M
and work with AM and A/ ~1B. Then use equal probabilities p; for the randomly mixed .
columns of A and rows of B.

Norm-squared Sampling Minimizes the Variance

Norm-squared sampling chooses the probabilities p; proportional to the numbers
|lcolumnn 7 of A|| ||row j of B||. In the important case B = A7, the p, are proportional
to ||column j of A|{2. The name “norm-squared” or “length-squared” is then natural.
We still have to scale all the probabilities p; by a suitable constant C' so they add to 1:

llas 111651
C

1 : . , n ’
Pi=g ||column j of A|| {jrow j of B]|= with C=370_, [|a;l| ||b;FH .(5)

Now we will painstakingly compute the variance for randomized matrix multiplication
using any probabilities p;—and we will verify that the choice af p's in equation (5)
minimizes the variance. Best to choose large columns and rows more often. The line
after equation (4) showed that all choices give the correct mean E[ASSTB] = AB.

150 Computations with Large Matrices

Each of the s trials produces a mafrix X; = ajb?/spj with probability p;. Its ¢, &
entry is (X;);x = @i;b;/3p;. In each trial we compute the mean: the p; cancel,

Mean E[X]=) p;X; = éZajb} = %AB asin (4)
F=1 1

The variance for one trial is by definition E[X ?] — (E[X])2. Adding the resulis for
& independent trials multiplies the one-irial mean and also the one-trial variance by s. The
mean becomes AB as we know. The vartance will be computed in the Frobenius norm
(sum of squares of matrix entries). Compare the correct AB with the random C R ;

. 2 . a2 b? 1 2
Variance E[||AB - CR||F} =" g - - |AB||-

)
ik 7=1 505
(6)
" llag 71171171 2
(sum first over ¢ and k) = Z 2 — —||AB||%
= ap; s
Finally we choose probabilities p1, . .., pn to minimize this variance. Equation (5) reveals
the minimizing choice, proved below. For that choice p; = |la;|] ||b;f||/C from (5),

the terms ||a;||? ||b}"[|2/pj in equation (6) become C|{a;l] ||b;rl|. Their sum is C2,
The smallest variance (using those optimal p;) is our final result:

oIz crlf |- S les et - hasily -3 (c2 - llaify).| o

Here is the proof that {5) gives the probabilities p; that minimize the variance in (6).
Multiply the constraint p; + -+ + pp, = 1 by a Lagrange multiplier A. Add it to the
function in (6). This is the key to Lagrange multipliers :

= llag P 157117 1 : -
L(pl!'“\pna)‘)=Z_J#L—;||AB||;‘+A ij_l
1

i=1

Take the partial derivatives dL/3Jp; to find the minimizing p; {the optimal probabilities) :

5L 1
== =0 becomes — |la;||2||bT}Z = A (8)
o, o Hasll* |18, 1]

This says that p; = ||a;l} ||b?||/\/ 5. Choose the Lagrange multiplier A so that > p; = 1.
T
_ e l1651]

n n . bT
Zl:pj = ; lali\/g—'xj—“ = 1l gives vsA = Cand p; = — predicted in (5).

Norm-squared sampling uses the optimal probabilities p; for minimum variance.

11.4. Randomized Linear Algebra ' 151

For very large matrices, stored outside of Random Access Memory (RAM), norm-squared
sampling may ask to read the matrix twice. The first pass computes the squared length
of each column of A and row of B. Then (inside RAM) the probabilities p; are found,
and s columns and rows are chosen for sampling. The second pass puts the sampling
approximation C R into fast memory,

Applications of Randomized Matrix Multiplication

Norm-squared sampling = length-squared sampling can help to solve these central
problems of numerical linear algebra:

1 Interpolative approximation A == CM R : C and R use columns and rows of A
2 Approximation of A by a low rank matrix

3 Approximation of the SVD of A

CM R aims to produce an accurate “sketch” of A from & of its columns and its rows.
The columns will go into £ and the rows will go into R. Then a piixing matrix M connects
C with R to produce C'M R = A. The dimensions are (m x k) (k x k) (kxn) = (mxn).
If A is sparse then C and R will be sparse, because they come directly from A.

Notice the fast multiplication (C(M{Rv))}. We never explicitly multiply CM R.

Understand first that 4 =~ CR is probably not true. The column space of A will be
accurately captured by C' (we hope). The row space of A will be captured by R.
“The spaces are right but not the matrix” Every matrix of the form C'M R has the same
good column and row spaces (for invertible M), We want to choose M so that CM R is
close to A. We still avoid the notation C'U R and reserve the letter U for the SVD.

To start, I will look for the mixing matrix M that is theoretically best. Good choices
of M have been developed and tested in the sampling literature. Here are six important
references to randomized linear algebra:

N. Halko, P. -G. Martinsson, and J. A. Tropp, Finding structure with randomness: proba-
bilistic algorithms for constructing approximate matrix decompositions. SIAM Review 53
(2011) 217-288.

R. Kannan and 5. Vempala, Randomized algorithms in numerical linear algebra, Acta
Numerica 26 (2017) 95-135.

E. Liberty, E. Woolfe, P. -G. Martinsson, V. Rokhlin, M. Tygert, Randomized algorithis
for the low-rank approximation of matrices, PNAS 104 (2007) no. 51, 20167-20172.

M. W. Mahoney, Lecture Notes on Randomized Linear Algebra. arXiv:1608.04481.

P.-G. Martinsson, Compressing rank-structured matrices via randomized sampling,
arXiv :1503.07152.

D. P. Woodruff, Sketching as a tool for numerical linear algebra. Foundations and Trends
in Theorerical Computer Science 10 (2014) 1-157.

152 Computations with Large Matrices

Best M in A =~ CM R : Frobenius Norm and L2 Norm

We are given A, C, R, Suppose (= contains an orthonormal basis for the column space

of C. Then QoQF is the projection matrix onto that subspace. Similarly Qg contains

an orthonormal basis for C(RT) and QRQE is the projection matrix onto that row space.
% contains an orthonormal basis for the nullspace N(R), and QF for N(C'T).

By definition, the projection of A into row/column spaces is A= QL AQR. The
purpose of these projections is to separate the subspaces where we choose M from
the subspaces that we cannot change. Yuji Nakatsukasa clarified and solved this problem
{conversations in Oxford). In the Frobenius norm, that solution is especially neat.

The orthogonal matrices [Q¢ Q%] and [@r QF | won’t change the Frobenius and
L? norms of A — CMR. But they help us to see the optimal M to minimize this error.

[Qc @5 1" (A—CMR)[Q& Qﬁ]:{é -g]_[C}\g'R 0

] .)

Should we choose M so that A = CMR? In the Frobenius norm, this is optimal !

Frobenius deals separately with every entry in each block of these matrices. The error
is smaliest when the top corner is exactly right: CME = A. This corner is the (only)
preblem that we control. We have found the same A{ as in sections 1.3 and L.1.

. | min [o x 10
Frobenius norm M ||A—CMR|[F—H[Y Zz]HF (10}

In the L2 matrix norm, we might expect the same plan to succeed. But a zero block in the
corner may not give the smallest L2 norm !
Sl o
LZ

On the left, the columns are orthogonal with length +/2. Both singular values have 02 = 2.
On the right, the larger singular value has of = (3 + v/B) > 2. The zero submatrix
produced a larger L2 norm for the whole matrix.

Example H[-1l ”‘ is smaller than ‘
11 L2

The optimal submatrix is a beautiful problem solved by Davis, Kahan, and Weinberger
in 1982, The optimal M often does not make CM E = A. But it reduces the L2 norm to
the larger of |{[Y Z]|| and ||[XT Z7)||— a smaller L? norm is clearly impossible in (10).

In the example the smallest L? norm was achieved by that submatrix —1 (not zero).

Randomized Matrix Factorizations

Now we come to a summary of our subject. Orthogonal matrices are the goal in 4 = QR
and A = UZVT. The matrix A is too large for exact factorizations—maybe too large to
read every entry aq;. If we start from an (m x k) (k x 7} approximation A = CB, then
Halko-Martinsson-Tropp find the QR and UXVT factorizations quickly and accurately.

1.4. Randomized Linear Algebra 153

Here are fast decompositions starting from a randomized A = CB,

{A == QR) Facior C into Q1 ;. Factor R; B into (Jo Ra. Then A = (Q)1Q2)Rs.
(A= UXLVT) FromC = @R, factor R1 B inte U;ZVT. Choose U = Q1 Us.

Projections .J and Projection Matrices P

A “projection” of m-dimensional space R™ to k-dimensional space RF is a k by m matrix.
In case that matrix J has full row rank k, then k& < m and the projections fill all of R”.

A specially nice case is when the & rows of J are orthonormal. This means that
JJT = I. Then the rank is certainly & and the colurn space C{J) is all of R¥.

Notice that a projection J is different from a projection matrix P. P is square
{m by m). lts rank is & < m (except when P = I). Its column space is a k-dimensional
subspace of R™ (quite different from the vector space R*). And the key property of the
projection matrix is P2 = P. If we project perpendicularly onto the column space,
the projection Pb is closest to b in the wsual norm ||b — Pb||. Then P is also symmetric.

J and P have one nice connection. In case J has orthonormal rows, then JT.J
is a symmetric projection matrix P. You see that P? = JT(JJT)J = JTIJ = P

Example 1 Projection J = [cos0 sind] with JJT = [cos? @ + sin® 6] = [1]

cos’f# cosfsind

_ p2
cosfsingd sin®@ =P

Projection matrix P = JTJ =

A symmetric P projects orthogonally onto its column space. Here that is C{JT).

Random Projections

Suppose the entries of a k& by m projection J are independent random variables. In the
simplest case they are drawn from a normal distribution (a Gaussian) with meanm =
and variance ¢? = 1/k. We will show that the expected value of P = JT.J is the
identity matrix. In other words, the expected length of the projection v = Ju equals
the length of u.

1. The (4,4) entry on the diagonal of JTJ is the sum JZ, + - - + JZ,. Those squares
are independent samples, each with mean 1/%. (With zero mean for each entry of J,
the expected valuc of the square is the variance ¢? = 1/k.) Then the mean (the
expected value) of the sum of k terms is k(1 /k) = 1.

2. The {4, §) entry off the diagonal of JTJ is the sum Jiidi; + oo+ JiJi;. Each of
those terms is the product of two independent variables with mean zero. So the mean
of each term is zero, and the mean of their sum (JTJ),; is also zero.

Thus E[JTJ] = I = identity matrix of size m.

154 Computations with Large Matrices

Using columns times rows, each matrix (row i of J)T (row 4 of .J) has expectation I /&.
The sum has expectation I. Please notice what that means.

“In expectation” the m codumns of .J are orthonormal.
Therefore in expectation J& has the same length as x:

E[||Jz|l?)=E[zTJ Iz | =E [z x| = ||=||>. (12)

This random projection shows why linear algebra and probability sometimes seem to be
different worlds within mathematics. In linear algebra, a & by m matrix J with & < m
could not have rank m. Then JTJ could not have rank m. But now take expected
values ! E[J] can be the zero matrix and E[JT.J] can be the identity matrix. For 1 by 1
matrices this would be the most ordinary thing in the world : mean zero and variance one,

Here is the key point. On average, the squared distance between x and v in R™ is the
same as the squared distance between Jx and Jy in R*. “The projection J into a lower
dimensicnal space preserves distances in an average sense.” What we really want is to
preserve the actual distances within a factor 1 + ¢, for a set of n. given points in R™,

That property of J is the subject of the famous Fohnson-Lindenstrauss Lemma.
It seems amazing that points in a high dimension can be transformed linearly to points
in a low dimension, with very small chantge in the distance between every pair of points.

How low can the low dimension be ? This is a crucial question.

Dimension & = 1 is Too Low

Suppose we have . = 3 points @, 2, @3 in the plane R Is there a 1 by 2 matrix .J that
nearly preserves their distances 7 We can certainly achieve ||J&; — Jxs|| = ||z — 22|
If the third point &3 = (@, + a2) is halfway between, then by linearity Jz will be
${Jx1 + Jz) and all distances are perfect. But if 1, z,, o3 give an equilateral triangle,
then 23 has a component in the nullspace of J. That component will be lost (projected
to zero). The lengths ||Ja; — Jas|| and |[Jxo — Jxa{l will be seriously reduced,

Johason-Lindenstrauss looked at random k by m projections of n points in R™.
They proved that if the dimension k is large enough, then one of those projections
(in fact most of them) will nearly preserve distances between the n points.

“In high dimensions, random vectors are orthogonal with probability near 1.”

The Johnson-Lindenstrauss Lemma

Suppose 3, ..., T, are any » points in R™, and & > (8logri)/€2. Then there is
a projection .J from R™ to R* so that all distances between the n points are nearly
preserved :

(1= &) llms — 2511° < [Tz — 52 < (1 +) || — a0yl 2 (13

[1.4. Randomized Linear Algebra 155

A key point is that the dimension & must grow like (logn)/e2. An amazing step in the
proof shows that a random k by m projection J is very likely to keep the » points apart.
Then there must be many specific J's that confirm equation (13) in the Lemma.

If a random choice has a positive probability
of success then a successful choice must exist.
Probabilistic hypothesis, deterministic conclusion.

That is the “probabilistic method”. Multiple proofs of Johnson-Lindenstrauss are easily
found, and we liked the one on this website : cseweb.ucsd.edu/~dasgupta/papers/jl.pdf.

One of the 18.065 class projects chose an example in which the Lemma requires
& > 2800. The accuracy of distances {|@; — ;|| did break down for & = 2700. Also
interesting : Clustering of points survived even when distances went wrong.

Randomized Matrix Approximation

To surmmarize this topic we will follow Per-Gunnar Martinssen : Randomtized methods for
mairix computations, arXiv : 1607.01649. First we identify the goals.

1 Rank k factorizations A = Y (Yt A) and § = UDUT and A = (QU)DVT,
2 Interpelative decompositions A =2 CM R and A =2 CZ using columns of A in C.

The randomized m by & factor ¥V is AG, for an n by k Gaussian random matrix G.
Always Y'Yt is the orthogonal projection onto the column space of ¥. So YY1 A is
almost surely a very good rank X approximation to A. This is the random part.

How does an approximate SVD follow from A = YY ' A ? For an orthonormal column®
basis, first apply the QR factorization to Y. QQT is the same projection as YY+. Then
find the SVD of the small matrix QTA = UDV™. The desired SVD is A = (QU)DV'T.

Notice the two-stage construction of that SVD. First we fix an approximate celumn
space, reducing the problem to “size £”. Then any desired factorization is deterministic
and fast and essentially exact. Martinsson shows how those stages can combine into a
streaming algoritiun that accesses each entry of .4 onlty once. The price is ill-conditioning
and the remedy is over-sampling.

For positive semidefinite S, an extra Nystrom step improves the factors at low cost.

Finally we look at A = CZ or C'M R, where {' contains actual columns of A:
preserving sparsity and nonnegativity. The accuracy of a deterministic algorithm is the
same as pivoted AP =~ QR (not always as close as Eckart-Young). Randomized algo-
rithms are faster and better, if 4 has rapidly decaying singular values as in Section IIL.3.

For a clear picture of randomized matrix algorithms, read Martinsson’s paper and
Kannan-Vempala: Randomized algorithms in numerical linear algebra, Acta Numerica
{2017), 95-135. These authors discovered norm-squared sampling.

156 Computations with Large Matrices

Problem Set I1.4

1 Given positive numbers ay, . . . , @p, find positive numbers p; . .., py, so that

a? a’
pteo+pp=1 and V= p—+---+—"-
1

reaches its minimum {a; + - - -+a,)°.
Dn

The derivatives of L(p, A) = V' — A(p1 + -+ 4 pn — 1) are zero as in equation (8).

2 (for functions) Given a(z} > 0 find p(z) > O by analogy with Problem 1, so that

/01 p{x)dr =1 and /01 (2}((2)))2 dr is a minimum.

3 Provethatn{a? + -+ a2) > (a1 +--- +a,)* This is Problem 1 with p; = 1/n.
Back in Problem Set 1.11 you proved that ||a}|1 < /n|e||2.

4 If M = 117 is the 2 by n matrix of 1’s, prove that nJ — M is positive semidefinite.
Problem 3 was the energy test. For Problem 4, find the eigenvalues of n/ — M.

5 Incase B = AT show that the “norm-squared” or “length-squared” probabilities Pi
in the text equation (5) are ||a;||?/[|A||%. Why is C = 3" [|la;|{ ||&;1] = (| A% ?

6 The variance computed in equation (7) cannot be negative ! Show this directly ;
I1AB|I% < (3 llas|l 18] (1)

Problem 7 returns to the example in the text of sampling {a,b) to get (g, 0) or (0,b).
If ¥ > a then the variance will be reduced when b is chosen more often. This is
achieved by optimizing the probabilities p and 1 — p to minimize a2 :

2 2

Variance o2 =p %2- +{1 —p} 5 - {mean)?

T

(1-p)

7 Show that p = a/{a +b)and 1 — p = b/{a + b) minimize that variance. (The mean
is the same for all p.) This optimal p agrees with equation (5) when applied to the
small matrix multiplication AB = [1] [z 5]. In this case C' = g + b in equation {5).

8 In the randomized construction on the previous page, show why (QU)DVT
(the approximate SVD in italics) is close to A. Use the steps A =~ YY+ 4 and
Y~ QRand QTA = UDVT. Problem 11.2.11 on page 135 is a key.

Part I11

Low Rank and Compressed

IIL1

1.2

1IL.3

1114

IILS

Sensing

Changes in A~ from Changes in A
Interlacing Eigenvalues and Low Rank Signals
Rapidly Decaying Singular Values

Split Algorithms for £2 4 £1

Compressed Sensing and Matrix Completion

Part III : Low Rank and Compressed Sensing

This part of the book looks at three types of low rank matrices :
1. Matrices that truly have a small rank (uvT is an extreme case with rank = 1)
2. Matrices that have exponentially decreasing singular values (low effective rank).
3. Incomplete matrices (missing entries) that are completed to low rank matrices.

The first type are not invertible (because rank < n). The second type are invertible in
theory but not in practice. The matrix with entries (¢ + j — 1)~ ! is a famous example.
How can you recognize that this matrix or another matrix has very low effective rank ?

The third question—matrix completion—is approached in Section IIL.5. We create
a minimization problem that applies to recommender matrices :

Minimize || A||» over all possible choices of the missing entries,

That “nuclear norm™ gives a well-posed problem to replace a nonconvex problem:
minimizing rank. Nuclear norms are corjectured to be important in gradient descent.

The rank of a matrix corresponds in some deep way to the number of nonzeros in a
vector. In that analogy, a low rank matrix is like a sparse vector. Again, the number
of nonzeros in & is not a norm! That number is sometimes writtent as {|z||;, but this
“¢0 norm” violates the rule ||2z|| = 2||z||. We don’t double the number of nonzeros.

It is highly important to find sparse solutions to Az = b. By a seeming miracle,
sparse solutions come by minimizing the €' norm ||z||1 = |z1| + - + |z,|. This fact
has led to a new world of compressed sensing, with applications throughowut engineering
and medicine {(including changes in the machines for Magnetic Resonance Imaging).
Algorithms for ¢! minimization are described and compared in II1.4.

Section IIL.1 opens this chapter with a famous formula for (/ — uwvT)™? and
{A — wvT)~!. This is the Sherman-Morrison-Woodbury formula. It shows that the
change in the inverse matrix also has rank 1 (if the matrix remains invertible). This
formula with its extension to higher rank perturbations (A — UVT)~! is fundamental.

We also compute the derivatives of A(t)™1 and Mt) and o(t) when A varies with t,

159

160 Low Rank and Compressed Sensing

III.1 Changes in A~! from Changes in A

Suppose we subtract a low rank matrix from A. The next section estimates the change
in eigenvalues and the change in singular values. This section finds an exact formula
for the change in A~!. The formula is called the matrix inversion lemma by some
authors. To others it is better known as the Sherman-Morrison-Woodbury formula.
Those names from engineering and statistics correspond to updating and downdating
formulas in numericai analysis.

This formula is the key to updating the solution to a linear system Ax = b. The change
could be in an existing row or column of A, or in adding/removing a row or column.
Those would be rank one changes. We start with this simple example, when 4 = .

T

Theinverseof M =1 —uv® is M~1 =14 == o (D
— v U

There are two striking features of this formula. The first is that the correction to M ™1 is
also rank one. That is the final term uvT /(1—vTa) in the formula. The second feature
is that this correction term can become infinite. Then A4 is not invertible: no M ™!,
This occurs if the number v 2 happens to be 1. Equation (1) ends with a division by
zero, In this case the formula fails. M = I — uoT is not invertible because Mu = 0

Mu=(I-uvDu=2u—uvTu)=0 if vTu=1. (2)
The simplest proof of formula (1) is a direct multiplication of M times M ! :

T

uv uv -

I —uv
=7 T (
) uvy +_1—vTu

T T
) =I—ueT +uvT.

(3

71 (T —apaeT
MM =(I uv)(l+1_vTu

You see how the number v "« moves outside the matrix wv T in that key final step.

Now we have shown that formula (1} is correct. But we haven’t shown where it came
from. One good way is to introduce an “extension” of [to a matrix E with a new row
and a new column;

I u
T 1

Extended matrix E= { } has determinant D = 1 — vTu

Elimination gives two ways to find £, First, subtract ©T times row 1 of E from row 2:

I 0 I w _ I «17'[1 o0
{—UTI}E:{OD}'ThenElz{UD-} [—‘UTI] {4)

[IL1. Changesin A~ from Changes in A 161

The second way subtracts « times the second row of E from its first row :

I —u], [I-wT 0 o [IT-uw® 0171 -u
[0 1]‘9_[T 1} Then & _[»T 1] e 1]')

Now compare those two formulas for the same E~'. Problem 2 does the algebra:

Tweforms [I+uD 0T —uD7*] [M1 —M~ly ®
of E~* ~DwT D7 | T | ™M 14eTM | ©

The 1.1 blocks say that M~ = I + uD " YoT. This is formula (1), with D = 1 — vTw.

The Inverseof M =T — UVT

We can take a big step with no effort. Instead of a perturbation ©v ™ of rank 1, suppose we
have a perturbation UV T of rank k. The matrix U is n by k and the matix V'T is &k by n.
So we have & columns and k rows exactly as we had one column % and one row »*.

The formula for A ~! stays exactly the same ! But there are two sizes [, and Iy

Theinverseof M =1, —UVT is M ' =1, + UL, — VI IVT | ()

This brings out an important point about these inverse formulas, We are exchanging
an inverse of size n for an inverse of size k. Since & = 1 at the beginning of this section,
we had an inverse of size 1 which was just an ordinary division by the number 1 — o7 2.}
Now VTU is (k x n) (n x k). We have a k by k matrix Iy — VTU to invert, not n by n.

The fast proof of formula (7) is again a direct check that MM~ = I:

(I.=UVD L+ UL VI WD = I, -ovT (I, - UVTYU (L -V -Vt

Replace (I, — UV T)U in that equation by U (I, — V' TU). This is a neat identity !
The right side reduces to I, — UVT 4+ UVT which is I,,. This proves formula (7).

Again there is an extended matrix E of size n + k that holds the key :

E :{ é"r} ? } has determinant = det(I,, — UVT) = det(I, — VTU).| 8}
k :

If & << n, the right hand side of (7} is probably easier and faster than a direct attack
on the left hand side. The matrix VT of size &k is smaller than UV'T of size n.

1 1 1
Example 1 Whatistheinverseof ¥ =JT—{1 1 1| ?Inthiscaseu=v= |1
- 1 ©t 1 1
vt p | !
Solution HerewTu=3and M~} =1+ .SoM~lequalsf{—= |1 1
1-3 2 11 1

162 Low Rank and Compressed Sensing

0 1 1 1 10
Example2 M =7-(0 0 1| =I-UVTthen M-t = (0 1 1
0 0 0 0 0 1

That came from writing the first displayed matrix as U/VT and reversing to VTU:

1 0][o 1 1 01 1 10 0 1
UVT=10 1|/0 0 1| and VTU=!0 0 1 01=[J
o0 00

-1
Then M~ above is Iy -{—U[I, -VTy]_IVT =L+U {(1] _i] vT,

The whole point is that the 3 by 3 matrix M ! came from inverting that bold 2 by 2.

Perturbing any Invertible Matrix A

Up to now we have started with the identity matrix f = I,. We modified it to T — uoT
and then to 7 — UV T. Change by rank 1 and then by rank k. To get the benefit of the full
Sherman-Morrison-Woodbury idea, we now go further : Starf with A instead of I.

Perturb any invertible A by a rank k matrix UV?T., Now M = A —UVT,

Sherman-Morrison-Woodbury formula

9
’ M~1 = (4 - UVT)"l = A1 4 A=W - VTA-U) VA= |)

Up to now A was I,. The final formula (9) still connects to an extension matrix E.

iSsuir:'ll::Zifilje = [f’r E}T } is invertible when M = A — UVT is invertible.

To find that inverse of E, we can do row operations to replace V'T by zeros:
. T 4-1 A U
Multiply row 1 by ¥V~ A™" and subtract from row 2 to get [0 I—-vVTa-ly]
Or we can do column operations to replace U by zeros:

Multiply cotumn 1 by A~1U and subtract from cotumn 2 to get

A 0
vt 1-vTa-ly
As in equation (6), we have two ways to invert E. These two forms of E~! must be equal.

ALy ANUCWTASY _attpet] [M MU 0)
OV A c-t |T|vre nevimp| (

Here Cis I — VTA-10 and M is A — UVT. The desired matrix is M ! (the inverse
when A is perturbed). Comparing the (1, 1) blocks in equation (1Q) produces equation (9}.

Summary The n by n inverse of M = A~UVT comes from the n by = inverse of A and
the & by k inverse of C'= T — VTA~1U. For a fast proof, multiply (9)by A — UVT,

L1 Changesin A™" from Changes in A 163

This is a good place to collect four closely related matrix identities. In every case, a
matrix B or AT or I/ on the left reappears on the right, even if it doesn’t commute with
AorV. Asin many proofs, the associative law is hiding in plain sight: B{(AB} = (BA)B.

B(I, + AB)= (I, + BA)B
B(l, + AB)"! = (I, + BA)"'B
AT(AAT + ALY Y = (ATA+ AL, L AT
Ul -VTU) = (I, ~UVTU

Ais mbynand B isn by m. The second identity includes the fact that 7+ AB is invertible

exactly when [4+ BA is invertible. In other words, —1 is not an eigenvalue of AB exactly

when —1 is not an eigenvalue of BA. AB and BA have the same nonzero eigenvalues.
The key as in Section 1.6 is that (I + AB)z = Qleadsto (I + BA)Bz = (.

The Derivative of A1

In a moment this section will turn to applications of the inverse formulas. First I turn to
matrix calculus ! The whole point of derivatives is to find the change in a function f(z)
when z is moved very slightly. That change Az produces a change A f. Then the ratio of
Af to Az approaches the derivative df /dz.

Here z is a matrix A. The functionis f(A) = A~', How does A~! change when
A changes? Up to now the change uwv™ or UVT was small in rank. Now the desired
change in A will be infinitesimally small, of any rank.

I start with the letter B = 4 + A4, and write down this very useful matrix formula:

B 1_-A1=B"1(A-B)A! (11)

You see that this equation is true. On the right side AA™! is and B~1B is I. In fact
(11) could lead to the earlier formulas for (A — UV®)~1, It shows instantly that if A — B
has rank 1 (or k), then B~ — A~ has rank 1 {or k). The matrices A and B are assumed
invertible, so multiplication by B~! or A~ has no effect on the rank.

Now think of 4 = A(f) as a matrix that changes with the time ¢. Its derivative at
each time ¢ is dA/dt. Of course A~ is also changing with the time ¢. We want to find its
derivative d A~ /dt. So we divide those changes AA = B—Aand AA~1 = B~1-4-!
by At. Now insert A + AA for B in equation (11} and let At — 0.

! -1 -1 ! -1 —1
AA AA dA™" _ dA 12
T = ({A+ AA) " A~ approaches : A n A | (12}

F]

For a 1 by 1 matrix A = ¢, with d4/dt = 1, we recover the derivative of 1/¢ as ~1/t2.
Problem 7 points out that the derivative of A® is not 24 dA/dt!

164 Low Rank and Compressed Sensing

Updating Least Squares

Section I1.2 discussed the least squares equation AT AZ = ATb—the “normal equations”
to minimize |}b ~ Ax||?. Suppose that a new equation arrives. Then A has a new row r
{1 by n) and there is a new measurement b, and a new ¥ :

T ,.T T T

[AT r][A] _%:[A r][b] is [ATA+2Tr] %= AT+ rTby . (13)
T bt1

The matrix in the new normal equations is AT A + »Tr. This is a rank one correction

to the original AT A. To update &, we do nof want to create and solve a whole new set of

normal equations. Instead we use the update formula:

[ATA+7Tr] ' =(ATA) T —c(ATA) 7 Tr (ATA) with ¢ = 1/(147(ATA) L rT)

14
To find ¢ quickly we only need to solve the old equation (ATA)y = »T. a9

Problem 4 will produce the least squares solution Zpew as an update of . The same
idea applies when 4 has M new rows instead of one. This is recursive least squares.

The Kalman Filter

Kalman noticed that this update idea also applies to dynamic least squares. That word
dynamic means that even without new data, the state vector @ is changing with time.
If & gives the position of a GPS satellite, that position will move by about Ax = vAt
(v = velocity). This approximation or a better one will be the state equation for @,
at the new time. Then a new measurement b,) at time ¢ + At will further update that
approximate position to Epew. [hope you see that we are now adding two new equations
(state equation and measurement eguation) to the original system Ax == b:

QOriginal A 0 " b
State npdate Apew = |-1 I [mold] =| wvaAt |. (15)
Measurement update 0 r new bt

We want the least squares solution of {15). And there is one more twist that makes
the Kalman filter formulas truly impressive (or truly complicated). The state eguation
and the measurement equation have their own covariance matrices. Those equations are
inexact {of course). The variance or covariance V measures their different reliabilities.
The normal equations ATAZ = ATb should properly be weighted by V=1 to become
ATV 1A% = ATV —1b. And in truth V itself has to be updated at each step.

Through all this, Kalman pursued the goal of using update formulas. Instead of solving
the full normal equations to learn Znew, he updated X4 in two steps.

The prediction Taee comes from the state eguation. Then comes the correction to
Tnew, using the new measurement bn,41 : Zero correction.

The gain matrix K is created from A and 7 and the covariance mairices Vgiae 2and V.
You see that if the new b, ; agrees perfectly with the prediction Zgiage, then there is a
zero correction in (16) from Zgrate t0 Tnew. -

IIE1. Changes in A™! from Changes in A 165

We also need to update the covariance of the whole system—measuring the reliability
of Tpew. In fact this V' is often the most important output. It measures the accuracy of the
whole system of sensors that produced T,).

For the GPS application, our text with Kai Bomre provides much more detail:
Algorithms for Global Positioning (Wellesley-Cambridge Press). The goal is to estimate
the accuracy of GPS measurements: very high accuracy for the measurement of tectonic
plates, lower accuracy for satellites, and much lower accuracy for the position of your car.

Quasi-Newton Update Methods

A completely different npdate occurs in approximate Newton methods to solve f(xz) =

Those are n equations for n unknowns 1, ... ,zn. The classical Newton’s method uses
the Jacobian matrix J(z) containing the first derivatives of each component of f;

Newt Jir = o4 d = J -t 17

ewton = and zpew = To)g — J(xolg) ™ Flzgrg) A7)

That is based on the fundamental approximation J Ax = A f of calculus. Here A f =
Flznew) — flagq) is —F(xgg) because our whole plan is to achieve f(znew)=0.

The difficulty is the Jacobian rmatrix J. For large n, even automatic differentiation
(the key to backpropagation in Chapter VII) will be slow. Instead of recomputing .J at
each iteration, quasi-Newton methods use an update formula J(xnew) = J(xq)q) + AJ.

In principle AJ involves the derivatives of J and therefore second derivatives of f.
The reward is second order accuracy and fast convergence of Newton’s method. But
the price of computing all secornd derivatives when n is large {as in deep learning)
may be impossibly high.

Quasi-Newton methods create a low rank update to J(zy)g) instead of computing
an entirely new Jacobian at znew. The update reflects the new information that comes
with computing Tpew in {(17). Because it is J~1 that appears in Newton’s method, the
update formula accounts for its rank one change to Jyay—without recomputing J—1.
Here is the key, and derivatives of f, ..., fn are not needed:

Quasi-Newton condition Jnew (Znew — 2014} = Fnew — Fold (18)

This is information JAx = Af in the direction we moved. Since equation (17) nses
J~! instead of J, we update J ™! to satisfy (18). The Sherman-Morrison formula will do
this. Or the “BFGS correction” is a rank-2 matrix discovered by four authors at the same
time. Another approach is to update the LU or the LDLT factors of Jgj4

Frequently the original n equations f{z) = 0 come from mmlmlzing a function
F(zy,...,3,). Then f = (0F/8x,,...,0F/8x,) is the gradient of this function F, and
JF = 0 at the minimum point. Now the Jacobian matrix J (first derivatives of f) becomes
a Hessian matrix H (second derivatives of F'). Its entries are Hj, = FF/Hz 4 0.,

If all goes well, Newton’s method quickly finds the point * where F is minimized and
its derivatives are f(x*) = 0. The quasi-Newton method that updates J approximately
instead of recomputing .J is far more affordable for large n. For extremely large n (as in
many problems of machine learning) the cost may still be excessive.

166 ~Low Rank and Compressed Sensing

Problem Set 111.1

T)=1 starts with the formula for a geometric series :

T — matrix :

1 Another approach to (I — uv
(1—z) '=1+2+22+3%+--- Apply that formula when x = uv

(I—uv™) ! =I+u” +uvTue” + woTuvTueT + -+

=I+ul+vTu+ v TuvTu+. ol

T
uv - .
Take z = vTw tosee] + . This is exactly equation (1) for (— uovT)~1L,

l1—-vTu

2 Find E~! from equation (4) with D = 1 — vTu and also from equation (5) :

I —uD™!
Nl

s 5= o)[4][

T (I —uvT)™ 1 0 1

Compare the 1, 1 blocks to find M ~! = {7 — u»T)~! in formula (1).

3 The final Sherman-Morrison-Woodbury formula (9) perturbs A by UV (rank £).
Write down that formula in the important case when k = 1:

M?i=(A-wT)yt=4"14

Test the formula on this small example:

a=[8] wefo] omfo] e [08]

4 Problem 3 found the inverse matrix M~ = {4 — wvT)~L, In solving the equation
My = b, we compute only the solution y and not the whole inverse matrix M1,
You can find ¢ in iwo easy steps:

Step1 Solve Ax = band Az = u. Compute D =1 — vT 2.

T
Step2 Theny=x+ %z is the solutionto My = (A — uvT)y = b.

Verify (A—uvT)iy = b. We solved two equations using A, no equations using M.
5 Prove that the final formula (9) is correct ! Muitiply equation (9)by A — UV'T,
Watch for the moment when (4 — UVT) A~ becomes [/{J — VTAID).

6 In the foolish case I/ = V = I,, equation (9) gives what formula for (4 — I}~!?
Can you prove it directly ?

10

11

Changes in 4! from Changes in A 167

Problem 4 extends to a rank k change M~ = (4 —~ UV ™)1, To solve the equation
My = b, we compute only the solution y and not the whole inverse matrix M =1

Step1 Solve Az = bandthe kequations AZ =U (Uand Zare nby k)

Step 2 Form the matrix C = I — VTZ and solve Cw = V7Tx. The desired
y=MT1bisy=x+ Zw.

Use (9) to verify that (A - UV T)y = b. We solved & + 1 equations using A
and we multiplied V™ Z, but we never used A = A — UV'T,

dA
What is the derivative of {A(t))2? The correct derivative is not 2 A(t) e
You must compute (A + AA)? and subtract A%, Divide by At and send At to 0.

Test formula (12) for the derivative of A~1(¢) when

1 g e [1T
A(t)—[{] 1] and A (t)-{o E
Suppose you know the average Fo)g of by, bz, ..., bggo. When bjgqg atrives, check

that the new average is a combination of Z,)4 and the mismatch b1gg0 — Tola:

bi+-+bdiooo b1+ -+ boso L { bt o+ bogo
1000 999 1000 \ %% 999 '

Tnew =

e s i CEREad fnd 1 Py : : H 1
This is 2 “Kalman filter” Tnew = Tod + 5a {b1000 — Fora) with gain matrix 006

The Kalman filter includes also a state equation 41 = Fxy with its own error
variance s°. The dynamic least squares problem allows & to “drift” as k increases :

1 © by o
-F 1 [a } = | 0 | with variances | s?
1 T1 bl a 2

With F = 1, divide both sides of those three equations by ¢, s, and ¢. Find Z5 and
77 by least squares, which gives more weight to the recent b;.

Bill Hager's paper on Updating the Inverse of a Matrix was extremely useful in

writing this section of the book : SIAM Review 31 {1989).

168 Low Rauk and Compressed Sensing

II1.2 Interlacing Eigenvalues and Low Rank Signals

The previous section found the change in A~! produced by a change in 4. We could
altow infinitesimal changes d 4 and also finite changes AA = —UV'T, The results were an
infinitesimal change or a finite change in the inverse matrix :

dA! 1dA

= =—A" A' and A4 = AT —VTATIUYWTATE ()

This section asks the same questions about the eigenvalues and singular values of A.

How do each A and each o change as the matrix A changes?

You will see nice formulas for dA/dt and do/dt. But not much is linear about
gigenvalues or singular values. Calculus succeeds for infinitesimal changes dA and do,
because the derivative is a linear operator, But we can’t expect to know exact values in
the jumps to A{A+ AA) or o{ A+ AA). Eigenvalues are more complicated than inverses.

Still there is good news. What can be achieved is remarkable. Here is a taste for a
symmetric matrix S. Suppose S changes to § + uu™ (a “positive” change of rank 1).
Its eigenvalues change from Ay > Az > ... toz = 22 > ... We expect increases
in eigenvalues since wul was positive semidefinite. But how large are the increases ?

Each eigenvalue z; of § 4+ uuT is not smaller than X; or greater than A;_,.
So the A’s and z’s are “interlaced”. Each z3,...,z, is between two \’s:

21 Z M 2222 A2 00 2 2n 2 A (2)

We have upper bounds on the eigenvalue changes even if we don’t have formulas for A,
There is one point to notice because it could be misunderstood. Suppose the change wu’l
in the matrix is Cg,qa (where g, is the second unit eigenvector of 5). Then Sq, = Aaq,
will see a jump in that eigenvalue to A + C, because (S + Cq,q3)g, = (A2 + Clq,-
That jurnp is large if C is large. So how could the second eigenvalue of S + uu’
possibly have z3 = Ay + C < A ?

Answer . If C is a big number, then A, 4+ C' is not the second eigenvalue of 5 + uaT
It becomes 21, the largest eigenvalue of the new matrix S + Cq.g3 (and its eigenvector
is g,). The original top etgenvalue A; of § is now the second eigenvalue zy of the new
matrix. So the statement (2) that zp < A; < z; ts the completely true statement (in this
exarmple) that zp = Ay is below 23 = hg + C.

We will connect this interlacing to the fact that the eigenvécl:ors between Ay = Amax
and A, = Ay are all saddle points of the ratio R(z) = 2" Sz /«Tz.

2. Interlacing Eigenvalues and Low Rank Signals 169

The Derivative of an Eigenvalue

We have a matrix A(t) that is changing with the time ¢. So its eigenvalues A(t) are also
changing. We will suppose that ne eigenvalues of A{Q) are repeated—each eigenvalue
A(0) of A(0) can be safely followed for at least a short time ¢, as A{0) changes to an
eigenvalue A(t) of A(t). What is its derivative d\/di?

The key to d)/dt is to assemble the facts we know. The first is A(£)z(t) = A(t)x(¢).
The second is that the transpose matrix AT{t) also has the eigenvalue A(Z), because
det(AT — AI} = det{A — AI). Probably AT has a different eigenvector y(t). When
x is column % of the eigenvector matrix X for A, ¢ is column % of the eigenvector matrix
(X~ 1T for AT. (The reason is that A = X ~'AX leads to AT = XTA(X~1)T). The
lengths of @ and y are normalized by X ~'X = I. This requires y* (t)=(t} = 1 for all &.

Here are these facts on one line with the desired formula for dA/df on the next line.

Facts A()z(t) = At)=(t) y"()AR) =AY T O=t)=1] 3)

Formulas Aty = yT(t)AlL) =(2) and % = yT(t)ﬁ x(t) (4)

To find that formula A = yT Az, just multiply the first fact A4z = Xz by yT and
use yTa& = 1. Or multiply the second fact yT A = Ay on the right side by .

Now take the derivative of A = yT A . The product rule gives three terms in dA/dt :

dr| dyT dA o de _
= Ax T A— i
| dt +ly w it E)

The middle term is the correct derivative dA/dt. The first and third terms add to zero:

dyT T, de dy pdey | d o d
dz‘rA x+y Adt'\(dt z+y — Adt(y 'T)_/\dt(l)_o' ()

There are also formulas for d2X/dt? and dx/dt (but they are more complicated).

Att =0, A, = 2 and Ay = 0 and the derivatives of A, and Ag are 1 £¢(1 +¢%)71/2=1.
1/2]

Example 4 = [

The eigenvectors for oy = 2att =Qarey] = [0 1]andm; = [2

The eigenvectors for Ay = O att = 0 are ya = [1 _%]ande: [é}

dX, cdA 2 0f(1/2
Now equauon (5) confirms that 2 Y1 E;ml [0 1] [2 0] [1 | = 1.

170 Low Rank and Compressed Sensing

The Derivative of a Singular Value
A similar formula for da/dt (derivative of a non-repeated o{t}) comes from Av = ou:

UTAV =% uT () Alt)v(t) = v (2) o(t) u(t) = o(t). (7
The derivative of the left side has three terms from the product rule, as in (5). The first
and third terms are zero because Av = ow and ATy = ov and wu = vFv = 1.
The derivatives of & w and vT v are zero, so

du” du” T dv T, dv
FA(t)‘v(t) =a(t) ?u(t) =0 and u {f) A(t}a— =o(t}v (t) =0 8
The third term from the product rule for «T Av gives the formula for do /dt :
Derivative of a Singunlar Value uT(t) % v(t) = i_: 9

When A(t) is symmetric positive definite, o(¢) = A(t) anduw = v = y = = in (4) and (9).

Note First derivatives of eigenvectors go with second derivatives of eigenvalues—not
so easy. The Davis-Kahan bound on the angle # between unit eigenvectors of S and S + T
is sind < [|T|/d (4 is the smallest distance from the eigenvalue of S + 7' to all other
eigenvalues of S}. Tighter bounds that use the structure of 5 and T are highly valuable for
applications to stochastic gradient descent (see Eldridge, Belkin, and Wang).

C. Davis and W. M. Kahan, Some new bounds on perturbation of subspaces, Bull,
Amer. Math, Soc. 75 (1969) 863 — 868.

J. Eldridge, M. Belkin, and Y. Wang, Unperturbed : Spectral analysis beyond Davis-
Kahan, arXiv: 1706.06516v1, 20 Jun 2017.

A Graphical Explanation of Interlacing

This page owes everything to Professor Raj Rao Nadakuditi of the University of Michigan.
In his visits to MIT, he explained the theory and its applications to the 18.065 class,
His OptShrink software to find low rank signals is described in IEEE Transactions on
Information Theory 60 (May 2014) 3002 - 3018.

What is the change in the A’s, when a low rank matrix #uwT is added to a full rank
symmetric matrix §? We are thinking of S as noise and uu” as the rank one signal.
How are the eigenvalues of S affected by adding that signal ?

Let me make clear that aif the eigenvalues of S can be changed by adding fuu”,
not just one or two. But we will see that only one or two have changes of order #.
This makes them easy to find. If our vectors represent videos, and fuuT represents a
light turned on or off doring filming {a rank-one signal}, we will see the effect on the A’s.

Start with an eigenvalue z and its eigenvector v of the new matrix S + fuu™ :

(8 + Bun v = 2v. (10)
Rewrite that equation as

(zI — 8)v = bufuv) or v=(zl~ $) 1ou(uTy). (11)

11.2. Interlacing Eigenvalues and Low Rank Signals 171

Multiply by uT and cancel the common factor uTv. This removes v. Then divide by 6.
That connects the new eigenvalue z to the change fuuT in the symmetric matrix 5.

% =uT(zl —) lu. (12)
To understand this equation, use the e1genvalues and eigenvectors of §. If qu Akdy
then (21 — S)q; = (z — Ai}a, and (2] — §)ap = g, /(z — M)
_ -1, _ -1 _ Crdy
uw= z ckgy leadsto {(2F - S)Tu= ch(zI —~8)" g, = Z P 13

Finally equation {12) multiplies {zf — §)~'a by uT = > cxgi. The result is 1/6.
Remember that the q’s are orthogonal unit vectors:

Secular
equation

Lo sy = Y (14)
@ k1%~ Ak

We can graph the left side and right side. The left side is constant, the right side blows
up at each eigenvalue z = XAy of §. The two sides are equal at the n points 21,..., 2,
where the flat 1/ line meets the steep curves. These z's are the n eigenvalues of
8 + QuuT. The graph shows that each z; is above A; and below X;_; : Interlacing.

The top eigenvalue z; is most likely above A;. The z’s will increase as 8 increases,
because the 1/ line moves down.

Of course the z’s depend on the vector u in the signal (as welt as #). If = happened
to be also an eigenvector of S, then its eigenvalue A, would increase by exactly @3
All other eigenvalues would stay the same. It is much more likely that each eigenvalue Xy,
moves up a little to zz.. The point of the graph is that z;, doesn’t go beyond Az ;.

1/8 f-mmmmees R IR SR L SECERE

3 |
1 |
1 |
} |
1 |
T T
| |
3 |
1 |
I |
1 |
1 |
1 |
1 I
1 |

Adzy Az 3 Ay z2 A&

1 .
Figure III.1: Eigenvalues z; of 5+ Buu” where the — line meets the curves in (14).

¢

Rat Rao Nadakuditi, When are the most informative components for inference
also the principal components? arXiv: 1302.1232, 5 Feb 2013.

172 Low Rank and Compressed Sensing

The Largest Eigenvalue of S + T'

The largest eigenvalue of a symmetric matrix S is the maximum value of :BTSG:/:ETi‘.
This statement applies also to T (still symmetric). Right away we know about the largest
eigenvalueof 5 + T,

Amax (5 + T} < Amax (8) + Amax (T) (13)

(S + Tz

The left side is the maximum value of . That maximum is reached at an

) xTx
eigenvectorv of 54T
T T T T T
(54T v'Sv v'Twv T ST x Tx
Astr = () = + —— < max + max = Ag + Ar.
vTo vTo vTo zTx xTx

The eigenvector v of § + T’ maximizes that first ratio. But it probably doesn’t maximize
the last two. Therefore Ag + Ar can only increase beyond Ag 7.

This shows that a maximum principle is convenient. So is a minimum principle
for the smallest eigenvalie. There we expect A (S + T} 2 Anin(S) + Apin(T).
The same reasoning will prove it—the separate minimum principles for § and T will bring
us lower than Ay (S 4 77). Or we can apply the maximum principle to —S and 7.

The difficulties come for the in-between eigenvalues Ay to A, ;. Their eigenvectors
are saddle points of the function R(x) = &TSx/xTx. The derivatives of R(a) are all
zero at the eigenvectors g, 0 g,,_ ;. But the matrix of second derivatives of R is indefinite
(plus and minus eigenvalues) at these saddle points. That makes the eigenvalues hard to
estimate and hard to calculate,

We now give attention to the saddle points. One reason is their possible appearance in
the algorithms of deep learning. We need some experience with them, in the basic problem
of eigenvalues, Saddle points also appear when there are constraints. If possible we want
to connect them 10 maxira of minima or to minima of maxime.

Those ideas Jead to the best possible bound for each eigenvalue of 5 + T':

Weyi upper bounds /\i+j-1 (S + T) S Al(S) +/\3 (T) (1 6)

Saddle Points from Lagrange Multipliers

Compared to saddle points, computing a maximum or minimum of F'(x) is relatively easy.
When we have an approximate solution &, we know that F'(£) is not below the minimum
of F' and not above the maximum: by definition. But we don’t know whether FI(%) is
above or below a saddle point value. Similarly, the matrix H{x) of second derivatives of
F' is positive definite (or semidefinite) at a minimum and negafjve definite at a maximum.

The second derivative matrix I at a saddle peint is symmetric but indefinite.

H has both positive and negative eigenvalues—this makes saddle points more difficult.
The conjugate gradient method is not usually available to find saddle points of T H .

__qIL2. Interlacing Eigenvalues and Low Rank Signals 173

Lagrange is responsible for a lot of saddle point problems. We start by minimizing
a positive definite energy ST Sz, but there are m constraints Az = b on the solution.
Those constraints are multiplied by new unknowns A3, ..., A (the Lagrange multipliers)
and they are built into the Lagrangian function:

Lagrangian Lix, M) = %mTS::c + AT (Az - b).

The m + n equations L/9z = 0 and 3L/3A = 0 produce an indefinite block matrix :
aL/oe 1 [Sz+ ATA z| [8§ AT z] [0
[] [and H »1Tl A4 o N {17

LAl | Az —b
with negative determinant —1 : its eigenvalues

11
1 0
have opposite signs. The Problem Set confirms that this “KKT matrix” in equation (17}
is indefinite. The solution {x, A} is a saddle point of Lagrange’s function L.

A small example would be H =

Saddle Points from Rayleigh Quotients

The maximum and minimum of the Rayleigh quotient R(x) =TSz /xTx are A} and A, :

Tg Tg
Maximum %T;—l- = q;r/\lql = A1 Minimum _q_nT_q£ = qz)ann = An
1%t nin

Our question is about the saddle peoints—the other points where all derivatives of the
quotient R(z) are zero. We will confirm that those saddle points occur at the other *
eigenvectors ¢, 10 gn—1 of . Our goal is to see Az to A,_; as maxima of minima.
That max-min insight is the key to interlacing.

Notice that the vectors z and 2z and ez (¢ # 0) all produce the same quotient R:

(22)7S(2x) 4xTSx TSz
(2e)T(22) 4xTx =Tz = £ (=)

R(2z) =

So we only need to consider unit vectors with 7@ = 1. That can become a constraint :

zT Sz

Ty

max is the same as max =TSz subjectto zTa = 1. (18)

The constraint 22 = 1 can be handled by one Lagrange multiplier !

Lagrangian Liz,)\) = aT8x — MaTz - 1). (19)
The max-min-saddle points will have 8L /8x = 0 and L /38X = 0 (as in Section 1.9):

aL 8L T

= _ - — =1 ={. 2

5w 25z —2)x =0 and B l1-xz x=0 (20)

This says that the unit vector z is an eigenvector with Sz = Az,

174 Low Rank and Compressed Sensing

Example Suppoese S is the diagonal matrix with entries 5, 3, 1. Write z as (u, v, w) :

T . . . maximum vilue 5 at ¢ = (1,0,0)

S 51 3

R::ch: u2+ ;} +1: hasa minimum value 1 at e = (0,0,1)
xzlx uc 4+ v+ w

saddle point value 3 at @ = (0,1,0)

By looking at B, you see its maximum of 5 and its minimum of 1. All partiat derivatives of
R{u, v, w) are zero at those three points (1, 0,0}, (0,0, 1), {0, 1, 0). These are eigenvectors
of the diagonal matrix S. R{x) equals the eigenvalues 5, 1, 3 at those three points.

Maxima and Minima over Subspaces

All the middle eigenvectors g,...,q,_; of S are saddle points of the quotient
zT Sz/xT . The quotient equals A2, ..., A,_1 at those eigenvectors. All the middle
singular vectors vz, . . . , a1 are saddle points of the growth ratio || Ax||/||2z|{. The ratio
equals oo, ..., 0, at those singular vectors, Those statements are directly connected by
the fact that 2T Se = T AT Az = ||Az||%

But saddle points are more difficult to study than maxima or minima. A function moves
both ways, up and down, as you leave a saddle. At a maximum the only movement is down,
At a minimum the only movement is up. So the best way to study saddle points is to
capture them by a “max-min” or “min-max” principle.

max min xSz (21)

Max-min for A — ek
2 A2 =1t 2D spacesY zisinY 2Tz

In the 5,3, 1 example, one choice of the 2D subspace Y is all vectors £ = (u,v,0).
Those vectors are combinations of ¢, and g,. Inside this Y, the minimum ratio T Sx/xTx
will certainly be Ay = 3. That minimum is at & = g, = {0, 1, 0) (we understand minima).

Key point: Every 2D space ¥ must intersect the 2D space of all vectors (0, v, w}.
Those 2D spaces in R® will surely meet because 2 + 2 > 3. Forany & = (0,v,w)
we definitely know that T Sx/xTx < Xs2. So for each Y the minimum in (21} is < Xp.

Conclusion : The maximum possible minimum is Az in (21) and X; in (22).

. T .

max mie @« ST max min ||Ax||
Ail5)= gimV=i zinV 5T, (A= g w =i zinw]| 22)
For i = 1, the spaces V and W are one-dimensional lines. The line V' through z = ¢,
{first eigenvector) makes 2T Sz/xTx = A, a maximum. The line W through @ = vy

(first singular vector) makes || Az]|/||x|| = ¢1 a maximum.

For i = 2, the spaces V' and W are two-dimensional planes. The maximizing V' con-
tains the eigenvectors g4, g, and the maximizing W contains the singular vectors vy, va.
The minimum over that V' is Az, the minimum over that W is g4. This pattern continues
for every 1. It produces the Courant-Fischer max-min principles in equation (22).

I1.2. Interlacing Eigenvalues and Low Rank Signals 175

Interlacing and the Weyl Inequalities

For any symmetric matrices & and T', Weyl found bounds on the eigenvalues of 5 + T

Weyl inequalities A;p;1 (8 + T) < A(8) + M(T) 2%

Ak(S) + An(T) € Ae(S + T) < Me(S) + M(T) (24)

The interlacing of the z's that we saw in Figure IIl.1 is also proved by equation (23).
The rank one matrix T is uuT and its largest eigenvalue is A1 {T") = 8. All of the other
eigenvalues X;(T") are zero. Then for every j = 2,3,... Weyl's inequality gives
Ait1(S + T) < Ai(S). Each eigenvalue 241 of § + T cannot go past the next
eigenvalue); of 5. And for j = 1 we have A1 (S + T} < A+1(S) + 8 an upper bound
on the largest eigenvalue of signal plus noise.

Here is a beautiful interlacing theorem for eigenvalues, when the last column and row
of a symmetric matrix § are removed. That leaves a matrix 5,,_; of size n — 1.

The nn—1 eigenvalues c; of the matrix S, _; interlace the n eigenvalues of S.

The idea of the proof is that removing the last row and column is the same as forcing all
vectors to be orthogonal to (1), ..., 0, 1), Then the minimum in (22) could move below A;.
But o; won't move below Ay 1, because A;. allows a free choice with dimV = i 4+ 1.

Example ? _; _i [2 -1] (2] .
Aq 2 x; 2)\H—l -1 =1 9 -1 2 5
A=3,30 a=3,1 3>2>1

Interlacing of Singular Values

Suppose A is not square and symmetric—so s singular values are involved. Each
column of A represents one frame in a video, We want to identify a rank one signal
Bxy’ hidden in those columns. That signal is obscured by random noise. If a light
was turned on or off during the video, the goal is to see when that happened.

This leads us to ask : How much do the singular values change from A to A + B?
Changes in eigenvalucs of symmetric matrices are now understood. So Wwe can stdy
AT A or AAT or this symmetric matrix of size m -+ n with eigenvalues ¢; and —o; :

[a)] e] e [9]0] on] 2]

Instead we recommend the amazing notes by Terry Tao : https:/terrytao.wordpress.com/
2010/01/12/254a-notes-3a-eigenvalues-and-sums-of- hermitian-matrices/

Weyl inequalities Oiti—1{A+ B) < 0;(A) + 0;(B) (26)
i<m<n lo:(A + B) — o:(A)| < ||B]) (27)

176 Low Rank and Compressed Sensing

Problem Set I11.2

1 A unit vector u{t) describes a point moving around on the unit sphere ©# u = 1.

Show that the velocity vector du/dt is orthogonal to the position: ©7T (du/dt) = 0.

2 Suppose you add a positive semidefinite rank ¢wo matrix to 5. What interlacing
inequalities will connect the eigenvalues) of § and o of § + unT +vvT?

2 1 11
10] H[11 }
{(b) Att =0, find the eigenvectors of A(0} and verify % = yT% z.

3 (a) Find the eigenvalues A; {¢) and Az(¢) of 4 =

(c) Check that the change A(t) — A{0) is positive semidefinite for # > 0. Then
verify the interlacing law Aj(t) > A1 (0} > Az(t) = Ag(0).

4 S is a symmetric matrix with eigenvalues Ay, > Ao > ... > A, and eigenvectors
q1,42,-.-,q,. Which ¢ of those eigenvectors are a basis for an i-dimensional
subspace Y with this property : The minimum of xTSz/xTx forz in Y is A,

5 Find the eigenvalues of Az and Az and A;. Show that they are interlacing :

1 -1 0 L1
Az=| -1 2 -1 Azz{ } Ar=[1]
-1 2
0 -1 1

6 Suppose D is the diagonal mairix diag (1,2,...,n) and S is positive definite.

1) Find the derivatives at £ = O of the eigenvalues A\(¢) of D + 5.
2) For a small t > 0 show that the A’s interlace the numbers 1,2, ..., n.
3) For any t > 0, find bounds on Ay, (D + £5) and Amax (D + t5).

7 Suppose D is again diag (1,2, ..., n) and A is any n by n matrix.

1) Find the derivatives at ¢ = 0 of the singular values o(t) of D + tA.
2) What do Weyl's inequalities say about omax (D + tA) and o, (D +-£A}?
8 (a) Show that every i-dimensional subspace V' contains a nonzero vector z that is

a combination of g, ¢, 11, .-, G, {Those g’s span a space Z of dimension
n — i+ 1. Based on the dimensions 7 and n — i + 1, why does Z intersect V' 7)

(b) Why does that vector z have 2TSz/2Tz < A; ? Then explain -

max min 278z
T odimV = zinV 2Tz

IL.2. Interlacing Eigenvalues and Low Rank Sigpals 177

The Law of Inertia

Definition If S is symmetric and C is invertible, then the matrix CTSC is
“congruent to S, This is not similarity B~1SB! Eigenvalues of CTSC can change
from eigenvalues of S, but they can’t change sign. That is called the “Law of Inertia’:
CT 8C has the same number of (positive) (negative) (zero) eigenvalues as S,

My favorite proof starts with ' = QR (by Gram-Schrmidt). As R changes gradually to I,
CTSC changes gradually to QTSQ = Q~15Q. Now we do have similarity (Q~!5Q
has the same cigenvalues as §). If R is invertible all the way to I, then no eigenvaluies
can cross zero on the way. Their signs are the same for CTSC and Q~*5Q and S.

The max-min principles also prove the Law of Inertia.

9 If S = LDL" has n nonzero pivots in elimination, show that the signs of the pivots
of S (in 1) match the signs of the eigenvalues of S. Apply the Law to S and D.

10 Show that this 2r x 2n KKT matrix & has n positive and n negative eigenvalues:

& positive definite

s C
 invertible H = { }

cT o
The first » pivots from S are positive. The last n pivots come from —CTS~1C.

11 The KKT matrix H is symmetric and indefinite—this problem counts eigenvalues:

s AT 1 an . .
H——[A 0 }m as in equation (17)

n m

H comes from minimizing %a:TS:c {positive definite) with m constraints Ax = b.
Elimination op i begins with 5. We know its n pivots are all positive.

Then elimination multiplies AS~! times [S AT | and subtracts from [A 0 |
toget [0 —AST1AT |. That Schur complement —AS~1 AT is negative definite.
Why ? Then the last m pivots of H (coming from —AS ™1 AT) are negative.

12 IfzTSz > 0forall = # G and C is invertible, why is (Cy)TS(Cy) also positive ?
This shows again that if S has all positive eigenvalues, so does CTSC.

178 Low Rank and Compressed Sensing

I11.3 Rapidly Decaying Singular Values

There are important matrices whose singular values have o < Ce~%_ Those numbers
decay quickly. Often the matrices are invertible (their inverses are incredibly large).
And often we have a family of matrices of all sizes—Hilbert and Vandermonde matrices,
Hankel and Cauchy and Krylov and spectral difference matrices and more.

These matrices are at the same time easy and also hard to work with. Easy because
only a few singular values are significant. Not easy when the inverse has a giant norm,
increasing exponentially with the matrix size N. We will focus on two of many examples:

1 The nonuniforn: discrete Fourier transform (NUDFT) has I/ = A. = F inplace of F,
2 The Vandermonde matrix V fits a polynomial of degree N — 1 to N data points.

Actually those examples are connected. A standard DFT fits IV values f, to fiy_) at the
N points w* = e~ 27k/N The Fourier matrix is a Vandermonde matrix ! But instead of
real points between —1 and 1, the DFT is interpolating at complex points—equally spaced
around the unit circle [e*| = 1. The real case produces terrible Vandermonde matrices
(virtually singalar), The complex case produces a beautiful Fourier matrix (orthogonal).

We start with that complex Fourier matrix F (equal spacing as usual). Multiplying by
F is superfast with the Fast Fourier Transform in Section IV.1: %N log, N operations.

For nonuniform spacing x; # §/IN. the special identities behind the FFT are gone.
But Ruiz-Antolin and Townsend showed how you can recover almost all of the speed:
Write the nonuniform U as A;, Fj, where A is near a low rank matrix :

ij — e—Zﬂikj/N and Ujk — e—2w§.kmj — Aijjk

When U = F is the DFT with equal spacing, every d;. = 1. A has rank one. With un-
equal spacing, a low rank matrix virtually agrees with A, and fast transforms are possible.
Here are symbols for element by element multiplication A}, and division Uji /Fyi -

Multiplication U=A.xF =AQOF Division A =U g F. (1)

The operation to execute quickly is the NUDFT : U times ¢. The Fast Fourier Transform
computes F' tirnes e. The ratios Ui/ Fj give a matrix A that is nearly low rank,
8o the nonuniform transform U comes from a correction A to the Fourier matrix ¥':

Amyzf +--+y2T and Uem YiFZic+---+ Y. FZ,c 2)

Y; and Z; are diagonal N by N matrices with ¢, and z; along their main diagonals.
Equal spacing has I/ = Fand A =onesand , = 2y = (1,...,1}and ¥y = Z; = .
For unequal spacing, r is determined by the nonuniformity of the sampling points ;.

_IiL.3. Rapidly Decaying Singular Values 179

Sample Points «; near j /N

In this “lightly perturbed” case, we can match the unequally spaced x; with the egually
spaced fractions j/N for 0 < § < N. For each entry of U/, Aj is a correction to Fjy :

Ujk — Aijjk is e—2wika; e—Zﬂik(mJ—j/N} e Iwiki/N 3

Then the key step for a fast algorithm is to find a close approximation to this matrix A
(we know F' is fast). The Eckart-Young theorem would suggest to use the SVD of A.
But the SVD is a more expensive step than the rest of the fast unequally spaced transform.

A is an interesting matrix. All its entries in equation (3) have the form e*. If we replace
A = e~ by its power series 1 — 8 + - - - then A will begin with the all-ones matrix.

The rest of this section finds low rank approximations by working with the Sylvester
equation. Here Townsend takes a different route : Approximate the function e %Y.

The key idea is to replace the Taylor series for each of those matrix entries by a
Chebyshev expansion. This reflects a rule of great importance for numerical analysis ;

Fourier series are good for periodic functions on an interval like 0| < =,
Chebyshev series are good for nonperiodic functions on aninterval like || < 1.

The connection between Fourier and Chebyshev is cos 8 = . The Fourier basis function
cosnf becomes the Chebyshev polynomial T,,(z) = cos(n arccosz). The Chebyshev
basis starts with T = land 73 = z and 75 = 222 — 1 because cos28 = 2cos? @ — 1.
All those basis functions have max |T},(z)| = max|cosnf| = 1 fromz = —1ltoz =1,

An important point is that the n solutions of T,(x) = 0 are nor equally spaced.
The zeros of cosnf are equally spaced, but in the z-variable those points come close
together near the boundaries —1 and 1. Interpolation at these x = cos{w(2k — 1)/2n)
is far more stable than equally spaced interpolation.

The highly developed computational system at e¢hebfun.org is based on Chebyshev
polynomials (for functions in one or more dimensions). It computes a pelynomial
very close to f{x). Then all operations on functions produce new polynomials as finite
Chebyshev series. The degree needed for high accuracy is chosen by the chebfun code.

This approach to the matrix A leads Ruiz-Antolin and Townsend to a proof of
low effective rank (close approximation to A by a low rank matrix). Their paper prowdes
a very efficient code for the nonuniform Fourier transform.

180 Low Rank and. Compressed Sensing _

The Sylvester Equation

We turn to the central problem of the subject: Which families of matrices have low
effective rank? The goal is to find a test that will reveal this property. To the
examples of the Hilbert matrix and the NUDFT matrix .4 we want to add Vandermonde.
And we hope for a test that can be applied to much wider classes of matrices—going
far beyond the Vandermonde example.

Here is the “Sylvester test” = “ A, B, C test” developed by Beckermann and Townsend.
The words low displacement rank and structured matrix are often applied to X

If AX — X B = C has rank r for normal matrices 4, B with no shared eigenvalues,
then the singular values of X decay at an exponential rate decided by A, B, and C.

L. — — . =T
A matrix is normal if A- A = AZA . Then A has orthogonal eigenvectors: A = QAQ .
Symmetric and orthogonal matrices are normal, because the test gives $2=5% and I = 1.
The Sylvester matrix equation AX — X B = (' is important in control theory, and the

particular case when 3 = _A" is called the Lyapunov equation.

This Sylvester test requires us to find A, B, and ! That has been done for highly
impertant families of Toeplitz and Hankel and Cauchy and Krylov matrices {including
the Vandermonde matrix V). All those matrices solve Sylvester’s equation for simple
choices of 4, B, C. We take V' as our prime exarmple:

1 = 2 ... 27!

1 2o 22 ... z!
Vandermonde matrix V= z 2 C)]

2 -t

1 zn 2% ... T4

V is the n by n “interpolation matrix™. It is invertible as long as the points z,, ..., Z, are
all different. We solve Ve = f when we want the coefficients of a polynomial
p=co+ciT+ -+ cprz™ ' Mulliplying V times ¢ gives us the value of p at the
points £ = =zp,...,%,. Then Ve = f says that the interpolating polynomial

has the desired vatues f1,. .., f, at those n points. The polynomial exactly fits the data.
We noted that V' becomes the Fourier matrix & when we choose complex points
Ty = w = e”?™/N and ¢, = w*. This F has full rank. In that Fourier case A and B
(below) have the same eigenvalues w® : not allowed. A and B don’t satisfy our require-
ment of well-separated eigenvalues and all the singular values have equal size : no decay.
It is Vandermonde matrices with real numbers z) to T, that have exponential decay

in their singular values. To confirm this, apply the A, B, ' test using these matrices:

1 00 . —1 00 0 a7+1
2 100 . 00 0 2041
A= — = 2
B=lv10 of “=laoo .)
- 001 0 000 0 av+1

1II.3. Rapidly Decaying Singular Values 181

Those matrices 4 and B are certainly normal. (This requirement could be weakened but
here it's not necessary.) The eigenvalues of B are equally spaced around the unit circle,
Those X's are at angles #/n,37/n,...,(2n — 1)w/n, so they are not real numbers
provided n is even. Then they don't touch the real eigenvalues zi,...,z, of A.
And C has rank 1. The A, B, C Sylvester test is passed.

The graph of singular values confirms that V' is highly ill-conditioned. So is &.

vy e, e

& 10070 é’ 10”{; ..

= i .

S U B 107

P i 5 - .

- -10; -10+

= 1070 . 5 1070

=] ! . =] '

£ 19~} Vandermonde g 10-1s; Krylov

3 - n e
o 5 10 1% 50 4 5 10 i% a0

Figure II1.2: Vandermonde and Krylov singular values for V and K = [b Ab... 4™ 1d).
Here b = all ones and A;; = random numbers (standard normal). V equals K when
A=diag(1/n,2/n,...,1).

An Improved Sylvester Test

The requirement that 4X — X B = (' has low rank is much more strict than the conclusion
that X has rapidly decaying singular values. A perfect theorem would match the hypoth-
esis on the €, with the conclusion about X,,. Certainly it is not true that Vandermonde

or Krylov matrices X,, of increasing size n have bounded rank. So we have to weaken *
that low rank requirement on C,, while preserving the rapid singular value decay for X,

Townsend has found such a theorem: “log-rank™ for C leads to “log-rank” for X.
And a recent paper with Udell establishes that log-rank is a very widespread property.
Here is the definition (and many log-rank examples have g = 0 org = 1),

A family of matrices C,, has log-rank if |(Cn, — En)y| <€

6
for nearby matrices F,, that have rank (E,)} < ¢{logn)? ©

Example 1 The radial basis function kernel is often used in support vector machines :

2
Kernel Kz, &) =exp (o

For a set of feature vectors a;, this produces the entries 0 < K;; < 1 of a full matrix K.
Calculating all of them is impossible. With good approximations, we solve nonlinear
classification problems by the “kernel trick” in VILS. That matrix has low effective rank.

1. M. D. Buhmann, Radial basis functions, Acta Numerica 9 (2000) 1-38.
2. B. Fornberg and N. Flyer, A Primer on Radial Basis Functions, STAM (2015}

3. T. Hofmann, B, Scholkopf, and A. J. Smola, Kernel methods in machine learning,
Annals of Statistics 36 {2008} 1171-1220 (with extensive references).

182 Low Rank and Compressed Sensing

ADI and the Zolotarev Problem

In a short paragraph we can point to two ideas that lead to fast decay for the singular
values of X. The first is an ADI iteration to solve Sylvester’s equation AX — XB = C.
The Alternating Direction Implicit algorithm gives a computationally efficient solution.
The second idea connects the eigenvalues of A and B (they are required not to overlap)
to a problem in rational approximation.

That “Zolotarev problem™ looks for a ratio r{z} = p(z)/q{z) of polynomials that
is small at the eigenvatues of A and large at the eigenvalues of B. Approximating by
rational functions r{z) can be exponentially better than polynomials—a famous example
is Newman's approximation of the absolute value |x|. The exponential accuracy of 7{(x)
becomes connected to the exponential decay of singular values of X.

ADIsolves AX — XB = C Xjpp(B-pl)=C—-(A~-p;DX;
Matrices X;,,,; and X 1, (A-gD)Xip1 =C— X;10(B ~q;1)

The good rational function r(z) = p(z)/q{z) has roots p; in the numerator and g; in
the denominator. It was Zolotarev in 1877 (1) who found the best p's and g’s in a model
problem. With A and B in the Sylvester test, the bound on oy, (X) is the “Z-number”
times o1 (X)—which means exponential decay of singular values,

Townsend and Fortunato developed this idea into a superfast Poisson solver on a square.
When X is the usual 5-point finite difference approximation to &%u/8z% + 8%u/dy?,
fast solvers are already known. Their goal was a spectral method with optimal complexity.

1. B. Beckermann, The condition number of real Vandermonde, Krylov, and positive
definite Hankel matrices, Numerische Mathematik 85 (2000) 553-577.

2. B, Beckermann and A. Townsend, On the singular values of matrices with displace-
ment structure, SIAM J. Matrix Analysis, arXiv: 1609.089494v1, 29 Sep 2016.

3. P. Benner, R.-C. Li, and N. , On the ADI method for Sylvester equations,
J. Comput. Appl. Math. 233 (2009) 1035-1045.

4. D. Fortunato and A. Townsend, Fast Poisson solvers for spectral methods,
arXiv: 1710.11259v1, 30 Oct 2017.

5. D. Ruiz-Antolin and A. Townsend, A nonyniform fast Fourier transform based
on low rank approximation, arXiv: 1701.04492, SIAM J. Sci. Comp. 40-1 (2018).

6. A. Townsend and H. Wilber, On the singular values of matrices with high
displacement rank, arXiv :17120.5864, Linear Alg. Appl. 548 (2018) 19-41.

7. A.Townsend, www.math.cornell.eduw/~ ajt/presentations/LowRankMatrices.pdf

8. M. Udell and A, Townsend, Nice latent variable meodels have log-rank,
arXiv: 1705.07474v1, SIAM J. Math. of Data Science, to appear.

IIL3. Rapidly Decaying Singuiar Values 183
Problem Set II1.3
1 Verify that a Krylov matrix X = [b Ab... A"~ 1b] satisfies a Sylvester equation
AK — KB = (' with B as in equation (6). Find the matrix C.
2 Show that the evil Hilbert matrix I passes the Sylvester test AH — HB =C
1 1
i = T = —di - =—A =
el A 2u:hag (1,3,...,2n—1) B C = ones(n}
3 A Toeplitz matrix 7" has constant diagonals (IV.5). Compute AT — TAT=C";
ta £_q1 - . 0o a0 -
I B S s S S |1 0 00 T
™=l 4 & | A" |o100) B4
. . . .01 -
4 A Hankel matrix I has constant gntidiagonals, like the Hilbert matrix. Then Hy;

depends only on i 4 j. When H is symmetric positive definite, Beckermann and

Townsend show that H = ?("TK for a Krylov matrix X (as in Problem 1 above).
Then o;{H) = |o;(K)|? (why 7} and the singular values of H decay quickly.

A Pick matrix has entries Pjx = (s + s)/(z; +2x) where ¢ = (z1,...,2,) > 0
and 5 = (s1,...,8,) can be complex. Show that AP — P(—A) = s1T + 1sT
where 1T = |1 1...1] and A = diag(zy,...,=,). A has positive eigenvalues, *
B = — A has negative eigenvalues, and the Sylvester test is passed.

If an invertible matrix X satisfies the Sylvester equation AX — XB = C,
find a Sylvester equation for X ~1.

IfA= QA@T has complex orthogonal eigenvectors g, . . ., ¢, in the columns of),
verify that XTA = AZT: then A is normal. The eigenvalues can be complex,

IfST=8and ZT = —Z and $Z = Z, verify that 4 = § + Z is normal. Since
& has real eigenvalues and Z has imaginary eigenvalues, A = S + Z probably has
complex eigenvalues.

Show that equation (3) for {7 ¢ follows from equation (2) for A.

184 Low Rank and Compressed Sensing

IIL4 Split Algorithms for ¢2 4 ¢!

These topics are truly important. They deserve a whole book. They include basis pursuit
and LASSO optimization—plus matrix completion and compressed sensing in IIL.5,
What we can do here is to present basic ideas and successful algorithms.

Start with a linear system Az = b. Suppose A has many more columns than rows
{m << n). Then Ax, = 0 has many solutions (A has a large nullspace). If Ax = b has
one solution, then every © + T, 1s another solution. Which one to choose ?

To minimize the £* norm of @, we remove its nullspace component. That leaves the
minimum norm solution £t = ATb, coming from the pseudoinverse of A. This is the
solution in I1.2 that uses the SVD. But 2™ will generally have many small components—
it can be very difficult to interpret. In MATLAB, pinv{A) x b finds =*. Backslash A\b
finds a fairly sparse solution—but probably not the optimal & for basis pursuit.

A solution to Az = b with many zero components (a sparse solution, if it exists)
comes from minimizing the €' norm instead of the £2 norm:

Basis pursuit Minimize |lz|[; = |21]| + -+ + || subject to Az = b.| (1)

This is a convex optimization problem, because the £! norm is a convex function of .
The £ norm is piecewise linear, unlike £2 and all other £° norms except ||®||oo = max|a;|.
Basis pursuit is not solved by the SVD of A, which connects to the #2 norm. But £}
has become famous for giving sparse solutions, and fast algorithms have now been found.

The sparsest solution of Az = b minimizes ||z||g = number of ronzero components
of . But this is not a true norm: ||2x||g = ||2||¢. The vectors with ||x]lo = 1 and only
one nonzero component lie along the coordinate axes, like ¢ = (1,0) and j = (0,1).
So we “relax” or “convexify” the £® prablem to get a true norm—and that norm is €',
The vectors with ||l = |x1| + |#2] £ 1 fill the diamond with corners at 4¢ and +j.

A related problem allows for noise in Ax = b; an exact solution is not required.
Now the £! norm enters as a penalty A||z||1 or a constraint ||z|[; < &:

o Minimize 3||Az — b|| + A||z|]; or
LASSO (in statistics) .1 . (2)
Minimize 3 || Az — b||3 with [lz||; <t

LASSO was invented by Tibshirani to improve on least squares regression. It has sparser
solutions than “ridge regression” which uses £2 norms in the penalty and the constraint.
Geometrically, the difference between ||z|[; < 1 and {|z||]2 < 1 is in the shape of those

two sets : diamond for £* versus sphere for £2. Please see both figures in Section 1.11.

A convex set |4z — b||2 = C has a good chance to hit that diamond at one of its
sharp points. The sharpest points are sparse vectors. But the sphere has no sharp points.
The optimal & ts almost never sparse in #2 optimization. Since that round convex set can
touch the sphere anywhere, the £2 solution has many nonzeros.

M4 Split Algorithms for £2 + £ 185

Split Algorithms for #! Optimization

Sparse solutions are a key reason for minimizing in ¢! norms. The small nonzeros
that appear in £2 will disappear in £*. This was frustrating to know, in the days when
£ algorithms were very slow. Now the numerical implementation of £* optimization
has essentially caught up with the theory.

Here is the picture. Many important optimization problems combine two terms:

Convex F; and F, Minimize F (x) -+ Fa(x) for z in a convex set K| (3)

Fy involves an £1-type norm and F, invalves an £2-type norm. Their convexity is very
valuable. But they don’t mix well-—the £2 iterations (ordinarily fast enough) are slowed
down waiting for £! to learn which components should be nonzero.

The solution is to “split” the algorithm, Alternate between €2 steps and €® steps.
In important cases, it becomes possible to solve £1 problems explicitly by a “shrinkage”
operation. The split iterations are much faster and more effective than a mixed £1-£2 step.
Among the leading algorithis are ADMM and spiit Bregman and split Kaczmarz
(all described below).

One way to start is 10 see key words that describe the development of the algorithms.
Those words describe forward steps that improved on the previous method-—and made the
final ADMM algorithm a success :

Dual decomposition

Augmented Lagrangian

Method of multipliers

ADMM : Alternating direction method of multipliers
This step-by-step presentation is following the plan established by Boyd, Parikh, Chu,
Peleato, and Eckstein in their excellent online book on ADMM : Distributed Optimiza-

tion and Statistical Learning via the Alternating Direction Method of Multipliers. Tt was
published in Foundations and Trends in Machine Learning, 3 (2010) 1-122,

Those authors include a neat history (with references) for each of the four steps to ADMM.
Here is a statement of the problem, leaving ample freedom in the convex function f{zx).

Minimize f(z) subjectto Az =b: Aismbyn 4)
This is the primal problem for £ = (x1,...,%,). The first step is to combine Az = b
with the cost function f(z) by introducing Lagrange muMtipliers y1, ..., ¥m

Lagrangian Lz, y) = f(z) +yT(Adz —b) = f(z)+ yTAx ~ yTb| (3

186 Low Rank and Compressed Sensing

The combined solution =*,y* is a saddle point of L: min max L = m;\x m:én L.
Y .
The equations to solve are 8L/8x = 0 and 8L/0y = 0. Infact 8L/0y = 0 gives
us back exactly the constraint Az = b. This is a fundamental idea in optimization with
constraints, In Chapter VI, the y’s are seen as the derivatives 8L /3b at the optimal ™.

Now comes the key step from the primal problem for © = (x1,....2y) to the dual
problem for y = (y1,...,ym). Minimize L(z,y) over x. The minimum occurs at a
point z* depending on y. Then the dual problem is to maximize m{y) = L{z*(y),y).

Steepest Increase of m(y)

To maximize a function m{y), we look for a point y* where all the partial derivatives
are zero. In other words, the gradient is zero: Vm = (Om/0y,...,0m/3yy) = O
The present probiem has a neat formula for those y-derivatives of m: Vi = Ax* — b,

How to maximize a function m(y) when we know its first derivatives ? This will be
the central question of Chapter VI, leading to the algorithm that optimizes the weights
in deep leaming. There we will minimize a loss function; here we are maximizing m{y).
There we will follow the gradient downhill (steepest descent), Here we will follow the
gradient uphill (steepest ascent). In both cases the gradient tells us the steepest direction,

Steepest increase for max min L = max m gy = argmin L{z, y,.) (6)

Find)41 and follow Vim = Az, — b Yis1 = Y + Sk (AzTey1 — b) (N

That number sy, is the stepsize. It determines how far we move in the uphill direction Vmn.
We do not expect to hit the maximum of in one step ! We just take careful steps upward.
It is a common experience that the first steps are successful and later steps give only small
increases in mn. In financial mathematics that dual variable ¥ often represents “prices”,

Note that “argmin” in equation (6) is the point & where that function L is minimized.
This intreduction of duality—minimizing over = and maximizing over y, in either
order--was not just a wild impulse. The reason comes next.

Dual Decomposition

Suppose that the original function f(&) is separable: f(x) = fi(z1) + - + fn(xn).
Those x; are subvectors of ® = (xy,...,7,}. We partition the columns of A in the
same way, so that A = [A; ... Ay]. Then Lagrange’s function L(z,) splits into
N simpler Lagrangians, Ly to Ly :

N

N
f@) +yT(Az —b) =Y Lil@iy) =D [fs(mz') +yT A - .
1

T
1 Y b (3}

Now the x-minimization of L splits into /N minimizations to be solved in parallel.

IIL4. Split Algorithms for £2 4 £1 187

Decomposed dual problem at T = argmin L; (z,, ¥*) (%)

N dual problems in parallel ¥t = ¢y* + s (AxtH — b) (10)

The N new &' from (9) are gathered into Az*+! in (10). Then the resulting y**! is
distributed to the N processors that execute separate minimizations in the next iteration
of (9). This can give an enormous saving compared to one large minimization (6) when
f(x) is not separable.

Augmented Lagrangians

To make the iierations (9)—(10) more robust—to help them converge if f({z) is not strictly
convex—we can augment f{z) by a penalty term with a variable factor p:

Augmented Lagrangian L, (x,y) = f(z) + yT(4dx — b) + % pllAxz — b3 (11)

This is the Lagrangian for minimizing f{x) + £ p||Ax — b||? with constraint Az = b.

The same steps still lead to maximization as in (6)-(7). And the penalty constant p
becomes an appropriate stepsize s: We can show that each new (@41, ¥y, 1) satisfies
VY f(zk1) + ATy, = 0. But there is a big drawback 1o adding the penalty term with p:
The Lagrangian L, is not separable even if f(x) is separable !

We need one more step to keep the advantage of separability {leading to N simpler
maximizations solved in parallel) together with the greater safety that comes from including
the penalty term 1 o || Az — b||%. :

ADMM : Alternating Direction Method of Multipliers

The key new idea is splitting. The original f{x) is broken into two parts (possibly an
£ part and an e part). We could call these parts f; and fz, but to avoid subscripts they
will be f and g. And we allow ¢ to have a new variable z (instead of), but we recover
the original problem by adding the constraint ® = z. This dodgy but legal maneuver
zllows us to keep a separable problem, with the big advantage of parallel computations—
the pieces of T4y and z, are distributed to separate computers.

That new constraint & = z joins the original Az = b in a total of p linear constraints
Az + Bz = ¢. We are now maximizing f(x) 4+ g(z). And as before, we augment the
Lagrangian for safer convergence:

Lz, z,y)= flz}+9(z) + yT(Az + By - ¢) + 3 p||Az + By — ¢|[%.{ (12)

Now we have an extra equation to update z at each step. As before, the siepsize s
can be the régularizing coefficient p. The key advantage of ADMM is that « and z are
updated sequentially and not jointly. The two functions f(ax) and g{z) are alternated.
A separable f or g will allow the distribution of pieces, for minimization in parallel.

1R8 Low Rank and Compressed Sensing

Here are the three steps that reach a new x, z, y closer to ™, 2%, y™ :

Ti4, = Aargmin Lol®, zx, yg) (13)
x

ADMM ziy1 = argmin Lo (Tr41, 2, Yy) (14)
z

Y1 = YT oAz + Bziy —€) (15)

In practice, ADMM can be slow to reach high accuracy—but surprisingly fast to achieve
acceptable accuracy. We mention here (looking ahead to Chapter VII on deep learning)
that modest accuracy is often sufficient and even desirable—in situations where overfitting
the training data leads to unhappy results on test data,

We continue to follow Boyd et al. by rescaling the dual variable y. The new variable is
© = g/ p and the linear and quadratic terms are combined in the Lagrangian. This produces
a scaled ADMM that has advantages in practice.

L1 = argmin (f(x) + § p||Ax + Bzi ~ ¢ + uil[?) (16)
4

zp41 = argmin (g(®) + 3 pl|Azerr + Bz — e+ ui||?) 17
=z

tUpp1 = Up + Axpp + Bz — ¢ (18)

In any optimization, and certainly in this one, we should identify the equations we are
solving. Those equations are satisfied (as we wanted) by the optimal £, z* in the primal
problem and y* or ™ in the dual problem:

0=Vfx)+ATy 0€Bf(x") + ATy~ (19)
0=Vg(z*)+ BTy 0 € dg(z*) + BTy* (20)
Gradients V f and Vg Subdifferentials & f and &g

A proper treatment of this probiem (and a convergence proof for ADMM) would require
more convex analysis than we are prepared for. But the reader will see why each step
was taken, in reaching the scaled ADMM in (16)-(18). Convergence holds (see recent
papers of Hajinezhad) even if f and g are not strictly convex. (They must be closed and
proper. This allows f = 0 on a closed nonempty convex set and f = +oo otherwise,
Subdifferentials = multivalued derivatives enter for such a function, at the edge of K.}
And the unaugmented Lagrangian must have a saddle point.
The next pages follow Boyd's ADMM book by developing four major examples.

1 D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods,
Athena Scientific (1956).

2 M. Fortin and R. Glowinski, Augmented Lagrangian Methods, North-Holland (1983-5).

3 D. Hajinezhad and Q. Shi, ADMM for a class of nonconvex bilinear optimization,
Journal of Global Optimization 70 (2018) 261-288.

1L4. Split Algorithms for €% + € 189

Example 1 This classical problem of convex optimization will be the starting point
of Chapter VL. The function f{z) is convex. The set K is closed and convex.

Minimize f(«) for & in K. (21)

ADMM rewrites 2 in K™ as a minimization of g. It connects = to z by a constraint,

Minimize f(x)+ g{z) subjectto & —z =0. (22}

g is the indicator function of the set K': g(z) = 0 or +co for z in or out of K.
So g = 0 at the minimum, which forces the minimizer to be in K. The indicator func-
tion g{z) is closed and convex, because the “cylinder” above its graph (above K} is closed
and convex. The scaled augmented Lagrangian includes the penalty term:

L{@,2,u) = f() + 9(=) + 5 plle — = + ul[". @)

Notice how the usual AT(z — z} was folded into equation (23) by the scaling step.
Then ADMM splits (22) into a minimization alternated with a profection :
Trr1 = argmin [f(@) + 1 pllz — 2k + uk?]
ADMM Zpy1 = projection of Try1 + Wiy onto K
Up+] = Uk + Tht1 — Tkt
Example 2 Soft thresholding An important £' problem has an exact solution.
fle) =M=l = May| + - + Alzg) splits into n scalar functions A |z|;.
Separation by ADMM leads to the minimization of each special function f; to f, :

1 .
filze) = Az + 3 plz: —v;)% with v = 2 — u;

The solution x} is the “soft thresholding” of v; drawn in Section V1.4 :

ooty () a2
o)+ Pl + plod/ 4

Not only is this thresholding function 7 an explicit solution to an important nonlinear
problem, it is also a shrinkage operator: every v; moves toward zero.
We will soon see this soft thresholding as a “proximal” operator.

190 Low Rank and Compressed Sensing

Example 3 Nonnegative Matrix Factorization A ~z CR with C;; > 0and B;; > 0

ADMM begins with an afternating minimization—our favorite way to factor a matrix.

FindC > 0 Minimize |4 — CR||% with R > 0 fixed
Find B> 0 Minimize [|A — CR||% with C > 0 fixed

Boyd et al. point out an equivalent problem with C' and R in the constraint X = CR:
NMF Minimize |4 — X||% + I, (C) + T((R) with X =CR

ADMM adds a third step that updates the dual variable I. And it introduces a new variabie
X constrained by X = CR > 0. The indicator function I, (C} is zero for C' > 0 and
infinite otherwise. Now ADMM splits into a minimizalion over X and C, alternating with
a minimization over R

1
(Xkt1,Chs1) = argmin |||4 — X% + §P||X ~ CRy + Ui||}| with X >0,C>0
Riy1 = argmio || Xpq1 — Cra1 R+ Ui|[% with R >0
U1 = Uk + X1 — Crpr e

The rows of Xy1,Cryr and then the columns of Hjiyy can all be found separately.
The splitting promotes paraliel computation.

Example 4 LASSO aims for a sparse solution to Az = b by including an £' penalty :

1
LASSO Minimize oAz — b + Azl (25)

Immediately that problem splits into f(@) + g(z) with the constraint # — z = 0. The
subproblem for « is least squares so we meet ATA. Augment with 1p[|Az — b|[.

Scaled ADMM xry =(ATA+ pI)_l(ATb + plzp —ug))
Soft thresholding zi11 = Sa/p(Tr1 + 1)
Dual variable U1 = Mg + Bpg1 — Zp1

By storing the LU factors of ATA + pI, the first step reduces to back substitution.
Boyd et al remark that replacing ||2(|; = Y |z:| by ||[Fx|ly = 3 Jeip1 — 2if converts
this example into “total variation denoising”. Their online book offers excellent and con-
vincing examples of ADMM.

L4, Split Algorithms for £2 4 £ 191

Matrix Splitting and Proximal Algorithms

A first connection of Az = b to ADMM comes from splitting that matrix into A = B+ C.
In classical examples B could be the diagonal part of A or the lower triangular part of A
(Jacobi or Gauss-Seidel splitting). Those were improved by Douglas-Rachford and
Peaceman-Rachford, who regularized by adding of and alternated between B and ' :

(B+alzey, =b+(al - C)zy

(26)
(C + aI)zk—}-l =b+ (OSI - B)mk—}—l

This idea appeared in 1955, when problems were linear. It led to deeper nonlinear ideas
proximal operators and monotone operators. A special feature is the appearance of exact
formulas for several important proximal operators—particularly the £* minimization that
led to soft thresholding and shrinkage in Example 2. We will define the Prox operator and
connect it to ADMM.

In optimization, the analog to those matrix equations (26) has b = 0 and B = V F5.
Here F is the €2 part and its gradient V F, (or its subgradient OFy) is effectively linear.
Then OF; + af corresponds to B + of and its inverse is a “‘proximal operator”:

Proxg{v) = argmin (F(a:') + 3ll® — v]li) (27)

The key facts to justify this proximal approach (and the splitting into Fy 4 Fy) are
1 The £2 problem is well understood and fast to solve
2 The £ problem often has a closed form solution (by shrinkage).

The double-step combination—the analog for optimization of the double-step matrix
equations (26)—is the “proximal version” of ADMM with scaling factor o

1 = (OF 4+ al) az, — aug) (28a)
ADMM Zp41 = (BF + C!I)_I(Q:Ek+1 -+ Ct‘u.k) (28b)
Ukt1 = Uk + Trg1 — Ze41 (28¢)

Overall, proximal algorithms apply to convex optimization. For the right problems
they are fast. This includes distributed problems—minimizing a sum of terms in parallel
(as for ADMM). Parikh and Boyd remark that Prox compromises between minimizing a
function and not moving too far. They compare it to gradient descent @ — aV F{x) in
which « plays the role of the stepsize. The fixed points of Prox are the minimizers of F.

Here are two excellent references and a website with source code for examples

P. Combettes and J.- C. Pesquet, Proximal splitting methods in signal processing, in
Fixed-Point Algorithms for Inverse Problems, Springer (2011). arXiv: 0912.3522

N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends in Optimiza-
tion 1 (2013) 123-321.

Book and codes : http://stanford.edu/~ boyd/papers/pdi/prox_algs.pdf

192 Low Rank and Compressed Sensing

! e

! //\}Z\ H‘“"“m-.,x

e e o e
~ .

- ~

Figure II1.3: Smooth function f{z): One tangent at each point with slope ¥V f. Pointed
function f(z) = |z|: Many tangents with slopes 3 f (the subgradient) at the sharp point.

Bregman Distance

The name Bregman is appearing for the first time in this book. But “Bregman distance”
is an increasingly important idea. [Its unusual featore is the lack of symmetry:
Diu,v) # Dfv,u). And the distance from » to v depends on a function f.
We do have D > 0 and also D(w,) < D(u,#) along a straight line with & < w < v:

Bregman Distance D De(u,v)=flu)—fF(0)—{(VFf(v),u—v) 29

Always the gradient V f is replaced by a snbgradient 8 f at poinis where the graph of
f{z) has a corner. Then &f can be the slope of any tangent plane that stays below the
convex function f{z). The standard examples in one dimension are the absolute value
|| and the ReL.U function max (0,) = 3(x + |x|) with corners at z = 0. The tangent
planes to |z| can have slopes @ |z| between —1 and 1. For &8(ReLU) the slopes are between
0 and 1. These subgradients make & f an effective {(but multivalued) replacement for V f,

Split Bregman and Split Kaczmarz

For minimization with an £! penalty term (like basis pursuit}, two iterative algorithms
need to be seen. Start from Az = b:

Linearized Bregman iteration with parameter A > 0

Y1 = Yk — Sk AT(Axy, — b) (30
Tea1 = (Y1) = sign (Y1) max (|yera| — A, 0) (31)

(30) is a normal adjustable step to reduce || Ax — b||°. Its stepsize is 5 > 0. Then the soft

thresholding function S applies to each component of the vector ¢, ;. If y. | = (1, -3)

and A = 2, the output ;1 from this nonlinear function S in (31} will be the vector &p41 :
T4l = ((l) max (1 - 270): (-1) max(3 -2, U)) = (Ua _1)

If Az = b has a solution and if s Amax (AT A) < 1, the Bregman vectors ¢ will converge

to the optimal vector ™ :

1
z* minimizes A||z||1 + EH:}:H% subjectto Az = b. (32)

114, Splic Algorithms for £2 -+ £1 183

Kaczmarz iteration is effective for big data with sparse vectors. The standard steps
solve Az = b. They cycle sequentially or randomly through those rz equations] = = b;
(where a is row i of A). Each step adjusts 2z by a multiple ca; of one column of AT,

to satisfy the th equation al T4y = b; :

b —ale b—alx
Tpil = &+ —1—#‘1 a; solves alzpy) = aley + a?a?;zi‘,zk = b;. (33}
Iles| (EH
The sparse Kaczmarz steps combine (33) with the soft threshold in (31):
Sparse Kaczmarz y, ;= zx —s5¢a; and @pe1 = Sy,) (34)

There is always freedom in the stepsize 5. The choice sp = (alxr — b;)/||a:l|? is
consistent with Kaczmarz. Lin and Zhou have proposed an online learning algorithm
for the same problem. This means that the step & — & + 1 is taken as soon as the new
observation b and the new equation af ¢ = by, arrive to join the computation. Then the
learning algorithm (34) immediately computes ¥, ; and &z,

1 T. Goldstein and S. Osher, The split Bregman method for L' regularized problems,
SIAM Journal of Imaging Sciences 2 (2009} 323 — 343.

2 W. Yin, S. Osher, D. Goldfarb, and I. Darben , Bregman iterative algorithms for £
minipization with applications to compressed sensing, SIAM J. Imaging Sciences 1
(2008} 143-168.

3 Y. Lei and D.-X. Zhou, Learning theory of randomized sparse Kaczmarz method,
SIAM J. Imaging Sciences 11 (2018) 547-574.

Bounded Variation: L' Norm for the Gradient

Natural images have edges. Across those edges, the defining function u{z,y) can have
a jump. Its gradient Vu = (Ou/dz,du/dy) can be smooth in the edge direction, but
Vu has a delta function in the perpendicular direction. The energy norm of = is infinite
but its bounded variation norm is finite :

||V ul)? =fj(u§+u§)dxdy=oo but |ju|igyv=Vull =//wu3+u§ d.’cdy<oo‘

In one dimenston () could be a unit step funciion. Its derivative is a delta function §(x).
The integral of §(x)? is infinite. But the integral of §{x} is 1. We can’t work with the
L? norm of the derivative §(z), but the L' norm of () is good.

In applications to image denoising, that BV norm is a very successful penalty term.
We fit the data, and we use the BV norm to prevent wild oscillations. The image can be
smooth or piecewise smooth, but it can’t have random “speckled” noise.

L. Rudin, S. Osher, and E. Fatermi, Nonlinear total variation based noise removal
algorithms, Physica D 60 (1992) 259-268, (This paper was fundamental in applying BV .}

-

194 Low Rank and Compressed Sensing

Problem Set I11.4

1 What vector & minimizes f(x) = ||z||* for = on the line & Tv = 17

2 Following Example 1 in this section, write Problem 1 as a minimization of
F(x) + g(z) with & = z. Describe that 0-1 indicator function g(z), and take
one ADMM step starting fromz =0,z =0, u =0,

3 Which vector minimizes)||x||; on the line 2Tw = 1if w = (2,3)?

4 Following Example 2, take one ADMM step in Problem 3 from ¢ = (1,1).
2

-1

|2

FromAz{ 2 1] R43=[2 0] Ug=]:é ?] compute X,,Ch, Ky, U,

B =

5 What matrices C > 0 and R > 0 minimize ||A — CR||% if A = [
6 Following Example 3 in this section, take one ADMM step in Problem 5:

-1 2 01

7 Find the LASSO vector @ that minimizes §||Az — b]|3 + A||2|f; with

4 1 1
A:[O 1] b:H A=2
8 Following Example 4, take one ADMM step in Problem 7 from 25 = (1,0) = zg
with p = 2,
9 Find Proxg(v) = argmin (3||«]{® + ||z — v||?) in equation (27). This is the

proximal operator for (&) = %||x|{. It is a function of v.

Here are three function spaces (each contained in the next} and three examples of «(z, y}:
Smooth u{z,y) Lipschitz (slope can jump) Bounded variation (u can jurnp)

Bowl x?+y? Flatbase max(z2+y?—1,0) Cylinder base (add step up along r =1)
A neat “coarea formula” expresses the BV norm of u as the integral of the lengths of
the level sets L{t) where u(z,y) = £. Jf ||grad u|| de dy = {(length of L(t)) dt.
Example Compute both sides of the coarea formula for a bowl: u{z,y) = 2% + 2

On the left side, ||grad u|| = ||(2x, 2y)]| = 2r. The bowl area integrates from {} to R:
llullgy = |lgrad u||y = [f(2r) rdr a8 = 47 R*/3.

On the right side, the level set where u = ¢ is the circle 22 + y® = ¢ with length 271,
The integral of that length L(t) from ¢ = Dto R?is [2m\/tdt = 47 R%/3.

10 Whatis [Ju||gy if u(x,y) = £+y in the riangle with sides = 0,y = 0, z+y = 17
What is ||u||gy if « = 0 in a unit square and u = 1 outside ?

LS. Compressed Sensing and Matrix Completion 185

IIL5 Compressed Sensing and Matrix Completion

The basic principle of compressed sensing is that a sparse signal can be exactly recovered
from incomplete data. It is a remarkable experience to see a perfect image emerging
from too few measurements. The geometry of an £! diamond versus an £2 sphere is one
way to explain it. Now mathematical analysis has identified the conditions on A and the
minimum number of measurements. We will summarize.

The reader will understand that the Nyquist-Shannon theorem is still in force. To
recover a noisy signal exactly, you must sample with at [east twice its top frequency.
Otherwise part of that signal is missed. Bui sparse signals are not noisy ! If a signal
is expressed by a small number of sinuscids or wavelets, then that sparse signal can be
recovered (with probability extremely close to 1) by a small number of measurements.

It is important to remember : Sparsity depends on the basis v1,. .., v, in which the
signal is represented. It uses only a few v’s. And the signal can be sensed in a different
basis w1, ..., Wn. The v’s are the columns of a representing matrix V', and the w’s are the
columns of an acquiring matrix W. A commeoen example: The ©’s are a Fourier basis and
the w'’s are a spike basis. Then V' is the Fourier matrix F* and W is the identity matrix 7.

A key requirement for compressed sensing is “incoherence” of V' and W : the
entries of VTW are small. Those are the inner products v w,;. Luckily we do have
low coherence for ' and I': all entries of F' have equal size. And even luckier:
Random matrices with ||columns|| = 1 are almost sure to be incoherent with any fixed
basis. So randomness and probabilities close to 1 are key ideas in compressed sensing.

The sensing step produces only m < n nonzero coefficients yy. of the unknown signal f: =
y = WTf. Toreconstruct f* = Va* close to this f, we use £ optimization to find =* :

Minimize {|z{[y subjectto WiVz =y (1)

This is a linear programming problern (it ts basis pursuit). That tells us again 1o expect
a sparse solution @™ {at a corner of the set of vectors with WTVz = g). So the simplex
method is a potential algorithm for locating ™. And there are faster ways to solve (1).

The basic theorem was established by Candés and Tao and Donoho:

Suppose V' and W are incoherent and ™ is sparse (< 5 nonzeros). The probability
is overwhelming that if m > € §'log n, the solution to (1} will reproduce f exactly.

Note One unusual situation arises when the true signal is supersparse in the basis of w’s.
Maybe it is exactly one of the w's. Then probes might find only zeros and we totally
miss that w in *, This is one reason that probability enters into compressed sensing.

196 Low Rank and Compressed Sensing

The basic theorem above is not the full story. The system will have noise. So we are
recovering a vector ¢ that solves Az = b + z, where =z can be stochastic and unknown.
The sparse problem is nearby, but it doesn’t perfectly match the noisy data. We want
stable recovery : Solve (1) with noisy data and obtain an «* that is near the sparse x**
(< S nonzeros) that would have come from noiseless data.

This conclusion is true when A has the “restricted isometry property” with 6 <+/2 — 1:
RIP) (1-6)l[=l} <l Azl3 < (1 + 8 llell} if @ is S-sparse. (2)

Fortunately, the matrix A can have columns chosen randomly on the unit sphere—
or chosen randomly from the normal distribution N(0,1/m}—or with independent
random entries equal to +1//m—or in other random ways. The RIP requirement ig
almost surely satisfied if m > € Slog(n/5).

This finally connects the number of measurements 7n with the sparsity 5. And the
noisy data leads us to replace basis pursuit (where Ax exactly equals b) with LASSO:

LASSO with noise ~ Minimize ||=|]; subjectto ||Ax — b|l; < e (3

This exposition of compressed sensing has followed the article by Candés and Wakin:
IEEE Signal Processing Magazine 21 (March 2008). That article refers to the early work
of Candgs, Tao, and Doncho—which achieved a highly valuable goal. Instead of acquir-
ing massive accounts of data and then compressing it all (as a camera does), only m =
{Slogn/8) is acquired and used. A one-pixel camera becomes possible, with no lens,
as Rich Baraniuk has shown. Perhaps the medical applications are the most valuable—
we will start and end with those.

The start was an unexpected observation by Candés in 2004. The Logan-Shepp test
image (an abstract model of the human head) was corrupted by noise. It looked as if
Magnetic Resonance Imaging (MRI) had been stopped too soon. To improve the image,
Candes tried an idea using £'. To his surprise, the phantom image became perfect
{even though the data was incomplete}. It was almost an online equivalent of Roentgen’s
discovery of X-rays in 18%5—an accident that gave birth to an industry.

Incredibly, in the week of writing these words, an essay by David Donoho appeared
in the online Notices of the American Math Society (January 2018). It describes how
compressed sensing has accelerated MRI. Scan times are reduced from 8 minutes to 70
seconds, with high quality images. Dynamic heart imaging becomes feasible even for
children. Michael Lustig was a pioneer in this MRIsuccess, and a host of mathematicians
contributed to the theory and the algorithms. The FDA has approved a change that will
come gradually in the United States, as thousands of scanners are upgraded.

The purpose of Donoho’s essay was to show that funding and collaboration and theory
and experiment (and a little luck) have produced something wonderful.

[L.5. Compressed Sensing and Matrix Completion 197

Matrix Completion in the Nuclear Norm

The rank of a matrix is like the number of nonzeros in a vector. In some way the rank
measures sparsity. For low rank, the matrix X of singular values is literally sparse
(r nonzeros). Just as the number of nonzeros is a “0-norm™ for vectors, the rank is a
“0-norm” for matrices. But ||v||o and |{A||o are not true vector and matrix norms,
because ||v||o = ||2v||o and rank{A4) = rank(2A). Multiplying by 2 doesn’t change the
count of nonzeros or the rank—but it always doubles any true norm.

Nevertheless we often want sparsity for vectors and low rank for matrices. The matrix
completion problem starts with missing entries in a matrix Ag. We want tc complete Ay
to A, keeping the rank as low as possible. We are introducing a minimum of unexplained
data. This problem of missing data is widespread in all areas of observational science.
Some assumption about the completed A is needed to fill in the blanks, and minimum rank
is a natural choice. Look at these examples:

1 2 1 1 2
S ER i E

All can be completed with rank 1. Ay allows any multiple of (1,2) in the second row.
By allows any numbers b and ¢ with be = 4. () allows only 6 in its last entry.

With vectors, we relaxed the sparsity norm ||v|}o to the £' norm ||v||;. With matrices,
we now relax the rank norm || A||g to the nuclear norm |} A}|x. This nuclear norm is
the £! norm of the diagonal of £. We are minimizing the sum of the singular values:

Nuclearnorm ||A||y =o1+02+ -+ 0,) *

Now we have a convex norm, but not strictly convex : ||B1 + Balinv = ||Biflw + || Balln
is possible in the triangle “inequality™. Tn fact the example matrix By could be completed
symmetrically by any b = ¢ between —2 and 2. The nuclear norm || B||y stays at 5
(singular values = eigenvalues and ||B||y = trace for this positive semidefinite B).
Rank one matrices are roughly analogous to sharp points in the diamond |jz|l; = L

A famous example for matrix completion was the Neiflix competition. The ratings
of m films by n viewers went into Ay. But the customers didn’t see all movies. Many
ratings were missing. Those had to be predicted by a recommender system. The
nuclear norm gave a goed selution that needed to be adjusted for human psychology—
Netflix was not a competition in pure mathematics.)

Another application is computing the covariance matrix from a lot of sampled data.
Finding all covariances o;; can be expensive (typical case: the covariances of all stocks
over 365 days). We may compute some and estimate the rest by matrix completion.
A scientific example : All the covariances in measuring the ocean surface at 10* positions.

Here is the “convex relaxation™ of rank minimization to nuclear norm minimization :

Matrix completion ~ Minimize || A|| v subject to A = Ag in the known entries.

198 Low Rank and Compressed Sensing

The mathematical question is: By knowing K entries in an n by n matrix of rank r,
can we expect a perfect recovery of the whole matrix 7 The remarkable answer is yes—
provided K is large enough. Candes and Recht proved that if K > Cn®*rlogn,
then with high probability (in a suitable model !) the recovery of A is perfect.

Here are a few comments on their 20-page proof, followed by references.

1. “With high probability” does not mean “certain”. We must work with a model for ran-
dom matrices 4. One choice takes {/ and V' as random orthogonal matrices in A = UZVT,

2. The analysis and proof use matrix versions of the key inequalities of statistics in V.3,

3. Finding A with smallest nuclear norm can be expressed as a semidefinite program :

W, X } X contains the known entries

Minimize the trace of [X W, | Wy, W, are positive semidefinite

1. D. Donoho, Compressed sensing, IEEE Trans. Inform. Th. 52 (2006) 1289-1306.

2, E. Candes, J. Romberg, and T. Tao, Robus! uncertainty principles: Exact signal
reconstruction from highly incomplete Fourier information, IEEE Transactions on
Information Theory 52 (2006} 489-509,

3. E. Candés and B. Recht, Exact matrix completion via convex optimization, Founda-
tions of Comp. Math. 8 (2009) 717 — 736; arXiv: 0805.4471v1, 26 May 2008,

4. T. Hastie, B. Mazumder, J. Lee, and R. Zadeh, Matrix completion and low-rank SVD
via fast alternating least squares, arXiv: 1410.2596, 9 Oct 2014,

Algorithms for Matrix Completion

We need an algorithm that completes the matrix A, with fixed entries Aypoun-
Reference 4 above traces the development of three alternating iterations—each new
method improving on the previous algorithm. This is how numerical analysis evolves.

1 (Mazumder er. al) Soft-threshold the SVD of Ay (see Section VL5 for 5,):
A = UpZ Vi and By = UpSi () V] with Sy(o) = max (s — A, 0)
S sets the smaller singular values of By to zero, reducing its rank. Then
Apo minimizes 2|4~ Boggounlb + MBIy ©)

The drawback is the task of computing the SVD of 4, at each step. In the Netflix compe-
tition, A had 8 x 10° entries. The authors succeeded to reduce this heavy cost. And each
previous SVD gives a warm start to the next one. And new ideas kept coming.

2 (Srebro et, al) These authors write the solution matrix as CRT = (m x r){r x n}:
Minimize

1 7 X
O and R Sll4-Ck JknownllszrE(IICH%HIRII%) (6)

1IL.5. Compressed Sensing and Mairix Completion 199

This is convex in C alone and in R alone (so biconvex). An alternating algorithm is natural :
Update C and then update R. Each problem is an £2 ridge regression for each column of
¢ and then each column of K. This produces a “maximum margin” factorization C'R.

3 (Hastie er. aol, see 4 above) The third algorithm came in 2014. Itis a variation on the
first—but it alternates between C and R as in the second. The minimization now includes
all entries of A — C'RT, not only those in the known positions. This greatly simplifies
the least squares problem, to work with full columns of both known and unknown entries.

Start with this (alternating) least squares problem, when A is fully known :

Minimize

C and R
An explicit solution is C = U, S»(E,)4/? and R = V.85 (Z,)"/2. All solutions including
this one have CRT = U8, (2.)V.T = soft SVD of A. The soft thresholding S5 shows
the effect of the penaity term in (7). Amazingly and beautifully, that product B = CRT
solves this rank r nuclear norm problem:

1 A .
514 — CRT|[% + Z(IC1I7 + | RIi7) (7)

Minimize 1 5
o8y <7 3/~ Bk + AlBllx ®
This connection to (7) yields the following fast alternating computation of B = CRT.
For the moment assume all entries of A are known: none missing. Start with
' =random m x v and D = [,. Bach step updates R, C, and D.

1. Minimize over R (n x r) [|A — CRT||% + AlIR|[% ©)
2. Compute thisSVD RD = USVT Set D = +/'S and Rnew = VD
3. Minimize over C (m x 7} ||A — CRT||% 4)||C||% (10
4. Compute thisSVD CD =UZVT SetD = VZ and Cpew = UD

Repeat those steps until CRT converges o the solution B of (8).

Now Hastie et. al return to the real problern, in which A has missing entries : not known.
At each iteration, those are taken from the current matrix CRT. This produces a very
efficient sparse plus low rank representation of A.

A= Appown t+ (CRT)unknown =(4- C'RT)known +CR". (,11)

The final algorithm is a slight modification of {9)-(10), by using A from equation {13).
The solutions to (9)-(10) have remarkably simple forms, because those problems are
essentially ridge regressions (least squares}):

RT'=(D* 4+ XN7'DUTA in (%) C = AVD(D*+ XI)™! in (10)

Altogether the algorithm is described as Soft-impute Alternating Least Squares.
Hastie et al analyze its convergence and numerical stability. They test an implementation
on the data for the Netftix competition—with success.

200 Low Rank and Compressed Sensing

Problem Set IIL.5

1 For one or more of these examples in the text, can you find the completion that
minimizes || A||p ?

12 1 1 2
SR I PRI

2 Corresponding to the important Figure 1.16 near the start of Section I.11, can you
find the matrix with smallest “sum norm” ||A||g = |a| + |b] + |c] + |d] so that

a b 31 _ 11|,
c d 41 10"
3 For 2 by 2 matrices, how would you describe the unit ball || A||g < 1 in that sum

norm [a + {bf + fef + |d[?

4 Can you find inequalities that connect the sum norm to the nuclear norm for n by n
matrices ?

1Al < e(n}||Alls and [[Alls < d(n) ||Ally

5 If only one entry of a matrix A is unknown, how would you complete A to minimize
[[Alls or [|Alln?

Here are two neat fermulas for the nuclear norm (thank you to Yuji Nakatsukasa).

min min 1 2 1 p
1Al = ym g eIV = Gty 2000 + 5IVI)

6 Start from A = USVT = (USY2)(SV2¥T), If you rename those two factors
2 2
U* and V*, so that A=U*V*, show that ||U*|| . =|[V"|| . = || A|l y: equality in (*).

7 If Ais positive semidefinite then ||A||p = trace of A (why?). Then if A = UV,
explain how the Cauchy-Schwarz inequality gives

|Allw = trace (UV) = X Uy Vi < [[U}ir [IV]|r-

Part 1V
Special Matrices

IV.1 Fourier Transforms : Discrete and Continuous
IV.2 Shift Matrices and Circulant Matrices

IV.3 The Kronecker Product A @ B

IV4 Sine and Cosine Transforms from Kronecker Sums
IV.5 Toeplitz Matrices and Shift Invariant Filters

IV.6 Graphs and Laplacians and Kirchhoff’s Laws

IV.7 Clustering by Spectral Methods and k-means

IV.8 Completing Rank One Matrices

IV.9 The Orthogonal Procrustes Problem

IV.10 Distance Matrices

Part IV : Special Matrices

This chapter develops two large topics ; the key matrices for Discrete Fourier Transforms
and for graphical models. Both topics appear in machine learning when the problem has
special structure—which is reflected in the architecture of the neural net.

Fourier is for problems with shift invariance. The operations on one pixel of an image
are the same as the operations on the next pixel. In that case the operation is a convolution.
Each row of the underlying matrix is a shift of the previous row, Each column is a shift of
the previous colurnn. Convolutional nets use the same weights around each pixel.

With that shift-invariant structure, a convolution matrix {a “filter” in image processing)
has constant diagonals. The N by N matrix in a 1-dimensional problem is fully determined
by its first row and column. Very often the matrix 1s banded-——the filter has finite length—
the matrix has zeros cutside a band of diagonals. For 2-dimensional problems w1th repeated
one-dimensional blocks the saving is enormous.

This makes it possible to use a Convolutional Neural Net (CNN or ConvNet) when an
N? by N? matrix full of independent weights would be impossible. A major breakthrough
in the history of CNN’s was this NIPS 2012 paper:

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton : IrmageNet Classification with
Deep Convolutional Neural Networks. Their neural net had 60 million parameters.

Graphs have a different structure. They consist of n nodes connected by m edges.
Those connections are expressed by the incidence matrix A: m rows for the edges
and 7 columns for the nodes. Every graph is associated with four important matrices :

Incidence matrix A m by n with —1 and 1 in each row
Adjacency matrix M n by n with a;; = 1 when nodes ¢ and j are ‘connected
Degree matrix D n by n diagonal matrix with row sums of M
Laplacian matrix L = ATA =D — M positive semidefinite matrix

From the viewpoint of deep learning, Fourier problems are associated with CNN’s and
graphical mddels lead to graphical nets. Graph theory has become our rmost valuable tool
to understand discrete problems on networks.

203

o

204 - S Special Matrices

IV.1 Fourier Transforms: Discrete and Continuous

The classical Fourier transforms apply to functions. The discrete Fourier transform (DFT)
applies to vectors:

Real Fourier series : real periodic functions f(z + 27) = f(x)

Complex Fourier sertes : complex periodic functions

Fourier integral transforms : complex functions f{z) for —00 < z < o
Discrete Fourier series : complex vectors f = (fa, f1,-..,fv-1)

Our focus is on the last one—transforming vectors to vectors. That is achieved by an
N by N matrix. The inverse transform uses the inverse matrix. And all these transforms
share basis functions of the same type that Fouzier nsed :

Real Fourier series : cosines cos nx and sines sin nx
Complex Fourier series : complex exponentials €™ forn = 0,+1,42, ...
Fourier integral transforms : complex exponentials e**< for —co < k < 00

Discrete Fourier series: N basis vectors by with (bg); = e2riik/N — (g2%i/Ny ik,

Each function and each vector is expressed as a combination of Fourier basis functions.

-

What is the “transform™ ? It is the rule that connects f to its coefficients ay, bx, ¢, F(k)
mn these combinations of basis functions :

Real series f(®) =ag+aycosz + bysinz +apcos2zx + bosin2z 4+ ---
Complex series | f(x) = co + c1€™ + c_1€7 + 026™® + e o™ 4 -
oo
Fourier integrals | f(z) = / Flk)e*= dk
-0

Discrete series F=cobg +c1b; + -+ en..1by-; = Fourier matrix F times c

Each Fourier transform takes f in “z-space” to its coefficients in “frequency space”.
The inverse transform starts with the coefficients and reconstructs the original function.

Computing coefficients is analysis. Reconstructing the original f (shown in the box)
is synthesis. For vectors the commands fét and ifft produce ¢ from f, f from c.
Those commands are executed by the Fast Fourier Transform.

IV.1. Fourier Transforms ;: Discrete and Continuous 205

Orthogonality

In all four transforms, the coefficients have nice formulas. That is because the basis
functions are orthogonal. Orthogonality is the key to all the famous transforms (ofien
the basis contains the ecigenfunctions of a symmetric operator). This allows us to find
each number ¢y, separately. For vectors, we just take the (complex!) dot product (b, f)
between f and each of the orthogonal basis vectors by. Here is that key step

— (bka .f)
(b, b}

(bi, £)= (bx,cobo+crbi+ - -+enoiby—1) = cu{bi, bi). Then {c; 1)

All inner products {by, b, } are zero in equation (1}, except (bx, b). Those denominators
(br,br) = ||bg||? = 7 or 2 or NV are a pleasure to compute for Fourier basis functions :
Real series: [(cosnz)?dz = w and f(sinnz)? de = and [(1)%dz = 27
Complex series: [e*e~#%dy = [1dx = 2w
Discrete series : Efbk = 1.1+ 2TH/N g=2mik/N | oAmik/N o—dmik/N | ... = N
If we normalize basis vectors to ||bg|| = 1 then Fourier matrices are orthogonal.

The Fourier integral case is the subtle one and we stop after writing down equation (2).
Its infinite integrals come from Fourier series when the period 27 increases to 2#T with
T — oo

Foy= [et me f@) =g [T fweEd @)

T=—00

Fourier Matrix ¥ and DFT Matrix

The matrices Fiy and {2y are N by N, They are both symmetric (but complex). They
have the same columns, but the order of columns is different. F contains powers of
w = e2™/N and QO contains powers of the complex conjugate w = w = e~ 27¢/N,

Roman w and Greek w. In fact the two matrices are complex conjugates: Fn = .
Here are Fy and €4, containing powers of w = e2"i/? = § and w = e 2"/% = 4
We count rows and columns starting at zere, so £ and € haverows 0,1,2,3 :

1 1 1 1 1 1 1 1

Fourier _, 1 4 4% 3 DFT 1 =i (=i (=i)?

matrix “4 7 [1 2 ¢ 48 matrix 47 {1 (=) (=i} (~i)8)
1 48 8 0 1 {=i)3 (=0)% (=i)°

{2 umes f produces the discrete Fourier coefficients ¢
F' times ¢ brings back the vector 4 f = N f because F{} = NT

206 Spectal Matrices

If you multiply Fiy times Qy, you discover a fundamental identity for discrete Fourier
transforms. It reveals the inverse transform:

- 1 1 _
FnQnx = NI and therefore Fp' = N Qn = EFN e
To see this, look closely at the N numbers 1, w,...,w"¥~! in the second column of F.

Those numbers all have magnitude 1. They are equally spaced around the unit circle in the
complex plane (Figure IV.1). They are the N solutions to the N'th degree equation 2V = 1.

Their complex conjugates 1,uw, ... ,w¥~1 are the same N numbers. These powers
of w go around the unit circle in the opposite direction. Figure IV.1 shows 8 powers of
w = ¢2™% and w = =272, Their angles are 45° and —45°.

N=8
wd w Wb
w = e27i/8 — gitw/1)
1
W = e—27i/B — o—iln/4)
5 7
w w 3 w
w
=1/w wP=landw® =1

Figure IV.1: The powers of w are also the powers of w. They are the IV solutions to 2% = 1.

To prove that FxQp = NI, here is the property we need. The N points add to zero!
For every N thesum S =1+ w4+ w? + .+ + wV~1 js zero. (5)

The proof is to multiply $ by w. This produces w + --- + w”. That is the same as S,

because w at the end is the same as 1 (at the start). Then 5w = S. 50 S must be zero.
You see right away that the eight numbers around the circle in Figure TV.1 add to

zero, because opposite pairs already add to zero. For odd IV that pairing doesn’t work.

This fact & = 0 tells us that every off-diagonal entry in Fi{1y is zero. The diagonal
entries (sum of 1’s) are certainty N. So Fy Qx = NI. If we divide F and Q) by VN,
then the two matrices are inverses and also complex conjugates : they are unitary.

1 i 1 1 =
Unitary matrices — F — Oy | = —=F —Fny)=I (6
i (77 7) (Gew) = (o) (5 7v) -1 @
Unitary matrices are the complex version of orthogonal matrices. Instead of QT = Q!

we have 6T = @L. Itis appropriate to take complex conjugates when you transpose a
complex matrix (and most linear algebra codes do that automatically). In the same way,

. . - aes . A
the complex version of a real symmetric matrix is a Hermitian matrix with § = S.

1V.1. Fourier Transforms: Discrete and Continuous 207

The DFT Matrix £2 is a Permutation of the Fourier Matrix F

The matrices F and & have the same columns. S¢ I and) are connected by a per-
mutation matrix. That permutation P leaves the zeroth columns alone : the column of 1's
in both matrices. Then P exchanges the next column (1,w,w?,..., w™N=1) of F for its
last column {1,w,w?, ..., w 1), After the 1 in its zeroth row and column, P contains
the reverse identity matrix J (with 1’s on the antidiagonal):

P’P=Jand Q=FP and QP =FP*=F

e-[3 3]-

oo O
| e i o i o
Lo I s I
oo KO

Here are the full matrices for £2 = FP when N = 4:

1 1 1 1 11 1 1 1 1 =1
R S GO LN C)L B IS S N GO o g =3
0= 1 (—8)2 (=)t (=98] |1 2 # & 1 because (—i)? = i2
1 (=9 (=)0 (=)°| [1 & 8 4° 1 (—i)* =i

These matrix identities lead to the remarkable fact that F¢ = 0% = NZI.
Four transforms bring back the original vector (times N?). Just combine FQ = NT
and FP =) with P? = I :

F2P=FQ=NI so PF?=NI and F*=F?PPF?=N3I

From F* = N2/, it follows that the Fourier matrix #' and the DFT matrix {) have only
four possible eigenvalues! They are the numbers) = v'N and iv/N and —/N and
—iv/N that solve X = N2. For sizes N > 4 there must be and will be repeated \'s.
The eigenvectors of F* are not so easy to find.

The Discrete Fourier Transform

Start with any N-dimensional vector f = (fo, .. ., fv—1)}. The Discrete Fourier Transform
expresses f as a combination of epbg +c1 by +- - -+ cy_1by -1 of the Fourier basis vectors.
Those basis vectors are the columns b (containing powers of w) in the Fourier matrix Fiy :

Jo € f=Fne
: N A : c=Fy'f (7
i
Jn-1 CN-1 c = }\—IQNJ'

The forward transform ¢ = fft { f) multiplies f by the DFT matrix £ (and divides by V).
That is the analysis step, to separate f into N orthogonal pieces. The DFT finds the coef-
ficients in a finite Fourier series f = cobg + - - +ey_1bn_1.

208 _ L ... ___ Special Matrices

The synthesis step is the inverse transform f = ifft (¢} = Fe. It starts with those
coefficients ¢ = (cp,...,cn—1). It carries out the matrix-vector multiplication Fe¢ to
recover f.

Thus ifft (fft (f)) = f. Examples will throw light on the two vectors f and ¢.
Example 1 The transformof f = (1,0,...,0)is¢c = —11\?(1,1,‘.‘,1)‘

That vector f with one spike is a discrete delta function. It is concentrated at one point,
Iis transform ¢ spreads out over all frequencies. Multiplying £ f picks out the zeroth
column of §2. Therefore ¢ shows the same Fourier coefficients 1/N from all frequencies,
Here N = 4:

1. 1 1 1 1 1 1

1 1f1 - 0 11 1 1 i i i3
=1%=1l. of Ta|r| IEFe=L T e [Tt)T

1- 0 1 1 i i P

This transform ¢ of a “delta vector” f is like the continuous transform of a “delta function”.
The delta function concentrates everything at x = (. Its Fourier transform spreads out flat:

—

i) 1 0 . 1
d{x) = E cxe™® has cp = — 5(.’3)8“”"‘”(1& = — for every frequency k.
—~ 2%

2
(8)
You see how 2 in the continuous transform matches N in the discrete transform.

Example2 £ ={(1,1,...,1) will ransform back to the delta vector ¢ = (N, 0,...,0}.

Example 3 A shift in the delta vector to f = (0,1,0, ..., 0) produces a “modulation”

in its transform. This shifted f picks out the next column (1, w,...,w™ 1) of F:

1) R 1 1 0

1 1| w 1|1 w v wh! w 1
=—=0Onf== . df=Fe=— Y=

c N N f N . an f c N . - . - . N

w1 1 N-1 ., d-17 [V-1 0

Fourier series would have a shift from f(z) to f(z — s). Each coefficient cy is
multiplied by e~%°. This is exactly like the multiplications of (1,1, ..., 1) in Example 1
to produce (1,w, . ..,w™ ~1) in Example 3.

Shift rule A shift in x-space is multiplication of the coefficients in k-space.

e e R

IV.1. Fourler Transforms : Discrete and Continuous 209

One Step of the Fast Fourier Transform

We want to multiply F times c as quickly as possible. Normally a matrix times a vector .
takes N? separate multiplications—the matrix has N2 entries. You might think it is im-
possible to do better. (If the matrix has zeros then multiplications can be skipped. But the
Fourier matrix has no zeros!) By using the special patterns w?* and w7* for their entries,
{2 and F' can be factored in a way that produces many zeros. This is the FFT.

The key idea is to connect Fyy with the half-size Fourier matrix Fiyo. Assume that
N is a power of 2 (for example N = 219 = 1024). Fyg24 connects to Fsyz.

When N = 4, the key is in the relation between F, and two copies of I :

11 1 1 1 1.

1§ 2 £ F 1 42
Fami 2 4 g and F|- 11

13 i 40 1 2

On the left is Fy, with no zeros. On the right is a matrix that is half zero. The work
is cut in half. But wait, those matrices are not the same. We need two sparse and simple
matrices to complete the FFT factorization:

The FFT has P = o il |1 4 i

three matrices | -1 1 - {10}
1

—
—

.2 1

The last matrix is a permutation. It puts the even ¢’s (¢ and ¢2) ahead of the odd ¢'s (¢
and ¢3). The middle matrix performs half-size transforms F> and 5 on the even ¢’s and
odd ¢’s separately. The matrix at the left combines the two half-size outputs—in a way that
produces the correct full-size output y = Fye.

The same idea applies when ¥ = 1024 and M = %N = 512. The number w is

¢?71/1024 [is at the angle § = 2x/1024 on the unit circle. The Fourier matrix Fjgo4 is
full of powers of w. The first stage of the FFT is the great factorization discovered by
Cooley and Tukey (and foreshadowed in 1803 by Gauss);

F. — I512 D512 F512 even-odd (1 1)
1024 Isia —Dsi2 F5y2 | | permutation | ©
I512 is the identity matrix. Ds:» is the diagonal matrix with entries (1, w, . ..,w>!!). The

two copies of £512 are what we expected. Don’t forget that they use the 512th root of unity
(which is nothing but w?!!) The permutation matrix separates the incoming VeCtor ¢ into
its even and odd parts ¢ = {¢g, ¢z, . - -, C1o02)} and ¢” = (c1,¢3,-- -, Croza)

210 Special Matrices

Here are the algebra formulas which say the same thing as that factorization of Figaq:

{One step of the FFT) Set M = %N . The first M and last M components of y = Fye

combine the two half-size transforms ' = Fyse’ and 3y = Fpse”. Equation (11)

shows this step from N to M = N/2as Iy’ + Dy” and Iy’ — Dy
yj:y;-l-(wN)jy;", j——-{],...,M-l

_ i (12)
yirm =y; — (wa)y], i=0,.. ,M-1

Split ¢ into ¢’ and . Transform them by Fis into %' and ¥, Then (12) reconstructs .
Those formulas come from separating ¢ . .., ¢xy -1 into even ca and odd cgpyq in (13).

N-1 AM-—-1 M-—1
v =3 whe =3 weur + 3w ey, with M ={N,w=wy. | (13)
0 0 0

Evenc’s gointo ¢’ = (¢g, ¢2,...) andodd ¢’s gointo ¢ ” = (e, ¢3, . . .). Then come
the transforms Fy; ¢’ and Fase”, The key is w2, = was. This gives w" = wr.

Rewrite (13) ;= (wn)™ e + (wn) D _(wary e =9/ + (wn)y” | (14)

For j > M, the minus sign in (12) comes from factoring out (wx) = —1 from (wy)?.

MATIAB easily separates even c¢’s from odd ¢’s and multiplies by ?.,Uir. We use
conj(F) or equivalently MATLAB’s inverse transform ifft to produce y = F'c. Remem-
ber that fit is based on w = W=e~2"*" and it produces ¢ from y using 2.

FFT ste Transform even ¢’s Y = it (c(0:2: N —2)) x N/
P Transform odd c’s Yy =ifft {e(1:2: N — 1)) » N/2;
from IV to N /2 . H 5
in MATLAB Vector 1,w,... isd d=w0:N/2-1Y;
Combine y" and y” Y= [y" +d. % y!!; y! —d.% y.r.r];

The flow graph on the next page shows ¢’ and ¢” going through the half-size F,. Those
steps are called “butterflies,” from their shape. Then the outputs ¢’ and y” are combined
(multiplying ¥ by 1, i from D and also by —1, —¢ from —D) to produce y = Fye.

This reduction from Fiy to two Fas’s almost cats the work in half—you sce the zeros
in the matrix factorization. That 50% reduction is good but not great. The complete FFT
is much more powerful. It saves much more than half the time. The key idea is recursion,

And the factorization of F applies equally to the conjugate matrix 2 = F.

IV.1. Fourier Transforms : Discrete and Continuous 211

00 co e » » 0 00
¢’ = evens v 1
10 o » —a W1 10
-1
1
01 [» Yo 01
-1
¢’ = odds y” \
11 C3 & W » 11 11
-1 —i

The Full FFT by Recursion

If you have read this far, you probably guessed what comes next. We reduced Fy to
Fyyo. Keep on going to Fyy /4. Bvery Fs1z leads to Fase. Then 236 leads to 128. That is
recursion.

Recursion is a basic principle of many fast algorithms. Here is step 2 with four copies
of Fysg and D (256 powers of wsy2). Evens of evens ¢q, ¢4, ¢3, - . . come before ¢a, g, €19, - - -

i D F pick 0,4,8,...

Fslg o I -D F ple 2, 6, 10, .
F512 o I D ¥ piCk 1,5,9,. .
I -D Fl |pick 3,7,11,.

We will count the individual multiplications, to see how much is saved. Before the FFT '
was invented, the count was the usual N2 = (1024)2, This is about a million multipica-
tions. I am not saying that they take a long time. The cost becomes large when we have
many, many transforms to do—which is typical. Then the saving by the FFT is also large:

The final count for size N = 2% is reduced from N? to LN,

The number 1024 is 21°, so £ = 10. The original count of (1024)? is reduced to
{5)(1024). The saving is a factor of 200. A million is reduced to five thousand. That is why
the FFT has revolutionized signal processing.

Here is the reasoning behind %Nf. There are £ levels, going from N = 2¢ down to
N = 1. Each level has N/2 multiplications from the diagonal I)’s, to reassemble the half-
size outputs from the lower level. This yields the final count 1 N'¢, which is %N log, N.

One last note about this remarkable algorithm. There is an amazing rule for the order
that the ¢’s enter the FFT, after all the even-odd permutations. Write the numbers O to . — 1
in binary (like 00,01,10, 11 for n = 4). Reverse the order of those digits: 00, 10,01, 11.
That gives the bit-reversed order 0, 2, 1, 3 with evens before odds. '

The complete picture shows the ¢'s in bit-reversed order, the £ = log, N steps of the
recursion, and the final output ¢y, . .., yxy—1 which is Fiy times c.

The FFT recursion for the DFT matrix {2 = F uses exacily the same ideas.

212 | ... Special Matrices

Problem Set I1V.1

1 After S = 0 in equation (35), the text says that all off-diagonal entries of F,,Qp
are zero. Explain (row i of F): (column j of () = complex dot product = 0?

Why is (1, %, w®, ..., 0wV (1w W¥ s = i (£ 57

You must use the dot product for complex vectors, not z:11 + -+ - + TN Y.
2 If M = 1N show that (wn)™ = 1. This is used in the FFT equation (12).

3 What are the matrices F3 and {23 (using w = €*™/3 and w = w)? What 3 by 3
permutation matrix P will connect themby Q = FP and F = 1P?

4 Find the Discrete Fourier Transform ¢ of f = {0,1,0,0). Verify that the inverse
transform of cis f.

5 Connect Fg to two copies of F3 by a matrix equation like (10} and (11).
6 ForN =6 howdoyouseethatl +w +u? +u® + ! +uw® =07

7 Suppose f(z) = 1forfz| < /2 and f(z) = 0 for /2 < |z| £ #. This function
is “aven” because f{—zx) = f(z}. Even functions can be expanded in cosine series

f(i"?)Zao+alcosm+agcos2:}:+-u

Integrate both sides from z = — to 7, to find ag. Multiply both sides by cosz and
integrate from —x to 7, to find q,.

8 Every real matrix A with n columns has AATz = a,(aTx) + - + a.(alz).
If A is an orthogonal matrix), what is special about those n pieces 7

For the Fourier matrix (complex), what is changed in that formula ?

9 What vector & has Fyx = (1,0,1,0)? What vector has Fyy = (0,0,0,1)?

IV.2. Shift Matrices and Circulant Matrices ' 213

IV.2 Shift Matrices and Circulant Matrices

When this matrix P multiplies a vector z, the components of @ shift upward :

0 100 Xy o

Upward shift P = 0 010 x2 | | za)
Cyclic permutation “ o 0o 0 1 za | | =4
10 0 0 T4 &

The words “cyclic” and “circular” apply to P because the first component £, moves to
the end. If we think of numbers &), 25, 13, 24 around a circle, P moves them all by one
position. And P? wrns the circle by two positions :

01000100$1 0010 x 3.
. oo 1 0f|loo 1 o||lz] JO OO0 1|z} |
Pe=1g 00 1(lo oo 1||ei=|1 00 0||les] ja:| @
100 0|[1t o0 0f]a 010 0]/ £g

Every new factor P gives one additional shift. Then P* gives a complete 360 © turn:
Pz = x and P* = I. The next powers P, P% P7 P?® repeat the pattern and cycle
around again. Notice that P* is the inverse of P, because (P?) (P) = P* =T.

The next matrix is called a circulant. It is simply a combination of P, P2, P3, and
P* = I. It has constant diagonals :

&g €1 €z (3
3 €y €1 2 (3)
€2 €3 Co €
€ Cz €3 O

Circulant matrix C =cpl + 1 P+ 2 P? + 3P =

Each diagonal in that matrix cycles around exactly like the 1’s in . The diagonal with
c1,¢1, 01 1s completed by the fourth ¢; at the bottom, Important: If yon multiply two
circulant matrices C' and D, their product CD = DC is again a circulant matrix.

When you multiply CD, you are multiplying powers of P to get more powers of P.
And DC is doing exactly the same. This example has N = 3and P3 =1

1 2 3 5 0 4 13 22 19
CD=[3 1 2 4 5 0 | =119 13 22 | = circulant (4
2 31 D 4 5

22 19 13

(I + 2P + 3P2) (5I + 4P?)

(51 + 4P?) (I + 2P +3P%) = 51+10P+(15+4)P>+8P3+12P* = 131+22P+19P?

214 L ... Special Matrices __

At that last step, I needed and used the circular facts that P* = [and P* = P. So the
vectors (1, 2,3) for C and (5,0, 4) for D produce the vector (13, 22, 19) for C'D and DC,
This operation on vectors is called cyclic convolution.

To summarize: When we multiply N by N circulant matrices C and D, we take the
cyelic convolution of the vectors {cg, ¢1, ..., cn—1) and {dy, di, . .., dx_1). Ordinary con-
volution finds the coefficients when we multiply (cof + oy P+ - - + ey—1 PN‘IJ times
(doI+dy P+ - +dy_1 PY~1). Then cyclic convalution uses the crucial fact that PN = [,

Convolution (1,2,3) * (5,0,4} = (5,10,19, 8, 12) (5

Cyclic convolution (1,2,3) & (5,0,4) = (5+8,10+12,19) = {13,22,19) (6)

Ordinary convolution is the multiplication you learned in second grade {made easier be-
cause there is no “carrying” to the next column} :

1 2 3
a 0 4
4 8 12
d 0 0
5 10 15
5 10 19 8 12 =ec % d

The cyclic step combines 5 + 8 because P* = I. It combines 10 + 12 because P = P.
The result is {13, 22, 19).

Practice (0, 1, U) @ (do,dl, dg) = (ﬂf],dg, d{))
(1,1,1) ® (do,d1,dz) = (do + d1 + da, do + dy + da, do + dy + db)
(coyc1,¢2) @B {dy,di,d2) = (do,d1,d2) ® (g, c1,02)

That last line means that C'D = D for circulant matrices and ¢ @ d = d & c for cyclic
convolutions. Powers of P in ' commute with powers of P in D.

Ifyouaddl +2+3=6and 3+ 0+ 4 =9, you have a quick check on convolution.
Multiply 6 times 2 to get 54. Then 54 should be (and is} equal to 5+ 104+ 19+8+12 = 54,
And also 13 -+ 22 4 19 = 54 for cyclic convolution.

The sum of the ¢’s times the sumn of the d’s equals the sum of the cutputs. That is
because every ¢ multiplies every dinex d and in c@® d.

1v.2. _Shift Matrices and Circulant Matrices L 215

Eigenvalues and Eigenvectors of P

With N = 4, the equation Pz = Az leads directly to four eigenvatues and eigenvectors:

01 0 0 T To T To = Ar

o O 0 1 0 Iy _ T3 _ o . I3 =)\3’;2
P = 0 0 0 1 3 | | =z | T A T3 glves T4 = ATz @

1 0 0 0 Ta I) T4 ry =)\3’;‘4

Start with the last equation x; = Ax4 and work upwards :
o1 = Arg = Mzz = Xz = A2z, leadingto A% =1.
The eigenvalues of P are the fourth roots of 1. They are all the powers ¢,32,¢3, 1 of w = 4.
A=1, A=i2=—1, A=11= —i, and A =i' =1. (8)

These are the four solutions to det(P — AF) = A* — 1 = 0. The eigenvalues ¢, —1, —i, 1
are equally spaced arcund the unit circle in the complex plane (Figare IV.2).

When P is N by N, the same reasoning leads from P¥ = J to AN = 1. The N
eigenvalues are again equally spaced around the circle, and now they are powers of the
complex number w at 360/N degrees = 2 /V radians.

The solutionsto z™ =1 are A = w,w?,...,w"V 1,1 with w = e>™/N,| (9)

In the complex plane, the first eigenvalue w is e* = cos 8+ i sin 6 and the angle 8 is 27 /N,
The angles for the other eigenvalues are 28, 39, ..., N 8. Since 8 is 27 /N, that last angle is
N8 = 27 and that eigenvalue is A = e2™* which is cos 27 + isin2% = L.

For powers of complex numbers, the polar form with ¢® is much better than
using cos @ + isinf.

imaginary axis

w = errz/B

t=1 w*=1
real axis

Figure IV.2: Eigenvalues of Py : The 4 powersof A = ¢ for N = 4 will add to zero.
The 8 powers of A = w = €278 for N = 8 must also add to zero.

214__ Special Matrices

At that last step, I needed and vsed the circular facts that P2 = [and P* = P. So the
vectors (1,2,3) for C and (5,0, 4) for D produce the vector {13, 22, 19) for CD and DC.
This operation on vectors is called cyclic convelution.

To summarize: When we multiply NV by N circulant matrices € and D, we take the
cyclic convolution of the vectors {cp, ¢1, ..., env—1) and (dp, dy, . . ., dy—1). Ordinary con-
volution finds the coefficients when we multiply (cof + ¢1 P + -+ + cy—1 PV 1) times
(doJ+d; P+ - -+dy_; PN~1). Then cyclic convolution uses the crucial fact that PV = I,

Convolution (1,2,3) * (5,0,4) = (5,10,19,8,12) (5)

Cyclic convolution (1,2,3) & (5,0,4) = (5+8,10+12,19) = (13, 22,19) (6)

Ordinary convolution is the multiplication you learned in second grade (made easier be-~
cause there i3 ho “carrying” to the next column):

12 3
5 0 4
4 B8 12
0 0 0
5 10 15
5 10 1% 8 12 =¢c % d

The cyclic step combines 5 + 8 because P® = I. It combines 10 + 12 because P* = P.
The result is (13, 22, 19).

Practice (D, 1,0) ® (dmdl,dz) = (d],dg,dn)
(1$ 1'.! 1) ® (dﬂydladQJ = (dﬂ + dl + dZ)dO + d] + d2$d0 + dl + d?)
(60361162) ® (dﬂydlu d2) = {dﬂrdhd?) ® (Cﬂs CI)CQ)

That last line means that € 1) = DC for circulant matrices and ¢ & d = d & ¢ for cyclic
convolutions. Powers of P in C commute with powers of P in D.

Ifyouadd1 4+ 2 +3 =6and 5+ 0+ 4 = 9, you have a quick check on convolution.
Muitiply 6 times 9 to get 54. Then 54 should be (and is) equal to 5+ 10+ 1948+ 12 = 54,
And also 13 + 22 + 19 = 54 for cyclic convolution.

The sum of the ¢'s times the sum of the d’s equals the sum of the outputs. That is
because every ¢ multiplies every dine+ d and in c® d.

v Shlft Matrices and Circulant Matric_e_s) ' ' _ 215

Eigenvalues and Eigenvectors of P

With N = 4, the equation Pz = Az leads directly to four eigenvalues and eigenvectors: .

6 1 00) Ta o To = ATy

|0 010 Ty | _ | =3 | _ T2 . T3 = A2
Pz = 00 01 zz | | x| A T3 BVES e =)as @

1 0 0 0 T4 | T4 1 = ALy

Start with the last equation #; = Ax4 and work upwards:
x1 = Axg = Azg = A%z, = Mg, leadingto A% =1
The eigenvalues of P are the fourth roots of 1. They are all the powers 7,12,¢3, 1 of w = 4.
A=id, A= =-1, A=it=—q and X =i*=1. (8)

These are the four solutions to det(P — AF) = 3* — 1 = 0. The eigenvalues ¢, -1, —1,1
are equally spaced arcund the unit circle in the complex plane (Figure IV.2).

When P is N by N, the same reasoning leads from P¥ = J 10 AY = 1. The N
eigenvalues are again equally spaced around the circle, and now they are powers of the
complex nurnber w at 360/N degrees = 2x /N radians.

The solutions to =¥ =1 are A = w,w?,...,w™ 1,1 with w = 2™V .| (9

In the complex plane, the first eigenvalue w is e’ = cos# +isin 6 and the angle 9 is 27/ N,
The angles for the other eigenvalues are 20,34, ..., N9. Since 815 27 /N, that last angle is 4
N = 27 and that eigenvalue is A = e?™ which is cos 2w + isin2x = 1.

For powers of complex numbers, the polar form with * is much better than
using cos @ + isin @.

imaginary axis

w = 821”/8

it=1 w'=1
real axis

-

Figure IV.2: Eigenvalues of Py : The 4 powers of A = ¢ for N = 4 will add to zero.
The 8 powers of A = w = ¢2"*/8 for N = 8 must also add to zero.

216 Special Matrices

Knowing the N eigenvalues A = 1,10, ..., w" ~! of Py, we quickly find &V eigenvectors:

Set the first component of g to 1. The other components of ¢ are A and 32 and)3 :

1 1 1
Eigenvectors for 1 i i2 i’
A= 1’ i’ 1"2’1;3 gg = 1 q, = 1’2 gy : 3'4 Qs = iﬁ (10)
1 i3 i8 i

We have started the numbering at zero, as Fourier people always do. The zeroth eigenvector
has eigenvalue A = 1 = w’ The eigenvector matrix has columns 0, 1,2,3 containing
4a- 49192, 95- That eigenvector matrix for P is the Fourier matrix.

Eigenvector matrix i 1 %,12 313 T
Fourier matrix 1 3 49

The pattern stays the same for any size N. The kth eigenvalue is w* = (e2"¥/V)* =
e2*/N _ Again the count starts at zero: Ag = w® = LA = w, ..., Ay = w™ L.

The kth eigenvector contains the powers of w®. The eigenvector matrix contains
all N eigenvectors. It is the N by N Fourier matrix with F F=NI

1 1 1 . 1
\ . 1 w s . wh—1
Fourier matrix
Fu=11 w2 wt ' wHN-1) } 12
Eigenvectors of P N .)) . . (2
1 -l ,wE(N—l} . w(N—])(N—I)

We see again that the columns of the Fourier matrix are orthogonal. We must use the
complex inner product (&, y) = Z"y. Here is the new proof of arthogonality :

Orthogonal matrices like P have orthogonal eigenvectors.

Then P = FAFT /N with its diagonal eigenvalue matrix A = diag {1,w,...,w").
The next page moves from the special permutatien P to any circulant matrix C'

IV.2. Shift Matrices and Circulant Matrices 217

Eigenvalues and Eigenvectors of a Circulant C

The eigenvectors of a circulant matrix C are esp.ecially easy. Those eigenvectors are the
same as the eigenvectors of the permutation P. So they are the colurns gg, g, - ., gp_;
of the same Fourier matrix F. Here is Cq; = Ag; for the kth eigenvector and eigenvalue :

(cof +erP+ -+ ey PN Y g, = (co+crhe +--- +enoiAp g (13)

Remember that A, = w® = e2™#/N 5 the kth eigenvalue of P. Those numbers are in
the Fourier matrix I. Then the eigenvalues of € in equation (13) have an almost magical

formuia: Multiply F times the vector ¢ in the top row of C' to find the eigenvalues.

Xo(C) wrer+--+en o

AI(C) C0+C]w+"‘+CN_1’wN—1 Cy

X(C) |=|ew+aw?+ - + oy w¥-D =F| ¢ |[=Fec (14
Av—1{C) | [eo+ w1+ 4 ey _quN DD eN-1

The IN eigenvalues of C' are the components of F'c = inverse Fourier transform of ¢.

2rif2 —

Examplefor ¥V =2 withw = ¢ —1 in the Fourier matrix F'

_ 01 e a) I I S O
P——[l 0} and C_[cl Co] and c—[cl} and F—[l _1]

The eigenvectors of P and also ' are the columns of F'. The eigenvalues of P are £1.
The eigenvalues of C' = g + ¢y P are ¢g + ¢ and ¢y — ¢1. These etgenvalues of C are
the components of F times ¢ :

Eigenvalues of C Fe= [1 1 } [co] = [co+c1 } (15)
1 -1 5] Cgp — €1
For any IV, the permutation P is a circulant matrix C with ¢ = (0,1,0,...,0).
The eigenvalues of P are in the column vector F'e with this ¢.
That is the column {1, w,%?,. . ., w™ %) of the Fourter matrix F.
This agrees with the eigenvalues 1,1, i2, i3 of P in equation (8), for N = 4.

218 _ . Special Matrices__

The Convolution Rule

This rule compares convolution with multiplication. Please understand that they are quite
different. But they are beautifully connected by the Fourier matrix £,

I will start with two circulant matrices C' and D). Their top rows are the vectors cand d.
Equation (4) at the start of this section showed an example of the top row of CD:

Top row of CD = cydlic convolution = ¢ d. (16)

Then the eigenvalues of C'D according to equation (14) are in the vector F(c®® d).

Now find those eigenvalues of C'D in another way. The eigenvalues A{C) are in the
vector Fe. The eigenvalues A(D) are in the vector F'd. The eigenvectors ¢, are the same
for C and D! They are the columns of F. So each eigenvalue A, (C D) is just A (C)
times Ag (D). This term by term “Hadamard product” is denoted in MATLAB by .%

X(CD) Xa(Crro(D) Ao(C) Ao(D)
: : . || |=Fc.k Fd
An-1(C) An—1(D)

Mwoi(CD) | [Avor(CAw (D)

That notation . % denotes component-by-component rmultiplication of two vectors.

The convolution rule compares our two formulas for the eigenvalues of CD :

Convolve vectors

Multiply transforms Convolution Rule F{c® d} = (Fc).x(Fd). | (17}

Lefr side Convolve ¢ and 4 first, then transform by F
Right side Transform by F first, then multiply Fe times F'd component by component.

This is the fundamental identity of signal processing ! Transforms are fast by the FET.
Another way to see the convolution rule is by multiplying the diagonal matrices A{C')
and A (D) that contain the eigenvalues of C and D. C is diagonalizedby F~1CF = A{():

(F-ICF)(F~'DF)=F {CD)F isexaclly A(C) A(D) = A(CD). (18)

This succeeds becauvse all circulant matrices have the same eigenvectors (columns of F).
The convolution rule can be checked directly (Problem 1). Good to see it for N = 2:

_ 1 1 _ eotdy + c1dy |0+ _ do+dy
F_LI:I -1 C®d_[60d1+61d0] Fc_I:Cu-Q:I Fd_[do—dljl

The convolution rule (17) says that F'(c @& d) is the component by component product.

cpdy + erdy + cpdy +(31d0]

_|{eoteiddo+dr)| _
CUdO +ad - C(}d] — e1dg = {FC). * (Fd)

Fle®pd) = [- [(q;—m)(tin—dl)

[V.2. Shift Matrices and Circulant Matrices 219

Multiplication and Convolution of Funetions

i f(z) = Z cke’*™ and g{z) = dme'™=, what are the Fourier coefficients of
f(=x) g(z) ? We are multiplying the 27r-periodic fanctions f and g.

The multiplication fg is in “z-space”. By the convolution rule, we expect to convolve
¢ * d in “frequency space”. These are periodic functions f and g (—7 < = < «) and their
Fourier series are infinite (k = 0,£1,42,...). So cyclic convolution is gone and we are
multiplying two infinite Fourier series :

f(z) glz) = (>, cke"“w) (> dme"mx) = 3 hae™.(19)

k=—ao M=—o0 n=—0a

When does e**® times ¢*™ produce ™™ ? The requirement is k 4 m = n.

The coefficient h,, combines all products exd,, withk+m=n. Thenm =n — k:

= . . o (20)
h, = Z Cpdn_r is convolution h = ¢+ d for infinite vectors.

k=—o0

Next we multiply coefficients cxdy, in k-space. So we convelve f # g in z-space |

Convolution of
2w-periodic functions

(f *) (a) = f f&) gz —) de o3
Convolution rule N

for periodic functions The Fourier coefficients of f * g are 2mrcpdy (22)

To see that f * g = g * f in equation (21), change variablesto T =z —tandt =z - T
The delta function §{x) is the identity for convolution—like I for multiplication :
(6 xg)(x)= /5(t) g(z - t)dt =g{z) and (1,0,0)® (a,b,c) = (a,b,¢).

Cross-correlation and Autocorrelation

Cross-correlation is like convolution, but an important difference is indicated here by * %

[Not n — k| h,= Z Ckdy 4 g 18 cross-correlation h = ¢ * xd for vectors (23)
k

(f = *g) /f glx + t) dt = f () % g{—=) is cross-correlation for functions (24)

We are shifting the vector d and taking its dot products with ¢. We are sliding the functxon
¢ along the x-axis and taking its inner products with f. These dot products will be largest
when the vectors ¢, d and the functions f, g are best aligned.

It is valuable to have this simple way to find the best alignment.

220 S . o e .. Special Matrices

The special cases ¢ = d and f = ¢ are the most important and certainly the best atigned. In
those cases, the cross-correlations ¢ * ¢ and f * = f are called autocorrelations.
Convolution and cross-correlation correspond perfectly to matrix maltiplications !

c# d gives the entries in C I (infinite constant-diagonal matrices)
c@d gives the entries in C'I) (finite circulant matrices)

e % = d gives the entries in CTD and @ * * a gives the entries in ATA

Problem Set IV.2

1 Findexdande@d forc = (2,1,3)and d = (3,1,2).

2 Prove the convolution rule for ¥ = 3: The kth component of F{c @ d) equals
(FC);C times (Fd)k Start from (C ® d)p = ngp + dp_l + ngp_g.

2 2 2
Prove Zwk?’(c@d)p = (Z wk’”cm) (Z wk“dn) with w® = 1

p=0 fir=0 n=0

3 Ifexd = e whyis (3 ¢){(3 d:;} = (D e;)? Why was our check successful?
(1+2+4+3)(5+0+4)=(6)(9)=54=5+10+19+8+ 12,

4 Any two circulant matrices of the same size commute: C'D = DC. They have
the same eigenvectors g, (the columns of the Fourier matrix F'). Show that the
eigenvalues A (C D) are equal to A {C) times Ag(D).

5 What are the eigenvalues of the 4 by 4 circulant C = [+ P + P? + P37 Connect
those eigenvalues to the discrete transform F'c for ¢ = (1,1, 1, 1). For which three
real or complex numbers zis 1 + z 4+ 2% + 23 =07

6 “A circulant matrix C is invertible when the vector F'e has no zeros.” Connect that
true statement to this test on the frequency response :
N-1
Ce?) = Z ;€% £0 atthe N points § = 27/N, 42/N, ..., 2x.
0

7 How would you solve for d in a convolution equatione s d = eorc® d = e?
With matrices this is CD = F and then D = C~'E. But deconvolution is
often faster using the convolution rule { F'c).#{Fd) = {Fe). Then F'd =77

8 The nth component of the autocorrelation ¢ * * ¢ is the dot product of the vectors
c and S"c (the vector ¢ shifted by n places). Why is ¢TS™¢ < ¢Te? Then the
largest component of ¢ * * ¢ is the zeroth compenent ¢T ¢ (with no shift),

1V.3. The Kronecker Product A @ B 221

IV.3 The Kronecker Product A ® B

Section IV.1 described the Discrete Fourier Transform of a 1-dimensional signal f.
This section will describe the 2-dimensional DFT—which is needed for image processing.
When the 1-dimensional transform uses a matrix of size N, the 2-dimensional transform
needs a matrix of size N? (and video will introduce a third dimension). The 2D matrices
will be large. We hope to construct them easily from the 1D Fourier matrices F* and £2.

This construction uses the Kronecker products F @ F and @ & £2. The earlier word
was tensor product. The MATLAB command is kron(F, F') and kron ({2, {2).

This operation is extremely convenient for many purposes. So this section develops
the key ideas and operations on K’ = A @ B: to invert K, to solve (4 ® Bz = y.
and to find the eigenvalues and eigenvectors and SVD of A ® B.

The first thing to know about Kronecker products is the size of A ® B = kron{A, B):
1 If Aand B are . by n, then 4 ® B is n? by n®.
2IfAismbynand Bis M by N, then A @ B has mAM rows and nIV columns,

The entries of A ® B are (all mn entries of A4) times (all M N entries of B).

The next fact is the position of those products in the large matrix. The rule is to
multiply each entry of A times the whole matrix B. Then A® B is a block matrix.
Every block is a multiple of B :

&1 1B s G.lnB
Kronecker product ARB= : : . (1)
am1B - QmnB

The simplest case has identity matrices for 4 and B: (2 by 2) & (3 by 3) = 6 by 6.

1 090
L®I =1 LObelo o= OB)_p
0 1 O 05, 115

A harder case (but not impossible) comes from multiplying two Kronecker products: .

A@EB times CQD equals AC @ BD (3)
A®B times A"'®@ B™' equals I®IJ (4)

Equation (3) allows rectangular matrices. Equation (4) is for invertible square matrices.
I ® I is the identity matrix of size n)V. So the inverseof A @ Bis A~1 @ B~1.

222 o__.__ Special Matrices

The proof of equation (3) comes from block multiplication of Kronecker products:

enB ap2Bljcud epD
anB aaBlicaD epD

_[(en1ers + arzen) BD (a11€12 + a12c22) BD)
(@111 + azecn) BD (agie1n + aggeon) BD |
That is exactly ACQBD. A matrix of size N2 times a matrix of size N? is still a matrix

of size N2. The final basic identity produces the transpose of A @ B ;
T T T
T _ 4T T enB apB |7 | anB' anB
(A®B)"=A"QB [ann B anB] - [a12BT a2,BT ©

Two-dimensional Discrete Fourier Transforms

Start with an V by N image. It could be a photograph with N2 small pixels, taken by
your phone. It could be a painting by Chuck Close (who realized that your eyes merge the
small squares into a continwous image—this is how the phone camera works too).
We have N2 numbers.

And we have a choice. We could unfold those numbers into a long vector of length N2,
Or we could keep them in an N by N matrix, so that pixels which are close in the image
remain ¢lose, The unfolding into a vector (by an operator called vec) will be described tater

2 -
in this section. For now we think of a vector f in R™ with its n? components in a square.

We intend to apply a 2D Discrete Fourier Transform to f. The result will be a
2D vector ¢. You could think of this process in two steps ;

Row by row Apply the 12 DFT to each row of pixels separately.
Column by column Reamrange the output by columns and transform each column.

The matrix for each step is N2 by N2, First think of the N? pixels a row at a time and
muliiply each row in that long vector by the one-dimensional DFT matrix 2y :

Qo row 1
Qn row 2

row 3

Qn row 4

Qrowf = (f and Qpow f have length N?) (7)

That matrix is Qrow = In® Q. It is a Kronecker product of size N2,

Now the output Qo f is (mentally not electronically) rearranged into columns. The
second step of the 2D transform multiplies each column of that “halfway™ image Qpow f
by Qx. Again we are multiplying by a matrix Qeqpumn of size N2, The full 2D transform
is 02 N & {1 N

That matrix 2. jumn 5 the Kronecker product Q5 & Iy
The 2D transform puts the row and column steps together into $2 .
Qn N = Qeolumn Crow = (v @ In)(In @ On) = On @ Q. (8)

V3. The Kronecker Product AQ B~ : 223

Example 1 With N = 4 there are N? = 16 pixels in a square. The block matrix Q4><4
for the 2D transform is 16 by 16:

971 £y 2y 2y

1971 —ifly (—9)2Qy (-3 Yy

Q ()20 (=40 (—9)8y

O (=30 (- (—i)°Qy

That matrix has to be divided by 4 times 4 = 16 to correctly match the 1.D transform £24/4.
Then the inverse of this 16 by 16 matrix gives the two-dimensional inverse DFT—
which is Fy @ Fy. Apply the inverse formula (4) for Kronecker products :

Qs =230 =

1 _'1
The 21 inverse is (ﬁ O, ® 04) = F, ® F; = Kronecker product of 1D inverses.

The Kronecker Sum A ¢ B

The 21} Fourier transform is the product of two steps: transform by rows and transform
the result by columns. Those steps were ' ®) and 2 ® I. In other problems we want the
sum instead of the product. That produces a different matrix. Tts size is still N2 or MN.

Ais M by M

= i 2
BisNby N The Kronecker sum AGB=ARIn+ 1@ Bis MN by MN.| (9)

This construction is natural for Laplace’s equation (or Poisson’s equation) in 2D :

L. 9y 8%u 3
Laplace equationinasquare ——— — — = F(z,y) for0 <z <1,0<y <1
oz 9y
Divide that unit square into V2 small squares with sides & = 1/N. Put nodes or meshpoints
at the corners of those squares. There will be (¥ + 1) nodes. Then replace Laplace’s
second order differential equation by a second order difference equation that connects the
values [/}, at the nodes:
2 . h) + 2u(z) — ulz -
In one dimension — g—j becomes a second difference —ulz th)+ ,:2(?) uz —h)
For a line of NV + 1 nodes those second differences go into a matnix A of size N +1:

1 -1
—1 2 -1
N=4 1
Ay = —— -1 2 -1 10
h=1/4 5T /a2 1 s L1 (10

-1 1

Notice the first and last entries on the diagonal: 1 and not 2. Those reflect the bound-
ary conditions at the ends of the row, We are choosing the free condition du/dz = 0
in rows 1 and 5. (Fixed conditions w = 0 would lead to 2’s on the whole diagonal.)

224 i ie—ee..— . Special Matrices.

The second difference matrix Ay is positive semidefinite. Its nullspace contains the
column vector 1 = {1,1,1,1,1).

This matrix As replaces —9%/8%> along each row and —&?%/dy? down each column.
We want the 25 x 25 matrix Arow that finds second differences along all rows at once,
plus second differences A gotgmn down all columns at once :

Ay
Amw = = I5 ® Aﬁ
As

Acglumn = (column at atime) = Ag @ Iy

So far this is like the discrete Fourier transform: all-row operation and all-column,
The difference is that we add these matrices, We are aiming to approximate —d?/8x?
plus —8%/8y*. The overall 2D finite difference matrix is the 25 x 25 Kronecker sum :

A5X5:I5®A5+A5®IS=Amw+Acolumn- (11)

The same matrix A5 .5 comes from the finite element method (for linear finite elements).
This matrix is also a graph Laplacian! The graph is the 5 by 5 square array of 25
nodes. It has 20 horizontal edges and 20 vertical edges. Its incidence matrix A is 40 x 25,
Then its graph Laplacian AT A is the same 25 x 25 matrix Asxs. This matrix is positive
semidefinite but not invertible. We study graph Laplacians in Section IV.6.
The nullspace of Agxs contains the vector of 25 ones. That vector is 1@ 1.

Eigenvectors and Eigenvaluesof AQ Band A® B

Suppose = is an eigenvector of A : Az = A@. Suppose ¥ is an eigenvectorof B : By = uy.
Then the Kronecker product of & and y is an eigenvector of AQB. The eigenvalue is Ay :

(A@ B)(z@y) = (Az) @ (By) = (Az) @ (uy) = Mu(z @). {12)

Here Aisnbynand Bis N by N. Thereforexisnby landyis Nbyl So A® B
is a square matrix of size nV and = ® y is a vector of length nV. The same pattern also
succeeds for Kronecker sums—with the same eigenvectorc @ ¢ :

(Ao B)zoy)=(Av)zey)+{(LeB)zay)=(A+pizy). (13)

The eigenvalue of A @ B is A 4+ . The vector y is certainly an eigenvector of
the identity matrix [y (with eigenvalue 1). The vector & is certainly an eigenvector of I,
(with eigenvalue 1). So equation (13) for the Kronecker sum just comes from
two applications of equation (12} for the Kronecker product. A ® Iy has eigenvalue A
times 1, and I, @ B has eigenvalue 1 times z. The eigenvector in both cases is & @ 4.
So we add to see equation (13} with eigenvadue A + 1.

IV3. TheKroneckerProduct AQ B 225

Separation of Variables

The last page was very formal. But the idea is simple and important. It is the matrix
equivalent of the most useful trick for eigenfunctions of Laplace’s equation—and all similar
egquations that have z-derivatives added to y-derivatives.

Eigenvalues o of the Laplaci u + Ou au{z,y) (14)
x : _— - = .
e e Laplacian 522 T By? Y
The trick is to look for u in the separated form w(z, y) = v(x) w(y). Substitute vw for »
in Laplace’s eigenvalue equation (14) ;
. . %y d’w
Separation of variables v and y | — | w(y) + v(z)——= = av(z)wly). (15)
dx? dy?
Ordinary derivatives instead of partials, » depends only on x and w depends only on .
Divide equation (15) by v times w. The result on the left side is a function only of z
plus a function only of g,

dPvfdr? dPw/dy?
v(z) w(y)

= o = constant, {16)

If this is true for every = and y then each term is a constant {think about this !}

2 2

Separated equations dv _ Av and dw _ pw with A+p = a. (17)
dx? dy?

So A + i+ is an eigenvalue of Laplace’s equation (14). The Laplacian on the left side of
(14) is just the Kronecker sum of A = 8%/8z% and B = 8%/8y*. The key point is
that the eigenfunction u(z, y) is the product of two 1D eigenfunctions v(z) and w(y),
This is centinuous instead of discrete, with derivatives instead of difference matrices and
eigenfunctions instead of eigenvectors.

The partial differcntial equation is reduced to two ordinary differential equations (17).

The Matrix to Vector Operation vec(4)

We often want 10 vectorize @ matrix. Starting with an m by 7 matrix A, we stack its n
columns to get one column vector vec({A) of length mn :

column 1

\:rec(A): : vec([i ZD:

column n

(18)

o= o

226 _ . e .. Special Matrices

This vector of length N? is multiplied by the 2D Fourier matrix (a Kronecker product
of size N?) to produce the vector of N? Fourier coefficients. And this vector of length
(N + 1)? is multiplied by the graph Laplacian matrix (a Kronecker sum) in the finite
difference approxtmation to Laplace’s equation on a square.

So we need to see how this simple vec operation interacts with matrix multiplication.
Here is the key identity, when a matrix B is multipited on the left by a matrix A and
on the right by a matrix C':

vec(ABC) = (CT @A) vec(B). (19)

First check dimensions when all three matrices 4, B, C' are n by n. Then ABC isnby n
and vec makes it n® by 1, The Kronecker product is n? by »? and it multiplies the n? by 1
vector vec(B). So the right hand side of (19) also has length 2. And if ABC ismbyp
then the matrix CT @ A has mp rows as it should. Good.

But notice a big difference in the operation count. In the 2 by n case, the two multi-
plications in ABC need 2n> separate multiply-adds. The Kronecker product on the right
has n? entries! So if we don’t notice that it is a Kronecker product, this matrix-vector
multiplication needs n* multiply-adds. Reshaping is essential to take advantage of the
Kronecker structure :

Aismxnandmn=MN B =reshape(4A, M, N)isM x N vec{B}=vec{A4)
If Ais 3 x 2 then B = reshape (A, 1,6) produces B = [a11 a9, @31 aiz @22 asg).

We need to understand the vec identity (19). Start with the case when B = [@1 @2] has
2 columns and C is 2 by 2. The right side of (19) is simply a matrix-vector multiplication
Ka where & = vec { B) and we have recognized that K is a Kronecker product CT @ A.
That multiplication produces a vector ¢ :

_ _ T r | CllA CQ]A Ty | C11A$l‘-'1 -+ (32114352
y=Ke= (C ® A) [:m] N [612A 022A] [932] . [6124‘1931 + cz2 AT (20)

This vector y is exactly the left side of the identity (19): vec (ABC} with B = [®) ®2] is

vec ({Aml A:Bg] [E;i z;z:[) = vec [CuA:El 4+ ep Az AT +C22ACB2]

So if we have a linear system K = b with a Kroneéker matrix K, {19) will reduce its size.

The pixel values in a 200 image (n by n) are stacked by vec¢ into a column vector
(length »? or 3n? with RGB color). A video with T frames has a sequence of images at T
different times. Then vec stacks the video into a column vector of length 7'n?.

Reference

C. Van Loan, The ubiguitous Kronecker product, J. Comp. Appl. Math. 123 (2000} 85—-100.
Also The Kronecker Product, bitps:/fwww.cs.cornell.edu/cv/ResearchPDF/KPhist.paf

IV.3. The Kronecker Product A®B o 227

Problem Set 1V.3

1

A matrix person might prefer to see all n eigenvectors of 4 in an eigenvector matrix :
AX = XA, Similarly BY = Y Ag. Then the Kronecker product X @ Y of size
ndV is the eigenvector matrix forboth A® Band A® B

(ARBYX®Y) = (XQY)}(A4©Ap) and (A®B)(X®Y) = (XQY)(As1BAgp).

The eigenvalues of A @ B are the niV products h;u; (every A times every).
The eigenvalues of A @) B are the nN sums A; + 5 (every X plus every u).

If A and B are n by n, when is 4 @ B invertible? What if (eigenvalue of 4) =
— (eigenvalue of B) ? Find 2 x 2 matrices so that A & B has rank 3 and not rank 4.
Prove: If A and B are symmetric positive definite, soare A®@ Band A® B.

Describe a permutation P so that P(A® B) = (BQ A)P. Do A®@Band BR A
have the same eigenvalues 7

Suppose we want to compute y = (F ® () z where € = vec(X). The matrix F' is
m by n and ¢ is p by ¢. The matrix F' & (5 is mp by ng, the matrix X is g by n,
the vector i is ng by 1. Show that this code finds the correct y = (F @ G x:
Y=BaX®AT
y = reshape(Y ,mp,1)

Suppose we want to solve (FF® G)a = b when F' and G are invertible matrices k
(n by n). Then b and = are n? by 1. Show that this is equivalent to computing

X =G'B(F T with z = vec(X)} and b = vec(B).

In reality those inverse matrices are never computed. Instead we solve two systems :
Find Z from GZ = B
Find X from XFT = Zor FXT = 27

Show that the cost is now O(n?). The larger system (F ® G) 2 = b costs O(n®).

What would an image look like if its pixels produced a Kronecker product A @ B 7

How would you create a two-dimensional FFT 7 For an n by n image, how many
operations will your 2D Fast Fourier Transform need ?

228 .. Special Matrices

IV.4 Sine and Cosine Transforms from Kronecker Sums

This section of the book presents an outstanding example of a Kronecker sum
K=I® D+ D® I Thel,—2,1matrix D approximates the second derivative d? /dz?
in one dimensicn (along a line). The Kronecker sum raises it to two dimensions {(in a
square). This big matrix X of size N? approximates the Laplacian §%/9x% + 92 /3y*.

For Kronecker, all is normal—a very convenient way to create an important matrix K,
The next steps make it practical to work with this large matrix. We are approximating
Laplace’s partial differential equation by N? difference equations :

Y 62 . 1

Laplace 522 + — = f(z,y) Discrete Laplace ﬁKU =F ()
The N? components of U will be close to the trae u(x,y) at the N2 points z = ph,
¥ = ¢h inside a square grid. Here p = 1 to N along arow of the gridandg=1to Nup a
column, with & = Az = Ay = meshwidth of the grid.

The difficulty is the size of the matrix K. The solution to this difficulty is to know
and use the N2 eigenvectors of this matrix.

It is exceptional that we know those eigenvectors. It is even more exceptional (this is
virtually the only important example we have seen) that linear equations KU = h2F are
quickly solved by writing A% F and U as combinations of the eigenvectors v; of K :

h2F = byv,+bavp+--- U—%v1+b o4~ Then KU = h2F. | (2)
1

When K multiplies U, the X’s cancel because each Kv; = A;v;. So KU/ matches h*F,
The eigenvectors ut; of the one-dimensional 1, —2, 1 matrix D happen to be discrete
sine vectors. They are sample points taken from the eigenfunctions sin jrz of d2/dz?:

Continuous sin jwh /(N + 1)
and d—z5111_}‘111':;:'2—_;1'2?1'2 sinjnzr Duy=D : =Aju; 3
. T
Discrete sin jaNh/(N + 1)

Eigenvectors v of the large matrix KX = I @ D + D ® I were found in the Kronecker
section IV.3. Eigenvectors of K are Kronecker products v = u; @ uy of the
sine eigenvectors of D, This is true in the cbntinuous case (for eigenfunctions).
It remains true in the discrete case (for eigenvectors). The components of v, are
components of u; times components of u),

Continuous vz, ¥} = Discrete (5,) = [sin wjp sin kg
eigenfunctions (sin jrz}(sinkwy) eigenvectors °* p.al= N N+1

The final step to success is the most crucial of all. We can compute with these eigen-
vectors using the Fast Fourier Transform. The Fourier mairix in Section IV.1 had com-
plex exponentials. Its real part has cosines (which enter the Discrete Cosine Transform).

]V4 Sine and Cosine Transforms _frqm Ifrc_nqecker _Sl_Jms_ o 229

The imaginary part of ' produces the Discrete Sine Transforrn. That DST matrix contains
the eigenvectors u; of D. The two-dimensional DST matrix contains the eigenvectors v ;5
of the Laplace difference matrix K.

The FFT executes the computational steps of equation (2) in Q{N? log, N) operations :

(1) A fast 2D transform FFT @ FFT to find the sine cocfficients b;;, of h2F
(2) A division of each by by the eigenvalue A;r = A, (D) A (D)
(3) A fast 2D inverse transform to find U/ from its sine coefficients b /A k.

This algorithm solves Laplace’s equation in a square. Boundary values are given on
the four edges. It is coded in FISHPACK. That name is a terrible pun on the translation of
Poisson—who added a source term to Laplace’s equation : 9%u /822 +8%u/0y? = f(x,y).
FISHPACK alsc allows the “free” or “natural” or “Neumann” boundary condition
Jufdn = 0 with cosine eigenvectors, as well as the “fixed” or “essential” or “Dirichlet”
boundary condition © = ug with sine eigenvectors.

The difference between fixed and free appears in the first and last rows of D in one
dimension—and then in all the boundary rows of the Kronecker sum K = D & I in two
dimensions :

—2 1 —1 1
1 -2 1 1 -2 1
Diiyed = o] Diree = o) 4}

1 ~2 1 -1

The eigenvectors of Dgyeq led us to the Discrete Sine Transform. The eigenvectors of Dippe
would lead us to the Discrete Cosine Transform. But a different application is too interest-
ing to miss. Instead of solving Laplace’s difference equation with free boundary conditions,
we will apply the two-dimensional Discrete Cosine Transform to image compression.

In that world the DCT-based algorithm is known as JPEG (jaypeg).

The Discrete Cosine Transform in JPEG

The letters JPEG stand for Joint Photographic Experts Group. This group established a
family of algorithms that start with pixel values {grayscale numbers from O to 255, or the
Red-Blue-Green intensities for each pixel). The code produces a cornpressed image file in
the .jpg format. The algorithm can be seen in two stages :

Step 1 is a linear transformaiion of the matrix of pixel values. At the start, grayscale
values are highly correlated—nearby pixels tend to have nearby values, The trans-
form produces numbers with more independent information.

Example : Take the average and difference of two neighboring values. When the difference
is small, we can transmit fewer bits and the human visual system will never know.

230 _ ... Special Matrices _

Step 2 is a nonlinear compression and quantization of the transformed signal,
The compression keeps only nembers that are visually significant. The quantization
converts the compressed signal into a sequence of bits—to get ready for fast
wansrmission. Then the receiver vses those bits to reconstruct an image that is very
close to the original.

Step 1 most often uses a Discrete Cosine Transform. It acts separately on 8 x 8 blocks
of the image. (JPEG2000 offers a wavelet transform but this option has not been widely
adopted.} Each block of 64 grayscale values leads to a block of 64 cosine coefficients—
a lossless transform. The inverse transform will recover the original blocks of the image.

But before inverting we will compress and quantize those 64 numbers. This step
loses information that our eyes can’t see anyway.

Discrete Cosine Transforms are described in SIAM Review for 1999 (volume 41,
pages 135-147). They differ in their boundary conditions. The most popular choice is
DCT-2 with these 8 orthogonal basis vectors in each dimension :

DCT-2 The jth component of the kth vector is cos (j + %) k% Hhk=1,...,8

Those 64 numbers go into an 8 by 8 matrix C. Then the matrix for the 2D cosine transform
is the Kronecker product C'® C of size &2, Its columns are orthogonal. It acts on each & x 8
block of the image to give an 8 x 8 block of Fourier cosine coefficients—which tell vs the
right combination of cosine basis vectors to reconstruct the original block in the image.

But we don’t aim for perfect reconstruction. Step 2 discards information that we don’t
need. Step 1 has produced cosine coefficients c;;, of very different sizes—usually smaller
numbers ¢ for higher frequencies 7, k. The file https://cs.stanford.edu/people/eroberts/
courses/soco/projectsidata-compression/lossy/jpeg/dct.htm shows a typical 8 x 8 block
before and after the DCT step. The cosine coefficients are ready for Step 2, which is
compression and quantization.

First, each block of 64 coefficients goes into a 64 x 1 vector—but not by the vec
command. A zig-zag sequence is better at keeping larger coefficients first. If we end with
a run of near-zeros, they can be compressed to zero (and we only transmit the length of
the run : the number of zeros). Here is the start of the zig-zag order for the 64 coefficients:

1 2 6 7
o
3 5 .8 -
P
4 9
-~
10

Higher frequencies come later in the zig-zag order and usually with smaller coefficients.
Often we can safely rescale those numbers before the rounding step gives g

Quantization example Gk rounded to nearest integer

itk+3

IV.4. Sine and Cosine Transforms from Kronecker_ Sums 23

Now each block is represented by 64 integers ¢;,. We transmit those numbers after encod-
ing for efficiency. The receiver reconstructs each block of the image—approximately.

In a color image, 64 becomes 192. Every pixel combines three colors. But Red-Green-
Blue are probably not the best coordinates. A better first coordinate tells us the brightness.
The other two coordinates tell us “chrominance”. The goal is to have three statistically
independent numbers.

When the blocks are assembled, the full reconstruction often shows two unwanted
artifacts. One is blocking: the blocks don’t meet smoothly. (You may have seen this
in an overcompressed printed image.) The second artifact is ringing: fast oscillations
along edges inside the image. These oscillations are famous in the “Gibbs phenomenon”
when eight cosines approximate a step function.

For a high quality picture after DCT compression, we can mostly cancel those blocking
and ringing artifacts, For high definition TV, compression is essential {too many bits to
keep up).

The DCT standard was set by the JPEG experts group. Then equipment was built and
software was created to make image processing into an effective system.

Problem Set IV.4

1 What are the eigenvalues A; of D in equation (3) ?

2 What are the eigenvalues A; and eigenvectorsv; of K = i@ D+ D@l =16 D7
3 What would be the Laplace operator A3 on a cubic grid in 3D ?

4 What would be the N* by N3 Fourier matrix F3in 3D ?In2D it was F @ F.

232 o Special Matrices

IV.S Toeplitz Matrices and Shift Invariant Filters

A Toeplitz matrix has constant diagonals. The first row and column tell you the rest of
the matrix, because they contain the first entry of every diagonal. Cireulant matrices are
Toeplitz matrices that satisfy the extra “wraparound” condition that makes them periodic.
Effectively c_3 is the same as) (for 4 X 4 circulants) :

Bg Q-1 Q-2 G_3 o € €2 €
Toeplitz , | @y ao @-1 a2 Circulant _jec1 co ¢z o
matrix "l az a1 a a_1 matrix | ez e1 e e
3 2 14} an Ccg Cp €1 &g

Circulant matrices are perfect for the Discrete Fourier Transform. Always CD = DC.
Their eigenvectors are exactly the columns of the Fourier mawix in Section IV.2.
Their eigenvalues are exactly the values of C{8) = > cre™® at the n equally spaced
angles 8 = 0, 27 /n, 47 /n, . .. (where e™? = 270 = 1),

Toeplitz matrices are nearly perfect. They are the matrices we use in signal processing
and in convolutional neural nets (CNNs). They don’t wrap around, so the a.nalysns of A
is based on the two-sided polynomial A(8) with ceefficients ajp ... ap... . an—;:

Frequency response = symbolof A A(8) = Z ay e'*®
A(8) is real when A is symmetric ai €*% + a; e 9 = 20 coskf
C(8) is nonzero when C is invertible The symbol for C~1is 1/C(#)

A{(#) # 0 is not correct as a test for the invertibility of A! And A1 is not Toeplitz
(triangular matrices are the exception). Circulants C are cyclic convolutions. But Toeplitz
matrices are noncyclic convolutions with @ = (a1_p, ... a,—1) followed by projections:

x-space Ax = convolve a * x, then keep components O ton — 1
G-space Awx{f) = multiply A(@)a(8), then project back to n coefficients
We want to use the simple polynomial A{@} to learn about the Toeplitz matrix A.

In many problems the Toeplitz matrix is banded. The matrix only has w diagonals
above and below the main diagonal. Only the coefficients from a_,, to @, can be nonzero.
Then the “bandwidth” is w, with a total of 2w 4+ 1 honzero diagonals:

ag -1
Tridiagonal Toeplitz A= | @ @ e
Bandwidth w = 1 - R TS

We understand tridiagonal Toeplitz matrices (and their eigenvalues) for large size = by
studying the symbol A(} = a_1e=% + ag + are®. Itis built from a_y, ag, a;.

IV.5. Toeplitz Matrices and Shift Invariant Filters 233

Toeplitz Matrices : Basic Ideas

In signal processing, a Toeplitz matrix is a filter. The matrix multiplication A in the time
domain translates into ordinary multiplication A{(8)z(#) in the frequency domain. That is
the fundamental idea but it is not exactly triue. So Toeplitz theory is on the edge of simple
Fourier analysis (one frequency at a time), but boundaries interfere,

A finite length signal & = (g, ..., Z,) has boundaries at 0 and n. Those boundaries
destroy a simple response to each separate frequency. We cannot just multiply by A(9).
In many applications—but not all—this inconvenient fact can be suppressed. Then a
Toeplitz matrix essentially produces a convolution. If we want a bandpass filter that
preserves frequencies ¢ < ¢ < b and removes all other frequencies, then we construct
A{#) to be near 1 in that band and near zero outside the band. (Again, an ideal filter
with A exactly 1 and 0 is impossible until n = c0.)

Linear finite difference equations with constant coefficients produce Toeplitz matrices.
The equations don’t change as time goes forward (LTI = Linear Time Invariant).
They don’t change in space (LSI = Linear Shift Invariant). The familiar —1,2, —1
second difference matrix is an important example :

Tridiagonal — 1,2, —1 matrix with symbol A(8) = —e ™ +2—¢¥ =2 — 2cos#.

The fact that A(6) > 0 tells us that A is symmetric positive semidefinite or definite.
The fact that A = 2 — 2 = 0 when § = 0 tells us that A,; (A) will approach zero
as n increases. The finite Toeplitz matrix A is barely positive definite and the infinite
Toeplitz matrix is singular, all because the symbol has A{(#) =0 atd = 0.

The inverse of a Toeplitz matrix A is usually not Toeplitz. For example,

-1

2 -1 0 (3 21
Al =] -1 2 -1 =-12 4 2 is not Toeplitz
0 -1 2 11 2 3

But Levinson found a way to use the Toeplitz pattern in a recursion—reducing the usval
O{n?) solution steps for Az = b to O(n?). Superfast algorithms were proposed later,
but the “Levinson-Durbin recursion” is better for moderate n. Superfast algorithms give
accurate answers (not exact) for large n—one way is a circulant preconditioner,

One more general comment. It frequently happens that the first and last rows do not
fit the Toeplitz pattern of “shift invariance”. The entries in those boundary rows can be
different from ag and @, and a_;. This change can come from boundary conditions
in a differential equation or in a fitter. When A multiplies a vector © = {z1,...,%5),
the Toeplitz matrix (sharp cutotf) is assuming o = 0 and 2,41 = 0 {zero-padding).

Zero padding may give a poor approximation at the endpoints. Often we change the
boundary rows for a better approximation. A close analysis of those changes can be
difficult, because the constant-diagonal pattern in the Toeplitz matrix is perturbed.

i

234 _ Special Matrices

Fast Multiplication by the FFT

For tridiagonal matrices, we don’t need a special algorithm to multiply Ax. This requires
only 3n separate multiplications. But for a full dense matrix, the Toeplitz and circulant
properties allow major speedup in @-space by using the Fast Fourier Transform.

Circulants are cyclic convelutions. In #-space, the matrix-vector multiplication
Cx becomes (3 cxe®) (3 zxe™). This product will give powers of €?® that go outside
the range from & = 0t & = n — 1, Those higher frequencies and negative frequencies
are “aliases” of standard frequencies—they are equal at every 8 = p2x /n:

Aliasing e™ =1 and V8 = ¥ and it — P8 5 g 2—“ 4—“
n'n'
Cyclic convolution ¢ ® & brings every term of (3 cxe™)(>" xre*?) back to a
term with 0 < k < n. So a circulant multiplication C'z needs only O(nlog, n) steps
because of convolution by the Fast Fourier Transform.

Cyclic convelution ¢ B x and ¢ & d give the entries of Cx and C D.

A Toeplitz matrix muhiplication Az is not cyclic. Higher frequencies in A{#)x(6)
don’t fold back perfectly into lewer frequencies. But we can use cyclic multiplication
and a circulant by a doubling trick : embed .4 into a circulant matrix C.

GD -1+ * Ql-pnln-1" -
Gp -1+ - Ql-n
iy . 0—1 n—1
A = . . C: = 't
* * 1-n
. Q-1 Gl -n
Gn-1 - @1 4o
a_1
vt len dn=-1 - agn

To compute Ax of size n, we can use this circulant matrix C of size 2n + 1.
1. Addn — 1 zeros to extend @ (o a vector X of size 2n — 1.
2. Multiply C X using the Fast Fourier Transform (cyclic convolution).
3. Then the first 7 components of C'X produce the desired Ax.

H size 2n is preferred for €, a diagonal of aq’s can go between a1, and g, ;.

Toeplitz Eigenvalues and Szegi’s Theorem

The exact eigenvalues of circulant matrices were found in Section IV.2. The eigenvectors
are known in advance—always the same ! They are the columns of the Fourier matrix F.
The eigenvalues of C are the components of the vector F'e. They are the values of C(8) at
n equally spaced points. In other words, the eigenvalues are the discrete Fourier transform
of cotumn 0 of the circulant matrix C.

IV.5. Toeplitz Matrices and Shift Invariant Filters 235

As always, circulant formulas are exact and Toeplitz formulas are close. You will see
integrals instead of point values of A(#). The formulas only become exact as the size of
the Toeplirz matrix becomes infinite. So there is a limit as n — oo included in Szegd's
Theorem about the eigenvalues of A. Two special cases and then the full theorem.

Szegh Asn — 00, the trace and the log determinant of a Toeplitz matrix A satisfy

1 1 [

" trace {A) = 3 /) A(B)d? = ag (1)
lim < log(det 4 —ifgwl (A(6)) d6 @)
n]—{noo n Oglde)_ 2 i} 8

The trace and determinant of any matrix are the sum and product of the eigenvalues.
We are seeing their arithmetic mean in (1) and their geometric mean in (2}: log determinant
= sum of log Ay. Those two limits are the most important cases F(A) =X and F{A)=log A
of the full theorem, which aliows any continuous function F of the eigenvalues of 4

n—1 e
1 s
Szegt’s Theorem limy o0 — 3 F(A) = = / F(A(8)) db. @)
k=0 27 Jo

The control on A(#) comes from Wiener’s condition that Y |ax| < oo. Excelient notes 3
are posted on the Stanford website ee.stanford.edv/~gray/toeplitz.pdf.

Those notes by Professor Gray also develop a major application to discrete time
random processes. When the process is weakly stationary, the statistics stay the same
at every time step. The covariance matrix between outputs at times t and T depends only
on the difference T — t. Then the covariance matrix is Toeplitz = shift invariant.

Before applications, we mention three more key topics in Toeplitz matrix theory :
+ The Gohberg-Semencul formula for A~! (Gohberg was truly remarkable)
+ The Wiener-Hopf factorization of infinite systems A& = b (s0 was Wiener !)

+ The test for invertibility of 4. is A (#) # 0 and winding nurnber = 0

An infinite one-step shift models the difficulties that come with n = co. It has a
diagonal of 1’s above or below the main diagonal. Its symbol is just €*® or e=* (never
zero). But € winds around zero as # goes from 0 to 27, and the infinite shift matrix
S(zg,z1....) = (m1,%2,...} or Sz = (0,20, 21, .. .) is not invertible.

236 Special Matrices

Lowpass Filters in Signal Processing

A fhlter is a convolution: Multiply by a Toeplitz matrix. Going through a “lowpass
filter”, the constant vector z = {...,1,1,1,1,...) can come out unchanged: Az = =z,
But an oscillating high-frequency signal fike y = (..., —1,1,-1,1,...} has Ay =~ 0.
Those are the outputs if A{0) = Zay =1 and A(7} = 0. Here is a lowpass example.

1 1 1
Lowpass averaging filter (Ax}, = 7 Fnha + 7 %n + " Tp—1-
That Toeplitz matrix A is symmetric. Its three diagonals have entries }, 2, 1. Its symbol

A(#) (frequency response) is real and A() = 1 at frequency # = 0; lowpass filter,

1 .)
Frequency response A(g) = (e"“‘g +24 e“*) = % {1+ cos@) = 0.

4
The highest frequency € = = produces the infinitely long plus-minus signal ¥y =
{...,-1,1,-1,1,...). Thatsignal has Ay = 0. Itis filtered out. A typical component of

Ayis —1 + 3 — 1 = 0. And we see this also from the symbol: A(6) = 1(1 + cos 6)

iszeroat 8 = #.

s 0 1 0 1| o |1
9 | | | |
- 0 T -7 0 T -7 0 T

Figure IV.3: Frequency responses A(#) : Short lowpass filter, ideal lowpass, ideal highpass.

You see two ideal filters in Figure 1V.3. They are achievable only with infinitely many
nonzero diagonals in the matrix A because an ordinary polynomial can't stay constant.
The numbers a; down the diagonals of 4 are the Fourier coefficients of A{#).

In practice, filters are a compromise between short and ideal. Equiripple filters are a
natural favorite—they oscillate around 1 and around 0. The ripples (oscillations around
the ideal) all have the same height. That height decreases as we use more coefficients aj.
The filter gets sharper—the drop from 1 to 0 is steeper—but computing Ax takes longer.

Averages and Differences and Wavelets

Lowpass filters are running averages. Highpass filters are running differences. That word

“running” means that a window moves along the vector . Suppose the window lets only

3 components of the signal @ show through. The lowpass filter multiplies them by %, %, i

and adds, te find the averaged signal Az. A highpass filter could alternate those signs to
11

produce — 5, 3, — %. Then A is taking second differences instead of averages of averages.

IV.5. Toeplitz Matrices and Shift Invariant Filters 237

The moving window creates a convelution = Toeplitz matrix AorD:

1 1 1 1 1 1
(Az), = it + 5 T + 7 Tntl (D), = — g Fnl + 5 Tn = 7 Tt
The idea of “wavelets” is to use both filters : averages A and differences .
Downsample the outputs: Delete (Ax),, and (D), for odd n. Keep half-signals,
Now send the half-length signal { Az}, through both filters A, D. Downsample again.

Wavelet transform with downsampling (), — Az}, —(AAx)4,
A for low frequencies, I} for high frequencies ~ (Da)an ™ (DAZ)4s,

The total signal length is unchanged by its wavelet transform (A%2)4n,, (D AR) 4n, (Dx)on.
But the signal is separated into frequency blocks low-low, high-low, and high. We compress
those pieces separately—and the high frequencies are compressed most,

To invert the wavelet transform, go backwards in the flow chart. Upsample each piece
of the transform by inserting zeros. Then reverse the arrows and assemble the original
signal (¢}, from the blocks A4z, DAx, De of its transform :

Inverse wavelet transform (AAx}sn —>{Ax)2y —>(x)n
(DAZ)4n =" (D)2n

This process uses carefully chosen filters A and D to reduce the length of a signal
without losing the information that we want to see and hear. The best wavelet transforms
are adjusted so that A and D produce orthogonal matrices or symmetric matrices. The
BDaubechies 4-coefficient filters are a favorite, with these diagonals in A and D ;

ar=1+v3 3+v3 3-v3 1-v3 dp=+v3-1 3-V3 —-3-v3 V3+1

As always, finite Toeplitz matrices with these diagonal entries have to be adjusted at the
boundaries. Toeplitz has zeros outside the matrix, but good wavelets often use reflections.

Problem Set I'V.5

1
2

238 Special Matrices

Show that equations (2) and (3) are the same when F()\) = log A.

Suppose F(A) = A% Then Szegd’s Theorem (3) gives the limit of the average
eigenvalue of A%.
(a) Show by squaring A with diagonals a_y, ag, a1 that the symbol of A2 is (A{8))2.

(b) Integrating that polynomial { A(8))? from 0 to 27 produces its constant term,
What is that term for the —1, 2, —1 matrix ?

The A = LU factorization of the —1, 2, —1 symmetric second difference matrix (n = 4) is

2 -1 1 2/1 =1
-1 2 -1 | =172 1 3/2 —1
-1 2 -1 |7 —2/3 1 4/3 -1
-1 2 —3/4 1 5/4

Verify that (LU)44 = 2 as required anddet A =5=n + 1.

These factors of the —1,2, —1 Toeplitz matrix are not Toeplitz matrices. But as n
increases the last row of L and the last cojumn of U nearly end with -1, 1. Venfy
that the limit symbols {(—e = +1) and {—¢** + 1) multiply to give the correct symbol
of A.

The symbol § — 2% — 2¢~% factors into 2 — €*? times 2 — e~*%. When the sym-
metric Toeplitz matrix S with diagonals —2,5, —2 is factored into S = AT A with
upper triangular A, what would you expect the last column to approach as n — 0o ?
(A will only have two nonzero diagonals.)

Use the Cholesky command A = chol(S} with the —2,5 — 2 matrix S in Problem 5,
to verify that the last row and column of AT and A approach the predicted limits.

IV.6. Graphs and Laplacians and Kirchhoff's Laws 239

IV.6 Graphs and Laplacians and Kirchhoff’s Laws

A graph consists of a set of nodes and a set of edges between those nodes. This is
the most important model for discrete applied mathematics simple, useful, and general.
That word discrete is used in contrast to continuous : we have vectors instead of functions,
we take differences and sums instead of derivatives and integrals, we depend on linear
algebra instead of calculus.

Start with the incidence matrix of the graph. With m edges and n nodes, the incidence
matrix A is m by n. Row 1 of 4 corresponds to edge i in the graph. If that edge goes from
node j to node k&, then row £ of A has —1 in column j and +1 in column k. So each row
of A adds to zero and (1,1, ..., 1) is in the nullspace.

The nullspace of A contains all constant vectors £ = (¢, c,-- -, ¢).

We assume the graph is connected—if there is no edge from node j to node &, there is at
least a path of edges connecting them. Here are the dimensions of the four subspaces:

dimN(A) =1 dim C(4)=dim C(AT)=n—-1 dmNA)=m—-n+1
The constant vector 1 = (1,1,...,1) is the simplest choice for the nullspace basis. Then

the row space contains all vectors ® with £; + 2z + - - - + £, = 0 (so & is orthogonal to 1).
To find bases for all four subspaces, we can use trees and loops:

C(AT) n — 1 rows of A that produce a tree in the graph (a tree has no loops)
C(A) the first n — 1 columns of A (or any n — 1 columns of A)
N{AT) flows around the 7n — n + 1 small loops in the graph: see equation (3)

If orthogonal bases are desired, choose the right and left singular vectorsin A = USVT, 3§

Example from Section 1.3 wn = 5 edges and n = 4 nodes

T edges
-1 1 ¢ 0 i
b b -1 0 1 0 9
2 bs T3 A=| 0 -1 1 0 3
; 0 -1 ¢ 1 4
4 b5 0 0 -1 1 5
L4 nodes 1 2 3 4

The graph Laplacian matrix L = AT A is square and symmetric and positfve semidefi-
nite. '
AT A has n — 1 positive eigenvalues A = o2 and one zero eigenvalue (because A1 = 0).
The special form AT A = D — B stands out in our example with 5 edges and 4 nodes

2 -1 -1 0
_ Laplacian Ta._| -1 3 -1 —-11]_ ‘
One missing edge ATA= -1 -1 3 -1~ D-B

0 -1 -1 2

240

Special Matrices

The degree matrix is D = diag {2, 3, 3, 2). It counts the edges into nodes 1,2, 3,4.
The adjacency matrix B has entries 0 and 1. An edge from j to & produces by, =1.
A complete graph (all edges present) has D = (n — 1)] and B = all ones minus [.

If every pair of nodes is connected by an edge, the graph is complete. It will have
m=(n—1)+{n—2)+-- +1=4n(n— 1) edges. B is the all-ones matrix (minus I).
All degrees are n — 1, s0 {7 = {n — 1)1. At the other extreme, there are only n — 1 edges.

In this case there are rno loops in the connected graph: the graph is a free. The number

m of edges in any connected graph is betweenm =n ~ land m = %n(n -1

1 ©

4 2

A ®

®

3

®

1

Figure IV4: Complete graph and two trees, all with n = 4 nodes: m = 6 or 3 edges.
The middle figure shows the numbering of the four nodes in afl three graphs.

Those graphs are connected to linear algebra by their m by n incidence matrices A, Ag, As

(—1 1 0 © -1 1 0 0
-1 0 1 0 -1 0 1 0
0 -1 1 © ¢ -1 0 1
0 -1 0 1
0 0 -1 1 first tree
-1 0 0 1 incidence matrix A,

-1 1 0 0
-1 0 1 9
-1 0 0 1

second tree
incidence matrix As

Our convention is that — 1 comes before 41 in each row. But these are not directed graphs !
Flows on the edges (the currents y1 to ym) can be positive or negative. And all information
about a graph (its nodes and edges) is revealed by its incidence matrix.

The incidence matrix has » columns when the graph has n nodes. Those column vectors
add up to the zero vector. Say that in a different way : The all-ones vector e = {1,1,1,1)is
in the nullspace of all three incidence matrices. The nullspace of A is a single line through
that all-ones vector. Ax = O requires x1 = 73 = 23 = x4 so that ¢ = {¢,¢,¢,0).

-1 FIz
—i +Iy
—Xz +ia
Az =0 — 1y
— 5
—y

+y
‘+x4
+xy

=0 (thenzy = x3)
=0 (thenzy = x3)
8y
=0 (thenxy = x4)
=0
=9

IV.6. Graphs and Laplacians and Kirchhoff’s Laws 241

Kirchhoff’s Current Law

The equation Az = 0 is not very interesting. All its solutions are constant vectors. The
equation ATy = 0 is extremely interesting: a central equation of applied mathematics.
We need to see what it means and to find a full set of n — m + 1 independent solutions.

0]
-1 -1 0 0 & -1]||1m 0
Kirchhoff’s Current Law 1 0 -1 -1 0 0w 0 ,
KCLis ATy =0 0 1 1 0 -1 0f]|y| |0)
o o 0 1 1 1]|uws 0
| U5)

First, count the solutions. With m = § unknown y’s and r = 3 independent equations,
there are 6 — 3 independent solutions. The nullspace of AT has dimension m — r = 8.
We want to identify a basis for that subspace of R®.

What is the meaning of the four equations in Kirchhoff’s Current Law ATy = 07
Each equation is a balance law for currents going in or out of a node :

KCL = Balance of currents : Flow into each node equals flow out from that node.

Atnode 4, the last equation in (2} is y4 + 5 + ¢ = 0. The total net flow into node 4 is zero
(or electrons would pile up}. This balance of currents or forces or money occurs everywhere
in engineering and science and economics. It is the balance equation of equilibrium.

The key to solving ATy = 0 is to look at the small loops in the graph. A loop:
is a “cycle” of edges—a path that comes back to the start. The first graph in Figure IV.4
has three small loops. Going around those loops are these edges :

loop 1: Forward on edge 2, backward on edges 3 and 1
loop 2: Forward on edges 3 and 5, backward on edge 4
loop 3: Forward cn edge 6, backward on edges 5 and 2

Flow around a loop amtomatically satisfies Kirchhoff s Current Law. At each node in the
loop, the flow into the node goes out to the next node. The three loops in the graph produce
three independent solutions to ATy = 0. Each y gives six edge currents around a loop :

r_q 0] r '0}
1 0 —1
ATy =0 for y, = _é and g, = _} and y; = g - O
0 1 —1
0] | 0| L 1]

There are w10 more independent solutions even if there are more (1argerj loops!
The large loop around the whole graph is exactly the sum of the three small loops. So
the solution y = (—1,0,0, —1,0, 1) for that outer loop is exactly the sum ¥, + ¥; + Y3

242 Special Matrices

The subspace dimensions lead to a fundamental identity in topology (discovered by Euler) ;

(Number of nodes) — {Number of edges) + (Number of loops) =

Ry)—(m)+(m—-—n+1)=1)

The reader will already know that a tree has no loops. Our second and third graphs were
trees with 4 nodes and 3 edges. Then Euler’s countis (4} — (3) + {(0) = 1. And ATy =0
has only the solution ¢y = . The rows of A are independent for every tree,

-1 1 0 0 -1 1 0 0
A =| -1 0 1 0 and A43=| -1 0 1 O
0 -1 0 1 -1 0 ¢ 1

The ATC A Framework in Applied Mathematics

Graphs are perfect examples for three equations that I see everywhere in engineering
and science and economics. Those equations describe a system in steady state equilibrium.
For flows in an electrical network (curmrents along the six edges of our first graph)
the three equations connect the voltages © = (¥, T3, %3, T4) at the four nodes and the
direct currents y = (y1, Y2, ¥3, Va. ¥s. Yo) along the six edges.

Voltage differences e=Ax e1 = voltage at end node 2
across edges — voltage at start node 1
Ohm’s Law y =Ce current g, = ¢ times e;
on each edge = (conductance) (voltage)

Kirchhoff’s Law f=A4aTy current sources J into nodes
with current sources balance the internal currents y

Those three equations € = Ax and ¥y = Ce and f = ATy combine into one
equilibrium equation ATC Ax = f. This is the form of so many fundamental laws.
The beauty is in the appearance of both A and AT. The result is that the governing
matrix ATC A4 is symmetric. ATC A is positive semidefinite because Az = 0 has the
all-ones solution 2 = (1,...,1).

With a boundary condition such as x4 = 0 {which grounds node 4 and removes the
last column of A) the reduced matrix AT C A becomes symmetric positive definite.

The grounded network has n — 1 = 3 unknown voltages (x4 = 0 is known}
The reduced incidence matrix A is now 6 by 3: full rank 3.

The systern matrix ATCAis (3 x 6)(6 x 6){(6 x3) =3 x 3

The energy is positive: €T ATC Az = (Az)TC{Az) > 0if 2 # 0

Now ATC A is symmetric and invertible and positive definite.

1V.6. Graphs and Laptacians and Kirchhoff's Laws 243

This ATCA framework is the foundation of my MIT course 18.085 on Computational
Science and Engineering. It is the point where linear algebra has an important message for
large-scale computations (like the finite element method). The video lectures and textbook
emphasize the applications of AT A and ATC A.

By preserving the symmetric positive definite structure of the governing equations—
which are often partial differential equations—the format of ATC A fits the laws of science.
Kirchhoff’s Current Law ATy = 0 becomes a model for all balance laws : conservation
of charge, balance of forces, zero net income in economics, conservation of mass and
energy, continuity of every kind,

The same ATCA matrix enters in linear regression (least squares applied to Az = b).

ATAF = ATp Normal equation for the vector F that best fits the data b
ATCAF = ATCb Least squares weighted by the inverse covariance matrix C = V!
min||b — Az||2 Minimum squared error (b — Az)TC (b~ Ax)

Deep learning in the final chapter will again be an optimization problem. Find the
weights between each laver of neurons so the learning function F' correctly classifies
the training data. In the 20th century, when F' was linear, this was not so successful.
In this century, each neuron also applies a nonlinear activation function like ReLU{x)
(the targer of 0 and z). Deep learning has now become amazingly powerful.

The overall function F' that classifies the data is continuous and piecewise linear.
Its graph has an astonishing number of small flat pieces. Every application of ReLU(x)
adds a fold to the graph of . That fold crosses the other folds to divide feature space
into many many pieces, Please see Section VIL1 on deep neural nets.

Constructing all these flat pieces provides the mathematical power for deep learning.

The Graph Laplacian Matrix

K = ATCA is a weighted graph Laplacian—the weights are in C. The standard
Laplacian matrix is G = A" A, with unit weights (C = I). Both Laplacians are crucial
matrices for theory and applications. The main facts about AT 4 and ATC 4 apply to every
connected graph. K can be a stuffness matrix or a conductance matrix in engineering.

1 Every row and column of 7 and X adds to zero because = (1,...,1) has Ax = 0.
2 G = AT Ais symmetric because edges go both ways (undirected graph).

3 The diagonal entry (AT A);; counts the edges meeting at node 7 : the degree.

4 The off-diagonal entry is (AT 4);; = —1 when an edge connects nodes 7 and j.

5 (and K are positive semidefinite but not positive definite (because Az = @ in 1).

AT A = diagonal + off-diagonal = degree matrix — adjacency matrix = D — B.

244 Special Matrices

Problem Set I'V.6

1 What are the Laplacian matrices AT A for a triangle graph and a square graph?
The incidence matrix A reverses sign if all amows are reversed—but signs in AT A
don’t depend on arrows.

2 What is AT A for a complete graph (all ten edges between = 5 nodes) ?

3 For a triangle graph with weights ¢y, ¢e,c3onedges1 — 2, 1 =3, 2 — 3, show
by matrix multiplication that

1+ 2 -1 —Ca
K=ATCA = - o+ey —c3
—C2 —C3 Cz2 + C3

4 That matrix X = ATC A is the sum of m = 3 “element matrices”

1 -1 0 1 0 -1 0 0 0
K=c¢ | -1 1 0| 4+e 0 0 01 4+ez| 0 1 -1
0 0 0 -1 0 1 0 -1 1

Show that those rank-1 matrices come from K = AT(C A) = columns times rows,

5 Draw a tree with n = 4 nodes and m = 3 edges. There shouldbem —n+1 =10
solutions to the current law ATw = 0. Explain this conclusion: Rows of A that
comrespond to a tree in the graph are independent.

6 A complete graph with n = 4 nodes and m = 6 edges apparently can’t be drawn in
a plane. Can you prove (after experiment) that edges will intersect ?

7 (a) For that complete graph with 4 nodes and 6 edges, find the matrix AT A,
(b) Also find 6 — 4 + 1 solutions (from loops) to Kirchhoff's Law ATw = 0.

8 Explain Euler’s formula (the beginning of topelogy) for any graph in a plane ;
{nurnber of nodes) — (number of edges) + {number of small loops) = 1

9 For a triangle graph, find the eigenvalues and eigenvectors of G = ATA. The
eigenvectors are not completely determined because (¢ has a repeated
Find one choice forthe SVD: A = USVT.

IV.7. Clustering by Spectral Methods and k-means 245

IV.7 Clustering by Spectral Methods and k-means

How to understand a graph with many nodes (and not all possible edges)? An important
starting peint is to separate the nodes into two or more clusters—like groups of friends.
Edges are more likely within the clusters than between different clusters. We hope the
clusters have similar size so that we are not just picking off a few loners. Identifying
these clusters will give a first rough understanding of our graph.

A key step in decoding genetic data is to cluster genes that show highly correlated
(and sometimes anti-correlated!) expression levels. Clustered genes may lie in the same
cellular pathway. The great achievement of the Human Genome project was to tell us the
pieces in the puzzle of life: the rows of G. We now face the greater problem of fitting those
pieces together to produce function: such as creating proteins.

An Example with Two Clusters

The figure below shows n = b nodes. Those nodes are separated into & = 2 clusters,
The points marked by * are the centroids {2, 1) and {—1,2/3) of the two clusters. The
first centroid is the average {1, 1) + $(3,1) of the two points, and the second ceniroid is
the average 3[(0,0) + (—3,0) + (0, 2)]. Those centroids ¢; and ¢, minimize the sum of
squared distances {[¢ — a;||* to the points a; in the clusters.

These clusters were produced by the famous k-means algorithm with & = 2. This is
a simple way to cluster the nodes—but not the only way. (And probably not the fastest or
best way for a large set of nodes.) Before using eigenvalues and cuts to produce clusters,
we show how k-means is one more excellent example of a ceniral theme in this book:

Approximate an 7 X n matrix A by CR = (m x k)(k x n) N

The rank of C' R is low because (' has only & columns and R has & rows. In the k-means
approximation, the colurmns of C are the centroids of the clusters. Whatis R?

Each column of R has a single 1 and & — 1 zeros. More exactly, R;; = 1 (or) if
centroid ¢ is closest (or not) to the point x;. Then the 1’s in row ¢ of R tell us the cluster
of nodes around the centroid (marked by #) in column i of £

For b nodes and 2 clusters, R has only two different columns (centroids) in A = CR.

(0,2) 0130 -3]_[-122 -1 -1
0112 -

/ 0 2/3 1 1 2/3 2/3
4 [-1t 2][10011
(-3,0) (0,03 (1,1) (3,1 A”CRF[2/3 1 Ho 110 o]

246 Special Matrices

Four Methods for Clustering

QOut of many applications, we start with this one: to break a graph in two pieces.
Those pieces are clusters of nodes. Most edges should be inside one of the clusters,

1. Each cluster should contain roughly half of the nodes.
2. The number of edges beiween clusters should be relatively small.

For load balancing in high performance computing, we are assigning equal work to
two processors (with small communication between them). For social networks we are
tdentifying two distinct groups. We are segmenting an image. We are reordering rows
and columns of a matrix to make the off-diagonal blocks sparse.

Many algorithms have been and will be invented to partition a2 graph. [will
focus on four successful methods that exiend to more difficult problems: Spectral
clustering (using the graph Laplacian or the modularity matrix), minimam cut,
and weighted k-means. Here are those four methods :

L. Find the Fiedler vector z that solves ATC Az = ADz. The matrix ATC A is the
graph Laplacian. Its diagonal I’ contains the total weights on edges into each of the
nodes. [} normalizes the Laplacian. The Fiedler vector has

The eigenvectorfor Ay = Qis (1, ..., 1). The Fiedler cigenvalue comes next: A=Az,

Positive and negative components of its eigenvecror indicate the nwo clusters of nodes.

II. Replace the graph Laplacian matrix ATC A by the modularity matrix AL, Choose
the eigenvector that comes with the largest eigenvalue of M. Again it will be the
positive and negative components that indicate the two clusters ;

1 .
Modularity matrix M = (adjacency matrix} — 2 dd"
b

The vector @ gives the degrees of the n nodes (the number of edges adjacent to the
nodes). Each row and column of A = A T 3dds to zero, 50 one eigenvector of M is
again (1,1,...,1). If its eigenvalue A = O happens to be the largest—so M has no
positive eigenvalues— then all nodes will and should go into one cluster.

The article by Mark Newman in PNAS 103 (2006) 8577-8582 makes a strong case
for the modularity matrix in clustering the nodes.

III. Find the minimom normalized cut that separates the nodes in two clusters P and
. The unnormalized measure of a cut is the sum of edge weights w;; across that
cut. Those edges connect a node in F to a node outside P:

Weight across cut links(P) = 3 w;; for {in P and jnotin P. (2)

By this measure, & minimum cut could have no nodes in P. So we normalize
by the sizes of P and Q. These are sums of weights inside clusters :

Size of cluster size(P} =) w,;; for iin P. (3

IV7. Clustering by Spectral Methods and k-means 247

Note that an edge inside P is counted twice, as w;; and wy;. The unweighted size
would just count the nodes, and lead to “ratio cut” Here we divide weight across the
cut by the weighted sizes of P and ¢}, to normalize the key quantity Ncut :

links(P) links(Q)

. . . 4
size(P) size(Q)

Normalized cut weight Neut{P, Q) =

Shi and Malik found that minimizing Ncut(P, Q) gives a good partitioning of the graph.
That application was to segmentation of images. They uncovered the connection to the
Laplacian L.

The definition of Ncut extends from twe clusters P and @ to & clusters Py, ..., Py
X links(P;)

Normalized K-cut Neut(Py,...,P.) = Rt 5

ut(Py ‘) Z size(P;) (3)

i=1
We are coming close to k-means clustering. Start with & = 2 clusters (P and Q).
IV. k-means Represent the nodes in the graph as vectors a1, ..., @,. The clusters P

and () have centers ep and cg. We minimize the total squared distance from nodes
to those “centroids™.

2-means clustering .. .) 2 2 .
cp, g = centroids MlmmmeE_ingat el +e‘§ Hat_CQ” (6)%

The centroid is the average ¢p = (3 ai)/|FP| of the vectors in cluster P.

The vector a; may or may not represent the physical location of node i. So the clustering
objective E is not restricted to Euclidean distance. The more general kernel k-means
algorithm works entirely with a kernel matrix K that assigns inner products K;; = a;.r .
Distances and means are computed from a weighted K.

The distance measure £ will also be weighted, to improve the clusters F and (.

The Normalized Laplacian Matrix

The frst step to L is ATA. This A4 is the m by n incidence matrix of the graph. Off the
diagonal, the i, entry of AT A is —1 if an edge connects nodes 7 and j. The diagonal
entrics make all row sums zero. Then (AT A};; = number of edges into node 7 =degree
of node i. With all weights equal to ane, AT A = degree matrix — adjacency mairix.

The edge weights in C' can be conductances or spring constants or edge lengths.
They appear on and off the diagonal of ATCA = D — W = nede weight matrix —
edge weight matrix. Off the diagonal, the entries of —W are minus the weights w;;.
The diagonal entries d; still make all row sums zero: D = diag(sum{W}}.

248 Special Matrices

The all-ones vector 1 = ones(n, 1) is in the nullspace of ATC A, because A1 = 0.
Each row of A has 1 and —1. Equivalently, D1 cancels W1 (all row sums are zero).
The next eigenvector is like the lowest vibration mode of a drum, with Ay > 0.

For the normalized weighted Laplacian, multiply ATC A on the left and right by
D~1/2, preserving symmetry. Row ¢ and column j are divided by +/d; and ,/d;, so the i, j
entry of ATC A is divided by /d:d;. Then L has d;/d; = 1—along its main diagonal.

Normall.zed Lal?lac1anLL — DY2ATCAD Y2=I_-N ny= Wij
Normalized weights 7, did;

(7

A triangle graph has n = 3 nodes and m = 3 edge weights c1, ¢2, c3 = wig, 13, Wag!

w2 + w3 —uhs —wi3 1 —-N1z —M3
—tiag wo1 + W —ua3 L=|-nrn 1 —na23 (®)
—ua) —3g W31 + Waz —fig1 —Naz 1
ATCA=D-W L =D 12ATC A D172

The normalized Laplacian L = I — N is like a correlarion matrix in statistics, with wnit
diagonal. Three of its properties are crucial for clustering:

1. L is symmetric positive semidefinite: orthogonal eigenvectors, eigenvalues A > 0.
2. The eigenvector for A = Qisw = (y/dy,...,+/d,). Then Lu=D"1/24TCA1 =0,

3. The second eigenvector v of L minimizes the Rayleigh quotient on a subspace:

Ao = smallest nonzero eigenvalue of L min T Lz _ vT Lo s At @ =
Minimize subject to zTu = 0 Tz vTo 2 =
9

The quotient 2T Lz /T« gives an upper bound for Az, for any vector x orthogonal to the
first eigenvector D'/21. A good lower bound on), is more difficult to find.

Normalized versus Unnormalized

The algorithms of clustering could use the unnormalized matrix ATCA. But L usually
gives better resulis. The connection between them is Lv = D~ "/2ATCAD 2y = Jv.
With z = D~/2y this has the simple and important form ATC' Az = ADz:

Normalized Fiedler vector z ATCAz = ADz with 1TDz =0. (1)

For this “generalized” eigenvalue problem, the eigenvector for A = 0 is still the all-ones
vector1 = (1,...,1). The next eigenvector z is D-orthogonalto 1, whichmeans 17D z =

IV.7. Clustering by Spectral Methods and k-means 249

0 (Section 1.10). By changing z to D'/?y, the Rayleigh quotient will find that second
eigenvector z:

Same eigenvalue)\, in y ATCAy 33 wi(yi—ys)®
.FiedlerzzD_lfzv {TDy =0 yTDy Sodiy?

=Jdpaty =z

an
In Ay, the incidence matrix A gives the differences y; — y;. C multiplies them by w;;.

Note For some authors, the Fiedler vector v is an eigenvector of ATCA. We prefer
z = D™Y2y. Then ATCAz = Ap,Dz. Experiments seem to give similar clusters from v
and z. Those weighted degrees d; (the sum of edge weights into node ¢) have normalized
the ordinary A*C A eigenvalue problem, to improve the clustering.

Why would we solve an eigenvalue problem Lv = Av (usually expensive} as a first
step in reordering a linear system Az =b7 One answer is that we don’t need an accurate
eigenvector v. A “hierarchical” multilevel method combines nodes to give a smaller L
and a satisfactory v, The fastest £-means algorithms coarsen the graph level by level, and
then adjust the coarse clustering during the refinement phase.

Example 1 A 20-node graph has two built-in clusters P and @ (to find from z). The
MATLAB code creates edges within P and within ¢, with probability 0.7. Edges between
nodes in P and Q) have smaller probability 0.1. All edges have weights wy; = 1,50 C = I
P and ¢ are obvious from the graph but not from its adjacency matrix W,

With G = AT A, the eigenvalue command [V, E] = eig(G, D) solves AT Az = ADz.
Sorting the A’s leads to Az and its Fiedler vector z. Des Higham's third graph shows how '

the components of z fall into two clusters {plus and minus), to give a good reordering.
He provided this MATLAB code.

N =10;W = zeros{2+ N, 2+ N); % Generate 2N nodes in two clusters
rand(‘state’, 100) % rand repeats to give the same graph
fori=1:2xN-1

forj =i+1:2«N

p=07-06+mod(j—1i,2); % p = (.1 when 7 — i is odd, 0.7 else
Wi(i,4) = rand < p; % Insert edges with probability p
end % The weights are w;; = 1 (or zero)
end % So far W is strictly upper triangular
W =W + W' D =diag(sum(W)); % Adjacency matrix W, degrees in I}
G =D-W, [V, E] = eig{G, D}; % Eigenvalues of G& = ADx in E

[a, b] = sort{diag(E}); z = V(:,(2)); % Fiedler eigenvector = for Ao
plot{sort{z), ".-"}; % Show + — groups of Fiedler components

250 U Special Matrices

Graph Adjacency matrix W

2r - - r 0— "y
l:z.l m *3:‘
1 ¢ ; .o.o. R
=5 oo (X

on

10 oo o
0 K !:.o. u:
L)
1 , 15 3'0.0.... 0'3 . .
7 ll.! O L] ll
= 20 o‘g o.o. " .
-2 - 0 1 2 0 10 20
nz = 142
Fiedler components Reordered Matrix W
0.2 0
.
n
0.1 00 . 00 5533- % ¢
0, 00
0
0 10 .: . LR
% ¥ 333
01 F g ks **ié 15 %
0 5 10 0
nz= 142

Application to Microarray Data

Microarray data comes as a matrix M from m genes and n samples. Its entries m; record
the activity (expression level) of gene i in sample j. The n by n weight matrix MTM
measures the similarity between samples (the nodes in a complete graph).

The off-diagonal entries of A TM enter W. The row sums of W go inio D. Then
D — W is the weighted Laplacian matrix ATC A, We solve ATC Az = ADz,

Higham, Kalna, and Kibble report tests on three data sets. Those involve icukemia
{m = 5000 genes, n = 38 patients), brain tumors (m = 7129, n = 40), and lymphoma.
“The normalized spectral algorithm is far superiorto the unnormalized version at revealing
biologically relevant information.”

The experiments also show how the next eigenvecior after Fiedler helps to produce
k = 3 clusters. The % lowest eigenvalues provide eigenvectors to identify & clusters.

IV.7. Clustering by Spectral Methods and k-means 251

Cuts Connected to Eigenvectors

How is the graph cut separating P from @ related to the Fiedler eigenvector in ATC Az =
ADz ? The crucial link comes from comparing Neut(P, @) in (5) with the Rayleigh quo-
tient 4T ATC Ay /4T Dy in (11). The perfect indicator of a cut would be a vector y with
all components equal to p or —g {(two values only) :

Two values Node i goesin Pify; = p Node ¢ goesin Qif i; = —¢
1T Dy will multiply one group of d; by p and the other group by —g. The first d; add to

size(P) = sum of w;; (Z in P) = sum of d; (i in I?). The second group of d; adds to
size(Q). The constraint 1T Dy = 0 becomes p size(P) = q size(Q).

When we substitute this y into the Rayleigh quotient, we get exactly Ncut(P,) ! The
differences y; — y; are zero inside P and Q. They are p + ¢ across the cut:

Numerator yTATCAy :Z Z wy; (i — y;)° =(p+ q)? links(P, Q) (12)

Denominator yT Dy=p” size(P)+q° size(Q) =p (p size(P))+q(psize(P)). (13)

That last step used p size(P) = ¢ size((}). Cancel p + ¢ in the quotient :

Raylf:lgh (p+q) llmks(P, o) _p Im?‘as(P, Q} 44 Im{cs(P,) — Newt(P,Q). (14)
quotient p size(P) p size(P) q size{})

The Ncut problem is the same as the eigenvalue problem, with the extra constraint that
y has only two values. (This problem is NP-hard : there are so many choices of P and ().)
The Fiedler vector z will not satisfy this two-value condition. But its components in that
specially good example clearly separated into two groups. Clustering by = is a success if
we can make it efficient.

Clustering by k-means

The most basic problem begins with n poinis @;,...,a, in d-dimensicnal space.
The goal is to partition those points into k clusters. The clusters P, . .. Py have centroids
€1,. .., ¢k Each centroid ¢ minimizes the total distance Y. ||c — a;||? to points a; in its
cluster. The centroid is the mean (the average) of those n; peints:

sum of a’s

Centroid of P; «¢; minimizes > ||¢ — a||? for &’s in cluster F;.

" numberof a’s

The goal is to find the partition P, . .., P; with minimum total distance D to centroids:

Clustering ~ Minimize D = Dy + -+~ + D = > l|g; — a;||* fora; in £, (15)

252 Special Matrices

Key idea Each clustering into P, . .., Py of the nodes produces & centroids (step 1).
Each set of centroids produces a clustering (step 2), where & moves into F; if ¢; is
the closest centroid to a. (In case of equally close centroids, choose one arbitrarily.)
The classical “batch k-means algorithm” iterates from a clustering to its centroids to
a new clustering. In eqn. (1) it is a factorization A = CH by alternating least squares !

1. Find the centroids ¢; of the (old) clustering F, ..., Fx.
k-means

2. Find the (new) clustering thai puts @ in F; if c; is the closest centroid.

Each step reduces the total distance 1). We reset the centroids ¢; for each P, and then
we improve to new F; around those ¢;. Since D) decreases at both steps, the k-means
algorithm converges. But it might not converge to the global minimum,

It is hard o know much about the limit ciusters. Non-optimal partitions can give
local minirna. Better partitions come frem weighted distances.

Step 1 is the more expensive, to compute ali the distances ||¢; — a;|)%. The complexity
is normally O(7?} per iteration. When the algorithm is extended below to kemnel k-means,
generating a kernel matrix X from the data can cost O{n?d).

Step 2 is the “Voronoidal idea” of finding the set closest to each centroid,

Weights and the Kernel Method

When we introduce weights in the distances, they appear in the centroids

sz' a;

Do w

The weighted distance D; =" w; || — @;}}? is minimized by = = ¢; in step 1. To reduce
the total D = Dy 4+ --- + Dy, step 2 resets the clusters. Each a; goes with the closest
centroid. Then iterate step 1 (new centroids) and step 2 {new ¢lusters).

A key point is that distances to centroids only require dot products a; - @

Distances d(x,a;) = w; [z —a;|? Centroid of P; c; = (a;in P;) (16)

Eachiin P; le; —aill?=¢; ¢j ~2¢j-a;+a;-a; amn

Kernel method The weighted kernel matrix K has entries @; - ag. Those vectors a;
need not be actual positions in space, Each application can map the nodes of the graph
to vectors a; in a linear or nonlinear way, by its own rule. When the nodes are points x;
in input space, their representing vectors @; = ¢{x;).can be points in a high-dimensional
feature space. Three kernels are commonty used :

In vision Polynomial K= (zi-Te+c)?
In statistics Gaussian Kip = exp(—||x; — ®el*/26?)
In neural networks Sigmoid K = tanh{cx; - 2¢ + 9)

The distance in {17} needs only the kernel 'ma_trix becaunse of the centroid formula (16).

Iv.7. Clustering by Spectrat Methods and k-means 253

. S wiweKu Y wiKy
Sumovernodesin P; > |lc; — a;|)>= it —2 =N Ky (18)
i z || 5 I > wi)? S w, E (

The kernel batch k-means algorithm uses the matrix K to compute this total distance.

For large data sets, k-means and eig{ ATC A4, D} will be expensive. Here are two
approaches that create a sequence of more manageable problems. Random sampling
finds the best partition for a sample of the nodes, Use its centroids to partition all nodes,
by assignment to the nearest centroid. Sampling has become & major research direction,
aiming to prove that with high probability the partition is good.

Dhillon’s graclus code uses multilevel clustering: graph coarsening, then clustering
at the base level, and then refinement. Coarsening forms supernodes with the sum of edge
weights. For the small supergraph at base level, spectral clustering or recursive 2-means
will be fast. This multilevel approach is like algebraic multigrid.

Applications of Clustering

The reason for this section is the wide variety of applications. Here is a coliection that
goes far beyond clustering. This part of applied mathematics has grown very quickly.

1. Learning theory, training sets, neural networks, Hidden Markov Models
2. Classification, regression, pattern recognition, Support Vector Machines

3. Statistical learning, maximum likelihood, Bayesian statistics, spatial statistics, kriging,
time series, ARMA models, stationary processes, prediction &

4. Social networks, small world networks, six degrees of separation, organization theory,
probability distributions with heavy tails

5. Data mining, document indexing, semantic indexing, word-document matrix, image
retrieval, kernel-based leaming, Nystrom methed, low rank approximation

6. Bioinformatics, microarray data, systems biology, protein homology detection

7. Cheminformatics, drug design, ligand binding, pairwise similarity, decision trees

8. Information theory, vector quantization, raie distortion theory, Bregman divergences
9. Image segmentation, computer vision, texture, min cut, normalized cuts '

10. Predictive control, feedback samples, robotics, adaptive control, Riccati equations.

254 Special Matrices

Problem Set IV.7
1 If the graph is a line of 4 nodes, and all weights are 1 (€' = T}, the best cut is down
the middle. Find this cut from the £+ components of the Fiedler vector z:

1 -1 21 1 21
-1 2 -1 z 2 z
T _ 2 | 2 |
A CAz = 1 9 _1 | = Ag 9 | = Dz,
-1 1 4 1 Z4

Here Az = ;1,—, Solve for z by hand, and check [1 1 1 1}Dz=0.

2 For the same 4-node tree, compute links{P) and size(P) and Neut{P, Q) for the
cut down the middle.

3 Starting from the same four points 1, 2,3, 4 find the centroids ¢p and eg and the
total distance D for the clusters P = {1, 2} and = {3, 4}. The k-means algorithm
will not change P and ¢} when it assigns the four points to nearest centroids.

4 Start the k-means algorithm with P = {1,2,4} and ¢ = {3}. Find the (wo centroids
and reassign points to the nearest centroid.

5 For the clusters P = {1,2,3} and @ = {4}, the centroids are cp = 2 and
cg = 4. Resolving a tie the wrong way leaves this partition with no improvement,
But find its total distance [},

6 Ifthe graphis a 2 by 4 mesh of 8 nodes, with weights C' = I, use eig{ A1 A, D) to find
the Fiedler vector z. The incidence matrix 4 is 10 by 8 and D = diag(diag(A" A4)).
What clusters come from the 3 components of z ?

7 Use the Fiedler code with probabilities narowed from p = 0.1 and 0.7 to
p = 0.5 and 0.6. Compute z and plot the graph and its partition,

Problems 8-11 are about the graph with nedes (0,), (1, 0), (3, 0), (0, 4), (0, 8).
8 Which clusters P and () maximize the minimum distance D™ between them?

9 Find those best clusters by the greedy algorithm. Start with five clusters, and comnbine
the two closest clusters. What are the best & clusters for k = 4,3,27

10 The minimum spanning tree is the shortest group of edges that connects all nodes.
There will be n — 1 edges and no leops, or the total length will not be minimal.

Dijkstra’s algorithm Start with any node like {0,0). At each step, include the
shortest edge that connects a new node to the partial trec already created.

11 The minimum spanning tree can also be found by greedy inclusion. With the edges
in increasing order of length, keep each edge unless it completes a loap.

IV.8. Compieting Rank One Masrices ' 255

IV.8 Completing Rank One Matrices

Filling up missing entries in arank-1 matrix is directly connected to finding (or not finding) -
cycles in a graph. This theory of rank-1 completion developed from the following question :

We are given m + n — 1 nonzero entries in an 1 by n matrx A.
When does the requirement rank (A) = 1 determine all the other entries ?

The answer depends on the positions of those m+n — 1 nonzeros. Here are three examples :

% X
x x > X x % «
Ay = x As = X X =
1 2 As N «
* ™
4
SuCcess failore failure

In A;, we are given column 1 with no zeros. Columns 2 and 3 must be multiples of
column 1, if A has rank 1. Since we are given the first entries in columns 2 and 3, those
columns are completely determined.

Here is another approach to A;. In any rank 1 matrix, every 2 by 2 determinant must
be zero. Sothe 2, 2 entry of Ay is decided by aszaq; = a12a0;.

In A,, the first four entries might not satisfy determinant = 0. Then we are doomed
to failure. If that determinant is zero, we could choose any as3; # 0 in column 1, and
complete Az to rank 1. This is the usual sitvation : no sclution or infinitely many solutions,

That example shows failure whenever we know all four entries of a 2 by 2 submatrix.
Does every failure occur this way ? No, Ag has a different failure.

In Ag, that leading 3 by 3 submatrix has too many specified entries. There are 6 instead
of 3+ 3 — 1 = 5. For most choices of those 6 entries, rank 1 is impossible for a 3 by 3:

1 1 1 1 1
11 leads to 1 1 1 and the rank is 2.
1 2 1 2 2

Spanning Trees in a Graph

Alex Postnikov explained the right way to look at this problem of rank-1 completion.
He constructed a graph with m nodes for the m rows and n nodes for the n columns.
For each prescribed entry A4;;, the graph has an edge connecting row node 7 to column
node j. Then the pattern of x’s in the matrices above becomes a patiern of edges in their
row-column graphs (next page).

256 _ o Special Matrices

The 4; and Az examples produce these two graphs :

1 1 1 1
rows 2 9 columns 9 E 2 lam
3 @D 3 rows 3 3 columns

Prescribed nonzerosin 4; and Az 4 @———e 4

These are bipartite graphs because all their edges go from one part to the other part.
Success for Ay and failure for A3 can be explained by these graphs.

Graph A, The 5 edges form a spanning tree. It is a free because that graph has no
closed foop (no cycle). The tree is spanning because it connects all 6 nodes. If we want
to discover the 3, 3 entry of A (in a rank-1 completion), we add that dotted line edge to
complete a cycle. Then Agzj is determined by A1, 413, and A in the cycle. Those four
numbers produce a zero determinant.

Graph As The 7 edges do nor form a spanring tree. It is not a tree because there is
a cycle (in the top six edges). The cycle imposes a requiremnent on those six entries of Ag:

. . o A A A
If A3 = uwv™ hasrank 1, its entries must satisfy L7228 (101 (upvz) (ugvs) _
A12Az23Am (u1va)(uzvs)(uan)

If this condition happens to hold, there are infinitely many ways to complete Az with rank 1.

Conclusion The partial matrix A has a unique rank-1 completion if and only if the
m + n — 1 prescribed entries A;; produce m + n — 1 edges (row i to column j) that
form a spanning tree in the row-column graph. The tree reaches all nodes with no loops.

Open problem Which (m+ n —2)2 entries of A can be specified, to allow a unique com-
pletion to a rank-2 matrix? Appendix C to this book confirms {m + n — 2)2
as the correct number of independent parameters for a rank 2 matrix.

Problem Set IV.8

1 Draw the bipartite graph with 3 row and column nodes for the example matrix As.
Do the 5 edges from A make up a spanning tree ?

2 Construct a 5 by 5 mairix A4 with 5 4+ 5 — 1 = 9 nonzeros in a cycle of length 8.
What equation like A11.420 433 = A1242345; must hold for completion to a rank-1
matrix ?

3 For a connected graph with M edges and N nodes, what requirement on A and N
comes from each of the words spanrning tree ?

4 How do you know that a graph with N nodes and N — 1 edges is a spanning tree ?

IV.9. The Orthogonal Procrustes Problem 257

IV.9 The Orthogonal Procrustes Problem

Here is a neat (and useful) application of the SVD. It starts with vectors &4,...,®, and
Yi,-+ 1Y, Which orthogonal matrix @ will multiply the y’s to come as close as
possible to the 2’s ? This question turns up in a surprising number of applications.

Notice the limitation to an orthogonal matrix . That doesn’t allow for translation and
it doesn’t allow for rescaling. If the mean of the y's equals the mean of the x's, then no
translation is needed. Otherwise most codes will subtract those mean values to achieve new
a’s and ¢’s with 3~ ®; =) y; = zero vector. Then the two sets are centered with mean
zero. And if we allow rescaling of the vectors to equalize their lengths in advance, that
leads to the “generalized Procrustes problem”.

{ have to tell you about Procrustes and the myth. Procrustes himself was famous
for rescaling. He invited passing strangers to spend a comforiable night in his
special bed. He claimed that the bed would adjust its length to match the visitor.
But the reality was that Procrustes adjusted the length of the visitor to fit the bed.
{Short visitors were stretched on the rack, tall visitors had their legs chopped
off. T am not sure what this myth tells us about the Greeks, but it isn’t good.)
Theseus was up to the challenge, and he adjusted Procrustes to fit his own bed.
Unfortunately fatal.

They solved the generalized problem and we solve the standard problem: orthogonal Q.

Solution 1. Construct matrices X and ¥ with columms z,,...,z,and gy, .., ¥y,
2. Form the square matrix YT X
3. Find the singular value decomposition YTX = USVT

4. The orthogonal matrix @ = VTU minimizes || X - YQI|%

Discussion

The distance between the columns x; and g, () is the usual Euclidean length
l|Zzr — 4,Q)||- For the (squared) distance from all the &’s to all the »{)’s, if is natural
to add up the squares of those column lengths., This produces the (squared) Frobenius
nerm || X — YQ!|%. We must show that @ = V'TU in Step 4 minimizes this norm—
it is the best possible Q. '

Three small observations will be helpful in the proof':
(i) The squared Frobenius norm || A||% is the trace of AT A.
{ii) The trace of AT B equals the trace of BT A and also the trace of BAT.

(iif) The squared norm || A||% is the same as ||AQ]{|% and {|AT|{Z.

258 Special Matrices

The trace of a square matrix is the sum of the entries on the main diagonal. It is also
the sum of the eigenvalues. Then the three observations are easily explained.

() The diagonal entries of AT A are the squared column lengths—so they add to || 4}|%.

(ii) AT B and its transpose BT A have the same diagonal—and therefore the same trace.

AT B and BAT have the same nonzero eigenvalues. Their diagonals include all a;b;;.

{iii) AQ has the same column lengths as A, because @ is an orthogonal matrix.

Both || A|[% and || AT||% add up the squares of all the entrics of A, so they are equal.

Proof that @ = VU is the orthogonal matrix that mintmizes || X — Y Q[[%..
We minimize trace (X - Y Q)T (X -Y Q) = trace (XTX) +trace (Y TY)—2 trace (QTY T X)),
XTX and YTY are fixed. So we maximize that last trace. This is the moment for the
SVD:YTX =URVT.
trace (QTYTX) = trace (QTUZVT) = race (VTQTUY) = trace (ZX). (1)

The matrix Z = VTQTU is a product of orthogonal matrices and therefore orthogonal.
% is a diagonal matrix of positive numbers g1, ...,,. So the trace of that matrix ZX
is 21101 + - - - + zZrr0y. To maximize that number, the best choiceis £ = 1.

Z = VTQTU = I means that Q = UV T solves the Procrustes problem

In case the original X and ¥ were orthogonal matrices, the perfect rotation to produce
X = YQ (with zero error X — Y Q) is clearly Q = Y TX. This agrees with the answer
@ = UVT. The singular values of an orthogonal matrix are all 1, so the decomposition
YTX = U¥VT in equation (1) is exactly UV T.

Notes The Procrustes problem was originally solved in Schéneman’s 1964 thesis.
Procrustes Problems by Gower and Dijksterhuis (Oxford University Press, 2004)
develops many of its applications. We have borrowed the proof given above from
Golub and Van Loan {(Matrix Computations 4th edition, page 328). That page also begins
the important applications of the SVD to angles between subspaces.

Problem Set IV.9

1 Which orthogonal matrix @ minimizes || X — YQ||% ? Use the solution Q@ = UVT
above and also minimize that norm as a function of # (set the 8-derivative 1o zero):

1 2 1 0 cosd —sind
X:[Q 1} Y_{U 1] Q:[sinﬁ 0039]

TV.10. Distance Matrices 259

IV.10 Distance Matrices

Suppose n points are at positions &3 0 &, in d-dimensional space. The n by n distance
matrix D contains the squared distances D;; = ||xz; — &;||* beiween pairs of points.
Thus D is symmetric. The main diagonal of D has zeros from |[z; — a;||* = 0. Here is
the key question about extracting information from 1D :

Can we recover the positions x,,. .., x, from the Euclidean distance matrix D ?

The immediate answer is no. Suppose we find one solution—one set of possible positions
x;. Then we could shift those positions by a constant zg. We could multiply all =’s
by any orthogonal matrix. Those are rigid motions and they don’t change the distances
||z; — z;]|- Recognizing that one solution will lead to this family of equivalent solutions,
the key question remains (and we answer it):

Are there always positions ¢, to @,, consistent with the distance matrix D ? Yes.

There is always a position matrix X {with columns &; to &,) that produces the given
distances in 1. The matrix X bhas d rows when the points are in d-dimensional space
{d = 2 for a map, d = 3 for our world, d > 3 is allowed and it happens). One problem is
to determine the minimum dimension d.

This problem of finding X from D has a long history. At first this was a purely
mathematical question. But applications soon appeared. We mention just three of them :

1. Wireless sensor networks: Measuring the travel times between pairs of sensors .
yields . Then we solve for the sensor positions X (the network topology).

2. Shapes of molecules: Nuclear magnetic resonance gives distances between aioms.
Then we know the matrix [}, We solve for position matrices X. This example
and many others will involve noise {errors in D) and even missing entries.

3. Machine learning : The examples in a training set are converted to feature vectors
in high dimensions. Those vectors might lie close to a plane or a curved surface
that has much lower dimension. Finding that surface (approximately) is a giant step
toward understanding the data and classifying new examples. Then the kernel trick
reduces the dimension. Again this can involve a very noisy environment.

In preparing this section of the book, we relied on a wonderful paper “Euclidean {is-
tance Matrices” posted in 2015 to the arXiv: 1502.07541v2 [¢s.OH]. Its authors are Ivan
Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. This paper is full of idcas,
algorithms, codes, and many applications. They are clearly explained ! Please find it on the
Web to learn more,

260 . Special Matrices __

Positions X from Distances D

Here is the key observation that simplifies the problem. It connects each (distance)? in D
to four entries in the matrix X T X (dot produets of the desired vectors x; and & 5):

T T T
;T —E;T T T (I}

llz: — 25|° = (@i —) @ —25) = 2]z - 2
The first term] 2; produces a matrix with constant rows (no dependence on 7). The last
term a:;r:c ; produces a matrix with constant columns (no dependence on). The numbers
|iz:]|? and ||z;||* in both of those matrices are on the main diagonal of G = XTX.
Those are the numbers in the column vector diag(G).
The middle terms —2z] ; in (1) are exactly the numbers in —2G = —2X7TX.
So we can rewrite (1) as an equation for the matrix D, using the symbol 1 for the
column vector of » ones. That gives constant colurmns and 17T gives constant rows.

D = 1diag(G)T — 2G + diag(G) 17. (2)

Qur problem is to recover G from D. Then the positions in X will come from
XTX = G. You see that a solution X can be multiplied by any orthogonal matrix @,
and still (@ X)T{QX) = G. Rotations are expected and allowed by Q.

Solving XTX = G for the d by n matrix X will tell us that the points ; (o @,
can be placed in the space RY. The rank of G will be the sparial dimension—this is the
smallest dimension consistent with the given distance matrix D.

Since two terms in equation (2) are rank 1 matrices, we learn that D has rank at most
d + 2. Note that our points could all be shified by a constant vecter without changing
squared distances in D). So D is an affine dimension (shift allowed) instead of a subspace
dimension,

Now we solve equation {2) for G = XTX. Place the first point at the origin:
a; = 0. Then every ||z; — @ ||? is just ||a;||%. The first column d; of D (which is given)
is exactly the same as diag(X T X} = diag(G) = ({|x1|]. [|z2][%, . . ., l2=]?).

diag(G) =dy and diag(G)1T =d,17. 3)

Now G comes from D. G will be positive semidefinite provided the distances in D obey
the triangle inequality (see Menger: Amer. J. Math. 53; Schoenberg: Annals Math. 36):

XTX =G =-1(D-1td] - di17). (4)

Once we know G we find X from X TX = G, Use elimination on G or use its eigenvalues
and eigenvectors. Both of those give a position matrix X with &, = 0:

If G = QAQT (eigenvalues and eigenvectors) then X can be vAQT
If G = UTU (elimination = Cholesky factorization) then X can be U {(upper triangular)

In both cases we can keep only rank((} rows in X. The other rows are all zero, coming
from zero eigenvalues ir A or from an early end to elimination.

IV.10. Distance Matrices ' 261

We remove zero rows from X to see the dimension d of the point set of z’s.
If the squared distances in D include measurement noise, set small eigenvalues to zero.

This is the classical MDS algorithm : MultiDimensional Scaling with first point 2; =0,

Centering X or Rotating o Match Anchor Points

Centering: Often we might prefer to place the cemtroid of the x’s at the origin.
The centroid of &y, . .., &, is just the average of those vectors:

Centroid c¢= 1(:::1 +tx,) = 1 X1 (5)
T

Just multiply any position matrix X by the matrix /—= 11T to put the centroid at 0.

Anchor points: Possibly a few of the positions have been selected in advance:
N anchor points y; in a matrix ¥'. Those positions may not agree with the computed x;.
So we choose the corresponding /N columns from the computed position matrix X,
and then find the rotation ¢ that moves those columns closest to Y,

The best orthogonal matrix) solves the Procrustes probiem in Section ITL9.
It is found from the singular value decomposition XyYT = UZVT, The orthogonal
matrix ¢ that moves the N positions in X y closest to the anchor pointsin Y is Q = VUT.

I. C. Gower, Properties of Euclidean and non-Euclidean distance matrices, Linear Algebra
and Its Applications 67 (1985) 81-97.

Problem Set IV.10

1 a1 — z2|]? = 1 and ||z — @3||? = 1 and |z, - x3]{2 = 6 will violate the triangle
inequality. Construct G and confirm that it is not positive semidefinite : no solution
XtwwG=XTX.

2 lley — ®2||2 = 9 and ||z2 — @a]|> = 16 and ||®; — x3||2 = 25 do satisfy the

triangle inequality 3 + 4 > 5. Construct (¢ and find poinss &1, 2, 23 that maich
these distances.

3 If all ||z; — x;4]|? = 1 for @1, @2, %3, &4, find G and then X . The points lie in Rd
for which dimension 4 7

e

\A |

V.2

V.3

V4

V.5

V.6

Part V
Probability and Statistics

Mean, Variance, and Probability

Probability Distributions

Moments, Cumulants, and Inequalities of Statistics
Covariance Matrices and Joint Probabilities
Multivariate Gaussian and Weighted Least Squares

Markov Chains

Part V : Probability and Statistics

These subjects have jumped forward in importance. When an output is predicted, we need
its probability. When that output is measured, we need its statistics. Those computations
were restricted in the past to simple equations and small samples. Now we can solve
differential equations for probability distributions (master equations). We can compute the
statistics of large samples. This chapter aims at a basic understanding of these key ideas:

1 Mean m and variance o2 : Expected valuc and sample value
Probability distribution and cumulative distribution

Covariance matrix and joint probabilities

Normal (Gauvssian) distribution : single variable and multivariable
Standardized random variable (z — m)/c

The Central Limit Theorem

Binomial distribution and uniform distribution

Markov and Chebyshev inequalities (distance from mean)

L~ B TR B = T L R)

Weighted least squares and Kalman filter: T and its variance

Markov matrix and Markov chain

ot
]

263

264 Probablllty and Sta.tlstlcs

V.1 Mean, Variance, and Probability

We are starting with the three fundamental words of this chapter: mean, variance, and
probability. Let me give a rough explanation of their meaning before 1 write any formulas:

The mean is the average value or expected value

The variance o? measures the average squared distance from the mean m

The probabilities of n different cutcomes are positive numbers pq, . . ., p, adding to 1.
Certainly the mean is easy to understand. We will start there. But right away we have two
different situations that you have to keep straight. On the one hand, we may have the results

(sample values) from a completed trial. On the other hand, we may have the expected
results {expected values) from future trials. Let me give examples of both:

Sample values Five random freshmen have ages 18,17,18,19,17

Sample mean %(18 +174 18419417} =17.8

Probabilities The ages in a freshmen class are 17 (20%), 18 (50%), 19 (30%)

A random freshman has expected age E [x] = (0.2} 17 + (0.5) 18 + (0.3) 19 = 18.1

Both numbers 17.8 and 18.1 are correct averages. The sample mean starts with N samples

Z1,..., &y from a completed trial. Their mean is the average of the N observed samples :
Samplemean m = = —;r—(ml +xa+ -t aTn) (1)

The expected value of x starts with the probabilities p,,...,p, of the ages 1, ..., 2!
Expected value m = Efx] = p1ax; + pexz + - - + Pn®n. (2)

This is p - £. Notice that m = E[z] tells us what to expect, m = u tells us what we got.

A fair coin has probability pp = 4 of tails and py = £ of heads. Then E]z]=(3) 0+3(1).
The fraclion of heads in NV flips of the coin is the sample mean, expected to approach
E[z] = 7. By taking many samples (large N), the sample results will come close fo the

probabllltles The “Law of Large Numbers™ says that with probability 1, the sample mean
will converge to its expected value E[z] as the sample size N increases.

This does not mean that if we have seen more tails than heads, the next sample is likely
to be heads. The odds remain 50-50. The first 100 or 1000 flips do affect the sample mean.
But 1000 flips will not affect its limit—because you are dividing by N — oo,

V.1. Mean, Variance, and Probability ' ' 265

Variance (around the mean)

The variance o2 measures expected distance (squared) from the expected mean E[z]. .
The sample variance $2 measures actual distance (squared) from the actual sample mean.
The square root is the standard deviation o or 5. After an exam, | email 4 and § to the
class. I don’t know the expected mean and variance because I don’t know the probabilities
1 to prgo for each score. (After teaching for 50 years, [still have no idea what to expect.)

The deviation is always deviation from the mean—sample or expected. We are looking
for the size of the “spread” around the mean value r = m. Start with N samples.

Sample variance 5% = ! [(:r.:l - ’nr'i'.)2 +---+{2n — m)z] (3)
N-1
The sample ages ¢ =18,17,18, 19, 17 have mean m =17.8. That sample has variance 0.7 :
1 1
52 = I [(2P7 + (-8 + (22 + (1.2 + (—-8)] = 1(28) =07

The minus signs disappear when we compute squares. Please notice ! Statisticians divide
by N — 1 = 4 (and not N = 5) so that 52 is an unbiased estimate of ¢%. One degree of
freedom is already accounted for in the sample mean.
An important identity comes from splitting each {z — m)? into 2% — 2maz + m?:
sum of (x; — m)? = (sum of x?) — 2m(sum of z;) + {(sum of m?)
= (sum of z2) — 2Zm(Nm) + Nm’
sum of (x; — m)* = (sum of 27} — Nm?. @)

This is an equivalent way to find (7 — m)% + --- + (zx — m?) by adding =5 +--- +z%. *
To find the sample variance S?, divide this by N — 1.

Now start with probabilities p; (never negative !) instead of samples. We find expected
values instead of sample values. The variance 2 is the crucial number in statistics.

Variance o2 =E{(z — m)?| =pr(z1 —m)2 + - + pa(@n —m)2.| (&

We are squaring the distance from the expected value . = E[z]. We don’t have samples,
only expectations. We know prebabilities but we don’t know experimental outcomes.

Example 1 Find the variance o2 of the ages of college freshmen.

Solution The probabilities of ages x; = 17,18,19 were p; = 0.2 and 6.5 and 0.3.
The expected value was . =3 _ p;; = 18.1. The variance uses those same probabilities :

o2 = (0.2)(17 — 18.1)% + (0.5)}(18 — 18.1)% + (0.3)(19 - 18.1)?
= {0.2)(1.21) + (0.5)(0.01) + (0.3)(0.81) = 0.49.

The standard deviation is the square root & = O.7.
This measures the spread of 17, 18, 19 around E[x], weighted by probabilities 0.2, 0.5,0.3.

Equation (4) gives another way to compute the variance o2 :

o0 =E[2?] — (E[z))? = L pi ¥ — (L ps 7:)?

266 | Probability and Statistics

Continuous Probability Distributions

Up to now we have allowed for n possible outcomes ;. ..., x,. With ages 17, 18, 19,
we only had n = 3. If we measure age in days instead of years, there will be a thousand
possible ages (too many). Better to allow every number berween 17 and 20—a continuum
of possible ages. Then the probabilities p;, ps, ps for ages x;, x2, T3 have to move to a
probability distribution p(x) for a whole continuous range of ages 17 < z < 20.

The best way to explain probability distributions is to give you two examples. They
will be the uniform distribution and the normal distribution. The first (uniform) is easy.
The normal distribution is all-important.

Uniform distribution Suppose ages are uniformly distributed between 17.0 and 20.0.
All ages between those numbers are “equally likely”. Of course any one exact age has no
chance at all. There is zero probability that you will hit the exact number x = 17.1 or
z = 17 + /2. What you can teuthfully provide (assuming our uniform distribution) is
the chance F{z) that a random freshman has age less than x:

The chance of age less than z = 17is F(17) =0 2 < 17 won’t happen
The chance of age less than » = 20 is F'(20) = 1 2 < 20 will happen
The chance of age less than x is F(x) = %(:c —17) FgoesfromOtol

That formula F{z) = (e — 17) gives F = O at 2 = 17; then £ < 17 won’t happen.
It gives F'(z) = 1 at & = 20; then < 20 is sure. Between 17 and 20, the graph of the
cumulative distribution F(2) increases linearly for this uniform model. Let me draw
the graphs of F(z) and iis derivative p{x) = “probability density function”.

cumulative F'(x} = A “pdf” p(z) =
probability that a probability that a
sample is below @ sample is near x
F(z) = 3(z — 17) o= F

4 4 px) =

/ F=1 P=3
——t > — >
17 20 17 20

Figure V.1: F(z) is the cumulative distribution and its derivative p(z) = dF/dz is the
probability density function (pdf). For this uniform distribution, p(z) is constant
between 17 and 20. The total area under the graph of p(x) is the total probability F = 1.

You could say that p(z) dz is the probability of a sample falling in between x and
2 + dz. This is “infinitesimally true”: p(x)dz is F(z + dz} — F(z). Here is the full
connection of F'{z) to p{z):

b
F =integralof p Probabilityof g <z < b= fp(a:) dz = F(b) — F(a) (&

F(b) is the probability of « < b. I subtract F'{a) to keep = > a. Thatleavesa < z < b.

V.L. Mean, Variance, and Probability 267

Mean and Variance of p(x)

What are the mean m and variance ¢ for a probability distribution ? Previously we added .
P:i@; to get the mean (expected value). With a continuous distribution we integrate op(x) :

20

Mean m = E[z] = /::cp(:;r:) de = / (x) (%) dz = 18.5

=17

For this uniform distribution, the mean 1 is halfway between 17 and 20. Then the proba-
bility of a random value x below this halfway point 7 = 18.5 is F{m} = -:1;.

In MATLAB, £ = rand(1) chooses a random number uniformly between 0 and 1.
Then the expected mean is m = % The interval from O to x has probability F{z) = 2.
The interval below the mean m always has probability F(m) = 3.

The variance is the average squared distance to the mean. With N outcomes, o2 is the
sum of p;{x; — m)?. For a continuous random variable x, the sum changes to an integral.

Variance o =E[(z —m)?] = /'p(:.-:) (x — m)® dz (7

When ages are uniform between 17 < & < 20, the integral can shiftto) <z < 3:

20 3 =3
i 1 1 2 3
2_ f i 2 f Y 1R = (g 1 5)3 _Zz 3_ 32
c —fg(a: 18.5)° dz fS(:c 1.5)* dz 9(.7: 1.5) 9(1.5) 1
17 0 z=0

That is a typical example, and here is the complete picture for a uniform p(z), 0 to a.

Uniform distributionfor 0 < 2 < a

1
Density p(z) = — Cumulative F(x) = z
a a

a 21 ay? a
Meanm = _ halfway Variance g?={ - (:s - —) dr = — (8)
0

The mean is a multiple of a, the variance is a multiple of a®. For a = 3, ¢% =

For one random number between 0 and 1 (mean §) the variance is 02 = .

[y

2
12
ﬁ.

Normal Distribution : Bell-shaped Curve

The normal distribution is also called the “Gaussian” distribution. It is the most important
of all probability density functions p{z). The reason for its overwhelming importance
comes from repeating an experiment and averaging the outcomes. The experiments have
their own distribution {like heads and tails). The average approaches a normal distribution.

268 Probability and Statistics

Central Limit Theorem (informal) The average of N samples of “any” probability
distribution approaches a normal distribution as N — oo (proved in Section V.3),

Start with the “standard normal distribution™, It is symmetric around = 0, s0 its mean
value is m = 0. It is chosen to have a standard variance o2 = 1. It is called N (0, 1).

Standard normal distribution p(z) = e /2,)]

V2

The graph of p(x) is the bell-shaped carve in Figure V.2. The standard facts are

Total probability = 1 / plx)dr = —\/12:?1_ / e~ /2 gy =1
Mean Ez] = 0 m:L/a:e_I:;mdx:O

27

17 I
Variance E[z%] = 1 o? = T /(r -0y " 2dr =1

The zero mean was easy because we are integrating an odd function. Changing x to —z
shows that “integral = — integral”. So that integral must be m = 0,

The other two integrals apply the idea in Problem 12 to reach 1. Figure V.2 shows
a graph of p(x) for the normal distribution N (0, ¢) and also its cumulative distribution
F{z) = integral of p(x). From the symmetry of p{x) you see mean = zero. From F(z)
you see a very important practical approximation for optnion polling :

2
The probability that a random sample falls between —g and o is F(o) — F{—0o) = 3

4 a -
This is because [p{z}dzequals | p(a)dz — [p(z)dx = F(o) — F(~0o).
- — oD -

Similarty, the probability that a random z lies between —20 and 2o (“less than
two standard deviations from the mean”) is F(20) — F{-20) = 0.95. If you have an
expertmental result further than 2¢ from the mean, it is fairly sure to be not aceidental:
chance = 0.05. Drug tests may look for a tighter confirmation, like probability 0.00%,
Searching for the Higgs boson used a hyper-strict teét of 5o deviation from pure accident.

The normal distribution with any mean m and standard deviation o comes by shifting
and stretching the standard N (0, 1). Shift ¢ o x — m. Stretchz — mto (2 — m)/o.

Gaussian density p(x) —(z — m)2/202 | (10)
e

o p(z) =
Normal distribution N(m, o) o2

V.J. Mean, Variance, and Probability ' _ 269

The integral of p(z) is F'(x)—the probability that a random sample will fall below x.
The differential p{z)dz = F(x + dz)} — F(z) is the probability that a random sample
will fall between z and ¢ + dz. There is no simple formula to integrate e~ /2, 5o’
this cumulative distribution F{z) is computed and tabulated very carefully.

RIEY
84, “’]
p(z) F@)=]pwnm

i —oo

F(0) ==

0 =3
V16
.02
-2 —cF 0 a 27 —2a — 0 o 27

Figure V.2: The standard normal distribution p (z) has meanm = 0and o = 1.

N Coin Flips and NV — oo

1

Example 2 Suppose « is 1 or —1 with equal probabilities p, = p_, = 3.

The mean value is m = 3(1) + 3(—1} = 0. The variance is 2 = J(1)> + 3(—1)* = L. 4

The key question is the average Ay = (z; + -+ + 2n}/N. The independent x;
are 1 and we are dividing their sum by N. The expected mean of Ay is still zero.
The law of large numbers says that this sample average approaches zero with probability 1.
How fast does Ay approach zero? What is its variance 0'12\, ?

2 2 2 2 1

9 O g o a

By linearity o —i—»»--l———:N—:F since o2 =1. (11)

NSt vz = Nz

Example 3 Changeoutputsfromlor—1toz = lorz = 0. Keep p1 = po = %

The new mean valuge m = % falls halfway between 0 and 1. The variance movesto o2 = ‘—]i :

1 1 1 , 1 1% 1 1?1

1+‘.,+L___1_—0-2 LAY
4N? 4N? 4N T N

This & is half the size of o in Example 2. This must be correct because the new range
0 to 1 is half as long as —1 to 1. Examples 2-3 are showing a law of linearity.

1 .
The average 4 now has mean 5 and variance

270 _Probability and Statistics _

The new 0 — 1 variable znew is 3 Tg)q + 3- So the mean m is increased to 2 and

the variance is multiplied by () 2. A shift changes m and the rescaling changes o2.

Linearity pew = 0Zoa + b has Migew = @maa + b and 024w = a%02y3|(13)

Here are the resulis from three numerical tests: random 0 or T averaged over V trials.
[48 1’s from N = 100] (5035 1's from N = 10000} {19967 1’s from N = 40000).

The standardized X = (z — m)/c = (Ax — 1) / 2v/N was [—.40] [.70] [—.33].

The Central Limit Theorem says that the average of many coin flips will approach a
normal distribution. Let us begin to see how that happens: binomial approaches normal.

The “binomial” probabilities pq, . . . , 7y count the number of heads in NV coin fAips.
For each (fair) flip, the probability of heads is . For N = 3 flips, the probability

of heads all three times is (1)° = L. The probability of heads twice and tails once is

%. from three sequences HHT and HTH and THH. These numbers -;— and % are pieces of
(% + %]3 = % + % + g + % = 1. The average number of heads in 3 flips is 1.5.

Mean m = (3 heads)% +(2 hcads}g + (1 head)g +0= g + g + g = 1.5 heads
With N flips, Example 3 (or common sense) gives amean of m = X x;p; = %N heads.

The variance o2 is based on the squared distance from this mean N/2. With N = 3
the variance is ¢ = 2 (which is N/4). To find % we add (z; - m)? p; with m = 1.5:

1 3 3 1 9+3+3+9 3
2 _(3_ 1522 1Rl -1522 S - S e B A A
a?=(3 15)8+(2 15)8+(15)8+(O 15)8 o 1

For any N, the variance for a binomial distribution is 0%, = N/4. Then oy = VN/2.

Figure V.3 shows how the probabilities of 0, 1, 2, 3, 4 heads in NV = 4 flips come close
to a bell-shaped Gaussian. That Gaussian is centered at the mean value m = N/2 = 2,
To reach the standard Gaussian (mean (and variance 1) we shift and rescale that graph.
If z is the number of beads in N flips—the average of N zero-one outcomes—then T 1s
shifted by its mean m = N/2 and rescaled by o = /N /2 to produce the standard X

. r—m x — %N
Shifted and scaled X = =

e VN/2

Subtracting m is “centering” or “detrending”. The mean of X is zero.

(W=4 has X =a — 2)

Dividing by & is “normalizing” or “standardizing”. The variance of X is 1,

V.l Mean, Variance, and Probability e 27

It is fun to see the Central Limit Theorem giving the right answer at the center point
X = 0. At that point, the factor e~ /2 equals 1. We know that the variance for N coin
flips is 6% = N/4. The center of the bell-shaped curve has beight 1/v2r0? = \/2/Nx.

What is the height at the center of the coin-flip distribution pp to py (the binomial
distribution) ? For NV = 4, the probabilities for 0, 1, 2, 3, 4 heads come from (1 + 1)*.

6 11Nt 1 4 4 1
Cent: bability — ~ 4+ = -t — 4+ — 4+ — 4+ — =1.
enerproallyle (2+2) -+ —+ -+ +

Pnj2 = 2/7N ;79

plz)=1 / N
uniform ' o binomial
, approaches \ A heads
’ Gaussian \ N flips
N

area=1 1 1 ’
—_— A]
| s 2N
-3 0 3 M=0 N/2 N

Figure V.3: The probabilities p = (1,4, 6,4, 1)/16 for the number of heads in 4 flips.
These p; approach a Gaussian distribution with variance ¢ = N/4 centered at m = N/2.
For X, the Central Limit Theorem gives convergence to the normal distribution N(0,1).

The binomial theorem in Problem 8 tells us the center probability py, for any even N:

i
i

i NI

- N N . .
The center probability (E' heads, - talls) is Q_NW

For N = 4, those factorials produce 4!/212! = 24/4 = 6. For large N, Siirling’s formula
V2aN{N/e)V is a close approximation to N'!. Use this formula for NV and twice for N/2:

Limit of coin-flip L VZIN(N/fe)¥ V21
Center probability PN/2 ™ 5N aN(N/2e}¥ VaN 2rc

(14)

The last step used the variance o2 = N/4 for coin-tossing. The result 1/+/27¢ matches
the center value (above) for the Gaussian. The Central Limit Theorem is true :

The centered binomial distribution approaches the normal distribution p{x) as N — oa.

272 S Probability and Statistics

Monte Carlo Estimation Methods

Scientific computing has to work with errors in the data. Financial computing has to work
with unsure numbers and predictions. So much of applied mathematics meets this problem :
accepting uncertainty in the inputs and estimating the variance in the outputs.

How to estimate that variance? Often probability distributions p(x) are not known,
What we can do is to try different inputs b and compute the outputs & and take an average.
This is the simplest form of a Monte Carlo method (named after the gambling palace
on the Riviera, where I once saw a fight about whether the bet was placed in time).
Monte Carlo approximates an expected value E[z] by a sample average (zy+-- -+an)/N.

Please understand that every x, can be expensive to compute. We are not flipping coins,
Each sample comes from a set of data by. Monte Carlo randomly chooses this data by,
it computes the outputs i, and then it averages those r’s. Decent accuracy for E[z]
often requires many samples b and huge computing cost. The error in approximating E[x]
by (1 + - + z§)/N is usually of order 1/v/N. Slow improvement as N increases.

That 1 /\/N estimate came for coin flips in equation (11). Averaging /N independent
samples xy, of variance o2 reduces the variance to o2 /N.

“Quasi-Monte Carlo” can sometimes reduce this variance to o2 /N2 : a big difference !
The inputs by are selected very carefully—not just randomly. This QMC approach is
surveyed in the journal Acta Numerica 2013. The newer idea of “Multilevel Monte Carlo”
is outlined by Michael Giles in Acta Numerica 2015. Here is how it works.

Suppose it is simpler to simulate another variable (b} which is close to x(b). Then
use NV computations of y(by) and only N* < N computations of z(by) to estimate E{z].

1 X 1 M
2-level Monte Carlo E[zx] = ~ > ylbe) + ~ 3 [e(be) — y(be)]
i 1

The idea is that z — y has a smaller variance ¢~ than the original x. Therefore N~ can
be smaller than N, with the same accuracy for E[z]. We do N cheap simulations to find
the i’s. Those cost ' each. We only do N* expensive simulations involving x’s. Those
cost O™ each. The total computing cost is NC + N*C*,

Calculus minimizes the overall variance for a fixed total cost. The optimal ratioc N* /N
is /C/C* o* Jo. Three-level Monte Carlo would simulate #, ¢, and z:

L | D
Elz] = & > z(bi) + T > [wlbe) — z(be)] + e S [e(br) — y(br)]-
1 1 1
Giles optimizes N, N*, N**, ... to keep E[z] < fixed Eg, and provides a MATLAB code.

V.1. Mean, Variance, and Probability .. __ . . 273

Review : Three Formulas for the Mean and the Variance

The formulas for m and 5% are the starting point for all of probability and statistics. There
are three different cases to keep straight : sample values X;, expected values (diserete p;),
expected values (continuous p(x)). Here are the mean mm and the variance 52 or o2

Xt Xy o (X1 —m)®+ -+ (X —m)?

Samples X, to X m ¥ N1

Sum of outputs z;
times probabilities p;

n 1]

m=3 pit; o =% pilzi —m)°
1 1

Integral of outputs =

= 2 _ — 2 d
with probability density © Joplz)de o? = [(z —m)®p(z) dz

Problem Set V.1

1 The previous table has no probabilities p on line 1. How can these formulas be
parallel ? Answer: We expect a fraction p; of the samples to be X = x;. If this is
exactly true, X = z; is repeated _ times. Then lines 1 and 2 give the same m.

When we work with samples, we just include each output X as often as it comes.
We get the “empirical” mean (line 1) instead of the expected mean.

2 Add 7 to every output x. What happens to the mean and the variance ? What are the
new sample mean, the new expected mean, and the new variance ?

3 We know: % of all integers are divisible by 3 and % of integers are divisible by 7.
What fraction of integers will be divisible by 3 or 7 or both ?

4 Suppose you sample from the numbers 1 to 1000 with equal probabilities 1/1000.
What are the probabilities pp to pg that the last digit of your sample is 0,...,97
What is the expected mean 1 of that last digit? What is its variance o2 7

5 Sample again from 1 to 1000 but look at the last digit of the sample squared. That
square could end with = 0, 1,4, 5, 6, or 9. What are the probabilities pg, p1, p4, ps,
Pg, po? What are the (expected) mean m and variance o2 of that number x?

6 (a little tricky) Sample again from 1 to 1000 with equal probabilities and let x be the
Jfirst digit (x = 1 if the number is 15). What are the probabilities p; to pg (adding
to Vofz =1,...,%9? What are the mean and variance of «?

7 Suppose you have N = 4 samples 157,312, 696,602 in Problem 5. What are the
first digits #1"to x4 of the squares? What is the sample mean ¢ ? What is the sample
variance S ? Remember to dividleby N — 1 = 3and not N = 4,

10

11

12

13

274

Equation (4) gave a second equivalent form for S (the variance using samples):

52 = sum of {(z; —m)? = [(sum of £?) — Nm?| .

N-1 N-1
Verify the matching identity for the expected variance o2 (using m = L p; ;)
o2 = sumof p; (x: — m)® = (sum of p; ®7) — m?2.

If all 24 samples from a population produce the same age z = 20, what are the
sample mean 1 and the sample variance $2 ? What if z = 20 or 21, 12 times each ?

Computer experiment : Find the average A,gp0000 of @ million random 0-1 samples !
What is your value of the standardized variable X = (Ay — 1) /2V/N?

The probability p; to get ¢ heads in V coin flips is the binomial number b, = (I:)
divided by 2%¥. The b; add to (1 + 1) = 2% so the probabilities p; add to 1.

}\r
1 1 1 . Nl
pu+-~+pn—(§+§) = g lbo e+ by with bi = o
24 24 24
4leadsto by 2T T B 6, pi= 16(’ ,6,4,1)

Notice b; = by _;. Problem: Confirm that the mean m = Opg+ - - -+Npn equals ﬁ.

For any function f(z) the expected value is E[f] = >_p, f(z:) or [p(x) f(z) dz
{discrete or continuous probability). The function can be z or (z — m)2 or 3:2.

If the mean is E[z] = m and the variance is E[(x — m)?] = o what is E[22%]?
Show that the standard normal distribution p{x) has total probability [p(z) dz = 1
as required. A famous trick multiplies [p(z)dz by [p(y)dy and computes the

integral over all z and all ¥ (—oo to co). The trick is to replace dx dy in that double
integral by r dr d# (polar coordinates with =2 + y° = r?). Explain each step :

o0 o
2?T/p($)d$ /p(y)dyz/] ~(e*+y Jﬁdmdy—/ / 2 drdf = 2.

-0 —00 —o0 - 4=0r=0

. _ __Probability and Sratistics

V.2. Probability Distributions _ 275

V.2 Probability Distributions

The applications of probability begin with the numbers po,p1,p2... that give the
probability of each possible outcome. For continuous probability we have a density
function p(z). The total probability is atways >~ p; = Lor [p(x)de = 1.

There are dozens of famous and useful possibilities for p. 'We have chosen seven
that are specially important: two with discrete probabilities pg, p1,p2 ... and five with
continuous probabilities p(zx) or p(z, ¥).

Binomial Tossing a coin n times

Poisson Rare events

Exponential Forgetting the past

Gaussian = Normal Averages of many tries
Log-normal Logarithm has normal distribution
Chi-squared Distance squared in n dimensions
Multivariable Gaussian Probabilities for a vector (in V.5)

Each of those has a mean, and a variance around that mean. You will want to know those
fundamental numbers 1 and . On this topic, Wikipedia is organized in a useful way—
with graphs of p(x) and its integral ®(z) (the cumulative distribution = total probability
up to x). There is a systematic list of other properties of those seven special probability
distributions, and others too. 3

1. Binomial distribution

For each trial the outcome is 1 or 0 (success or failure, heads or tails). The probability of

success is p1 1 = p. The probability of failureis py; =1 —p =¢. Afaircoinhasp = %

The probabilities of 0, 1, 2 successes in = 2 trials are

po2={(1-p2 p2=2p{1-p) pa2=p (1)

The probability of exactly k successes in n trials involves the binornial coeffigient (’;) :

7 e . n n! '
Den = (k) Pk(l - p) k with (k‘) = m and 0!l=1 (2)

For n = 2 those binomial coefficients are 1, 2, 1 as shown in equation (1)

For a fair coin, k = 0, 1, 2 successes in n=2 trials have pgz = £ and p; o =15 and pa 2 =13.

276 _ _ Probability and Statistics __

Mean value in one trial g = (O)p + (D)p1 = (1 —p)+ (1)p lu =E[zl =p {(3)
Binomial distribution Mean value g, in n trialsis np Pn = np 4
Variance in one trial o2 =E[(X — 1)4] = (1 —p)(0 — p)? + p(1 — p)*

=(1-pip’ +p(1-p)’=p(1-p){p+1-p)|e® = p(1 —p)|(5)
n : ok =np(l- p)i(6)

Binomial distribution Variance ¢ in n trialsis no

The answers for n independent trials came quickly : Multiply by n. The same answers
come more stowly from the binomial probabilities py ., in equation (2) for & successes.
The sum of kps r is still gy, = np and the sum of (k ~ p,)? P o is 02 = np(1 — p).

2. Poisson Distribution

The Poisson distribution is fascinating, because there are different ways to approach it.
One way is to connect it directly to the binomial distribution (probability p of success in
each trial and py, » for k successes in n trials). Then Poisson explains this limiting situation
of rare events but many trials with A\ successes:

p — 0 The success probability p is small for each trial (going to zero)
n —+ oo The number of trials n is large (going to infinity)
np = A The average (expected) number of successes in » trials is A = np = constant

What are the probabilities of 0, 1, 2 successes in n trials when p — 0 and np = A?

I AN
n failures, 0 successes Probability pp,, = (1 —p)* = (1 - T_l) —+e A
. . A A\ s

7t — 1 failures, 1 success Probability p; , = np{(1 —p)*~ ' = 7 1- ~] - Ae

1
n — 2 failures, 2 successes Probability p; ,, = En(n ~ 1) p*(l-p)~2

1(A% -2 AMNT1

_ 1) I—=} — =A%
2 (1-p)? n 2

Al every step we applied the same key facts from a calculus course

(1+l) —e (1+i) - et (l—i) — e A
n n . n

V.2. Probability Distributions 277

For k successes in n trials with probability p = A/n each time, the binomial probability
Pr,k approaches the Poisson probability P, = Xre=*/k!

)\k
Poisson probability P, = 1 e=> 7

The sum of those Poisson probabilities Py is verified to equal 1

A28
PBho+P+P+ Pt ZE_A(I-l-/\-!-a-l-g-l-“‘) =g rer =1.

Now comes the calculation of the Poisson mean () and the variance {also A).

The mean of the Poisson distribution is A. The slow way to find it is
PLEND &
pp=0P0+1P1+2P2+“’=€_)\ (0+/\+F+;+"') =€"’\()\€A)=A

Fast way: Poisson mean g p = limit of binomial mean np. So gp = A

Variance o2, = limit of binomial variance np(l — p}. Se o5 = A

Applications of Poisson

We associate Poisson with rare events (they have p —). But we wait a long time,
or we include a large population, to produce a decent chance that one or more events =
will actually occur. Poisson is not for the probability that you will be struck by lightning :
say one in a million, over your lifetime. It is for the probability that someone in a city of
100, 000 will be struck. In this case A = prn = 100, 000/1,000, 000 = %. This is the
expected number of lightning strikes.

The Poisson distribution is often applied to counting rare events over a long time :

The number of big meteors striking the Earth
The number of campers attacked by mountain lions

The number of failures of big banks

Poisson assumes independent events! Those examples might not fit. One of the most
difficult aspects of applied probability is to estimate the dependence of one event on
other events. One bank failure may mean more bank failures.

The assumption iid means independent and identically distributed—not always true.

278 _ . Probability and Statistics

3. Exponential distribution

The exponential distribution is continucus (not discrete). It describes the waiting time in a
Poisson process. How long until lightning strikes your city ? The key assumption is:

The wairing time is independent of the time vou have already waited.

The future is independent of the past. Is this true for a television set to fail 7 It is true
for a compwter to fail ? If failure depends on a random disaster, the waiting time has
exponential distribution. The failure rate X is constant. If failure comes from slow decay,
the independence requirement will not hold.

The probability density function (pdf) for an exponential distribution is
p(x) = Ae=*® for x>0 ®)

The cumulative distribution (probability of an event before time ¢) is the
integral of i :

4
—Ax —ax)T=-—t -
F(t)z/o)\e)‘da;:[—e*]ﬂo =1—e At (9)
The mean of p{x} is the average waiting time :
(=] 0 1
®= / zp(z)dr 2/ zhe™Mdy = < (10}
0 0 A
The variance of p(z) is the expected value of (z —)
oo 1\? 1
2 _ _ = =iz _ .
o _/0 (3: A) Ae d:r—,\2 (11}

That equation for the mean g = 1/ is not a surprise. If tables at a restaurant open up at an
average rate of 3 tables per hour (night and day) then the average wait (expected waiting
time) is 20 minutes.

1
Note that this number 3 = X is often used instead of X itself.
e o 1 _,
Exponential distribution p(x) = 56_ /8 Mean p= 3. (12)

The exponential distribution has no memory_: The probability of waiting at least
y hours more for a table is unfortunately not affected by already having waited z hours:

No memory Prob{t > ® + y giventhat ¢ > x} =Prob{¢t > y}. (13

This reduces to a simple staternent about integrals of p(¢) = Ae=**:

o0 o0 o0
/ Ae™ M dt // Ae™M dt =/ de Mt s e AW fomAT — ooy,
z Ty x y

V.2. Probability Distributions 279

Another remarkable fact. What if your phone and computer have failure rates A, and
AcT Assume that their failures are independent. What is the probability distribution p{#mi)
of the time £y, of the first failure ? Answer: This distribution is exponential with failure
rate Ay 4 Ac. Look at survival instead of failure in equation (9), and multiply :

Prob{tge > t} = [Prob{tphone > t}] [Prob{fcomputer > t}] = e »f @72t = = (Ap+Aclt,

If failures only occur at integer times £ = 0,1, 2, 3, . . . then the exponential distribution
(which has continuous time) is replaced by the geometric distribution {discrete time).

The probability of failure at time n is p, = (1 — a}a™. (14)

The factor 1 ~ o is included so that pg + py + - = (L — @) + (. —a?)} + --- = 1. The
total probability is 1.

4. Normal Distribution (Gaussian Distribution)

The normal distribution is right at the center of probability theory. It is produced when we
average the results from another distribution. At the same time it leads to new distributions
that we will see next: log-normal and multivariate normal and “chi-squared”.

Nice formulas are often possible, even though the integral of e~*" is not an elementary
function. That integral (from 0 to z} cannot be expressed in terms of exponentials and
powers of x. The saving grace is that integrats from —oo to +o0 do have simple forms.
The integral of e~2°/2 is v/27, so we divide by that number.

—a:n/i

Mean 0, variance 1 The standard normal distribution N{0, 1) has p{x) = e

Mean p, variance o> The distribution N(ps, 02) has p(z) = e~ (==1)?/25% (15)

1
VZro
These distributions are symmetric around the point ¢ = . The function p{x) increases up
to that point and decreases for z > p. The second derivative is negative betweenr = p—o
and g + o. Those are points of inflection where d2p/dz? = 0. Outside that interval the
function is convex (d*p/dx? > 0). 67% of the area under p(x) is in that interval. So the
probability of |z — p| < ¢ is 0.67.

The probability of jz — p| < 20 is 95% (z is less than 2 standard deviations from its
mean value p). This is the famous bell-shaped curve (Figure V.2). It is not heavy-tailed.

—az’tbae g g probabﬂlty distribution, what are & and o 7

Answer Complete that exponent —ax? + bz + cto a square —a (z — %) plus acop-

stant. In this form we identify the mean g as b/2a. The number a outside the parentheses
is 1/(20?). The role of the constant ¢ is to make f p(z) dz = 1.
Normal distributions are symmetric around their center point 2 = u. So they are not
suitable for variables x that are never negative. A log-normal distribution might succeed.
The cumulative distribution is the integral from —oco to z of p{z). When p{x) is
standard normal (z = 0 and 02 = 1), its integral from —oc is often written ®(xz) :

Question If p{x) =&

280 _ .. Probability and Statistics

b
Cumulative distribution ®(z) = —\/12_— / et 12 g (16)
TJ—o0

This is very closely related to the well-tabulated “error function” erf(x) :
Error function erf(z) 2 /I —<*q 17
rror fu xy=—{ ¢ 5
VT Jo

We can change that variable s to £/ /2, and add % for the integral from —oo to 0. Then

V2

For the normal distribution N(j, &) just change x to {z — u)/a.
The next pages will describe two more probability distributions—important in their
own right—that come directly from this one-variable normal distribution p{x} :

1
Integral of p(z) = ®(x) = 5 {1 + erf ()} = shifted and scaled error function

1. When z has a normal distribution, the exponential ¢® has a log-normal distribution.
2. If x has the standard N{Q, 1) distribution, then x* has a chi-squared distribution.

If &q,...,x, are independent normals with mean zero and variance 1, then

3. Their sum x; + -+ + &, has a normal distribution with mean zero and variance n
4. 72+ - -- + 72 has the chi-squared distribution xi with n degrees of freedom.

Ratios of sums of squares have the F-distribution (not studied here).
What we want most is to allow random variables that are not independent. In this
situation we will have covariances as well as variances. The mean values are jy,. .., fin :

Variances = expected values of (x; — p;)>

Covariances = expected values of (z; — p;)(x; — 15)

Those numbers fill the variance-covariance matrix €' in Section V.5. When the variables
Z1,..., %y are independent, the covariances are zero and C is diagonal. When the vari-
ables are not independent, like stocks and bonds, € is symmetric and positive definite
{in an extreme case, semidefinite). Then the joint distribution of Gaussian variables
L1, X2, ... 5 Ty 1S “multivariate Gaussian” ;

1
p(w)=p(m1,---,mn)=(m)nme

For n = 1, the 1 by 1 covariance matrix is.C = [0?] and p(z) is the usual Gaussian.

—(®—py e - pt) (18)

V.2. Probability Distributions 281

5. Log-normal Distribution

The distribution of z is log-normal when the distribution of ¥ = logx is normal. This
requires & > 0. The log-normal distribution only enters for pesitive random variables.

The normal distribution appears (from the cenwral limit theorem) when you average
many independent samples of a random variable y. You center and rescale by {(z — u),
to approach the standard normal N(0,1) with ¢ = 0 and 0> = 1. Similarly the log-
normal distribution appears when you take the product of many positive sample values.
The arithmetic mean for normal compares with the geometric mean for log-normal.

To see the formula for p(x), start with a normal distribution for y = logx. The total
probability must be 1. Change variables and remember that dy = dz/z. This brings a
factor 1/ into the log-normal distribution p(z) :

bt 1 2 2 w0 1 2 2 o2
- o~ ly—n)?/20 4 :/ o~ (logz—1)?/20 dw:/ o) dz.
/-oo oy 2m v 0 oV2mE 0 ple) 9
(19)

The applications of log-normal distributions always involve the requirement that z > 0.

6. Chi-squared Distribution

Start with this gquestion: If x has a standard normal distribution with ¢ = 0 and g2 =1,
what is the probability distribution of 5 = 22 ? This will be the x? distribution of s,
where the Greek letter chi and the subscript 1 tell us that we are squaring one standard
normal variable x. Certainly s = 22 > 0.

We need the probability that s is between y and y + dy. This happens two ways.

Either /5 is between V¥ and /y + dy or /s is between —/y + dy and -7
Those are equally likely since the standard normal is symmetric across zero.

And y +dy = /5 + dy/2,/7 -+ terms in (dy)*:

d’y 2 _ 2 dy
Prob{y <s<y+d :2Pmb{ <5< +—}=—e (Vi iz 2y
E vt dy) vy vy 2y Van 2./

This answers our first question. The distribution of probabilities for s = y? is p;(s) :

1
X2 distribution py(s) = W e 32, >0 . (20)
m

Note: We mention that the cumulative distribution for s = x° connects directly to the
standard normal cumulative distribution ®(z) in equation (16):

Prob{s < y} = Prob{—y/y < z < /y} = &(\/y) — (1 — ®{/y}).

By definition the derivative at i = s is the x? probability distribution, agreeing with (20):

New approach _ j_ _ Y1 e
Same formula nls) = dy [2@(\/@ - 1] == e

282 Probability and Statistics

Move now to the sum of two squares. This is s2 = z2 + @2. The standard normal
vaniables x; and zs are independent. We have to look at all combinations 3:% = s and
x3 = sy ~ s that add to s. The probability distribution p for s; is the integral over all
those combinations :

#2
pa(s2) = f p1(s) p1(s2 — 8) ds = “convolution of p; with p;”. (21)
0
Then formula (20) for p1(s) leads to (22) for py(sg)—it is an exponential distribution !
1
Chi-squared with n = 2 is exponential : s; = 27 + 22 p2(s2) = 56_82/2 (22)

This convolution gives a successful approach to xZ for every n = 3,4, 5, . .. The vari-
able s, is the sum of squares of n independent standard normals. We can think of s, as
81 + 851 = one square plus n — 1 squares. Then use the same idea as in equation (21):

&n
Pulsn) = / 01(8) pr—1(8n — 8} ds = “convolution of p; withp,,_1"

h}
This integral p,, has the form CsP/? ¢=50/2 The number ' must make the total prob-
ability [pnds, equal to 1. Integration by parts will steadily reduce the exponent (n — 2) /2
until we reach —1/2 or 0. Those are the two cases we have completed (for » = 1 and
n = 2). So we know how to find C —and we have the x?2 probability distribution for

_ 2 2.

Sp =]+ -+ Ty

2
Sp = = sum of squares _ _
ﬂ'of nxs?andard norglals Pn(sn) = ng‘ D/2e=5n/2

23)
Integral of 1

C = =
pnmustbe 1 27/2I(n/2) 27/2 (% - 1)!

The Gamma function I'(n) = (n—1)I'(n—1)is (r—1)!and forn = & thisis ' () = /7.

Typical Application of x2

We manufacture something. Then we test it. We have sample values x,,...,x, of its
thickness. We compute the average thickness T and the sample variance 52 :

mn

__1 1\ —
JS:;Z?C:' and Szzn_lg:(m,-—:c)z.

1

52 is a sum of squares with n — 1 degrees of freedom. One degree of freedom was used
by the mean T. Forn = L, Tisz and § = 0. Forn = 2, Tis 4 (x; +x2) and
8% = l(z; —x,)°. S? has the probability distribution p,_; for x2_, given by (23).

V2. Probability Distributions 283

Problem Set V.2
1 — 22242 1 —22/202

1 If p1(x) = N e 1 and pa(z} = Ton e z show that pipe
oy T T2

is also a normal distribution: mean = zero and variance = o2

= o{o3/(0} + 0f).
The product of Gaussians is Gaussian. If p; and p2 have means m; and m» then
p1p2 will have mean (my 02 + moa?) /(02 + o).

2 Important: The convolution of those Gaussians p1 () and p,{x) is also Gaussian:

o 1

(p1 * p2) («”'3):/ p(E) pelz —t)dt =

= om3/20i+ed)
oo 2n{ci + o3)

A good proof takes Fourier transforms F and uses the convolution theorem :

Flpy(x)* po(z)] = F(p(z)) Flpalz)).

This is a success because the transforms F(p;(x)) are multiples of exp (—o7k?/2).
Multiplying those wransforms gives a product as in Preblem 1. Thar product involves
O'% + a%. Then the inverse Fourier transform produces p; * pz as another Gaussian,

Question What is the variance o2 for the convolution of » identical Gaussians N(0, o) 7

3 Verify that the convolution P(z) = /p(t)p(:c —tjdt has fP(x)da: =1:

/:_m 2)de = // () pla ~ 8 dt = f/ plz—tydt= .

4 Explain why the probability distribution P{z) for the sum of two random variables
is the convolution P = p; *py of their separate probability distributions.
An example comes from rolling two dice and adding the results:

111111 111111
Probabilities for sum (E,a,g,g,g,g) (6’6’6’6’6’6)‘_

1 2 3 4 5 6 6 4 3 2 1
Probabilities of 2to 12 (%‘ﬁ'%‘ﬁﬁ*'ﬁ’%’%‘%’%’éﬁ’%)

284 Probability and Statistics

V.3 Moments, Cumulants, and Inequalities of Statistics

Suppose we know the average value (the mean X = E[X]) of a random variable X.
What we want to know is something about its probabilities: the probability that X is
greater than or equal to a. A larger cutoff @ will make that probability smaller.

Markov found a simple bound X /a on the probability that X > a, for any nonnega-
tive random variable X. As an example we could choose @ = 2X. Then Markov says :
A random sample will be larger than or equal to 2X with probability not greater than :l,

Markov’s inequality assumes that X > 0 : no samples are negative
E[X] meanofX X
a a e

Then the probability of X (s) > a is at most

An example will show why Markov’s inequality is true (and what it means). Suppose
the numbers 0,1,2,... (all nonnegative!) appear with probabilities po,p1,p2,... And
suppose that this distribution has mean E[X] = X =1:

Meanvalue X =0py + 1py +2py + 3ps + 4dpg + 5ps + - = L. 5}

Then Markov's inequality with a = 3 says that the probability of X > 3 is at most % :

1
Markov Ps+pa+pst+- 3 2
Proof of Markov: Write equation (1) in a more revealing way :
Opo+1p1 +2p2+3(Pa+pa+ps + -) +ps+2p5+--- =L (3)

Every term in equation (3} is greater than or equal to zero. Therefore the bold term could
not be larger than 1:

3{ps + pa + ps + -+) £ 1 which is Markov’s inequality (2). 4)
Equation (3) tells us even more. When could p3 + p4 + ps + - -+ be equal to %?
Now the bold term in equation (3) is equal to 1, so every other term must be zero :
p =0 2pp =10 pa=0 2ps=0... _
This leaves only pg and ps. So it forces p; = % and pg = % because the p’s must add to 1.

Conclusions First, Markov is correct. Second, if there is equality and Prob{z > a} is

equal to E[z]/a, then all probabilities are actually zero except for these two :
Prob{x = a} = % and Prob{z =0} =1- _EE‘"_]_
a

Now we give a formal proof, allowing continuous as well as discrete probabilities.

V.3. Moments, Cumulants, and Inequalities of Statistics 285

The proof of Markov’s inequality takes four guick steps.
X =E[X]= Y X(s)times (Probability of X(s))

all s
> Z X {s) times (Probability of X (s})
X(s)ze
> Z a times (Probability of X (s))
X(s)>n
= a times (Probability that X (s) > a)

Dividing by a produces Markov’s inequality; (Probability that X (s) > @) < X /a.

The second useful inequality is Chebyshev’s. This applies to all random variables X (s),
not just to nonnegative functions. It provides an estimate for the probability of events that
are far from the mean X—so we are looking at the “tail” of the probability distribution.
For “heavy-tailed” distributions a large deviation |X{s) — X| has higher than usual
probability. The probability of | X — X| > a will decrease as the number a increases.

Chebyshev’s inequality for any probability distribution X (s)

2
The probability of | X (s) — X| > a is at most 0—2
a

The proof is to apply Markov’s inequality to the nonnegative function Y (s} = (X (s) - X)2.
By the definition of variance, the mean of that function Y is o2 ! We are interested in
the events with | X (s) — X| > a. Square both sides to get Y(s) > a?. Then use Markov

2

Chebyshev from Markov Prob (Y (s) > a?) < %20“’ = %)
Thoese are easy inequalities. They could be improved. Sometimes they are encugh to estab-
lish that a particular randomized algorithm will succeed. When they are not enough, you
generally have to go beyond the mean and variance to higher “moments” and “cumulants™.
Often the key idea {as in Chernoff’s inequality) is to use a generating function, which
connects all those moments.

Connecting a list of numbers to a function is a powerful idea in mathematics. -
One real function f(z) = T a,z™ or one complex function F(z) = ¥ a,e*™® contains
(in a different form) the information in all the numbers a,,. Those numbers could be
probabilities or “moments” or “cumulants”. Then f will be their generating function.

286 ' Probability and Statistics

Moments and Central Moments

The mean and variance are fundamental numbers, for a discrete set of probabilities p;
and for probability density functions p{z). But the basic theory of statistics goes further.
For every n, the moments are m,, = E [@"]. So far we know mq,m1,ms:

Zeroth moment = 1 Ep;=1lor [plz)dr=1
First moment = mean = E [x] Lipi=mor [zp(z)dz =m
Second moment (around 0) T i?p; or [2%p(z)dzr = 0% + m? =E [z7]

Second central moment (around m) X (i — m)?p; = o2 or f(z — m)? p(z) dx = o2

The nth moment m,, is & i"p; or [" p(z) dz. But the central moments (around m)
are more useful. They are p.,, = expected value of (z — m)™.

nth central moment pt, = X (i —~ m)" p; or [(x — m)” p(x) dr (6)

nith normalized central moment = p, /o™ (D

Every symmetric distribution with p; = p_; or p{x) = p{—x) will have mean zero.
All odd moments will be zero, because the terms left of zero and right of zero will cancel.

When p(x) is symmertic around its mean value, the odd cenfral moments uy, ys, - - .
will all be zero. [Best example = normal distribution.] The normalized third central
moment ¥ = p13/@3 is called the skewness of the distribution.

Question: What is the skewness of Bernoulli’s coin flip probabilities pg = 1 — p and
p=p?
Answer : First, the mean is p. The variance is yp = 0% = {1-p)p? +p(1—p)% = p(1 — p).
The third central moment is u3, and it depends on distances from the mean p:
3 1-2
ps = (1-p)(0-p)*+p(1-p)* = p(1-p)(1-2p) skewness v =53 = ——=—.
o p(1—p)

Moments are larger when you are far from the “center”. For a seesaw, that is the center
of mass. For probability, the center is the mean m. A heavy-tailed distribution will have a
large value of p4. We generally use the fourth moment of a normal distribution (it is 30*)
as a basis for comparison. Then the kurtosis of any distribution is called kappa:

— 304
Kurtosis n=FP4— 27 _H2 _ 4 (®)

V.3. Moments, Cumulants, and Inequalities of Statistics 287

Generating Functions and Cumulants

Four key functions are created from the probabilities and the moments and the cumulants.
We start with a discrete random variable X. The event X = n has probability p,,. Those
numbers p,, lead to the first three functions. Then K (t) = log M (t).

Probability generating function G(z) = Z pnz" &)
o

Characteristic function ot) => prettt (10)
o

Moment generating function M) = Z Mn— (11)
o !
oo £

Cumulant generating function ~ K(t) =) rn—; (12)
0 T,

All probabilities p, and moments m, and cumulants «, can be recovered from the
nth derivatives of the functions G, M, K atz =0and t = (0:

1 d"G d®M d*"K
— (0) my, = (0) Kn =
n! dz? dt™ dtm

Py = (0) (13

And there is a very revealing way to connect the four generating functions to expectations :

G(z) =E[2%] ¢(t) =E[e*X] M(t) =E[eX] K(t) =logE[eX]| 19)

Of course there must be a purpose behind these four functions. We are capturing an infinite
set of coefficients in each function. The key point of curmnulants is that they lead to this
property of K (t} = log M {1):

Kyxiv(t) = Kx(t) + Ky{t) for independent random variables X and Y.

Examples One coin flip gives the Bernoulli distribution with probabilities pp = 1 — p
andp; =p. Thenp=E[z] =E[z*| =E[z®| =--- and M(£) =1 — p + pe’.

Cumulative generating function K (¢) = log(1 — p + pe®).

dK t
The first cumulant js &) = — = [—pf——t} =p.
dt L—p+pet],-

For the binomial distribution (N independent coin flips) multiply every cumulant by N.
For the Poisson distribution p,, = e~*A"/n! the function K (¢} is Me* — 1). All k, =).

288 Probability and Statistics

Generating Functions for Continuous Distributions

We cannot leave out the normal distribution! For a continuous distribution, all the
generating functions have integrals involving p{z) instead of sums involving p,, :

B(t) = /oo o(z) M= dx M{t) = /m plx) et® de K(t) = log M(t). (15)

— o0 —
The moment generating function for a normal distribution (mean y, variance o) is M (t) =
€4t t*/2 The cumulant generating function is its logarithm K(t) = ut + o?i%/2,
So the normal distribution is highly exceptional with only those two nonzero cumulants :

Normal distribution K1 = s Kg = o7 Ka=Kg=...=0

Key facts about 3 cumulants «; =mean ko= variance ks = third central moment

Because the cumulants of independent processes can be added, they appear throughout
combinatorics and statistics and physics. Higher cumulants are more complicated than x3.

The Central Limit Theorem

In a few lines, we can justify the great limit theorem of probability. It concerns the
standardized averages Z,, = S (X — m)/a+/N of N independent samples X1, ..., Xy
with mean m and variance ¢2. The central limit theorem says: The distribution of Z,,
approaches the standard normal distribution (mean zero, variance 1) as N — oc.

The proof uses the characteristic function of the standardized variable Y = (X —m) /e :
. 1 . 1
E [e*"] =E [1 +itY — 5#1/2 + O(t3)] =1+0- EtQ + O(t%) (16)

Certainly Zn = (Y1 + Yo + - -+ + Y }/V/N. So its characteristic function is a product of
N identical characteristic functions of Y/+/N : the number ¢ is fixed.

{E itV / VN N l t* t\® " —t2/2 .
(e)] =1-3(%) *olsm —e as N = oo, (17)

That limit e—t*/2 is the characteristic function of a standard normal distribution N (0, 1).

Chernoff’s Inequality for Sums

The mean value of a sum X = X; + --- + X, is always X = X; + -+ + Xn.
If those variables are independent, then also the variance 02 of X is 02 = ¢2 + -+ - + 2.
At the start of this section, Chebyshev’s inequality gave a bound on the probability of

samples X; that are far from their means X;, It applies also to their sums X and X

V.3. Moments, Cumulants, and Inequalities of Statistics 289

2 ... 2
Chebyshev forasum Prob (| X — X| > a) < R (18)

a2

The inequality is tight for n = 1. Can the inequality be improved for a surn 7 I would have
guessed no. Chernoff says yes. There is a subtle point here. Chernoff assumed not just
independence of each pair X; and X}, but joint independence of all the X; together:

Multiply probabilities p{z1,...,2n) = p1(x1) - Pulzn). 19

A diagonal covariance matrix only needs pairwise independence. Equation (19) says more.
And it leads to much stronger bounds (20) for a sum than Chebyshev’s inequality {18).

The key point about Chernoff’s inequality is its exponential bound. Sums X that are
far from their mean X are exponentially unlikely. That is because an exceptional sum
X = X, + -+« + X, usually needs several X; to be far from their means X,.

An example is the number of heads in tossing n coins. Then X; = p; for each coin.
The total number X of heads will have mean value X = py + +++ + pn.

Upper Chernoff Prob (X > (1 + 8)X) < e~ X0%/(2+9)

- - (20)
Lower Chernoff Prob (X < (1 — 8)X) < e~ X%%/2

In his online notes for the MIT class 18.310, Michel Goemans points out how strong this
is. Suppose we have n flips of a fair coin, Then X = n/2 (half heads and half tails).
Now take a small 62 = (4logn)/n, and compare the Chernoff bounds (20) for § and 24.

The probability that X < (1 — 28)X is very much smaller than the probability
of X < (1 — §)X. By doubling §, the 62 in Chernoff’s exponent changes to 462,
The probability drops from 1/nto 1/n*:

X52/2 =logn givesabound e~ logn 1/n
?(25)2/2 — 410g‘n gives a bound 6_4 logn — 1/7?.4

Chebyshev would have had 1/4n where Chemoff has 1/n%: an exponential difference !
We can point to the key step in proving Chernoff bounds. First center X sothat X = 0:

Usual Chebyshev Prob (].X| > a) = Prob (X? > a?) < E [X%]/a?
Upper Chernoff Prob (X > a) —Prob (¢5X > ¢%%) <E [esX] /e%
Lower Chernoff Prob (X < a) —Prob(e=X > e %) <E [e—sx] Je—5e

We need both exponentials {plus and minus). Especially we need the moment generating
function. This tells us M(s) = E[e*X] and M(~s) = E[e*X]. Then Chernoff will
follow from a careful choice of 5. It has many applications in randomized linear algebra.

To work with non-independent samples we need covariances as well as variances,
And we also need Markov-Chebyshev-Chernoff inequalities for matrices. Those come now.

290 Probability and Statistics

Markov and Chebyshev Inequalities for Matrices

Stochastic gradient descent (Section V1.5} is the established algorithrn for optimizing the
weights in a neural net. Stochastic means random—and those weights go into matrices.
Sc an essential step in the statistics of deep learming is to develop inequalities for the
eigenvalues and the trace of random matrices.

We will not aim for an exhaustive presentation: just the basic facts. We will write
X < A when A — X is positive semidefinite: energy > 0 and all eigenvalues > 0.
Otherwise X £ A. In this case A — X has a negative eigenvalue,

Markov’s inequality Suppose X > 0 is a semidefinite or definite random matrix
with mean E [X] = X. If A is any positive definite matrix, then

Prob {X £ A} = Prob {A~ X is not positive semidefinite } < Trace of X A~1. (21)
If X and A are scalars = and a, compare with Markov’s inequality Prob{z > a} < F/a.
Proof If A'/? is the positive definite square root of A, here is the key step :

(Trace of A7V2X A7V 5 1 4 X £ A (22)

When A — X is not positive semidefinite, there must be a vector v with negative energy
vT(A— X)v < 0. Setw = A ?vso thatwTw < wTA~1/2X A~/240. Then the largest
eigenvalue of A~1/2X A=1/2 is Apax > 1:
TA—1/2XA—1/2
Rayleigh guotient Amax = max y ey ¥ =1
No eigenvalues of A™3/2X A=Y/2 are negative, so its trace is larger than 1. This is (22).
Then taking expectations of both sides of (22} will produce Markov's inequality (21):

Prob {X £ A} < Eftrace (472X A7 Y%)] = trace (472X A" 1/2) = qrace (X A™1).

Now we turn to Chebyshev’s inequality Prob{| X — X | > a} < o2%/a® Fora
symmetric matrix A = QAQT, we will use a fact about its absolute value | 4| = QIA|QT :

If A% — B? s positive semidefinite then | A| — | B| is also pasitive semidefinite.

The proof is not completely simple. The opposite statement is not true. We save examples
for the Problem Set and use this fact now :

Chebyshev’s inequality for a random matrix X with mean 0
If A is positive definite then Prob {|X| £ A} < trace (E[X?]A~?). (23)

If A—|X|is not positive semidefinite then A2 — X2 is not positive semidefinite {as above):
Prob {|X| £ A} < Prob {X? ¢ A%} < trace (E[X?)A72).

That last step was Markov’s inequality for the positive semidefinite matrix X 2.

V.3, Moments, Cumulants, and Inequalities of Statistics 291

Wikipedia offers a multidimensional Chebyshev inequality for a random « in R¥.
Suppose its mean is E [x] = m and its covariance matrix is V' = E [{(z — m)}{z — m)T):

If V is positive definite and £ > 0 then Prob {(z — m)T V" '(z — m) > !} < N/¢2

Matrix Chernoff Inequalities

Chernoff inequalities deal with a sum Y of random variables X;—previously scalars
and now 71 by n positive semidefinite (or positive definite) matrices. We look at the
smallest and largest eigenvalues of that sum. The key point of Chemoff is that for
a sum to be far from its mean value, it normally needs several terms in the sum to be
fairly far off—and that combination of unusual events is exponentially unlikely.

So we get exponentially small bounds for tail probabilities (distances from the mean).

Matrix Chernoff Suppose each matrix X in ¥ = £ X}, has eigenvalues 0 < A < C.
Let ptpin and imax be the exireme eigenvalues of the average sum ¥ = ¥ X. Then

E iy ()] 2 (1 - %) dein - Clogn (24)

E[dmax(Y)] < (e-1) pmax +Clogn (25)

Eigenvalues of the sum ¥ far from their mean are exponentially unlikely :

Prob {’\mm(y) < tﬂa[nin} < nc"(l"t}zﬂmmﬂc (26)

e tumax/C
Prob {Amax{(Y) > ¢ pmax} < n (F)

Joel Tropp’s online textbook is an excellent presentation of matrix inequalities. His book
proves sharper estimates for the expectations and exponential bounds in (24-27).

fort > e 27)

Joel Tropp, An Introduction to Matrix Concentration Inequalities, arXiv:1501.01591,

There are many more inequalities after Chemoff! We stop with an application of the
inequality (26} to the probability that a graph with edges at random is connected.

Erdos-Renyi Random Graphs

This is a chance to define random graphs. Start with n nodes. Each edge is present with

probability p. Then the question is: For which p is the graph likely to be connected ?
The n by n adjacency matrix has M, = My; = 1 when nodes j and & are connected.

The randorn variable =, for that two-way edge is 0 or 1, with probability 1 — p and p:

Adjacency matrix M = sum of random matrices = Z k(B + Er;). (28)
i<k

Ej is the matrix with a single 1 in position (j,). The Laplacian matrixis L = D — M.

Rowsumsminus M L= zx(Ej; + Exk — Ejx — Eij) 29)

i<k

292 _ _ Probability and Statistics

For every edge (meaning x;; = 1), the degree matrix D has two I's from E;; + Ey.
The adjacency matrix M has two 1's from Ej; + ;. Together those four entries
have A = 2 and Q. So L is pesitive semidefinite and A = © has the eigenvector (1,...,1}.

The second smallest eigenvalue of L will be positive when the graph is connected,
With two pieces, we can number nodes in one part before nedes in the other part. Then
L hag separate blocks from the two parts. Each block has an all-ones eigenvector, and
L has Ay = A2 = 0 (two zero eigenvalues with separate eigenvectors of 1's).

We need a random matrix Y of size n—1 whose smallest eigenvalue is A1 (Y) = A2 (L).
Then a connected graph will have \((Y) > 0. A suitable YV is ULUT, where the n — 1
rows of [/ are orthogonal unit vectors that are perpendicular to the all-ones vector 1.
Y is like L, but with that all-ones eigenvector and its zero eigenvalue removed.

We now apply the matrix Chernoff theorem to discover when Ay, (Y) > 0 and
the graph is connected. Y is the sum of random matrices X (for all § < k}:

Y=ULUT =Y a3 U(Ejj+ B~ B —E)UT =3 X (30)

Each X is semidefinite with eigenvalues < 2 as above, since U1 = [[UT|| = L.

Then C' = 2 in the Chernoff theorem. We also need the smallest eigenvalue g
of the average matrix Y. The expected value of each random number z, is p—the proba-
bility of including that edge in the graph. The expected value of Y = 5>~ X ispnli,_1:

Y =pU | > (Ejj + Eix — Ejx — Eng) | UT
ek

=pU[n— VI -1 -)T =pnl,_y (31

That term (n — 1)I,, came from adding all the diagonal matrices E;; and Epp.. The off-
diagonal matrices E;; and Ey; add to 11T — I, = all-ones matrix with zero diagonal.
UUT = I, , produced pn I,,. 1, and we have found the smallest eigenvalue Hmin = PT.

Now apply the inequality (26) in Chemnoff’s theorem with C' = 2
Prob {\o(L) < tpn} = Prob {\(Y) < tpn} < (n—1)e~(1-P/4 (32

As t — 0, the crucial quantity is (n — 1)e~P™/%_ This is below 1 if its logarithm is below

zZero. e
log(n — 1) — }lpn <0 or p> M. (33
7

Edges in the random graph are included with probability p. If p is large enough to satisfy
(33), the graph is probably connected. A tighter argument would remove the factor 4.
That produces the optimal cutoff value of p for connected randem graphs.,

Problem Set V.3
1 Find the probability generating function G(z) for Poisson’s p, = e 2" /n!
2 Independent random variables * and y have p{z,y) = p{z)p(y). Derive the
special property K x .y (t} = K x(t)+Ky () of their cumulant generating functions.
3 A fair coin flip has outcomes X = 0 and X = 1 with probabilities 3 and . What
is the probability that X > 2X ? Show that Markov’s inequality gives the exact
probability X /2 in this case.
4 Throwing two ordinary dice has an outcome between X = 2and X = 12 (two 1's or
two 6's). The mean value is 7. What is the actual probability p that X > 127 Show
that Markov’s X /12 overestimates that probability p in this case where a = 12.
5 Here is another proof of Markov's basic inequality for a nonnegative variable X,
if X <
For o > 0, the random variable Y = 0 ff X<e hasY < X. Why?
a if X>a
Explain the final step a Prob (X > t]=E [Y] < E [X] to Markov’s bound E {X]/a
6 Show that the largest eigenvalue of a random Y = YT is a convex function of Y :

7

V.3, Moments, Cumulants, and Inequalities of Statistics 293

Amax(Y) = max(p1 Y1+ -+0. Y5) <1 Amax(Y1)+ +on dmax(Yo) =E[Amax(Y)].

Show that A — B is positive semidefinite but A? — B? is not:
21 1 1
=i o=l

Prove this amazing identity when random samples 0 < z; < #2 < -+ < 1, have
probabilities py to Py

nean = Z Pily = f {Probability that © > ¢) dt.
=0

Hint : That probabilityis 3 p; = luptot = z; and then itis 1 — p; as far as t = zo.

-l

294 Probability and Statistics
V.4 Covariance Matrices and Joint Probabilities

Linear algebra enters when we run M different experiments at once. We might measure
age and height and weight (M = 3 measurements of N people}). Each experiment has
its own mean value. So we have a vector m = (mj,mo,m3) containing the Af mean
values. Those could be sample means of age and height and weight. Or mi,mo,ma
coutld be expected values of age, height, weight based on known probabilities.

A matrix becomes involved when we look at variances. Each experiment will have
a sample variance 57 or an expected o7 = E[(z; — m;)?] based on the squared
distance from its mean. Those M numbers o%,...,03, will go on the main diagonal
of the “variance-covariance matrix”. So far we bave made no connection between the
M parallel experiments. They measure different random variables, but the experiments
are not necessarily independent!

If we measure age and height and weight {a, h, w) for children, the results will be
strongly correlated. Older children are generally taller and heavier. Suppose the means
Mg, M, My are known. Then o2, 02, o2 are the separate variances in age, height, weight.
The new numbers are the covariances like o, which measures the connection of age
to height.

"

Covariance 0,5 = E [(age — mean age) (height — mean height)]. | (1)

This definition needs a close look. To compute o,p, it is not enough to know the
probability of each age and the probability of each height. We have to know the joint
probability of each pair (age and height). This is because age is connected to height.

Pan = probability that a random child has age = a and height = h: both at once
pi; = probability that experiment 1 produces x; and experiment 2 produces y;

Suppose experiment I (age) has mean m;. Experiment 2 {height) has mean mo. The
covariance in equation (1) between experiments 1 and 2 looks at all pairs of ages =, and
heights »;. We multiply by the joint probability p;; of that pair.

Expected value of

(& —ma)(y — ma2) Covariance o1z = 3. 3. pi(® — ma)(y; — ma)| (2)

alli,

To capture this idea of “joint probability p;,” we begin with two small examples.

Example 1 Flip two coins separately. With 1 for heads and 0 for tails, the results can
be (1,1} or (1,0} or (0,1} or (0, 0). Those four cutcomes all have probability (%)2 = i.
For independent experiments we multiply probabilities :

pi; = Probability of (¢, 7} = (Probability of ¢} times (Probability of j).

V.4, Covariance Matrices and Joint Probabilities 295

Example 2 Giue the coins together, facing the same way. The only possibilities are
(1,1) and {0, 0). Those have probabilities % and % The probabilities p1g and p are zero.
(1,0) and (0, 1) won’t happen because the coins stick together: both heads or both tails.

i 0
and F = . |-
0 3

Let me stay longer with P, to show it in good matrix notation. The matrix shows the
probability p;; of each pair {z;, y;)—starting with {1, 11} = (heads, heads}and (21, y2) =
(heads, tails). Notice the row sums p; , p2 and column sums Py, P, and the total sum = 1.

Probability matrix P = { P P12] pi1 -+ pi2 =p1 (first)

Joint probability matrices P
for Examples 1 and 2 -

[L]
ST

b2 P22 P21 + P2z = Po coin

(second coin) column sums P Po 4 entries add to 1

Those sumus py,pe and Py, P» are the marginals of the joint probability matrix P

P1 = p11 + 2 = chance of heads from ¢oin 1 (coin 2 can be heads or tails)
P, = g1 + p21 = chance of heads from coin 2 (coin 1 can be heads or tails)

Example ! showed independent random variables. Every probability p;; equals p, times p;
(3 times 3 gave p;; = } in that example). In this case the covariance &2 will be zero.
Heads or tails from the first coin gave no information about the second coin.

Zero covariance o3 V= [o 0

for independent trials 0 o'g] = diagonal covariance matrix V.

Independent experiments have o12 = () because every p;; equals (p;)(p;) in equation (2):
g1=y_ 3 _(p){ps) xi—my)(y;—mz) = [Z(pi)(a:r-ml)] [Z(Pj)(yj —mz)] =[0]0].
i i i J

Example 3 The glued coins show perfect correlation. Heads on one means heads on
the other. The covariance o1, moves from 0 to o times o5, This is the largest possible
value of o12. Here itis (1)(3) = o12 = (5), as a separate computation confirms :

Means = ~ —11111+|:|+0+10101—.1
eans=35 q1z=3 2 2 2 2 3/ 1

Heads or tails from coin 1 gives complete information about heads or tails from the glued
coin 2:

Glued coins give largest possible covariances Vi, — o2 o103
Singular covariance matrix: determinant = 0 glae ooz oF

296 Probability and Statistics

Always o202 > (012)2. Thus o1, is between —o102 and 0102. The matrix V
is positive definite (or in this singular case of glued coins, V is positive semidefinite).
Those are important facts about all M by M covariance matrices V' for M experiments,

Note that the sample covariance matrix § from N trials is certainly semidefinite.
Every new sample X = (age, height, weight) contributes to the sample mean X (a vector).
Each rank-one term {X; — X){X; — X)7T is positive semidefinite and we just add to reach
the matrix S. No probabilities in 5, just actual outcomes

Xy 4+ Xy S:(Xl—Y)(Xl—Y)T+~-+(XN—Y)(XN—Y)T

3
N N-1)

X=

The Covariance Matrix V is Positive Semidefinite

Come back to the expected covariance o12 between two experiments 1 and 2 (two coins)

g1z = expected value of [(outputl — mean 1) times (output 2 — mean 2))

4

o129 33 pij (®: — ma) (y; — m2). The sum includes all 4, j.

pi; = 0 is the probability of seeing outputs z; in experiment 1 and y; in experiment 2.
Some pair of outputs must appear. Therefore the N2 joint probabilities p;; add to 1.

Total probability (all pairs) is 1 Z Z Py =1L (3)
all 4,5

Here is another fact we need. Fix on one particular output x; in experiment 1. Allow
all outputs y; in experiment 2. Add the probabilities of (x;, 31}, (Z5, ¥2), . .., (2, 3n)

n
Rowsump; of P > p; j= probability p; of z; in experiment 1. (6)
i=1

Some y; must happen in experiment 2 ! Whether the two coins are completely separate or
glued, we get the same answer % for the probability pyy = pyy + prr that coin 1 is heads:

1 1 1 1 1

(separate) Py + Per = -+ - == (glued) Pyg + Pyr = -+ 0 = —.

4 4 2 : 2 2
That basic reasoning allows us to write one matrix formula that includes the covariance
a1z along with the separate variances o and o2 for experiment 1 and experiment 2.

We get the whole covariance matrix V' by adding the matrices V;; for each pair {1, 5} :

Covariance matrix 2 (2 = my)(y; — ma)

(x: — 1)
V= i 7
V = sum of all V;; 5 323 Py [(xg- —m}(y; — m2) {y; — m2)? ()

V4. Covariance Matrices and Joint Probabilities 297

Off the diagonal, this is equation (2) for the covariance ¢1z. On the diagonal, we are
getting the ordinary variances o} and 0. I will show in detail how we get Vi = o}
by using equation {(6). Allowing all j just leaves the probability p; of x; in experiment 1:

Vit =)D pile; —mi)* =Y (probability of #;) (z; —m1)* = o3 (8)
all 7,3 all 1

Please look at that twice. It is the key to produciﬁg the whole covariance mairix by
one formula (7). The beauty of that formula is that it combines 2 by 2 matrices Vis.
And the matrix Vi; in (7) for each pair of outcomes 4, j is positive semidefinite :

V;; has diagonal entries pij(l’.i“‘m])z >0 and pt-;,-(yj—ﬂrr.sg)2 >0 and det(V;;) =0.

That matrix V;; has rank 1. Equation (7) multiplies p;; times column U times row U T.

(z; —my)? {z; —ma)(y; — mz)] _ {:c@ - ml] [2: =1 y; — ma] ©)
(xi — m) (y; — m2) (y; — mz) yj— M

Every matrix pt-j-UUT is positive semidefinite. So the whole matrix VV (the sum of
those rank 1 matrices) is at least semidefinite—and probably V is definite.

The covariance matrix V' is positive definite unless the experiments are dependent.

Now we move from two variables x and y to M variables like age-height-weight,
The output from each trial is a vector X with M components. (Each child has an age-
height-weight vector X with 3 components.) The covariance matrix V' is now M by M.
The matrix V' is created from the output vectors X and their average X = E [X] :

Covariance matrix V=E[(X-X) (X-X)"]=Lp; (X-X) (X-X)" (0

Remember that X XT and X X | = (column) (row) are M by A7 matrices.

For M =] (one vartable) you see that X is the mean m and V is the variance 2.

For M = 2 (two coins) you see that X is {(mj,my} and V matches equation (7). The
expectation always adds up outputs times their probabilities. For age-height-weight
the output could be X = (3 years, 31 inches, 48 pounds) and its probability is ps a1,45.

Now comes a new idea. Tuke any linear combination ¢ X = c1 X1 + - + e Xnm.
With ¢ = (6,2,5) this would be ¢ X = 6 x age + 2 x height + 5 x weight. By linearity
we know that its expected value E [¢T X] is ¢TE [X] = T X :

E{cTX] = ¢"E[X] = 6 (expected age) + 2 (expected height) + 5 (expected weight}.

298

Probability and Statistics

More than the mean of ¢T X, we also know its variance 02 = ¢* Ve

Variance of ¢7X =E [(CTX —cTX) (TX - cT_X-)T]

=c¢TE [(X -X)(x vf)T] c=c'Ve (an

Now the key point: The variance of ¢ X can never be negative. So ¢TVe > 0,
New proof : The covariance matrix V is positive semidefinite by the energyteste* Ve > 0,

Covariance matrices V" open up the link between probability and linear algebra:
V equals QAQT with eigenvalues \; > 0 and orthonormal eigenvectors g, to ¢ .

Diagonalizing the covariance mairix V means finding M independent
experiments as combinations of the original M experiments.

Confession [am not entirely happy with that proof based on ¢T V¢ > 0. The expectation
symbol E is hiding the key idea of joint probability. Allow me to show directly that the
covariance matrix V' is positive semidefinite (at least for the age-height-weight example).
The proofis simply that V" is the sum of the joint probability p.s., of each combination
{age, height, weight) times the positive semidefinite matrix UUT. Here Uis X — X :

age mean age
V=Y punUUT with U= | height | — | meanheight || (12)
all o h,w weight mean weight

This is exactly like the 2 by 2 coin flip matrix V in equation (7). Now M = 3.

The value of the expectation symbol E is that it also allows pdf’s : probability density
functions like p(z, y, z) for continuous random variables =z and y and z. If we allow all
numbers as ages and heights and weights, instead of age ¢ = 0,1,2,3 ..., then we need
plz, y, z) instead of p; ;1. The sums in this section of the book would all change to integrals.

But we still have V = E[UUT]:

Covariance mafrix V=/// ple,y, 2) UU T de dy dz ‘with U= (13)

N 8
|
[I T |

Always [[[p=1. Examples 1-2 emphasizcd how p can give diagonal V or singular V:

Independent variables @, v,z plz,y, z) = p1(x) p2(y) pa(z).

Dependent variables x,y,z p{r,y,z) = 0 except when cz + dy + ez = 0.

V4. Covariance Matrices and Joint Probabilities _ 299

The Mean and Variance of z = x + ¥y

Start with the sample mean. We have N samples of z. Their mean (= average) is the
number my. We also have IV samples of y and their mean is my. The sample mean of
z=a+ yisclearly mz = mg + my:

N N N
1 1 1
Mean of sum = Sum of means N 21 (i + y:) N lemt T N ;ya)

Nice to see something that simple. The expected mean of z = x + ¢ doesn’t look so simple,
but it must come out as E[z] = E[z] + Ely]. Here is one way to see this.

The joint probability of the pair (i;, y;) is p;;. Its value depends on whether the experi-
ments are independent, which we don’t know. But for the expectation of the sum z = 2+,
dependence or independence of x and y doesn’t matter. Expected values still add :

E[~”f3+y]=ZZPij($i+yj)=22pij$§+zzpijyj- (15}
i3 i i i j

All the sums go from 1 to V. We can add in any order. For the first term on the right side,
add the p;; along row ¢ of the probability matrix P to get p;. That double sum gives E[x] :

Z Zpi:r'x‘ Z Pil + - +PnN I = Zp,,.l‘t = E[m

i

For the last term, add p;; down column j of the matrix to get the probability P; of y;.
Those pairs (21, y;) and (%2, y;) and ... and (zy, y;) are all the ways to produce y; :

SN iy =) (o + 405y ZPJyJ = E[y].
LA i

Now equation (15) says that E[z + y] = E{z] + E{y]. Mean of suin = Sum of means.

What about the variance of 2 = £ + y? The joint probabilities p;; and the covariance
ozy will be involved. Let me separate the variance of x + y into three simple pieces:

= Y Lo pil@ + y5 — me — my)?
= Y2 pisles — ma)? + 30 Yopilyy — my)® + 2305 pe (0 — ma){yy — my)

The first piece is 2. The second piece is cr;. The last piece is 26¢y,.

The varianceof z =z +y is o2 =02+ 0': + 2044 (16)

300 L . Probability and Statistics

The Covariance Matrix for Z = A X

Here is a good way to see 02 when z = z + y. Think of (z,y) as a column vector X
Think of the 1by 2matrix A= [1 1 | multiplying that vector X = (z,y). Then AX is
the sum z = z + y. The variance &2 in equation (16) goes into matrix notation as

2
=1 1] % % ||1| whichis o2 =AavAT (7
o Ozy Oy 1 =

You can see that 02 = AV AT in (17) agrees with o2 + o2 + 20,y in (16).

Now for the main point. The vector X could have M components coming from M
experiments {(instead of only 2). Those experiments will have an A by M covariance
matrix V. The matrix 4 could be K by M. Then AX is a vector with X' combinations
of the M outputs (instead of one combination x + y of 2 two outputs).

That vector Z = AX of length K hasa K by K covariance matrix V7. Then the great
rule for covariance matrices—of which equation (17) was only a 1 by 2 example—is this
beauntiful formula: The covariance matrix of AX is A (covariance matrix of X) AT :

The covariance matrixof 2 = AX is Vy = AVy AT (18)

To me, this neat formula shows the beauty of matrix multiplication. I won’t prove this
formula, just admire it. It is constantly used in applications.

The Correlation p

Correlation p., is closely related to covariance oy, They both measure dependence or
independence. Start by rescaling or “standardizing” the random variables & and ¥
The new X = x/c; and Y = y/o, have variance 03 = o2 = 1. This is just like
dividing a vector » by its length to produce a unit vector v /||v|| of length 1.

The correlation of = and y is the covariance of X and Y . If the original covariance
of x and y was o, then rescaling to X and Y will divide by o and o, :

o T
Correlation p,, =— — = covariance of — and Y| Always —1 < Pay < 1

OxOy O ay

Zero covariance gives zero correlation. Independent random variables produce pz, = 0.

We know that always (pzy)? < o202 (the covariance matrix V' is at least positive
semidefinite), Then (g,,)? < 1. Correlation near p = +1 means strong dependence in
the same direction: often voting the same. Negative correlation means that ¢ tends to be

below its mean when z is above its mean : Voting in opposite directions when g is near —1.

V4. Covariance Matrices and Joint Probabilities 301

Example 4 Suppose that y is just —z. A coin flip has outputs z = 0 or 1. The same flip
has outputs y = 0 or —1. The mean m, is § for a fair coin, and my, is —3. The covariance
of z and y is 0,y = —0,0y. The comelation divides by 7,0y 10 get pyy = —1. In this
case the correlation matrix R has determinant zero (singular and only sernidefinite} :

1 -1

_1 1 } wheny = —x

Correlation matrix R = [1 Py = {

R always has 1’s on the diagonal because we normalized to 6x = oy = 1. Ris the
correlation matrix for z and y, and it is also the covariance matrix for X = z /o, and

Y =y/o,.
That number gy, is also called the Pearson coefficient.
Example 5 Suppose the random variables z, y, z are independent, What matrix is R?

Answer R is the identity matrix. All three correlations pez, pyy, pz- are 1 by definition.
All three cross-correlations pry, Pz, Py, are zero by independence.

The correlation matrix /2 comes from the covariance matrix V', when we rescale every
row and every column. Divide each row ¢ and column ¢ by the ¢th standard deviation ;.

(a) R=DV D for the diagonal matrix D = diag {1/61,...,1/0]. Then every R;; = 1.

(b) If covariance V' is positive definite, correlation B = DV D) is also positive definite.

® WORKED EXAMPLE =

Suppose x and y are independent random variables with mean (¢ and variance 1. Then
the covariance matrix Vx for X = (z,y) is the 2 by 2 identity matrix. What are the
mean m z and the covariance matrix Vi for the 3-component vector Z = (x,y,az + by) ?

Solution
x 1 0 .
Z is connected to X by A Z = Y =0 1 {] =AX.
ar + by a b Y

The vector mx contains the means of the A components of X', The vector m z contains
the means of the K components of Z = AX. The matrix connection between the means
of X and Z has to be linear: mz = Amx. The mean of ax + by is amz + bm,,.

302 Probability and Statistics

The covariance matrix for Z is ¥V = AAT, when Vi is the 2 by 2 identity matrix :

.) 1 0 1 0 a
v, = Covariance matrix for _ 0 1 [10 a] I b
Z = (z,y,az + by} a b 01 b a b a®+ b

Interpretation: x and y are independent with covariance o5, = 0. Then the covariance of
z with ax + by is a and the covariance of y with az + by is &. Those just come from
the two independent parts of ax + by. Finally, equation (18) gives the variance of ax + by :

Use Vz = AVx AT 03 4, =02, +0}5, + 200y =0 +5° +0.

The 3 by 3 matrix Vz is singular. Its determinant is a® + b? — a® — b2 = 0. The third
component z = ax + by is completely dependent on z and y. The rank of Vz is only 2.

GPS Example The signal from a GPS satellite includes its departure time, The receiver
clock gives the arrival time. The receiver multiplies the travel time by the speed of light.
Then it knows the distance from that satellite. Distances from four or more satellites will
pinpoint the receiver position {using least squares),

One problem : The speed of light changes in the ionosphere. But the correction will be
almost the same for all nearby receivers. If onc receiver stays in a known posttion, we can
take differences from that one. Differential GPS reduces the error variance by fixing one
receiver:

Difference matrix Covariance matrix .~ _ (1 -1] g o1p 1
A=[1 —1] Vz=AVxAT z - o1 O3
=0} — 2012 + 03

Errors in the speed of light are gone. Then centimeter positioning accuracy is achievable.
(The key ideas are on page 320 of Algorithms for Global Positioning by Borre and Strang.)
The GPS world is all about time and space and amazing accuracy.

Problem Set V.4

1 (a) Compute the variance o when the coin flip probabilitics are p and 1 — p
(tails = 0, heads = 1).

(b) The sum of N independent flips (0 or 1) is the count of heads after IV tries.
The rule (16-17-18) for the variance of a sum gives 0? =

2 What is the covariance oy between the results xy, . . ., z, of Experiment 3 and the
results 1, .. ., yn of Experiment 5 ? Your formula will look like 15 in equation (2).
Then the (3,5) and (5, 3} entries of the covariance matrix V are o35 = o53.

3 For M = 3 experiments, the variance-covariance matrix V' will be 3 by 3. There
will be a probability p;;x that the three outputs are x; and y; and 2. Write down a
formula like equation (7) for the matrix V. .

V4. Covariance Matrices and Joint Probabilities 303
4 What is the covariance matrix V for M = 3 independent experiments with means
my, My, Mg and variances o7, ¢3, 03 ?

5 When the covariance matrix for outputs X is V, the covariance matrix for outputs
Z = AX is AV AT, Explain this neat formula by linearity :

Z=EB[(AX - AX)(AX - AX)"] = AE[(X - X}(X - X)T] AT,

Problems 6-10 are about the conditional probability that ¥ = y; when we know X = z;.
Notation: Prob (Y = y;|X = ;) = probability of the outcome y; given that X = z;.

Example 1 Coin 1 is glued to coin 2. Then Prob(Y = heads when X = heads) is 1.
Example 2 Independentcoin flips . X gives no information about Y. Useless to know X
Then Prob (Y = heads | X = heads) is the same as Prob (Y = heads).

6 Explain the sum rule of conditional probability :

Prob (Y = y;) = sum over all outputs z; of Prob (Y = 3;{X = x;}.
7 The n by n matrix P contains joint probabilities p;; = Prob (X =z, and Y = y,).
: i Pij Pij
Explain why the conditicnal Prob (Y = y;|X = ;) equals ——=——— = =
P y Y =yl) equals e o
8 For this joint probability matrix with Prob {z1, ¢2) = 0.3, find Prob (yz|2;) and Prob (x1).

p—|Pn Pz _ 01 03 The entries p;; add to 1.
P21 P22 0.2 04 Some %, 7 must happen.
9 Explain the product rule of conditional probability:

Pi; = Prob (X =z, and Y = y;) equals Prob (Y = y;|X = z;) times Prob (X = ;).
10 Derive this Bayes Theorem for p;; from the product rule in Problem 8:

Prob (Y =iy and X = xé) = Prob [X = :I.")

“Bayesians” use prior information. “Frequentists™ only use sampling information.

304 o Probability and Statistics

V.5 Multivariate Gaussian and Weighted Least Squares

The normal probability density p(z} (the Gaussian} depends on only two numbers ;

e—(fL‘ —_ m)2/20'2_ (l)

Mean m and variance o2 plx) =
mT

The graph of p(z) is a bell-shaped curve centered at + = m. The continuous variable x
can be anywhere between ~oo and co. With probability close to £, that random = will lie
between m — o and m + o (less than one standard deviation o from its mean value m).

oo m+4+ o 1 2
/P(ﬂ:)dm=l and f P(m)dz=—1—fe‘)"2/2d){m—. 2
2 3
—00 m—o -1

That integral has a change of variables from z to X = {2 — m}/o. This simplifies
the exponent to —X2/2 and it simplifies the limits of integration to —1 and 1, Even
the 1/ from p(z) disappears because dX equals dz/c. Every Gaussian becomes a
standard Gaussian with mean m = 0 and variance 0% = 1:

The standard normal distribution V(0,1) has p(x) = e—2/2, 3

1
V2m
Integrating p(z) from —oo to z gives the cumulative distribution F(z): the probability

that a random sample is below z. That probability will be F = % at z = 0 (the mean).

Two-dimensional Gaussians

Now we have M = 2 Gaussian random variables z and y. They have means m; and .
They have variances o7 and o2. If they are independent, then their probability density
plz,y) is just py(x) times p2(y). Multiply probabilities when variables are independent :

e_(‘r - m1)2/2g% e_(y - m2)2/20—% (4)

Independent x and y piz,y} =
2no 102

The covariance of z and y will be o33 = 0. The covariance matrix V' will be diagonal.
The variances o> and o3 are always on the main diagonal of V. The exponent in p(z,y) is
just the sum of the x-exponent and the y-exponent. Good to notice that the two exponents

: . 1 Tyr—1

can be combined into —5 (x — m}” V! (@ — m) with ihe inverse covariance matrix
V'~ in the middle. This exponentis —[z — m]TV ~l[@ — m]/2:

(x-m)® (y—me® 1, 3 o2 0] [&~m
202 202 2 e —m1y—mg] 0 o3 ¥~ mo)

. V.5. Multivariate Gaussian and Weighted Least Squares 305

Non-independent x and ¥

We are ready to give up independence. The exponent (5) with V 1 is still correct when V' is
no longer a diagonal matrix, Now the Gaussian depends on a vector m and a matrix V.

When M = 2, the first variable x may give partial information about the second
variable i (and vice versa). Maybe part of y is decided by « and part is truly independent.
It is the A by M covariance matrix V' that accounts for dependencies between the M

variables & = z1,..., x5 . The inverse covariance matrix V —! goes into p(x) :
Multivariate Gaussian _ 1 —(z—m)TV Y z—m)/2
probability distribution p(@) = (vV2m) M \/det V © ©)
The vectors & = (21,....,zar) and m = {(m,, ..., mus) contain the random variables and

their means. The A square roots of 27 and the determinant of V' are included to make the

total probability equal to 1. Let me check by linear algebra. I use the eigenvalues A and the

orthonormal eigenvectors g of the symmetric matrix V = QAQT. So V~1 = QA~1QT;
X=z-m (z-m)TV-l{z-m)=XTQA'QTX =YTA'Y

Notice! The combinations Y = QTX = QT{(x — m) are statistically independent.
Their covariance matrix A is diagonal,

This step of diagonalizing V' by its eigenvector matrix & is the same as “uncorrelating”
the random variables. Covariances are zero for the new variables Y7, ... Yyr. Thisis
the point where linear algebra helps calculus to compute multidimensional integrals,

The integral of p(x) is not changed when we center the variable & by subtracting m
to reach X, and rotate that variable to reach ¥ = QT X. The matrix A is diagonal!
So the integral we want splits into M separate one-dimensional integrals that we know :

o s) e u)

f.,‘/e_YTA_IY/Q dy = /ery?ﬁ’\l din |} ... /'e'_sz\fI/Q)‘M dyne

—o0 —0

- (Van)... (Vo) = (var) Vaav. . o

The determinant of V' (also the determinant of A) is the product (Ay)...(Aas) of
the eigenvalues. Then (7) gives the correct number to divide by so that p(xy,...,2a)
in equation (6) has integral = 1 as desired.

The mean and variance of p(x) are also M -dimensional integrals. The same idea
of diagonalizing V by its eigenvectors g, to gy, and introducing ¥ = QT X will find
those integrals ; .

Ve;:lorm of means /...fmp(a:)dm ={(mp,my,.. =m (8)

Covariance matrix V/ / . /{:c -m)p(x)(z—m)Tde=V (9

306 o .. Probability and Statistics__.

Conclusion: Formula (6) for the probability density p(x) has all the properties we want,

Weighted Least Squares

In Chapter 4, least squares started from an unsolvable system Ax = b. We chose & to
minimize the error |}b — Ax{|?. That led us to the least squares equation AT AT = ATb.
The best AZ is the projection of b onto the column space of A. But is this squared distance
E = ||b — Az|)? the right error measure to minimize ?

If the measurement errors in & are independent random variables, with mean m = (¢
and variance 7% = 1 and a normal distribution, Gauss would say yes: Use least squares.
If the errors are not independent or their variances are not equal. Gauss would say ne:
Use welghted least squares,

This section will show that the good measure of erroris E = (b— Ax)TV (b~ Ax).
The equation for the best & uses the covariance matrix V'

Weighted least squares ATV 143 = ATV 15 (10

The most important examples have m independent errors in b. Those errors have
variances o3,...,0Z%,. By independence, V is a diagonal matrix. The good weights
1/0%,...,1/02, come from V=1, We are weighting the errors in b to have variance = 1

{and covariance = 0).

m - 2
Minimize E =3 &-&‘;‘L)* (1)
i=1 '

1

Weighted least squares
Independent errors in b

By weighting the errors, we are “whitening” the noise. White noise is a quick description
of independent errors based on the standard Gaussian N(0, 1) with mean zero and 02 = 1.
Let me write down the steps to equations (10) and (11) for the best & :

Start with Az = b (m equations, n unknowns, m > n, no solution)

Each right side b; has mean zero and variance o2, The b; are independent

Divide the ¢th equation by o, to have variance = 1 for every b;/a;

That division turns Az = binto V=12 Az = V-1/2p with V-1/2 = diag (1 /01, ..., 1/0m)
Ordinary least squares on those weighted equations has A — V-1 2Aandb— V1%

(VAT AZ = (VPAOTV Y28 is ATV 1AZ = ATV b, | (12)

Because of 1/¢? in V!, more reliable equations (smaller o) get heavier weights.
This is the main point of weighted least squares,

Those diagonal weightings (uncoupled equations} are the most frequent and the
simplest. They apply to independent errors in the b;. When these measurement errors are
not independent, V is no longer diagonal—but (12) is still the correct weighted equation.

In practice, finding all the covariances can be-serious work. Diagonal V' is simpler.

V.5, Muitivariate Gaussian and Weighted Least Sguares 307

The Variance in the Estimated 7

One more peint: Often the important question is not the best Z for a pariicular b.
This is only one sample ! The real goal is to know the reliability of the whole experiment.
This is measured (as reliability: always is) by the variance in the estimate Z.
First, zero mean in & gives zero mean in &. Then the formula connecting variance V'
in the inputs & to variance W in the outputs & turns out to be beautiful :

Variance-covariance matrix for 7 W =E[(Z — 2)(Z — 2)T]=(ATV-1A4)~1| (13)

That smallest possible variance comes from the best possible weighting, which is V1.

This key formula is a perfect application of Section V.4. If b has covariance matrix
V, then # = Lb has covariance matrix LV LT, The matrix Lis (ATV14)"1 ATy -1,
because £ = Lb solves the weighted equation (ATV1A)F = ATV b, Substituie
this into LV LT and watch equation {13) appear :

LVET = (ATv A 1ATV L v v 44TV 1A = ATV 14 L
This is the covariance W of the output &E. It is time for an example.

Example 1 Suppose a doctor measures your heart rate z three times (m = 3,n = 1):

z="b 1 o2 0 0
z=by is Ax=b with A= |1 and V=| 0 o 0
z =b3 1 0 0 o3

The variances could be 62 = 1/9 and 0% = 1/4 and 0% = 1. The weights are 3 then 2
then 1. You are getting more nervous as measurements are taken: bg is less reliable than
ba and by. All three measurements contain some information, so they all go into the best
(weighted) cstimate & :

3z = 3b;
V1242 =V~ is 2¢=2b; leadingto ATV 1A% =ATV-1p
lx = 1{'33
[1 1 119 1 [1 1 1]9 By
4 1 |z= 4 by
1 1 1 bs

9b 4b b
F = _ﬁ:—l%}—_i is the best weighted average of by, b2, bs

308 ' C ' " Probability ard Statistics—

Most weight is on b; since its variance o is smallest. The variance of & has the beautiful
formula W = (ATV~1A)~1, That variance W = ;. went down from { by including
B2 and b3 :

[1 1 1][9 1T)
Variance of & 4 1 =1 is smaller than 3

1 1

The BLUE theorem of Gauss {proved on the website) says that our T = Lb is the
Best Linear Unbiased Estimate of the sclution to Az = b, For any other unbiased choice
z* = L*b, the variance W* = L*VL*T will be greater than our W = LV LT,

Note: Greater means that W* — W will be positive semidefinite. Unbiased means
L*A = I. S0 an exact Az = b will produce the right answer ¢ = L*b = L*Ax.

I must add that there are reasons not to minimize squared errors in the first place. One
reason : This Z often has many small components. The squares of small numbers are very
small, and they appear when we minimize. It is easier to make sense of sparse vectors—
only a few nonzeros. Statisticians often prefer to minimize unsquared errors: the sum
of [{(b — Az);|. This error measure is £' instead of £2. Because of the absolute values,
the equation for % using the £' norm becomes nonlinear.

Fast new algorithms are computing a sparse & quickly and the future helongs to ¢ L
Section IV.4 on compressive sensing was an impressive application of regression in £!.

The Kalman Filter

The “Kalman filter” is the great algorithm in dynamic least squares. That word dynamic
means that new measurements by, keep coming. So the best estimate Z; keeps changing
(based on all of by, ...,b;). More than that, the matrix A is changing. So T will be
our best least squares estimate of the latest solution to the whole history of observation
equations and update equations (state equations), Up to time 2, there are 3 observations
and 2 state equations:

AQ.T,Q = bo xr = Fo&:o Ala:l = b] Loy = Fl::cl A2£B2 = b2 (14)

The Kalman idea is to introduce one equation at a time. There will be errors in each
equation. With every new equation, we update the best estimate &, for the current 2. But
history is not forgotten! This new estimate X uses all the past'observations bg to &, and
all the state equations Egew = Folg Toid- A large and growing least squares problem.

One more important point abeut (14). Each least squares equation is weighted using
the covariance matrix V. for the error in by. There is even a covartance matrix €. for
errors in the update equations @43 = Fixg. The best #, then depends on bg, by and Fy
and Vo, V] and C;. The good way to write &1 is as an update to the previous .

V5 Multivariate Gaussian and Weighted Least Squares..... 309

Let me concentrate on a simplified problem, without the matrices F; and the covari-
ances C,. We are estimating the same true x at every step. How do we get &, from g ?

OLD A4y xo = b leads to the weighted equation AT V7! Ag B9 = AT V7 by, (15)

NEW [io] X = [go] leads to the following weighted equation for I, :
1 1
[45 AT J[vt Aol _ [AF AT][w! bo
Vl_l A'l r) = Vl—l bl - (16)

Yes, we could just solve that new problem and forget the old one. But the old solution Zp
needed work that we hope to reuse in #;. What we look for is an update to o :

Kalman update gives ¥, from T, F,=Fg + Ki(by — A1 %) (17)

The update correction is the mismaich b; — A; g between the old state T and the new
measurements b;—multiplied by the Kalman gain matrix K;. The formula for K7 comes
from comparing the solutions 1 and X to (15) and {16). And when we update g to T
based on new data by, we also update the covariance matrix Wy to W,

Rerlnember Wo = (AJ V! Ap)~! from equation (13). Update its inverse from W™
to Wy "

Covariance W of errors in #; Wfl = Wo_l + A;r Vl_l Ay (18)

Kalman gain matrix K Ki =W, ATV (19}

This is the heart of the Kalman filter. Notice the importance of the covariance matrices Wy
Those matrices measure the reliability of the whole process, where the vector & estimates
the current state based on the particular measurements bg to by..

Whole chapters and whole books are written to explain the dynamic Kalman filter,
when the states &y, are also changing (based on the matrices Fy). There is a prediction of
@ using F, followed by a correction using the new data b. Perhaps best to stop here !

This page was about recursive least squares: adding new data by and updating the
best current estimate Ty, based on all the data—and updating its covariance matrix Wr.
The updating idea began with the Sherman-Morrison-Woodbury formula for (4 -V T)~!
in Section HI.1. Numerically that is the key to Kalman’s success—exchanging inverse
matrices of size n for inverse matrices of size k.

310 _ o Probability and Statistics

Problem Set V.5

1 Two measurements of the same variable x give two equations x = &, and x = by,
Suppose the means are zero and the variances are o7 and o2, with independent
errors: V is diagonal with entries o} and ¢Z. Write the two equations as Az = b
(A is 2 by 1). As in the text Example 1, find this best estimate Z based on by and by :

.. b/jo? o3 . 1 1\!
mz—————l/oé—i_bﬂ; E[;ca:T]z -+ .
1/a; +1/035 oy 03
2 (a} InProblem 1, suppose the second measurement by becomes super-exact and its

variance oz — 0. What is the best estimate £ when - reaches zero?

(b} The opposite case has ¢2 — oo and no information in b2. What is now the best
estimate T based on &, and b, ?

3 If z and y are independent with probabilities p;(x) and p2(y), then p(x,y} =
pi(r)pa(y). By separating double integrals into products of single integrals
(—ooto oo)show that [p(z,y) dedy=1and [f(z+y)p(z,y) drdy=m, + mo.

4 Continue Problem 3 for independent x, y to show that p{x, ¥) = p1{x) p2(y)} has

[[e-mysaddy=at [[@-m)y-mapiay)deay—o.
So the 2 by 2 covariance matrix V' is diagonal and its entries are :

5 Suppose Ty is the average of by, ..., bx. A new measurement bgy, arrives. The
Kalman update equation (17) gives the new average Tr :

— ~ 1 ~ s
Verify that 7., = a:k+k_—i—1 (br+1 — T} is the correct average of by ... bg+1.

Also check the update equation (18} for the variance Wiy = ¢2/(k + 1) of this
average ¥ assuming that Wi, = o2 /k and bz has variance V = o2,

] (Steady model) Problem 5 was staric least squares. All the sample averages Ty, were
estimates of the same z. To make the Kalman filter dynamic, include also a state
equation Ty = Fxy with its own error variance s2. The dynamic least squares
problem allows T to “drift” as k increases:

1 bo a
-F 1 [:;U] = | 0 | with variances | s°
! bl 0'2
With F = 1, divide both sides of those three equations by a,s, and o. Find

%5 and T1 by least squares, which gives more weight to the recent b;. The Kalman
filter is developed in Algorithms for Global Positioning (Bome and Strang).

V.6. Markov Chains 31

V.6 Markov Chains

The key facts about Markov chains are illustrated by rental cars! Start with 100 cars in
Chicago. Every month, cars move between Chicago and Denver.

80% of the Chicago cars stay in Chicago 30% of the Denver cars move to Chicago
20% of the Chicago cars move to Denver 70% of the Denver cars stay in Denver

In matrix language, the movement of cars frommonthn ton+1is givenby ¢, ; = Pyn:

Chicago cars
Denver cars n+1

(b

_ 108 0.3 Chicago cars _p
102 07 Denver cars |, ¥n

Yn+1 = [

Every month we multiply by that “Markov matrix” P. Both columns add to 1. After n
months the distribution of cars is ¥, = P"yg. Our example has y, = (100, 0} since all
cars start in Chicago:

100 80 70 65 60
Yo=1 g | M1Thon| Y27 |30 YT 35| YeT | 4o |

Suppose that all 100 cars start in Denver instead of Chicago:

T o _fa0 _[45 _[s25]) _ [0
Vo= 100| Y1 T | 70| ¥2T|s5| ¥T| 475 Yoo = | 40 |-

Both ways lead to the same 60-40 limiting distribution. It doesn’t matter where the cars
start. Since we are looking at powers P" of the matrix F, this is a problem for the
eigenvalues and eigenvectors of P

. 8-X 3 132 _ A= 1
Eigenvalues det [5 7_ /\} =X —15A+05={A—-1}(A—0.5) \—0.5
Eisenvect 0.8 0.3 60| _ | .60 08 03 1] _ 1 1

igenvectors 1 g2 07|] 40| 7| .40 02 07 || -1]72}| -1

Those explain everything. The limiting 60-40 distribution of cars is the steady state:
eigenvalue Ay = 1. So y,, = (60,40) gives y,, ., = (60,40). Then Xz = % means :

Every month the distance to steady state is multiplied by %.

You see that in the numbers above: 100, 80, 73, 65 in Chicago has multiplied the distance
to 60 (steady state) by % every month. Similarly 0,20, 30,35 in Denver is halving the
distance to 40 (steady state). In matrix notation, F is diagonalized as XAX ™! by using
its eigenvectors and eigenvalues. Then P™ = (XAX™!) .. (XAX~1}) = XA™XL:

o

N I R R B Y N i

312 Probability and Statistics

For n = 1 we have P. For n = oo the limiting matrix P> has .6, .4 in both columns.

The 100 cars could start in the Chicago column or the Denver column—always a 60-40

split as n — oo. This is the outstanding feature of positive Markov matrices like P.
The requirements for a positive Markov matrix are

All p;; > 0 and each column of P adds to 1 (so no car is lost). Then 1TP = 1T

The matrix P has Ay = 1 (largest eigenvalue) and =, > O {positive eigenvector).

1t is the Perron-Frobenius Theorem for positive matrices that guarantees A; > 0 and 21 > Q.
Then the fact that columns add to 1 tells us that PT1 = 1 and A; = 1. And this produces
the steady state y ., as a multiple of ;. Remember that row 1 of X ~* is the left eigenvector
[t 1 ... 1]:

Convergence 1 -
Pr=XA"X"! =@, zy @a A3 Xt |o|e o

Asn — 0o, only the 1 in that diagonal matrix A® wiil survive. Columns times rows become
column z; of X times|1 1 ... 1. The limiting matrix P* has @, in every column !
The steady state ¥, = P™y, has to be a multiple of that column vector ;.

"The multiple was (60, 40} in our example because we started with 100 cars. A Markov
chain doesn’t destroy old cars or add new cars—it eventually distributes them according
to the leading eigenvector @, of P,

Now we look at P as a matrix of probabilities. Then comes Perron-Frobenius.

Transition Probabilities

Markov chains are perfect examples of linear algebra within probability theory. The
fundamental numbers are the probabilities p;; of moving from state j at time » to state i
attimen + 1:

Transition probabilities p;; = Probability that z(n 4+ 1) =i if z(n) =37 Q)

There are two key points hidden in that simple staterment. First, the probability p;; does not
depend on n. The rules stay the same at all times. Second, the probabilities y, , | for the
new state z{n + 1) depend only on the current state T{n)—not on any earlier history.

One question is still to answer: What are the possible “states™ of the Markov chain ?
In the example the states are Chicago and Denver (sorry, cities). Here are three options:

Finite Markov Chain Each state z(n) is one of the numbers 1,2, ..., N
Infinite State Markov Chain Each state z{n) is an integern = 0,1, 2, . ..
Continuous Markov Chain Each state z(n) is a real number.

V.6. Markov Chains 313

We mostly choose finite chains with N possible states. The initial state 2(0) could be
given. Or we may only know the vector yo of probabilities for that initial state. Unlike
differential equations, z{0) does not determine z(1). If £{0) = j, that only determines the
N probabilities in y, for the new state z(1). That new state is a number from 1 to N.

The probabilities for those new states are the numbers pij,p2j,...,pn;. Those
probabilities must add to I :

Column j of P Prj+p2;+-+oen; =1,)

Those numbers go naturaily into a matrix 2 = N by N matrix of probabilities p,;.
Those are called transition probabilities and P is the transition matrix. It telis vs
everything we can know (only probabilities, not facts!) about the transition from state
2(0) = j to state z({1) = ¢. And this same matrix P applies to the transition from z{n) to
z(r + 1) at every future time.

Transition Prob{z{n+1)=1} pu1 - ;v || Prob{z(r)=1}

matrix P Yool = : =|: ; :
Yo1= Py, Prob{x(n +1) :N} PN1 - DNN Prob{a:(n):N}
{4)

All entries of the matrix P have 0 < p;; < 1. By equation (3), each column adds to 1:

1T =row vector of N ones 1TP =17 and PT1=1 1=column vector of N ones

So PT is a nonnegative matrix with eigenvalue A = 1 and eigenvector 1 = (1,1,. . ., 1).
And F is also a nonnegative matrix with eigenvalue A = 1. But we must find the eigenvec-
tor with Pv = v:

0.8 0.3 0.8 0.3] [0.6
Example 1 P = {0,2 0_7] (1 1]p=(11] P"’=[o‘2 0.7] [0.4] =Y

Thus v = (0.6, 0.4}. The trace is 0.8+ 0.7 = 1.5. So the second eigenvalue is Az = 0.5.
The second eigenvector v2 of P is always orthogonal to the first eigenvector {1, 1) of PT,

We return to the transition equation y,, ., = Py,, for the probabilities. Those vectors
¥, and g, contain the probabilities for the NV different states, at time » and at timé n+ 1.
At ail times, the columns of P™ add to 1 (and so do the probabilities in y,,) :

1y, =1T(Py,) = APy, =17y, = 1. (5)

Here is the fundamental question for a Markov chain. The transition matrix P is fixed
and known. The starting state {0} or the vector 4, of probabilities for that state may be
known or unknown. Key question: Do the probability vectors y,, = P™yy have a limit
Yoo A8 12 — 00 7 We expect Yo to be independent of the initial probabilities in yo. We
will see that ¥y, often exists, but not for every P. When it exists, .. tells us how often
we expect to be in each state.

314 Probability and Statistics
0 1
1 0

This means : The system changes its state at every time step. State 1 at time n leads to State
2 at time n. + 1. If the initial probabilities were in y = (3, 2) then y, = Py, = (3, 31).
The probabilities go back and forth between those two vectors. Neo steady state.

Our matrices P always have the eigenvalue A = 1. Its eigenvector would be a steady
state {nothing changes when we multiply by P). But this particular P also has the eigen-
value A = —1. Its effect will not die out as n — oo. The only steadiness will be seen
inyy = y; = y,...and separately iny, = y5 = ¥y ... The powers of this matrix P
oscillate between P and 1.

Example 2 The transition matrix can be P = [] = switching matrix.

Other matrices P do have a steady state: P™ — P°° and y,, — y,,. Notice that the
actual states x are still changing—based on the probabilities p;; in P. The vector y. tells
us the fraction (Y100, .+ s Yoo) Of time that the system is eventunally in each state.

Positive P or Nonnegative P

There is a clear difference between our two examples: P > Gand P> > 0.

|08 03 . N 1 n
P = [02 07] has eigenvalues 1 and 3. The powers (2) approach zero.

P = [? é } has eigenvalues 1 and —1. The powers {—1)" don’t approach zero.

Every column of P adds to 1. Then A = 1 is an eigenvalue, because the rows of P — T
add to the zero row. And no entry of P is negative. The two properties together ensure that
no eigenvalue can have |A| > 1. But there is an important difference between P and Ps.

P, has zero entries. This opens the possibility that the magnitude of Ay could be 1.
Py has strictly positive entries. This guarantees that the magnitude of Ay has [Az| < 1.

The Perron-Frobenius Theorem for P; > 0 (strictly positive entries) guarantees success :
1. The largest eigenvalue A, of P and its eigenvector v; are strictly positive.

2. All other eigenvalues As, . . ., Ay have |A| < X;. Markov matrices have A; = 1.

A third example P; shows that zeros in P don’t always ruin the approach to steady state :

1 . 1 1
has A =1, 5 withv; = 0 and v, = 1 :

0
Even with that zero in Pj, all columns of {P3)™ approach v»; = first eigenvector:

S P e P S P

0
This is the sieady state that we want and expect. Then y,, = (F3)"y, approaches that same
eigenvector v1 = [1 0 |. This Markov chain moves everybody to state 1 asn — oco.

Example3 P = {

bt B

= b=

V.6. Markov Chains 315

Convergence to Steady State as n — oo

For strictly positive Markov matrices, the best way to see the convergence P* — P*
is by diagonalizing P. Assume for now that p has n independent eigenvectors.
The eigenvalue matrix A starts with A, = 1. Its eigenvector matrix X has the leading
eigenvector vy in its first column. As n increases, that eigenvector v; will appear in every
column of P™.

P=XAX"! meansthat P" = (XAX"!).. . (XAX)= XA”X?

The columns of X are the eigenvectors vy,...,v, of P. The rows of X' are the
eigenvectors of PT (starting with the all-ones vector 17). Because A\; = 1 and all other
eigenvalues have || < 1, the diagonal matrix A™ will approach A® with just a single “1”
in the top comer:

1 1T
P =XA"X ~lapproaches P =|v, vy .- 0 =l v

Here are P, P?, P32, ... converging to the rank one matrix P> = »; 1T with ¢, in all

columns :

80 .30 70 .45 .65 525 oach |80 601 _[-6]{1 1]
20 .70 30 .55 35 475 | APPT 40 40| | .4

At this point we state and prove the Perron-Frobenius Theorem. Actually we prove
Perron’s part (strictly positive matrices}. Then Frobenius allows zeros in I°. This brings
the possibiliry that | 2| equals A;. In that case P™ will not converge {unless P = I)
to the usual P = v,;17,

Perron-Frobenius Theorem

One matrix thecorem dominates this subject. The Perron-Frobenius Theorem applies when
all a;; > 0. There is no requirement that all columns add to 1. We prove the neatest form,
when all a;; > 0. Then the largest eigenvalue Amax and also its eigenvector & are positive.

Perron-Frobenius for A > 0 All numbers in Ax = Mpax « are strictly positive.

Proof Start with 4 > 0. The key idea is to look at all numbers ¢ such that Az > £ for
some nonnegative vector & (other than & = Q). We are allowing inequality in Az > tx
in order to have many small positive candidates ¢. For the largest value tmgax (whichis
attained), we will Show that equality holds: Az = tax . Then tmax is our eigenvalue
Amax and @ is the eigenvector—which we now prove.

316 Probability and Statistics

If Ax > fmax® is not an equality, multiply both sides by A. Because 4 > 0,
that produces a strict inequality A%x > tinax Ax. Therefore the positive vector y = Az
satisfies Ay > ¢max y. This means that {max could be increased. This comtradiction
forces the equality Ax = tmaxa, and we have an eigenvalue. Its eigenvector @ is positive
because on the left side of that equality, Az is sure to be positive.

To see that no eigenvalue can be larger than {max, suppose Az = Az. Since A and 2z
may involve negative or complex numbers, we take abschite values: |A]|z| = |Az| £ Alz|
by the “triangle inequality” This |z| is a nonnegative vector, so this |A| is one of the
possible candidates t. Therefore |A| cannot exceed tmax—which must be Amax.

Finer Points of Markov Theory

Returning to Markov, we left two cases unresolved in proving P* — P> = [v; v1...v1].
1. P > 0 could be strictly positive, but it might not have n independent eigenvectors,

2. P > 0 might have zero entries. Then |A2| = 1 becomes a possibility—not a certainty.

Case 1 is a technical problem. The important fact P* — P ig still true even if we don’t
have an invertible eigenvector matrix X . We do have separation between Ay = 1 and all
other eigenvalues. As long as the eigenvector with Pv; = v, goes in the first column
of X, the first column of X ~!P X wili still be (1,0,...,0). The submatrix A in the last
rows and columns of X ~! PX has the other eigenvalues of P. They all have |A| < 1 by
Perron-Frobenius. We will prove that A™ — 0.

Main point from algebra: X ~! PX can always be made triangular (usuaily diagonal).

If |A;| < 1then P" — P

We want to prove that P — P> = [v, vy ... vy | whenever |[Az| < 1, The ma-
trix P > 0 could contain zeros, as in Example 3. The matrix P might not have n indepen-
dent eigenvectors, so we can’t diagonalize P, But we can separate A; = 1 from the rest of
the matrix with [A| < 1. This will be enough to prove that P* approaches P> :

1 0

-1 _
X PX.—{O A

] and the eigenvaluesof A have |Az| < 1,...,}Ax| < 1.

. By isolating that matrix A, we get a clean result with many applications.

1 0

T -1 ny—1 _
P" =X(X"1PX)"X —X[O An

} X % convergesto 11T and A™ — 0.

If all eigenvalues of A have |A| < 1,then A™ — Qasn — oo

Step 1 Find an upper triangular matrix § = M ~1AM that has small norm ||S]| < L.
Step 2 Then A = (MSM~1)* = MS"M ! has ||A”|| < [IMPUS|I™ 1M~ — 0.

V6. Markov Chains 317

We need to find that triangular matrix S—then the proof is complete. Since S = M AM
is similar to A, 5 will have the same eigenvalues as A. But the eigenvalues of a triangular
matrix are seen on its main diagonal :

Ag 12 b
= 0 Az ¢ has ||S]| < 1 if a,b,c are very small
0 0 X

Key point: The largest eigenvalue is not a norm! If a,b, ¢ are large then the powers
52,83 5% will start to grow. Eventually A%, A}, A} do their part and 5™ falls back toward
the zero matrix. If we want to guarantee no growth at the beginning then we want the norm
of §to be ||S]| < 1. Then ||5™}] will stay below ||S|[* and go directly toward zero.

We know that [Az| < 1,]h3] < 1,|A4] < L. If @, b, ¢ are smalt the norm is below 1:
1191 < ||diagonal part{| + |off-diagonal part|| < 1.

We reach this triangular S = M ~1 AM in two steps. First, every square matrix 4 is similar
to some upper triangular matrix T = @~ AQ. This is Schur’s Theorem with an orthogo-
nal matrix §). Its proof is straightforward, on page 343 of Introduction to Linear Algebra.
Then we reduce A, B, in T by a diagonal matrix I to reach small a,b,c in 5:

1 d» A BI1 A; dA d’B
D7ITD = 1/d 0 X C d =0 A dC|= S
/a2 || 0 0 X d? 0 0 X

For small d, the off-diagonal numbers dA and d° B and dC become as small as we want,
Then S is D~HQLAQ}D = M~1AM, as required for Step 1 and Step 2.

If P = 0 is not strictly positive, everything depends on the eigenvalues of P. We face

the possibility that |Az] = 1 and the powers P™ do not converge. Here are examples:
i 0 0 0 0 1
P=|0 05 05| (A=1,1,0) P=|10 0| (A3¥=1)
0 05 G5 01 0

“Gambler’s Ruin”

This matrix P is a classic Markov example. Two gamblers have $3 between them. The
systern has four states (3,0),(2,1),(1,2), and (0, 3). The absorbing states are (3,0) and
(0, 3), when a player has won all the money—the game is over and there is no way to leave
either of those states. With those two steady states we must expect A = 1 twice.

The transient states are {2, 1) and (1, 2), when a $1 game is played—with probability p
that Player 1 will win and probability ¢ = 1 —p that Player 2 will win. The 4 by 4 transition
matrix P has those numbers p and g in its middle columns, where Player 1 has $2 or $1.

318

Probability and Statistics

e R e B
o Y = R e =
oo o
o DD

Question . What are the four eigenvalues of P?
Answer: A =1,1,./p¢, and —./pg. So |Az| = 1 and there is no unique steady staie,

Question : What is the probability that the game will continue forever with no winner ?
Answer: Zero. With probability 1 this game will end.

Question : If the game starts at {2, 1), what is the probability p* that Player 1 wins ?
Answer ; Good question ! Player 1 will win immediately in round 1 with probability p. The
probability is ¢ = 1 — p that Player 2 will win round 1 and change the status to {$1, $2),
Then the probability is p that Player 1 will win round 2 and return the status back to ($2, $1).
From there Player 1 eventually wins with probability p*. From this we can find p* ;

P
1-—gp

p* =p+gpp* and p* =

Master Equations : Continuous Markov Processes

Master equations are blessed with an tmpressive name. They are linear differential equa-
tions dp/dt = Ap for a probability vector p(t) (nonnegative components that sum to 1),
The matrix A is special : negative or zero on the diagonal, positive or zero off the diag-
onal, columns add to zero. This continuous Markov process has probabilities e4*p(0).
The probability of being in state j at time £ is p;(t}. The probability for the state to
change from j to ¢ in a small time interval dt is a,; dt. Given p(0), the solution comes
from a matrix exponential p(t) = e**p(0). That matrix e** will be a Markov matrix.

Proof.
{I+ %)n converges to P = e which is also Markov. And as t — o0, e
the usual way to a limit P>°.

An example is the matrix A with diagonals 1, ~2, 1, except that 4;, = Ayy = -1
This is minus the graph Laplacian on a line of nodes. Finite difference approximations
to the heat equation with Nenmann boundary conditions use that matrix.

This A appears in the master equation for the bimolecular reaction A+ B — C.
A molecule of A chemically combines with a molecule of B to form a molecule of C.

If nis large, I + (£A/n} is an ordinary Markov matrix. Its columns add to 1. Then
tA converges in

- @ @

2 Q@ @
6 0 0

@| —16 1
@] 16 10 2 0 0 Columns of A add to zero
A= @| 0 9 -6 3 0| ColumnsofI + 2 addtoone
% 0 0 4 -4 4 Then P = e? is Markov
0 g 0 1 —4

V.6, Markov Chains 319

Problem Set V.6

1

Find a Markov matrix £ > 0 that has a zero entry but P? is strictly positive.
The columns of P add to 1 so Amax = 1. How do you know that the other eigenval-
ves of P have |A| < 17 Then P" approaches P> with »; in every column.

If A has all positive entries then ATA and AAT have all positive entries. Use
Perron’s theorem to show : The rank 1 matrix 0’11.&1‘!}? closest to A is also positive.

These matrices have ||A[} > 1 and [|A]| > 1. Find matrices B and C so that
BAB'|| < 1and ||[CMC1| < 1. This is surely possible because the
of A and M are below 1 in absolute value. Why is it impossible if M is Markov ?

RS

Why is |[BZ B~ |} < 1 impossible for any B but ||CYC~!{| < 1 is possible ?

11 Y_11
0 1 o -1

If you take powers of A, what is the limit of A" asn — 00 ?

A=

o IS P

Z:

| 2/3 173
A= l 1/3 2/3

211

1
and also A=Z 1 2 1
1 1 2

Suppose that every year 99% of the people in New York and Florida go to Florida
and New York—but 1% die off (I am somry about this question). Can you create
a 3 by 3 Markov matrix F comresponding to the three states New York-Florida-dead.
What is the limit of the matrices P" asn — oo ?

VI.1

V1.2

VL3

V14

VL5

Part VI
Optimization

Minimum Problems : Convexity and Newton’s Method
Lagrange Multipliers = Derivatives of the Cost

Linear Programming, Game Theory, and Duality
Gradient Descent Toward the Minimum

Stochastic Gradient Descent and ADAM

Part VI: Optimization

The goal of optimization is to minimize a function F(&1,...,x2n)—often with many
variables. This subject must begin with the most important equation of calculus:
Derivative = Zero at the minimum peint ®*. With 1 variables, I has n partial derivatives
OF /x;. If there are no “constraints” that 2 must satisfy, we have n equations 3F/dx; = 0
for n unknowns z3, ..., z5.

At the same time, there are often conditions that the vector x must satisfy. These
constraints on T could be equations Az = b or inequalities © > 0. The constraints
will enter the equations through Lagrange multipliers A;, ..., Am. Now we have m + n
unknowns (x’s and A’s) and m + n equations (derivatives = (). So this subject combines
linear algebra and multivariable calculus, We are often in high dimensions.

This introduction ends with key facts of caleulos: the approximation of Fi(x + Ax)
by F(x) + Az" VF + 12T Hz. Please see that important page.

Evidently this is part of mathematics. Yet optimization has its own ideas and cer-
tainly its own algerithms. It is not always presented as an essential course in the math-
ematics department. But departments in the social sciences and the physical sciences—
economics, finance, psychology, sociology and every field of engineering—use and teach
this subject because they need it.

We have organized this chapter to emphasize the key ideas of optimization :

V¥IL.1 The central importance of convexity, which replaces linearity. Convexity involves
second derivatives—the graph of F'(x) will bend upwards. A big question com-
putationally is whether we can find and use all those second partial derivatives
O?F/0x;8z;. The choice is between “Newton methods” that use them and
“gradient methods” that don’t: second-order methods or first-arder methods.

Generally neural networks for deep leaming involve very many unknowns. Then
gradient methods (first order) are chosen. Often F is not convex! The last
sections of this chapter describe those important algorithms—they move along
the gradient (the vector of first derivatives) toward the minimum of F(x).

VIL.2 The meaning of Lagrange multipliers, which build the constraints into the
equation derivative = zero. Most importantly, those multipliers give the
derivatives of the cost with respect to the constraints. They are the Greeks
of mathematical finance.

321

322 Optimization

VI3 The classical problems LP, QP, SDP of “mathematical programitting”. The
unknowns are vectors or matrices. The inequalities ask for nonnegative vectors
x > 0 or positive semidefinite matrices X > 0. Each minimization problem has
a dual problem—a maximization. The multipliers in one problem become the
unknowns in the dual problem. They both appear in a 2-person game,

VL4 First-order algorithms begin with gradient descent. The derivative of the cost
in the search direction is negative. The choice of direction to move and how
far to move— this is the art of computational optimization. You will see crucial
decisions to be made, like adding “momentum” to descend more quickly.

Levenberg-Marquardt combines gradient descent with Newton’s method, The
idea is to get near * with a first order method and then converge quickly with
(almost) second order. This is a favorite for nonlinear least squares.

VL35 Stochastic gradient descent. In neural networks, the function to minimize is
a sum of many terms—the losses in all samples in the training data. The learning
function F' depends on the “weights”. Computing its gradient is expensive.
Sa each step learns only a minibatch of B training samples—chosen randomly
or “stochastically”. One step accounts for a part of the data but not all. We hope
and expect that the part is reasonably typical of the whole.

Stochastic gradient descent—often with speedup terms from “ADAM” to account
for earlier step directions—has become the workhorse of deep leaming.
The partial derivatives we need from F are computed by backpropagation.
This key idea will be explained separately in the final chapter of the book.

Like so much of applied mathematics, optimization has a discrete form and a continuous
form. Our unknowns are vectors and our constraints involve matrices. For the calculus
of variations the unknowns are functions and the constraints involve integrals. The vector
equation “first derivative = zero” becomes the Euler-Lagrange differential equation
“first variation = zera”.

That is a parallel (and continuous) world of optimization but we won’t go there,

The Expression “argmin”

_ The minimum of the function F'{z} = (z — 1)? is zero: mirn F(z) = 0. That tells us how
low the graph of F' goes. But it does not tell us which number &* gives the minimum.
In optimization, that “argument” &* is the number we usually solve for. The minimizing
xfor F = (z — 1)%is «* = argmin F(z) = 1.

argmin F'(x) = value(s) of = where F’ reaches its minimum.

For strictly comvex functions, argmin F'(z) is one point x*: an isolated minimum.

Multivariable Calculus 323

Multivariable Calculus

Machine learning involves functions F'(zy, . . ., ,,) of many variables. We need basic facts

about the first and second derivatives of . These are “partial derivatives” when n > 1.
The important facts are in equations (1)-(2)-(3). I don’t believe you need a whole course

(too much about integrals) to use these facts in optimizing a deep learning function F(z).

d2Fr
dx?

One function F
One variable

F(z + Az) = F(z) + Az %':— () + % (Ax)? ()| @

This is the beginning of a Taylor series—and we don’t often go beyond that second-order
term. The first terms F'(x) + (Ax)(dF/dz) give a first order approximationto F(z + Ax),
using information at z. Then the (Az)? term makes it a second order approximation.

The Az term gives a point on the tangent line—tangent to the graph of F(z). The
(Az)? term moves from the tangent line to the “tangent parabola”. The function F' will
be convex—its slope increases and its graph bends upward, as in y = z2-—when the second
derivative of F(z) is positive : d2F/dx? > 0. Equation (2) lifts (1) into n dimensions.

One function F
Variables x{ to

F(z + Az) = F(z)+(Az)T VF+% {(Az)T H (Ax)! (2

This is the important formula ! The vector V F' is the gradient of F'—the column vector
of n partial derivatives §F/dzy to 3F/8z,. The matrix H is the Hessian matrix.
H is the symmetric matrix of second derivatives H;; = 82F/08z; dz; = 8*F/8x; Oz..

The graph of ¥ = F(z,,...,2,) is now a surface in (n + 1)-dimensional space.
The tangent line becomes a tangent plane at . When the second derivative matrix H
is positive definite, I is a strictly convex function: it stays above ils tangents.
A convex function F has a minimum at &* if f = VF({2*) = 0: n equations for &*.

Sometimes we meet m different functions f;(x) to f{®): a vector function f:

m functions f = (f1,..., fm)

~ 3
n variables @ = (@1,...,2) 0 G T OO RI@FI@ A | O

The symbol J{z) represents the m by n Jacobian matrix of f(z) at the point =.
The m rows of J contain the gradient vectors of the 1 functions fi(x) to fr,(@).

af1 8f1
(Vfl)T 8—:1:1 o B,
Jacobian matrix J = ; =)) 4)
(Vfm)T m . Ofm
Ox, or,

The Hessian matrix H is the Jacobian J of the gradient f =V F'! The determinant of .J
(when m = n) appears in n-dimensional integrals. It is the r in the area formula [r dr df.

324 _ - Optimization

VL1 Minimum Problems : Convexity and Newton’s Method

This part of the book will focus on problems of minimization, for functions () with

iany variables: F'(x) = F(x1, ..., zn). There will often be constraints on the vectors :
Linear constraints Ax=b {the set of these o is convex)
Inequality constraints = > 0 (the set of these @ is convex)
Integer constraints Eachz;isOor 1 (the set of these & is not convex)

The problem statement could be unstructured or highly structured. Then the algorithms to
find the minimizing & range from very general to very specific. Here are examples :

Unstructured Minimize F(x) for vectors in a subset K of R™

Structured Minimize a quadratic cost F(z) = 12T Sz constrained by Az = b

Minimize a linear cost F{x) = ¢z constrained by Az = band 2 > 0

Minimize with a binary constraint: each x; is O or 1

We cannot go far with those problems until we recognize the crucial role of convexity.
We hope the function F'(z) is convex. We hope the constraint set K is convex. In the
theory of optimization, we have to live without linearity. Convexity will take control
when linearity is lost. Here is convexity for a function F(z) and a constraint set X :

K is a convex set If and ¢ are in K, so is the line from x to ¥
F is a convex function The set of points on and above the graph of F is convex
F is smooth and convex F(x) > Fly) +(VF(y),z - y)

That last inequality says that the graph of a convex F' stays above its tangent lines.
A triangle in the plane is certainly a convex set in R%. What about the union of two
triangles 7 Right now I can see only two ways for the union to be convex

1) One triangle contains the other triangle. The union is the bigger triangle.
2) They share a complete side and their union has no inward-pointing angles.

outside K

BTl

Figure VL1: Two convex sets and two non-convex sets in RZ: Inward-pointing at P,

V1.1 Minimum Problems: Convexity and Newton’s Method 325

For functions F' there is a direct way to define convexity. Look at all points pz+{1—p) ¢
between @ and y. The graph of F' stays on or goes below a straight line graph.

Fisconvex F(pz + (1 —p)y) < pF(z) + (1 —p)F(y) for 0 <p< 1. (1)

For a strictly convex function, this holds with strict inequality (replace < by <). Then
the graph of F' goes strictly below the chord that connects the point &, F{x) to y, Fy).
Interesting that the graph stays above its tangent lines and below its chords.

Here are three examples of convex functions. Only F} is strictly convex :
Fy=azx4+b Fy =42 {(but not — :.92) Fy = max{Fy, F3)

The convexity of that function Fj is an important fact. This is where linearity fails but
convexity succeeds! The maximum of two or more linear functions is rarely linear.
But the maximum F(x) of two or more convex functions F;(x) is always convex.
For any z = pz + (1 — p)y between = and ¥y, each function F; has

Fi(z) <pFy(=x) + (1 — p)Fily) < p Flz) + (1 — p} Fy). (2)

This is true for each ¢. Then F(z) = max F;(z) < pF(z) + (1 ~ p)F{y}, as required.

The maximum of any family of convex functions (in particular any family of lipear
furctions) is convex. Suppose we have all the linear functions that stay below a convex
Junction F. Then the maximum of those linear functions below F' is exacily equal to F. *®

convex F' linear F3
K

linear I3
)ﬂ linear Iy

Figure V1.2: A convex function F' is the maximum of all its tangent functions.

A convex set K is the intersection of all half-spaces that contain it. And the inzersection
of any family of convex sets is convex. But the urion of convex sets is not always convex.

Similarly the maximum of any family of convex functions will be convex, But the
minimum of two convex functions is generally not convex—it can have a “double well”,

Here are two useful facts about matrices, based on pos def + pos def = pos def:
The set of posirive definite n by n matrices is convex,
The set of positive semidefinite n by n mairices is convex.

The first set is “open”. The second set is “closed”. It contains its semidefinite limit points.

326 Optimization

The Second Derivative Matrix

An ordinary function f{x) is convex if d>f/dx? > 0. Reason: The slope df/dx is
increasing. The curve bends upward (like the parabola f = 2 with second derivative = 2).
The extension to n variables involves the nn by n matrix H (x) of second derivatives.
If F(x) is a smooth function then there is an almost perfect test for convexity :

F{x1,...,Zn) is convex if and only if its second derivative matrix H () is positive
semidefinite at all z. That Hessian matrix is symmetric because 8°F/9z,8z; =
02 F[0z;8z;. The function F is strictly convex if H{x) is positive definite at all x.

O*F/x? O°F[0xz:8%2 .
H(:ﬂ) = 32F/3$26I1 32F/8$% N Hij - =

- - -

A linear function F' = ¢z is convex (but not strictly convex). Above its graph is a half-

space : flat boundary. Its second derivative matrix is H = ((very semidefinite).
A quadratic F' = %:cTS::: has gradient Sx. Its symmetric second derivative matrix s
S. Above iis graph is a bowl, when § is positive definite. This function F is strictly convex.

Convexity Prevents Two Local Minima

We minimize a caonvex function F(z) for & in a convex set K. That double convexity has
a favorable effect: There will not be two isolated solutions. If @ and y are in K and they
give the same minimum, then all points z on the line between them are also in & and give
that minimumn, Convexity avoids the truly dangerous situation when £ has its minirnum
value at an unknown number of separate points in K.

This contribution of convexity is already clear for ordinary functions F'(x) with one
variable x. Here is the graph of a non-convex function with minima at z and y and z.

x Y i z

F' is not convex. Mt is concave after the inflection point ¢, where 87 F/8x? goes negative.
And F'is not defined on a convex set K (because of the gap between x and y). To fix both
problems, we could connect & to y by a straight line, and end the graph at <.

For a convex problem to have multiple solutions @ and g, the interval between them
must be filled with solutions. Never two isolated minima, usually just a single point.
The set of minimizing points = in a convex problem is convex.

The CVX system provides MATLAB software for “disciplined convex programming”.
The user chooses least squares, linear and quadratic programming,... See CVXI.COM/CVX.

VL1 Minimum Problems : Convexity and Newton's Method 327

The £ and €2 and #°° Norms of =

Norms F(x) = ||z|| are convex functions of z. The unit ball where ||z|| < 1lisa
convex set K of vectors x. That first sentence is exactly the triangle inequality :

Convexity of [jz|| |lpz + (1~ p)yll < pllell + (1 - pilyl|

There are three favorite vector norms £1, ¢2, £°° We draw the unit balls ||z]| < 1in R*:

(0, 1) (0,1)
(1,0 (1,0)
£1 norm £2 norm £°° norm
l[zll1 = [z1] + |2] |2||l2 = v/} + 23 |[@]|oo = max (J21], |z2))

Figure VI.3: For all norms, the convex “unit ball” where ||z||< 1 is centered at & = 6.

Newton’s Method

We are looking for the point @* where F(a) has a minimum and its gradient VF{z*) is
the zero vector. We have reached a nearby point . We aim to move 1o a new point &4,
that is closer than @ to 2* = argmin F(x). What is a suitable step @;4; — & to reach
that new point &1 ?

Calculus provides an answer. Near our current point ®g, the gradient VF is often
well estimated by using its first derivatives—which are the second derivatives of F(z).
Those second derivatives 2 F/8z;0z; are in the Hessian matrix H :

VF(zit1) = VF(zg) + H@e) (e — Te). (3)

We want that left hand side to be zero. So the natural choice for &1 comes when the
right side is zero ;. we have n linear equations for the step A®y = ®£p1 — @1 :

Newton’s Method H{zpAry) = —VF{(xr) and ®p =@+ Azg | (@)

Newton's method is also producing the minimizer of a quadratic function built from F and
izs derivatives VF and its second derivatives H at the point &),

.

Ty41 minimizes Fzy) + VF(z)" (2 —) + %(:c —xp) H(ze) (@ —z). (5)

328 ... Optimization

Newton’s methaod is second order. It uses second derivatives (in H). There will still be
an error in the new x ;. But that error is proportional to the square of the emror in &y ;

Quadratic convergence ||z — 27| < C|lex — 2*|% 6

If z1 is close to =™, then x4+ Wwill be much closer. An example is the computation of
@* = /4 = 2 in one dimension. Newton is solving 2 — 4 = 0:

Minimize F(z) = 2% —4r with VF(z)=2? -4 and H(z) =22
One step of Newton’s method: H (z)(Axy) = 2z4(Try1 —) = —22 + 4.

1 4
Then 2x4zi41 = o7 +4. So Newton chooses Tgy1 = 3 (a:k + —)
L

Guess the square root, divide into 4, and average the rwo numbers. We can start from 2.5
g =2.5 L = 2.05 To = 2.0006 T3 = 2.000000009

The wrong decimatl is twice as far out at each step. The error a:;, — 2 is squared :

1 4 1 2 1
s =2 =3 (w2) =2 = g @ = 27| {jjmgas - ol = Ll —

Squaring the error explains the speed of Newton’s method—provided &y, is close.

How well does Newton’s method work in practice? At the start, £y may not be
close to &*. We cannot trust the second derivative at &y 10 be useful. So we compute the
Newion step Azg = &1 — xp, but then we allow backtracking:

Choose o < % and 3 < 1 and reduce the step Az by the factor 5 until we
know that the new 2,41 = &x +{Ax is producing a sufficient drop in F(x) :

Reduce £ until the drop in F satisfies F{x; +tAx) < F(aeg) + ot VFTAz. ()

We return to backtracking in Section VI.4. It is a safety step in any search direction,
to know a safe choice of 1 after the direction from @, has been set. Or we can
fix a small stepsize—this is the hyperparameter—and skip the search in training a large
neural network.

Summary Newton’s method is eventually fast, because it uses the second derivatives

of F(x). But those can be too expensive to compute—especially in high dimensions.

Quasi-Newton methods in Section IIL1 allow the Hessian H to be built gradually

from information gained as the algorithm continues. Often neural networks are simply

too large to use H. Gradienr descent is the algorithm of choice, to develop in VI1.4-5.
The next two pages describe a compromise that gets better near ™.

VL1 Minimum Problems : Convexity and Newton’s Method 329

Levenberg-Marquardt for Nonlinear Least Squares

Least squares begins with a set of m data points (£;,3;). It aims to fit those m points as

well as possible by choosing the parameters p = (p;, ... p») in a fitting function Y (t,p).
Suppose the parameters are the usual p = (C, D) for a straight line fitby ¥ = C + Dt.
Then the sum of squared errors depends on ' and D :

E(C,DY=(y—C—D{)Y +--+ (ym — C — D)’ 8)

The minimum error E is at the values C and D where E/8C = 0 and 8E/8D = 0.
Those equations are linear since C and D appear linearly in the fitting function ¥ = C+ Dt.
We are finding the best least squares solution to m linear equations Jp = ¥

m equations I & h
c o C .
2 unknowns J = = =y
. D . D B
no solution
1 tm Y¥m
2 equations C C
T _ qT =_ | &
2 unknowns JHT J'y for the best parameters P 5|

This is linear least squares. The fitting function % is linear in C' and D. J would normatly
be called A. But for nonlinear least squares the fitting function ¥ (p) depends in a
nonlinear way on the n parameters p = (py1,...,P}. When we minimize the total error,
E = sum of squares, we expect 72 nonlinear equations o determine the best parameters:’

b
E(®) =) -3 =w-5p)" (y-5)
=1 &)
=yTy - 2y %(p) + 4(p) Y(p)-
This is the “square loss™ error function to minimize by choosing the best parameters P.

Applications can include a weighting matrix or whitening matrix W, Often W is 2
diagonal matrix of inverse variances 1/¢Z,...,1/02. Those enter the total error
E = (y — §)TW{y — %). Therefore they enter the normal equations JTW Jp = J*Wy.
This gives more weight to data with smaller variance o : the data that is more reliable,
For simplicity we go forward with W = I'; unit weights,

Our problem is to minimize E{p)} in equation (). So we compuie its gradient vector
SE/Jp = VE. This gradient is constant for linear least squares—but VE depends
on p for our nonlinear problem. The next page describes an algorithm to minimize E—
approximating Newton but avoiding second derivatives of E. ’

330 Optimization

VE =2J%y - §(p,})= 0 with m by n Jacobian matrix J = g_?:' atp.| (10)

J was a constant m by 2 matrix when the fitting function § = C + It was linear in the
parameters p = (C, D). The least squares equation for minimum error is VE = 0. In
the linear case this was JTJp = JT4. In the nonlinear case we have a first order method
{gradient descent) and an approximate Newton’s method to solve (10):

Gradient descent Poyi P = —sJT (y -5 (p,)) (11}

Newton (approximate) J ' J(p,,1 —p,) =J (g~ G (p,) (12)

That symmetric matrix JTJ is an approximation to the second derivative matrix %H
(the Hessian of the function E). To see this, substitute the first order approximation
¥ (p+ Ap) = ¥ (p) + JAp into the loss function F in (9):

E(p+Ap) =~ (y -4 () - JAP) (y - F (p) - JAP). (13)
The second order term is ApT JTJAp. So 2JTJ is acting like a Hessian matrix.

The key idea of Levenberg and Marguardt was to combine the gradient descent
and Newion update rules (11)-(12) into one rule. It has a parameter A. Small vatues
of A will lean toward Newton, large values of A will lean more toward gradient descent.
Here is a favorite (and flexible) method for nonlinear least squares problems :

Levenberg-Marquardt (J*J + AI) (p,,,—p,) = J (y-%(p,)).| (14)

You start with a fairly large A. The starting p, is probably not close to the best choice p*.
At this distance from the minimizing point p*, you cannot really trust the accuracy of
JT J—when the problem is nonlinear and the Hessian of # depends on p.

As the approximations p;, p,, ... get closer to the correct value p*, the matrix JT.J
becomes trustwerthy. Then we bring A toward zero. The goal is to enjoy fast convergence
(nearly Newton} to the solution of V.E (p*) = 0 and the minimum of E{p).

A useful variant is to muleiply AJ in (14) by the diagonal matrix diag (JT.J). That
makes A dimensionless. As with all gradient descents, the code must check that the error
E decreases at each step—and adjust the stepsize as needed. A good decrease signals that
A can be reduced and the next iteration moves closer to Newton.

Is it exactly Newton when A = O ? [am sorry but I don’t think it is. Look back at {(13).

The quadratic term suggests that the second derivative matrix (Hessian) is 2J%J.
But (13) is only a first order approximation. For linear least squares, first order was exact.
In a nonlinear problem that cannot be true. The official name here is Gauss-Newtor.

To say this differently, we cannot compute a second derivative by sguaring a first derivative.

Nevertheless Levenberg-Marquardtis an enhanced first order method, extremely useful
for nonlinear least squares. It is one way to train neural networks of moderate size.

VL1 Minimum Problems : Convexity and Newton's Method I

Problem Set VI.1

1 When is the union of two circular discs a convex set 7 Or two squares 7

2 The text proposes only two ways for the union of two triangles in R? to be convex.
Is this test comrect 7 What if the triangles are in R®?

3 The “convex hull” of any set S in R™ is the smallest convex set K that contains .
From the set S, how could you construct its convex hull X ?

4 (a) Explain why the intersection K; N K of two convex sets is a convex set.

(b} How does this prove that the maximum F3 of two convex functions Fy and F5
is a convex function ? Use the text definition: F' is convex when the set of points
on and above its graph is convex, What set is above the graph of F3 ?

5 Suppose K is convex and F(z) = 1 for x in K and F(z) = 0 for z not in K.
Is F a convex function ? What if the 0 and 1 are reversed ?

[From their second derivatives, show that thése functions are convex ;
(a) Entropy x log z
(b) log (e* + e¥)
(€) €% nomm |[z||, = (|21 [P + |22[?)/7, p 2 1

{d) Amax {5) as a function of the symmetric §
i
T 2 2
xSe o+ 20, . -,
7 Rl@)=—7F—= Y_ is not convex. It has a maximum as well as a minimum.
xTa x? + 32
At a maximum point, the second derivative matrix H is _____.

min max _ max min

8 Thischapter includes statements of the form z Kz, y) = v Kz, y).

But minimax = maximin is not always true ! Explain this example:

min max (m—l—y) and max rmn (

- y y - z+y) are +oc0 and — oc.

8 Suppose f(z,y) is a smooth convex function and £{0,0) = f(1,0) = f(0,1) =0.

(a) What do you know about f (3,1)?
(b) What do you know about the derivatives a = 02f/0z%, b = §°f/020y,
c=0%f/0y%?

10 Could any smooth function f(z,y) in the circle 2? + y? < 1 be written as the
difference g{x, ¥} — h(zx,) of two convex functions g and h 7 Probably ves.

11
12

13

14

15

16

332 S _ _._Optimizatjon

The next four problems are about Newton’s method.

Show that equation (5) is correct: Newton’s Az minimizes that quadratic.

What is Newton’s method to solve 22 + 1 = 07 Since there is no (real) solution,
the method can’t converge. (The iterations give a neat example of “chaos™.)

What is Newton’s methed 1o solve sinz = (7? Since this has many solutions,
it may be hard to predict the limit z* of the Newton iterations.

From @y = (ug,vp) find @; = {u1,v1) in Newton's method for the equations
u* —v = 0and v* — u = 0. Newlon converges to the solution (0,0) or (1,1)
or (—1,—1} or it goes off to infinity. If you use four colors for the starting points
(g, vp) that lead to those four limits, the printed picture is beautiful.

If f is a convex function, we know that f{x/2 + y/2) < if(z} + %f(y). If this
“halfway test” holds for every x and gy, show that the “quarterway test”
f3x/4+ y/4) < %f(;c) + 1 /() is also passed. This is a test halfway between
z and x/2 + y/2. So two halfway tests give the quarterway test.

The same reasoning will eventvally give f(pz + (1 — ply} < p flz) + (1 —p) fly)
for any fraction p = m/2™ < 1. These fractions are dense in the whole interval
0 < p < L. If fis a continuous function, then the halfway test for all «, i leads to
the px + (1 — p)y test for all 0 < p < 1. So the halfivay test proves f is convex.
Draw the graph of any strictly convex function f(z).

Draw the chord between any itwo points on the graph.

Draw the tangent lines at those same two points.

Between x and y, verify that tangent lines < f(x) < chord.

VL2 Lagrange Multipliers = Derivatives of the Cost 333

VL2 Lagrange Multipliers = Derivatives of the Cost

Unstructured problems deal with convex functions #(x) on convex sets K. This section
starts with highly structured problems, to see how Lagrange multipliers deal with con-
straints. We want to bring out the meaning of the multipliers Ay, ..., Jp. After introducing
themn and using them, it is a big mistake to discard them. _

Our first example is in two dimensions, The function F' is quadratic. The set K is linear.

Minimize F(z) = 2 + 3 ontheline K: 121 + aa®2 = b

On the line K, we are looking for the point that is nearest to (0,0). The cost F(z) is
distance squared. In Figure V1.4, the constraint line is tangent to the circle at the winning
point ¥ = (7, x3). We discover this from simple calculus, after we bring the constraint
equation a1x1 + Gax2 = b into the function F = 22 + 1.

This was Lagrange’s beautiful idea.

Multiply @&, + azz2 — b by an unknown multiplier A and add it to F(x)
Lagrangian Lz, A) = F(z) + AMei1z1 + aazs — b)

=z? + @2 + Maiz1 + azx2 — b) (1)
Set the derivatives 8L /83x, and 8L /8x2 and 8L /3 to zero.
Solve those three equations for =3, 22, A.

OL/3xy =221 + Aa1 =0 (2a) 3
OL/Oxg =2x; 4+ Aaz =0 (2b)
OL/AA = ayxy + azez — b =0 (theconstraint!) (Z¢)
The first equations give £, = — %/\al and 33 = — %Aag. Substitute inte a1, + apx; =6
1 1 —2b
—§Aa’~; - EAaE =band A= Tt ad (3)

Substituting A into (2a) and (2b) reveals the closest point (z],z3) and the minimum cost
(#1)% + (w3)%:

1 ah
Er=—-M=———= ZTEz=—ZDdap= —5— =
1 2 a? + a2 2 2 a? + a2

ash b?
Tz @O = o

The derivative of the minimum cost with respect to the constraint fevel & is minus
the Lagrange multiplier :

2
i(b_):i=_,_ @)

db \ a? + a2 aZ + a

-

334 Optimjzation

p*_~ slope x5 /27 = az/ay

*l
minimum cost ! \ constraint line
2 2
(-’E;) + (-’B;) ajzy + asxa =1b
slope —a1 /a»

Figure VL4: The constraint line is tangent to the minimum cost circle at the solution x*.

Minimizing a Quadratic with Linear Constraints

We will move that example from the plane R? to the space R™. Instead of one constraint
on x we have m constraints ATz = b. The matrix AT will be m by n. There will be
m Lagrange multipliers Aj, ..., Am : one for each constraint. The cost function F(x) =
%:cT.S' x allows any symunetric positive definite matrix S.

Problem : Minimize F = 12T Sz subjectto ATx = b. 5
With m constraints there will be m Lagrange multipliers & = (Ag, ... 1) They build
the constraints ATz = b into the Lagrangian L(z,A) = $zTSx + A ATz — b),

The 7 + m derivatives of L give n + m equations for a vector x in R"™ and A in R™ :

z-derivativesof L: Sz + AA=0

(6)
A-derivativesof L: ATz =h

The first equations give £ = —S~ 1 AX. Then the second equations give —ATS 1A\ = b,
This determines the optimal A" and therefore the optimal =” :

Solution A* z* A" =-(ATS 14)" b ' =S TAATS A e (D

Minimum cost #* = %(m*)TSw‘ = %bT(ATS_lA)_IATS_ISS_'A(ATS_lA)_lb.
This simplifies a lot ! .

1
Minimum cost F* = ~bT(ATS~14)"1b
2 ®)

= (ATS14) b = —A*

F
Gradient of cost
ab

This is truly a model problem. When the constraint changes to an inequality ATz < b,
the multipliers become A; > 0 and the problem becomes harder.

V1.2 Lagrange Multipliers = Derivatives of the Cost . L 335

May I return to the “saddle point matrix™ or “KKT matrix™ in equation (6} :

x S A > 0
w[3)-LE 23]
That matrix M is not positive definite or negative definite. Suppose you multiply the first
block row [S A] by ATS™! to get [AT ATS 14]. Subtract from the second block row

to see a zero block :
o A 0
[0 —ATS‘IA][i]=[b]’ (10)

This is just elimination on the 2 by 2 block matrix Af. That new block in the 2, 2 position
is called the Schur complement (named after the greatest linear algebraist of all time).

We reached the same equation —ATS~1AX = b as before. Elimination is just an
organized way to solve linear equations. The first n pivots were positive because § is
positive definite. Now there will be m negative pivots because —ATS~14 is negative
definite. This is the unmistakable sign of a saddle point in the Lagrangian L(z, A).

That function L = %:cTS;r + AT(ATx — b) is convex in x and concave in A !

Minimax = Maximin

There is more to learn from this problem. The x-derivative of L and the A-derivative
of L were set to zero in equation (6). We solved those two equations for * and A*.
That pair (x*, A"} is a saddle point of L in equation (7). By solving (7) we found the
minimum cost and its derivative in (8). i

Suppese we separate this inte two problems: a minimum and a maximum problem.
First minimize L{x, A) for each fixed A. The minimizing * depends on A. Then find the
X' that maximizes L(z*{\), A).

Minimize Latz* = —$~1AX Atthatpointz”, minL = —%ATATs—lA A-ATb

Maximize that minimom A* = —{ATS 14)"'b gives L= %bT(ATS_lA)_lb

max min

A x

L= %bT(ATS—lA)—l b

This maximin was @ first and X second. The reverse order is minimax: A first, @ second.
+ooif ATx # b
The maximurn over A of L{z, A) = %:BTS:B +AT(ATz —b)is { LTS if Afm s

The minimum over x of that maximum over X is our answer 16T (ATS-14)1b.

. min max _l Ty AT a=1 A4%—1
2 x L=zbTATSTIA)T b
8L 6L ‘ i
At the saddle point (z*, A*) wehave — = — = 0 and "o 0" [= TR EX

dz X A oz x A

336 e e e e e~ Optimi zation

Dual Probtems in Science and Engineering

Minimizing a quadratic %:ETS'J: with a linear constraint ATx = b is not just an abstract
exercise. It is the central problem in physical applied mathematics—-when a linear
differential equation is macde discrete. Here are two major examples.

1 Network equations for electrical circuits
Unknowns: Voltages at nodes, currents along edges
Equations : Kirchhoff’s Laws and Ohm’s Law
Matrices : ATS~1A is the conductance matrix.

2 Finite element method for structures
Unknowns : Displacements at nodes, stresses in the structure
Equations: Balance of forces and stress-strain relations
Matrices: ATS~14 is the stiffness matrix.

The full list would extend to every field of engineering. The stiffncss matrix and the
conductance matrix are symmetric positive definite. Normally the constraints are equa-
ttons and not inequalities. Then mathematics offers three approaches to the modeling of
the physical problem:

(i) Linear equations with the stiffness matrix or conduetance matrix or system matrix
(ii} Minimization with currents or stresses as the unknowns &

(iii) Maximization with voltages or displacements as the unknowns A

[n the end, the linear eguations (i) are the popular choice. We reduce equation (%) to
equation {10). Those network equations account for Kirchhoff and Ohm together.
The structure equations account for force balance and properties of the material.
All electrical and mechanical laws are built into the final system.

For problems of fluid flow, that system of equations is often in its saddle point form.
The unknowns ® and A are velocities and pressures. The numerical analysis is well
described in Finite Elements and Fast Iterative Solvers by Elman, Silvester, and Wathen.

For network equations and finite element equations leading to conductance matrices
and stiffness matrices ATC A, one reference is my textbook on Computational Science and
Engineering. The video lectures for 18.085 are on ocw.mit.edu.

In statistics and least squares (linear regression), the matrix ATEZ 1A includes
¥ = covariance matrix. We divide by variances o to whiten the noise.

For nonlinear problems, the energy is no longer a quadratic %:cTSa:. Geometric non-
linearities appear in the matrix A. Material nonlinearities (usually simpler} appear in
the matrix C. Large displacements and large stresses are a typical source of nonlinearity.

V1.2 Lagrange Multipliers = Derivatives of the Cost 337

Problem Set V1.2

1t Minimize F{z) = 1278z = 322 + 222 subject to AT@ = z; + 322 = b.

(a) What is the Lagrangian L{2, \} for this problem ?

(b) What are the three equations “derivative of L = zero”?

{c) Solve those equations to find £* = (7, z5) and the multiplier X*.

{d) Draw Figure V1.4 for this problem with constraint line tangent to cost circle.
(e) Verify that the derivative of the minimum cost is 9F* /8b = —*.

2 Minimize F(x) = § (#] + 423) subject to 2z, + £z = 5. Find and solve the three
equations 3L /0zy = 0 and L /Jxs = 0 and OL/OA = 0. Draw the constraint line
2y + 2 = 5 tangent to the ellipse 1 (% + 4x3) = Fpn at the minimum point
(21, 23).

3 The saddle point matrix in Problem 1 is

[s 4
Py

1 01
=|0 4 3
1 30
Reduce M to a triangular matrix {7 by elimination, and verify that

s A
U= [0 -ATS-14 } :

How many positive pivots for M 7 How many positive eigenvaloes for M ?

4 For any invertible symmetric matrix S, the number of positive pivots equals the
number of positive eigenvalues, The pivots appear in § = LDLT (triangular L)
The eigenvalues appear in § = QAQT (orthogonal Q). A nice proof sends I and @
to either I or —I without becoming singular part way (see Problem Set H11.2). The
eigenvalues stay real and don’t cross zere. So their signs are the same in D and A

Prove this “Law of Inertia” for any 2 by 2 invertible symmetric matrix S:
S has 0 or 1 or 2 positive eigenvalues when it has 0 or 1 or 2 positive pivots,

1. Take the determinant of LDLT = QAQT to show that det D and det A have
the same sign. If the determinant is negative then 5 has __ positive eigenvalue
in A and __ positive pivotin D.

2. If the determinant is positive then S could be positive definite or negative defi-
nite. Show that both pivots are positive when both eigenvalues are positive.

5 Find the minimum value of F(®) = 35 (2% + 23+ 2%) with one constraint
21 + T2 + 3 = 3 and then with an additional constraint xy + 222 + 323 = 12,
The second minimum value should be less than the first minimum value: Why ?
The first problem has a __ tangent to a sphere in R®. The second problem has a __
tangent to a sphere in R3.

.k

338 S . _ e 2 Optimization.

VI3 Linear Programming, Game Theory, and Duality

This section is about highly structured optimization problems. Linear programming comes
first—linear cost and linear constraints (including inequatities). It was also historically first,
when Dantzig invented the simplex algorithm to find the optimal solution. Our approach
here will be to see the “duality” between a minimum problem and a maximum—
two linear programs that are solved at the same time.

An inequality constraint &tz == (G has two states—active and inactive, If the minimizing
solution ends up with x7 > 0, then that requirement was inactive-—it didn’t change any-
thing. Its Lagrange multiplier will have A} = (. The minimum cost is not affected by that
constraint on x. But if the constraint x> 0 actively forces the best 2* to have z} = 0,
then the multiplier will have Ay > 0. So the optimality condition is £z Ay = 0 for each &.

One more peint abot linear programming. It solves all 2-person zere sum games.
Profit to one player is loss to the other player. The optimal strategies produce a saddle point.

Inequality constraints are still present in quadratic programming (QP) and semidefinite
programming (SDP}. The constraints in SDP involve symmetric matrices. The inequality
S > (ineans that the matrix is positive scmidefinite {or definite). If the best § is actually
positive definite, then the constraint & > 0 was not active and the Lagrange multiplier
{now also a matrix) will be zero.

Linear Programming

Linear programrning starts with a cost vector ¢ = {1, . . ., €,). The problem is to minimize
the cost F'(x) = ¢121 +- - - +¢pTpn = ¢ x. The constraints are m linear equations Az = b
and n inequalities 1 > 0,...,x, > 0. We just write 2 > { to include all n components:

Linear Program Minimize ¢z subjectto Az = bandz > 0 J)

If 4is1by3, Az = b gives a plane like 7 + 23 4+ 223 = 4 in 3-dimensional space.
That plane will be chopped off by the constraints &) > 0,25 > 0,23 > 0. This leaves
a triangle on a plane, with comers at (1, 23,23} = (4,0,0) and {0,4,0) and (0,0, 2).
Our problem is to find the point 2™ in this triangle that minimizes the cost ¢ zx.

Because the cost is linear, its minimum will be reached at one of those corners.
Linear programming has to find that minimum cost.corner. Computing all corners is
exponentially impractical when m and n are large. So the simplex method finds one
starting comner that satisfies Az = b and © > 0. Then it moves along an edge of the
constraint set K to another {lower cost) corner. The cost ¢« drops at every step.

It is a linear algebra problem to find the steepest edge and the next corner (where that
edge ends). The simplex method repeats this step many times, from corner to corner.

VL3 Lincar Programming, Game Theory, and Duality 339

New starting corner, new steepest edge, new lower cost corner in the simplex method.
In practice the number of steps is polynomial {but in theory it could be exponential}.

Our interest here is to identify the dual problem—a maximum problem for ¢ in R™.
It is standard to use y instead of A for the dual unknowns—the Lagrange multipliers.

Dual Problem Maximize y"b subjectto ATy < c. 2)

This is another linear program for the simplex method to solve. It has the same inputs
A, b, ¢ as before. When the matrix 4 is m by n, the matrix AT is n by m. So ATy < ¢
has n constraints. A beautiful fact : yTb in the maximum problem is never larger than ¢Tax
in the minimum problem.

Weak duality yTb =y (4x) = (ATy)"2 € "= Maximum (2) < minimum (1)

Maximizing pushes yTb upward. Minimizing pushes ¢T & downward. The great duality
theorem (the minimax theorem) says that they meet at the best ©* and the best y*.

Duality The maximum of 4y equals the minimum of ¢Tx.

The simplex method will solve both problems at once. For many years that method had
no competition. Now this has changed. Newer algorithms go directly through the set
of allowed x’s instead of traveling around its edges (from corner to corner). Interior
point methods are competitive because they can use calculus to achieve steepest descent,
The situation right now is that either method could win—along the edges or inside. !

Max Flow-Min Cut

Here is a special linear program. The matrix A will be the incidence matrix of a graph.
That means that flow in equals flow out at every node. Each edge of the graph has a
capacity M;—which the flow y; along that edge cannot exceed.

The maximum problem is rto send the greatest possible flow from the source node s
ta the sink node t. This flow 1s returned from ¢ to s on a special edge with unlimited
capacity—drawn on the next page. The constraints on 4 are Kirchhoff’s Current Law
ATy = 0 and the capacity bounds |y;] < M, on each edge of the graph. The beauty
of this example is that you can solve it by common sense (for a small graph).
In the process, you discover and solve the dual minimum problem, which is min cut.

340 L . _ Optimization

' . . M Max flow problem
i 6 b3 Maximize M
M P 1210 ith flow ; < M.
source 5 ; e sinke omiowy; = My
PR 4 ~. |3 The capacity M; is
8 : ' S 2 shown on every edge
- © 5 14
17 15

Figure V1.5: The max flow M is bounded by the capacity of any cut (dotted line).
By duality, the capacity of the minimum cut equals the maximum flow: M = 14.

Begin by sending flow out of the source, The three edges from s have capacity 7+ 2+
8 = 17. Is there a tighter bound than M < 177

Yes, a cut through the three middle edges only has capacity 6 + 4 + 5 = 15. Therefore
17 cannot reach the sink. Is there a tighter bound than M < 157

Yes, a cut through five later edges only has capacity 3+ 2+ 4+ 3 + 2 = 14. The
total flow M cannot exceed 14. Is that flow of 14 achievable and is this the tightest cut ?

Yes, this is the min cut (it is an £ problem!) and by duality 14 is the max flow.

Wikipedia shows a list of faster and faster algorithms to solve this important problem.
It has many applications. If the capacities A, are integers, the optimal flows y; are integers.
Normally integer programs are extra difficult, but not here.

A special max flow problem has all capacities M; = 1 or 0. The graph is bipartite
(all edges go from a node in part 1 to a node in part 2). We are matching people in
part 1 to jobs in part 2 (at most cne person per job and one job per person). Then the
maximum matching is A/ = max fiow in the graph = max number of assignments.

This hipartite graph allows a perfect matching:

M = 5 Remove the edge from 2 down to 1.

Now only M = 4 assignments are possible, because
1 9 3 4 5 2 and 5 will only be qualified for one job (5).

For bipartite graphs, max flow = min cut is Kénig’s theorem and Hall’s marriage theorem.

Two Person Games

Games with three or more players are very difficult to solve. Groups of players can
combine against the others, and those alliances are unstable. New teams will often form.
It tock John Nash to make good progress, leading to his Nobel Prize (in economics!).
But two-person zero-sum games were completely solved by von Neumann. We will see
their close connection to linear programming and duality.

The players are X and Y. There is a payoff matrix A. At every turn, player X
chooses a row of 4 and player Y chooses a column. The number in that row
and column of A is the payoff, and then the players take another turn.

VL3 Linear Programming, Game Theory, and Duality 341

To match with linear programming, I will make the payment go from player X to Y.
Then X wants to minimize and ¥ wants to maximize. Here is a very small payoff matrix.
It has two rows for X to choose and three columns for ¥.

W Y2 Us
z1 | 1 0 2
Xa 3 —1 4

Payoff matrix

Y likes those large numbers in column 3. X sees that the smallest number in that column
is 2 (in row 1). Both players have no reason to move from this simple strategy of column 3
for Y and row 1 for X. The payoff of 2 is from X to ¥ :

2 is smallest in its column and largest in its row

This is a saddle point. Y cannot expect to win more than 2. X cannot expect to lose

less than 2. Every play of the game will be the same because no player has an incentive

to change. The optimal strategies ™ and ¢* are clear: row 1 for X and column 3 for Y.
But a change in column 3 will require new thinking by both players.

¥ [P Y3
x| 1) 4
xz | 3 —1 2

New payoff matrix

X likes those small and favorable numbers in column 2. But Y will never choose that
column. Column 3 looks best (biggest) for Y, and X should counter by choosing row 2
(to avoid paying 4). But then column 1 becomes better than column 3 for Y, because
winning 3 in column 1 is better than winning 2. 3

You are seeing that Y still wants column 3 but must go sometimes te column 1. Sim-
ilarly X must have a mixed strategy: choose rows 1 and 2 with probabilities z; and 2.
The choice at each wrn must be unpredictable, or the other player will take advantage.
So the decision for X is two probabilities 1 > (tand z» > O that addto z, + 22 = 1.
The payoff matrix has a new row from this mixed strategy

row 1 1 0 4

row 2 3 -1 2
@z (row 1) + xa{row 2} =7+ 3z3 —F2 4z + 273

X will choose fractions z; and 3 to make the worst (largest) payoff as small as possible.
Remembering £, = 1 — z,, this will happen when the two largest payoffs are equal :

&y + 3z = 4z + 222 means x; + 3(1 — 1) = dzy + 2(1 — 2q).

That equation gives x] = % and =7 = g. The new mixed rowis 2.5, —.75, 2.5.

Similarly ¥ will choose columns 1, 2, 3 with probabilities y1, y2, ya. Again they add to 1.
That mixed strategy combines the three columns of A into a new column for Y,

columnl column2 column3 mix 1,2,3
1 Y 4 Y1+ 4ys
3 -1 2 3y1 —y2 + 2ys

342 _ . oo _.. Optimization _

Y will choose the fractions g1 + y2 + y3 = 1 to make the worst (smallest) payoff as large
as possibte. That happens when y2 = O and y3 = 1 —g. The two mixed payoffs are equal :
nF+4l—-y) =3y +2(1—wn) gives —-3y+d=yp+2 and yf =y = %
The new mixed column has 2.5 in both components. These optimal strategies identify
2.5 as the value of the game. With the mixed strategy z7 = % and 3 = %, Player X
can guarantee to pay no more than 2.5, Player Y can guarantee to receive no less than 2.5,
We have found the saddle point (best mixed strategies, with minimax payoff from X =
maximin payoff to ¥ = 2.5) of this two-person game.

m oy s geol 1+ 2col 2

row 1 1 0 4 2.5
row2 | 3 -1 2 2.5
irowl+ 3row2 25 75 2.5

Von Neumann's minimax theorem for games gives a solution for every payoff matrix.

Tt is equivalent to the duality theorem min ¥z = max yTb for linear programming.

Semidefinite Programming (SDP)

The cost to minimize is still T : linear cost. But now the constraints on @ involve sym-

metric matrices 5. We are given Sp to S, and S(®) = So + 218 +- - -+ 2,9, is required

o be positive semidefinite (or definite). Fortunately this is a convex set of &’s—the average

of two semidefinite matrices is semidefinite. (Just average the two energies v Sv > 0.)
Now the set of allowed «’s could have curved sides instead of flat sides :

|

Sg + 71,8, + x2S =[i

;] is positive semidefinite when %4 > Oand z122 > 1.
2

Minimizing the maximum eigenvalue of S{:e) is also included with an extra variable ¢
Minimize ¢ so that ¢ — 5{2) is positive semidefinite.

And SDP could also minimize the largest singular value—the L? norm of S{x):

1 S(x)
S(@)T

For those and most senidefinite problems, interior-point methods are the best. We don’t
travel around the boundary of the constraint set (from corner to cormer, as the simplex
method does for linear programs). Instead we travel through the interior of the set. Essen-
tially we are solving a least squares problem at each iteration—usually 5 to 50 iterations.

As in linear programming, there is a dual problem (a maximization). The value of this
dual is always below the value ¢T@ of the original. When we maximize in the dual and
minimize ¢T in the primal, we hope to make those answers equal. But this might not
happen for semidefinite programs with matrix inequalities.

SDP gives a solution method for matrix preblems that previously looked too difficult.

Minimize ¢ so that [] is positive semidefinite.

- VL3 Linear Programming, Game Theory, and Duality 343

Problem Set V1.3

1 Is the constraint & > 0 needed in equation (3) for weak duality ? Is the inequality
T

ATy < e already enough to prove that (ATy)Te < cTx? I don't think so.

2 Suppose the constraints are &; + 23 + 223 = 4and 71 > 0,23 > 0,23 = 0.
Find the three corners of this triangle in R®. Which corner minimizes the cost
cTe =5z + 32 + 825 7

3 What maximum problem for ¥ is the dual to Problem 2 ? One constraint in the primal
problem means one unknown ¥ in the dual problem. Solve this dual problem.

4 Suppose the constraintsare ¢ > Qand zq + 2x3 + Ty =4 and 29 + 3 — x4 = 2.
Two equality constraints on four unknowns, so a comer like & = (0,6,0,4) has
4 — 2 = 2 zeros. Find another comer with & = (;, 22,0, 0} and show that it costs
more than the first corner.

5 Find the optimal (minimizing) strategy for X to choose rows. Find the optimal
(maximizing) strategy for ¥ to choose columns. What is the payoff from X w0 ¥
at this optimal minimax point *, y* ?

Payoff 1 2 1 4
matrices 4 8 8 2
6 If AT = — A (antisymmetric payoff matrix), why is this a fair game for X and ¥’
with minirnax payoff equal to zero ? %

7 Suppose the payoff matrix is a diagonal matrix X with entries o3 > o3 > ... > 0y,
What strategies are optimal for X and ¥ ?

8 Convert |{(z1,22,23)|[1 < 2 in the £1 norm to eight linear inequalities Az < b.
The constraint [|2|] < 2 in the £°° norm alse produces eight linear inequalities.

9 In the #2 norm, ||z|| < 2 is a quadratic inequality 7 + 75 + z3 < 4. But in

semidefinite programming (SDP) this becomes one matrix inequality X X T < 47.
Why is this constraint X X < Al equivalentfo x 7z < 47

Note Duality offers an important option: Solve the primal or rhe dual,
That applies to optimization in machine learning, as this paper shows:

F. Bach, Duality between subgradient and conditional gradient methods,
SIAM Joumal of Optimization 25 (2015) 115-129%; arXiv: 1211.6302.

344___Optimization

V1.4 Gradient Descent Toward the Minimum

This section of the book is about a fundamental problem: Minimize a function
Flxs,y ..., 2y). Calculus teaches us that all the first derivatives 3 /8x; are zero at the
minimum (when f is smooth). If we have n = 20 unknowns (a small number in
deep learning) then minimizing one function f produces 20 equations &f/dz; = 0.
“Gradient descent” uses the derivatives Of /0x; 10 find a direction that reduces f(z).
The steepest direction, in which f{x} decreases fastest, is given by the gradient —V f:

Gradient descent xp41 = xp — 8V F(2) (N

The symbol W f represents the vector of n partial derivatives of f: its gradient.
So (1) is a vector equation for each step k = 1,2,3,... and s is the stepsize or the
learning rate. We hope to move toward the point &&* where the graph of f(@) hits bottom.

We are willing to assume for now that 20 first derivatives exist and can be computed.
We are not willing to assume thai those 20 functions also have 20 convenient derivatives
a/0x;{8f/0x;). Those are the 210 second derivatives of f—which go into a 20 by 20
symmetric matrix H. (Symmetry reduces n? = 400 to in? + in = 210 computations.)
The second derivatives would be very useful extra information, but in many problems
we have to go without,

You should know that 20 first derivatives and 210 second derivatives don’t multiply the
computing cost by 20 and 210, The neat idea of automatic differentiation—rediscovered
and extended as backpropagation in machine learning—makes those cost factors much
smaller in practice. This idea is described in Section VII.2.

Return for a moment to equation (1). The step —2,'V f(xs) includes a minus sign
(to descend) and a factor s {to control the the stepsize} and the gradient vector V f
(containing the first derivatives of f computed at the current point). A lot of thought
and computational experience has gone into the choice of stepsize and search direction.

We start with the main facts from calculus about derivatives and gradient vectors V f.

The Derivative of f(x) : n =1

The derivative of f{x) involves a limir—this is the key difference between calculus and
algebra. We are comparing the values of f at two nearby points z and z + Az, as Ax
approaches zero. More accurately, we are watching the slope Af/Ax between two points
on the graph of f{z):

df Af flz+ Ax) — f(z)

Derivative of f at — = limit of —— = limit of
f dx Az Ax

(2)

This is a forward difference when Ax is positive and a backward ditference when Az < 0.
When we have the same limit from both sides, that number is the stope of the graph at x.

The ramp function ReLU(x) = f{z) = max(0, z} is heavily involved in deep learning
(see VIL1). It has unequal slopes 1 to the right and 0 to the left of z = 0. So the derivative
df /dx does not exist at that corner point in the graph. Forn =1, df /dz is the gradient V f.

¥1.4 Gradient Descent Toward the Minimum 345

xforz >0

Af _ F(O+ Ax) — f(O) _AzxfAzx=1ifAxz >0
Oforz <0 -

slope —

ReLU = Ao Az ~ 0/Axz =0 ifAz <0

For the smooth function f(z) = @2, the ratio Af/Ax will safely approach the
derivative df /dz from both sides. But the approach could be slow (just first order).
Look again at the point z = 0, where the true derivative df /dz = 2z is now zero:

Af f(az) - f(0) _ (Az)® -0

The ratio — atx ={} is
Az Ax Ax

= Ag Then limit = slope = 0.

In this case and in almost all cases, we get a better ratio (closer to the limiting slope df /dz)
by averaging the forward difference (where Az > Q) with the backward difference
(where Az < 0). The average is the more accurate centered difference.

Centered 1 [f(z + Az) — f(z) N flz—Az) — f(z)] flz+ Az) — f(z — Ax)
atx 2 Ar —Ax N 2Azx

For the example f{(z) = x? this centering will produce the exact derivative df /dx = 2x.
In the picture we are averaging plus and minus slopes to get the correct slope O at x = 0.
For ail smooth functions, the centered differences reduce the error to size (Ax)2. This is
a big improvement over the error of size Az for uncentered differences f{x + Azx) — f(z).

centered

---------- Fx) = 2?
fla) =0 ~flz)=x \-/ s
slope 0 slope 1 backward forward

Figure V1.6; ReL.U function = ramp from deep learning. Centered slope of f =z? is exact.

Most finite difference approximations are centered for extra accuracy. But we are still
dividing by & small number 2 Ax. And for a multivariable function F{x1,22,...,2,) we
will need ratios AF/Ax; in n different directions—possibly for large n. Those ratios
approximate the n partial derivatives that go into the gradient vectorgrad F = V F,

The gradient of F(x;, ..., xz,) is the column vector VF =(

aFr ‘ BF)
Oz’ Bz,

Its components are the n partial derivatives of F. W F points in the steepest direction.
Examples 1-3 will show the value of vector notation (V F is always a column vector).

Example 1 Foraconstantvectora=(a1, .. .,@a), F(x) =aTz has gradient VF = a.

The partial derivatives of F' = a;x) + - - + a5 T, are the numbers 3F/dzy = ay.

346 L - Optimization

Example 2 For a symmetric matrix S, the gradient of F(z) = 2T Szis VF = 2 Sz.
To sce this, write out the function F{zy, z2} when n = 2. The matrix S is 2 by 2:

F__[a':l z2][a b][x1]_ ax}+cz} af oz, _ylam + bxo _qg[®
- b el x| +2bzi2s Of0xa | “{bxy +exa | To |’

Example 3 For a positive definite symmetric S, the minimum of a guadratic
Fl{x)= % TSz — aTx is the negative number Frgp = — sa"Saatz* = 8 la.
This is ap important example ! The minimum occurs where first derivatives of F are zero:

8F 8z,
VF = : =8zx—a=0at 2* = S lg =argminF. (3)
OF/ @z,

As always, that notation arg min F stands for the point ™ where the minimum of

F(x) = %:r Sz — aTx is reached. Often we are more interested in this minimizing z*
than in the actual minimum value Fy;, = F'(2*) at that point :

1
Foin is %(S_IG)TS(S_la) —aT(5'a) = %GTS_la —a’$7'a = —-2—aTS"1a.

The graph of F' is a bowl passing through zero at = 0 and dipping to its minimuimn at &*, .

Example 4 The determinant F{z) = det X is a function of all n? variables z;;.
In the formula for det X, each z;; along a row is maltiplied by its “cofactor” Cy;. This
cofactor is 2 determinant of size n — 1, using all rows of X except row ¢ and all columns
except column j—and multiplied by {—1)*+7 ;

J{det X)

The partial derivatives 5z = Cu in the matrix of cofactors of X give VF.
if

Example 5 The logarithm of the determinant is a most remarkable function :

oL Cy

L(X) = log {det X) has partial derivatives Bz ae X

=3,%enfry of X 1.

The chain rule for L = log F'is (8L/OFYOF/0xi;}=(1/ F)(0F/0z;) = (1/det X)) Cy;.
Then this ratio of cofactors to determinant gives the 7, 7 entries of the inverse matrix X 3,

It is neat that X ~! contains the n? first derivatives of I = logdet X. The second
derivatives of L are remarkable too, We have n? variables z;; and n” first derivatives in
VL = (X~1)T. This means n* second derivatives! What is amazing is that the matrix
of second derivatives is negative definite when X = § is symmetric positive definite.
S0 we reverse the sign of L : positive definite second derivatives = convex function.

— log (det S) is a convex function of the entries of the positive definite matrix §.

VL4 Gradient Descent Toward the Minimum 347

The Geometry of the Gradient Vector V f

Start with a function f{z, y). It has n=2 variables. Its gradientis V f = (8f /8z,3f /y).
This vector changes length as we move the point x, y where the derivatives are computed :

af 8 ANNLIAY
Vf= (a_i’ a_g_) Length ={|V f|| = \/(_Sg) + (5‘_;;) = steepest slope of f

That length ||V £ tells us the steepness of the graph of z = f(z, y). The graph is normally
a curved surface—like a mountain or a vailey in ryz space. At each point there is a slope
8f/0z in the z-direction and a slope 8f /3y in the y-direction. The steepest slope is in
the direction of V f = grad f. The magnitude of that steepest slope is ||V f].

Example 6 The graph of alinear function f(z,¥) = ax + by is the plane z = az + by,

The gradient is the vector V f = { ? | of partial derivatives. The length of that vecrtor is

b
[IWf|| = Va? + b? = slope of the roof. The slope is steepest in the direction of ¥ f.

That steepest direction is perpendicular to the level direction. The level direction
z = constant has ax + by = constant. It is the safe direction to walk, perpendicular to
V f. The component of ¥V f in that flat direction is zero. Figure VI.7 shows the two
perpendicular directions (level and steepest) on the plane » = = + 2y = f{z,y).

steepest direction [é] =Vf

slope is ||V f|| = +/5 in this direction

negative gradient —V f

slope 1s —+/5 in this direction level direction { _? } = (VA

f = = + 2y is constant in this direction

Figure V1.7: The negative gradient —V f gives the direction of steepest descent.

For the nonlinear function f(z,y) = az® + by?, the gradient is Vf = [ég]
That tells us the steepest direction, changing from point to point. We are on a curved
surface (a bowl opening upward). The bottom of the bowl is at £ = y = 0 where the
gradient vector is zero. The slope in the steepest direction is ||V f||. At the minimum,

YV = (2ax,2by) = (0,0) and slope = zero.

348 o _ - ... Optimization

The level direction has z = ax? + by? = constant height. That plane z = constant
cuts through the bowl in a level curve. In this example the level curve az? + by? = cis an
ellipse. The direction of the ellipse (level direction) is perpendicular to the gradient vector
(steepest direction). But there is a serious difficulty for steepest descent :

The steepest direction changes as you go down ! The gradient doesn’t point to the bottom !
z

steepest direction V f up and down the bowl az? + by? = z

flat direction (¥ f) along the ellipse ax? + by? = constant

I’ y
the steepest direction is perpendicular to the flat direction but

x the steepest direction is not aimed at the minimum point

. . . o -2
Figure V1.8: Steepest descent moves down the bewl in the gradient direction [_ 22;] .

Let me repeat. At the point g, yo the gradient direction for f = ax® + by? is along
V[= (2az0,2byg). The steepest line through xg, g is 2azo(¥ — yo} = 2byo(z — z0).
But then the Iowest point (z,y) = (0, 0) does not lie on the line ! We will not find that
minimum peint in one step of “gradient descent”. The steepest direction does not lead
to the bottom of the howl—except when b = a and the bowl is circular.

Water changes direction as it gocs down a mountain. Sooner or later, we must change
direction too. In practice we keep going in the gradient direction and stop when our cost
function f is not decreasing quickly. At that point Step 1 ends and we recompute the
gradient ¥V f. This gives a new descent direction for Step 2.

An Important Example with Zig-Zag

The example f{x,y) = 1—,(:1‘:2 + by?) is extremely useful for 0 < b < 1. Its gradient
WV f has two components & f /8x = x and 8 f /0y = by. The minimum value of f is zero.
That minimuin is reached at the point {x*,y*} = (0,0). Best of all, steepest descent with
exact line search produces a simple formuta for each point (g, yx) in the slow progress
down the bowl toward (0, 0). Starting from (g, o) = (b, 1) we find these points:

b—1\" 1-b* 1 b\
wk=b(b+—1) ykz(i—_i_—b) f(mkayk)__‘(l__'_b) Flaa,yo) | 4

V1.4 Gradient Descent Toward the Minimum _ 349

If & = 1, you see immediate success in one step. The point (4, y1) is (0, 0). The bowl
is perfecily circular with f = 3(z® + y?). The negative gradient direction goes exactly
through (0, 0). Then the first step of gradient descent finds that correct minimizing point
where f = 0.

The real purpose of this example is secen when b is small. The crucial ratio in
equation (4) is 7 = (b — 1)/(b + 1). For b = & this ratio is r = —9/11. For b = 5
the ratio is —99/101. The ratio is approaching —1 and the progress toward (0,0) has
virtually stopped when & is very small.

Figure V1.9 shows the frustrating zig-zag pattern of the steps toward (0,0}. Every
step is short and progress is very slow. This is a case where the stepsize s in ®x41 =
@) — s,V f{x;) was exactly chosen to minimize f (an exact line search). But the direction
of —V f, even if steepest, is pointing far from the final answer (z*,y*) = (0,0).

The bowl has become a narrow valley when b is small, and we are uselessly crossing
the valley instead of moving down the valley to the botiom.

ient Descent

The first descent step starts out perpendicular to the level
set. As it crosses through lower level sets, the function
F(xz,y) is decreasing. Eventually its path is tangent to
a level set L. Descent has stopped. Going further will
increase f. The first step ends. The next step is perpen-
dicular to L. So the zig-zag path tock a 90 ° turn.

Figure V1.9: Slow convergence on a zig-zag path to the minimum of f = x? + by*.

For & close to 1, this gradient descent is faster. First-order convergence means that the
distance to (z*,y*} = (0,0) is reduced by the constant factor (1 — 8)/(1 + b)
at every step. The following analysis will show that linear convergence extends to all
strongly convex functions f—first when each line search is exact, and then (mpre
realisticatly) when the search at each step is close to exact.

Machine learning often uses stochastic gradient descent. The next section will
describe this variation (especially useful when n is large and & has many components).
And we recall that Newton’s method uses second derivatives to produce quadratic
convergence—the reduction factor (1 — b)/{1 + b) drops to zero and the ervor is squared at
every step. (Our model problem of mintmizing a quadratic %:::TS:E is solved in one step.)
This is a gold standard that approximation algorithms don’t often reach in practice.

350 S . __ Optimization

Convergence Analysis for Steepest Descent

On this page we are following the presentation by Boyd and Vandenberghe in Convex
Optimization (published by Cambridge University Press). From the specific choice of
flz,y) = 3(z? + by?), we move to any strongly convex f(x) in n dimensions.
Convexity is tested by the positive definiteness of the symmetric matrix H = V2f of
second derivatives (the Hessian matrix). In one dimension this is the number d?f /dx? :

Strongly convex 2

i = ——— has eigenvalues betweenm < A < M atall o
m >0 Y 8x,8x; 8 - =

The quadratic f = % (22 + by?) has second derivatives 1 and b. The mixed derivative
82 f/8z8y is zero. So the matrix is diagonal and its two eigenvalues are m = b and
M = 1. We will now see that the ratio m /A controls the speed of steepest descent.

The gradient descent step is @p 1 = Tk — sV f,. We estimate f by its Taylor series:
T M 2
flepsr) < flae) + VI (@rp — @) + —2—||:Bk,+1 — x| (5)

2
= flme) = sV AP + SV ©

The best s minimizes the left side (exact line search). The minimum of the right side is at
§ = 1/M. Substituting that number for s, the next point 2, has

1
flann) S f@) - 5 V@I @
A parallel argument uses m instead of M to reverse the inequality sign in (5).
* 1 2
> - .
£@") = f(@n) = 5=IIV S ®

Multiply (7) by A and (8) by m and subtract to remove ||V f(z)]|%. Rewrite the result as

Steady dropin f | f(meis) - fla”) < (1- 1) (Flew) - @) | O

This says that every step reduces the height above the bottom of the valley by at least
¢=1— 3. That is linear convergence : very slow when & = n /M is small.

Qur zig-zag example had /. = b and M = 1. The estimate (9) guarantees that the
height f{ay) above f{z*} = 0 is reduced by at least 1 — b. The exact formula in that
totally computable problem produced the reduction factor {1 — 5)2/(1 + b)%. When b is
small this is about 1 — 4b. So the actual irnprovement was only 4 times better than the
rough estiimate 1 — & in (9). This gives us considerable faith that (9) is realistic.

VL4 Gradient Descent Toward the Minimum 351

Inexact Line Search and Backtracking

That ratio m /M appears throughout approximation theory and numerical linear algebra.
This is the point of mathematical analysis—to find numbers like m/M that control the rate
of descent to the minimum value f(z*),

Up to now all line searches were exact: x4 exactly minimized f() along the line
z = & — sV f. Choosing s is a one-variable minimization. The line moves from @y
in the direction of steepest descent, But we can’t expect an exact formula for minimizing
a general function f(z), even just along a Jine. So we need a fast sensible way to find an
appreximate minimum (and the analysis needs a bound on this additional error).

One sensible way is backtracking. Start with the fullsteps =1t0 X =@ — V f,.

Test If f(X) < flz) — §||ka||2, with s = 1, stop and accept X as &441.

Otherwise backtrack : Reduce s to 3 and try the teston X =z, — 3V f,.

If the test fails again, try the stepsize s = %. Since V f is a descent direction, the test
is eventually passed. The factors % and % conld be any numbers o < % and 3 < 1,

Boyd and Vandenberghe show that the convergence analysis for exact line search
extends also to this backtracking search. Of course the guaranteed reduction factor
1 — (m/M} for each step toward the minimum is now not so large. But the new factor
1 — min (2mao, 2mefS /M) is stll below 1. Steepest descent with backtracking search

still has linear convergence—a constant factor (or better) at every step.

Momentum and the Path of a Heavy Ball

The slow zig-zag path of steepest descent is a real problem. We have to improve it. Our
model example f = 1(x? + by?) has only two variables x,y and its second derivative
matrix H is diagonal—constant entries fo; = 1 and f,, = b. But it shows the zig-zag
problem very clearly when b = Awin/Amax = /M is small.

Key idea: Zig-zag would not happen for a heavy ball rolling downhill. Its momenturm
carries it through the narrow valley—bumping the sides but moving mostly forward. So we
add momentum with coefficient 3 to the gradient (Polyak’s important idea). This gives
one of the most convenient and powerful ideas in deep learning.

The direction =, of the new step remembers the previous direction zz_;.

Descent with momentum |z, = @y — sz with 2 = VF{xr) + Fzk—1 | (10}

Now we have two coefficients to choose—the stepsize s and also 3. Most important,
the step to x;; in eguation (10) involves z;_; . Momentum has turned a one-step method
{gradient descent) into a two-step methad. To get back to one step, we have to rewrite
equation (10} as two coupled equations (one vector equation) for the state at time & + 1:

Descent with Tl T, — 8Zp
momentum zpy1 — Vf(ze) = Bz

il

(1i)

W

352 _ B Optimization

With those two equations, we have recovered a one-step method. This is exactly like re-
ducing a single second order differential equation to a system of two first order equations.
Second order reduces to first order when dy/dt becomes a second unknown along with .

k -b

2
2nd order equation d—-g-i—bgg—kky:[l becomes %[Y]:[_0 1][Y }

1st order system di? dt dy/dt dy/dt

Interesting that this b is damping the motion while 4 adds momentum to encourage it.

The Quadratic Model

When f(z) = 52T Sx is quadratic, its gradient V f = Sz is linear. This is the model
problem to understand : 5 is symmetric positive definite and V f (@41} becomes Sxpyq
in equation {11). Qur 2 by 2 supermodel is included, when the matrix & is diagonal with
entries 1 and b. For a bigger matrix &, you will see that its largest and smallest eigenvalues
determine the best choices for 5 and the stepsize s—so the 2 by 2 case actually contains
the essence of the whole problem.

To follow the steps of accelerated descent, we track each eigenvector of 5. Suppose
5S¢ = Agand ey, = cxqand zx = dpgand Vf, = Sz; = Acpg. Then our equation
(11) connects the numbers ¢, and dy. at step k t0 ¢y and dyyq at step & + L,

Following the Chrl =y — 8dg 1 Oyfensrt | _|1 ~s]jc (12)
eigenvector g —Aexyq + dpr1 = Bdry | =X L(|degr| {0 B)ds

Finally we invert the first matrix (— A becomes +A) to see cach descent step clearly :

Descent step k1| _ 11 0|1 —sffe] |1 —38 | _plc
multiplies by R derr] A 1)|0 Bl|de] |[A B—As|ldei T |dk

|

(13)
After k steps the starting vector is multipied by R, For fast convergence to zero
{which is the minimum of f = %:.':TS:.::) we want both eigenvalues e; and ez of R to be
as small as possible. Clearly those eigenvalues of R depend on the eigenvalue A of 5.
That eigenvatue A could be anywhere between A, (S} and Amax(S). Our problem is:

Choose s and 3 to minimize max [fel()\)|, lea (A)I] for Apin(S) < A < dmax($).
(14)

It seems a miracle that this problem has a beautiful solution. The optimal s and g are

2 — 2
5= 2 and 8= Amax = v Amin . (15)
vAmax +)\I'[lil'l v Amax + +/)‘mjn

V14 Gradient Desceni Toward the Minimum 353

Think of the 2 by 2 supermodel, when S has eigenvalues Amax = 1 and)‘min =bhb:

:(Hz\/g) and ﬁ:(i;"\g) (16)

These choices of stepsize and momentum give a convergence rate that looks like the
rate in equation (4} for ordinary steepest descent (no momenturn). But there is a crucial
difference: b is replaced by v/b.

2 2
Ordinary (1 - b) Accelerated (1 — \/I_J) a7

descent factor 1+5 descent factor 1+ +vb

So similar but so different. The real test comes when b is very small. Then the ordinary
descent factor is essentially 1 — 45, very close to 1. The accelerated descent factor is
essentially 1 — 4v/b, much Sfurther from 1.

To emphasize the improvement that momentum brings, suppose b = 1/100. Then
V=1 /10 (ten times larger than &). The convergence factors in equation (17) are

2 2
Steepest descent (%) =.96 Accelerated descent (%) = 67

Ten steps of ordinary descent multiply the starting error by 0.67. This is matched by
a single momentum step. Ten steps with the momentum term multiply the error by 0.013.
Notice that Amax/Apiy = 1/b = & is the condition number of S. This controls
everything. For the non-quadratic problems studied next, the condition number is still
the key. That number x becomes L/ as you will see. A

A short editorial This is nor parr of the expository textbook. It concems the rate
of convergence for gradient descent. We know that one step methods (computing T4
from ;) can multiply the error by 1 — O{1/k). Two step methods that use a_; in
the momentum term can achieve 1 — O(\ /1/k). The condition number is £ = Amax/Amqin
for the convex guadratic mode! f = ZxTSx. Ourexample had 1/k = b.

It is natural to hope that 1 — cn‘lf ™ can be achieved by using n known values
By Xhels- - Th—na1. THIS might be impossible—even if it is exactly paraliet to finite
difference formulas for dx/dt = f(x). Stability there requires a stepsize bound on Az,
Stability in descent requires a bound on the stepsize s. MATLAB’s low order code ODE15S
is often chosen for stiff equations and ODE45 is the workhorse for smoother solutions,
Those are predictor-corrector combinations, not prominent so far in optimization.

The speedup from momentum is like “overrelaxation” in the 195(0’s. David Young's
thesis brought the same improvement for iterative methods applied to a class of
linear equations Az = b. In those early days of numerical analysis, .4 was separated into
S — T and the iterations were Sxy1 = Tar + b. They took forever. Now overrelaxation
is virtually forgotten, replaced by faster methods {multigrid). Will accelerated steepest
descent give way to completely different ideas for minimizing f{x)?

This is possible but hard to imagine.

354 e . . .Optimization

Nesterov Acceleration

Another way to bring 21 into the formula for @, is due to Yuri Nesterov. Instead of
evaluating the gradient V f at @k, he shifted that evaluation point to 25 + (g — 2g-1).
And choosing v = § (the momentum coefficient) combines both ideas.

Gradient Descent Stepsizes B=0 +=10
Heavy Ball Stepsize s Momentum 3 =10
Nesterov Acceleration Stepsize 8 Momentum 3 shift V f by vyAz

Accelerated descent involves all three parameters s, 3,y :

Zpr1 = 2k + B @k — 1) —sVF{xp + v (2 — 22-1)) (18)

To analyze the convergence rate for Nesterov with v = 3, reduce {18) to first order:

Nesterov Trr1 = Y — sV F{ye) and g = @ + Blesr —2). (19

Suppose f(x) = -a:TS xand V f = Sx and Sg = g as before. To track ihis eigenvector
set Ty = cr g and Yy, = drq and V f(y.} = Adepgq in (19):

Crr1 = {1—8M)dy and dpyq = (14 B)ek+1 — Pex = {1+ 8) (1 — s)dy — feg becomes
Chl 0 1—s8h][ck] R[ck]

= = 20

[dest] [B a+H1-sN || b d @0

Every Nesterov step is a multiplication by 1. Suppose R has eigenvalues e; and eg,

depending on s and 5 and A. We want the larger of |e;| and |es| to be as small as possible
for all A between Ap;.(S) and Amax (). These choices for s and 5 give small e’s :

VAmax ~ v/ Amin Amax — v/ Amin @0

glve max(|es], |es|) =

VAmax + /A Amax

i
5= and 8 =
Amax

When 5 is the 2 by 2 matrix with eigenvalues Amax = 1 and A.;, = b, that convergence

factor (the largest eigenvaive of B)is 1 — vb.

This shows the same highly important improvement (from b ro +/b) as the momenturn
(heavy ball} formula. The complete analysis by Lessard, Recht, and Packard discovered
that Nesterov’s choices for s and # can be slightly improved. Su, Boyd, and Candés
developed a deeper link between a particular Nesterov optimization and this equation :

d’y 3 dy

1 B =
Model for descent e + T It +Vf(t)=0

V1.4 Gradient Descent Toward the Minimum 355

Functions to Minimize : The Big Picture

The function f{x) can be strictly convex or barely convex or non-convex. Its gradient can
be linear or nonlinear. Here is a list of function types in increasing order of difficulty.

1. f(z,y} = %(:1:2 + by®). This has only 2 variables. Tts gradient V f = (z, by) is
linear. Its Hessian H is a diagonal 2 by 2 matrix with entries 1 and b. Those are the
eigenvalues of H. The condition number is £ =1/b when 0 < b< 1. Strictly convex.

2. 2y en)= %:cTSa: — ¢Tx. Here S is a symmetric positive definite matrix.
The gradient Vf = 8z — cis linear. The Hessian is H = 8. Its eigenvalues are
A1 10 An. Its condition number is & = Amax/ Amin- Strictly convex.

3. f(z1,...,®,) = smooth strictly convex function. Its Hessian H {x} is positive
definite at all 2 (H varies with). The eigenvalues of H are A; () to A, (), always
positive. The condition number is the maximuom over all © of Amax /A pip-

An essentially equivalent condition number is the ratio L /A, (2} :

L = “Lipschitz constant” in ||V f{x} -V Ff(y)|| € Ll|lz-y|- @2

This allows corners in the gradient V § and jumps in the second derivative matrix H.

4. f(z1y...,xn) = convex but not strictly convex. The Hessian can be only semi-
definite, with A.. = 0. A small example is the ramp function f = RelL.U(x} =
max {0},). The gradient ¥V f becomes a “subgradient” that has multiple values
at a comer point. The subgradient of ReLU at = 0 has all values from 0 to 1.%
The lines through (0, 0) with those slopes stay below the ramp function ReLU {x).

Positive definite H is allowed but so is >‘min = 0, The condition rumber can be infinite.

The simplest example with Ay ., = 0 has its minimum along the whole line z +y = 0:

flz,y) = ($+y]2 = [Ty][i i] [”;] with a semidefinite matrix §

This degeneracy is very typical of deep learning. The number of weights used by the
network often far exceeds the number of training samples that determine those weights.
(The “MINIST” data set can have 60,000 training samples and 300,000 weights.)
Those weights are underdetermined but still gradient descent succeeds. Why do its weights
generalize well—to give good answers for unseen test data?

When strict convexity is lost (Case 4), a convergence proof is still possiblie,
But the condition number is infinite. And the rate of convergence can become sublinear.

356 . Optimization

Note. We speak about linear convergence when the error 2 — =™ (the distance to the
minimizing point) is reduced by an approximately constant factor C' < 1 at each step:

Linear convergence ||lzi — 7| = Clley — @] 23

This means that the error decreases exponentially (like C* or e*1°2C with log C < 0).
Exponential sounds fast, but it can be very slow when €' is near 1.

In minimizing quadratics, non-adaptive methods generally converge to minimum
norm solutions. Those solutions (like z+ = A1b from the pseudoinverse A1) have
zero component in the row space of A. They have the largest margin.

Here are good textbook references for gradient descent, including the stochastic version
that is coming in VL.5:

1. D. Bertsekas, Convex Analvsis and Optimization, Athena Scientific (2003).

2. 5. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press (2004).
3. Yu. Nesterov, fntroductory Lectires on Convex Optimization, Springer (2004).

4. J. Nocedal and 8. Wright , Numerical Optimization, Springer (1999).

Four articles ceauthored by Ben Recht have brought essential new ideas to the analysis of
gradient methods. Papers 1 and 2 study accelerated descent (this section). Papers 3 and 4
study stochastic descent and adaptive descent. Video 5 is excellent.

1. L.Lessard, B. Recht, and A. Packard. Analysis and design of optimization algorithms
via integral quadratic constrainis, arXiv: 1408.3595v7, 28 Oct 2015.

2. A. C. Wilson, B. Recht, and M. Jordan, 4 Lyapunov analysis of momentum methods
in optimization, arXiv: 1611.02635v3, 31 Dec 2016.

3. A.C. Wilson, R. Roelofs, M. Stern , N. Stebro, and B. Recht, The marginal value of
adaptive gradient methods in machine learning, arXiv :1705.08292v1, 23 May 2017.

4. C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, Understanding deep
learning requires rethinking generalization, arXiv:1611.03530v2, 26 Feb 2017,
International Conference on Learning Representations (2017).

5. https://simons.berkeley.edu/talks/ben-recht-2013-09-04

Section VL5 on stochastic gradient descent returns to these papers for this message:
Adaptive methods can possibly converge to undesirable weights in deep learning.
Gradient descent from @y = 0 (and SGD) finds the minimum norm solution to least squares.

Those adaptive methods (variants of Adam) are popular. The formula for a3, that
stopped at &, will go much further back—to include aif earlier points starting at xo. In
many problems that leads to faster training. As with momentum, memory can help.

When there are more weights to determine than samples o use (underdetermined prob-
lems), we can have multiple minimum points for f{x} and multiple solutions to ¥ f = 0.
A crucial guestion in VL.5 is whether improved adaptive methods find good solutions.

V14 Gradient Descent Toward the Minimum 357

Constraints and Proximal Points

How does steepest descent deal with a constraint restricting & to a convex set K ?
The projected gradient and proximal gradient methods use four fundamental ideas.

1 Projectiononto K The projection Iz of « onto K is the point in K nearest to x.

If K is curved then Il is not linear, Think of projection cnte the unit ball ||z|] < 1.
In this case Ilx = proji(x) = z/|jz|| for points outside the ball. A key property is
that ITis a contraction. Projecting two points onto K reduces the distance between them :

Projection IT = proj, Iz —ILz} < ||l& — 2|] forallzand zinR". (24}

2 Proximal mapping Proxg{(x) is the vector z that minimizes §|je — z||* + f(z).
In case f = Oinside K and f = oo outside K, Proxy(x) is exactly the projection Tlz.

Important example If f(x} = c||x||; then Prox; is the shrinkage function in statistics.

The ith component of x leads to Prox;(z): ‘ / € —c
the ¢th component of Prox¢ ()

This is soft thresholding S{x) ~ec ¢ i
S(xz;) = sign (z;) - max (z; — ¢, 0) / ‘

We are denoising and regularizing, as in the £ LASSO construction of Section 114,
The graph shows how small components are set to zero—producing zeros is the effect
that the €* norm already achieves compared to £2,

3 Projected gradient descent takes a normal descent step {which may go outside the*
constraint set /(). Then it projects the result back onto K : a basic idea.

Projected descent 1) = projy (e — sV F(Ti)) (25}

4 Proximal gradient descent also starts with a normal step. Now the projection onto &
is replaced by the proximal map to determine s = s : a subtle idea.

Proximal descent x4 = prox,(zx — sV fmx)) (26)

The LASSO function to minimize is f{z) = 5||b — Az{Z + Allz||:. The pmxnmal
mapping decides the soft thresholding and the stepsize & at @ by

proxg{x) = argmin —l|$ — 2|1 + Allz]hx
A 28
: 27
= argmin 5 lle — =7 + dsllzll = S, ()

That produces the soft-thresholding function S in the graph above as the update x4 ;.

Proximal gradients for LASSO (fast descent) .41 =35 (xe+3AT (6 — Axy))

358 Optimization

Problem Set V1.4
1 For a 1 by 1 matrix in Example 3, the determinant is just det X = zy.
Find the first and second derivatives of F(X) = —log{det X) = —logz;; for

x11 > 0. Sketch the graph of F' = — log = to see that this function F'is convex,

The determinant of a 2 by 2 matrix is det(X) = ad — be. Its first derivatives are
d,—c, —b,a in VF. After dividing by det X, those fill the inverse matrix X 1.
That division by det X makes them the four derivatives of log{det X):

Derivatives VF= d —c| Inverse 1 d —-b]_ vi7T
of F=det X - @ of X " detX|—c a| detX
Symmetry gives b = ¢. Then F = —log(ad — b?) is a convex function of a, b, d.

Show that the 3 by 3 second derivative matrix of this function F is positive definite.

Show how equations (7) and (8) lead to the basic estimate (9) for linear convergence
of steepest descent. (This extends to backtracking for another choice of ¢.)

A non-quadratic example with its minimum at ¢ = O and ¥ = +0o0 is
1 x 1 0 1
= _ g2 e = = = —
flz,y) 2T +e vf I:_e—yj| H [0 e_y] K

Explain why projection onto a convex set K is a centraction in equation (24).
Why is the distance }|@ — y|| never increased when @ and y are projected onto K ?

What is the gradient descent equation Ty 1 = @y, — 85V f{xy)} for the least squares
problem of minimizing f(x) = 3| Az — b{|*?

V1.5 Stochastic Gradient Descent and ADAM 359

VI.5 Stochastic Gradient Descent and ADAM

Gradient descent is fundamental in training a deep neural network. it is based on a step of
the form @1 = & — 5 VL{xy). That step should lead us downhill toward the point
a* where the loss function L{x) is minimized for the test data v. But for large networks
with many samples in the training set, this algorithm (as it stands) is not successful !

It is important to recognize two different problems with classical steepest descent:

1. Computing VL at every descent step-—the derivatives of the total loss L with
respect to all the weights & in the network—is too expensive. That total loss adds
the individual losses £(x, ;) for every sample v; in the training set—potentially
millions of separate losses are computed and added in every computation of L.

2, The number of weights is even larger. So VL = 0 for many different choices «*
of the weights. Some of those choices can give poor results on unseen test data.
The learning function F can fail to “generalize”. But stochastic gradient descent
(SGD) does find weights 2 that generalize—weights that will succeed on unseen
vectors v from a similar population.

Stochastic gradient descent uses only a “minibatch’ of the training data at each step.
B samples will be chosen randomly. Replacing the full batch of all the training data by
a minibatch changes L{x) = 13 ¢;(x) to a sum of only B losses. This resolves both
difficulties at once. The success of deep learning rests on these two facts:

1. Computing V£; by backpropagation on B samples is much faster. Often B = 1.

2. The stochastic algorithm produces weights x* that also succeed on unseen data,
The first point is clear. The calculation per step is greatly reduced. The second point is
a miracle. Generalizing well to new data is a gift that researchers work hard to explain.

We can describe the big picture of weight optimization in a large neural network.
The weights are determined by the training data. That data often consists of thousands
of samples. We know the “features™ of each sample—maybe its height and weight, or
its shape and color, or the number of nouns and verbs and commas (for a sample of text).
Those features go into a vector v for each sample, We use a minibatch of samples.

And for each sample in the training set, we know if it is “‘a cat or a dog”—or if
the text is “poetry or prose”. We look for a learning function F that assigns good weights.
Then for v in a similar population, F' outputs the correct classification “cat” or “poetry™.

We use this function F° for unidentified test data. The features of the test data are
the new inputs v, The output from F will be the correct (7) classification-—provided
the function has learned the training data in a way that generalizes.

Here is a remarkable observation from experience. We don 't want to fit the training data
too perfecily. Thai would often be overfitting. The function F* becomes oversensitive.
It memorized everything but it hasn’t learned anything. Generalization by SGD is the
ability to give the correct classification for unseen test data v, based on the weights =
that were leamned from the training data.

360 _ N N _ Optimization

I compare overfitting with choosing a polynomial of degree 60 that fits exactly
to 61 data points. Tts 61 coefficients ag to agg will perfectly learn the data. Baut that
high degree polynomial will oscillate wildly between the data points. For test data at a
nearby point, the perfeci-fit polynomial gives a completely wrong answer.

So a fundamental strategy in training a neural network (which means finding a func-
tion that learns frorn the training data and generalizes well to test data) is early stopping.
Machine learning needs to know when to quit ! Possibly this is true of human learning too.

The Loss Function and the Learning Function

Now we establish the optimization problem that the network will solve. We need to define
the “loss” L{x) that our function will (approximately) minimize. This is the sum of the
errors in classifying each of the training data vectors v. And we need to describe the
form of the learning function F that classifies each data vector v.

At the beginning of machine learping the function ¥ was linear—a severe limitation.
Now F is certainly nonlinear. Just the inclusion of one particular nonlinear function
at each neuron in each layer has made a dramatic difference. It has tumed out that with
thousands of samples, the function F' can be correctly trained.

It is the processing power of the computer that makes for fast operations on the data.
In particular, we depend on the speed of GPU’s (the Graphical Processing Units
that were criginally developed for computer games). They make deep learning possible.

We first choose a loss function to minimize. Then we describe stochastic gradient
descent. The gradient is determined by the network architecture—the “feedforward”
steps whose weights we will optimize. Our goal in this section is to find optimization
algorithms that apply to very large problems. Then Chapter VII will describe how the
architecture and the algorithms have made the leaming functions successful.

Here are three loss functions-—cross-entropy is a favorite for neural nets. Section VL4
will describe the advantages of cross-entropy loss over square loss (as in least squares).

1 Squareloss L(z) = Z ||F(z, »;) — true{|* : sum over the training samples v;

1
N

2 Hinge loss L(x) = Z x(0,1 —t F{x)) for classification ¢ = 1 or —1
1

3 Cross-entropyloss Liz)= uFZ[y«; log #+(1—v;) log (1—%;)] fory;=0orl

1
Cross-entropy loss or “logistic loss” is preferred for fogistic regression {with two
choices only). The true label ; = 0 or 1 could be —1 or 1 (%; 15 a computed label).

For a minibatch of size B, replace ¥ by B. And choose the B samples randomly.

This section was enormously improved by Suvrit Sra’s lecture in 18.065 on 20 April 2018,

VL5 Stochastic Gradient Descent and ADAM ' 361

Stochastic Descent Using One Sample Per Step

To simplify, suppose ecach minibaich contains only one sample v; (so B = 1)
That sample is chosen randomly. The theory of stochastic descent usually assumes that the
sample is replaced after nse—in principle the sample could be chosen again at step &k + 1.
But replacement is expensive compared to starting with a random ordering of the samples.
In practice, we often omit replacement and work through samples in a random order.

Each pass through the training data is one epoch of the descent algorithm, Ordinary
gradient descent computes ¢ne epoch per step (batch mode). Stochastic gradient descent
needs many steps (for minibaiches). The online advice is to choose B < 32.

Stochastic descent began with a seminal paper of Herbert Robbins and Sutton Monro
in the Annals of Mathematical Statistics 22 (1951) 400-407 1 A Stochastic Approximation
Method. Their goal was a fast method that converges to 2* in probability :

Toprove Prob{||zx —«"|| > €) approaches zero as k — oo,

Stochastic descent is more sensitive to the stepsizes s; than full gradient descent.
If we randomly choose sample »; at step &, then the kth descent step is familiar:

Tp+1 =@k — 8x Ve L@k, vi) WV z £ = derivative of the loss term from sample v;

We are doing much less work per step (B inputs instead of all inputs from the training
set). But we do not necessarily converge more slowly. A typical feature of stochastic
gradient descent is “semi-convergence” : fast convergence at the start.

Early steps of SGD often converge more quickly than GD toward the solution x*. k

This is highly desirable for deep learning. Section V1.4 showed zig-zag for full batch
mode, This was improved by adding momentumn from the previous step (which we may
also do for SGD). Another improvement frequently comes by using adaptive methods like
some variation of ADAM. Adaptive methods look further back than momentum—aow all
previous descent directions are remembered and used. Those come later in this section.

Here we pause to look at semi-convergence: Fast start by stochastic gradient descent.
We admit immediately that later iterations of SGD are frequently erratic. Convergence
at the start changes to large oscillations near the solution. Figure V110 will show this.
One response is to stop early. And thereby we avoid overfitting the data,

In the following example, the solution &* is in a specific interval I. 1If the current
approximation iy is outside [, the next approximation &1 is closer to I {or inside [).
That gives semiconvergence—a good start. But eventually the xy bounce around inside 1.

362 N - Optimization

Fast Convergence at the Start : Least Squares withn = 1

We learned from Suvrit Sra that the simplest example is the best. The vector & has only
one component 2. The ith loss is £; = %(a,-:c — b;)? with @; > 0. The gradient of ; is
its derivative a;{a;x — b;). 1t is zero and ¢; is minimized at = = b; /a;. The total loss over
all N samples is L(z) = 5 3 (a:2 — b;)? : Least squares with N equations, 1 unknown.

N
1 b

The equation to solve is VL= N Z a;{a;z — b;) =0. The solution is &* = 2aib)]

1

Ya?
Important Tf B/A is the largest ratio ;/a;, then the true solution «* is below B/A.
This follows from a row of four inequalities :
b, B

. 2oby B
all 2= < 2 Aa;b, < Ba? A(Xaib) <B(Xal) a*= T <3

2)

Similarly x* is above the smallest ratio 3/c. Conclusion: If a; is outside the
interval I from /o to B/A, then the kth gradient descent step will move toward that
interval I containing =*. Here is what we can expect from stochastic gradient descent:

If z; is outside I, then x;.; moves toward the interval 3/ < = < HB/A.

If x, isinside I,thensois x;,. The iterations can bounce around inside 1.

A typical sequence g, &1, T2, ... from minimizing || Az — b||? by stochastic gradient
descent is graphed in Figure VI.10. You see the fast start and the oscillating finish.
This behavior is a perfect signal to think about early stopping or averaging (page 365)
when the oscillations start.

Cost Function

Iterations

Figure VL.10: The left figure shows a trajectory of stochastic gradient descent with two
unknowns. The early iterations succeed but later iterations oscillate (as shown in the inset).
On the right, the quadratic cost function decreases quickly at first and then fluctuates
instead of converging. The four paths start from the same @ with random choices of ¢ in
equation (3). The condition number of the 40 by 2 matrix 4 is only 8.6.

V1.5 Stochastic Gradient Descent and ADAM 363

Randomized Kaczmarz is Stochastic Gradient Descent for Ax = b

bi - a;ra:k a.
s>

(3

Kaczmarz for Az = b with random i(k) Tp1 = Tk +

We are randomly selecting row ¢ of A at step k. We are adjusting @41 to solve equation 7
in Az = b, (Multiply equation (3) by a} to verify that al@z+1 = b;. This is equation i
in Az = b.) Geometrically, x4, is the projection of &y onto one of the hyperplanes
alz = b, that meet at z* = A~'b,

This algorithm resisted a close analysis for many years. The equations a]x = by,
alx = by... were taken in cyclic order with step s = 1. Then Strohmer and Vershynin
proved fast convergence for random Kaczmarz. They used SGD with norm-squared sarn-
pling (importance sampling) as in Section I1.4: Choose row i of A with probability p;
proportional to ||a]||%.

The previous page described the Kaczmarz iterations for A =& when A was N by 1.
The sequence zy, 1,2, . .. moved toward the interval /. The least squares solution z*
was in that interval. For an N by K matrix A, we expect the K by 1 vectors &; to move
into a K -dimensional box around &*. Figure V1.10 showed this for K = 2.

The next page will present numerical experiments for stochastic gradient descent:

A variant of random Kaczmarz was developed by Gower and Richtarik, with no less
than six equivalent randomized interpretations. Here are references that connect the many
variants from the original by Kaczmarz in the 1937 Bulletin de 1’ Académie Polonaise.

1 T. Strohmer and R, Vershynin , A randomized Kaczmarz algorithm with exponential®
convergence, Journal of Fourier Analysis and Applications 15 (2009) 262-278.

2 A. Ma, D. Needell, and A. Ramdas, Convergence properties of the randomized
extended Gauss-Seidel and Kaczmarz methods, arXiv: 1503.0823543 1 Feb 2018.

3 D. Needell, N. Srebro, and R. Ward, Stochastic gradient descent, weighted sam-
pling, and the randomized Kaczmarz algorithm, Math. Progr. 155 (2015) 549-573.

4 R. M. Gower and P. Richtarik, Randomized iterative methods for linear systems,
SIAM J. Matrix Analysis. 36 (2015) 1660-16920; arXiv : 1506.03296v5 6 Jan 2016.

5 L. Bottou et al, in Advances in Neural Information Processing Systems, NIPS 16
{2004) and NIPS 20 (2008), MIT Press.

6 S. Ma, R. Bassily, and M. Belkin, The power of interpolation: Understanding the
effectiveness af SGI in modern over-parametrized learning, arXiv: 1712.06559.

7 5. Reddi, 5. Sra, B. Poczos, and A. Smola, Fasr stochastic methods for nonsmooth
nonconvex optimization, arXiv: 1605.06900, 23 May 2016.

364 Optimization

Random Kaczmarz and Iterated Projections

Suppose Az* = b. A typical step of random Kaczmarz projects the current error &), — x*

onto the hyperplane @l x = b;, Here 7 is chosen randomly at step k (often with impor-

tance sampling using probabilities proportional to ||a;||?). To see that projection matrix

a;al fala;, substitute b; = alx* into the update step (3) ;

b — al
[l 2

Orthogonal projection never increases length. The error can only decrease. The error
norm || — ®*|} decreases steadily, even if the cost function ||Axy — b|| does not. Bur
convergence Is usually slow ! Strohmer-Vershynin estimate the expected error:

T
a;a;

Tpr— =2 — ¥ + a; =(xp —) — = (X —x*) @
ala;

1 (]

k
1
E [||:1:;c - :1:"‘“2} < (1 - C—z) llzy — *{|?, ¢ = condition number of 4. (5)
This is slow compared to gradient descent (there ¢ is replaced by ¢, and then /¢ with
momentum in VI.4), But (5) is independent of the size of A : attractive for large problems.

The theory of alternating projections was initiated by von Neumann {in Hilbert space).
See books and papers by Bauschke-Borwein, Escalante-Raydan, Diaconis, Xu,. ..

Our experiments converge slowly | The 100 by 10 matrix A4 is random with ¢ = 400.
The figures show random Kaczmarz for 600, 000 steps. We measure convergence by the
angle 8, between x; — ™ and the row a; chosen at step k. The ervor equation (4) is

ka1 = ®*[[* = (1~ cos®) [Jx — 2°|[* ()

The graph shows that those numbers 1 — cos® 8 are very close to 1 : slow convergence,
But the second graph confirms that convergence does occur. The Strohmer-Vershynin
bound (5) becomes E[cos® ;] > 1/c2 Our example matrix has 1/¢? ~ 107® and
often cos? 6 = 2 - 10~°, confirming that bound.

103 i TFaster

10—10 i

cos (0r)?

lSlower

DO T O O e e IR

10?

100t

10-2¢

Maw — a*(|%

600, 000 Iterations k=6x10°
Figure VI.11: Convergence of the squared error for random Kaczmarz. Equation (6} with
1 — cos® @ close to 1 — 1072 produces the slow convergence in the lower graph,

V1.5 Stochastic Gradient Descent and ADAM 365

Convergence in Expectation

For a stochastic algonithm like SGD, we need 'a convergence proof that accounts for
randomness—in the assumptions and also in the conclusions. Suvnit Sra provided vs
with such a proof, and we reproduce it here. The function f(z) is a sum 1Zf,(z) of
n terms. The sampling chooses i(k) at step k& uniformly from the numbers 1 to n (with
replacement !} and the stepsize is s = constant/ vT. First come assurnptions on f(x)
and V f(x), followed by a standard requirement (no bias) for the random sampling.

1 Lipschitz smoothness of Vf(x) ||Vf{z)— VFf{y)| <L]|l=-yl
2 Bounded gradients NV i @) <G
3 Unbiased stochastic gradients ~ E [V f,(2) - Vf(z)] =0
From Assumption 1 it follows that
F(@rt1) € flae) +{(V fzr), Tosr — 2r) + % L32||Vf§(k)($k)“2

1
f(@rr1) < flap) + (Vi) —s V fp(@e) + 3 L&2||V £ iy ()P
Now take expectations of both sides and use Assumnptions 2-5:)
E[f(ze41)] < E[f(e)] - sE[||V f(@p)l[*] + 5 Ls* G

1 1
= E[|VF(@)l*) < B{f(@s) - fl@wn)) + 5 L5 6P ™
Choose the stepsize s = ¢/+/T, and add up (7) from k = 1 to T. The sum telescopes :
T
1 1 [flz)— fl2™) Le o C
—ZE[||Vf(wk)|121s—(-——+—G N ®,
T ot \/T c 2 \/T i
Here f(x*) is the global minimum. The smallest term in {8) is below the average::
1<peT ELIVE@)I?] < C/VT. %

The eonclusion of Sra’s theorem is convergence in expectation at a sublinear rate.

Weight Averaging Inside SGD

The idea of averaging the outputs from several steps of stochastic gradient descent
looks promising. The learning rate {stepsize) can be constant or cyclical over each group
of outputs. Gordon Wilson et al have named this method Stochastic Weight Averaging
{SWA). They emphasize that this gives promising results for training deep networks,
with better generalization and almost no overhead. It seems natural and effective.

P. Izmaitov, D. Podoprikhin, T. Garipov, I. Vetrov, A. Gordon Wilson, Averaging
weights leads to wider oprima and better generalization, arXiv: 1803.05407,

366 Optimization

Adaptive Methods Using Earlier Gradients

For faster convergence of gradient descent and stochastic gradient descent, adaptive
methods have been a major direction. The idea is fo use gradients from earlier steps.
That “memory” guides the choice of search directicn I and the all-important stepsize s.
We are searching for the vector @* that minimizes a specified loss function L(z).
In the step from ay to Ty1, we are free to choose Dy and s :

Dk = D(VLk, VLk_l, ey VLG) and 8 = S(VLJ;, VLk_l, P ,VLo). (10)

For a standard SGD iteration, I}, depends only on the current gradient V L. (and 34 might
be s/vk). That gradient V Ly, (xx, B) is evaluated only on a random minibatch B of the
test data. Now, deep networks often have the option of using some or all of the earlier
gradients (computed on earlier random minibatches)

Adaptive Stochastic Gradient Descent ZTpr1 = T — S D (an

Success or faillure will depend on I} and si. The first adaptive method (called
ADAGRAD) chose the usual search direction D, = ¥V L{x;) but computed the stepsize

from all previous gradients [Duchi-Hazan-Singer] : /
1/2

k
1
ADAGRAD stepsize s = (%) [E diag (ZHVL,:H?)] (12)
1

a/+/k is a typical decreasing stepsize in proving convergence of stochastic descent.
It is often omitted when it slows down convergence in practice. The “memory factor”
in (12} led to real gains in convergence speed. Those gains made adaptive methods
a focus for more development.

Exponential moving averages in ADAM (Kingma-Ba) have become the favorites.
Unlike (12), recent gradients ¥V I have greater weight than earlier gradients in both s, and
the step direction 1. The exponential weights in I? and s come fromé < land 8 < 1:

1/2

k 3
Dy=(1-8)) 6" VL(=,) ‘«k:(%)l(l—mdiagZﬁ‘“—"uvumi)H? (13)

e i=1

Typical values are 4 = 0.9 and 8 = (1.999. Small values of & and 5 will effectively kill off
the moving memory and lose the advantages of adaptive methods for convergence speed.
That speed is important in the total cost of gradient descent! The lock-back formula for
the direction Dy, is like including momentum in the heavy ball method of Section V1.4,

The actual computation of D and s; will be a recursive combination of old and new :

Dy =D+ (1 -0)VEL{xy) si=8si, +(1-BIVL(z)I?| (4

For several class projects, this adaptive method clearly produced faster convergence.

V1.5 Stochastic Gradient Descent and ADAM 367

ADAM is highly popular in practice (this is written in 2018). But several authors have
pointed out its defects. Hardt, Recht, and Singer constructed examples to show that its
limit @, for the weights in deep learning could be problematic : Convergence may fail or
(worse) the limiting weights may generalize poorly in applications to unseen test data.

Equations (13)—(14) follow the recent conference paper of Reddi, Kale, and Kumar.
Those authors prove non-convergence of ADAM, with simple examples in which the
stepsize sy increases in time—an undesired outcome. In their example, ADAM takes the
wrong direction twice and the right direction once in every three steps. The exponential
decay scales down that good step and overall the stepsizes si do not decrease. A large 5
(near 1) is needed and used, but there are always convex optimization probtems on which
ADAM will fail. The idea is still good.

One approach is to use an increasing minibatch size B. The NIPS 2018 paper proposes
a new adaptive algorithm YOGI, which better controls the learning rate (the stepsize).
Compared with ADAM, a key change is to an additive update; other steps are unchanged.
Au this moment, experiments are showing improved results with YOGI.

And after fast convergence to weights that nearly solve VL(z) = 0 there is still the
crucial issue : Why do those weights generalize well to unseen test data ?

References

1. S. Ruder, An overview of gradient descent optimization algorithms, arXiv :1609.04747.

2. J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning

and stochastic optimization. J. of Machine Learning Research 12 (2011) 2121-2159.
&

3. P. Kingma and J. Ba, ADAM: A method for stochastic optimization, ICLR, 2015.

4. M. Hardt, B. Recht, and Y. Singer, Train faster, generalize better : Stability of stachastic
gradient descens, arXiv :1509.01240v2, 7 Feb 2017, Proc. ICML (2016).

5. A. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, The marginal value of
adaptive gradient methods in machine learning, arXiv: 1705.08292, 23 May 2017.

6. 5. Reddi, S. Kale, and S. Kumar, On the convergence of ADAM and beyond,
ICLR 2018: Proc. Intl. Conference on Learning Representations.

7. 8. Reddi, M. Zaheer, D. Sachan, 8. Kale, and S. Kumar, Adaptive methods for noncon-
vex optimization, NIPS (2018). '

We end this chapter by emphasizing : Stochastic gradient descent is now the leading method
to find weights = that minimize the loss L(®) and solve VL{x*) = 0. Those weights
from SGD normally succeed on unseen test data.

368 Optimization

Generalization : Why is Deep Learning So Effective ?

We end Chapter VI—and connect to Chapter VII—with a short discussion of a central
question for deep learning. The issue here is generalization. This refers to the behavior of
a neural network on test data that it has not seen. If we construct a function F(z, v) that
successfully classifies the known training data », will ¥ continue to give correct results
when v is outside the training set ?

The answer must lie in the stochastic gradient descent algorithm that chooses weights,
Those weights @ minimize a loss function L{zx, v) over the training data. The question is:
Why do the computed weights do so well on the test data ?

Often we have more free parameters in than data in v. In that case we can expect
many sets of weights (many vectors @} to be equally accurate on the training set. Those
weights could be good or bad. They could generalize well or poorly. Our algorithm chooses
a particular z and applies those weights to new data vyag;.

An unusval experiment produced unexpectedly positive results. The components
of each input vector v were randomly shuffied. So the individual features represented
by v suddenly had no meaning. Nevertheless the deep neural net learned those randomized
samples. The learning function F'{(&:, v} still classified the test data correctly. Of course
F could not succeed with unseen data, when the components of v are reordered.

It is a common feature of optimization that smooth functions are easier to approximate
than irregular functions. But here, for completely randomized input vectors, stochastic
gradient descent needed only three times as many epochs (triple the number of iterations)
to learn the training data. This randem labeling of the training samples (the experiment
has become famous) is described in arXiv: 1611.03530.

The Kaczmarz Method in Tomographic Imaging (CT)

A key property of Kaczmarz is its quick success in early iterations. This is called seni-
convergence in tomography (where solving Az = b constructs a CT image, and the method
produces a regniarized solution when the data is noisy). Quick semi-convergence for noisy
data is an excellent property for such a simple method. The first steps all approach the
correct interval from o/ to A/B (for one scalar unknown). But instde that interval,
Kaczmarz jumps around unimpressively.

We are entering here the enormous topic of ill-conditioned inverse problems (see the
books of P. C. Hansen). In this book we can do no more than open the door.

VL5 Stochastic Gradient Descent and ADAM 369

Problem Set VL.5

1 The rank-one matrix P = aa” /o a is an orthogonal projection onto the line through
a. Verify that P2 = P (projection) and that Pz is on that line and that x — Pz is
always perpendicular to a (why is aTe = TPz)

2 Verify that equation (4) which shows that &1 — @* is exactly P(zy — x*).

3 If A has only two rows a; and ag, then Kaczmarz will produce the alternating
projections in this figure. Starting from any error vector eg = &g — &*, why does e,
approach zero ? How fast ?

£3 €1
0 a;
e = [|lzo — 27|
€4
€2
a3
4 Suppose we want to minimize F{z,y} = ¥* + (y — x)?. The actual minimum

is FF = 0at (z*,y*) = (0,0). Find the gradient vector V F at the starting point
(z0,50) = (1,1). For full gradient descent (nof stochastic) with step s = 1, where
is ("Tlv yl) ?

E

5 In minimizing F(x) = ||Ax — b||?, stochastic gradient descent with minibatch size
B = 1 will solve one equation alz = b; at each step. Explain the typical step for
minibatch size B = 2.

6 (Experiment) For a random A and b {20 by 4 and 20 by 1), try stochastic gradient
descent with minibatch sizes B = 1 and B = 2. Compare the convergence rates—
the ratios ri. = ||2xe1 — 2%}/ |21 — 2¥||-

7 (Experiment) Try the weight averaging on page 365 proposed in arXiv : 1803.05407.
Apply it to the minimization of || Az — b||? with randomly chosen A (20 by 10) and
b (20 by 1), and minibatch B = 1.

Do averages in stochastic descent converge faster than the usual iterates xy ?

VIL.1

VIL.2

VIL3

VIL4

VILS5

Part VII
Learning from Data

The Construction of Deep Neural Networks
Convolutional Neural Nets
Backpropagation and the Chain Rule
Hyperparameters : The Fateful Decisions

The World of Machine Learning

Part VII: Learning from Data

This part of the book is a great adventure—hopefully for the reader, certainly for the author,
and it involves the whole science of thought and intelligence. You could call it
Machine Learning (ML) or Artificial Intelligence (Al). Human intelligence created it
(but we don’t fully understand what we have done). Out of some combination of ideas
and fatlures, attempting at first to imitate the neurons in the brain, a successful approach
has emerged to finding patterns in data.

What is important to understand about deep learning is that those data-fitting computa-
tions, of almost unprecedented size, are often heavily underdetermined. There are a great
many poiuts in the training data, but there are far more weights to be computed in a deep
network. The art of deep learning is to find, among many passible solutions, one that will
generalize to new data.

It is a remarkable observation that learning on deep neural nets with many weights
leads to a successful tradeoff: F is accurate on the training set and the unseen test set. ¥
This is the good outcome from minibatch gradient descent with momentum and the
hyperparameters from Section VI1.4 (inciuding stepsize seiection and early stopping).

This chapter is organized in an irregular order. Deep learning comes first. Earlier
models like Support Vector Machines and Kernel Methods are briefly described in VIL5.
The order is anhistorical, and the reader will know why. Neural nets have become the
primary architecture for the most interesting {and the most difficult) problems of
machine tearning. That multi-fayer architecture often succeeds, but by no means always !
This book has been preparing for deep learning and we simply give it first place.

Sections VII.1-2 describe the learning function F(x, v) for filly connected nets and
convolutional nets. The training data is given by a set of feature vectors v. The weights
that allow F to classify that data are in the vector . To optimize F, gradient descent
needs its derivatives 8F / 8x. The weights @ are the matrices 4,, ..., Az and bias vectors
by, ..., by that take the sample data v = vg to the output w = vy

Formulas for 8F/0A and 8F/8b are not difficult. Those formulas are useful to see.
But real codes use automatic differentiation (AD) for backpropagation (Sectionn VIL3).
Each hidden layer with its optimized weights learns more about the data and the population
from which it comes—in order to classify new and unseen data from the same population.

KTA|

372 | Learning from Data

The Functions of Deep Learning

Suppose one of the digits 0,1, ...,9 is drawn in a square. How does a person recognize
which digit it is ? That neuroscience question is not answered here. How can a computer
recognize which digit it is? This is a machine learning question. Probably both answers
begin with the same idea: Leam from examples.

So we start with A different images (the training set). An image will be a set of
p small pixels—or a vector v = {vq,...,vp). The component v; tells us the “grayscale”
of the ith pixel in the image: how dark or light it is. So we have M images each with
p features: M vectors v in p-dimensional space. For every v in that training set we
know the digit it represents.

In a way, we know a function. We have M inputs in R” each with an output from 0 o 9.
But we don’t have a “rule”. We are helpless with a new input. Machine learning proposes
to create a rule that succeeds on (most of) the training images. But “succeed” means much
more than that; The rile should give the correct digit for a much wider set of test images,
taken from the same population. This essential requirement is called generalization.

What form shall the rule take? Here we meet the fundamental question. Our first
answer might be: F(v) could be a linear function from R? to R'® (a 10 by p matrix).
The 10 cutputs would be probabilities of the numbers 0 to 9. We would have 10p entries
and M training samples to get mostly right.

The difficulty is: Linearity is far too limited. Artistically, two zeros could make an 8.
1 and 0 could combine into a handwritten & or possibly 6. Images don’t add. In recognizing
faces instead of numbers, we will need a lot of pixels—and the input-output nsle is nowhere
near linear.

Artificial intelligence languished for a generation, waiting for new ideas. There is no
claim that the absolutely best class of functions has now been found. That class needs to
allow a great many parameters (called weights). And it must remain feasible to compute
all those weights (in a reasonable time) from knowledge of the training set.

The cheice that has succeeded beyond expectation—and has turned shallow learning
into deep learning—is Continuous Piecewise Linear (CPL) functions. Linear for sim-
plicity, continuous to model an unknown but reasonable rule, and piecewise to achieve
the nonlinearity that is an absolute requirement for real images and data.

This leaves the crucial question of computability. What parameters will quickly de-
scribe a large family of CPL functions 7 Linear finite elements start with a triangular mesh.
But specifying many individual nodes in R” is expensive. Much better if those nodes are
the intersections of a smaller number of lines (or hyperplanes). Please know that a regular
grid is too simple.

Here is a first construction of a piecewise linear function of the data vector v. Choose
a matrix A; and vector b;. Then set to zero (this is the nonlinear step} all negative compo-
nents of Ayv + b;. Then multiply by a matrix A, to produce 10 outputs in w = F(v) =
Az (A;v+by) .. That vector { Ay v + by). forms a “hidden layer” between the input v and
the cutpul wr. :

The Functions of Deep Learning 373

(Av)y [(Av +b)iy

o pg + 2g = 20 weights
Inputs ClAv + by =w
Uy r(4,3) = 15 linear pieces
inw = F(wv)

(Av)g [(Av +b)gls

Actually the nonlinear function called ReLU () = x4 = max (x, 0} was originally
smoothed into a logistic curve like 1 /{1 + e~). It was reasonable to think that continuous
derivatives would help in optimizing the weights A, , b1, As. That proved to be wrong.

The graph of each component of (A;v + b)4 has two halfplanes (one is flat, from
the zeros where A;v + by is negative), If 4, is g by p, the input space R” is sliced by
q hyperplanes into r pieces. We can count those pieces ! This measures the “expressivity™
of the overall function F{v). The formula from combinatorics uses the binomial coeffi-
cients (see Section VEL]1):

r(a,p) = (§)+ (‘f) ++(§)

This number gives an impression of the graph of F'. But our function is not yet sufficiently
expressive, and one more idea is needed.

Here is the indispensable ingredient in the learning function . The best way to create
complex functions from simple functions is by composition. Each F; is linear (or
affine) followed by the nonlinear ReLU : Fj(v) = (4;v + b;)4. Their composition is
Flv)y = FL(Fr_1{... Fa(Fi(v)))). We now have L — 1 hidden layers before the final
output layer. The network becomes deeper as L increases. That depth can grow quickly for
convolutional nets (with banded Toeplitz matrices A).

The great optimization problem of deep learning is to compute weights A; and b,
that will make the outputs F'{v) nearly comrect—close to the digit wiw} that the image v
represents. This problem of minimizing some measure of F(v) — w(v) is solved by
following a gradient downhill. The gradient of this complicated function is computed by
backpropagation—the workhorse of deep learning that executes the chain rule.

A historic competition in 2012 was to identify the 1.2 million images collected in
ImageNet. The breakthrough neural network in AlexNet had 60 million weights. Its
accuracy (after 5 days of stochastic gradient descent) cut in half the next best error rate.
Deep learning had arrived.

QOur goal here was to identify continuous piecewise linear functions as powerful
approximators, “That family is also convenient—closed under addition and maximization
and composition. The magic is that the learning function F(A4;,b;, v) gives accurate
results on images ¢ that I’ has never seen.

This two-page essay was writtent for SIAM News (December 2018).

374 Leaming from Data

Bias vs. Variance : Underfit vs. Overfit

A training set contains N vectors v, ..., vy with m components each (the m features of
each sample). For each of those N points in R™, we are given a value y;. We assume there
is an unknown function f{x) so thaty; = f(=x;) + €;, where the noise € has zero mean and
variance o%. That is the function f () that our algorithms try to learn,

Our learning algorithm acwally finds a function F'(2) close to f{x). For example,
F' from our learning algorithm could be linear (not that great) or piecewise linear (much
better) — this depends on the algorithm we use. We fervently hope that F(z) will be close
to the correct f{x) not only on the training samples but also for later test samples.

The warning is often repeated, and always the same: Don’t overfit the data. The
option is there, to reproduce all known observations. It is more important to prevent large
swings in the learning function {(which is built from the weights). This function is going
to be applied to new data. Implicitly or explicitly, we need to regularize this function F.

Ordinarily, we regularize by adding a penalty term like A||z|| to the function that we
are minimizing, This gives a smoother and more stable solution as the minimum point.
For deep learning problems this isn’t always necessary! We don’t fully understand
why steepest descent or stochastic steepest descent will find a near mimimum that
generalizes well to unseen test data—with no penalty term. Perhaps the success comes
from following this rule : Stop the minimization early before you overfit.

If F" does poorly on the training samples with large error (bias), thatis underfitting
If F* does weill on the training samples but not well on test samples, that is overfitting.

This is the bias-variance tradeoff. High bias from underfitting, high variance from
overfitting. Suppose we scale f and F so that E[F(x)] = 1.

Bias = E [f(x) — F{x)] Variance = E [F(z})?] — (E[F(x)])*

We are forced into this tradeoff by the following identity for (Bias)? + (Variance) + (Noise)? :

E((y— F(x))] = (E[f(z) - F(@)])* + E[(F(2))’] - (B[F(z)))* + E[(y - f())?)

Again, bias comes from allowing less freedom and using fewer parameters {weights).
Variance is large when we provide too much freedom and too many parameters for F.
Then the leamed function F' can be super-accurate on the training set but out of control
on an unseen test set. Overfitting produces an F that does not generalize.

Here are links to six sites that support codes for machine fearning ;

Caffe : arXiv:1408.5093 Keras ; http:/keras.io/
MatConvNet : www.vifeat.org/matconvnet Theano: arXiv: 1605.02688

Torch : torch.ch TensorFlow : www.tensorflow.org

VII.1 The Construction of Deep Neural Networks 375

VIL.1 The Construction of Deep Neural Networks

Deep neural networks have evolved into a major force in machine learning. Step by step,

the structure of the network has become more resilient and powerful—and more easily

adapted to new applications. One way to begin is to describe essential pieces in the

structure. Those pieces come together into a learning function F(z, v) with weights x

that capture information from the training daia v—io prepare for use with new test data.
Here are important steps in creating that function F': '

1 Key operation Composition ¥ = Fy(Fa(Fy(z, v)))

2 Keyrmle Chain rule for x-derivatives of F

3 Key algorithm Stochastic gradient descent to find the best weights
4 Key subroutine Backpropagation to execute the chain rale

5 Key nonlinearity ReLU(y) = max(y, 0) = ramp function

Our first step is to describe the pieces Fy, Fy, Fy, ... for one layer of neurons at a time.
The weights & that connect the layers v are optimized in creating F'. The vector v = wg
comes from the training set, and the function £y produces the vector vy at layer k.
The whole success is to build the power of F from those pieces Fi in equation (1).

F}, is a Piecewise Linear Function of vy, _,

The input to Fj, is a vector vx—; of length Ny_,. The output is a vector vy of length Ny,
ready for input to Fy 1. This function F}, has two parts, first linear and then nonlinear:

1. The linear part of £}, vields A,vi_, + by (that bias vector by makes this “affine’)

2. A fixed nonlinear function like ReLU is applied to eack component of Apvg_1 + by

v = Fr{vp_1) = ReLU{Agve_1 + bi) (1)

The training data for each sample is in a feature vector vg. The matrix Ay has shape
Ny by Ni_i. The column vector by, has N components. These Ay and by are weights
constructed by the optimization algorithm. Frequently stochastic gradient descent
computes optimal weights = (A1,by,..., Af,br) in the central computation of deep
learning. It relies on backpropagation to find the z-derivatives of F, to solve VF = 0.

The activation function ReLU(y) = max(y,0) gives flexibility and adaptability, '

Linear steps alone were of limited power and ultimately they were unsuccessful.

ReLU 1s applied to every “neuron” in every internal layer. There are Ny neurons
in layer k, containing the N, outputs from Agvi_; + bg. Notice that ReLU itself is
continuous and piecewise linear, as its graph shows, (The graph is just a ramp with
slopes) and 1. Its derivative is the usual step function.) When we choose ReL.U, the
composite function £ = Fi{Fy(Fy(x,v))) has an important and attractive property :

The learning function F is continuous and piecewise linear in v.

-

376 Learning from Data

One Internal Layer (L = 2)

Suppose we have measured m = 3 features of one sample point in the training set,
Those features are the 3 components of the input vector v = vg. Then the first function Fy
in the chain multiplies vo by a matrix 4, and adds an offset vector by (bias vector).
If A is 4 by 3 and the vector by i1s 4 by 1, we have 4 components of Agvg + bo.

That step found 4 combinations of the 3 original features in v = vp. The 12 weights
in the matrix A; were optimized over many feature vectors v in the training set, to choose a
4 by 3 matrix (and a 4 by 1 bias vector) that would find 4 insightful combinations.

The final step to reach v, is to apply the nonlinear “activation function” to each of the
4 components of Ajwy + &y, Historically, the graph of that nonlinear function was
often given by a smooth “S-curve”. Particular choices then and now are in Figure VIL.I.

ReLU(z) tanh(z/2)

4 | J‘ 1 P —]
2 4 o} ,.f"/ e’ —1 ';
e sy1 1
0 el i + ;

d/dx ReLU{z) d/dx tanh{x/2)

1} 0.5 T
0.5] 0.25 e RN
i --""-’ b T,

—4 -2 o 2 4- —4 -2 0 2 4

Figure VIL1; The Rectified Linear Unit and a sigmoid option for nonlinearity.

Previously it was thought that a sudden change of slope would be dangerous and pos-
sibly unstable, But large scale numerical experiments indicated otherwise ! A better result
was achieved by the ramp function ReLU(y) = max(y, 0). We will work with ReLU:

Substitute 4, v + by into ReLU to find v, (1) = max({A;vg+by), 0).| (D)

Now we have the components of v; at the four “neurons”™ in layer 1. The input layer held
the three components of this particular sample of training data. We may have thousands or
‘millions of samples. The optimization algerithm found A, and b;, possibly by stochastic
gradient descent using backpropagation to compute gradients of the overall loss.

Suppose our neural net is shallow instead of deep. It only has this first layer of 4
neurons. Then the final step will multiply the 4-compenent vector v, by a 1 by 4 matrix
Aa (a row vector). It can add a single number b2 to reach the value vo = Asv; + ba.
The nonlinear function ReLU is not applied to the output.

Overall we compute vy = F'(x, vg) for each feature vector vg in the training set.

3)
The steps are v, = Apvy + by = Ag (ReLU (Ayvp + 1)) + by = Fx, vg).

~ VIL1 The Construction of Deep Neural Networks 377

The goal in optimizing © = A4y,b;, A2,bs is that the output values vy, = w9 at the
last layer £ = 2 should correcily capture the important features of the training data vg.

4 x 3 matrix A, 1 x 4 matrix A»
Add 4 < 1 vector by
Rel.U -
RelLU
(2P
rI_]/’
RelU L_
— ReLU
Feature vector vg 1 = A1vo+ by v; at laver 1 Output w = v,
Three components for 7, atlayer 1 v; = ReLU{(y,) vy = Aoty
each training sample Four components of ¥, and v,

Figure VIL2: A feed-forward neural net with 4 neurons on one intermal layer.
The output 2 {plus or minws) classifies the input vy (dog or cat}. Then v, is a composite
measure of the 3-component feature vector vg. This net has 20 weights in Ay and by.

For a classification problem each sample v of the training data is assigned
1 or —1. We want the output v2 to have that correct sign (most of the time).
For a regression problem we use the numerical value (not just the sign) of vs.
We do not choose enough weights A, and by, to get every sample correct. And we
do not necessarily want to ! That would probably be overfitting the training data.
It could give erratic results when F' is applied to new and unknown test data.

Depending on our choice of loss function L(z,vz) to minimize, this problem
can be like least squares or entropy minimization. We are choosing & = weight
matrices A; and bias vectors by to minimize L. Those two loss functions—
square loss and cross-entropy loss—are compared in Section VIL4.

Our hope is that the function F' has “learned” the data. This is machine learning.
We don’t want to choose so many weights in ¢ that every input sample is sure to be
correctly classified. That is not learning. That is simply fitting (overfitting) the data.

We want a balance where the function F has learned what is important in recogniiing
dog versus car—or identifying an oncoming car versus d iurning car.

Machine learning doesn’t aim to capture every detail of the numbers 0.1,2...,9.
It just aims to capture enough information to decide correctly which number it is.

L

378 LeamingfromData

The Initial Weights o in Gradient Descent

The architecture in a neural net decides the form of the learning function F{z,v). The
training data goes into v. Then we initialize the weights x in the matrices A4 and vectors b.
From those initial weights &, the optimization algorithm (normally a form of gradient
descent) computes weights =, and x2 and onward, aiming to minimize the total loss.

The question is : What weights xo to start with 7 Choosing o = 0 would be a disaster.
Poor initialization is an important cause of failure in deep leaming. A proper choice of the
net and the initial 29 has random (and independent) weights that meet two requirements:

1. xg has a carefully chosen variance 2.

2. The hidden layers in the neural net have enough neurons (not too narrow),

Hanin and Rolnick show that the initial variance ¢ controls the mean of the computed
weights. The layer widths control the variance of the weights. The key point is this:
Many-layered depth can reduce the loss on the training set. But if o® is wrong or width
is sacrificed, then gradient descent can lose control of the weights. They can explode to
infinity or implode to zero.

The danger controlled by the variance o of ¢ is exponentially large or exponentially
small weights. The good choice is o2 = 2/fan-in. The fan-in is the maximum rumber of in-
puts to neurons (Figure VII.2 has fan-in = 4 at the output). The initialization “He uniform”
in Keras makes this choice of o2,

The danger from narrow hidden layers is exponentially large variance of & for deep
pets. If layer § has n; neurons, the quantity to control is the sum of 1/(layer widths r;).

Locking ahead, convolutional nets (ConvNets) and residual networks (ResNets)
can be very deep. Exploding or vanishing weights is a constant danger. Ideas from physics
(mean field theory) have become powerful tools to explain and also avoid these dangers.
Pennington and coauthors proposed a way to stay on the edge between fast growth
and decay, even for 10}, 000 layers. A key is to use orthogonal transformations : Exactly as
in matrix multiplication Q1G}2(}3, orthogonality leaves the size unchanged,

For ConvNets, fan-in becomes the number of features times the kernel size (and not
the full size of A). For ResNets, a correct o normally removes both dangers, Very deep
networks can produce very impressive learning.

The key point: Deep learning can go wrong if it doesn’t start right.

K. He, X.Zhang, 5. Ren, and J. Sun, Delving deep into rectifiers, arXiv; 1502.01852.

B. Hanin and D. Rolnick, How to start training : The effect of initialization and architec-
twre, arXiv: 1803.01719, 19 Jun 2018,

L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington, Dyrnarmical isometry
and a mean field theory of CNNs © How fo train 10,000 layers, arXiv: 1806.05393, 2018.

VIL1 The Construction of Deep Neural Networks 379

Stride and Subsampling

Those words represent two ways to achieve the same goal: Reduce the dimension.
Suppose we start with a 1D signal of length 128. We want to filter that signal—multiply
that vector by a weight mairix 4, We also want to reduce the length to 64. Here are two
ways to reach that goal.

In two steps Multiply the 128-component vector v by A, and then discard
the odd-numbered components of the output. This is filtering followed by
subsampling. The outputis (| 2) Av.

Inonestep Discard the odd-numbered rows of the matrix A. The new matrix
Aa becomes short and wide: 64 rows and 128 columns. The “stride” of the
filter is now 2. Now multiply the 128-component vector v by As. Then Azv
is the same as (| 2) Av. A stride of 3 would keep every third compoenent.

Certainly the one-step striding method is more efficient. If the stride is 4, the dimension
is divided by 4. In twe dimensions (for images) it is reduced by 16.

The two-step method makes clear that half or three-fourths of the information is lost.
Here is a way to reduce the dimension from 128 to 64 as before, but to run less risk of
destroying important information : Max-pooling.

Max-pooling

Mutltiply the 128-component vector v by A, as before. Then from each even-odd pair of
outputs like (Av); and (Av)3, keep the maximum. Please notice right away : Max-pooling ;
is simple and fast, but taking the maximum is not a linear operation. It is a sensible
route to dimension reduction, pure and simple.

For an image (a 2-dimensional signal) we might use max-pooling over every 2 by 2
square of pixels. Each dimension is reduced by 2, The image dimension is reduced by 4.
This speeds up the training, when the number of neurons on a hidden layer is divided by 4.

Normally a max-pooling step is given its own separate place in the overall architecture
of the neural net. Thus a part of that architecture might look like this:

—- —-
weights in A max-pooling
'vntin layer v = R{Av, + b,) tUnye =max2{v,1)°

Dimension reduction has another important advantage, in addition to reducing the
computation. Pooling also reduces the possibility of overfitting. Average pooling would
keep the average of the numbers in each pool : now the pooling layer is linear.

380 Leaming fromData

The Graph of the Learning Function F'(v)

The graph of F(v)} is a surface made up of many, many flat pieces—they are planes
or hyperplanes that fit together along all the folds where ReLU produced a change of slope.
This is like origami except that this graph has flat pieces going to infinity. And the
graph might not be in R®—the feature vector ¥ = vg has Ny = m components.

Part of the mathematics of deep learning is to estimate the number of flat pieces
and to visualize how they fit into one piecewise linear surface. That estimate comes after
an example of a neural net with one internal layer. Each feature vector v contains
m measurements like height, weight, age of a sample in the training set.

In the example, F had three inputs in vg and one output vs. Its graph will be a piecewise
flat surface in 4-dimensional space. The height of the graph is v, = F(wq), over the
point vy in 3-dimensional space. Limitations of space in the book (and severe limitations
of imagination in the author) prevent us from drawing that graph in R*, Nevertheless
we can try to count the flat pieces, based on 3 inpus and 4 neurons and 1 output.

Note 1 With only m = 2 inputs (2 features for each training sample) the graph of F
1s a surface in 3D. We can and will make an attempt to describe it.

Note 2 You actually see points on the graph of F when you run examples on
playground.tensorflow.org. This is a very instructive website.

That wehsite offers four options for the training set of points vy, You choose the number of
layers and neurons. Please choose the ReLU activation function ! Then the program counts
epochs as gradient descent optimizes the weights. (An epoch sees all samples on average
once.} If you have allowed enough layers and neurons to correctly classify the blue and
orange training samples, you will see a polygon separating them. That polygon shows
where F' = 0, It is the cross-section of the graph of z = F(w) at height = = 0.

That polygon separating blue from orange (or plus from minus: this is classification)
is the analog of a separating hyperplane in a Support Vector Machine. If we were limited
to linear functions and a straight line between a blue ball and an orange ring around it,
separation would be impossible, But for the deep learning function £ this is not difficult. . .

We will discuss experiments on this playground.tensorflow site in the Problem Set,

Important Note : Fully Connected versus Convelutional

. | We don't want to mislead the reader. Those “fully connected” nets are often not the maost
effective. If the weights around one pixel in an image can be repeated around all pixels
{why not 7), then one row of A4 is all we need. The row can assign zero weights to faraway
pixels. Local convelutional neural nets (CNN’s) are the subject of Section VIL2,

You will see that the count grows exponentially with the number of neurons and layers.
That is a useful insight into the power of deep learning. We badly need insight because
the size and depth of the neural network make it difficult to visualize in full detail.

VII.1 The Construction of Deep Neural Networks 381

Counting Flat Pieces in the Graph : One Internal Layer

It is easy to count entries in the weight matrices Ay and the bias vectors by,. Those numbers
determine the function F. But it is far more interesting to count the number of flat pieces
in the graph of F. This number measures the expressivity of the neural network.
F{z,v) is a more complicated function than we fully understand (at least so far).
The system is deciding and acting on its own, without explicit approval of its “thinking”.
For driverless cars we will see the consequences fairly soon.

Suppose v has m components and A;vo-+b, has N components. We have N functions
of vy. Each of those linear functions is zero along a hyperplane (dimension m — 1)
in R™. When we apply ReLU to that linear function it becomes piecewise linear, with a
fold along that hyperplane. On one side of the fold its graph is sloping, on the other side
the function changes from negative to zero.

Then the next matrix Az combines those N piecewise linear functions of vy, s0 we
now have folds along N different hyperplanes in R™. This describes each piecewise linear
component of the next layer A (ReLU(A4,v¢ + by} in the typical case.

You could think of N straight folds in the plane (the folds are actually along N hyper-
planes in m-dimensional space). The first fold separates the plane in two pieces. The next
fold from ReL.1J will leave us with four pieces. The third fold is more difficult to visualize,
but the following figure shows that there are seven (not eight) pieces.

In combinatorial theory, we have a hyperplane arrangement—and a theorem of Tom
Zaslavsky counts the pieces. The proof is presented in Richard Stanley’s great textbook on
Enumerative Combinatorics (2001). But that theorem is more complicated than we need,
because it allows the fold lines to meet in all possible ways, Cur task is simpler because
we assume that the fold lines are in “general position”—m + 1 folds don’t meet. For this
case we now apply the neat counting argument given by Raghu, Poole, Kleinberg, Gangul,
and Dickstein : On the Expressive Fower of Deep Neural Networks, arXiv: 1606.05336v6:
See also The Number of Response Regions by Pascanu, Montafar, and Bengio on arXiv
1312.6098.

Theoremn For v in R™, suppose the graph of F(v) has folds along IV hyperplanes
Hy,...,Hy. Those come from N linear equations a.;r‘v + b; = 0, in other words
from ReL U at V neurons. Then the number of linear pieces of F and regions bounded
by the V hyperplanes is r(N,m) :

T(N,m)=i("f)=("§)+(f)+-~+(z). " @

=0

These binomial coefficients are

N N . N N .
— ' [— = =
(i)_i!(N—-i)I with 0! land(o) land(t.) 0 fori > N.

Exarople The function F'(x,y, 2} = ReLU (2} + ReLU () + ReL.U (z) has 3 folds along
the 3 planes z =" 0,y = 0, z = 0. Those planes divide R® into r(3,3) = 8 pieces where
F=gz+y+zandz + z and z and 0 (and 4 more). Adding ReLU (x +y+ 2z — 1) givesa
fourth fold and r(4, 3) = 15 pieces of R®. Not 16 because the new fold plane z + y +2 = 1
does not meet the 8th original piece where x < 0,y < 0,2 < 0.

b’

382 o ~_Leaming from Data.

George Polya’s famous YouTube video Let Us Teach Guessing cut a cake by 5 planes.
He helps the class to find r(5,3) = 26 pieces. Formula (4) allows m-dimensional cakes.

One hyperplane in R™ produces (é) + (%) = 2 regions. And N = 2 hyperplanes
will produce #(2,m) = 1 + 2+ 1 = 4 regions provided m > 1. When m = 1 we have
two folds in a line, which only separates the line into (2, 1) = 3 pieces.

The count 7 of linear pieces will follow from the recursive formula

riN,m)=r{N-1m)+r(N-1,m—1). 3)

To understand that recursion, start with N — 1 hyperplanes in R™ and (N — 1, m) regions.
Add one more hyperplane H (dimension m — 1). The established N — 1 hyperplanes
cut H into (N — 1, m — 1) regions. Each of those pieces of H divides one existing region
into two, adding (N — 1,m — 1} regions to the original +{/¥ — 1,m); see Figure VIL3.
So the recursion is correct, and we now apply equation {5) to compute r{N,m).

The count starts at r(1,0) = r(0, 1) = 1. Then (4} is proved by induction on N 4+ m:

'r(N—1,m]+r(N—1,m—1):i(N;1) +mZ_I(N;1)

0 0
m—1

N-1 N-1 N-—1

(M) () (0]
m=1 m

NY N - [N

-(0)r 2 (H)-2(%) e
The two terms in brackets (second line) became one term because of a useful identity :

N-1 N-1 N . L
(;)+(i+l)_(i+l) and the induction is complete.

Mike Giles made that presentation clearer, and he suggested Figure VIL.3 to show
the effect of the last hyperplane H. There are r = 2V linear pieces of Flv)for N <m
and r == N™/m/! pieces for N >>> m, when the hidden layer has many neurons.

4 Start with 2 planes
—r(2,2)=4
la 3a " Add new plane H
2a i —r(2,1})=3
1b 2h 3b

Figure VIL3: The 7{2,1} = 3 pieces of H create 3 new regions. Then the count becomes
r{3,2) = 4 + 3 = 7 flat regions in the continuous piecewise linear surface vy = F'{wp).
A fourth fold will cross all 3 existing folds and create 4 new regions, so v (4,2) = 11.

VILI The Construction of Deep Neural Networks 383

Flat Pieces of F'(v) with More Hidden Layers

Counting the linear pieces of F{v) is much harder with 2 internal layers in the network.
Again vy and v, have m and N, components. Now A, v; + b; will have N» components
before ReLU. Each one is like the function F for one layer, described above. Then appli-
cation of ReLU will create new folds in its graph. Those folds are along the lines where a
component of A, v, + by is zero.

Remember that each component of A,v, + by is piecewise linear, not linear. So it
crosses zero {(if it does) along a piecewise linear surface, not a hyperplane. The straight
lines in Figure VIL3 for the folds in vy will change to piecewise straight lines for the folds
in v3. In m dimensions they are connected pieces of hyperplanes. So the count becomes
variable, depending on the details of vp, 43, b1, Ag, and bo.

Still we can estimate the number of linear pieces. We have Ny piecewise straight lines
{or piecewise hyperplanes in R™) from N2 ReLU’s at the second hidden layer. If those
lines were actually siraight, we would have a total of N, + N2 folds in each component of
vz = F(vo). Then the formula (4) to count the pieces would have Ny + Ny in place of N.
This is our estimate {open for improvement) with two layers between vp and wvj.

Composition F3(F2(Fy(v)))

The word “composition” would siroply represent “matrix multiplication” if all our
functions were linear: Fip(v} = Agv. Then F{vg) = AzA2Ajvg: just one matrix.
For nenlinear F. the meaning is the same : Compute v = Fi{vg), then v2 = Fo{1),
and finally v3 = Fy{vs). This operation of composition F3(Fa{Fi{wp))) is far more
powerful in creating functions than addition ! 4

For a neural network, composition produces continuous piecewise linear functions F'(wq).
The 13th problem on Hilbert’s list of 23 unsolved problems in 1900 asked a question about
ali continuous functions. A famous generalization of his question was this ;

Is every continuous function F'(z, g, z) of three variables the composition of
continous functions 4, ..., Gy of two variables ? The answer is yes.

Hilbert seems to have expected the answer no. But a positive answer was given in 1957
by Vladimir Arnold (age 19). His teacher Andrey Keolmogorov had previously created
multivariable functions out of 3-variable functions,)

Related questions have negative answers. If F(x,y, z) has continuous derivatives, it
may be impossible for all the 2-variable functions to bave continnous derivatives
(Vitushkin). And to construct 2-variable continuous functions F'(z,y} as compositions
of 1-variable continuous functions (the ultimate 13th problem) you must allow addition.
The 2-variable functions zy and z¥ use l-variable functions exp,log, and log log:

zy =exp(logr +logy) and z¥ = exp(exp(logy + loglogax)). (7}

So ruch to learn from the Web. A chapter of Kolmogorov's Heritage in Mathematics
(Springer, 2007) connects these questions explicitly to neural networks.

Is the answer to Hilbert still ves for continuous piecewise linear functions on R™ ?

384 Leaming from Data

Neural Nets Give Universal Approximation

The previous paragraphs wandered into the analysis of functions f{v) of several variables,
For deep learning a key question is the approximation of f by a neural net—when the
weights @ are chosen to bring F'{x, v} close to f{v).

There is a qualitative question and also a guantitative question :

1 For any continuous function f{w) with v in a cube in R%, can a net with enough
layers and neurons and weights @ give uniform approximation to f within any
desired accuracy € > 0 7 This property is called universality.

If £{v) is continvous there exists x so that |F(x,v) — f(v)|<eforall v.| (8)

2 If f(wv) belongs to a normed space & of smooth functions, how quickly does the
approximation error improve as the net has more weights ?

Accuracy of approximation to f “g“ |F (2, v) — f()]| < ClIflls| O

Function spaces S often use the L2 or L! or L™ norm of the function f and its
partia! derivatives up to order r. Functional analysis gives those spaces a meaning
even for non-integer . C usually decreases as the smoothness parameter r is
increased. For continuous piecewise linear approximation over a uniform grid
with meshwidth k we often find C = O(h?).

The response to Question 1 is yes. Wikipedia notes that one hidden layer (with
enough neurons!) is sufficient for approximation within €. The 1989 proof by
George Cybenko used a sigmoid function rather than ReL, and the theorem is
continually being extended. Ding-Xuan Zhou proved that we can require the Ay to be
convolution matrices (the structure becomes a CNN), Convolittions have many
fewer weights than arbitrary matrices—and universality allows many convolutions.

The response to Question 2 by Mhaskar, Liao, and Poggio begins with the degree
of approximation to functions f(v:,...,v4) with continuous derivatives of order r.
For n weights the usual errvor bound is Cn~"/4, The novelty is their introduction
of compaosite functions built from 2-variable functions, as in f (11, v2,t3,04) =
Fa(fi(vy,ve), falva, va)). For a composite function, the approximation by a
hierarchical net is much more accurate. The error bound becomes Cn—"/2.

The proof applies the standard result for d = 2 variables to each function fy, fo, fa.
A difference of composite functions is a composite of 2-variable differences.

1 G. Cybenko, Approximation by superpositions of a sigmoidal function,
Mathematics of Control, Signals, and Systems T (1989) 303-314.

2 K. Hornik, Approximation capabilities of multilayer feedforward networks,
Neural Networks 4 (1991) 251-257.

3 H. Mhaskar, Q. Liao, and T. Poggio, Learning functions: When is deep better
than shallow, arXiv ; 01603.00988v4; 29 May 2016.

~VIL1 The Construction of Deep Neural Networks _ _ 385

4 D.-X. Zhou, Universality of deep convolutional neural networks, arXiv: 1805.
10769, 20 Jul 2018.

5 D. Rolnick and M. Tegmark, The power of deeper networks for expressing
natural functions, arXiv : 1705.05502, 27 Apr 2018.

Problem Set VII.1

1

In the example F = ReLU (z)} + ReLU (y) + ReLU(z) that follows formula (4)
for 7{N,m), suppose the 4th fold comes from ReLU (z + y + z). Its fold plane
z + y + z = 0 now meets the 3 original fold planes z = 0,y = 0,z = 0 ata
single point (0, 0,0)—an exceptional case. Describe the 16 (not 15) linear pieces of
F = sum of these four ReLU’s.

Suppose we have m = 2 inputs and N neurons on a hidden layer, so F(z,y)
is a linear combination of N ReLU’s. Write out the formula for #{NV,2) to show
that the count of linear pieces of F has leading term 3 N2

Suppose we have N = 18 lines in a plane. If 9 are vertical and 9 are horizontal,
how many pieces of the plane ? Compare with r(18,2) when the lines are in general
position and po three lines meet.

What weight matrix A; and bias vector b; will produce ReLU (z + 2y — 4} and
ReLU (32 — y + 1) and Rel.U (2z + 5y — 6) as the N = 3 components of the first
hidden layer 7 (The input layer has 2 components x and .} If the output w is the
sum of those three ReLU’s, how many pieces in w({z,y) ?

Folding a line four times gives r (4,1) = 5 pieces. Folding a plane four times gives
r{4,2) = 11 pieces. According to formula (4), how many flat subsets come from
folding R? four times ? The flat subsets of R® meet at 2D planes (like a door frame).

N
The binomial theorem finds the coefficients (j:) in{a + b)Y = Z (‘{:) akp—k
0
For ¢ =& =1 what does this reveal about those coefficients and r{N, m) form > N ?

In Figure VIL3, one more fold will produce 11 flat pieces in the graph of z = Flx,y).
Check that formula (4) gives v {4, 2) = 11. How many pieces after five folds 7 -

Explain with words or show with graphs why each of these statements about
Continuous Piecewise Linear functions {CPL functions) is true:

M The maximurm M (z,y) of two CPL functions Fi{(x,y) and Fy(z,) is CPL.
8 The sum S(z,y) of two CPL functions Fy(z,y) and Fa(zx,y) is CPL.

C If the one-variable functions y = Fy(x) and z = F,(y) are CPL,
s0 is the composition C{z) = z = (Fa2(F{z}).

386 . .. Learning from Data

9 How many weights and biases are in a network with m = Ny = 4 inputs in each
feature vector vg and N = 6 neurons on each of the 3 hidden layers? How many
activation functions (ReL.U) are in this network, before the final output ?

10 (Experimental) In a neural network with two internal layers and a total of 10 neurons,
should you put more of those neurons in layer 1 or layer 2?7

Problems 11-13 use the blue ball, orange ring example on playground.tensorflow.org
with one hidden layer and activation by ReLLU (not Tanh). When learning succeeds,
a white polygon separates blue from orange in the figure that follows.

11 Does learning succeed for IV = 4 7 What is the count »(V, 2) of flat pieces in F(x&) ?
The white polygon shows where flat pteces in the graph of F(x) change sign as they
go through the base plane z = 0. How many sides in the polygon?

12 Reduce to NV = 3 neurons in one layer. Does F' still classify blue and orange cor-
rectly ? How many flat pieces 7{3,2) in the graph of F(v) and how many sides in
the separating polygon?

13 Reduce further to N = 2 neurons in one layer. Does learning still succeed 7 What is
the count 7{2, 2) of flat pieces ? How many folds in the graph of F'(v) 7 How many
sides in the white separator ?

14 Example 2 has blue and orange in two quadrants each. With one layer, do N = 3
neurons and even N = 2 neurons classify that training data correctly ? How many
flat pieces are needed for success ? Describe the unusual graph of F(v) when N = 2.

15 Example 4 with blue and orange spirals is much more difficult! With one hidden
layer, can the network learn this training data? Describe the results as V increases.

16 Try that difficult example with two hidden layers. Start with 4 + 4 and 6 + 2 and
2 4+ 6 neurons. Is 2 + 6 better or worse or more unusual than 6 + 2 ?

17 How many neurons bring complete separation of the spirals with two hidden layers ?
Can three layers succeed with fewer neurons than two layers ?

I found that 4 + 4 + 2 and 4 + 4 + 4 neurons give very unstable iterations for that
spiral graph. There were spikes in the training loss until the algorithm stopped trying,.
playground.tensorfiow.org (on our back cover!) was a gift from Daniel Smilkov,

18 What is the smallest number of pieces that 20 fold lines can produce in a plane ?
19 How many pieces are produced from 10 vertical and 10 horizontal folds ?

20 What is the maximum number of pieces from 20 fold lines in a plane ?

VIL.2 Convolutional Neural Nets 387

VIL.2 Convolutional Neural Nets

This section is about networks with a different architecture. Up to now, each layer was
fully connected to the next layer. If one layer had n neurons and the next layer had m
neurons, then the matrix A connecting those layers is m by n. There were mn indeperndent
weights in A. The weights from all layers were chosen to give a final output that matched
the training data. The derivatives needed in that optimization were computed by backprop-
agation. Now we might have only 3 or 9 independent weights per layer.

That fully connected net will be extremely inefficient for image recognition. First, the
weight matrices A will be huge. 1f one image has 200 by 300 pixels, then its input layer has
60, 000 components. The weight matrix A4, for the first hidden layer has 60, 000 columns.
The problem is: We are looking for connections between faraway pixels. Almost always,
the important connections in an image are local.

Text and music have a 1D local structure : a time series
Images have a 2D lecal structure ; 3 copies for red-green-blue
Video has a 3D local structure : Images in a time series

More than this, the search for structure is essentially the same everywhere in the image.
There is normally no reasen to process one part of a text or image or video differently from
other parts. We can use the same weights in all padts : Share the weights. The neural net of
local connections between pixels is shift-invariant : the same everywhere.

The result is a big reduction in the number of independent weights. Suppose each
neuron is connected to only E neurons on the next layer, and those connections are the$
same for all neurons. Then the matrix A between those layers has only E independent
weights z. The optimization of those weights becomes enormously faster. In reality
we have time to create several different channels with their own E or E? weights. They
can look for edges in different directions (horizontal, vertical, and diagonal).

In one dimension, a banded shift-invariant matrix is a Toeplitz matrix or a filter.
Multiplication by that matrix A is a convelution x * v. The network of connections
between all layers is a Convolutional Neural Net {CNN or ConvNet). Here £’ = 3.

Tz o2 00 0 v = (v, V1, U2, Us, V4, Us)
_ 0 =23 =z =z 0 0 _ _)
A= 0 0 T Ty T 0 y= Av = (ylayZ;yB!y‘l)
¢ 0 0 T Tg T_q N + 2 inputs and N outputs

It is valuable to see A as a combination of shift matrices L, C, R : Left, Center, Right.
Each shift has a diagonal of 1°s A=, L+ zpC+ 2R

Then the denvatives of ¢ = Av = @1 Lv + xqCv + x_y Rv are exceptionally simple :

dy Sy dy
= = = 1
B, Lv . Cv e Bv)

368 Learning from Data

Convolutions in Two Dimensions

When the input v is an image, the convolution with & becomes two-dimensional. The
numbers z_1, To, 1 change to £ = 3% independent weights. The inputs v;; have two
indices and v represents (N + 2)2 pixels. The outputs have only N? pixels unless we pad
with zeros at the boundary. The 2D convolution & * v is a linear combination of 9 shifts.

11 Toi TN Input image v;; <, 7 from(0,0) to{ N + 1, N + 1)
Weights | 210 Zop ZT-10 Output image v;; <, 7 from {1.1) to (N, N)
21-1 #g-1 Z—j—1 | ShiftsL, C,R,U,D = Left, Center, Right, Up, Down

A= iBl]_LU+$01CU+I_11RU+$10L+IO0C+$_10R+$1_ILD+U_1_CD+_1_1RD

This expresses the convolution matrix A as a combination of 9 shifts. The derivatives
of the output 4y = Aw are again exceptionally simple. We use these nine derivatives
to create the gradients VF and VL that are needed in stochastic gradient descent
to improve the weights . The next iteration &g = xp — sV IL; has weights that
better match the correct outputs from the training data.

These nine derivatives of ¢y = Aw are computed inside backpropagation:

Oy

- % _ e By
321?11

dr_q1 R R

oy _ _
LUv 358_01_CUU =RDv (2}

CNN’s can readily afford to have B parallel channels {and that number B can vary as
we go deeper into the net). The count of weights in @ is so much reduced by weight sharing
and weight locality, that we don’t need and we can’t expect one set of E? = 9 weights
to do all the work of a convolutional net.

Let me highlight the operational meaning of convolution. In 1 dimension, the formal
algebraic definition y; = " z;v;_; = Y x;. 4, involves a “flip” of the v’s or the z’s.
This is a source of confusion that we do not need. We look instead at left-right shifts L
and R of the whole signal (in 1D) and also up-down shifts I/ and I in two dimensions.
Each shift ts a matrix with a diagonal full of 1’s. That saves us from the complication
of remembering flipped subscripts.

A convolution is a combination of shift matrices (producing a filter or Toeplitz matrix)
A cyclic convolution is a combination of cyclic shifts (producing a circulant matrix)
A continuous convolution is a continuous combination (an integral) of shifts

In deep learning, the coefficients in the combination will be the “weights” to be learned.

VILZ Convolutional Neural Nets 389

Two-dimensional Convolutional Nets

Now we come to the real success of CNN’s: Image recognition. ConvNets and deep
learning have produced a small revolution in computer vision, The applications are to
self-driving cars, drones, medical imaging, security, robotics—there is nowhere to stop,
QOur interest is in the algebra and geometry and intuition that makes all this possible.

In two dimensions (for images) the matrix A is block Toeplitz. Each small block
is £ by E. This is a familiar structure in computational engineering. The count E? of
independent weights to be optimized is far srnaller than for a fully connected network.

The same weights are used around all pixels (shift-invariance). The matrix produces a
2D convolution & * v. Frequently A is called a filter.

To understand an image, look to see where it changes. Find the edges. Our eyes look
for sharp cutoffs and steep gradients. Our computer can do the same by creating a filter.
The dot products between a smooth function and a moving filter window will be smooth.
But when an edge in the image lines up with a diagonal wall, we see a spike. Those dot
products (fixed image) « (moving image) are exactly the “convolution™ of the two images.

The difficulty with two or more dimensions is that edges can have many directions. We
will need horizontal and vertical and diagonal filters for the test images. And filters have
many purposes, including sroothing, gradient detection, and edge detection.

1 Smoothing For a 2D function f, the natural smoother is convolution with a Gaussian ;.

1 2o 2 1 2452
G T, - e—(32+y2)/202 % f = Pt /20 * ———— Y /20 * flz,
Fley) = 50 f= v, > f@y)

+

This shows & as a product of 1D smoothers. The Gaussian is everywhere positive, so it is
averaging : G f cannot have a larger maximum than f. The filter removes noise (at a price
in sharp edges). For small variance o2, details become clearer.

For a 2D vector {a matrix fy; instead of a function f(xz,¢)) the Gaussian mnst become
discrete. The perfection of radial symmetry will be lost because the matrix & is square.
Here is a 5 by 5 discrete Gaussian G (E = 5):

1 4 7 41 17 [1 47 4 1]
L[4 16 26 16 4 Ll
—— |7 2% 41 26 7{x—|7 3)
2131 4 16 9% 16 4 289 | 4
1 4 7 41 1
T

We also lost our exact product of 1D filters. To come closer, use a larger matrix G = z®
with 2 = {.006, .061, .242, 383, .242, .061, .006)} and discard the small outside pixels.

2 Gradient detection Image processing (as distinct from learning by a CNN) needs
filters that detect the gradient. They contain specially chosen weights. We mention some
simple filters just to indicate how they can find gradients—the first derivatives of f.

390 ~ Leaming from Data

i i 1 1 1 1
%nid:;mensmn (z1, T, 2-1) = (—5,0,5) [(5,{],—5) in convolution form

In this case the components of Awv are centered differences: (Av); = %'Ui.f] ~ 3V

When the components of v are increasing linearly from left to right, as in »; = 34,
the output from the filter is 3 3(i + 1) — %3(2‘ — 1) = 3 = correct gradient.
The flip to (%, 0, —il;) comes from the definition of convolution as 3 #;_ g 0.

Two dimensions These 3 x 3 Sobel operators approximate 8/8z and 8/8y -

-1 0 1 -1 -2 -1
8 8

E=3 —x% -2 0 2 —x% 0 0 0 (4)
Oz -1 0 1 oy 1 2 1

For functions, the gradient vector g = grad f has ||g||? = 10f/02|® + |0f/3y]*.

Those weights were created for image processing, to locate the most important features
of a typical image: its edges. These would be candidates for E by E filters inside a 2D
convolutional matrix A. But remember that in deep learning, weights like § and —3 are
not chosen by the user. They are created from the training data.

Sections IV.2 and IV.5 of this book studied cyclic convolutions and Toeplitz matrices.
Shift-invariance led to the application of discrete Fourier transforms. But in a CNN,
ReLU is likely to act on each neuron. The network may include zero-padding—as well
as max-pooling layers. So we cannot expect to apply the full power of Fourier analysis,

3 Edgedetection After the gradient direction is estimated, we look for edges—the most
valuable features to know. “Canny Edge Detection” is a highly developed process.
Now we don’t want smoothing, which would blur the edge. The good filters become
Laplacians of Gaussians:

E flz,y) = Vi[glz,y) * f(z,9)] = V2 glz,y)] + f(=,). (5)

The Laplacian V2 G of a Gaussian is (22 4 y2 — 202) e~ (=" +¥°)/20% /754,

The Stride of a Convolutional Filter

Important The filters described so far alt have a stride § = 1. For a larger stride, the
moving window takes longer steps as it moves across the image. Here is the matrix A
for a 1-dimensional 3-weight filter with a stride of 2. Notice especially that the length
of the output y = Aw is reduced by that factor of 2 (previously four cutputs and now two) :

A= 1 Igp T3 0 0

Stride § =2 =10 0 2 2 2

(6}

Now the nonzero weights like 7 in L are two colurnns apart (S columns apart for stride S).
In 2D, a stride & = 2 reduces each direction by 2 and the whole output by 4.

VIL2 Convolutional Neural Nets 391

Extending the Signal

Instead of losing neurons at the edges of the image when A is not square, we can extend the
input layer. We are “inventing” compenents beyend the image boundary. Then the output
y = Av fits the image block : equal dimensions for input and output.

The simplest and most popular approach is zero-padding: Choose all additional
componernts 1o be zeros. The extra columns on the teft and right of A multiply those zeros.
In between, we have a square Toeplitz matrix as in Section I'V.5. 1t is still determined by a
much smaller set of weights than the number of entries in A.

For periedic signals, zero-padding is replaced by wraparound. The Toeplitz matrix
becomes a circulant (Section IV.2). The Discrete Fourier Transform tells its eigenvalues.
The eigenvectors are always the colurnns of the Fourier matrix. The multiplication Av is
a cyclic convolution and the Convolution Rule applies.

A more accurate choice is to go beyond the boundary by reflection. If the last component
of the signal is vy, and the matrix is asking for v 41 and vy 42, we can rense vy and vy
{orelse vy_; and vy _2). Whatever the length of » and the size of A, all the matrix entries
in A come from the same E weights £_, 0 1 or z_, to zz (and E? weights in 2D).

Note Another idea. We might accept the original dimension (128 in our example) and
use the reduction to 64 as a way to apply two filters C, and 3. Each filter output
is downsampled from 128 to 64. The total sample count remains 128. If the filters are
suitably independent, ne information is lost and the original 128 values ¢an be recovered.

This process is linear. Two 64 by 128 matrices are combined into 128 by 128 square.
If that matrix is invertible, as we intend, the filter bank is lossless.

This is what CNN’s usually do: Add more channels of weight matrices A in order o,
capture more features of the training sample. The neural net has a bank of B filters, !

Filter Banks and Wavelets

The idea in those last paragraphs produces a filter bank. This is just a set of B different
filters (convelutions). In signal processing, an important case combines a lowpass filter
'y with a highpass filter C>. The output of C v is a smoothed signal (dominated by low
frequencies). The output Cyv is dominated by high frequencies. A perfect cutoff by ideal
filters cannot be achieved by finite matrices £ and Cs.

From two filters we have a total of 256 output components. Then both outputs are
subsampled. The resuli is 128 components, separated approximately into averages and
differences—low frequencies and high frequencies. The matrix is 128 by 128.

Wavelets The wavelet idea is to repeat the same steps on the 64 components of
the lowpass output (| 2) Chx. Then (1 2)C1 (| 2) Cha is an average of averages. lts
frequencies are concentrated in the lowest quarter (Jw| < w/4) of all frequencies. The
mid-frequency output (| 2)C7{) 2) Cix with 32 components will not be subdivided.
Then 128 = 64 + 32 4+ 16 + 16.

In the limit of infinite subdivision, wavelets enter. This low-high frequency separation
is an important theme in signal processing. It has not been so important for deep learning.
But with multiple channels in a CNN, frequency separation could be effective.

392 Leaming from Data

Counting the Number of Inputs and Outputs

In a one-dimensional problem, suppose a layer has N neurons. We apply a convolutional
matrix with & nonzero weights. The stride is S, and we pad the input signal by P zeros at
each end. How many outputs (M numbers) does this filter produce ?

_ N—E+2P

1 (7
S +

Karpathy’s formula M

In a 2D or 3D preblem, this 1D formula applies in each direction.
Suppose E = 3 and the stride is § = 1. I we add cone zero (P = 1) at each end, then

M=N-3+2+1=N (input length = cutput length)

This case 2P = E — 1 with stride 5 = 1 is the most common architectare for CNN’s.

If we don’t pad the input with zeros, then P = 0and M = N — 2 {asinthe 4 by 6
matrix A at the start of this section). In 2 dimensions this becomes M? = (N — 2)2.
We lose neurons this way, but we avoid zero-padding.

Now suppose the stride is S = 2. Then N — F must be an even number. Otherwise
the formula (4) produces a fraction. Here are two examples of success for stride § = 2,
with ¥ — F =5 — 3 and padding P = § or PP = 1 at both ends of the five inputs:

o1 &g o1 0 0 0 0
0 21 zg T 0 0
0 0 0 0 X1 o I

Stride T_1 To T1 0 @
2 0 0 x4 x0

Again, our counts apply in each direction to an image in 2D or a tensor.

A Deep Convolutional Network

Recognizing images is a major application of deep learning (and a major success). The
success came with the creation of AlexNet and the development of convolutional nets.
This page will describe a deep network of local convolutional matrices for image recog-
nition. We follow the prize-winning paper of Simonyan and Zisserman from ICLR 2015.
That paper recommends a deep architecture of L = 16-19 layers with small (3 x 3) filters.
The network has a breadth of B parallel channels (B images on each layer).

If the breadth B were to stay the same at all layers, and all filters had F by F local
weights, a steaightforward formula would estimate the number W of weights in the net:

W = LBE? L layers, B channels, E by E local convelutions (8)

Notice that W does not depend on the count of neurons on each layer. This i1s because A
has E? weights, whatever its size. Pooling will change that size without changing E2,

But the count of B channels can change—and it is very common to end a CNN with
Jully-comnected layers. This will radically change the weight count TV |

VIL.Z Convolutional Neural Nets 393

It is valuable to discuss the decistons taken by Simonyan and Zisserman, together with
other options. Their choices led to W == 135, 000, 000 weights. The computations were on
four NVIDIA GPU's, and training one net took 2-3 weeks. The reader may have
less computing power (and smaller problems). So the network hyperparameters L and B
will be reduced. We believe that the important principles remain the same,

A key point here is the recommendation to reduce the size F of the local convolutions.
5 by 5 and 7 by 7 filters were rejected. In fact a 1 by 1 convolutional layer can be a way
to introduce an extra bank of ReL.U’s—as in the ResNets coming next.

The authors compare three convolution layers, each with 3 by 3 filters, to a single layer
of less local 7 by 7 convolutions. They are comparing 27 weights with 49 weights, and
three nonlinear layers with one. In both cases the influence of a single data point spreads
to three neighbors vertically and horizontally in the image or the RGB images (B = 3).
Preference goes to the 3 by 3 filters with extra nonlinearities from more neurons per layer.

Softmax Outputs for Multiclass Networks

In recognizing digits, we have 10 possible outputs. For letters and other symbols, 26 or
more. With multiple output classes, we need an appropriate way to decide the very last
layer (the output layer w in the neural net that started with v). “Softmax” replaces the
two-output case of logistic regression. We are turning n numbers into probabilities,

The outputs wn, . . ., wy, are converted to probabilities p1, ..., py that addto T :

1 L8
k=1 %

Certainly softmax assigns the largest probability p; to the largest output w;. But e is
a nonlinear function of w. So the softmax assignment is not invariant to scale: If we
double all the outputs w;, softmax will produce different probabilities p;. For small w’s
softmax actually deemphasizes the largest number wmax.

In the CNN example of teachyourmachine.com to recognize digits, you will see how
softmax produces the probabilities displayed in a pie chart—an excellent visual aid.

CNN We need a lot of weights to fit the data, and we are proud that we can compute them
(with the help of gradient descent). But there is no justification for the number of weights to
be uselessly large—if weights can be reused. For long signals in 1D and especmlly 1mages
in 2D, we may have no reason to change the weights from pixel to pixel.

1. ¢s231n.github.io/convolutional—netwarks/ (karpathy @cs.stanford.edu)

2. K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale
image recognition, ICLR (2015), arXiv: 1409.1556v6, 10 Apr 2015,

3. A. Krizhevsky, 1. Sutskever, and G. Hinton, [ImageNet classification with deep
convolutional neural networks, NIPS (2012} 1106-1114.

4. Y, LeCun and Y. Bengio, Convelutional nerworks for images, speech, and time-series,
Handbook of Brain Theory and Neural Networks, MIT Press (1998).

394 Learning from Data

Support Vector Machine in the Last Layer

For CNN’s in computer vision, the final layer often has a special form. If the previous layers
used ReLU and max-pooling (both piecewise linear}, the last step can become a difference-
of-convex program, and eventually a multiclass Support Vector Machine (SVM). Then
optimization of the weights in a piecewise linear CNN can be one layer at a time.

L. Berrada, A. Zisserman, and P. Kumar, Trusting SVM for piecewise linear CNNs,
arXiv: 1611.02185, 6 Mar 2017,

The World Championship at the Game of Go

A dramatic achievement by a deep convolutional network was to defeat the (human) world
champion at Go. This is a difficult game played on a 19 by 19 board. In turn, two players
put down “stones” in attempting to surround those of the opponent. When a group of one
color has no open space beside it (left, right, up, or down), those stones are removed from
the board. Wikipedia has an animated game,

AlphaGo defeated the leading player Lee Sedol by 4 games to 1 in 2016. It had trained
on thousands of human games. This was a convincing victory, but not overwhelming.
Then the neural network was deepened and improved. Google’s new version AlphaGo
Zero learned to play without any human intervention—simply by playing against itself,
Now it defeated its former self AlphaGo by 100 to 0.

The key point about the new and better version is that the machine learned by itself.
It was told the rules and nothing more. The first version had been fed earlier games,
aiming to discover why winners had won and losers had lost. The outcome from the
new approach was parallel to the machine translation of languages. To master a language,
special cases from grammar seemed essential. How else to learn all those exceptions ?
The translation tearn at Google was telling the system what it needed to know.

Meanwhile ancther small team was taking a ditferent approach : Let the machine figure
it out. In both cases, playing Go and translating languages, success came with a deeper
neural net and more games and no coaching.

It is the depth and the architecture of AlphaGo Zero that interest us here. The hy-
perparameters will come in Section VIL4: the fateful decisions. The parallel history of
Google Translate must wait until VIL5 because Recurrent Neural Networks (RNN’s)
are needed—to capture the sequential structure of text.

It is interesting that the machine often makes opening moves that have seldom or never
been chosen by humans, The input to the network is a board position and its history. The
output vector gives the probability of selecting each move—and also a scalar that estimates
the probability of winning from that position. Every step communicates with a Monte Carlo
tree search, to produce reinforcement learning.

VIL.2 Convolutional Neural Nets ’ 395

Residual Networks (ResNets)

Networks are becoming sericusly deeper with more and more hidden layers. Mostly these
are convolutional layers with 2 moderate number of independent weights. But depth brings
dangers. Information can jam up and never reach the output. The problem of “vanishing
gradients” can be serions: so many multiplications in propagating so far, with the result
that computed gradients are exponentially small. When it is well designed, depth is a good
thing—but you must create paths for learning to move forward.

The remarkable thing is that those fast paths can be very simple: “skip connections™
that go directly to the next layer—bypassing the nsual step v, = (Apvp_1 + ba)y.
An efficient proposal of Veit, Wilber, and Belongie is to allow either a skip or a normal
convolution, with a ReLU step every time. If the net has L layers, there will be 2% possible
rontes— fast or normal from each layer to the next.

One result is that entire layers can be removed without significant impact. The nth layer
is reached by 277! possible paths. Many paths have length well below n, not counting
the skips.

It is hard to predict whether deep ConvNets will be replaced by ResNets.

K. He, X. Zhang, 5. Ren, and J. Sun, Deep residual learning for image recognition, arXiv
1512.03385, 10 Dec 2015. This paper works with extremely deep neural nets by adding
shortcuts that skip layers, with weights A = I. Otherwise depth can degrade performance.

K. He, X. Zhang, S. Ren, and J. Sun, Mdentity mappings in deep residual networks,
arXiv: 1603.05027, 25 Jul 2016.

A Veit, M. Wilber, and 5. Belongie, Residual networks behave like ensembles of relatively
shallow networks, arXiv: 1605.06431, 27 Oct 2016. 5

A Simple CNN : Learning to Read Letters

One of the class projects at MIT was a convolutional net. The user begins by drawing
multiple copies (not many) of 4 and BE. On this training set, the correct classification
is part of the input from the user. Then comes the mysterious step of learning this data—-
creating a continnous piecewise linear function F'{v) that gives high probability to the
correct answer (the letter that was intended).

For learning to read digits, 10 probabilities appear in a pie chart. You quickly discover
that too small a raining set leads to frequent errors. If the examples had centered numbers
or letters, and the test images are not centered, the ser understands why those errors appear.

One purpose of teachyourmachine.com is education in machine Ieammg at all levels
{schools included). It is accessible to every reader.

These final references apply highly original ideas from signal processing to CNN's ;

R. Balestriero and R. Baranink, Mad Max: Affine spline insights into deep learning,
arXiv: 1805.06576.

S. Mallat, Understanding deep convolutional networks, Phil. Trans. Roy. Soc. 374 (2016};
arXiv: 1601.04920.

C.-C.). Kuo, The CNN as a guided multilayer RECOS transform, IEEE Signal Proc. Mag.
34 (2017) 81-89; arXiv: 1701.08481.

396 | . Leaming from Data
Problem Set VII.2

1 Wikipedia proposes a § x 5 matrix (different from equation (3)) to approximate a
Gaussian, Compare the two filters acting on a horizontal edge (all 1’s above all (’s)
and a diagonal edge (lower triangle of 1’s, upper triangle of (F's),

2 What matrix—cormresponding to the Sobel matrices in equation (4)—would you use
to find gradients in the 45 ° diagonal direction 7

3 (Recommended) For image recognition, remember that the input sample v is a matrix
{(say 3 by 3). Pad it with zeros on all sides to be 5 by 5. Now apply a convolution as
in the text (before equation (2)) to produce a 3 by 3 output Av. What are the 1,1 and
2, 2 entries of Av ?

4 Here are two matrix approximations L to the Laplacian §%u/8x2 +8%u/0y* = V2u.:

0 1 0 1 4 1
1 -4 1 and 4 =20 4
0 1 0 1 4 1
What are the responses L'V and LD to a vertical or diagonal step edge 7
2 2 2 6 6 6 a6c 0011
2 2 2 6 6 6 000111
V=122 256 6 6 DP=loo1111
2 2 2 6 6 6 011111
5 Could a convolutional net learn calculus 7 Start with the derivatives of fourth degree

polynomials p{x). The inputs could be graphs of p = ag + a1z + --- + aqz* for
0 < z <1 and a training set of a@’s. The correct outputs would be the coefficients
0, a1, 2as, 3as, 46, from dp/dz. Using softmax with 5 classes, could you design and
create a CNN to learn differential calculus ?

6 Would it be easier or harder to learn integral calculus ? With the same inputs, the six
outputs would be 0, ap, 31, a2, 383, $04.

7 How difficult is addition of polynomials, with two graphs as inputs ? The training
set outputs would be the correct sums ag + bg, ..., aq + by of the coefficients. Is
multiplication of polynomials difficult with 9 outputs agbo, agbn + a1bo, .. ., a4bs ?
The inputs in 5-7 are pictures of the graphs. Cleve Moler reported on experiments :

https://blogs.mathworks.com/cleve/2018/08/06/teaching—calculus-to—a-deep-learner

Also ., 2018/190/22teaching—a—newcomer—about-teaching—calculus-to—a—-deep-learner

A theory of deep learning for hidden physics is emerging : for example see arXiv: 1808.04327.

VI3 Backpropagation and the Chain Rule 397

VIL.3 Backpropagation and the Chain Rule

Deep leaming is fundamentally a giant problem in optimization. We are choosing
numerical “weights” to minimize a loss function L (which depends on those weights).
L(z} adds up all the losses £{w — true) = £{F(z,v) — true) between the computed
outputs w = F(&,v) and the true classifications of the inputs ». Caleulus tells us the
system of equations to solve for the weights that minimize L :

The partial derivatives of L with respect to the weights x should be zero.

Gradient descent in all its variations needs to compute derivatives (components of
the gradient of F') at the current values of the weights. The derivatives OF/dz lead 1o
OL/8x. From that information we move to new weights that give a smaller loss.
Then we recompute derivatives of ' and L at the new values of the weights, and repeat.

Backpropagation is a method to compute derivatives quickly, using the chain rule:

Do L Lrmmen - (Eere)) (Eee) (Se)

One goal is a way to visnalize how the function F' is comnputed from the weights
®1,%2,...,&x. A neat way to do this is a computational graph. It separates
the big computation into small steps, and we can find the derivative of each step (each
computation} on the graph. Then the chain rule from calculus gives the derivatives of
the final output w = F{=, v} with respect to all the weights @. For a standard net, the,
steps in the chain rule can correspend to layers in the neural net. !

This is an incredibly efficient improvement on the separate computation of each deriva-
tive 2F/dx,. At first it seems unbelicvable, that reorganizing the computations can make
such an enormous difference. In the end {the doubter might say) you have to compute
derivatives for each step and multiply by the chain rule. But the method does work—and
N derivatives are computed in far less than N times the cost of one derivative 3F/dx,.

Backpropagation has been discovered many times. Another name is automatic
differentiation (AD). You will see that the steps can be arranged in two basic ways:
forward-mode and backward-mode. The righi choice of mode can make a large difference
in the cast (a factor of thousands). That choice depends on whether you have many
functions F' depending on a few inputs, or few functions F' depending on many inputs.

Deep learning has basically one loss function depending on many weights. The right
choice is “backward-mode AD”. This is what we call backpropagation. It is the
computational heart of deep learning. We will itlustrate computational graphs and back-
propagation by a small example.

The computational graphs were inspired by the brilliant exposition of Chrlstopher Olah,
posted on his blog (colah.github.io). Since 2017 he has published on (https://distill.pub).
And the new paper by Catherine and Desmond Higham {arXiv: 1801.05894, to appear in
SIAM Review) gives special attention to backpropagation, with very useful codes.

398 Learning from Data

Derivatives 3F /8 of the Learning Function F(x, v)

The weights @ consist of all the matrices Ay,..., Ay and the bias vectors by,...,by.
The inputs v = wy are the training data. The outputs w = F{x, o) appear in layer L.
Thus w = [is the last step in the neural net, after vq,...,vr_; in the hidden layers.

Each new layer v,, comes from the previous layer by R(b, + A,v,_,). Here R
is the nonlinear activation function (usually ReLU) applied one component at a time.

Thus deep learning carries us from v = wg to w = vr. Then we substitute w into
the loss function to measure the error for that sample v. It may be a classification error:
(0 instead of 1, or 1 instead of 0. It may be a least squares regression error |[g — w||?,
with w instead of a desired output g. Often it is 2 “cross-entropy”. The total loss L(x) is
the sum of the lesses on all input vectors v,

The giant optimization of deep learning aims to find the weights & that minimize L.
For full gradient descent the loss is L{z). For stochastic gradient descent the loss at each
iteration is #(=)—from a single input or a minibatch of inputs. In all cases we need the
derivatives dw/dx of the outputs w (the components of the last layer) with respect to
the weights & (the A’s and &’s that carry us from layer to layer).

This is one reason that deep learning is so expensive and takes so long—even on GPU’s,
For convolutional nets the derivatives were found quickly and easily in Section VIL.2,

Computation of 9 F/9x : Explicit Formulas

We plan to compute the derivatives 8F /8z in two ways. The first way is to present the
explicit formulas: the derivative with respect to each and every weight. The second way
is to describe the backpropagation algorithm that is constantly used in practice.

Start with the last bias vector by and weight matrix A; that produce the final
output vy, = w. There is no nonlinearity at this layer, and we drop the layer index L :

vy =by +Apvy_, orsimply w=b+ Av. (1)

Our goal is to find the derivatives w; /9b; and Ow,; /O A ;. for all components of & + Av.
When 7 is different from i, the th output w; is not affected by b; or Aj,. Multiplying
A times v, row j of A produces w; and not w;. We introduce the symbol § whichis 1 or 0:

di; =1if i=3 di; =0 if 143 The identity matrix 1 has entries ;5.

Columns of I are 1-hot vectors! The derivativesare 1 or O or v (SectionI.12):

Fully connected layer Bw; Jw;
. — =0;; and —— = §;;u% (2)
Independent weights A ;. 3b; Ak
Example There are six &'s and a’s in wi | _ b 4| un + G12v2
wa by anvy + azats
o d i a3 o O
Derivatives of ur Wi 1 Y 0 o “ fa} L. 0.

3_51 ’3—52 "dan - vl’aalz = v das, a dasy

VIL3 Backpropagation and the Chain Rule ' 399

Combining Weights b and A into M

It is often convenient to combine the bias vector & and the matrix A into one matrix Af ;

Matrix of weights m=[1 0 h M|l =(1! 3)
atrix of weig =y 4 as ol = bt aw |

For each layer of the neural net, the top entry (the zeroth entry) is now fixed at 1.
After multiplying that laver by M, fthe zeroth component on the next layer is still 1.
Then ReLU(1) = 1 preserves that entry in every hidden layer.

At the beginning of this book (page v), the big image of a neural net had squares
for zeroth entries and circles for all other entries. Every square now contains a 1.
This block matrix M produces a compact derivative formula for the [ast layer w = Mo,

dwy
My,

1 0T

b A] and

M= [= 5,-jvk for i > 0 (4)

Both v and w begin with 1's. Then & = 0 correctly gives dwo/0M;o = 0 for j > 0.

Derivatives for Hidden Layers

Now suppose there is one hidden layer, so L = 2. The output is w = vy = v, the
hidden layer contains v1, and the input is o = v. The nonlinear R is probably ReL.U,

l

v1 =R (bl + Al‘vg) and w = bs + Aav) = bz + AR (b + Ayvq).

Equation (2) still gives the derivatives of w with respect to the last weights by and A,.
The function R is absent at the output and v is v;. But the derivatives of w with respect
to &; and A, do involve the nonlinear function R acting on b, + A, vq.

So the derivatives in 8w /0 A; need the chain rule 8f /8x = (3 /8g)(dg/0x):

. 6_w . 8[A2R.(b1 + Al’vg}] . ’ 8(b1 =+ A]UU)
Chain rule N oA, = A2 R (b; + A v0) 1, (5

That chain rule has three factors. Starting from v at layer L — 2 = 0, the weights &,
and A, bring us toward the layer L — 1 = 1, The derivatives of that step are exactly like
equation (2). But the output of that partial step is not vr_;. To find that hidden layer we
first have to apply R. So the chain rule includes its derivative R’. Then the final step (to w)
multiplies by the last weight matrix A;.

The Problem Set extends these formulas to £ layers. They could be useful. But with
pooling and baich normalization, automatic differentiation seems to defeat hard coding.

Very important Notice how formulas like (2) and (5) go backwards from w to v,
Automatic backpropagation will do this too. “Reverse mode” starts with the output.

400 Learning from Data

Details of the Derivatives dw /3 A,

We feel some responsibility to look more closely at equation (5). Its nonlinear part R/
comes from the derivative of the nonlinear activation function. The usual choice is the
ramp function ReLU (z) = (z)4, and we see ReLU as the limiting case of an S-shaped
sigmoid function. Here is ReL.U together with its first two derivatives:

ReLU{z) = max (0,z} = (2)4 Ramp function R{x)
0 z <0 Step function
aRjdr = { 1 >0 H(zx) = dR/dx
2 2_J 0 z#0 Delta function
d°Rjdz® = { 1 integral over all z 8(z) = d*R/dz?

The delta function represents an impulse. It models a finite change in an infinitesimal time.
It is physically impossible but mathematically convenient. It is defined, not at every point
x, but by Its effect on integrals from —oo to oo of a continuous function g(z)

[s@a=1 [smewdr=o0) [oe-a s ds=gla)

With RelL.U, a neuron could stay at zero through all the steps of deep learning. This
“dying ReLU” can be avoided in several ways—it is generally not a major problem.
One way that firmly avoids it is to change to a Leaky ReLU with a nonzero gradient:

x z20 _
Leaky RelLU (z)= {‘0133 z<0 Always ReLU {ax) = aReLU {z} (6)
Geoffrey Hinton pointed out that if all the bias vectors by,. .., by, are set to zero at every

layer of the net, the scale of the input v passes straight through to the output w = F(w).
Thus F{Av) = aF({v). (A final softmax would lose this scale invariance.)

100 100
RelLU Leaky ReLU
slope 0 slope 1 slope 1/100 slope 1
0 ' | -1] I
=50 0 50 100 0 50 100

Figure VI1.4: The graphs of ReLU and Leaky ReLLU (two options for nonlinear activation).

Returning to formula {5), write A and b for the matrix Ay _, and the vector by,_, that
produce the last hidden layer. Then ReLU and A and by, produce the final output w = vy,.
QOur interest is in Hw/3A, the dependence of w on the next to last matrix of weights.

dw

Ow A Av + b)
a4

w = A, (R(Av+ b))+ b and ALR(Av + b) oA (7

VIL3 Backpropagation and the Chain Rule - 401

We think of R as a diagonal matrix of ReLU functions acting component by component
on Av + b. Then J = R’{Av + b) is a diagonal matrix with 1's for positive components
and 0’s for negative components. (Don’t ask about zeros.) Formula (7) has become (8) :

d(Av + &)
84
We know every component (v or zero) of the third factor from the derivatives in (2).

8
w=A; R(Av+b) and %zALJ)

When the sigmoid function R, replaces the Rel.U function, the diagonal matrix
J = R_(Av + b) no longer contains 1’s and 0's. Now we evaluate the derivative dR, /dz
at each component of Av + &,

In practice, backpropagation finds the derivatives with respect to all A’s and b's.
It creates those derivatives automatically (and effectively).

Computational Graphs

Suppose F{z, y} is a function of two variables x and y. Those inputs are the first two nodes
in the computational graph. A typical step in the computation—an edge in the graph—
is one of the operations of arithmetic (addition, subtraction, multiplication,...). The finat
output is the function F'(z,3). Our example will be F = 2%(z + ¥).

Here is the graph that computes F with intermediate nodes ¢ = z2 and s = z + y;

O——D
O |

When we have inputs = and y, for example = 2 and 7 = 3, the edges lead to ¢ = 4 and
s = 5 and F' = 20. This agrees with the algebra that we normally crowd into one line:
F=z%z+y)=2%(2+3) = 4(5) = 20.

Now we compute the derivative of each step—each edge in the graph. Begin with the
z-derivative. At first we choose forward-mode, starting with the input x and moving
toward the output function z2(z + y). So the first steps use the power rule for ¢ = z°
and the sum rule for s = x + 3. The last step applies the product rule to F' = ¢ times s.

F=ecs=2(

e, e, er_ or_
9z " dr 3c ° 95 C

Moving through the graph produces the chain rule !

402 Learning from Data
aF 9F Jc OF Os
9z 9c Bz | s ox
= (s}(2z) + (c)(1) = (5)(4} + (4)(3) = 24

The result is to compute the derivative of the output F with respect to one inpuf .
You can see those x-derivatives on the computational graph,

%—2:5 %—
dr or

ds

5}:—:1
)

&__] 83}

oy

There will be a similar graph for y-derivatives—the forward mode leading to 3F/3y.
Here is the chain rule and the numbers that would appear in that graph for x = 2 and
y=3andc=z’=2%ands=z+y=2+3and F =cs:

OF _OF 0c OF 0s
8y dc By Bs Oy
= (s)(0) + (c)(1) = (5)(0) + (4)(1) = 4

The computational graph for 3F/ Ay is not drawn but the point is important : Forward mode
requires a new graph for each input T;, to compute the partial derivative 6F [0z

Reverse Mode Graph for One Output

The reverse mode starts with the output #'. It computes the derivatives with respect to
both inputs. The computations go backward through the graph.

That means it does not follow the empty line that started with dy/8z = Q in the forward
graph for z-derivatives. And it would not follow the empty line 8z /8y = 0 in the forward
graph (not drawn) for y-derivatives. A larger and more realistic problem with N inputs
will have & forward graphs, each with N — 1 empty lines {because the /V inputs are
independent). The derivative of ; with respect to every other input z; is dz;/0x; = 0.

Instead of N forward graphs from N inputs, we will have one backward graph
from one output. Here is that reverse-mode computational graph. It finds the derivative
of F' with respect to every node. It starts with dF/3F = 1 and goes in reverse.

A computational graph executes the chain rule to find derivatives. The reverse mode
finds all derivatives &F/8z; by following all chains backward from output to input.
Those chains all appear as paths on one graph—not as separate chain rules for
exponentially many possible paths. This is the success of reverse mode.

VIL3 Backpropagation and the Chain Rule 403

oF
oz’ By

Product of Matrices ABC : Which Order ?

The decision between forward and reverse order also appears in matrix multiplication !
If we are asked to multiply A times B times C, the associative law offers two choices
for the multiplication order:

AB first or BC first? Compute (AB)C or A(BC)?

Figure VIL.5: Reverse-mode computation of the gradient (

)ata:—Z,y—d

The result is the same but the number of individual multiplications can be very d1fferem_
Suppose the matrix Aism by n,and Bisnby p,and Cis pby g.

First way AB = (m x n) (n x p) has mnp multiplications

(AB)C = (m x p) (p x q} has mpg multiplications

Second way BC = (n xp)(p x g} has npg multiplications

A(BC) = (m x n)(n x ¢} has mmng multiplications

So the comparison is between mp(n + g) and ng{m + p}. Divide both numbers by mnpg:

1 1 1 1
The first way is faster when — + — is smaller than — + —.
g n m.op

Here is an extreme case (extremely important). Suppose C' is a column vector: p by 1.
Thus ¢ = 1. Should you multiply BC' to get another column vector (n by 1) and then
A(BC) to find the output (/e by 1) 7 Or should you multiply AB first ?

The gquestion almost answers itself. The comrect A{ BC") produces a vector at each step.
The matrix-vector multiplication BC has np steps. The next matrix-vector multiplication
A{BC) has mn steps, Compare those np + mn steps to the cost of starting with the
matrix-matrix option AB (mnp steps). Nobody in their right mind would do that.

404 Leamning from Data

But if A is a row vector, {AB)C is better. Row times matrix each time.

This will match the central computation of deep leaming : Training the network =
optimizing the weights. The output F'(») from a deep network is a chain starting with v :

F{vy=Apvr_1 = Ap(RAp-1(... (R A2(R A19)}}) is forward through the net.

The denvatives of F* with respect to the matrices A (and the bias vectors b) are easiest
for the last matrix Ay in Apvy_1. The derivative of Av with respect to A contains v’s:

aF; . . .
5A—‘~ = d;; U Next is the derivative of Ay ReLU (Az_yvz_1) with respectto Ar_;.
ik
We can explain how that same reverse mode also appears in the comparison of
direct methods versus adjoint metheds for optimization (choosing good weights).

Adjoint Methods

The same question of the best order for matrix multiplication ABC comes up in a big
class of optimization problems. We are solving a square system of IV linear equations
Ev = b. The vector b depends on design variables p = {p1,...,par). Therefore the
solution vector v = E~1b depends on p. The matrix dv/Jp containing the derivatives
Hv;/3p; will be N by M.

To repeat: We are minimizing F{w). The vector v depends on the design variables p.
So we need a chain rule that multiplies derivatives 0F/dv; times derivatives Ov,/0p;.
Let me show how this becomes a product of three matrices—and the multiplication order
is decisive. Three sets of derivatives control how F' depends on the input variables p; :

A=08F/8v; The derivatives of I with respectto v1,...,vn
B = 8v;/8b;, The derivative of each v, with respect to each by
C = 8b, /8p; The derivative of each b, with respect to each p;

To see dv; /Op; we take derivatives of the equation Ev = b with respect to the p; :

7] b]
0 M o B
dp; Op; op op
It seems that we have M linear systerns of size N. Those will be expensive to solve
over and over, as we search for the choice of p that minimizes F(v). The matrix 3v/3p
contains the derivatives of #1,...,vy with respect to the design variables pq,...,par.

(%

Suppose for now that the cost function F{v) = ¢Tw is linear (so F/Bv = cF).
Then what optimization actually needs is the gradient of F'(v) with respect to the p's.
The first set of derivatives 3F /8w is just the vector ¢T :

OF OFdu . .. b .
_——= e — = e has th b | . 10
99 ~ v Op cT E op as three factors to be multiplied (10)

VIL3 Backpropagation and the Chain Rule 405

This is the key equation. It ends with a product of a row vector ¢T times an N by N
matrix £~ times an N by M matrix 3b/8p. How should we compute that product ?

Again the question almost answers itself. We do not want to multiply two matrices.
So we are not computing Jv/8p after all. Instead the good first step is to find cTE~L.
This produces a row vector AT. In other words we solve the adjoint equation ETA = ¢:

Adjointequation ETA=¢ gives ATE=¢T and AT =cTE-L| (11}

Substituting AT for ¢cTE~! in equation (10), the final step multiplies that row vector
times the derivatives of the vector b (its gradient):

Gradient of the cost F -‘Z—F = AT —g—q (1 by N times N by M). (12)
P D

The optimal order is (AB)C because the first factor A is actually the row vector AT,

This example of an adjoint method started with £z = b. The right hand side b
depended on design parameters p. So the solution # = E~'b depended on p. Then
the cost function F'{(x) = cTa depended on p.

The adjoint equation ATA = ¢ found the vector X that efficiently combined the last
two steps. “Adjoint” has a parallel meaning to “transpose™ and we can apply it also to
differential equations. The design variables py,...,pas might appear in the matrix F,
or in an eigenvalue problem or a differential equation.

Our point here is to emphasize and reinforce the key idea of backpropagation: %

The reverse mode can order the derivative computations in a faster way.

Adjoints and Sensitivity for Deep Layers

Coming closer to the problem of deep learning, what are the derivatives Sw/3z; of the
outputs w = (wy,...wyr) at layer L with respect 1o the parameters € = (z1,...,zx5) 7
That output w = v, is seen after L steps from the input vg. We write step n as

vp = Fp(vp_1,@,) where F,, depends on the weights (parameters) ,,. (13)

(13) is a recurrence relation. And the same P parameters & could be used at every step.
Deep learning has new parameters for each new layer—which gives it “learning power”
that an ordinary recurrence relation cannot hope for. In fact a typical recurrence (13)
is just a finite difference analog of a differential equation dv/dt = f(v,x,t).

The analogy is not bad. In this case too we may be aiming for a desired output ©{T'),
and we are choosing parameters x to bring us close. The problem is to find the
matrix of derivatives J = 8vy/8xy. We have to apply the chain rule to equation (13},
all the way back from /N to 0. Here is a siep of the chain:

vy = Pv{on_1,2n) = Fn(Fvo (ov—z,Tn-1), ZN)- (14)

406 Leaming from Data

Take its derivatives with respect to x5 _j, to see the rule over the last two layers:

Sun OFNn Jun_1 dun IFy Buny_; _ IFy Ovy-1 Ovun-2

OTn_1 Oun—y Ozn-y dzn_y Oun-1 Oxn_2 Bun—; Bun_g BTn_o

That last expression is a triple product ABC. The calculation requires a decision:
Start with AB or start with BC'? Both the adjoint method for optimization and the
reverse mode of backpropagation would counsel: Begin with AB.

The last two pages developed from class notes by Steven Johnson: Adjeint methods
and sensitivity analysis for recurrence relations, http://math.mit.edu/~ stevenj/18.336/
recurrenceZ.pdf. Also online: Notes on adjoint methods for 18.335.

For deep learning, the recurrence relation is between layers of the net.

Problem Set VII.3

1 If 2 and y are column vectors in R™, is it faster to multiply z(yTa) or (zy™)z ?
2 If Ais an m by n matrix with m > n, is it faster to muitiply A(ATA) or (AAT}A?

3 (a) If Aw = b, what are the derivatives 9z; /8b; with A fixed?
(b) What are the derivatives of 8x;/0A ;. with b fixed ?

4 Forz and y in R®, what are 3(aty)/9z; and 8{xy™)/0z; 7
Yy

5 Draw a computational graph to compute the function f(z,y) = z%(z — y). Use the
graph to compute f(2, 3).

6 Draw a reverse mode graph to compute the derivatives 8f/0x and 9f /8y for
f = z{(z — y). Use the graph to find those derivativesatz = 2 and z = 3.

7 Suppose 4 is a Toeplitz matrix in a convolutional neural net (CNN). The number ax
isondiagonal k=1 —n,...,n — 1. If w= Aw, what is the derivative Qw, /day 7

8 In a max-pooling layer, suppose w; = max {vg;—1,v2;). Find all dw,/dv;.

9 To understand the chain rule, start from this identity and let Ax — 0:

flolo +8w)) - flo(z)) _ flolz+Ax)) - fla(x) olz + Az) — glz)
Ac g(z + Ba) — g(x) Az

Then the derivative at x of f(g(x)) equals df /dg at g(z) times dg/dx at «.
Question : Find the derivative at £ = 0 of sin (cos (sin z}).

Backpropagation is essentially equivalent to AD (automatic differentiation) in reverse mode :
A. Griewank and A. Walther, Fvaluating Derivatives, STAM (2008).

V1.4 Hyperparameters : The Fateful Decisions 407

VII.4 Hyperparameters : The Fateful Decisions

After the loss function is chosen and the network architecture is decided, there are still
critical decisions to be made. We must choose the hivperparameters. They govern the algo-
rithm itself~—the computation of the weights. Those weights represent what the compuier
has learned from the training set: how to predict the output from the features in the input.
In machine learning, the decisions include those hyperparameters and the loss function and
dropout and regularization.

The goal is to find patterns that distinguish 5 from 7 and 2—by looking at pixels. The
hyperparameters decide how quickly and accurately those patterns are discovered. The
stepsize s, in gradient descent is first and foremost. That number appears in the iteration
Lrt1 = Bk — 3x VL () or one of its variants : accelerated (by momentum) or adaptive
(ADAM) or srochastic with a random minibatch of training data at each step &.

The words learning rate are often used in place of stepsize. Depending on the author,
the two might be identical or differ by a normalizing factor. Also: mny often replaces si.
First we ask for the optimal stepsize when there is only one unknown. Then we point to
a general approach. Eventually we want a faster decision.

1. Choose s =1/L"(x;). Newton vses the second derivative of L. That choice
accounts for the quadratic term in the Taylor series for L{x) around the point @y,
As a result, Newton’s method is second order: The error in x4 is proportional
to the square of the error in 7. Near the minimizing z*, convergence is fast.

In more dimensions, the second derivative becomes the Hessian matrix H(z) =
VzL(::c;c). Its size is the number of weights (components of). To find ®pq1s
Newton solves a large system of equations H{zy) (@r41 — 2x) = —VIL{zg).
Gradient descent replaces H by a single number 1/s;.

2. Decide s;, from a line search. The gradient V L{z,) sets the direction of the line.
The carrent point @, is the start of the line. By evaluating L) at poinis on the line,
we find a nearly minimizing point—which becomes &y ;.

Line search is a practical idea. One algorithm is kacktracking, as described
in Section VI.4. This reduces the stepsize s by a constant factor until the decrease
in L is consistent with the steepness of the gradient (again within a chosen factor).
Optimizing a line search is a carefully studied 1-dimensional problem.

But no method is perfect. We look next at the effect of a poor stepsize s.

Too Small or Too Large

We need to identify the difficulties with a poor choice of learning rate :

sr istoosmall Then gradient descent takes too long to minimize L{x) -
Many steps @x41 — &y = —8; VL () with small improvement

sg is too large We are overshooting the best choice x4, in the descent direction
Gradieni descent will jump around the minimizing o*.

408 Learning from Data

Suppose the first steps 5o and s; are found by line searches, and work well. We may
want to stay with that learning rate for the early iterations. Normally we reduce s as the
minimization of L{z) continues.

Larger steps at the start Get somewhere close to the optimal weights *

Smaller steps at theend Aim for convergence without overshoot

A learning rate schedule 8y, = 80/ \/E or 5, = 8¢/k systematically reduces the steps.

After reaching weights x that are close to minimizing the loss function L{x, v) we may
want o bring new v’s from a validation set. This is not yet production mode. The purpose
of cross-validation is to confirm that the computed weights ¢ are capable of producing
accurate outputs from new data.

Cross-validation

Cross-validation aims to estimate the validity of cur model and the strength of our leamming
function., Is the model too weak or too simple to give accurate predictions and classifi-
cations? Are we overfitting the training datz and therefore at risk with new test data?
You could say that cross-validation works more carefully with a relatively small data set,
s0 that testing and production can go forward quickly on a larger data set.

Note Another statistical method—for another purpose—also reuses the data. This is the
bootstrap introduced by Brad Efron. Tt is used (and needed) when the sample size is small
or its distribution is not known. We aim for maximum understanding by returning to the
{small) sample and reusing thar data to extract new information. Normally small data sets
are not the context for applications to deep learning.

A first step in cross-validation is to divide the available data into K subsets, If K = 2,
these would essentially be the training set and test set—but we are usually aiming for more
information {rom smaller sets before working with a big test set. K -fold cross-validation
uses each of K subsets separately as a test set. In every trial, the other K’ — 1 subsets form
the training set. We are reworking the same data (moderate size) to learn more than one
optimization can teach us.

Cross-validation can make a learning rate adaptive: changing as descent proceeds.

There are many variants, like “double cross-validation”. In a standardized m by n least
squares problem Ax = b, Wikipedia gives the expected value (m —n — 1}/(m + n — 1)
for the mean square error. Higher errors normally indicate overfitting. The corresponding
test in deep learning warns us to consider earlier stopping. |

This section on hyperparameters was influenced and improved by Bengio’s long chapter
in & remarkable book. The book title is Neural Networks : Tricks of the Trade (2nd edition),
edited by G. Montavon, G. Orr, and K.-R. Miiller. It is published by Springer (2012) with
substantial contributions from leaders in the field.

VIL.4 Hyperparameters : The Fateful Decisions 409

Batch Normalization of Each Layer

As training goes forward, the mean and variance of the original population can change
at every layer of the network. This change in the distribution of inputs is “covariate shift”.
We often have to adjust the stepsize and other hyperparameters, due to this shift in the
statistics of layers. A good plan is to rormalize the input to each layer.

Normalization makes the training safer and faster. The need for dropout often disap-
pears. Fewer iterations can now give more accurate weights. And the cost can be very
moderate. Often we just train two additional parameters on each layer.

The problem is greatest when the nontinear function is a sigmoid rather than ReL.J.
The sigmoid “saturates” by approaching a limit like 1 (while ReLU increases forever
as ¥ — oo). The nonlinear sigmoid becomes virtually linear and even constant when
x becomes large. Training slows down because the nonlinearity is barely used.

It remains to decide the point at which inputs will be normalized. Ioffe and Szegedy
avoid computing covariance matrices (far too expensive). Their normalizing transform

acts on each input vy, ..., »p in a minibatch of size B :
mean p ={vi+---+vg)/B
variance o2 =(flos —ul+ -+ |lve —ul|*) /B

normalize V', =(v; — p} /vVo?+¢ forsmall ¢ >0

scale/shift y, =V, +8 (vand @ are trainable parameters)

The key point is to normalize the inputs y, to each new layer. What was good for the’
original batch of vectors (at layer zero) is also good for the inputs to each hidden layer.

8. lTofte and C. Szegedy, Batch normalization, arXiv: 1502.03167v3, 2 Mar 2015.

Dropout

Dropout is the removal of randomliy selected newrons in the network. Those are components
of the input layer v or of hidden layers v, before the output layer v;. All weights in
the A’s and &’s connected to those dropped neurons disappear from the net (Figure VIL6).
Typically hidden layer neurons might be given probability p = 0.5 of surviving, and
input components might have p = 0.8 or higher. The main objective of random dropout
is to avoid overfitting. It is a velatively inexpensive averaging method compared to
combining predictions from many networks.

Dropout was proposed by five leaders in the development of deep learning algorithms :
N. Srivastava, G. Hinton, A. Krizhevsky, [. Sutskever, and R. Salakhutdinov. Their paper
“Dropout” appears in: Journal of Machine Learning Research 15 (2014) 1929-1958.
For recent connections of dropout to physics and uncertainty see arXiv: 1506.02142 and
1809.08327.

410 Leaming from Data

Figure VIL6: Crossed neurens have dropped out in the thinned network.

Dropout offers a way to compute with many different neural architectures at once.
In training, each new wvq (the feature vector of an input sample} leads to a new thinned
network. Starting with N neurons there are 2% possible thinned networks.

At test time, we use the full network (no dropout) with weights rescaled from the
training weights. The outgeing weights from an undropped neuron are multiplied by p
in the rescaling. This approximate averaging at test time led the five authors to reduced
generalization errors—more simply than from other regularization methods.

One inspiration for dropouot was genetic reproduction—where half of each parent’s genes
are dropped and there is a small random mutation. That dropout for a child seems more
unforgiving and permanent than dropout for deep learning—which averages over many
thinned networks. (True, we see some averaging over siblings. But the authors conjecture
that over time, our genes are forced to be robust in order to survive.)

The dropout model uses a zero-one random variable r {a Bernoulli variable). Then
r = 1 with probability p and r = 0 with probability 1 — p. The usual feed-forward step
to layer 1 is ¢, = Apvn-1 + by, followed by the nenlinear v, = Ry,,. Now a random
T nudtiplies each component of vn_; to drop that neuron when » = €. Component

by component, v,—1 is multiptied by 0 or 1 to give v} _;. Then gy, = A, v} _; + b,.

To compute gradients, use backpropagation for each training example in the minibatch.
Then average those gradients. Stochastic gradient descent can still include acceleration
(momentum added) and adaptive descent and weight decay. The authors highly recommend
regularizing the weights, for example by a maximum norm requirement ||a)| < c on the
columns of all weight matrices A.

Exploring Hyperparameter Space

Often we optimize hyperparameters using experiments or experience. To decide the learn-
ing rate, we may try three possibilities and measure the drop in the loss function. A ge-
ometric sequence like .1,.01,.001 would makeé more sense than an arithmetic sequence
05,.03,.01. And if the smallest or largest choice gives the best results, then continue
the experiment to the next number in the series. In this stepsize example, you would be
considering computational cost as well as validation error.

LeCun emphasizes that for a multiparameter search, random sampling is the way to
cover many possibilities quickly. Grid search is too slow in multiple dimensions.

VI.4 Hyperparameters : The Fateful Decisions 41

Loss Functions

The loss function measures the difference between the correct and the computed output
for each sample. The correct output—often a classification y = 0,1 ory = 1,2,...,n—
is part of the training data. The computed output at the final layer is w = F (=, ¢) from the
learning function with weights & and input v.

Section V1.5 defined three familiar loss functions. Then this chapter tumed to the
structure of the neural net and the function . Here we come back to compare square
loss with cross-entropy loss.

1. Quadratic cost (square loss): £(y, w) = 3|y — w||2.

This is the loss function for least squares—always a possible choice. But it is not a favorite
choice for deep learning. One reason is the parabolic shape for the graph of £(y, w), as
we approach zero loss at w = y. The derivative also approaches zero.

A zero derivative at the minimum is normal for a smooth loss function, but it frequently
leads to an vnwanted result: The weights A and b change very slowly near the optimum.
Learning slows down and marny iterations are needed.

2. Cross-entropy loss : £y, w) = ~% Z [yilogz; + (1 —) log (1 — %)) (1)
1

Here we allow and expect that the NV outputs w; from training the neural net have been
normalized to z{w), with 0 < z; < 1. Often those z; are probabilities. Then 1 — z; is also
between 0 and 1. So both logarithms in (1) are negative, and the minus sign assures that
the overall loss is positive: £ > 0.

More thap that, the logarithms give a different and desirable approach to = = O or 1.3
For this calculation we refer to Nielsen’s online book Neural Networks and Deep Learning,
which focuses on sigmoid activation functions instead of ReLU, The price of those smooth
functions is that they safurate (lose their nonlinearity) near their endpoints.

Cross-entropy has good properties, but where do the logarithms come from 7 The first
point is Shannon’s formula for entropy (a measure of information). If message ¢ has prob-
ability p;, you should allow — log p; bits for that message. Then the expected (average)
number of bits per message is best possible :

Entropy = — ZP" logp;. Form =2 thisis —plogp — {1 — p) log (1 —p). 2)

1

Cross-entropy comes in when we don’t know the p; and we use p; instead :

M
Cross-entropy = — Zpl- logp;. Form =2 thisis —plogfF — {1 —p)log(1 =). (3)
- 1

(3) is always larger than (2). The true p; are not known and the ; cost more. The difference
is a very useful but not symmetric function called Kullback-Leibler (KL) divergence.

412 Learning from Data
Regularization : £2 or £! (or none)
Regularization is a voluntary but well-advised decision. It adds a penalty term to the loss
function L{z) that we minimize : an £2 penalty in ridge regression and £* in LASSO.,
RR Minimize ||b—Az||3+ X |iz|l} LASSO Minimize |[b—Aw||Z+X1 Y |xi]
The penalty controls the size of . Regularization is also called weight decay.

The coefficient A2 or Aq is a hyperparameter. Its value can be based on cross-validation.
The purpose of the penalty terms is to avoid overfitting (sometimes expressed as fitting the
noise). Cross-validation for a given) finds the minimizing on a test set. Then it checks
by using those weights on a training set. If it sees errors from overfitting, A is increased.

A small value of A tends to increase the variance of the error: overfitting. Large A
will increase the bias: underfitting because the fitting term ||b — Azx||? is less important.

A different viewpoint! Recent experiments on MNIST make it unclear if explicit
regularization is always necessary. The best test performance is often seen with A = 0
(then ™ is the minimum norm solution A*#). The analysis by Liang and Rakhlin
identifies matrices for which this good result can be expected—provided the data leads
to fast decay of the spectrum of the sample covariance matrix and the kernel matrix.

In many cases these are the matrices of Section IIL3: Effecrively low rank.
Similar ideas are increasingly heard, that deep learning with many extra weights
and good hyperparameters will find solutions that generalize, without penalty.

T. Liang and A, Rakhlin, Just interpolate : Kernel “ridgeless” regression can generalize,
arXiv: 1808.00387, 1 Aug 2(18.

The Structure of AlphaGo Zero

It is interesting to see the sequence of operations in AlphaGo Zero, learning to play Go:
1. A convolution of 256 filters of kernel size 3 x 3 withstride 1: £ =3,8§=1

Batch normalization

RelU

A convolution of 256 filters of kernel size 3 » 3 with stride 1
Batch normalization

A skip connection as in ResNets that adds the input to the block
RelLU

. A fully connected linear layer to a hidden layer of size 256
RelLU

- R T

Training was by stochastic gradient descent on a fixed data set that contained the
final 2 million games of self-played data from a previous run of AlphaGo Zero.

The CNN includes a fully connected layer that outputs a vector of size 192 + 1. This
accounts for all positions on the 19 x 19 board, plus a pass move allowed in Go.

VIL5 The World of Machine Learning 413

VILS The World of Machine Learning

Fully connected nets and convolutional nets are parts of a larger world. From training data
they lead to a learning function F(x,v). That function produces a close approximation
to the correct output w for each input v (v is the vector of features of that sample). But
machine learning has developed a multitude of other approaches—some long established—
to the preblem of learning from data.

This book cannot do justice to all those ideas, It does seem useful to describe Recurrent
Neural Nets (and Support Vector Machines). We also include key words to indicate the
scope of machine learning. (A glossary is badly needed! That would be a tremendous
contribution to this field.) At the end is a list of books on topics in machine learning.

Recurrent Neural Networks (RNNs)

These networks are appropriate for data that comes in a definite order. This includes time
series and natural language : speech or text or handwriting. In the network of connections
from inputs v to outputs w, the new feature is the input from the previous time t — 1.
This recurring input is determined by the function A(z — 1).

Figure VI1.7 shows an outline of that new step in the architecture of the network.

input output loss target
ZTrecur "
Ein Tout

Figure VIL.7: The computational graph for a recurrent network finds loss-minimizing out-
puts w at each time ¢. The inputs to h(t) are the new data v(t) and the recurrent data
h(t—1) from the previous time. The weights muitiplying the data are &;, and Trecur
and gy, chosen to minimize the loss Ly — w). This network architecture is universal :
It wilt compute any formula that is computable by a Turing machine.

Key Words and Ideas

1 Kernel learning (next page) 5 Graphical models
2 Support Vector Machines (next page) 6 Bayesian statistics
3 Generative Adversarial Networks 7 Random foresis

4 Independent Component Analysis 8 Reinforcement learning

414 Learning from Data

Support Vector Machines

Start with n points #, . . ., v, in m-dimensional space. Each v; comes with a classification
y; = 1 ory; = —1. The goal proposed by Vapnik is to find a plane wTv = bin m
dimensions that separates the plus points from the minus points—if this is possible. That
vector w will be perpendicular to the plane. The number b tells us the distance |b|/||w]|
from the line or plane or hyperplane in R™ to the point (0, ... ,0}.

V&

vy . This separating line wTv = b
,-° maximizes the equal distance

n=ye=y3=+1
: . (the margin) to 4 and — points.

R If v is inside the triangle,
{, ,° . separation will be impossible
® pihasyy = —1
Problem Find w and b so that wTv; — b has the correct sign w; for all points ¢ = 1,...,n.

If w1, vo, w3 are plus points (y = +1) in a plane, then vy must be outside the triangle of
1, 2, v3. The picture shows the line of maximum separation (rmaximum margin).

Maximum margin Minimize ||| under the conditions y;(wTv; —b) = 1.

This is a “hard margin”. That inequality requires v; to be on its correct side of the separator.
If the points can’t be separated, then no w and b will succeed. For a “soft margin” we go
ahead to choose the best available w and b, based on hinge loss + penalty :

1 n
Soft margin Minimize . E max (0,1 — gy (wTw; — b)) + X |Jwl]2. (1)
1

That hinge loss (the maximum term) is zero when v; is on the correct side of the separator.
If separation is impossible, the penalty A||w]||? balances hinge losses with margin sizes.

If we introduce a variable h; for that hinge loss we are minimizing a quadratic function
of w with linear inequalities connecting w, b, y; and h;. This is quadratic programming in
high dimensions—well understood in theory but challenging in practice.

The Kernel Trick

SVM is linear separation. A plane separates + points from — points. The kernel trick
allows a nonlinear separator, when feature vectors v are transformed to N (wv). Then the
dot product of transformed vectors gives us the kernel function K (v;, v;) = N{v;) " N{v;).
The key is to work entirely with K and not at all with the function N. In fact we never
see or need N. In the linear case, this corresponds to choosing a positive definite X and
not seeing the matrix 4 in K = AT 4. The RBF kernel exp{—||v; — v;||?/20?) is in IIL.3.

M. Belkin, S. Ma, and 5. Mandal, To understand deep learning we need to understand ker-
nel learning, arXiv:1802.01396. “Non-smooth Laplacian kernels defeat smooth Gaussians™

T. Hofmann, B. Scholkopf, and A. J. Smola, Kernel methods in machine learning,
Annals of Statistics 36 (2008) 1171-1220 (with extfansive references).

VILS The World of Machine Learning - 415

Google Translate

An exceptional article about deep learning and the development of Google Translate ap-
peared in the New York Times Magazine on Sunday, 14 December 2016. It tells how
Google suddenly jumped from a conventional translation to a recurrent neural network.
The author Gideon Lewis-Kraus describes that event as three stories in one: the work
of the development team, and the group inside Google that saw what was possible, and
the worldwide community of scientists who gradually shifted our understanding of how to
learn : hitps://www.nytimes.com/2016/12/14/magazine/the —great — Al—awakening.html

The development took less than a year. Google Brain and its competitors conceived the
idea in five years, The worldwide story of machine learning is an order of magnitude longer
in time and space. The key point about the recent history is the earthquake it preduced in
the approach to learning a language :

Instead of programming every word and grammatical rule and exception in both
languages, let the computer find the rules. Just give it enough cormrect translations.

If we were recognizing images, the inputs would be many examples with correct
labels (the training set). The machine creates the function F'(z, v).

This is closer to how children learn. And it is closer to how we learn. If you want to teach
checkers or chess, the best way is to get a board and make the moves. Play the game.

The steps from this vision to neural nets and deep learning did not come easily.
Marvin Minsky was certainly one of the leaders. But his book with Seymour Papert
was partly about what “Perceptrons” could not do. With only one layer, the XOR functiog
(A or B but not both) was unavailable. Depth was missing and it was needed. !

The lifework of Geoffrey Hinton has made an enormous difference to this subject,
For machine translation, he happened to be at Google at the right time. For image recog-
nitien, he and his students won the visval recognition challenge in 2012 (with AlexNet).
Its depth changed the design of neural nets. Equally impressive is a 1986 article in Nature,
in which Rumelhart, Hinton, and Williams foresaw that backpropagation would become
crucial in optimizing the weights : Learning representations by back-propagating errors.

These ideas led to great work worldwide. The “cat paper” in 2011-2012 described train-
ing a face detector without labeled images. The leading author was Quoc Le: Building
high-level features using large scale unsupervised learning : arxiv.org/abs/1112.6209.
A large data set of 200 by 200 images was sampled from YouTube. The size was managed
by localizing the rcceptive fields. The network had one billion weights to be trained—
this is still a million times smaller than the number of neurons in our visual cortex.
Reading this paper, you will see the amival of deep learning.

A small team was quietly overtaking the big team that used rules. Eventually the
paper with 31 authors arrived on arxiv.org/abs/1609.08144. And Google had to switch
to the deep network that didn’t start with rules.

Books on Machine Learning

1 Y. S. Abu-Mostafa et al, Learning from Data, AMLBook (2012),
C. C. Aggarwal, Neural Networks and Deep Learning: A Textbook, Springer (2018).
E. Alpaydim, Introduction to Machine Learning, MIT Press (2016).

2

3

4 E. Alpaydim, Machine Learning : The New Al MIT Press (2016).

5 C. M. Bishop, Pattern Recognition and Machine Leamning, Springer (2006).

6 F. Chollet, Deep Learning with Python and Deep Learning with R, Manning (2017).
7

B. Efron and T. Hastie, Computer Age Statistical Inference, Cambridge (2016).
https:/Aweb.stanford.edu/~hastie/CASI_files/PDF/casi.pdf

8 A.Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, O'Reilly
(2017).

w0

I. Goodfellow, Y. Bengio , and A. Courville, Deep Learning, MIT Press (2016).

10 T. Hastie, R. Tibshirani , and J. Friedman, The Elements of Statistical Learning :
Data Mining, Inference, and Prediction, Springer (2011).

11 M. Mahoney, J. Duchi, and A. Gilbert, editors, The Mathematics of Data, American
Mathematical Society (2018).

12 M. Minsky and S. Papert, Perceptrons, MIT Press (1969).
13 A. Moitra, Algorithmic Aspects of Machine Learning, Cambridge (2014).

14 G. Montavon, G. Orr, and K. R. Miiller, eds, Neural Networks : Tricks of the Trade,
2nd edition, Springer (2012).

15 M. Nielsen, Neural Networks and Deep Learning, {title).com (2017).
16 B. Recht and S. Wright, Optimization for Machine Learning, to appear.
17 A.Rosebrock, Deep Learning for Computer Vision with Python, pyimagsearch (2018).

18 S. Shalev-Schwartz and S. Ben-David, Understanding Machine Learning: From
Theory to Algorithms, Cambridge (2014),

19 S. Sra, 5. Nowozin, and 8. Wright, eds. Optimization for Machine Learning, MIT
Press (2012).

20 G. Strang, Linear Algebra and Learning from Data, Wellesley-Cambridge Press (2019).
21 V. N. Vapnik, Statistical Learning Theory, Wiley (1998).

416

”Eigenvalues and Singular Values : Rank One

A rank one matrix has the simple form A = zyT. Its singular vectors 1, v and its only
nonzere singular value ; are incredibly easy to find :

& Y
=0 vi=g— o= =y
[E4)

You see immediately that A = xyT = ulaw?. One nonzero in the m X n matrix X,
All other columns of the orthogonal matrices U/ and V' are perpendicular to u; and v;.
The decomposition A = ULV T reduces to the first term A = w0197 because rank = 1.

Eigenvalues and eigenvectors are not quite that easy. Of course the matrix A must be
square. To make life simple we continue with a 2 by 2 matrix A = &y 7. Certainly x is an
eigenvector !

Az =azyTx = Mz so A; is the number y z. {2)

The other eigenvalue is A2 = 0 since A4 is singular (rank = 1). The eigenvector x> = y*

must be perpendicular to y, so that Azy = ay yt = 0. If y = (a,b) then gt is its
90° rotation (b, —a).

The transpose matrix AT = yz T has the same eigenvalues yT @ and 0. Its eigenvectors
are the “left eigenvectors” of A. They will be y and @+ (because xy T has eigenvectors
z and y1). The only question is the scaling that decides the eigenvector lengihs.

The requirement is (left eigenvector) T{right eigenvector) = 1. Then the left eigenvec-
tors are the rows of X ~! when the right eigenvectors are the columns of X : perfection.!
In our case those dot products of eigenvectors now stand at y*@ and (@1)TyL. Dividé
both left eigenvectors y and 1 by the number yTx, to produce X' X = XX 1 =J:

T
x| [4] 2] o] o

Finally there is one more crucial possibility, that T = 0. Now the eigenvalues of
A = xy7T are zero and zero. A has only one line of eigenvectors, because y= is in the
same direction as x. The diagonalization (2) breaks down because the eigenvector matrix
X becomes singular. We cannot divide by its determinant yTx = 0. '

This shows how eigenvectors can go into a death spiral (or a fatal embrace @ = y=+).
Of course the pairs of singular vectors &, z~ and %, ¥ remain orthogonal.

T
Question Ineqguation (2), verify that X "1X = [myJ_T } [r yt] = {yTx) { 3} (l) }

Question When does A = xyT have orthogonal eigenvectors ?

417

Godes and Algorithms for Numerical Linear Algebra.

LAPACK

is the first choice for dense linear algebra codes.

ScalLAPACK achieves high performance for very large problems.

COIN/OR

Here are sources for specific algorithms.

Direct solution of linear systems
Basic matrix-vector operations

Elimination with row exchanges
Sparse direct solvers (UMFPACK)
QR by Gram-Schmidt and Householder

Eigenvalues and singular values
Shifted QR method for eigenvalues

Golub-Kahan method for the SVD
fterative solutions

Preconditioned conjugate gradients for Sz = b
Preconditioned GMRES for Az = b
Krylov-Arnoldi for Az = Az
Extreme eigenvalues of 5
Optimization

Linear programming

Semidefinite programming

Interior point methods

Convex Optimization

Randomized linear algebra
Randomized factorizations via pivoted QR

A = CM R columns/mixing/rows
Interpolative decomposition (ID)

Fasi Fourter Transform

Repositories of high quality codes

ACM Transactions on Mathematical Software

Deep learning software (see also page 374)
Deep learning in Julia
Deep learning in MATLAB
Deep learning in Python and JavaScript
Deep learning in R

418

provides high quality codes for the optimization problems of operations research.

BLAS

LAPACK
SuiteSparse, SuperLU
LAPACK

LAPACK
LAPACK

Trilinos

Trilinos

ARPACK, Trilinos, SLEPc
see also BLOPEX

CLP in COIN/OR
CSDP in COIN/OR
IPOPT in COIN/OR
CVX, CVXR

users.ices.utexas.edu/
~pgm/main_codes.html

FFTW.org

GAMS and Netlib.org
TOMS

Fluxml.ai/Flux.ji/stable

Mathworks.com/learnftutorials/deep—Ilearning—onramp.htmil

Tensorflow.arg, Tensorflow.js
Keras, KerasR

| Counting Parameters in the Basic Factorizations

A=LU A=QR S=QAQT A=XAX"1' A=Q5 A=UxVT

This is a review of key ideas in linear algebra. The ideas are expressed by those factor-

izations and our plan is simple: Count the parameters in each matrix. We hope to see

that in each equation like 4 = LU, the two sides have the same number of parameters,
For A = LU, both sides have n? parameters.

L : Triangular n X n matrix with 1’s on the diagonal = n(n — 1)

2
U : Triangular n x n matrix with free diagonal % n{n + 1)
Q: Orthogonal n x n matrix tn(n-1)
5: Symmetric n x n matrix sn(n+1)
A : Diagonal n x n matrix n

X : n x nmatrix of independent eigenvectors n?—n

Comuments are needed for @. Its first columa ¢, is a point on the unit sphere in R™. That
sphere is an n — 1-dimensional surface, just as the unit circle 22 + ¢ = 1 in R? has
only one parameter (the angle #). The requirement ||g,|| = 1 has used up one of the n
parameters in g,. Then g, has n — 2 parameters—it is a unit vector and it is orthogonal
to q;. The sum (n — 1) + (n — 2) + - - + L equals n(n — 1) free parameters in Q.

The eigenvector matrix X has only n? — n parameters, not n2, If is an eigenvector
then so is ca: for any ¢ # 0. We could require the largest component of every x to be k
This leaves n — 1 parameters for each eigenvector (and no free parameters for X ~1).

The count for the twe sides now agrees in all of the first five factorizations.

For the SVD, use the reduced form A xn = UerErxﬂ’g‘m (known zeros are
not free parameters !) Suppose that /n < n and A is a full rank matrix with » = m. The
parameter count for A is wmn. So is the total count for U, X, and V. The reasoning for

orthonormal columns in L7 and V' is the same as for orthonormal columns in).
1 1
U has 2 m(m —1) X has m V has (n—~1)+ - -+(n-m) =mn — 3 m(m + 1)

Finally, suppose that A is an m by n matrix of rank v. How many free parameters

in a rank r matrix ? We can count again for U, Srxr V.1, ¢

1 1
U has (m=-1}+--+{m—-r)=mr — Er(r-l— 1) V has nr — Er(r‘ +1) X has r

The total parameter count for rank ris (m +n — r) r.

We reach the same total for A = ("R in Section I.1. The r columns of C were taken
directly from A. The row matrix R includes an r by r identity matrix (not free !). Then
the count for CR agrees with the previous count for U5V T, when the rank is 7 :

C has wnr parameters R has nr — r? parameters Total (m+n — 7).

419

Index of Authors

{For most living authors, the page includes a journal or book or arXiv reference)

Abu-Mostafa, 416

Aggarwal, 416

Alpaydim, 416

Andersson, 108

Amold, 383

Arnoldi, 115-117,
123

Ba, 366, 367
Bach, 343
Bader, 105, 108
Bahri, 378
Balestriero, 395
Banach, 91
Baraniuk, 196,
395
Bassily, 363
Bau, 115,117
Bayes, 253, 303
Beckermann, 180,
182, 183
Belkin, 170, 363,
414
Belongie, 395
Ben-David, 416
Bengio, 356, 381,
303, 408, 416
Benner, 182
Bernoulli, 286,
287,410
Berrada, x, 394
Bertsekas, 188,
356
Bishop, 416

Borre, 165, 302

Bottou, 363

Bovd, 185, 188,
191, 350, 354,
356

Bregman, 185,
192

Bro, 108

Buhmann, 181

Candés, 195, 196,
198,354
Canny, 390
Carroll, 104
Cauchy, 90, 178,
200
Chang, 104
Chebyshev, 179,
263, 285, 289,
290
Chernioff, 285,
289, 291
Cholesky, 48, 54,
115,238
Chollet, 416
Chu, 185
Combeties, 191
Cooley, 209
Courant, 174, 176
Courville, 416
Cybenko, 384

Dantzig, 338
Darbon, 193

Daubechies, 237
Davis, 152, 170
De Lathauwer,
107
de Moor, 108
Dhiilon, 253
Dickstein, 381
Dijksterhuis, 258
Dokmanic, 259
Donoho, 195-198
Douglas, 191
Drineas, 108, 143
Duchi, 366, 367,
416
Durbin, 233

Eckart-Young, 58,
71,72,74,179
Eckstein, 185
Efron, 408, 416
Einstein, 91
Eldridge, 170
Elman, 336
Embree, 117, 142
Erdos, 291
Euclid, 259.
Euler, 242, 244,
322

Fatemi, 193

Fiedler, 246, 248,
254

Fischer, 174, 176

Fisher, 86, 87

420

Flyer, 181
Fornberg, 181
Fortin, 188
Fortunato, 182
Fourier, [78,179,
204, 207, 216,
222,391
Friedman, 416
Frobenius, 71, 73,
93, 257,312,
315

Géron, 416
Gangul, 381
Garipov, 365
Gauss, 122, 191,
2049, 268, 304,
308
Gibbs, 231
Giltbert, 416
Giles, 272, 382
Gillis, 98
Givens, 119
Glowinski, 188
Goemans, 289
Gohberg, 235
Goldfarb, 193
Goldstein, 193
Golub, 115, 120,
258
Goodfellow, 416
Gordon Wilson,
365

Index of Authors

Gower, 258, 261,
363

Gram-Schrmdt,
30, 116,
128-130

Gray, 235

Griewank, 406

Grinfeld, 108

Haar, 35
Hadamard, 30,
107,218
Hager, 167
Hajinezhad, 188
Halko, 143, 151
Hali, 340
Hanin, 378
Hankel, 178, 183
Hansen, 368
Hardt, 356, 367
Harmon, viii
Harshman, 104,
108
Hastie, 99, 100,
198, 199,416
Hazan, 366, 367
He, 378, 395
Hermite, 206
Hessenberg, 115,
117
Higgs, 268
Higham, 249, 250,
397
Hilbert, 78, 91,
96, 159, 178,
183, 383
Hillar, 104
Hinton, 203, 393,
409,415
Hitchcock, 104
Hofmann, 414
Holder, 96
Hopf, 235
Homik, 384

Householder, 34,
131, 135

offe, 409
Izmailov, 365

Jacobi, 122, 123,
191, 323
Johnson, 154
Johnson, 406
Jordan, 356

Kaczmarz, 122,
185, 193, 363,
368

Kahan, 120, 152,
170

Kale, 367

Kalman, 164, 167,
263, 308, 309

Kalna, 250

Kannan, 151, 155

Karpathy, 392

Khatri-Rao, 103,
106

Kibble, 250

Kingma, 366, 367

Kirchhoff, 18,
241, 243, 336

Kleinberg, 381

Kolda, 105, 108

Konig, 340

Kolmogorov, 383

Krizhevsky, 203,
393, 409

Kronecker, 1035,
221,223,224,
226

Kruskal, 104

Krylov, 115-117,
121, 178, 181,
183

Kultback, 411

Kumar, 367, 394

Kuo, 395

Lagrange, 69, 173,
185, 322, 333
Lanczos, 115, 118
Laplace, 223, 225,

228,239, 248
Lathauwer, 108
Le, 415
LeCun, 393,410
Lee, 97, 108, 198
Lei, 193
Leibler, 411
Lessard, 354, 356
Levenberg, 329
Levinson, 233
Lewis-Kraus, 415
Li, 182
Liang, 412
Liao, 384
Liberty, 151
Lim, 104
Lindenstrauss,

154
Lipschitz, 355
Logan, 196
Lorentz, 91
Lustig, 196
Lyapunov, 180

Ma, 363,414
Maggioni, 103
Mahoney, 108,
143, 146, 151,
416
Malik, 247
Mallat, 395
Mandal, 414
Markov, 253, 263,
284, 290, 293,
311, 318
Marquardt, 329
Martinsson, 130,
139, 143, 151,
155
Mazumder, 198

a1

Menger, 260
Mhaskar, 384
Minsky, 415,416
Mirsky, 71, 72
Moitra, 416
Moler, 396
Monro, 361
Montavon, 408,
416
Montufar, 381
Moore-Penrose,
133
Morrison, 160,
162, 309
Miiller, 408, 416

Nakatsukasa, 152,
200
Nash, 340
Needell, 363
Nesterov, 354, 356
Neumann, 318
Newman, 182,
246
Newton, 163, 321,
330, 332
Nielsen, 411, 416
Nocedal, 356
Nowozin, 416
Nyquist, 195
Nystrom, 253

Ohm, 18, 242, 336
Olah, 397

O, 408, 416
Oseledets, 108
Osher, 193

Paatero, 108
Packard, 354, 356
Papert, 415, 416
Parhizkar, 259
Parikh, 185, 191
Pascanu, 381
Peaceman, 191

422

Pearson, 301
Peleato, 185
Pennington, 378
Pentland, 98
Perron, 312, 315,
319
Pesquet, 191
Pick, 183
Poczos, 363
Podoprikhin, 365
Poggio, 384
Poisson, 223, 229,
276,287
Polya, 382
Polyak, 351
Poole, 381
Postnikov, 255
Procrustes, 67,
257
Pythagoras, 30

Rachford, 191
Raghu, 381
Ragmarsson, 108
Rakhlin, 412
Ramdas, 363
Ranieri, 259
Rao Nadakuditi,
170,171
Rayleigh, 68, 81,
87,173, 249,
290
Recht, 198, 354,
356, 367,416
Reddi, 363, 367
Ren, 378, 395
Renyi, 291
Riccati, 253
Richtarik, 363
Robbins, 361
Roelofs, 356, 367
Roentgen, 196
Rokhlin, 151
Rolnick, 378, 385
Romberg, 198
Rosebrock, 416

Ruder, 367

Rudin, 193

Ruiz-Antolin, 178,
179, 182

Rumelhart, 415

Sachan, 367
Salakhutdinov,
409
Schmidt, 71
Schoenberg, 260
Schoenholz, 378
Scholkopf, 414
Schineman, 258
Schur, 177, 335
Schwarz, 61, 90,
06, 200
Seidel, 122, 191
Semencul, 235
Seung, 97, 108
Shalev-Schwartz,
416
Shannon, 195, 411
Shepp, 196
Sherman, 160,
162, 309
Shi, 188, 247
Silvester, 336
Simonyan, 392,
393
Singer, 366, 367
Smilkov, 386
Smola, 363, 414
Sohl-Dickstein,
378
Song, 108
Sorensen, 142
Sra, viii, 360, 363,
365,416
Srebro, 75, 198,
356, 363, 367
Srivastava, 409
Stanley, 381
Stern, 356, 367
Stewart, 74, 143

Strohmer, 122,
363

Su, 354

Sun, 378, 395

Sutskever, 203,
393, 409

Sylvester,
180-183

Szegd, 235

Szegedy, 409

Tao, 175, 195, 198

Tapper, 108

Taylor, 179, 323,
407

Tegmark, 385

Tibshirani, 99,
100, 184, 416

Toeplitz, 183, 232,
235,387, 389

Townsend, 78,
178-183

Trefethen, 115,
117

Tropp, 143, 151,
291

Truhar, 182

Tucker, 107

Tukey, 209

Turing, 413

Turk, 98

Tygert, 151

Tyrtyshnikov, 108

Udell, 181, 182

Van Loan, 108,
115, 120, 226,
258

Vandenberghe,
350, 356

Vandermonde,
178, 180, 18!

Vandewalle, 108

Vapnik, 414, 416

Veit, 395

Vempala, 151, 155

... Index of Authars

Vershynin, 122,
363

Vetrov, 363

Vetterli, 259

Vinyals, 356

Vitushkin, 383

von Neumann,
340

Wakin, 196
Walther, 406
Wang, 170
Ward, 363
Wathen, 336
Weyl, 172, 175
Wiener, 235
Wilber, 182, 395
Wilkinson, 119
Williams, 415
Wilson, 356, 367
Woodbury, 160,
162, 309
Woodrnff, 108,
151
Woolfe, 151
Wright, 356,416

Xiao, 378
Xu, 98

Yin, 193
Young, 353
Yu, 98

Zadeh, 198
Zaheer, 367
Zaslavsky, 381
Zhang, 98, 356,
378, 395
Zhong, 108
Zhou, 193, 384,
385
Zisserman,
392-394
Zolotarev, 182
Zou, 99, 100

Index

Accelerated descent, 352, 353

Accuracy, 384

Activation, iv, 375, 376

AD, 397, 406

ADAGRAD, 366

ADAM, 322, 336, 366

Adaptive, 407

Adaptive descent, 356, 361

ADI method, 182

Adjacency matrix, 203, 240, 251

Adjoint equation, 405

Adjoint methods, 404

ADMM, 99, 185, 187, 188

Affine, i

AlexNet, ix, 373,415

Aliasing, 234

AlphaGo Zero, 394,412

Alternating direction, 185, 191

Alternating minimization, 97, 106, 199,
252

Antisymmetric, 52

Approximate SVD, 144, 155

Approximation, 384

Architecture, 413

Argmin, 186,322

Arnoldi, 116, 117

Artificial inteliigence, 371

Associative Law, 13, 163

Asymptotic rank, 79

Augmented Lagrangian, 185, 187

Autocorrelation, 220

Automatic differentiation, 371, 397, 406

Average pooling, 379

423

Averages, 236, 365

Back substitution, 25
Backpropagation, 102, 344, 371, 397
Backslash, 113, 184
Backtracking, 328, 351
Backward difference, 123
Backward-mode, 397
Banach space, 91

Banded, 203, 232

Bandpass filter, 233

Basis, 4, 5, 15, 204, 239
Basis pursuit, 184, 195
Batch mode, 361

Batch normalization, x, 409, 412
Bayes Theorem, 303
Bell-shaped curve, 279
Bemoulli, 287

BFGS (quasi-Newton), 165
Bias, iii, 375

Bias-variance, 374, 412
Bidiagonal matrix, 120

Big picture, 14, 18, 31
Binomial, 270, 271, 275, 287
Binornial theorem, 385
Bipartite graph, 256, 340
Block Toeplitz, 389

BLUE theorem, 308
Bootstrap, 408

Boundary condition, 229
Bounded variation, 193, 194
Bowl, 49

Bregman distance, 192

ool

424

Caffe, viii, 374

Cake numbers, 382

Calculus, 396

Calculus of variations, 322
Canny Edge Detection, 390
Cauchy-Schwarz, 90, 96, 200
Centered difference, 345
Centering (mean 0), 75, 270
Central Limit Theorem, 267, 271, 288
Central moment, 286
Centroid, 247, 261

Chain rule, 375, 397, 406
Channels, 388

Chebyshev series, 179
Chebyshev’s inequality, 285, 290
Chemoff’'s inequality, 283
Chi-squared, 275, 280-282
Chord, 332

Circulant, x, 213, 220, 234
Circulants C D = DC, 220
Classification, 377

Closest line, 136

Clustering, 245, 246

CNN, v, 203, 232, 380

Coarea formula, 194

Codes, 374

Coin flips, 269

Column pivoting, 129, 143
Column space, 1-5, 13, 14
Combinatorics, 373, 381
Companion matrix, 42
Complete graph, 240, 244
Complete spaces, 91

Complex conjugate, 2035, 215
Complex matrix, 45
Composite function, 384
Composition, iv, 373, 375, 383
Compressed sensing, 146, 159, 196
Compression, 230
Computational graph, 397, 401
Computing the SVD, 120, 155
Condition number, 143, 353
Conductance matrix, 124, 336
Congruent, 53, 85, 87, 177

Index

Conjugate gradients, 121
Connected graph, 292

Constant diagonal, 213
Continuous Piecewise Linear, 372, 375
Contraction, 357, 358
Convergence in expectation, 365
Convex, 293, 321, 324, 325
Convex hull, 331

ConvNets, 378

Convolution, 203, 214, 220, 283, 387
Convolution in 2D, 388
Convolution of functions, 219
Convolation rle, 218, 220
Convolutional net, 380, 387
Corner, 338, 343

Correlation, 300, 301

Cosine series, 212

Counting Law, 16
Courant-Fischer, 174

Covariance, 76, 289, 294
Covariance matrix, 81, 134, 295-297
CP decomposition, 97, 104

CPL, 372, 385

Cramer’s Rule, 141
Cross-correlation, 219
Cross-entropy, 360

Cross-entropy loss, 411
Cross-validation, 408, 412

Cubic convergence, 119
Cumnlant, 287, 288

Cumulative distribution, 266, 269
Current Law, 18, 241

CURT, 108

CVX, 326

Cycie, 256

Cyclic convolution, 214, 218, 234
Cyclic permutation, 213

Data science, vi, 11, 71
DCT, 66, 230, 231

Deep Learning, iii, vi, 371
Degree matrix, 203, 240
DEIM method, 142

Delta function, 193, 219

Index

Derivative, 101, 344, 398, 399
Derivative d\/dt, 169

Derivative do /dt, 170

Derivative of 42, 167

Derivative of A~!, 163

Descent factor, 353

Determinant, 36, 42, 47, 48, 346
DFT matrix, 205, 207
Diagonalization, 11, 43, 52, 298
Diamond, 88, 89, 184

Difference equation, 223
Difference matrix, 16, 39, 238
Digits, iii

Dimension, 4, 6

Discrete Fourier Transform, 203-207
Discrete Gaussian, 389

Discrete sines and cosines, 66
Discriminant, 86, 87
Displacemeant rank, 182

Distance from mean, 284
Distance matrix, 259

Document, 98

Driverless cars, 381

Dropout, 409, 410

DST matrix, 66, 229

Dual problem, 186, 190, 322, 339
Duality, ix, 96, 339, 340, 342, 343
Dying ReLU, 400

Early stopping, 360
Eckart-Young, 58,71, 72,74, 75
Eigenfaces, 98

Eigenfunction, 228

Eigenvalue, 1, 12, 36, 39
Eigenvalue of A & B, 224
Eigenvalue of A ® B, 224
Eigenvalues of AT and A*, 42, 70
Eigenvalues of AB and BA, 59, 64
Eigenvector, 12, 36, 39, 216
Eigenvectors, viii, 11, 217
Element matrix, 244

Elimination, 11, 21, 23

Ellipse, 50, 62

Energy, 46, 49

425

Entropy, 411

Epoch, 361

Equilibrivm, 242
Equirtpple filter, 236
Erdds-Renyi, 291

Error equation, 116, 364
Exror function, 280
Euclidean, 88, 259

Even function, 212
Expected value, 149, 264
Exploding weights, 378
Exponential distribution, 278
Expressivity, 373, 381

Factorization, 5, 11

Fan-in, 378

Fast Fourier Transform, 178

Fast multiplication, 234

Feature space, 86, 252, 375

FFT, ix, 204, 209, 211, 229, 234

Fiedler vector, 246, 248, 249, 254

Filter, 203, 233, 236, 387

Filter bank, 391

Finance, 321

Finite element, 336

Five tests, 49

Fold plane, 381

Forward mode, 401, 402

Four subspaces, 18

Fourier integral, 204, 205

Fourier matrix, ix, 35, 180, 204, 205,
216

Fourier series, 179, 204

Free parameters, 419

Frequency response, 232, 236

Frequency space, 219

Frobenius norm, 71, 257

Fulty connected net, v, x, 371, 380

Function space, 91, 92

Fundamental subspaces, 14

Gain matrix, 164
Gambler’s ruin, 317
Game theory, 340
GAN, 413

426

Gaussian, 271, 275, 389

Generalize, 359, 367, 368, 372

Generalized eigenvalue, 81

Generalized SVD, 85

Generating function, 283, 287

Geometry of the SVD, 62

Gibbs phenomenon, 231

Givens rotation, 119

GMRES, 117

Go, ix, 394,412

Golub-Kahan, 120

Google, 394

Google Translate, 415

GPS, 165, 302

GPU, 393

Gradient, 323, 344, 345, 347

Gradient descent, 322, 344, 349

Gradient detection, 389

Gradient of cost, 334

Gram matrix, 124

Gram-Schmidt, 114, 128

Grammar, 415

Graph, 16, 203, 239

Graph Laplacian, 124, 224, 239, 243,
246

Grayscale, 229

Greedy algorithm, 254

Hdélder’s inequality, 96

Haar wavelet, 35

Hadamard matrix, 30
Hadamard product, 107, 218
Half-size transforms, 209
'Halfway convexity test, 332
Hankel matrix, 183

Hard margin, 414

He uniform, 378

Heavy ball, 351, 366
Heavy-tailed, 285
Hermitian matrix, 206
Hessenberg matrix, 117
Hessian, 55, 323, 326
Hidden layer, 371, 372, 387, 399
Hilbert 13th problem, 383

Index

Hilbert matrix, 78, 183
Hilbert space, 66, 91

Hinge loss, 360
Householder, 131, 135
Hyperparameters, 407412
Hyperplane, 381, 382

iid, 277

ICA, 413

Identity for o2, 265, 274
Il-conditioned, 113

Image recognition, 387, 389
ImageNet, ix, 373

Importance sampling, 363
Incidence matrix, 16, 243, 239, 240
Incoherence, 195

Incomplete LU, 122

Incomplete matrices, 159
Indefinite matrix, 50, 172
Independent, 3-5, 289

Indicator function, 189

Infinite dimensions, 91
Informative component, 171
Initalization, 378

Inner product, 9, 10, 91
Interior-point methods, 342
Interlacing, 53, 168, 170, 171, 175
Internal layer, 377

Interpolation, 180, 363
Interpolative decomposition, 139, 155
Inverse Fourier transform, 217
Inverseof 4 — VT, 162

Inverse of A @ B, 221

[nverse problerns, 114

Inverse transform, 204

Isolated minjmum. 322

Jacobian matrix, 323
Johnson-Lindenstrauss, 154
Joint independence, 289
Joint probability, 102, 294
IPEG, 66, 229

Kaczmarz, 122, 193, 363-364
Kalman filter, 164, 167, 308-310

Index

Karhunen-Logve, 61

Keras, viii, 374, 418

Kernel function, 414

Kernel matrix, 247

Kemel method, 181, 252
Kernel trick, 414

Khatri-Rao product, 105, 106
Kirchhoft, 241, 242, 336
KKT matrix, 173, 177, 335
Kriging, 253

Kronecker product, 105, 221, 227
Kronecker sum, 223-225, 228
Krylov, 116, 183
Kullback-Leibler, 411
Kurtosis, 286

Lagrange multiplier, 150, 321, 333
Lagrangian, 173, 333

Lanczos, 118

Laplace’s equation, 229
Laplacian matrix, 203
Laplacian of Gaussian, 390
Large deviation, 285

Largest determinant, 141
Largest variance, 71

LASSO, 100, 184, 190, 357
Latent variable, 182

Law of Inertia, 53, 177, 337
Law of large numbers, 264
Leaky ReLU, 400

Learning function, iii, vi, 373, 375
Learning rate, vii, 344, 407
Least squares, iv, 109, 124, 126
Left eigenvectors, 43

Left nullspace, 14, 17

Left singular vectors, 60
Length squared, 47, 149

Level set, 194
Levenberg-Marquardt, 329, 330
Line of nodes, 223

Line search, 351

Linear convergence, 350, 356
Linear pieces, 373, 381

Linear programming, 338

427

Linear Time Invariance, 67, 233
Lipschitz constant, 194, 355, 365
Local structure, 387
Log-normal, 275, 280, 281
Log-rank, 181

Logan-Shepp test, 196

Logistic curve, 373

Logistic regression, 393

Loop, 17, 241

Loss function, 360, 377, 411
Low effective rank, 159, 180
Low rank approximation, 144, 155
Lowpass filter, 236, 391

LTI, 233

Machine learning, 371, 413
Machine learning codes, 374, 418
Machine translation, 394

Margin, 414

Marginals, 295

Markov chains, 311

Markov mairix, 39, 311-313, 318
Markov's inequality, 284, 290, 293
Mass matrix, 81

Master equation, 263, 318
Matricized tensor, 105

Matrix calculus, 163

Matrix Chernoff, 291

Matrix completion, viii, 159, 197, 198,

255
Matrix identities, 163
Matrix inversion lemma, 160
Matrix multiplication, 7, 10, 13
Matrix norm, 92, 94
Max-min, 174
Max-pooling, 379, 406
Maximum flow, 339, 340
Maximum of R(zx), 81, 172
Maximum problem, 62, 63, 68
MDS algorithim, 261
Mean, 75, 147, 264, 267
Mean field theory, 378
Mean of sum, 299
Medical norm, 95, 96

am

428

Method of multipliers, 185
Microarray, 250

Minibatch, ix, 322, 359, 367
Minimax, 174, 335, 342
Minimum, 49, 55, 338
Minimum cut, 246, 340
Minimum norm, 126, 356
Minimum variance, 150
Missing data, 197

Mixed strategy, 341

Mixing matrix, §, 142, 143, 152, 155
MNIST, i1, 355

Modularity matrix, 246
Modulation, 208

Moments, 286

Momentum, 351, 366

Monte Carlo, 272, 394
Morrison-Woodbury, 160, 162
Moving window, 237, 390
MRI, 196

Multigrid, 122, 353
Multilevel method, 249
Multiplication, 2, 10, 214
Multiplicity, 40

Multivalued, 192
Multivariable, 275, 280, 304, 305

Netflix competition, 199

Neural net, i1, v, 377

Neuron, 375

Newton’s method, 165, 327, 332

NMF, 97, 98, 190

Node, 16

Noise, 184

Nondiagonalizable, 40

Nonlinear least squares, 329

Nonnegative, 8, 97

Nonuniform DFT, 178, 182

Norm of tensor, 103

Norm of vector, 88

Norm-squared sampling, 122, 146, 149,
156, 363

Normal distribution, 268, 279, 288

Normal equation, 113, 127

Index

Normal matrix, 180, 183

Normalize, 128, 270, 409

Normalized Laplacian, 248

NP-hard, 99

Nuclear norm, 71, 95, 100, 159, 197,
200

Nullspace, 6, 14

Nyguist-Shannon, 195

Ohm, 336

One-pixel, 196

One-sided inverse, §

One-Zero matrices, 78
OpenCourseWare, X

Optimal strategy, 341, 343
Optimization, 321

Orthogonal, 11, 29, 52, 128
Orthogonal eigenvectors, 44
Orthogonal functions, 203
Orthogonal matrix, 29, 33, 35, 36, 257
Orthogonal subspaces, 29
Orthonormal basis, 34, 130

Outer product, 9, 10, 103
Overfitting, iii, vi, ix, 359, 360, 409
Overrelaxation, 353

Parameters, 70, 419

Payoff matrix, 341, 343
PCA, 1,71, 7577

Penalty, 100, 114
Perceptrons, 415

Periodic functions, 204
Permutation, 26, 28, 35
Perron-Frobenius, 314, 315
Pieces of the SVD, 57
Piecewise linear, x, 375, 381, 385
Pivot, 23, 25; 47, 48
Playground, 386

Poisson, 182, 275, 276, 287
Polar decomposition, 67
Polar form, 215

Pooling, x, 379

Positions from distances, 260
Pasitive definite, viii, 4549
Pasitive matrix, 315

Index

Positive semidefinite, 46, 290

Power method, 95

Preconditioner, 122, 147

Primal problem, 85

Principal axis, 51

Principal components, 71

Probability density, 266, 273, 278
Probability matrix, 295

Probability of failure, 279

Procrustes, 257, 258, 261

Product rule, 303

Projection, 32, 113, 127, 136, 153, 357
Projection matrix, 127, 153

Projects, vi, viii, 155, 366, 395

Proof of the SVD, 59, 69

Proximal, 189, 191

Proximal descent, 357

Pseudoinverse, 113, 124, 125,132,184
Psendospectra, 117

Quadratic ;=T Sz, 326
Quadratic convergence, 328
Quadratic cost, 411
Quadratic formula, 38
Quadratic model, 352
Quantization, 230

Quarter circle, 79, 80
Quasi-Mounte Carlo, 272
Quasi-Newton, 165, 328

Radial basis function, 181

Ramp function, 376, 400

Random forest, 413

Random graph, 291, 292

Random process, 233

Random projection, 133

Random sampling, 114, 120, 148, 253,
410

Randomization, ix, 108, 146, 155, 368

Randomized Kaczmarz, 363

Rank, 4, 5, 10, 20

Rank r, 419

Rank of AT A4 and AB, 19

Rank of tensor, 103, 104

Rank one, 61, 110, 160, 255, 417

429

Rank revealing, 138, 143

Rank two matrix, 176

Rare events, 277

Rational approximation, 182

Rayleigh quotient, 63, 68, 81, 87, 173,
251

RBF kernel, 181, 414

Real eigenvalues, 44

Rectified Linear Unit, 376

Recurrence relation, 403

Recurrent network, 394, 413

Recursion, 382

Recursive least squares, 164, 309

Reduced form of SVD, 57

Reflection, 33, 34, 131, 237,391

Regression, 77, 377

Regularization, 132, 4106, 412

Reinforcement learning, 394, 413

Relax, 184

Rel U, v, x, 375, 376, 400

Repeated eigenvalue, 12, 69

Rescaling, 300

Reshape, 226, 227

Residual net, 395

ResNets, 378

Restricted isometry, 196

Reverse mode, 399, 402, 403, 405

Ridge regression, 132, 184

Right singular vectors, 60

Rigid motion, 259

RINN, 394,413

Rotation, 33, 37, 41, 62, 67

Roundoff error, 145

Row exchange, 26

Row picture, 21

Row space, 3, 14

Saddle point, ix, 50, 81, i68, 172, 174,
186, 335, 341

Sample covariance, viii, 76, 296

Sample mean, 264, 296)

Sample value, 264

Sample variance, 265

Saturate, 409, 411

Wk

430

Scale invariance, 400

Schur complement, 177, 335
Schur’s Theorem, 317

Scree plot, 78

Second derivatives, 49, 50, 326
Second difference, 123

Secular equation, 171
Semi-convergence, 361
Semidefinite, 47

Semidefinite program, 198, 342
Sensitivity, 406

Separable, 187

Separating hyperplane, 380
Separation of Variables, 225
SGD, 359, 361, 367

Share weights, 387

Sharp point, 89, 184
Sherman-Morrison-Woodbury, 162
Shift, 213, 235

Shift invariance, 203

Shift matrix, 387

Shift rule, 208

Shifi-invariant, 387

Shrinkage, 189, 191, 357

SIAM News, 373

Sigmoid, iv, 252

Signal processing, 191,211,218
Similar matrices, 38, 43, 85, 119
Simplex method, 338

Sine Transform, 229

Singular gap, 79

Singular Value Decomposition, see SVD
Singular values, 56

Singular vectors, ix, 56, 59
Sketch, 151

Skewness, 286

Skip connection, 412

Skip connections, 395

Slice of tensor, 101

Smoothing, 389

Smoothness, 92

Sobel, 390, 396

Soft thresholding, 189, 192, 357
Softmax, 393

Tndex

Solutions to 2V = 1, 206, 215
Spanning tree, 256

Sparse, §, 89, 184, 195

Sparse PCA, 98-100

Spectral norm, 71

Spectral radius, 95

Spectral Theorem, 12, 44
Speech, 413

Spirals, 386

Spline, 395

Split algorithm, 185, 191

Split Bregman, 192, 193
Square loss, 360, 411

Square root of maltrix, 67
Standard deviation, 265
Standardized, 263, 270, 288
State equation, 167

Steady state, 311

Steepest descent, 186, 347, 348, 350
Step function, 193

Stepsize, vii, 186, 344, 407
Stiffness matrix, 124, 336
Stochastic descent, viii, 359, 361, 398
Straight line fit, 136

Stretching, 62, 67

Strictly convex, 49, 323, 325, 355
Stride, 379, 390

Structured matrix, 180
Subgradient, 188, 191, 192, 355
Submalrix, 65

Subsmpling, 379

Sum of squares, 51

Support Vector Machine, 394
SVD, vi, ix, 1, 5, 11, 31, 56, 57, 60, 144
SVD for derivatives, 65

SVM, 181, 394, 413,414

SWA, 365

Sylvester test, 180, 181, 183
Symbol, 232, 238

Symmetric matrix, 11, 36
Szegd, 235

Tangent line, 324, 325, 332
Taylor senies, 323

Index

Tensor, X, 101, 110
Tensor train, 108

Tensor unfolding, 105
Tensorflow, viii, 374, 418
Test, 47,412

Test data, iii, ix, 359
Text mining, 98

Three bases, 138

Toeplitz matrix, 183, 232, 233, 373, 387,

406
Total probability, 268, 274
Total variance, 77
Total variation, 190, 193
Trace, 36, 77
Training, 412
Training data, iti, 359
Transition matrix, 313, 314
Tree, 17, 240, 244
Triangle inequality, 88, 260
Tridiagonal, 28, 118, 232
Tucker form, 107
Turing machine, 413
Two person game, 340

Unbiased, 308

Underfitting, 374

Unfolding, 108

Uniform distribution, 266, 267
Unit ball, 89, 96, 200
Unitarily invariant, 72

Unitary matrix, 206
Universality, 384
Unsupervised, 71

Updating, 164—-166

431

Upper Chernoff, 289
Upper triangular, 23, 129

Vandermonde, 178, 180
Vanishing weights, 378

Variance, ix, 76, 134, 147, 150, 264,

265, 267
Variance of E, 307
Variance of sum, 299
Vector norm, 327
Vectorize (vec), 225
Video, 226
Voltage Law, 18

Wavelet, 391

Wavelet transform, 237
Weak duality, 339, 343
Weakly stationary, 235
Weight averaging, 365
Weight decay, 412

Weight sharing, 388
Weighted, 134, 243
Weighted average, 306, 307
Weights, 375

Weyl inequatities, 172, 175, 176
White noise, 134, 306
Wiener-Hopf, 235
Wikipedia, 30, 275, 394, 408
Wraparound, 391

YOGI, 367

Zero padding, 233, 391
Zig-zag, 348, 349
Zolotarev, 182

Index of Symbols

(AB)C or A(BC),403 S§=QAQT, 11,12, 44,51
—1,2, —1 matrix, 238 VF, 323,347
18‘06-18,{]‘65, Vi, Viii, X, 155 a * %4a, 220
A=CMRER, 8§, 142, 151, 156 cxd, 214,220
A=CR,5,7,245 c®d, 214,218
A=LU,11,24,27 2T Sz, 46, 55
A=0QR, 11,129, 143, 156 # norm, 89, 159
i = gf; fg? 2% vs. 2,308

= N 1 p2 geo
A—USVT. 11, 57.64.69. 120 fu,ﬁ ,9€ norms, 88, 94, 159, 327
A=XAX"1,11,39 C A‘ 3
AB, 9,10, 64 (4),

-2 1Y N{0,1), 288, 304
AV = UZ, 56
AV — U3 57 N (m, o}, 268

r [k 4
Ad B, 223 S+ T,SNT,S 2
A® B 201 Kron(4, B), 221
ATCA, 242,243 vec, 225-277
A* = At = VZHUT, 125,132 C(AT),9
AF = XARX 139 N(4), 14
Hy = QT AQ, 117 N(ATA) = N(4), 20,135
M-orthogonal, 83 log(det X}, 346, 358
QQT, 32 @, 105
QR algorithm, 119, 123 |A] < a1, 61
QTQ, 32 || Az||/ |||l 62
QT =Q~1,29 M flle. 92
S-curve, 376 k-means, 97, 245, 247, 251, 252, 254
S-norm, 90 MATLAB, 45, 82, 108, 221, 249, 418
§=ATA, 47,48 Julia, 45,82, 418
S =ATCA, 54 koro, 107,218

432

