
GAMA v1.8.2 documentation
by GAMA team

http://gama-platform.org

 http://gama-platform.org

GAMA v1.8.2 documentation

v 1.8.2 2

Contents

I Home 13

1 GAMA 15

Multiple application domains . 15

Training sessions . 16

High-level and intuitive agent-based language 16

GIS and Data-Driven models . 17

Declarative user interface . 17

Development Team . 19

Citing GAMA . 19

Acknowledgement . 20

2 Introduction 21

Documentation . 23

Source Code . 23

Copyright Information . 24

Developers . 24

Citing GAMA . 25

Contact Us . 26

3

GAMA v1.8.2 documentation Contents

II Platform 27

3 Platform 29

4 Installation and Launching 31

5 Workspace, Projects and Models 33

6 Editing models 35

7 Running Experiments 37

8 Preferences 39

Table of contents . 39

Opening Preferences . 40

Interface . 40

Editors . 43

Execution . 45

Displays . 47

Data and Operators . 50

Manage preferences in GAML . 54

Advanced Preferences . 55

9 Troubleshooting 57

Table of contents . 57

On Ubuntu (& Linux Systems) . 58

On macOS . 58

Memory problems . 58

Submitting an Issue . 59

v 1.8.2 4

GAMA v1.8.2 documentation Contents

III Learn GAML step by step 65

10 Learn GAML Step by Step 67

How to proceed to learn better? . 67

11 Introduction 69

Table of contents . 70
Lexical semantics of GAML . 70
Translation into a concrete syntax . 72
Vocabulary correspondence with the object-oriented paradigm as in Java . 74
Vocabulary correspondence with the agent-based paradigm as in NetLogo . 74

12 Manipulate basic species 77

13 The global species 79

Index . 79
Declaration . 79
Environment size . 81
Built-in attributes . 81
Built-in Actions . 84
The init statement . 85

14 Defining advanced species 87

15 Defining GUI Experiment 89

Types of experiments . 89
Experiment attributes . 90
Experiment facets . 90
Defining displays layout . 91
Defining elements of the GUI experiment 91

v 1.8.2 5

GAMA v1.8.2 documentation Contents

16 Exploring Models 93

17 Optimizing Models 95

18 Multi-Paradigm Modeling 97

IV Recipes 101

19 Recipes 103

20 Manipulate OSM Datas 105

21 Implementing diffusion 121

Index . 121

Diffuse statement . 122

Diffusion with matrix . 124

Diffusion with parameters . 129

Computation methods . 132

Using a mask . 133

Pseudo-code . 139

22 Using Database Access 141

Description . 142

Supported DBMS . 142

SQLSKILL . 143

MDXSKILL . 149

AgentDB . 154

Using database features to define environment or create species 159

v 1.8.2 6

GAMA v1.8.2 documentation Contents

23 Calling R 163
Introduction . 163
Table of contents . 163
Configuration in GAMA . 164
Calling R from GAML . 164

24 Using FIPA ACL 171
Table of Contents . 171
Main steps to create a conversation using FIPA Communication Acts and

Interaction Protocols . 172
Attach the fipa skill to a species . 172
Initiate a conversation . 173
Receive messages . 173
Reply to a received message . 174
End a conversation . 175
The message type . 175
The conversation data type . 175

25 Using GAMAnalyzer 177
Install . 177
Built-in Variable . 177
Example . 178

26 Using BEN (simple_bdi) 181
Introduction to BEN . 181
The BEN architecture . 181
Predicates, knowledge and personality . 183
Perception . 191
Managing knowledge bases . 194
Making Decision . 201

v 1.8.2 7

GAMA v1.8.2 documentation Contents

27 Known issues 275

Crash when using openGL on Windows . 275
Grid not displayed right using openGL . 275

V GAML References 279

28 GAML References 281

Index of keywords . 281

29 Built-in Species 283

Table of Contents . 283
agent . 284
AgentDB . 284
base_edge . 288
experiment . 288
graph_edge . 290
graph_node . 291
physical_world . 291

30 Built-in Skills 295

Introduction . 295
Table of Contents . 296
advanced_driving . 296
driving . 306
dynamic_body . 308
fipa . 310
MDXSKILL . 317
messaging . 318

v 1.8.2 8

GAMA v1.8.2 documentation Contents

moving . 319
moving3D . 322
network . 323
public_transport . 327
public_transport_scheduler . 330
skill_road . 331
skill_road_node . 333
SQLSKILL . 333
static_body . 337

31 Built-in Architectures 339

INTRODUCTION . 339
Table of Contents . 339
fsm . 340
parallel_bdi . 340
probabilistic_tasks . 340
reflex . 341
rules . 341
simple_bdi . 341
sorted_tasks . 370
user_first . 370
user_last . 371
user_only . 371
weighted_tasks . 371

32 Statements 373

Table of Contents . 373
Statements by kinds . 374

v 1.8.2 9

GAMA v1.8.2 documentation Contents

Statements by embedment . 377
General syntax . 380

33 Types 523

Table of contents . 523
Primitive built-in types . 525
Complex built-in types . 527
How to change the processor . 593

34 General workflow of file generation 595

VI Projects using GAMA 597

35 Projects 599

Publications . 599
Projects . 599

36 Scientific References 611

Table of Contents . 611
Papers about GAMA . 612
HDR theses . 613
PhD theses . 613
PhD theses that use GAMA as modeling/simulation support 614
Master theses that use GAMA as modeling/simulation support 615
Research papers that use GAMA as modeling/simulation support 616

37 Training Session 635

SEARCA Phillippines 2021 (Online) . 635
AWP 2021(Online) . 635

v 1.8.2 10

GAMA v1.8.2 documentation Contents

USTH Training session 2020 . 635
SMAC Toulouse 2020 . 635
Application to disaster management and evacuation 636
Training session TLU 2019 . 636
AWP Phnom Penh 2019 . 636
Formation Toulouse 2019 . 636
Training session Brasilia 2019 . 636
Application to disaster management and evacuation 637
AWP Can Tho 2018 . 637
SCEMSITE 2018 . 637
Formation Toulouse 2018 . 637
GAMA 1.7RC1 training session - Pays-Bas 637
Analysis of land use dynamics (JTD 2017) 637
Master TRIAD 2017 . 638
EDSS USTH Master 2016 . 638
Design urban energy transition policies (JTD 2016) 638
Modeling for supporting decisions in urban management issues 638
Epidemiological risks and the integration of regional health policies (JTD

2015) . 641
MAPS 8 2015 . 641
Nex Days 2015 (GAMA 1.6.1) . 641
MISS ABMS 2014 . 641
MAPS epidemic city tutorial 2014 . 641
GAMA training session Phillippines . 641
A Glance at Sustainable Urban Development (JTD) 642
AUF 2013 . 642
MISS ABM 2013 . 642
The perception and Management of Risk (JTD) 642

v 1.8.2 11

GAMA v1.8.2 documentation Contents

Can Tho training session 2012 . 643
ESSA Tutorial 2012 . 643
Water and its many Issues (JTD) . 643
Introduction of GAMA 1.4 . 643
Formation à IRD Bondy . 644
Introduction to the GAMA and PAMS platforms (IFI 2009) 644

38 Events 645
Events linked to GAMA . 645

v 1.8.2 12

Part I

Home

13

Chapter 1

GAMA

GAMA is a modeling and simulation development environment for building spatially
explicit agent-based simulations.

• Multiple application domains: Use GAMA for whatever application domain
you want.

• High-level and Intuitive Agent-based language: Write your models easily
using GAML, a high-level and intuitive agent-based language.

• GIS and Data-Driven models: Instantiate agents from any dataset, includ-
ing GIS data, and execute large-scale simulations (up to millions of agents).

• Declarative user interface: Declare interfaces supporting deep inspections
on agents, user-controlled action panels, multi-layer 2D/3D displays & agent
aspects.

Its latest version, 1.8.2, can be freely downloaded or built from source, and comes
pre-loaded with several models, tutorials and a complete on-line documentation.

Multiple application domains

GAMA has been developed with a very general approach and can be used for many
application domains. Some additional plugins had been developed to fit particular
needs. The source code is available from the dedicated Github repository.
Example of application domains where GAMA is mostly present:

15

https://gama-platform.github.io/download
https://github.com/gama-platform/gama/
https://github.com/gama-platform/gama.experimental

GAMA v1.8.2 documentation Chapter 1. GAMA

Figure 1.1: Multiple application domains

• Transport
• Urban planning
• Epidemiology
• Environment

Training sessions

Some training sessions about topics such as “urban management”, “epidemiology”,
“risk management” are also provided by the team. Since GAMA is an open-source
software that continues to grow, if you have any particular needs for improvement,
feel free to share it to its active community!

High-level and intuitive agent-based language

Thanks to its high-level and intuitive language, GAMA has been developed to be used
by non-computer scientists. You can declare your species, giving them some special
behaviors, create them in your world, and display them in less than 10 minutes.

GAML is the language used in GAMA, coded in Java. It is an agent-based language,
that provides you the possibility to build your model with several paradigms of
modeling. Once your model is ready, some features allow you to explore and calibrate
it, using the parameters you defined as input of your simulation.

v 1.8.2 16

https://groups.google.com/forum/#!forum/gama-platform
https://www.youtube.com/watch?v=YGHw1LSzd-E

GAMA v1.8.2 documentation Chapter 1. GAMA

Figure 1.2: High level language

We provide you a continual support through the active mailing list where the team
will answer your questions. Besides, you can learn GAML on your own, following
the step by step tutorial, or personal learning path in order reach the point you are
interested in.

GIS and Data-Driven models

GAMA (GIS Agent-based Modeling Architecture) provides you, since its creation,
the possibility to load easily GIS (Geographic Information System).
You can import a large number of data types, such as text, files, CSV, shapefile, OSM
(open street map data), grid, images, SVG, but also 3D files, such as 3DS or OBJ,
with their texture.
Some advanced features provide you the possibility to connect GAMA to databases,
and also to use powerful statistical tools such as R.
GAMA has been used in large-scale projects, using a great number of agents (up to
millions of agents).

Declarative user interface

GAMA provides you the possibility to have multiple displays for the same model.
You can add as many visual representations as you want for the same model, in order

v 1.8.2 17

https://groups.google.com/forum/#!forum/gama-platform

GAMA v1.8.2 documentation Chapter 1. GAMA

Figure 1.3: Data-driven models

Figure 1.4: Declarative User Interface

to highlight a certain aspect of your simulation. Add easily new visual aspects to
your agents.

Advanced 3D displays are provided: you can control lights, cameras, and also adding
textures to your 3D objects. On the other hand, dedicated statements allow you to
define easily charts, such as series, histogram, or pies.

During the simulations, some advanced features are available to inspect the population
of your agents. To make your model more interactive, you can add easily some user-
controlled action panels, or mouse events.

v 1.8.2 18

GAMA v1.8.2 documentation Chapter 1. GAMA

Development Team

GAMA is developed by several teams under the umbrella of the IRD/SU international
research unit UMMISCO:

• UMI 209 UMMISCO, IRD/SU, 32 Avenue Henri Varagnat, 93143 Bondy Cedex,
France.

• ACROSS International Joint Lab, Thuyloi University, Hanoi, Vietnam (since
2021)

• DREAM Research Team, University of Can Tho, Vietnam (since 2011).
• UMR 5505 IRIT, CNRS/University of Toulouse 1, France (since 2010).
• UR MIAT, INRAE, 24 Chemin de Borde Rouge, 31326 Castanet Tolosan Cedex,

France (since 2016).
• UMR 6228 IDEES, CNRS/University of Rouen, France (2010 - 2019).
• UMR 8623 LRI, CNRS/University Paris-Sud, France (2011 - 2019).
• MSI Research Team, Vietnam National University, Hanoi, Vietnam (2007 -

2015).

Citing GAMA

If you use GAMA in your research and want to cite it (in a paper, presentation,
whatever), please use this reference:

Taillandier, P., Gaudou, B., Grignard, A.,Huynh, Q.-N., Marilleau, N., P.
Caillou, P., Philippon, D., & Drogoul, A. (2019). Building, composing
and experimenting complex spatial models with the GAMA platform.
Geoinformatica, (2019), 23 (2), pp. 299-322, [doi:10.1007/s10707-018-
00339-6]

or you can choose to cite the website instead:

GAMA Platform website, http://gama-platform.org

A complete list of references (papers and PhD theses on or using GAMA) is available
on the references page.

v 1.8.2 19

http://www.ummisco.fr/
https://www.ummisco.fr/
https://across-lab.org
http://www.cit.ctu.edu.vn
http://www.irit.fr
https://mia.toulouse.inra.fr
http://www.umr-idees.fr
http://www.lri.fr
https://ifi.vnu.edu.vn/en/news/Research/Modeling-and-Simulation-Lab-MSI-LAB-346.html

GAMA v1.8.2 documentation Chapter 1. GAMA

Figure 1.5: YourKit logo

Acknowledgement

YourKit supports open source projects with its full-featured Java Profiler. YourKit,
LLC is the creator of YourKit Java Profiler and YourKit .NET Profiler, innovative
and intelligent tools for profiling Java and .NET applications.
This page is licensed under a Creative Commons Attribution 4.0 International License.

v 1.8.2 20

Chapter 2

Introduction

GAMA is a simulation platform, which aims at providing field experts, modellers,
and computer scientists with a complete modelling and simulation development

21

http://www.youtube.com/watch?v=6m_-UY8UBuk

GAMA v1.8.2 documentation Chapter 2. Introduction

environment for building spatially explicit multi-agent simulations. It has been first
developed by the Vietnamese-French research team MSI (located at IFI, Hanoi, and
part of the IRD/SU International Research Unit UMMISCO) from 2007 to 2010,
and is now developed by a consortium of academic and industrial partners led by
UMMISCO, among which the University of Rouen, France, the University of Toulouse
1, France, the University of Orsay, France, the University of Can Tho, Vietnam, the
National University of Hanoi, EDF R&D, France, and CEA LISC, France.

Some of the features of GAMA are illustrated in the videos above (more can be found
in our Youtube channel).

Beyond these features, GAMA also offers:

• A complete modeling language, GAML, for modeling agents and environments
• A large and extensible library of primitives (agent’s movement, communication,

mathematical functions, graphical features, . . .)

v 1.8.2 22

http://www.youtube.com/watch?v=ycbeYxV2B7M
http://www.youtube.com/channel/UCWJ1kWGDDI-9u2f2uD0gcaQ

GAMA v1.8.2 documentation Chapter 2. Introduction

• A cross-platform reproducibility of experiments and simulations
• A powerful declarative drawing and plotting subsystem
• A flexible user interface based on the Eclipse platform
• A complete set of batch tools, allowing for a systematic or “intelligent” explo-

ration of models parameters spaces

Documentation

The documentation of GAMA is available online on the wiki of the project. It is
organized around a few central activities (installing GAMA, writing models, running
experiments, developing new extensions to the platform) and provides complete
references on both the GAML language, the platform itself, and the scientific aspects
of our work (with a complete bibliography). Several tutorials are also provided in the
documentation in order to minimize the learning curve, allowing users to build, step
by step, the models corresponding to these tutorials, which are of course shipped
with the platform.

The documentation can be accessed from the sidebar of this page. A good starting
point for new users is the installation page.

A standalone version of the documentation, in PDF format, can be directly downloaded
here

Source Code

GAMA can be downloaded as a regular application or built from source, which is
necessary if you want to contribute to the platform. The source code is available
from this GITHub repository:� �
https:// github.com/gama -platform/gama� �
Which you can also browse from the web here. It is, in any case, recommended to
follow the instructions on this page in order to build GAMA from source.

v 1.8.2 23

https://github.com/gama-platform/gama/wiki/resources/pdf/docGAMAv17.pdf
https://github.com/gama-platform/gama
https://github.com/gama-platform/gama

GAMA v1.8.2 documentation Chapter 2. Introduction

Copyright Information

This is a free software (distributed under the GNU GPL v3 license), so you can have
access to the code, edit it and redistribute it under the same terms. Independently
of the licensing issues, if you plan on reusing part of our code, we would be glad to
know it !

Developers

GAMA is being designed, developed and maintained by an active group of researchers
coming from different institutions in France and Vietnam. Please find below a short
introduction to each of them and a summary of their contributions to the platform:

• Alexis Drogoul, Senior Researcher at the IRD, member of the UMMISCO
International Research Unit. Mostly working on agent-based modeling and
simulation. Has contributed and still contributes to the original design of the
platform, including the GAML language (from the meta-model to the editor)
and simulation facilities like Java2D displays.

• Patrick Taillandier, Researcher at INRA, member of the MIAT Research
Unit. Contributes since 2008 to the spatial and graph features (GIS integration,
spatial operators). Currently working on new features related to graphical
modeling, BDI agent architecture, and traffic simulation.

• Benoit Gaudou, Associate Professor at the University Toulouse 1 Capitole,
member of the IRIT CNRS Mixed Research Unit. Contributes since 2010 to
documentation and unit test generation and coupling mathematical (ODE and
PDE) and agent paradigms.

• Arnaud Grignard, Research Scientist at MIT MediaLab, member of the
CityScience Group, software engineer and PhD fellow (PDI-MSC) at SU. Con-
tributes since 2011 to the development of new features related to visualization,
interaction, online analysis and tangible interfaces.

• Huynh Quang Nghi, software engineering lecturer at CTU and PhD fellow
(PDI-MSC) at SU. Contributes since 2012 to the development of new features
related to GAML parser, coupling formalisms in EBM-ABM and ABM-ABM.

• Truong Minh Thai, software engineering lecturer at CTU and PhD fellow
(PRJ322-MOET) at IRIT-UT1. Contributes since 2012 to the development of
new features related to data management and analysis.

v 1.8.2 24

https://www.researchgate.net/profile/Alexis_Drogoul
http://www.ird.fr
http://www.ummisco.ird.fr
https://www.researchgate.net/profile/Patrick_Taillandier
http://www.inra.fr/en/
https://mia.toulouse.inra.fr
http://www.researchgate.net/profile/Benoit_Gaudou
http://www.ut-capitole.fr/
http://www.irit.fr/
https://www.media.mit.edu/people/agrignar/overview/
https://www.media.mit.edu/
https://www.media.mit.edu/groups/city-science/overview/
http://www.ummisco.ird.fr/pdi/
http://www.upmc.fr/
https://www.researchgate.net/profile/Huynh_Quang_Nghi2
http://www.ctu.edu.vn
http://www.ummisco.ird.fr/pdi/
http://www.upmc.fr/
https://www.researchgate.net/profile/Thai_Truong_Minh
http://www.ctu.edu.vn/
http://www.irit.fr/
http://www.ut-capitole.fr/

GAMA v1.8.2 documentation Chapter 2. Introduction

• Nicolas Marilleau, Researcher at the IRD, member of the UMMISCO Inter-
national Research Unit and associate researcher at DISC team of FEMTO-ST
institute. Contributes since 2010 to the development of headless mode and the
high performance computing module.

• Philippe Caillou, Associate professor at the University Paris Sud 11, member
of the LRI and INRIA project-team TAO. Contributes since 2012 and actually
working on charts, simulation analysis and BDI agents.

• Vo Duc An, Post-doctoral Researcher, working on synthetic population gener-
ation in agent-based modelling, at the UMMISCO International Research Unit
of the IRD. Has contributed to bringing the platform to the Eclipse RCP envi-
ronment and to the development of several features (e.g., the FIPA-compliant
agent communication capability, the multi-level architecture).

• Truong Xuan Viet, software engineering lecturer at CTU and PhD fellow
(PDI-MSC) at SU. Contributes since 2011 to the development of new features
related to R caller, online GIS (OPENGIS: Web Map Service - WMS, Web
Feature Services - WMS, Google map, etc).

• Samuel Thiriot
• Jean-Daniel.Zucker, Senior Researcher at the IRD, member and director

of the UMMISCO International Research Unit. Mostly working on Machine
Learning and also optimization using agent-based modeling and simulation.
Has contributed to different models and advised different students on GAMA
since its beginning.

Citing GAMA

If you use GAMA in your research and want to cite it (in a paper, presentation,
whatever), please use this reference:

Taillandier, P., Gaudou, B., Grignard, A., Huynh, Q.N., Marilleau, N.,
Caillou, P., Philippon, D., Drogoul, A. (2018), Building, composing and
experimenting complex spatial models with the GAMA platform. In
Geoinformatica, Springer, https://doi.org/10.1007/s10707-018-00339-6.

or you can choose to cite the website instead:

GAMA Platform website, http://gama-platform.org

v 1.8.2 25

http://www.ummisco.ird.fr/index.php?option=com_members&view=member&uid=62&Itemid=70
http://www.ird.fr
http://www.ummisco.ird.fr
http://disc.univ-fcomte.fr
http://www.femto-st.fr
https://www.lri.fr/~caillou
http://www.u-psud.fr
http://www.lri.fr
http://www.inria.fr
https://tao.lri.fr/tiki-index.php
https://www.researchgate.net/profile/Duc-An_Vo
http://www.ummisco.ird.fr
http://www.ird.fr
https://www.researchgate.net/profile/Viet_Truong_Xuan
http://www.ctu.edu.vn
http://www.ummisco.ird.fr/pdi/
http://www.upmc.fr/
https://www.researchgate.net/profile/Jean-daniel_Zucker
http://www.ird.fr
http://www.ummisco.ird.fr

GAMA v1.8.2 documentation Chapter 2. Introduction

A complete list of references (papers and PhD theses on or using GAMA) is available
on the references page.

Contact Us

To get in touch with the GAMA developers team, please sign in for the gama-
platform@googlegroups.com mailing list. If you wish to contribute to the platform,
you might want, instead or in addition, to sign in for the gama-dev@googlegroups.com
mailing list. On both lists, we generally answer quite quickly to requests.
Finally, to report bugs in GAMA or ask for a new feature, please refer to these
instructions to do so.
This page is licensed under a Creative Commons Attribution 4.0 International License.

v 1.8.2 26

http://groups.google.com/group/gama-platform
http://groups.google.com/group/gama-platform
http://groups.google.com/group/gama-dev
http://groups.google.com/group/gama-dev

Part II

Platform

27

Chapter 3

Platform

GAMA consists of a single application that is based on the RCP architecture provided
by Eclipse. Within this single application software, often referred to as a platform,
users can undertake, without the need of additional third-parties softwares, most
of the activities related to modeling and simulation, namely editing models and
simulating, visualizing and exploring them using dedicated tools.
First-time users may however be intimidated by the apparent complexity of the
platform, so this part of the documentation has been designed to ease their first
contact with it, by clearly identifying tasks of interest to modelers and how they can
be accomplished within GAMA.
It is accomplished by firstly providing some background about important notions
found throughout the platform, especially those of workspace and projects and
explaining how to organize and navigate through models. Then we take a look at the
edition of models and its various tools and components (dedicated editors and related
tools, of course, but also validators). Finally, we show how to run experiments on
these models and what support the user interface can provide to users in this task.

29

http://www.eclipse.org

GAMA v1.8.2 documentation Chapter 3. Platform

v 1.8.2 30

Chapter 4

Installation and Launching

The GAMA platform can be easily installed in your machine, either if you are using
Windows, Mac OS or Ubuntu. GAMA can then be extended by using a number of
additional plugins.
This part is dedicated to explain how to install GAMA, launching GAMA and
extend the platform by installing additional plugins. All the known issues concerning
installation are also explain. The GAMA team provides you a continuous support by
proposing corrections to some serious issues through updating patchs. In this part,
we will also present you briefly an other way to launch GAMA without any GUI :
the headless mode.

• Installation
• Launching GAMA
• Headless Mode
• Updating GAMA
• Installing Plugins

31

Installation

GAMA v1.8.2 documentation Chapter 4. Installation and Launching

v 1.8.2 32

Chapter 5

Workspace, Projects and Models

The workspace is a directory in which GAMA stores all the current projects on
which the user is working, links to other projects, as well as some meta-data like
preference settings, the current status of the different projects, error markers, and so
on.
Except when running in headless mode, GAMA cannot function without a valid
workspace.
The workspace is organized in 4 categories, which are themselves organized into
projects.
The projects present in the workspace can be either directly stored within it (as
sub-directories), which is usually the case when the user creates a new project, or
linked from it (so the workspace will only contain a link to the directory of the project,
supposed to be somewhere in the filesystem or on the network). A same project can
be linked from different workspaces.
GAMA models files are stored in these projects, which may contain also other
files (called resources) necessary for the models to function. A project may, of
course, contain several model files, especially if they are importing each other, if
they represent different views on the same topic, or if they share the same resources.
Learning how to navigate in the workspace, how to switch workspace or how to
import, export is a necessity to use GAMA correctly. It is the purpose of the following
sections.

1. Navigating in the Workspace

33

GAMA v1.8.2 documentation Chapter 5. Workspace, Projects and Models

2. Changing Workspace
3. Importing Models

v 1.8.2 34

Chapter 6

Editing models

Editing models in GAMA is very similar to editing programs in a modern IDE like
Eclipse. After having successfully launched the program, the user has two fundamental
concepts at its disposal: a workspace, which contains models or links to models
organized like a hierarchy of files in a filesystem, and the workbench (aka, the main
window), which contains the tools to create, modify and experiment these models.
Understanding how to navigate in the workspace is covered in another section and,
for the purpose of this section, we just need to understand that it is organized in
projects, which contain models and their associated data. Projects are further
categorized, in GAMA, into four categories: Models Library, Plugin models, Test
models (built-in models shipped with GAMA and automatically linked from the
workspace), and User Models.
This section covers the following sub-sections:

1. GAML Editor Generalities
2. GAML Editor Toolbar
3. Validation of Models
4. Graphical Editor

35

http://www.eclipse.org

GAMA v1.8.2 documentation Chapter 6. Editing models

v 1.8.2 36

Chapter 7

Running Experiments

Running an experiment is the only way, in GAMA, to execute simulations on a model.
Experiments can be run in different ways.

1. The first, and most common way, consists in launching an experiment from
the Modeling perspective, using the user interface proposed by the simulation
perspective to run simulations.

2. The second way, detailed on this page, allows to automatically launch an
experiment when opening GAMA, subsequently using the same user interface.

3. The last way, known as running headless experiments, does not make use of
the user interface and allows to manipulate GAMA entirely from the command
line.

All three ways are strictly equivalent in terms of computations (with the exception of
the last one omitting all the computations necessary to render simulations on displays
or in the UI). They simply differ by their usage:

1. The first one is heavily used when designing models or demonstrating several
models.

2. The second is intended to be used when demonstrating or experimenting a
single model.

3. The last one is useful when running large sets of simulations, especially over
networks or grids of computers.

37

GAMA v1.8.2 documentation Chapter 7. Running Experiments

v 1.8.2 38

Chapter 8

Preferences

Various preferences are accessible in GAMA to allow users and modelers to personalize
their working environment. This section reviews the different preference tabs available
in the current version of GAMA, as well as how to access the preferences and settings
inherited by GAMA from Eclipse.

Please note that the preferences specific to GAMA will be shared, on the same
machine, and for the same user, among all the workspaces managed by GAMA.
Changing workspace will not alter them. If you happen to run several instances of
GAMA, they will also share these preferences.

Table of contents

• Preferences

– Opening Preferences
– Interface
– Editors
– Execution
– Displays
– Data and Operators
– Manage preferences in GAML
– Advanced Preferences

39

GAMA v1.8.2 documentation Chapter 8. Preferences

Figure 8.1: Open the Preferences from the “Help” menu of the interface.

Opening Preferences

To open the preferences dialog of GAMA, either click on the small “form” button on
the top-left corner of the window or select “Preferences. . . ” from the Gama, “Help”
or “Views” menu depending on your OS.

Interface

The Interface pane gathers all the preferences related to the appearance and behavior
of the elements of the Graphical User Interface of GAMA.

• Startup

– Display welcome page: if true, and if no editors are opened, the welcome
page is displayed when opening GAMA.

– Maximize GAMA window: if true, the GAMA window is open with
the maximal dimensions at startup.

– Maintain the state of the navigator across sessions: if true, the
context of the navigator (project opened, file selected. . .) will be saved
when GAMA is closed and reloaded next start.

v 1.8.2 40

GAMA v1.8.2 documentation Chapter 8. Preferences

Figure 8.2: Interface pane in Preferences.

v 1.8.2 41

GAMA v1.8.2 documentation Chapter 8. Preferences

• Menus

– Break down agents in menu every: when inspecting a large number
of agents, this preference sets how many should be displayed before the
decision is made to separate the population in sub-menus.

– Sort operators menu by: among [category, name], this preference sets
how the operators should be displayed in the menu "Model" > "Operators"
(available only in Modeling perspective, when a model editor is active).

– Sort colors menu by: among [RGB value, Name, Brightness, Lumines-
cence], this sets how are sorted the colors in the menu "Model" > "Colors"
(available only in Modeling perspective, when a model editor is active).

– Reverse order: if true, reverse the sort order of colors sets above.
– Group colors: if true, the colors in the previous menu are displays in

several sub-menus.

• Console

– Max. number of characters to display in the console (-1 means
no limit)

– Max. number of characters to keep when paused (-1 means no
limit)

– Wrap long lines (can slow down output)

• Simulations

– Append the name of simulations to their outputs: if true, the
name of the simulation is added after the name of the display or monitor
(interesting in case of multi-simulations).

– Color of Simulation X in the UI (console, view tabs): each sim-
ulation has a specific color. This is particularly interesting in case of a
multi-simulations experiment to identify the displays of each simulation
and its console messages.

• Appearance

– Highlight in yellow the title of value editors when they change
– Shapefile viewer fill color
– Shapefile viewer line color
– Image viewer background color: Background color for the image

viewer (when you select an image from the model explorer for example)
– Font of buttons and dialogs

v 1.8.2 42

GAMA v1.8.2 documentation Chapter 8. Preferences

– Display metadata in navigator: if true, GAMA provides some meta-
data (orange, in parenthesis) after the name of files in the navigator: for a
GAML model, it is the number of experiments; for data files, it depends on
the kind of data: (for shapefiles) number of objects, CRS and dimensions
of the bounding box, (for csv) the dimensions of the table, the delimiter,
the data type . . .

Editors

Most of the settings and preferences regarding editors can also be found in the
advanced preferences.

• Options

– Show warning markers in the editor: if false, the warning will only
be available from the Validation View.

– Show information markers in the editor: if false, the information
will only be available from the Validation View.

– Save all editors when switching perspectives
– Hide editors when switching to simulation perspectives (can be
overridden in the ‘layout’ statement)

– Applying formatting on save: if true, every time a model file is saved,
its code is formatted.

– Save all model files before launching an experiment
– Drag files and resources as references in GAML files: a GAML

model file is dropped in another file as an import and other resources as
the definition of a variable accessing to this resource.

– Ask before saving each file

• Edition

– Close curly brackets ({)
– Close square brackets (])
– Close parentheses
– Turn on colorization of code sections: if true, it activates the col-

orization of code blocks in order to improve the visual understanding of
the code structure.

– Font of editors

v 1.8.2 43

GAMA v1.8.2 documentation Chapter 8. Preferences

Figure 8.3: Editors pane in Preferences.

v 1.8.2 44

GAMA v1.8.2 documentation Chapter 8. Preferences

Figure 8.4: Execution pane in Preferences.

– Background color of editors
– Mark occurrences of symbols: if true, when a symbol is selected, all

its other occurrences are also highlighted.

• Syntax coloring: this section allows the modeler to set the font and color of
each GAML keyword kind in the syntax coloring (in any GAMA editor).

Execution

This pane gathers all the preferences related to the execution of experiments, memory
management, the errors management, and the parallelism.

v 1.8.2 45

GAMA v1.8.2 documentation Chapter 8. Preferences

• Experiments: various settings regarding the execution of experiments.

– Auto-run experiments when they are launched: see this page.
– Ask to close the previous simulation before launching a new one:

if false, previous simulations (if any) will be closed without warning.
– Ask to go to fullscreen mode: if true, ask the modeler before switching

to the fullscreen mode.
– Synchronize outputs with the simulation: if true, simulation cycles

will wait for the displays to have finished their rendering before passing
to the next cycle (this setting can be changed on an individual basis
dynamically here).

• Tests

– Sorts the results of tests by severity
– Run tests at each start of the platform
– Include user-defined tests in the tests suite
– Only display (in the UI and in headless runs) failed and aborted
tests

• Memory: a given amount of memory (RAM) is allocated to the execution of
GAMA (it has to be set in the Gama.ini file). The allocated memory size should
be chosen in accordance with the requirements of the model that is developed
and the other applications running in your OS.

– Monitor memory and emit a warning if it is low: a warning will
appear during an experiment run when the memory is low.

– Trigger warnings when the percentage of available memory is
below

– Interval (in seconds) at which memory should be monitored
– If true, when running out of memory, GAMA will try to close
the experiment, otherwise it exits

• Runtime errors: how to manage and consider simulation errors.

– Show execution errors: whether errors should be displayed or not.
– Show errors thrown in displays and outputs: the code defined inside

the aspect block of a species will be executed each time the agents are
repainted in a display. In particular, when the displays are not synchronized,
some errors can occur due to some inconsistency between the model and
the display (e.g. drawing a dead agent). As a consequence, the code
executed inside an aspect should be limited as much as possible.

v 1.8.2 46

GAMA v1.8.2 documentation Chapter 8. Preferences

– Number of errors to display: how many errors should be displayed at
once

– Display most recent first: errors will be sorted in the inverse chrono-
logical order if true.

– Stop simulation at first error: if false, the simulations will display the
errors and continue (or try to).

– Treat warnings as errors: if true, no more distinction is made be-
tween warnings (which do not stop the simulation) and errors (which can
potentially stop it).

– Automatically open an editor and point at the faulty part of the
model if an error or a warning is thrown

– Text color of errors
– Text color of warnings

• Parallelism: various settings regarding the parallel execution of experiments.

– Make experiments run simulations in parallel: if true, in the case of
a multi-simulations experiment, the simulation will be executed in parallel
(note that the number of simulations that can be executed in parallel will
depend on the number of threads to use).

– Make grids schedule their agents in parallel: the agents of grid
species will be executed in parallel. Depending on the model, this could
increase the simulation speed, but the modeler cannot have any control
over the execution order of the agents.

– Make species schedule their agents in parallel
– Number under which agents are executed sequentially
– Max. number of threads to use (available processors: 8)

Displays

• Presentation and Behavior of Graphical Display Views

– Default layout of display views: among [None, stacked, Split, Hori-
zontal, Vertical]. When an experiment defines several displays, they are
by default (layout None) opened in the same View. This preference can
set automatically this layout. A layout statement can also be used in
experiment to redefine programmatically the layout of display views.

– Display a border around display views

v 1.8.2 47

GAMA v1.8.2 documentation Chapter 8. Preferences

Figure 8.5: Displays pane in Preferences.

v 1.8.2 48

GAMA v1.8.2 documentation Chapter 8. Preferences

– Continue to draw displays when in Modeling perspective: if true,
when the simulation is running and the modeler chooses to switch to the
Modeling perspective the displays are still updated. This is particularly
relevant for displays showing plots of data over time.

– Enable fast snapshots (uncomplete when the display is obscured
but much faster)

– Show the display top toolbar: this could also be configured manually
for each display (cf displays related page).

– Show the display bottom overlay: this could also be configured man-
ually for each display (cf displays related page).

• Charts Preferences

– Display ‘flat’ histograms: if false, the histograms are displayed in a 3D
style.

– Keep values in memory (to save them as csv)
– Display grid lines: in charts (and in particular series), if true, a grid

is displayed in background.

• Default Rendering Properties: various properties of displays

– Default rendering method (JavaED fro 2D, OpenGL for 3D): use
either ‘Java2D’ or ‘OpenGL’ if nothing is specified in the declaration of a
display.

– Apply antialiasing: if true, displays are drawn using antialiasing, which
is slower but renders a better quality of image and text (this setting can
be changed on an individual basis dynamically here).

– Default background color: indicates which color to use when none is
specified in the declaration of a display.

– Default highlight color: indicates which color to use for highlighting
agents in the displays.

– Default shape of agents: a choice between shape (which represents the
actual geometrical shape of the agent) and geometrical operators (circle,
square, triangle, point, cube, sphere etc.) as default shape to display
agents when no aspect is defined.

– Default size of agents: what size to use. This expression must be
constant.

– Default color of agents: what color to use.
– Default font to use in ‘draw’

• Advanced:

v 1.8.2 49

GAMA v1.8.2 documentation Chapter 8. Preferences

– Only display visible agents (faster, may create visual oddities)
– Disable acceleration for Java2D (necessary on some configura-
tions)

• OpenGL Rendering Properties: various properties specific to OpenGL-
based displays

– Draw 3D axes: if true, the shape of the world and the 3 axes are drawn
– Draw rotation axes: if true, a sphere appears when rotating the scene

to illustrate the rotations.
– Default line width (facet width of draw): the value is used in draw

statement that draws a line without specifying the width facet.
– Number of slices of circular geometries: when a circular geometry
(circle, sphere, cylinder) is displayed, it needs to be discretized in a given
number of slices.

– Set the zoom factor (0 for slow, 1 fast): this determines the speed
of the zoom (in and out), and thus its precision.

– Max. number of frames per second
– Forces textures dimension to a power of 2 (e.g. 16x16. Necessary
on some configurations)

– Use OpenGL tesselator (false is more precise, but more CPU
intensive)

– Use Numeric Keypad (2,4,6,8) for camera interaction: use these
numeric keys to make quick rotations.

Data and Operators

These preferences pertain to the use of external libraries or data with GAMA.

• Http connections

– Connection timeout (in ms): set the connection timeout when the
model tries to access a resource on the web. This value is used to decide
when to give up the connection try to an HTTP server in case of response
absence.

– Read timeout (in ms): similar to connection timeout, but related to
the time GAMA will wait for a response in case of reading demand.

– Number of times to retry if connection cannot be established

v 1.8.2 50

GAMA v1.8.2 documentation Chapter 8. Preferences

Figure 8.6: The Data and Operators pane in Preferences.

v 1.8.2 51

GAMA v1.8.2 documentation Chapter 8. Preferences

– Empty the local cache of files downloaded from the web: if true,
after having downloaded the files and used them in the model, the files
will be deleted.

• Random Number Generation: all the options pertaining to generating
random numbers in simulations

– Default random number generator: the name of the generator to use
by default (if none is specified in the model).

– Define a default seed: whether or not a default seed should be used if
none is specified in the model (otherwise it is chosen randomly by GAMA)

– Default seed value (0 is undefined): the value of this default seed
– Include in the parameter: whether the choice of generator and seed is

included by default in the parameters views of experiments or not.

• Optimizations

– Optimize constant expressions (experimental): whether expressions
considered as constants should be computed and replaced by their value
when compiling models. Allows to save memory and speed, but may cause
some problems with complex expressions.

– Optimize agents memory: whether the memory used by agents is
reduced (or not) when their structure appears to be simple: no sub-agents,
for instance, because no sub-species is defined.

– Optimize the ‘at_distance’ operator: an optimisation that considers
the number of elements on each side and changes the loop to consider the
fastest case.

– Optimize the path computation operators and goto action (but
with possible ‘jump’ issues): when an agent is not already on a path,
simplifies its choice of the closest segment to choose and makes it jump
directly on it rather than letting it move towards the segment.

– Optimize spatial queries: add agents only when necessary in the
quadtree (still experimental): if no queries is conducted against a
species of agents, then it is not necessary to maintain them in the global
quad tree.

– Forces the spatial index to synchronize its operations. Useful
for interactive models where the user may interfere.: when true,
forces the quadtree to use concurrent data structures and to synchronize
reads and writes, allowing users to interact with the simulation without
raising concurrent modification errors.

v 1.8.2 52

GAMA v1.8.2 documentation Chapter 8. Preferences

– Use object pooling to reduce memory usage (still experimental):
when true, tries to reuse the same common objects (lists, maps, etc.) over
and over rather than creating new ones.

– Tolerance for the comparison of points: depending on the way they
are computed, 2 points who should be the same, could not be equal. This
preference allows to be more tolerant in the way points are compared.

• External libraries support

– Path to Spatialite (http://www.gaia-gis.it/gaia-sins/): the path
toward the spatial extension for the SQLite database.

– Path to JRI library ($R_HOME/library/rJava/jri/libjri.jnilib)
(http://www.r-project.org): when we need to couple GAMA and R,
we need to set properly the path toward this file.

• GIS Coordinate Reference Systems (http://spatialreference.org/ref/epsg/
for EPSG codes): settings about CRS to use when loading or saving GIS
files

– Let GAMA decide which CRS to use to project GIS data: if true,
GAMA will decide which CRS, based on input, should be used to project
GIS data. Default is true (i.e. GAMA will always try to find the relevant
CRS, and, if none can be found, will fall back one the one provided below)

– . . . or use the following CRS (EPSG code): choose a CRS that will
be applied to all GIS data when projected in the models. Please refer
to http://spatialreference.org/ref/epsg/ for a list of EPSG codes. If the
option above is false, then the use of this CRS will be enforced in all
models.Otherwise, GAMA will first try to find the most relevant CRS and
then fall back on this one.

– When no .prj file or CRS is supplied, consider GIS data to be
already projected in the CRS: if true, GIS data that is not accompa-
nied by a CRS information will be considered as projected using the above
code.

– . . . or use the following CRS (EPSG code): choose a CRS that will
represent the default code for loading uninformed GIS data.

– When no CRS is provided, save the GIS data with the current
CRS: if true, saving GIS data will use the projected CRS unless a CRS is
provided.

– . . . or use the following CRS (EPSG code): otherwise, you might
enter a CRS to use to save files.

v 1.8.2 53

GAMA v1.8.2 documentation Chapter 8. Preferences

Figure 8.7: Import or export the preferences from/in a GAML model.

• Management of dates: some preferences for default values related to the
dates in GAMA.

– Custom date pattern (https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimerFormatter.html#patterns)
– Default date pattern for writing dates (i.e. string(date1))
– Default starting date of models: set the default value of the global

variable starting_date.
– Default time step of models: define the default duration of a simulation

step, i.e. the value of the variable step (by default, it is set to 1s).

Manage preferences in GAML

All these preferences can be accessed (set or read) directly in a GAML model. To
share your preferences with others (e.g. when you report an issue), you can simply
export your preferences in a GAML model. Importing preferences will set your
preferences from an external GAML file.
When you export your preferences, the GAML file will look like the following code.
It contains 2 experiments: one to display all the preferences in the console and the
other one to set your preferences will the values written in the model.� �
model preferences

experiment 'Display Preferences ' type: gui {
init {

// Append the name of simulations to their outputs
write sample(gama.pref_append_simulation_name);

// Display grid lines

v 1.8.2 54

GAMA v1.8.2 documentation Chapter 8. Preferences

write sample(gama.pref_chart_display_gridlines);

// Monitor memory and emit a warning if it is low
write sample(gama.pref_check_memory);

//Max. number of characters to keep when paused (-1 =
unlimited)
write sample(gama.pref_console_buffer);

//Max. number of characters to display (-1 = unlimited)
write sample(gama.pref_console_size);

//Wrap long lines (can slow down output)
write sample(gama.pref_console_wrap);

// Custom date pattern (https :// docs.oracle.com/javase /8/
docs/api/java/time/format/DateTimeFormatter.html#patterns)
write sample(gama.pref_date_custom_formatter);

// ...� �
Advanced Preferences

The set of preferences described above are specific to GAMA. But there are other
preferences or settings that are inherited from the Eclipse underpinnings of GAMA,
which concern either the “core” of the platform (workspace, editors, updates, etc.) or
plugins (like SVN, for instance) that are part of the distribution of GAMA.
These “advanced” preferences are accessible by clicking on the “Advanced. . . ” button
in the Preferences view.
Depending on what is installed, the second view that appears will contain a tree
of options on the left and preference pages on the right. Contrary to the first
set of preferences, please note that these preferences will be saved in the
current workspace, which means that changing workspace will revert them to their
default values. It is, however, possible to import them in the new workspace using of
the wizards provided in the standard “Import. . . ” command (see here).

v 1.8.2 55

GAMA v1.8.2 documentation Chapter 8. Preferences

Figure 8.8: Open the advanced preferences.

Figure 8.9: The advanced preferences available from the Preferences window.

v 1.8.2 56

Chapter 9

Troubleshooting

This page exposes some of the most common problems a user may encounter when
running GAMA — and offers advices and workarounds for them. It will be regularly
enriched with new contents. Note also that the Issues section of the website might
contain precious information on crashes and bugs encountered by other users. If
neither the workarounds described here nor the solutions provided by other users allow
to solve your particular problem, please submit a new issue report to the developers.

Table of contents

• Troubleshooting

– Table of contents
– On Ubuntu (& Linux Systems)

∗ Workaround if OpenGL display crash GAMA
– On macOS

∗ First launch of GAMA should be in GUI mode
– Memory problems
– Submitting an Issue

57

https://github.com/gama-platform/gama/issues

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

On Ubuntu (& Linux Systems)

Workaround if OpenGL display crash GAMA

In case GAMA crashes whenever trying to display an OpenGL display or a Java2D,
and you are running Ubuntu 21.10 (or earlier), it probably means that you’re using
Wayland as Display backend. You can fix it by running in a terminal export
GDK_BACKEND=x11 and launch GAMA from this same terminal. This workaround is
described here: https://bugs.eclipse.org/bugs/show_bug.cgi?id=577515 and in Issue
3373.

On macOS

First launch of GAMA should be in GUI mode

When GAMA has just been downloaded and installed, it needs to be first launched
in its GUI version before using it in the headless mode. If it is first launched in
the headless mode, GAMA will be damaged and the installed version needs to be
removed and re-installed.

Memory problems

The most common causes of problems when running GAMA are memory problems.
Depending on your activities, on the size of the models you are editing, on the size of
the experiments you are running, etc., you have a chance to require more memory
than what is currently allocated to GAMA. A typical GAMA installation will need
between 2 and 4GB of memory to run “normally” and launch small models. Memory
problems are easy to detect: in the bottom-right corner of its window, GAMA will
always display the status of the current memory. The first number represents the
memory currently used (in MB), the second (always larger) the memory currently
allocated by the JVM. And the little trash icon allows to “garbage collect” the memory
still used by agents that are not used anymore (if any). If GAMA appears to hang
or crash and if you can see that the two numbers are very close, it means that the
memory required by GAMA exceeds the memory allocated.

v 1.8.2 58

https://github.com/gama-platform/gama/issues/3373
https://github.com/gama-platform/gama/issues/3373

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

Figure 9.1: Memory bar status in GAMA.

There are two ways to circumvent this problem: the first one is to increase the memory
allocated to GAMA by the Java Virtual Machine. The second, detailed on this page
is to try to optimize your models to reduce their memory footprint at runtime. To
increase the memory allocated, first locate the file called Gama.ini. On Windows and
Ubuntu, it is located next to the executable. On Mac OS X, you have to right-click
on Gama.app, choose “Display Package Contents. . . ”, and you will find Gama.ini in
Contents/Eclipse. This file typically looks like the following (some options/keywords
may vary depending on the system), and we are interested in two JVM arguments:
-Xms supplies the minimal amount of memory the JVM should allocate to GAMA,
-Xmx the maximal amount. By changing these values (esp. the second one, of course,
for example to 4096M, or 4g, or more!), saving the file and relaunching GAMA, you
can probably solve your problem. Note that 32 bits versions of GAMA will not accept
to run with a value of -Xmx greater than 1500M. See here for additional information
on these two options.

Submitting an Issue

If you think you have found a new bug/issue in GAMA, it is time to create an issue
report here! Alternatively, you can click the Issues tab on the project site, search if a
similar problem has already been reported (and, maybe, solved) and, if not, enter a
new issue with as much information as possible:

• A complete description of the problem and how it occurred.
• The GAMA model or code you are having trouble with. If possible, attach a

complete model.
• Screenshots or other files that help describe the issue.

Two files may be particularly interesting to attach to your issue: the configuration
details and the error log. Both can be obtained quite easily from within GAMA
itself in a few steps. First, click the “About GAMA. . . ” menu item (under the “Gama
Platform” menu on Mac OS X, “Help” menu on Linux & Windows)

v 1.8.2 59

http://stackoverflow.com/questions/14763079/what-are-the-xms-and-xmx-parameters-when-starting-jvms
https://github.com/gama-platform/gama/issues/new
https://github.com/gama-platform/gama/issues

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

Figure 9.2: Gama.ini file: the place to allocate more memory to GAMA to deal with
big projects.

Figure 9.3: Open information about GAMA windows.

v 1.8.2 60

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

Figure 9.4: images/dialog_about_gama.png

In the dialog that appears, you will find a button called “Installation Details”.
Click this button and a new dialog appears with several tabs.
To provide complete information about the status of your system at the time of the
error, you can

(1) copy and paste the text found in the tab “Configuration” into your issue.
Although, it is preferable to attach it as a text file (using TextEdit, Notepad or
Emacs e.g.) as it may be too long for the comment section of the issue form.

(2) click the “View error log” button, which will bring you to the location, in your
file system, of a file called “log”, which you can then attach to your issue as
well.

v 1.8.2 61

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

Figure 9.5: images/dialog_configuration.png

v 1.8.2 62

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

Figure 9.6: images/log_file.png

v 1.8.2 63

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

v 1.8.2 64

Part III

Learn GAML step by step

65

Chapter 10

Learn GAML Step by Step

This large progressive tutorial has been designed to help you to learn GAML (GAma
Modeling Language). It will cover the main part of the possibilities provided by
GAML, and guide you to learn some more.

How to proceed to learn better?

As you will progress in the tutorial, you will see several links (written in blue to
makes you jump to another part. You can click on them if you want to learn directly
about a specific topic, but we do not encourage to do this, because you can get easily
lost by reading this tutorial this way. As it is named, we encourage you to follow this
tutorial “step by step”. For each chapter, some links are available in the “search” tab,
if you want to learn more about this subject.
Although, if you really want to learn about a specific topic, our advice is to use the
“learning graph” interface, in the website, so that you can choose your area of interest,
and a learning path will be automatically designed for you to assimilate the specific
concept better.
Good luck with your reading, and please do not hesitate to contact us through the
mailing list if you have a question/suggestion!

67

https://en.wikipedia.org/wiki/Hyperlink
https://groups.google.com/forum/#!forum/gama-platform

GAMA v1.8.2 documentation Chapter 10. Learn GAML Step by Step

v 1.8.2 68

Chapter 11

Introduction

GAML is an agent-oriented language dedicated to the definition of agent-based
simulations. It takes its roots in object-oriented languages like Java or Smalltalk,
but extends the object-oriented programming approach with powerful concepts (like
skills, declarative definitions or agent migration) to allow for a better expressivity in
models.
It is of course very close to agent_based modeling languages like, e.g., NetLogo,
but, in addition to enriching the traditional representation of agents with modern
computing notions like inheritance, type safety or multi-level agency, and providing
the possibility to use different behavioral architectures for programming agents,
GAML extends the agent-based paradigm to eliminate the boundaries between the
domain of a model (which, in ABM, is represented with agents) and the experimental
processes surrounding its simulations (which are usually not represented with agents),
including, for example, visualization processes. This paper (Drogoul A., Vanbergue
D., Meurisse T., Multi-Agent Based Simulation: Where are the Agents ?, Multi-
Agent Based Simulation 3, pp. 1-15, LNCS, Springer-Verlag. 2003) was in particular
foundational in the definition of the concepts on which GAMA (and GAML) are
based today.
This orientation has several conceptual consequences among which at least two are of
immediate practical interest for modelers:

• Since simulations, or experiments, are represented by agents, GAMA is bound to
support high-level model compositionality, i.e. the definition of models that can
use other models as inner agents, leveraging multi-modeling or multi-paradigm
modeling as particular cases of composition.

69

http://ccl.northwestern.edu/netlogo/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.7241&rep=rep1&type=pdf

GAMA v1.8.2 documentation Chapter 11. Introduction

• The visualization of models can be expressed by models of visualization, com-
posed of agents entirely dedicated to visually represent other agents, allowing
for a clear separation of concerns between a simulation and its representation
and, hence, the possibility to play with multiple representations of the same
model at once.

Table of contents

• Key Concepts (Under construction)

– Lexical semantics of GAML
– Translation into a concrete syntax
– Vocabulary correspondance with the object-oriented paradigm as in Java
– Vocabulary correspondance with the agent-based paradigm as in NetLogo

Lexical semantics of GAML

The vocabulary of GAML is described in the following sentences, in which the
meaning and relationships of the important words of the language (in bold face) are
summarized.

1. The role of GAML is to support modelers in writing models, which are
specifications of simulations that can be executed and controlled during
experiments, themselves specified by experiment plans.

2. The agent-oriented modeling paradigm means that everything “active” (enti-
ties of a model, systems, processes, activities, like simulations and experiments)
can be represented in GAML as an agent (which can be thought of as a compu-
tational component owning its own data and executing its own behavior, alone
or in interaction with other agents).

3. Like in the object-oriented paradigm, where the notion of class is used to supply
a specification for objects, agents in GAML are specified by their species, which
provide them with a set of attributes (what they know), actions (what they
can do), behaviors (what they actually do) and also specifies properties of their
population, for instance its topology (how they are connected) or schedule
(in which order and when they should execute).

v 1.8.2 70

GAMA v1.8.2 documentation Chapter 11. Introduction

Figure 11.1: GAML meta-model.

4. Any species can be nested in another species (called its macro-species), in
which case the populations of its instances will imperatively be hosted by
an instance of this macro-species. A species can also inherit its properties
from another species (called its parent species), creating a relationship similar
to specialization in object-oriented design. In addition to this, species can
be constructed in a compositional way with the notion of skills, bundles of
attributes and actions that can be shared between different species and
inherited by their children.

5. Given that all agents are specified by a species, simulations and experi-
ments are then instances of two species which are, respectively, called model
and experiment plan. Think of them as “specialized” categories of species.

6. The relationships between species, models and experiment plans are cod-
ified in the meta-model of GAML in the form of a framework composed of
three abstract species respectively called agent (direct or indirect parent of all
species), model (parent of all species that define a model) and experiment
(parent of all species that define an experiment plan). In this meta-model,
instances of the children of agent know the instance of the child of model in
which they are hosted as their world, while the instance of experiment plan
identifies the same agent as one of the simulations it is in charge of. The
following diagram summarizes this framework:

Putting this all together, writing a model in GAML then consists in defining a species

v 1.8.2 71

GAMA v1.8.2 documentation Chapter 11. Introduction

which inherits from model, in which other species, inheriting (directly or not) from
agent and representing the entities that populate this model, will be nested, and
which is itself nested in one or several experiment plans among which a user will
be able to choose which experiment he/she wants to execute.
At the operational level, i.e. when running an experiment in GAMA, an experiment
agent is created. Its behavior, specified by its experiment plan, will create simulations
agents (instance of the user model) and execute them. Recursively, the initialization
of a simulation agent will create the agent population of the species defined in the
model. Each of these agents, when they are created, can create the population of
their micro-species. . .

Translation into a concrete syntax

The concepts presented above are expressed in GAML using a syntax which bears
resemblances with mainstream programming languages like Java, while reusing some
structures from Smalltalk (namely, the syntax of facets or the infix notation of
operators). While this syntax is fully described in the subsequent sections of the
documentation, we summarize here the meaning of its most prominent structures and
their correspondence (when it exists) with the ones used in Java and NetLogo.

1. A model is composed of a header, in which it can refer to other models, and
a sequence of species and experiments declarations, in the form of special
declarative statements of the language.

2. A statement can be either a declaration or a command. It is always
composed of a keyword followed by an optional expression, followed by a
sequence of facets, each of them composed of a keyword (terminated by a ‘:’)
and an expression.

3. facets allow to pass arguments to statements. Their value is an expression
of a given type. An expression can be a literary constant, the name of an
attribute, variable or pseudo-variable, the name of a unit or constant of
the language, or the application of an operator.

4. A type can be a primitive type, a species type or a parametric type
(i.e. a composition of types).

5. Some statements can include sub-statements in a block (sequence of state-
ments enclosed in curly brackets).

6. declarative statements support the definition of special constructs of the
language: for instance, species (including global and experiment species),

v 1.8.2 72

GAMA v1.8.2 documentation Chapter 11. Introduction

Figure 11.2: Instanciation of the GAML meta-model in a User model.

v 1.8.2 73

GAMA v1.8.2 documentation Chapter 11. Introduction

attributes, actions, behaviors, aspects, variables, parameters and out-
puts of experiments.

7. imperative statements that execute something or control the flow of execu-
tion of actions, behaviors and aspects are called commands.

8. A species declaration (global, species or grid keywords) can only include 6
types of declarative statements : attributes, actions, behaviors, aspects,
equations and (nested) species. In addition, experiment species allow to
declare parameters, outputs and batch methods.

Vocabulary correspondence with the object-
oriented paradigm as in Java

GAML Java
species class
micro-species nested class
parent species superclass
child species subclass
model program
experiment (main) class
agent object
attribute member
action method
behavior collection of methods
aspect collection of methods, mixed with the behavior
skill interface (on steroids)
statement statement
type type
parametric type generics

Vocabulary correspondence with the agent-based
paradigm as in NetLogo

v 1.8.2 74

GAMA v1.8.2 documentation Chapter 11. Introduction

GAML NetLogo
species breed
micro-species -
parent species -
child species - (only from ‘turtle’)
model model
experiment observer
agent turtle/observer
attribute ‘breed’-own
action global function applied only to one breed
behavior collection of global functions applied to one breed
aspect only one, mixed with the behavior
skill -
statement primitive
type type
parametric type -

v 1.8.2 75

GAMA v1.8.2 documentation Chapter 11. Introduction

v 1.8.2 76

Chapter 12

Manipulate basic species

In this chapter, we will learn how to manipulate some basic species. As you already
know, a species can be seen as the definition of a type of agent (we call agent the
instance of a species). In OOP (Object-Oriented Programming), a species can be
seen as the class. Each species is then defined by some attributes (“member” in
OOP), actions (“method” in OOP) and behavior (“method” in OOP).
In this section, we will first learn how to declare the world agent, using the global
species. We will then learn how to declare regular species which will populate
our world. The following lesson will be dedicated to learn how to define actions
and behaviors for all those species. We will then learn how agents can interact
between each other, especially with the statement ask. In the next chapter then,
we will see how to attach skills to our species, giving them new attributes and
actions. This section will be closed with a last lesson dealing with how inheritance
works in GAML.

77

GAMA v1.8.2 documentation Chapter 12. Manipulate basic species

v 1.8.2 78

Chapter 13

The global species

We will start this chapter by studying a special species: the global species. In the
global species, you can define the attributes, actions, and behaviors that describe the
world agent. There is one unique world agent per simulation: it is this agent that is
created when a user runs an experiment and that initializes the simulation through its
init scope. The global species is a species like others and can be manipulated as them.
In addition, the global species automatically inherits from several built-in variables
and actions. Note that a specificity of the global species is that all its attributes can
be referred by all agents of the simulation.

Index

• Declaration
• Environment Size
• Built-in Attributes
• Built-in Actions
• The init statement

Declaration

A GAMA model contains a unique global section that defines the global species.� �
global {

79

GAMA v1.8.2 documentation Chapter 13. The global species

Figure 13.1: images/torus.png

// definition of global attributes , actions , behaviours
}� �
global can use facets, such as the torus facet, to make the environment a torus or
not (if it is a torus, all the agents going out of the environment will appear on the
other side. If it’s not, the agents won’t be able to go out of the environment). By
default, the environment is not a torus.� �
global torus:true {

// definition of global attributes , actions , behaviours
}� �
Other facets such as control or schedules are also available, but we will explain
them later.
Directly in the global scope, you have to declare all your global attributes (can be
seen as “static members” in Java or C++). To declare them, proceed exactly as for

v 1.8.2 80

GAMA v1.8.2 documentation Chapter 13. The global species

declaring basic variables. Those attributes are accessible wherever you want inside
the species scope.

Environment size

In the global context, you have to define a size and a shape for your environment. In
fact, an attribute already exists for the global species: it’s called shape, and its type
is a geometry. By default, shape is equal to a 100m*100m square. You can change
the geometry of the shape by affecting another value:� �
geometry shape <- circle (50#mm);
geometry shape <- rectangle (10#m,20#m);
geometry shape <- polygon ([{1˚m,2˚m},{3˚m,50˚cm},{3.4˚m,60˚dm

}]);� �
nb: there are just examples. Try to avoid mixing dimensions! If no dimensions are
specified, it will be meter by default.

Built-in attributes

Some attributes exist by default for the global species. The attribute shape is one of
them (refers to the shape of the environment). Here is the list of the other built-in
attributes:

Like the other attributes of the global species, global built-in attributes can be
accessed (and sometimes modified) by the world agent and every other agent in the
model.

world

• represents the sole instance of the model species (i.e. the one defined in the
global section). It is accessible from everywhere (including experiments) and
gives access to built-in or user-defined global attributes and actions.

v 1.8.2 81

GAMA v1.8.2 documentation Chapter 13. The global species

experiment

• contains the experiment agent that has created this simulation agent.

cycle

• integer, read-only, designates the (integer) number of executions of the simula-
tion cycles. Note that the first cycle is the cycle with number 0.

To learn more about time, please read the recipe about dates.

step

• float, is the length, in model time, of an interval between two cycles, in seconds.
Its default value is 1 (second). Each turn, the value of time is incremented
by the value of step. The definition of step must be coherent with that of the
agents’ variables like speed. The use of time units is particularly relevant for
its definition.

To learn more about time, please read the recipe about dates.� �
global {
...

float step <- 10 #h;
...
}� �
time

• float, read-only, represents the current simulated time in seconds (the default
unit). It is the time in the model time. Begins at zero. Basically, we have:
time = cycle * step .

v 1.8.2 82

GAMA v1.8.2 documentation Chapter 13. The global species

� �
global {
...

int nb_minutes function: { int(time / 60)};
...
}� �
To learn more about time, please read the recipe about dates.

starting_date and current_date

• date, represent the starting date (resp. the current date) of the simulation. The
current_date is updated from the starting_date by the value step at each
simulation step.

To learn more about time, please read the recipe about dates.

duration

• string, read-only, represents the value that is equal to the duration in real
machine time of the last cycle.

total_duration

• string, read-only, represents the sum of duration since the beginning of the
simulation.

average_duration

• string, read-only, represents the average of duration since the beginning of the
simulation.

machine_time

• float, read-only, represents the current machine time in milliseconds.

v 1.8.2 83

GAMA v1.8.2 documentation Chapter 13. The global species

seed

• float, the seed of the random number generator. It will influence the set of
random numbers that will be generated all over the simulation. 2 simulations
of a model with the same parameters’ values should behave identically when
the seed is set to the same value. If it is not redefined by the modeler, it will
be chosen randomly.

agents

• list, read-only, returns a list of all the agents of the model that are considered
as “active” (i.e. all the agents with behaviors, excluding the places). Note that
obtaining this list can be quite time consuming, as the world has to go through
all the species and get their agents before assembling the result. For instance,
instead of writing something like:

� �
ask agents of_species my_species {
...
}� �
one would prefer to write (which is much faster):� �
ask my_species {
...
}� �
Note that any agent has the agents attribute, representing the agents it contains.
So to get all the agents of the simulation, we need to access the agents of the world
using: world.agents.

Built-in Actions

The global species is provided with two specific actions.

v 1.8.2 84

GAMA v1.8.2 documentation Chapter 13. The global species

pause

• pauses the simulation, which can then be continued by the user.
� �
global {

...
reflex toto when: time = 100 {

do pause;
}

}� �
die

• stops the simulation (in fact it kills the simulation).
� �
global {

...
reflex halting when: empty (agents) {

do die;
}

}� �
Other built-in actions are defined for the model species, just as in any other regular
species.

The init statement

After declaring all the global attributes and defining your environment size, you can
define an initial state (before launching the simulation). Here, you normally initialize
your global variables, and you instantiate your species. We will see in the next session
how to initialize a regular species.

v 1.8.2 85

GAMA v1.8.2 documentation Chapter 13. The global species

v 1.8.2 86

Chapter 14

Defining advanced species

In the previous chapter, we saw how to declare and manipulate regular species and
the global species (as a reminder, the instance of the global species is the world
agent).
We will now see that GAMA provides you the possibility to declare some special
species, such as grids or graphs, with their own built-in attributes and their own
built-in actions. We will also see how to declare mirror species, which is a “copy”
of a regular species, in order to give it an other representation. Finally, we will
learn how to represent several agents through one unique agent, with multi-level
architecture.

87

GAMA v1.8.2 documentation Chapter 14. Defining advanced species

v 1.8.2 88

Chapter 15

Defining GUI Experiment

When you execute your simulation, you will often need to display some information.
For each simulation, you can define some inputs, outputs and behaviors:

• The inputs will be composed of parameters manipulated by the user for each
simulation.

• The behaviors will be used to define behavior executed at each step of the
experiment.

• The outputs will be composed of displays, monitors. They will be defined inside
the scope output. The definition of their layout can also be set with the layout
statement.� �

experiment exp_name type: gui {
[input]
[beahaviors]
output {

layout [layout_option]
[display statements]
[monitor statements]

}
}� �
Types of experiments

You can define fours types of experiments (through the facet type):

89

GAMA v1.8.2 documentation Chapter 15. Defining GUI Experiment

• gui experiments (the default type) are used to play an experiment and displays
its outputs. It is also used when the user wants to interact with the simulations.

• batch experiments are used to play an experiment several times (usually with
other input values), used for model exploration. We will come back to this
notion a bit further in the tutorial.

• test experiments are used to write unit tests on a model (used to ensure its
quality).

• memorize experiments are GUI experiments in which the simulation state is
kept in memory and the user can backtrack to any previous step.

Experiment attributes

Inside experiment scope, you can access to some built-in attributes which can be
useful, such as minimum_cycle_duration, to force the duration of one cycle.� �
experiment my_experiment type: gui {

float minimum_cycle_duration <- 2.0# minute;
}� �
In addition, the attributes simulations (resp. ‘simulation) contain the list of all
the simulation agents that are running in the current experiment (resp. a single
simulation, the last element of the simulation list).

Experiment facets

Finally, in the case of a GUI experiment, the facet autorun and benchmark can be
used such as:� �
experiment name type: gui autorun: true benchmark: true { }� �
When autorun is set to true the launch of the experiment will be followed automatically
by its run. When benchmark is set to true, GAMA records the number of invocations
and running time of the statements and operators of the simulations launched in
this experiment. The results are automatically saved in a csv file in a folder called
‘benchmarks’ when the experiment is closed.
Other built-ins are available, to learn more about, go to the page experiment
built-in.

v 1.8.2 90

GAMA v1.8.2 documentation Chapter 15. Defining GUI Experiment

Defining displays layout

The layout can be added to output to specify the layout of the various displays
defined below (e.g. #nonce, #split, #stack, #vertical or #horizontal). It will also
define which elements of the interface are displayed: parameters, navigator, editors,
consoles, toolbars, tray, or tabs facets (expecting a boolean value).

Defining elements of the GUI experiment

In this part, we will focus on the gui experiments. We will start with learning how
to define input parameters, then we will study the outputs, such as displays,
monitors and inspectors, and export files. We will finish this part with how to
define user commands.

v 1.8.2 91

GAMA v1.8.2 documentation Chapter 15. Defining GUI Experiment

v 1.8.2 92

Chapter 16

Exploring Models

We just learnt how to launch GUI Experiments from GAMA. A GUI Experiment will
start with a particular set of input, compute several outputs, and will stop at the
end (if asked).
In order to explore models (by automatically running the Experiment using several
configurations to analyze the outputs), a first approach is to run several simulations
from the same experiment, considering each simulation as an agent. A second
approach, much more efficient for larger explorations, is to run an other type of
experiment : the Batch Experiment.
We will start this part by learning how to run several simulations from the same
experiment. Then, we will see how batch experiments work, and we will focus
on how to use those batch experiments to explore models by using exploration
methods.

93

GAMA v1.8.2 documentation Chapter 16. Exploring Models

v 1.8.2 94

Chapter 17

Optimizing Models

Now you are becoming more comfortable with GAML, it is time to think about how
the runtime works, to be able to run some more optimized models. Indeed, if you
already tried to write some models by yourself using GAML, you could have noticed
that the execution time depends a lot of how you implemented your model!
We will first present you in this part some runtime concepts (and present you the
species facet scheduler), and we will then show you some tips to optimize your
models (how to increase performances using scheduler, grids, displays and how to
choose your operators).

95

GAMA v1.8.2 documentation Chapter 17. Optimizing Models

v 1.8.2 96

97

GAMA v1.8.2 documentation Chapter 18. Multi-Paradigm Modeling

Chapter 18

Multi-Paradigm Modeling

v 1.8.2 98

GAMA v1.8.2 documentation Chapter 18. Multi-Paradigm Modeling

Multi-paradigm modeling is a research field focused on how to define a model seman-
tically. From the beginning of this step by step tutorial, our approach is based on
behavior (or reflex), for each agents. In this part, we will see that GAMA provides
other ways to implement your model, using several control architectures. Sometime,
it will be easier to implement your models choosing other paradigms.
In a first part, we will see how to use some control architectures which already
exist in GAML, such as finite state machine architecture, task based architecture or
user control architecture. In a second part, we will see another approach, a math
based approach, through use of equations.

v 1.8.2 99

GAMA v1.8.2 documentation Chapter 18. Multi-Paradigm Modeling

v 1.8.2 100

Part IV

Recipes

101

Chapter 19

Recipes

Understanding the structure of models in GAML and gaining some insight of the
language is required, but is usually not sufficient to build correct models or models that
need to deal with specific approaches (like equation-based modeling). This section
is intended to provide readers with practical “how to”s on various subjects, ranging
from the use of database access to the design of agent communication languages. It
is by no means exhaustive, and will progressively be extended with more “recipes” in
the future, depending on the concrete questions asked by users.

103

GAMA v1.8.2 documentation Chapter 19. Recipes

v 1.8.2 104

Chapter 20

Manipulate OSM Datas

This section will be presented as a quick tutorial, showing how to proceed to manipu-
late OSM (Open street map) data, clean them and load them into GAMA. We will
use the software QGIS to change the attributes of the OSM file.
Note that GAMA can read and import OpenStreetMap data natively and create
agents from them. An example model is provided in the Model Library (Data
Importation / OSM File Import.gaml). In this case, you will have to write a model
to import, select data from OpenStreetMap before creating agents and then could
export them into shapefiles, much easier to use in GAMA.
From the website openstreetmap.org, we will choose a place (in this example, we will
take a neighborhood in New York City). Directly from the website, you can export
the chosen area in the osm format.
We have now to manipulate the attributes for the exported osm file. Several softwares
can be used, but we will focus on QGIS, which is totally free and provides a lot of
possibilities in term of manipulation of data.
Once you have installed correctly QGIS, launch QGIS Desktop, and start to import
the topology from the osm file.
A message indicates that the import was successful. An output file .osm.db is created.
You have now to export the topology to SpatiaLite.
Specify the path for your DataBase file, then choose the export type (in your case,
we will choose the type “Polygons (closed ways)”), choose an output layer name. If
you want to use the open street maps attributes values, click on “Load from DB”,
and select the attributes you want to keep. Click OK then.

105

http://www.qgis.org/en/site/
https://www.openstreetmap.org/
http://www.qgis.org/en/site/

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.1: OpenStreetMap website to select a place.

A message indicates that the export was successful, and you have now a new layer
created.
We will now manipulate the attributes of your datafile. Right-click on the layer, and
select “Open Attribute Table”.
The table of attribute appears. Select the little pencil on the top-left corner of the
window to modify the table.
We will add an attribute manually. Click on the button “new column”, choose a
name and a type (we will choose the type “text”).
A new column appears at the end of the table. Let’s fill some values (for instance
blue/red). Once you finish, click on the “save edit” button.
Our file is now ready to be exported. Right-click on the layer, and click on “Save As”.
Choose “shapefile” as format, choose a save path and click ok.
Copy passed all the .shp created in the include folder of your GAMA project. You
are now ready to write the model.� �
model HowToUseOpenStreetMap

v 1.8.2 106

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.2: Import OpenStreetMap data into QGIS.

v 1.8.2 107

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.3: Import OpenStreetMap data into QGIS 2.

v 1.8.2 108

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.4: Export the data to SpatiaLite (through QGIS).

v 1.8.2 109

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.5: Select the OSM attribute before importation.

v 1.8.2 110

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.6: Display of OSM data imported in QGIS.

v 1.8.2 111

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.7: Open attribute table to display all the agents.

v 1.8.2 112

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.8: Attribute tables.

v 1.8.2 113

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.9: Add an attribute to the attribute table.

v 1.8.2 114

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.10: Fill the new attribute with values.

v 1.8.2 115

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.11: Open the save data window.

v 1.8.2 116

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.12: Save the data in a shapefile.

v 1.8.2 117

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

global {
// Global variables related to the Management units
file shapeFile <- file ('../ includes/new_york.shp ');

// definition of the environment size from the shapefile.
//Note that is possible to define it from several files by
using: geometry shape <- envelope(envelope(file1) +

envelope(file2) + ...);
geometry shape <- envelope(shapeFile);

init {
// Creation of elementOfNewYork agents from the shapefile (

and reading some of the shapefile attributes)
create elementOfNewYork from: shapeFile

with: [elementId ::int(read('id ')), elementHeight ::int(
read('height ')), elementColor :: string(read('attrForGama '))]
;
}

}

species elementOfNewYork{
int elementId;
int elementHeight;
string elementColor;

aspect basic{
draw shape color: (elementColor = "blue") ? #blue : ((

elementColor = "red") ? #red : #yellow) depth:
elementHeight;
}

}

experiment main type: gui {
output {
display HowToUseOpenStreetMap type:opengl {

species elementOfNewYork aspect: basic;
}
}

}� �
Here is the result, with a special colorization of the different elements regarding the

v 1.8.2 118

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.13: images/manipulate_OSM_file_13.png

value of the attribute “attrForGama”, and an elevation regarding the value of the
attribute “height”.

v 1.8.2 119

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

v 1.8.2 120

Chapter 21

Implementing diffusion

GAMA provides you the possibility to represent and simulate the diffusion of a
variable through a grid topology.

Index

• Diffuse statement
• Diffusion with matrix

– Diffusion matrix
– Gradient matrix
– Compute multiple propagations at the same step
– Executing several diffusion matrix

• Diffusion with parameters
• Computation methods

– Convolution
– Dot Product

• Use mask

– Generalities
– Tips

• Pseudo code

121

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Diffuse statement

The statement to use for the diffusion is diffuse. It has to be used in a grid species.
The diffuse uses the following facets:

• var (an identifier), (omissible) : the variable to be diffused

• on (any type in [container, species]): the list of agents (in general cells of a
grid), on which the diffusion will occur

• avoid_mask (boolean): if true, the value will not be diffused in the masked cells,
but will be restituted to the neighboring cells, multiplied by the variation value
(no signal loss). If false, the value will be diffused in the masked cells, but
masked cells won’t diffuse the value afterward (loss of signal). (default value :
false)

• cycle_length (int): the number of diffusion operation applied in one simulation
step

• mask (matrix): a matrix masking the diffusion (matrix created from an image
for example). The cells corresponding to the values smaller than “-1” in the
mask matrix will not diffuse, and the other will diffuse.

• matrix (matrix): the diffusion matrix (“kernel” or “filter” in image processing).
Can have any size, as long as dimensions are odd values.

• method (an identifier), takes values in: {convolution, dot_product}: the diffusion
method

• min_value (float): if a value is smaller than this value, it will not be diffused.
By default, this value is equal to 0.0. This value cannot be smaller than 0.

• propagation (a label), takes values in {diffusion, gradient} represents both the
way the signal is propagated and the way to treat multiple propagations of
the same signal occurring at once from different places. If propagation equals
‘diffusion’, the intensity of a signal is shared between its neighbors with respect
to ‘proportion’, ‘variation’ and the number of neighbors of the environment
places (4, 6 or 8). I.e., for a given signal S propagated from place P, the value
transmitted to its N neighbors is S’ = (S / N / proportion) - variation. The
intensity of S is then diminished by S * proportion on P. In diffusion, the
different signals of the same name see their intensities added to each other
on each place. If propagation equals ‘gradient’, the original intensity is not
modified, and each neighbor receives the intensity: S / proportion - variation.
If multiple propagations occur at once, only the maximum intensity is kept
on each place. If ‘propagation’ is not defined, it is assumed that it is equal to

v 1.8.2 122

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

‘diffusion’.
• proportion (float): a diffusion rate
• radius (int): a diffusion radius (in number of cells from the center)
• variation (float): an absolute value to decrease at each neighbor

To write a diffusion, you first have to declare a grid and declare a special attribute
for the diffusion. You will then have to write the diffuse statement in another scope
(such as the global scope for instance), which will permit the values to be diffused at
each step. There, you will specify which variable you want to diffuse (through the
var facet), on which species or list of agents you want the diffusion (through the on
facet), and how you want this value to be diffused (through all the other facets, we
will see how it works with matrix and with special parameters just after).
Here is the template of code we will use for the next following part of this page:� �
global {

int size <- 64; // the size has to be a power of 2.
cells selected_cells;

// Initialize the emitter cell as the cell at the center
of the word
init {
selected_cells <- location as cells;
}
// Affecting "1" to each step
reflex new_Value {
ask(selected_cells){

phero <- 1.0;
}
}

reflex diff {
// Declare a diffusion on the grid "cells" and on "

quick_cells ".
// The diffusion declared on "quick_cells" will make

10 computations at each step to accelerate the process.
// The value of the diffusion will be store in the new

variable "phero" of the cell.
diffuse var: phero on: cells /*HERE WRITE DOWN THE

DIFFUSION PROPERTIES */;
}

v 1.8.2 123

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

}

grid cells height: size width: size {
// "phero" is the variable storing the value of the

diffusion
float phero <- 0.0;
// The color of the cell is linked to the value of "phero

".
rgb color <- hsb(phero ,1.0 ,1.0) update: hsb(phero ,1.0 ,1.0)

;
}

experiment diffusion type: gui {
output {
display a type: opengl {

// Display the grid with elevation
grid cells elevation: phero * 10 triangulation: true;

}
}

}� �
This model will simulate a diffusion through a grid at each step, affecting 1 to the
center cell diffusing variable value. The diffusion will be seen during the simulation
through a color code, and through the elevation of the cell.

Diffusion with matrix

A first way of specifying the behavior of your diffusion is using diffusion matrix. A
diffusion matrix is a 2-dimension matrix [n][m] with float values, where both n and
m have to be odd values. The most often, diffusion matrices are square matrices,
but you can also declare a rectangular matrix.

Example of matrix:� �
matrix <float > mat_diff <- matrix ([

[1/9 ,1/9 ,1/9] ,
[1/9 ,1/9 ,1/9] ,
[1/9 ,1/9 ,1/9]]);� �

v 1.8.2 124

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.1: Illustration of the computation under a diffusion propagation.

In the diffuse statement, you then have to specify the matrix of diffusion you want
in the facet matrix.� �
diffuse var: phero on: cells matrix:mat_diff;� �
Using the facet propagation, you can specify if you want the value to be propagated
as a diffusion or as a gradient.

Diffusion matrix

A diffusion (the default value of the facet propagation) will spread the values to the
neighbors’ cells according to the diffusion matrix, and all those values will be added
together, as it is the case in the following example:

Note that the sum of all the values diffused at the next step is equal to the sum of
the values that will be diffused multiply by the sum of the values of the diffusion
matrix. That means that if the sum of the values of your diffusion matrix is larger
than 1, the values will increase exponentially at each step. The sum of the value of a
diffusion matrix is usually equal to 1.

Here are some matrix examples you can use, played with the template model:

v 1.8.2 125

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.2: Examples of uniform diffusions with one and several sources.

Figure 21.3: Examples of anisotropic diffusions (with and with torus environment).

v 1.8.2 126

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.4: Illustration of the computation under a gradient propagation.

Gradient matrix

A gradient (use facet : propagation:gradient) is another type of propagation. This
time, only the larger value diffused will be chosen as the new one.
Note that unlike the diffusion propagation, the sum of your matrix can be greater
than 1 (and it is the case, most often !).
Here are some matrix examples with gradient propagation:

Compute multiple propagations at the same step

You can compute several times the propagation you want by using the facet
cycle_length. GAMA will compute for you the corresponding new matrix and
will apply it.
Writing those two things are exactly equivalent (for diffusion):� �
matrix <float > mat_diff <- matrix ([

[1/81 ,2/81 ,3/81 ,2/81 ,1/81] ,
[2/81 ,4/81 ,6/81 ,4/81 ,2/81] ,
[3/81 ,6/81 ,1/9 ,6/81 ,3/81] ,
[2/81 ,4/81 ,6/81 ,4/81 ,2/81] ,
[1/81 ,2/81 ,3/81 ,2/81 ,1/81]]);

reflex diff {
diffuse var: phero on: cells matrix:mat_diff;� �

v 1.8.2 127

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.5: Examples of gradient diffusions with one and several sources.

Figure 21.6: Examples of irregular gradient diffusions.

v 1.8.2 128

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.7: Example of computation with a cycle length of 2.

and� �
matrix <float > mat_diff <- matrix ([

[1/9 ,1/9 ,1/9] ,
[1/9 ,1/9 ,1/9] ,
[1/9 ,1/9 ,1/9]]);

reflex diff {
diffuse var: phero on: cells matrix:mat_diff cycle_length

:2;� �

Executing several diffusion matrix

If you execute several times the statement diffuse with different matrix on the same
variable, their values will be added (and centered if their dimensions are not equal).

Thus, the following 3 matrices will be combined to create one unique matrix:

Diffusion with parameters

Sometimes writing diffusion matrix is not exactly what you want, and you may prefer
to just give some parameters to compute the correct diffusion matrix. You can use
the following facets in order to do that: propagation, variation and radius.

v 1.8.2 129

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.8: Example of matrix combinations.

Depending on which propagation you choose, and how many neighbors your grid has,
the propagation matrix will be computed differently. The propagation matrix will
have the size: range*2+1.
Let’s note P for the propagation value, V for the variation, R for the range and N
for the number of neighbors.

• With diffusion propagation

For diffusion propagation, we compute following the following steps:

(1) We determine the “minimale” matrix according to N (if N = 8, the matrix will
be [[P/9,P/9,P/9][P/9,1/9,P/9][P/9,P/9,P/9]]. if N = 4, the matrix will be
[[0,P/5,0][P/5,1/5,P/5][0,P/5,0]]).

(2) If R != 1, we propagate the matrix R times to obtain a [2*R+1][2*R+1] matrix
(same computation as for cycle_length).

(3) If V != 0, we substract each value by V*DistanceFromCenter (DistanceFrom-
Center depends on N).

Ex with the default values (P=1, R=1, V=0, N=8):

v 1.8.2 130

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.9: resources/images/recipes/gradient_computation_from_parameters.png

• With gradient propagation

The value of each cell will be equal to **P/POW(N,DistanceFromCenter)-
DistanceFromCenter*V**. (DistanceFromCenter depends on N).

Ex with R=2, other parameters default values (R=2, P=1, V=0, N=8):

Note that if you declared a diffusion matrix, you cannot use those 3 facets (it will
raise a warning). Note also that if you use parameters, you will only have a uniform
matrix.

v 1.8.2 131

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.10: Illustration of convolution product computation.

Computation methods

You can compute the output matrix using two computation methods by using the
facet method : the dot product and the convolution. Note that the result of those
two methods is exactly the same (except if you use the avoid_mask facet, the results
can be slightly different between the two computations).

Convolution

convolution is the default computation method for diffusion. For every output cells,
we will multiply the input values and the flipped kernel together, as shown in the
following image :

Pseudo-code (k the kernel, x the input matrix, y the output matrix) :� �
for (i = 0 ; i < y.nbRows ; i++)

for (j = 0 ; j < y.nbCols ; j++)
for (m = 0 ; m < k.nbRows ; m++)

for (n = 0 ; n < k.nbCols ; n++)
y[i,j] += k[k.nbRows - m - 1, k.nbCols - n - 1]

* x[i - k.nbRows /2 + m, j - k.nbCols /2 + n]� �
v 1.8.2 132

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.11: Illustration of dat product computation.

Dot Product

dot_product method will compute the matrix using a simple dot product between
the matrix. For every input cells, we multiply the cell by the kernel matrix, as shown
in the following image :
Pseudo-code (k the kernel, x the input matrix, y the output matrix) :� �
for (i = 0 ; i < y.nbRows ; i++)

for (j = 0 ; j < y.nbCols ; j++)
for (m = 0 ; m < k.nbRows ; m++)

for (n = 0 ; n < k.nbCols ; n++)
y[i - k.nbRows /2 + m, j - k.nbCols /2 + n] += k[m, n] *

x[i, j]� �
Using a mask

Generalities

If you want to propagate some values in a heterogeneous grid, you can use some mask
to forbid some cells to propagate their values.
You can pass a matrix to the facet mask. All the values smaller than -1 will not
propagate, and all the values greater or equal to -1 will propagate.

v 1.8.2 133

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.12: Use of a mask to constrain the diffusion.

A simple way to use mask is by loading an image :
Note that when you use the on facet for the diffuse statement, you can choose only
some cells, and not every cell. In fact, when you restrain the values to be diffuse, it
is exactly the same process as if you were defining a mask.
When your diffusion is combined with a mask, the default behavior is that the non-
masked cells will diffuse their values in all existing cells (that means, even the masked
cells !). To change this behavior, you can use the facet avoid_mask. In that case, the
value which was supposed to be affected to the masked cell will be redistributed to
the neighboring non-masked cells.

Tips

Masks can be used to simulate a lot of environments. Here are some ideas for your
models:

Wall blocking the diffusion

If you want to simulate a wall blocking a uniform diffusion, you can declare a second
diffusion matrix that will be applied only on the cells where your wall will be. This
diffusion matrix will “push” the values outside from himself, but conserving the values
(the sum of the values of the diffusion still have to be equal to 1) :

v 1.8.2 134

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.13: Constraint on the diffusion using filtering on cells.

� �
matrix <float > mat_diff <- matrix ([

[1/9 ,1/9 ,1/9] ,
[1/9 ,1/9 ,1/9] ,
[1/9 ,1/9 ,1/9]]);

matrix <float > mat_diff_left_wall <- matrix ([
[0.0 ,0.0 ,2/9] ,
[0.0 ,0.0 ,4/9] ,
[0.0 ,0.0 ,2/9]]);

reflex diff {
diffuse var: phero on: (cells where(each.grid_x >30))

matrix:mat_diff;
diffuse var: phero on: (cells where(each.grid_x =30))

matrix:mat_diff_left_wall;
}� �
Note that almost the same result can be obtained by using the facet avoid_mask: the
value of all masked cells will remain at 0, and the value which was supposed to be
affected to the masked cell will be distributed to the neighboring cells. Notice that the
results can be slightly different if you are using the convolution or the dot_product
method: the algorithm of redistribution of the value to the neighboring cells is a
bit different. We advise you to use the dot_product with the avoid_mask facet, the
results are more accurate.

v 1.8.2 135

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.14: Diffusion limited by a wall, using a mask.

Wind pushing the diffusion

Let’s simulate a uniform diffusion that is pushed by a wind from “north” everywhere
in the grid. A wind from “west” as blowing at the top side of the grid. We will here
have to build 2 matrices: one for the uniform diffusion, one for the “north” wind and
one for the “west” wind. The sum of the values for the 2 matrices meant to simulate
the wind will be equal to 0 (as it will be added to the diffusion matrix).� �
matrix <float > mat_diff <- matrix ([

[1/9 ,1/9 ,1/9] ,
[1/9 ,1/9 ,1/9] ,
[1/9 ,1/9 ,1/9]]);

matrix <float > mat_wind_from_west <- matrix ([
[-1/9,0.0,1/9] ,
[-1/9,0.0,1/9] ,
[-1/9 ,0.0 ,1/9]]);

matrix <float > mat_wind_from_north <- matrix ([
[-1/9,-1/9,-1/9],
[0.0 ,0.0 ,0.0] ,

v 1.8.2 136

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.15: Diffusion impacted with a wind.

[1/9 ,1/9 ,1/9]]);

reflex diff {
diffuse var: phero on: cells matrix:mat_diff;
diffuse var: phero on: cells matrix:mat_wind_from_north;
diffuse var: phero on: (cells where (each.grid_y >=32))

matrix:mat_wind_from_west;
}� �
Endless world

Note that when your world is not a torus, it has the same effect as a mask, since all
the values outside from the world cannot diffuse some values back :
You can “fake” the fact that your world is endless by adding a different diffusion for
the cells with grid_x=0 to have almost the same result :� �
matrix <float > mat_diff <- matrix ([

v 1.8.2 137

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.16: Comparison of diffusion with and without torus environment.

Figure 21.17: Attempt to fake torus environment with different matrices.

v 1.8.2 138

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

[1/9 ,1/9 ,1/9] ,
[1/9 ,1/9 ,1/9] ,
[1/9 ,1/9 ,1/9]]);

matrix <float > mat_diff_upper_edge <- matrix ([
[0.0 ,0.0 ,0.0] ,
[1/9+7/81 ,2/9+1/81 ,1/9+7/81] ,
[1/9 ,1/9 ,1/9]]);

reflex diff {
diffuse var: phero on: (cells where(each.grid_y >0)) matrix

:mat_diff;
diffuse var: phero on: (cells where(each.grid_y =0)) matrix

:mat_diff_upper_edge;
}� �
Pseudo-code

This section is more for a better understanding of the source code.
Here is the pseudo-code for the computation of diffusion :

1) : Execute the statement diffuse, store the diffusions in a map (from class
DiffusionStatement to class GridDiffuser) :

� �
- Get all the facet values
- Compute the "real" mask , from the facet "mask:" and the

facet "on:".
- If no value for "mask:" and "on:" all the grid , the mask
is equal to null.

- Compute the matrix of diffusion
- If no value for "matrix:", compute with "nb_neighbors", "
is_gradient", "proportion", "propagation", "variation", "
range".

- Then , compute the matrix of diffusion with "cycle_length".
- Store the diffusion properties in a map

- Map : ["method_diffu", "is_gradient", "matrix", "mask", "
min_value"] is value , ["var_diffu", "grid_name"] is key.

v 1.8.2 139

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

- If the key exists in the map , try to "mix" the diffusions
- If "method_diffu", "mask" and "is_gradient" equal for

the 2 diffusions , mix the diffusion matrix.� �
2) : At the end of the step, execute the diffusions (class GridDiffuser) :

� �
- For each key of the map ,

- Load the couple "var_diffu" / "grid_name"
- Build the "output" and "input" array with the dimension of

the grid.
- Initialize the "output" array with -Double.MAX_VALUE.
- For each value of the map for that key ,

- Load all the properties : "method_diffu", "is_gradient",
"matrix", "mask", "min_value"
- Compute :

- If the cell is not masked , if the value of input is >
min_value , diffuse to the neighbors.

- If the value of the cell is equal to -Double.
MAX_VALUE , remplace it by input[idx] * matDiffu[i][j].

- Else , do the computation (gradient or diffusion).
- Finish the diffusion :

- If output[idx] > -Double.MAX_VALUE , write the new
value in the cell.� �

v 1.8.2 140

Chapter 22

Using Database Access

Database features of GAMA provide a set of actions on Database Management
Systems (DBMS) and Multi-Dimensional Database for agents in GAMA. Database
features are implemented in the irit.gaml.extensions.database plug-in with these
features:

• Agents can execute SQL queries (create, Insert, select, update, drop, delete) to
various kinds of DBMS.

• Agents can execute MDX (Multidimensional Expressions) queries to select
multidimensional objects, such as cubes, and return multidimensional cellsets
that contain the cube’s data.

These features are implemented in two kinds of component: skills (SQLSKILL,
MDXSKILL) and agent (AgentDB)
SQLSKILL and AgentDB provide almost the same features (a same set of actions on
DBMS) but with certain slight differences:

• An agent of species AgentDB will maintain a unique connection to the database
during the whole simulation. The connection is thus initialized when the agent
is created.

• In contrast, an agent of a species with the SQLSKILL skill will open a connection
each time he wants to execute a query. This means that each action will be
composed of three running steps:

– Make a database connection.

141

GAMA v1.8.2 documentation Chapter 22. Using Database Access

– Execute SQL statement.
– Close database connection.

An agent with the SQLSKILL spends lot of time to create/close the
connection each time it needs to send a query; it saves the database
connection (DBMS often limit the number of simultaneous connections).
In contrast, an AgentDB agent only needs to establish one database
connection and it can be used for any actions. Because it does not need
to create and close database connection for each action: therefore, actions
of AgentDB agents are executed faster than actions of SQLSKILL ones
but we must pay a connection for each agent.

• With an inheritance agent of species AgentDB or an agent of a species using
SQLSKILL, we can query data from relational database for creating species,
defining environment or analyzing or storing simulation results into RDBMS.
On the other hand, an agent of species with MDXKILL supports the OLAP
technology to query data from data marts (multidimensional database). The
database features help us to have more flexibility in management of simulation
models and analysis of simulation results.

Description

• Plug-in: irit.gaml.extensions.database
• Author: TRUONG Minh Thai, Frederic AMBLARD, Benoit GAUDOU,

Christophe SIBERTIN-BLANC

Supported DBMS

The following DBMS are currently supported:

• SQLite
• MySQL Server
• PostgreSQL Server
• SQL Server
• Mondrian OLAP Server

v 1.8.2 142

GAMA v1.8.2 documentation Chapter 22. Using Database Access

• SQL Server Analysis Services

Note that, other DBMSs require a dedicated server to work while SQLite on only
needs a file to be accessed. All the actions can be used independently from the chosen
DBMS. Only the connection parameters are DBMS-dependent.

SQLSKILL

Define a species that uses the SQLSKILL skill

Example of declaration:� �
species toto skills: [SQLSKILL] {

// insert your descriptions here
}� �
Agents with such a skill can use additional actions (defined in the skill)

Map of connection parameters for SQL

In the actions defined in the SQLSkill, a parameter containing the connection param-
eters is required. It is a map with the following key::value pairs:

Key Optional Description
dbtype No DBMS type value. Its value is a string. We must use

“mysql” when we want to connect to a MySQL. That is the
same for “postgres”, “sqlite” or “sqlserver” (ignore case
sensitive)

host Yes Host name or IP address of data server. It is absent when
we work with SQlite.

port Yes Port of connection. It is not required when we work with
SQLite.

database No Name of database. It is the file name including the path
when we work with SQLite.

user Yes Username. It is not required when we work with SQLite.
passwd Yes Password. It is not required when we work with SQLite.

v 1.8.2 143

GAMA v1.8.2 documentation Chapter 22. Using Database Access

Key Optional Description
srid Yes srid (Spatial Reference Identifier) corresponds to a spatial

reference system. This value is specified when GAMA
connects to spatial database. If it is absent then GAMA
uses spatial reference system defined in
Preferences->External configuration.

Table 1: Connection parameter description
Example: Definitions of connection parameter� �
// POSTGRES connection parameter
map <string , string > POSTGRES <- [

'host '::'localhost ',
'dbtype '::'postgres ',
'database '::'BPH ',
'port '::'5433',
'user '::'postgres ',
'passwd '::'abc '];

// SQLite
map <string , string > SQLITE <- [

'dbtype '::'sqlite ',
'database ':: '../ includes/meteo.db '];

// SQLSERVER connection parameter
map <string , string > SQLSERVER <- [

'host '::'localhost ',
'dbtype '::'sqlserver ',
'database '::'BPH ',
'port '::'1433',
'user '::'sa',
'passwd '::'abc '];

// MySQL connection parameter
map <string , string > MySQL <- [

'host '::'localhost ',
'dbtype '::'MySQL ',
'database '::'', // it may be a null string
'port '::'3306',

v 1.8.2 144

GAMA v1.8.2 documentation Chapter 22. Using Database Access

'user '::'root ',
'passwd '::'abc '];� �

Test a connection to database

Syntax: > testConnection (params: connection_parameter) The action tests the
connection to a given database.

• Return: boolean. It is:

– true: the agent can connect to the DBMS (to the given Database with
given name and password)

– false: the agent cannot connect

• Arguments:

– params: (type = map) map of connection parameters

• Exceptions: GamaRuntimeException

Example: Check a connection to MySQL� �
if (self testConnection(params:MySQL)){

write "Connection is OK" ;
}else{

write "Connection is false" ;
}� �
Select data from database

Syntax: > select (param: connection_parameter, select: selection_string,values:
value_list) The action creates a connection to a DBMS and executes the select state-
ment. If the connection or selection fails then it throws a GamaRuntimeException.

• Return: list < list >. If the selection succeeds, it returns a list with three
elements:

– The first element is a list of column name.

v 1.8.2 145

GAMA v1.8.2 documentation Chapter 22. Using Database Access

– The second element is a list of column type.
– The third element is a data set.

• Arguments:

– params: (type = map) map containing the connection parameters
– select: (type = string) select string. The selection string can contain

question marks.
– values: List of values that are used to replace question marks in appropriate.

This is an optional parameter.

• Exceptions: GamaRuntimeException

Example: select data from table points� �
map <string , string > PARAMS <- ['dbtype '::'sqlite ', '

database ':: '../ includes/meteo.db '];
list <list > t <- list <list > (self select(params:PARAMS ,

select:"SELECT * FROM points ;"));� �
Example: select data from table point with question marks from table points� �
map <string , string > PARAMS <- ['dbtype '::'sqlite ', '

database ':: '../ includes/meteo.db '];
list <list > t <- list <list > (self select(params: PARAMS ,

select: "SELECT
temp_min FROM points where (day >? and day <?);"

values: [10 ,20]));� �
Insert data into database

Syntax:

_insert (param: connection_parameter, into: table_name, columns: col-
umn_list, values: value‘_list)The action creates a connection to a DBMS
and executes the insert statement. If the connection or insertion fails then
it throws a_GamaRuntimeException.

• Return: int

v 1.8.2 146

GAMA v1.8.2 documentation Chapter 22. Using Database Access

If the insertion succeeds, it returns a number of records inserted by the
insert.

• Arguments: params: (type = map) map containing the connection parameters.
into: (type = string) table name. columns: (type=list) list of column names
of table. It is an optional argument. If it is not applicable then all columns of
table are selected. _values_: (type=list) list of values that are used to insert
into table corresponding to columns. Hence the columns and values must have
same size.

• Exceptions:_GamaRuntimeException

Example: Insert data into table registration� �
map <string , string > PARAMS <- ['dbtype '::'sqlite ', 'database

':: '../../ includes/Student.db '];

do insert (params: PARAMS ,
into: "registration",
values: [102, 'Mahnaz ', 'Fatma ', 25]);

do insert (params: PARAMS ,
into: "registration",
columns: ["id", "first", "last"],
values: [103, 'Zaid tim ', 'Kha ']);

int n <- insert (params: PARAMS ,
into: "registration",

columns: ["id", "first", "last"],
values: [104, 'Bill ', 'Clark ']);� �

Execution update commands

Syntax:

executeUpdate (param: connection_parameter, updateComm: table_
name, values: value_list) The action executeUpdate executes an update
command (create/insert/delete/drop) by using the current database con-
nection of the agent. If the database connection does not exist or the

v 1.8.2 147

GAMA v1.8.2 documentation Chapter 22. Using Database Access

update command fails then it throws a GamaRuntimeException. Other-
wise, it returns an integer value.

• Return: int. If the insertion succeeds, it returns a number of records inserted
by the insert.

• Arguments:

– params: (type = map) map containing the connection parameters
– updateComm: (type = string) SQL command string. It may be commands:
create, update, delete and drop with or without question marks.

– columns: (type=list) list of column names of table.
– values: (type=list) list of values that are used to replace question marks if

appropriate. This is an optional parameter.

• Exceptions: GamaRuntimeException

Examples: Using action executeUpdate do sql commands (create, insert, update,
delete and drop).� �
map <string , string > PARAMS <- ['dbtype '::'sqlite ', 'database

':: '../../ includes/Student.db '];
// Create table
do executeUpdate (params: PARAMS ,

updateComm: "CREATE TABLE
registration"

+ "(id INTEGER
PRIMARY KEY , "

+ " first TEXT
NOT NULL , " + " last TEXT NOT NULL , "

+ " age INTEGER);
");

// Insert into
do executeUpdate (params: PARAMS ,

updateComm: "INSERT INTO
registration " + "VALUES (100, 'Zara ', 'Ali ', 18);");

do insert (params: PARAMS , into: "registration",
columns: ["id", "first", "last"],
values: [103, 'Zaid tim ', 'Kha ']);

// executeUpdate with question marks

v 1.8.2 148

GAMA v1.8.2 documentation Chapter 22. Using Database Access

do executeUpdate (params: PARAMS ,
updateComm: "INSERT INTO

registration " + "VALUES(?, ?, ?, ?);" ,
values: [101, 'Mr', 'Mme ', 45]);

// update
int n <- executeUpdate (params: PARAMS ,

updateComm: "UPDATE
registration SET age = 30 WHERE id IN (100, 101)");

// delete
int n <- executeUpdate (params: PARAMS ,

updateComm: "DELETE FROM
registration where id=? ",

values: [101]);

// Drop table
do executeUpdate (params: PARAMS , updateComm: "DROP TABLE

registration");� �
MDXSKILL

MDXSKILL plays the role of an OLAP tool using select to query data from OLAP
server to GAMA environment and then species can use the queried data for any
analysis purposes.

Define a species that uses the MDXSKILL skill

Example of declaration:� �
species olap skills: [MDXSKILL]
{

// insert your descriptions here

}
...� �

Agents with such a skill can use additional actions (defined in the skill)

v 1.8.2 149

GAMA v1.8.2 documentation Chapter 22. Using Database Access

Map of connection parameters for MDX

In the actions defined in the SQLSkill, a parameter containing the connection param-
eters is required. It is a map with following key::value pairs:

Key Optional Description
olaptype No OLAP Server type value. Its value is a string. We must use

“SSAS/XMLA” when we want to connect to an SQL Server
Analysis Services by using XML for Analysis. That is the
same for “MONDRIAN/XML” or “MONDRIAN” (ignore
case sensitive)

dbtype No DBMS type value. Its value is a string. We must use
“mysql” when we want to connect to a MySQL. That is the
same for “postgres” or “sqlserver” (ignore case sensitive)

host No Host name or IP address of data server.
port No Port of connection. It is no required when we work with

SQLite.
database No Name of database. It is file name include path when we

work with SQLite.
catalog Yes Name of catalog. It is an optional parameter. We do not

need to use it when we connect to SSAS via XMLA and its
file name includes the path when we connect a ROLAP
database directly by using Mondrian API (see Example as
below)

user No Username.
passwd No Password.

Table 2: OLAP Connection parameter description
Example: Definitions of OLAP connection parameter� �
// Connect SQL Server Analysis Services via XMLA

map <string ,string > SSAS <- [
'olaptype '::'SSAS/XMLA ',
'dbtype '::'sqlserver ',
'host ':: '172.17.88.166 ' ,
'port '::'80',
'database '::'olap ',
'user '::'test ',

v 1.8.2 150

GAMA v1.8.2 documentation Chapter 22. Using Database Access

'passwd '::'abc '];

// Connect Mondriam server via XMLA
map <string ,string > MONDRIANXMLA <- [

'olaptype '::"MONDRIAN/XMLA",
'dbtype '::'postgres ',
'host '::'localhost ',
'port '::'8080',
'database '::' MondrianFoodMart ',
'catalog '::'FoodMart ',
'user '::'test ',
'passwd '::'abc '];

// Connect a ROLAP server using Mondriam API
map <string ,string > MONDRIAN <- [

'olaptype '::'MONDRIAN ',
'dbtype '::'postgres ',
'host '::'localhost ',
'port '::'5433',
'database '::'foodmart ',
'catalog ':: '../ includes/FoodMart.xml ',
'user '::'test ',

'passwd '::'abc '];� �
Test a connection to OLAP database

Syntax:

testConnection (params: connection_parameter) The action tests the
connection to a given OLAP database.

• Return: boolean. It is:

– true: the agent can connect to the DBMS (to the given Database with
given name and password)

– false: the agent cannot connect

• Arguments:

v 1.8.2 151

GAMA v1.8.2 documentation Chapter 22. Using Database Access

– params: (type = map) map of connection parameters

• Exceptions: GamaRuntimeException

Example: Check a connection to MySQL� �
if (self testConnection(params:MONDIRANXMLA)){

write "Connection is OK";
}else{

write "Connection is false";
}� �
Select data from OLAP database

Syntax:

select (param: connection_parameter, onColumns: column_string, on-
Rows: row_string from: cube_string, where: condition_string, values:
value_list) The action creates a connection to an OLAP database and
executes the select statement. If the connection or selection fails then it
throws a GamaRuntimeException.

• Return: list < list >. If the selection succeeds, it returns a list with three
elements:

– The first element is a list of column name.
– The second element is a list of column type.
– The third element is a data set.

• Arguments:

– params: (type = map) map containing the connection parameters
– onColumns: (type = string) declare the select string on columns. The

selection string can contain question marks.
– onRows: (type = string) declare the selection string on rows. The selection

string can contain question marks.
– from: (type = string) specify cube where data is selected. The cube_string

can contain question marks.

v 1.8.2 152

GAMA v1.8.2 documentation Chapter 22. Using Database Access

– where_: (type = string) specify the selection conditions. The condiction_-
string can contains question marks. This is an optional parameter. *values:
List of values that are used to replace question marks if appropriate. This
is an optional parameter.

• Exceptions:_GamaRuntimeException

Example: select data from SQL Server Analysis Service via XMLA� �
if (self testConnection[params ::SSAS]){

list l1 <- list(self select (params: SSAS ,
onColumns: " { [Measures].[Quantity], [Measures].[

Price] }",
onRows:" { { { [Time].[Year].[All]. CHILDREN } * "
+ " { [Product].[Product Category].[All]. CHILDREN } *

"
+"{ [Customer].[Company Name].&[Alfreds Futterkiste],

"
+"[Customer].[Company Name].&[Ana Trujillo

Emparedadosy helados], "
+ "[Customer].[Company Name].&[Antonio Moreno Taquería

] } } } " ,
from : "FROM [Northwind Star] "));

write "result1:"+ l1;
}else {

write "Connect error";
}� �
Example: select data from Mondrian via XMLA with question marks in selection� �
if (self testConnection(params:MONDRIANXMLA)){

list <list > l2 <- list <list > (self select(params:
MONDRIANXMLA ,
onColumns:" {[Measures].[Unit Sales], [Measures].[Store

Cost], [Measures].[Store Sales]} ",
onRows:" Hierarchize(Union(Union(Union ({([Promotion Media

].[All Media],"
+" [Product].[All Products])}, "
+" Crossjoin ([Promotion Media].[All Media].Children , "
+" {[Product].[All Products]})), "
+" Crossjoin ({[Promotion Media].[Daily Paper , Radio , TV]},
"

v 1.8.2 153

GAMA v1.8.2 documentation Chapter 22. Using Database Access

+" [Product].[All Products]. Children)), "
+" Crossjoin ({[Promotion Media].[Street Handout]}, "
+" [Product].[All Products]. Children))) ",
from:" from [?] " ,
where :" where [Time].[?] " ,
values :["Sales" ,1997]));
write "result2:"+ l2;

}else {
write "Connect error";

}� �

AgentDB

AgentBD is a built-in species, which supports behaviors that look like actions in
SQLSKILL but differs slightly with SQLSKILL in that it uses only one connection
for several actions. It means that AgentDB makes a connection to DBMS and keeps
that connection for its later operations with DBMS.

Define a species that is an inheritance of agentDB

Example of declaration:� �
species agentDB parent: AgentDB {

// insert your descriptions here
}� �
Connect to database

Syntax:

Connect (param: connection_parameter) This action makes a connection
to DBMS. If a connection is established then it will assign the connection
object into a built-in attribute of species (conn) otherwise it throws a
GamaRuntimeException.

v 1.8.2 154

GAMA v1.8.2 documentation Chapter 22. Using Database Access

• Return: connection
• Arguments:

– params: (type = map) map containing the connection parameters

• Exceptions: GamaRuntimeException

Example: Connect to PostgreSQL� �
// POSTGRES connection parameter
map <string , string > POSTGRES <- [

'host '::'localhost ',
'dbtype '::'postgres ',
'database '::'BPH ',
'port '::'5433',
'user '::'postgres ',
'passwd '::'abc '];

ask agentDB {
do connect (params: POSTGRES);

}� �
Check agent connected a database or not

Syntax:

isConnected (param: connection_parameter) This action checks if an
agent is connecting to database or not.

• Return: Boolean. If agent is connecting to a database then isConnected
returns true; otherwise it returns false.

• Arguments:

– params: (type = map) map containing the connection parameters

Example: Using action executeUpdate do sql commands (create, insert, update,
delete and drop).

v 1.8.2 155

GAMA v1.8.2 documentation Chapter 22. Using Database Access

� �
ask agentDB {

if (self isConnected){
write "It already has a connection";

}else{
do connect (params: POSTGRES);

}
}� �
Close the current connection

Syntax:

close This action closes the current database connection of species. If
species does not has a database connection then it throws a GamaRun-
timeException.

• Return: null

If the current connection of species is close then the action return null value; otherwise
it throws a GamaRuntimeException.
Example:� �
ask agentDB {

if (self isConnected){
do close;

}
}� �
Get connection parameter

Syntax:

getParameter This action returns the connection parameter of species.

• Return: map < string, string >

v 1.8.2 156

GAMA v1.8.2 documentation Chapter 22. Using Database Access

Example:� �
ask agentDB {

if (self isConnected){
write "the connection parameter: " +(self getParameter

);
}

}� �

Set connection parameter

Syntax:

setParameter (param: connection_parameter) This action sets the new
values for connection parameter and closes the current connection of
species. If it can not close the current connection then it will throw
GamaRuntimeException. If the species wants to make the connection to
database with the new values then action connect must be called.

• Return: null
• Arguments:

– params: (type = map) map containing the connection parameters

• Exceptions: GamaRuntimeException

Example:� �
ask agentDB {

if (self isConnected){
do setParameter(params: MySQL);
do connect(params: (self getParameter));

}
}� �
v 1.8.2 157

GAMA v1.8.2 documentation Chapter 22. Using Database Access

Retrieve data from database by using AgentDB

Because of the connection to database of AgentDB is kept alive then AgentDB can
execute several SQL queries with only one connection. Hence AgentDB can do actions
such as select, insert, executeUpdate with the same parameters of those actions
of SQLSKILL except params parameter is always absent.
Examples:� �
map <string , string > PARAMS <- ['dbtype '::'sqlite ', 'database

':: '../../ includes/Student.db '];
ask agentDB {

do connect (params: PARAMS);
// Create table
do executeUpdate (updateComm: "CREATE TABLE registration"
+ "(id INTEGER PRIMARY KEY , "

+ " first TEXT NOT NULL , " + " last TEXT NOT NULL , "
+ " age INTEGER);");

// Insert into
do executeUpdate (updateComm: "INSERT INTO registration "

+ "VALUES (100, 'Zara ', 'Ali ', 18);");
do insert (into: "registration",

columns: ["id", "first", "last"],
values: [103, 'Zaid tim ', 'Kha ']);

// executeUpdate with question marks
do executeUpdate (updateComm: "INSERT INTO registration
VALUES(?, ?, ?, ?);",

values: [101, 'Mr ', 'Mme ', 45]);
// select
list <list > t <- list <list > (self select(
select:"SELECT * FROM registration;"));

// update
int n <- executeUpdate (updateComm: "UPDATE registration

SET age = 30 WHERE id IN (100, 101)");
// delete
int n <- executeUpdate (updateComm: "DELETE FROM

registration where id=? ", values: [101]);
// Drop table
do executeUpdate (updateComm: "DROP TABLE registration")

;
}� �
v 1.8.2 158

GAMA v1.8.2 documentation Chapter 22. Using Database Access

Using database features to define environment or
create species

In Gama, we can use results of select action of SQLSKILL or AgentDB to create
species or define boundary of environment in the same way we do with shape files.
Further more, we can also save simulation data that are generated by simulation
including geometry data to database.

Define the boundary of the environment from database

• Step 1: specify select query by declaration a map object with keys as below:

Key Optional Description
dbtype No DBMS type value. Its value is a string. We must use

“mysql” when we want to connect to a MySQL. That is the
same for “postgres”, “sqlite” or “sqlserver” (ignore case
sensitive)

host Yes Host name or IP address of data server. It is absent when
we work with SQlite.

port Yes Port of connection. It is not required when we work with
SQLite.

database No Name of database. It is the file name including the path
when we work with SQLite.

user Yes Username. It is not required when we work with SQLite.
passwd Yes Password. It is not required when we work with SQLite.
srid Yes srid (Spatial Reference Identifier) corresponds to a spatial

reference system. This value is specified when GAMA
connects to spatial database. If it is absent then GAMA
uses spatial reference system defined in
Preferences->External configuration.

select No Selection string

Table 3: Select boundary parameter description
Example:� �
v 1.8.2 159

GAMA v1.8.2 documentation Chapter 22. Using Database Access

map <string ,string > BOUNDS <- [
//'srid '::'32648',
'host '::'localhost ',

'dbtype '::'postgres ',
'database '::'spatial_DB ',
'port '::'5433',

'user '::'postgres ',
'passwd '::'tmt ',
'select '::' SELECT ST_AsBinary(geom) as geom FROM bounds;'

];� �
• Step 2: define boundary of environment by using the map object in first step.� �

geometry shape <- envelope(BOUNDS);� �
Note: We can do the same way if we work with MySQL, SQLite, or SQLServer and
we must convert Geometry format in GIS database to binary format.

Create agents from the result of a select action

If we are familiar with how to create agents from a shapefile then it becomes very
simple to create agents from select result. We can do as below:

• Step 1: Define a species with SQLSKILL or AgentDB� �
species toto skills: SQLSKILL {

// insert your descriptions here
}� �

• Step 2: Define a connection and selection parameters� �
global {

map <string ,string > PARAMS <- ['dbtype '::'sqlite ','
database ':: '../ includes/bph.sqlite '];
string location <- 'select ID_4 , Name_4 , ST_AsBinary(

geometry) as geom from vnm_adm4

v 1.8.2 160

GAMA v1.8.2 documentation Chapter 22. Using Database Access

where id_2 =38253 or id_2
=38254; ';
...

}� �
• Step 3: Create species by using selected results� �

init {
create toto {

create locations from: list(self select (params: PARAMS ,

select: LOCATIONS))
with:[id:: "id_4",

custom_name :: "name_4", shape ::"geom"];
}

...
}� �
Save Geometry data to database

If we are familiar with how to create agents from a shapefile then it becomes very
simple to create agents from select result. We can do as below:

• Step 1: Define a species with SQLSKILL or AgentDB� �
species toto skills: SQLSKILL {

// insert your descriptions here
}� �

• Step 2: Define a connection and create GIS database and tables� �
global {

map <string ,string > PARAMS <- ['host '::'localhost ', '
dbtype '::'Postgres ', 'database '::'',

'
port '::'5433', 'user '::'postgres ', 'passwd '::'tmt '];

v 1.8.2 161

GAMA v1.8.2 documentation Chapter 22. Using Database Access

init {
create toto ;
ask toto {

if (self testConnection[params :: PARAMS]){
// create GIS database
do executeUpdate(params:PARAMS ,

updateComm: "CREATE DATABASE
spatial_db with TEMPLATE = template_postgis;");

remove key: "database" from: PARAMS;
put "spatial_db" key:"database" in: PARAMS;
// create table

do executeUpdate params: PARAMS
updateComm : "CREATE TABLE buildings "+
"(" +

" name character varying
(255) , " +

" type character
varying (255), " +

" geom GEOMETRY " +
")";

}else {
write "Connection to MySQL can not be

established ";
}

}
}

}� �
• Step 3: Insert geometry data to GIS database� �

ask building {
ask DB_Accessor {
do insert(params: PARAMS ,

into: "buildings",
columns: ["name", "type","geom"],
values: [myself.name ,myself.type ,myself.shape];

}
}� �
v 1.8.2 162

Chapter 23

Calling R

Introduction

R language is one of powerful data mining tools, and its community is very large in
the world (See the website: http://www.r-project.org/). Adding the R language into
GAMA is our strong endeavors to accelerate many statistical, data mining tools into
GAMA.
RCaller 2.0 package (Website: http://code.google.com/p/rcaller/) is used for GAMA
1.6.1.

Table of contents

• Introduction

– Configuration in GAMA
– Calling R from GAML

∗ Calling the built-in operators
· Example 1

∗ Calling R codes from a text file (.txt) WITHOUT the parameters
· Example 2
· Correlation.R file

∗ Output

163

GAMA v1.8.2 documentation Chapter 23. Calling R

· Example 3
· RandomForest.R file

• Load the package:
• Read data from iris:
• Build the decision tree:
• Build the random forest of 50 decision trees:
• Predict the acceptance of test set:
• Calculate the accuracy:

– Output
– Calling R codes from a text file (.R, .txt) WITH the parameters

∗ Example 4
∗ Mean.R file

– Output
∗ Example 5
∗ AddParam.R file
∗ Output

Configuration in GAMA

1) Install R language into your computer.

2) In GAMA, select menu option: Edit/Preferences.

3) In “Config RScript’s path”, browse to your “Rscript” file (R language
installed in your system).

Notes: Ensure that install.packages(“Runiversal”) is already applied in R environ-
ment.

Calling R from GAML

Calling the built-in operators

Example 1

v 1.8.2 164

GAMA v1.8.2 documentation Chapter 23. Calling R

� �
model CallingR

global {
list X <- [2, 3, 1];
list Y <- [2, 12, 4];

list result;

init{
write corR(X, Y); // -> 0.755928946018454
write meanR(X); // -> 2.0

}
}� �
Calling R codes from a text file (.R,.txt) WITHOUT the pa-
rameters

Using R_compute(String RFile) operator. This operator DOESN’T ALLOW to
add any parameters form the GAML code. All inputs is directly added into the R
codes. Remarks: Don’t let any white lines at the end of R codes. R_compute
will return the last variable of R file, this parameter can be a basic type or a list.
Please ensure that the called packages must be installed before using.

Example 2� �
model CallingR

global
{

list result;

init{
result <- R_compute("C:/ YourPath/Correlation.R");
write result at 0;

}
}� �
v 1.8.2 165

GAMA v1.8.2 documentation Chapter 23. Calling R

Above syntax is deprecated, use following syntax with R_file instead of R_compute:� �
model CallingR

global
{

file result;

init{
result <- R_file("C:/ YourPath/Correlation.R");
write result.contents;

}
}� �
Correlation.R file� �
x <- c(1, 2, 3)

y <- c(1, 2, 4)

result <- cor(x, y, method = "pearson")� �
Output

result::[0.981980506061966]

Example 3� �
model CallingR

global
{

list result;

init{
result <- R_compute("C:/ YourPath/RandomForest.R");

v 1.8.2 166

GAMA v1.8.2 documentation Chapter 23. Calling R

write result at 0;
}

}� �
RandomForest.R file� �
Load the package:

library(randomForest)

Read data from iris:

data(iris)

nrow <-length(iris [,1])

ncol <-length(iris [1,])

idx <-sample(nrow ,replace=FALSE)

trainrow <-round (2* nrow /3)

trainset <-iris[idx [1: trainrow],]

Build the decision tree:

trainset <-iris[idx [1: trainrow],]

testset <-iris[idx[(trainrow +1):nrow],]

Build the random forest of 50 decision trees:

model <-randomForest(x= trainset[,-ncol], y= trainset[,ncol],
mtry=3, ntree =50)

Predict the acceptance of test set:

pred <-predict(model , testset[,-ncol], type="class")

v 1.8.2 167

GAMA v1.8.2 documentation Chapter 23. Calling R

Calculate the accuracy:

acc <-sum(pred== testset[, ncol])/(nrow -trainrow)� �
Output

acc::[0.98]

Calling R codes from a text file (.R, .txt) WITH the param-
eters

Using R_compute_param(String RFile, List vectorParam) operator. This
operator ALLOWS to add the parameters from the GAML code.
Remarks: Don’t let any white lines at the end of R codes. R_compute_param
will return the last variable of R file, this parameter can be a basic type or a list.
Please ensure that the called packages must be installed before using.

Example 4� �
model CallingR

global
{

list X <- [2, 3, 1];
list result;

init{
result <- R_compute_param("C:/ YourPath/Mean.R", X);
write result at 0;

}
}� �
Mean.R file

result <- mean(vectorParam)

v 1.8.2 168

GAMA v1.8.2 documentation Chapter 23. Calling R

Output

result::[3.33333333333333]

Example 5� �
model CallingR

global {
list X <- [2, 3, 1];
list result;

init{
result <- R_compute_param("C:/ YourPath/AddParam.R", X)

;
write result at 0;

}
}� �
AddParam.R file

v1 <- vectorParam[1]

v2<-vectorParam[2]

v3<-vectorParam[3]

result<-v1+v2+v3

Output

result::[10]

v 1.8.2 169

GAMA v1.8.2 documentation Chapter 23. Calling R

v 1.8.2 170

Chapter 24

Using FIPA ACL

GAMA allows modelers to provide agents the capability to communicate with other
agents using FIPA Communication Acts (such as inform, request, call for proposal. . .)
and Interaction Protocols (such Contract Net Interaction Protocol, Request Interaction
Protocol).
To add these capabilities to the chosen species, the modeler needs to attach the
fipa skill: it adds to agents of the species some additional attributes (e.g. the list of
messages received) and available actions (e.g. the possibility to send messages given
the chosen Communication Act).
The exhaustive list of available Communication Acts and Interaction Protocols is
available from the technical description of the fipa skill page. Examples can be found
in the model library bundled with GAMA (Plugin models / FIPA Skill).

Table of Contents

• Main steps to create a conversation using FIPA Communication Acts and
Interaction Protocols

• Attach the fipa skill to a species
• Initiate a conversation
• Receive messages
• Reply to a received message
• The message data type
• The conversation data type

171

http://www.fipa.org/
http://www.fipa.org/repository/ips.php3
http://www.fipa.org/specs/fipa00029/index.html
http://www.fipa.org/specs/fipa00026/index.html
http://www.fipa.org/specs/fipa00026/index.html

GAMA v1.8.2 documentation Chapter 24. Using FIPA ACL

Main steps to create a conversation using FIPA
Communication Acts and Interaction Protocols

1. Attach the skill fipa to the agents’ species that need to use Communication
Acts

2. An initiator agent starts a conversation with some agents: it chooses the
Interaction Protocol and starts it by sending the first Communication Acts of
the protocol

3. Each agent involved in the conversation needs to check its received messages
and respond to them by choosing the appropriate Communication Act.

Attach the fipa skill to a species

To attach the fipa skill to a species, the modeler has to add it in the skills facet of
the species statement (in a way similar to any other skill).� �
species any_species skills: [fipa] {

...
}� �
Agents of any species can communicate in the same conversation. The only constraint
is that they need to have the capabilities to receive and send messages, i.e. to have
the skill fipa.
Species can have several attached skills: a single species can be provided with both
the moving and fipa skills (and any other ones).
This skill adds to every agent of the species: * some additional attributes: *
conversations is the list of the agent’s current conversations, * mailbox is the
list of messages of all types of performatives, * requests, informs, proposes. . . are
respectively the list of the ‘request’, ‘inform’, ‘propose’ performative messages. *
some additional actions, such as: * inform, accept_proposal. . . that replies a
message with an ‘inform’ (respectively ‘accept_proposal’ performative message). *
start_conversation that starts a conversation with a chosen interaction protocol. *
end_conversation that replies a message with an ‘end_conversation’ performative
message. This message marks the end of a conversation. In a ‘no-protocol’ conversa-
tion, it is the responsibility of the modeler to explicitly send this message to mark
the end of a conversation/interaction protocol. * reply that replies a message. This

v 1.8.2 172

GAMA v1.8.2 documentation Chapter 24. Using FIPA ACL

action should be only used to reply a message in a ‘no-protocol’ conversation and
with a ‘user-defined performative’. For performatives supported by GAMA, please
use the ‘action’ with the same name as the ‘performative’. For example, to reply a
message with a ‘request’ performative message, the modeler should use the ‘request’
action.

Initiate a conversation

An interaction using an Interaction Protocol starts with the creation of a conversation
by an agent, using the start_conversation action.
The modeler specifies the chosen protocol (facet protocol), list of participants
(facet to), communication act (facet performative) andmessage (facet contents).� �
species Initiator skills: [fipa] {

reflex send_propose_message when: (time = 1) {
do start_conversation to: [p] protocol: 'fipa -propose '

performative: 'propose ' contents: ['Go swimming?'] ;
}� �

Receive messages

Each agent (with the fipa skill) is provided with several “mailbox” attributes filtering
the various received messages by communication act: e.g. proposes contains the list
of the received messages with the “Propose” communication act.
Receiving a message consists thus in looking at each message from the mailbox, and
acting in accordance with its contents, participants. . .
Important remark: once the contents field of a received message has been read, it is
removed from all the lists it appears in.� �
species Initiator skills: [fipa] {

reflex read_accept_proposals when: !(empty(
accept_proposals)) {

write name + ' receives accept_proposal messages ';
loop i over: accept_proposals {

write 'accept_proposal message with content: ' +
string(i.contents);

v 1.8.2 173

GAMA v1.8.2 documentation Chapter 24. Using FIPA ACL

}
}

}

species Participant skills: [fipa] {
reflex accept_proposal when: !(empty(proposes)) {

message proposalFromInitiator <- proposes at 0;

do accept_proposal message: proposalFromInitiator
contents: ['OK! It \'s hot today!'] ;
}

}� �
Remark: * To test that the agent has received a new message is simply done by
testing whether the dedicated mailing box contains messages. * To get a message,
the modeler can either loop over the message list to get all the messages or get a
message by its index in the message box.

Reply to a received message

Given the message it has received, an agent can reply using the appropriate Commu-
nication Act (using the appropriate action). It simply has to specify the message to
which it replies and the content of the reply.

Note that it does not need to specify the receiver as it is contained in the message.� �
species Participant skills: [fipa] {

reflex accept_proposal when: !(empty(proposes)) {
message proposalFromInitiator <- proposes at 0;

do accept_proposal message: proposalFromInitiator
contents: ['OK! It \'s hot today!'] ;
}

}� �
v 1.8.2 174

GAMA v1.8.2 documentation Chapter 24. Using FIPA ACL

End a conversation

When a conversation is made in the scope of an Interaction Protocol, it is ended
automatically when the last Communicative Act has been sent.
In the case of a ‘no-protocol conversation’, it is the responsibility of the modeler to
explicitly send the end_conversation message to mark the end of a conversation/in-
teraction protocol.
When a conversation ends, it is automatically removed from the list conversations.

The message type

The agents’ mailbox is defined as a list of messages. Each message is a GAML object
of type message. An exhaustive description of this type is provided in the dedicated
GAML Data Types page.
A message object is defined by a set of several fields, such as: * contents (type unknown
): the content of the message * sender (type unknown): the sender of the message.
In the case where the sender is an agent, it is possible to get the corresponding
agent with agent(m.sender) (where m is the considered message). * unread (type
bool): specify whether the message has been read. * emission_timestamp (type int)
* recention_timestamp (type int)

The conversation data type

The agents’ conversations contain the list of the conversations in which the agent
takes part. Each conversation is a GAML object of type conversation that contains
the list of messages exchanged, the protocol, initiator. . . An exhaustive description
of this type is provided in the dedicated GAML Data Types page.
A conversation object is defined by a set of several fields, such as: * messages (type
= list of messages): the list of messages that compose this conversation * protocol
(type = string): the name of the protocol followed by the conversation * initiator
(type = agent): the agent that has initiated this conversation * participants (type
= list of agents): the list of agents that participate in this conversation * ended (type
= bool): whether this conversation has ended or not

v 1.8.2 175

GAMA v1.8.2 documentation Chapter 24. Using FIPA ACL

v 1.8.2 176

Chapter 25

Using GAMAnalyzer

Install

Go to Git View -> Click on Import Projects Add the dependencies in um-
misco.gama.feature.dependencies

GamAnalyzer is a tool to monitor several multi-agents simulation

The “agent_group_follower” goal is to monitor and analyze a group of agent during
several simulation. This group of agent can be chosen by the user according to criteria
chosen by the user. The monitoring process and analysis of these agents involves the
extraction, processing and visualization of their data at every step of the simulation.
The data for each simulation are pooled and treated commonly for their graphic
representation or clusters.

Built-in Variable

• varmap: All variable that can be analyzed or displayed in a graph.

• numvarmap: Numerical variable (on this variable all the aggregator numeric
are computed).

• qualivarmap: All non numerical variable. Could be used for BDI to analyze
beliefs.

177

GAMA v1.8.2 documentation Chapter 25. Using GAMAnalyzer

• metadatahistory: See updateMetaDataHistory. This matrice store
all the metadata like getSimulationScope(), getClock().getCycle(),
getUniqueSimName(scope), rule, scope.getAgentScope().getName(),
this.getName(), this.agentsCourants.copy(scope), this.agentsCourants.size(),
this.getGeometry().

• lastdetailedvarvalues: store all the value (in varmap) for all the followed
agent for the last iteration.

• averagehistory: Average value for each of the numvar

• stdevhistory: Std deviation value for each of the numvar

• minhistory: Min deviation value for each of the numvar

• maxhistory: Max deviation value for each of the numvar

• distribhistoryparams: Gives the interval of the distribution described in
distribhistory

• distribhistory: Distribution of numvarmap

• multi_metadatahistory: Aggregate each metadatahistory for each experi-
ment

Example

This example is based on a toy model which is only composed of wandering people.
In this example we will use GamAnalyzer to follow the agent people.

� �
agent_group_follower peoplefollower;� �� �
create agentfollower
{

do analyse_cluster species_to_analyse:"people";
peoplefollower <-self;

}� �
v 1.8.2 178

GAMA v1.8.2 documentation Chapter 25. Using GAMAnalyzer

expGlobalNone

No clustering only the current agent follower is displayed� �
aspect base {

display_mode <-"global";
clustering_mode <-"none";
draw shape color: #red;

}� �
expSimGlobalNone

The agent_group_follower corresponding to the current iteration and all the already
launch experiments are displayed.� �
aspect simglobal{

display_mode <-"simglobal";
clustering_mode <-"none";
draw shape color: #red;
int curColor <-0;
loop geom over: allSimShape{

draw geom color:SequentialColors[curColor] at:{ location.x,
location.y,curColor *10};
curColor <- curColor +1;

}
}� �
expCluster

The agent group follower is divided in cluster computed thanks to a dbscan algorithm.
Only the current agent_group_follower is displayed� �
aspect cluster {

display_mode <-"global";
clustering_mode <-"dbscan";
draw shape color: #red;

}� �
v 1.8.2 179

GAMA v1.8.2 documentation Chapter 25. Using GAMAnalyzer

expClusterSimGlobal

The agent_group_follower (made of different cluster) corresponding to the current
iteration and all the already launch experiments are displayed.� �
aspect clusterSimGlobal {

display_mode <-"simglobal";
clustering_mode <-"dbscan";
draw shape color: #red;
int curColor <-0;
loop geom over: allSimShape{

draw geom color:SequentialColors[curColor] at:{ location.x,
location.y,curColor *10};
curColor <- curColor +1;

}
}� �

v 1.8.2 180

Chapter 26

Using BEN (simple_bdi)

Introduction to BEN

BEN (Behavior with Emotions and Norms) is an agent architecture providing social
agents with cognition, emotions, emotional contagion, personality, social relations,
and norms. This work has been done during the Ph.D. of Mathieu Bourgais, funded
by the ANR ACTEUR.
The BEN architecture is accessible in GAMA through the use of the simple_bdi
architecture when defining agents. This page indicates the theoretical running of
BEN as well as the practical way it has been implemented in GAMA.
This page features all the descriptions for the running of the BEN architecture. This
page is updated with the version of BEN implemented in GAMA. To get more details
on its implementation in GAMA, see operators related to BDI, BDI tutorial or BDI
built-in architecture reference.

The BEN architecture

The BEN Architecture used by agents to make a decision at each time step is
represented by the image right below:
Each social agent has its own instance of the BEN architecture to make a decision.
The architecture is composed of 4 main parts connected to the agent’s knowledge
bases, seated on the agent’s personnality. Each part is made up of processes that

181

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Figure 26.1: Architecture of the BEN architecture.

v 1.8.2 182

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

are automatically computed (in blue) or which need to be manually defined by the
modeler (in pink). Some of these processes are mandatory (in solid line) and some
others are optional (in dotted line). This modularity enables each modeler to only
use components that seem pertinent to the studied situation without creating heavy
and useless computations.
The Activity diagram bellow shows the order in which each module and each process
is activated. The rest of this page explains in details how each process from each
module works and what is the difference between the theoretical architecture and its
implementation.

Predicates, knowledge and personality

In BEN, an agent represents its environment through the concept of predicates.
A predicate represents information about the world. This means it may represent a
situation, an event or an action, depending on the context. As the goal is to create
behaviors for agents in a social environment, that is to say taking actions performed
by other agents into account with facts from the environment in the decision making
process, an information P caused by an agent j with an associated list of value V
is represented by Pj(V). A predicate P represents an information caused by any or
none agent, with no particular value associated. The opposite of a predicate P is
defined as not P.
In GAML, the simple_bdi architecture adds a new type called predicate which is
made of a name (mandatory), a map of values (optional) an agent causing it (optional)
and a truth value (optional, by default at true). To manipulate these predicates,
there are operators like set_agent_cause, set_truth, with_values and add_values
to modify the corresponding attribute of a given predicate (with_values changes all
the map of values while add_values enables to add a new value without changing
the rest of the map). These values can be accessed with operators get_agent_cause,
get_truth, get_values. An operator not is also defined for predicates.
Below is an example of how to define predicates in GAML:� �
predicate a <- new_predicate("test");
predicate b <- new_predicate("test" ,["value1"::10]);
predicate c <- new_predicate("test",agentBob);
predicate d <- new_predicate("test",false);
predicate e <- new_predicate("test",agenBob ,false);� �
v 1.8.2 183

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Figure 26.2: Activity diagram illustrating the activation order of the BEN architecture.

v 1.8.2 184

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Cognitive mental states

Through the architecture, an agent manipulates cognitive mental states to make a
decision; they constitute the agent’s mind. A cognitive mental state possessed by the
agent i is represented by Mi(PMEm,Val,Li) with the following meaning:

• M: the modality indicating the type of the cognitive mental state (e.g. a belief).
• PMEm: the object with which the cognitive mental state relates. It can be a

predicate, another cognitive mental state, or an emotion.
• Val: a real value which meaning depends on the modality.
• Li: a lifetime value indicating the time before the cognitive mental state is

forgotten.

A cognitive mental state with no particular value and no particular lifetime is writ-
ten Mi(PMEm). Val[Mi(PMEm)] represents the value attached to a particular
cognitive mental state and Li[Mi(PMEm)] represents its lifetime.
The cognitive part of BEN is based on the BDI paradigm (Bratman, 1987) in which
agents have a belief base, a desire base and an intention base to store the cognitive
mental states about the world. In order to connect cognition with other social features,
the architecture outlines a total of 6 different modalities which are defined as follows:

• Belief : represents what the agent knows about the world. The value attached
to this mental state indicates the strength of the belief.

• Uncertainty: represents an uncertain information about the world. The value
attached to this mental state indicates the importance of the uncertainty.

• Desire: represents a state of the world the agent wants to achieve. The value
attached to this mental state indicates the priority of the desire.

• Intention: represents a state of the world the agent is committed to achieve.
The value attached to this mental state indicates the priority of the intention.

• Ideal: represents an information socially judged by the agent. The value
attached to this mental state indicates the praiseworthiness value of the ideal
about P. It can be positive (the ideal about P is praiseworthy) or negative (the
ideal about P is blameworthy).

• Obligation: represents a state of the world the agent has to achieve. The
value attached to this mental state indicates the priority of the obligation.

In GAML, mental states are manipulated thanks to add, remove and get ac-
tions related to each modality: add_belief, remove_belief, get_belief, add_desire,

v 1.8.2 185

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

remove_desire . . . Then, operators enables to acces or modify each attribute of
a given mental state: get_predicate, set_predicate, get_strength, set_strength,
get_lifetime, set_lifetime, etc.

Below is an exemple of code in GAML concerning cognitive mental states:� �
reflex testCognition{

predicate a <- new_predicate("test");
do add_belief(a,strength1 ,lifetime1);
mental_state b <- get_uncertainty(a);
int c <- get_lifetime(b);

}� �
Emotions

In BEN, the definition of emotions is based on the OCC theory of emotions (Ortony,
90). According to this theory, an emotion is a valued answer to the appraisal of a
situation. Once again, as the agents are taken into consideration in the context of a
society and should act depending on it, the definition of an emotion needs to contain
the agent causing it. Thus, an emotion is represented by Emi(P,Ag,I,De) with the
following elements :

• Emi: the name of the emotion felt by agent i.
• P: the predicate representing the fact about which the emotion is expressed.
• Ag: the agent causing the emotion.
• I: the intensity of the emotion.
• De: the decay withdrawal from the emotion’s intensity at each time step.

An emotion with any intensity and any decay is represented by Emi(P,Ag) and
an emotion caused by any agent is written Emi(P). I[Emi(P,Ag)] stands for the
intensity of a particular emotion and De[Emi(P,Ag)] stands for its decay value.

In GAML, emotions are manipulated thanks to add_emotion, remove_emotion and
get_emotion actions and attributes of an emotion are manipulated with set and get
operators (set_intensity, set_about, set_decay, set_agent_cause, get_intensity,
get_about, get_decay, get_agent_cause).

Below is an exemple of code in GAML concerning emotions:

v 1.8.2 186

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

� �
reflex testEmotion{

predicate a <- new_predicate("test");
do add_emotion(new_emotion("hope",a));
do add_emotion(new_emotion("joy",intesity1 ,a, decay1));
float c <- get_intensity(get_emotion(new_emotion("joy",a))

);
}� �
Social relations

As people create social relations when living with other people and change their
behavior based on these relationships, BEN architecture makes it possible to describe
social relations in order to use them in agents’ behavior. Based on the research
carried out by (Svennevig, 2000), a social relation is described by using a finite set
of variables. Svennevig identifies a minimal set of four variables: liking, dominance,
solidarity, and familiarity. A trust variable is added to interact with the enforcement
of social norms. Therefore, in BEN, a social relation between agent i and agent j is
expressed as Ri,j(L,D,S,F,T) with the following elements:

• R: the identifier of the social relation.
• L: a real value between -1 and 1 representing the degree of liking with the agent

concerned by the link. A value of -1 indicates that agent j is hated, a value of 1
indicates that agent j is liked.

• D: a real value between -1 and 1 representing the degree of power exerted on the
agent concerned by the link. A value of -1 indicates that agent j is dominating,
a value of 1 indicates that agent j is dominated.

• S: a real value between 0 and 1 representing the degree of solidarity with the
agent concerned by the link. A value of 0 indicates that there is no solidarity
with agent j, a value of 1 indicates a complete solidarity with agent j.

• F: a real value between 0 and 1 representing the degree of familiarity with the
agent concerned by the link. A value of 0 indicates that there is no familiarity
with agent j, a value of 1 indicates a complete familiarity with agent j.

• T: a real value between -1 and 1 representing the degree of trust with the agent
j. A value of -1 indicates doubts about agent j while a value of 1 indicates
complete trust with agent j. The trust value does not evolve automatically in
accordance with emotions.

v 1.8.2 187

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

With this definition, a social relation is not necessarily symmetric, which means
Ri,j(L,D,S,F,T) is not equal by definition to Ri,j(L,D,S,F,T). L[Ri,j] stands for the
liking value of the social relation between agent i and agent j, D[i,j] stands for its
dominance value, S[Ri,j] for its solidarity value, F[Ri,j] represents its familiarity
value and T[Ri,j] its trust value.
In GAML, social relations are manipulated with add_social_link, remove_social_link
and get_social_link actions. Each feature of a social link is accessible with set and
gt operators (set_agent, get_agent, set_liking, get_liking, set_dominance, etc.)
Below is an exemple of code to manipulates social relations in GAML:� �
reflex testSocialRelations{

do add_social_link(new_social_link(agentAlice));
do add_social_link(new_social_link(agentBob
,0.5 , -0.3 ,0.2 ,0.1));
float val <- get_liking(get_social_link(new_social_link(
agentBob)));
social_link sl <- set_dominance(get_social_link(
new_social_link(agentBob)) ,0.3);

}� �
Personality and additional variables

In order to define personality traits, BEN relies on the OCEAN model (McCrae,
1992), also known as the big five factors model. In the BEN architecture, this model
is represented through a vector of five values between 0 and 1, with 0.5 as the neutral
value. The five personality traits are:

• O: represents the openness of someone. A value of 0 stands for someone
narrow-minded, a value of 1 stands for someone open-minded.

• C: represents the consciousness of someone. A value of 0 stands for someone
impulsive, a value of 1 stands for someone who acts with preparations.

• E: represents the extroversion of someone. A value of 0 stands for someone shy,
a value of 1 stands for someone extrovert.

• A: represents the agreeableness of someone. A value of 0 stands for someone
hostile, a value of 1 stands for someone friendly.

• N: represents the degree of control someone has on his/her emotions, called
neurotism. A value of 0 stands for someones neurotic, a value of 1 stands for
someone calm.

v 1.8.2 188

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

In GAML, these variables are build-in attributes of agents using the simple_bdi control
architecture. They are called openness, conscientiousness, extroversion, agreeableness
and neurotism. To use this personality to automaticaly parametrize the other modules,
a modeler needs to indicate it as shown in the GAML example below:� �
species miner control:simple_bdi {

...
bool use_personality <- true;
float openness <- 0.1;
float conscientiousness <- 0.2;
float extroversion <- 0.3;
float agreeableness <- 0.4;
float neurotism <- 0.5;
...

}� �
With BEN, the agent has variables related to some of the social features. The idea
behind the BEN architecture is to connect these variables to the personality module
and in particular to the five dimensions of the OCEAN model in order to reduce
the number of parameters which need to be entered by the user. These additional
variables are:

• The probability to keep the current plan.
• The probability to keep the current intention.
• A charisma value linked to the emotional contagion process.
• An emotional receptivity value linked to the emotional contagion.
• An obedience value used by the normative engine.

With the cognition, the agent has two parameters representing the probability to
randomly remove the current plan or the current intention in order to check whether
there could be a better plan or a better intention in the current context. These two
values are connected to the consciousness components of the OCEAN model as it
describes the tendency of the agent to prepare its actions (with a high value) or act
impulsively (with a low value).

• Probability Keeping Plans = C1/2
• Probability Keeping Intentions = C1/2

v 1.8.2 189

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

For the emotional contagion, the process (presented later) requires charisma (Ch) and
emotional receptivity (R) to be defined for each agent. In BEN, charisma is related to
the capacity of expression, which is related to the extroversion of the OCEAN model,
while the emotional receptivity is related to the capacity to control the emotions,
which is expressed with the neurotism value of OCEAN.

• Ch = E
• R = 1 - N

With the concept of norms, the agent has a value of obedience between 0 and 1,
which indicates its tendency to follow laws, obligations, and norms. According to
research in psychology, which tried to explain the behavior of people participating in
a recreation of the Milgram’s experiment (Begue, 2015), obedience is linked with the
notions of consciousness and agreeableness which gives the following equation:

• obedience = ((C+A)/2)1/2

With the same idea, all the parameters required by each process are linked to the
OCEAN model.

If a modeler wants to put a different value to one of these variables, he/she just need
to indicate a new value manualy. For the probability to keep the current plan and
the probability to keep the current intention, he/she also has to indicates it with a
particular boolean value, as shown in the GAML example below:� �
species miner control: simple_bdi {

...
bool use_personality <- true;
bool use_persistence <- true;
float plan_persistence <- 0.3;
float intention_persistence <- 0.4;
float obedience <- 0.2;
float charisma <- 0.3;
float receptivity <- 0.6;
...

}� �
v 1.8.2 190

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Perception

The first step of BEN is the perception of the environment. This module is used to
connect the environment to the knowledge of the agent, transforming information
from the world into cognitive mental states, emotions or social links but also used to
apply sanctions during the enforcement of norms from other agents.
Below is an example of code to define a perception in GAML:� �
perceive target: fireArea in: 10{

...
}� �
The first process in this perception consists of adding beliefs about the world.
During this phase, information from the environment is transformed into predicates
which are included in beliefs or uncertainties and then added to the agent’s knowledge
bases. This process enables the agent to update its knowledge about the world.
From the modeler’s point of view, it is only necessary to specify which information
is transformed into which predicate. The addition of a belief BeliefA(X) triggers
multiple processes :

• it removes BeliefA(not X).
• it removes IntentionA(X).
• it removes DesireA(X) if IntentionA(X) has just been removed.
• it removes UncertaintyA(X) or UncertaintyA(not X).
• it removes ObligationA(X). \end{itemize}

In GAML, the focus statement eases the use of this process. Below is an example
that adds a belief and an uncertainty with the focus statement during a perception:� �
perceive target: fireArea in: 10{

focus id:"fireLocation" var:location strength :10.0;
//is equivalent to ask myself {do add_belief(new_predicate

(" fireLocation ",[" location_value ":: myself.location] ,10.0);}
focus id:"hazardLocation" var:location strength :1.0

is_uncertain:true;
//is equivalent to ask myself {do add_uncertainty(

new_predicate (" hazardLocation ",[" location_value ":: myself.
location] ,1.0);}

}� �
v 1.8.2 191

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The emotional contagion enables the agent to update its emotions according to
the emotions of other agents perceived. The modeler has to indicate the emotion
triggering the contagion, the emotion created in the perceiving agent and the threshold
of this contagion; the charisma (Ch) and receptivity (R) values are automatically
computed as explained previously. The contagion from agent i to agent j occurs
only if Chi x Rj is superior or equal to the threshold, which value is 0.25 by default.
Then, the presence of the trigger emotion in the perceived agent is checked in order
to create the emotion indicated.

The intensity and decay value of the emotion acquired by contagion are automatically
computed.

• If Emj(P) already exists:

– I[Emj(P)] = I[Emj(P)] + I[Emi(P)] x Chi x Rj
– if pEmi(P)] > I[Emj(P)]:

∗ De[Emj(P)] = De[Emi(P)]

– if I[Emj(P)] > I[Emi(P)]:
∗ De[Emj(P)] = De[Emj(P)]

• If Emj(P) does not already exist:

– I[Emj(P)] = I[Emi(P)] x Chi x Rj
– De[Emj(P)] = De[Emi(P)].

In GAML, emotional_contagion statement helps to define an emotional contagion
during a perception, as shown below:� �
perceive target: otherHumanAgents in: 10{

emotional_contagion emotion_detected:fearFire threshold:
contagionThreshold;
// creates the detected emotion , if detected , in the agent

doing the perception.
emotional_contagion emotion_detected:joyDance

emotion_created:joyPartying;
// creates the emotion "joyPartying", if emotion "joyDance"
is detected in the perceived agent.

}� �
v 1.8.2 192

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

During the perception, the agent has the possibility of creating social relations with
other perceived agents. The modeler indicates the initial value for each component of
the social link, as explained previously. By default, a neutral relation is created, with
each value of the link at 0.0. Social relations can also be defined before the start of
the simulation, to indicate that an agent has links with other agents at the start of
the simulation, like links with friends or family members.
In GAML, the socialize statement help creating dynamicaly new social relations, as
shown below:� �
perceive target:otherHumanAgents in: 10{

socialize;
// creates a neutral relation
socialize dominance: -0.8 familiarity :0.2 when: isBoss;
// example of a social link with precise values for some of
its dimensions in a certain context

}� �
Finally, the agent may apply sanctions through the norm enforcement of other
agents perceived. The modeler needs to indicate which modality is enforced and the
sanction and reward used in the process. Then, the agent checks if the norm, the
obligation, or the law, is violated, applied or not activated by the perceived agent.
Notions of norms laws and obligations and how they work are explained later in this
ocument.
A norm is considered violated when its context is verified, and yet the agent chose
another norm or another plan to execute because it decided to disobey. A law is
considered violated when its context is verified, but the agent disobeyed it, not
creating the corresponding obligation. Finally, an obligation is considered violated if
the agent did not execute the corresponding norm because it chose to disobey.
Below is an example of how to define an enforcement in GAML:� �
species miner skills: [moving] control:simple_bdi {

...
perceive target: miner in: viewdist {
myself.agent_perceived <-self;
enforcement norm:"share_information" sanction:"

sanctionToNorm" reward:"rewardToNorm";
}

sanction sanctionToNorm{

v 1.8.2 193

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

do change_liking(agent_perceived ,-0.1);
}

sanction rewardToNorm{
do change_liking(agent_perceived ,0.1);
}

}� �
Managing knowledge bases

The second step of the architecture, corresponding to the module number 2, consists of
managing the agent’s knowledge. This means updating the knowledge bases according
to the latest perceptions, adding new desires, new obligations, new emotions or
updating social relations, for example.
Modelers have to use inference rules for this purpose. Theses rules are triggered
by a new belief, a new uncertainty or a new emotion, in a certain context, and may
add or remove any cognitive mental state or emotion indicated by the user. Using
multiple inference rules helps the agent to adapt its mind to the situation perceived
without removing all its older cognitive mental states or emotions, thus enabling the
creation of a cognitive behavior. These inference rules enable to link manually the
various dimensions of an agent, for example creating desires depending on emotions,
social relations and personality.
In GAML, the rule statement enables to define inference rules:� �
species miner skills: [moving] control: simple_bdi {

...
perceive target: miner in: viewdist {
...
}
...
rule belief: new_predicate("testA") new_desire:

new_predicate("testB");
}� �
Using the same idea, modelers can define laws. These laws enable the creation
of obligations in a given context based on the newest beliefs created by the agent
through its perception or its inference rules. The modeler also needs to indicate an

v 1.8.2 194

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

obedience threshold and if the agent’s obedience value is below that threshold, the
law is violated. If the law is activated, the obligation is added to the agent’s cognitive
mental state bases. The definition of laws makes it possible to create a behavior
based on obligations imposed upon the agent.
Below is an example of the definition of a law statement in GAML:� �
law belief: new_predicate("testA") new_obligation:

new_predicate("testB") threshold:thresholdLaw;� �
Emotional engine

BEN enables the agent to get emotions about its cognitive mental states. This
addition of emotions is based on the OCC model (Ortony, 1990) and its logical
formalism (Adam, 2007), which has been proposed to integrate the OCC model in a
BDI formalism.
According to the OCC theory, emotions can be split into three groups: emotions
linked to events, emotions linked to people and actions performed by people, and
emotions linked to objects. In BEN, as the focus is on relations between social agents,
only the first two groups of emotions (emotions linked to events and people) are
considered.
The twenty emotions defined in this paper can be divided into seven groups depend-
ing on their relations with mental states: emotions about beliefs, emotions about
uncertainties, combined emotions about uncertainties, emotions about other agents
with a positive liking value, emotions about other agents with a negative liking value,
emotions about ideals and combined emotions about ideals. All the initial intensities
and decay value are computed using the OCEAN model and the value attached to
the concerned mental states.
The emotions about beliefs are joy and sadness and are expressed this way:

• Joyi(Pj,j) = Beliefi(Pj) & Desirei(P)

• Sadnessi(Pj,j) = Beliefi(Pj) & Desirei(not P)

Their initial intensity is computed according to the following equation with N the
neurotism component from the OCEAN model:

v 1.8.2 195

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

• I[Emi(P)] = V[Beliefi(P)] x V[Desirei(P)] x (1+(0,5-N))

The emotions about uncertainties are fear and hope and are defined this way:

• Hopei(Pj,j) = Uncertaintyi(Pj) & Desirei(P)
• Feari(Pj,j) = Uncertaintyi(Pj) & Desirei(not P)

Their initial intensity is computed according to the following equation:

• I[Emi(P)] = V[Uncertaintyi(P)] x V[Desirei(P)] x (1+(0,5-N))

Combined emotions about uncertainties are emotions built upon fear and hope. They
appear when an uncertainty is replaced by a belief, transforming fear and hope into
satisfaction, disappointment, relief or fear confirmed and they are defined this way:

• Satisfactioni(Pj,j) = Hopei(Pj,j) & Beliefi(Pj)
• Disappointmenti(Pj,j) = Hopei(Pj,j) & Beliefi(not Pj)
• Reliefi(Pj,j) = Feari(Pj,j) & Beliefi(not Pj)
• Fear confirmedi(Pj,j) = Feari(Pj,j) & Beliefi(Pj)

Their initial intensity is computed according to the following equation with Em’i(P)
the emotion of fear/hope.

• I[Emi(P)] = V[Beliefi(P)] x I[Em’i(P)]

On top of that, according to the logical formalism (Adam, 2007), four inference rules
are triggered by these emotions:

• The creation of fear confirmed or the creation of relief will replace the
emotion of fear.

• The creation of satisfaction or the creation of disappointment will replace
a hope emotion.

• The creation of satisfaction or relief leads to the creation of joy.
• The creation of disappointment or fear confirmed leads to the creation of

sadness.

v 1.8.2 196

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The emotions about other agents with a positive liking value are emotions related to
emotions of other agents which are in a the social relation base with a positive liking
value on that link. They are the emotions called “happy for” and “sorry for” which
are defined this way :

• Happy fori(P,j) = L[Ri,j]>0 & Joyj(P)
• Sorry fori(P,j) = L[Ri,j]>0 & Sadnessj(P)

Their initial intensity is computed according to the following equation with A the
agreeableness value from the OCEAN model.

• I[Emi(P)] = I[Emj(P)] x L[Ri,j] x (1-(0,5-A))

Emotions about other agents with a negative liking value are close to the previous
definitions, however, they are related to the emotions of other agents which are in
the social relation base with a negative liking value. These emotions are resentment
and gloating and have the following definition:

• Resentmenti(P,j) = L[Ri,j]<0 & Joyj(P)
• Gloatingi(P,j) = L[Ri,j]<0 & Sadnessj(P)

Their initial intensity is computed according to the following equation. This equation
can be seen as the inverse of Equation (??), and means that the intensity of resentment
or gloating is greater if the agent has a low level of agreeableness contrary to the
intensity of “happy for” and “sorry for”.

• I[Emi(P)] = I[Emj(P)] x |L[Ri,j]| x (1+(0,5-A))

Emotions about ideals are related to the agent’s ideal base which contains, at the start
of the simulation, all the actions about which the agent has a praiseworthiness value
to give. These ideals can be praiseworthy (their praiseworthiness value is positive)
or blameworthy (their praiseworthiness value is negative). The emotions coming
from these ideals are pride, shame, admiration and reproach and have the following
definition:

• Pridei(Pi,i) = Beliefi(Pi) & Ideali(Pi) & V[Ideali(Pi)]>0

v 1.8.2 197

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

• Shamei(Pi,i) = Beliefi(Pi) & Ideali(Pi) & V[Ideali(Pi)]<0
• Admirationi(Pj,j) = Beliefi(Pj) & Ideali(Pj) & V[Ideali(Pj)]>0
• Reproachi(Pj,j) = Beliefi(Pj) & Ideali(Pj) & V[Ideali(Pj)]<0

Their initial intensity is computed according to the following equation with O the
openness value from the OCEAN model:

• I[Emi(P)] = V[Beliefi(P)] x |V[Ideali(P)]| x (1+(0,5-O))

Finally, combined emotions about ideals are emotions built upon pride, shame,
admiration and reproach. They appear when joy or sadness appear with an emotion
about ideals. They are gratification, remorse, gratitude and anger which are defined
as follows:

• Gratificationi(Pi,i) = Pridei(Pi,i) & Joyi(Pi)
• Remorsei(Pi,i) = Shamei(Pi,i) & Sadnessi(Pi)
• Gratitudei(Pj,j) = Admirationi(Pj,j) & Joyi(Pj)
• Angeri(Pj,j) = Reproachi(Pj,j) & Sadnessi(Pj)

Their initial intensity is computed according to the following equation with Em’i(P)
the emotion about ideals and Em"i(P) the emotion about beliefs.

• I[Emi(P)] = I[Em’i(P)] x I[Em"i(P)]

In order to keep the initial intensity of each emotion between 0 and 1, each equation
is truncated between 0 an 1 if necessary.
The initial decay value for each of these twenty emotions is computed according to
the same equation with Deltat a time step which enables to define that an emotion
does not last more than a given time:

• De[Emi(P)] = N x I[Emi(P)] x Deltat

To use this automatic computation of emotion, a modeler need to activate it as shown
in the GAML example below :� �
species miner control:simple_bdi {

...
bool use_emotions_architecture <- true;
...

}� �
v 1.8.2 198

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Social Engine

When an agent already known is perceived (i.e. there is already a social link with
it), the social relationship with this agent is updated automatically by BEN. This
update is based on the work of (Ochs, 2009) and takes the agent’s cognitive mental
states and emotions into account. In this section, the automatic update of each
variable of a social link Ri,j(L,D,S,F,T) by the architecture is described in details;
the trust variable of the link is however not updated automatically.

• Liking: according to (Ortony, 1991), the degree of liking between two agents
depends on the valence (positive or negative) of the emotions induced by the
corresponding agent. In the emotional model of the architecture, joy and hope
are considered as positive emotions (satisfaction and relief automatically raise
joy with the emotional engine) while sadness and fear are considered as negative
emotions (fear confirmed and disappointment automatically raise sadness with
the emotional engine). So, if an agent i has a positive (resp. negative) emotion
caused by an agent j, this will increase (resp. decrease) the value of appreciation
in the social link from i concerning j.

Moreover, research has shown that the degree of liking is influenced by the solidarity
value [?]. This may be explained by the fact that people tend to appreciate people
similar to them.
The computation formula is described with the following equation with mPos the mean
value of all positive emotions caused by agent j, mNeg the mean value of all negative
emotions caused by agent j and aL a coefficient depending of the agent’s personality,
indicating the importance of emotions in the process, and which is described below.

• L[Ri,j]=L[Ri,j]+|L[Ri,j]|(1-|L[Ri,j]|)S[Ri,j] + aL (1-|L[Ri,j]|)(mPos-mNeg)

• aL = 1-N

• Dominance : (Keltner, 2001) and (Shiota, 2004) explain that an emotion
of fear or sadness caused by another agent represent an inferior status. But
(Knutson, 1996) explains that perceiving fear and sadness in others increases
the sensation of power over those persons.

The computation formula is described by the following equation with mSE the mean
value of all negative emotions caused by agent i to agent j, mOE the mean value of

v 1.8.2 199

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

all negative emotions caused by agent j to agent i and aD a coefficient depending on
the agent’s personality, indicating the importance of emotions in the process.

• D[Ri,j]=D[Ri,j] + aD (1-|D[Ri,j]|)(mSE-mOE)

• aD = 1-N

• Solidarity: The solidarity represents the degree of similarity of desires, beliefs,
and uncertainties between two agents. In BEN, the evolution of the solidar-
ity value depends on the ratio of similarity between the desires, beliefs, and
uncertainties of agent i and those of agent j. To compute the similarities and
oppositions between agent i and agent j, agent i needs to have beliefs about
agent j’s cognitive mental states. Then it compares these cognitive mental
states with its own to detect similar or opposite knowledge.

On top of that, negative emotions tend to decrease the value of solidarity between
two people. The computation formula is described by the following equation with sim
the number of cognitive mental states similar between agent i and agent j, opp the
number of opposite cognitive mental states between agent i and agent j, NbKnow the
number of cognitive mental states in common between agent i and agent j, mNeg the
mean value of all negative emotions caused by agent j, aS1 a coefficient depending of
the agent’s personality, indicating the importance of similarities and oppositions in
the process, and aS2 a coefficient depending of the agent’s personality, indicating the
importance of emotions in the process.

• S[Ri,j]=S[Ri,j] + S[Ri,j] x (1-S[Ri,j]) x (aS1 (sim-opp)/(NbKnow) - aS2 mNeg))

• aS1 = 1-O

• aS2 = 1-N

• Familiarity: In psychology, emotions and cognition do not seem to impact
the familiarity. However, (Collins, 1994) explains that people tend to be more
familiar with people whom they appreciate. This notion is modeled by basing
the evolution of the familiarity value on the liking value between two agents.
The computation formula is defined by the following equation.

• F[Ri,j]=F[Ri,j] x (1+L[Ri,j])

v 1.8.2 200

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The trust value is not evolving automatically in BEN, as there is no clear and
automatic link with cognition or emotions. However, this value can evolve manually,
especially with sanctions and rewards to social norms where the modeler can indicate
a modification of the trust value during the enforcement process.

To use this automatic update of social relations, a modeler need to activate it as
shown in the GAML example below:� �
species miner control: simple_bdi {

...
bool use_social_architecture <- true;
...

}� �

Making Decision

The third part of the architecture is the only one mandatory as it is where the agent
makes a decision. A cognitive engine can be coupled with a normative engine to chose
an intention and a plan to execute. The complete engine is summed up in the figure
below:

The decision-making process can be divided into seven steps:

• Step 1: the engine checks the current intention. If it is still valid, the intention
is kept so the agent may continue to carry out its current plan.

• Step 2: the engine checks if the current plan/norm is still usable or not,
depending on its context.

• Step 3: the engine checks if the agent obeys an obligation taken from the
obligations corresponding to a norm with a valid context in the current situation
and with a threshold level lower than the agent’s obedience value as computed
in Section 4.1.

• Step 4: the obligation with the highest priority is taken as the current intention.
• Step 5: the desire with the highest priority is taken as the current intention.
• Step 6: the plan or norm with the highest priority is selected as the current

plan/norm, among the plans or norms corresponding to the current intention
with a valid context.

• Step 7: the behavior associated with the current plan/norm is executed.

v 1.8.2 201

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Figure 26.3: Diagram activity of cognitive engine (decision-making process) of the
BEN architecture.

v 1.8.2 202

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Steps 4, 5 and 6 do not have to be deterministic; they may be probabilistic. In this
case, the priority value associated with obligations, desires, plans, and norms serves
as a probability.
In GAML, a modeler may indicate the use of a probabilistic or deterministic cognitive
engine with the variable probabilistic_choice, as shown in the example code below:� �
species miner control: simple_bdi {

...
bool probabilistic_choice <- true;
...

}� �
Defining plans

The modeler needs to define action plans which are used by the cognitive engine, as
explained earlier. These plans are a set of behaviors executed in a certain context
in response to an intention. In BEN, a plan owned by agent i is represented by
Pli(Int,Cont,Pr,B) with:

• Pl: the name of the plan.
• Int: the intention triggering this plan.
• Cont: the context in which this plan may be applied.
• Pr: a priority value used to choose between multiple plans relevant at the same

time. If two plans are relevant to the same priority, one is chosen at random.
• B: the behavior, as a sequence of instructions, to execute if the plan is chosen

by the agent.

The context of a plan is a particular state of the world in which this plan should be
considered by the agent making a decision. This feature enables to define multiple
plans answering the same intention but activated in various contexts.
Below is an example for the definition of two plans answering the same intention in
different contexts in GAML:� �
species miner control: simple_bdi skills: [moving]{

...
plan evacuationFast intention: in_shelter emotion:

fearConfirmed priority :2 {

v 1.8.2 203

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

color <- #yellow;
speed <- 60 #km/#h;
if (target = nil or noTarget) {

target <- (shelter with_min_of (each.location
distance_to location)).location;

noTarget <- false;
} else {

do goto target: target on: road_network move_weights:
current_weights recompute_path: false;

if (target = location) {
do die;
}

}
}

plan evacuation intention: in_shelter finished_when:
has_emotion(fearConfirmed){
color <-#darkred;
if (target = nil or noTarget) {

target <- (shelter with_min_of (each.location
distance_to location)).location;

noTarget <- false;
} else {

do goto target: target on: road_network move_weights:
current_weights recompute_path: false;

if (target = location) {
do die;
}

}
}
...

}� �
Defining norms

A normative engine may be used within the cognitive engine, as it has been explained
above. This normative engine means choosing an obligation as the current in . . .
species miner control: simple_bdi { plan evacuationFast intention: in_shelter emo-
tion: fearConfirmed priority:2 { color <- #yellow; speed <- 60 #km/#h; if (target

v 1.8.2 204

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

= nil or noTarget) { target <- (shelter with_min_of (each.location distance_to loca-
tion)).location; noTarget <- false; } else { do goto target: target on: road_network
move_weights: current_weights recompute_path: false; if (target = location) { do
die; }
} }� �
plan evacuation intention: in_shelter finished_when:

has_emotion(fearConfirmed){
color <-#darkred;
if (target = nil or noTarget) {

target <- (shelter with_min_of (each.location distance_to
location)).location;
noTarget <- false;

} else {
do goto target: target on: road_network move_weights:

current_weights recompute_path: false;
if (target = location) {
do die;
}

}
}
...� �
}� �
Defining norms

A normative engine may be used within the cognitive engine , as
it has been explained above. This normative engine means

choosing an obligation as the current intention and
selecting a set of actions to answer this intention. Also ,
the concept of social norms is modeled as a set of action
answering an intention , which an agent could disobey.

tention and selecting a set of actions to answer this
intention. Also , the concept of social norms is modeled as
a set of action answering an intention , which an agent
could disobey.

In BEN , this concept of behavior which may be disobeyed is
formally represented by a norm possessed by agent _i_ **No
<sub >i</sub >(Int ,Cont ,Ob,Pr,B,Vi)** with:

v 1.8.2 205

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

* **No**: the name of the norm.
* **Int**: the intention which triggers this norm.
* **Cont **: the context in which this norm can be applied.
* **Ob**: an obedience value that serves as a threshold to

determine whether or not the norm is applied depending on
the agent 's obedience value (if the agent 's value is above
the threshold , the norm may be executed).

* **Pr**: a priority value used to choose between multiple
norms applicable at the same time.

* **B**: the behavior , as a sequence of instructions , to
execute if the norm is followed by the agent.

* **Vi**: a violation time indicating how long the norm is
considered violated once it has been violated.

In GAML , a norm is defined as follows:� �
species miner control: simple_bdi { . . . //this first norm answer an intention
coming from an obligation norm doingJob obligation:has_gold finished_when: has_-
belief(has_gold) threshold:thresholdObligation{ if (target = nil) { do add_subin-
tention(has_gold,choose_goldmine, true); do current_intention_on_hold(); } else {
do goto target: target ; if (target = location) { goldmine current_mine<- goldmine
first_with (target = each.location); if current_mine.quantity > 0 { gold_transported
<- gold_transported+1; do add_belief(has_gold); ask current_mine {quantity <-
quantity - 1;}
} else { do add_belief(new_predicate(empty_mine_location, [“location_-
value”::target])); do remove_belief(new_predicate(mine_at_location, [“location_-
value”::target])); } target <- nil; } }
}

//this norm may be seen as a “social norm” as it answers an intention not coming from
an obligation but may be disobeyed norm share_information intention:share_informa-
tion threshold:thresholdNorm instantaneous: true{ list my_friends <- list((social_-
link_base where (each.liking > 0)) collect each.agent); loop known_goldmine
over: get_beliefs_with_name(mine_at_location) { ask my_friends { do add_-
belief(known_goldmine); } } loop known_empty_goldmine over: get_beliefs_with_-
name(empty_mine_location) { ask my_friends { do add_belief(known_empty_-
goldmine); } }� �
do remove_intention(share_information , true);

v 1.8.2 206

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

}
...� �
}� �
Dynamic knowledge

The final part of the architecture is used to create a
temporal dynamic to the agent 's behavior , useful in a
simulation context. To do so, this module automatically
degrades mental states and emotions and updates the status
of each norm.

The ** degradation of mental states ** consists of reducing
their lifetime. When the lifetime is null , the mental state
is removed from its base. The ** degradation of emotions **

consists of reducing the intensity of each emotion stored
by its decay value. When the intensity of an emotion is
null , the emotion is removed from the emotional base.

In GAML , if a mental state has a lifetime value or if an
emotion has an intensity and a decay value , this
degradation process is done automatically.

Finally , **the status of each norm is updated ** to indicate if
the norm was activated or not (if the context was right or
wrong) and if it was violated or not (the norm was

activated but the agent disobeyed it). Also , a norm can be
violated for a certain time which is updated and if it
becomes null , the norm is not violated anymore.

These last steps enable the agent 's behavior 's components to
automatically evolve through time , leading the agents to
forget a piece of knowledge after a certain amount of time ,
creating dynamics in their behavior.

Conclusion

The BEN architecture is already implemented in GAMA and may be
accessed by adding the simple_bdi control architecture to

v 1.8.2 207

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

the definition of a species.

A tutorial may be found with the [BDI Tutorial](BDIAgents).

Advanced Driving Skill
[//]: # (keyword|concept_transport)
[//]: # (keyword|concept_skill)
[//]: # (keyword|skill_driving)

This page aims at presenting how to use the advanced driving
skill in models.

The use of the advanced driving skill requires to use 3 skills
:

* ** Advanced driving skill **: dedicated to the definition of
the driver species. It provides the driver agents with
variables and actions allowing to move an agent on a graph
network and to tune its behavior.

* **Road skill **: dedicated to the definition of roads. It
provides the road agents with variables and actions
allowing to registers agents on the road.

* **Road node skill **: dedicated to the definition of nodes.
It provides the node agents with variables allowing to take
into account the intersection of roads and the traffic

signals.

Table of contents

* [Advanced Driving Skill](# advanced -driving -skill)
* [Structure of the network: road and road node skills](#
structure -of -the -network -road -and -road -node -skills)

* [Advanced driving skill](# advanced -driving -skill)
* [Application example](# application -example)

Structure of the network: road and road_node skills

v 1.8.2 208

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The advanced driving skill is versatile enough to be usable
with most of classic road GIS data , in particular , OSM data
. We use a classic format for the roads and nodes. Each
road is a polyline composed of road sections (segments).
Each road has a target node and a source node. Each node
knows all its input and output roads. A road is considered
as directed. For bidirectional roads , 2 roads have to be
defined corresponding to both directions. Each road will be
the **`linked_road `** of the other. Note that for some GIS
data , only one road is defined for bidirectional roads ,

and the nodes are not explicitly defined. In this case , it
is very easy , using the GAML language , to create the
reverse roads and the corresponding nodes (it only requires
a few lines of GAML).

![Road structure in the Driving Skill](resources/images/
recipes/roads_structure.PNG)

A lane can be composed of several lanes and the vehicles will
be able to change at any time its lane. Another property of
the road that will be taken into account is the maximal

authorized speed on it. Note that even if the user of the
plug -in has no information about these values for some of
the roads (the OSM data are often incomplete), it is very
easy using the GAML language to fill the missing value by a
default value. It is also possible to change these values

dynamically during the simulation (for example , to take
into account that after an accident , a lane of a road is
closed or that the speed of a road is decreased by the
authorities).

![Roads representation in the driving skill .](resources/images
/recipes/roads.PNG)

The **road skill** (`skill_road `) provides the road agents
with several variables that will define the road properties
:

* **`lanes `**: integer , number of lanes.

v 1.8.2 209

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

* **`maxspeed `**: float; maximal authorized speed on the road.
* **`linked_road `**: road agent; reverse road (if there is one

).
* **`source_node `**: node agent; source node of the road.
* **`target_node `**: node agent; target node of the road.

It provides as well the road agents with read -only variables:

* **`agents_on `**: list of list (of driver agents); for each
lane , the list of driver agents on the road.

* **`all_agents `**: list (of driver agents): the list of
agents on the road.

The **road node skill** (`skill_road_node `) provides the road
node agents with several variables that will define the
road node properties:

* **`roads_in `**: list of road agents; the list of road agents
that have this node for target node.

* **`roads_out `**: list of road agents; the list of road
agents that have this node for source node.

* **`stop `**: list of list of road agents; list of stop
signals , and for each stop signal , the list of concerned
roads.

* **`priority_roads `**: list of road agents: the list of
priority roads.

It provides as well the road agents with one read -only
variable:

* **`block `**: map: key: driver agent , value: list of road
agents; the list of driver agents blocking the node , and
for each agent , the list of concerned roads.

Advanced driving skill
Each driver agent has a planned trajectory that consists of a

v 1.8.2 210

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

succession of edges. When the driver agent enters a new
edge , it first chooses its lane according to the traffic
density , with a bias for the rightmost lane. The movement
on an edge is inspired by the Intelligent Driver Model. The
drivers have the possibility to change their lane at any

time (and not only when entering a new edge).

The ** advanced driving skill** (`advanced_driving `) provides
the driver agents with several variables that will define
the car properties and the personality of the driver:

* **`final_target `**: point; final location that the agent
wants to reach (its goal).

* **`vehicle_length `**: float; length of the vehicle.
* **`max_acceleration `**: float; maximal acceleration of the

vehicle.
* **`max_speed `**: float; maximal speed of the vehicle.
* **` right_side_driving `**: boolean; do drivers drive on the

right side of the road?
* **`speed_coef `**: float; coefficient that defines if the

driver will try to drive above or below the speed limits.
* **` security_distance_coeff `**: float; coefficient for the

security distance. The security distance will depend on the
driver speed and on this coefficient.

* **` proba_lane_change_up `**: float; probability to change
lane to an upper lane if necessary (and if possible).

* **` proba_lane_change_down `**: float; probability to change
lane to a lower lane if necessary (and if possible).

* **` proba_use_linked_road `**: float; probability to take the
reverse road if necessary (if there is a reverse road).

* **` proba_respect_priorities `**: float; probability to
respect left/right (according to the driving side) priority
at intersections.

* **` proba_respect_stops `**: list of float; probabilities to
respect each type of stop signals (traffic light , stop sign
...).

* **`proba_block_node `**: float; probability to accept to
block the intersecting roads to enter a new road.

It provides as well the driver agents with several read -only

v 1.8.2 211

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

variables:

* **`speed `**: float; speed expected according to the road **`
max_value `**, the car properties , the personality of the
driver and its **`real_speed `**.

* **`real_speed `**: float; real speed of the car (that takes
into account the other drivers and the traffic signals).

* **`current_path `**: path (list of roads to follow); the path
that the agent is currently following.

* **`current_target `**: point; the next target to reach (sub -
goal). It corresponds to a node.

* **`targets `**: list of points; list of locations (sub -goals)
to reach the final target.

* **`current_index `**: integer; the index of the current goal
the agent has to reach.

* **`on_linked_road `**: boolean; is the agent on the linked
road?

Of course , the values of these variables can be modified at
any time during the simulation. For example , the
probability to take a reverse road (** proba_use_linked\
_road **) can be increased if the driver is stuck for
several minutes behind a slow vehicle.

In addition , the advanced driving skill provides driver agents
with several actions:

* **`compute_path `**: arguments: a graph and a target node.
This action computes from a graph the shortest path to
reach a given node.

* **`drive `**: no argument. This action moves the driver on
its current path according to the traffic condition and the
driver properties (vehicle properties and driver

personality).

The `drive ` action works as follow: while the agent has the
time to move (`remaining_time > 0`), it first defines the
speed expected. This speed is computed from the `max_speed `
of the road , the current `real_speed `, the `max_speed `,

v 1.8.2 212

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

the `max_acceleration ` and the `speed_coef ` of the driver (
see equation below).� �

speed_driver = Min(max_speed_driver, Min(real_speed_driver + max_accelera-
tion_driver,max_speed_road * speed_coef_driver))� �
Then , the agent moves toward the current target and compute

the remaining time. During the movement , the agents can
change lanes (see below). If the agent reaches its final
target , it stops; if it reaches its current target (that is
not the final target), it tests if it can cross the

intersection to reach the next road of the current path. If
it is possible , it defines its new target (target node of

the next road) and continues to move.

![Activity diagram describing the driver behavior .](resources/
images/recipes/drive_action.png)

The function that defines if the agent crosses or not the
intersection to continue to move works as follow: first , it
tests if the road is blocked by a driver at the

intersection (if the road is blocked , the agent does not
cross the intersection). Then , if there is at least one
stop signal at the intersection (traffic signal , stop sign
...), for each of these signals , the agent tests its
probability to respect or not the signal (note that the
agent has a specific probability to respect each type of
signals). If there is no stopping signal or if the agent
does not respect it , the agent checks if there is at least
one vehicle coming from a right (or left if the agent
drives on the left side) road at a distance lower than its
security distance. If there is one , it tests its
probability to respect this priority. If there is no
vehicle from the right roads or if it chooses to do not
respect the right priority , it tests if it is possible to
cross the intersection to its target road without blocking
the intersection (i.e. if there is enough space in the
target road). If it can cross the intersection , it crosses
it; otherwise , it tests its probability to block the node:
if the agent decides nevertheless to cross the intersection

v 1.8.2 213

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

, then the perpendicular roads will be blocked at the
intersection level (these roads will be unblocked when the
agent is going to move).

![Activity diagram of driver behavior when stopped at an
intersection .](resources/images/recipes/
stop_at_intersection.png)

Concerning the movement of the driver agents on the current
road , the agent moves from a section of the road (i.e.
segment composing the polyline) to another section
according to the maximal distance that the agent can moves
(that will depend on the remaining time). For each road
section , the agent first computes the maximal distance it
can travel according to the remaining time and its speed.
Then , the agent computes its security distance according to
its speed and its `security_distance_coeff `. While its

remaining distance is not null , the agent computes the
maximal distance it can travel (and the corresponding lane)
, then it moves according to this distance (and update its
current lane if necessary). If the agent is not blocked by
another vehicle and can reach the end of the road section ,
it updates its current road section and continues to move.

![Activity diagram of the following action of the advanced
driving skill .](resources/images/recipes/follow_driving.png
)

The computation of the maximal distance an agent can move on a
road section consists of computing for each possible lane

the maximal distance the agent can move. First , if there is
a lower lane , the agent tests the probability to change

its lane to a lower one. If it decides to test the lower
lane , the agent computes the distance to the next vehicle
on this lane and memorizes it. If this distance corresponds
to the maximal distance it can travel , it chooses this

lane; otherwise , it computes the distance to the next

v 1.8.2 214

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

vehicle on its current lane and memorizes it if it is
higher than the current memorized maximal distance. Then if
the memorized distance is lower than the maximal distance

the agent can travel and if there is an upper lane , the
agents test the probability to change its lane to an upper
one. If it decides to test the upper lane , the agent
computes the distance to the next vehicle on this lane and
memorizes it if it is higher than the current memorized
maximal distance. At last , if the memorized distance is
still lower than the maximal distance it can travel if the
agent is on the highest lane and if there is a reverse road
, the agent tests the probability to use the reverse road (
linked road). If it decides to use the reverse road , the
agent computes the distance to the next vehicle on the lane
0 of this road and memorizes the distance if it is higher

than the current memorized maximal distance.

![Activity diagram of the driver behavior to define its
maximum distance to others .](resources/images/recipes/
define_max_dist.png)

Application example

We propose a simple model to illustrate the driving skill. We
define a driver species. When a driver agent reaches its
destination , it just chooses a new random final target. In
the same way , we did not define any specific behavior to
avoid traffic jam for the driver agents: once they compute
their path (all the driver agents use for that the same
road graph with the same weights), they never re -compute it
even if they are stucked in a traffic jam. Concerning the

traffic signals , we just consider the traffic lights (
without any pre -processing: we consider the raw OSM data).
One step of the simulation represents 1 second. At last , in
order to clarify the explanation of the model , we chose to
do not present the parts of the GAML code that concern the
simulation visualization.

v 1.8.2 215

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

![Simple example of the driving skill .](resources/images/
recipes/sim_snapshot.png)

The following code shows the definition of species to
represent the road infrastructure:� �

species road skills: [skill_road] { string oneway; }
species road_node skills: [skill_road_node] { bool is_traffic_signal; int time_to_-
change <- 100; int counter <- rnd (time_to_change) ;� �
reflex dynamic when: is_traffic_signal {

counter <- counter + 1;
if (counter >= time_to_change) {

counter <- 0;
stop [0] <- empty(stop [0])? roads_in : [];

}
}� �
}� �
In order to use our driving skill , we just have to add the `

skill_road_node ` to the `road_node ` species and the `
skill_road ` to the `road ` species. In addition , we added to
the road species a variable called `oneway ` that will be

initialized from the OSM data and that represents the
traffic direction (see the OSM map features for more
details). Concerning the node , we defined 3 new attributes:

* **`is_traffic_signal `**: boolean; is the node a traffic
light?

* **`time_to_change `**: integer; represents for the traffic
lights the time to pass from the red light to the green
light (and vice versa).

* **`counter `**: integer; number of simulation steps since the
last change of light color (used by the traffic light

nodes).

In addition , we defined for the `road_node ` species a reflex (
behavior) called **`dynamic `** that will be activated only
for traffic light nodes and that will increment the `

v 1.8.2 216

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

counter ` value. If this counter is higher than `
time_to_change `, this variable is set to 0, and the node
change the value of the `stop ` variable: if the traffic
light was green (i.e. there are no road concerns by this
stop sign), the list of block roads is set by all the roads
that enter the node; if the traffic light was red (i.e.

there is at least one road concerned by this stop sign),
the list of block roads is set to an empty list.

The following code shows the definition of driver species:� �
species driver skills: [advanced_driving] { reflex time_to_go when: final_target = nil
{ current_path <- compute_path(graph: road_network, target: one_of(road_node));
} reflex move when: final_target != nil { do drive; } }� �
In order to use our driving plug -in , we just have to add the `

advanced_driving ` skill to the `driver ` species. For this
species , we defined two reflexes:

* **`time_to_go `**: activated when the agent has no final
target. In this reflex , the agent will randomly choose one
of the nodes as its final target , and computed the path to
reach this target using the **`road_network `** graph. Note
that it will have been possible to take into account the
knowledge that each agent has concerning the road network
by defining a new variable of type map (dictionary)
containing for each road a given weight that will reflect
the driver knowledge concerning the network (for example ,
the known traffic jams , its favorite roads) and to use
this map for the path computation.

* **`move `**: activated when the agent has a final target. In
this reflex , the agent will drive in direction of its final
target.

We describe in the following code how we initialize the
simulation:� �

init {
create node from: file(“nodes.shp”) with:[is_traffic_signal::read(“type”)=“traffic_-
signals”];� �
v 1.8.2 217

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

create road from: file("roads.shp")
with:[lanes::int(read("lanes")),

maxspeed ::float(read("maxspeed")),
oneway :: string(read("oneway"))]

{
switch oneway {

match "no" {
create road {

lanes <- myself.lanes;
shape <- polyline(reverse(myself.shape.points)

);
maxspeed <- myself.maxspeed;
linked_road <- myself;
myself.linked_road <- self;

}
}
match " -1" {

shape <- polyline(reverse(shape.points));
}

}
}

map general_speed_map <- road as_map(each ::(each.shape.
perimeter / (each.maxspeed)));

road_network <- (as_driving_graph(road , road_node))
with_weights general_speed_map;

create driver number: 10000 {
location <- one_of(node).location;
vehicle_length <- 3.0;
max_acceleration <- 0.5 + rnd (500) / 1000;
speed_coeff <- 1.2 - (rnd (400) / 1000);
right_side_driving <- true;
proba_lane_change_up <- rnd (500) / 500;
proba_lane_change_down <- 0.5+ (rnd (250) / 500);
security_distance_coeff <- 3 - rnd (2000) / 1000);
proba_respect_priorities <- 1.0 - rnd (200/1000);
proba_respect_stops <- [1.0 - rnd(2) / 1000];
proba_block_node <- rnd(3) / 1000;
proba_use_linked_road <- rnd (10) / 1000;

v 1.8.2 218

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

}� �
}� �
In this code , we create the node agents from the node

shapefile (while reading the attributes contained in the
shapefile), then we create in the same way the road agents.
However , for the road agents , we use the `oneway ` variable
to define if we should or not reverse their geometry (`

oneway ` = " -1") or create a reverse road (`oneway ` = "no").
Then , from the road and node agents , we create a graph (

while taking into account the `maxspeed ` of the road for
the weights of the edges). This graph is the one that will
be used by all agents to compute their path to their final
target. Finally , we create 1000 driver agents. At
initialization:

* they are randomly placed on the nodes;
* their vehicle has a length of 3m;
* the maximal acceleration of their vehicle is randomly drawn

between 0.5 and 1;
* the speed coefficient of the driver is randomly drawn

between 0.8 and 1.2;
* they are driving on the right side of the road;
* their probability of changing lane for an upper lane is

randomly drawn between 0 and 1.0;
* their probability of changing lane for a lower lane is

randomly drawn between 0.5 and 1.0;
* the security distance coefficient is randomly drawn between

1 and 3;
* their probability to respect priorities is randomly drawn

between 0.8 and 1;
* their probability to respect light signal is randomly drawn

between 0.998 and 1;
* their probability to block a node is randomly drawn between

0 and 0.003;

[The complete code of the model with the data can be found
here](resources/images/recipes/Rouentrafffic.zip).

v 1.8.2 219

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

[//]: # (keyword|concept_date)
Manipulate Dates

[//]: # (keyword|type_date)
[//]: # (keyword|concept_time)
Managing Time in Models

If some models are based on an abstract time - only the number
of cycles is important - others are based on a real time.

To this purpose , GAMA provides some tools to manage time.

First , GAMA allows the modeler to define the duration of a
simulation step. It provides access to different time
variables. At last , since GAMA 1.7, it provides a date
variable type and some global variables allowing to use a
real calendar to manage time.

Definition of the step and use of temporal unity values

GAMA provides three important [global variables to manage time
](GlobalSpecies#cycle):

* `cycle ` (int - not modifiable): the current simulation step
- this variable is incremented by 1 at each simulation step

* `step ` (float - can be modified): the duration of a
simulation step (in seconds). By default , the duration is
one second.

* `time ` (float - not modifiable): the current time spent
since the beginning of the simulation - this variable is
computed at each simulation step by: time = cycle * step.

The value of the cycle and time variables are shown in the top
left (green rectangle) of the simulation interface.

Clicking on the green rectangle allows to display either
the number cycles or the time variable. Concerning this
variable , it is presented following a years - months - days
- hours - minutes - seconds format. In this presentation ,

every month is considered as being composed of 30 days (the
different number of days of months are not taken into

account).

v 1.8.2 220

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Concerning step global variable , the variable can be modified
by the modeler. A classic way of doing it consists of
reediting the variable in the global section:� �

global { float step <- 1 #hour; }� �
In this example , each simulation step will represent 1 hour.

This time will be taken into account for all actions based
on time (e.g. moving actions).

Note that the value of the `step ` variable should be given in
seconds. To facilitate the definition of the step value and
of all expressions based on time , GAMA provides [different
built -in constant variables accessible with the "`#`"

symbol](UnitsAndConstants#time -units):

* `#s` : second - 1 second
* `#mn ` : minute - 60 seconds
* `#hour ` : hour - 60 minutes - 3600 seconds
* `#day ` : day - 24 hours - 86400 seconds
* `#week `: week - 7 days - 604800 seconds
* `#month ` : month - 30 days - 2592000 seconds
* `#year ` : year - 12 month - 3.1104 E7 seconds

The date variable type and the use of a real calendar
Since GAMA 1.7, it is possible to use a real calendar to

manage the time. For that , the modeler has only to define
the starting date of the simulation. This variable is of
type `date ` which allows him/her to represent a date and
time.

A date variable has several attributes:

* `year ` (int): the year component of the date
* `month ` (int): the month component of the date
* `day ` (int): the day component of the date
* `hour ` (int): the hour component of the date
* `minute ` (int): the minute component of the date
* `second ` (int): the second component of the date
* `day_of_week ` (int): the day of the week

v 1.8.2 221

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

* `week_of_year ` (int): the week of the year

Several ways can be used to define a date. The simplest one
consists in using a list of int values: [year ,month of the
year ,day of the month , hour of the day , minute of the hour ,
second of the minute]� �

date my_date <- date([2010,3,23,17,30,10]); // the 23th of March 2010, at 17:30:10� �
Another way consists in using a string with the good format.

The following one is perhaps the most complete , with year ,
month , day , hour , minute , second and also the time zone.� �

date my_date <- date(“2010-3-23T17:30:10+07:00”);� �
But the following ones can also be used:� �
// without time zone: my_date3 <- date(“2010-03-23 17:30:10”); //Dates (without
time) my_date3 <- date(“20100323”); my_date3 <- date(“2010-03-23”); // Dates
using some patterns: my_date3 <- date(“03 23 2010”,“MM dd yyyy”); my_date3 <-
date(“01 23 20”,“HH mm ss”);� �
Note that the current (real) date can be accessed through the

`#now ` built -in variable (variable of type date).

In addition , GAMA provides different useful operators working
on dates. For instance , it is possible to compute the
duration in seconds between 2 dates using the "`-`"
operator. The result is given in seconds:� �

float d <- starting_date - my_date;� �
It is also possible to add or subtract a duration (in seconds)

to a date:� �
write “my_date + 10:” + (my_date + 10); write “my_date - 10:” + (my_date -
10);� �
At last , it is possible to add or subtract a duration (in

years , months , weeks , days , hours , minutes , seconds) to a
date:� �

v 1.8.2 222

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

write “my_date add_years 1:” + (my_date add_years 1); write “my_date add_-
months 1:” + (my_date add_months 1); write “my_date add_weeks 1:” + (my_date
add_weeks 1); write “my_date add_days 1:” + (my_date add_days 1); write “my_-
date add_hours 1:” + (my_date add_hours 1); write “my_date add_minutes
1:” + (my_date add_minutes 1); write “my_date add_seconds 1:” + (my_date
add_seconds 1);
write “my_date subtract_years 1:” + (my_date subtract_years 1); write “my_date
subtract_months 1:” + (my_date subtract_months 1); write “my_date subtract_-
weeks 1:” + (my_date subtract_weeks 1); write “my_date subtract_days 1:” +
(my_date subtract_days 1); write “my_date subtract_hours 1:” + (my_date sub-
tract_hours 1); write “my_date subtract_minutes 1:” + (my_date subtract_minutes
1); write “my_date subtract_seconds 1:” + (my_date subtract_seconds 1);� �
Date variables in the model

For the modelers , two global date variables are available:

* `starting_date `: date considered as the beginning of the
simulation (by default the starting date is `1970-01-01
07:00:00 `.

* `current_date `: current date of the simulation.

Defining a value of the starting_date allows to change the
normal time management of the simulation by a more
realistic one (using a calendar):� �

global { date starting_date <- date([1979,12,17,19,45,10]); }� �
When a value is set to this variable , the `current_date `

variable is automatically initialized with the same value.
However , at each simulation step , the `current_date `
variable is incremented by the `step ` variable. The value
of the `current_date ` will replace the value of the time
variable in the top left green panel.

Note that you have to be careful when a real calendar is used ,
the built -in constants `#month ` and `#year ` should not be

used as there are not consistent with the calendar (where
month can be composed of 28, 29, 30 or 31 days).

v 1.8.2 223

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

[//]: # (startConcept|light)
[//]: # (keyword|concept_3d)
[//]: # (keyword|concept_light)
Implementing light

When using OpenGL display , GAMA provides you the possibility
to manipulate one or several lights , making your display
more realistic.

Most of the following screenshots will be taken with the
following short example gaml:� �

model test_light
grid cells { aspect base { draw square(1) at:{grid_x,grid_y} color:#white; } }
experiment my_experiment type:gui{ output { display my_display type: opengl
background: #darkblue { species cells aspect: base; graphics “my_layer” { draw
square(100) color:#white at:{50,50}; draw cube(5) color:#lightgrey at:{50,30};
draw cube(5) color:#lightgrey at:{30,35}; draw cube(5) color:#lightgrey at:{60,35};
draw sphere(5) color:#lightgrey at:{10,10,2.5}; draw sphere(5) color:#lightgrey
at:{20,30,2.5}; draw sphere(5) color:#lightgrey at:{40,30,2.5}; draw sphere(5)
color:#lightgrey at:{40,60,2.5}; draw cone3D(5,5) color:#lightgrey at:{55,10,0}; draw
cylinder(5,5) color:#lightgrey at:{10,60,0}; } } } }� �
Index

* [Light generalities](#light -generalities)
* [Default light](# default -light)
* [Custom lights](#custom -lights)

Light generalities

Before going deep into the code , here is a quick explanation
about how light works in OpenGL.

First of all , you need to know that there are 3 types of
lights you can manipulate: the ** ambient light**, the **
diffuse light** and the ** specular light **. Each "light" in
OpenGL is in fact composed of those 3 types of lights.

Ambient light

v 1.8.2 224

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The ** ambient light** is the light of your world without any
lighting. If a face of a cube is not stricken by the light
rays , for instance , this face will appear totally black if
there is no ambient light. To make your world more
realistic , it is better to have ambient light.

Ambient light has then no position or direction. It is equally
distributed to all the objects of your scene.

Here is an example of our GAML scene using only ambient light
(color red) (see below [how to define ambient light in GAML
](ManipulateLight#ambient -light -1)):

![Example of a scene with a red ambient light .](resources/
images/lightRecipes/ambient_light.png)

Diffuse light

The ** diffuse light** can be seen as the light rays: if a face
of a cube is stricken by the diffuse light , it will take

the color of this diffuse light. You have to know that the
more perpendicular the face of your object will be to the
light ray , the more lightened the face will be.

A diffuse light has then a direction. It can have also a
position.

You have 2 categories of diffuse light: the ** positional
lights**, and the ** directional lights **.

Positional lights

Those lights have a position in your world. It is the case of
**point lights ** and **spot lights **.

* **Point lights **

Points lights can be seen as a candle in your world , diffusing
the light equally in all the direction.

Here is an example of our GAML scene using only diffuse light ,
with a point light (color red , the light source is

displayed as a red sphere) :

v 1.8.2 225

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

![Scene with only a red point light .](resources/images/
lightRecipes/point_light.png)

* **Spot lights **

Spot lights can be seen as a torch light in your world. It
needs a position , and also a direction and an angle.

Here is an example of our GAML scene using only diffusion
light , with a spot light (color red , the light source is
displayed as a red cone) :

![Scene with only a red spot light .](resources/images/
lightRecipes/spot_light.png)

Positional lights , as they have a position , can also have an
attenuation according to the distance between the light
source and the object. The value of positional lights are
computed with the following formula:� �

diffuse_light = diffuse_light * (1 / (1 + constante_attenuation + linear_attenuation
* d + quadratic_attenuation * d))� �
By changing those 3 values (constante_attenuation ,

linear_attenuation and quadratic_attenuation), you can
control the way light is diffused over your world (if your
world is "foggy" for instance , you may turn your linear and
quadratic attenuation on). Note that by default , all those
attenuations are equal to 0.

Here is an example of our GAML scene using only diffusion
light , with a point light with linear attenuation (color
red , the light source is displayed as a red sphere):

![Scene with only diffusion light and red point light with
linear attenuation .](resources/images/lightRecipes/
point_light_with_attenuation.png)

Directional lights

v 1.8.2 226

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Directional lights have no real "position": they only have a
direction. A directional light will strike all the objects
of your world in the same direction. An example of
directional light you have in the real world would be the
light of the sun: the sun is so far away from us that you
can consider that the rays have the same direction and the
same intensity wherever they strike.

Since there is no position for directional lights , there is no
attenuation either.

Here is an example of our GAML scene using only diffusion
light , with a directional light (color red) :

![Scene with a red directional light .](resources/images/
lightRecipes/direction_light.png)

Specular light

This is a more advanced concept , giving an aspect a little bit
"shinny" to the objects stricken by the specular light. It
is used to simulate the interaction between the light and

a special material (ex: wood , steel , rubber ...).
This specular light is not implemented yet in GAMA , only the

two others are.

Default light

In your OpenGL display , without specifying any light , you will
have only one light , with those following properties :

Those values have been chosen in order to have the same visual
effect in both OpenGL and java2D displays , when you

display 2D objects , and also to have a nice "3D effect"
when using the OpenGL displays. We chose the following
setting by default:

* The ambient light value: rgb (127 ,127 ,127 ,255)
* diffuse light value: rgb (127 ,127 ,127 ,255)
* type of light: direction
* direction of the light: (0.5,0.5, -1);

v 1.8.2 227

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Here is an example of our GAML scene using the default light:

![Scene with the default light .](resources/images/lightRecipes
/default_light.png)

Custom lights

In your OpenGL display , you can create several lights , giving
them the properties you want.

[//]: # (keyword|statement_light)
In order to add lights , or modifying the existing lights , you

have to use the statement `light ` inside your `display `
scope:� �

experiment my_experiment type:gui { output { display “my_display” type:opengl {
light “my_light”; } } }� �
A name has to be declared for the light. Through this facet ,

you can specify which light you want.
Once you are manipulating a light through the `light `

statement , the light is turned on. To switch off the light ,
you have to add the facet `active `, and turn it to `false

`.
The light you are declaring through the `light ` statement is,

in fact , a "diffuse" light. You can specify the color of
the diffuse light through the facet `intensity ` (by default
, the color will be turned to white).

Another very important facet is the `type ` facet. This facet
accepts a value among `#direction `, `#point ` and `#spot `.

Ambient light

The ambient light can be set when declaring a light , using the
#ambient constant , through the facet `intensity `:� �

experiment my_experiment type: gui { output { display “my_display” type: opengl
{ light #ambient intensity: 100; } } }� �
v 1.8.2 228

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Note for developers: Note that this ambient light is set to
the GL_LIGHT0. This GL_LIGHT0 only contains an ambient
light , and no either diffuse nor specular light.

Declaring direction light

A direction light , as explained in the first part , is a light
without any position. Instead of the facet `position `, you
will use the facet `direction `, giving a 3D vector.

Example of implementation:� �
light “my_direction_light” type: #direction direction: {1,1,1} intensity: #red;� �
Declaring point light

A point light will need a facet `position `, in order to give
the position of the light source.

Example of implementation of a basic point light:� �
light “my_point_light” type: #point location: {10,20,10} intensity: #red;� �
You can add , if you want , a custom attenuation of the light ,

through the facets `linear_attenuation ` or `
quadratic_attenuation `.

Example of implementation of a point light with attenuation :� �
light “my_point_light” type: #point location: {10,20,10} intensity: #red linear_-
attenuation: 0.1;� �
Declaring spot light

A spot light will need the facet `position ` (a spot light is a
positional light) and the facet `direction `. A spot light

will also need a special facet `spot_angle ` to determine
the angle of the spot (by default , this value is set to 45
degree).

Example of implementation of a basic spot light:� �
v 1.8.2 229

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

light “my_spot_light” type: #spot location: {0,0,100}direction:{0.5,0.5,-1} intensity:
#red angle: 20;� �
Same as for point light , you can specify an attenuation for a

spot light.

Example of implementation of a spot light with attenuation:� �
light “my_spot_light” type:#spot location:{0,0,100} direction:{0.5,0.5,-1} inten-
sity:#red angle:30 linear_attenuation: 0.1;� �
Note that when you are working with lights , you can display

your lights through the facet `show ` (of `light `) to help
you to implement your model. The three types of lights are
displayed differently:

* The **point ** light is represented by a sphere with the
color of the diffuse light you specified , in the position
of your light source.

* The **spot** light is represented by a cone with the color
of the diffuse light you specified , in the position of your
light source , the orientation of your light source. The

size of the base of the cone will depend on the angle you
specified.

* The ** direction ** light , as it has no real position , is
represented with arrows a bit above the world , with the
direction of your direction light , and the color of the
diffuse light you specified.

![Scene with direction , spot and point lights .](resources/
images/lightRecipes/draw_light.png)

Note for developers: Note that , since the GL_LIGHT0 is
already reserved for the ambient light (only !), all the
other lights (from 1 to 7) are the lights from GL_LIGHT1 to
GL_LIGHT7.

[//]: # (endConcept|light)

Using Comodel

v 1.8.2 230

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Introduction
In the trend of developing a complex system of multi -

disciplinary , composing and coupling models are days by
days becoming the most attractive research objectives.

GAMA is supporting the co -modeling and co -simulation which are
supposed to be a common coupling infrastructure.

Example of a Comodel

A Comodel is a model , especially an agent -based model ,
composed of several sub -models , called **micro -models **. A
comodel itself could be also a micro -model of another
comodel. From the point of view of a micro -model , the
comodel is called a **macro -model **.

A micro -model must be imported , instantiated , and life -
controlled by a macro -model.

![GAMA co -modeling architecture .](resources/images/comodel/
concepts.png)

Why and when can we use Comodel?

Co-models ca definitely be very useful when the whole model
can be decomposed in several sub -models , each of them
representing , in general , a dynamics of the whole model ,
and that interact through some entities of the model. In
particular , it allows several modelers to develop the part
of the model dedicated to their expertise field , to test it
extensively , before integrating it inside the whole model

(where integration tests should not be omitted !).

Use of Comodel in a GAML model

The GAML language has evolved by extending the import section.
The old importation told the compiler to merge all

imported elements into as one model , but the new one allows

v 1.8.2 231

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

modelers to keep the elements coming from imported models
separately from the caller model.

Definition of a micro -model

Defining a micro -model of comodel is to import an existing
model with an alias name. The syntax is:� �

import as� �
The identifier is then become the new name of the micro -model.

As an example taken from the model library , we can write:� �
import “Prey Predator Adapter.gaml” as Organism� �
Instantiation of a micro -model

After the importation and giving an identifier , micro -model
must be explicitly instantiated. It could be done by the `
create ` statement.� �

create . [optional parameter];� �
The `<exeperiment name >` is an experiment inside micro -model.

This syntax will generate some experiment agents and attach
an implicit simulation.

Note: The creation of several instances is not multi -
simulation , but multi -experiment. Modelers could create an
experiment with multi -simulation by explicitly do the init
inside the experiment scope.

As an example taken from the model library , we can write:� �
global { init { //instantiate three instant of micro-model PreyPredator create Or-
ganism.Simple number: 3 with: [shape::square(100), preyinit::10, predatorinit::1] ; }
}� �
Control micro -model life -cycle

v 1.8.2 232

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

A micro -model can be controlled as any normal agent by asking
the corresponding identifier , and also be destroyed by the
`do die;` statement. And it can be recreated any time we
need.� �

ask (. at) . simulation { . . . }� �
More generally , to schedule all the created simulations , we

can do:� �
reflex simulate_micro_models { // ask all simulation do their job ask (Organ-
ism.Simple collect each.simulation) { do step; } }� �
Visualization of the micro -model

The micro -model species could display in comodel with the
support of agent layer� �

agents “name of layer” value: (. at).;� �
As an example:� �
display “Comodel display” { agents “agentprey” value: (Organism.Simple accumu-
late each.get_prey()); agents “agentpredator” value: (Organism.Simple accumulate
each.get_predator()); }� �
More details

Example of the comodel

The following illustrations are taken from the model library
provided with the GAMA platform.

Urbanization model with a Traffic model

![Co -modeling example: urbanization model with a Traffic model
.](resources/images/comodel/comodel_urban_traffic.png)

Flood model with Evacuation model

v 1.8.2 233

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The aim of this model is to couple the two existing models:
Flood Simulation and Evacuation.

Toy Models/Evacuation/models/continuous_move.gaml

![Co -modeling example: the evacuation model .](resources/images
/comodel/continuous_move_model_display.png)

Toy Models/Flood Simulation/models/Hydrological Model.gaml

![Co -modeling example: the flood model .](resources/images/
comodel/hydro_model_display.png)

The comodel explores the effect of a flood on an evacuation
plan:

![Co -modeling example: coupling of the flood and evacuation
models .](resources/images/comodel/
comodel_disp_Flood_Evacuation.png)

Simulation results:

![Co -modeling example: some simulation results .](resources/
images/comodel/comodel_Flood_Evacuation.png)

[//]: # (startConcept|use_saveSimulation)
[//]: # (keyword|concept_save)
[//]: # (keyword|concept_simulation)
Save and Restore simulations

Last version of GAMA has introduced new features to save the
state of a simulation at a given simulation cycle. This has
two main applications:

* The possibility to step forward and backward in a simulation
,

* The possibility to save the state of a simulation in a file
and to restore a simulation from this file.

v 1.8.2 234

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Save a simulation� �
experiment saveSimu type: gui {� �
reflex store when: cycle = 5 {

write "================ START SAVE + self " + " - " +
cycle ;
write "Save of simulation : " + saveSimulation('saveSimu.

gsim ');
write "================ END SAVE + self " + " - " + cycle

;
}

output {
display main_display {

species road aspect: geom;
species people aspect: base;

}
}� �
}� �
Restore a simulation� �
experiment reloadSavedSimuOnly type: gui {� �
action _init_ {

create simulation from: saved_simulation_file("saveSimu.
gsim");

}

output {
display main_display {

species road aspect: geom;
species people aspect: base;

}
}� �
}

v 1.8.2 235

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

� �
Saved simulation file type: gsim

Other serialization operators

[//]: # (keyword|concept_network)
[//]: # (startConcept|network)

Using network

Introduction

GAMA provides features to allow agents to communicate with
other agents (and other applications) through network and
to exchange messages of various types (from simple number
to agents). To this purpose , the `network ` skill should be
used on agents intending to use these capabilities.

Notice that in this communication , roles are asymetric: the
simulations should contain a server and some clients to
communicate. Message exchanges are made between agents
through this server. 3 protocols are supported (TCP , UDP
and MQTT):

* **when TCP or UDP protocols are used :** one agent of the
simulation is the server and the other ones are the clients
.

* **when the MQTT protocol is used :** all the agents are
clients and the server is an external software. A free
solution (ActiveMQ) can be freely downloaded from: http://
activemq.apache.org.

Which protocol to use ?

In the GAMA network , 3 kinds of protocol can be used. Each of
them has a particular purpose.

* **MQTT **: this is the default protocol that should be used
to make agents of various GAMA instances to communicate

v 1.8.2 236

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

through a MQTT server (that should be run as an external
application , e.g. ActiveMQ that can be downloaded from:
http:// activemq.apache.org/),

* **UDP**: this protocol should be limited to fast (and
unsecured) exchanges of small pieces of data from GAMA to
an external application (for example , mouse location from a
Processing application to GAMA , c.f. model library),

* **TCP**: this protocol can be used both to communicate
between GAMA applications or between GAMA and an external
application.

Disclaimer

**In all the models using any network communication , the
server should be launched before the clients .**

As a consequence , when TCP or UDP protocols are used , a model
creating a server agent should always be run first. Using
MQTT protocol , the external software server should be
launched before running any model using it.

Declaring a network species

To create agents able to communicate through a network , their
species should have the skill `network `:� �

species Networking_Client skills: [network] { . . . }� �
A list exhaustive of the additional attributes and available

actions provided by this skill are described here:
[network skill preference page](https:// github.com/gama -

platform/gama/wiki/BuiltInSkills#network).

Creation of a network agent

The network agents are created as any other agents , but (in
general) at the creation of the agents , the connection is
also created , using the `connect ` built -in action:� �

create Networking_Client { do connect to: “localhost” protocol: “tcp_client” port:

v 1.8.2 237

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

3001 with_name: “Client”; }� �
Each protocol has its specificities regarding the connection:

* **TCP**:
* **`protocol `**: the 2 possibles keywords are `tcp_server `
or `tcp_client `, depending on the wanted role of the agent
in the communication.

* **`port `**: traditionally the port `3001` is used.
* **UDP**:

* **`protocol `**: the 2 possibles keywords are `udp_server `
or `udp_emitter `, depending on the wanted role of the agent
in the communication.

* **`port `**: traditionally the port `9876` is used.
* **MQTT **:

* **`protocol `**: MQTT is the default protocol value (if no
value is given , MQTT will be used)

* **`port `**: traditionally the port `1883` is used (when
ActiveMQ is used as the server application)

* **`admin `** and **`password `**: traditionally the default
login and password are "admin" (when ActiveMQ is used as
the server application)

Note: if no connection information is provided with the MQTT
protocol (no `port `), then GAMA connects to an MQTT server
provided by the GAMA community (for test purpose only!).

Sending messages

To send any message , the agent has to use the `send ` action:� �
do send to: “server” contents: name + " " + cycle + " sent to server";� �
The network skill in GAMA allows the modeler to send simple

string messages between agents but also to send more
complex objects (and in particular agents). In this case ,
the use of the MQTT protocol is highly recommended.� �

do send to: “receiver” contents: (9 among NetworkingAgent);� �
Receiving messages

v 1.8.2 238

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The messages sent by other agents are received in the `mailbox
` attribute of each agent. So to get its new message , the
agent has simply to check whether it has a new message (
with action `has_more_message ()`) and fetch it (that gets
it and remove it from the mailing box) with the action `
fetch_message () `.� �

reflex fetch when: has_more_message() { message mess <- fetch_message(); write
name + " fecth this message: " + mess.contents;
}� �
Note that when an agent is received , the fetch of the message

will recreate the agent in the current simulation.

Alternatively , the `mailbox ` attribute can be directly
accessed (notice that the `mailbox ` is a list of messages):� �

reflex receive {
if (length(mailbox) > 0) { write mailbox; } }� �
Broadcasting a message to all the agents ' members of a

given group

Each time an agent creates a connection to another agent as a
client , a way to communicate with it is stored in the `
network_groups ` attribute.

So an agent can use this attribute to broadcast messages to
all the agents with whose it can communicate:� �

reflex broad { loop id over: network_groups { do send to: id contents: “I am Server”
+ name + " I give order to " + id; } }� �
To go further:

* [network skill reference page](BuiltInSkills#network).
* example models can be found in the GAMA model library , in: `

Plugin models > Network `.

v 1.8.2 239

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Editing Headless mode for dummies

Overview

This tutorial presents the headless mode usage of GAMA. We
will execute the Predator -Prey model , already presented in
[this tutorial](PredatorPrey_step1).

Headless mode is documented [here](Headless), with the same
model as an example. Here , we focus on the definition of an
experiment plan , where the model is run several times. We

only consider the shell script execution , not the java
command execution.

In headless -mode , GAMA can be seen as any shell command , whose
behavior is controlled by passing arguments to it.

You must provide 2 arguments :

* an **input experiment file **, used to describe the
execution plan of your model , its inputs and the expected
outputs.

* an ** output directory **, where the results of the
execution are stored

Headless -mode is a little bit more technical to handle than
the general GAMA use -case , and the following commands and
code have been solely tested on a Linux Ubuntu 15.04
machine , x86_64 architecture , with kernel 3.19.0 -82 - generic
.

Java version is 1.8.0 _121 (java version "1.8.0 _121")

You may have to perform some adjustments (such as paths
definition) according to your machine , OS, java and GAMA
versions and so on.

Setup

GAMA version

v 1.8.2 240

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Headless mode is frequently updated by GAMA developers , so you
have to get the very latest build version of GAMA. You can
download it here [https:// github.com/gama -platform/gama/

releases](https :// github.com/gama -platform/gama/releases)
Be sure to pick the ** Continuous build ** version (The
name looks like `GAMA1 .7 _Linux_64_02 .26.17 _da33f5b.zip `)
and ** not ** the major release , e.g. `GAMA1 .7 _Linux_64.zip
`.

Big note on Windows OS (maybe on others), GAMA must be placed
outside of several sensible folders (Program Files , Program
Filesx64 , Windows). RECOMMENED: Place GAMA in Users

Folder of windows OS.

gama -headless.sh script setup

The `gama -headless.sh ` script can be found under the `headless
` directory , in GAMA installation directory e.g. : `~/GAMA/
headless/

Modifying the script (a little bit)

The original script looks like this :

#! /bin/bash
memory =2048m
declare -i i

i=0
echo ${!i}

for ((i=1;i<=$#;i=$i+1))
do
if test ${!i} = "-m"
then

i=$i+1
memory=${!i}

else
PARAM=$PARAM\ ${!i}

v 1.8.2 241

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

i=$i+1
PARAM=$PARAM\ ${!i}

fi
done

echo "
**
"
echo "* GAMA version 1.7.0 V7

*"
echo "* http ://gama -platform.org

*"
echo "* (c) 2007 -2016 UMI 209 UMMISCO IRD/UPMC & Partners

*"
echo "

**
"
passWork =. work$RANDOM

java -cp ../ plugins/org.eclipse.equinox.launcher *.jar -
Xms512m -Xmx$memory -Djava.awt.headless=true org.eclipse.
core.launcher.Main -application msi.gama.headless.id4 -
data $passWork $PARAM $mfull $outputFile
rm -rf $passWork

Notice the final command of the script `rm -rf $passWork `. It
is intended to remove the temporary file used during the
execution of the script. For now , we should comment this
commmand , in order to check the logs if an error appears:
`#rm -rf $passWork `

Setting the experiment file

Headless mode uses a XML file to describe the execution plan
of a model. An example is given in the [headless mode
documentation page](Headless).

The script looks like this :
** N.B. this version of the script , given as an example , is

v 1.8.2 242

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

deprecated **

<?xml version="1.0" encoding="UTF -8"?>
<Experiment_plan >
<Simulation id="2" sourcePath="./ predatorPrey/predatorPrey

.gaml" finalStep="1000" experiment="predPrey">
<Parameters >

<Parameter name="nb_predator_init" type="INT"
value="53" />

<Parameter name="nb_preys_init" type="INT" value="
621" />

</Parameters >
<Outputs >

<Output id="1" name="main_display" framerate="10"
/>

<Output id="2" name="number_of_preys" framerate="1
" />

<Output id="3" name="number_of_predators"
framerate="1" />

<Output id="4" name="duration" framerate="1" />
</Outputs >

</Simulation >
</Experiment_plan >

As you can see , you need to define 3 things in this minimal
example:

* Simulation: its id, path to the model , finalStep (or stop
condition), and name of the experiment

* Parameters name , of the model for *this* simulation (i.e.
Simulation of id= 2)

* Outputs of the model: their id, name , type , and the rate (
expressed in cycles) at which they are logged in the
results file during the simulation

We now describe how to constitute your experiment file.

Experiment File: Simulation

v 1.8.2 243

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

id

For now , we only consider one single execution of the model ,
so the simulation `id` is not critical , let it unchanged.

Later example will include different simulations in the same
experiment file.

Simulation `id` is a string. Don 't introduce weird symbols
into it.

sourcePath

`sourcePath ` is the relative (or absolute) path to the model
file you want to execute headlessly.

Here we want to execute the [fourth model of the Predator Prey
tutorial suite](PredatorPrey_step4), located in `~/GAMA/

plugins/msi.gama.models_1 .7.0. XXXXXXXXXXXX/models/Tutorials
/Predator Prey/models ` (with XXXXXXXXXXXX replaced by the
number of the release you downloaded)

So we set sourcePath="../ plugins/msi.gama.models_1
.7.0.201702260518/ models/Tutorials/Predator Prey/models/
Model 07. gaml" (Remember that the headless script is
located in `~/GAMA/headless/`)

Depending on the directory you want to run the `gama -headless.
sh` script , sourcePath must me modified accordingly.

Another workaround for shell more advanced users is to define
a `$GAMA_PATH `, `$MODEL_PATH ` and `$OUPUT_PATH ` in `gama -
headless.sh` script.

Don 't forget the quotes `"` around your path.

finalStep

The duration , in cycles , of the simulation.

experiment

This is the name of (one of) the experiment statement at the
end of the model code.

v 1.8.2 244

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

In our case there is only one , called `prey_predator ` and it
looks like this :� �� �

experiment prey_predator type: gui {
parameter "Initial number of preys: " var: nb_preys_init

min: 1 max: 1000 category: "Prey" ;
parameter "Prey max energy: " var: prey_max_energy

category: "Prey" ;
parameter "Prey max transfert: " var: prey_max_transfert

category: "Prey" ;
parameter "Prey energy consumption: " var:

prey_energy_consum category: "Prey" ;
output {

display main_display {
grid vegetation_cell lines: #black ;
species prey aspect: base ;

}
monitor "Number of preys" value: nb_preys ;

}
}� �� �
So we are now able to constitute the entire Simulation tag:

`<Simulation id="2" sourcePath="~/GAMA/plugins/msi.gama.
models_1 .7.0.201702260518/ models/Tutorials/Predator Prey/
models/Model 01. gaml" finalStep="1000" experiment="
prey_predator">`

N.B. the numbers after `msi.gama.models ` (the number of your
GAMA release actually) have to be adapted to your own
release of GAMA number.

The path to the GAMA installation directory has also to be
adapted of course.

Experiment File: Parameters

The parameters section of the experiment file describes the
parameters names , types and values to be passed to the

v 1.8.2 245

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

model for its execution.

Let 's say we want to fix the number of preys and their max
energy for this simulation.

We look at the experiment section of the model code and use
their ** title **.

The title of a parameter is the name that comes right after
the `parameter ` statement. In our case , the strings "
Initial number of preys: " and "Prey max energy: " (Mind
the spaces , quotes and colon)

The parameters section of the file would look like :

<Parameters >
<Parameter name="Initial number of preys: " type="INT"

value="621" />
<Parameter name="Prey max energy: " type="FLOAT" value

="1.0" />
</Parameters >

Any declared parameter can be set this way , yet you don 't have
to set all of them , provided they are initialized with a

default value in the model (see the global statement part
of the model code).

Experiment File: Outputs

Output section of the experiment file is pretty similar to the
previous one , except for the `id ` that have to be set for

each of the outputs .

We can log some of the declared outputs : `main_display ` and
`number_of_preys `.

The outputs section would look like the following:

v 1.8.2 246

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

<Outputs >
<Output id="1" name="main_display" framerate="10" />
<Output id="2" name="Number of preys" framerate="1" />

</Outputs >

Outputs must have an id , a name , and a framerate.

* `id ` is a number that identifies the output
* framerate is the rate at which the output is written in the

result file. It 's a number of cycle of simulation (integer)
. In this example the display is saved every 10 cycle

* `name ` is either the "title" of the corresponding monitor.
In our case , the second output 's is the title of the
monitor `"Number of preys"`, i.e. "Number of preys"

We also save a ** display ** output , that is an image of the
simulation graphical display named `main_display ` in the
code of the model. Theses images is what you would have
seen if you had run the model in the traditional GUI mode.

Execution and results

Our new version of the experiment file is ready :

<?xml version="1.0" encoding="UTF -8"?>
<Experiment_plan >

<Simulation id="2" sourcePath="/absolute/path/to/your/
model/file/Model 04. gaml" finalStep="1000" experiment="
prey_predator">

<Parameters >
<Parameter name="Initial number of preys: " type="

INT" value="621" />
<Parameter name="Prey max energy: " type="FLOAT"

value="1.0" />
</Parameters >
<Outputs >

<Output id="1" name="main_display" framerate="10"

v 1.8.2 247

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

/>
<Output id="2" name="Number of preys" framerate="1

" />
</Outputs >

</Simulation >
</Experiment_plan >

Execution

We have to launch the `gama -headless.sh ` script and provide
two arguments : the experiment file we just completed and
the path of a directory where the results will be written.

** Warning ** In this example ,we are lazy and define the
source path as the absolute path to the model we want to
execute. If you want to use a relative path , note that it
has to be define relatively to the location of your **
ExperimentFile.xml location ** (and the location where you
launched the script)

In a terminal , position yourself in the headless directory :
`~/GAMA/headless/'.

Then type the following command :

bash gama -headless.sh -v ~/a/path/to/MyExperimentFile.xml
/path/to/the/desired/output/directory

And replace paths by the location of your ExperimentFile and
output directory

You should obtain the following output in the terminal :

v 1.8.2 248

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

**

* GAMA version 1.7.0 V7
*

* http://gama -platform.org
*

* (c) 2007 -2016 UMI 209 UMMISCO IRD/UPMC & Partners
*

**

>GAMA plugin loaded in 2927 ms: msi.gama.core
>GAMA plugin loaded in 67 ms: ummisco.gama.network
>GAMA plugin loaded in 56 ms: simtools.gaml.extensions.

traffic
>GAMA plugin loaded in 75 ms: simtools.gaml.extensions.

physics
>GAMA plugin loaded in 1 ms: irit.gaml.extensions.test
>GAMA plugin loaded in 75 ms: ummisco.gaml.extensions.

maths
>GAMA plugin loaded in 47 ms: msi.gaml.extensions.fipa
>GAMA plugin loaded in 92 ms: ummisco.gama.serialize
>GAMA plugin loaded in 49 ms: irit.gaml.extensions.

database
>GAMA plugin loaded in 2 ms: msi.gama.lang.gaml
>GAMA plugin loaded in 1 ms: msi.gama.headless
>GAMA plugin loaded in 103 ms: ummisco.gama.java2d
>GAMA plugin loaded in 189 ms: msi.gaml.architecture.

simplebdi
>GAMA plugin loaded in 129 ms: ummisco.gama.opengl
>GAMA building GAML artefacts >GAMA total load time 4502 ms

.
in 714 ms

cpus :8
Simulation is running ...

..

Simulation duration: 7089ms

v 1.8.2 249

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Results

The results are stored in the output directory you provided as
the second argument of the script.

3 items have appeared:

* A `console_output.txt ` file , containing the output of the
GAMA console of the model execution if any

* a XML file `simulation -outputXX.xml `, where XX is the `id `
number of your simulation. In our case it should be 2.

* the folder `snapshots ` containing the screenshots coming
from the second declared output : `main_display `. image
name format is `main_display[id]_[cycle].png `.

The values of the monitor "Number of preys" are stored in the
xml file `simulation -outputXX.xml `

Common error messages

`Exception in thread "Thread -7" No parameter named
prey_max_energy in experiment prey_predator `

Probably a typo in the name or the title of a parameter. check
spaces , capital letters , symbols and so on.

java.io.IOException: Model file does not exist: /home/ubuntu/
dev/tutoGamaHeadless /../ plugins/msi.gama.models_1

This may be a relative path mistake; try with absolute path.

v 1.8.2 250

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

java.lang.NumberFormatException: For input string: "1.0"
This may be a problem of type declaration in the parameter

section.

Going further

Experiments of several simulation

You can launch several simulation by replicating the
simulation declaration in your ExperimentFile.xml and
varying the values of the parameters.

Since you will have to edit the experiment file by hand , you
should do that only for a reasonable number of simulations
(e.g. <10)

Design of experiments plans

For more systematic parameter values samples , you should turn
towards a more adapted tool such as GAMAR , to generate a `
ExperimentFile.xml ` with a huge number of simulations.

The Graphical Editor

The graphical editor that allows defining a GAMA model through
a graphical interface (`gadl ` files). It is based on the

Graphiti Eclipse plugin. It allows as well to produce a
graphical model (diagram) from a `gaml ` model. A tutorial
is available [here](G__GraphicalEditorTutorial).

![images/graphical_editor/gm_predator_prey.png](resources/
images/graphicalEditor/gm_predator_prey.png)

Table of contents

v 1.8.2 251

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

* [The Graphical Editor](#the -graphical -editor)
* [Installing the graphical editor](# installing -the -

graphical -editor)
* [Creating a first model](# creating -a-first -model)
* [Status of models in editors](#status -of-models -in-

editors)
* [Diagram definition framework](# diagram -definition -

framework)
* [Features](# features)

* [agents](# agents)
* [species](# species)
* [grid](# grid)
* [Inheriting link](# inheriting -link)
* [world](# world)

* [agent features](#agent -features)
* [action](# action)
* [reflex](# reflex)
* [aspect](# aspect)

* [experiment](# experiment)
* [GUI experiment](#gui -experiment)
* [display](# display)
* [batch experiment](#batch -experiment)

* [BDI Architecture](#BDI -Architecture)
* [plan](# plan)
* [rule](# rule)
* [perception](# perception)

* [Finite State Machine](#Finite -State -Machine -
Architecture)

* [state](# state)
* [Tasked -based Architecture](#Task -based -Architecture

)
* [task](# task)

* [Pictogram color modification](# pictogram -color -
modification)
* [GAML Model generation](#gaml -model -generation)

Installing the graphical editor
Using the graphical editor requires to install the graphical

modeling plug -in. See [here](InstallingPlugins) for

v 1.8.2 252

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

information about plug -ins and their installation.

The graphical editor plug -in is called ** Graphical_modeling **
and is directly available from the GAMA update site **http

:// updates.gama -platform.org/graphical_modeling /1.8.2**

![install](resources/images/graphicalEditor/
installing_graphical_editor.JPG)

Note that the graphical editor is still under development.
Updates of the plug -in will be added to the GAMA website.
After installing the plug -in (and periodically), check for
updates for this plug -in: in the "Help" menu , choose "Check
for Updates" and install the proposed updates for the

graphical modeling plug -in.

Creating a first model

A new diagram can be created in a new GAMA project. First ,
right -click on a project , then select "New" on the
contextual menu.

In the New Wizard , select "GAMA -> Model Diagram", then "Next >
"

![images/graphical_editor/newDiagram.png](resources/images/
graphicalEditor/newDiagram.png)

In the next Wizard dialog , select the type of diagram (Empty ,
Skeleton or Example) then the name of the file and the
author.

![images/graphical_editor/modeldiagramNew.png](resources/
images/graphicalEditor/modeldiagramNew.png)

Skeleton and Example diagram types allow to add to the diagram
some basic features.

v 1.8.2 253

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Status of models in editors

Similarly to GAML editor , the graphical editor proposes a live
display of errors and model statuses. A graphical model

can actually be in three different states , which are
visually accessible above the editing area: ** Functional **
(orange color), ** Experimentable ** (green color) and **
InError ** (red color). See [the section on model validation
](ValidationOfModels) for more precise information about
these statuses.

In its initial state , a model is always in the ** Functional **
state , which means it compiles without problems , but cannot
be used to launch experiments. The ** InError ** state

occurs when the file contains errors (syntactic or semantic
ones).

Reaching the ** Experimentable ** state requires that all errors
are eliminated and that at least one experiment is defined
in the model. The experiment is immediately displayed as a
button in the toolbar , and clicking on it will allow the

modeler to launch this experiment on your model.

Experiment buttons are updated in real -time to reflect what 's
in your code. If more than one experiment is defined ,
corresponding buttons will be displayed in addition to the
first one.

Diagram definition framework

The following figure presents the editing framework:

![images/graphical_editor/framework.png](resources/images/
graphicalEditor/framework.png)

v 1.8.2 254

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Features

agents
species

![images/graphical_editor/species.png](resources/images/
graphicalEditor/species.png)

The species feature allows the modeler to define a species
with a continuous topology. A species is always a micro -
species of another species. The top -level (macro -species of
all species) is the world species.

* ** source **: a species (macro -species)
* ** target **: -

![images/graphical_editor/Frame_Speciesdef1.png](resources/
images/graphicalEditor/Frame_Speciesdef1.png)

grid

![images/graphical_editor/grid.png](resources/images/
graphicalEditor/grid.png)

The grid feature allows the modeler to define a [species](
ManipulateBasicSpecies) with a [grid topology](GridSpecies)
. A grid is always a micro -species of another species.

* ** source **: a species (macro -species)
* ** target **: -

![images/graphical_editor/Frame_grid.png](resources/images/
graphicalEditor/Frame_grid.png)

Inheriting link
The inheriting link feature allows the modeler to define an

v 1.8.2 255

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

inheriting link between two species.

* ** source **: a species (parent)
* ** target **: a species (child)

![images/graphical_editor/inhereting_link.png](resources/
images/graphicalEditor/inhereting_link.png)

world

![images/graphical_editor/world.png](resources/images/
graphicalEditor/world.png)

When a model is created , a world species is always defined. It
represents the global part of the model. The world species

, which is unique , is the top -level species. All other
species are micro -species of the world species.

![images/graphical_editor/Frame_world.png](resources/images/
graphicalEditor/Frame_world.png)

agent features

action

![images/graphical_editor/action.png](resources/images/
graphicalEditor/action.png)

The action feature allows the modeler to define an action for
a species.

* ** source **: a species (owner of the action)
* ** target **: -

![images/graphical_editor/Frame_action.png](resources/images/
graphicalEditor/Frame_action.png)

reflex

![images/graphical_editor/reflex.png](resources/images/

v 1.8.2 256

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

graphicalEditor/reflex.png)

The reflex feature allows the modeler to define a reflex for a
species.

* ** source **: a species (owner of the reflex)
* ** target **: -

![images/graphical_editor/Frame_reflex.png](resources/images/
graphicalEditor/Frame_reflex.png)

aspect

![images/graphical_editor/aspect.png](resources/images/
graphicalEditor/aspect.png)

The aspect feature allows the modeler to define an aspect for
a species.

* ** source **: a species (owner of the aspect)
* ** target **: -

![images/graphical_editor/Frame_aspect.png](resources/images/
graphicalEditor/Frame_aspect.png)

![images/graphical_editor/Frame_Aspect_layer.png](resources/
images/graphicalEditor/Frame_Aspect_layer.png)

equation
![images/graphical_editor/equation.png](resources/images/

graphicalEditor/equation.png)

The equation feature allows the modeler to define an equation
for a species.

* ** source **: a species (owner of the equation)
* ** target **: -

experiment
GUI experiment

v 1.8.2 257

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

![images/graphical_editor/guiXP.png](resources/images/
graphicalEditor/guiXP.png)

The GUI Experiment feature allows the modeler to define a GUI
experiment.

* ** source **: world species
* ** target **: -

![images/graphical_editor/Frame_Experiment.png](resources/
images/graphicalEditor/Frame_Experiment.png)

display

![images/graphical_editor/display.png](resources/images/
graphicalEditor/display.png)

The display feature allows the modeler to define a display.

* ** source **: GUI experiment
* ** target **: -

![images/graphical_editor/Frame_display.png](resources/images/
graphicalEditor/Frame_display.png)

![images/graphical_editor/Frame_layer_display.png](resources/
images/graphicalEditor/Frame_layer_display.png)

batch experiment

![images/graphical_editor/batchxp.png](resources/images/
graphicalEditor/batchxp.png)

The Batch Experiment feature allows the modeler to define a
Batch experiment.

* ** source **: world species
* ** target **: -

v 1.8.2 258

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

BDI Architecture
Plan

![images/graphical_editor/plan.png](resources/images/
graphicalEditor/plan.png)

The Plan feature allows the modeler to define a plan for a BDI
species , i.e. a sequence of statements that will be

executed in order to fulfill a particular intention.

* ** source **: a species with a BDI architecture
* ** target **: -

s
Rule

![images/graphical_editor/rule.png](resources/images/
graphicalEditor/rule.png)

The Rule feature allows the modeler to define a rule for a BDI
species , i.e. a function executed at each iteration to

infer new desires or beliefs from the agent 's current
beliefs and desires.

* ** source **: a species with a BDI architecture
* ** target **: -

Perception

![images/graphical_editor/perception.png](resources/images/
graphicalEditor/perception.png)

The Perception feature allows the modeler to define a
perception for a BDI species , i.e. a function executed at
each iteration that updates the agent 's Belief base
according to the agent perception.

* ** source **: a species with a BDI architecture
* ** target **: -

v 1.8.2 259

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Finite State Machine Architecture
State

![images/graphical_editor/state.png](resources/images/
graphicalEditor/state.png)

The State feature allows the modeler to define a state for a
FSM species , i.e. sequence of statements that will be
executed if the agent is in this state (an agent has a
unique state at a time).

* ** source **: a species with a finite state machine
architecture

* ** target **: -

Task -based Architecture
Task

![images/graphical_editor/task.png](resources/images/
graphicalEditor/task.png)

The Task feature allows the modeler to define a task for a
Tasked -based species , i.e. sequence of statements that can
be executed , at each time step , by the agent. If an agent
owns several tasks , the scheduler chooses a task to execute
based on its current priority weight value.

* ** source **: a species with a task -based architecture
* ** target **: -

Pictogram color modification
It is possible to change the color of a pictogram.

* Right -click on a pictogram , then select the "Chance the
color".

v 1.8.2 260

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

GAML Model generation
It is possible to automatically generate a Gaml model from a

diagram.

* Right -click on the graphical framework (where the diagram
is defined), then select the "Generate Gaml model".

A new GAML model with the same name as the diagram is created
(and open).

Using Git from GAMA to version and share models

Install the Git client [Tested on the GAMA 1.8.2]

The Git client for GAMA needs to be installed as an external
plugin.

1. Help > Install new plugins ...
2. Add the following address in the text field "Work with": `

https:// download.eclipse.org/egit/updates `. (press Enter
key)

3. In the available plugins to install , choose `Git
integration for Eclipse ` > `Git integration for Eclipse `

4. Click on the Next button and follow the instructions (GAMA
will be relaunched).

Open the Git view

To use Git in GAMA select Views -> Other ... -> Show View ->
Other ...

In the Show view window that appears select Git -> Git
Repositories and click on *Open*.

![Show View Window](resources/images/recipes/gitWithGama/
ShowViewWindow.png)

Create a Local Repository

v 1.8.2 261

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

With Git you can easily create local repositories to version
your work locally. First , you have to create a GAMA project
(e.g *** GitNewProject ***) that you want to share via your

local repository.

After you have created your GAMA project , go to the Git
Repository view and click on *Create a new local Git
repository *.

![Create New Local Git Repository](resources/images/recipes/
gitWithGama/CreateLocalGitRepository.png)

In the following window specify the directory for the new
repository (select the folder of the created GAMA project -
*** GitNewProject *** -), throught the button Browse ...

![Select folder new local Repository](resources/images/recipes
/gitWithGama/SelectRepositoryFolder.png)

then hit the Create button.

![Create Button](resources/images/recipes/gitWithGama/
CreateRepositoryButton.png)

Now your local repository is created , you can add models and
files into your GAMA project. As you selected the folder
of the new created GAMA Project , the repository will not be
empty. So, it will be initialized with all the folders and
files of the GAMA project. Note the changed icons: the

project node will have a repository icon , the child nodes
will have an icon with a question mark.

![Changed icons](resources/images/recipes/gitWithGama/
ChangedIcons.png)

Before you can commit the files to your repository , you need
to add them. Simply right click the shared project 's node
and navigate to Team -> Add to Index.

![Add Ignore Commit from Menu](resources/images/recipes/

v 1.8.2 262

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

gitWithGama/AddIgnoreCommit.png)

After this operation , the question mark should change to a
plus symbol.

![Icons Changed after add](resources/images/recipes/
gitWithGama/ChangeIconsAfterAddGit.png)

To set certain folders or files to be ignored by Git , right
click them and select Team -> Ignore. The ignored items
will be stored in a file called .gitignore , which you
should add to the repository.

Commit

Now you can modify files in your project , save changes made in
your workspace to your repository and commit them. You can
do commit the project by right clicking the project node

and selecting Team -> Commit ... from the context menu. In
the Commit wizard , all files should be selected
automatically. Enter a commit message and hit the Commit
button.

![Icons Changed after add](resources/images/recipes/
gitWithGama/FirstCommitLocalRepo.png)

If the commit was successful , the plus symbols will have
turned into repository icons.

![Icons Changed after commit](resources/images/recipes/
gitWithGama/ChangedIconsAfterCommit.png)

After changing files in your project , a ">" sign will appear
right after the icon , telling you the status of these files
is dirty. Any parent folder of this file will be marked as
dirty as well.

![Changes to commit](resources/images/recipes/gitWithGama/
gitChangesToCommit.png)

v 1.8.2 263

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

If you want to commit the changes to your repository , right
click the project (or the files you want to commit) and
select Team -> Commit Enter a commit message and click
Commit to commit the selected files to your repository.

Add Files

To add a new file to the repository , you need to create it in
your shared GAMA project first. Then , the new file will
appear with a question mark.

![New file added to project](resources/images/recipes/
gitWithGama/AddNewFileGit.png)

Right click it and navigate to Team -> Add to Index. The
question mark will turn into a plus symbol and the file
will be tracked by Git , but it is not yet committed. In the
next commit , the file will be added to the repository and

the plus symbol will turn into a repository icon.

![Commit new added file](resources/images/recipes/gitWithGama/
AddedFileCommitGit.png)

Revert Changes

If you want to revert any changes , there are two options. You
can compare each file you want to revert with the HEAD
revision (or the index , or the previous version) and undo
some or all changes done. Second , you can hard reset your
project , causing any changes to be reverted.

Revert via Compare

Right click the file you want to revert and select Compare
With -> HEAD Revision. This will open a comparison with the
HEAD Revision , highlighting any changes done. You can

revert several lines. select the line you want to revert
and hit the Copy Current Change from Right to Left button (
in the toolbar).

![Revert by Compare](resources/images/recipes/gitWithGama/

v 1.8.2 264

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

RevertFilByCompareWith.png)

Revert via Reset

To reset all changes made to your project , right click the
project node and navigate to Team -> Reset Select the
branch you want to reset to (if you haven 't created any
other branches , there will be just one). Click the reset
button. All changes will be reset to this branch 's last
commit. Be careful with this option as all last changes in
your Gama Project will be lost.

![Revert by Reset](resources/images/recipes/gitWithGama/
ResetGit.png)

Clone Repositories

To checkout a remote project , you will have to clone its
repository first. Open the GAMA Import wizard: right click
the User models node -> Import ... -> Other ...

![Import git project](resources/images/recipes/gitWithGama/
ImportFromGit.png)

Select Git -> Projects from Git and click Next.

![Import git project - Next](resources/images/recipes/
gitWithGama/nextImportGitProject.png)

Select "Clone URI" and click Next.

![Repository URI](resources/images/recipes/gitWithGama/
cloneURIGitProject.png)

Now you will have to enter the repository 's location. Entering
the URI will automatically fill some fields. Complete any

other required fields and hit Next (e.g, Authentification
fields). If you use GitHub , you can copy the URI from the
web page.

![Repository location](resources/images/recipes/gitWithGama/

v 1.8.2 265

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

SourceGitRepositoryImport.png)

Select all branches you wish to clone and hit Next again.

![Branch Selection](resources/images/recipes/gitWithGama/
ImportGitProjetBranchSelection.png)

Hit next , then choose a local storage location to save the
repository in.

![Set local location](resources/images/recipes/gitWithGama/
ImportProjectLocationNext.png)

To import the projects , select the cloned repository and hit
Next.

Select Import Existing Projects and hit Next.

![Select a wizard to use](resources/images/recipes/gitWithGama
/ImportProjectSelectWizardToUse.png)

In the following window , select all projects you want to
import and click Finish.

![Select projects to import](resources/images/recipes/
gitWithGama/ImportGitSelectProjects.png)

The projects should now appear in the Models Explorer. (Note
the repository symbol in the icons indicating that the
projects are already shared .)

![Imported projects](resources/images/recipes/gitWithGama/
ImportedProjectsGit.png)

Create Branches

To create a new branch in your repository , right click your
project and navigate to Team -> Switch to -> New Branch ...
from the context menu. Select the branch you want to create
a new branch from , hit New branch and enter a name for the

v 1.8.2 266

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

new branch.

![Create new branch](resources/images/recipes/gitWithGama/
CreateNewBranch.png)

The new branch (NewBranch) should appear in the branch
selection window.

![Created new branch](resources/images/recipes/gitWithGama/
GamaProjectNewBranch.png)

You can see all the branches in the Git Repositories view.

![New branches view](resources/images/recipes/gitWithGama/
BranchesView.png)

If you would like to checkout the a branch , select it and
click Checkout.

![Check out a branch](resources/images/recipes/gitWithGama/
CheckOutBranch.png)

Merge

To merge one branch into another , right click the project node
and navigate to Team -> Merge ...

![Merge a branch](resources/images/recipes/gitWithGama/
GitMerge.png)

The merge will execute and a window will pop -up with the
results. The possible results are Already -up -to -date , Fast -
forward , Merged , Conflicting , Failed.

![Merge a branch](resources/images/recipes/gitWithGama/
MergePopUp.png)

Note that a conflicting result will leave the merge process
incomplete. You will have to resolve the conflicts and try
again. When there are conflicting changes in the working

v 1.8.2 267

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

project , the merge will fail.

Fetch and Pull

To update the remote branches when cloning remote repositories
(Git creates copies of the branches as local branches and

as remote branches) you will have to use Fetch. To perform
a Fetch , select Team -> Fetch From ... from the project 's
context menu.

To update your local branches , you will have to perform a
Merge operation after fetching.

Pull

Pull combines Fetch and Merge. Select Team -> Pull.

Push

Local changes made to your local branches can be pushed to
remote repositories causing a merge from your branches into
the branches of the remote repository (X pulls from Y is

the same as Y pushes to X). The Push wizard is pretty much
the same as the Fetch wizard.

![Git Push](resources/images/recipes/gitWithGama/GitPush.png)

History View

To show the repository history , right click it and select Team
-> Show in History. This will open the History View ,

giving an overview of the commits and allowing you to
perform several actions (creating branches/tags , revert ,
reset ...).

![Git Push](resources/images/recipes/gitWithGama/HisrtoryView.
png)

v 1.8.2 268

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Writing Unit Tests in GAML

[Unit testing](https://en.wikipedia.org/wiki/Unit_testing) is
an essential instrument to ensure the quality of any
software and it has been implemented in GAMA: this allows
in particular that parts of the model are behaving as
expected and that evolutions in the model do not introduce
unexpected changes. To these purposes , the modeler can
define a set of assertions that will be tested. Before the
execution of the embedded set of instructions , if a setup
is defined in the species , model or experiment , it is
executed. In a test , if one assertion fails , the evaluation
of other assertions continue.

Writing tests in GAML involves the use of 4 keywords:

* [`assert ` statement](Statements#assert),
* [`test ` statement](Statements#test),
* [`setup ` statement](Statements#setup),
* [`type: test ` facet of `experiment `](ModelOrganization#

experiment -declarations).

In this unit testing tutorial , we intend to show how to write
unit tests in GAML using the statement `test `.

What is `test ` in GAML?

In GAML , the statement `test ` allows the modeler to write a
part of code lines to verify if portions of our GAML model
are doing exactly what they are expected to do: this is
done through the use of several assertions (using `assert `
statements). This is done independently from other parts of
the model.

To write a typical GAML unit test , we can follow three steps:

1. Define a set of attributes to use within the test ,
2. Write initialization instructions ,
3. Write assertions.

v 1.8.2 269

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The aim of using unit testing is to observe the resulting
behavior of some parts of our model. If the observed
behavior is consistent with the expectations , the unit test
passes , otherwise , it fails , indicating that there is a

problem concerning the tested part of the model.

Introduction to assertions

The basis of Unit tests is to check that given pieces of codes
provide expected results. To this purpose , the modeler can
write some basic tests that should be true: s/he thus

asserts that such expression can be evaluated to true using
the `assert ` statement. Here are some examples of `assert `
uses:� �

assert 1 + 1 = 2; assert isGreater(5, 6) = false; assert rnd(1.0) <= 1.0;� �
With the above statements , the modeler states the `1+1` is

equal to `2`, `isGreater (5,6)` is false (given the fact
that `isGreater ` is an action defined in a species) and `
rnd (1.0)` always returns a value below 1.0.

`assert ` can be used in any behavior statement (as an example
in a `reflex `, a `state ` or in a `test `. Note that , if they
are written outside of a `test ` and that the test is not

fulfilled , then an exception is thrown during their
execution.

As an example , the following model throws the exception: `
Assert failed 3>4` (as obviously 3 is not greater than 4
and that the GAML `>` operator is properly implemented on
this case).� �

model NewModel

global { init { assert 3 > 4; } }

experiment NewModel type: gui {}� �
To be able to have a dashboard of the state of your model w.r.

t. the unit tests , they need to be written in a `test ` and
the model launched with an experiment of type `test `.

v 1.8.2 270

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

How to write a GAML `test `?

A `test ` statement can be used in any species (regular species
, global or experiment species) everywhere a `reflex ` can
be used. Its aim is to gather several asserts in one block.
If the tests are executed with any kind of experiment but

`test `, they will be executed , but nothing is reported.
With a `test ` experiment , a kind of dashboard will be
displayed.

So we will consider that we start by adding an `experiment `
with `type ` set to `test `. The following code shows an
example.� �

experiment MyTest type: test autorun: true { . . . }� �
Let 's consider the following GAML code:� �
model TestModel
global { init { create test_agent number: 1; } }
species test_agent { bool isGreater (int p1, int p2) { if (p1 >= p2) { return true; }
else { return false; } }� �
test testsOK {
assert isGreater(5, 6) = false;
assert isGreater(6, 5) = true;
}

test failingTests {
assert ! isGreater(6, 6);
}� �
}
experiment MyTest type: test autorun: true { }� �
In this example , the defined action , `isGreater `, returns `

true ` if a parameter `p1` is greater than a parameter `p2`
and `false ` if not. So to test it , we declare a unit test

v 1.8.2 271

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

using `test ` and add inside several `assert ` statements.
For instance , `assert isGreater(5, 6) = false;` will return

`true ` if the result of `isGreater (5, 6)` is really false
and `false ` if not. So , if the action `isGreater ` is well -
defined , it should return `false `. Considering that "
greater" and "greater and equal" should be two different
functions , we add a test to check that `isGreater ` does not
return true in case of equality of its 2 operands. In this
case , as the action is not -well implemented the test fails

.

The following picture illustrates the GUI dashboard for unit
tests , showing for each test and even each assert whether
it passes or fails. Clicking on the button will display in
the GAML editor the code line.

![Interface for unit tests execution .](resources/images/
recipes/unit_tests_isgreater.png)

Use of the `setup ` statement

In a species where we want to execute several tests , it is
common to want to have the same initial states , in order to
prevent the previous tests to have modified the tested

object and thus altering the unit test results. To this
purpose , we can add the `setup ` statement in the species
and use it to set the expected initial state of the object
to be tested. It will be called before every `test `.

As an example , in the following model , we want to test the
operator `translated_by ` and `translated_to ` on a point. As
each of them will modify the point object to be tested ,

wed add a `setup ` to reinitialize it.

```
model TestModel

global {
geometry loc <- {0 ,0};

setup {

v 1.8.2 272



GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

loc <- {0,0};
}

test translate_to {
loc <- loc translated_to {10 ,10};
loc <- loc translated_to {10 ,10};
assert loc.location = {10 ,10};
}

test translated_by {
loc <- loc translated_by {10 ,10};
loc <- loc translated_by {10 ,10};
assert loc.location = {20 ,20};
}

}

experiment MyTest type: test autorun: true { }
```

The test experiment

It is also possible to write tests in the `experiment `. The
main idea is here to totally separate the model and its
tests.

As an example let 's consider the following GAML code , which
aims to test several GAML operators , related to the graph
datatype:� �

model TestGraphs
global { graph the_graph;� �
init {
int i <- 10;
create node_agent number: 7 {

location <- {i, i + ((i / 10) mod 2) * 10};
i <- i + 10;

}

the_graph <- as_distance_graph(node_agent , 30.0);
}

v 1.8.2 273

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

� �
}
species edge_agent { aspect default { draw shape color: #black; } }
species node_agent { aspect default { draw circle(1) color: #red; loop neigh over:
the_graph neighbors_of self { draw line([self.location, agent(neigh).location]) color:
#black; } } }
experiment loadgraph type: gui { output { display map type: opengl { species
edge_agent; species node_agent; } } }
experiment MyTest type: test autorun: true { test “MyFirstTest” { write the_graph;
write (node_agent[2]); write (“Degrees”); write (the_graph in_degree_of (node_-
agent[2])); write (the_graph out_degree_of (node_agent[2])); write (the_graph
degree_of (node_agent[2])); assert the_graph in_degree_of (node_agent[2]) = 4;
write (the_graph out_degree_of (node_agent[2])); assert the_graph out_degree_of
(node_agent[2]) = 4; assert the_graph degree_of (node_agent[2]) = 8; } } ““

v 1.8.2 274

Chapter 27

Known issues

Crash when using openGL on Windows

If you are using GAMA with Windows, and your video card is a Radeon AMD, then
GAMA can crash while running a simulation using OpenGL. To avoid this issue, you
have to disable your video card. This will slow down a bit the performances, but at
least you will be able to run GAMA without those annoying crashes.
To disable your video card, open the control panel, click on Hardware and Sound /
Devices and Printers / Device manager, and then right click on your video card (as
shown in the following image)

Grid not displayed right using openGL

When you try to display a grid with opengl, the cells have not a regular shape (as it
is shown in the following image)
The reason of this problem is that we can only map a grid of 2ˆn x 2ˆn cells in the
plan. Here are some solutions for this problem:

• Choose a grid with 2ˆn*2ˆn dimension (such as 16x16, or 32x32)
• Display the grid in java2D
• Display the grid as species, and not as grid (note that the difference in term

of performance between displaying a grid as a grid and as a species is not so
important for opengl displays. It has originally been done for java2D displays)

275

GAMA v1.8.2 documentation Chapter 27. Known issues

Figure 27.1: resources/images/recipes/disable_amd_radeon.png

v 1.8.2 276

GAMA v1.8.2 documentation Chapter 27. Known issues

Figure 27.2: resources/images/recipes/grid_display_problem.png

v 1.8.2 277

GAMA v1.8.2 documentation Chapter 27. Known issues

v 1.8.2 278

Part V

GAML References

279

Chapter 28

GAML References

The GAML references describe in details all the keywords of the GAML language. In
particular, they detail all the expressions (operators, units, literals. . .), statements,
data types, file types, skills, architectures, built-in species. . .

Index of keywords

The Index page contains the exhaustive list of the GAML keywords, with a link to a
detailed description of each of them.

281

expressions
Index

GAMA v1.8.2 documentation Chapter 28. GAML References

v 1.8.2 282

Chapter 29

Built-in Species

This file is automatically generated from java files. Do Not Edit It.

It is possible to use in the models a set of built-in agents. These agents allow to
directly use some advance features like clustering, multi-criteria analysis, etc. The
creation of these agents are similar as for other kinds of agents:� �
create species: my_built_in_agent returns: the_agent;� �
So, for instance, to be able to use clustering techniques in the model:� �
create cluster_builder returns: clusterer;� �

Table of Contents

agent, AgentDB, base_edge, experiment, graph_edge, graph_node, physical_world,

283

GAMA v1.8.2 documentation Chapter 29. Built-in Species

agent

Variables

• host (-29): Returns the agent that hosts the population of the receiver agent

• location (point): Returns the location of the agent

• name (string): Returns the name of the agent (not necessarily unique in its
population)

• peers (list): Returns the population of agents of the same species, in the
same host, minus the receiver agent

• shape (geometry): Returns the shape of the receiver agent

Actions

init

Returned type: unknown

step

Returned type: unknown

AgentDB

AgentDB is an abstract species that can be extended to provide agents with capabilities
to access databases

v 1.8.2 284

GAMA v1.8.2 documentation Chapter 29. Built-in Species

Variables

• agents (list): Returns the list of agents for the population(s) of which the
receiver agent is a direct or undirect host

• members (container): Returns the list of agents for the population(s) of which
the receiver agent is a direct host

Actions

close

Close the established database connection.

Returned type: unknown : Returns null if the connection was successfully closed,
otherwise, it returns an error.

connect

Establish a database connection.

Returned type: unknown : Returns null if connection to the server was successfully
established, otherwise, it returns an error.

Additional facets:

• params (map): Connection parameters

executeUpdate

- Make a connection to DBMS - Executes the SQL statement in this
PreparedStatement object, which must be an SQL INSERT, UPDATE or
DELETE statement; or an SQL statement that returns nothing, such as
a DDL statement.

Returned type: int : Returns the number of updated rows.

v 1.8.2 285

GAMA v1.8.2 documentation Chapter 29. Built-in Species

Additional facets:

• updateComm (string): SQL commands such as Create, Update, Delete, Drop
with question mark

• values (list): List of values that are used to replace question mark

getParameter

Returns the list used parameters to make a connection to DBMS (dbtype,
url, port, database, user and passwd).

Returned type: unknown : Returns the list of used parameters to make a connection
to DBMS.

insert

- Make a connection to DBMS - Executes the insert statement.

Returned type: int : Returns the number of updated rows.

Additional facets:

• into (string): Table name

• columns (list): List of column name of table

• values (list): List of values that are used to insert into table. Columns and
values must have same size

isConnected

To check if connection to the server was successfully established or not.

Returned type: bool : Returns true if connection to the server was successfully
established, otherwise, it returns false.

v 1.8.2 286

GAMA v1.8.2 documentation Chapter 29. Built-in Species

select

Make a connection to DBMS and execute the select statement.

Returned type: list : Returns the obtained result from executing the select
statement.

Additional facets:

• select (string): select string

• values (list): List of values that are used to replace question marks

setParameter

Sets the parameters to use in order to make a connection to the DBMS
(dbtype, url, port, database, user and passwd).

Returned type: unknown : null.

Additional facets:

• params (map): Connection parameters

testConnection

To test a database connection .

Returned type: bool : Returns true if connection to the server was successfully
established, otherwise, it returns false.

Additional facets:

• params (map): Connection parameters

v 1.8.2 287

GAMA v1.8.2 documentation Chapter 29. Built-in Species

timeStamp

Get the current time of the system.

Returned type: float : Current time of the system in millisecondes

base_edge

A built-in species for agents representing the edges of a graph, from which one can
inherit

Variables

• source (agent): The source agent of this edge

• target (agent): The target agent of this edge

Actions

experiment

An experiment is a declaration of the way to conduct simulations on a model. Any
experiment attached to a model is a species (introduced by the keyword ‘experiment’
which directly or indirectly inherits from an abstract species called ‘experiment’ itself.
This abstract species (sub-species of ‘agent’) defines several attributes and actions
that can then be used in any experiment. ‘experiment’ defines several attributes,
which, in addition to the attributes inherited from agent, form the minimal set of
knowledge any experiment will have access to.

v 1.8.2 288

GAMA v1.8.2 documentation Chapter 29. Built-in Species

Variables

• minimum_cycle_duration (float): The minimum duration (in seconds) a
simulation cycle should last. Default is 0. Units can be used to pass values
smaller than a second (for instance ‘10 °msec’)

• model_path (string): Contains the absolute path to the folder in which the
current model is located

• project_path (string): Contains the absolute path to the project in which the
current model is located

• rng (string): The random number generator to use for this simulation. Three
different ones are at the disposal of the modeler: mersenne represents the
default generator, based on the Mersenne-Twister algorithm. Very reliable;
cellular is a cellular automaton based generator that should be a bit faster, but
less reliable; and java invokes the standard Java generator

• rng_usage (int): Returns the number of times the random number generator
of the experiment has been drawn

• seed (float): The seed of the random number generator. Each time it is set,
the random number generator is reinitialized. WARNING: Setting it to zero
actually means that you let GAMA choose a random seed

• simulation (-27): Contains a reference to the current simulation being run by
this experiment

• simulations (list): Contains the list of currently running simulations

• warnings (boolean): The value of the preference ‘Consider warnings as errors’

• workspace_path (string): Contains the absolute path to the workspace of
GAMA

v 1.8.2 289

GAMA v1.8.2 documentation Chapter 29. Built-in Species

Actions

compact_memory

Forces a ‘garbage collect’ of the unused objects in GAMA

Returned type: unknown

update_outputs

Forces all outputs to refresh, optionally recomputing their values

Returned type: unknown

Additional facets:

• recompute (boolean): Whether or not to force the outputs to make a computa-
tion step

graph_edge

A species that represents an edge of a graph made of agents. The source and the
target of the edge should be agents

Variables

• source (agent): The source agent of this edge

• target (agent): The target agent of this edge

Actions

v 1.8.2 290

GAMA v1.8.2 documentation Chapter 29. Built-in Species

graph_node

A base species to use as a parent for species representing agents that are nodes of a
graph

Variables

• my_graph (graph): A reference to the graph containing the agent

Actions

related_to

This operator should never be called

Returned type: bool

Additional facets:

• other (agent): The other agent

physical_world

The base species for models that act as a 3D physical world. Can register and manage
agents provided with either the ‘static_body’ or ‘dynamic_body’ skill. Inherits from
‘static_body’, so it can also act as a physical body itself (with a ‘mass’, ‘friction’,
‘gravity’), of course without motion – in this case, it needs to register itself as a
physical agent using the ‘register’ action

v 1.8.2 291

GAMA v1.8.2 documentation Chapter 29. Built-in Species

Variables

• accurate_collision_detection (boolean): Enables or not a better (but slower)
collision detection

• automated_registration (boolean): If set to true (the default), makes the
world automatically register and unregister agents provided with either the
‘static_body’ or ‘dynamic_body’ skill. Otherwise, they must be registered
using the ‘register’ action, which can be useful when only some agents need to
be considered as ‘physical agents’. Note that, in any case, the world needs to
manually register itself if it is supposed to act as a physical body.

• gravity (point): Defines the value of gravity in this world. The default value
is set to -9.80665 on the z-axis, that is 9.80665 m/s2 towards the ‘bottom’ of
the world. Can be set to any direction and intensity and applies to all the
bodies present in the physical world

• library (string): This attribute allows to manually switch between two
physics library, named ‘bullet’ and ‘box2D’. The Bullet library, which comes
in two flavors (see ‘use_native’) and the Box2D libray in its Java version
(https://github.com/jbox2d/jbox2d). Bullet is the default library but models
in 2D should better use Box2D

• max_substeps (int): If equal to 0 (the default), makes the simulation engine be
stepped alongside the simulation (no substeps allowed). Otherwise, sets the
maximum number of physical simulation substeps that may occur within one
GAMA simulation step

• terrain (31): This attribute is a matrix of float that can be used to represent
a 3D terrain. The shape of the world, in that case, should be a box, where
thedimension on the z-axis is used to scale the z-values of the DEM. The world
needs to be register itself as a physical object

• use_native (boolean): This attribute allows to manually switch be-
tween the Java version of the Bullet library (JBullet, a modified ver-
sion of https://github.com/stephengold/jbullet, which corresponds to ver-
sion 2.72 of the original library) and the native Bullet library (Libbulletjme,
https://github.com/stephengold/Libbulletjme, which is kept up-to-date with

v 1.8.2 292

GAMA v1.8.2 documentation Chapter 29. Built-in Species

the 3.x branch of the original library).The native version is the default one
unless the libraries cannot be loaded, making JBullet the default

Actions

register

An action that allows to register agents in this physical world. Unregis-
tered agents will not be governed by the physical laws of this world. If
the world is to play a role in the physical world,then it needs to register
itself (i.e. do register([self]);
Returned type: unknown

Additional facets:

• bodies (container): the list or container of agents to register in this physical
world

v 1.8.2 293

GAMA v1.8.2 documentation Chapter 29. Built-in Species

v 1.8.2 294

Chapter 30

Built-in Skills

This file is automatically generated from java files. Do Not Edit It.

Introduction

Skills are built-in modules, written in Java, that provide a set of related built-in
variables and built-in actions (in addition to those already provided by GAMA) to the
species that declare them. A declaration of skill is done by filling the skills attribute
in the species definition:� �
species my_species skills: [skill1 , skill2] {

...
}� �
Skills have been designed to be mutually compatible so that any combination of them
will result in a functional species. An example of skill is the moving skill.
So, for instance, if a species is declared as:� �
species foo skills: [moving]{
...
}� �

295

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Its agents will automatically be provided with the following variables : speed, heading,
destination and the following actions: move, goto, wander, follow in addition to
those built-in in species and declared by the modeller. Most of these variables, except
the ones marked read-only, can be customized and modified like normal variables
by the modeller. For instance, one could want to set a maximum for the speed; this
would be done by redeclaring it like this:� �
float speed max :100 min:0;� �
Or, to obtain a speed increasing at each simulation step:� �
float speed max :100 min:0 <- 1 update: speed * 1.01;� �
Or, to change the speed in a behavior:� �
if speed = 5 {

speed <- 10;
}� �

Table of Contents

advanced_driving, driving, dynamic_body, fipa, MDXSKILL, messaging, mov-
ing, moving3D, network, public_transport, public_transport_scheduler, skill_road,
skill_road_node, SQLSKILL, static_body,

advanced_driving

Variables

• acc_bias (float): the bias term used for asymmetric lane changing, parameter
‘a_bias’ in MOBIL

v 1.8.2 296

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

• acc_gain_threshold (float): the minimum acceleration gain for the vehicle to
switch to another lane, introduced to prevent frantic lane changing. Known as
the parameter ‘a_th’ in the MOBIL lane changing model

• acceleration (float): the current acceleration of the vehicle (in m/sˆ2)

• allowed_lanes (list): a list containing possible lane index values for the
attribute lowest_lane

• current_index (int): the index of the current edge (road) in the path

• current_lane (int): the current lane on which the agent is

• current_path (path): the path which the agent is currently following

• current_road (agent): the road which the vehicle is currently on

• current_target (agent): the current target of the agent

• delta_idm (float): the exponent used in the computation of free-road
acceleration in the Intelligent Driver Model

• distance_to_current_target (float): euclidean distance to the current target
node

• distance_to_goal (float): euclidean distance to the endpoint of the current
segment

• final_target (agent): the final target of the agent

• follower (agent): the vehicle following this vehicle

• ignore_oneway (boolean): if set to true, the vehicle will be able to violate
one-way traffic rule

• lane_change_cooldown (float): the duration that a vehicle must wait before
changing lanes again

v 1.8.2 297

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

• lane_change_limit (int): the maximum number of lanes that the vehicle can
change during a simulation step

• leading_distance (float): the distance to the leading vehicle

• leading_speed (float): the speed of the leading vehicle

• leading_vehicle (agent): the vehicle which is right ahead of the current
vehicle. If this is set to nil, the leading vehicle does not exist or might be very
far away.

• linked_lane_limit (int): the maximum number of linked lanes that the vehi-
cle can use; the default value is -1, i.e. the vehicle can use all available linked lanes

• lowest_lane (int): the lane with the smallest index that the vehicle is in

• max_acceleration (float): the maximum acceleration of the vehicle. Known
as the parameter ‘a’ in the Intelligent Driver Model

• max_deceleration (float): the maximum deceleration of the vehicle. Known
as the parameter ‘b’ in the Intelligent Driver Model

• max_safe_deceleration (float): the maximum deceleration that the vehicle
is willing to induce on its back vehicle when changing lanes. Known as the
parameter ‘b_save’ in the MOBIL lane changing model

• max_speed (float): the maximum speed that the vehicle can achieve. Known
as the parameter ‘v0’ in the Intelligent Driver Model

• min_safety_distance (float): the minimum distance of the vehicle’s front
bumper to the leading vehicle’s rear bumper, known as the parameter s0 in the
Intelligent Driver Model

• min_security_distance (float): the minimal distance to another vehicle

• next_road (agent): the road which the vehicle will enter next

• num_lanes_occupied (int): the number of lanes that the vehicle occupies

v 1.8.2 298

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

• on_linked_road (boolean): is the agent on the linked road?

• politeness_factor (float): determines the politeness level of the vehicle when
changing lanes. Known as the parameter ‘p’ in the MOBIL lane changing
model

• proba_block_node (float): probability to block a node (do not let other vehicle
cross the crossroad), within one second

• proba_lane_change_down (float): probability to change to a lower lane (right
lane if right side driving) to gain acceleration, within one second

• proba_lane_change_up (float): probability to change to a upper lane (left lane
if right side driving) to gain acceleration, within one second

• proba_respect_priorities (float): probability to respect priority (right or
left) laws, within one second

• proba_respect_stops (list): probability to respect stop laws - one value for
each type of stop, within one second

• proba_use_linked_road (float): probability to change to a linked lane to gain
acceleration, within one second

• real_speed (float): the actual speed of the agent (in meter/second)

• right_side_driving (boolean): are vehicles driving on the right size of the road?

• safety_distance_coeff (float): the coefficient for the computation of the
the min distance between two vehicles (according to the vehicle speed -
security_distance =max(min_security_distance, security_distance_coeff *
min(self.real_speed, other.real_speed))

• security_distance_coeff (float): the coefficient for the computation of
the the min distance between two vehicles (according to the vehicle speed
- safety_distance =max(min_safety_distance, safety_distance_coeff *
min(self.real_speed, other.real_speed))

v 1.8.2 299

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

• segment_index_on_road (int): current segment index of the agent on the
current road

• speed (float): the speed of the agent (in meter/second)

• speed_coeff (float): speed coefficient for the speed that the vehicle want to
reach (according to the max speed of the road)

• targets (list): the current list of points that the agent has to reach (path)

• time_headway (float): the time gap that to the leading vehicle that the driver
must maintain. Known as the parameter ‘T’ in the Intelligent Driver Model

• time_since_lane_change (float): the elapsed time since the last lane change

• using_linked_road (boolean): indicates if the vehicle is occupying at least one
lane on the linked road

• vehicle_length (float): the length of the vehicle (in meters)

• violating_oneway (boolean): indicates if the vehicle is moving in the wrong
direction on an one-way (unlinked) road

Actions

advanced_follow_driving

moves the agent towards along the path passed in the arguments while
considering the other agents in the network (only for graph topology)

Returned type: float : the remaining time

Additional facets:

• path (path): a path to be followed.

v 1.8.2 300

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

• target (point): the target to reach

• speed (float): the speed to use for this move (replaces the current value of speed)

• time (float): time to travel

Examples:� �
do osm_follow path: the_path on: road_network;� �
choose_lane

Override this if you want to manually choose a lane when entering new
road. By default, the vehicle tries to stay in the current lane. If the new
road has fewer lanes than the current one and the current lane index is
too big, it tries to enter the most uppermost lane.

Returned type: int : an integer representing the lane index

Additional facets:

• new_road (agent): the new road that’s the vehicle is going to enter

compute_path

Action to compute the shortest path to the target node, or shortest path
based on the provided list of nodes

Returned type: path : the computed path, or nil if no valid path is found

Additional facets:

• graph (graph): the graph representing the road network

• target (agent): the target node to reach

v 1.8.2 301

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

• source (agent): the source node (optional, if not defined, closest node to the
agent location)

• nodes (list): the nodes forming the resulting path

Examples:� �
do compute_path graph: road_network target: target_node;
do compute_path graph: road_network nodes: [node1 , node5 ,

node10];� �
drive

action to drive toward the target
Returned type: bool

Examples:� �
do drive;� �
drive_random

action to drive by chosen randomly the next road
Returned type: bool

Additional facets:

• graph (graph): a graph representing the road network

• proba_roads (map): a map containing for each road (key), the probability to
be selected as next road (value)

Examples:� �
do drive_random init_node: some_node;� �
v 1.8.2 302

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

external_factor_impact

action that allows to define how the remaining time is impacted by exter-
nal factor

Returned type: float : the remaining time

Additional facets:

• new_road (agent): the road on which to the vehicle wants to go

• remaining_time (float): the remaining time

Examples:� �
do external_factor_impact new_road: a_road remaining_time:

0.5;� �
force_move

action to drive by chosen randomly the next road

Returned type: float

Additional facets:

• lane (int): the lane on which to make the agent move

• acceleration (float): acceleration of the vehicle

• time (float): time of move

Examples:� �
do drive_random init_node: some_node;� �
v 1.8.2 303

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

lane_choice

action to choose a lane
Returned type: int : the chosen lane, return -1 if no lane can be taken

Additional facets:

• new_road (agent): the road on which to choose the lane

Examples:� �
do lane_choice new_road: a_road;� �
on_entering_new_road

override this if you want to do something when the vehicle enters a new
road (e.g. adjust parameters)
Returned type: void

path_from_nodes

action to compute a path from a list of nodes according to a given graph
Returned type: path : the computed path, return nil if no path can be taken

Additional facets:

• graph (graph): the graph representing the road network

• nodes (list): the list of nodes composing the path

Examples:� �
do compute_path_from_nodes graph: road_network nodes: [node1 ,

node5 , node10];� �
v 1.8.2 304

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

ready_to_cross

action to test if the vehicle cross a road node to move to a new road

Returned type: bool : true if the vehicle can cross the road node, false otherwise

Additional facets:

• node (agent): the road node to test

• new_road (agent): the road to test

Examples:� �
do is_ready_next_road new_road: a_road lane: 0;� �
speed_choice

action to choose a speed

Returned type: float : the chosen speed

Additional facets:

• new_road (agent): the road on which to choose the speed

Examples:� �
do speed_choice new_road: the_road;� �
test_next_road

action to test if the vehicle can take the given road

Returned type: bool : true (the vehicle can take the road) or false (the vehicle
cannot take the road)

v 1.8.2 305

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

• new_road (agent): the road to test

Examples:� �
do test_next_road new_road: a_road;� �
unregister

remove the vehicle from its current roads
Returned type: bool

Examples:� �
do unregister� �

driving

Variables

• lanes_attribute (string): the name of the attribut of the road agent that
determine the number of road lanes

• living_space (float): the min distance between the agent and an obstacle (in
meter)

• obstacle_species (list): the list of species that are considered as obstacles

• speed (float): the speed of the agent (in meter/second)

• tolerance (float): the tolerance distance used for the computation (in meter)

v 1.8.2 306

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Actions

follow_driving

moves the agent along a given path passed in the arguments while con-
sidering the other agents in the network.
Returned type: path : optional: the path followed by the agent.

Additional facets:

• speed (float): the speed to use for this move (replaces the current value of speed)

• path (path): a path to be followed.

• return_path (boolean): if true, return the path followed (by default: false)

• move_weights (map): Weigths used for the moving.

• living_space (float): min distance between the agent and an obstacle (replaces
the current value of living_space)

• tolerance (float): tolerance distance used for the computation (replaces the
current value of tolerance)

• lanes_attribute (string): the name of the attribut of the road agent that
determine the number of road lanes (replaces the current value of lanes_-
attribute)

Examples:� �
do follow speed: speed * 2 path: road_path;� �
goto_driving

moves the agent towards the target passed in the arguments while con-
sidering the other agents in the network (only for graph topology)
Returned type: path : optional: the path followed by the agent.

v 1.8.2 307

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

• target (geometry): the location or entity towards which to move.

• speed (float): the speed to use for this move (replaces the current value of speed)

• on (any type): list, agent, graph, geometry that restrains this move (the agent
moves inside this geometry)

• return_path (boolean): if true, return the path followed (by default: false)

• move_weights (map): Weigths used for the moving.

• living_space (float): min distance between the agent and an obstacle (replaces
the current value of living_space)

• tolerance (float): tolerance distance used for the computation (replaces the
current value of tolerance)

• lanes_attribute (string): the name of the attribut of the road agent that
determine the number of road lanes (replaces the current value of lanes_-
attribute)

Examples:� �
do gotoTraffic target: one_of (list (species (self))) speed:

speed * 2 on: road_network living_space: 2.0;� �

dynamic_body

Variables

• angular_damping (float): Between 0 and 1. an angular decelaration coefficient
that occurs even without contact

v 1.8.2 308

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

• angular_velocity (point): The angular velocity of the agent in the three
directions, expressed as a point.

• contact_damping (float): Between 0 and 1. a decelaration coefficient that
occurs in case of contact. Only available in the native Bullet library (no effect
on the Java implementation)

• damping (float): Between 0 and 1. a linear decelaration coefficient that occurs
even without contact

• velocity (point): The linear velocity of the agent in the three directions,
expressed as a point.

Actions

apply

An action that allows to apply different effects to the object, like forces,
impulses, etc.

Returned type: unknown

Additional facets:

• clearance (boolean): If true clears all forces applied to the agent and clears its
veolicity as well

• impulse (point): An idealised change of momentum. Adds to the velocity of
the object. This is the kind of push that you would use on a pool billiard ball.

• force (point): Move (push) the object once with a certain moment, expressed
as a point (vector). Adds to the existing forces.

• torque (point): Rotate (twist) the object once around its axes, expressed as a
point (vector)

v 1.8.2 309

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

fipa

The fipa skill offers some primitives and built-in variables which enable agent to
communicate with each other using the FIPA interaction protocol.

Variables

• accept_proposals (list): A list of ‘accept_proposal’ performative messages in
the agent’s mailbox

• agrees (list): A list of ‘agree’ performative messages.

• cancels (list): A list of ‘cancel’ performative messages.

• cfps (list): A list of ‘cfp’ (call for proposal) performative messages.

• conversations (list): A list containing the current conversations of agent.
Ended conversations are automatically removed from this list.

• failures (list): A list of ‘failure’ performative messages.

• informs (list): A list of ‘inform’ performative messages.

• proposes (list): A list of ‘propose’ performative messages .

• queries (list): A list of ‘query’ performative messages.

• refuses (list): A list of ‘propose’ performative messages.

• reject_proposals (list): A list of ‘reject_proposal’ performative messages.

• requests (list): A list of ‘request’ performative messages.

• requestWhens (list): A list of ‘request-when’ performative messages.

• subscribes (list): A list of ‘subscribe’ performative messages.

v 1.8.2 310

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Actions

accept_proposal

Replies a message with an ‘accept_proposal’ performative message.
Returned type: unknown

Additional facets:

• message (24): The message to be replied

• contents (list): The content of the replying message

agree

Replies a message with an ‘agree’ performative message.
Returned type: unknown

Additional facets:

• message (24): The message to be replied

• contents (list): The content of the replying message

cancel

Replies a message with a ‘cancel’ peformative message.
Returned type: unknown

Additional facets:

• message (24): The message to be replied

• contents (list): The content of the replying message

v 1.8.2 311

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

cfp

Replies a message with a ‘cfp’ performative message.

Returned type: unknown

Additional facets:

• message (24): The message to be replied

• contents (list): The content of the replying message

end_conversation

Reply a message with an ‘end_conversation’ peprformative message. This
message marks the end of a conversation. In a ‘no-protocol’ conversation,
it is the responsible of the modeler to explicitly send this message to
mark the end of a conversation/interaction protocol. Please note that if
the contents of the messages of the conversation are not read, then this
command has no effect (i.e. it must be read by at least one of the agents
in the conversation)

Returned type: unknown

Additional facets:

• message (24): The message to be replied

• contents (list): The content of the replying message

failure

Replies a message with a ‘failure’ performative message.

Returned type: unknown

v 1.8.2 312

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

• message (24): The message to be replied

• contents (list): The content of the replying message

inform

Replies a message with an ‘inform’ performative message.

Returned type: unknown

Additional facets:

• message (24): The message to be replied

• contents (list): The content of the replying message

propose

Replies a message with a ‘propose’ performative message.

Returned type: unknown

Additional facets:

• message (24): The message to be replied

• contents (list): The content of the replying message

query

Replies a message with a ‘query’ performative message.

Returned type: unknown

v 1.8.2 313

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

• message (24): The message to be replied

• contents (list): The content of the replying message

refuse

Replies a message with a ‘refuse’ performative message.

Returned type: unknown

Additional facets:

• message (24): The message to be replied

• contents (list): The contents of the replying message

reject_proposal

Replies a message with a ‘reject_proposal’ performative message.

Returned type: unknown

Additional facets:

• message (24): The message to be replied

• contents (list): The content of the replying message

reply

Replies a message. This action should be only used to reply a message in
a ‘no-protocol’ conversation and with a ‘user defined performative’. For
performatives supported by GAMA (i.e., standard FIPA performatives),
please use the ‘action’ with the same name of ‘performative’. For example,

v 1.8.2 314

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

to reply a message with a ‘request’ performative message, the modeller
should use the ‘request’ action.
Returned type: unknown

Additional facets:

• message (24): The message to be replied

• performative (string): The performative of the replying message

• contents (list): The content of the replying message

request

Replies a message with a ‘request’ performative message.
Returned type: unknown

Additional facets:

• message (24): The message to be replied

• contents (list): The content of the replying message

send

Starts a conversation/interaction protocol.
Returned type: msi.gaml.extensions.fipa.FIPAMessage

Additional facets:

• to (list): A list of receiver agents

• contents (list): The content of the message. A list of any GAML type

v 1.8.2 315

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

• performative (string): A string, representing the message performative

• protocol (string): A string representing the name of interaction protocol

start_conversation

Starts a conversation/interaction protocol.

Returned type: msi.gaml.extensions.fipa.FIPAMessage

Additional facets:

• to (list): A list of receiver agents

• contents (list): The content of the message. A list of any GAML type

• performative (string): A string, representing the message performative

• protocol (string): A string representing the name of interaction protocol

subscribe

Replies a message with a ‘subscribe’ performative message.

Returned type: unknown

Additional facets:

• message (24): The message to be replied

• contents (list): The content of the replying message

v 1.8.2 316

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

MDXSKILL

This skill allows agents to be provided with actions and attributes in order to connect
to MDX databases

Variables

Actions

select

Returned type: list<unknown>

Additional facets:

• params (map): Connection parameters

• onColumns (string): select string with question marks

• onRows (list): List of values that are used to replace question marks

• from (list): List of values that are used to replace question marks

• where (list): List of values that are used to replace question marks

• values (list): List of values that are used to replace question marks

testConnection

Returned type: bool

v 1.8.2 317

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

• params (map): Connection parameters

timeStamp

Returned type: float

messaging

A simple skill that provides agents with a mailbox than can be filled with messages

Variables

• mailbox (list): The list of messages that can be consulted by the agent

Actions

send

Returned type: message

Additional facets:

• to (any type): The agent, or server, to which this message will be sent to

• contents (any type): The contents of the message, an arbitrary object

v 1.8.2 318

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

moving

The moving skill is intended to define the minimal set of behaviours required for
agents that are able to move on different topologies

Variables

• current_edge (geometry): Represents the agent/geometry on which the agent
is located (only used with a graph)

• current_path (path): Represents the path on which the agent is moving on
(goto action on a graph)

• destination (point): Represents the next location of the agent if it keeps its
current speed and heading (read-only). ** Only correct in continuous topologies
and may return nil values if the destination is outside the environment **

• heading (float): Represents the absolute heading of the agent in degrees.

• location (point): Represents the current position of the agent

• real_speed (float): Represents the actual speed of the agent (in meter/second)

• speed (float): Represents the speed of the agent (in meter/second)

Actions

follow

moves the agent along a given path passed in the arguments.
Returned type: path : optional: the path followed by the agent.

Additional facets:

• speed (float): the speed to use for this move (replaces the current value of speed)

v 1.8.2 319

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

• path (path): a path to be followed.

• move_weights (map): Weights used for the moving.

• return_path (boolean): if true, return the path followed (by default: false)

Examples:� �
do follow speed: speed * 2 path: road_path;� �
goto

moves the agent towards the target passed in the arguments.

Returned type: path : optional: the path followed by the agent.

Additional facets:

• target (geometry): the location or entity towards which to move.

• speed (float): the speed to use for this move (replaces the current value of speed)

• on (any type): graph, topology, list of geometries or map of geometries that
restrain this move

• recompute_path (boolean): if false, the path is not recompute even if the graph
is modified (by default: true)

• return_path (boolean): if true, return the path followed (by default: false)

• move_weights (map): Weights used for the moving.

Examples:� �
do goto target: (one_of road).location speed: speed * 2 on:

road_network;� �
v 1.8.2 320

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

move

moves the agent forward, the distance being computed with respect to
its speed and heading. The value of the corresponding variables are used
unless arguments are passed.
Returned type: path

Additional facets:

• speed (float): the speed to use for this move (replaces the current value of speed)

• heading (float): the angle (in degree) of the target direction.

• bounds (geometry): the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry

Examples:� �
do move speed: speed - 10 heading: heading + rnd (30) bounds:

agentA;� �
wander

Moves the agent towards a random location at the maximum distance
(with respect to its speed). The heading of the agent is chosen randomly
if no amplitude is specified. This action changes the value of heading.
Returned type: bool

Additional facets:

• speed (float): the speed to use for this move (replaces the current value of speed)

• amplitude (float): a restriction placed on the random heading choice. The new
heading is chosen in the range (heading - amplitude/2, heading+amplitude/2)

v 1.8.2 321

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

• bounds (geometry): the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry)

• on (graph): the graph that restrains this move (the agent moves on the graph

• proba_edges (map): When the agent moves on a graph, the probability to
choose another edge. If not defined, each edge has the same probability to be
chosen

Examples:� �
do wander speed: speed - 10 amplitude: 120 bounds: agentA;� �

moving3D

The moving skill 3D is intended to define the minimal set of behaviours required for
agents that are able to move on different topologies

Variables

• destination (point): continuously updated destination of the agent with
respect to its speed and heading (read-only)

• heading (float): the absolute heading of the agent in degrees (in the range
0-359)

• pitch (float): the absolute pitch of the agent in degrees (in the range 0-359)

• roll (float): the absolute roll of the agent in degrees (in the range 0-359)

• speed (float): the speed of the agent (in meter/second)

v 1.8.2 322

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Actions

move

moves the agent forward, the distance being computed with respect to
its speed and heading. The value of the corresponding variables are used
unless arguments are passed.
Returned type: path

Additional facets:

• speed (float): the speed to use for this move (replaces the current value of speed)

• heading (int): int, optional, the direction to take for this move (replaces the
current value of heading)

• pitch (int): int, optional, the direction to take for this move (replaces the
current value of pitch)

• roll (int): int, optional, the direction to take for this move (replaces the
current value of roll)

• bounds (geometry): the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry

Examples:� �
do move speed: speed - 10 heading: heading + rnd (30) bounds:

agentA;� �

network

The network skill provides new features to let agents exchange message through
network.

v 1.8.2 323

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Variables

• network_groups (list): The set of groups the agent belongs to

• network_name (string): Net ID of the agent

• network_server (list): The list of all the servers to which the agent is connected

Actions

connect

Action used by a networking agent to connect to a server or as a server.

Returned type: bool

Additional facets:

• protocol (string): protocol type (MQTT (by default), TCP, UDP): the possible
value ares ‘udp_server’, ‘udp_emitter’, ‘tcp_server’, ‘tcp_client’, otherwise
the MQTT protocol is used.

• port (int): Port number

• raw (boolean): message type raw or rich

• with_name (string): ID of the agent (its name) for the simulation

• login (string): login for the connection to the server

• password (string): password associated to the login

• force_network_use (boolean): force the use of the network even interaction
between local agents

• to (string): server URL (localhost or a server URL)

v 1.8.2 324

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

• size_packet (int): For UDP connection, it sets the maximum size of received
packets (default = 1024bits).

Examples:� �
do connect with_name:"any_name";
do connect to:\"localhost \" port :9876 with_name:"any_name";
do connect to:\" localhost \" protocol :\" MQTT\" port :9876

with_name:"any_name";
do connect to:"localhost" protocol:"udp_server" port :9876

with_name:"Server";
do connect to:"localhost" protocol:"udp_client" port :9876

with_name:"Client";
do connect to:"localhost" protocol:"udp_server" port :9877

size_packet: 4096;� �
execute

Returned type: string

Additional facets:

• command (string): command to execute

Examples:� �� �
fetch_message

Returned type: message

v 1.8.2 325

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

has_more_message

Returned type: bool

join_group

allow an agent to join a group of agents in order to broadcast messages to
other membersor to receive messages sent by other members. Note that
all members of the group called : “ALL”.

Returned type: bool

Additional facets:

• with_name (string): name of the group

Examples:� �
do join_group with_name:"group name";
do join_group with_name:"group name";do send to:"group name"

contents:"I am new in this group";� �
leave_group

leave a group of agents. The leaving agent will not receive any message
from the group. Overwhise, it can send messages to the left group

Returned type: bool

Additional facets:

• with_name (string): name of the group the agent wants to leave

v 1.8.2 326

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Examples:� �
do leave_group with_name:"my_group";� �

simulate_step

Simulate a step to test the skill. It must be used for Gama-platform test
only
Returned type: bool : nothing

Examples:� �
do simulate_step;� �

public_transport

Variables

• is_stopped (boolean): Is the transport waiting for passengers

• next_stop (agent): the next stop for the transport

• stops (list): The list of stops the bus have and will going through

• transport_line (string): The name of the bus line

• transport_state (string): ?

Actions

define_next_target

set up next target

v 1.8.2 327

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Returned type: bool

Examples:� �
do define_next_target;� �
define_noria

action to define a bus noria

Returned type: bool

Additional facets:

• pickup_point (agent): The pickup point where passengers are taken

• evacuation_point (agent): The evacuation exit

• return_point (agent): The bus re-entry on the graph

• waiting_time (int): waiting time at pickup point in second (can be ignored if
transport is full)

• return_time (int): time before the re-entry on the graph in second

Examples:� �
do define_noria pickup_point: bus_pickup evacuation_point:

exit_point return_point: exit_point waiting_time: 300
return_time: 600;� �

define_route

action to define the route of a bus

Returned type: bool

v 1.8.2 328

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

• stops (list): The stops’ list to go by

• schedule (list): The times’ list for each stop

Examples:� �
do define_route stops: bus_stops schedule: bus_schedule;� �
init_departure

initialise the vehicle

Returned type: bool

Examples:� �
do init_departure;� �
is_time_to_go

test the departure time

Returned type: bool : returns true if it’s time to go, false otherwise

Examples:� �
if(is_time_to_go ())...� �

v 1.8.2 329

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

public_transport_scheduler

Variables

• next_departure (int): ?

• next_departure_cycle (int): ?

• schedule (matrix): ?

• start_time_hour (int): The name of the bus line

• start_time_minute (int): The name of the bus line

• start_time_second (int): The name of the bus line

• stops (list): ?

• transport_line (string): The name of the bus line

Actions

check_departure

action to check if a transport must depart

Returned type: list<int>

Examples:� �
do check_departure;� �
check_next_departure

action to check next departure time

Returned type: bool

v 1.8.2 330

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Examples:� �
do check_next_departure;� �
define_schedule

action to define the schedule of a bus_line
Returned type: bool

Additional facets:

• schedule (matrix): The stop(x)/time(y) matrix[x,y]

Examples:� �
do define_schedule schedule: busline_schedule;� �

skill_road

Variables

• agents_on (list): for each lane of the road, the list of agents for each segment

• all_agents (list): the list of agents on the road

• linked_road (-199): the linked road: the lanes of this linked road will be
usable by drivers on the road

• maxspeed (float): the maximal speed on the road

• num_lanes (int): the number of lanes

v 1.8.2 331

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

• num_segments (int): the number of road segments

• segment_lengths (list): stores the length of each road segment. The index of
each element corresponds to the segment index.

• source_node (agent): the source node of the road

• target_node (agent): the target node of the road

• vehicle_ordering (list): provides information about the ordering of vehicle
on any given lane

Actions

register

register the agent on the road at the given lane

Returned type: bool

Additional facets:

• agent (agent): the agent to register on the road.

• lane (int): the lane index on which to register; if lane index >= number of
lanes, then register on the linked road

Examples:� �
do register agent: the_driver lane: 0� �
unregister

unregister the agent on the road

Returned type: bool

v 1.8.2 332

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

• agent (agent): the agent to unregister on the road.

Examples:� �
do unregister agent: the_driver� �

skill_road_node

Variables

• block (map): define the list of agents blocking the node, and for each agent, the
list of concerned roads

• priority_roads (list): the list of priority roads

• roads_in (list): the list of input roads

• roads_out (list): the list of output roads

• stop (list): define for each type of stop, the list of concerned roads

Actions

SQLSKILL

This skill allows agents to be provided with actions and attributes in order to connect
to SQL databases

v 1.8.2 333

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Variables

Actions

executeUpdate

Returned type: int

Additional facets:

• params (map): Connection parameters

• updateComm (string): SQL commands such as Create, Update, Delete, Drop
with question mark

• values (list): List of values that are used to replace question mark

getCurrentDateTime

Returned type: string

Additional facets:

• dateFormat (string): date format examples: ‘yyyy-MM-dd’ , ‘yyyy-MM-dd
HH:mm:ss’

getDateOffset

Returned type: string

v 1.8.2 334

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

• dateFormat (string): date format examples: ‘yyyy-MM-dd’ , ‘yyyy-MM-dd
HH:mm:ss’

• dateStr (string): Start date

• offset (string): number on day to increase or decrease

insert

Returned type: int

Additional facets:

• params (map): Connection parameters

• into (string): Table name

• columns (list): List of column name of table

• values (list): List of values that are used to insert into table. Columns and
values must have same size

list2Matrix

Returned type: matrix

v 1.8.2 335

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

• param (list): Param: a list of records and metadata

• getName (boolean): getType: a boolean value, optional parameter

• getType (boolean): getType: a boolean value, optional parameter

select

Returned type: list

Additional facets:

• params (map): Connection parameters

• select (string): select string with question marks

• values (list): List of values that are used to replace question marks

testConnection

Returned type: bool

Additional facets:

• params (map): Connection parameters

v 1.8.2 336

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

timeStamp

Returned type: float

static_body

Variables

• aabb (geometry): The axis-aligned bounding box. A box used to evaluate the
probability of contacts between objects. Can be displayed as any other GAMA
shapes/geometries in order to verify that the physical representation of the
agent corresponds to its geometry in the model

• friction (float): Between 0 and 1. The coefficient of friction of the agent
(how much it decelerates the agents in contact with him). Default is 0.5

• mass (float): The mass of the agent. Should be equal to 0.0 for static,
motionless agents

• restitution (float): Between 0 and 1. The coefficient of restitution of the
agent (defines the ‘bounciness’ of the agent). Default is 0

• rotation (pair): The rotation of the physical body, expressed as a pair which
key is the angle in degrees and value the axis around which it is measured

Actions

contact_added_with

This action can be redefined in order for the agent to implement a specific
behavior when it comes into contact (collision) with another agent. It is

v 1.8.2 337

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

automatically called by the physics simulation engine on both colliding
agents. The default built-in behavior does nothing.
Returned type: unknown

Additional facets:

• other (agent): represents the other agent with which a collision has been
detected

contact_removed_with

This action can be redefined in order for the agent to implement a specific
behavior when a previous contact with another agent is removed. It is
automatically called by the physics simulation engine on both colliding
agents. The default built-in behavior does nothing.
Returned type: unknown

Additional facets:

• other (agent): represents the other agent with which a collision has been
detected

update_body

This action must be called when the geometry of the agent changes in
the simulation world and this change must be propagated to the physical
world. The change of location (in either worlds) or the rotation due to
physical forces do not count as changes, as they are already taken into
account. However, a rotation in the simulation world need to be handled
by calling this action. As it involves long operations (removing the agent
from the physical world, then reinserting it with its new shape), this
action should not be called too often.
Returned type: unknown

v 1.8.2 338

Chapter 31

Built-in Architectures

This file is automatically generated from java files. Do Not Edit It.

INTRODUCTION

Table of Contents� �
[fsm](#fsm), [parallel_bdi](# parallel_bdi), [

probabilistic_tasks](# probabilistic_tasks), [reflex](#
reflex), [rules](# rules), [simple_bdi](# simple_bdi), [
sorted_tasks](# sorted_tasks), [user_first](# user_first), [
user_last](# user_last), [user_only](# user_only), [
weighted_tasks](# weighted_tasks),� �

339

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

fsm

Variables

• state (string): Returns the name of the current state of the agent

• states (list): Returns the list of all the states defined in the species

Actions

parallel_bdi

compute the bdi architecture in parallel

Variables

Actions

probabilistic_tasks

Variables

Actions

v 1.8.2 340

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

reflex

Variables

Actions

rules

Variables

Actions

simple_bdi

this architecture enables to define a behaviour using BDI. It is an implementation of
the BEN architecture (Behaviour with Emotions and Norms)

Variables

• agreeableness (float): an agreeableness value for the personality

• belief_base (list): the belief base of the agent

• charisma (float): a charisma value. By default, it is computed with personality

• conscientiousness (float): a conscientiousness value for the personality

• current_norm (any type): the current norm of the agent

v 1.8.2 341

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

• current_plan (any type): thecurrent plan of the agent

• desire_base (list): the desire base of the agent

• emotion_base (list): the emotion base of the agent

• extroversion (float): an extraversion value for the personality

• ideal_base (list): the ideal base of the agent

• intention_base (list): the intention base of the agent

• intention_persistence (float): intention persistence

• law_base (list): the law base of the agent

• neurotism (float): a neurotism value for the personality

• norm_base (list): the norm base of the agent

• obedience (float): an obedience value. By default, it is computed with
personality

• obligation_base (list): the obligation base of the agent

• openness (float): an openness value for the personality

• plan_base (list): the plan base of the agent

• plan_persistence (float): plan persistence

• probabilistic_choice (boolean): indicates if the choice is deterministic or
probabilistic

• receptivity (float): a receptivity value. By default, it is computed with
personality

• sanction_base (list): the sanction base of the agent

v 1.8.2 342

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

• social_link_base (list): the social link base of the agent

• thinking (list): the list of the last thoughts of the agent

• uncertainty_base (list): the uncertainty base of the agent

• use_emotions_architecture (boolean): indicates if emotions are automaticaly
computed

• use_norms (boolean): indicates if the normative engine is used

• use_persistence (boolean): indicates if the persistence coefficient is computed
with personality (false) or with the value given by the modeler

• use_personality (boolean): indicates if the personnality is used

• use_social_architecture (boolean): indicates if social relations are automati-
caly computed

Actions

add_belief

add the predicate in the belief base.

• returns: bool

• predicate (predicate): predicate to add as a belief

• strength (float): the stregth of the belief

• lifetime (int): the lifetime of the belief

add_belief_emotion

add the belief about an emotion in the belief base.

v 1.8.2 343

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

• returns: bool

• emotion (emotion): emotion to add as a belief

• strength (float): the stregth of the belief

• lifetime (int): the lifetime of the belief

add_belief_mental_state

add the predicate in the belief base.

• returns: bool

• mental_state (mental_state): predicate to add as a belief

• strength (float): the stregth of the belief

• lifetime (int): the lifetime of the belief

add_desire

adds the predicates is in the desire base.

• returns: bool

• predicate (predicate): predicate to add as a desire

• strength (float): the stregth of the belief

• lifetime (int): the lifetime of the belief

• todo (predicate): add the desire as a subintention of this parameter

add_desire_emotion

adds the emotion in the desire base.

v 1.8.2 344

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

• returns: bool

• emotion (emotion): emotion to add as a desire

• strength (float): the stregth of the desire

• lifetime (int): the lifetime of the desire

• todo (predicate): add the desire as a subintention of this parameter

add_desire_mental_state

adds the mental state is in the desire base.

• returns: bool

• mental_state (mental_state): mental_state to add as a desire

• strength (float): the stregth of the desire

• lifetime (int): the lifetime of the desire

• todo (predicate): add the desire as a subintention of this parameter

add_directly_belief

add the belief in the belief base.

• returns: bool

• belief (mental_state): belief to add in th belief base

add_directly_desire

add the desire in the desire base.

v 1.8.2 345

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

• returns: bool

• desire (mental_state): desire to add in th belief base

add_directly_ideal

add the ideal in the ideal base.

• returns: bool

• ideal (mental_state): ideal to add in the ideal base

add_directly_uncertainty

add the uncertainty in the uncertainty base.

• returns: bool

• uncertainty (mental_state): uncertainty to add in the uncertainty base

add_emotion

add the emotion to the emotion base.

• returns: bool

• emotion (emotion): emotion to add to the base

add_ideal

add a predicate in the ideal base.

• returns: bool

• predicate (predicate): predicate to add as an ideal

v 1.8.2 346

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

• praiseworthiness (float): the praiseworthiness value of the ideal

• lifetime (int): the lifetime of the ideal

add_ideal_emotion

add a predicate in the ideal base.

• returns: bool

• emotion (emotion): emotion to add as an ideal

• praiseworthiness (float): the praiseworthiness value of the ideal

• lifetime (int): the lifetime of the ideal

add_ideal_mental_state

add a predicate in the ideal base.

• returns: bool

• mental_state (mental_state): mental state to add as an ideal

• praiseworthiness (float): the praiseworthiness value of the ideal

• lifetime (int): the lifetime of the ideal

add_intention

check if the predicates is in the desire base.

• returns: bool

• predicate (predicate): predicate to check

v 1.8.2 347

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

• strength (float): the stregth of the belief

• lifetime (int): the lifetime of the belief

add_intention_emotion

check if the predicates is in the desire base.

• returns: bool

• emotion (emotion): emotion to add as an intention

• strength (float): the stregth of the belief

• lifetime (int): the lifetime of the belief

add_intention_mental_state

check if the predicates is in the desire base.

• returns: bool

• mental_state (mental_state): predicate to add as an intention

• strength (float): the stregth of the belief

• lifetime (int): the lifetime of the belief

add_obligation

add a predicate in the ideal base.

• returns: bool

• predicate (predicate): predicate to add as an obligation

v 1.8.2 348

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

• strength (float): the strength value of the obligation

• lifetime (int): the lifetime of the obligation

add_social_link

add the social link to the social link base.

• returns: bool

• social_link (social_link): social link to add to the base

add_subintention

adds the predicates is in the desire base.

• returns: bool

• predicate (mental_state): the intention that receives the sub_intention

• subintentions (predicate): the predicate to add as a subintention to the
intention

• add_as_desire (boolean): add the subintention as a desire as well (by default,
false)

add_uncertainty

add a predicate in the uncertainty base.

• returns: bool

• predicate (predicate): predicate to add

• strength (float): the stregth of the belief

• lifetime (int): the lifetime of the belief

v 1.8.2 349

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

add_uncertainty_emotion

add a predicate in the uncertainty base.

• returns: bool

• emotion (emotion): emotion to add as an uncertainty

• strength (float): the stregth of the belief

• lifetime (int): the lifetime of the belief

add_uncertainty_mental_state

add a predicate in the uncertainty base.

• returns: bool

• mental_state (mental_state): mental state to add as an uncertainty

• strength (float): the stregth of the belief

• lifetime (int): the lifetime of the belief

change_dominance

changes the dominance value of the social relation with the agent specified.

• returns: bool

• agent (agent): an agent with who I get a social link

• dominance (float): a value to change the dominance value

v 1.8.2 350

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

change_familiarity

changes the familiarity value of the social relation with the agent specified.

• returns: bool

• agent (agent): an agent with who I get a social link

• familiarity (float): a value to change the familiarity value

change_liking

changes the liking value of the social relation with the agent specified.

• returns: bool

• agent (agent): an agent with who I get a social link

• liking (float): a value to change the liking value

change_solidarity

changes the solidarity value of the social relation with the agent specified.

• returns: bool

• agent (agent): an agent with who I get a social link

• solidarity (float): a value to change the solidarity value

change_trust

changes the trust value of the social relation with the agent specified.

• returns: bool

v 1.8.2 351

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

• agent (agent): an agent with who I get a social link

• trust (float): a value to change the trust value

clear_beliefs

clear the belief base

• returns: bool

clear_desires

clear the desire base

• returns: bool

clear_emotions

clear the emotion base

• returns: bool

clear_ideals

clear the ideal base

• returns: bool

clear_intentions

clear the intention base

• returns: bool

v 1.8.2 352

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

clear_obligations

clear the obligation base

• returns: bool

clear_social_links

clear the intention base

• returns: bool

clear_uncertainties

clear the uncertainty base

• returns: bool

current_intention_on_hold

puts the current intention on hold until the specified condition is reached or all
subintentions are reached (not in desire base anymore).

• returns: bool

• until (any type): the current intention is put on hold (fited plan are not
considered) until specific condition is reached. Can be an expression (which
will be tested), a list (of subintentions), or nil (by default the condition will be
the current list of subintentions of the intention)

get_belief

return the belief about the predicate in the belief base (if several, returns the first
one).

• returns: mental_state

• predicate (predicate): predicate to get

v 1.8.2 353

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_belief_emotion

return the belief about the emotion in the belief base (if several, returns the first
one).

• returns: mental_state

• emotion (emotion): emotion about which the belief to get is

get_belief_mental_state

return the belief about the mental state in the belief base (if several, returns the first
one).

• returns: mental_state

• mental_state (mental_state): mental state to get

get_belief_with_name

get the predicates is in the belief base (if several, returns the first one).

• returns: mental_state

• name (string): name of the predicate to check

get_beliefs

get the list of predicates in the belief base

• returns: list

• predicate (predicate): predicate to check

v 1.8.2 354

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_beliefs_metal_state

get the list of bliefs in the belief base containing the mental state

• returns: list

• mental_state (mental_state): mental state to check

get_beliefs_with_name

get the list of predicates is in the belief base with the given name.

• returns: list

• name (string): name of the predicates to check

get_current_intention

returns the current intention (last entry of intention base).

• returns: mental_state

get_current_plan

get the current plan.

• returns: BDIPlan

get_desire

get the predicates is in the desire base (if several, returns the first one).

• returns: mental_state

• predicate (predicate): predicate to check

v 1.8.2 355

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_desire_mental_state

get the mental state is in the desire base (if several, returns the first one).

• returns: mental_state

• mental_state (mental_state): mental state to check

get_desire_with_name

get the predicates is in the belief base (if several, returns the first one).

• returns: mental_state

• name (string): name of the predicate to check

get_desires

get the list of predicates is in the desire base

• returns: list

• predicate (predicate): name of the predicates to check

get_desires_mental_state

get the list of mental states is in the desire base

• returns: list

• mental_state (mental_state): name of the mental states to check

v 1.8.2 356

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_desires_with_name

get the list of predicates is in the belief base with the given name.

• returns: list

• name (string): name of the predicates to check

get_emotion

get the emotion in the emotion base (if several, returns the first one).

• returns: emotion

• emotion (emotion): emotion to get

get_emotion_with_name

get the emotion is in the emotion base (if several, returns the first one).

• returns: emotion

• name (string): name of the emotion to check

get_ideal

get the ideal about the predicate in the ideal base (if several, returns the first one).

• returns: mental_state

• predicate (predicate): predicate to check ad an ideal

v 1.8.2 357

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_ideal_mental_state

get the mental state in the ideal base (if several, returns the first one).

• returns: mental_state

• mental_state (mental_state): mental state to return

get_intention

get the predicates in the intention base (if several, returns the first one).

• returns: mental_state

• predicate (predicate): predicate to check

get_intention_mental_state

get the mental state is in the intention base (if several, returns the first one).

• returns: mental_state

• mental_state (mental_state): mental state to check

get_intention_with_name

get the predicates is in the belief base (if several, returns the first one).

• returns: mental_state

• name (string): name of the predicate to check

v 1.8.2 358

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_intentions

get the list of predicates is in the intention base

• returns: list

• predicate (predicate): name of the predicates to check

get_intentions_mental_state

get the list of mental state is in the intention base

• returns: list

• mental_state (mental_state): mental state to check

get_intentions_with_name

get the list of predicates is in the belief base with the given name.

• returns: list

• name (string): name of the predicates to check

get_obligation

get the predicates in the obligation base (if several, returns the first one).

• returns: mental_state

• predicate (predicate): predicate to return

v 1.8.2 359

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_plan

get the first plan with the given name

• returns: BDIPlan

• name (string): the name of the planto get

get_plans

get the list of plans.

• returns: list

get_social_link

get the social link (if several, returns the first one).

• returns: social_link

• social_link (social_link): social link to check

get_social_link_with_agent

get the social link with the agent concerned (if several, returns the first one).

• returns: social_link

• agent (agent): an agent with who I get a social link

get_uncertainty

get the predicates is in the uncertainty base (if several, returns the first one).

• returns: mental_state

• predicate (predicate): predicate to return

v 1.8.2 360

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_uncertainty_mental_state

get the mental state is in the uncertainty base (if several, returns the first one).

• returns: mental_state

• mental_state (mental_state): mental state to return

has_belief

check if the predicates is in the belief base.

• returns: bool

• predicate (predicate): predicate to check

has_belief_mental_state

check if the mental state is in the belief base.

• returns: bool

• mental_state (mental_state): mental state to check

has_belief_with_name

check if the predicate is in the belief base.

• returns: bool

• name (string): name of the predicate to check

v 1.8.2 361

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

has_desire

check if the predicates is in the desire base.

• returns: bool

• predicate (predicate): predicate to check

has_desire_mental_state

check if the mental state is in the desire base.

• returns: bool

• mental_state (mental_state): mental state to check

has_desire_with_name

check if the prediate is in the desire base.

• returns: bool

• name (string): name of the predicate to check

has_emotion

check if the emotion is in the belief base.

• returns: bool

• emotion (emotion): emotion to check

v 1.8.2 362

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

has_emotion_with_name

check if the emotion is in the emotion base.

• returns: bool

• name (string): name of the emotion to check

has_ideal

check if the predicates is in the ideal base.

• returns: bool

• predicate (predicate): predicate to check

has_ideal_mental_state

check if the mental state is in the ideal base.

• returns: bool

• mental_state (mental_state): mental state to check

has_ideal_with_name

check if the predicate is in the ideal base.

• returns: bool

• name (string): name of the predicate to check

v 1.8.2 363

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

has_obligation

check if the predicates is in the obligation base.

• returns: bool

• predicate (predicate): predicate to check

has_social_link

check if the social link base.

• returns: bool

• social_link (social_link): social link to check

has_social_link_with_agent

check if the social link base.

• returns: bool

• agent (agent): an agent with who I want to check if I have a social link

has_uncertainty

check if the predicates is in the uncertainty base.

• returns: bool

• predicate (predicate): predicate to check

v 1.8.2 364

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

has_uncertainty_mental_state

check if the mental state is in the uncertainty base.

• returns: bool

• mental_state (mental_state): mental state to check

has_uncertainty_with_name

check if the predicate is in the uncertainty base.

• returns: bool

• name (string): name of the uncertainty to check

is_current_intention

check if the predicates is the current intention (last entry of intention base).

• returns: bool

• predicate (predicate): predicate to check

is_current_intention_mental_state

check if the mental state is the current intention (last entry of intention base).

• returns: bool

• mental_state (mental_state): mental state to check

v 1.8.2 365

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

is_current_plan

tell if the current plan has the same name as tested

• returns: bool

• name (string): the name of the plan to test

remove_all_beliefs

removes the predicates from the belief base.

• returns: bool

• predicate (predicate): predicate to remove

remove_belief

removes the predicate from the belief base.

• returns: bool

• predicate (predicate): predicate to remove

remove_belief_mental_state

removes the mental state from the belief base.

• returns: bool

• mental_state (mental_state): mental state to remove

v 1.8.2 366

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

remove_desire

removes the predicates from the desire base.

• returns: bool

• predicate (predicate): predicate to remove from desire base

remove_desire_mental_state

removes the mental state from the desire base.

• returns: bool

• mental_state (mental_state): mental state to remove from desire base

remove_emotion

removes the emotion from the emotion base.

• returns: bool

• emotion (emotion): emotion to remove

remove_ideal

removes the predicates from the ideal base.

• returns: bool

• predicate (predicate): predicate to remove

v 1.8.2 367

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

remove_ideal_mental_state

removes the mental state from the ideal base.

• returns: bool

• mental_state (mental_state): metal state to remove

remove_intention

removes the predicates from the intention base.

• returns: bool

• predicate (predicate): intention’s predicate to remove

• desire_also (boolean): removes also desire

remove_intention_mental_state

removes the mental state from the intention base.

• returns: bool

• mental_state (mental_state): intention’s mental state to remove

• desire_also (boolean): removes also desire

remove_obligation

removes the predicates from the obligation base.

• returns: bool

• predicate (predicate): predicate to remove

v 1.8.2 368

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

remove_social_link

removes the social link from the social relation base.

• returns: bool

• social_link (social_link): social link to remove

remove_social_link_with_agent

removes the social link from the social relation base.

• returns: bool

• agent (agent): an agent with who I get the social link to remove

remove_uncertainty

removes the predicates from the uncertainty base.

• returns: bool

• predicate (predicate): predicate to remove

remove_uncertainty_mental_state

removes the mental state from the uncertainty base.

• returns: bool

• mental_state (mental_state): mental state to remove

v 1.8.2 369

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

replace_belief

replace the old predicate by the new one.

• returns: bool

• old_predicate (predicate): predicate to remove

• predicate (predicate): predicate to add

sorted_tasks

Variables

Actions

user_first

Variables

Actions

v 1.8.2 370

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

user_last

Variables

Actions

user_only

Variables

Actions

weighted_tasks

Variables

Actions

v 1.8.2 371

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

v 1.8.2 372

Chapter 32

Statements

This file is automatically generated from java files. Do Not Edit It.

Table of Contents

=, action, add, agents, annealing, ask, aspect, assert, benchmark, break, camera,
capture, catch, chart, conscious_contagion, coping, create, data, datalist, default, dif-
fuse, display, display_grid, display_population, do, draw, else, emotional_contagion,
enforcement, enter, equation, error, event, exhaustive, exit, experiment, explicit, focus,
focus_on, generate, genetic, graphics, highlight, hill_climbing, if, image, inspect, law,
layout, let, light, loop, match, mesh, migrate, monitor, norm, output, output_file,
overlay, parameter, perceive, permanent, plan, pso, put, reactive_tabu, reflex, release,
remove, return, rotation, rule, rule, run, sanction, save, set, setup, simulate, sobol,
socialize, solve, species, start_simulation, state, status, switch, tabu, task, test,
trace, transition, try, unconscious_contagion, user_command, user_init, user_input,
user_panel, using, Variable_container, Variable_number, Variable_regular, warn,
write,

373

GAMA v1.8.2 documentation Chapter 32. Statements

Statements by kinds

• Batch method

– annealing, exhaustive, explicit, genetic, hill_climbing, pso, reactive_tabu,
sobol, tabu,

• Behavior

– aspect, coping, norm, plan, reflex, rule, sanction, state, task, test,
user_init, user_panel,

• Behavior

– aspect, coping, norm, plan, reflex, rule, sanction, state, task, test,
user_init, user_panel,

• Experiment

– experiment,

• Layer

– agents, camera, chart, display_grid, display_population, event, graphics,
image, light, mesh, overlay, rotation,

• Output

– display, inspect, layout, monitor, output, output_file, permanent,

• Parameter

– parameter,

• Sequence of statements or action

v 1.8.2 374

GAMA v1.8.2 documentation Chapter 32. Statements

– action, ask, benchmark, capture, catch, create, default, else, enter,
equation, exit, generate, if, loop, match, migrate, perceive, release, run,
setup, start_simulation, switch, trace, transition, try, user_command,
using,

• Sequence of statements or action

– action, ask, benchmark, capture, catch, create, default, else, enter,
equation, exit, generate, if, loop, match, migrate, perceive, release, run,
setup, start_simulation, switch, trace, transition, try, user_command,
using,

• Sequence of statements or action

– action, ask, benchmark, capture, catch, create, default, else, enter,
equation, exit, generate, if, loop, match, migrate, perceive, release, run,
setup, start_simulation, switch, trace, transition, try, user_command,
using,

• Sequence of statements or action

– action, ask, benchmark, capture, catch, create, default, else, enter,
equation, exit, generate, if, loop, match, migrate, perceive, release, run,
setup, start_simulation, switch, trace, transition, try, user_command,
using,

• Sequence of statements or action

– action, ask, benchmark, capture, catch, create, default, else, enter,
equation, exit, generate, if, loop, match, migrate, perceive, release, run,
setup, start_simulation, switch, trace, transition, try, user_command,
using,

• Single statement

– =, add, assert, break, conscious_contagion, data, datalist, diffuse, do,
draw, emotional_contagion, enforcement, error, focus, focus_on, highlight,
law, let, put, remove, return, rule, save, set, simulate, socialize, solve,

v 1.8.2 375

GAMA v1.8.2 documentation Chapter 32. Statements

status, unconscious_contagion, user_input, warn, write,

• Single statement

– =, add, assert, break, conscious_contagion, data, datalist, diffuse, do,
draw, emotional_contagion, enforcement, error, focus, focus_on, highlight,
law, let, put, remove, return, rule, save, set, simulate, socialize, solve,
status, unconscious_contagion, user_input, warn, write,

• Single statement

– =, add, assert, break, conscious_contagion, data, datalist, diffuse, do,
draw, emotional_contagion, enforcement, error, focus, focus_on, highlight,
law, let, put, remove, return, rule, save, set, simulate, socialize, solve,
status, unconscious_contagion, user_input, warn, write,

• Single statement

– =, add, assert, break, conscious_contagion, data, datalist, diffuse, do,
draw, emotional_contagion, enforcement, error, focus, focus_on, highlight,
law, let, put, remove, return, rule, save, set, simulate, socialize, solve,
status, unconscious_contagion, user_input, warn, write,

• Species

– species,

• Variable (container)

– Variable_container,

• Variable (number)

– Variable_number,

• Variable (regular)

– Variable_regular,

v 1.8.2 376

GAMA v1.8.2 documentation Chapter 32. Statements

Statements by embedment

• Behavior

– add, ask, assert, benchmark, capture, conscious_contagion, create, diffuse,
do, emotional_contagion, enforcement, error, focus, focus_on, generate,
highlight, if, inspect, let, loop, migrate, put, release, remove, return, run,
save, set, simulate, socialize, solve, start_simulation, status, switch, trace,
transition, try, unconscious_contagion, using, warn, write,

• Environment

– species,

• Experiment

– action, annealing, exhaustive, explicit, genetic, hill_climbing, output, pa-
rameter, permanent, pso, reactive_tabu, reflex, rule, setup, simulate, sobol,
state, tabu, task, test, user_command, user_init, user_panel, Variable_-
container, Variable_number, Variable_regular,

• Layer

– add, ask, benchmark, draw, error, focus_on, highlight, if, let, loop, put,
remove, set, status, switch, trace, try, using, warn, write,

• Model

– action, aspect, coping, equation, experiment, law, norm, output, perceive,
plan, reflex, rule, rule, run, sanction, setup, species, start_simulation, state,
task, test, user_command, user_init, user_panel, Variable_container,
Variable_number, Variable_regular,

• Output

– ask, if,

• Sequence of statements or action

– add, ask, assert, assert, benchmark, break, capture, conscious_contagion,
create, data, datalist, diffuse, do, draw, emotional_contagion, enforcement,
error, focus, focus_on, generate, highlight, if, inspect, let, loop, migrate,
put, release, remove, return, save, set, simulate, socialize, solve, status,
switch, trace, transition, try, unconscious_contagion, using, warn, write,

v 1.8.2 377

GAMA v1.8.2 documentation Chapter 32. Statements

• Single statement

– run, start_simulation,

• Species

– action, aspect, coping, equation, law, norm, perceive, plan, reflex, rule, rule,
run, sanction, setup, simulate, species, start_simulation, state, task, test,
user_command, user_init, user_panel, Variable_container, Variable_-
number, Variable_regular,

• action

– assert, return,

• aspect

– draw,

• chart

– add, ask, data, datalist, do, put, remove, set, simulate, using,

• display

– agents, camera, chart, display_grid, display_population, event, graphics,
image, light, mesh, overlay, rotation,

• display_population

– display_population,

• equation

– =,

• fsm

– state, user_panel,

• if

– else,

• output

– display, inspect, layout, monitor, output_file,

• parallel_bdi

v 1.8.2 378

GAMA v1.8.2 documentation Chapter 32. Statements

– coping, rule,

• permanent

– display, inspect, monitor, output_file,

• probabilistic_tasks

– task,

• rules

– rule,

• simple_bdi

– coping, rule,

• sorted_tasks

– task,

• state

– enter, exit,

• switch

– default, match,

• test

– assert,

• try

– catch,

• user_command

– user_input,

• user_first

– user_panel,

• user_init

– user_panel,

v 1.8.2 379

GAMA v1.8.2 documentation Chapter 32. Statements

• user_last

– user_panel,

• user_only

– user_panel,

• user_panel

– user_command,

• weighted_tasks

– task,

General syntax

A statement represents either a declaration or an imperative command. It consists in
a keyword, followed by specific facets, some of them mandatory (in bold), some of
them optional. One of the facet names can be omitted (the one denoted as omissible).
It has to be the first one.� �
statement_keyword expression1 facet2: expression2 ... ;
or
statement_keyword facet1: expression1 facet2: expression2 ...;� �
If the statement encloses other statements, it is called a sequence statement, and
its sub-statements (either sequence statements or single statements) are declared
between curly brackets, as in:� �
statement_keyword1 expression1 facet2: expression2 ... { // a

sequence statement
statement_keyword2 expression1 facet2: expression2 ...;

// a single statement
statement_keyword3 expression1 facet2: expression2 ...;

}� �

v 1.8.2 380

GAMA v1.8.2 documentation Chapter 32. Statements

=

Facets

• right (float), (omissible) : the right part of the equation (it is mandatory that
it can be evaluated as a float

• left (any type): the left part of the equation (it should be a variable or a call
to the diff() or diff2() operators)

Definition

Allows to implement an equation in the form function(n, t) = expression. The left
function is only here as a placeholder for enabling a simpler syntax and grabbing the
variable as its left member.

Usages

• The syntax of the = statement is a bit different from the other statements. It
has to be used as follows (in an equation):� �

float t;
float S;
float I;
equation SI {

diff(S,t) = (- 0.3 * S * I / 100);
diff(I,t) = (0.3 * S * I / 100);

}� �
• See also: equation, solve,

Embedments

• The = statement is of type: Single statement
• The = statement can be embedded into: equation,
• The = statement embeds statements:

v 1.8.2 381

GAMA v1.8.2 documentation Chapter 32. Statements

action

Facets

• name (an identifier), (omissible) : identifier of the action
• index (a datatype identifier): if the action returns a map, the type of its keys
• of (a datatype identifier): if the action returns a container, the type of its

elements
• type (a datatype identifier): the action returned type
• virtual (boolean): whether the action is virtual (defined without a set of

instructions) (false by default)

Definition

Allows to define in a species, model or experiment a new action that can be called
elsewhere.

Usages

• The simplest syntax to define an action that does not take any parameter and
does not return anything is:� �

action simple_action {
// [set of statements]

}� �
• If the action needs some parameters, they can be specified betwee, braquets

after the identifier of the action:� �
action action_parameters(int i, string s){

// [set of statements using i and s]
}� �

• If the action returns any value, the returned type should be used instead of the
“action” keyword. A return statement inside the body of the action statement
is mandatory.

v 1.8.2 382

GAMA v1.8.2 documentation Chapter 32. Statements

� �
int action_return_val(int i, string s){

// [set of statements using i and s]
return i + i;

}� �
• If virtual: is true, then the action is abstract, which means that the action

is defined without body. A species containing at least one abstract action is
abstract. Agents of this species cannot be created. The common use of an
abstract action is to define an action that can be used by all its sub-species,
which should redefine all abstract actions and implements its body.� �

species parent_species {
int virtual_action(int i, string s);

}

species children parent: parent_species {
int virtual_action(int i, string s) {

return i + i;
}

}� �
• See also: do,

Embedments

• The action statement is of type: Sequence of statements or action
• The action statement can be embedded into: Species, Experiment, Model,
• The action statement embeds statements: assert, return,

add

Facets

• to (any type in [container, species, agent, geometry]): an expression that
evaluates to a container

v 1.8.2 383

GAMA v1.8.2 documentation Chapter 32. Statements

• item (any type), (omissible) : any expression to add in the container
• all (any type): Allows to either pass a container so as to add all its element,

or ‘true’, if the item to add is already a container.
• at (any type): position in the container of added element

Definition

Allows to add, i.e. to insert, a new element in a container (a list, matrix, map,
. . .).Incorrect use: The addition of a new element at a position out of the bounds
of the container will produce a warning and let the container unmodified. If all: is
specified, it has no effect if its argument is not a container, or if its argument is ‘true’
and the item to add is not a container. In that latter case

Usages

• The new element can be added either at the end of the container or at a
particular position.

� �
add expr to: expr_container; // Add at the end
add expr at: expr to: expr_container; // Add at position

expr� �
• Case of a list, the expression in the facet at: should be an integer.

� �
list <int > workingList <- []; add 0 at: 0 to: workingList ;//

workingList equals [0] add 10 at: 0 to: workingList ;//
workingList equals [10 ,0] add 20 at: 2 to: workingList ;//
workingList equals [10 ,0 ,20] add 50 to: workingList ;//
workingList equals [10 ,0 ,20 ,50] add [60 ,70] all: true to:
workingList ;// workingList equals [10 ,0,20,50,60,70]� �

• Case of a map: As a map is basically a list of pairs key::value, we can also
use the add statement on it. It is important to note that the behavior of the
statement is slightly different, in particular in the use of the at facet, which
denotes the key of the pair.

v 1.8.2 384

GAMA v1.8.2 documentation Chapter 32. Statements

� �
map <string ,string > workingMap <- [];add "val1" at: "x" to:

workingMap;// workingMap equals ["x"::" val1"]� �
• If the at facet is omitted, a pair expr_item::expr_item will be added to the

map. An important exception is the case where the expr_item is a pair: in this
case the pair is added.

add "val2" to: workingMap;//workingMap equals ["x"::"val1", "val2"::"val2
"]add "5"::"val4" to: workingMap; //workingMap equals ["x"::"val1", "val2
"::"val2", "5"::"val4"]

• Notice that, as the key should be unique, the addition of an item at an existing
position (i.e. existing key) will only modify the value associated with the given
key.

add "val3" at: "x" to: workingMap;//workingMap equals ["x"::"val3", "val2
"::"val2", "5"::"val4"]

• On a map, the all facet will add all value of a container in the map (so as pair
val_cont::val_cont)

add ["val4","val5"] all: true at: "x" to: workingMap;//workingMap equals
["x"::"val3", "val2"::"val2", "5"::"val4","val4"::"val4","val5"::"val5"]

• In case of a graph, we can use the facets node, edge and weight to add a node,
an edge or weights to the graph. However, these facets are now considered as
deprecated, and it is advised to use the various edge(), node(), edges(), nodes()
operators, which can build the correct objects to add to the graph� �

graph g <- as_edge_graph ([{1 ,5}::{12 ,45}]);
add edge: {1 ,5}::{2 ,3} to: g;
list var <- g.vertices; // var equals [{1 ,5} ,{12 ,45} ,{2 ,3}]
list var <- g.edges; // var equals [polyline

({1.0 ,5.0}::{12.0 ,45.0}) ,polyline ({1.0 ,5.0}::{2.0 ,3.0})]
add node: {5,5} to: g;
list var <- g.vertices; // var equals

[{1.0 ,5.0} ,{12.0 ,45.0} ,{2.0 ,3.0} ,{5.0 ,5.0}]
list var <- g.edges; // var equals [polyline

({1.0 ,5.0}::{12.0 ,45.0}) ,polyline ({1.0 ,5.0}::{2.0 ,3.0})]� �
v 1.8.2 385

GAMA v1.8.2 documentation Chapter 32. Statements

• Case of a matrix: this statement can not be used on matrix. Please refer to the
statement put.

• See also: put, remove,

Embedments

• The add statement is of type: Single statement
• The add statement can be embedded into: chart, Behavior, Sequence of state-

ments or action, Layer,
• The add statement embeds statements:

agents

Facets

• value (container): the set of agents to display
• name (a label), (omissible) : Human readable title of the layer
• aspect (an identifier): the name of the aspect that should be used to display

the species
• fading (boolean): Used in conjunction with ‘trace:’, allows to apply a fading

effect to the previous traces. Default is false
• position (point): position of the upper-left corner of the layer. Note that if

coordinates are in [0,1[, the position is relative to the size of the environment
(e.g. {0.5,0.5} refers to the middle of the display) whereas it is absolute when
coordinates are greater than 1 for x and y. The z-ordinate can only be defined
between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the
last coordinate specifying the elevation of the layer. In case of negative value
OpenGl will position the layer out of the environment.

• refresh (boolean): (openGL only) specify whether the display of the species is
refreshed. (true by default, useful in case of agents that do not move)

• rotate (float): Defines the angle of rotation of this layer, in degrees, around
the z-axis.

• selectable (boolean): Indicates whether the agents present on this layer are
selectable by the user. Default is true

v 1.8.2 386

GAMA v1.8.2 documentation Chapter 32. Statements

• size (point): extent of the layer in the screen from its position. Coordinates
in [0,1[are treated as percentages of the total surface, while coordinates > 1
are treated as absolute sizes in model units (i.e. considering the model occupies
the entire view). Like in ‘position’, an elevation can be provided with the z
coordinate, allowing to scale the layer in the 3 directions

• trace (any type in [boolean, int]): Allows to aggregate the visualization of
agents at each timestep on the display. Default is false. If set to an int value,
only the last n-th steps will be visualized. If set to true, no limit of timesteps is
applied.

• transparency (float): the transparency level of the layer (between 0 – opaque –
and 1 – fully transparent)

• visible (boolean): Defines whether this layer is visible or not

Definition

agents allows the modeler to display only the agents that fulfill a given condition.

Usages

• The general syntax is:

� �
display my_display {

agents layer_name value: expression [additional options];
}� �

• For instance, in a segregation model, agents will only display unhappy agents:

� �
display Segregation {

agents agentDisappear value: people as list where (each.
is_happy = false) aspect: with_group_color;

}� �
• See also: display, chart, event, graphics, display_grid, image, overlay, display_-

population,

v 1.8.2 387

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The agents statement is of type: Layer
• The agents statement can be embedded into: display,
• The agents statement embeds statements:

annealing

Facets

• name (an identifier), (omissible) : The name of the method. For internal use
only

• aggregation (a label), takes values in: {min, max}: the agregation method
• init_solution (map): init solution: key: name of the variable, value: value of

the variable
• maximize (float): the value the algorithm tries to maximize
• minimize (float): the value the algorithm tries to minimize
• nb_iter_cst_temp (int): number of iterations per level of temperature
• temp_decrease (float): temperature decrease coefficient
• temp_end (float): final temperature
• temp_init (float): initial temperature

Definition

This algorithm is an implementation of the Simulated Annealing algorithm. See the
wikipedia article and [batch161 the batch dedicated page].

Usages

• As other batch methods, the basic syntax of the annealing statement uses
method annealing instead of the expected annealing name: id :

� �
method annealing [facet: value];� �
v 1.8.2 388

GAMA v1.8.2 documentation Chapter 32. Statements

• For example:

� �
method annealing temp_init: 100 temp_end: 1 temp_decrease:

0.5 nb_iter_cst_temp: 5 maximize: food_gathered;� �

Embedments

• The annealing statement is of type: Batch method
• The annealing statement can be embedded into: Experiment,
• The annealing statement embeds statements:

ask

Facets

• target (any type in [container, agent]), (omissible) : an expression that evaluates
to an agent or a list of agents

• as (species): an expression that evaluates to a species
• parallel (any type in [boolean, int]): (experimental) setting this facet to ‘true’

will allow ‘ask’ to use concurrency when traversing the targets; setting it to an
integer will set the threshold under which they will be run sequentially (the
default is initially 20, but can be fixed in the preferences). This facet is false by
default.

Definition

Allows an agent, the sender agent (that can be the [Sections161#global world agent]),
to ask another (or other) agent(s) to perform a set of statements. If the value of the
target facet is nil or empty, the statement is ignored.

v 1.8.2 389

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

• Ask a set of receiver agents, stored in a container, to perform a block of
statements. The block is evaluated in the context of the agents’ species

� �
ask ${receiver_agents} {

${cursor}
}� �

• Ask one agent to perform a block of statements. The block is evaluated in the
context of the agent’s species

� �
ask ${one_agent} {

${cursor}
}� �

• If the species of the receiver agent(s) cannot be determined, it is possible to
force it using the as facet. An error is thrown if an agent is not a direct or
undirect instance of this species

� �
ask${receiver_agent(s)} as: ${a_species_expression} {

${cursor}
}� �

• To ask a set of agents to do something only if they belong to a given species, the
of_species operator can be used. If none of the agents belong to the species,
nothing happens

� �
ask ${receiver_agents} of_species ${species_name} {

${cursor}
}� �
v 1.8.2 390

GAMA v1.8.2 documentation Chapter 32. Statements

• Any statement can be declared in the block statements. All the statements
will be evaluated in the context of the receiver agent(s), as if they were defined
in their species, which means that an expression like self will represent the
receiver agent and not the sender. If the sender needs to refer to itself, some of
its own attributes (or temporary variables) within the block statements, it has
to use the keyword myself.� �

species animal {
float energy <- rnd (1000) min: 0.0;
reflex when: energy > 500 { // executed when the energy is
above the given threshold

list <animal > others <- (animal at_distance 5); //
find all the neighboring animals in a radius of 5 meters

float shared_energy <- (energy - 500) / length (
others); // compute the amount of energy to share with each
of them

ask others { // no need to cast , since others has
already been filtered to only include animals

if (energy < 500) { // refers to the energy of
each animal in others

energy <- energy + myself.shared_energy; //
increases the energy of each animal

myself.energy <- myself.energy - myself.
shared_energy; // decreases the energy of the sender

}
}

}
}� �

• If the species of the receiver agent cannot be determined, it is possible to force
it by casting the agent. Nothing happens if the agent cannot be casted to this
species

Embedments

• The ask statement is of type: Sequence of statements or action
• The ask statement can be embedded into: chart, Behavior, Sequence of state-

ments or action, Layer, Output,

v 1.8.2 391

GAMA v1.8.2 documentation Chapter 32. Statements

• The ask statement embeds statements:

aspect

Facets

• name (an identifier), (omissible) : identifier of the aspect (it can be used in a
display to identify which aspect should be used for the given species). Two
special names can also be used: ‘default’ will allow this aspect to be used as
a replacement for the default aspect defined in preferences; ‘highlighted’ will
allow the aspect to be used when the agent is highlighted as a replacement for
the default (application of a color)

Definition

Aspect statement is used to define a way to draw the current agent. Several aspects
can be defined in one species. It can use attributes to customize each agent’s aspect.
The aspect is evaluate for each agent each time it has to be displayed.

Usages

• An example of use of the aspect statement:

� �
species one_species {

int a <- rnd (10);
aspect aspect1 {

if(a mod 2 = 0) { draw circle(a);}
else {draw square(a);}
draw text: "a= " + a color: #black size: 5;

}
}� �
v 1.8.2 392

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The aspect statement is of type: Behavior
• The aspect statement can be embedded into: Species, Model,
• The aspect statement embeds statements: draw,

assert

Facets

• value (boolean), (omissible) : a boolean expression. If its evaluation is true,
the assertion is successful. Otherwise, an error (or a warning) is raised.

• warning (boolean): if set to true, makes the assertion emit a warning instead of
an error

Definition

Allows to check if the evaluation of a given expression returns true. If not, an error
(or a warning) is raised. If the statement is used inside a test, the error is not
propagagated but invalidates the test (in case of a warning, it partially invalidates
it). Otherwise, it is normally propagated

Usages

• Any boolean expression can be used

� �
assert (2+2) = 4;
assert self != nil;
int t <- 0; assert is_error (3/t);
(1 / 2) is float� �

• if the ‘warn:’ facet is set to true, the statement emits a warning (instead of an
error) in case the expression is false

v 1.8.2 393

GAMA v1.8.2 documentation Chapter 32. Statements

� �
assert 'abc ' is string warning: true� �

• See also: test, setup, is_error, is_warning,

Embedments

• The assert statement is of type: Single statement
• The assert statement can be embedded into: test, action, Sequence of state-

ments or action, Behavior, Sequence of statements or action,
• The assert statement embeds statements:

benchmark

Facets

• message (any type), (omissible) : A message to display alongside the results.
Should concisely describe the contents of the benchmark

• repeat (int): An int expression describing how many executions of the block
must be handled. The output in this case will return the min, max and average
durations

Definition

Displays in the console the duration in ms of the execution of the statements included
in the block. It is possible to indicate, with the ‘repeat’ facet, how many times the
sequence should be run

Usages

Embedments

• The benchmark statement is of type: Sequence of statements or action

v 1.8.2 394

GAMA v1.8.2 documentation Chapter 32. Statements

• The benchmark statement can be embedded into: Behavior, Sequence of state-
ments or action, Layer,

• The benchmark statement embeds statements:

break

Facets

Definition

break allows to interrupt the current sequence of statements.

Usages

Embedments

• The break statement is of type: Single statement
• The break statement can be embedded into: Sequence of statements or action,
• The break statement embeds statements:

camera

Facets

• name (string), (omissible) : The name of the camera. Will be used to populate a
menu with the other camera presets. Can provide a value to the ‘camera:’ facet
of the display, which specifies which camera to use.Using the special constant
#default will make it the default of the surrounding display

• distance (float): If the ‘location:’ facet is not defined, defines the distance (in
world units) that separates the camera from its target. If ‘location:’ is defined,
especially if it is using a symbolic position, allows to specify the distance to
keep from the target. If neither ‘location:’ or ‘distance:’ is defined, the default
distance is the maximum between the width and the height of the world

v 1.8.2 395

GAMA v1.8.2 documentation Chapter 32. Statements

• dynamic (boolean): If true, the location, distance and target are automatically
recomputed every step. Default is false. When true, will also set ‘locked’ to
true, to avoid interferences from users

• lens (any type in [float, int]): Allows to define the lens – field of view in degrees
– of the camera. Between 0 and 360. Defaults to 45°

• location (any type in [point, string]): Allows to define the location of the
camera in the world, i.e. from where it looks at its target. If ‘distance:’ is
specified, the final location is translated on the target-camera axis to respect
the distance. Can be a (possibly dynamically computed) point or a symbolic
position (#from_above, #from_left, #from_right, #from_up_right, #from_-
up_left, #from_front, #from_up_front) that will be dynamically recomputed
if the target movesIf ‘location:’ is not defined, it will be that of the default
camera (#from_top, #from_left. . .) defined in the preferences.

• locked (boolean): If true, the user cannot modify the camera location and
target by interacting with the display. It is automatically set when the camera
is dynamic, so that the display can ‘follow’ the coordinates; but it can also be
used with fixed coordinates to ‘focus’ the display on a specific scene

• target (any type in [point, agent, geometry]): Allows to define the target of
the camera (what does it look at). It can be a point (in world coordinates), a
geometry or an agent, in which case its (possibly dynamic) location it used as
the target. This facet can be complemented by ‘distance:’ and/or ‘location:’
to specify from where the target is looked at. If ‘target:’ is not defined, the
default target is the centroid of the world shape.

Definition

camera allows the modeler to define a camera. The display will then be able to choose
among the camera defined (either within this statement or globally in GAMA) in a
dynamic way. Several preset cameras are provided and accessible in the preferences
(to choose the default) or in GAML using the keywords #from_above, #from_left,
#from_right, #from_up_right, #from_up_left, #from_front, #from_up_front,
#isometric.These cameras are unlocked (so that they can be manipulated by the
user), look at the center of the world from a symbolic position, and the distance
between this position and the target is equal to the maximum of the width and height
of the world’s shape. These preset cameras can be reused when defining new cameras,
since their names can become symbolic positions for them. For instance: camera
‘my_camera’ location: #from_top distance: 10; will lower (or extend) the distance
between the camera and the center of the world to 10. camera ‘my_camera’ locked:

v 1.8.2 396

GAMA v1.8.2 documentation Chapter 32. Statements

true location: #from_up_front target: people(0); will continuously follow the first
agent of the people species from the up-front position.

Usages

• See also: display, agents, chart, event, graphics, display_grid, image, display_-
population,

Embedments

• The camera statement is of type: Layer
• The camera statement can be embedded into: display,
• The camera statement embeds statements:

capture

Facets

• target (any type in [agent, container]), (omissible) : an expression that is
evaluated as an agent or a list of the agent to be captured

• as (species): the species that the captured agent(s) will become, this is a
micro-species of the calling agent’s species

• returns (a new identifier): a list of the newly captured agent(s)

Definition

Allows an agent to capture other agent(s) as its micro-agent(s).

Usages

• The preliminary for an agent A to capture an agent B as its micro-agent is
that the A’s species must defined a micro-species which is a sub-species of B’s
species (cf. [Species161#Nesting_species Nesting species]).

v 1.8.2 397

GAMA v1.8.2 documentation Chapter 32. Statements

� �
species A {
...
}
species B {
...

species C parent: A {
...
}

...
}� �

• To capture all “A” agents as “C” agents, we can ask an “B” agent to execute
the following statement:

� �
capture list(B) as: C;� �

• Deprecated writing:

� �
capture target: list (B) as: C;� �

• See also: release,

Embedments

• The capture statement is of type: Sequence of statements or action
• The capture statement can be embedded into: Behavior, Sequence of statements

or action,
• The capture statement embeds statements:

v 1.8.2 398

GAMA v1.8.2 documentation Chapter 32. Statements

catch

Facets

Definition

This statement cannot be used alone

Usages

• See also: try,

Embedments

• The catch statement is of type: Sequence of statements or action
• The catch statement can be embedded into: try,
• The catch statement embeds statements:

chart

Facets

• name (string), (omissible) : the identifier of the chart layer
• axes (rgb): the axis color
• background (rgb): the background color
• color (rgb): Text color
• gap (float): minimum gap between bars (in proportion)
• label_background_color (rgb): Color of the label background (for Pie chart)
• label_font (any type in [string, font]): Label font face. Either the name of a

font face or a font
• label_text_color (rgb): Color of the label text (for Pie chart)
• legend_font (any type in [string, font]): Legend font face. Either the name of

a font face or a font

v 1.8.2 399

GAMA v1.8.2 documentation Chapter 32. Statements

• memorize (boolean): Whether or not to keep the values in memory (in order to
produce a csv file, for instance). The default value, true, can also be changed
in the preferences

• position (point): position of the upper-left corner of the layer. Note that if
coordinates are in [0,1[, the position is relative to the size of the environment
(e.g. {0.5,0.5} refers to the middle of the display) whereas it is absolute when
coordinates are greater than 1 for x and y. The z-ordinate can only be defined
between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last
coordinate specifying the elevation of the layer.

• reverse_axes (boolean): reverse X and Y axis (for example to get horizental
bar charts

• series_label_position (an identifier), takes values in: {default, none, legend,
onchart, yaxis, xaxis}: Position of the Series names: default (best guess), none,
legend, onchart, xaxis (for category plots) or yaxis (uses the first serie name).

• size (point): the layer resize factor: {1,1} refers to the original size whereas
{0.5,0.5} divides by 2 the height and the width of the layer. In case of a 3D layer,
a 3D point can be used (note that {1,1} is equivalent to {1,1,0}, so a resize of
a layer containing 3D objects with a 2D points will remove the elevation)

• style (an identifier), takes values in: {line, whisker, area, bar, dot, step, spline,
stack, 3d, ring, exploded, default}: The sub-style style, also default style for
the series.

• tick_font (any type in [string, font]): Tick font face. Either the name of a font
face or a font. When used for a series chart, it will set the font of values on the
axes, but When used with a pie, it will modify the font of messages associated
to each pie section.

• tick_line_color (rgb): the tick lines color
• title_font (any type in [string, font]): Title font face. Either the name of a

font face or a font
• title_visible (boolean): chart title visible
• type (an identifier), takes values in: {xy, scatter, histogram, series, pie, radar,

heatmap, box_whisker}: the type of chart. It could be histogram, series, xy,
pie, radar, heatmap or box whisker. The difference between series and xy is
that the former adds an implicit x-axis that refers to the numbers of cycles,
while the latter considers the first declaration of data to be its x-axis.

• x_label (string): the title for the X axis
• x_log_scale (boolean): use Log Scale for X axis
• x_range (any type in [float, int, point, list]): range of the x-axis. Can be a

number (which will set the axis total range) or a point (which will set the min

v 1.8.2 400

GAMA v1.8.2 documentation Chapter 32. Statements

and max of the axis).
• x_serie (any type in [list, float, int]): for series charts, change the default

common x serie (simulation cycle) for an other value (list or numerical).
• x_serie_labels (any type in [list, float, int, a label]): change the default

common x series labels (replace x value or categories) for an other value (string
or numerical).

• x_tick_line_visible (boolean): X tick line visible
• x_tick_unit (float): the tick unit for the y-axis (distance between horyzontal

lines and values on the left of the axis).
• x_tick_values_visible (boolean): X tick values visible
• y_label (string): the title for the Y axis
• y_log_scale (boolean): use Log Scale for Y axis
• y_range (any type in [float, int, point, list]): range of the y-axis. Can be a

number (which will set the axis total range) or a point (which will set the min
and max of the axis).

• y_serie_labels (any type in [list, float, int, a label]): for heatmaps/3d charts,
change the default y serie for an other value (string or numerical in a list or
cumulative).

• y_tick_line_visible (boolean): Y tick line visible
• y_tick_unit (float): the tick unit for the x-axis (distance between vertical lines

and values bellow the axis).
• y_tick_values_visible (boolean): Y tick values visible
• y2_label (string): the title for the second Y axis
• y2_log_scale (boolean): use Log Scale for second Y axis
• y2_range (any type in [float, int, point, list]): range of the second y-axis. Can

be a number (which will set the axis total range) or a point (which will set the
min and max of the axis).

• y2_tick_unit (float): the tick unit for the x-axis (distance between vertical
lines and values bellow the axis).

Definition

chart allows modeler to display a chart: this enables to display specific values of the
model at each iteration. GAMA can display various chart types: time series (series),
pie charts (pie) and histograms (histogram).

v 1.8.2 401

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

• The general syntax is:� �
display chart_display {

chart "chart name" type: series [additional options] {
[Set of data , datalists statements]

}
}� �

• See also: display, agents, event, graphics, display_grid, image, overlay, quadtree,
display_population, text,

Embedments

• The chart statement is of type: Layer
• The chart statement can be embedded into: display,
• The chart statement embeds statements: add, ask, data, datalist, do, put,

remove, set, simulate, using,

conscious_contagion

Facets

• emotion_created (emotion): the emotion that will be created with the contagion

• emotion_detected (emotion): the emotion that will start the contagion
• name (an identifier), (omissible) : the identifier of the unconscious contagion
• charisma (float): The charisma value of the perceived agent (between 0 and 1)
• decay (float): The decay value of the emotion added to the agent
• intensity (float): The intensity value of the emotion added to the agent
• receptivity (float): The receptivity value of the current agent (between 0 and

1)
• threshold (float): The threshold value to make the contagion
• when (boolean): A boolean value to get the emotion only with a certain condition

v 1.8.2 402

GAMA v1.8.2 documentation Chapter 32. Statements

Definition

enables to directly add an emotion of a perceived specie if the perceived agent ges a
patricular emotion.

Usages

• Other examples of use:� �
conscious_contagion emotion_detected:fear emotion_created:

fearConfirmed;
conscious_contagion emotion_detected:fear emotion_created:

fearConfirmed charisma: 0.5 receptivity: 0.5;� �
Embedments

• The conscious_contagion statement is of type: Single statement
• The conscious_contagion statement can be embedded into: Behavior, Sequence

of statements or action,
• The conscious_contagion statement embeds statements:

coping

Facets

• name (an identifier), (omissible) : The name of the rule
• belief (predicate): The mandatory belief
• beliefs (list): The mandatory beliefs
• desire (predicate): The mandatory desire
• desires (list): The mandatory desires
• emotion (emotion): The mandatory emotion
• emotions (list): The mandatory emotions
• ideal (predicate): The mandatory ideal

v 1.8.2 403

GAMA v1.8.2 documentation Chapter 32. Statements

• ideals (list): The mandatory ideals
• lifetime (int): the lifetime value of the mental state created
• new_belief (predicate): The belief that will be added
• new_beliefs (list): The belief that will be added
• new_desire (predicate): The desire that will be added
• new_desires (list): The desire that will be added
• new_emotion (emotion): The emotion that will be added
• new_emotions (list): The emotion that will be added
• new_ideal (predicate): The ideal that will be added
• new_ideals (list): The ideals that will be added
• new_uncertainties (list): The uncertainty that will be added
• new_uncertainty (predicate): The uncertainty that will be added
• obligation (predicate): The mandatory obligation
• obligations (list): The mandatory obligations
• parallel (any type in [boolean, int]): setting this facet to ‘true’ will allow

‘perceive’ to use concurrency with a parallel_bdi architecture; setting it to an
integer will set the threshold under which they will be run sequentially (the
default is initially 20, but can be fixed in the preferences). This facet is true by
default.

• remove_belief (predicate): The belief that will be removed
• remove_beliefs (list): The belief that will be removed
• remove_desire (predicate): The desire that will be removed
• remove_desires (list): The desire that will be removed
• remove_emotion (emotion): The emotion that will be removed
• remove_emotions (list): The emotion that will be removed
• remove_ideal (predicate): The ideal that will be removed
• remove_ideals (list): The ideals that will be removed
• remove_intention (predicate): The intention that will be removed
• remove_obligation (predicate): The obligation that will be removed
• remove_obligations (list): The obligation that will be removed
• remove_uncertainties (list): The uncertainty that will be removed
• remove_uncertainty (predicate): The uncertainty that will be removed
• strength (any type in [float, int]): The stregth of the mental state created
• threshold (float): Threshold linked to the emotion.
• uncertainties (list): The mandatory uncertainties
• uncertainty (predicate): The mandatory uncertainty
• when (boolean):

v 1.8.2 404

GAMA v1.8.2 documentation Chapter 32. Statements

Definition

enables to add or remove mantal states depending on the emotions of the agent, after
the emotional engine and before the cognitive or normative engine.

Usages

• Other examples of use:� �
coping emotion: new_emotion("fear") when: flip (0.5) new_desire

: new_predicate("test")� �
Embedments

• The coping statement is of type: Behavior
• The coping statement can be embedded into: simple_bdi, parallel_bdi, Species,

Model,
• The coping statement embeds statements:

create

Facets

• species (any type in [species, agent]), (omissible) : an expression that evaluates
to a species, the species of the agents to be created. In the case of simulations,
the name ‘simulation’, which represents the current instance of simulation, can
also be used as a proxy to their species

• as (species): optionally indicates a species into which to cast the created agents.
• from (any type): an expression that evaluates to a localized entity, a list of

localized entities, a string (the path of a file), a file (shapefile, a .csv, a .asc or
a OSM file) or a container returned by a request to a database

• number (int): an expression that evaluates to an int, the number of created
agents

v 1.8.2 405

GAMA v1.8.2 documentation Chapter 32. Statements

• returns (a new identifier): a new temporary variable name containing the list
of created agents (a list, even if only one agent has been created)

• with (map): an expression that evaluates to a map, for each pair the key is a
species attribute and the value the assigned value

Definition

Allows an agent to create number agents of species species, to create agents of species
species from a shapefile or to create agents of species species from one or several
localized entities (discretization of the localized entity geometries).

Usages

• Its simple syntax to create an_int agents of species a_species is:� �
create a_species number: an_int;
create species_of(self) number: 5 returns: list5Agents;
5� �

• In GAML modelers can create agents of species a_species (with two
attributestypeandnaturewith types corresponding to the types of the
shapefile attributes) from a shapefilethe_shapefile‘ while reading
attributes ‘TYPE_OCC’ and ‘NATURE’ of the shapefile. One agent will be
created by object contained in the shapefile:� �

create a_species from: the_shapefile with: [type:: read('
TYPE_OCC '), nature ::read('NATURE ')];� �

• In order to create agents from a .csv file, facet header can be used to specified
whether we can use columns header:� �

create toto from: "toto.csv" header: true with:[att1::read("
NAME"), att2::read("TYPE")];

or
create toto from: "toto.csv" with:[att1::read (0), att2::read

(1)]; //with read(int), the index of the column� �
v 1.8.2 406

GAMA v1.8.2 documentation Chapter 32. Statements

• Similarly to the creation from shapefile, modelers can create agents from a set
of geometries. In this case, one agent per geometry will be created (with the
geometry as shape)� �

create species_of(self) from: [square (4),circle (4)]; // 2
agents have been created , with shapes respectively square
(4) and circle (4)� �

• Created agents are initialized following the rules of their species. If one wants
to refer to them after the statement is executed, the returns keyword has to be
defined: the agents created will then be referred to by the temporary variable
it declares. For instance, the following statement creates 0 to 4 agents of the
same species as the sender, and puts them in the temporary variable children
for later use.� �

create species (self) number: rnd (4) returns: children;
ask children {

// ...
}� �

• If one wants to specify a special initialization sequence for the agents created,
create provides the same possibilities as ask. This extended syntax is:� �

create a_species number: an_int {
[statements]

}� �
• The same rules as in ask apply. The only difference is that, for the agents

created, the assignments of variables will bypass the initialization defined in
species. For instance:� �

create species(self) number: rnd (4) returns: children {
set location <- myself.location + {rnd (2), rnd (2)}; //

tells the children to be initially located close to me
set parent <- myself; // tells the children that their

parent is me (provided the variable parent is declared in
this species)

}� �
v 1.8.2 407

GAMA v1.8.2 documentation Chapter 32. Statements

• Deprecated uses:

� �
// Simple syntax
create species: a_species number: an_int;� �

• If number equals 0 or species is not a species, the statement is ignored.

Embedments

• The create statement is of type: Sequence of statements or action
• The create statement can be embedded into: Behavior, Sequence of statements

or action,
• The create statement embeds statements:

data

Facets

• legend (string), (omissible) : The legend of the chart

• value (any type in [float, point, list]): The value to output on the chart
• accumulate_values (boolean): Force to replace values at each step (false) or

accumulate with previous steps (true)
• color (any type in [rgb, list]): color of the serie, for heatmap can be a list to

specify [minColor,maxColor] or [minColor,medColor,maxColor]
• fill (boolean): Marker filled (true) or not (false)
• line_visible (boolean): Whether lines are visible or not
• marker (boolean): marker visible or not
• marker_shape (an identifier), takes values in: {marker_empty, marker_square,

marker_circle, marker_up_triangle, marker_diamond, marker_hor_rectangle,
marker_down_triangle, marker_hor_ellipse, marker_right_triangle, marker_-
vert_rectangle, marker_left_triangle}: Shape of the marker

• marker_size (float): Size in pixels of the marker

v 1.8.2 408

GAMA v1.8.2 documentation Chapter 32. Statements

• style (an identifier), takes values in: {line, whisker, area, bar, dot, step, spline,
stack, 3d, ring, exploded}: Style for the serie (if not the default one sepecified
on chart statement)

• thickness (float): The thickness of the lines to draw
• use_second_y_axis (boolean): Use second y axis for this serie
• x_err_values (any type in [float, list]): the X Error bar values to display. Has

to be a List. Each element can be a number or a list with two values (low and
high value)

• y_err_values (any type in [float, list]): the Y Error bar values to display. Has
to be a List. Each element can be a number or a list with two values (low and
high value)

• y_minmax_values (list): the Y MinMax bar values to display (BW charts). Has
to be a List. Each element can be a number or a list with two values (low and
high value)

Definition

This statement allows to describe the values that will be displayed on the chart.

Usages

Embedments

• The data statement is of type: Single statement
• The data statement can be embedded into: chart, Sequence of statements or

action,
• The data statement embeds statements:

datalist

Facets

• value (list): the values to display. Has to be a matrix, a list or a List of List.
Each element can be a number (series/histogram) or a list with two values (XY
chart)

v 1.8.2 409

GAMA v1.8.2 documentation Chapter 32. Statements

• legend (list), (omissible) : the name of the series: a list of strings (can be a
variable with dynamic names)

• accumulate_values (boolean): Force to replace values at each step (false) or
accumulate with previous steps (true)

• color (list): list of colors, for heatmaps can be a list of [minColor,maxColor] or
[minColor,medColor,maxColor]

• fill (boolean): Marker filled (true) or not (false), same for all series.
• line_visible (boolean): Line visible or not (same for all series)
• marker (boolean): marker visible or not
• marker_shape (an identifier), takes values in: {marker_empty, marker_square,

marker_circle, marker_up_triangle, marker_diamond, marker_hor_rectangle,
marker_down_triangle, marker_hor_ellipse, marker_right_triangle, marker_-
vert_rectangle, marker_left_triangle}: Shape of the marker. Same one for all
series.

• marker_size (list): the marker sizes to display. Can be a list of numbers (same
size for each marker of the series) or a list of list (different sizes by point)

• style (an identifier), takes values in: {line, whisker, area, bar, dot, step, spline,
stack, 3d, ring, exploded}: Style for the serie (if not the default one sepecified
on chart statement)

• thickness (float): The thickness of the lines to draw
• use_second_y_axis (boolean): Use second y axis for this serie
• x_err_values (list): the X Error bar values to display. Has to be a List. Each

element can be a number or a list with two values (low and high value)
• y_err_values (list): the Y Error bar values to display. Has to be a List. Each

element can be a number or a list with two values (low and high value)
• y_minmax_values (list): the Y MinMax bar values to display (BW charts). Has

to be a List. Each element can be a number or a list with two values (low and
high value)

Definition

add a list of series to a chart. The number of series can be dynamic (the size of the
list changes each step). See Ant Foraging (Charts) model in ChartTest for examples.

v 1.8.2 410

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

Embedments

• The datalist statement is of type: Single statement
• The datalist statement can be embedded into: chart, Sequence of statements

or action,
• The datalist statement embeds statements:

default

Facets

• value (any type), (omissible) : The value or values this statement tries to match

Definition

Used in a switch match structure, the block prefixed by default is executed only if no
other block has matched (otherwise it is not).

Usages

• See also: switch, match,

Embedments

• The default statement is of type: Sequence of statements or action
• The default statement can be embedded into: switch,
• The default statement embeds statements:

v 1.8.2 411

GAMA v1.8.2 documentation Chapter 32. Statements

diffuse

Facets

• var (an identifier), (omissible) : the variable to be diffused. If diffused over a
field, then this name will serve to identify the diffusion

• on (any type in [species, 31, list]): the list of agents (in general cells of a grid),
or a field on which the diffusion will occur

• avoid_mask (boolean): if true, the value will not be diffused in the masked cells,
but will be restitute to the neighboring cells, multiplied by the proportion value
(no signal lost). If false, the value will be diffused in the masked cells, but
masked cells won’t diffuse the value afterward (lost of signal). (default value :
false)

• cycle_length (int): the number of diffusion operation applied in one simulation
step

• mask (matrix): a matrix that masks the diffusion (created from an image for
instance). The cells corresponding to the values smaller than “-1” in the mask
matrix will not diffuse, and the other will diffuse.

• matrix (matrix): the diffusion matrix (“kernel” or “filter” in image processing).
Can have any size, as long as dimensions are odd values.

• method (an identifier), takes values in: {convolution, dot_product}: the diffusion
method. One of ‘convolution’ or ‘dot_product’

• min (float): if a value is smaller than this value, it will not be diffused. By
default, this value is equal to 0.0. This value cannot be smaller than 0.

• propagation (a label), takes values in: {diffusion, gradient}: represents both
the way the signal is propagated and the way to treat multiple propagation of
the same signal occurring at once from different places. If propagation equals
‘diffusion’, the intensity of a signal is shared between its neighbors with respect
to ‘proportion’, ‘variation’ and the number of neighbors of the environment
places (4, 6 or 8). I.e., for a given signal S propagated from place P, the value
transmitted to its N neighbors is : S’ = (S / N / proportion) - variation. The
intensity of S is then diminished by S * proportion on P. In a diffusion, the
different signals of the same name see their intensities added to each other
on each place. If propagation equals ‘gradient’, the original intensity is not
modified, and each neighbors receives the intensity : S / proportion - variation.
If multiple propagation occur at once, only the maximum intensity is kept on
each place. If ‘propagation’ is not defined, it is assumed that it is equal to

v 1.8.2 412

GAMA v1.8.2 documentation Chapter 32. Statements

‘diffusion’.
• proportion (float): a diffusion rate
• radius (int): a diffusion radius (in number of cells from the center)
• variation (float): an absolute value to decrease at each neighbors

Definition

This statements allows a value to diffuse among a species on agents (generally on a
grid) depending on a given diffusion matrix.

Usages

• A basic example of diffusion of the variable phero defined in the species cells,
given a diffusion matrix math_diff is:� �

matrix <float > math_diff <- matrix
([[1/9 ,1/9 ,1/9] ,[1/9 ,1/9 ,1/9] ,[1/9 ,1/9 ,1/9]]);

diffuse var: phero on: cells matrix: math_diff;� �
• The diffusion can be masked by obstacles, created from a bitmap image:� �

diffuse var: phero on: cells matrix: math_diff mask: mymask;� �
• A convenient way to have an uniform diffusion in a given radius is (which is

equivalent to the above diffusion):� �
diffuse var: phero on: cells proportion: 1/9 radius: 1;� �
Embedments

• The diffuse statement is of type: Single statement
• The diffuse statement can be embedded into: Behavior, Sequence of statements

or action,
• The diffuse statement embeds statements:

v 1.8.2 413

GAMA v1.8.2 documentation Chapter 32. Statements

display

Facets

• name (a label), (omissible) : the identifier of the display
• antialias (boolean): Indicates whether to use advanced antialiasing for the

display or not. The default value is the one indicated in the preferences of
GAMA (‘false’ is its factory default). Antialising produces smoother outputs,
but comes with a cost in terms of speed and memory used.

• autosave (any type in [boolean, point, string]): Allows to save this display
on disk. This facet accepts bool, point or string values. If it is false or nil,
nothing happens. ‘true’ will save it at a resolution of 500x500 with a standard
name (containing the name of the model, display, resolution, cycle and time).
A non-nil point will change that resolution. A non-nil string will keep 500x500
and change the filename (if it is not dynamically built, the previous file will be
erased). Note that setting autosave to true in a display will synchronize all the
displays defined in the experiment

• axes (boolean): Allows to enable/disable the drawing of the world shape and
the ordinate axes. Default can be configured in Preferences

• background (rgb): Allows to fill the background of the display with a specific
color

• camera (string): Allows to define the name of the camera to use. Default
value is ‘default’. Accepted values are (1) the name of one of the cameras
defined using the ‘camera’ statement or (2) one of the preset cameras, accessible
using constants: #from_above, #from_left, #from_right, #from_up_left,
#from_up_right, #from_front, #from_up_front, #isometric

• fullscreen (any type in [boolean, int]): Indicates, when using a boolean value,
whether or not the display should cover the whole screen (default is false). If
an integer is passed, specifies also the screen to use: 0 for the primary monitor,
1 for the secondary one, and so on and so forth. If the monitor is not available,
the first one is used

• keystone (container): Set the position of the 4 corners of your screen
([topLeft,topRight,botLeft,botRight]), in (x,y) coordinate (the (0,0) position is
the top left corner, while the (1,1) position is the bottom right corner). The
default value is : [{0,0},{1,0},{0,1},{1,1}]

• light (boolean): Allows to enable/disable the light at once. Default is true
• orthographic_projection (boolean): Allows to enable/disable the orthographic

projection. Default can be configured in Preferences

v 1.8.2 414

GAMA v1.8.2 documentation Chapter 32. Statements

• parent (an identifier): Declares that this display inherits its layers and attributes
from the parent display named as the argument. Expects the identifier of the
parent display or a string if the name of the parent contains spaces

• refresh (boolean): Indicates the condition under which this output should be
refreshed (default is true)

• show_fps (boolean): Allows to enable/disable the drawing of the number of
frames per second

• synchronized (boolean): Indicates whether the display should be directly syn-
chronized with the simulation

• toolbar (any type in [boolean, rgb]): Indicates whether the top toolbar of the
display view should be initially visible or not. If a color is passed, then the
background of the toolbar takes this color

• type (a label): Allows to use either Java2D (for planar models) or OpenGL (for
3D models) as the rendering subsystem

• virtual (boolean): Declaring a display as virtual makes it invisible on screen,
and only usable for display inheritance

• z_far (float): Set the distances to the far depth clipping planes. Must be
positive.

• z_near (float): Set the distances to the near depth clipping planes. Must be
positive.

Definition

A display refers to an independent and mobile part of the interface that can display
species, images, texts or charts.

Usages

• The general syntax is:

� �
display my_display [additional options] { ... }� �

• Each display can include different layers (like in a GIS).

v 1.8.2 415

GAMA v1.8.2 documentation Chapter 32. Statements

� �
display gridWithElevationTriangulated type: opengl

ambient_light: 100 {
grid cell elevation: true triangulation: true;
species people aspect: base;

}� �
Embedments

• The display statement is of type: Output
• The display statement can be embedded into: output, permanent,
• The display statement embeds statements: agents, camera, chart, display_grid,

display_population, event, graphics, image, light, mesh, overlay, rotation,

display_grid

Facets

• species (species), (omissible) : the species of the agents in the grid
• border (rgb): the color to draw lines (borders of cells)
• elevation (any type in [matrix, float, int, boolean]): Allows to specify the

elevation of each cell, if any. Can be a matrix of float (provided it has the same
size than the grid), an int or float variable of the grid species, or simply true
(in which case, the variable called ‘grid_value’ is used to compute the elevation
of each cell)

• grayscale (boolean): if true, givse a grey value to each polygon depending on
its elevation (false by default)

• hexagonal (boolean):
• position (point): position of the upper-left corner of the layer. Note that if

coordinates are in [0,1[, the position is relative to the size of the environment
(e.g. {0.5,0.5} refers to the middle of the display) whereas it is absolute when
coordinates are greater than 1 for x and y. The z-ordinate can only be defined
between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the
last coordinate specifying the elevation of the layer. In case of negative value
OpenGl will position the layer out of the environment.

v 1.8.2 416

GAMA v1.8.2 documentation Chapter 32. Statements

• refresh (boolean): (openGL only) specify whether the display of the species is
refreshed. (true by default, usefull in case of agents that do not move)

• rotate (float): Defines the angle of rotation of this layer, in degrees, around
the z-axis.

• selectable (boolean): Indicates whether the agents present on this layer are
selectable by the user. Default is true

• size (point): extent of the layer in the screen from its position. Coordinates
in [0,1[are treated as percentages of the total surface, while coordinates > 1
are treated as absolute sizes in model units (i.e. considering the model occupies
the entire view). Like in ‘position’, an elevation can be provided with the z
coordinate, allowing to scale the layer in the 3 directions

• smooth (boolean): Applies a simple convolution (box filter) to smooth out the
terrain produced by this field. Does not change the values of course.

• text (boolean): specify whether the attribute used to compute the elevation is
displayed on each cells (false by default)

• texture (file): Either file containing the texture image to be applied on the
grid or, if not specified, the use of the image composed by the colors of the cells

• transparency (float): the transparency level of the layer (between 0 – opaque –
and 1 – fully transparent)

• triangulation (boolean): specifies whther the cells will be triangulated: if it is
false, they will be displayed as horizontal squares at a given elevation, whereas
if it is true, cells will be triangulated and linked to neighbors in order to have a
continuous surface (false by default)

• visible (boolean): Defines whether this layer is visible or not
• wireframe (boolean): if true displays the grid in wireframe using the lines color

Definition

display_grid is used using the grid keyword. It allows the modeler to display in
an optimized way all cell agents of a grid (i.e. all agents of a species having a grid
topology).

Usages

• The general syntax is:

� �
display my_display {

v 1.8.2 417

GAMA v1.8.2 documentation Chapter 32. Statements

grid ant_grid lines: #black position: { 0.5, 0 } size:
{0.5 ,0.5};

}� �
• To display a grid as a DEM:

� �
display my_display {

grid cell texture: texture_file text: false triangulation:
true elevation: true;

}� �
• See also: display, agents, chart, event, graphics, image, overlay, display_-

population,

Embedments

• The display_grid statement is of type: Layer
• The display_grid statement can be embedded into: display,
• The display_grid statement embeds statements:

display_population

Facets

• species (species), (omissible) : the species to be displayed
• aspect (an identifier): the name of the aspect that should be used to display

the species
• fading (boolean): Used in conjunction with ‘trace:’, allows to apply a fading

effect to the previous traces. Default is false
• position (point): position of the upper-left corner of the layer. Note that if

coordinates are in [0,1[, the position is relative to the size of the environment
(e.g. {0.5,0.5} refers to the middle of the display) whereas it is absolute when
coordinates are greater than 1 for x and y. The z-ordinate can only be defined

v 1.8.2 418

GAMA v1.8.2 documentation Chapter 32. Statements

between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the
last coordinate specifying the elevation of the layer. In case of negative value
OpenGl will position the layer out of the environment.

• refresh (boolean): (openGL only) specify whether the display of the species is
refreshed. (true by default, usefull in case of agents that do not move)

• rotate (float): Defines the angle of rotation of this layer, in degrees, around
the z-axis.

• selectable (boolean): Indicates whether the agents present on this layer are
selectable by the user. Default is true

• size (point): extent of the layer in the screen from its position. Coordinates
in [0,1[are treated as percentages of the total surface, while coordinates > 1
are treated as absolute sizes in model units (i.e. considering the model occupies
the entire view). Like in ‘position’, an elevation can be provided with the z
coordinate, allowing to scale the layer in the 3 directions

• trace (any type in [boolean, int]): Allows to aggregate the visualization of
agents at each timestep on the display. Default is false. If set to an int value,
only the last n-th steps will be visualized. If set to true, no limit of timesteps is
applied.

• transparency (float): the transparency level of the layer (between 0 – opaque –
and 1 – fully transparent)

• visible (boolean): Defines whether this layer is visible or not

Definition

The display_population statement is used using the species keyword. It allows
modeler to display all the agent of a given species in the current display. In particular,
modeler can choose the aspect used to display them.

Usages

• The general syntax is:

� �
display my_display {

species species_name [additional options];
}� �
v 1.8.2 419

GAMA v1.8.2 documentation Chapter 32. Statements

• Species can be superposed on the same plan (be careful with the order, the last
one will be above all the others):� �

display my_display {
species agent1 aspect: base;
species agent2 aspect: base;
species agent3 aspect: base;

}� �
• Each species layer can be placed at a different z value using the opengl display.

position:{0,0,0} means the layer will be placed on the ground and position:{0,0,1}
means it will be placed at an height equal to the maximum size of the environ-
ment.� �

display my_display type: opengl{
species agent1 aspect: base ;
species agent2 aspect: base position :{0 ,0 ,0.5};
species agent3 aspect: base position :{0,0,1};

}� �
• See also: display, agents, chart, event, graphics, display_grid, image, overlay,

Embedments

• The display_population statement is of type: Layer
• The display_population statement can be embedded into: display, display_-

population,
• The display_population statement embeds statements: display_population,

do

Facets

• action (an identifier), (omissible) : the name of an action or a primitive
• internal_function (any type):
• with (map): a map expression containing the parameters of the action

v 1.8.2 420

GAMA v1.8.2 documentation Chapter 32. Statements

Definition

Allows the agent to execute an action or a primitive. For a list of primitives available
in every species, see this [BuiltIn161 page]; for the list of primitives defined by the
different skills, see this [Skills161 page]. Finally, see this [Species161 page] to know
how to declare custom actions.

Usages

• The simple syntax (when the action does not expect any argument and the
result is not to be kept) is:� �

do name_of_action_or_primitive;� �
• In case the action expects one or more arguments to be passed, they are defined

by using facets (enclosed tags or a map are now deprecated):� �
do name_of_action_or_primitive arg1: expression1 arg2:

expression2;� �
• In case the result of the action needs to be made available to the agent, the

action can be called with the agent calling the action (self when the agent itself
calls the action) instead of do; the result should be assigned to a temporary
variable:� �

type_returned_by_action result <- self
name_of_action_or_primitive [];� �

• In case of an action expecting arguments and returning a value, the following
syntax is used:� �

type_returned_by_action result <- self
name_of_action_or_primitive [arg1:: expression1 , arg2::
expression2];� �

v 1.8.2 421

GAMA v1.8.2 documentation Chapter 32. Statements

• Deprecated uses: following uses of the do statement (still accepted) are now
deprecated:� �

// Simple syntax:
do action: name_of_action_or_primitive;

// In case the result of the action needs to be made available
to the agent , the `returns ` keyword can be defined; the

result will then be referred to by the temporary variable
declared in this attribute:

do name_of_action_or_primitive returns: result;
do name_of_action_or_primitive arg1: expression1 arg2:

expression2 returns: result;
type_returned_by_action result <- name_of_action_or_primitive(

self , [arg1:: expression1 , arg2:: expression2]);

// In case the result of the action needs to be made available
to the agent

let result <- name_of_action_or_primitive(self , []);

// In case the action expects one or more arguments to be
passed , they can also be defined by using enclosed `arg `
statements , or the `with ` facet with a map of parameters:

do name_of_action_or_primitive with: [arg1:: expression1 , arg2
:: expression2];

or

do name_of_action_or_primitive {
arg arg1 value: expression1;
arg arg2 value: expression2;
...

}� �
Embedments

• The do statement is of type: Single statement
• The do statement can be embedded into: chart, Behavior, Sequence of state-

ments or action,

v 1.8.2 422

GAMA v1.8.2 documentation Chapter 32. Statements

• The do statement embeds statements:

draw

Facets

• geometry (any type), (omissible) : any type of data (it can be geometry, image,
text)

• anchor (point): Only used when perspective: true in OpenGL. The anchor
point of the location with respect to the envelope of the text to draw, can take
one of the following values: #center, #top_left, #left_center, #bottom_left,
#bottom_center, #bottom_right, #right_center, #top_right, #top_center;
or any point between {0,0} (#bottom_left) and {1,1} (#top_right)

• at (point): location where the shape/text/icon is drawn
• begin_arrow (any type in [int, float]): the size of the arrow, located at the

beginning of the drawn geometry
• border (any type in [rgb, boolean]): if used with a color, represents the color of

the geometry border. If set to false, expresses that no border should be drawn.
If not set, the borders will be drawn using the color of the geometry.

• color (any type in [rgb, container]): the color to use to display the object. In
case of images, will try to colorize it. You can also pass a list of colors : in that
case, each color will be matched to its corresponding vertex.

• depth (float): (only if the display type is opengl) Add an artificial depth to the
geometry previously defined (a line becomes a plan, a circle becomes a cylinder,
a square becomes a cube, a polygon becomes a polyhedron with height equal to
the depth value). Note: This only works if the geometry is not a point

• end_arrow (any type in [int, float]): the size of the arrow, located at the end of
the drawn geometry

• font (any type in [font, string]): the font used to draw the text, if any. Applying
this facet to geometries or images has no effect. You can construct here your
font with the operator “font”. ex : font:font(“Helvetica”, 20 , #plain)

• lighted (boolean): Whether the object should be lighted or not (only applicable
in the context of opengl displays)

• material (material): Set a particular material to the object (only if you use it
in an “opengl2” display).

v 1.8.2 423

GAMA v1.8.2 documentation Chapter 32. Statements

• perspective (boolean): Whether to render the text in perspective or facing the
user. Default is true.

• precision (float): (only if the display type is opengl and only for text drawing)
controls the accuracy with which curves are rendered in glyphs. Between 0 and
1, the default is 0.1. Smaller values will output much more faithful curves but
can be considerably slower, so it is better if they concern text that does not
change and can be drawn inside layers marked as ‘refresh: false’

• rotate (any type in [float, int, pair]): orientation of the shape/text/icon; can
be either an int/float (angle) or a pair float::point (angle::rotation axis). The
rotation axis, when expressed as an angle, is by defaut {0,0,1}

• size (any type in [float, point]): Size of the shape/icon/image to draw, expressed
as a bounding box (width, height, depth; if expressed as a float, represents
the box as a cube). Does not apply to texts: use a font with the required size
instead

• texture (any type in [string, list, file]): the texture(s) that should be applied
to the geometry. Either a path to a file or a list of paths

• width (float): The line width to use for drawing this object
• wireframe (boolean): a condition specifying whether to draw the geometry in

wireframe or not

Definition

draw is used in an aspect block to express how agents of the species will be drawn. It
is evaluated each time the agent has to be drawn. It can also be used in the graphics
block.

Usages

• Any kind of geometry as any location can be drawn when displaying an agent
(independently of his shape)

� �
aspect geometryAspect {

draw circle (1.0) empty: !hasFood color: #orange ;
}� �

• Image or text can also be drawn

v 1.8.2 424

GAMA v1.8.2 documentation Chapter 32. Statements

� �
aspect arrowAspect {

draw "Current state= "+state at: location + {-3,1.5} color
: #white font: font('Default ', 12, #bold) ;
draw file(ant_shape_full) rotate: heading at: location

size: 5
}� �

• Arrows can be drawn with any kind of geometry, using begin_arrow and end_-
arrow facets, combined with the empty: facet to specify whether it is plain or
empty� �

aspect arrowAspect {
draw line ([{20, 20}, {40, 40}]) color: #black begin_arrow

:5;
draw line ([{10, 10},{20, 50}, {40, 70}]) color: #green

end_arrow: 2 begin_arrow: 2 empty: true;
draw square (10) at: {80 ,20} color: #purple begin_arrow: 2

empty: true;
}� �
Embedments

• The draw statement is of type: Single statement
• The draw statement can be embedded into: aspect, Sequence of statements or

action, Layer,
• The draw statement embeds statements:

else

Facets

Definition

This statement cannot be used alone

v 1.8.2 425

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

• See also: if,

Embedments

• The else statement is of type: Sequence of statements or action
• The else statement can be embedded into: if,
• The else statement embeds statements:

emotional_contagion

Facets

• emotion_detected (emotion): the emotion that will start the contagion
• name (an identifier), (omissible) : the identifier of the emotional contagion
• charisma (float): The charisma value of the perceived agent (between 0 and 1)
• decay (float): The decay value of the emotion added to the agent
• emotion_created (emotion): the emotion that will be created with the contagion
• intensity (float): The intensity value of the emotion created to the agent
• receptivity (float): The receptivity value of the current agent (between 0 and

1)
• threshold (float): The threshold value to make the contagion
• when (boolean): A boolean value to get the emotion only with a certain condition

Definition

enables to make conscious or unconscious emotional contagion

Usages

• Other examples of use:

v 1.8.2 426

GAMA v1.8.2 documentation Chapter 32. Statements

� �
emotional_contagion emotion_detected:fearConfirmed;
emotional_contagion emotion_detected:fear emotion_created:

fearConfirmed;
emotional_contagion emotion_detected:fear emotion_created:

fearConfirmed charisma: 0.5 receptivity: 0.5;� �
Embedments

• The emotional_contagion statement is of type: Single statement
• The emotional_contagion statement can be embedded into: Behavior, Sequence

of statements or action,
• The emotional_contagion statement embeds statements:

enforcement

Facets

• name (an identifier), (omissible) : the identifier of the enforcement
• law (string): The law to enforce
• norm (string): The norm to enforce
• obligation (predicate): The obligation to enforce
• reward (string): The positive sanction to apply if the norm has been followed
• sanction (string): The sanction to apply if the norm is violated
• when (boolean): A boolean value to enforce only with a certain condition

Definition

applay a sanction if the norm specified is violated, or a reward if the norm is applied
by the perceived agent

v 1.8.2 427

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

• Other examples of use:� �
focus var:speed /*where speed is a variable from a species

that is being perceived */� �
Embedments

• The enforcement statement is of type: Single statement
• The enforcement statement can be embedded into: Behavior, Sequence of

statements or action,
• The enforcement statement embeds statements:

enter

Facets

Definition

In an FSM architecture, enter introduces a sequence of statements to execute upon
entering a state.

Usages

• In the following example, at the step it enters into the state s_init, the message
‘Enter in s_init’ is displayed followed by the display of the state name:� �
state s_init {

enter { write "Enter in" + state; }
write "Enter in" + state;

}
write state;

}� �
v 1.8.2 428

GAMA v1.8.2 documentation Chapter 32. Statements

• See also: state, exit, transition,

Embedments

• The enter statement is of type: Sequence of statements or action
• The enter statement can be embedded into: state,
• The enter statement embeds statements:

equation

Facets

• name (an identifier), (omissible) : the equation identifier
• params (list): the list of parameters used in predefined equation systems
• simultaneously (list): a list of species containing a system of equations (all

systems will be solved simultaneously)
• type (an identifier), takes values in: {SI, SIS, SIR, SIRS, SEIR, LV}: the choice

of one among classical models (SI, SIS, SIR, SIRS, SEIR, LV)
• vars (list): the list of variables used in predefined equation systems

Definition

The equation statement is used to create an equation system from several single
equations.

Usages

• The basic syntax to define an equation system is:� �
float t;
float S;
float I;
equation SI {

diff(S,t) = (- 0.3 * S * I / 100);

v 1.8.2 429

GAMA v1.8.2 documentation Chapter 32. Statements

diff(I,t) = (0.3 * S * I / 100);
}� �

• If the type: facet is used, a predefined equation system is defined using vari-
ables vars: and parameters params: in the right order. All possible predefined
equation systems are the following ones (see [EquationPresentation161 Equa-
tionPresentation161] for precise definition of each classical equation system):� �

equation eqSI type: SI vars: [S,I,t] params: [N,beta];
equation eqSIS type: SIS vars: [S,I,t] params: [N,beta ,gamma];
equation eqSIR type:SIR vars:[S,I,R,t] params :[N,beta ,gamma];
equation eqSIRS type: SIRS vars: [S,I,R,t] params: [N,beta ,

gamma ,omega ,mu];
equation eqSEIR type: SEIR vars: [S,E,I,R,t] params: [N,beta ,

gamma ,sigma ,mu];
equation eqLV type: LV vars: [x,y,t] params: [alpha ,beta ,delta

,gamma] ;� �
• If the simultaneously: facet is used, system of all the agents will be solved

simultaneously.

• See also: =, solve,

Embedments

• The equation statement is of type: Sequence of statements or action
• The equation statement can be embedded into: Species, Model,
• The equation statement embeds statements: =,

error

Facets

• message (string), (omissible) : the message to display in the error.

v 1.8.2 430

GAMA v1.8.2 documentation Chapter 32. Statements

Definition

The statement makes the agent output an error dialog (if the simulation contains a
user interface). Otherwise displays the error in the console.

Usages

• Throwing an error� �
error 'This is an error raised by ' + self;� �
Embedments

• The error statement is of type: Single statement
• The error statement can be embedded into: Behavior, Sequence of statements

or action, Layer,
• The error statement embeds statements:

event

Facets

• name (an identifier), (omissible) : the type of event captured: can be “mouse_up”,
“mouse_down”, “mouse_move”, “mouse_exit”, “mouse_enter”, “mouse_menu”
or a character

• action (action): The identifier of the action to be executed in the context of
the simulation. This action needs to be defined in ‘global’ or in the current
experiment, without any arguments. The location of the mouse in the world
can be retrieved in this action with the pseudo-constant #user_location

• type (string): Type of peripheric used to generate events. Defaults to ‘default’,
which encompasses keyboard and mouse

• unused (an identifier), takes values in: {mouse_up, mouse_down, mouse_move,
mouse_enter, mouse_exit, mouse_menu}: an unused facet that serves only for
the purpose of declaring the string values

v 1.8.2 431

GAMA v1.8.2 documentation Chapter 32. Statements

Definition

event allows to interact with the simulation by capturing mouse or key events and
doing an action. The name of this action can be defined with the ‘action:’ facet, in
which case the action needs to be defined in ‘global’ or in the current experiment,
without any arguments. The location of the mouse in the world can be retrieved in
this action with the pseudo-constant #user_location. The statements to execute can
also be defined in the block at the end of this statement, in which case they will be
executed in the context of the experiment

Usages

• The general syntax is:� �
event [event_type] action: myAction;� �

• For instance:� �
global {

// ...
action myAction () {

point loc <- #user_location; // contains the location of
the mouse in the world

list <agent > selected_agents <- agents inside (10#m
around loc); // contains agents clicked by the event

// code written by modelers
}

}

experiment Simple type:gui {
display my_display {

event mouse_up action: myAction;
}

}� �
• See also: display, agents, chart, graphics, display_grid, image, overlay, display_-

population,

v 1.8.2 432

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The event statement is of type: Layer
• The event statement can be embedded into: display,
• The event statement embeds statements:

exhaustive

Facets

• name (an identifier), (omissible) : The name of the method. For internal use
only

Definition

This is the standard batch method. The exhaustive mode is defined by default when
there is no method element present in the batch section. It explores all the combination
of parameter values in a sequential way. See [batch161 the batch dedicated page].

Usages

• As other batch methods, the basic syntax of the exhaustive statement uses
method exhaustive instead of the expected exhaustive name: id :

� �
method exhaustive [facet: value];� �

• For example:

� �
method exhaustive maximize: food_gathered;� �
v 1.8.2 433

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The exhaustive statement is of type: Batch method
• The exhaustive statement can be embedded into: Experiment,
• The exhaustive statement embeds statements:

exit

Facets

Definition

In an FSM architecture, exit introduces a sequence of statements to execute right
before exiting the state.

Usages

• In the following example, at the state it leaves the state s_init, he will display
the message ‘EXIT from s_init’:

� �
state s_init initial: true {

write state;
transition to: s1 when: (cycle > 2) {

write "transition s_init -> s1";
}
exit {

write "EXIT from "+state;
}

}� �
• See also: enter, state, transition,

v 1.8.2 434

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The exit statement is of type: Sequence of statements or action
• The exit statement can be embedded into: state,
• The exit statement embeds statements:

experiment

Facets

• name (a label), (omissible) : identifier of the experiment

• title (a label):

• type (a label), takes values in: {batch, memorize, gui, test, headless}: the type
of the experiment (either ‘gui’ or ‘batch’

• autorun (boolean): whether this experiment should be run automatically when
launched (false by default)

• benchmark (boolean): If true, make GAMA record the number of invocations
and running time of the statements and operators of the simulations launched
in this experiment. The results are automatically saved in a csv file in a folder
called ‘benchmarks’ when the experiment is closed

• control (an identifier):
• frequency (int): the execution frequence of the experiment (default value: 1).

If frequency: 10, the experiment is executed only each 10 steps.
• keep_seed (boolean): Allows to keep the same seed between simulations. Mainly

useful for batch experiments
• keep_simulations (boolean): In the case of a batch experiment, specifies

whether or not the simulations should be kept in memory for further anal-
ysis or immediately discarded with only their fitness kept in memory

• parallel (any type in [boolean, int]): When set to true, use multiple threads
to run its simulations. Setting it to n will set the numbers of threads to use

• parent (an identifier): the parent experiment (in case of inheritance between
experiments)

• repeat (int): In the case of a batch experiment, expresses hom many times the
simulations must be repeated

v 1.8.2 435

GAMA v1.8.2 documentation Chapter 32. Statements

• schedules (container): A container of agents (a species, a dynamic list, or a
combination of species and containers) , which represents which agents will be
actually scheduled when the population is scheduled for execution. For instance,
‘species a schedules: (10 among a)’ will result in a population that schedules
only 10 of its own agents every cycle. ‘species b schedules: []’ will prevent the
agents of ‘b’ to be scheduled. Note that the scope of agents covered here can be
larger than the population, which allows to build complex scheduling controls;
for instance, defining ‘global schedules: [] {. . . } species b schedules: []; species
c schedules: b + world;’ allows to simulate a model where the agents of b are
scheduled first, followed by the world, without even having to create an instance
of c.

• skills (list):
• until (boolean): In the case of a batch experiment, an expression that will be

evaluated to know when a simulation should be terminated
• virtual (boolean): whether the experiment is virtual (cannot be instantiated,

but only used as a parent, false by default)

Definition

Declaration of a particular type of agent that can manage simulations. If the
experiment directly imports a model using the ‘model:’ facet, this facet must be the
first one after the name of the experiment

Usages

Embedments

• The experiment statement is of type: Experiment
• The experiment statement can be embedded into: Model,
• The experiment statement embeds statements:

v 1.8.2 436

GAMA v1.8.2 documentation Chapter 32. Statements

explicit

Facets

• name (an identifier), (omissible) : The name of the method. For internal use only

• parameter_sets (list): the list of parameter sets to explore; a parameter set is
defined by a map: key: name of the variable, value: expression for the value of
the variable

Definition

This algorithm run simulations with the given parameter sets

Usages

• As other batch methods, the basic syntax of the explicit statement uses
method explicit instead of the expected explicit name: id :

� �
method explicit [facet: value];� �

• For example:

� �
method explicit parameter_sets :[["a"::0.5, "b"::10] ,["a"::0.1 ,

"b"::100]];� �
Embedments

• The explicit statement is of type: Batch method
• The explicit statement can be embedded into: Experiment,
• The explicit statement embeds statements:

v 1.8.2 437

GAMA v1.8.2 documentation Chapter 32. Statements

focus

Facets

• agent_cause (agent): the agentCause value of the created belief (can be nil
• belief (predicate): The predicate to focus on the beliefs of the other agent
• desire (predicate): The predicate to focus on the desires of the other agent
• emotion (emotion): The emotion to focus on the emotions of the other agent
• expression (any type): an expression that will be the value kept in the belief
• id (string): the identifier of the focus
• ideal (predicate): The predicate to focus on the ideals of the other agent
• is_uncertain (boolean): a boolean to indicate if the mental state created is an

uncertainty
• lifetime (int): the lifetime value of the created belief
• strength (any type in [float, int]): The priority of the created predicate
• truth (boolean): the truth value of the created belief
• uncertainty (predicate): The predicate to focus on the uncertainties of the

other agent
• var (any type in [any type, list, container]): the variable of the perceived agent

you want to add to your beliefs
• when (boolean): A boolean value to focus only with a certain condition

Definition

enables to directly add a belief from the variable of a perceived specie.

Usages

• Other examples of use:

� �
focus var:speed /*where speed is a variable from a species

that is being perceived */� �
v 1.8.2 438

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The focus statement is of type: Single statement
• The focus statement can be embedded into: Behavior, Sequence of statements

or action,
• The focus statement embeds statements:

focus_on

Facets

• value (any type), (omissible) : The agent, list of agents, geometry to focus on

Definition

Allows to focus on the passed parameter in all available displays. Passing ‘nil’ for the
parameter will make all screens return to their normal zoom

Usages

• Focuses on an agent, a geometry, a set of agents, etc. . .)

� �
focus_on my_species (0);� �
Embedments

• The focus_on statement is of type: Single statement
• The focus_on statement can be embedded into: Behavior, Sequence of state-

ments or action, Layer,
• The focus_on statement embeds statements:

v 1.8.2 439

GAMA v1.8.2 documentation Chapter 32. Statements

generate

Facets

• attributes (map): To specify the explicit link between agent attributes and
file based attributes

• from (any type): To specify the input data used to inform the generation process.
Various data input can be used:
list of csv_file: can be aggregated or micro data
matrix: describe the joint distribution of two attributes
genstar generator: a dedicated gaml type to enclose various genstar options all
in one

• species (any type in [species, agent]), (omissible) : The species of the agents
to be created.

• generator (string): To specify the type of generator you want to use: as of now
there is only DS (or DirectSampling) available

• number (int): To specify the number of created agents interpreted as an int
value. If facet is ommited or value is 0 or less, generator will treat data used in
the ‘from’ facet as contingencies (i.e. a count of entities) and infer a number to
generate (if distribution is used, then only one entity will be created

Definition

Allows to create a synthetic population of agent from a set of given rules

Usages

• The synthax to create a minimal synthetic population from aggregated file is:

� �
synthesis my_species from: [source_file]; attributes: [age ::["

below 18","19 to 45","more than 46"]
synthesis my_species from: my_matrix number: 5 returns:

list5Agents;� �
v 1.8.2 440

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The generate statement is of type: Sequence of statements or action
• The generate statement can be embedded into: Behavior, Sequence of state-

ments or action,
• The generate statement embeds statements:

genetic

Facets

• name (an identifier), (omissible) : The name of this method. For internal use
only

• aggregation (a label), takes values in: {min, max}: the agregation method
• crossover_prob (float): crossover probability between two individual solutions
• improve_sol (boolean): if true, use a hill climbing algorithm to improve the

solutions at each generation
• max_gen (int): number of generations
• maximize (float): the value the algorithm tries to maximize
• minimize (float): the value the algorithm tries to minimize
• mutation_prob (float): mutation probability for an individual solution
• nb_prelim_gen (int): number of random populations used to build the initial

population
• pop_dim (int): size of the population (number of individual solutions)
• stochastic_sel (boolean): if true, use a stochastic selection algorithm (roulette)

rather a determistic one (keep the best solutions)

Definition

This is a simple implementation of Genetic Algorithms (GA). See the wikipedia
article and [batch161 the batch dedicated page]. The principle of the GA is to
search an optimal solution by applying evolution operators on an initial population
of solutions. There are three types of evolution operators: crossover, mutation and
selection. Different techniques can be applied for this selection. Most of them are
based on the solution quality (fitness).

v 1.8.2 441

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

• As other batch methods, the basic syntax of the genetic statement uses method
genetic instead of the expected genetic name: id :� �

method genetic [facet: value];� �
• For example:� �

method genetic maximize: food_gathered pop_dim: 5
crossover_prob: 0.7 mutation_prob: 0.1 nb_prelim_gen: 1
max_gen: 20;� �

Embedments

• The genetic statement is of type: Batch method
• The genetic statement can be embedded into: Experiment,
• The genetic statement embeds statements:

graphics

Facets

• name (a label), (omissible) : the human readable title of the graphics
• fading (boolean): Used in conjunction with ‘trace:’, allows to apply a fading

effect to the previous traces. Default is false
• position (point): position of the upper-left corner of the layer. Note that if

coordinates are in [0,1[, the position is relative to the size of the environment
(e.g. {0.5,0.5} refers to the middle of the display) whereas it is absolute when
coordinates are greater than 1 for x and y. The z-ordinate can only be defined
between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the
last coordinate specifying the elevation of the layer. In case of negative value
OpenGl will position the layer out of the environment.

v 1.8.2 442

GAMA v1.8.2 documentation Chapter 32. Statements

• refresh (boolean): (openGL only) specify whether the display of the species is
refreshed. (true by default, usefull in case of agents that do not move)

• rotate (float): Defines the angle of rotation of this layer, in degrees, around
the z-axis.

• size (point): extent of the layer in the screen from its position. Coordinates
in [0,1[are treated as percentages of the total surface, while coordinates > 1
are treated as absolute sizes in model units (i.e. considering the model occupies
the entire view). Like in ‘position’, an elevation can be provided with the z
coordinate, allowing to scale the layer in the 3 directions

• trace (any type in [boolean, int]): Allows to aggregate the visualization at each
timestep on the display. Default is false. If set to an int value, only the last
n-th steps will be visualized. If set to true, no limit of timesteps is applied.

• transparency (float): the transparency level of the layer (between 0 – opaque –
and 1 – fully transparent)

• visible (boolean): Defines whether this layer is visible or not

Definition

graphics allows the modeler to freely draw shapes/geometries/texts without having
to define a species. It works exactly like a species [Aspect161 aspect]: the draw
statement can be used in the same way.

Usages

• The general syntax is:

� �
display my_display {

graphics "my new layer" {
draw circle (5) at: {10 ,10} color: #red;
draw "test" at: {10 ,10} size: 20 color: #black;

}
}� �

• See also: display, agents, chart, event, graphics, display_grid, image, overlay,
display_population,

v 1.8.2 443

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The graphics statement is of type: Layer
• The graphics statement can be embedded into: display,
• The graphics statement embeds statements:

highlight

Facets

• value (agent), (omissible) : The agent to hightlight
• color (rgb): An optional color to highlight the agent. Note that this color will

become the default color for further higlight operations

Definition

Allows to highlight the agent passed in parameter in all available displays, optionaly
setting a color. Passing ‘nil’ for the agent will remove the current highlight

Usages

• Highlighting an agent� �
highlight my_species (0) color: #blue;� �
Embedments

• The highlight statement is of type: Single statement
• The highlight statement can be embedded into: Behavior, Sequence of state-

ments or action, Layer,
• The highlight statement embeds statements:

v 1.8.2 444

GAMA v1.8.2 documentation Chapter 32. Statements

hill_climbing

Facets

• name (an identifier), (omissible) : The name of the method. For internal use
only

• aggregation (a label), takes values in: {min, max}: the agregation method
• init_solution (map): init solution: key: name of the variable, value: value of

the variable
• iter_max (int): number of iterations
• maximize (float): the value the algorithm tries to maximize
• minimize (float): the value the algorithm tries to minimize

Definition

This algorithm is an implementation of the Hill Climbing algorithm. See the wikipedia
article and [batch161 the batch dedicated page].

Usages

• As other batch methods, the basic syntax of the hill_climbing statement uses
method hill_climbing instead of the expected hill_climbing name: id :� �

method hill_climbing [facet: value];� �
• For example:� �

method hill_climbing iter_max: 50 maximize : food_gathered;� �
Embedments

• The hill_climbing statement is of type: Batch method
• The hill_climbing statement can be embedded into: Experiment,
• The hill_climbing statement embeds statements:

v 1.8.2 445

GAMA v1.8.2 documentation Chapter 32. Statements

if

Facets

• condition (boolean), (omissible) : A boolean expression: the condition that is
evaluated.

Definition

Allows the agent to execute a sequence of statements if and only if the condition
evaluates to true.

Usages

• The generic syntax is:� �
if bool_expr {

[statements]
}� �

• Optionally, the statements to execute when the condition evaluates to false can
be defined in a following statement else. The syntax then becomes:� �

if bool_expr {
[statements]

}
else {

[statements]
}
string valTrue <- "";
if true {

valTrue <- "true";
}
else {

valTrue <- "false";
}// valTrue equals "true"
string valFalse <- "";

v 1.8.2 446

GAMA v1.8.2 documentation Chapter 32. Statements

if false {
valFalse <- "true";

}
else {

valFalse <- "false";
}// valFalse equals "false"� �

• ifs and elses can be imbricated as needed. For instance:� �
if bool_expr {

[statements]
}
else if bool_expr2 {

[statements]
}
else {

[statements]
}� �
Embedments

• The if statement is of type: Sequence of statements or action
• The if statement can be embedded into: Behavior, Sequence of statements or

action, Layer, Output,
• The if statement embeds statements: else,

image

Facets

• name (any type in [string, file]), (omissible) : Human readable title of the image
layer

• color (rgb): in the case of a shapefile, this the color used to fill in geometries
of the shapefile. In the case of an image, it is used to tint the image

v 1.8.2 447

GAMA v1.8.2 documentation Chapter 32. Statements

• file (any type in [string, file]): the name/path of the image (in the case of a
raster image)

• gis (any type in [file, string]): the name/path of the shape file (to display a
shapefile as background, without creating agents from it)

• position (point): position of the upper-left corner of the layer. Note that if
coordinates are in [0,1[, the position is relative to the size of the environment
(e.g. {0.5,0.5} refers to the middle of the display) whereas it is absolute when
coordinates are greater than 1 for x and y. The z-ordinate can only be defined
between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the
last coordinate specifying the elevation of the layer. In case of negative value
OpenGl will position the layer out of the environment.

• refresh (boolean): (openGL only) specify whether the image display is refreshed
or not. (false by default, true should be used in cases of images that are modified
over the simulation)

• rotate (float): Defines the angle of rotation of this layer, in degrees, around
the z-axis.

• size (point): extent of the layer in the screen from its position. Coordinates
in [0,1[are treated as percentages of the total surface, while coordinates > 1
are treated as absolute sizes in model units (i.e. considering the model occupies
the entire view). Like in ‘position’, an elevation can be provided with the z
coordinate, allowing to scale the layer in the 3 directions

• transparency (float): the transparency level of the layer (between 0 – opaque –
and 1 – fully transparent)

• visible (boolean): Defines whether this layer is visible or not

Definition

image allows modeler to display an image (e.g. as background of a simulation). Note
that this image will not be dynamically changed or moved in OpenGL, unless the
refresh: facet is set to true.

Usages

• The general syntax is:

� �
display my_display {

image layer_name file: image_file [additional options];

v 1.8.2 448

GAMA v1.8.2 documentation Chapter 32. Statements

}� �
• For instance, in the case of a bitmap image� �

display my_display {
image background file:"../ images/my_backgound.jpg";

}� �
• Or in the case of a shapefile:� �

display my_display {
image testGIS gis: "../ includes/building.shp" color: rgb('
blue ');

}� �
• It is also possible to superpose images on different layers in the same way as for

species using opengl display:� �
display my_display {

image image1 file:"../ images/image1.jpg";
image image2 file:"../ images/image2.jpg";
image image3 file:"../ images/image3.jpg" position:
{0 ,0 ,0.5};

}� �
• See also: display, agents, chart, event, graphics, display_grid, overlay, display_-

population,

Embedments

• The image statement is of type: Layer
• The image statement can be embedded into: display,
• The image statement embeds statements:

v 1.8.2 449

GAMA v1.8.2 documentation Chapter 32. Statements

inspect

Facets

• name (any type), (omissible) : the identifier of the inspector
• attributes (list): the list of attributes to inspect. A list that can contain

strings or pair<string,type>, or a mix of them. These can be variables of the
species, but also attributes present in the attributes table of the agent. The
type is necessary in that case

• refresh (boolean): Indicates the condition under which this output should be
refreshed (default is true)

• type (an identifier), takes values in: {agent, table}: the way to inspect agents:
in a table, or a set of inspectors

• value (any type): the set of agents to inspect, could be a species, a list of agents
or an agent

Definition

inspect (and browse) statements allows modeler to inspect a set of agents, in a table
with agents and all their attributes or an agent inspector per agent, depending on
the type: chosen. Modeler can choose which attributes to display. When browse is
used, type: default value is table, whereas wheninspect is used, type: default value
is agent.

Usages

• An example of syntax is:
� �
inspect "my_inspector" value: ant attributes: ["name", "

location"];� �
Embedments

• The inspect statement is of type: Output
• The inspect statement can be embedded into: output, permanent, Behavior,

Sequence of statements or action,

v 1.8.2 450

GAMA v1.8.2 documentation Chapter 32. Statements

• The inspect statement embeds statements:

law

Facets

• name (an identifier), (omissible) : The name of the law
• all (boolean): add an obligation for each belief
• belief (predicate): The mandatory belief
• beliefs (list): The mandatory beliefs
• lifetime (int): the lifetime value of the mental state created
• new_obligation (predicate): The predicate that will be added as an obligation
• new_obligations (list): The list of predicates that will be added as obligations
• parallel (any type in [boolean, int]): setting this facet to ‘true’ will allow

‘perceive’ to use concurrency with a parallel_bdi architecture; setting it to an
integer will set the threshold under which they will be run sequentially (the
default is initially 20, but can be fixed in the preferences). This facet is true by
default.

• strength (any type in [float, int]): The stregth of the mental state created
• threshold (float): Threshold linked to the obedience value.
• when (boolean):

Definition

enables to add a desire or a belief or to remove a belief, a desire or an intention if the
agent gets the belief or/and desire or/and condition mentioned.

Usages

• Other examples of use:� �
rule belief: new_predicate("test") when: flip (0.5) new_desire:

new_predicate("test")� �
v 1.8.2 451

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The law statement is of type: Single statement
• The law statement can be embedded into: Species, Model,
• The law statement embeds statements:

layout

Facets

• value (any type), (omissible) : Either #none, to indicate that no layout will
be imposed, or one of the four possible predefined layouts: #stack, #split,
#horizontal or #vertical. This layout will be applied to both experiment and
simulation display views. In addition, it is possible to define a custom layout
using the horizontal() and vertical() operators

• consoles (boolean): Whether the consoles are visible or not (true by default)
• controls (boolean): Whether the experiment should show its control toolbar

on top or not
• editors (boolean): Whether the editors should initially be visible or not
• navigator (boolean): Whether the navigator view is visible or not (true by

default)
• parameters (boolean): Whether the parameters view is visible or not (true by

default)
• tabs (boolean): Whether the displays should show their tab or not
• toolbars (boolean): Whether the displays should show their toolbar or not
• tray (boolean): Whether the bottom tray is visible or not (true by default)

Definition

Represents the layout of the display views of simulations and experiments

Usages

• For instance, this layout statement will allow to split the screen occupied by
displays in four equal parts, with no tabs. Pairs of display::weight represent the

v 1.8.2 452

GAMA v1.8.2 documentation Chapter 32. Statements

number of the display in their order of definition and their respective weight
within a horizontal and vertical section� �

layout horizontal ([vertical ([0::5000 ,1::5000]) ::5000 , vertical
([2::5000 ,3::5000]) ::5000]) tabs: false;� �

Embedments

• The layout statement is of type: Output
• The layout statement can be embedded into: output,
• The layout statement embeds statements:

let

Facets

• name (a new identifier), (omissible) : The name of the variable declared
• index (a datatype identifier): The type of the index if this declaration concerns

a container
• of (a datatype identifier): The type of the contents if this declaration concerns

a container
• type (a datatype identifier): The type of the variable
• value (any type): The value assigned to this variable

Definition

Allows to declare a temporary variable of the specified type and to initialize it with a
value

Usages

Embedments

• The let statement is of type: Single statement

v 1.8.2 453

GAMA v1.8.2 documentation Chapter 32. Statements

• The let statement can be embedded into: Behavior, Sequence of statements or
action, Layer,

• The let statement embeds statements:

light

Facets

• name (string), (omissible) : The name of the light source, must be unique
(otherwise the last definition prevails). Will be used to populate a menu where
light sources can be easily turned on and off. Special names can be used:Using
the special constant #ambient will allow to redefine or control the ambient
light intensity and presenceUsing the special constant #default will replace the
default directional light of the surrounding display

• active (boolean): a boolean expression telling if the light is on or off. (default
value if not specified : true)

• angle (float): the angle of the spot light in degree (only for spot light). (default
value : 45)

• direction (point): the direction of the light (only for direction and spot light).
(default value : {0.5,0.5,-1})

• dynamic (boolean): specify if the parameters of the light need to be updated
every cycle or treated as constants. (default value : true).

• intensity (any type in [int, rgb]): an int / rgb / rgba value to specify either
the color+intensity of the light or simply its intensity. (default value if not
specified can be set in the Preferences. If not, it is equal to: (160,160,160,255)
).

• linear_attenuation (float): the linear attenuation of the positionnal light.
(default value : 0)

• location (point): the location of the light (only for point and spot light) in
model coordinates. Default is {0,0,20}

• quadratic_attenuation (float): the quadratic attenuation of the positionnal
light. (default value : 0)

• show (boolean): If true, draws the light source. (default value if not specified :
false).

• type (string): the type of light to create. A value among {#point, #direction,
#spot}

v 1.8.2 454

GAMA v1.8.2 documentation Chapter 32. Statements

Definition

light allows to define diffusion lights in your 3D display. They must be given a name,
which will help track them in the UI. Two names have however special meanings:
#ambient, which designates the ambient luminosity and color of the scene (with a
default intensity of (160,160,160,255) or the value set in the Preferences) and #default,
which designates the default directional light applied to a scene (with a default medium
intensity of (160,160,160,255) or the value set in the Preferences in the direction given
by (0.5,0.5,1)). Redefining a light named #ambient or #regular will then modify these
default lights (for example changing their color or deactivating them). To be more
precise, and given all the default values of the facets, the existence of these two lights
is effectively equivalent to redefining:light #ambient intensity: gama.pref_display_-
light_intensity; light #default type: #direction intensity: gama.pref_display_light_-
intensity direction: {0.5,0.5,-1};

Usages

• The general syntax is:� �
light 1 type:point location :{20 ,20 ,20} color :255,

linear_attenuation :0.01 quadratic_attenuation :0.0001
draw_light:true update:false

light 'spot1 ' type: #spot location :{20 ,20 ,20} direction
:{0,0,-1} color :255 angle :25 linear_attenuation :0.01
quadratic_attenuation :0.0001 draw:true dynamic: false

light 'point2 ' type: #point direction :{1,1,-1} color :255 draw:
true dynamic: false� �

• See also: display,

Embedments

• The light statement is of type: Layer
• The light statement can be embedded into: display,
• The light statement embeds statements:

v 1.8.2 455

GAMA v1.8.2 documentation Chapter 32. Statements

loop

Facets

• name (a new identifier), (omissible) : a temporary variable name
• from (int): an int expression
• over (any type in [container, point]): a list, point, matrix or map expression
• step (int): an int expression
• times (int): an int expression
• to (int): an int expression
• while (boolean): a boolean expression

Definition

Allows the agent to perform the same set of statements either a fixed number of
times, or while a condition is true, or by progressing in a collection of elements or
along an interval of integers. Be aware that there are no prevention of infinite loops.
As a consequence, open loops should be used with caution, as one agent may block
the execution of the whole model.

Usages

• The basic syntax for repeating a fixed number of times a set of statements is:� �
loop times: an_int_expression {

// [statements]
}� �

• The basic syntax for repeating a set of statements while a condition holds is:� �
loop while: a_bool_expression {

// [statements]
}� �

• The basic syntax for repeating a set of statements by progressing over a container
of a point is:

v 1.8.2 456

GAMA v1.8.2 documentation Chapter 32. Statements

� �
loop a_temp_var over: a_collection_expression {

// [statements]
}� �

• The basic syntax for repeating a set of statements while an index iterates over
a range of values with a fixed step of 1 is:� �

loop a_temp_var from: int_expression_1 to: int_expression_2 {
// [statements]

}� �
• The incrementation step of the index can also be chosen:� �

loop a_temp_var from: int_expression_1 to: int_expression_2
step: int_expression3 {

// [statements]
}� �

• In these latter three cases, the name facet designates the name of a temporary
variable, whose scope is the loop, and that takes, in turn, the value of each of
the element of the list (or each value in the interval). For example, in the first
instance of the “loop over” syntax :� �

int a <- 0;
loop i over: [10, 20, 30] {

a <- a + i;
} // a now equals 60� �

• The second (quite common) case of the loop syntax allows one to use an interval
of integers. The from and to facets take an integer expression as arguments, with
the first (resp. the last) specifying the beginning (resp. end) of the inclusive
interval (i.e. [to, from]). If the step is not defined, it is assumed to be equal to
1 or -1, depending on the direction of the range. If it is defined, its sign will be
respected, so that a positive step will never allow the loop to enter a loop from
i to j where i is greater than j

v 1.8.2 457

GAMA v1.8.2 documentation Chapter 32. Statements

� �
list the_list <-list (species_of (self));
loop i from: 0 to: length (the_list) - 1 {

ask the_list at i {
// ...

}
} // every agent of the list is asked to do something� �
Embedments

• The loop statement is of type: Sequence of statements or action
• The loop statement can be embedded into: Behavior, Sequence of statements

or action, Layer,
• The loop statement embeds statements:

match

Facets

• value (any type), (omissible) : The value or values this statement tries to match

Definition

In a switch. . .match structure, the value of each match block is compared to the
value in the switch. If they match, the embedded statement set is executed. Four
kinds of match can be used, equality, containment, betweenness and regex matching

Usages

• match block is executed if the switch value is equals to the value of the match:� �
switch 3 {

match 1 {write "Match 1"; }
match 3 {write "Match 2"; }

}� �
v 1.8.2 458

GAMA v1.8.2 documentation Chapter 32. Statements

• match_between block is executed if the switch value is in the interval given in
value of the match_between:� �

switch 3 {
match_between [1,2] {write "Match OK between [1,2]"; }
match_between [2,5] {write "Match OK between [2,5]"; }

}� �
• match_one block is executed if the switch value is equals to one of the values

of the match_one:� �
switch 3 {

match_one [0,1,2] {write "Match OK with one of [0,1,2]"; }
match_between [2,3,4,5] {write "Match OK with one of
[2,3,4,5]"; }

}� �
• See also: switch, default,

Embedments

• The match statement is of type: Sequence of statements or action
• The match statement can be embedded into: switch,
• The match statement embeds statements:

mesh

Facets

• source (any type in [file, matrix, species]), (omissible) : Allows to specify the
elevation of each cell by passing a grid, a raster, image or csv file or directly a
matrix of int/float. The dimensions of the field are those of the file or matrix.

• border (rgb): the color to draw lines (borders of cells)

v 1.8.2 459

GAMA v1.8.2 documentation Chapter 32. Statements

• color (any type in [rgb, list, map]): if true, and if neither ‘grayscale’ or ‘texture’
are specified, displays the field using the given color or colors. List of colors,
palettes (with interpolation), gradients and scales are supported

• grayscale (boolean): if true, gives a grey color to each polygon depending on
its elevation (false by default). Supersedes ‘color’ if it is defined.

• no_data (float): Can be used to specify a ‘no_data’ value, forcing the renderer
to not render the cells with this value. If not specified, that value will be
searched in the field to display

• position (point): position of the upper-left corner of the layer. Note that if
coordinates are in [0,1[, the position is relative to the size of the environment
(e.g. {0.5,0.5} refers to the middle of the display) whereas it is absolute when
coordinates are greater than 1 for x and y. The z-ordinate can only be defined
between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last
coordinate specifying the elevation of the layer.

• refresh (boolean): (openGL only) specify whether the display of the species is
refreshed. (true by default, but should be deactivated if the field is static)

• rotate (float): Defines the angle of rotation of this layer, in degrees, around
the z-axis.

• scale (float): Represents the z-scaling factor, which allows to scale all values of
the field.

• size (any type in [point, float]): Represents the extent of the layer in the screen
from its position. Coordinates in [0,1[are treated as percentages of the total
surface, while coordinates > 1 are treated as absolute sizes in model units
(i.e. considering the model occupies the entire view). Like in ‘position’, an
elevation can be provided with the z coordinate, allowing to scale the layer in
the 3 directions. This latter possibility allows to limit the height of the field.
If only a flat value is provided, it is considered implicitly as the z maximal
amplitude (or z scaling factor if < 1)

• smooth (any type in [boolean, int]): Applies a simple convolution (box filter) to
smooth out the terrain produced by this field. If true, one pass is done with
a simple 3x3 kernel. Otherwise, the user can specify the number of successive
passes (up to 4). Specifying 0 is equivalent to passing false

• text (boolean): specify whether the value that represents the elevation is
displayed on each cell (false by default)

• texture (file): A file containing the texture image to be applied to the field. If
not specified, the field will be displayed either in color or grayscale, depending
on the other facets

• transparency (float): the transparency level of the layer (between 0 – opaque –

v 1.8.2 460

GAMA v1.8.2 documentation Chapter 32. Statements

and 1 – fully transparent)
• triangulation (boolean): specifies wether the cells of th field will be trian-

gulated: if it is false, they will be displayed as horizontal squares at a given
elevation, whereas if it is true, cells will be triangulated and linked to neighbors
in order to have a continuous surface (false by default)

• visible (boolean): Defines whether this layer is visible or not
• wireframe (boolean): if true displays the field in wireframe using the lines color

Definition

Allows the modeler to display in an optimized way a field of values, optionally using
elevation. Useful for displaying DEMs, for instance, without having to load them
into a grid. Can be fed with a matrix of int/float, a grid, a csv/raster/image file and
supports many visualisation options

Usages

• The general syntax is:

� �
display my_display {

field a_filename lines: #black position: { 0.5, 0 } size:
{0.5 ,0.5} triangulated: true texture: anothe_file;

}� �
• See also: display, agents, grid, event, graphics, image, overlay, display_popula-

tion,

Embedments

• The mesh statement is of type: Layer
• The mesh statement can be embedded into: display,
• The mesh statement embeds statements:

v 1.8.2 461

GAMA v1.8.2 documentation Chapter 32. Statements

migrate

Facets

• source (any type in [agent, species, container, an identifier]), (omissible) : can
be an agent, a list of agents, a agent’s population to be migrated

• target (species): target species/population that source agent(s) migrate to.
• returns (a new identifier): the list of returned agents in a new local variable

Definition

This command permits agents to migrate from one population/species to another
population/species and stay in the same host after the migration. Species of source
agents and target species respect the following constraints: (i) they are “peer” species
(sharing the same direct macro-species), (ii) they have sub-species vs. parent-species
relationship.

Usages

• It can be used in a 3-levels model, in case where individual agents can be
captured into group meso agents and groups into clouds macro agents. migrate
is used to allows agents captured by groups to migrate into clouds. See the
model ‘Balls, Groups and Clouds.gaml’ in the library.� �

migrate ball_in_group target: ball_in_cloud;� �
• See also: capture, release,

Embedments

• The migrate statement is of type: Sequence of statements or action
• The migrate statement can be embedded into: Behavior, Sequence of statements

or action,
• The migrate statement embeds statements:

v 1.8.2 462

GAMA v1.8.2 documentation Chapter 32. Statements

monitor

Facets

• name (a label), (omissible) : identifier of the monitor

• value (any type): expression that will be evaluated to be displayed in the
monitor

• color (rgb): Indicates the (possibly dynamic) color of this output (default is a
light gray)

• refresh (boolean): Indicates the condition under which this output should be
refreshed (default is true)

Definition

A monitor allows to follow the value of an arbitrary expression in GAML.

Usages

• An example of use is:

� �
monitor "nb preys" value: length(prey as list) refresh_every:

5;� �

Embedments

• The monitor statement is of type: Output
• The monitor statement can be embedded into: output, permanent,
• The monitor statement embeds statements:

v 1.8.2 463

GAMA v1.8.2 documentation Chapter 32. Statements

norm

Facets

• name (an identifier), (omissible) : the name of the norm
• finished_when (boolean): the boolean condition when the norm is finished
• instantaneous (boolean): indicates if the norm is instananeous
• intention (predicate): the intention triggering the norm
• lifetime (int): the lifetime of the norm
• obligation (predicate): the obligation triggering of the norm
• priority (float): the priority value of the norm
• threshold (float): the threshold to trigger the norm
• when (boolean): the boolean condition when the norm is active

Definition

a norm indicates what action the agent has to do in a certain context and with and
obedience value higher than the threshold

Usages

Embedments

• The norm statement is of type: Behavior
• The norm statement can be embedded into: Species, Model,
• The norm statement embeds statements:

output

Facets

• autosave (any type in [boolean, string]): Allows to save the whole screen on
disk. A value of true/false will save it with the resolution of the physical screen.
Passing it a string allows to define the filename Note that setting autosave
to true (or to any other value than false) in a display will synchronize all the
displays defined in the experiment

v 1.8.2 464

GAMA v1.8.2 documentation Chapter 32. Statements

Definition

output blocks define how to visualize a simulation (with one or more display blocks
that define separate windows). It will include a set of displays, monitors and files
statements. It will be taken into account only if the experiment type is gui.

Usages

• Its basic syntax is:� �
experiment exp_name type: gui {

// [inputs]
output {

// [display , file , inspect , layout or monitor statements
]
}

}� �
• See also: display, monitor, inspect, output_file, layout,

Embedments

• The output statement is of type: Output
• The output statement can be embedded into: Model, Experiment,
• The output statement embeds statements: display, inspect, layout, monitor,

output_file,

output_file

Facets

• name (an identifier), (omissible) : The name of the file where you want to
export the data

v 1.8.2 465

GAMA v1.8.2 documentation Chapter 32. Statements

• data (string): The data you want to export
• footer (string): Define a footer for your export file
• header (string): Define a header for your export file
• refresh (boolean): Indicates the condition under which this file should be saved

(default is true)
• rewrite (boolean): Rewrite or not the existing file
• type (an identifier), takes values in: {csv, text, xml}: The type of your output

data

Definition

Represents an output that writes the result of expressions into a file

Usages

Embedments

• The output_file statement is of type: Output
• The output_file statement can be embedded into: output, permanent,
• The output_file statement embeds statements:

overlay

Facets

• background (rgb): the background color of the overlay displayed inside the view
(the bottom overlay remains black)

• border (rgb): Color to apply to the border of the rectangular shape of the
overlay. Nil by default

• center (any type): an expression that will be evaluated and displayed in the
center section of the bottom overlay

• color (any type in [list, rgb]): the color(s) used to display the expressions given
in the ‘left’, ‘center’ and ‘right’ facets

• left (any type): an expression that will be evaluated and displayed in the left
section of the bottom overlay

v 1.8.2 466

GAMA v1.8.2 documentation Chapter 32. Statements

• position (point): position of the upper-left corner of the layer. Note that if
coordinates are in [0,1[, the position is relative to the size of the environment
(e.g. {0.5,0.5} refers to the middle of the display) whereas it is absolute when
coordinates are greater than 1 for x and y. The z-ordinate can only be defined
between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the
last coordinate specifying the elevation of the layer. In case of negative value
OpenGl will position the layer out of the environment.

• right (any type): an expression that will be evaluated and displayed in the
right section of the bottom overlay

• rounded (boolean): Whether or not the rectangular shape of the overlay should
be rounded. True by default

• size (point): extent of the layer in the view from its position. Coordinates in
[0,1[are treated as percentages of the total surface of the view, while coordinates
> 1 are treated as absolute sizes in model units (i.e. considering the model
occupies the entire view). Unlike ‘position’, no elevation can be provided with
the z coordinate

• transparency (float): the transparency rate of the overlay (between 0 – opaque
and 1 – fully transparent) when it is displayed inside the view. The bottom
overlay will remain at 0.75

• visible (boolean): Defines whether this layer is visible or not

Definition

overlay allows the modeler to display a line to the already existing bottom overlay,
where the results of ‘left’, ‘center’ and ‘right’ facets, when they are defined, are
displayed with the corresponding color if defined.

Usages

• To display information in the bottom overlay, the syntax is:� �
overlay "Cycle: " + (cycle) center: "Duration: " +

total_duration + "ms" right: "Model time: " + as_date(time ,
"") color: [#yellow , #orange , #yellow];� �

• See also: display, agents, chart, event, graphics, display_grid, image, display_-
population,

v 1.8.2 467

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The overlay statement is of type: Layer
• The overlay statement can be embedded into: display,
• The overlay statement embeds statements:

parameter

Facets

• var (an identifier): the name of the variable (that should be declared in global)
• name (a label), (omissible) : The message displayed in the interface
• among (list): the list of possible values that this parameter can take
• category (a label): a category label, used to group parameters in the interface
• colors (list): The colors of the control in the UI. An empty list has no effects.

Only used for sliders and switches so far. For sliders, 3 colors will allow to
specify the color of the left section, the thumb and the right section (in this
order); 2 colors will define the left and right sections only (thumb will be dark
green); 1 color will define the left section and the thumb. For switches, 2
colors will define the background for respectively the left ‘true’ and right ‘false’
sections. 1 color will define both backgrounds

• disables (list): a list of global variables whose parameter editors will be disabled
when this parameter value is set to true or to a value that casts to true (they
are otherwise enabled)

• enables (list): a list of global variables whose parameter editors will be enabled
when this parameter value is set to true or to a value that casts to true (they
are otherwise disabled)

• extensions (list): Makes only sense for file parameters. A list of file extensions
(like ‘gaml’, ‘shp’, etc.) that restricts the choice offered to the users to certain
file types (folders not concerned). Default is empty, effectively accepting all files

• in_workspace (boolean): Makes only sense for file parameters. Whether the file
selector will be restricted to the workspace or not

• init (any type): the init value
• max (any type): the maximum value
• min (any type): the minimum value

v 1.8.2 468

GAMA v1.8.2 documentation Chapter 32. Statements

• on_change (any type): Provides a block of statements that will be executed
whenever the value of the parameter changes

• slider (boolean): Whether or not to display a slider for entering an int or float
value. Default is true when max and min values are defined, false otherwise. If
no max or min value is defined, setting this facet to true will have no effect

• step (float): the increment step (mainly used in batch mode to express the
variation step between simulation)

• type (a datatype identifier): the variable type
• unit (a label): the variable unit
• updates (list): a list of global variables whose parameter editors will be updated

when this parameter value is changed (their min, max, step and among values
will be updated accordingly if they depend on this parameter. Note that it might
lead to some inconsistencies, for instance a parameter value which becomes out
of range, or which does not belong anymore to a list of possible values. In these
cases, the value of the affected parameter will not change)

Definition

The parameter statement specifies which global attributes (i) will change through
the successive simulations (in batch experiments), (ii) can be modified by user via
the interface (in gui experiments). In GUI experiments, parameters are displayed
depending on their type.

Usages

• In gui experiment, the general syntax is the following:
� �
parameter title var: global_var category: cat;� �

• In batch experiment, the two following syntaxes can be used to describe the
possible values of a parameter:

� �
parameter 'Value of toto:' var: toto among: [1, 3, 7, 15,

100];
parameter 'Value of titi:' var: titi min: 1 max: 100 step: 2;� �
v 1.8.2 469

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The parameter statement is of type: Parameter
• The parameter statement can be embedded into: Experiment,
• The parameter statement embeds statements:

perceive

Facets

• target (any type in [container, agent]): the list of the agent you want to perceive
• name (an identifier), (omissible) : the name of the perception
• as (species): an expression that evaluates to a species
• emotion (emotion): The emotion needed to do the perception
• in (any type in [float, geometry]): a float or a geometry. If it is a float, it’s

a radius of a detection area. If it is a geometry, it is the area of detection of
others species.

• parallel (any type in [boolean, int]): setting this facet to ‘true’ will allow
‘perceive’ to use concurrency with a parallel_bdi architecture; setting it to an
integer will set the threshold under which they will be run sequentially (the
default is initially 20, but can be fixed in the preferences). This facet is true by
default.

• threshold (float): Threshold linked to the emotion.
• when (boolean): a boolean to tell when does the perceive is active

Definition

Allow the agent, with a bdi architecture, to perceive others agents

Usages

• the basic syntax to perceive agents inside a circle of perception

v 1.8.2 470

GAMA v1.8.2 documentation Chapter 32. Statements

� �
perceive name_of -perception target:

the_agents_you_want_to_perceive in: a_distance when:
a_certain_condition {

Here you are in the context of the perceived agents. To refer
to the agent who does the perception , use myself.

If you want to make an action (such as adding a belief for
example), use ask myself{ do the_action}

}� �
Embedments

• The perceive statement is of type: Sequence of statements or action
• The perceive statement can be embedded into: Species, Model,
• The perceive statement embeds statements:

permanent

Facets

• tabs (boolean): Whether the displays should show their tab or not
• toolbars (boolean): Whether the displays should show their toolbar or not

Definition

Represents the outputs of the experiment itself. In a batch experiment, the permanent
section allows to define an output block that will NOT be re-initialized at the beginning
of each simulation but will be filled at the end of each simulation.

Usages

• For instance, this permanent section will allow to display for each simulation
the end value of the food_gathered variable:

v 1.8.2 471

GAMA v1.8.2 documentation Chapter 32. Statements

� �
permanent {

display Ants background: rgb('white ') refresh_every: 1 {
chart "Food Gathered" type: series {

data "Food" value: food_gathered;
}

}
}� �
Embedments

• The permanent statement is of type: Output
• The permanent statement can be embedded into: Experiment,
• The permanent statement embeds statements: display, inspect, monitor, out-

put_file,

plan

Facets

• name (an identifier), (omissible) :
• emotion (emotion):
• finished_when (boolean):
• instantaneous (boolean):
• intention (predicate):
• priority (float):
• threshold (float):
• when (boolean):

Definition

define an action plan performed by an agent using the BDI engine

v 1.8.2 472

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

Embedments

• The plan statement is of type: Behavior
• The plan statement can be embedded into: Species, Model,
• The plan statement embeds statements:

pso

Facets

• name (an identifier), (omissible) : The name of the method. For internal use only

• iter_max (int): number of iterations
• aggregation (a label), takes values in: {min, max}: the agregation method
• maximize (float): the value the algorithm tries to maximize
• minimize (float): the value the algorithm tries to minimize
• num_particles (int): number of particles
• weight_cognitive (float): weight for the cognitive component
• weight_inertia (float): weight for the inertia component
• weight_social (float): weight for the social component

Definition

This algorithm is an implementation of the Particle Swarm Optimization algorithm.
Only usable for numerical paramaters and based on a continuous parameter space
search. See the wikipedia article for more details.

Usages

• As other batch methods, the basic syntax of the pso statement uses method pso
instead of the expected pso name: id :

v 1.8.2 473

GAMA v1.8.2 documentation Chapter 32. Statements

� �
method pso [facet: value];� �

• For example:

� �
method pso iter_max: 50 num_particles: 10 weight_inertia :0.7

weight_cognitive: 1.5 weight_social: 1.5 maximize:
food_gathered ;� �

Embedments

• The pso statement is of type: Batch method
• The pso statement can be embedded into: Experiment,
• The pso statement embeds statements:

put

Facets

• in (any type in [container, species, agent, geometry]): an expression that
evaluates to a container

• item (any type), (omissible) : any expression
• all (any type): any expression
• at (any type): any expression
• key (any type): any expression

Definition

Allows the agent to replace a value in a container at a given position (in a list or
a map) or for a given key (in a map). Note that the behavior and the type of the
attributes depends on the specific kind of container.

v 1.8.2 474

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

• The allowed parameters configurations are the following ones:

� �
put expr at: expr in: expr_container;
put all: expr in: expr_container;� �

• In the case of a list, the position should an integer in the bound of the list. The
facet all: is used to replace all the elements of the list by the given value.

� �
putList <- [1,2,3,4,5]; // putList equals [1,2,3,4,5]put -10 at

: 1 in: putList ;// putList equals [1,-10,3,4,5]put 10 all:
true in: putList ;// putList equals [10 ,10 ,10 ,10 ,10]� �

• In the case of a matrix, the position should be a point in the bound of the
matrix. The facet all: is used to replace all the elements of the matrix by the
given value.

� �
putMatrix <- matrix ([[0 ,1] ,[2 ,3]]); // putMatrix equals matrix

([[0 ,1] ,[2 ,3]]) put -10 at: {1,1} in: putMatrix ;// putMatrix
equals matrix ([[0 ,1] ,[2 , -10]]) put 10 all: true in:
putMatrix ;// putMatrix equals matrix ([[10 ,10] ,[10 ,10]])� �

• In the case of a map, the position should be one of the key values of the map.
Notice that if the given key value does not exist in the map, the given pair
key::value will be added to the map. The facet all is used to replace the value
of all the pairs of the map.

� �
putMap <- ["x"::4,"y"::7]; // putMap equals ["x"::4 ,"y"::7] put

-10 key: "y" in: putMap ;// putMap equals ["x"::4 ,"y":: -10]
put -20 key: "z" in: putMap ;// putMap equals ["x"::4,"y
"::-10, "z":: -20] put -30 all: true in: putMap ;// putMap
equals ["x"::-30,"y"::-30, "z":: -30]� �

v 1.8.2 475

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The put statement is of type: Single statement
• The put statement can be embedded into: chart, Behavior, Sequence of state-

ments or action, Layer,
• The put statement embeds statements:

reactive_tabu

Facets

• name (an identifier), (omissible) :
• aggregation (a label), takes values in: {min, max}: the agregation method
• cycle_size_max (int): minimal size of the considered cycles
• cycle_size_min (int): maximal size of the considered cycles
• init_solution (map): init solution: key: name of the variable, value: value of

the variable
• iter_max (int): number of iterations
• maximize (float): the value the algorithm tries to maximize
• minimize (float): the value the algorithm tries to minimize
• nb_tests_wthout_col_max (int): number of movements without collision before

shortening the tabu list
• tabu_list_size_init (int): initial size of the tabu list
• tabu_list_size_max (int): maximal size of the tabu list
• tabu_list_size_min (int): minimal size of the tabu list

Definition

This algorithm is a simple implementation of the Reactive Tabu Search algorithm
((Battiti et al., 1993)). This Reactive Tabu Search is an enhance version of the Tabu
search. It adds two new elements to the classic Tabu Search. The first one concerns
the size of the tabu list: in the Reactive Tabu Search, this one is not constant anymore
but it dynamically evolves according to the context. Thus, when the exploration
process visits too often the same solutions, the tabu list is extended in order to favor
the diversification of the search process. On the other hand, when the process has

v 1.8.2 476

GAMA v1.8.2 documentation Chapter 32. Statements

not visited an already known solution for a high number of iterations, the tabu list
is shortened in order to favor the intensification of the search process. The second
new element concerns the adding of cycle detection capacities. Thus, when a cycle
is detected, the process applies random movements in order to break the cycle. See
[batch161 the batch dedicated page].

Usages

• As other batch methods, the basic syntax of the reactive_tabu statement uses
method reactive_tabu instead of the expected reactive_tabu name: id :� �

method reactive_tabu [facet: value];� �
• For example:� �

method reactive_tabu iter_max: 50 tabu_list_size_init: 5
tabu_list_size_min: 2 tabu_list_size_max: 10
nb_tests_wthout_col_max: 20 cycle_size_min: 2
cycle_size_max: 20 maximize: food_gathered;� �

Embedments

• The reactive_tabu statement is of type: Batch method
• The reactive_tabu statement can be embedded into: Experiment,
• The reactive_tabu statement embeds statements:

reflex

Facets

• name (an identifier), (omissible) : the identifier of the reflex
• when (boolean): an expression that evaluates a boolean, the condition to fulfill

in order to execute the statements embedded in the reflex.

v 1.8.2 477

GAMA v1.8.2 documentation Chapter 32. Statements

Definition

Reflexes are sequences of statements that can be executed by the agent. Reflexes
prefixed by the ‘reflex’ keyword are executed continuously. Reflexes prefixed by ‘init’
are executed only immediately after the agent has been created. Reflexes prefixed by
‘abort’ just before the agent is killed. If a facet when: is defined, a reflex is executed
only if the boolean expression evaluates to true.

Usages

• Example:� �
reflex my_reflex when: flip (0.5){ //Only executed when

flip returns true
write "Executing the unconditional reflex";

}� �
Embedments

• The reflex statement is of type: Behavior
• The reflex statement can be embedded into: Species, Experiment, Model,
• The reflex statement embeds statements:

release

Facets

• target (any type in [agent, list, attributes]), (omissible) : an expression that is
evaluated as an agent/a list of the agents to be released or an agent saved as a
map

• as (species): an expression that is evaluated as a species in which the micro-agent
will be released

• in (agent): an expression that is evaluated as an agent that will be the macro-
agent in which micro-agent will be released, i.e. their new host

v 1.8.2 478

GAMA v1.8.2 documentation Chapter 32. Statements

• returns (a new identifier): a new variable containing a list of the newly released
agent(s)

Definition

Allows an agent to release its micro-agent(s). The preliminary for an agent to release
its micro-agents is that species of these micro-agents are sub-species of other species
(cf. [Species161#Nesting_species Nesting species]). The released agents won’t be
micro-agents of the calling agent anymore. Being released from a macro-agent, the
micro-agents will change their species and host (macro-agent).

Usages

• We consider the following species. Agents of “C” species can be released from a
“B” agent to become agents of “A” species. Agents of “D” species cannot be
released from the “A” agent because species “D” has no parent species.� �

species A {
...
}
species B {
...

species C parent: A {
...
}
species D {
...
}

...
}� �

• To release all “C” agents from a “B” agent, agent “C” has to execute the following
statement. The “C” agent will change to “A” agent. The won’t consider “B”
agent as their macro-agent (host) anymore. Their host (macro-agent) will the
be the host (macro-agent) of the “B” agent.� �

release list(C);� �
v 1.8.2 479

GAMA v1.8.2 documentation Chapter 32. Statements

• The modeler can specify the new host and the new species of the released
agents:

� �
release list (C) as: new_species in: new host;� �

• See also: capture,

Embedments

• The release statement is of type: Sequence of statements or action
• The release statement can be embedded into: Behavior, Sequence of statements

or action,
• The release statement embeds statements:

remove

Facets

• from (any type in [container, species, agent, geometry]): an expression that
evaluates to a container

• item (any type), (omissible) : any expression to remove from the container
• all (any type): an expression that evaluates to a container. If it is true and if

the value a list, it removes the first instance of each element of the list. If it is
true and the value is not a container, it will remove all instances of this value.

• index (any type): any expression, the key at which to remove the element from
the container

• key (any type): any expression, the key at which to remove the element from
the container

Definition

Allows the agent to remove an element from a container (a list, matrix, map. . .).

v 1.8.2 480

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

• This statement should be used in the following ways, depending on the kind of
container used and the expected action on it:� �

remove expr from: expr_container;
remove index: expr from: expr_container;
remove key: expr from: expr_container;
remove all: expr from: expr_container;� �

• In the case of list, the facet item: is used to remove the first occurence of a
given expression, whereas all is used to remove all the occurrences of the given
expression.� �

list <int > removeList <- [3,2,1,2,3]; remove 2 from: removeList;
// removeList equals [3,1,2,3] remove 3 all: true from:
removeList ;// removeList equals [1,2] remove index: 1 from:
removeList ;// removeList equals [1]� �

• In the case of map, the facet key: is used to remove the pair identified by the
given key.� �

map <string ,int > removeMap <- ["x"::5, "y"::7, "z"::7]; remove
key: "x" from: removeMap;// removeMap equals ["y"::7, "z
"::7] remove 7 all: true from: removeMap ;// removeMap equals
map ([])� �

• In addition, a map a be managed as a list with pair key as index. Given that,
facets item:, all: and index: can be used in the same way:� �

map <string ,int > removeMapList <- ["x"::5, "y"::7, "z"::7, "t"
::5]; remove 7 from: removeMapList;// removeMapList equals ["
x"::5, "z"::7, "t"::5] remove [5,7] all: true from:
removeMapList ;// removeMapList equals ["t"::5] remove index:
"t" from: removeMapList ;// removeMapList equals map ([])� �

v 1.8.2 481

GAMA v1.8.2 documentation Chapter 32. Statements

• In the case of a graph, both edges and nodes can be removes using node: and
edge facets. If a node is removed, all edges to and from this node are also
removed.

� �
graph removeGraph <- as_edge_graph

([{1 ,2}::{3 ,4} ,{3 ,4}::{5 ,6}]);
remove node: {1,2} from: removeGraph;
remove node (1,2) from: removeGraph;
list var <- removeGraph.vertices; // var equals [{3 ,4} ,{5 ,6}]
list var <- removeGraph.edges; // var equals [polyline

({3 ,4}::{5 ,6})]
remove edge: {3 ,4}::{5 ,6} from: removeGraph;
remove edge ({3 ,4} ,{5 ,6}) from: removeGraph;
list var <- removeGraph.vertices; // var equals [{3 ,4} ,{5 ,6}]
list var <- removeGraph.edges; // var equals []� �

• In the case of an agent or a shape, remove allows to remove an attribute from
the attributes map of the receiver. However, for agents, it will only remove
attributes that have been added dynamically, not the ones defined in the species
or in its built-in parent.

� �
global {

init {
create speciesRemove;
speciesRemove sR <- speciesRemove (0); // sR.a now

equals 100
remove key:"a" from: sR; // sR.a now equals nil

}
}

species speciesRemove {
int a <- 100;

}� �
• This statement can not be used on matrix.

• See also: add, put,

v 1.8.2 482

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The remove statement is of type: Single statement
• The remove statement can be embedded into: chart, Behavior, Sequence of

statements or action, Layer,
• The remove statement embeds statements:

return

Facets

• value (any type), (omissible) : an expression that is returned

Definition

Allows to immediately stop and tell which value to return from the evaluation of the
surrounding action or top-level statement (reflex, init, etc.). Usually used within the
declaration of an action. For more details about actions, see the following [Section161
section].

Usages

• Example:

� �
string foo {

return "foo";
}

reflex {
string foo_result <- foo(); // foos_result is now

equals to "foo"
}� �
v 1.8.2 483

GAMA v1.8.2 documentation Chapter 32. Statements

• In the specific case one wants an agent to ask another agent to execute a
statement with a return, it can be done similarly to:� �

// In Species A:
string foo_different {

return "foo_not_same";
}
///
// In Species B:
reflex writing {

string temp <- some_agent_A.foo_different []; // temp is
now equals to "foo_not_same"

}� �
Embedments

• The return statement is of type: Single statement
• The return statement can be embedded into: action, Behavior, Sequence of

statements or action,
• The return statement embeds statements:

rotation

Facets

• angle (any type in [float, int]), (omissible) : Defines the angle of rotation around
the axis. No default defined.

• axis (point): The axis of rotation, defined by a vector. Default is {0,0,1}
(rotation around the z axis)This facet can be complemented by ‘distance:’
and/or ‘location:’ to specify from where the target is looked at. If ‘target:’ is
not defined, the default target is the centroid of the world shape.

• dynamic (boolean): If true, the rotation is applied every step. Default is false.
• location (point): Allows to define the center of the rotation. Defaut value is not

specified is the center of mass of the world (i.e. {width/2, height/2, max(width,
height) / 2})

v 1.8.2 484

GAMA v1.8.2 documentation Chapter 32. Statements

Definition

camera allows the modeler to define a camera. The display will then be able to choose
among the camera defined (either within this statement or globally in GAMA) in a
dynamic way. Several preset cameras are provided and accessible in the preferences
(to choose the default) or in GAML using the keywords #from_above, #from_-
left, #from_right, #from_up_right, #from_up_left, #from_front, #from_up_-
front.These cameras are unlocked (so that they can be manipulated by the user),
look at the center of the world from a symbolic position, and the distance between
this position and the target is equal to the maximum of the width and height of
the world’s shape. These preset cameras can be reused when defining new cameras,
since their names can become symbolic positions for them. For instance: camera
‘my_camera’ location: #from_top distance: 10; will lower (or extend) the distance
between the camera and the center of the world to 10. camera ‘my_camera’ locked:
true location: #from_up_front target: people(0); will continuously follow the first
agent of the people species from the up-front position.

Usages

• See also: display, agents, chart, event, graphics, display_grid, image, display_-
population,

Embedments

• The rotation statement is of type: Layer
• The rotation statement can be embedded into: display,
• The rotation statement embeds statements:

rule

Facets

• name (an identifier), (omissible) : the identifier of the rule

v 1.8.2 485

GAMA v1.8.2 documentation Chapter 32. Statements

• when (boolean): The condition to fulfill in order to execute the statements
embedded in the rule. when: true makes the rule always activable

• priority (float): An optional priority for the rule, which is used to sort activable
rules and run them in that order

Definition

A simple definition of a rule (set of statements which execution depend on a condition
and a priority).

Usages

Embedments

• The rule statement is of type: Behavior
• The rule statement can be embedded into: rules, Species, Experiment, Model,
• The rule statement embeds statements:

rule

Facets

• name (an identifier), (omissible) : The name of the rule
• all (boolean): add a desire for each belief
• belief (predicate): The mandatory belief
• beliefs (list): The mandatory beliefs
• desire (predicate): The mandatory desire
• desires (list): The mandatory desires
• emotion (emotion): The mandatory emotion
• emotions (list): The mandatory emotions
• ideal (predicate): The mandatory ideal
• ideals (list): The mandatory ideals
• lifetime (any type in [int, list]): the lifetime value of the mental state created
• new_belief (predicate): The belief that will be added

v 1.8.2 486

GAMA v1.8.2 documentation Chapter 32. Statements

• new_beliefs (list): The belief that will be added
• new_desire (predicate): The desire that will be added
• new_desires (list): The desire that will be added
• new_emotion (emotion): The emotion that will be added
• new_emotions (list): The emotion that will be added
• new_ideal (predicate): The ideal that will be added
• new_ideals (list): The ideals that will be added
• new_uncertainties (list): The uncertainty that will be added
• new_uncertainty (predicate): The uncertainty that will be added
• obligation (predicate): The mandatory obligation
• obligations (list): The mandatory obligations
• parallel (any type in [boolean, int]): setting this facet to ‘true’ will allow

‘perceive’ to use concurrency with a parallel_bdi architecture; setting it to an
integer will set the threshold under which they will be run sequentially (the
default is initially 20, but can be fixed in the preferences). This facet is true by
default.

• remove_belief (predicate): The belief that will be removed
• remove_beliefs (list): The belief that will be removed
• remove_desire (predicate): The desire that will be removed
• remove_desires (list): The desire that will be removed
• remove_emotion (emotion): The emotion that will be removed
• remove_emotions (list): The emotion that will be removed
• remove_ideal (predicate): The ideal that will be removed
• remove_ideals (list): The ideals that will be removed
• remove_intention (predicate): The intention that will be removed
• remove_obligation (predicate): The obligation that will be removed
• remove_obligations (list): The obligation that will be removed
• remove_uncertainties (list): The uncertainty that will be removed
• remove_uncertainty (predicate): The uncertainty that will be removed
• strength (any type in [float, int, list]): The stregth of the mental state created
• threshold (float): Threshold linked to the emotion.
• uncertainties (list): The mandatory uncertainties
• uncertainty (predicate): The mandatory uncertainty
• when (boolean):

v 1.8.2 487

GAMA v1.8.2 documentation Chapter 32. Statements

Definition

enables to add a desire or a belief or to remove a belief, a desire or an intention if the
agent gets the belief or/and desire or/and condition mentioned.

Usages

• Other examples of use:

� �
rule belief: new_predicate("test") when: flip (0.5) new_desire:

new_predicate("test")� �
Embedments

• The rule statement is of type: Single statement
• The rule statement can be embedded into: simple_bdi, parallel_bdi, Species,

Model,
• The rule statement embeds statements:

run

Facets

• name (string), (omissible) : Indicates the name of the experiment to run

• of (string): Indicates the model containing the experiment to run
• core (int): Indicates the number of cores to use to run the experiments
• end_cycle (int): Indicates the cycle at which the experiment should stop
• seed (int): Provides a predetermined seed instead of letting GAMA choose one
• with_output (map):
• with_param (map):

v 1.8.2 488

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The run statement is of type: Sequence of statements or action
• The run statement can be embedded into: Behavior, Single statement, Species,

Model,
• The run statement embeds statements:

sanction

Facets

• name (an identifier), (omissible) :

Definition

declare the actions an agent execute when enforcing norms of others during a percep-
tion

Usages

Embedments

• The sanction statement is of type: Behavior
• The sanction statement can be embedded into: Species, Model,
• The sanction statement embeds statements:

save

Facets

• data (any type), (omissible) : the data that will be saved to the file

v 1.8.2 489

GAMA v1.8.2 documentation Chapter 32. Statements

• attributes (any type in [map, list]): Allows to specify the attributes of a shape
file or GeoJson file where agents are saved. Can be expressed as a list of string
or as a literal map. When expressed as a list, each value should represent
the name of an attribute of the shape or agent. The keys of the map are the
names of the attributes that will be present in the file, the values are whatever
expressions neeeded to define their value.

• crs (any type): the name of the projection, e.g. crs:“EPSG:4326” or its
EPSG id, e.g. crs:4326. Here a list of the CRS codes (and EPSG id):
http://spatialreference.org

• header (boolean): an expression that evaluates to a boolean, specifying whether
the save will write a header if the file does not exist

• rewrite (boolean): a boolean expression specifying whether to erase the file
if it exists or append data at the end of it. Only applicable to “text” or “csv”
files. Default is true

• to (string): an expression that evaluates to an string, the path to the file, or
directly to a file

• type (an identifier), takes values in: {shp, text, csv, asc, geotiff, image, kml, kmz,
json, dimacs, dot, gexf, graphml, gml, graph6}: an expression that evaluates
to an string, the type of the output file (it can be only “shp”, “asc”, “geotiff”,
“image”, “text” or “csv”)

Definition

Allows to save data in a file. The type of file can be “shp”, “asc”, “geotiff”, “text” or
“csv”.

Usages

• Its simple syntax is:� �
save data to: output_file type: a_type_file;� �

• To save data in a text file:� �
save (string(cycle) + "->" + name + ":" + location) to: "

save_data.txt" type: "text";� �
v 1.8.2 490

GAMA v1.8.2 documentation Chapter 32. Statements

• To save the values of some attributes of the current agent in csv file:� �
save [name , location , host] to: "save_data.csv" type: "csv";� �

• To save the values of all attributes of all the agents of a species into a csv (with
optional attributes):� �

save species_of(self) to: "save_csvfile.csv" type: "csv"
header: false;� �

• To save the geometries of all the agents of a species into a shapefile (with
optional attributes):� �

save species_of(self) to: "save_shapefile.shp" type: "shp"
attributes: ['nameAgent '::name , 'locationAgent ':: location]
crs: "EPSG :4326";� �

• To save the grid_value attributes of all the cells of a grid into an ESRI ASCII
Raster file:� �

save grid to: "save_grid.asc" type: "asc";� �
• To save the grid_value attributes of all the cells of a grid into geotiff:� �

save grid to: "save_grid.tif" type: "geotiff";� �
• To save the grid_value attributes of all the cells of a grid into png (with a

worldfile):� �
save grid to: "save_grid.png" type: "image";� �

• The save statement can be use in an init block, a reflex, an action or in a user
command. Do not use it in experiments.

v 1.8.2 491

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The save statement is of type: Single statement
• The save statement can be embedded into: Behavior, Sequence of statements

or action,
• The save statement embeds statements:

set

Facets

• name (any type), (omissible) : the name of an existing variable or attribute to
be modified

• value (any type): the value to affect to the variable or attribute

Definition

Allows to assign a value to the variable or attribute specified

Usages

Embedments

• The set statement is of type: Single statement
• The set statement can be embedded into: chart, Behavior, Sequence of state-

ments or action, Layer,
• The set statement embeds statements:

v 1.8.2 492

GAMA v1.8.2 documentation Chapter 32. Statements

setup

Facets

Definition

The setup statement is used to define the set of instructions that will be executed
before every [#test test].

Usages

• As every test should be independent from the others, the setup will mainly
contain initialization of variables that will be used in each test.

� �
species Tester {

int val_to_test;

setup {
val_to_test <- 0;

}

test t1 {
// [set of instructions , including asserts]

}
}� �

• See also: test, assert,

Embedments

• The setup statement is of type: Sequence of statements or action
• The setup statement can be embedded into: Species, Experiment, Model,
• The setup statement embeds statements:

v 1.8.2 493

GAMA v1.8.2 documentation Chapter 32. Statements

simulate

Facets

• comodel (file), (omissible) :
• repeat (int):
• reset (boolean):
• share (list):
• until (boolean):
• with_experiment (string):
• with_input (map):
• with_output (map):

Definition

Allows an agent, the sender agent (that can be the [Sections161#global world agent]),
to ask another (or other) agent(s) to perform a set of statements. It obeys the
following syntax, where the target attribute denotes the receiver agent(s):

Usages

• Other examples of use:� �
ask receiver_agent(s) {

// [statements]
}� �
Embedments

• The simulate statement is of type: Single statement
• The simulate statement can be embedded into: chart, Experiment, Species,

Behavior, Sequence of statements or action,
• The simulate statement embeds statements:

v 1.8.2 494

GAMA v1.8.2 documentation Chapter 32. Statements

sobol

Facets

• name (an identifier), (omissible) : The name of the method. For internal use only

• outputs (list): The list of output variables to analyse through sobol indexes

• sample (an identifier): The size of the sample for the sobol sequence
• report (string): The path to the file where the Sobol report will be written
• results (string): The path to the file where the automatic batch report will be

written

Definition

This algorithm runs a Sobol exploration - it has been built upon the moea framework
at https://github.com/MOEAFramework/MOEAFramework - disabled the repeat
facet of the experiment

Usages

• For example:

� �
method sobol sample_size :100 outputs:['my_var '] report :'../

path/to/report/file.txt ';� �
Embedments

• The sobol statement is of type: Batch method
• The sobol statement can be embedded into: Experiment,
• The sobol statement embeds statements:

v 1.8.2 495

GAMA v1.8.2 documentation Chapter 32. Statements

socialize

Facets

• name (an identifier), (omissible) : the identifier of the socialize statement
• agent (agent): the agent value of the created social link
• dominance (float): the dominance value of the created social link
• familiarity (float): the familiarity value of the created social link
• liking (float): the appreciation value of the created social link
• solidarity (float): the solidarity value of the created social link
• trust (float): the trust value of the created social link
• when (boolean): A boolean value to socialize only with a certain condition

Definition

enables to directly add a social link from a perceived agent.

Usages

• Other examples of use:

� �
socialize;� �
Embedments

• The socialize statement is of type: Single statement
• The socialize statement can be embedded into: Behavior, Sequence of state-

ments or action,
• The socialize statement embeds statements:

v 1.8.2 496

GAMA v1.8.2 documentation Chapter 32. Statements

solve

Facets

• equation (an identifier), (omissible) : the equation system identifier to be
numerically solved

• max_step (float): maximal step, (used with dp853 method only), (sign is irrel-
evant, regardless of integration direction, forward or backward), the last step
can be smaller than this value

• method (string): integration method (can be one of “Euler”, “Three-
Eighthes”, “Midpoint”, “Gill”, “Luther”, “rk4” or “dp853”, “AdamsBashforth”,
“AdamsMoulton”, “DormandPrince54”, “GraggBulirschStoer”, “HighamHall54”)
(default value: “rk4”) or the corresponding constant

• min_step (float): minimal step, (used with dp853 method only), (sign is irrel-
evant, regardless of integration direction, forward or backward), the last step
can be smaller than this value

• nSteps (float): Adams-Bashforth and Adams-Moulton methods only. The
number of past steps used for computation excluding the one being computed
(default value: 2

• scalAbsoluteTolerance (float): allowed absolute error (used with dp853 method
only)

• scalRelativeTolerance (float): allowed relative error (used with dp853 method
only)

• step (float): (deprecated) integration step, use with fixed step integrator
methods (default value: 0.005*step)

• step_size (float): integration step, use with fixed step integrator methods
(default value: 0.005*step)

• t0 (float): the first bound of the integration interval (defaut value: cycle*step,
the time at the begining of the current cycle.)

• tf (float): the second bound of the integration interval. Can be smaller than t0
for a backward integration (defaut value: cycle*step, the time at the begining
of the current cycle.)

Definition

Solves all equations which matched the given name, with all systems of agents that
should solved simultaneously.

v 1.8.2 497

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

• Other examples of use:
� �
solve SIR method: #rk4 step :0.001;� �
Embedments

• The solve statement is of type: Single statement
• The solve statement can be embedded into: Behavior, Sequence of statements

or action,
• The solve statement embeds statements:

species

Facets

• name (an identifier), (omissible) : the identifier of the species
• cell_height (float): (grid only), the height of the cells of the grid
• cell_width (float): (grid only), the width of the cells of the grid
• compile (boolean):
• control (skill): defines the architecture of the species (e.g. fsm. . .)
• edge_species (species): In the case of a species defining a graph topology for

its instances (nodes of the graph), specifies the species to use for representing
the edges

• file (file): (grid only), a bitmap file that will be loaded at runtime so that the
value of each pixel can be assigned to the attribute ‘grid_value’

• files (list): (grid only), a list of bitmap file that will be loaded at runtime so
that the value of each pixel of each file can be assigned to the attribute ‘bands’

• frequency (int): The execution frequency of the species (default value: 1). For
instance, if frequency is set to 10, the population of agents will be executed
only every 10 cycles.

• height (int): (grid only), the height of the grid (in terms of agent number)

v 1.8.2 498

GAMA v1.8.2 documentation Chapter 32. Statements

• horizontal_orientation (boolean): (hexagonal grid only),(true by default).
Allows use a hexagonal grid with a horizontal or vertical orientation.

• mirrors (any type in [list, species]): The species this species is mirroring. The
population of this current species will be dependent of that of the species
mirrored (i.e. agents creation and death are entirely taken in charge by GAMA
with respect to the demographics of the species mirrored). In addition, this
species is provided with an attribute called ‘target’, which allows each agent to
know which agent of the mirrored species it is representing.

• neighbors (int): (grid only), the chosen neighborhood (4, 6 or 8)
• optimizer (string): (grid only),(“A" by default). Allows to specify the algorithm

for the shortest path computation ("BF", "Dijkstra", "A” or "JPS*"
• parallel (any type in [boolean, int]): (experimental) setting this facet to ‘true’

will allow this species to use concurrency when scheduling its agents; setting it
to an integer will set the threshold under which they will be run sequentially
(the default is initially 20, but can be fixed in the preferences). This facet has a
default set in the preferences (Under Performances > Concurrency)

• parent (species): the parent class (inheritance)
• schedules (container): A container of agents (a species, a dynamic list, or a

combination of species and containers) , which represents which agents will be
actually scheduled when the population is scheduled for execution. Note that
the world (or the simulation) is always scheduled first, so there is no need to
explicitly mention it. Doing so would result in a runtime error. For instance,
‘species a schedules: (10 among a)’ will result in a population that schedules
only 10 of its own agents every cycle. ‘species b schedules: []’ will prevent the
agents of ‘b’ to be scheduled. Note that the scope of agents covered here can be
larger than the population, which allows to build complex scheduling controls;
for instance, defining ‘global schedules: [] {. . . } species b schedules: []; species
c schedules: b;’ allows to simulate a model where only the world and the agents
of b are scheduled, without even having to create an instance of c.

• skills (list): The list of skills that will be made available to the instances of
this species. Each new skill provides attributes and actions that will be added
to the ones defined in this species

• topology (topology): The topology of the population of agents defined by this
species. In case of nested species, it can for example be the shape of the
macro-agent. In case of grid or graph species, the topology is automatically
computed and cannot be redefined

• torus (boolean): is the topology toric (defaut: false). Needs to be defined on
the global species.

v 1.8.2 499

GAMA v1.8.2 documentation Chapter 32. Statements

• use_individual_shapes (boolean): (grid only),(true by default). Allows to
specify whether or not the agents of the grid will have distinct geometries. If
set to false, they will all have simpler proxy geometries

• use_neighbors_cache (boolean): (grid only),(true by default). Allows to turn
on or off the use of the neighbors cache used for grids. Note that if a diffusion
of variable occurs, GAMA will emit a warning and automatically switch to a
caching version

• use_regular_agents (boolean): (grid only),(true by default). Allows to specify
if the agents of the grid are regular agents (like those of any other species) or
minimal ones (which can’t have sub-populations, can’t inherit from a regular
species, etc.)

• virtual (boolean): whether the species is virtual (cannot be instantiated, but
only used as a parent) (false by default)

• width (int): (grid only), the width of the grid (in terms of agent number)

Definition

The species statement allows modelers to define new species in the model. global
and grid are speciel cases of species: global being the definition of the global agent
(which has automatically one instance, world) and grid being a species with a grid
topology.

Usages

• Here is an example of a species definition with a FSM architecture and the
additional skill moving:� �

species ant skills: [moving] control: fsm {� �
• In the case of a species aiming at mirroring another one:� �

species node_agent mirrors: list(bug) parent: graph_node
edge_species: edge_agent {� �

• The definition of the single grid of a model will automatically create gridwidth
x gridheight agents:

v 1.8.2 500

GAMA v1.8.2 documentation Chapter 32. Statements

� �
grid ant_grid width: gridwidth height: gridheight file:

grid_file neighbors: 8 use_regular_agents: false {� �
• Using a file to initialize the grid can replace width/height facets:� �

grid ant_grid file: grid_file neighbors: 8 use_regular_agents:
false {� �

Embedments

• The species statement is of type: Species
• The species statement can be embedded into: Model, Environment, Species,
• The species statement embeds statements:

start_simulation

Facets

• name (string), (omissible) : The name of the experiment to run

• of (string): The path to the model containing the experiment
• seed (int):
• with_param (map):

Embedments

• The start_simulation statement is of type: Sequence of statements or
action

• The start_simulation statement can be embedded into: Behavior, Single
statement, Species, Model,

• The start_simulation statement embeds statements:

v 1.8.2 501

GAMA v1.8.2 documentation Chapter 32. Statements

state

Facets

• name (an identifier), (omissible) : the identifier of the state
• final (boolean): specifies whether the state is a final one (i.e. there is no

transition from this state to another state) (default value= false)
• initial (boolean): specifies whether the state is the initial one (default value

= false)

Definition

A state, like a reflex, can contains several statements that can be executed at each
time step by the agent.

Usages

• Here is an exemple integrating 2 states and the statements in the FSM archi-
tecture:

� �
state s_init initial: true {

enter { write "Enter in" + state; }
write "Enter in" + state;

}

write state;

transition to: s1 when: (cycle > 2) {
write "transition s_init -> s1";

}

exit {
write "EXIT from "+state;

}
}
state s1 {

enter {write 'Enter in '+state ;}

v 1.8.2 502

GAMA v1.8.2 documentation Chapter 32. Statements

write state;

exit {write 'EXIT from '+state ;}
}� �

• See also: enter, exit, transition,

Embedments

• The state statement is of type: Behavior
• The state statement can be embedded into: fsm, Species, Experiment, Model,
• The state statement embeds statements: enter, exit,

status

Facets

• message (any type), (omissible) : Allows to display a necessarily short message
in the status box in the upper left corner. No formatting characters (carriage
returns, tabs, or Unicode characters) should be used, but a background color
can be specified. The message will remain in place until it is replaced by another
one or by nil, in which case the standard status (number of cycles) will be
displayed again

• color (rgb): The color used for displaying the background of the status message

Definition

The statement makes the agent output an arbitrary message in the status box.

Usages

• Outputting a message� �
status ('This is my status ' + self) color: #yellow;� �
v 1.8.2 503

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The status statement is of type: Single statement
• The status statement can be embedded into: Behavior, Sequence of statements

or action, Layer,
• The status statement embeds statements:

switch

Facets

• value (any type), (omissible) : an expression

Definition

The “switch. . . match” statement is a powerful replacement for imbricated “if . . .
else . . . ” constructs. All the blocks that match are executed in the order they are
defined, unless one invokes ‘break’, in which case the switch statement is exited. The
block prefixed by default is executed only if none have matched (otherwise it is not).

Usages

• The prototypical syntax is as follows:

� �
switch an_expression {

match value1 {...}
match_one [value1 , value2 , value3] {...}
match_between [value1 , value2] {...}
default {...}

}� �
• Example:

v 1.8.2 504

GAMA v1.8.2 documentation Chapter 32. Statements

� �
switch 3 {

match 1 {write "Match 1"; }
match 2 {write "Match 2"; }
match 3 {write "Match 3"; }
match_one [4,4,6,3,7] {write "Match one_of"; }
match_between [2, 4] {write "Match between"; }
default {write "Match Default"; }

}� �
• See also: match, default, if,

Embedments

• The switch statement is of type: Sequence of statements or action
• The switch statement can be embedded into: Behavior, Sequence of statements

or action, Layer,
• The switch statement embeds statements: default, match,

tabu

Facets

• name (an identifier), (omissible) : The name of the method. For internal use
only

• aggregation (a label), takes values in: {min, max}: the agregation method
• init_solution (map): init solution: key: name of the variable, value: value of

the variable
• iter_max (int): number of iterations
• maximize (float): the value the algorithm tries to maximize
• minimize (float): the value the algorithm tries to minimize
• tabu_list_size (int): size of the tabu list

v 1.8.2 505

GAMA v1.8.2 documentation Chapter 32. Statements

Definition

This algorithm is an implementation of the Tabu Search algorithm. See the wikipedia
article and [batch161 the batch dedicated page].

Usages

• As other batch methods, the basic syntax of the tabu statement uses method
tabu instead of the expected tabu name: id :

� �
method tabu [facet: value];� �

• For example:

� �
method tabu iter_max: 50 tabu_list_size: 5 maximize:

food_gathered;� �
Embedments

• The tabu statement is of type: Batch method
• The tabu statement can be embedded into: Experiment,
• The tabu statement embeds statements:

task

Facets

• name (an identifier), (omissible) : the identifier of the task

• weight (float): the priority level of the task

v 1.8.2 506

GAMA v1.8.2 documentation Chapter 32. Statements

Definition

As reflex, a task is a sequence of statements that can be executed, at each time step,
by the agent. If an agent owns several tasks, the scheduler chooses a task to execute
based on its current priority weight value.

Usages

Embedments

• The task statement is of type: Behavior
• The task statement can be embedded into: weighted_tasks, sorted_tasks,

probabilistic_tasks, Species, Experiment, Model,
• The task statement embeds statements:

test

Facets

• name (an identifier), (omissible) : identifier of the test

Definition

The test statement allows modeler to define a set of assertions that will be tested.
Before the execution of the embedded set of instructions, if a setup is defined in
the species, model or experiment, it is executed. In a test, if one assertion fails, the
evaluation of other assertions continue.

Usages

• An example of use:

v 1.8.2 507

GAMA v1.8.2 documentation Chapter 32. Statements

� �
species Tester {

// set of attributes that will be used in test

setup {
// [set of instructions ... in particular

initializations]
}

test t1 {
// [set of instructions , including asserts]

}
}� �

• See also: setup, assert,

Embedments

• The test statement is of type: Behavior
• The test statement can be embedded into: Species, Experiment, Model,
• The test statement embeds statements: assert,

trace

Facets

Definition

All the statements executed in the trace statement are displayed in the console.

Usages

Embedments

• The trace statement is of type: Sequence of statements or action

v 1.8.2 508

GAMA v1.8.2 documentation Chapter 32. Statements

• The trace statement can be embedded into: Behavior, Sequence of statements
or action, Layer,

• The trace statement embeds statements:

transition

Facets

• to (an identifier): the identifier of the next state
• when (boolean), (omissible) : a condition to be fulfilled to have a transition to

another given state

Definition

In an FSM architecture, transition specifies the next state of the life cycle. The
transition occurs when the condition is fulfilled. The embedded statements are
executed when the transition is triggered.

Usages

• In the following example, the transition is executed when after 2 steps:

� �
state s_init initial: true {

write state;
transition to: s1 when: (cycle > 2) {

write "transition s_init -> s1";
}

}� �
• See also: enter, state, exit,

v 1.8.2 509

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The transition statement is of type: Sequence of statements or action
• The transition statement can be embedded into: Sequence of statements or

action, Behavior,
• The transition statement embeds statements:

try

Facets

Definition

Allows the agent to execute a sequence of statements and to catch any runtime error
that might happen in a subsequent catch block, either to ignore it (not a good idea,
usually) or to safely stop the model

Usages

• The generic syntax is:� �
try {

[statements]
}� �

• Optionally, the statements to execute when a runtime error happens in the
block can be defined in a following statement ‘catch’. The syntax then becomes:� �

try {
[statements]

}
catch {

[statements]
}� �
v 1.8.2 510

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The try statement is of type: Sequence of statements or action
• The try statement can be embedded into: Behavior, Sequence of statements or

action, Layer,
• The try statement embeds statements: catch,

unconscious_contagion

Facets

• emotion (emotion): the emotion that will be copied with the contagion
• name (an identifier), (omissible) : the identifier of the unconscious contagion
• charisma (float): The charisma value of the perceived agent (between 0 and 1)
• decay (float): The decay value of the emotion added to the agent
• receptivity (float): The receptivity value of the current agent (between 0 and

1)
• threshold (float): The threshold value to make the contagion
• when (boolean): A boolean value to get the emotion only with a certain condition

Definition

enables to directly copy an emotion presents in the perceived specie.

Usages

• Other examples of use:

� �
unconscious_contagion emotion:fearConfirmed;
unconscious_contagion emotion:fearConfirmed charisma: 0.5

receptivity: 0.5;� �
v 1.8.2 511

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The unconscious_contagion statement is of type: Single statement
• The unconscious_contagion statement can be embedded into: Behavior, Se-

quence of statements or action,
• The unconscious_contagion statement embeds statements:

user_command

Facets

• name (a label), (omissible) : the identifier of the user_command
• action (action): the identifier of the action to be executed. This action

should be accessible in the context in which the user_command is defined (an
experiment, the global section or a species). A special case is allowed to maintain
the compatibility with older versions of GAMA, when the user_command is
declared in an experiment and the action is declared in ‘global’. In that case,
all the simulations managed by the experiment will run the action in response
to the user executing the command

• category (a label): a category label, used to group parameters in the interface
• color (rgb): The color of the button to display
• continue (boolean): Whether or not the button, when clicked, should dismiss

the user panel it is defined in. Has no effect in other contexts (menu, parameters,
inspectors)

• when (boolean): the condition that should be fulfilled (in addition to the user
clicking it) in order to execute this action

• with (map): the map of the parameters::values required by the action

Definition

Anywhere in the global block, in a species or in an (GUI) experiment, user_command
statements allows to either call directly an existing action (with or without arguments)
or to be followed by a block that describes what to do when this command is run.

v 1.8.2 512

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

• The general syntax is for example:

� �
user_command kill_myself action: some_action with: [arg1::val1

, arg2::val2 , ...];� �
• See also: user_init, user_panel, user_input,

Embedments

• The user_command statement is of type: Sequence of statements or action
• The user_command statement can be embedded into: user_panel, Species, Ex-

periment, Model,
• The user_command statement embeds statements: user_input,

user_init

Facets

• name (an identifier), (omissible) : The name of the panel
• initial (boolean): Whether or not this panel will be the initial one

Definition

Used in the user control architecture, user_init is executed only once when the agent
is created. It opens a special panel (if it contains user_commands statements). It is
the equivalent to the init block in the basic agent architecture.

Usages

• See also: user_command, user_init, user_input,

v 1.8.2 513

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The user_init statement is of type: Behavior
• The user_init statement can be embedded into: Species, Experiment, Model,
• The user_init statement embeds statements: user_panel,

user_input

Facets

• init (any type): the init value

• returns (a new identifier): a new local variable containing the value given by
the user

• name (a label), (omissible) : the displayed name
• among (list): the set of acceptable values, only for string inputs
• max (float): the maximum value
• min (float): the minimum value
• slider (boolean): Whether to display a slider or not when applicable
• type (a datatype identifier): the variable type

Definition

It allows to let the user define the value of a variable.

Usages

• Other examples of use:� �
user_panel "Advanced Control" {

user_input "Location" returns: loc type: point <- {0 ,0};
create cells number: 10 with: [location ::loc];

}� �
• See also: user_command, user_init, user_panel,

v 1.8.2 514

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The user_input statement is of type: Single statement
• The user_input statement can be embedded into: user_command,
• The user_input statement embeds statements:

user_panel

Facets

• name (an identifier), (omissible) : The name of the panel
• initial (boolean): Whether or not this panel will be the initial one

Definition

It is the basic behavior of the user control architecture (it is similar to state for the
FSM architecture). This user_panel translates, in the interface, in a semi-modal view
that awaits the user to choose action buttons, change attributes of the controlled
agent, etc. Each user_panel, like a state in FSM, can have a enter and exit sections,
but it is only defined in terms of a set of user_commands which describe the different
action buttons present in the panel.

Usages

• The general syntax is for example:� �
user_panel default initial: true {

user_input 'Number ' returns: number type: int <- 10;
ask (number among list(cells)){ do die; }
transition to: "Advanced Control" when: every (10);

}

user_panel "Advanced Control" {
user_input "Location" returns: loc type: point <- {0 ,0};
create cells number: 10 with: [location ::loc];

}� �
v 1.8.2 515

GAMA v1.8.2 documentation Chapter 32. Statements

• See also: user_command, user_init, user_input,

Embedments

• The user_panel statement is of type: Behavior
• The user_panel statement can be embedded into: fsm, user_first, user_last,

user_init, user_only, Species, Experiment, Model,
• The user_panel statement embeds statements: user_command,

using

Facets

• topology (topology), (omissible) : the topology

Definition

using is a statement that allows to set the topology to use by its sub-statements.
They can gather it by asking the scope to provide it.

Usages

• All the spatial operations are topology-dependent (e.g. neighbors are not the
same in a continuous and in a grid topology). So using statement allows
modelers to specify the topology in which the spatial operation will be computed.

� �
float dist <- 0.0;
using topology(grid_ant) {

d (self.location distance_to target.location);
}� �
v 1.8.2 516

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The using statement is of type: Sequence of statements or action
• The using statement can be embedded into: chart, Behavior, Sequence of

statements or action, Layer,
• The using statement embeds statements:

Variable_container

Facets

• name (a new identifier), (omissible) : The name of the attribute
• category (a label): Soon to be deprecated. Declare the parameter in an

experiment instead
• const (boolean): Indicates whether this attribute can be subsequently modified

or not
• function (any type): Used to specify an expression that will be evaluated each

time the attribute is accessed. This facet is incompatible with both ‘init:’ and
‘update:’

• index (a datatype identifier): The type of the key used to retrieve the contents
of this attribute

• init (any type): The initial value of the attribute
• of (a datatype identifier): The type of the contents of this container attribute
• on_change (any type): Provides a block of statements that will be executed

whenever the value of the attribute changes
• parameter (a label): Soon to be deprecated. Declare the parameter in an

experiment instead
• type (a datatype identifier): The type of the attribute
• update (any type): An expression that will be evaluated each cycle to compute

a new value for the attribute

Definition

Allows to declare an attribute of a species or an experiment

v 1.8.2 517

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

Embedments

• The Variable_container statement is of type: Variable (container)
• The Variable_container statement can be embedded into: Species, Experiment,

Model,
• The Variable_container statement embeds statements:

Variable_number

Facets

• name (a new identifier), (omissible) : The name of the attribute
• among (list): A list of constant values among which the attribute can take its

value
• category (a label): Soon to be deprecated. Declare the parameter in an

experiment instead
• const (boolean): Indicates whether this attribute can be subsequently modified

or not
• function (any type in [int, float, point, date]): Used to specify an expression that

will be evaluated each time the attribute is accessed. This facet is incompatible
with both ‘init:’ and ‘update:’

• init (any type in [int, float, point, date]): The initial value of the attribute
• max (any type in [int, float, point, date]): The maximum value this attribute

can take. The value will be automatically clampled if it is higher.
• min (any type in [int, float, point, date]): The minimum value this attribute

can take. The value will be automatically clamped if it is lower.
• on_change (any type): Provides a block of statements that will be executed

whenever the value of the attribute changes
• parameter (a label): Soon to be deprecated. Declare the parameter in an

experiment instead
• step (any type in [int, float, point, date]): A discrete step (used in conjunction

with min and max) that constrains the values this variable can take
• type (a datatype identifier): The type of the attribute, either ‘int’, ‘float’, ‘point’

or ‘date’

v 1.8.2 518

GAMA v1.8.2 documentation Chapter 32. Statements

• update (any type in [int, float, point, date]): An expression that will be evaluated
each cycle to compute a new value for the attribute

Definition

Allows to declare an attribute of a species or experiment; this type of attributes
accepts min:, max: and step: facets, automatically clamping the value if it is lower
than min or higher than max.

Usages

Embedments

• The Variable_number statement is of type: Variable (number)
• The Variable_number statement can be embedded into: Species, Experiment,

Model,
• The Variable_number statement embeds statements:

Variable_regular

Facets

• name (a new identifier), (omissible) : The name of the attribute
• among (list): A list of constant values among which the attribute can take its

value
• category (a label): Soon to be deprecated. Declare the parameter in an

experiment instead
• const (boolean): Indicates whether this attribute can be subsequently modified

or not
• function (any type): Used to specify an expression that will be evaluated each

time the attribute is accessed. This facet is incompatible with both ‘init:’,
‘update:’ and ‘on_change:’ (or the equivalent final block)

• index (a datatype identifier): The type of the index used to retrieve elements if
the type of the attribute is a container type

v 1.8.2 519

GAMA v1.8.2 documentation Chapter 32. Statements

• init (any type): The initial value of the attribute
• of (a datatype identifier): The type of the elements contained in the type of

this attribute if it is a container type
• on_change (any type): Provides a block of statements that will be executed

whenever the value of the attribute changes
• parameter (a label): Soon to be deprecated. Declare the parameter in an

experiment instead
• type (a datatype identifier): The type of this attribute. Can be combined with

facets ‘of’ and ‘index’ to describe container types
• update (any type): An expression that will be evaluated each cycle to compute

a new value for the attribute

Definition

Allows to declare an attribute of a species or an experiment

Usages

Embedments

• The Variable_regular statement is of type: Variable (regular)
• The Variable_regular statement can be embedded into: Species, Experiment,

Model,
• The Variable_regular statement embeds statements:

warn

Facets

• message (string), (omissible) : the message to display as a warning.

Definition

The statement makes the agent output an arbitrary message in the error view as a
warning.

v 1.8.2 520

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

• Emmitting a warning� �
warn 'This is a warning from ' + self;� �
Embedments

• The warn statement is of type: Single statement
• The warn statement can be embedded into: Behavior, Sequence of statements

or action, Layer,
• The warn statement embeds statements:

write

Facets

• message (any type), (omissible) : the message to display. Modelers can add
some formatting characters to the message (carriage returns, tabs, or Unicode
characters), which will be used accordingly in the console.

• color (rgb): The color with wich the message will be displayed. Note that
different simulations will have different (default) colors to use for this purpose
if this facet is not specified

Definition

The statement makes the agent output an arbitrary message in the console.

Usages

• Outputting a message� �
write 'This is a message from ' + self;� �
v 1.8.2 521

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

• The write statement is of type: Single statement
• The write statement can be embedded into: Behavior, Sequence of statements

or action, Layer,
• The write statement embeds statements:

v 1.8.2 522

Chapter 33

Types

A variable’s or expression’s type (or data type) determines the values it can take, plus
the operations that can be performed on or with it. GAML is a statically-typed
language, which means that the type of an expression is always known at compile
time, and is even enforced with casting operations. There are 4 categories of types:

• primitive types, declared as keyword in the language,
• complex types, also declared as keyword in the language,
• parametric types, a refinement of complex types (mainly children of container)

that is dynamically constructed using an enclosing type, a contents type and a
key type,

• species types, dynamically constructed from the species declarations made by
the modeler (and the built-in species present).

The hierarchy of types in GAML (only primitive and complex types are displayed
here, of course, as the other ones are model-dependent) is the following:

Table of contents

• Types (Under Construction)

– Primitive built-in types
∗ bool
∗ float

523

GAMA v1.8.2 documentation Chapter 33. Types

Figure 33.1: images/types_hierarchy.png

v 1.8.2 524

GAMA v1.8.2 documentation Chapter 33. Types

∗ int
∗ string

– Complex built-in types
∗ agent
∗ container
∗ conversation
∗ field
∗ file
∗ geometry
∗ graph
∗ list
∗ map
∗ matrix
∗ message

∗ pair
∗ path
∗ point
∗ rgb
∗ species
∗ Species names as types
∗ topology

– Defining custom types

Primitive built-in types

bool

• Definition: primitive datatype providing two values: true or false.
• Litteral declaration: both true or false are interpreted as boolean constants.
• Other declarations: expressions that require a boolean operand often directly

apply a casting to bool to their operand. It is a convenient way to directly
obtain a bool value.� �

bool (0) -> false� �
Top of the page

v 1.8.2 525

GAMA v1.8.2 documentation Chapter 33. Types

float

• Definition: primitive datatype holding floating point values, its absolute value
is comprised between 4.9E-324 and 1.8E308.

• Comments: this datatype is internally backed up by the Java double datatype.
• Litteral declaration: decimal notation 123.45 or exponential notation 123e45

are supported.
• Other declarations: expressions that require an integer operand often directly

apply a casting to float to their operand. Using it is a way to obtain a float
constant.� �

float (12) -> 12.0� �
Top of the page

int

• Definition: primitive datatype holding integer values comprised between -
2147483648 and 2147483647 (i.e. between -2^31 and 2^31 - 1.

• Comments: this datatype is internally backed up by the Java int datatype.
• Litteral declaration: decimal notation like 1, 256790 or hexadecimal notation

like #1209FF are automatically interpreted.
• Other declarations: expressions that require an integer operand often directly

apply a casting to int to their operand. Using it is a way to obtain an integer
constant.� �

int (234.5) -> 234.� �
Top of the page

string

• Definition: a datatype holding a sequence of characters.
• Comments: this datatype is internally backed up by the Java String class.

However, contrary to Java, strings are considered as a primitive type, which
means they do not contain character objects. This can be seen when casting
a string to a list using the list operator: the result is a list of one-character
strings, not a list of characters.

v 1.8.2 526

GAMA v1.8.2 documentation Chapter 33. Types

• Litteral declaration: a sequence of characters enclosed in quotes, like ‘this
is a string’ . If one wants to literally declare strings that contain quotes, one
has to double these quotes in the declaration. Strings accept escape characters
like \n (newline), \r (carriage return), \t (tabulation), as well as any Unicode
character (\uXXXX).

• Other declarations: see string
• Example: see string operators.

Top of the page

Complex built-in types

Contrarily to primitive built-in types, complex types have often various attributes.
They can be accessed in the same way as attributes of agents:� �
complex_type nom_var <- init_var;
ltype_attr attr_var <- nom_var.attr_name;� �
For example:� �
file fileText <- file("../ data/cell.Data");
bool fileTextReadable <- fileText.readable;� �
agent

• Definition: a generic datatype that represents an agent whatever its actual
species.

• Built-in attributes: these attributes are common to any agent of the simula-
tion

– location (type = point): the location of the agent
– shape (type = geometry): the shape of the agent
– name (type = string): name of the agent (not necessarily unique in its

population)
– peers (type = list of agents of the same species): the population of agents

of the same species, in the same host, minus the receiver agent
– host (type = agent): the agent that hosts the population of the agent

v 1.8.2 527

GAMA v1.8.2 documentation Chapter 33. Types

• Comments: This datatype is barely used since species name can be directly
used as datatypes themselves.

• Declaration: the agent casting operator can be applied to any unknown object
to cast it as an agent.

Top of the page

container

• Definition: a generic datatype that represents a collection of data.
• Comments: a container variable can be a list, a matrix, a map. . . Conversely,

each list, matrix, and map is a kind of container. In consequence, every container
can be used in container-related operators.

• See also: Container operators
• Declaration:� �

container c <- [1,2,3];
container c <- matrix [[1,2 ,3] ,[4 ,5,6]];
container c <- map ["x"::5, "y"::12];
container c <- list species1;� �
Top of the page

conversation

• Definition: a datatype that represents a conversation between agents in a
FIPA-ACL interaction. It contains in particular all the exchanged messages.

• Built-in attributes:
– messages (type = list of messages): the list of messages that compose this

conversation
– protocol (type = string): the name of the protocol followed by the con-

versation
– initiator (type = agent): the agent that has initiated this conversation
– participants (type = list of agents): the list of agents that participate to

this conversation
– ended (type = bool): whether this conversation has ended or not

Top of the page

v 1.8.2 528

GAMA v1.8.2 documentation Chapter 33. Types

field

• Definition: Fields are two-dimensional matrices holding float values. They
can be easily created from arbitrary sources (grid, raster or DEM files, matrices
grids) and of course by hand. The values they hold are accessible by agents like
grids are, using their current location. They can be the target of the ‘diffuse’
statement and can be displayed using the ‘mesh’ layer definition. As such, they
represent a lightweight alternative to grids, as they hold spatialized discrete
values without having to build agents, which can be particularly interesting for
models with large raster data. Several fields can of course be defined, and it
makes sense to define them in the global section as, for the moment, they cover
by default the whole environment, exactly like grids, and are created alongside
them.

• Built-in attributes: a field is a kind of matrix, it thus inherits from the
matrix’s attributes.

– dimension (type = point): the dimension (columns x rows) of the receiver
matrix

– columns (type = int): the number of columns of the receiver matrix
– rows (type = int): the number of rows of the receiver matrix
– cell_size (type = point): the dimension of an individual cell as a point
(width, height). Setting it will only change the interpretation made by the
field of the values it contains, but not the values themselves.

– bands (type = list of field): The list of bands that are optionally present
in the field. The first band is the primary field itself, and each of these
bands is a field w/o bands

– no_data (type = float): the value that indicates the absence of data.
Setting it will only change the interpretation made by the field of the
values it contains, but not the values themselves.

• See also: Field operators
• Declaration: a field can be created from a raster datafile (such as .asc of .tif

files), a matrix or be specifying its dimensions.

– a field can be created from a raster datafile “‘ // Initialize a field
from a asc simple raster file field field_from_asc <- field(grid_-
file(“includes/grid.asc”));

// initialize using a tiff raster file field field_from_tiff <- field(grid_-
file(“includes/Lesponne.tif”));

v 1.8.2 529

GAMA v1.8.2 documentation Chapter 33. Types

� �
* a field can be created manually:� �

// Init from a user defined matrix field field_from_matrix <-
field(matrix([[1,2,3],[4,5,6],[7,8,9]]));
// init an empty field of a given size field empty_field_from_size <- field(10,10);
// init a field for of a given value field full_field_from_size<- field(10,10,1.0);
// init a field of given size, with a given value and no data field full_field_from_-
size_with_nodata <- field (1,1,1.0,0.0);� �

* a field can be created from a grid of cells , the value
stored will be the grid 's grid_value attribute� �

global { field field_from_grid <- field(matrix(cell)); } grid cell width: 100 height:
100 { float grid_value <- rnd(1.0,self distance_to world.location); }� �
file
* ** Definition :** a datatype that represents a file.
* **Built -in attributes :**

* name (type = string): the name of the represented file (
with its extension)

* extension(type = string): the extension of the file
* path (type = string): the absolute path of the file

* readable (type = bool , read -only): a flag expressing
whether the file is readable
* writable (type = bool , read -only): a flag expressing

whether the file is writable
* exists (type = bool , read -only): a flag expressing

whether the file exists
* is_folder (type = bool , read -only): a flag expressing

whether the file is folder
* contents (type = container): a container storing the

content of the file
* ** Comments :** a variable with the `file ` type can handle any

kind of file (text , image or shape files ...). The type of
the `content ` attribute will depend on the kind of file.
Note that the allowed kinds of file are the followings:

* text files: files with the extensions .txt , .data , .csv , .
text , .tsv , .asc. The `content ` is by default a list of
string.

v 1.8.2 530

GAMA v1.8.2 documentation Chapter 33. Types

* image files: files with the extensions .pgm , .tif , .tiff ,
.jpg , .jpeg , .png , .gif , .pict , .bmp. The `content ` is by
default a matrix of int.

* shapefiles: files with the extension .shp. The `content `
is by default a list of geometry.

* properties files: files with the extension .properties.
The `content ` is by default a map of string :: string.

* folders. The `content ` is by default a list of string.
* ** Remark :** Files are also a particular kind of container

and can thus be read , written or iterated using the
container operators and commands.

* **See also :** [File operators](Operators#files -related -
operators)

* ** Declaration :** a file can be created using the generic `
file ` (that opens a file in read only mode and tries to
determine its contents), `folder ` or the `new_folder ` (to
open an existing folder or create a new one) unary
operators. But things can be specialized with the
combination of the `read `/`write ` and `image `/`text `/`
shapefile `/`properties ` unary operators.� �

folder(a_string) // returns a file managing a existing folder file(a_string) // re-
turns any kind of file in read-only mode read(text(a_string)) // returns a text
file in read-only mode read(image(a_string)) // does the same with an image file.
write(properties(a_string)) // returns a property file which is available for writing
// (if it exists, contents will be appended unless it is cleared // using the standard
container operations).� �
[Top of the page](#table -of-contents)

geometry
* ** Definition :** a datatype that represents a vector geometry

, i.e. a list of georeferenced points.
* **Built -in attributes :**

* location (type = point): the centroid of the geometry
* area (type = float): the area of the geometry
* perimeter (type = float): the perimeter of the geometry
* holes (type = list of geometry): the list of the hole
inside the given geometry

* contour (type = geometry): the exterior ring of the given

v 1.8.2 531

GAMA v1.8.2 documentation Chapter 33. Types

geometry and of his holes
* envelope (type = geometry): the geometry bounding box
* width (type = float): the width of the bounding box
* height (type = float): the height of the bounding box
* points (type = list of point): the set of the points
composing the geometry

* ** Comments :** a geometry can be either a point , a polyline
or a polygon. Operators working on geometries handle
transparently these three kinds of geometry. The envelope (
a.k.a. the bounding box) of the geometry depends on the
kind of geometry:

* If this Geometry is the empty geometry , it is an empty
point.

* If the Geometry is a point , it is a non -empty point.
* Otherwise , it is a Polygon whose points are (minx , miny),
(maxx , miny), (maxx , maxy), (minx , maxy), (minx , miny).

* **See also :** [Spatial operators](Operators#spatial -
operators)

* ** Declaration :** geometries can be built from a point , a
list of points or by using specific operators (circle ,
square , triangle ...).� �

geometry varGeom <- circle(5); geometry polygonGeom <- polygon([{3,5},
{5,6},{1,4}]);� �
[Top of the page](#table -of-contents)

graph
* ** Definition :** a datatype that represents a graph composed

of vertices linked by edges.
* **Built -in attributes :**

* edges(type = list of agent/geometry): the list of all
edges

* vertices(type = list of agent/geometry): the list of all
vertices

* circuit (type = path): an approximate minimal traveling
salesman tour (hamiltonian cycle)

* spanning_tree (type = list of agent/geometry): minimum
spanning tree of the graph , i.e. a sub -graph such as every
vertex lies in the tree , and as much edges lies in it but

v 1.8.2 532

GAMA v1.8.2 documentation Chapter 33. Types

no cycles (or loops) are formed.
* connected(type = bool): test whether the graph is
connected

* ** Remark :**
* graphs are also a particular kind of container and can
thus be manipulated using the container operators and
commands.

* This algorithm used to compute the circuit requires that
the graph be complete and the triangle inequality exists (
if x,y,z are vertices then d(x,y)+d(y,z)<d(x,z) for all x,y
,z) then this algorithm will guarantee a hamiltonian cycle
such that the total weight of the cycle is less than or
equal to double the total weight of the optimal hamiltonian
cycle.

* The computation of the spanning tree uses an
implementation of the Kruskal 's minimum spanning tree
algorithm. If the given graph is connected it computes the
minimum spanning tree , otherwise it computes the minimum
spanning forest.

* **See also :** [Graph operators](Operators#graph -related -
operators)

* ** Declaration :** graphs can be built from a list of vertices
(agents or geometries) or from a list of edges (agents or

geometries) by using specific operators. They are often
used to deal with a road network and are built from a
shapefile.� �

create road from: shape_file_road; graph the_graph <- as_edge_graph(road);

graph([1,9,5]) –: ([1: in[] + out[], 5: in[] + out[], 9: in[] + out[]], []) graph([node(0),
node(1), node(2)] // if node is a species graph([‘a’::345, ‘b’::13]) –: ([b: in[] + out[b::13],
a: in[] + out[a::345], 13: in[b::13] + out[], 345: in[a::345] + out[]], [a::345=(a,345),
b::13=(b,13)]) graph(a_graph) –: a_graph graph(node1) –: null� �
[Top of the page](#table -of-contents)

list
* ** Definition :** a composite datatype holding an ordered

collection of values.
* ** Comments :** lists are more or less equivalent to instances

v 1.8.2 533

GAMA v1.8.2 documentation Chapter 33. Types

of ArrayList in Java (although they are backed up by a
specific class). They grow and shrink as needed , can be
accessed via an index (see @ or index_of), support set
operations (like union and difference), and provide the
modeller with a number of utilities that make it easy to
deal with collections of agents (see , for instance , shuffle
, reverse ,where ,sort_by ,...).

* ** Remark :** lists can contain values of any datatypes ,
including other lists. Note , however , that due to
limitations in the current parser , lists of lists cannot be
declared litteraly; they have to be built using

assignments. Lists are also a particular kind of container
and can thus be manipulated using the container operators
and commands.

* ** Litteral declaration :** a set of expressions separated by
commas , enclosed in square brackets , like [12, 14, 'abc ',
self]. An empty list is noted `[]`.

* **Other declarations :** lists can be built literally from a
point , or a string , or any other element by using the list
casting operator.� �

list (1) -> [1]� �� �
list myList <- [1,2,3,4]; myList[2] => 3� �
[Top of the page](#table -of-contents)

map
* ** Definition :** a composite datatype holding an ordered

collection of pairs (a key , and its associated value).
* **Built -in attributes :**

* keys (type = list): the list of all keys
* values (type = list): the list of all values
* pairs (type = list of pairs): the list of all pairs key::
value

* ** Comments :** maps are more or less equivalent to instances
of Hashtable in Java (although they are backed up by a
specific class).

* ** Remark :** maps can contain values of any datatypes ,
including other maps or lists. Maps are also a particular

v 1.8.2 534

GAMA v1.8.2 documentation Chapter 33. Types

kind of container and can thus be manipulated using the
container operators and commands.

* ** Litteral declaration :** a set of pair expressions
separated by commas , enclosed in square brackets; each pair
is represented by a key and a value separated by `::`. An

example of map is `[agentA::'big ', agentB::'small ', agentC
::'big ']`. An empty map is noted `[]`.

* **Other declarations :** lists can be built literally from a
point , or a string , or any other element by using the map
casting operator.� �

map (1) -> [1::1] map ({1,5}) -> [x::1, y::5] [] // empty map� �
[Top of the page](#table -of-contents)

matrix
* ** Definition :** a composite datatype that represents either

a two -dimension array (matrix) or a one -dimension array (
vector), holding any type of data (including other matrices
).

* **Built -in attributes :**
* dimension (type = point): the dimension (columns x rows)
of the receiver matrix

* columns (type = int): the number of columns of the
receiver matrix

* rows (type = int): the number of rows of the receiver
matrix

* ** Comments :** Matrices are fixed -size structures that can be
accessed by index (point for two -dimensions matrices ,

integer for vectors).
* ** Litteral declaration :** Matrices cannot be defined

literally. One -dimensions matrices can be built by using
the matrix casting operator applied on a list. Two -
dimensions matrices need to be declared as variables first ,
before being filled.� �

//builds a one-dimension matrix, of size 5 matrix mat1 <- matrix ([10, 20, 30, 40,
50]); // builds a two-dimensions matrix with 10 columns and 5 rows, where each
cell is initialized to 0.0 matrix mat2 <- 0.0 as_matrix({10,5}); // builds a two-
dimensions matrix with 2 columns and 3 rows, with initialized cells matrix mat3 <-

v 1.8.2 535

GAMA v1.8.2 documentation Chapter 33. Types

matrix([[“c11”,“c12”,“c13”],[“c21”,“c22”,“c23”]]);
-> c11;c21 c12;c22 c13;c23� �
[Top of the page](#table -of-contents)

message
* ** Definition :** a datatype containing a message (sent during

a communication , such as the one sent/received in a FIPA
interaction).

* **Built -in attributes :**
* contents (type = unknown): the contents of this message ,
as a list of arbitrary objects

* sender (type = unknown): the sender that has sent this
message

* unread (type = bool): whether this message is unread or
not

* emission_timestamp (type = int): the emission time stamp
of this message (I.e. at what cycle it has been emitted)

* recention_timestamp (type = int): the reception time stamp
of this message (I.e. at what cycle it has been received)

pair
* ** Definition :** a datatype holding a key and its associated

value.
* **Built -in attributes :**

* key (type = string): the key of the pair , i.e. the first
element of the pair

* value (type = string): the value of the pair , i.e. the
second element of the pair

* ** Remark :** pairs are also a particular kind of container
and can thus be manipulated using the container operators
and commands.

* ** Litteral declaration :** a pair is defined by a key and a
value separated by `::`.

* **Other declarations :** a pair can also be built from:
* a point ,
* a map (in this case the first element of the pair is the
list of all the keys of the map and the second element is
the list of all the values of the map),

v 1.8.2 536

GAMA v1.8.2 documentation Chapter 33. Types

* a list (in this case the two first element of the list are
used to build the pair)� �

pair testPair <- “key”::56; pair testPairPoint <- {3,5}; // 3::5 pair testPairList2 <-
[6,7,8]; // 6::7 pair testPairMap <- [2::6,5::8,12::45]; // [12,5,2]::[45,8,6]� �
[Top of the page](#table -of-contents)

[//]: # (keyword|type_path)
path
* ** Definition :** a datatype representing a path linking two

agents or geometries in a graph.
* **Built -in attributes :**

* source (type = point): the source point , i.e. the first
point of the path

* target (type = point): the target point , i.e. the last
point of the path

* graph (type = graph): the current topology (in the case it
is a spatial graph), null otherwise

* edges (type = list of agents/geometries): the edges of the
graph composing the path

* vertices (type = list of agents/geometries): the vertices
of the graph composing the path

* segments (type = list of geometries): the list of the
geometries composing the path

* shape (type = geometry) : the global geometry of the path
(polyline)

* ** Comments :** the path created between two agents/geometries
or locations will strongly depend on the topology in which
it is created.

* ** Remark :** a path is ** immutable **, i.e. it can not be
modified after it is created.

* ** Declaration :** paths are very barely defined literally. We
can nevertheless use the `path ` unary operator on a list

of points to build a path. Operators dedicated to the
computation of paths (such as path_to or path_between)
are often used to build a path.� �

path([{1,5},{2,9},{5,8}]) // a path from {1,5} to {5,8} through {2,9}

v 1.8.2 537

GAMA v1.8.2 documentation Chapter 33. Types

geometry rect <- rectangle(5); geometry poly <- poly-
gon([{10,20},{11,21},{10,21},{11,22}]); path pa <- rect path_to poly; //
built a path between rect and poly, in the topolopy
// of the current agent (i.e. a line in a& continuous topology, // a path in a graph in
a graph topology)
a_topology path_between a_container_of_geometries // idem with an explicit
topology and the possibility // to have more than 2 geometries // (the path is then
built incrementally)
path_between (a_graph, a_source, a_target) // idem with a the given graph as
topology� �
[Top of the page](#table -of-contents)

[//]: # (keyword|type_point)
point
* ** Definition :** a datatype normally holding two positive

float values. Represents the absolute coordinates of agents
in the model.

* **Built -in attributes :**
* x (type = float): coordinate of the point on the x-axis
* y (type = float): coordinate of the point on the y-axis

* ** Comments :** point coordinates should be positive , if a
negative value is used in its declaration , the point is
built with the absolute value.

* ** Remark :** points are particular cases of geometries and
containers. Thus they have also all the built -in attributes
of both the geometry and the container datatypes and can

be used with every kind of operator or command admitting
geometry and container.

* ** Litteral declaration :** two numbers , separated by a comma ,
enclosed in braces , like {12.3, 14.5}

* **Other declarations :** points can be built literally from a
list , or from an integer or float value by using the point
casting operator.� �

point ([12,123.45]) -> {12.0, 123.45} point (2) -> {2.0, 2.0}� �
[Top of the page](#table -of-contents)

v 1.8.2 538

GAMA v1.8.2 documentation Chapter 33. Types

[//]: # (keyword|type_rgb)
rgb
* ** Definition :** a datatype that represents a color in the

RGB space.
* **Built -in attributes :**

* red(type = int): the red component of the color
* green(type = int): the green component of the color
* blue(type = int): the blue component of the color
* darker(type = rgb): a new color that is a darker version
of this color

* brighter(type = rgb): a new color that is a brighter
version of this color

* ** Remark :** rgb is also a particular kind of container and
can thus be manipulated using the container operators and
commands.

* ** Litteral declaration :** there exist a lot of ways to
declare a color. We use the `rgb ` casting operator applied
to:

* a string. The allowed color names are the constants
defined in the Color Java class , i.e.: black , blue , cyan ,
darkGray , lightGray , gray , green , magenta , orange , pink ,
red , white , yellow.

* a list. The integer value associated to the three first
elements of the list are used to define the three red (
element 0 of the list), green (element 1 of the list) and
blue (element 2 of the list) components of the color.

* a map. The red , green , blue components take the value
associated to the keys "r", "g", "b" in the map.

* an integer <- the decimal integer is translated into a
hexadecimal <- OxRRGGBB. The red (resp. green , blue)
component of the color takes the value RR (resp. GG, BB)
translated in decimal.

* Since GAMA 1.6.1 , colors can be directly obtained like
units , by using the ˚ or # symbol followed by the name in
lowercase of one of the 147 CSS colors (see http://www.
cssportal.com/css3 -color -names /).

* ** Declaration :**� �
rgb cssRed <- #red; // Since 1.6.1 rgb testColor <- rgb(‘white’); // rgb [255,255,255]
rgb test <- rgb(3,5,67); // rgb [3,5,67] rgb te <- rgb(340); // rgb [0,1,84] rgb tete <-

v 1.8.2 539

GAMA v1.8.2 documentation Chapter 33. Types

rgb([“r”::34, “g”::56, “b”::345]); // rgb [34,56,255]� �
[Top of the page](#table -of-contents)

[//]: # (keyword|type_species)
species
* Definition: a generic datatype that represents a species
* **Built -in attributes :**

* topology (type=topology): the topology is which lives the
population of agents

* Comments: this datatype is actually a "meta -type". It allows
to manipulate (in a rather limited fashion , however) the

species themselves as any other values.
* Litteral declaration: the name of a declared species is

already a literal declaration of species.
* Other declarations: the species casting operator , or its

variant called species_of can be applied to an agent in
order to get its species.

[Top of the page](#table -of-contents)

Species names as types

Once a species has been declared in a model , it automatically
becomes a datatype. This means that:

* It can be used to declare variables , parameters or constants
,

* It can be used as an operand to commands or operators that
require species parameters ,

* It can be used as a casting operator (with the same
capabilities as the built -in type agent)

In the simple following example , we create a set of "humans"
and initialize a random "friendship network" among them.
See how the name of the species , human , is used in the
create command , as an argument to the list casting operator
, and as the type of the variable named friend.� �

v 1.8.2 540

GAMA v1.8.2 documentation Chapter 33. Types

global { init { create human number: 10; ask human { friend <- one_of (human -
self); } } } entities { species human { human friend <- nil; } }� �
[Top of the page](#table -of-contents)

[//]: # (keyword|type_topology)
topology

* ** Definition :** a topology is basically on neighborhoods ,
distance ,... structures in which agents evolves. It is the
environment or the context in which all these values are
computed. It also provides the access to the spatial index
shared by all the agents. And it maintains a (eventually
dynamic) link with the 'environment ' which is a geometrical
border.

* **Built -in attributes :**
* places(type = container): the collection of places (
geometry) defined by this topology.

* environment(type = geometry): the environment of this
topology (i.e. the geometry that defines its boundaries)

* ** Comments :** the attributes `places ` depends on the kind of
the considered topology. For continuous topologies , it is
a list with their environment. For discrete topologies , it
can be any of the container supporting the inclusion of

geometries (list , graph , map , matrix)
* ** Remark :** There exist various kinds of topology:

continuous topology and discrete topology (e.g. grid , graph
...)

* ** Declaration :** To create a topology , we can use the `
topology ` unary casting operator applied to:

* an agent: returns a continuous topology built from the
agent 's geometry

* a species name: returns the topology defined for this
species population

* a geometry: returns a continuous topology built on this
geometry

* a geometry container (list , map , shapefile): returns an
half -discrete (with corresponding places), half -continuous
topology (to compute distances ...)

* a geometry matrix (i.e. a grid): returns a grid topology

v 1.8.2 541

GAMA v1.8.2 documentation Chapter 33. Types

which computes specifically neighborhood and distances
* a geometry graph: returns a graph topology which computes
specifically neighborhood and distances

More complex topologies can also be built using dedicated
operators , e.g. to decompose a geometry ...

Defining custom types

Sometimes , besides the species of agents that compose the
model , it can be necessary to declare custom datatypes.
Species serve this purpose as well , and can be seen as "
classes" that can help to instantiate simple "objects". In
the following example , we declare a new kind of "object",
bottle , that lacks the skills habitually associated with
agents (moving , visible , etc.), but can nevertheless group
together attributes and behaviors within the same closure.
The following example demonstrates how to create the
species:� �

species bottle { float volume <- 0.0 max:1 min:0.0; bool is_empty -> {volume =
0.0}; action fill { volume <- 1.0; } }� �
How to use this species to create new bottles:� �
create bottle { volume <- 0.5; }� �
And how to use bottles as any other agent in a species (a

drinker owns a bottle; when he gets thirsty , it drinks a
random quantity from it; when it is empty , it refills it):� �

species drinker { . . . bottle my_bottle<- nil; float quantity <- rnd (100) / 100; bool
thirsty <- false update: flip (0.1); . . . action drink { if condition: ! bottle.is_empty {
bottle.volume <-bottle.volume - quantity; thirsty <- false; } } . . . init { create bottle
return: created_bottle; volume <- 0.5; } my_bottle <- first(created_bottle); } . . .
reflex filling_bottle when: bottle.is_empty { ask my_bottle { do fill; } } . . . reflex
drinking when: thirsty { do drink; } }

v 1.8.2 542

GAMA v1.8.2 documentation Chapter 33. Types

� �

[//]: # (startConcept|load_complex_datas)
File Types

GAMA provides modelers with a generic type for files called **
file **. It is possible to load a file using the _file_
operator:� �

file my_file <- file(“../includes/data.csv”);� �
However , internally , GAMA makes the difference between the

different types of files.
Indeed , for instance:� �
global { init { file my_file <- file(“../includes/data.csv”); loop el over: my_file {
write el; } } }� �
will give:� �
sepallength sepalwidth petallength petalwidth type 5.1 3.5 1.4 0.2 Iris-setosa 4.9 3.0
1.4 0.2 Iris-setosa . . .� �
Indeed , the content of CSV file is a matrix: each row of the

matrix is a line of the file; each column of the matrix is
value delimited by the separator (by default ",").

In contrary:� �
global { init { file my_file <- file(“../includes/data.shp”); loop el over: my_file {
write el; } } }� �
will give:� �
Polygon Polygon Polygon Polygon Polygon Polygon Polygon� �
The content of a shapefile is a list of geometries

corresponding to the objects of the shapefile.

v 1.8.2 543

GAMA v1.8.2 documentation Chapter 33. Types

In order to know how to load a file , GAMA analyzes its
extension. For instance for a file with a ".csv" extension ,
GAMA knows that the file is a **csv** one and will try to

split each line with the _,_ separator. However , if the
modeler wants to split each line with a different separator
(for instance **;**) or load it as a text file , he/she

will have to use a specific file operator.

Indeed , GAMA integrates specific operators corresponding to
different types of files.

Table of contents

* [File Types](#file -types)
* [Text File](#text -file)

* [Extensions](# extensions)
* [Content](# content)
* [Operators](# operators)

* [CSV File](#csv -file)
* [Extensions](# extensions)
* [Content](# content)
* [Operators](# operators)

* [Shapefile](# shapefile)
* [Extensions](# extensions)
* [Content](# content)
* [Operators](# operators)

* [OSM File](#osm -file)
* [Extensions](# extensions)
* [Content](# content)
* [Operators](# operators)

* [Grid File](#grid -file)
* [Extensions](# extensions)
* [Content](# content)
* [Operators](# operators)

* [Image File](#image -file)
* [Extensions](# extensions)
* [Content](# content)
* [Operators](# operators)

* [SVG File](#svg -file)

v 1.8.2 544

GAMA v1.8.2 documentation Chapter 33. Types

* [Extensions](# extensions)
* [Content](# content)
* [Operators](# operators)

* [Property File](# property -file)
* [Extensions](# extensions)
* [Content](# content)
* [Operators](# operators)

* [R File](#r-file)
* [Extensions](# extensions)
* [Content](# content)
* [Operators](# operators)

* [3DS File](#3ds-file)
* [Extensions](# extensions)
* [Content](# content)
* [Operators](# operators)

* [OBJ File](#obj -file)
* [Extensions](# extensions)
* [Content](# content)
* [Operators](# operators)

Text File
Extensions
Here the list of possible extensions for text file:

* "txt"
* "data"
* "csv"
* "text"
* "tsv"
* "xml"

Note that when trying to define the type of a file with the
default file loading operator (** file **), GAMA will first
try to test the other type of file. For example , for files
with ".csv" extension , GAMA will cast them as csv file and
not as text file.

Content

v 1.8.2 545

GAMA v1.8.2 documentation Chapter 33. Types

The content of a text file is a list of string corresponding
to each line of the text file.

For example:� �
global { init { file my_file <- text_file(“../includes/data.txt”); loop el over: my_file
{ write el; } } }� �
will give:� �
sepallength,sepalwidth,petallength,petalwidth,type 5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa� �
Operators
List of operators related to text files:

* **text_file(string path)**: load a file (with an
authorized extension) as a text file.

* **text_file(string path , list content)**: load a file (
with an authorized extension) as a text file and fill it
with the given content.

* **is_text(op)**: tests whether the operand is a text file

CSV File
Extensions
Here the list of possible extensions for csv file:

* "csv"
* "tsv"

Content
The content of a csv file is a matrix of objects: each row of

the matrix is a line of the file; each column of the matrix
is values delimited by the separator. By default , the

delimiter is the "," and the datatype depends on the
dataset.

For example:� �
v 1.8.2 546

GAMA v1.8.2 documentation Chapter 33. Types

global { init { file my_file <- csv_file(“../includes/data.csv”); loop el over: my_file {
write el; } } }� �
will give:� �
sepallength sepalwidth petallength petalwidth type 5.1 3.5 1.4 0.2 Iris-setosa 4.9 3.0
1.4 0.2 Iris-setosa . . .� �
To manipulate easily the data , we can consider the `contents `

of the data file , that is a matrix.
As an example , we can access the number of lines and columns

of a data file named `my_file ` with `my_file.contents.
dimension `.

Operators
There are many operators available to load a csv_file.

* **csv_file(string path)**: load a file (with an
authorized extension) as a csv file with default separator
(","), and no assumption on the type of data.

* ** csv_file(string path ,bool header)"**: load a file as a
CSV file with the default separator (coma), with specifying
if the model has a header or not (boolean), and no

assumption on the type of data.
* **csv_file(string path , string separator)**: load a file
(with an authorized extension) as a csv file with the given
separator , without making any assumption on the type of

data. Headers should be detected automatically if they
exist.� �

file my_file <- csv_file(“../includes/data.csv”, “;”);� �
* **csv_file(string path , string separator , bool header)**:

load a file (with an authorized extension) as a csv file ,
specifying (1) the separator used; (2) if the model has a
header or not , without making any assumption on the type of
data.

* **csv_file(string path , string separator , string
text_qualifier , bool header)**: load a file as a csv file
specifying (1) the separator used; (2) the text qualifier
used; (3) if the model has a header or not , without making
any assumption on the type of data",

v 1.8.2 547

GAMA v1.8.2 documentation Chapter 33. Types

* **csv_file(string path , string separator , type datatype)
**: load a file as a csv file specifying a given separator ,
no header , and the type of data. No text qualifier will be
used.� �

file my_file <- csv_file(“../includes/data.csv”, “;”, int);� �
* **csv_file(string path , string separator , string
text_qualifier , type datatype)**: load a file as a csv file
specifying the separator , text qualifier to use , and the

type of data to read. Headers should be detected
automatically if they exist.

* **csv_file(string path , string separator , type datatype ,
bool header)**: load a file as a csv file specifying the
given separator , the type of data , with specifying if the
model has a header or not (boolean). No text qualifier will
be used".

* **csv_file(string path , string separator , type datatype ,
bool header , point dimensions)**: load a file as a csv file
specifying a given separator , the type of data , with

specifying the number of cols and rows taken into account.
No text qualifier will be used.

* **csv_file(string path , matrix content)**: This file
constructor allows to store a matrix in a CSV file (it does
not save it - just store it in memory)

Finally , it is possible to check whether a file is a csv file:
* **is_csv(op)**: tests whether the operand is a csv file

Shapefile
Shapefiles are classical GIS data files. A shapefile is not

simple file , but a set of several files (source: wikipedia)
:

* Mandatory files :
* .shp - shape format; the feature geometry itself
* .shx - shape index format; a positional index of the

feature geometry to allow seeking forwards and backwards
quickly

v 1.8.2 548

GAMA v1.8.2 documentation Chapter 33. Types

* .dbf - attribute format; columnar attributes for each
shape , in dBase IV format

* Optional files :
* .prj - projection format; the coordinate system and

projection information , a plain text file describing the
projection using well -known text format
* .sbn and .sbx - a spatial index of the features
* .fbn and .fbx - a spatial index of the features for

shapefiles that are read -only
* .ain and .aih - an attribute index of the active fields

in a table
* .ixs - a geocoding index for read -write shapefiles
* .mxs - a geocoding index for read -write shapefiles (ODB

format)
* .atx - an attribute index for the .dbf file in the form

of shapefile.columnname.atx (ArcGIS 8 and later)
* .shp.xml - geospatial metadata in XML format , such as

ISO 19115 or other XML schema
* .cpg - used to specify the code page (only for .dbf) for
identifying the character encoding to be used

More details about shapefiles can be found [here](http ://en.
wikipedia.org/wiki/Shapefile).

Extensions
Here the list of possible extension for shapefile:

* "shp"

Content
The content of a shapefile is a list of geometries

corresponding to the objects of the shapefile.
For example:� �
global { init { file my_file <- shape_file(“../includes/data.shp”); loop el over: my_file
{ write el; } } }� �
will give:� �
Polygon Polygon Polygon Polygon Polygon Polygon Polygon . . .� �
v 1.8.2 549

GAMA v1.8.2 documentation Chapter 33. Types

Note that the attributes of each object of the shapefile are
stored in their corresponding GAMA geometry. The operator "
get" (or "read") allows to get the value of corresponding
attributes.

For example:� �
file my_file <- shape_file(“../includes/data.shp”); write “my_file:” + my_-
file.contents; loop el over: my_file { write (el get “TYPE”); }� �
Operators
List of operators related to shapefiles:

* **shape_file(string path)**: load a file (with an
authorized extension) as a shapefile with default
projection (if a prj file is defined , use it, otherwise use
the default projection defined in the preference).

* **shape_file(string path , string code)**: load a file (
with an authorized extension) as a shapefile with the given
projection (GAMA will automatically decode the code. For a
list of the possible projections see: http://

spatialreference.org/ref/)
* **shape_file(string path , int EPSG_ID)**: load a file (
with an authorized extension) as a shapefile with the given
projection (GAMA will automatically decode the epsg code.

For a list of the possible projections see: http://
spatialreference.org/ref/)� �

file my_file <- shape_file(“../includes/data.shp”, “EPSG:32601”);� �
* **shape_file(string path , list content)**: load a file (
with an authorized extension) as a shapefile and fill it
with the given content.

* **is_shape(op)**: tests whether the operand is a
shapefile

OSM File
OSM (Open Street Map) is a collaborative project to create a

free editable map of the world. The data produced in this

v 1.8.2 550

GAMA v1.8.2 documentation Chapter 33. Types

project (OSM File) represent physical features on the
ground (e.g., roads or buildings) using tags attached to
its basic data structures (its nodes , ways , and relations).
Each tag describes a geographic attribute of the feature

being shown by that specific node , way or relation (source:
openstreetmap.org).

More details about OSM data can be found [here](http://wiki.
openstreetmap.org/wiki/Map_Features).

Extensions
Here the list of possible extension for shapefile:

* "osm"
* "pbf"
* "bz2"
* "gz"

Content
The content of an OSM data is a list of geometries

corresponding to the objects of the OSM file.
For example:� �
global { init { file my_file <- osm_file(“../includes/data.gz”); loop el over: my_file {
write el; } } }� �
will give:� �
Point Point Point Point Point LineString LineString Polygon Polygon Polygon . . .� �
Note that like for shapefiles , the attributes of each object

of the osm file is stored in their corresponding GAMA
geometry. The operator "get" (or "read") allows to get the
value of corresponding attributes.

Operators
List of operators related to osm file:

* **osm_file(string path)**: load a file (with an
authorized extension) as an osm file with default

v 1.8.2 551

GAMA v1.8.2 documentation Chapter 33. Types

projection (if a prj file is defined , use it, otherwise use
the default projection defined in the preference). In this
case , all the nodes and ways of the OSM file will become a
geometry.

* **osm_file(string path , string code)**: load a file (with
an authorized extension) as an osm file with the given

projection (GAMA will automatically decode the code. For a
list of the possible projections see: http://
spatialreference.org/ref/). In this case , all the nodes and
ways of the OSM file will become a geometry.

* **osm_file(string path , int EPSG_ID)**: load a file (
with an authorized extension) as an osm file with the given
projection (GAMA will automatically decode the epsg code.

For a list of the possible projections see: http://
spatialreference.org/ref/). In this case , all the nodes and
ways of the OSM file will become a geometry.� �

file my_file <- osm_file(“../includes/data.gz”, “EPSG:32601”);� �
* **osm_file(string path , map filter)**: load a file (with
an authorized extension) as an osm file with default
projection (if a prj file is defined , use it, otherwise use
the default projection defined in the preference). In this
case , only the elements with the defined values are loaded
from the file.� �

//map used to filter the object to build from the OSM file according to attributes.
map filtering <- map([“highway”::[“primary”, “secondary”, “tertiary”, “motorway”,
“living_street”,“residential”, “unclassified”], “building”::[“yes”]]);
//OSM file to load file osmfile <- file<geometry (osm_file(“../includes/rouen.gz”,
filtering)) ;� �

* **osm_file(string path , map filter , string code)**: load
a file (with an authorized extension) as a osm file with
the given projection (GAMA will automatically decode the
code. For a list of the possible projections see: http://
spatialreference.org/ref/). In this case , only the elements
with the defined values are loaded from the file.

* **osm_file(string path , map filter , int EPSG_ID)**: load
a file (with an authorized extension) as a osm file with

the given projection (GAMA will automatically decode the

v 1.8.2 552

GAMA v1.8.2 documentation Chapter 33. Types

epsg code. For a list of the possible projections see: http
:// spatialreference.org/ref/). In this case , only the
elements with the defined values are loaded from the file.

* **is_osm(op)**: tests whether the operand is a osm file

Grid File
Esri ASCII Grid files are classic text raster GIS data.

More details about Esri ASCII grid file can be found [here](
http://en.wikipedia.org/wiki/Esri_grid).

Note that grid files can be used to initialize a grid species.
The number of rows and columns will be read from the file.
Similarly , the values of each cell contained in the grid

file will be accessible through the **grid_value **
attribute.� �

grid cell file: grid_file { }� �
Extensions
Here the list of possible extension for grid file:

* "asc"

Content
The content of a grid file is a list of geometries

corresponding to the cells of the grid.
For example:� �
global { init { file my_file <- grid_file(“../includes/data.asc”); loop el over: my_file
{ write el; } } }� �
will give:� �
Polygon Polygon Polygon Polygon Polygon Polygon Polygon . . .� �
Note that the values of each cell of the grid file is stored

in their corresponding GAMA geometry (** grid_value **

v 1.8.2 553

GAMA v1.8.2 documentation Chapter 33. Types

attribute). The operator "get" (or "read") allows to get
the value of this attribute.

For example:� �
file my_file <- grid_file(“../includes/data.asc”); write “my_file:” + my_file.contents;
loop el over: my_file { write el get “grid_value”; }� �
Operators
List of operators related to shapefiles:

* **grid_file(string path)**: load a file (with an
authorized extension) as a grid file with default
projection (if a prj file is defined , use it, otherwise use
the default projection defined in the preference).

* **grid_file(string path , string code)**: load a file (
with an authorized extension) as a grid file with the given
projection (GAMA will automatically decode the code. For a
list of the possible projections see: http://

spatialreference.org/ref/)
* **grid_file(string path , int EPSG_ID)**: load a file (
with an authorized extension) as a grid file with the given
projection (GAMA will automatically decode the epsg code.

For a list of the possible projections see: http://
spatialreference.org/ref/)� �

file my_file <- grid_file(“../includes/data.shp”, “EPSG:32601”);� �
* **is_grid(op)**: tests whether the operand is a grid file
.

Image File
Extensions
Here the list of possible extensions for image file:

* "tif"
* "tiff"

v 1.8.2 554

GAMA v1.8.2 documentation Chapter 33. Types

* "jpg"
* "jpeg"
* "png"
* "gif"
* "pict"
* "bmp"

Content
The content of an image file is a matrix of int: each pixel is

a value in the matrix.

For example:� �
global { init { file my_file <- image_file(“../includes/DEM.png”); loop el over:
my_file { write el; } } }� �
will give:� �
-9671572 -9671572 -9671572 -9671572 -9934744 -9934744 -9868951 -9868951 -10000537
-10000537 . . .� �
Operators
List of operators related to csv files:

* **image_file(string path)**: load a file (with an
authorized extension) as an image file.

* **image_file(string path , matrix content)**: load a file
(with an authorized extension) as an image file and fill it
with the given content.

* **is_image(op)**: tests whether the operand is an image
file

SVG File

Scalable Vector Graphics (SVG) is an XML -based vector image
format for two -dimensional graphics with support for
interactivity and animation. Note that interactivity and
animation features are not supported in GAMA.

v 1.8.2 555

GAMA v1.8.2 documentation Chapter 33. Types

More details about SVG file can be found [here](http://en.
wikipedia.org/wiki/Scalable_Vector_Graphics).

Extensions
Here the list of possible extension for SVG file:

* "svg"

Content
The content of a SVG file is a list of geometries.
For example:� �
global { init { file my_file <- svg_file(“../includes/data.svg”); loop el over: my_file {
write el; } } }� �
will give:� �
Polygon� �
Operators
List of operators related to svg files:

* **shape_file(string path)**: load a file (with an
authorized extension) as a SVG file.

* **shape_file(string path , point size)**: load a file (
with an authorized extension) as a SVG file with the given
size:� �

file my_file <- svg_file(“../includes/data.svg”, {5.0,5.0});� �
* **is_svg(op)**: tests whether the operand is a SVG file

Property File
Extensions
Here the list of possible extensions for property file:

* "properties"

Content

v 1.8.2 556

GAMA v1.8.2 documentation Chapter 33. Types

The content of a property file is a map of string
corresponding to the content of the file.

For example:� �
global { init { file my_file <- property_file(“../includes/data.properties”); loop el
over: my_file { write el; } } }� �
with the given property file:� �
sepallength = 5.0 sepalwidth = 3.0 petallength = 4.0 petalwidth = 2.5 type =
Iris-setosa� �
will give:� �
3.0 4.0 5.0 Iris-setosa 2.5� �
Operators
List of operators related to text files:

* ** property_file(string path)**: load a file (with an
authorized extension) as a property file.

* **is_property(op)**: tests whether the operand is a
property file

R File
R is a free software environment for statistical computing and

graphics. GAMA allows to execute R script (if R is
installed on the computer).

More details about R can be found [here](http://www.r-project.
org/).

Note that GAMA also integrates some operators to manage R
scripts:

* [R_compute](Operators#R_compute)
* [R_compute_param](Operators#R_compute_param)

Extensions
Here the list of possible extensions for R file:

v 1.8.2 557

GAMA v1.8.2 documentation Chapter 33. Types

* "r"

Content
The content of a R file corresponds to the results of the

application of the script contained in the file.

For example:� �
global { init { file my_file <- R_file(“../includes/data.r”); loop el over: my_file {
write el; } } }� �
will give:� �
3.0� �
Operators
List of operators related to R files:

* **R_file(string path)**: load a file (with an authorized
extension) as a R file.

* **is_R(op)**: tests whether the operand is a R file.

3DS File

3DS is one of the file formats used by the Autodesk 3ds Max 3D
modeling , animation and rendering software. 3DS files can

be used in GAMA to load 3D geometries.

More details about 3DS file can be found [here](http://en.
wikipedia.org/wiki /.3ds).

Extensions
Here the list of possible extension for 3DS file:

* "3ds"
* "max"

Content
The content of a 3DS file is a list of geometries.
For example:� �
v 1.8.2 558

GAMA v1.8.2 documentation Chapter 33. Types

global { init { file my_file <- threeds_file(“../includes/data.3ds”); loop el over:
my_file { write el; } } }� �
will give:� �
Polygon� �
Operators
List of operators related to 3ds files:

* ** threeds_file(string path)**: load a file (with an
authorized extension) as a 3ds file.

* **is_threeds(op)**: tests whether the operand is a 3DS
file

OBJ File
OBJ file is a geometry definition file format first developed

by Wavefront Technologies for its Advanced Visualizer
animation package. The file format is open and has been
adopted by other 3D graphics application vendors.

More details about Obj file can be found [here](http://en.
wikipedia.org/wiki/Wavefront_.obj_file).

Extensions
Here the list of possible extension for OBJ files:

* "obj"

Content
The content of a OBJ file is a list of geometries.
For example:� �
global { init { file my_file <- obj_file(“../includes/data.obj”); loop el over: my_file {
write el; } } }� �
will give:� �
Polygon

v 1.8.2 559

GAMA v1.8.2 documentation Chapter 33. Types

� �
Operators
List of operators related to obj files:

* **obj_file(string path)**: load a file (with an
authorized extension) as a obj file.

* **is_obj(op)**: tests whether the operand is a OBJ file

[//]: # (endConcept|load_complex_datas)

Expressions

Expressions in GAML are the value part of the [statements](
Statements)' facets. They represent or compute data that
will be used as the value of the facet when the statement
will be executed.

An expression can be either a [literal](Literals), a [unit](
UnitsAndConstants), a [constant](UnitsAndConstants), a [
variable](PseudoVariables), an [attribute](
VariablesAndAttributes) or the application of one or
several [operators](Operators) to compose a complex
expression.

\part{Tutorials}

Tutorials

We propose some tutorials that are designed to allow modelers
to become progressively autonomous with the GAMA platform.
These tutorials cover different aspects of GAMA (Grid

v 1.8.2 560

GAMA v1.8.2 documentation Chapter 33. Types

environment , GIS integration , 3D, multi -level modeling ,
equation -based models ...). It is a good idea to keep a copy
of the [reference of the GAML language](GamlReference)

around when undertaking one of these tutorials.

* Predator Prey
* Road Traffic
* 3D Tutorial
* Luneray 's flu
* Incremental Model
* BDI architecture

[Predator Prey tutorial](PredatorPrey)

![resources/images/tutorials/predator_prey.png](resources/
images/tutorials/predator_prey.png)

This tutorial introduces the basic concepts of GAMA and the
use of grids. It is based on the classic predator prey
model (see for instance a formal definition [here](http://
www.scholarpedia.org/article/Agent_based_modeling)). It is
particularly adapted to beginners that want to quickly
learn how to build a simple model in GAMA.

[Road Traffic](RoadTrafficModel)

![resources/images/tutorials/road_traffic.png](resources/
images/tutorials/road_traffic.png)

This tutorial introduces the use of GIS data. It is based on a
mobility and daily activity model. It is particularly

adapted to modelers that want to quickly learn how to
integrate GIS data in their model and to use a road
shapefile for the movement of their agents.

[3D Tutorial](ThreeD)

v 1.8.2 561

GAMA v1.8.2 documentation Chapter 33. Types

This tutorial introduces the use of 3D in GAMA. In particular ,
it offers a quick overview of the 3D capabilities of the

platform and how to integrate 3D features in models.

[Luneray 's flu tutorial](LuneraysFlu)

![resources/images/tutorials/Luneray.jpg](resources/images/
tutorials/Luneray.jpg)

This tutorial dedicated to beginners introduces the basic
concepts of GAMA and proposes a brief overview of many
features. It concerns a model of disease spreading in the
small city of Luneray. In particular , it presents how to
integrate GIS data and use GIS , to use a road shapefile for
the movement of agents , and to define a 3D display.

[Incremental Model](IncrementalModel)

![resources/images/tutorials/incremental_model.jpg](resources/
images/tutorials/incremental_model.jpg)

This tutorial proposes is an advance version of the Luneray 's
tutorial. It concerns a model of disease spreading in a
small city. In particular , it presents how to integrate GIS
data and use GIS , to use a road shapefile for the movement
of agents , to define a 3D display , to define a multi -level
model and use differential equations.

[BDI Architecture](BDIAgents)

This tutorial introduces the use of the BDI architecture (
named BEN provided with the GAMA platform. It is
particularly adapted for advanced users who want to
integrate reasoning capabilities in theirs agents , taking
into account their emotions and social relationships.

v 1.8.2 562

GAMA v1.8.2 documentation Chapter 33. Types

Some pedagogical materials

Initiation to algorithms with Scratch
A set of exercises for your first step to algorithms using the

graphical tool Scratch: [PDF](resources/other/
PedagogicalMaterial/InitiationtoAlgorithmicswithScratch.pdf
).

Memo GAML
A summary of the organization of a GAML model , its main parts ,

and the main keywords , statements: [PDF](resources/other/
PedagogicalMaterial /1.8.2/ MementoAlgoGAMLv1 .8.2. pdf).

Class materials
This is a set of slides used to introduce GAMA in a practical

way to master students in Computer Science. (Only PDF files
are provided as the sources can be very heavy. Do not

hesitate to ask them if needed).

1. [Introduction to Agent -Based Modeling and simulation](
resources/other/PedagogicalMaterial/Courses/1- Intro_ABMS.
pdf)

2. [Introduction to the GAMA Platform](resources/other/
PedagogicalMaterial/Courses/2- Intro_GAMA.pdf)

3. [A modeling process cycle](resources/other/
PedagogicalMaterial/Courses/3- Modeling_process.pdf)

4. [First steps in GAMA with the Schelling model](resources/
other/PedagogicalMaterial/Courses/4- Schelling_model.pdf)
* **A correction :** [gama project](resources/other/

PedagogicalMaterial/Courses/Models/Course -Exercice -
Schelling.zip)

5. [Introduction of grids in GAMA models with the ChouChevLoup
model](resources/other/PedagogicalMaterial/Courses/5-

ChouchevLoup.pdf)
* **Data file :** [Environment asc file](resources/other/

PedagogicalMaterial/Courses/Data/hab10.asc)
6. [Introduction of GIS data in GAMA models , using a traffic

model](resources/other/PedagogicalMaterial/Courses/6-
Traffic_model.pdf)

v 1.8.2 563

GAMA v1.8.2 documentation Chapter 33. Types

* **Data files :** [Environment files](resources/other/
PedagogicalMaterial/Courses/Data/DataTraffic.zip)
* **A correction :** [gama project](resources/other/

PedagogicalMaterial/Courses/Models/Course -Exercice -Traffic.
zip)

7. [Application exercise: Evacuation of the Phuc Xa district
of Hanoi](resources/other/PedagogicalMaterial/Courses/7-
Exercice_model -Evacuation_of_Phuc_Xa.pdf)
* **Data files :** [Environment files](resources/other/

PedagogicalMaterial/Courses/Data/DataPhucXa.zip)

First Exercices (*)
A set of exercises going from the building of simple models (

opinion diffusion) to training exercises about specific
modeling aspects (iterators on containers , scheduling ...)

* ** Keywords :** grid , displays , plot , containers , iterators ,
scheduling.

* ** Subject :** [PDF](resources/other/PedagogicalMaterial
/1.8.2/ PedagogicalMaterials -Exercices -GAMAv1 .8.2. pdf)

* **A correction :** [gaml files](c)

Exercice (*): Firefly synchronization
From UML diagram , implement a GAMA model simulating the

synchronization of fireflies.

* ** Keywords :** grid , displays , plot , synchronization.
* ** Subject :** [PDF](resources/other/PedagogicalMaterial

/1.8.2/ Exercice -FireFly/Fireflies -Subject.pdf)
* **A correction :** [gaml file](resources/other/

PedagogicalMaterial /1.8.2/ Exercice -FireFly/luciole_on_grid.
gaml)

Exercice (*): Firefighter model
Implement the model given in the model description file. The

guide file helps you to separate the implementation of the
structure of the model , its initialization , its dynamics ,
and ways to visualize it.

* ** Keywords :** grid , inheritance , displays , plot , 3D.

v 1.8.2 564

GAMA v1.8.2 documentation Chapter 33. Types

* **Model description **: [PDF](resources/other/
PedagogicalMaterial /1.8.2/ Exercice -Firefighter/Firefighter -
Model -description.pdf)

* **Guide :** [PDF](resources/other/PedagogicalMaterial /1.8.2/
Exercice -Firefighter/Firefighter -Guide.pdf)

* **A correction :** [gaml file](resources/other/
PedagogicalMaterial /1.8.2/ Exercice -Firefighter/Exercice -
Firefighters.zip)

Exercice (**): Wolves , Goats , Cabbages model
Implement an extended version of the Prey -Predator model. It

allows you to manipulate grids and inheritance.

* ** Keywords :** grid , inheritance , displays , plot , prey -
predator model.

* ** Detailed model description :** [PDF](resources/other/
PedagogicalMaterial /1.8.2/ Exercice -ChouChevLoup/
ChouchevLoup -DetailledDescription.pdf)

* **Data file :** [Environment asc file](resources/other/
PedagogicalMaterial /1.8.2/ Exercice -ChouChevLoup/hab10.asc)

* **A correction :** [gaml file](resources/other/
PedagogicalMaterial /1.8.2/ Exercice -ChouChevLoup/Exercice -
ChouChevLoup.zip)

Exercice (**): Schelling model
Implement the segregation Schelling model on an environment (

either a grid or a shafile).

* ** Keywords :** grid , GIS data , displays , plot , Graphical
modeling , Schelling model.

* ** Subject :** [PDF](resources/other/PedagogicalMaterial
/1.8.2/ Exercice -Schelling/MISSABMS_2014 -Schelling.pdf)

* **Data file :** [Environment files](resources/other/
PedagogicalMaterial /1.8.2/ Exercice -Schelling/buildings.zip)

* **A correction :** [gaml file](resources/other/
PedagogicalMaterial /1.8.2/ Exercice -Schelling/Exercice -
Schelling.zip)

Exercice (**): Traffic model

v 1.8.2 565

GAMA v1.8.2 documentation Chapter 33. Types

* ** Keywords :** GIS data , graph , skills , moving skill ,
displays , plot , mobility model.

* ** Subject :** [PDF](resources/other/PedagogicalMaterial
/1.8.2/ Exercice -Traffic/MISSABMS2014 -Traffic.pdf)

* **Data file :** [Environment files](resources/other/
PedagogicalMaterial /1.8.2/ Exercice -Traffic/Datafiles.zip)

* **A correction :** [gaml file](resources/other/
PedagogicalMaterial /1.8.2/ Exercice -Traffic/Exercice -Traffic
.zip)

Exercice (***): Shortest path on a grid by distance
diffusion

An algorithm -oriented exercise to compute shortest paths on a
grid.

* ** Keywords :** grid , move , displays , diffusion model ,
algorithm.

* ** Subject :** [PDF](resources/other/PedagogicalMaterial
/1.8.2/ Exercice -ShortestPathDiffusion/
Shortest_Path_on_Grid_by_diffusion.pdf)

* **A model :** [gaml file](resources/other/PedagogicalMaterial
/1.8.2/ Exercice -ShortestPathDiffusion/Exercice -
ShortestPathDiffusion.zip)

Predator Prey

This tutorial presents the structure of a GAMA model as well
as the use of a grid topology. In particular , this tutorial
shows how to define a basic model , to define "grid agents"
which are able to move within the constraints. It also

introduces the displays and agents ' aspect.

All the files related to this tutorial (images and models) are
available in the Models Library (project Tutorials/

Predator Prey).

v 1.8.2 566

GAMA v1.8.2 documentation Chapter 33. Types

Content

Model Overview
In this model , three types of entities are considered: preys ,

predators and vegetation cells. Preys
eat grass on the vegetation cells and predators eat preys. At

each simulation step , grass grows on the vegetation cells.
Concerning the predators and preys , at each simulation step
, they move (to a neighbor cell), eat , die if they do not
have enough energy , and eventually reproduce.

![Tutorial models Predator -Prey .](resources/images/tutorials/
predator_prey.png)

Step List

This tutorial is composed of 12 incremental steps
corresponding to 12 models. For each step , we present its
purpose , an explicit formulation and the corresponding GAML
code of the model.

1. [Basic model (prey agents)](PredatorPrey_step1)
1. [Dynamic of the vegetation (grid)](PredatorPrey_step2)
1. [Behavior of the prey agent](PredatorPrey_step3)
1. [Use of Inspectors/monitors](PredatorPrey_step4)
1. [Predator agents (parent species)](PredatorPrey_step5)
1. [Breeding of prey and predator agents](PredatorPrey_step6)
1. [Agent display (aspect)](PredatorPrey_step7)
1. [Complex behaviors for the preys and predators](

PredatorPrey_step8)
1. [Adding of a stopping condition](PredatorPrey_step9)
1. [Definition of charts](PredatorPrey_step10)
1. [Writing files](PredatorPrey_step11)
1. [Image loading (raster data)](PredatorPrey_step12)
1. [Exploration of the model](PredatorPrey_step13)

Road Traffic

v 1.8.2 567

GAMA v1.8.2 documentation Chapter 33. Types

This tutorial has for goal to present the use of GIS data and
complex geometries. In particular , this tutorial shows how
to load gis data , to agentify them and to use a network of
polylines to constraint the movement of agents. All the
files related to this tutorial (shapefiles and models) are
available in the Library models (`Tutorials `, `Road Traffic
`).

If you are not familiar with agent -based models or GAMA , we
advise you to have a look at the [prey -predator](
PredatorPrey) model first.

Model Overview

The model built in this tutorial concerns the study of road
traffic in a small city. Two layers of GIS data are used: a
road layer (polylines) and a building layer (polygons).

The building GIS data contain an attribute: the 'NATURE ' of
each building: a building can be either 'Residential ' or '

Industrial '. In this model , people agents are moving along
the road network. Each morning , they are going to an
industrial building to work , and each night they are coming
back home. Each time a people agent takes a road , it wears
it out. More a road is worn out , more a people agent takes
time to go all over it. The town council is able to repair
some roads.

![Road traffic tutorial: a screenshot of the final state of
the model .](resources/images/tutorials/road_traffic.png)

Step List

This tutorial is composed of 7 steps corresponding to 7 models
. For each step , we present its purpose , an explicit
formulation , and the corresponding GAML code.

1. [Loading of GIS data (buildings and roads)](
RoadTrafficModel_step1)

v 1.8.2 568

GAMA v1.8.2 documentation Chapter 33. Types

1. [Definition of people agents](RoadTrafficModel_step2)
1. [Movement of the people agents](RoadTrafficModel_step3)
1. [Definition of weight for the road network](

RoadTrafficModel_step4)
1. [Dynamic update of the road network](RoadTrafficModel_step5

)
1. [Definition of a chart display](RoadTrafficModel_step6)
1. [Automatic repair of roads](RoadTrafficModel_step7)

3D Tutorial

This tutorial introduces the 3D features offered by GAMA.

Model Overview

[![Result of the 3D tutorial .](resources/images/tutorials /3
D_model_3.png)](http://www.youtube.com/watch?feature=
player_embedded&v=6 ZlBU6xTcfw)

Step List

This tutorial is composed of 3 steps corresponding to 3 models
. For each step , we present its purpose , an explicit
formulation , and the corresponding GAML code.

1. [Basic model](ThreeD_step1)
1. [Moving cells](ThreeD_step2)
1. [Moving cells with neighbors](ThreeD_step3)

Incremental Model

This tutorial has for goal to give an overview all most of the
capabilities of GAMA. In particular , it presents how to

build a simple model and the use of GIS data , graphs , 3D

v 1.8.2 569

GAMA v1.8.2 documentation Chapter 33. Types

visualization , multi -level modeling and differential
equations. All the files related to this tutorial (images
and models) are available in the Models Library (project
Tutorials/Incremental Model).

Model Overview

The model built in this tutorial aim at simulating the
spreading of a disease in a small city. Three type of
entities are taken into account: the people , the buildings
and the roads.

We made the following modeling choice:

* Simulation step: 1 minute.
* People are moving on the roads from building to building.
* People use the shortest path to move between buildings.
* All people have the same speed and move at a constant speed.
* Each time , people arrived at a building they are staying a

certain time.
* The staying time depends on the current hour (lower at 9h -

go to work - at 12h go to lunch - at 18h - go back home).
* Infected people are never cured.

![Final display of the tutorial: Incremental model .](resources
/images/tutorials/incremental_model.jpg)

Step List

This tutorial is composed of 7 steps corresponding to 7 models
. For each step , we present its purpose , an explicit
formulation , and the corresponding GAML code.

1. [Simple SI Model](IncrementalModel_step1)
1. [Charts](IncrementalModel_step2)
1. [Integration of GIS Data](IncrementalModel_step3)

v 1.8.2 570

GAMA v1.8.2 documentation Chapter 33. Types

1. [Movement on Graph](IncrementalModel_step4)
1. [Visualizing in 3D](IncrementalModel_step5)
1. [Multi -Level](IncrementalModel_step6)
1. [Differential Equations](IncrementalModel_step7)

Luneray 's flu

This tutorial has for goal to introduce how to build a model
with GAMA and to use GIS data and graphs. In particular ,
this tutorial shows how to write a simple GAMA model (the
structure of a model , the notion of species ...) load gis
data , to agentify them and to use a network of polylines to
constraint the movement of agents. All the files related

to this tutorial (shapefiles and models) are available [
here](resources/other/models/Luneray_flu.zip).

The importation of models is described [here](ImportingModels)
.

Model Overview
The model built in this tutorial concerns the flu spreading in

the city of Luneray (Normandie , France).

![Introduction to the Luneray 's flu tutorial models .](
resources/images/tutorials/Luneray.jpg)

Two layers of GIS data are used: a road layer (polylines) and
a building layer (polygons). In this model , people agents
are moving from building to building using the road network
. Each infected people can infect their neighbor people.

Some data collected concerning Luneray and the disease:

* Number of inhabitants: 2147 (source: wikipedia)
* Mean speed of the inhabitants (while moving on the road):

2-5 km/h

v 1.8.2 571

GAMA v1.8.2 documentation Chapter 33. Types

* The disease - non -lethal - is spreading (by air) from people
to people

* Time to cure the disease: more than 100 days
* Infection distance: 10 meters
* Infection probability (when two people are at infection

distance) : 0.05/ 5 minutes

From the data collected , we made some modeling choice:

* Simulation step: 5 minutes
* People are moving on the roads from building to building
* People use the shortest path to move between buildings
* All people move at a constant speed
* Each time , people arrived at a building they are staying a

certain time
* Infected people are never cured

Step List

This tutorial is composed of 5 steps corresponding to 5 models
. For each step , we present its purpose , an explicit
formulation , and the corresponding GAML code.

1. [Creation of a first basic disease spreading model](
LuneraysFlu_step1)

1. [Definition of monitors and chart outputs](
LuneraysFlu_step2)

1. [Importation of GIS data](LuneraysFlu_step3)
1. [Use of a graph to constraint the movements of people](

LuneraysFlu_step4)
1. [Definition of 3D displays](LuneraysFlu_step5)
1. [Exploration of the model](LuneraysFlu_step6)

BDI Agents

This tutorial aims at presenting the use of BDI agents in GAMA
. In particular , this tutorial shows how to define a BDI

v 1.8.2 572

GAMA v1.8.2 documentation Chapter 33. Types

agents , then to add social relation between BDI agents , to
add emotions and a personality to the agents and finally
social norms , obligations and enforcements. These notions
come from the BEN architecture , described in details in the
page [Using BEN architecture](Using -BEN -simple -bdi).

If you are not familiar with agent -based models or GAMA we
advise you to have a look at the [prey -predator](
PredatorPrey) model first.

Model Overview
The model built in this tutorial concerns gold miners that try

to find and sell gold nuggets. More precisely , we consider
that several gold mines containing a certain amount of

gold nuggets are located in the environment. In the same
way , a market where the miners can sell their gold nuggets
is located in the environment. The gold miners try to find
gold mines , to extract gold nuggets from them and to sell
the gold extracted nuggets at the market.

Step List

This tutorial is composed of 5 steps corresponding to 5 models
. For each step , we present its purpose , an explicit
formulation , and the corresponding GAML code.

1. [Creation of the basic model: gold mines and market](
BDIAgents_step1)

1. [Definition of the BDI miners](BDIAgents_step2)
1. [Definition of social relations between miners](

BDIAgents_step3)
1. [Use of emotions and personality for the miners](

BDIAgents_step4)
1. [Adding norms , obligations and enforcement](BDIAgents_step5

)

\part{Developing GAMA}

v 1.8.2 573

GAMA v1.8.2 documentation Chapter 33. Types

Get into the GAMA Java API

GAMA is written in Java and made of tens of Eclipse plugins
and projects , thousand of classes , methods and annotations.
This section of the wiki should help you have a general

idea on how to manipulate GAMA Java API and where to find
the proper classes and methods. A general introduction to
the [GAMA architecture](GamaArchitecture) gives a general
overview of the organization of Java packages and Eclipse
plugins , and should be read first. In the following sub -
sections we give a more practical introduction.

* 1. [Introduction to GAMA Java API](Introduction -To-Gama -
Java -API)
* 1. [Installing the GIT version](InstallingGitVersion)

* 2. [Developing Extensions](DevelopingExtensions)
* 2. [Create a release of Gama](CreatingAReleaseOfGama)
* 3. [Generation of the documentation](Documentation)

Introduction to GAMA Java API

This introduction to the Java API is dedicated to programmers
that want to participate in the java code of GAMA. The main
purpose is to describe the main packages and classes of

the API to makes it simple to find such crucial information
such as: how GAMA create containers , agent and geometries ,
how exceptions and log are managed , how java code maintain
Type safety , etc.

Table of content

[Concepts](# Concepts)

1. [Factories](# Factories)
2. [Spatial](# Spatial)
3. [Type](# Type)

v 1.8.2 574

GAMA v1.8.2 documentation Chapter 33. Types

4. [IScope](# IScope)
5. [Exception](# Exception)
6. [Debug](# Debug)
7. [Test](# Test)

[Packages](# Packages)

* 1.[Core](# Core)

Concepts

Factories

Container factories

GAMA provides 2 factories for containers: `GamaListFactory `
and `GamaMapFactory `. Each of them has `create ` methods to
create objects of type `IList ` and `IMap `. The types of
elements in the container can be specified at creation
using one of the elements defined in [`Types `](https://
github.com/gama -platform/gama/blob/master/msi.gama.core/src
/msi/gaml/types/Types.java).

Warning: the `create ` method is used to create the container ,
with elements of a given type , **but it also converts
elements added in this type **. To avoid conversion (not
recommended), use the method `createWithoutCasting `.

1. GamaListFactory : factory to create list of different type
(see [Java class](https:// github.com/gama -platform/gama/
blob/master/msi.gama.core/src/msi/gama/util/GamaListFactory
.java))

As an example:� �
IList distribution = GamaListFactory.create(Types.FLOAT);� �
To create `List ` object without specifying the type , use `

v 1.8.2 575

GAMA v1.8.2 documentation Chapter 33. Types

Types.NO_TYPE `:� �
IList result = GamaListFactory.create(Types.NO_TYPE);� �
or only:� �
IList result = GamaListFactory.create();� �
2. GamaMapFactory : factory to create map of different type (

see [Java class](https:// github.com/gama -platform/gama/blob
/master/msi.gama.core/src/msi/gama/util/GamaMapFactory.java
))

As an example:� �
final IMap<String, IList<?» ncdata = GamaMapFactory.create(Types.STRING,
Types.LIST);� �
To create `Map ` object without specifying the type , use `Types

.NO_TYPE `:� �
IMap<Object, Object> result = GamaMapFactory.create(Types.NO_TYPE,
Types.NO_TYPE);� �
or only:� �
IMap<Object, Object> result = GamaMapFactory.create();� �
If you want to use map or set , try to the best to rely on

collection that ensure order , so to avoid unconsistency in
container access. Try the most to avoid returning high
order hash based collection , e.g. Set or Map; in this case ,
rely on standard definition in Gama:

3. TOrderedHashMap : see [trove api](https:// bitbucket.org/
trove4j/trove/src/master/core/src/main/java/gnu/trove/map/)
.

4. TLinkedHashSet : see [trove api](https:// bitbucket.org/
trove4j/trove/src/master/core/src/main/java/gnu/trove/set/
hash/)

v 1.8.2 576

GAMA v1.8.2 documentation Chapter 33. Types

5. Stream : you can use java build -in streams but there is a
special version in Gama taken from [StreamEx](https://
github.com/amaembo/streamex) that should be preferred.� �

my_container.stream(my_scope)� �
If you want to get a stream back to a Gama container , you can

use the collector in Factories:� �
my_container.stream(my_scope).collect(GamaListFactory.toGamaList())� �
Geometry factory
Gama geometry is based on the well established Jstor geometric

library , while geographic aspect are handle using GeoTools
library

1. Spatial.Creation : provide several static method to
initialize geometries

2.

Spatial

The Spatial class provide several static access to the main
methods to create , query , manipulate and transform
geometries

Operators

Use as `Spatial.Operators ` follow by the operator , usually one
of Gaml language:

[union](OperatorsSZ#union), intersection , minus , and other
cross geometry operations

Queries

closest , distance , overlapping , and other relative spatial
relationship

Transpositions

v 1.8.2 577

GAMA v1.8.2 documentation Chapter 33. Types

enlarge , transpose , rotate , reduce and other specific
transposition (like triangulation , squarification , etc.)

Punctal

operations relative to points

Type

`IType `: The main class to manipulate GamaType (main
implementation of IType) is [Types](https:// github.com/gama
-platform/gama/blob/master/msi.gama.core/src/msi/gaml/types
/Types.java), that provides access to most common type
manipulated in Gama

Opérateur de cast:� �
Types.get(IType.class)� �
IScope interface

An object of type IScope represents the context of execution
of an agent (including experiments , simulations , and "
regular" agents). Everywhere it is accessible (either
passed as a parameter or available as an instance variable
in some objects), it provides an easy access to a number of
features: the current active agent , the shared random

number generator , the global clock , the current simulation
and experiment agents , the local variables declared in the
current block , etc.

It also allows modifying this context , like changing values of
local variables , adding new variables , although these

functions should be reserved to very specific usages.
Ordinarily , the scope is simply passed to core methods that
allow to evaluate expressions , cast values , and so on.

Use of an IScope

A variable `scope ` of type `IScope ` can be used to:
* get the current agent with: `scope.getAgentScope ()`� �

v 1.8.2 578

GAMA v1.8.2 documentation Chapter 33. Types

IAgent agent = scope.getAgentScope();� �
* evaluate an expression in the current scope:� �

String mes = Cast.asString(scope, message.value(scope));� �
* know whether the scope has been interrupted:� �

boolean b = scope.interrupted();� �
Exception

[Exceptions](https:// github.com/gama -platform/gama/tree/GAMA_1
.8.2/ msi.gama.core/src/msi/gama/runtime/exceptions) in GAMA

An exception that can appear in the GAMA platform can be run
using the `GamaRuntimeException ` class. This class allows
throwing an error (using `error(String ,IScope)` method) or
a warning (using `warning(String ,IScope)` method).

In particular , it can be useful to catch the Java Exception
and to throw a GAMA exception.� �

try { . . . } catch(Exception e) { throw GamaRuntimeException.error(“informative
message”, scope); }� �
Debug

Main class for debug is in ummisco.gama.dev.utils : [DEBUG](
https:// github.com/gama -platform/gama/tree/GAMA_1 .8.2/
ummisco.gama.annotations/src/ummisco/gama/dev/utils)

- To turn GAMA Git version to debug mode change variable of
the Debug class like: `GLOBAL_OFF = false `

- Turn on or off the debug for one class: `DEBUG.ON()` or `
DEBUG.OFF()`

- You can benchmark a method call using : `DEBUG.TIME("Title
to log", () -> methodToBenchmark (...))`

v 1.8.2 579

GAMA v1.8.2 documentation Chapter 33. Types

- You can use different built -in level to print: `DEBUG.ERR(
string s)` `DEBUG.LOG(string s)` `DEBUG.OUT(Object message)
`

Test

There are Gaml primitives and statement to define test:� �
test “Operator + (1)” { assert (circle(5) + 5).height with_precision 1 = 20.0; assert
(circle(5) + 5).location with_precision 9 = (circle(10)).location with_precision 9; }� �
Everything can be made using Java Annotation (translated to

Gaml test) :� �
examples = { @example (value=“. . . ”,equals=“. . . ”) } test = { “. . . ” } // don’t
forget to turn test arg of examples to false� �

Packages

Core

The main plugin of the GAMA Platform that defines the core
functionalities: most Gaml operators , statements , skills ,
types , etc.

Metamodel

`IAgent `, `IPopulation `, `IShape `, `ITopology `,

Ouputs

Util

1. Randomness in Gama: [msi.gama.util.random](https:// github.
com/gama -platform/gama/tree/GAMA_1 .8.2/ msi.gama.core/src/
msi/gama/util/random)

v 1.8.2 580

GAMA v1.8.2 documentation Chapter 33. Types

GamaRND is the main class that implements Random java class.
It has several implementations and is mainly used with
RandomUtils that define all the Gaml random operators

2. Graph in Gama:

3. File in Gama:

Operators
The packages where you can find all the operators defined in

the core of Gama

Developing Extensions

GAMA accepts _extensions_ to the GAML language , defined by
external programmers and dynamically loaded by the platform
each time it is run. Extensions can represent new built -in
species , types , file -types , skills , operators , statements ,
new control architectures or even types of displays. Other
internal structures of GAML will be progressively "opened"
to this mechanism in the future: display layers (hardwired
for the moment), new types of outputs (hardwired for the

moment), scheduling policies (hardwired for the moment),
random number generators (hardwired for the moment).

The extension mechanism relies on two complementary techniques
:

* the first one consists in defining the GAML extensions [in
a plug -in](DevelopingPlugins) (in the OSGI sense , see [

here](http://www.eclipse.org/equinox /)) that will be loaded
by GAMA at runtime and must "declare" that it is

contributing to the platform.
* the second one is to indicate to GAMA where to look for
extensions , using Java annotations that are gathered at
compile time (some being also used at runtime) and directly
compiled into GAML structures.

v 1.8.2 581

GAMA v1.8.2 documentation Chapter 33. Types

The following sections describe this extension process.

* 1. [Developing Plugins](DevelopingPlugins)
* 2. [Developing Skills](DevelopingSkills)
* 3. [Developing Statements](DevelopingStatements)
* 4. [Developing Operators](DevelopingOperators)
* 5. [Developing Types](DevelopingTypes)
* 6. [Developing Species](DevelopingSpecies)
* 7. [Developing Control Architectures](

DevelopingControlArchitectures)
* 8. [IScope](DevelopingIScope)
* 9. [Index of annotations](DevelopingIndexAnnotations)

Product your own release of GAMA

Install Maven if not already installed
Download the latest version of Maven here: <https:// maven.

apache.org/download.cgi >. Proceed to install it as
explained on this page: <https :// maven.apache.org/install.
html >

Locate the `build.sh` shell script
It is located at the root of the `gama ` Git repository on your

computer. The easiest way to proceed is to select one of
the GAMA projects in the Eclipse explorer and choose , in
the contextual menu , `Show in > System Explorer `. Then open
a shell with this path and `cd ..`. Alternatively , you can
open a shell and `cd` to your Git repository and then

inside `gama `.

Launch the script
Simply type `../ build.sh ` in your terminal and the build

should begin and log its activity.

Locate the applications built by the script
They are in `ummisco.gama.product/target/products/ummisco.gama

.application.product ` in their binary form or alternatively
in `ummisco.gama.product/target/products ` in their zipped

form.

v 1.8.2 582

GAMA v1.8.2 documentation Chapter 33. Types

Instruction for Travis build (Continuous Integration)
GAMA is built by Travis -ci.org. There are some triggers for

developers to control travis:

* "ci skip": skip the build for a commit
* "ci deploy": deploy the artifacts/features to p2 server (
currently to the ovh server of gama , www.gama -platform.org/
updates)

* "ci clean": used with ci deploy , this trigger remove all
old artifacts/features in server 's p2 repository

* "ci docs": tell travis to regenerate the documentation of
operators on wiki page , and update the website githubio

* "ci release": travis release zip package for OSs and place
it on https:// github.com/gama -platform/gama/releases/tag/

latest
* "ci ext": The msi.gama.ext has big size , so it is not
rebuilt every time , it will be compiled automatically only
when it was changed , Or use this command to force travis to
deploy msi.gama.ext

* "ci fullbuild": Full deploy all features/plugins

These instructions above can be used in 2 ways:

* Place them anywhere in the commit message , i.e: " fix bug
#1111 ci deploy ci clean ci docs", " update readme ci skip
"

* In Travis -ci, go to More Options -> Settings , add an
environment variable named MSG , add the value as string , i.
e.: "ci fullbuild ci deploy ci clean ci docs"

Generation of the documentation

Table of contents

* [Requirements](# requirements)
* [Configuration](# configuration)
* [Generated files location](# generated -files -location)

v 1.8.2 583

GAMA v1.8.2 documentation Chapter 33. Types

* [Workflow to generate wiki files](# workflow -to-generate -wiki
-files)

* [Workflow to generate PDF files](# workflow -to-generate -pdf -
files)

* [Workflow to generate unit tests](# workflow -to-generate -unit
-tests)

* [Main internal steps](#main -internal -steps)
* [Generate wiki files](# generate -wiki -files)
* [Generate pdf files](# generate -pdf -files)
* [Generate unit test files](# generate -unit -test -files)

* [How to document](#how -to-document)
* [The @doc annotation](#the -doc -annotation)
* [the @example annotation](#the -example -annotation)
* [How to document operators](#how -to-document -operators)
* [How to document statements](#how -to-document -statements

)
* [How to document skills](#how -to-document -skills)

* [How to change the processor](#how -to-change -the -processor)
* [General workflow of file generation](# general -workflow -of-

file -generation)

Documentation

The GAMA documentation comes in 2 formats: a set of wiki files
availaible from the wiki section of the GitHub website and
a PDF file. The PDF file is produced from the wiki files.

In the wiki files , some are hand -written by the GAMA community
and some others are generated automatically from the Java

code and the associated java annotations.

The section summarizes:

* how to generate this wiki files ,
* how to generate the PDF documentation ,
* how to generate the unit tests from the java annotations ,
* how to add documentation in the java code.

v 1.8.2 584

GAMA v1.8.2 documentation Chapter 33. Types

Requirements

To generate automatically the documentation , the GAMA Git
version is required. See [Install Git version](
InstallingGitVersion) for more details.

Among all the GAMA plugins , the following ones are related to
documentation generation:

* `msi.gama.processor `: the java preprocessor is called during
java compilation of the various plugins and extract

information from the java code and the java annotations.
For each plugin it produces the `docGAMA.xml ` file in the `
gaml ` directory.

* `msi.gama.documentation `: it contains all the java classes
needed to gather all the `docGAMA.xml ` files and generate
wiki , pdf or unit test files.

In addition , the folder containing the wiki files is required.
In the GitHub architecture , the wiki documentation is

stored in a separate Git repository `https:// github.com/
gama -platform/gama.wiki.git `. A local clone of this
repository should thus be created:

1. Open the Git perspective:
* Windows > Open Perspective > Other ...
* Choose `Git `

2. Click on "Clone a Git repository"
* In ** Source Git repository ** window:

* Fill in the URI label with: `https:// github.com/gama -
platform/gama.wiki.git `
* Other fields will be automatically filled in.

* In ** Branch Selection ** windows ,
* check the master branch
* Next

* In **Local Destination ** windows ,
* Choose the directory in which the gama Git repository

has been cloned
* Everything else should be unchecked
* Finish

3. In the **Git perspective ** and the **Git Repositories **

v 1.8.2 585

GAMA v1.8.2 documentation Chapter 33. Types

view , Right -Click on "Working Directory" inside the `gama.
wiki ` repository , and choose "Import projects"

* In the ** Select a wizard to use for importing projects **
window:
* "Import existing projects" should be checked
* "Working Directory" should be selected

* In ** Import Projects ** window:
* ** Uncheck "Search for nested project" **
* Check the project `gama.wiki `
* Finish

2. Go back to the Java perspective: a `gama.wiki ` plugin
should have been added.

In order to generate the PDF file from the wiki files , we use
an external application named [Pandoc](http:// pandoc.org/).

Follow the [Pandoc installation instructions to install it](
http:// pandoc.org/installing.html). Specify the path to the
pandoc folder in the file "Constants.java", in the static

constant `CMD_PANDOC ` : "_yourAbsolutePathToPandoc/pandoc_
".

Note that Latex should be installed in order to be able to
generate PDF files. Make sure you have already installed [
Miktex](http:// miktex.org/download) (for OS Windows and Mac
). Specify the path to the miktex folder in the file "
Constants.java", in the static constant `CMD_PDFLATEX ` : "
yourAbsolutePathToMiktex/pdflatex ".

Configuration

The location where the files are generated (and other
constants used by the generator) are defined in the file `
msi.gama.documentation/src/msi/gama/doc/util/Constants.java
`.

The use of Pandoc (path to the application and so on) is
defined in the file `msi.gama.documentation/src/msi/gama/
doc/util/ConvertToPDF.java `. *This should be changed in the
future ...*

v 1.8.2 586

GAMA v1.8.2 documentation Chapter 33. Types

Generated files location
The generated files are (by default) generated in various

locations depending on their type:

* wiki files: they are generated in the plugin `gama.wiki `.
* pdf file: they are generated in the plugin `msi.gama.

documentation `, in the folder `files/gen/pdf `.
* unit test files: they are generated in the plugin `msi.gama.

models `, in the folder `models/Tests `.

Workflow to generate wiki files

The typical workflow to generate the wiki files is as follow:

* Clean and Build all the GAMA projects ,
* Run the `MainGenerateWiki.java ` file in the `msi.gama.

documentation `,
* The wiki files are generated in the `gama.wiki ` plugin.

Workflow to generate PDF files

The typical workflow to generate the wiki files is as follow:

* Clean and Build all the GAMA projects ,
* In the file mytemplate.tex , specify the absolute path to

your "gama_style.tex" (it should be just next to this file)
* Run the `MainGeneratePDF.java ` file in the `msi.gama.

documentation `, accepting all the packages install of latex
,

* The wiki files are generated in the `msi.gama.documentation `
plugin.

Note that generating the PDF takes a lot of time. Please be
patient!

If you want to update the file "gama_style.sty" (for syntax
coloration), you have to turn the flag "generateGamaStyle"
to "true" (and make sure the file "keywords.xml" is already

v 1.8.2 587

GAMA v1.8.2 documentation Chapter 33. Types

generated).

Workflow to generate unit tests

The typical workflow to generate the wiki files is as follow:

* Clean and Build all the GAMA projects ,
* Run the `MainGenerateUnitTest.java ` file in the `msi.gama.

documentation `,
* The wiki files are generated in the `msi.gama.models ` plugin

.

Main internal steps

* Clean and Build all the GAMA projects will create a `docGAMA
.xml ` file in the `gaml ` directory of each plugin ,

* The `MainGenerateXXX.java ` files then perform the following
preparatory tasks:

* they *prepare the gen folder* by deleting the existing
folders and create all the folders that may contain
intermediary generated folders

* they merge all the `docGAMA.xml ` files in a `docGAMAglobal
.xml ` file , created in the `files/gen/java2xml ` folder. **
Only the plugins that are referred in the product files are
merged .**

After these common main first steps , each generator (wiki , pdf
or unit test) performs specific tasks.

Generate wiki files

* The `docGamaglobal.xml ` is parsed in order to generate 1
wiki file per kind of keyword:

* operators ,
* statements ,
* skills ,
* architectures ,
* built -in species ,
* constants and units.
* in addition an index wiki file containing all the GAML

v 1.8.2 588

GAMA v1.8.2 documentation Chapter 33. Types

keywords is generated.
* One wiki file is generated for each *extension* plugin , i.e.

plugin existing in the Eclipse workspace but not referred
in the product.

Generate pdf files

The pdf generator uses the table of content (toc) file located
in the `files/input/toc ` folder (`msi.gama.documetation `

plugin) to organize the wiki files in a pdf file.

* `MainGeneratePDF.java ` file parsers the toc file and create
the associated PDF file using the wiki files associated to
each element of the toc. The generation is tuned using
files located in the `files/input/pandocPDF ` folder.

Generate unit test files

* `MainGenerateUnitTest.java ` creates GAMA model files for
each kind of keyword from the `docGAMAglobal.xml ` file.

How to document

The documentation is generated from the Java code thanks to
the Java additional processor , using mainly information
from Java classes or methods and from the Java annotations.
(see [the list of all annotations](

DevelopingIndexAnnotations) for more details about
annotations).

The `@doc ` annotation

Most of the annotations can contain a [`@doc `](
DevelopingIndexAnnotations#doc) annotation , that can
contain the main part of the documentation.

For example , the `inter ` ([inter](Operators#inter)) operator
is commented using:

```java
@doc(

value = "the intersection of the two operands",

v 1.8.2 589



GAMA v1.8.2 documentation Chapter 33. Types

comment = "both containers are transformed into sets (so
without duplicated element , cf. remove_deplicates operator)
before the set intersection is computed.",

usages = {
@usage(value = "if an operand is a graph , it will be

transformed into the set of its nodes"),
@usage(value = "if an operand is a map , it will be

transformed into the set of its values", examples = {
@example(value = "[1::2, 3::4, 5::6] inter [2,4]",

equals = "[2,4]"),
@example(value = "[1::2, 3::4, 5::6] inter [1,3]",

equals = "[]") }),
@usage(value = "if an operand is a matrix , it will be

transformed into the set of the lines", examples =
@example(value = "matrix ([[1 ,2 ,3] ,[4 ,5 ,4]]) inter [3,4]"

, equals = "[3,4]")) },
examples = {

@example(value = "[1,2,3,4,5,6] inter [2,4]", equals = "
[2,4]"),
@example(value = "[1,2,3,4,5,6] inter [0,8]", equals = "[]

") },
see = { "remove_duplicates" })� �

This @docannotation contains 5 parts:

• value: describes the documented element,

• comment: a general comment about the documented element,
• usages: a set of ways to use the documented element, each of them being

in a @usage annotation. The usage contains mainly a description and set of
examples,

• examples: a set of examples that are not related to a particular usage,
• see: other related keywords.

the @example annotation

This annotation contains a particular use example of the documented element. It is
also used to generate unit test and patterns.
The simplest way to use it:

v 1.8.2 590



GAMA v1.8.2 documentation Chapter 33. Types

� �
@example(value = "[1::2, 3::4, 5::6] inter [2,4]", equals = "

[2,4]")� �
In this example:

• value contains an example of use of the operator,
• equals contains the expected results of expression in value.

This will become in the documentation:� �
list var3 <- [1::2, 3::4, 5::6] inter [2,4]; // var3 equals

[2,4]� �
When no variable is given in the annotation, an automatic name is generated. The
type of the variable is determined thanks to the return type of the operator with
these parameters.
This example can also generate a unit test model. In this case, the value in the
variable will be compared to the equals part.
By default, the @example annotation has the following default values:

• isTestOnly = false, meaning that the example will be added to the documen-
tation too,

• isExecutable = true, meaning that content of value can be added in a model
and can be compiled (it can be useful to switch it to false, in a documentation
example containing name of species that have not been defined),

• test = true, meaning that the content of value will be tested to the content of
equals,

• isPattern = false.

How to document operators

A GAML operator is defined by a Java method annoted by the @operator annotation
(see the list of all annotations for more details about annotations). In the core of
GAMA, most of the operators are defined in the plugin msi.gama.core and in the
package msi.gaml.operators.
The documentation generator will use information from:

v 1.8.2 591



GAMA v1.8.2 documentation Chapter 33. Types

• the @operator annotation:

– value: it provides the name(s) of the operator (if an operator has several
names, the other names will be considered as alternative names)

– category: it is used to classified the operators in categories

• the @doc annotation,
• the method definition:

– the return value type
– parameters and their type (if the method is static, the IScope attribute is

not taken into account)

How to document statements

A GAML statement is defined by a Java class annoted by the @symbol annotation
(see the list of all annotations for more details about annotations). In the core of
GAMA, most of the statements are defined in the plugin msi.gama.core and in the
package msi.gaml.statements.
The documentation generator will use information from:

• @symbol annotation,
• @facets annotation (each facet can contain a documentation in a @doc annota-

tion),
• @inside annotation (where the statement can be used),
• @doc annotation

How to document skills

A GAML skill is defined by a Java class annoted by the @skill annotation (see the list
of all annotations for more details about annotations). In the core of GAMA, most of
the skills are defined in the plugin msi.gama.core and in the package msi.gaml.skills.
The documentation generator will use information from:

• @skill annotation,
• @vars annotation (each var can contain a documentation in a @doc annotation),
• @doc annotation

v 1.8.2 592



GAMA v1.8.2 documentation Chapter 33. Types

How to change the processor

If you make some modifications in the plugin processor, you have to rebuild the .jar
file associated to the processor to take into account the changes. Here are the several
steps you have to do:

• In the msi.gama.processor plugin, click on Generate Processor.jardesc (in
processor)

• Click on Finish (you can check that msi.gama.processor and ummisco.gama.
annotations are checked). Accept the warning popup.

• It should have changed the processor / plugins / msi.gama.processor_1
.4.0.jar file.

• Right-click on the folder processor to refresh.

In case some projects have errors after the update of the processor: * Clean and build
the projects * Close Eclipse and reopen it and clean and build the projects * Check
that Eclipse has been launched with the same JVM as GAMA. To this purpose,
have a look at Eclipse / About Eclipse, Installation details and check the java
version (i.e. after the -vm option). If it does not fit with the one used for eclipse
plugin, change it (in the eclipse.ini file.

v 1.8.2 593



GAMA v1.8.2 documentation Chapter 33. Types

v 1.8.2 594



Chapter 34

General workflow of file generation

This following diagram explains roughly the work-
flow for the generation of the different files:

595



GAMA v1.8.2 documentation Chapter 34. General workflow of file generation

v 1.8.2 596



Part VI

Projects using GAMA

597





Chapter 35

Projects

Publications

This page is an attempt to list the projects using the GAMA platform as a modeling
and simulation platform. Interesting readers can also have a look at the page listing
the Ph.D. theses and articles related to and/or using GAMA platform.

Projects

SWITCH: Simulating the transition of transport Infrastruc-
tures Toward smart and sustainable Cities (ANR 2019- )

Description:

Transport infrastructures play a large part in defining the city of the future, which
should be smart, sustainable and resilient. Their management will need to deal with
the emergence of novel technologies (i.e. autonomous cars, Internet of Things) and the
increase of novel modalities and practices (increase of multi-modality, electric bicycles,
shared cars). These aspects could favour and accelerate the transition to the city
of the future with positive social, environmental and economic impacts, in order to
address foreseen trends (climate change and new requirements in terms of pollution,
security, and global costs). The SwITCh project aims at supporting decision-making
for urban planning by simulating the gradual introduction of disruptive innovations

599

https://github.com/gama-platform/gama/wiki/References
https://github.com/gama-platform/gama/wiki/References


GAMA v1.8.2 documentation Chapter 35. Projects

on technology, usage and behaviour of infrastructure. It requires providing a model
that is able to assess the impact of these innovations on several key indicators on
mobility, user satisfaction and security, economic costs and air pollution. SwITCh
integrates a large variety of urban transport modalities (private car, walk, tramway,
etc.) and associated infrastructures (pavement, bicycle path, etc.). Achieving such an
objective requires building a model that includes current and future infrastructures
and modalities, and considering the transition process between current and future
situations. SwITCh uses agent- based modelling (ABM) and participative simulation
as a unifying framework that allows coupling different models and taking into account
both temporal and spatial scales in order to build a holistic model. It will include
a city model based on real geographic data (GIS) and a complex realistic model
of population behaviour. The model will be designed as a support tool for helping
stakeholders (i.e. decision-makers, managers, technicians and citizens) to enrich their
reflection and build a shared project to improve transport infrastructures to meet
the challenges of future cities. The SwITCh project will be centred on the design
and on the implementation of an ABM that will result in an interactive simulator
and a serious game. The interactive simulator will be used by the city planners to
explore the potential impact of innovations in various evolutionary contexts. It will
thus support the urban planning team in making relevant decisions regarding the
evolution of their transport infrastructures, by letting them test and assess different
alternatives and situations. The interactive simulator will also allow the researchers
to highlight potential futures or unexpected side effects to the urban planners and
other stakeholders, based on a participatory simulation approach. The serious game
will be used by students and the larger public in order to enrich their understanding
of the issues involved in the city of the future and the transport infrastructures. It
will be based on the interactive simulator but will be enhanced by specific work on
the game design in order to be a real support for learning and raising awareness. The
interactive simulator and the serious game will be developed with the GAMA open-
source platform and will be used in a real context for two case studies: Bordeaux
Metropole and the Urban Community of Dijon. The SwITCh project will deliver
several main results. Firstly, it will generate and formalize knowledge on future
transport infrastructures. Secondly, the project will result in a simulation tool that
could have significant socio-economic impacts: by helping infrastructure managers
and urban planners, as a reflection support, to adapt infrastructures to future needs,
by accelerating the transition to a more sustainable city which should have positive
environmental (e.g. air pollution, global warming), economical (e.g. maintenance cost,
commercial appeal) and social (e.g. traffic, living environment) impacts. The model
will be flexible, easily adaptable to any city, and able to integrate a wide variety of

v 1.8.2 600



GAMA v1.8.2 documentation Chapter 35. Projects

prospective and disruptive scenarios.
Website: https://www6.inrae.fr/switch
Contact: Franck Taillandier

COMOKIT (2020- )

Description:

Since its emergence in China, the COVID-19 pandemic has spread rapidly around
the world. Faced with this unknown disease, public health authorities were forced
to experiment, in a short period of time, with various combinations of interventions
at different scales. However, as the pandemic progresses, there is an urgent need
for tools and methodologies to quickly analyze the effectiveness of responses against
COVID-19 in different communities and contexts. In this perspective, computer
modelling appears to be an invaluable lever as it allows for the in silico exploration
of a range of intervention strategies prior to the potential field implementation phase.
More specifically, we argue that, in order to take into account important dimensions
of policy actions, such as the heterogeneity of the individual response or the spatial
aspect of containment strategies, the branch of computer modeling known as agent-
based modelling is of immense interest. We present in this paper an agent-based
modelling framework called COVID-19 Modelling Kit (COMOKIT), designed to be
generic, scalable, and thus portable in a variety of social and geographical contexts.
COMOKIT combines models of person-to-person and environmental transmission,
a model of individual epidemiological status evolution, an agenda-based one-hour
time step model of human mobility, and an intervention model. It is designed to
be modular and flexible enough to allow modellers and users to represent different
strategies and study their impacts in multiple social, epidemiological or economic
scenarios.
COMOKIT aims at supporting deciders in answering the most pressing of these
questions using an integrated model that combines: * A sub-model of individual
clinical dynamics and epidemiological status * A sub-model of direct transmission
of the infection from agent to agent * A sub-model of environmental transmission
through the built environment * A sub-model of policy and interventions design and
implementation * An agenda-based model of people activities at a one-hour time step
Website: https://comokit.org/
Contact: Alexis Drogoul

v 1.8.2 601

https://www6.inrae.fr/switch
https://comokit.org/


GAMA v1.8.2 documentation Chapter 35. Projects

Figure 35.1: COMOKIT visualisation

v 1.8.2 602



GAMA v1.8.2 documentation Chapter 35. Projects

TSH-system project (2021-)

Description: The main objective of the project is to develop decision-making tools
to support urban Transport-Spaces-Humans system planning and design.

The project aims to assist in: 1. analysing the interdependence between the urban
transportation system, public space system, and their users both qualitatively and
quantitatively at multiple spatial dimensions; 2. quantifying the impact of architecture
layouts and transport-land use plans; 3. predicting the usage of different land uses,
activity supports, automobile travel demands, active travel demands, and transport
mode choice; 4. supporting the selection of plan scenarios.

Publication:

Website: https://nmyangliu.wixsite.com/tsh-system

Contact: Liu Yang (Research Fellow in the School of Architecture, Southeast
University (Nanjing, China))

LittoSIM / LittoGEN / LittoKong

Description:

LittoSIM is a participatory simulation platform for local actors. The serious game is
presented in the form of a simulation integrating both a model of marine submersion,
the modeling of actors acting on the territory (defense association, State services, etc.),
and game actions performed in situ by elected officials and technicians (municipalities
and inter-municipal authorities). The simulation focuses on the southwestern tip of
the island of Oléron and offers a reflection on the effects of types of land use planning
on the management of the risk of submersion (frontal defenses, modes of urbanization,
soft defenses, withdrawal strategic). The game aims to explore different scenarios for
managing the risks of submersion, the course of which is induced both by the players’
layout choices and by the simulation as such, thus constraining the trajectories of the
game.

This companion modeling is an opportunity to provide testimony on the learning
effects that the game allows for elected officials and managers, and therefore on the
apprehension of space and territory in situ by the actors of the development.

The LittoSIM project has been extended on several other case studies in France
(through the LittoGEN project) and in Vietnam (through the LittoKONG project).

v 1.8.2 603

https://nmyangliu.wixsite.com/tsh-system


GAMA v1.8.2 documentation Chapter 35. Projects

Figure 35.2: ESCAPE Hanoi visualisation

Publication: * Becu, N., Amalric, M., Anselme, B., Beck, E., Bertin, X., Delay, E.,
Long, N., Marilleau, N., Pignon-Mussaud, C., Rousseaux, F., 2017. Participatory
simulation to foster social learning on coastal flooding prevention. Environ. Model.
Softw. 98, 1–11. https://doi.org/10.1016/j.envsoft.2017.09.003

Website: https://littosim.hypotheses.org/

Contact: Nicolas Bécu and Marion Amalric

ESCAPE: Exploring by Simulation Cities Awareness on Pop-
ulation Evacuation (ANR 2016-2020)

Description:

A summary is available on the ANR website.

Publication: * Daudé, E., Chapuis, K., Taillandier, P., Tranouez, P., Caron, C.,
Drogoul, A., Gaudou, B., Rey-Coyrehourq, S., Saval, A., Zucker, J. D., 2019. ES-
CAPE: Exploring by Simulation Cities Awareness on Population Evacuation. In
ISCRAM 2019 conference, Valencia, Spain.

Contact: Eric Daudé

v 1.8.2 604

https://www.sciencedirect.com/science/article/pii/S1364815216310477
https://www.sciencedirect.com/science/article/pii/S1364815216310477
https://www.sciencedirect.com/science/article/pii/S1364815216310477
https://www.sciencedirect.com/science/article/pii/S1364815216310477
https://littosim.hypotheses.org/
https://anr.fr/Project-ANR-16-CE39-0011
https://hal.archives-ouvertes.fr/hal-02130387/document
https://hal.archives-ouvertes.fr/hal-02130387/document
https://hal.archives-ouvertes.fr/hal-02130387/document
https://hal.archives-ouvertes.fr/hal-02130387/document


GAMA v1.8.2 documentation Chapter 35. Projects

HoanKiemAir (French Embassy 2019-2020)

Description:
The development of permanent or temporary pedestrian areas, whether for leisure or
to decrease air pollution, has become an integral part of urban planning in numerous
cities around the world. Hanoi, the capital of Vietnam, began to implement its first
area, around the iconic Hoan Kiem lake, a few years ago. In most cases, however, a
road closure is likely to deport traffic to nearby neighborhoods with the consequences
of intensifying congestion and, possibly, increasing air pollution in these areas. Because
this outcome might appear counter-intuitive to most stakeholders, it is becoming more
and more necessary to analyze, assess, and share the impacts of these developments in
terms of traffic and pollution shifts before implementing them. In the HoanKiemAir
project, we used the GAMA platform to build an agent-based model that simulates
the traffic, its emissions of air pollutants, and the diffusion of these pollutants in the
district of Hoan Kiem. This simulation has been designed so as to serve either as
a decision support tool for local authorities or as an awareness-raising tool for the
general public: thanks to its display on a physical 3D model of the district, people
can effectively and very naturally interact with it at public venues. Although still
in progress, the simulation is already able to reflect traffic and air pollution peaks
during rush hours, allowing residents and developers to understand the impact of
pedestrianization on air quality in different scenarios.
Publication: * Duc, P.M., Chapuis, K., Drogoul, A., Gaudou, B., Grignard, A.,
Marilleau, N. and Nguyen-Huu, T., 2020. HoanKiemAir: simulating impacts of
urban management practices on traffic and air pollution using a tangible agent-based
model. In 2020 RIVF International Conference on Computing and Communication
Technologies (RIVF) (pp. 1-7). IEEE.
Contact: Benoit Gaudou

ACTEUR: Cognitive Territorial Agents for the Study of Ur-
ban Dynamics and Risks (ANR 2014-2018)

Description:
Every year, the number of urban residents is growing. Diverse questions related
to sustainability are rise from this growth. For example, for large and attractive
territories, which urban planning policies to implement? How to manage and prevent
technological or environmental hazards? Decision-makers have to take all of these

v 1.8.2 605

https://ieeexplore.ieee.org/abstract/document/9140787
https://ieeexplore.ieee.org/abstract/document/9140787
https://ieeexplore.ieee.org/abstract/document/9140787
https://ieeexplore.ieee.org/abstract/document/9140787
https://ieeexplore.ieee.org/abstract/document/9140787


GAMA v1.8.2 documentation Chapter 35. Projects

Figure 35.3: HKA visualisation

issues into account when defining their urban planning policies. Unfortunately, the
assessment of the impacts of possible policies is difficult due to the complex and
stochastic interplay between society and infrastructure. One of the most promising
approaches to face this difficulty is agent-based modeling. This approach consists in
modeling the studied system as a collection of interacting decision-making entities
called agents. An agent-based model can provide relevant information about the
dynamics of the real-world urban system it represents. Moreover, it can allow them
to be used as a virtual laboratory to test new urban planning policies. The use of
agent-based models to study urban systems is booming for the last ten years. Another
tendency is the development of more and more realist models. However, if models have
to make a lot of progress concerning the integration of geographical and statistical
data, the agents used to represent the different actors influencing the dynamic of the
system (inhabitants, decision-makers. . . ) are often simplistic (reactive agents). Yet,
for some urban models, being able to integrate these cognitive agents, i.e. agents able
to make complex reasoning such as planning to achieve their goals, is mandatory
to improve the realism of models and test new scenarios. Unfortunately, developing
large-scale models that integrate cognitive agents requires high-level programming
skills. Indeed, if there are nowadays several software platforms that propose to help

v 1.8.2 606



GAMA v1.8.2 documentation Chapter 35. Projects

modelers to define their agent-based models through a dedicated modeling language
(Netlogo, GAMA. . . ) or through a graphical interface (Starlogo TNG, Modelling4All,
Repast Symphony, MAGéo. . . ), none of them are adapted to the development of such
models by modelers with low-level programming skills: either they are too complex to
use (Repast, GAMA) or too limited (Netlogo, Starlogo TNG, Modelling4All, Repast
Symphony, MAGéo). As a result, geographers and urban planners that have no
programming skills have to rely on computer scientists to develop models, which
slows the development and the use of complex and realist spatial agent-based models.
The objective of the ACTEUR project is to develop to help modelers, in particular
geographers and urban planners, to design and calibrate through a graphical language
cognitive agents able to act in a complex spatial environment. The platform has also
for ambition to be used as a support of model discussion -participatory modeling-
between the different actors concerned by a model (geographers, sociologists, urban
planners, decision-makers, representatives. . . ). These tools will be integrated into
the GAMA platform that enables us to build large-scale models with thousands of
hundreds of agents and that was already used to develop models with cognitive agents.
In order to illustrate the utility and the importance of the developed tools, we will
use them in two case studies. The first concerns the urban evolution of La Réunion
island. The second case study will focus on the adaption to industrial hazards in
Rouen. These two case studies are part of funded projects carried out by partners of
the ACTEUR project.

Website:

Contact: Patrick Taillandier

Genstar (ANR 2014-2016)

Description:

The Gen* project has the ambition to propose tools and methods to generate realistic
synthetic populations for agent-based social simulation: it aims at combining applied
mathematics and computer science approaches in order to incorporate arbitrary data
and to generate statistically valid populations of artificial agents.

Publication: * Chapuis, K., Taillandier, P., Renaud, M., Drogoul, A. (2018) "Gen*:
a generic toolkit to generate spatially explicit synthetic populations". International
Journal of Geographical Information Science 32 (6), 1194-1210

Website: http://www.irit.fr/genstar/

v 1.8.2 607

https://www.tandfonline.com/doi/full/10.1080/13658816.2018.1440563
https://www.tandfonline.com/doi/full/10.1080/13658816.2018.1440563
https://www.tandfonline.com/doi/full/10.1080/13658816.2018.1440563
http://www.irit.fr/genstar/


GAMA v1.8.2 documentation Chapter 35. Projects

Figure 35.4: GENSTAR visualisation

Contact: Alexis Drogoul & Kevin Chapuis

MAELIA

Description:
Maelia is a multi-agent platform for integrated assessment and modeling of agricultural
territories (landscape) and territorial bioeconomy systems. It enables to assess the
environmental, economic and social impacts of the combined changes in agricultural
activities, transformation and recycling of biomass, natural resource management
strategies (e.g. water) and global (demography, dynamics of land cover and climate
changes).
Currently, this platform allows to handle at fine spatio-temporal scales the interactions
between agricultural activities (rotation and crop management strategies within each
production system), the hydrology of the different water resources (based on the
SWAT® model’s formalisms) and the water resources management (water withdrawals,

v 1.8.2 608



GAMA v1.8.2 documentation Chapter 35. Projects

restrictions, choices between resources). It is currently used to assess the impacts of
scenarios (i) of distribution of agro-ecological cropping systems on green and blue
water, nitrogen and carbon flows in watersheds, and (ii) of production exchanges
between arable and livestock farmers on individual and collective environmental and
socio-economic performances.
Publication: * Gaudou, B., Sibertin-Blanc, C., Thérond, O., Amblard, F., Auda, Y.,
Arcangeli, J.-P., Balestrat, M., Charron-Moirez, M.-H., Gondet, E., Hong, Y., Lardy,
R., Louail, T., Mayor, E., Panzoli, D., Sauvage, S., Sanchez-Perez, J., Taillandier,
P., Nguyen, V. B., Vavasseur, M., Mazzega, P. (2014). The MAELIA multi-agent
platform for integrated assessment of low-water management issues. In: International
Workshop on Multi-Agent-Based Simulation (MABS 2013), Saint-Paul, MN, USA,
06/05/2013-07/05/2013, Vol. 8235, Shah Jamal Alam, H. Van Dyke Parunak, (Eds.),
Springer, Lecture Notes in Computer Science, p. 85-110.
Website: http://maelia-platform.inra.fr/
Contact: Olivier Thérond

v 1.8.2 609

http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://maelia-platform.inra.fr/


GAMA v1.8.2 documentation Chapter 35. Projects

Figure 35.5: MAELIA visualisation

v 1.8.2 610



Chapter 36

Scientific References

This page contains a subset of the scientific papers that have been written either
about GAMA or using the platform as an experimental/modeling support.

If you happen to publish a paper that uses or discusses GAMA, please let us know,
so that we can include it in this list.

As stated in the first page, if you need to cite GAMA in a paper, we kindly ask you
to use this reference:

• Taillandier, P., Gaudou, P. Grignard, A. Huynh, Q.N., Marilleau, N., Caillou,
P., Philippon, D., Drogoul, A. (2018) Building, Composing and Experimenting
Complex Spatial Models with the GAMA Platform. GeoInformatica, Dec. 2018.
https://doi.org/10.1007/s10707-018-00339-6.

Table of Contents

• Papers about GAMA
• HDR theses
• PhD theses
• PhD theses that use GAMA as modeling/simulation support
• Master theses that use GAMA as modeling/simulation support
• Research papers that use GAMA as modeling/simulation support

611

https://link.springer.com/article/10.1007/s10707-018-00339-6
https://link.springer.com/article/10.1007/s10707-018-00339-6
https://link.springer.com/article/10.1007/s10707-018-00339-6
https://link.springer.com/article/10.1007/s10707-018-00339-6


GAMA v1.8.2 documentation Chapter 36. Scientific References

Papers about GAMA

• Taillandier, P., Grignard, A., Marilleau, N., Philippon, D., Huynh Q.N., Gaudou,
B., Drogoul, A. (2019) “Participatory Modeling and Simulation with the GAMA
Platform”. Journal of Artificial Societies and Social Simulation 22 (2), 1-3. DOI:
10.18564/jasss.3964

• Caillou, P., Gaudou, B., Grignard, A., Truong, C.Q., Taillandier, P. (2017)
A Simple-to-Use BDI Architecture for Agent-Based Modeling and Simula-
tion, in: Advances in Social Simulation 2015. Springer, Cham, pp. 15–28.
doi:10.1007/978-3-319-47253-9_2

• Chapuis, K., Taillandier, P., Renaud, M., Drogoul, A. (2018) "Gen*: a generic
toolkit to generate spatially explicit synthetic populations". International
Journal of Geographical Information Science 32 (6), 1194-1210

• Taillandier, Patrick, Arnaud Grignard, Benoit Gaudou, and Alexis Drogoul.
“Des données géographiques à la simulation à base d’agents: application de la
plate-forme GAMA.” Cybergeo: European Journal of Geography (2014).

• Grignard, A., Taillandier, P., Gaudou, B., Vo, D-A., Huynh, Q.N., Drogoul, A.
(2013) GAMA 1.6: Advancing the Art of Complex Agent-Based Modeling and
Simulation. In ‘PRIMA 2013: Principles and Practice of Multi-Agent Systems’,
Lecture Notes in Computer Science, Vol. 8291, Springer, pp. 117-131.

• Grignard, A., Drogoul, A., Zucker, J.D. (2013) Online analysis and visualization
of agent based models, Computational Science and Its Applications–ICCSA
2013. Springer Berlin Heidelberg, 2013. 662-672.

• Taillandier, P., Drogoul, A., Vo, D.A. and Amouroux, E. (2012) GAMA: a
simulation platform that integrates geographical information data, agent-based
modeling and multi-scale control, in ‘The 13th International Conference on
Principles and Practices in Multi-Agent Systems (PRIMA)’, India, Volume
7057/2012, pp 242-258.

• Taillandier, P., Drogoul, A. (2011) From Grid Environment to Geographic Vector
Agents, Modeling with the GAMA simulation platform. In ‘25th Conference of
the International Cartographic Association’, Paris, France.

• Taillandier, P., Drogoul A., Vo D.A., Amouroux, E. (2010) GAMA : bringing
GIS and multi-level capabilities to multi-agent simulation, in ‘the 8th European
Workshop on Multi-Agent Systems’, Paris, France.

• Amouroux, E., Taillandier, P. & Drogoul, A. (2010) Complex environment
representation in epidemiology ABM: application on H5N1 propagation. In ‘the
3rd International Conference on Theories and Applications of Computer Science’
(ICTACS’10).

v 1.8.2 612

http://jasss.soc.surrey.ac.uk/22/2/3.html
http://jasss.soc.surrey.ac.uk/22/2/3.html
http://jasss.soc.surrey.ac.uk/22/2/3.html
http://jasss.soc.surrey.ac.uk/22/2/3.html
https://link.springer.com/chapter/10.1007/978-3-319-47253-9_2
https://link.springer.com/chapter/10.1007/978-3-319-47253-9_2
https://link.springer.com/chapter/10.1007/978-3-319-47253-9_2
https://link.springer.com/chapter/10.1007/978-3-319-47253-9_2
https://www.tandfonline.com/doi/full/10.1080/13658816.2018.1440563
https://www.tandfonline.com/doi/full/10.1080/13658816.2018.1440563
https://www.tandfonline.com/doi/full/10.1080/13658816.2018.1440563
https://journals.openedition.org/cybergeo/26263
https://journals.openedition.org/cybergeo/26263
https://journals.openedition.org/cybergeo/26263
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-44927-7_9
http://link.springer.com/chapter/10.1007/978-3-642-39637-3_52#page-1
http://link.springer.com/chapter/10.1007/978-3-642-39637-3_52#page-1
http://link.springer.com/chapter/10.1007/978-3-642-39637-3_52#page-1
http://www.springerlink.com/content/j7135j8722742j82/
http://www.springerlink.com/content/j7135j8722742j82/
http://www.springerlink.com/content/j7135j8722742j82/
http://www.springerlink.com/content/j7135j8722742j82/
http://www.springerlink.com/content/j7135j8722742j82/
https://icaci.org/files/documents/ICC_proceedings/ICC2011/Oral%20Presentations%20PDF/C4-Simulation,%20spatio-temporal%20modelling,%20visualisation/CO-288.pdf
https://icaci.org/files/documents/ICC_proceedings/ICC2011/Oral%20Presentations%20PDF/C4-Simulation,%20spatio-temporal%20modelling,%20visualisation/CO-288.pdf
https://icaci.org/files/documents/ICC_proceedings/ICC2011/Oral%20Presentations%20PDF/C4-Simulation,%20spatio-temporal%20modelling,%20visualisation/CO-288.pdf
http://www.documentation.ird.fr/hor/fdi:010055255
http://www.documentation.ird.fr/hor/fdi:010055255
http://www.documentation.ird.fr/hor/fdi:010055255


GAMA v1.8.2 documentation Chapter 36. Scientific References

• Amouroux, E., Chu, T.Q., Boucher, A. and Drogoul, A. (2007) GAMA: an
environment for implementing and running spatially explicit multi-agent simu-
lations. In ‘Pacific Rim International Workshop on Multi-Agents’, Bangkok,
Thailand, pp. 359–371.

HDR theses

• Patrick Taillandier, “Vers une meilleure intégration des dimensions spatiales,
comportementales et participatives en simulation à base d’agents”, University
Toulouse 1 Capitole, France 2019.

• Benoit Gaudou, “Toward complex models of complex systems - One step
further in the art of Agent-Based Modelling”, University Toulouse 1 Capitole,
France 2016.

• Nicolas Marilleau, “Distributed Approaches based on Agent Based Systems
to model and simulate complex systems with a space”, Pierre and Marie Curie
University, Paris, France 2016.

PhD theses

• Mathieu Bourgais, “Vers des agents cognitifs, affectifs et sociaux dans la
simulation”, Normandie Université, defended November 30th, 2018.

• Huynh Quang Nghi, “CoModels, engineering dynamic compositions of cou-
pled models to support the simulation of complex systems”, University of Paris
6, defended December 5th, 2016.

• Truong Chi Quang, “Integrating cognitive models of human decision-
makingin agent-based models : an application to land useplanning under
climate change in the Mekong river delta”, University of Paris 6 & Can Tho
University, defended December 7th, 2016.

• Arnaud Grignard, “Modèles de visualisation à base d’agents”, University of
Paris 6, defended October 2nd, 2015.

• Truong Minh Thai, “To Develop a Database Management Tool for Multi-
Agent Simulation Platform”, ’Université Toulouse 1 Capitole, defended February
11th, 2015.

• Truong Xuan Viet, “Optimization by Simulation of an Environmental Surveil-
lance Network: Application to the Fight against Rice Pests in the Mekong Delta

v 1.8.2 613

http://www.springerlink.com/content/88006131542n1204/
http://www.springerlink.com/content/88006131542n1204/
http://www.springerlink.com/content/88006131542n1204/
http://www.springerlink.com/content/88006131542n1204/
http://publications.ut-capitole.fr/32596/1/HDR_TaillandierPatrick_2019.pdf
http://publications.ut-capitole.fr/32596/1/HDR_TaillandierPatrick_2019.pdf
https://www.researchgate.net/profile/Benoit_Gaudou/publication/312383963_Toward_complex_models_of_complex_systems_-_One_step_further_in_the_art_of_Agent-Based_Modelling/links/587cd54a08ae4445c06b2b7b.pdf
https://www.researchgate.net/profile/Benoit_Gaudou/publication/312383963_Toward_complex_models_of_complex_systems_-_One_step_further_in_the_art_of_Agent-Based_Modelling/links/587cd54a08ae4445c06b2b7b.pdf
https://hal.inria.fr/UMMISCO/tel-01428319v1
https://hal.inria.fr/UMMISCO/tel-01428319v1
https://tel.archives-ouvertes.fr/tel-01959903
https://tel.archives-ouvertes.fr/tel-01959903
https://tel.archives-ouvertes.fr/tel-01544874/document
https://tel.archives-ouvertes.fr/tel-01544874/document
https://tel.archives-ouvertes.fr/tel-01543066/document
https://tel.archives-ouvertes.fr/tel-01543066/document
https://tel.archives-ouvertes.fr/tel-01543066/document
https://tel.archives-ouvertes.fr/tel-01544874/document
http://www.theses.fr/2015TOU10003
http://www.theses.fr/2015TOU10003
https://drive.google.com/a/ctu.edu.vn/file/d/0B7ArAu2_CEjCaTVzZURNUGlfWmc/edit?usp=sharing
https://drive.google.com/a/ctu.edu.vn/file/d/0B7ArAu2_CEjCaTVzZURNUGlfWmc/edit?usp=sharing
https://drive.google.com/a/ctu.edu.vn/file/d/0B7ArAu2_CEjCaTVzZURNUGlfWmc/edit?usp=sharing


GAMA v1.8.2 documentation Chapter 36. Scientific References

(Vietnam)”, University of Paris 6 & Ho Chi Minh University of Technology,
defended June 24th, 2014.

• Nguyen Nhi Gia Vinh, “Designing multi-scale models to support environ-
mental decision: application to the control of Brown Plant Hopper invasions in
the Mekong Delta (Vietnam)”, University of Paris 6, defended Oct. 31st, 2013.

• Vo Duc An, “An operational architecture to handle multiple levels of repre-
sentation in agent-based models”, University of Paris 6, defended Nov. 30th
2012.

• Edouard Amouroux, “KIMONO: a descriptive agent-based modeling method-
ology for the exploration of complex systems: an application to epidemiology”,
University of Paris 6, defended Sept. 30th, 2011.

• Chu Thanh Quang, “Using agent-based models and machine learning to
enhance spatial decision support systems: Application to resource allocation
in situations of urban catastrophes”, University of Paris 6, defended July 1st,
2011.

• Nguyen Ngoc Doanh, “Coupling Equation-Based and Individual-Based Mod-
els in the Study of Complex Systems: A Case Study in Theoretical Population
Ecology”, University of Paris 6, defended Dec. 14th, 2010.

PhD theses that use GAMA as modeling/simula-
tion support

• Robin Cura, “Modéliser des systèmes de peuplement en interdisciplinarité.
Co-construction et exploration visuelle d’un modèle de simulation”, Université
Paris 1 Panthéon-Sorbonne, defended March 6th, 2020.

• Alice Micolier, “Development of a methodology for a consistent and integrated
evaluation of the health, energy and environmental performance of residen-
tial building design solutions”, Université de Bordeaux, defended December
13th,2019.

• Dimitrios Panagiotis Chapizanis, “Exposomic analysis: emerging method-
ologies for environmental exposure measurements”, Aristotle University of
Thessaloniki, 2019.

• Julius Bañgate, “Multi-Agent Modelling of seismic crisis”, Université Grenoble
Alpes, defended December 18th, 2019.

• Johan Arcile, “Conception, modélisation et vérification formelle d’un sys-
tème temps-réel d’agents coopératifs Application aux véhicules autonomes

v 1.8.2 614

https://drive.google.com/a/ctu.edu.vn/file/d/0B7ArAu2_CEjCaTVzZURNUGlfWmc/edit?usp=sharing
https://drive.google.com/a/ctu.edu.vn/file/d/0B7ArAu2_CEjCaTVzZURNUGlfWmc/edit?usp=sharing
https://drive.google.com/file/d/0BwzSY8KTNM0nLUVMVXR3WDVJSjQ/edit?usp=sharing
https://drive.google.com/file/d/0BwzSY8KTNM0nLUVMVXR3WDVJSjQ/edit?usp=sharing
https://drive.google.com/file/d/0BwzSY8KTNM0nLUVMVXR3WDVJSjQ/edit?usp=sharing
https://dl.dropboxusercontent.com/u/70529600/manuscrit_VoDucAn.pdf
https://dl.dropboxusercontent.com/u/70529600/manuscrit_VoDucAn.pdf
http://tel.archives-ouvertes.fr/tel-00630779
http://tel.archives-ouvertes.fr/tel-00630779
https://www.dropbox.com/s/i5ifnigqv7qltc9/CHU-Thanh-Quang_manuscrit.pdf
https://www.dropbox.com/s/i5ifnigqv7qltc9/CHU-Thanh-Quang_manuscrit.pdf
https://www.dropbox.com/s/i5ifnigqv7qltc9/CHU-Thanh-Quang_manuscrit.pdf
https://docs.google.com/file/d/0B5s1B4Qq19ycMDg4MTNhMmUtMDNlMC00NzQyLWFlZjEtMjZhOGY5YjRhNWU5/edit?hl=fr
https://docs.google.com/file/d/0B5s1B4Qq19ycMDg4MTNhMmUtMDNlMC00NzQyLWFlZjEtMjZhOGY5YjRhNWU5/edit?hl=fr
https://docs.google.com/file/d/0B5s1B4Qq19ycMDg4MTNhMmUtMDNlMC00NzQyLWFlZjEtMjZhOGY5YjRhNWU5/edit?hl=fr
https://tel.archives-ouvertes.fr/tel-02944405/document
https://tel.archives-ouvertes.fr/tel-02944405/document
https://tel.archives-ouvertes.fr/tel-03060399/document
https://tel.archives-ouvertes.fr/tel-03060399/document
https://tel.archives-ouvertes.fr/tel-03060399/document
https://www.didaktorika.gr/eadd/handle/10442/45788?locale=en
https://www.didaktorika.gr/eadd/handle/10442/45788?locale=en
https://www.researchgate.net/publication/341525622_Multi-agent_modelling_of_seismic_crisis
https://www.biblio.univ-evry.fr/theses/2019/2019SACLE029.pdf
https://www.biblio.univ-evry.fr/theses/2019/2019SACLE029.pdf
https://www.biblio.univ-evry.fr/theses/2019/2019SACLE029.pdf


GAMA v1.8.2 documentation Chapter 36. Scientific References

communicants”, Université Paris-Saclay, defended December 13th, 2019.
• Mélodie DUBOIS, “Effets combinés de la pêche et des perturbations na-

turelles sur la dynamique des écosystèmes coralliens”, Université de recherche
Paris Sciences et Lettres, defended Mai 24th, 2019.

• Allan Lao, “Agent-Based Mesoscopic Pedestrian Modeling and Simulation”,
University of the Cordilleras, defended in February, 2019.

• Jérémy Sobieraj, Méthodes et outils pour la conception de Systèmes de
Transport Intelligents Coopératifs, Université Paris-Saclay; Université d’Evry-
Val-d’Essonne, defended November 7th, 2018.

• Myriam Grillot, Modélisation multi-agents et pluri-niveaux de la réorganisa-
tion du cycle de l’azote dans des systèmes agro-sylvo-pastoraux en transition :
Le cas du bassin arachidier au Sénégal, IRD, defended March 16th, 2018.

• Mahefa Rakotoarisoa, Les risques hydrologiques dans les bassins versants
sous contrôle anthropique : modélisation de l’aléa, de la vulnérabilité et des
conséquences sur les sociétés. : Cas de la région Sud-ouest de Madagascar,
Univeristé d’Angers et Université de Tuléa, defended in December, 2017.

• Justin Emery, La ville sous électrodes : de la mesure à l’évaluation de la
pollution atmosphérique automobile. : vers une simulation multi-agents du trafic
routier en milieu urbain, Université de Bourgogne-Franche-Comté, defended
December 16th, 2016.

• Hugo Thierry, “Élaboration d’un modèle spatialisé pour favoriser le contrôle
biologique de ravageurs de cultures par gestion du paysage agricole”, INPT,
defended November 11th, 2015.

• Inès Hassoumi, Approche multi-agents de couplage de modèles pour la mod-
élisation des systèmes complexes spatiaux. Application à l’aménagement urbain
de la ville de Métouia, Université Pierre et Marie Curie – Paris VI et université
de Tunis, defended December, 2014.

Master theses that use GAMA as modeling/simu-
lation support

2020

• Claerhoudt, X. “How opinion leaders can manipulate opinion dynamics in
hierarchical social networks”, Master’s thesis, Ghent University, 2020.

• Doelman, V. J. “An agent-based approach to the assessment of carrying capacity

v 1.8.2 615

https://www.biblio.univ-evry.fr/theses/2019/2019SACLE029.pdf
https://www.biblio.univ-evry.fr/theses/2019/2019SACLE029.pdf
https://tel.archives-ouvertes.fr/tel-02873651/
https://tel.archives-ouvertes.fr/tel-02873651/
https://www.researchgate.net/publication/337889032_Agent_Based_Mesoscopic_Pedestrian_Modeling_and_Simulation?fbclid=IwAR0TpRdp_NjSmOGggOjnJmVpsmFx2gh8bwRSXzgUpHHYdPBBdvCYal9cO7k
https://hal.archives-ouvertes.fr/tel-02042591/
https://hal.archives-ouvertes.fr/tel-02042591/
https://hal.inrae.fr/tel-02917359
https://hal.inrae.fr/tel-02917359
https://hal.inrae.fr/tel-02917359
https://tel.archives-ouvertes.fr/tel-02066645/document
https://tel.archives-ouvertes.fr/tel-02066645/document
https://tel.archives-ouvertes.fr/tel-02066645/document
https://tel.archives-ouvertes.fr/tel-01436123v2
https://tel.archives-ouvertes.fr/tel-01436123v2
https://tel.archives-ouvertes.fr/tel-01436123v2
https://oatao.univ-toulouse.fr/14665/1/thierry.pdf
https://oatao.univ-toulouse.fr/14665/1/thierry.pdf
https://tel.archives-ouvertes.fr/tel-01212713/document
https://tel.archives-ouvertes.fr/tel-01212713/document
https://tel.archives-ouvertes.fr/tel-01212713/document
https://libstore.ugent.be/fulltxt/RUG01/002/945/717/RUG01-002945717_2021_0001_AC.pdf
https://libstore.ugent.be/fulltxt/RUG01/002/945/717/RUG01-002945717_2021_0001_AC.pdf
https://dspace.library.uu.nl/bitstream/handle/1874/399964/Thesis_Vince_Doelman.pdf
https://dspace.library.uu.nl/bitstream/handle/1874/399964/Thesis_Vince_Doelman.pdf


GAMA v1.8.2 documentation Chapter 36. Scientific References

in Amsterdam”, Master’s thesis, GIMA program, Utrecht University, 2020.
• de Maat, N.B., 2020. “Improving traffic system performance by combining

tolling and intention-based prediction: an agent-based model”, Master’s thesis,
GIMA program, Utrecht University, 2020.

Research papers that use GAMA as modeling/sim-
ulation support

2021

• Bhowmick, D., Winter, S., Stevenson, M. and Vortisch, P., 2021. Exploring the
viability of walk-sharing in outdoor urban spaces. Computers, Environment
and Urban Systems, 88, p.101635.

• Polanco, L.D. and Siller, M., 2021. Crowd management COVID-19. Annual
Reviews in Control.

• Taillandier, P., Salliou, N. and Thomopoulos, R., 2021. Introducing the Argu-
mentation Framework Within Agent-Based Models to Better Simulate Agents’
Cognition in Opinion Dynamics: Application to Vegetarian Diet Diffusion.
Journal of Artificial Societies and Social Simulation, 24(2).

• Kaziyeva, D., Loidl, M. and Wallentin, G., 2021. Simulating Spatio-Temporal
Patterns of Bicycle Flows with an Agent-Based Model. ISPRS International
Journal of Geo-Information, 10(2), p.88.

• Ramos Corchado, F.F., López Fraga, A.C., Salazar Salazar, R., Ramos Corchado,
M.A. and Begovich Mendoza, O., 2021. Cognitive Pervasive Service Composition
Applied to Predatory Crime Deterrence. Applied Sciences, 11(4), p.1803.

• Salze, P., Sajous, P. and Bertelle, C., 2021. EM3: A Model to Explore the
Effects of Ecomobility Policies on an Urban Area. In Complex Systems, Smart
Territories and Mobility (pp. 233-256). Springer, Cham.

• Zaatour, W., Marilleau, N., Giraudoux, P., Martiny, N., Amara, A.B.H. and
Miled, S.B., 2021. An agent-based model of a cutaneous leishmaniasis reservoir
host, Meriones shawi. Ecological Modelling, 443, p.109455.

• Catarino, R., Therond, O., Berthomier, J., Miara, M., Mérot, E., Misslin, R.,
Vanhove, P., Villerd, J. and Angevin, F., 2021. Fostering local crop-livestock
integration via legume exchanges using an innovative integrated assessment and
modelling approach based on the MAELIA platform. Agricultural Systems,
189, p.103066.

v 1.8.2 616

https://dspace.library.uu.nl/bitstream/handle/1874/399964/Thesis_Vince_Doelman.pdf
https://dspace.library.uu.nl/bitstream/handle/1874/399964/Thesis_Vince_Doelman.pdf
http://dspace.library.uu.nl/bitstream/handle/1874/399960/Nino_de_Maat_final_thesis.pdf
http://dspace.library.uu.nl/bitstream/handle/1874/399960/Nino_de_Maat_final_thesis.pdf
http://dspace.library.uu.nl/bitstream/handle/1874/399960/Nino_de_Maat_final_thesis.pdf
https://doi.org/10.1016/j.compenvurbsys.2021.101635
https://doi.org/10.1016/j.compenvurbsys.2021.101635
https://doi.org/10.1016/j.compenvurbsys.2021.101635
https://doi.org/10.1016/j.arcontrol.2021.04.006
https://doi.org/10.1016/j.arcontrol.2021.04.006
http://jasss.soc.surrey.ac.uk/24/2/6.html
http://jasss.soc.surrey.ac.uk/24/2/6.html
http://jasss.soc.surrey.ac.uk/24/2/6.html
http://jasss.soc.surrey.ac.uk/24/2/6.html
https://www.mdpi.com/2220-9964/10/2/88
https://www.mdpi.com/2220-9964/10/2/88
https://www.mdpi.com/2220-9964/10/2/88
https://www.mdpi.com/2076-3417/11/4/1803
https://www.mdpi.com/2076-3417/11/4/1803
https://www.mdpi.com/2076-3417/11/4/1803
https://doi.org/10.1007/978-3-030-59302-5_13
https://doi.org/10.1007/978-3-030-59302-5_13
https://doi.org/10.1007/978-3-030-59302-5_13
https://doi.org/10.1016/j.ecolmodel.2021.109455
https://doi.org/10.1016/j.ecolmodel.2021.109455
https://doi.org/10.1016/j.ecolmodel.2021.109455
https://doi.org/10.1016/j.ecolmodel.2021.109455
https://doi.org/10.1016/j.ecolmodel.2021.109455
https://doi.org/10.1016/j.ecolmodel.2021.109455
https://doi.org/10.1016/j.ecolmodel.2021.109455
https://doi.org/10.1016/j.ecolmodel.2021.109455


GAMA v1.8.2 documentation Chapter 36. Scientific References

• Chapizanis, D., Karakitsios, S., Gotti, A. and Sarigiannis, D.A., 2021. Assessing
personal exposure using Agent Based Modelling informed by sensors technology.
Environmental Research, Volume 192, p.110141.

• Hutzler G., Klaudel H., Sali A. (2021) Filtering Distributed Information to
Build a Plausible Scene for Autonomous and Connected Vehicles. In: Dong Y.,
Herrera-Viedma E., Matsui K., Omatsu S., González Briones A., Rodríguez
González S. (eds) Distributed Computing and Artificial Intelligence, 17th
International Conference. DCAI 2020. Advances in Intelligent Systems and
Computing, vol 1237. Springer, Cham.

2020

• Callejas, E., Inostrosa-Psijas, A., Moreno, F., Oyarzún, M. and Carvajal-
Schiaffino, R., 2020, November. COVID-19 Transmission During a Tsunami
Evacuation in a Lockdown City. In 2020 39th International Conference of the
Chilean Computer Science Society (SCCC) (pp. 1-8). IEEE.

• Barthelemy, J., Amirghasemi, M., Arshad, B., Fay, C., Forehead, H., Hutchison,
N., Iqbal, U., Li, Y., Qian, Y. and Perez, P., 2020. Problem-Driven and
Technology-Enabled Solutions for Safer Communities: The case of stormwater
management in the Illawarra-Shoalhaven region (NSW, Australia). Handbook
of Smart Cities, pp.1-28.

• Zhong, J. and Hattori, H., 2020. Generation of Traffic Flows in Multi-Agent
Traffic Simulation with Agent Behavior Model based on Deep Reinforcement
Learning. arXiv preprint arXiv:2101.03230.

• Dang-Huu, T., Gaudou, B., Nguyen-Ngoc, D. and Lê, N.C., 2020, November.
An agent-based model for mixed traffic in Vietnam based on virtual local lanes.
In 2020 12th International Conference on Knowledge and Systems Engineering
(KSE) (pp. 147-152). IEEE.

• Grignard, A., Nguyen-Huu, T., Gaudou, B., Nguyen-Ngoc, D., Brugière, A.,
Dang-Huu, T., Nghi, H.Q., Khanh, N.T. and Larson, K., 2020, November.
CityScope Hanoi: interactive simulation for water management in the Bac Hung
Hai irrigation system. In 2020 12th International Conference on Knowledge
and Systems Engineering (KSE) (pp. 153-158). IEEE.

• da Silva Rodrigues, L., Oliveira, S.G.M., Lopez, L.F. and Sichman, J.S., 2019,
May. Agent Based Simulation of the Dengue Virus Propagation. In International
Workshop on Multi-Agent Systems and Agent-Based Simulation (pp. 100-111).
Springer, Cham.

v 1.8.2 617

https://doi.org/10.1016/j.envres.2020.110141
https://doi.org/10.1016/j.envres.2020.110141
https://doi.org/10.1016/j.envres.2020.110141
https://doi.org/10.1007/978-3-030-53036-5_10
https://doi.org/10.1007/978-3-030-53036-5_10
https://doi.org/10.1007/978-3-030-53036-5_10
https://doi.org/10.1007/978-3-030-53036-5_10
https://doi.org/10.1007/978-3-030-53036-5_10
https://doi.org/10.1007/978-3-030-53036-5_10
https://doi.org/10.1109/SCCC51225.2020.9281149
https://doi.org/10.1109/SCCC51225.2020.9281149
https://doi.org/10.1109/SCCC51225.2020.9281149
https://doi.org/10.1109/SCCC51225.2020.9281149
https://doi.org/10.1007/978-3-030-15145-4_68-1
https://doi.org/10.1007/978-3-030-15145-4_68-1
https://doi.org/10.1007/978-3-030-15145-4_68-1
https://doi.org/10.1007/978-3-030-15145-4_68-1
https://doi.org/10.1007/978-3-030-15145-4_68-1
https://arxiv.org/pdf/2101.03230.pdf
https://arxiv.org/pdf/2101.03230.pdf
https://arxiv.org/pdf/2101.03230.pdf
https://doi.org/10.1109/KSE50997.2020.9287400
https://doi.org/10.1109/KSE50997.2020.9287400
https://doi.org/10.1109/KSE50997.2020.9287400
https://doi.org/10.1109/KSE50997.2020.9287400
https://doi.org/10.1109/KSE50997.2020.9287831
https://doi.org/10.1109/KSE50997.2020.9287831
https://doi.org/10.1109/KSE50997.2020.9287831
https://doi.org/10.1109/KSE50997.2020.9287831
https://doi.org/10.1109/KSE50997.2020.9287831
https://link.springer.com/chapter/10.1007/978-3-030-60843-9_8
https://link.springer.com/chapter/10.1007/978-3-030-60843-9_8
https://link.springer.com/chapter/10.1007/978-3-030-60843-9_8
https://link.springer.com/chapter/10.1007/978-3-030-60843-9_8


GAMA v1.8.2 documentation Chapter 36. Scientific References

• Prudhomme, C., Cruz, C. and Cherifi, H., 2020, An Agent based model for
the transmission and control of the COVID-19 in Dijon. In Proc. of The 11th
Conference on Network Modeling and Analysis MARAMI, October 14 - 15,
2020

• Taj, F., Klein, M. and van Halteren, A., 2020, October. An Agent-Based Frame-
work for Persuasive Health Behavior Change Intervention. In International
Conference on Health Information Science (pp. 157-168). Springer, Cham.

• Gaudou, B., Huynh, N.Q., Philippon, D., Brugière, A., Chapuis, K., Taillandier,
P., Larmande, P. and Drogoul, A., 2020. COMOKIT: a modeling kit to
understand, analyze and compare the impacts of mitigation policies against the
COVID-19 epidemic at the scale of a city. Frontiers in Public Health, 8, p.587.

• Drogoul, A., Taillandier, P., Gaudou, B., Choisy, M., Chapuis, K., Huynh,
Q.N., Nguyen, N.D., Philippon, D., Brugière, A. and Larmande, P., Designing
social simulation to (seriously) support decision-making: COMOKIT, an agent-
based modelling toolkit to analyse and compare the impacts of public health
interventions against COVID-19. Review of Artificial Societies and Social
Simulation, 27th April 2020.

• Bucchiarone, A., De Sanctis, M. and Bencomo, N., 2020. Agent-Based Frame-
work for Self-Organization of Collective and Autonomous Shuttle Fleets. IEEE
Transactions on Intelligent Transportation Systems.

• Iskandar, R., Allaw, K., Dugdale, J., Beck, E., Adjizian-Gérard, J., Cornou,
C., Harb, J., Lacroix, P., Badaro-Saliba, N., Cartier, S. and Zaarour, R.,
2020, Agent-Based simulation of pedestrians’earthquake evacuation; application
to Beirut, Lebanon. In 17th World Conference on Earthquake Engineering,
17WCEE, Sendai, Japan

• Lee, L.W.F. and Mohd, M.H., 2020, October. Stochastic modelling of the
biodiversity effect on sin nombre virus (SNV) prevalence. In AIP Conference
Proceedings (Vol. 2266, No. 1, p. 050017). AIP Publishing LLC.

• Ngom, B., Diallo, M. and Marilleau, N., 2020, September. MEDART-MAS:
MEta-model of Data Assimilation on Real-Time Multi-Agent Simulation. In
2020 IEEE/ACM 24th International Symposium on Distributed Simulation and
Real Time Applications (DS-RT) (pp. 1-7). IEEE.

• Alonso Vicario, S., Mazzoleni, M., Bhamidipati, S., Gharesifard, M., Ridolfi, E.,
Pandolfo, C., Alfonso, L., 2020. Unravelling the influence of human behaviour
on reducing casualties during flood evacuation. Hydrological Sciences Journal.

• Tannier C., Cura R., Leturcq S. and Zadora-Rio E., 2020. An agent-based
model for exploring the combined effects of social and demographic changes on
the concentration and hierarchy of rural settlement patterns in North-Western

v 1.8.2 618

http://ceur-ws.org/Vol-2750/paper10.pdf
http://ceur-ws.org/Vol-2750/paper10.pdf
http://ceur-ws.org/Vol-2750/paper10.pdf
http://ceur-ws.org/Vol-2750/paper10.pdf
https://doi.org/10.1007/978-3-030-61951-0_15
https://doi.org/10.1007/978-3-030-61951-0_15
https://doi.org/10.1007/978-3-030-61951-0_15
https://doi.org/10.3389/fpubh.2020.563247
https://doi.org/10.3389/fpubh.2020.563247
https://doi.org/10.3389/fpubh.2020.563247
https://doi.org/10.3389/fpubh.2020.563247
https://rofasss.org/2020/04/27/comokit/
https://rofasss.org/2020/04/27/comokit/
https://rofasss.org/2020/04/27/comokit/
https://rofasss.org/2020/04/27/comokit/
https://rofasss.org/2020/04/27/comokit/
https://rofasss.org/2020/04/27/comokit/
https://doi.org/10.1109/TITS.2020.3021592
https://doi.org/10.1109/TITS.2020.3021592
https://doi.org/10.1109/TITS.2020.3021592
https://www.researchgate.net/profile/Rouba_Iskandar/publication/344439660_AGENT-BASED_SIMULATION_OF_PEDESTRIANS'_EARTHQUAKE_EVACUATION_APPLICATION_TO_BEIRUT_LEBANON/links/5f76e16ea6fdcc0086502b54/AGENT-BASED-SIMULATION-OF-PEDESTRIANS-EARTHQUAKE-EVACUATION-APPLICATION-TO-BEIRUT-LEBANON.pdf
https://www.researchgate.net/profile/Rouba_Iskandar/publication/344439660_AGENT-BASED_SIMULATION_OF_PEDESTRIANS'_EARTHQUAKE_EVACUATION_APPLICATION_TO_BEIRUT_LEBANON/links/5f76e16ea6fdcc0086502b54/AGENT-BASED-SIMULATION-OF-PEDESTRIANS-EARTHQUAKE-EVACUATION-APPLICATION-TO-BEIRUT-LEBANON.pdf
https://www.researchgate.net/profile/Rouba_Iskandar/publication/344439660_AGENT-BASED_SIMULATION_OF_PEDESTRIANS'_EARTHQUAKE_EVACUATION_APPLICATION_TO_BEIRUT_LEBANON/links/5f76e16ea6fdcc0086502b54/AGENT-BASED-SIMULATION-OF-PEDESTRIANS-EARTHQUAKE-EVACUATION-APPLICATION-TO-BEIRUT-LEBANON.pdf
https://www.researchgate.net/profile/Rouba_Iskandar/publication/344439660_AGENT-BASED_SIMULATION_OF_PEDESTRIANS'_EARTHQUAKE_EVACUATION_APPLICATION_TO_BEIRUT_LEBANON/links/5f76e16ea6fdcc0086502b54/AGENT-BASED-SIMULATION-OF-PEDESTRIANS-EARTHQUAKE-EVACUATION-APPLICATION-TO-BEIRUT-LEBANON.pdf
https://www.researchgate.net/profile/Rouba_Iskandar/publication/344439660_AGENT-BASED_SIMULATION_OF_PEDESTRIANS'_EARTHQUAKE_EVACUATION_APPLICATION_TO_BEIRUT_LEBANON/links/5f76e16ea6fdcc0086502b54/AGENT-BASED-SIMULATION-OF-PEDESTRIANS-EARTHQUAKE-EVACUATION-APPLICATION-TO-BEIRUT-LEBANON.pdf
https://doi.org/10.1063/5.0018102
https://doi.org/10.1063/5.0018102
https://doi.org/10.1063/5.0018102
https://doi.org/10.1109/DS-RT50469.2020.9213694
https://doi.org/10.1109/DS-RT50469.2020.9213694
https://doi.org/10.1109/DS-RT50469.2020.9213694
https://doi.org/10.1109/DS-RT50469.2020.9213694
https://doi.org/10.1080/02626667.2020.1810254
https://doi.org/10.1080/02626667.2020.1810254
https://doi.org/10.1080/02626667.2020.1810254
https://doi.org/10.1016/j.jaa.2020.101204
https://doi.org/10.1016/j.jaa.2020.101204
https://doi.org/10.1016/j.jaa.2020.101204
https://doi.org/10.1016/j.jaa.2020.101204


GAMA v1.8.2 documentation Chapter 36. Scientific References

Europe during the Middle Ages (800–1200 CE). Journal of Anthropological
Archaeology, vol. 59.

• Wallentin, G., Kaziyeva, D., Reibersdorfer-Adelsberger, E., 2020. COVID-19
Intervention Scenarios for a Long-term Disease Management, International
Journal of Health Policy and Management, (), pp. -.

• Duc, P.M., Chapuis, K., Drogoul, A., Gaudou, B., Grignard, A., Marilleau, N.
and Nguyen-Huu, T., 2020. HoanKiemAir: simulating impacts of urban manage-
ment practices on traffic and air pollution using a tangible agent-based model.
In 2020 RIVF International Conference on Computing and Communication
Technologies (RIVF) (pp. 1-7). IEEE.

• Laatabi, A., Becu, N., Marilleau, N., Pignon-Mussaud, C., Amalric, M., Bertin,
X., Anselme, B. and Beck, E., 2020. Mapping and Describing Geospatial Data
to Generalize Complex Models: The Case of LittoSIM-GEN. International
Journal of Geospatial and Environmental Research, 7(1), p.6.

• Farias, G., Leitzke, B., Born, M., Aguiar, M. and Adamatti, D., 2020. Water
Resources Analysis: An Approach based on Agent-Based Modeling. Revista de
Informática Teórica e Aplicada, 27(2), pp.81-95.

• Baeza, J.L., Noennig, J.R., Weber, V., Grignard, A., Noyman, A., Larson,
K., Saxe, S. and Baldauf, U., 2020. Mobility Solutions for Cruise Passenger
Transfer: An Exploration of Scenarios Using Agent-Based Simulation Models.
In Towards User-Centric Transport in Europe 2 (pp. 89-101). Springer, Cham.

• Jindal, A. and Rao, S., 2020. Lockdowns to Contain COVID-19 Increase Risk
and Severity of Mosquito-Borne Disease Outbreaks. medRxiv.

• Haddad, H., Bouyahia, Z. and Jabeur, N., 2020. Socially-Structured Vanpooling:
A Case Study in Salalah, Oman. IEEE Intelligent Transportation Systems
Magazine.

• Mariano, D.J.K. and Alves, C.D.M.A., 2020. The application of role-playing
games and agent-based modelling to the collaborative water management in
peri-urban communities. RBRH, 25.

• Emery, J., Marilleau, N., Martiny, N., & Thévenin, T., 2020. Le modèle
SCAUP: Simulation multi-agents à partir de données de CApteurs Urbains
pour la Pollution atmosphérique automobile. Cybergeo: European Journal of
Geography.

• Taj, F., Klein11, M. C., van Halteren, A., 2020. Towards a generic framework
for a health behaviour change support agent. In ICAART (1) (pp. 311-318)

• Thierry, H. and Rogers, H., 2020. Where to rewild? A conceptual framework
to spatially optimize ecological function. Proceedings of the Royal Society B,
287(1922), p.20193017.

v 1.8.2 619

https://doi.org/10.1016/j.jaa.2020.101204
https://doi.org/10.1016/j.jaa.2020.101204
https://doi.org/10.1016/j.jaa.2020.101204
https://www.ijhpm.com/article_3866.html
https://www.ijhpm.com/article_3866.html
https://www.ijhpm.com/article_3866.html
https://ieeexplore.ieee.org/abstract/document/9140787
https://ieeexplore.ieee.org/abstract/document/9140787
https://ieeexplore.ieee.org/abstract/document/9140787
https://ieeexplore.ieee.org/abstract/document/9140787
https://ieeexplore.ieee.org/abstract/document/9140787
https://dc.uwm.edu/cgi/viewcontent.cgi?article=1125&context=ijger
https://dc.uwm.edu/cgi/viewcontent.cgi?article=1125&context=ijger
https://dc.uwm.edu/cgi/viewcontent.cgi?article=1125&context=ijger
https://dc.uwm.edu/cgi/viewcontent.cgi?article=1125&context=ijger
https://www.seer.ufrgs.br/rita/article/view/RITA_VOL27_NR2_81/pdf
https://www.seer.ufrgs.br/rita/article/view/RITA_VOL27_NR2_81/pdf
https://www.seer.ufrgs.br/rita/article/view/RITA_VOL27_NR2_81/pdf
https://link.springer.com/chapter/10.1007/978-3-030-38028-1_7
https://link.springer.com/chapter/10.1007/978-3-030-38028-1_7
https://link.springer.com/chapter/10.1007/978-3-030-38028-1_7
https://link.springer.com/chapter/10.1007/978-3-030-38028-1_7
https://www.medrxiv.org/content/10.1101/2020.04.11.20061143v1.full.pdf
https://www.medrxiv.org/content/10.1101/2020.04.11.20061143v1.full.pdf
https://ieeexplore.ieee.org/abstract/document/9085331
https://ieeexplore.ieee.org/abstract/document/9085331
https://ieeexplore.ieee.org/abstract/document/9085331
https://www.scielo.br/scielo.php?pid=S2318-03312020000100225&script=sci_arttext
https://www.scielo.br/scielo.php?pid=S2318-03312020000100225&script=sci_arttext
https://www.scielo.br/scielo.php?pid=S2318-03312020000100225&script=sci_arttext
https://journals.openedition.org/cybergeo/34767
https://journals.openedition.org/cybergeo/34767
https://journals.openedition.org/cybergeo/34767
https://journals.openedition.org/cybergeo/34767
https://www.researchgate.net/profile/Fawad_Taj/publication/339904892_Towards_a_Generic_Framework_for_a_Health_Behaviour_Change_Support_Agent/links/5e85e289a6fdcca789e96980/Towards-a-Generic-Framework-for-a-Health-Behaviour-Change-Support-Agent.pdf
https://www.researchgate.net/profile/Fawad_Taj/publication/339904892_Towards_a_Generic_Framework_for_a_Health_Behaviour_Change_Support_Agent/links/5e85e289a6fdcca789e96980/Towards-a-Generic-Framework-for-a-Health-Behaviour-Change-Support-Agent.pdf
https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2019.3017
https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2019.3017
https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2019.3017


GAMA v1.8.2 documentation Chapter 36. Scientific References

• Baeza, J.L., Noennig, J.R., Weber, V., Grignard, A., Noyman, A., Larson,
K., Saxe, S. and Baldauf, U., 2020. Mobility Solutions for Cruise Passenger
Transfer: An Exploration of Scenarios Using Agent-Based Simulation Models.
In Towards User-Centric Transport in Europe 2 (pp. 89-101). Springer, Cham.

• Galimberti, A., Alyokhin, A., Qu, H. and Jason, R.O.S.E., 2020. Simulation
modelling of potato virus Y spread in relation to initial inoculum and vector
activity. Journal of Integrative Agriculture, 19(2), pp.376-388.

• Daudé, É. and Tranouez, P., 2020. ESCAPE–SG: un simulateur d’évacuation
massive de population pour la formation des acteurs à la gestion de crise.
Netcom. Réseaux, communication et territoires.

2019

• Démare, T., Bertelle, C., Dutot, A. and Fournier, D., 2019. Adaptive behavior
modeling in logistic systems with agents and dynamic graphs. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 13(3), pp.1-25.

• Olszewski, R., Pałka, P., Turek, A., Kietlińska, B., Płatkowski, T. and
Borkowski, M., 2019. Spatiotemporal Modeling of the Smart City Residents’
Activity with Multi-Agent Systems. Applied Sciences, 9(10), p.2059.

• Larsen, J.B., 2019. Going beyond BDI for agent-based simulation. Journal of
Information and Telecommunication, 3(4), pp.446-464.

• Larsen J.B., 2019. Adding Organizational Reasoning to Agent-Based Simu-
lations in GAMA. In: Weyns D., Mascardi V., Ricci A. (eds) Engineering
Multi-Agent Systems. EMAS 2018. LNCS, vol 11375. Springer, Cham.

• Cura R., 2019. « Model Visualization ». In Pumain D. (dir), Geographical
Modeling: Cities and Territories, John Wiley & Sons, Ltd, pp. 151-91.

• Humann, J. and Pollard, K.A., 2019. Human Factors in the Scalability of
Multirobot Operation: A Review and Simulation. In 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC) (pp. 700-707). IEEE.

• Lammoglia, A., Leturcq, S., Delay, E., 2019. The VitiTerroir model to simulate
the spatial dynamics of vineyards on the long term (1836-2014). Example of
application in the department of Indre-et-Loire. Cybergeo: European Journal
of Geography. 2019 Dec 8.

• Taillandier, P., Salliou, N., Thomopoulos, R., 2019. Coupling agent-based
models and argumentation framework to simulate opinion dynamics: application
to vegetarian diet diffusion. Social Simulation Conference 2019, Sep 2019, Mainz,
Germany. ffhal-02265765f

v 1.8.2 620

https://link.springer.com/chapt.../10.1007/978-3-030-38028-1_7
https://link.springer.com/chapt.../10.1007/978-3-030-38028-1_7
https://link.springer.com/chapt.../10.1007/978-3-030-38028-1_7
https://link.springer.com/chapt.../10.1007/978-3-030-38028-1_7
https://www.sciencedirect.com/science/article/pii/S2095311919626560
https://www.sciencedirect.com/science/article/pii/S2095311919626560
https://www.sciencedirect.com/science/article/pii/S2095311919626560
https://journals.openedition.org/netcom/4340
https://journals.openedition.org/netcom/4340
https://journals.openedition.org/netcom/4340
https://dl.acm.org/doi/fullHtml/10.1145/3313799
https://dl.acm.org/doi/fullHtml/10.1145/3313799
https://dl.acm.org/doi/fullHtml/10.1145/3313799
https://doi.org/10.3390/app9102059
https://doi.org/10.3390/app9102059
https://doi.org/10.3390/app9102059
https://www.tandfonline.com/doi/full/10.1080/24751839.2019.1620024
https://www.tandfonline.com/doi/full/10.1080/24751839.2019.1620024
https://doi.org/10.1007/978-3-030-25693-7_13
https://doi.org/10.1007/978-3-030-25693-7_13
https://doi.org/10.1007/978-3-030-25693-7_13
https://doi.org/10.1002/9781119687290.ch6
https://doi.org/10.1002/9781119687290.ch6
https://ieeexplore.ieee.org/document/8913876
https://ieeexplore.ieee.org/document/8913876
https://ieeexplore.ieee.org/document/8913876
https://journals.openedition.org/cybergeo/33636
https://journals.openedition.org/cybergeo/33636
https://journals.openedition.org/cybergeo/33636
https://journals.openedition.org/cybergeo/33636
https://hal.inria.fr/hal-02265765/document
https://hal.inria.fr/hal-02265765/document
https://hal.inria.fr/hal-02265765/document
https://hal.inria.fr/hal-02265765/document


GAMA v1.8.2 documentation Chapter 36. Scientific References

• Mancheva, L., Adam, C., & Dugdale, J., 2019. Multi-agent geospatial simulation
of human interactions and behaviour in bushfires. In International Conference
on Information Systems for Crisis Response and Management. In ISCRAM
2019 conference, Valencia, Spain.

• Daudé, E., Chapuis, K., Taillandier, P., Tranouez, P., Caron, C., Drogoul, A.,
Gaudou, B., Rey-Coyrehourq, S., Saval, A., Zucker, J. D., 2019. ESCAPE: Ex-
ploring by Simulation Cities Awareness on Population Evacuation. In ISCRAM
2019 conference, Valencia, Spain.

• Farias, G. P., Leitzke, B. S., Born, M. B., de Aguiar, M. S., Adamatti, D. F.,
2019. Modelagem Baseada em Agentes para Analise de Recursos Hidricos. In
the Workshop-School on Agents, Environments, and Applications (WESAAC),
Florianopolis – Santa Catarina (Brazil).

• Marrocco, L., Ferrer, E. C., Bucchiarone, A., Grignard, A., Alonso, L., Larson,
K., 2019. BASIC: Towards a Blockchained Agent-Based SImulator for Cities.
In International Workshop on Massively Multiagent Systems (pp. 144-162).
Springer, Cham.

• Ruiz-Chavez, Z., Salvador-Meneses, J., Mejía-Astudillo, C., Diaz-Quilachamin,
S., 2019. Analysis of Dogs’s Abandonment Problem Using Georeferenced
Multi-agent Systems. International Work-Conference on the Interplay Be-
tween Natural and Artificial Computation (pp. 297-306). Springer, Cham.
https://doi.org/10.1007/978-3-030-19651-6_29

• Rodrique, K., Tuong, H., Manh, N., 2019. An Agent-based Simulation for Study-
ing Air Pollution from Traffic in Urban Areas: The Case of Hanoi City. Int. J.
Adv. Comput. Sci. Appl. 10. https://doi.org/10.14569/IJACSA.2019.0100376

• Micolier, A., Taillandier, F., Taillandier, P., Bos, F., 2019. Li-BIM, an
agent-based approach to simulate occupant-building interaction from the
Building-Information Modelling. Eng. Appl. Artif. Intell. 82, 44–59.
https://doi.org/10.1016/j.engappai.2019.03.008

• Houssou, N.L.J., Cordero, J.D., Bouadjio-Boulic, A., Morin, L., Maestripieri,
N., Ferrant, S., Belem, M., Pelaez Sanchez, J.I., Saenz, M., Lerigoleur, E., Elger,
A., Gaudou, B., Maurice, L., Saqalli, M., 2019. Synchronizing Histories of
Exposure and Demography: The Construction of an Agent-Based Model of the
Ecuadorian Amazon Colonization and Exposure to Oil Pollution Hazards. J.
Artif. Soc. Soc. Simul. 22, 1. https://doi.org/10.18564/jasss.3957

• Knapps, V., Zimmermann, K.-H., 2019. Distributed Monitoring of Topological
Events via Homology. ArXiv190104146 Cs Math.

• Galimberti, A., Alyokhin, A., Qu, H., Rose, J., 2019. Simulation modelling
of Potato virus Y spread in relation to initial inoculum and vector activity.

v 1.8.2 621

https://www.researchgate.net/profile/Lyuba_Mancheva2/publication/333429109_Multi-agent_geospatial_simulation_of_human_interactions_and_behaviour_in_bushfires/links/5ced3774299bf109da75498d/Multi-agent-geospatial-simulation-of-human-interactions-and-behaviour-in-bushfires.pdf
https://www.researchgate.net/profile/Lyuba_Mancheva2/publication/333429109_Multi-agent_geospatial_simulation_of_human_interactions_and_behaviour_in_bushfires/links/5ced3774299bf109da75498d/Multi-agent-geospatial-simulation-of-human-interactions-and-behaviour-in-bushfires.pdf
https://www.researchgate.net/profile/Lyuba_Mancheva2/publication/333429109_Multi-agent_geospatial_simulation_of_human_interactions_and_behaviour_in_bushfires/links/5ced3774299bf109da75498d/Multi-agent-geospatial-simulation-of-human-interactions-and-behaviour-in-bushfires.pdf
https://www.researchgate.net/profile/Lyuba_Mancheva2/publication/333429109_Multi-agent_geospatial_simulation_of_human_interactions_and_behaviour_in_bushfires/links/5ced3774299bf109da75498d/Multi-agent-geospatial-simulation-of-human-interactions-and-behaviour-in-bushfires.pdf
https://hal.archives-ouvertes.fr/hal-02130387/document
https://hal.archives-ouvertes.fr/hal-02130387/document
https://hal.archives-ouvertes.fr/hal-02130387/document
https://hal.archives-ouvertes.fr/hal-02130387/document
https://gsigma.ufsc.br/wesaac2019/paper/WESAAC_2019_paper_10.pdf
https://gsigma.ufsc.br/wesaac2019/paper/WESAAC_2019_paper_10.pdf
https://gsigma.ufsc.br/wesaac2019/paper/WESAAC_2019_paper_10.pdf
https://gsigma.ufsc.br/wesaac2019/paper/WESAAC_2019_paper_10.pdf
https://doi.org/10.1007/978-3-030-20937-7_10
https://doi.org/10.1007/978-3-030-20937-7_10
https://doi.org/10.1007/978-3-030-20937-7_10
https://doi.org/10.1007/978-3-030-20937-7_10
https://link.springer.com/chapter/10.1007/978-3-030-19651-6_29
https://link.springer.com/chapter/10.1007/978-3-030-19651-6_29
https://link.springer.com/chapter/10.1007/978-3-030-19651-6_29
https://link.springer.com/chapter/10.1007/978-3-030-19651-6_29
https://link.springer.com/chapter/10.1007/978-3-030-19651-6_29
https://thesai.org/Publications/ViewPaper?Volume=10&Issue=3&Code=IJACSA&SerialNo=76
https://thesai.org/Publications/ViewPaper?Volume=10&Issue=3&Code=IJACSA&SerialNo=76
https://thesai.org/Publications/ViewPaper?Volume=10&Issue=3&Code=IJACSA&SerialNo=76
https://www.sciencedirect.com/science/article/pii/S0952197619300582?fbclid=IwAR197vrRbRq5BOKJqOZRRqHtnOfRxvZ2yJfvvQWQSXLL-p5y1akuDehR4jg
https://www.sciencedirect.com/science/article/pii/S0952197619300582?fbclid=IwAR197vrRbRq5BOKJqOZRRqHtnOfRxvZ2yJfvvQWQSXLL-p5y1akuDehR4jg
https://www.sciencedirect.com/science/article/pii/S0952197619300582?fbclid=IwAR197vrRbRq5BOKJqOZRRqHtnOfRxvZ2yJfvvQWQSXLL-p5y1akuDehR4jg
https://www.sciencedirect.com/science/article/pii/S0952197619300582?fbclid=IwAR197vrRbRq5BOKJqOZRRqHtnOfRxvZ2yJfvvQWQSXLL-p5y1akuDehR4jg
http://jasss.soc.surrey.ac.uk/22/2/1.html
http://jasss.soc.surrey.ac.uk/22/2/1.html
http://jasss.soc.surrey.ac.uk/22/2/1.html
http://jasss.soc.surrey.ac.uk/22/2/1.html
http://jasss.soc.surrey.ac.uk/22/2/1.html
http://jasss.soc.surrey.ac.uk/22/2/1.html
https://arxiv.org/pdf/1901.04146.pdf?fbclid=IwAR2HitGdAVByVBjr8z5AYu9Rxl16fzge8P4vYbXCoxLtoVGDDmk1ZjZw_vg
https://arxiv.org/pdf/1901.04146.pdf?fbclid=IwAR2HitGdAVByVBjr8z5AYu9Rxl16fzge8P4vYbXCoxLtoVGDDmk1ZjZw_vg
http://www.chinaagrisci.com/Jwk_zgnykxen/EN/article/downloadArticleFile.do?attachType=PDF&id=12288
http://www.chinaagrisci.com/Jwk_zgnykxen/EN/article/downloadArticleFile.do?attachType=PDF&id=12288
http://www.chinaagrisci.com/Jwk_zgnykxen/EN/article/downloadArticleFile.do?attachType=PDF&id=12288


GAMA v1.8.2 documentation Chapter 36. Scientific References

Journal of Integrative Agriculture

2018

• Alonso, L., Zhang, Y.R., Grignard, A., Noyman, A., Sakai, Y., ElKatsha, M.,
Doorley, R. and Larson, K., 2018, July. Cityscope: a data-driven interactive
simulation tool for urban design. Use case Volpe. In International conference
on complex systems (pp. 253-261). Springer, Cham.

• Sobieraj, J., Nouveliere, L., Hutzler, G. and Klaudel, H., 2018, October. Mod-
élisation du changement de voie de véhicules autonomes à différents niveaux
d’abstraction. Journées Francophones sur les Systèmes Multi-Agents 2018
(JFSMA’2018), Oct 2018, Métabief, France. pp.21–30.

• Tsagkis, P. and Photis, Y.N., 2018. Using Gama platform and Urban Atlas Data
to predict urban growth. The case of Athens. 13th International Conference of
the Hellenic Geographical Society.

• Marilleau, N., Lang, C., Giraudoux, P., 2018. Coupling agent-based with
equation-based models to study spatially explicit megapopulation dynamics.
Ecol. Model. 384, 34–42. https://doi.org/10.1016/j.ecolmodel.2018.06.011

• Adam, C., Taillandier, F., 2018. Games ready to use: A serious game for teaching
natural risk management. Simulation and Gaming, SAGE Publications, 2018.

• Alfeo, A.L., Ferrer, E.C., Carrillo, Y.L., Grignard, A., Pastor, L.A., Sleeper,
D.T., Cimino, M.G.C.A., Lepri, B., Vaglini, G., Larson, K., Dorigo, M., Pent-
land, A. ‘Sandy’, 2018. Urban Swarms: A new approach for autonomous waste
management. ArXiv181007910 Cs.

• Qu, H., Drummond, F., 2018. Simulation-based modeling of wild
blueberry pollination. Comput. Electron. Agric. 144, 94–101.
https://doi.org/10.1016/j.compag.2017.11.003

• Shaham, Y., Benenson, I., 2018. Modeling fire spread in cities with non-
flammable construction. Int. J. Disaster Risk Reduct. 31, 1337–1353.
https://doi.org/10.1016/j.ijdrr.2018.03.010

• Mewes, B., Schumann, A.H., 2018. IPA (v1): a framework for agent-based
modelling of soil water movement. Geosci. Model Dev. 11, 2175–2187.
https://doi.org/10.5194/gmd-11-2175-2018

• Grignard, A., Macià, N., Alonso Pastor, L., Noyman, A., Zhang, Y., Larson,
K., 2018. CityScope Andorra: A Multi-level Interactive and Tangible Agent-
based Visualization, in: Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’18. International

v 1.8.2 622

http://www.chinaagrisci.com/Jwk_zgnykxen/EN/article/downloadArticleFile.do?attachType=PDF&id=12288
http://www.chinaagrisci.com/Jwk_zgnykxen/EN/article/downloadArticleFile.do?attachType=PDF&id=12288
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_27
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_27
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_27
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_27
https://hal.archives-ouvertes.fr/hal-02062425
https://hal.archives-ouvertes.fr/hal-02062425
https://hal.archives-ouvertes.fr/hal-02062425
https://hal.archives-ouvertes.fr/hal-02062425
http://www.hellenicgeosociety.org/en/system/files/tsagkis_urban_growth_gama_athens.pdf
http://www.hellenicgeosociety.org/en/system/files/tsagkis_urban_growth_gama_athens.pdf
http://www.hellenicgeosociety.org/en/system/files/tsagkis_urban_growth_gama_athens.pdf
https://www.sciencedirect.com/science/article/pii/S0304380018302163
https://www.sciencedirect.com/science/article/pii/S0304380018302163
https://www.sciencedirect.com/science/article/pii/S0304380018302163
https://halshs.archives-ouvertes.fr/halshs-02115959/document
https://halshs.archives-ouvertes.fr/halshs-02115959/document
https://arxiv.org/pdf/1810.07910.pdf?fbclid=IwAR1l03b-whlHCWsKG6B_0Dv8CboY12epzCHyNYbcft_CZKHWpZETZvBcGis
https://arxiv.org/pdf/1810.07910.pdf?fbclid=IwAR1l03b-whlHCWsKG6B_0Dv8CboY12epzCHyNYbcft_CZKHWpZETZvBcGis
https://arxiv.org/pdf/1810.07910.pdf?fbclid=IwAR1l03b-whlHCWsKG6B_0Dv8CboY12epzCHyNYbcft_CZKHWpZETZvBcGis
https://arxiv.org/pdf/1810.07910.pdf?fbclid=IwAR1l03b-whlHCWsKG6B_0Dv8CboY12epzCHyNYbcft_CZKHWpZETZvBcGis
https://www.sciencedirect.com/science/article/pii/S0168169916310274?fbclid=IwAR2pwkfBJAfZFl6B0En6uZvSloIqLw8ge_oEQ9Bnt0eKk-QgUbNapl2Ke_E
https://www.sciencedirect.com/science/article/pii/S0168169916310274?fbclid=IwAR2pwkfBJAfZFl6B0En6uZvSloIqLw8ge_oEQ9Bnt0eKk-QgUbNapl2Ke_E
https://www.sciencedirect.com/science/article/pii/S0168169916310274?fbclid=IwAR2pwkfBJAfZFl6B0En6uZvSloIqLw8ge_oEQ9Bnt0eKk-QgUbNapl2Ke_E
https://www.sciencedirect.com/science/article/pii/S2212420918302991?fbclid=IwAR2zpwWzjazONUVbYjU-YyriG76HViaI-lJn0ShejD2AAkp8MX5siejsNYE
https://www.sciencedirect.com/science/article/pii/S2212420918302991?fbclid=IwAR2zpwWzjazONUVbYjU-YyriG76HViaI-lJn0ShejD2AAkp8MX5siejsNYE
https://www.sciencedirect.com/science/article/pii/S2212420918302991?fbclid=IwAR2zpwWzjazONUVbYjU-YyriG76HViaI-lJn0ShejD2AAkp8MX5siejsNYE
https://www.geosci-model-dev.net/11/2175/2018/gmd-11-2175-2018.pdf
https://www.geosci-model-dev.net/11/2175/2018/gmd-11-2175-2018.pdf
https://www.geosci-model-dev.net/11/2175/2018/gmd-11-2175-2018.pdf
https://dl.acm.org/citation.cfm?id=3238030&fbclid=IwAR1q0nOhOs0xw1yttMjeQ_P41fKaDWX-EN-hzL92s9rPdunEuCpQSFyFmsU
https://dl.acm.org/citation.cfm?id=3238030&fbclid=IwAR1q0nOhOs0xw1yttMjeQ_P41fKaDWX-EN-hzL92s9rPdunEuCpQSFyFmsU
https://dl.acm.org/citation.cfm?id=3238030&fbclid=IwAR1q0nOhOs0xw1yttMjeQ_P41fKaDWX-EN-hzL92s9rPdunEuCpQSFyFmsU
https://dl.acm.org/citation.cfm?id=3238030&fbclid=IwAR1q0nOhOs0xw1yttMjeQ_P41fKaDWX-EN-hzL92s9rPdunEuCpQSFyFmsU
https://dl.acm.org/citation.cfm?id=3238030&fbclid=IwAR1q0nOhOs0xw1yttMjeQ_P41fKaDWX-EN-hzL92s9rPdunEuCpQSFyFmsU


GAMA v1.8.2 documentation Chapter 36. Scientific References

Foundation for Autonomous Agents and Multiagent Systems, Richland, SC,
pp. 1939–1940.

• Zhang, Y., Grignard, A., Lyons, K., Aubuchon, A., Larson, K., 2018. Real-time
Machine Learning Prediction of an Agent-Based Model for Urban Decision-
making (Extended Abstract) 3.

• Bandyopadhyay, M., Singh, V., 2018. Agent-based geosimulation for as-
sessment of urban emergency response plans. Arab. J. Geosci. 11, 165.
https://doi.org/10.1007/s12517-018-3523-5

• Samad, T., Iqbal, S., Malik, A.W., Arif, O., Bloodsworth, P., 2018.
A multi-agent framework for cloud-based management of collaborative
robots. Int. J. Adv. Robot. Syst. 15, 172988141878507.
https://doi.org/10.1177/1729881418785073

• Humann, J., Spero, E., 2018. Modeling and simulation of multi-UAV, multi-
operator surveillance systems, in: 2018 Annual IEEE International Systems
Conference (SysCon). Presented at the 2018 Annual IEEE International Systems
Conference (SysCon), pp. 1–8. https://doi.org/10.1109/SYSCON.2018.8369546

• Mazzoli, M., Re, T., Bertilone, R., Maggiora, M., Pellegrino, J., 2018. Agent
Based Rumor Spreading in a scale-free network. ArXiv180505999 Cs.

• Grignard, A., Alonso, L., Taillandier, P., Gaudou, B., Nguyen-Huu, T., Gruel,
W., Larson, K., 2018a. The Impact of New Mobility Modes on a City: A Generic
Approach Using ABM, in: Morales, A.J., Gershenson, C., Braha, D., Minai,
A.A., Bar-Yam, Y. (Eds.), Unifying Themes in Complex Systems IX, Springer
Proceedings in Complexity. Springer International Publishing, pp. 272–280.

• Touhbi, S., Babram, M.A., Nguyen-Huu, T., Marilleau, N., Hbid, M.L.,
Cambier, C., Stinckwich, S., 2018. Time Headway analysis on urban
roads of the city of Marrakesh. Procedia Comput. Sci. 130, 111–118.
https://doi.org/10.1016/j.procs.2018.04.019

• Laatabi, A., Marilleau, N., Nguyen-Huu, T., Hbid, H., Ait Babram, M., 2018.
ODD+2D: An ODD Based Protocol for Mapping Data to Empirical ABMs. J.
Artif. Soc. Soc. Simul. 21, 9. https://doi.org/10.18564/jasss.3646

• Chapuis K., Taillandier P., Gaudou B., Drogoul A., Daudé E. (2018) A Multi-
modal Urban Traffic Agent-Based Framework to Study Individual Response to
Catastrophic Events. In: Miller T., Oren N., Sakurai Y., Noda I., Savarimuthu
B., Cao Son T. (eds) PRIMA 2018: Principles and Practice of Multi-Agent
Systems. PRIMA 2018. Lecture Notes in Computer Science, vol 11224. Springer,
Cham

• Bourgais, M., Taillandier, P., Vercouter, L., Adam, C., 2018. Emotion Modeling
in Social Simulation: A Survey. J. Artif. Soc. Soc. Simul. 21, 5.

v 1.8.2 623

https://dl.acm.org/citation.cfm?id=3238030&fbclid=IwAR1q0nOhOs0xw1yttMjeQ_P41fKaDWX-EN-hzL92s9rPdunEuCpQSFyFmsU
https://dl.acm.org/citation.cfm?id=3238030&fbclid=IwAR1q0nOhOs0xw1yttMjeQ_P41fKaDWX-EN-hzL92s9rPdunEuCpQSFyFmsU
https://dl.acm.org/citation.cfm?id=3238030&fbclid=IwAR1q0nOhOs0xw1yttMjeQ_P41fKaDWX-EN-hzL92s9rPdunEuCpQSFyFmsU
http://ifaamas.org/Proceedings/aamas2018/pdfs/p2171.pdf
http://ifaamas.org/Proceedings/aamas2018/pdfs/p2171.pdf
http://ifaamas.org/Proceedings/aamas2018/pdfs/p2171.pdf
https://link.springer.com/article/10.1007/s12517-018-3523-5?fbclid=IwAR3O4FZnj0Z0S1bxVtm9cZIaa3WsDZeRQweFE2jz5WQwjh-UGHOfMHrd6HA
https://link.springer.com/article/10.1007/s12517-018-3523-5?fbclid=IwAR3O4FZnj0Z0S1bxVtm9cZIaa3WsDZeRQweFE2jz5WQwjh-UGHOfMHrd6HA
https://link.springer.com/article/10.1007/s12517-018-3523-5?fbclid=IwAR3O4FZnj0Z0S1bxVtm9cZIaa3WsDZeRQweFE2jz5WQwjh-UGHOfMHrd6HA
https://journals.sagepub.com/doi/10.1177/1729881418785073?fbclid=IwAR1f8fpYevgnIP1WQVgktpxKFvS25nP1909EkpxqaCqnn0rwXSqnNoNXtcU
https://journals.sagepub.com/doi/10.1177/1729881418785073?fbclid=IwAR1f8fpYevgnIP1WQVgktpxKFvS25nP1909EkpxqaCqnn0rwXSqnNoNXtcU
https://journals.sagepub.com/doi/10.1177/1729881418785073?fbclid=IwAR1f8fpYevgnIP1WQVgktpxKFvS25nP1909EkpxqaCqnn0rwXSqnNoNXtcU
https://journals.sagepub.com/doi/10.1177/1729881418785073?fbclid=IwAR1f8fpYevgnIP1WQVgktpxKFvS25nP1909EkpxqaCqnn0rwXSqnNoNXtcU
https://ieeexplore.ieee.org/abstract/document/8369546?fbclid=IwAR0qCeI1WHraRCeff7jDY7leNZOpeW-nUgUM24wdzvZZ-EVo3osE00vYbaE
https://ieeexplore.ieee.org/abstract/document/8369546?fbclid=IwAR0qCeI1WHraRCeff7jDY7leNZOpeW-nUgUM24wdzvZZ-EVo3osE00vYbaE
https://ieeexplore.ieee.org/abstract/document/8369546?fbclid=IwAR0qCeI1WHraRCeff7jDY7leNZOpeW-nUgUM24wdzvZZ-EVo3osE00vYbaE
https://ieeexplore.ieee.org/abstract/document/8369546?fbclid=IwAR0qCeI1WHraRCeff7jDY7leNZOpeW-nUgUM24wdzvZZ-EVo3osE00vYbaE
https://arxiv.org/pdf/1805.05999.pdf?fbclid=IwAR0IBcHTAewId0jtn1MMqOhxMeO-19qnaA_1V6Wy1o8r6E9zzUWL4XRp4Pw
https://arxiv.org/pdf/1805.05999.pdf?fbclid=IwAR0IBcHTAewId0jtn1MMqOhxMeO-19qnaA_1V6Wy1o8r6E9zzUWL4XRp4Pw
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_29
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_29
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_29
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_29
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_29
https://www.sciencedirect.com/science/article/pii/S1877050918303697
https://www.sciencedirect.com/science/article/pii/S1877050918303697
https://www.sciencedirect.com/science/article/pii/S1877050918303697
https://www.sciencedirect.com/science/article/pii/S1877050918303697
http://jasss.soc.surrey.ac.uk/21/2/9.html
http://jasss.soc.surrey.ac.uk/21/2/9.html
http://jasss.soc.surrey.ac.uk/21/2/9.html
https://link.springer.com/chapter/10.1007/978-3-030-03098-8_28
https://link.springer.com/chapter/10.1007/978-3-030-03098-8_28
https://link.springer.com/chapter/10.1007/978-3-030-03098-8_28
https://link.springer.com/chapter/10.1007/978-3-030-03098-8_28
https://link.springer.com/chapter/10.1007/978-3-030-03098-8_28
https://link.springer.com/chapter/10.1007/978-3-030-03098-8_28
http://jasss.soc.surrey.ac.uk/21/2/5.html
http://jasss.soc.surrey.ac.uk/21/2/5.html


GAMA v1.8.2 documentation Chapter 36. Scientific References

• Grillot M., Vayssières J., Masse D., 2018. Agent-based modelling as
a time machine to assess nutrient cycling reorganization during past
agrarian transitions in West Africa. Agricultural Systems 164, 133-151.
https://doi.org/10.1016/j.agsy.2018.04.008

• Grillot, M., Guerrin, F., Gaudou, B., Masse, D., Vayssières, J., 2018. Multi-
level analysis of nutrient cycling within agro-sylvo-pastoral landscapes in West
Africa using an agent-based model. Environ. Model. Softw. 107, 267–280.
https://doi.org/10.1016/j.envsoft.2018.05.003

• Valette, M., Gaudou, B., Longin, D., Taillandier, P., 2018. Modeling a Real-
Case Situation of Egress Using BDI Agents with Emotions and Social Skills, in:
Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T.
(Eds.), PRIMA 2018: Principles and Practice of Multi-Agent Systems. Springer
International Publishing, Cham, pp. 3–18. https://doi.org/10.1007/978-3-030-
03098-8_1

• Humann, J., Spero, E. (2018) Modeling and Simulation of multi-UAV, multi-
Operator Surveillance Systems, 2018 Annual IEEE International Systems Con-
ference (SysCon), Vancouver, BC.

• Lammoglia, A., Leturcq, S., Delay, E., 2018. Le modèle VitiTerroir pour
simuler la dynamique spatiale des vignobles sur le temps long (1836-2014).
Exemple d’application au département d’Indre-et-Loire. Cybergeo Eur. J.
Geogr. https://doi.org/10.4000/cybergeo.29324

• Amores, D., Vasardani, M., Tanin, E., 2018. Early Detection
of Herding Behaviour during Emergency Evacuations 15 pages.
https://doi.org/10.4230/lipics.giscience.2018.1

• Rakotoarisoa, M.M., Fleurant, C., Taibi, A.N., Rouan, M., Caillault, S.,
Razakamanana, T., Ballouche, A., 2018. Un modèle multi-agents pour
évaluer la vulnérabilité aux inondations : le cas des villages aux alen-
tours du Fleuve Fiherenana (Madagascar). Cybergeo Eur. J. Geogr.
https://doi.org/10.4000/cybergeo.29144

2017

• Bañgate, J., Dugdale, J., Beck, E., & Adam, C. (2017, December). SOLACE
a multi-agent model of human behaviour driven by social attachment dur-
ing seismic crisis. In 2017 4th International Conference on Information and
Communication Technologies for Disaster Management (ICT-DM) (pp. 1-9).
IEEE.

v 1.8.2 624

https://doi.org/10.1016/j.agsy.2018.04.008
https://doi.org/10.1016/j.agsy.2018.04.008
https://doi.org/10.1016/j.agsy.2018.04.008
https://doi.org/10.1016/j.agsy.2018.04.008
https://www.sciencedirect.com/science/article/pii/S1364815217304000
https://www.sciencedirect.com/science/article/pii/S1364815217304000
https://www.sciencedirect.com/science/article/pii/S1364815217304000
https://www.sciencedirect.com/science/article/pii/S1364815217304000
https://link.springer.com/chapter/10.1007/978-3-030-03098-8_1
https://link.springer.com/chapter/10.1007/978-3-030-03098-8_1
https://link.springer.com/chapter/10.1007/978-3-030-03098-8_1
https://link.springer.com/chapter/10.1007/978-3-030-03098-8_1
https://link.springer.com/chapter/10.1007/978-3-030-03098-8_1
https://link.springer.com/chapter/10.1007/978-3-030-03098-8_1
https://ieeexplore.ieee.org/document/8369546
https://ieeexplore.ieee.org/document/8369546
https://ieeexplore.ieee.org/document/8369546
https://journals.openedition.org/cybergeo/29324?fbclid=IwAR0EZmIGxzsUEMY4movt59gB9xV0XiL35B0B-ELg2-eFMJvMNL12ohqlbdQ
https://journals.openedition.org/cybergeo/29324?fbclid=IwAR0EZmIGxzsUEMY4movt59gB9xV0XiL35B0B-ELg2-eFMJvMNL12ohqlbdQ
https://journals.openedition.org/cybergeo/29324?fbclid=IwAR0EZmIGxzsUEMY4movt59gB9xV0XiL35B0B-ELg2-eFMJvMNL12ohqlbdQ
https://journals.openedition.org/cybergeo/29324?fbclid=IwAR0EZmIGxzsUEMY4movt59gB9xV0XiL35B0B-ELg2-eFMJvMNL12ohqlbdQ
http://drops.dagstuhl.de/opus/volltexte/2018/9329/pdf/LIPIcs-GISCIENCE-2018-1.pdf?fbclid=IwAR0oHXmLM8V8wX7kqBjH0-o_sXzEPEriIhDTa9FrpfLdiBQQgAE5Sl7NAFM
http://drops.dagstuhl.de/opus/volltexte/2018/9329/pdf/LIPIcs-GISCIENCE-2018-1.pdf?fbclid=IwAR0oHXmLM8V8wX7kqBjH0-o_sXzEPEriIhDTa9FrpfLdiBQQgAE5Sl7NAFM
http://drops.dagstuhl.de/opus/volltexte/2018/9329/pdf/LIPIcs-GISCIENCE-2018-1.pdf?fbclid=IwAR0oHXmLM8V8wX7kqBjH0-o_sXzEPEriIhDTa9FrpfLdiBQQgAE5Sl7NAFM
https://journals.openedition.org/cybergeo/29144?fbclid=IwAR324KnZAEbK2cTV1x3L-DG-1Ggzp67kKFt6puZ8PwMcRCf5XIYT6Sv9wAI
https://journals.openedition.org/cybergeo/29144?fbclid=IwAR324KnZAEbK2cTV1x3L-DG-1Ggzp67kKFt6puZ8PwMcRCf5XIYT6Sv9wAI
https://journals.openedition.org/cybergeo/29144?fbclid=IwAR324KnZAEbK2cTV1x3L-DG-1Ggzp67kKFt6puZ8PwMcRCf5XIYT6Sv9wAI
https://journals.openedition.org/cybergeo/29144?fbclid=IwAR324KnZAEbK2cTV1x3L-DG-1Ggzp67kKFt6puZ8PwMcRCf5XIYT6Sv9wAI
https://journals.openedition.org/cybergeo/29144?fbclid=IwAR324KnZAEbK2cTV1x3L-DG-1Ggzp67kKFt6puZ8PwMcRCf5XIYT6Sv9wAI
https://www.researchgate.net/publication/322881549_SOLACE_a_multi-agent_model_of_human_behaviour_driven_by_social_attachment_during_seismic_crisis
https://www.researchgate.net/publication/322881549_SOLACE_a_multi-agent_model_of_human_behaviour_driven_by_social_attachment_during_seismic_crisis
https://www.researchgate.net/publication/322881549_SOLACE_a_multi-agent_model_of_human_behaviour_driven_by_social_attachment_during_seismic_crisis
https://www.researchgate.net/publication/322881549_SOLACE_a_multi-agent_model_of_human_behaviour_driven_by_social_attachment_during_seismic_crisis
https://www.researchgate.net/publication/322881549_SOLACE_a_multi-agent_model_of_human_behaviour_driven_by_social_attachment_during_seismic_crisis


GAMA v1.8.2 documentation Chapter 36. Scientific References

• Arcile, J., Sobieraj, J., Klaudel, H., & Hutzler, G. (2017). Combination
of simulation and model-checking for the analysis of autonomous vehicles’
behaviors: A case study. In Multi-Agent Systems and Agreement Technologies
(pp. 292-304). Springer, Cham.

• Cura, R., Tannier, C., Leturcq, S., Zadora-Rio, E., Lorans, E., &
Rodier, X. (2017). Transition 8: 800-1100. Fixation, polarisation et
hiérarchisation de l’habitat rural en Europe du Nord-Ouest (chap. 11).
(https://simfeodal.github.io/)

• Becu, N., Amalric, M., Anselme, B., Beck, E., Bertin, X., Delay, E., Long,
N., Marilleau, N., Pignon-Mussaud, C., Rousseaux, F., 2017. Participatory
simulation to foster social learning on coastal flooding prevention. Environ.
Model. Softw. 98, 1–11. https://doi.org/10.1016/j.envsoft.2017.09.003

• Adam, C., Gaudou, B., 2017. Modelling Human Behaviours in Disasters from
Interviews: Application to Melbourne Bushfires. J. Artif. Soc. Soc. Simul. 20,
12. https://doi.org/10.18564/jasss.3395

• Adam, C., Taillandier, P., Dugdale, J., Gaudou, B., 2017. BDI vs FSM Agents
in Social Simulations for Raising Awareness in Disasters: A Case Study in
Melbourne Bushfires. Int. J. Inf. Syst. Crisis Response Manag. 9, 27–44.
https://doi.org/10.4018/IJISCRAM.2017010103

• Amalric, M., Anselme, B., Bécu, N., Delay, E., Marilleau, N., Pignon, C.,
Rousseaux, F., 2017. Sensibiliser au risque de submersion marine par le jeu
ou faut-il qu’un jeu soit spatialement réaliste pour être efficace ? Sci. Jeu.
https://doi.org/10.4000/sdj.859

• Emery, J., Marilleau, N., Martiny, N., Thévenin, T., Badram, M.A., Grignard,
A., Hbdid, H., 2017. MARRAKAIR : UNE SIMULATION PARTICIPATIVE
POUR OBSERVER LES ÉMISSIONS ATMOSPHÉRIQUES DU TRA- FIC
ROUTIER EN MILIEU URBAIN 5.

• Martiny, N., Emery, J., Ceamanos, X., Briottet, X., Marilleau, N., Thevenin,
T., Léon, J.-F., 2017. La Qualité de l’air en ville à Très haute Résolution
(Quali_ThR): Apport des images Pléiades dans la démarche SCAUP?, in:
FUTURMOB : Préparer La Transition Vers La Mobilité Autonome. Montbéliard,
France.

• Ta, X.-H., Gaudou, B., Longin, D., Ho, T.V., 2017. Emotional contagion model
for group evacuation simulation. Informatica 41.

• Huynh, N.Q., Nguyen-Huu, T., Grignard, A., Huynh, H.X., Drogoul, A., 2017.
Coupling equation based models and agent-based models: example of a multi-
strains and switch SIR toy model. EAI Endorsed Trans. Context-Aware Syst.
Appl. 4, 152334. https://doi.org/10.4108/eai.6-3-2017.152334

v 1.8.2 625

https://link.springer.com/chapter/10.1007/978-3-030-01713-2_21
https://link.springer.com/chapter/10.1007/978-3-030-01713-2_21
https://link.springer.com/chapter/10.1007/978-3-030-01713-2_21
https://link.springer.com/chapter/10.1007/978-3-030-01713-2_21
https://hal.archives-ouvertes.fr/hal-01666498/
https://hal.archives-ouvertes.fr/hal-01666498/
https://hal.archives-ouvertes.fr/hal-01666498/
https://www.sciencedirect.com/science/article/pii/S1364815216310477
https://www.sciencedirect.com/science/article/pii/S1364815216310477
https://www.sciencedirect.com/science/article/pii/S1364815216310477
https://www.sciencedirect.com/science/article/pii/S1364815216310477
http://jasss.soc.surrey.ac.uk/20/3/12.html
http://jasss.soc.surrey.ac.uk/20/3/12.html
http://jasss.soc.surrey.ac.uk/20/3/12.html
https://www.igi-global.com/article/bdi-vs-fsm-agents-in-social-simulations-for-raising-awareness-in-disasters/192104
https://www.igi-global.com/article/bdi-vs-fsm-agents-in-social-simulations-for-raising-awareness-in-disasters/192104
https://www.igi-global.com/article/bdi-vs-fsm-agents-in-social-simulations-for-raising-awareness-in-disasters/192104
https://www.igi-global.com/article/bdi-vs-fsm-agents-in-social-simulations-for-raising-awareness-in-disasters/192104
https://journals.openedition.org/sdj/859
https://journals.openedition.org/sdj/859
https://journals.openedition.org/sdj/859
https://journals.openedition.org/sdj/859
https://hal.archives-ouvertes.fr/hal-01703019
https://hal.archives-ouvertes.fr/hal-01703019
https://hal.archives-ouvertes.fr/hal-01703019
https://hal.archives-ouvertes.fr/hal-01703019
https://hal.archives-ouvertes.fr/hal-01703019
https://hal.archives-ouvertes.fr/hal-01703019
https://hal.archives-ouvertes.fr/hal-01703019
https://hal.archives-ouvertes.fr/hal-01703019
https://hal.archives-ouvertes.fr/hal-01703019
http://www.informatica.si/index.php/informatica/article/view/1661
http://www.informatica.si/index.php/informatica/article/view/1661
https://eudl.eu/doi/10.4108/eai.6-3-2017.152334
https://eudl.eu/doi/10.4108/eai.6-3-2017.152334
https://eudl.eu/doi/10.4108/eai.6-3-2017.152334
https://eudl.eu/doi/10.4108/eai.6-3-2017.152334


GAMA v1.8.2 documentation Chapter 36. Scientific References

• Taillandier, P., Bourgais, M., Drogoul, A., Vercouter, L. Using parallel comput-
ing to improve the scalability of models with BDI agents. Social Simulation
Conference, Sep 2017, Dublin, Ireland.

• Philippon, D., Choisy, M., Drogoul, A., Gaudou, B., Marilleau, N., Taillandier,
P., Truong, Q.C. (2017) Exploring Trade and Health Policies Influence on
Dengue Spread with an Agent-Based Model, in: Nardin, L.G., Antunes, L.
(Eds.), Multi-Agent Based Simulation XVII. Springer International Publishing,
Cham, pp. 111–127.doi:10.1007/978-3-319-67477-3_6

• Marilleau, N., Giraudoux, P., Lang, C., 2017. Multi-agent simulation as a tool
to study risk in a spatial context, in: International Forum on Disaster Risk
Management. Kunming, China.

2016

• Fosset, P., Banos, A., Beck, E., Chardonnel, S., Lang, C., Marilleau, N.,
Piombini, A., Leysens, T., Conesa, A., Andre-Poyaud, I., Thevenin, T.,
2016. Exploring Intra-Urban Accessibility and Impacts of Pollution Poli-
cies with an Agent-Based Simulation Platform: GaMiroD. Systems 4, 5.
https://doi.org/10.3390/systems4010005

• Grignard, A., Fantino, G., Lauer, J.W., Verpeaux, A., Drogoul, A., 2016. Agent-
Based Visualization: A Simulation Tool for the Analysis of River Morphosed-
imentary Adjustments, in: Gaudou, B., Sichman, J.S. (Eds.), Multi-Agent
Based Simulation XVI. Springer International Publishing, Cham, pp. 109–120.
https://doi.org/10.1007/978-3-319-31447-1_7

• Lucien, L., Lang, C., Marilleau, N., Philippe, L., 2016. Multiagent Hy-
brid Architecture for Collaborative Exchanges between Communicating Ve-
hicles in an Urban Context. Procedia Comput. Sci. 83, 695–699.
https://doi.org/10.1016/j.procs.2016.04.154

• Laatabi, A., Marilleau, N., Nguyen-Huu, T., Hbid, H., Babram, M.A., 2016.
Formalizing Data to Agent Model Mapping Using MOF: Application to a Model
of Residential Mobility in Marrakesh, in: Jezic, G., Chen-Burger, Y.-H.J.,
Howlett, R.J., Jain, L.C. (Eds.), Agent and Multi-Agent Systems: Technol-
ogy and Applications. Springer International Publishing, Cham, pp. 107–117.
https://doi.org/10.1007/978-3-319-39883-9_9

• Taillandier, P., Banos, A., Drogoul, A., Gaudou, B., Marilleau, N., Truong, Q.C.
(2016) Simulating Urban Growth with Raster and Vector models: A case study
for the city of Can Tho, Vietnam, in: Osman, N., Sierra, C. (Eds.), Autonomous

v 1.8.2 626

https://hal.inria.fr/hal-01573385v1
https://hal.inria.fr/hal-01573385v1
https://hal.inria.fr/hal-01573385v1
https://link.springer.com/chapter/10.1007/978-3-319-67477-3_6
https://link.springer.com/chapter/10.1007/978-3-319-67477-3_6
https://link.springer.com/chapter/10.1007/978-3-319-67477-3_6
https://link.springer.com/chapter/10.1007/978-3-319-67477-3_6
https://link.springer.com/chapter/10.1007/978-3-319-67477-3_6
https://hal.archives-ouvertes.fr/hal-01512604
https://hal.archives-ouvertes.fr/hal-01512604
https://hal.archives-ouvertes.fr/hal-01512604
https://www.mdpi.com/2079-8954/4/1/5/htm
https://www.mdpi.com/2079-8954/4/1/5/htm
https://www.mdpi.com/2079-8954/4/1/5/htm
https://www.mdpi.com/2079-8954/4/1/5/htm
https://www.mdpi.com/2079-8954/4/1/5/htm
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_29?fbclid=IwAR2k4X7QTJ5LuD2ScbJwcQjrq0Xqkl0U7PNWdxvOis6Ydl1bAepRGnCzdtM
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_29?fbclid=IwAR2k4X7QTJ5LuD2ScbJwcQjrq0Xqkl0U7PNWdxvOis6Ydl1bAepRGnCzdtM
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_29?fbclid=IwAR2k4X7QTJ5LuD2ScbJwcQjrq0Xqkl0U7PNWdxvOis6Ydl1bAepRGnCzdtM
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_29?fbclid=IwAR2k4X7QTJ5LuD2ScbJwcQjrq0Xqkl0U7PNWdxvOis6Ydl1bAepRGnCzdtM
https://link.springer.com/chapter/10.1007/978-3-319-96661-8_29?fbclid=IwAR2k4X7QTJ5LuD2ScbJwcQjrq0Xqkl0U7PNWdxvOis6Ydl1bAepRGnCzdtM
https://www.sciencedirect.com/science/article/pii/S1877050916301855
https://www.sciencedirect.com/science/article/pii/S1877050916301855
https://www.sciencedirect.com/science/article/pii/S1877050916301855
https://www.sciencedirect.com/science/article/pii/S1877050916301855
https://link.springer.com/chapter/10.1007/978-3-319-39883-9_9
https://link.springer.com/chapter/10.1007/978-3-319-39883-9_9
https://link.springer.com/chapter/10.1007/978-3-319-39883-9_9
https://link.springer.com/chapter/10.1007/978-3-319-39883-9_9
https://link.springer.com/chapter/10.1007/978-3-319-39883-9_9
https://link.springer.com/chapter/10.1007/978-3-319-39883-9_9
https://link.springer.com/chapter/10.1007/978-3-319-46840-2_10
https://link.springer.com/chapter/10.1007/978-3-319-46840-2_10
https://link.springer.com/chapter/10.1007/978-3-319-46840-2_10
https://link.springer.com/chapter/10.1007/978-3-319-46840-2_10


GAMA v1.8.2 documentation Chapter 36. Scientific References

Agents and Multiagent Systems, Lecture Notes in Computer Science. Springer
International Publishing, pp. 154–171. Doi: 10.1007/978-3-319-46840-2_10.

• Nghi, H.Q, Nguyen-Huu, T., Grignard, A., Huynh, X.H., Drogoul, A. (2016) To-
ward an Agent-Based and Equation-Based Coupling Framework. International
Conference on Nature of Computation and Communication, 311-324

• Bhamidipati, S., van der Lei, T., & Herder, P. (2016) A layered approach to
model interconnected infrastructure and its significance for asset management.
EJTIR, 16(1), 254-272.

• Drogoul A., Huynh N.Q. and Truong Q.C. (2016) Coupling environmental,
social and economic models to understand land-use change dynamics in the
Mekong Delta. Front. Environ. Sci. 4:19. doi:10.3389/fenvs.2016.00019.

• Grignard, A., Fantino, G., Lauer, J.W., Verpeaux, A., Drogoul, A., 2016. Agent-
Based Visualization: A Simulation Tool for the Analysis of River Morphosed-
imentary Adjustments, in: Gaudou, B., Sichman, J.S. (Eds.), Multi-Agent
Based Simulation XVI. Springer International Publishing, Cham, pp. 109–120.
https://doi.org/10.1007/978-3-319-31447-1_7

• Truong, Q.C., Taillandier, P., Gaudou, B., Vo, M.Q., Nguyen, T.H., Drogoul, A.
(2016) Exploring Agent Architectures for Farmer Behavior in Land-Use Change.
A Case Study in Coastal Area of the Vietnamese Mekong Delta, in: Gaudou,
B., Sichman, J.S. (Eds.), Multi-Agent Based Simulation XVI, Lecture Notes
in Computer Science. Springer International Publishing, pp. 146–158. doi:
10.1007/978-3-319-31447-1_10.

• Lang, C., Marilleau, N., Giraudoux, P., 2016. Couplage de SMA avec des EDO
pour simuler les phénomènes écologiques à grande échelle, in: 2ème Rencontre
”Informatique Scientifique à Besançon”. Besançon, France.

• Giraudoux, P., Lang, C., Marilleau, N., 2016. Coupling agent based with
equation based models for studying explicitly spatial population dynamics.

• Lucien, L., Lang, C., Marilleau, N., Philippe, L., 2016. A Proposition of Data
Organization and Exchanges to Collaborate in an Autonomous Agent Context,
in: 2016 IEEE Intl Conference on Computational Science and Engineering
(CSE) and IEEE Intl Conference on Embedded and Ubiquitous Computing
(EUC) and 15th Intl Symposium on Distributed Computing and Applications
for Business Engineering (DCABES). Presented at the 2016 19th IEEE Intl
Conference on Computational Science and Engineering (CSE), IEEE 14th Intl
Conference on Embedded and Ubiquitous Computing (EUC), and 15th Intl Sym-
posium on Distributed Computing and Applications for Business Engineering
(DCABES), IEEE, Paris, pp. 561–568. https://doi.org/10.1109/CSE-EUC-
DCABES.2016.242

v 1.8.2 627

https://link.springer.com/chapter/10.1007/978-3-319-46840-2_10
https://link.springer.com/chapter/10.1007/978-3-319-46840-2_10
https://link.springer.com/chapter/10.1007/978-3-319-46840-2_10
https://link.springer.com/chapter/10.1007/978-3-319-46909-6_28
https://link.springer.com/chapter/10.1007/978-3-319-46909-6_28
https://link.springer.com/chapter/10.1007/978-3-319-46909-6_28
http://resolver.tudelft.nl/uuid:37340b1e-0776-4f72-a262-82f1db8b7db5
http://resolver.tudelft.nl/uuid:37340b1e-0776-4f72-a262-82f1db8b7db5
http://resolver.tudelft.nl/uuid:37340b1e-0776-4f72-a262-82f1db8b7db5
https://www.frontiersin.org/articles/10.3389/fenvs.2016.00019/full
https://www.frontiersin.org/articles/10.3389/fenvs.2016.00019/full
https://www.frontiersin.org/articles/10.3389/fenvs.2016.00019/full
https://link.springer.com/chapter/10.1007/978-3-319-31447-1_7
https://link.springer.com/chapter/10.1007/978-3-319-31447-1_7
https://link.springer.com/chapter/10.1007/978-3-319-31447-1_7
https://link.springer.com/chapter/10.1007/978-3-319-31447-1_7
https://link.springer.com/chapter/10.1007/978-3-319-31447-1_7
https://link.springer.com/chapter/10.1007/978-3-319-31447-1_10
https://link.springer.com/chapter/10.1007/978-3-319-31447-1_10
https://link.springer.com/chapter/10.1007/978-3-319-31447-1_10
https://link.springer.com/chapter/10.1007/978-3-319-31447-1_10
https://link.springer.com/chapter/10.1007/978-3-319-31447-1_10
https://link.springer.com/chapter/10.1007/978-3-319-31447-1_10
https://hal.archives-ouvertes.fr/hal-01408475
https://hal.archives-ouvertes.fr/hal-01408475
https://hal.archives-ouvertes.fr/hal-01408475
https://hal.inria.fr/hal-01367362/
https://hal.inria.fr/hal-01367362/
https://ieeexplore.ieee.org/document/7982304
https://ieeexplore.ieee.org/document/7982304
https://ieeexplore.ieee.org/document/7982304
https://ieeexplore.ieee.org/document/7982304
https://ieeexplore.ieee.org/document/7982304
https://ieeexplore.ieee.org/document/7982304
https://ieeexplore.ieee.org/document/7982304
https://ieeexplore.ieee.org/document/7982304
https://ieeexplore.ieee.org/document/7982304
https://ieeexplore.ieee.org/document/7982304
https://ieeexplore.ieee.org/document/7982304


GAMA v1.8.2 documentation Chapter 36. Scientific References

2015

• Gasmi, N., Grignard, A., Drogoul, A., Gaudou, B., Taillandier, P., Tessier, O.,
An, V.D., 2015. Reproducing and Exploring Past Events Using Agent-Based
Geo-Historical Models, in: Grimaldo, F., Norling, E. (Eds.), Multi-Agent-Based
Simulation XV. Springer International Publishing, Cham, pp. 151–163.

• Le, V.-M., Chevaleyre, Y., Ho Tuong Vinh, Zucker, J.-D., 2015. Hybrid of
linear programming and genetic algorithm for optimizing agent-based simulation.
Application to optimization of sign placement for tsunami evacuation, in: The
2015 IEEE RIVF International Conference on Computing & Communication
Technologies - Research, Innovation, and Vision for Future (RIVF). Presented at
the 2015 IEEE RIVF International Conference on Computing & Communication
Technologies, Research, Innovation, and Vision for the Future (RIVF), IEEE,
Can Tho, Vietnam, pp. 138–143. https://doi.org/10.1109/RIVF.2015.7049889

• Emery, J., Marilleau, N., Martiny, N., Thévenin, T., Villery, J., 2015. L’apport
de la simulation multi-agent du trafic routier pour l’estimation des pollutions at-
mosphériques automobiles, in: Douzièmes Rencontres de Théo Quant. Besançon,
France.

2014

• Macatulad, E. G., Blanco, A. C. (2014) 3DGIS-BASED MULTI-AGENT
GEOSIMULATION AND VISUALIZATION OF BUILDING EVACUATION
USING GAMA PLATFORM. The International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, Volume XL-2, 2014.
ISPRS Technical Commission II Symposium, 6 – 8 October 2014, Toronto,
Canada.

• Bhamidipati, S. (2014) A simulation framework for asset management in climate-
change adaptation of transportation infrastructure. In: Proceedings of 42nd
European Transport Conference. Frankfurt, Germany.

• Gaudou, B., Sibertin-Blanc, C., Thérond, O., Amblard, F., Auda, Y., Arcangeli,
J.-P., Balestrat, M., Charron-Moirez, M.-H., Gondet, E., Hong, Y., Lardy, R.,
Louail, T., Mayor, E., Panzoli, D., Sauvage, S., Sanchez-Perez, J., Taillandier,
P., Nguyen, V. B., Vavasseur, M., Mazzega, P. (2014). The MAELIA multi-
agent platform for integrated assessment of low-water management issues. In:
International Workshop on Multi-Agent-Based Simulation (MABS 2013), Saint-
Paul, MN, USA, 06/05/2013-07/05/2013, Vol. 8235, Shah Jamal Alam, H. Van
Dyke Parunak, (Eds.), Springer, Lecture Notes in Computer Science, p. 85-110.

v 1.8.2 628

https://www.springerprofessional.de/en/reproducing-and-exploring-past-events-using-agent-based-geo-hist/2363996
https://www.springerprofessional.de/en/reproducing-and-exploring-past-events-using-agent-based-geo-hist/2363996
https://www.springerprofessional.de/en/reproducing-and-exploring-past-events-using-agent-based-geo-hist/2363996
https://www.springerprofessional.de/en/reproducing-and-exploring-past-events-using-agent-based-geo-hist/2363996
https://ieeexplore.ieee.org/document/7049889
https://ieeexplore.ieee.org/document/7049889
https://ieeexplore.ieee.org/document/7049889
https://ieeexplore.ieee.org/document/7049889
https://ieeexplore.ieee.org/document/7049889
https://ieeexplore.ieee.org/document/7049889
https://ieeexplore.ieee.org/document/7049889
https://ieeexplore.ieee.org/document/7049889
https://hal.archives-ouvertes.fr/hal-01155367
https://hal.archives-ouvertes.fr/hal-01155367
https://hal.archives-ouvertes.fr/hal-01155367
https://hal.archives-ouvertes.fr/hal-01155367
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-2/87/2014/isprsarchives-XL-2-87-2014.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-2/87/2014/isprsarchives-XL-2-87-2014.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-2/87/2014/isprsarchives-XL-2-87-2014.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-2/87/2014/isprsarchives-XL-2-87-2014.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-2/87/2014/isprsarchives-XL-2-87-2014.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-2/87/2014/isprsarchives-XL-2-87-2014.pdf
http://abstracts.aetransport.org/paper/download/id/4317
http://abstracts.aetransport.org/paper/download/id/4317
http://abstracts.aetransport.org/paper/download/id/4317
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf
http://simsoc.free.fr/ressources/articles/2013/MAELIAmabs13.pdf


GAMA v1.8.2 documentation Chapter 36. Scientific References

• Gaudou, B., Lorini, E., Mayor, E. (2014.) Moral Guilt: An Agent-Based
Model Analysis. In: Conference of the European Social Simulation Association
(ESSA 2013), Warsaw, 16/09/2013-20/09/2013, Vol. 229, Springer, Advances
in Intelligent Systems and Computing, p. 95-106.

• Le, V.-M., Chevaleyre, Y., Zucker, J.-D., Tuong Vinh, H., 2014. Approaches to
Optimize Local Evacuation Maps for Helping Evacuation in Case of Tsunami,
in: Hanachi, C., Bénaben, F., Charoy, F. (Eds.), Information Systems for Crisis
Response and Management in Mediterranean Countries. Springer International
Publishing, Cham, pp. 21–31. https://doi.org/10.1007/978-3-319-11818-5_3

• Emery, J., Marilleau, N., Thévenin, T., Martiny, N., 2014. Du comptage
ponctuel à l’affectation par simulation multi-agents : application à la circulation
routière de la ville de Dijon, in: Conférence Internationale de Géomatique et
d’analyse Spatiale (SAGEO). Grenoble, France, p. CD-ROM.

2013

• Drogoul, A., Gaudou, B., Grignard, A., Taillandier, P., & Vo, D. A. (2013).
Practical Approach To Agent-Based Modelling. In: Water and its Many Issues.
Methods and Cross-cutting Analysis. Stéphane Lagrée (Eds.), Journées de Tam
Dao, p. 277-300, Regional Social Sciences Summer University.

• Drogoul, A., Gaudou, B. (2013) Methods for Agent-Based Computer Modelling.
In: Water and its Many Issues. Methods and Cross-cutting Analysis. Stéphane
Lagrée (Eds.), Journées de Tam Dao, 1.6, p. 130-154, Regional Social Sciences
Summer University.

• Truong, M.-T., Amblard, F., Gaudou, B., Sibertin-Blanc, C., Truong, V. X.,
Drogoul, A., Hyunh, X. H., Le, M. N. (2013). An implementation of framework
of business intelligence for agent-based simulation. In: Symposium on Infor-
mation and Communication Technology (SoICT 2013), Da Nang, Viet Nam,
05/12/2013-06/12/2013, Quyet Thang Huynh, Thanh Binh Nguyen, Van Tien
Do, Marc Bui, Hong Son Ngo (Eds.), ACM, p. 35-44.

• Le, V. M., Gaudou, B., Taillandier, P., Vo, D. A (2013). A New BDI Architecture
To Formalize Cognitive Agent Behaviors Into Simulations. In: Advanced
Methods and Technologies for Agent and Multi-Agent Systems (KES-AMSTA
2013), Hue, Vietnam, 27/05/2013-29/05/2013, Vol. 252, Dariusz Barbucha,
Manh Thanh Le, Robert J. Howlett, C. Jain Lakhmi (Eds.), IOS Press, Frontiers
in Artificial Intelligence and Applications, p. 395-403.

• Emery, J., Boyard-Micheau, J., Marilleau, N., Martiny, N., Thévenin, T., 2013.

v 1.8.2 629

http://www.irit.fr/EmoTES/Documents/Conference/Conf_ic_2013_Gaudou_et_al.pdf
http://www.irit.fr/EmoTES/Documents/Conference/Conf_ic_2013_Gaudou_et_al.pdf
http://www.irit.fr/EmoTES/Documents/Conference/Conf_ic_2013_Gaudou_et_al.pdf
http://www.irit.fr/EmoTES/Documents/Conference/Conf_ic_2013_Gaudou_et_al.pdf
https://link.springer.com/chapter/10.1007%2F978-3-319-11818-5_3
https://link.springer.com/chapter/10.1007%2F978-3-319-11818-5_3
https://link.springer.com/chapter/10.1007%2F978-3-319-11818-5_3
https://link.springer.com/chapter/10.1007%2F978-3-319-11818-5_3
https://link.springer.com/chapter/10.1007%2F978-3-319-11818-5_3
https://hal.archives-ouvertes.fr/hal-01157482
https://hal.archives-ouvertes.fr/hal-01157482
https://hal.archives-ouvertes.fr/hal-01157482
https://hal.archives-ouvertes.fr/hal-01157482
http://hal.archives-ouvertes.fr/docs/00/93/24/23/PDF/JTD2012_-_Atelier_-_EN.pdf
http://hal.archives-ouvertes.fr/docs/00/93/24/23/PDF/JTD2012_-_Atelier_-_EN.pdf
http://hal.archives-ouvertes.fr/docs/00/93/24/23/PDF/JTD2012_-_Atelier_-_EN.pdf
http://hal.archives-ouvertes.fr/docs/00/93/24/23/PDF/JTD2012_-_Atelier_-_EN.pdf
http://www.tamdaoconf.com/tamdao/wp-content/plugins/download-monitor/download.php?id=185
http://www.tamdaoconf.com/tamdao/wp-content/plugins/download-monitor/download.php?id=185
http://www.tamdaoconf.com/tamdao/wp-content/plugins/download-monitor/download.php?id=185
http://www.tamdaoconf.com/tamdao/wp-content/plugins/download-monitor/download.php?id=185
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://dl.acm.org/citation.cfm?id=2542069
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
http://ebooks.iospress.nl/publication/32865
https://hal.archives-ouvertes.fr/hal-00881294
https://hal.archives-ouvertes.fr/hal-00881294


GAMA v1.8.2 documentation Chapter 36. Scientific References

Exploitation of traffic counting data for traffic study in urban areas: from traffic
assignment to simulation model validation, in: 18th European Colloquium in
Theoretical and Quantitative Geography (ECTQG). Dourdan, France.

• Banos, A., Marilleau, N., 2013. Improving Individual Accessibility to the City,
in: Gilbert, T., Kirkilionis, M., Nicolis, G. (Eds.), Proceedings of the European
Conference on Complex Systems 2012, Springer Proceedings in Complexity.
Springer International Publishing, pp. 989–992.

2012

• Taillandier, P., Therond, O., Gaudou B. (2012), A new BDI agent architecture
based on the belief theory. Application to the modelling of cropping plan
decision-making. In ‘International Environmental Modelling and Software
Society’, Germany, pp. 107-116.

• NGUYEN, Q.T., BOUJU, A., ESTRAILLIER, P. (2012) Multi-agent architec-
ture with space-time components for the simulation of urban transportation
systems.

• Cisse, A., Bah, A., Drogoul, A., Cisse, A.T., Ndione, J.A., Kebe, C.M.F. &
Taillandier P. (2012), Un modèle à base d’agents sur la transmission et la
diffusion de la fièvre de la Vallée du Rift à Barkédji (Ferlo, Sénégal), Studia
Informatica Universalis 10 (1), pp. 77-97.

• Taillandier, P., Amouroux, E., Vo, D.A. and Olteanu-Raimond A.M. (2012), Us-
ing Belief Theory to formalize the agent behavior: application to the simulation
of avian flu propagation. In ‘The first Pacific Rim workshop on Agent-based
modeling and simulation of Complex Systems (PRACSYS)’, India, Volume
7057/2012, pp. 575-587.

• Le, V.M., Adam, C., Canal, R., Gaudou, B., Ho, T.V. and Taillandier, P. (2012),
Simulation of the emotion dynamics in a group of agents in an evacuation
situation. In ‘The first Pacific Rim workshop on Agent-based modeling and
simulation of Complex Systems (PRACSYS)’, India, Volume 7057/2012, pp. 604-
619.

• Nguyen Vu, Q. A., Canal, R., Gaudou, B., Hassas, S., Armetta, F. (2012),
TrustSets - Using trust to detect deceitful agents in a distributed informa-
tion collecting system. In: Journal of Ambient Intelligence and Humanized
Computing, Springer-Verlag, Vol. 3 N. 4, p. 251-263.

v 1.8.2 630

https://hal.archives-ouvertes.fr/hal-00881294
https://hal.archives-ouvertes.fr/hal-00881294
https://hal.archives-ouvertes.fr/hal-00881294
https://hal.archives-ouvertes.fr/hal-00881294
https://link.springer.com/chapter/10.1007/978-3-319-00395-5_118
https://link.springer.com/chapter/10.1007/978-3-319-00395-5_118
https://link.springer.com/chapter/10.1007/978-3-319-00395-5_118
https://link.springer.com/chapter/10.1007/978-3-319-00395-5_118
http://www.iemss.org/sites/iemss2012//proceedings/H2_0404_Taillandier_et_al.pdf
http://www.iemss.org/sites/iemss2012//proceedings/H2_0404_Taillandier_et_al.pdf
http://www.iemss.org/sites/iemss2012//proceedings/H2_0404_Taillandier_et_al.pdf
http://www.iemss.org/sites/iemss2012//proceedings/H2_0404_Taillandier_et_al.pdf
http://www.sciencedirect.com.accesdistant.upmc.fr/science/article/pii/S1877042812042188
http://www.sciencedirect.com.accesdistant.upmc.fr/science/article/pii/S1877042812042188
http://www.sciencedirect.com.accesdistant.upmc.fr/science/article/pii/S1877042812042188
http://studia.complexica.net/Art/RI100104.pdf
http://studia.complexica.net/Art/RI100104.pdf
http://studia.complexica.net/Art/RI100104.pdf
http://studia.complexica.net/Art/RI100104.pdf
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/8qg53u75q46252l2/
http://www.springerlink.com/content/c838365603qr7tx0/
http://www.springerlink.com/content/c838365603qr7tx0/
http://www.springerlink.com/content/c838365603qr7tx0/
http://www.springerlink.com/content/c838365603qr7tx0/
http://www.springerlink.com/content/c838365603qr7tx0/
http://link.springer.com/article/10.1007%2Fs12652-012-0140-0
http://link.springer.com/article/10.1007%2Fs12652-012-0140-0
http://link.springer.com/article/10.1007%2Fs12652-012-0140-0
http://link.springer.com/article/10.1007%2Fs12652-012-0140-0


GAMA v1.8.2 documentation Chapter 36. Scientific References

2011

• Taillandier, P., Therond, O. (2011), Use of the Belief Theory to formalize Agent
Decision Making Processes : Application to cropping Plan Decision Making. In
’25th European Simulation and Modelling Conference’, Guimaraes, Portugal,
pp. 138-142.

• Taillandier, P. & Amblard, F. (2011), Cartography of Multi-Agent Model
Parameter Space through a reactive Dicotomous Approach. In ’25th European
Simulation and Modelling Conference’, Guimaraes, Portugal, pp. 38-42.

• Taillandier, P. & Stinckwich, S. (2011), Using the PROMETHEE Multi-Criteria
Decision Making Method to Define New Exploration Strategies for Rescue
Robots’, IEEE International Symposium on Safety, Security, and Rescue
Robotics, Kyoto, Japon, pp. 321 - 326.

2010

• Nguyen Vu, Q.A. , Gaudou, B., Canal, R., Hassas, S. and Armetta, F. (2010),
A cluster-based approach for disturbed, spatialized, distributed information
gathering systems, in ‘The first Pacific Rim workshop on Agent-based modeling
and simulation of Complex Systems (PRACSYS)’, India, pp. 588-603.

• Nguyen, N.D., Taillandier, P., Drogoul, A. and Augier, P. (2010), Inferring
Equation-Based Models from Agent-Based Models: A Case Study in Competi-
tion Dynamics.In ‘The 13th International Conference on Principles and Practices
in Multi-Agent Systems (PRIMA)’, India, Volume 7057/2012, pp. 413-427.

• Amouroux, E., Gaudou, B. Desvaux, S. and Drogoul, A. (2010), O.D.D.: a
Promising but Incomplete Formalism For Individual-Based Model Specifica-
tion. in ‘IEEE International Conference on Computing and Telecommunication
Technologies’(2010 IEEE RIVF’), pp. 1-4.

• Nguyen, N.D., Phan, T.H.D., Nguyen, T.N.A., Drogoul, A., Zucker, J-D. (2010),
Disk Graph-Based Model for Competition Dynamic, in ‘IEEE International
Conference on Computing and Telecommunication Technologies’(2010 IEEE
RIVF’).

• Nguyen, T.K., Marilleau, N., Ho T.V., El Fallah Seghrouchni, A. (2010), A
meta-model for specifying collaborative simulation, Paper to appear in ‘IEEE
International Conference on Computing and Telecommunication Technolo-
gies’(2010 IEEE RIVF’).

• Nguyen Vu, Q.A. , Gaudou, B., Canal, R., Hassas, S. and Armetta, F. (2010),
TrustSets - Using trust to detect deceitful agents in a distributed informa-

v 1.8.2 631

https://hal.archives-ouvertes.fr/hal-00688405
https://hal.archives-ouvertes.fr/hal-00688405
https://hal.archives-ouvertes.fr/hal-00688405
https://hal.archives-ouvertes.fr/hal-00688405
https://hal.archives-ouvertes.fr/hal-00688412
https://hal.archives-ouvertes.fr/hal-00688412
https://hal.archives-ouvertes.fr/hal-00688412
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6106747&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6106747
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6106747&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6106747
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6106747&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6106747
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6106747&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6106747
http://www.springerlink.com/content/u02nq35387418q11/
http://www.springerlink.com/content/u02nq35387418q11/
http://www.springerlink.com/content/u02nq35387418q11/
http://www.springerlink.com/content/u02nq35387418q11/
http://www.springerlink.com/content/n23314gm326l4p27/
http://www.springerlink.com/content/n23314gm326l4p27/
http://www.springerlink.com/content/n23314gm326l4p27/
http://www.springerlink.com/content/n23314gm326l4p27/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5633421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5633421
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5633421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5633421
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5633421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5633421
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5633421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5633421
https://www.researchgate.net/publication/274992251_Disk_Graph-Based_Model_a_graph_theoretical_approach_for_linking_agent-based_models_and_dynamical_systems
https://www.researchgate.net/publication/274992251_Disk_Graph-Based_Model_a_graph_theoretical_approach_for_linking_agent-based_models_and_dynamical_systems
https://www.researchgate.net/publication/274992251_Disk_Graph-Based_Model_a_graph_theoretical_approach_for_linking_agent-based_models_and_dynamical_systems
https://www.researchgate.net/publication/274992251_Disk_Graph-Based_Model_a_graph_theoretical_approach_for_linking_agent-based_models_and_dynamical_systems
https://ieeexplore.ieee.org/document/5634008
https://ieeexplore.ieee.org/document/5634008
https://ieeexplore.ieee.org/document/5634008
https://ieeexplore.ieee.org/document/5634008
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080


GAMA v1.8.2 documentation Chapter 36. Scientific References

tion collecting system, Paper to appear in ‘IEEE International Conference on
Computing and Telecommunication Technologies’(2010 IEEE RIVF’), the best
student paper award.

• Nguyen Vu, Q.A. , Gaudou, B., Canal, R., Hassas, S., Armetta, F. and Stinck-
wich, S. (2010), Using trust and cluster organisation to improve robot swarm
mapping, Paper to appear in ‘Workshop on Robots and Sensors integration in
future rescue INformation system’ (ROSIN 2010).

2009

• Taillandier, P. and Buard, E. (2009), Designing Agent Behaviour in Agent-
Based Simulation through participatory method. In ‘The 12th International
Conference on Principles and Practices in Multi-Agent Systems (PRIMA)’,
Nagoya, Japan, pp. 571–578.

• Taillandier, P. and Chu, T.Q. (2009), Using Participatory Paradigm to Learn
Human Behaviour. In ‘International Conference on Knowledge and Systems
Engineering’, Ha noi, Viet Nam, pp. 55–60.

• Gaudou, B., Ho, T.V. and Marilleau, N. (2009), Introduce collaboration in
methodologies of modeling and simulation of Complex Systems. In ‘International
Conference on Intelligent Networking and Collaborative Systems (INCOS ’09)’.
Barcelona, pp. 1–8.

• Nguyen, T.K., Gaudou B., Ho T.V. and Marilleau N. (2009), Application of
PAMS Collaboration Platform to Simulation-Based Researches in Soil Science:
The Case of the MIcro-ORganism Project. In ‘IEEE International Conference
on Computing and Telecommunication Technologies (IEEE-RIVF 09)’. Da
Nang, Viet Nam, pp. 296–303.

• Nguyen, V.Q., Gaudou B., Canal R., Hassas S. and Armetta F. (2009), Stratégie
de communication dans un système de collecte d’information à base d’agents per-
turbés. In ‘Journées Francophones sur les Systèmes Multi-Agents (JFSMA’09)’.

2008

• Chu, T.Q., Boucher, A., Drogoul, A., Vo, D.A., Nguyen, H.P. and Zucker,
J.D. (2008). Interactive Learning of Expert Criteria for Rescue Simulations.
In Pacific Rim International Workshop on Multi-Agents, Ha Noi, Viet Nam,
pp. 127–138.

v 1.8.2 632

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5633080
http://users.info.unicaen.fr/~serge/share/ROSIN10/rosin10_submission_8.pdf
http://users.info.unicaen.fr/~serge/share/ROSIN10/rosin10_submission_8.pdf
http://users.info.unicaen.fr/~serge/share/ROSIN10/rosin10_submission_8.pdf
http://users.info.unicaen.fr/~serge/share/ROSIN10/rosin10_submission_8.pdf
http://www.springerlink.com/content/hu37551467646471/
http://www.springerlink.com/content/hu37551467646471/
http://www.springerlink.com/content/hu37551467646471/
http://www.springerlink.com/content/hu37551467646471/
http://www.computer.org/portal/web/csdl/doi/10.1109/KSE.2009.33
http://www.computer.org/portal/web/csdl/doi/10.1109/KSE.2009.33
http://www.computer.org/portal/web/csdl/doi/10.1109/KSE.2009.33
http://portal2.acm.org/citation.cfm?id=1681504.1681534&coll=GUIDE&dl=GUIDE&CFID=://www.google.com.vn/search?hl=fr&CFTOKEN=www.google.com.vn/search?hl=fr
http://portal2.acm.org/citation.cfm?id=1681504.1681534&coll=GUIDE&dl=GUIDE&CFID=://www.google.com.vn/search?hl=fr&CFTOKEN=www.google.com.vn/search?hl=fr
http://portal2.acm.org/citation.cfm?id=1681504.1681534&coll=GUIDE&dl=GUIDE&CFID=://www.google.com.vn/search?hl=fr&CFTOKEN=www.google.com.vn/search?hl=fr
http://portal2.acm.org/citation.cfm?id=1681504.1681534&coll=GUIDE&dl=GUIDE&CFID=://www.google.com.vn/search?hl=fr&CFTOKEN=www.google.com.vn/search?hl=fr
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5174598%2F5174599%2F05174623.pdf%3Farnumber%3D5174623&authDecision=-203
http://liesp.insa-lyon.fr/v2/?q=fr/node/100911
http://liesp.insa-lyon.fr/v2/?q=fr/node/100911
http://liesp.insa-lyon.fr/v2/?q=fr/node/100911
http://www.springerlink.com/content/r83v0125vl0430l1/
http://www.springerlink.com/content/r83v0125vl0430l1/
http://www.springerlink.com/content/r83v0125vl0430l1/
http://www.springerlink.com/content/r83v0125vl0430l1/


GAMA v1.8.2 documentation Chapter 36. Scientific References

• Amouroux, E., Desvaux, S. and Drogoul, A. (2008), Towards Virtual Epi-
demiology: An Agent-Based Approach to the Modeling of H5N1 Propagation
and Persistence in North-Vietnam. In Pacific Rim International Workshop on
Multi-Agents, Ha Noi, Viet Nam, pp. 26–33.

v 1.8.2 633

http://www.springerlink.com/content/v6471t1453k17244/
http://www.springerlink.com/content/v6471t1453k17244/
http://www.springerlink.com/content/v6471t1453k17244/
http://www.springerlink.com/content/v6471t1453k17244/


GAMA v1.8.2 documentation Chapter 36. Scientific References

v 1.8.2 634



Chapter 37

Training Session

SEARCA Phillippines 2021 (Online)

22-26 March, 2021
Trainers: Alexis Drogoul, Arthur Brugière, Patrick Taillandier, Nguyen Ngoc Doanh

AWP 2021(Online)

1-5 March, 2021
Trainers: Arthur Brugière, Alexis Drogoul, Huynh Quang Nghi, Nguyen Ngoc Doanh,
Patrick Taillandier, Truong Chi Quang

USTH Training session 2020

May 2020 - Hanoi, Vietnam
Trainers: Benoit Gaudou

SMAC Toulouse 2020

April 2020 - Toulouse, France

635



GAMA v1.8.2 documentation Chapter 37. Training Session

Trainers: Benoit Gaudou, Arthur Brugiere, Damien, Nicolas Verestaevel

Application to disaster management and evacua-
tion

17-21 February - Cebu, Phillippines
Trainers: Alexis Drogoul, Benoit Gaudou, Arthur Brugiere

Training session TLU 2019

October 2019 - Hanoi, Vietnam
Trainers: Benoit Gaudou, Nguyen Ngoc Doanh, Arthur Brugiere, Doryan Kaced

AWP Phnom Penh 2019

8-12 July, Phnom Penh, Cambodia
This is a training session that focuses on water urban risks: designing evacuation
strategies in case of flooding with Agent-Based Modeling and GAMA

Formation Toulouse 2019

May 2019 - Toulouse, France
Trainers: Patrick Taillandier, Doryan Kaced, Renauld Misslin, Frèdéric Amblard,
Benoit Gaudou

Training session Brasilia 2019

Feb 201 - Brasilia, Brazil
Trainers: Benoit Gaudou, Ch. Le Page

v 1.8.2 636



GAMA v1.8.2 documentation Chapter 37. Training Session

Application to disaster management and evacua-
tion

28 Jan - 1 Feb, Phillippines

Trainers: Alexis Drogoul, Benoit Gaudou, Kevin Chapuis

AWP Can Tho 2018

July - Can Tho, Vietnam

Trainers: Alexis Drogoul, Patrick Taillandier, Benoit Gaudou, Truong Chi Quang,
Damien Philippon, Kevin Chapuis, Huynh Quang Nghi

SCEMSITE 2018

May 2018

Trainers: Patrick Taillandier, Oliver Therond

Formation Toulouse 2018

Trainers: Patrick Taillandier, Benoit Gaudou

GAMA 1.7RC1 training session - Pays-Bas

December 2017

Analysis of land use dynamics (JTD 2017)

9-14 July 2017

v 1.8.2 637



GAMA v1.8.2 documentation Chapter 37. Training Session

The JTD (Journées de Tam Dao) is an annual gathering of french-talkers researchers
during the summer for one week, dealing with a specific subject related to sustainable
development. For this 11th JTD, the topic was about the contributions of modeling
for the analysis of land use dynamics. Case study: Thanh Phu district, Ben Tre
province (Mekong delta) 2000-2010.
Trainers: Alexis Drogoul, Patrick Taillandier, Quang Nghi Huynh, Quang Chi Truong,
Damien Philippon

Master TRIAD 2017

Jan 2017

EDSS USTH Master 2016

November 2016 - Hanoi, Vietnam
Trainers: Patrick Taillandier, Nicolas Marilleau, Benoit Gaudou

Design urban energy transition policies (JTD 2016)

10-15 July 2016
The JTD (Journées de Tam Dao) is an annual gathering of french-talkers researchers
during the summer for one week, dealing with a specific subject related to sustainable
development. For this 10th JTD, the topic was about the use of computer models to
help design urban energy transition policies.
Trainers: Javier Gil-Quijano, Alexis Drogoul, Benoît Gaudou, Patrick Taillandier,
Julien Mazars, Hypatia Nassopoulos, Damien Philippon

Modeling for supporting decisions in urban man-
agement issues

7-11 December 2015 - Siem Reap (Cambodia)

v 1.8.2 638

http://www.tamdaoconf.com/
http://www.tamdaoconf.com/


GAMA v1.8.2 documentation Chapter 37. Training Session

Figure 37.1: resources/other/trainingSession/SiemReap2015/photos/group.JPG

v 1.8.2 639



GAMA v1.8.2 documentation Chapter 37. Training Session

This training session took place at the Apsara Authorities, where we introduced
how to build a model with agent-based approach, using GAMA. In a new and very
fast-growing city such as Siem Reap, some measures have to be taken to anticipate
the future of the city, and modeling is a science that can give some solutions to face
those problems.
The training session was divided into 2 parts:

• A theoretical part (3 days) dealing with the following subjects :

– Urban issues and introduction to Agent-Based Modeling
– Presentation of the modeling methodology
– Introduction to GAMA with a model on urban segregation
– GIS datas and graphs to model urban mobility
– GIS, Raster datas and graphs to model urban growth
– Use of experiments to calibrate and explore models

• A practical part (2 days) to build a model about urban mobility in Siem Reap
(by groups of 4/5 people)

Trainers: Drogoul Alexis, Gaudou Benoit, Trung Quang, Philippon Damien, Mazars
Julien.

v 1.8.2 640



GAMA v1.8.2 documentation Chapter 37. Training Session

Epidemiological risks and the integration of re-
gional health policies (JTD 2015)

19-24 July 2015
The JTD (Journées de Tam Dao) is an annual gathering of french-talkers researchers
during the summer for one week, dealing with a specific subject related to sustainable
development. For this 9th JTD, the topic was about epidemiological risks and the
integration of regional health policies with the application of modeling by GAMA
platform to decision support.
Trainers: Alexis Drogoul, Vo Duc An, Benoit Gaudou, Damien Philippon, Chi-Quang
Truong

MAPS 8 2015

8-25 June 2015

Nex Days 2015 (GAMA 1.6.1)

May 2015

MISS ABMS 2014

September 2014

MAPS epidemic city tutorial 2014

July 2014

GAMA training session Phillippines

12-16 Jan 2015 - Quezon, Phillippines

v 1.8.2 641

http://www.tamdaoconf.com/


GAMA v1.8.2 documentation Chapter 37. Training Session

A Glance at Sustainable Urban Development
(JTD)

July 2014 - Da lat (Vietnam)
The JTD (Journées de Tam Dao) is an annual gathering of french-talkers researchers
during the summer for one week, dealing with a specific subject related to sustainable
development. For this 8th JTD, the topic was about sustainable urban development,
and a workshop has been made especially about how to use tools as GAMA to build
models in order to explore and understand urban spatial dynamics.
Trainers: Drogoul Alexis, Banos Arnaud, Huynh Quang Nghi, Truong Chi Quang,
Vo Duc An.
Here is the link to download the pdf report of the JTD 2014:
https://drive.google.com/file/d/0B2Go6pohIhQcbERhczZRd253UUU/view.

AUF 2013

November 2013

MISS ABM 2013

October 2013

The perception and Management of Risk (JTD)

July 2013 - Da lat (Vietnam)
The JTD (Journées de Tam Dao) is an annual gathering of french-talkers researchers
during the summer for one week, dealing with a specific subject related to sustainable
development. For this 7th JTD, the topic was about the perception and management
of risks, and a workshop has been made especially about how to use tools as GAMA
to build models in order to understand past crises to better understand the present.
Trainers: Alexis Drogoul, Benoit Gaudou, Nasser Gasmi, Arnaud Grignard, Patrick
Taillandier, Olivier Tessier, Vo Duc An

v 1.8.2 642

http://www.tamdaoconf.com/
http://www.tamdaoconf.com/


GAMA v1.8.2 documentation Chapter 37. Training Session

Here is the link to download the pdf report of the JTD 2013:
https://drive.google.com/file/d/0B2Go6pohIhQcNXFwVllHd2pFdlk/view.

Can Tho training session 2012

November 2012 - Can Tho, Vietnam

ESSA Tutorial 2012

Water and its many Issues (JTD)

July 2012 - Vietnam
The JTD (Journées de Tam Dao) is an annual gathering of french-talkers researchers
during the summer for one week, dealing with a specific subject related to sustainable
development. For this 6th JTD, the topic was about the perception and management
of risks, and a workshop has been made especially about how to use tools as GAMA
to build models with an agent-based approach.
Trainers : Alexis Drogoul, Benoit Gaudou, Arnaud Grignard, Patrick Taillandier, Vo
Duc An
Here is the link to download the pdf report of the JTD 2012:
https://docs.google.com/file/d/0B2Go6pohIhQcUWRKU2hPelNqQmc/view.

Introduction of GAMA 1.4

5 December 2011 - Bondy, France
This training session was held at PDI Doctoral School, Bondy. The main topic of
this session is the introduction of GAMA 1.4 with its advances:

• Deep refactoring work of the source code
• New programming language GAML (not based on XML)
• Integration of a true IDE based on Eclipse

v 1.8.2 643

http://www.tamdaoconf.com/


GAMA v1.8.2 documentation Chapter 37. Training Session

• Deep refactoring of the meta-model
• Better integration of multi-levels
• New important notion: topology
• New variable types: geometry, graph, path, topology
• Many more novelties/improvements/enrichments. . .

Trainers: Alexis Drogoul, Patrick Taillandier, Benoit Gaudou, Vo Duc An, Jean-Daniel
Zucker, Edouard Amouroux

Formation à IRD Bondy

Octorber 2010 - Bondy (France)
This training session was held at IRD Bondy. The topic of this session was about the
future of GAMA and a glance at agent-based models were built based on the GAMA
platform.
Trainers: Alexis Drogould, Patrick Taillandier, Edouard Amouroux

Introduction to the GAMA and PAMS platforms
(IFI 2009)

26-28 October 2009 - Hanoi (Vietnam)
This training session was held at IFI Hanoi. The topic of this session was about the
introduction of GAMA and PAMS platforms, and how to use tools such as GAMA
to build models with an agent-based approach.
Trainers: Alexis Drogoul, Vo Duc An, Patrick Taillandier, Benoit Gaudou, Chu Thanh
Quang, Jean-Daniel Zucker, François Sempé, Guillaume Chérel, Nicolas Marilleau

v 1.8.2 644



Chapter 38

Events

This page references the events that are linked to GAMA.
If you happen to participate to an event linked to GAMA, please let us know, so that
we can include it in this list.

Events linked to GAMA

List of GAMA Coding Camps : * Coding Camp March 2014 (photos) * Coding Camp
March 2012 * Fall Coding Camp 2012 * Programme doctoral internationale 2012

645

https://plus.google.com/u/0/photos/103876396184641904282/albums/5997643312439563137

	I Home
	GAMA
	Multiple application domains
	Training sessions
	High-level and intuitive agent-based language
	GIS and Data-Driven models
	Declarative user interface
	Development Team
	Citing GAMA
	Acknowledgement

	Introduction
	Documentation
	Source Code
	Copyright Information
	Developers
	Citing GAMA
	Contact Us


	II Platform
	Platform
	Installation and Launching
	Workspace, Projects and Models
	Editing models
	Running Experiments
	Preferences
	Table of contents
	Opening Preferences
	Interface
	Editors
	Execution
	Displays
	Data and Operators
	Manage preferences in GAML
	Advanced Preferences

	Troubleshooting
	Table of contents
	On Ubuntu (& Linux Systems)
	On macOS
	Memory problems
	Submitting an Issue


	III Learn GAML step by step
	Learn GAML Step by Step
	How to proceed to learn better?

	Introduction
	Table of contents
	Lexical semantics of GAML
	Translation into a concrete syntax
	Vocabulary correspondence with the object-oriented paradigm as in Java
	Vocabulary correspondence with the agent-based paradigm as in NetLogo

	Manipulate basic species
	The global species
	Index
	Declaration
	Environment size
	Built-in attributes
	Built-in Actions
	The init statement

	Defining advanced species
	Defining GUI Experiment
	Types of experiments
	Experiment attributes
	Experiment facets
	Defining displays layout
	Defining elements of the GUI experiment

	Exploring Models
	Optimizing Models
	Multi-Paradigm Modeling

	IV Recipes
	Recipes
	Manipulate OSM Datas
	Implementing diffusion
	Index
	Diffuse statement
	Diffusion with matrix
	Diffusion with parameters
	Computation methods
	Using a mask
	Pseudo-code

	Using Database Access
	Description
	Supported DBMS
	SQLSKILL
	MDXSKILL
	AgentDB
	Using database features to define environment or create species

	Calling R
	Introduction
	Table of contents
	Configuration in GAMA
	Calling R from GAML

	Using FIPA ACL
	Table of Contents
	Main steps to create a conversation using FIPA Communication Acts and Interaction Protocols
	Attach the fipa skill to a species
	Initiate a conversation
	Receive messages
	Reply to a received message
	End a conversation
	The message type
	The conversation data type

	Using GAMAnalyzer
	Install
	Built-in Variable
	Example

	Using BEN (simple_bdi)
	Introduction to BEN
	The BEN architecture
	Predicates, knowledge and personality
	Perception
	Managing knowledge bases
	Making Decision

	Known issues
	Crash when using openGL on Windows
	Grid not displayed right using openGL


	V GAML References
	GAML References
	Index of keywords

	Built-in Species
	Table of Contents
	agent
	AgentDB
	base_edge
	experiment
	graph_edge
	graph_node
	physical_world

	Built-in Skills
	Introduction
	Table of Contents
	advanced_driving
	driving
	dynamic_body
	fipa
	MDXSKILL
	messaging
	moving
	moving3D
	network
	public_transport
	public_transport_scheduler
	skill_road
	skill_road_node
	SQLSKILL
	static_body

	Built-in Architectures
	INTRODUCTION
	Table of Contents
	fsm
	parallel_bdi
	probabilistic_tasks
	reflex
	rules
	simple_bdi
	sorted_tasks
	user_first
	user_last
	user_only
	weighted_tasks

	Statements
	Table of Contents
	Statements by kinds
	Statements by embedment
	General syntax

	Types
	Table of contents
	Primitive built-in types
	Complex built-in types
	How to change the processor

	General workflow of file generation

	VI Projects using GAMA
	Projects
	Publications
	Projects

	Scientific References
	Table of Contents
	Papers about GAMA
	HDR theses
	PhD theses
	PhD theses that use GAMA as modeling/simulation support
	Master theses that use GAMA as modeling/simulation support
	Research papers that use GAMA as modeling/simulation support

	Training Session
	SEARCA Phillippines 2021 (Online)
	AWP 2021(Online)
	USTH Training session 2020
	SMAC Toulouse 2020
	Application to disaster management and evacuation
	Training session TLU 2019
	AWP Phnom Penh 2019
	Formation Toulouse 2019
	Training session Brasilia 2019
	Application to disaster management and evacuation
	AWP Can Tho 2018
	SCEMSITE 2018
	Formation Toulouse 2018
	GAMA 1.7RC1 training session - Pays-Bas
	Analysis of land use dynamics (JTD 2017)
	Master TRIAD 2017
	EDSS USTH Master 2016
	Design urban energy transition policies (JTD 2016)
	Modeling for supporting decisions in urban management issues
	Epidemiological risks and the integration of regional health policies (JTD 2015)
	MAPS 8 2015
	Nex Days 2015 (GAMA 1.6.1)
	MISS ABMS 2014
	MAPS epidemic city tutorial 2014
	GAMA training session Phillippines
	A Glance at Sustainable Urban Development (JTD)
	AUF 2013
	MISS ABM 2013
	The perception and Management of Risk (JTD)
	Can Tho training session 2012
	ESSA Tutorial 2012
	Water and its many Issues (JTD)
	Introduction of GAMA 1.4
	Formation à IRD Bondy
	Introduction to the GAMA and PAMS platforms (IFI 2009)

	Events
	Events linked to GAMA



