
GAMA Platform v1.9.3



Version: 1.9.3

GAMA
GAMA is an easy-to-use open source modeling and simulation environment for creating spatially explicit
agent-based simulations. It has been developed to be used in any application domain: urban mobility,
climate change adaptation, epidemiology, disaster evacuation strategy design, urban planning, are
some of the application domains in which GAMA users are involved and for which they create models.

The generality of the agent-based approach advocated by GAMA is accompanied by a high degree of
openness, which is manifested, for example, in the development of plugins designed to meet specific
needs, or by the possibility of calling GAMA from other software or languages (such as R or Python). This
openness allows the more than 2000 users of GAMA to use it for a wide variety of purposes: scientific
simulation, scenario exploration and visualization, negotiation support, serious games, mediation or
communication tools, the possibilities are endless!

The latest version of GAMA, labeled 1.9.3, can be freely downloaded or built from source, and comes
with hundreds of templates, tutorials, and extensive online documentation.

Data-driven models
The relevance of agent-based models depends largely on the quality of the data on which they are built
and the ease with which they can access it. GAMA offers the possibility to load and manipulate easily GIS
(Geographic Information System) data in the models, in order to make them the environment of
artificial agents. It is also possible to directly import and use directly in models a large number of data
types, such as CSV files, Shapefiles, OSM data, grids, images, SVG files, but also 3D files, such as 3DS or
OBJ. GAMA also offers models the possibility to connect directly to databases and to use external tools
and environments such as R.

GAML, a high-level, intuitive agent-based
language
GAMA, although dedicated to providing a scientific approach to model building and exploration, was
also developed to be used by non-computer scientists: it is possible to create a simulated world, declare
agent species, assign behaviors to them and display them and their interactions in less than 10 minutes.

http://localhost:3000/wiki/projects
http://localhost:3000/wiki/InstallingPlugins#selected-plugins-provided-by-the-gama-community
https://gama-platform.github.io/download
https://github.com/gama-platform/gama/
http://localhost:3000/wiki/Tutorials
http://localhost:3000/wiki/DataTypes
http://localhost:3000/wiki/DataTypes
http://localhost:3000/wiki/ManipulateOSMDatas
http://localhost:3000/wiki/UsingDatabase
http://localhost:3000/wiki/CallingR
https://www.youtube.com/watch?v=YGHw1LSzd-E


GAML also offers all the power needed by advanced modelers: being an agent-oriented language coded
in Java, it offers the possibility to build integrated models with several modeling paradigms, to explore
their parameter space and calibrate them and to run virtual experiments with powerful visualization
capabilities, all without leaving the platform.

GAML can be learned easily by first following the step-by-step tutorial and then exploring the other
tutorials and educational resources available on this site. Since 2007, the GAMA developers have also
provided ongoing support via the active mailing list. Finally, in addition to this online support, training
sessions for specialized audiences, on topics such as urban management, epidemiology, risk
management, are also organized and delivered by GAMA developers and users.

Declarative user interface
The user interface for writing models and running experiments is one of the strong points of GAMA. The
platform offers the possibility to have several displays for the same model, to add as many visual
representations as necessary for the agents and thus to highlight the elements of interest in the
simulations easily and nicely.

The 3D displays are provided with all the necessary support for realistic rendering. A rich set of
instructions makes it easy to define graphics for more dashboard-like presentations.

During simulations, interactive features can be made available to inspect the population of agents,
define user-controlled action panels, or interactions with the displays and external devices. GAMA also
includes specific modules and plugins to handle the interactivity with the users through networks,
handhelds, and other remote devices.

Documentation

http://localhost:3000/wiki/MultiParadigmModeling
http://localhost:3000/wiki/ExploringModels
http://localhost:3000/wiki/ExploringModels
http://localhost:3000/wiki/LearnGAMLStepByStep
http://localhost:3000/wiki/Tutorials
https://groups.google.com/forum/#!forum/gama-platform
http://localhost:3000/wiki/TrainingSession
http://localhost:3000/wiki/TrainingSession
http://localhost:3000/wiki/Defining3DDisplays
http://localhost:3000/wiki/DefiningCharts
http://localhost:3000/wiki/InspectorsAndMonitors
http://localhost:3000/wiki/DefiningUserInteraction


Beyond these features, GAMA also offers:

A large and extensible library of primitives (agent's movement, communication, mathematical
functions, graphical features, ...)

A cross-platform reproducibility of experiments and simulations

A complete set of batch tools, allowing for a systematic or "intelligent" exploration of models
parameters spaces

and much more !

All the features of GAMA are documented online on this wiki. It is organized around a few central
activities (installing GAMA, writing models, running experiments, developing new extensions to the
platform) and provides complete references on both the GAML language, the platform itself, the
scientific aspects behind GAMA (with a complete bibliography), and also all the communication around
it, notably videos here and here. Several tutorials are also provided in the documentation in order to
minimize the learning curve, allowing users to build, step by step, the models corresponding to these
tutorials, which are of course shipped with the platform. The documentation can be accessed from the
sidebar of this page. A good starting point for new users is the installation page.

Source Code
GAMA can be downloaded as a regular application or built from source, which is necessary if you want
to contribute to the platform. The source code is available from this GITHub repository:

Which you can also browse from here. It is, in any case, recommended to follow the instructions on this
page in order to build GAMA from source.

Citing GAMA
If you use GAMA in your research and want to cite it (in a paper, presentation, whatever), please use this
reference:

Taillandier, P., Gaudou, B., Grignard, A.,Huynh, Q.-N., Marilleau, N., P. Caillou, P., Philippon, D., &
Drogoul, A. (2019). Building, composing and experimenting complex spatial models with the GAMA
platform. Geoinformatica, (2019), 23 (2), pp. 299-322, [doi:10.1007/s10707-018-00339-6]

https://github.com/gama-platform/gama

http://localhost:3000/wiki/Installation
http://localhost:3000/wiki/WritingModels
http://localhost:3000/wiki/LaunchingExperiments
http://localhost:3000/wiki/DevelopingExtensions
http://localhost:3000/wiki/DevelopingExtensions
http://localhost:3000/wiki/GamlLanguage
http://localhost:3000/wiki/References
http://localhost:3000/wiki/Resources_TrainingVideos
http://localhost:3000/wiki/LargeProjects
http://localhost:3000/wiki/Tutorials
http://localhost:3000/wiki/Installation
https://gama-platform.org/download
https://github.com/gama-platform/gama
https://github.com/gama-platform/gama
http://localhost:3000/wiki/InstallingGitVersion
http://localhost:3000/wiki/InstallingGitVersion


or you can choose to cite the website instead:

GAMA Platform website, http://gama-platform.org

A complete list of references (papers and PhD theses on or using GAMA) is available on the references
page.

Contact Us
To get in touch with the GAMA developers team, please sign in for the gama-
platform@googlegroups.com mailing list. If you wish to contribute to the platform, you might want,
instead or in addition, to sign in for the gama-dev@googlegroups.com mailing list. On both lists, we
generally answer quite quickly to requests.

Finally, to report bugs in GAMA or ask for a new feature, please refer to these instructions to do so.

Copyright Information
This is a free software (distributed under the GNU GPL v3 license), so you can have access to the code,
edit it and redistribute it under the same terms. Independently of the licensing issues, if you plan on
reusing part of our code, we would be glad to know it !

Acknowledgement

YourKit supports open source projects with its full-featured Java Profiler. YourKit, LLC is the creator of
YourKit Java Profiler and YourKit .NET Profiler, innovative and intelligent tools for profiling Java and .NET
applications.

This page is licensed under a Creative Commons Attribution 4.0 International License.

http://gama-platform.org/
http://localhost:3000/wiki/References
http://groups.google.com/group/gama-platform
http://groups.google.com/group/gama-platform
http://groups.google.com/group/gama-dev
http://localhost:3000/wiki/Troubleshooting#Submitting_an_Issue
https://www.yourkit.com/java/profiler/index.jsp
https://www.yourkit.com/.net/profiler/index.jsp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Version: 1.9.3

Changelog
Major changes from 1.9.2 to 1.9.3
This is a maintenance release, aiming at fixing bugs observed in 1.9.2 and improving stability and
performances. The most important changes brought by this version are a dramatic improvement in
compilation time and memory usage, especially useful for large models, and a rework of gama-server
which is now also available in GUI mode and with added features for both GUI and headless use.

Detailed changes

The use of java 17 is now forced for every part of gama (some modules were still requiring
older versions)

Switch the 3d rendering library from Jzy3d 2.4-rc to JOGL 2.5.0

Improvement of the script gama-headless that previously wouldn't set gama correctly to handle
recorded experiment

Restore the schedule  facet that was wrongly removed

The headless script now loads the parameters from GAMA.ini if it's available

Some icons rendering have been improved

A new parameter to the darker  operator has been added to set the percentage of darkness
instead of the default 10% darker

The "insert template" menu options that were incomplete and not always working have been
fixed

It is now possible to call variables defined in the experiment in the interactive console

The handling of error messages in the interactive console have been improved

In the editor information messages and warnings can now be displayed directly above the line
instead of having to hover the icon. It can be turned on/off with a parameter in the settings

A new warning has been introduced when two displays have the same name in one experiment
(can cause a lot of problems)

The use of gis files in a comodeling context used to raise exceptions and has been fixed

This release of GAMA contains new features and fixes, including:

https://gama-platform.org/wiki/next/OperatorsDH#darker


Some operators working with geometries now do a better job at converting their input
arguments

Some fixes have been brought to the use of variables of type type  and the type_of  operator

A new built-in variable has been introduce: #user_location_in_display  it represents the
location of the mouse in the coordinates of the display, contrary to #user_location  that is
expressed in the world's coordinate system.

It is now possible to get the latest alpha version of GAMA through winget with the name
GamaPlatform.GamaAlpha

GAMA is now based on eclipse 2023-09

A small gap has been added between layers in 3d to fight some rendering problems

The rendering of opengl displays has been improved and is now faster

The library Bullet, used for the physics skills has been updated to version 18.6.0

The use of the ask  statement over the list simulations  used to produce weird behaviours but
has now been fixed

We can now use textures in 2D displays

The text output of the sobol analysis can now be exported to easy to handle csv

It is now possible to use box2D as a physics engine to efficiently emulate 2d worlds' physics

Operators antialiased , blurred  and sharpened  have a new parameter to define how many
times they are going to be applied to the image and have been optimized

The displays are now automatically updated when toggling the antialiasing option

All agents have a new property index  that represents their index in the the species

Some format issues in the save  statement have been fixed

The display of wireframe circles in 3d has been fixed

Arc of circles were rendered with only half of the asked radius and it has been fixed

The depth parameter of the line  operator is now taken into account and creates rectangles

Gama server now also runs in GUI mode and can be used to control the interface

The loading of models in gama-server has been optimized

The settings of gama-server (port, enabled/disabled, ping_interval) have been added to the
settings window of gama

No more error raising when closing a physical simulation

Chart displays have been optimized and can now run forever without slowing down or
increasing memory consumption

When using the accumulate_value  facet for the data of a chart the x value is now updated
instead of always using the first x value



The serialization engine XStream has completely been removed and replaced by FST, support
for xml has been dropped in favor of json and binary

The operator to_json  that transforms a map into a json formatted string has been introduced
to replace as_json_string  which is now deprecated

Gama-server sends a new kind of data: the simulation status when it's updated (loaded, paused
etc.), mostly useful for interacting with GUI currently

The compilation of gaml models has been drastically improved and is now sped up and takes
way less memory

An issue in the neighbors_at  operator where it would not always pick the right geometry as a
source in certain conditions has been fixed

The output of the stochastic analysis for the batch has been reworked

Some display problems in heatmap have been fixed

The operators to test types ( is_shape , is_csv  etc.) that were missing are back

It is now possible to have conditions in the displays

MQTT requests can now also benefit from the raw  statement like other network protocols

Some bug have been fixed gama-server making it more resilient to client disconnection

Drawing speed has been improved

The position of scaled mesh layer was wrong and has been fixed

When deserializing a json containing an integer too big, it is now transformed into a float
instead of raising an exception

The highlight functionality is back into the inspect panel

The use of keystone in displays with mesh was broken and is now fixed

The responsiveness of the code editor has been improved

The code coloration has been improved for some cases

The JGraphT library has been bumped to 1.5.2

A new command for gama-server is available: validate  which can be used to check that a
gaml expression is valid, either just syntactically or also semantically

Faster runtime access to species

Can now send step and stepBack commands with empty number of steps it will be considered
as one step

Fixes the getStopCondition exception that would arise in headless legacy mode sometimes

Many runtime exception that were related to gama scope have been fixed, like the ones that
could happen when inspecting an agent

Compilation errors that were sometimes shown on perfectly fine code have been fixed

The neighborhood of cells in hexagonal grids was sometimes wrong and has been fixed



Serialization of agents in list was broken and is now fixed

Deserialized agents are now added to the population of simulation

Some exceptions were raised in certain cases when clicking on buttons in the parameter view,
this is now fixed

Using arithmetic operators on fields was causing side effects and has been fixed

Changes that can impact models

🔴 Errors 🔴: concepts that need to be written differently

Now that all agents have an index  property, it can conflict with models that used to have a
property called index  defined in their agent or just some variables called index  in the code

Saving a simulation is now done in binary or json and not in xml as it was the case before. It is
thus not possible to save a simulation or agents in an older version of GAMA and open it in
1.9.3 and conversely.

graphs cannot be drawn unless they are spatial graphs, an error is now raised if a model tries
to do so

Preferences

Three new parameters have been introduced;

The enable server  parameter can be used to activate or disactivate the gama-server mode in GUI

The server port  parameter will on which port will gama-server listen when running in GUI

The server ping  will set the interval between two pings sent by gama-server to keep alive
connections with its client

The increment factor  will set the value of a factor regulating the level of z-factor (for distance
between layers in opengl displays)

Added models

View detailed changes



The library of models has undergone some changes. Besides making sure all the models compile and
run fine under the new version of GAMA, it also brings some new models, which are listed below:

The model Box2D Library.gaml to demonstrate the use of box2d as a physics engine

The model Serialization to Json.gaml to showcase how to serialize objects into json in gama as
well as deserialize json formatted strings into gama objects

The model 2 External GAMA controller.gaml can be used to understand how to use an external
program (in this case html) to control gama through gama-server

A few classic video games like Flappy bird.gaml, pacman and tetris

The model Conditional aspect selection.gaml to showcase how to select different aspects in
displays according to some external condition

Major changes from 1.9.1 to 1.9.2
The GAMA development team is pleased to announce the release of GAMA 1.9.2. This is a
maintenance release, aiming at fixing bugs observed in 1.9.1 and clarifying some of its concepts. No
new major feature has been added, except the possibility to define #mouse_drag  events.

Detailed changes

2D displays can now also be locked (only from the user interface currently)

A new event has been introduced: mouse_drag , an example is available in the model library:
msi.gama.models/models/Visualization and User Interaction/User Interaction/models/Mouse
Drag.gaml

Fixes potential issues with user_location  on touch screens

Fixes many issues on keyboard events (see issue #3770, and this commit)

Fixes control buttons not updating while in fullscreen (#3769)

Fixes the saving of matrices using the save  statement that was faulty for non-square matrices

View all new models list

This release of GAMA contains new features and fixes, including:

https://github.com/gama-platform/gama/blob/d821c20e7552f582e26ab0ee1f168302a1a05e18/simtools.gaml.extensions.physics/models/Physics%20Engine/models/Box2D%20Library.gaml
https://github.com/gama-platform/gama/blob/608733139a13c13d4516e5925c86a42471544f8f/ummisco.gama.serialize/models/Serialization/models/Serialization%20to%20Json.gaml
https://github.com/gama-platform/gama/commit/b64fbd5bc39bfa8f05b2a332ce2157f62e0a0ff9
https://github.com/gama-platform/gama/commit/fc4bc538b0d02e7702bbbf951eb34d93f7d4499c
https://github.com/gama-platform/gama/blob/2c2931185beba5f5fbb6365df9965cc2f776ebe2/msi.gama.models/models/Toy%20Models/Games/pacman/models/pacman.gaml
https://github.com/gama-platform/gama/blob/2c2931185beba5f5fbb6365df9965cc2f776ebe2/msi.gama.models/models/Toy%20Models/Games/tetris/tetris.gaml
https://github.com/gama-platform/gama/blob/e35225fe130eff4a69ac9b372eecb796ef204e64/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/Conditional%20aspect%20selection.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/User%20Interaction/models/Mouse%20Drag.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/User%20Interaction/models/Mouse%20Drag.gaml
https://github.com/gama-platform/gama/issues/3770
https://github.com/gama-platform/gama/commit/48973746ba47191f0aac92fff1908a950ae07d3c
https://github.com/gama-platform/gama/issues/3769


Fixes the casting from matrix  to string  that was faulty for non-square matrices

Adds the operator exp_rnd  to generate a random number following an exponential
distribution (example in msi.gama.models/models/Visualization and User
Interaction/Visualization/Charts/models/Distribution.gaml)

Various fixes and improvements for the reading/writing of csv  files (see this commit, this one,
this one and this issue)

Fixes bugs in the gaml editor when a display didn't contain any code

Improves the display of fields/mesh (#3796)

Fixes runtime error happening in torus models in certain cases (#3783)

Improvement of the type inference system for matrices (#3792)

Fixes hpc  flag being ignored in some cases in headless mode (#3687)

Fixes a bug in save_simulation  where simulations with variables of type font couldn't be saved
(#3815)

Fixes default camera in 3d displays not being applied unless explicitly written (#3811)

Enables steps in loop  statement to be of float type instead of silently casting it to int (#3810)

Type casting has been made more consistent (see #3809 for colors, #3803 for lists and #3806
for pairs )

Improves memory management when drawing images (see this commit)

Fixes rendering issues in documentation navigation within gama on windows (#3804)

Better handling of HTTP  responses (see this commit)

Fixes runtime errors happening in some models with dynamic cameras (#3821)

Fixes issues related to search dialog in the help menu for macOS (#3829 and #3828)

Fixes some issues leading Morris exploration not being run (see this commit)

Makes gama-server able to execute multiple commands at the same time in parallel for each
client (see this commit)

Adds an optional keepalive function to gama-server (see this commit)

Fixes exception raising sometimes when clients disconnect from gama-server (see this commit)

Splitting the gama-server command fetch  into two commands: upload  and download

Adding some verification on the format and types for the parameters  option of the load  and
reload  commands of gama-server

Renaming the memorize  type into record

Introducing compress  facet to indicate if a memorize / record  experiment should use
compression (reduces memory usage but increase computation time)

Introducing different formats used internally for memorize / record  experiments that can be:
xml , the legacy one, or two new ones: json  and binary  (both faster and more memory

https://github.com/gama-platform/gama/blob/bc6dd960f608af2a61b358cfbb1eba0d89329d05/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/Charts/models/Distribution.gaml
https://github.com/gama-platform/gama/blob/bc6dd960f608af2a61b358cfbb1eba0d89329d05/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/Charts/models/Distribution.gaml
https://github.com/gama-platform/gama/commit/ead1fd816bf55b1f6838127122750959fc33b999
https://github.com/gama-platform/gama/commit/fbe60ca9a72f5b2be322d5bfe1b7ac179079ffcd
https://github.com/gama-platform/gama/commit/c4eb5023019a8f360d29870c7c3b7d6f425f4a8f
https://github.com/gama-platform/gama/issues/3817
https://github.com/gama-platform/gama/issues/3796
https://github.com/gama-platform/gama/issues/3783
https://github.com/gama-platform/gama/issues/3792
https://github.com/gama-platform/gama/issues/3687
https://github.com/gama-platform/gama/issues/3815
https://github.com/gama-platform/gama/issues/3811
https://github.com/gama-platform/gama/issues/3810
https://github.com/gama-platform/gama/issues/3809
https://github.com/gama-platform/gama/issues/3803
https://github.com/gama-platform/gama/issues/3806
https://github.com/gama-platform/gama/commit/7839e38a71694621fab9174b1f8a8e5e81f866ec
https://github.com/gama-platform/gama/issues/3804
https://github.com/gama-platform/gama/commit/9f95125c85a3d63fe69e7c6697c3f48c1aa8e841
https://github.com/gama-platform/gama/issues/3821
https://github.com/gama-platform/gama/issues/3829
https://github.com/gama-platform/gama/issues/3828
https://github.com/gama-platform/gama/commit/faa37a417e54e45d9ee305a89ed618f4ee10dd09
https://github.com/gama-platform/gama/commit/e7abe5c69bed37472bb631aada11b88c33ee0716
https://github.com/gama-platform/gama/commit/e7abe5c69bed37472bb631aada11b88c33ee0716
https://github.com/gama-platform/gama/commit/30ab9f193dbd8fe7747d140744badc27b1351e9c


efficient) and can be set with the format  facet of the experiment.

Fixing issues in the script gama-headless.sh  used in macOS (#3766 and this commit)

Multiple fixes on the moran  operator (see this issue, this commit and this one)

Fixing the shortcut for code suggestion in macOS (#3852)

ASC file using dx/dy format can now be read too

Big memory leaks have been fixed for operations on images

Miscellaneous internal/architecture improvements

Fixes exceptions raised in tabu searches in some cases

Fixes the copy  operator on shape  variables

New splash screen

Improves the navigation in the parameter by not refreshing it completely when one parameter
changes (for example in batch mode)

Fixes the initialisation order for experiment parameters

Various general fixes in the display of svg

All the geometries defined in an svg file are now accessible separately (allowing to draw only
some of them, or to have different color for each for example)

Adds a parameter to set an automatic z  increment in between layers in opengl

Changes that can impact models

🔴 Errors 🔴: concepts that need to be written differently

All skills belonging to the "driving" skill have been renamed for more intuitive names, the skill
advanced_driving  has been replaced by driving , the skill skill_road  is replaced by
road_skill  and skill_road_node  is replaced by intersection_skill

The loop  statements using a step  facet are not casting the step  value into an int  anymore
which means that if you had loops that used float  variables as a step, they may behave
differently.

casting colors ( rgb  type) into different types changed in some cases:

View detailed changes

https://github.com/gama-platform/gama/issues/3766
https://github.com/gama-platform/gama/commit/1f0436ea9f668283f4824aefba5d0f1b13274318
https://github.com/gama-platform/gama/issues/3848
https://github.com/gama-platform/gama/commit/a4f3aad5d4dc9dfa56d5b5e4a9a8dda671f249b5
https://github.com/gama-platform/gama/commit/01fa686a905bb2e37314496ab14a2b4a24d8ea07
https://github.com/gama-platform/gama/issues/3852


casting an rgb  into a float  now returns the same result as casting to an int  instead of
returning 0

casting an rgb  into a point  now returns a point formed like this {red, green, blue}
instead of {0,0,0}

casting an rgb  into a list  now returns a list of its four components: red, green, blue and
alpha instead of just red, green and blue

casting a string  into a list  now returns a list of string composed of all the letters of the
original string . For example: list("some string")  will return this list: ["s", "o", "m",
"e", " ", "s", "t", "r", "i", "n", "g"]

casting into a pair  has been homogenized, overall most cases are kept unchanged but some
fringe cases are eliminated. The general rule is that casting anything into a pair  will now result
in a pair where the first and the second elements are the same initial object. For example:
pair([1,2,3])  will return this pair: [1,2,3]::[1,2,3] . The only exceptions are casting a pair
into a pair  which will result in no change, and casting a map  into a pair  that will result in a
pair where the first element is the list of keys of the map and the second is the list of values of
the map.

The gama-server command fetch  has been split into two different commands: upload  and
download  and cannot be used anymore. See here the documentation on how to use those
commands.

The type of experiment memorize  should be renamed record . In addition there's now two
additional facets you can set for memorize / record  experiments: format  and compress . The
format  facet indicates the internal format used to save each step, and can be "xml" , "binary"
or "json" . The compress  facet indicates whether or not the saved step should be compressed
or not. Compressed ones will take less memory in the long run, but will take more time to
save/load.

Preferences

The description of all preferences can be found at this page. A number of new preferences have been
added to cover existing or new aspects of the platform.

Bug fixes

You can also check the complete list of the closed issues on the github repository. Keep in mind that this
list is incomplete as a lot of problems where solved without being linked to any issue on github (via the

https://gama-platform.org/wiki/HeadlessServer#the-download-command
https://gama-platform.org/wiki/Preferences
https://github.com/gama-platform/gama/issues?q=created%3A2023-04-13..2023-09-07+is%3Aclosed


mailing list or internally for example).

Added models

The library of models has undergone some changes. Besides making sure all the models compile and
run fine under the new version of GAMA, it also brings some new models, which are listed below:

A model to showcase the use of SVG files:
ummisco.gaml.extensions.image/models/Images/models/SVG Manipulation.gaml

An example model to test the new mouse_drag  event: msi.gama.models/models/Visualization
and User Interaction/User Interaction/models/Mouse Drag.gaml

Pedestrian movement following Mehdi Moussaid's model: msi.gama.models/models/Toy
Models/Pedestrian/models/Moussaid model.gaml

A new example of data importation to get a mapbox image as a background of the simulation:
msi.gama.models/models/Data/Data Importation/models/MapBox Image Import As
Background Image.gaml

Previous major changes since 1.8.1 brought by
1.9.1
The GAMA development team is pleased to announce the release of GAMA 1.9.1

This version, while maintaining the power, stability, expressiveness and ease of use of GAMA, brings new
capabilities and openings to the platform, making it even more intuitive to use by modelers and even
more versatile in terms of applications.

This major release of GAMA contains many new features and fixes, including:

A much more fluid and powerful IDE, offering support for all the latest technologies, from HiDPI
displays to JDK 17 and Apple Silicon processors.

A new server mode of GAMA, offering a clear and extensible exchange protocol, which completely
revolutionizes the way to interact with the platform from R, Python or any web client.

View all new models list

https://github.com/gama-platform/gama/blob/cfda0e49894472cd1475b055f886715d056222f4/ummisco.gaml.extensions.image/models/Images/models/SVG%20Manipulation.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/User%20Interaction/models/Mouse%20Drag.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/User%20Interaction/models/Mouse%20Drag.gaml
https://github.com/gama-platform/gama/blob/3192728f30e9ee89245ca89b1cfad4bd5e75f8ce/msi.gama.models/models/Toy%20Models/Pedestrian/models/Moussaid%20model.gaml
https://github.com/gama-platform/gama/blob/3192728f30e9ee89245ca89b1cfad4bd5e75f8ce/msi.gama.models/models/Toy%20Models/Pedestrian/models/Moussaid%20model.gaml
https://github.com/gama-platform/gama/blob/cfda0e49894472cd1475b055f886715d056222f4/msi.gama.models/models/Data/Data%20Importation/models/MapBox%20Image%20Import%20As%20Background%20Image.gaml
https://github.com/gama-platform/gama/blob/cfda0e49894472cd1475b055f886715d056222f4/msi.gama.models/models/Data/Data%20Importation/models/MapBox%20Image%20Import%20As%20Background%20Image.gaml


Increased model exploration possibilities thanks to new calibration and optimization methods,
also directly usable in the server mode.

The addition of the two new data types field  and image , which make it even easier to load,
analyze, visualize and produce raster data

A much more powerful graph manipulation than previous versions, but still easy to couple with
agents

A focus on urban mobility applications, with skill  advanced_driving  and pedestrian , which
make it much easier to produce realistic large-scale models.

The possibility to simulate physical interactions between agents thanks to the new skill s
static_body , dynamic_body  and physical_simulation , which rely on the native bullet  library.

New and faster display capabilities, offering more intuitive handling of agents and organisation
of display surfaces, making it easier than ever to build interactive simulations, serious games or
advanced scientific visualisations.

Comparison chart

  Gama 1.8.1 Gama 1.9.1

Java and
environments

Java 11 and x86 (intel
architecture)

Java 17, x86 and ARM architectures (notably
Apple Silicon)

Server mode - Headless server / connection with Python and R

Model
exploration

Exhaustive sampling and
calibration

Several new sampling methods (e.g.
latinhypercube), sensitivity analysis (e.g. Sobol)
and calibration

Physics
modeling

Limited
Extended features with native bullet library and
influences/forces computations

Mobility
modeling

moving  and driving  skills
moving , advanced_driving  (non normative
traffic) and pedestrian  (Social force model)
skills

Raster data
integration

Limited with grid  (bad
performances above
500x500)

New field  and image  types allow larger sizes
and better performances



  Gama 1.8.1 Gama 1.9.1

Graph
integration

Programmatic with fixed
layout

Import / export to 6 graph file formats (e.g.
.graphml, .gml) with various spatial layouts
rendering

Detailed changes

GAMA Server mode

gama-server is a new way of running GAMA experiments. It consists of an instance of gama-
headless that, once launched, waits for commands sent through websockets and executes them.
These commands follow a clear and extensible protocol, enabling its use in many contexts, from the
definition of experiment plans in R to the design of dashboards in JavaScript. See the corresponding
wiki page to setup a server instance of Gama.

Modelling improvements

field  type

A new variable type (field) to support the management (import and use) of large raster geographic
data. It allows in particular to:

import large mono/multi-band rasters

simply access / modify values of spatial grids as simply as before, but with very high
performance improvement

Try out:

Basic syntax to create and visualize fields: Fields.gaml

Basic syntax to access/write values in fields: Accessing Fields.gaml

Use of field to superpose information in a trafic simulation: Traffic and Pollution.gaml

Use of field to represent flows (water): Waterflow Field Elevation.gaml

Use of field to support diffusion process: Anisotropic Diffusion & Uniform Diffusion

image  type

View detailed changelog

https://github.com/gama-platform/gama/wiki/HeadlessServer
https://github.com/gama-platform/gama/blob/GAMA_1.9.1/msi.gama.models/models/GAML%20Syntax/Data%20Types%20And%20Structures/Fields.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.1/msi.gama.models/models/Modeling/Spatial%20Topology/Fields/Accessing%20Fields.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.1/msi.gama.models/models/Toy%20Models/Traffic/models/Traffic%20and%20Pollution.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.1/msi.gama.models/models/Toy%20Models/Waterflow/models/Waterflow%20Field%20Elevation.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.1/ummisco.gaml.extensions.maths/models/Diffusion%20Statement/models/Anisotropic%20Diffusion%20(Simple%2C%20Field).gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.1/ummisco.gaml.extensions.maths/models/Diffusion%20Statement/models/Uniform%20Diffusion%20(Field).gaml


Easier to work with images

Try out:

Basic syntax to create an image: Declaring Images.gaml

Basic syntax to manipulate an image: Image Manipulation.gaml

Save snapshot of a simulation displays: Manual Snapshot.gaml

pedestrian  skill

A new plugin has been integrated in GAMA that allows to simulate pedestrian movement. This
plugin uses Helbing's social force model as a basis to support pedestrian walk and offers tools to
reconstruct paths from an open environment and obstacles. This two new features are identified by
a skill ( pedestrian ) and an operator ( generate_pedestrian_network ) respectively. You can find
examples in the models below.

Try out:

How to build the pedestrian network that agents use to manage the origin and destination of
their trip in the open environment: Generate pedestrian paths.gaml

A comprehensive list of the parameters that makes it possible how agent avoid obstacles, in a
simple (Simple environment - walk_to.gaml) and a complex (Complex environment - walk.gaml)
environment

advanced_driving  skill

The driving skill has been completely redesigned in order to offer a more realistic representation of
driver behavior (by explicitly using the Intelligent Driver Model and Lane-change Model MOBIL) and
by allowing to take into account multi-lane vehicles - this allows for example to simulate mixed
traffic composed of motorcycles and cars. Besides, the behavior of drivers can be custom to
represent non normative behavior, such as dangerous take-off, disrespect of signals, signs, speed
limit or road direction and lanes.

Try out:

An abstract representation of vehicles size (bus, car, motorcycle) and free use of road lanes and
direction (Drive Random.gaml)

An abstract representation of vehicles managing cross section, with collision avoidance,
priority, etc. (Simple Intersection.gaml)

A very small road system with stops to simulate congestion (Following Paths.gaml)

Physics extension improvement

https://github.com/gama-platform/gama/blob/GAMA_1.9.1/ummisco.gaml.extensions.image/models/Images/models/Declaring%20Images.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.1/ummisco.gaml.extensions.image/models/Images/models/Image%20Manipulation.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.1/ummisco.gaml.extensions.image/models/Images/models/Manual%20Snapshot.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.1/miat.gaml.extensions.pedestrian/models/Pedestrian%20Skill/models/Generate%20pedestrian%20paths.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.1/miat.gaml.extensions.pedestrian/models/Pedestrian%20Skill/models/Simple%20environment%20-%20walk_to.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.1/miat.gaml.extensions.pedestrian/models/Pedestrian%20Skill/models/Complex%20environment%20-%20walk.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.traffic/models/Driving%20Skill/models/Advanced%20models/Drive%20Random.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.traffic/models/Driving%20Skill/models/Advanced%20models/Simple%20Intersection.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.traffic/models/Driving%20Skill/models/Advanced%20models/Following%20Paths.gaml


Physics plugin has been completely rewritten and allows to use native implementations of the
bullet library in a redesigned framework (where physical agents can coexist with non-physical ones).

Try out:

Interaction between static (skill static_body ) and dynamic (skill dynamic_body ) 3D objects
(Eroding Vulcano.gaml)

Manage 3D objects movement based on a Digital Elevation Model (Flow on Terrain.gaml)

Experiment

Batch methods

Batch experiments have been reworked to better distinguish simulation exploration and model
calibration. On the first hand, modelers should engage in simulation exploration if they want to
launch many simulations across the parameter space, better understand the contribution of
stochasticity and evaluate the specific contribution of given parameters to output variability. On the
other hand, modelers should use calibration methods if they want to find parameters values of the
models, so the simulation outputs are as close as possible to desired ones. A detailed description is
provided in this wiki page.

Try out:

A walkthrough of all provided methods to explore, method exploration , and analyse the
sensitivity of your model, including a tool to decide method stochanalyse  or method sobol
(Exploration.gaml)

A walkthrough of minimal way to setup calibration, including the new PSO  algorithm
(Calibration.gaml)

Headless batch

We implement a way to launch Gama batch  experiment in headless with a simple command line,
using the gama-headless.sh bash script with -batch  option. For more information, see the related
(wiki page).

Reproducibility and random number generation

Great effort towards tracking and limiting the use of random generators outside the ones built
in GAMA

Addition of several new random number generators

https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.physics/models/Physics%20Engine/models/Eroding%20Vulcano.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.physics/models/Physics%20Engine/models/Flow%20on%20Terrain.gaml
https://github.com/gama-platform/gama/wiki/ExplorationMethods
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Model%20Exploration/Batch%20Simulation/Exploration.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Model%20Exploration/Batch%20Simulation/Calibration.gaml
https://github.com/gama-platform/gama/wiki/HeadlessBatch


Displays

OpenGL improvements

Great improvements have been done on the displays and specifically on opengl ones. Key points
are:

Lot faster (2 times) on geometries

Rendering of large-scale images, grids, fields or matrices using the new mesh  layer, with several
colouring options

More flexibility:

camera  statement to specify the dynamic movements of the camera

light  statements to specify the lighting(s) of the scene

rotate  statement to specify the rotation of the full screen

Better and more accurate rendering of texts (with 3D, etc.)

Possibility to choose between several predefined cameras, to save cameras, etc.

mesh  layer

display large rasters

layout  improvements

Allow to easily split or compose the displays

Possibility to define borderless displays

User Interface

Support of HiDPI

HiDPI and various "display zooms" are now supported natively. Displays, text and icons scale up
and down accordingly. Only issues remaining is that the text and icons can be blurry and
pixelised on some configurations (Windows 10, Windows 11 with 150% zoom, etc.)

Support of dark mode

Light and dark modes are also now supported out of the box. Preferences allow GAMA to
impose its own theme or follow the one defined in the OS. A new syntax highlighting theme for
dark mode is accessible from the preferences too.

User Interaction



Addition of wizards and dialogs

It is now possible to open wizards and dialogs from the GAML code thanks to the user_confirm,
user_input_dialog, wizard and wizard_page operators.

Try out:

How to define a new wizard (Wizard.gaml)

detailed use of the new user_input (User input.gaml)

Addition of events

new events can be defined as display  layers: #arrow_down , #arrow_up , #arrow_left ,
#arrow_right , #escape , #tab , #enter , #page_up , #page_down

Clipboard

the clipboard can be written and read using the copy_to_clipboard(value)  and
copy_from_clipboard(type)  operators

Advanced programming usages

Additions to GAML

on_change:  facet can be added to attributes and parameters to trigger any behaviour in
response to a change of value. Particularly useful for defining interactive parameters.

abort  statement can be defined in any agent (incl. global  and experiment ) and executed just
before the agent is disposed of.

thread  skill

The new thread skill allows to run actions in a specific thread. In particular, this skill is intended to
define the minimal set of behaviours required for agents that are able to run an action in a thread.

File manipulations: copy , zip , delete , save  improvements

One can now completely manipulate files directly in the gama models with dedicated
copy_file , delete_file , rename_file (which can be used to move a file), zip  and unzip
operators.

save  accepts more file formats and provides a hook for developers to develop ISaveDelegate s

network  skill improvements

To increase the integration between Gama and other applications we improved a lot the network
capabilities:

http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/User%20Interaction/models/Wizard.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/User%20Interaction/models/User%20input.gaml
http://localhost:3000/wiki/OperatorsBC#copy_file
http://localhost:3000/wiki/OperatorsDH#delete_file
http://localhost:3000/wiki/OperatorsNR#rename_file
http://localhost:3000/wiki/OperatorsSZ#zip
http://localhost:3000/wiki/OperatorsSZ#zip


The communication with web-services is now easier with the possibility to execute
post/get/update/delete HTTP requests directly in gaml with extensions of the send  action of
the networking skill, as described in the HTTP POST.gaml  and HTTP GET.gaml  of the Plugin
models  library.

Adding support for the websocket protocol in the network  skill

General work on the network skill with communication outside of Gama in mind

Graph improvements

Shortest paths

Integration of new algorithms for computing shortest paths in graphs.

BidirectionalDijkstra: default one - ensure to find the best shortest path - compute one shortest
path at a time: https://www.homepages.ucl.ac.uk/~ucahmto/math/2020/05/30/bidirectional-
dijkstra.html

DeltaStepping: ensure to find the best shortest path - compute one shortest path at a time: The
delta-stepping algorithm is described in the paper: U. Meyer, P. Sanders, $\Delta$-stepping: a
parallelizable shortest path algorithm, Journal of Algorithms, Volume 49, Issue 1, 2003, Pages
114-152, ISSN 0196-6774

CHBidirectionalDijkstra: ensure to find the best shortest path - compute one shortest path at a
time. Based on precomputations (first call of the algorithm). Implementation of the hierarchical
query algorithm based on the bidirectional Dijkstra search. The query algorithm is originally
described the article: Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
2008. Contraction hierarchies: faster and simpler hierarchical routing in road networks. In
Proceedings of the 7th international conference on Experimental algorithms (WEA'08),
Catherine C. McGeoch (Ed.). Springer-Verlag, Berlin, Heidelberg, 319-333

TransitNodeRouting: ensure to find the best shortest path - compute one shortest path at a
time. Based on precomputations (first call of the algorithm). The algorithm is designed to
operate on sparse graphs with low average outdegree. the algorithm is originally described the
article: Arz, Julian & Luxen, Dennis & Sanders, Peter. (2013). Transit Node Routing Reconsidered.
7933. 10.1007/978-3-642-38527-8_7.

Input/ouput

You can now load / save your graph into dedicated file format such as .gml, .dot or .gefx to build
your graph.

Try out:

Load agents from a graph file (Graph Agents Importation.gaml)

https://www.homepages.ucl.ac.uk/~ucahmto/math/2020/05/30/bidirectional-dijkstra.html
https://www.homepages.ucl.ac.uk/~ucahmto/math/2020/05/30/bidirectional-dijkstra.html
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Data/Data%20Importation/models/Graph%20Agents%20Importation.gaml


Load the entire graph from files (Graph Importation.gaml)

Save graphs into dedicated files format (Save Graphs.gaml)

Layout

Non spatial graph can be rendered using operators to locate nodes on a circle, as a grid lattice or
considering connection as forces.

OS and computing environments

GAMA 1.9.1 has been tested on:

Windows 10 and 11 on Intel processors

MacOS Monterey, Ventura on Intel & Apple Silicon computers

Ubuntu 20.04 and 22.04 on Intel processors

Note that this version drops the support for 32 bits architectures.

Support of JDK 17+

Gama 1.9.1 brings compatibility with JDK17+ and should remain compatible for the following JDK
versions.

Support of ARM processors

A specific version of GAMA is now built for Apple Silicon processors on macOS. Even if no specific
version is produced for the ARM version of Windows, reports show that it works well in emulated
mode.

New installers for Windows, Mac (brew) and Linux (aur, deb)

Gama 1.9.1 comes with a dedicated installer for every platform, so it's easier for newcomers to get
it working. In addition, the macOS version is now fully signed. Linux and macOS users can also
benefit from CLI installers.

New versions of native libraries: SWT, JTS, GeoTools, bullet, JOGL, JGraphT

All the major libraries on which GAMA is relying have been bumped to their latest versions, except
GeoTools (version 25) and JGraphT (version 1.5.1).

Changes that can impact models

🔴 Errors 🔴: concepts that cannot be used anymore

https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Data/Data%20Importation/models/Graph%20Importation.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Data/Data%20Exportation/models/Save%20Graphs.gaml


gama.pref_lib_r , gama.pref_lib_spatialite , gama.pref_optimize_agent_memory ,
gama.pref_display_triangulator  have been removed

In experiment, the method statement exhaustive  and explicit  does not exist anymore. Use
exploration  instead, see the related documentation on batch .

the material  type (and the corresponding material:  facet in draw: ) does not exist anymore
and has not been replaced.

the built-in equation  types ( SIR , etc.) do not exist anymore and have not been replaced.

field  cannot be used anymore as a species or variable name.

image  cannot be used anymore as a species or variable name.

to_list  cannot be used anymore as a species or variable name.

🔴 Errors 🔴: concepts that need to be written differently

timeStamp()  in SQLSKILL  does not exist anymore. Use machine_time  instead.

dem(...)  operators do not exist anymore. Use a combination of field  and mesh  layer to load
and draw a digital elevation model

event ['k']  should be rewritten as event 'k' .

generate_complete_graph , generate_barabasi_albert , generate_watts_strogatz , and
as_distance_graph  now take different arguments. Please refer to their documentation.

load_graph_from_file  has been removed and replaced by the use of the corresponding graph
file types ( graphml_file , etc.)

simplex_generator  has been removed and replaced by generate_terrain

🟠 Warnings 🟠:

grid  + lines:  is deprecated and replaced by border:

save  + type:  is deprecated and replaced by format:

display  + draw_env:  is deprecated and replaced by axes:

display  + synchronized:  is deprecated. synchronized:  should now be defined on output:

display  + camera_pos:  is deprecated. Should be replaced by location:  defined on a camera
statement inside the display

display  + camera_interaction:  is deprecated. Should be replaced by locked:  defined on a
camera  statement inside the display

display  + camera_up_vector:  is deprecated. Not used anymore.

display  + camera_look_pos:  is deprecated. Should be replaced by target:  defined on a
camera  statement inside the display

display  + focus:  is deprecated. Should be replaced by target:  defined on a camera
statement inside the display

https://github.com/gama-platform/gama/wiki/ExplorationMethods


display  + ambient_light:  is deprecated. Should be replaced by intensity:  defined on a
light #ambient  statement inside the display

light  + position:  is deprecated and replaced by location:

light  + update:  is deprecated and replaced by dynamic:

light  + color:  is deprecated and replaced by intensity:

light  + name:  now takes a string  and not an int

light  + draw_light:  is deprecated and replaced by show:

light  + type:  now takes a string  among #spot , #point  or #direction

user_input  is deprecated and should be replaced by user_input_dialog

draw  + empty:  is deprecated and replaced by wireframe:

image  (layer) + file:  is deprecated and replaced by the direct use of the file name as the
default facet

event  now takes a string for its default facet (preferably the defined constants like
#mouse_move , #left_arrow , etc.)

event  + action:  is deprecated as the definition of the action should directly follow the
statement definition

the with_optimizer_type  operator is deprecated and replaced by
with_shortestpath_algorithm

Preferences

The description of all preferences can be found at this page. A number of new preferences have
been added to cover existing or new aspects of the platform. They are summarised below.

New preferences

Interface tab

Startup Remember Gama windows sizes

Startup Several prompts related to the use of workspaces

Startup Setup a model to run at start

Editors tab

Edition More options (3) for automatic typing

Edition Turns experiment buttons into a drop down list

Syntax Coloring according to Gama theme (light|dark)

Execution tab

https://gama-platform.org/wiki/next/Preferences


(New) Parameters Customize parameter view

Parallelism Use all available threads in batch mode

Display tab

Chart preferences Choose resolution of charts

(Removed) Advanced

OpenGL Limit the number of frames

OpenGL Sensitivity of keyboard/mouse/trackpad

OpenGL Ambiant light intensity

OpenGL Default camera orientation

Data and Operator

Random Number Generator Display RNG in parameter view

(Removed) Optimization Many options have been removed to enforce reproducibility

(New) Experimental

This tab holds experimental preferences that should be use with care

Setting and sharing preferences

Gama 1.9.1 brings new options for setting preferences and sharing them among models.

Passing preferences to GAMA at startup

Modellers running the headless or gui versions of GAMA can now pass preferences to the
executable using arguments (either in the headless script or in the Gama.ini  file). The syntax is -
Dpref_name=value  (for instance -Dpref_display_synchronized=true  to synchronise displays,
including snapshots of headless GAMA, with the simulation).

Global or workspace scopes

The default behaviour of GAMA makes sharing preferences between workspaces and models easy,
since they are global to the user account. In some instances, however, it can be necessary to restrict
them to a local scope (i.e. a workspace). In that case, launching GAMA with the -
Duse_global_preference_store=false  will make it save its preferences in the current workspace
and not globally anymore.

Bug fixes



You can also check the complete list of the closed issues on the github repository. Keep in mind that
this list is incomplete as a lot of problems where solved without being linked to any issue on github
(via the mailing list or internally for example).

Added models

The library of models has undergone some changes. Besides making sure all the models compile
and run fine under the new version of GAMA, it also brings some new models, which are listed
below:

Usage of the pedestrian  skill

miat.gaml.extensions.pedestrian/models/Pedestrian Skill/models/Complex environment -
walk.gaml

miat.gaml.extensions.pedestrian/models/Pedestrian Skill/models/Generate pedestrian
paths.gaml

miat.gaml.extensions.pedestrian/models/Pedestrian Skill/models/Simple environment -
walk_to.gaml

New graph  capabilities

msi.gama.models/models/Data/Data Exportation/models/Save Graphs.gaml

msi.gama.models/models/Data/Data Importation/models/Graph Agents Importation.gaml

msi.gama.models/models/Data/Data Importation/models/Graph Importation.gaml

msi.gama.models/models/Modeling/Spatial Topology/Graphs/models/Clustering.gaml

Utilities

msi.gama.models/models/Data/Utils/models/FileUtils.gaml

msi.gama.models/models/Data/Utils/models/TestWebAddress.gaml

msi.gama.models/models/Data/Utils/models/ZipUnzip.gaml

Elements of GAML syntax

msi.gama.models/models/GAML Syntax/Abort statement/Abort.gaml

msi.gama.models/models/GAML Syntax/Data Types And Structures/Fields.gaml

msi.gama.models/models/GAML Syntax/Loop And Iterations/Break and Continue.gaml

https://github.com/gama-platform/gama/issues?q=created%3A%3E%3D2020-06-10+is%3Aclosed
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/miat.gaml.extensions.pedestrian/models/Pedestrian%20Skill/models/Complex%20environment%20-%20walk.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/miat.gaml.extensions.pedestrian/models/Pedestrian%20Skill/models/Complex%20environment%20-%20walk.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/miat.gaml.extensions.pedestrian/models/Pedestrian%20Skill/models/Generate%20pedestrian%20paths.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/miat.gaml.extensions.pedestrian/models/Pedestrian%20Skill/models/Generate%20pedestrian%20paths.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/miat.gaml.extensions.pedestrian/models/Pedestrian%20Skill/models/Simple%20environment%20-%20walk_to.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/miat.gaml.extensions.pedestrian/models/Pedestrian%20Skill/models/Simple%20environment%20-%20walk_to.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Data/Data%20Exportation/models/Save%20Graphs.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Data/Data%20Importation/models/Graph%20Agents%20Importation.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Data/Data%20Importation/models/Graph%20Importation.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Modeling/Spatial%20Topology/Graphs/models/Clustering.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Data/Utils/models/FileUtils.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Data/Utils/models/TestWebAddress.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Data/Utils/models/ZipUnzip.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/GAML%20Syntax/Abort%20statement/Abort.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/GAML%20Syntax/Data%20Types%20And%20Structures/Fields.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/GAML%20Syntax/Loop%20And%20Iterations/Break%20and%20Continue.gaml


msi.gama.models/models/GAML Syntax/System/Clipboard.gaml

msi.gama.models/models/GAML Syntax/System/Elements of Syntax.gaml

msi.gama.models/models/GAML Syntax/System/RunThread.gaml

msi.gama.models/models/GAML Syntax/Variables/Declaration of Parameters.gaml

msi.gama.models/models/GAML Syntax/Variables/Notifying Variables.gaml

New batch  capabilities

msi.gama.models/models/Model Exploration/Batch Simulation/Calibration.gaml

msi.gama.models/models/Model Exploration/Batch Simulation/Exploration.gaml

Toy models

msi.gama.models/models/Toy Models/Art/Gama 1.9/models/GAMA 1.9.gaml

msi.gama.models/models/Toy Models/Games/Snake.gaml

msi.gama.models/models/Toy Models/K Nearest Neighbours/models/knn.gaml

Declaration and usage of field

msi.gama.models/models/Modeling/Spatial Topology/Fields/Accessing Fields.gaml

msi.gama.models/models/Toy Models/Waterflow/models/Waterflow Field Elevation.gaml

msi.gama.models/models/Toy Models/Traffic/models/Traffic and Pollution.gaml

ummisco.gaml.extensions.maths/models/Diffusion Statement/models/Anisotropic Diffusion
(Simple, Field).gaml

ummisco.gaml.extensions.maths/models/Diffusion Statement/models/Uniform Diffusion
(Field).gaml

msi.gama.models/models/Visualization and User Interaction/Visualization/Building
Heatmap.gaml

msi.gama.models/models/Visualization and User Interaction/Visualization/DEM Generator.gaml

msi.gama.models/models/Visualization and User Interaction/Visualization/Palettes and
Gradients.gaml

msi.gama.models/models/Visualization and User Interaction/Visualization/Worm
Heatmap.gaml

New user interaction modalities

https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/GAML%20Syntax/System/Clipboard.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/GAML%20Syntax/System/Elements%20of%20Syntax.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/GAML%20Syntax/System/RunThread.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/GAML%20Syntax/Variables/Declaration%20of%20Parameters.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/GAML%20Syntax/Variables/Notifying%20Variables.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Model%20Exploration/Batch%20Simulation/Calibration.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Model%20Exploration/Batch%20Simulation/Exploration.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Toy%20Models/Art/Gama%201.9/models/GAMA%201.9.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Toy%20Models/Games/Snake.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Toy%20Models/K%20Nearest%20Neighbours/models/knn.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Modeling/Spatial%20Topology/Fields/Accessing%20Fields.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Toy%20Models/Waterflow/models/Waterflow%20Field%20Elevation.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Toy%20Models/Traffic/models/Traffic%20and%20Pollution.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gaml.extensions.maths/models/Diffusion%20Statement/models/Anisotropic%20Diffusion%20(Simple,%20Field).gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gaml.extensions.maths/models/Diffusion%20Statement/models/Anisotropic%20Diffusion%20(Simple,%20Field).gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gaml.extensions.maths/models/Diffusion%20Statement/models/Uniform%20Diffusion%20(Field).gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gaml.extensions.maths/models/Diffusion%20Statement/models/Uniform%20Diffusion%20(Field).gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/Building%20Heatmap.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/Building%20Heatmap.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/DEM%20Generator.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/Palettes%20and%20Gradients.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/Palettes%20and%20Gradients.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/Worm%20Heatmap.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/Worm%20Heatmap.gaml


msi.gama.models/models/Visualization and User Interaction/GUI Design/Parameters and
Commands.gaml

msi.gama.models/models/Visualization and User Interaction/User Interaction/models/Confirm
Dialog.gaml

msi.gama.models/models/Visualization and User Interaction/User Interaction/models/User
input.gaml

msi.gama.models/models/Visualization and User Interaction/User
Interaction/models/Wizard.gaml

New camera  and light  definitions

msi.gama.models/models/Visualization and User Interaction/Visualization/3D
Visualization/models/Camera Definitions.gaml

msi.gama.models/models/Visualization and User Interaction/Visualization/3D
Visualization/models/Camera Shared Zoom.gaml

msi.gama.models/models/Visualization and User Interaction/Visualization/3D
Visualization/models/Specular Effects.gaml

Physics engine demonstrations

simtools.gaml.extensions.physics/models/Physics Engine/models/Eroding Vulcano.gaml

simtools.gaml.extensions.physics/models/Physics Engine/models/Flow on Terrain.gaml

simtools.gaml.extensions.physics/models/Physics Engine/models/Perfect Gas Chamber.gaml

simtools.gaml.extensions.physics/models/Physics Engine/models/Play Pool.gaml

simtools.gaml.extensions.physics/models/Physics Engine/models/Stairs.gaml

simtools.gaml.extensions.physics/models/Physics Engine/models/Testing Restitution.gaml

simtools.gaml.extensions.physics/models/Physics Engine/models/Testing Steps.gaml

simtools.gaml.extensions.physics/models/Physics Engine/models/Tricky Fountain.gaml

New driving  skill

simtools.gaml.extensions.traffic/models/Driving Skill/models/Advanced models/Drive
Random.gaml

simtools.gaml.extensions.traffic/models/Driving Skill/models/Advanced models/Following
Paths.gaml

https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/GUI%20Design/Parameters%20and%20Commands.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/GUI%20Design/Parameters%20and%20Commands.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/User%20Interaction/models/Confirm%20Dialog.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/User%20Interaction/models/Confirm%20Dialog.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/User%20Interaction/models/User%20input.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/User%20Interaction/models/User%20input.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/User%20Interaction/models/Wizard.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/User%20Interaction/models/Wizard.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Camera%20Definitions.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Camera%20Definitions.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Camera%20Shared%20Zoom.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Camera%20Shared%20Zoom.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Specular%20Effects.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Specular%20Effects.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.physics/models/Physics%20Engine/models/Eroding%20Vulcano.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.physics/models/Physics%20Engine/models/Flow%20on%20Terrain.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.physics/models/Physics%20Engine/models/Perfect%20Gas%20Chamber.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.physics/models/Physics%20Engine/models/Play%20Pool.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.physics/models/Physics%20Engine/models/Stairs.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.physics/models/Physics%20Engine/models/Testing%20Restitution.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.physics/models/Physics%20Engine/models/Testing%20Steps.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.physics/models/Physics%20Engine/models/Tricky%20Fountain.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.traffic/models/Driving%20Skill/models/Advanced%20models/Drive%20Random.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.traffic/models/Driving%20Skill/models/Advanced%20models/Drive%20Random.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.traffic/models/Driving%20Skill/models/Advanced%20models/Following%20Paths.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.traffic/models/Driving%20Skill/models/Advanced%20models/Following%20Paths.gaml


simtools.gaml.extensions.traffic/models/Driving Skill/models/Advanced models/Simple
Intersection.gaml

simtools.gaml.extensions.traffic/models/Driving Skill/models/Advanced models/Traffic.gaml

simtools.gaml.extensions.traffic/models/Driving Skill/models/Simple model/Simple Traffic
Model.gaml

New network capabilities

ummisco.gama.network/models/Network/2 Available protocols/HTTP Request/HTTP GET.gaml

ummisco.gama.network/models/Network/2 Available protocols/HTTP Request/HTTP POST.gaml

ummisco.gama.network/models/Network/2 Available protocols/TCP protocol/TCP Server And
Client Example .gaml

ummisco.gama.network/models/Network/2 Available protocols/TCP protocol/TCP Server
Example.gaml

ummisco.gama.network/models/Network/2 Available protocols/WebSocket
protocol/WebSocket Server And Client Example .gaml

ummisco.gama.network/models/Network/2 Available protocols/WebSocket
protocol/WebSocket Server Example.gaml

Usage of the image  type

ummisco.gaml.extensions.image/models/Images/models/Casting Images.gaml

ummisco.gaml.extensions.image/models/Images/models/Declaring Images.gaml

ummisco.gaml.extensions.image/models/Images/models/Image Manipulation.gaml

ummisco.gaml.extensions.image/models/Images/models/Manual Snapshot.gaml

New mathematical tests

ummisco.gaml.extensions.maths/tests/ODE Tests/models/Consistency Test.gaml

ummisco.gaml.extensions.maths/tests/ODE Tests/models/Events Test.gaml

https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.traffic/models/Driving%20Skill/models/Advanced%20models/Simple%20Intersection.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.traffic/models/Driving%20Skill/models/Advanced%20models/Simple%20Intersection.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.traffic/models/Driving%20Skill/models/Advanced%20models/Traffic.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.traffic/models/Driving%20Skill/models/Simple%20model/Simple%20Traffic%20Model.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/simtools.gaml.extensions.traffic/models/Driving%20Skill/models/Simple%20model/Simple%20Traffic%20Model.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gama.network/models/Network/2%20Available%20protocols/HTTP%20Request/HTTP%20GET.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gama.network/models/Network/2%20Available%20protocols/HTTP%20Request/HTTP%20POST.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gama.network/models/Network/2%20Available%20protocols/TCP%20protocol/TCP%20Server%20And%20Client%20Example%20.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gama.network/models/Network/2%20Available%20protocols/TCP%20protocol/TCP%20Server%20And%20Client%20Example%20.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gama.network/models/Network/2%20Available%20protocols/TCP%20protocol/TCP%20Server%20Example.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gama.network/models/Network/2%20Available%20protocols/TCP%20protocol/TCP%20Server%20Example.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gama.network/models/Network/2%20Available%20protocols/WebSocket%20protocol/WebSocket%20Server%20And%20Client%20Example%20.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gama.network/models/Network/2%20Available%20protocols/WebSocket%20protocol/WebSocket%20Server%20And%20Client%20Example%20.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gama.network/models/Network/2%20Available%20protocols/WebSocket%20protocol/WebSocket%20Server%20Example.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gama.network/models/Network/2%20Available%20protocols/WebSocket%20protocol/WebSocket%20Server%20Example.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gaml.extensions.image/models/Images/models/Casting%20Images.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gaml.extensions.image/models/Images/models/Declaring%20Images.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gaml.extensions.image/models/Images/models/Image%20Manipulation.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gaml.extensions.image/models/Images/models/Manual%20Snapshot.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gaml.extensions.maths/tests/ODE%20Tests/models/Consistency%20Test.gaml
https://github.com/gama-platform/gama/tree/GAMA_1.9.1/ummisco.gaml.extensions.maths/tests/ODE%20Tests/models/Events%20Test.gaml


Version: 1.9.3

Platform
GAMA consists of a single application that is based on the RCP architecture provided by Eclipse. Within
this single application software, often referred to as a platform, users can undertake, without the need
of additional third-parties softwares, most of the activities related to modeling and simulation, namely
editing models and simulating, visualizing and exploring them using dedicated tools.

First-time users may however be intimidated by the apparent complexity of the platform, so this part of
the documentation has been designed to ease their first contact with it, by clearly identifying tasks of
interest to modelers and how they can be accomplished within GAMA.

It is accomplished by firstly providing some background about important notions found throughout the
platform, especially those of workspace and projects and explaining how to organize and navigate
through models. Then we take a look at the edition of models and its various tools and components
(dedicated editors and related tools, of course, but also validators). Finally, we show how to run
experiments on these models and what support the user interface can provide to users in this task.

http://www.eclipse.org/
http://localhost:3000/wiki/EditingModels
http://localhost:3000/wiki/RunningExperiments
http://localhost:3000/wiki/WorkspaceProjectsAndModels
http://localhost:3000/wiki/NavigatingWorkspace
http://localhost:3000/wiki/NavigatingWorkspace
http://localhost:3000/wiki/EditingModels
http://localhost:3000/wiki/GamlEditorGeneralities
http://localhost:3000/wiki/GamlEditorToolbar
http://localhost:3000/wiki/ValidationOfModels
http://localhost:3000/wiki/RunningExperiments
http://localhost:3000/wiki/RunningExperiments
http://localhost:3000/wiki/ExperimentsUserInterface


Version: 1.9.3

Installation and Launching
The GAMA platform can be easily installed on your machine: Windows, macOS or Ubuntu. Depending on
user needs, GAMA can then be extended by using a number of additional plugins.

This part is dedicated to explain how to install GAMA, launching GAMA and extend the platform by
installing additional plugins. All the known issues concerning installation are also explained. The GAMA
team provides you a continuous support by proposing corrections to some serious issues through
updating patchs. In this part, we will also briefly present another way to launch GAMA without any GUI :
the headless mode.

Installation

Launching GAMA

Headless Mode

Updating GAMA

Installing Plugins

http://localhost:3000/wiki/Installation
http://localhost:3000/wiki/Launching
http://localhost:3000/wiki/InstallingPlugins
http://localhost:3000/wiki/Troubleshooting
http://localhost:3000/wiki/Updating
http://localhost:3000/wiki/Headless
http://localhost:3000/wiki/Installation
http://localhost:3000/wiki/Launching
http://localhost:3000/wiki/Headless
http://localhost:3000/wiki/Updating
http://localhost:3000/wiki/InstallingPlugins


Version: 1.9.3

Installation
We made efforts to make the last release of GAMA (1.9.2) as easy as possible to install, by providing a
version with an embedded Java JDK, limiting the installation to a 3-steps procedure: download, install
and launch.

Download GAMA
GAMA 1.9.2 (the latest release) comes in a version for each 3 environments Windows, macOS and Linux
packaged in easy to use installers. You simply have to go on the downloads page and pick the one for
your system.

For advanced users :

GAMA provide also some versions without embedded JDK allowing you to download a lighter
archive

This version requires Java 17 JDK to be installed on your computer (at least 17.0.3+7)

It's also possible to download these 2 kinds of releases in simple zip archive (i.e. without
installers), if you do so, please refer to the post-installation procedure at the end of this page

You'll find them on the Github Release page

Install procedure
After downloading the chosen GAMA version from the Downloads page for your computer, you only
have run the installer, follow steps, and launch GAMA.

Step-by-step Windows

On windows, in addition to running GAMA from the zip file, we have to ways of installing it: the standard
installer that you can get from our website, or the winget command.

Installer from the website

This is the standard way of installing GAMA on windows.

https://gama-platform.org/download
https://github.com/gama-platform/gama/releases/latest
https://gama-platform.org/download
http://localhost:3000/wiki/Launching


1. Download the installer .exe  for Windows

2. Double-click on the downloaded .exe  file

3. Accept to run the app

4. Follow the installer with the onscreen steps

5. Done, you can start GAMA from your computer now.

NB: If you need to launch GAMA Headless, GAMA is installed under C:\Program Files\Gama  by
default

From winget

For advanced users, you may want to install GAMA from winget, the process is very simple:

1. Open PowerShell

2. Run the command

That's it, GAMA is installed on your computer!

winget.exe install GamaPlatform.Gama

https://gama-platform.org/download
http://localhost:3000/wiki/RunningHeadless


Step-by-step macOS

In macOS we have two ways of installing gama: either the regular and user friendly .dmg  installer, or the
command line way with the homebrew  package manager.

DMG version

1. Download the installer .dmg  for macOS
There is a built specifically for Macintosh M1 (also called with Apple silicon). You can check by
clicking on the top-left apple, About this Mac : the pop-up window will give details about the
processor. If you're not sure and your Macintosh is from 2021 (or earlier) you probably need this
specific version

2. Double-click on the downloaded .dmg  file

3. Drag'n'drop GAMA icon to your computer (Applications folder or Desktop for instance)

4. Done, you can start GAMA from your computer now. At the first launch of GAMA, a popup window
will appear warning you that GAMA is a software downloaded from internet and asking whether you
want to open it. Click on the Open button.

https://gama-platform.org/download


NB: Note that the first launch of GAMA should be made in GUI mode (clicking on the icon) and not
in headless mode. NB2: If you need to launch GAMA Headless after, GAMA is installed where you
dragged and dropped the Gama.app

brew  version

1. Install brew on your computer: just follow the instruction from the website.

2. Open a terminal

3. Run the command brew install gama  or brew install gama-jdk  for the JDK version

Step-by-step Linux

Debian/Ubuntu based

You have two ways of installing GAMA on Debian and Ubuntu based systems: either by downloading a
.deb  installer or from the ppa  repository.

From the ppa to get the latest versions (Recommended)

1. Open a terminal.

2. Run the following commands.

http://localhost:3000/wiki/RunningHeadless
https://brew.sh/


3. You can now install GAMA with the command apt install gama-platform  or apt install gama-
platform-jdk  for the JDK version. If you want to see all available packages head over to the ppa
page.

4. If you want to update GAMA, just run apt update && apt upgrade  when a new release comes out.

From a .deb  installer to get a specific version

1. You can download a .deb  file from 3 different sources:
From the project downloads page under the Linux section.

From the ppa page under the "All Packages" section.

From the github release page

2. Double-click on the downloaded .deb  file

3. Click on install

4. You could be asked for your password

sudo -i # Type your password
apt update
apt install ca-certificates # This might be needed if you are on debian, install it 
just in case
echo "deb [trusted=yes] https://ppa.gama-platform.org ./" | tee -a 
/etc/apt/sources.list

https://ppa.gama-platform.org/
https://ppa.gama-platform.org/
https://gama-platform.org/download
https://ppa.gama-platform.org/
https://github.com/gama-platform/gama/releases


5. Done, you can start GAMA from your computer now

Note: If you need to launch GAMA Headless, GAMA is always installed under /opt/gama-platform

Arch Linux based

AUR packages with latest version of GAMA exists for both version with and without embedded JDK. You
can download them with a command as follows:

Step-by-step Docker

A Docker image of GAMA exists to execute GAMA Headless inside a container.

1. Install docker on your system following the official documentation

2. Pull the GAMA's docker you want to use (e.g. docker pull gamaplatform/gama:1.9.2 )

3. Run this GAMA's docker with your headless command (e.g. docker run gamaplatform/gama:1.9.2
-help )

You can found all the tags and more detailed documentation on the Docker Hub or on the
corresponding Github's Repository

System Requirements
GAMA 1.9.2 requires approximately 540MB of disk space and a minimum of 2GB of RAM (to increase the
portion of memory usable by GAMA, please refer to these instructions).

Windows post-installation setting (only for zip
install)
If you decided to install gama yourself from the zip  file, it is important that you change the Windows
HDPI compatibility settings. To do so, go to your Gama.exe  file, right click and it and select properties ,
then go to the Compatibility  tab and click on the Change high DPI settings  button:

yay -S gama-platform{-jdk}

http://localhost:3000/wiki/RunningHeadless
http://localhost:3000/wiki/RunningHeadless
https://docs.docker.com/engine/install/
https://hub.docker.com/r/gamaplatform/gama
https://github.com/gama-platform/gama.docker
http://localhost:3000/wiki/Troubleshooting#Memory_problems


In the new window, check the Override high DPI scaling behavior  option and select the System
value.



These options are necessary to avoid most graphical problem using gama on Windows



Version: 1.9.3

Launching GAMA
Running GAMA for the first time requires that you launch the application ( Gama.app  on MacOS X,
Gama.exe  on Windows, Gama  on Linux, located in the folder called GAMA_VERSION.NUMBER_YOUR_OS_NAME
once you have unzipped the downloaded archive). In case you are unable to launch the application, or if
error messages appear, please refer to the installation or troubleshooting instructions.

Table of contents
Launching GAMA

Launching the Application

Launching the Application from the command line

Choosing a Workspace

Welcome Page

Launching the Application
The extraction of the downloaded archive provides:

on Mac OS X: a single file named Gama.app

on Windows and Linux: a folder named GAMA_1.8_YOUR_OS_NAME  containing, among many other
files and folders, the Gama.exe  file (for Windows) and Gama  (for Linux).

Running GAMA requires that you launch the application file ( Gama.app  on Mac OS X, Gama.exe  on
Windows, Gama  on Linux) by double-clicking on them or from a terminal.

Launching the Application from the command
line
Note that GAMA can also be launched in two different other ways:

1. In a so-called headless mode (i.e. without a user interface, from the command line, in order to
conduct experiments or to be run remotely). Please refer to the corresponding instructions.

http://localhost:3000/wiki/Installation
http://localhost:3000/wiki/Troubleshooting
http://localhost:3000/wiki/Headless


2. From the terminal, using a path to a model file and the name or number of an experiment, in order
to allow running this experiment directly (note that the two arguments are optional: if the second is
omitted, the file is imported in the workspace if not already present and opened in an editor; if both
are omitted, GAMA is launched as usual):

Gama.app/Contents/MacOS/Gama path_to_a_model_file#experiment_name_or_number  on Mac OS X

Gama path_to_a_model_file#experiment_name_or_number  on Linux

Gama.exe path_to_a_model_file#experiment_name_or_number  on Windows

Choosing a Workspace
Past the splash screen, GAMA will ask you to choose a workspace in which to store your models and
their associated data and settings. The workspace can be any folder in your filesystem on which you
have read/write privileges. If you want GAMA to remember your choice next time you run it (it can be
handy if you run Gama from the command line), simply check the corresponding option. If this dialog
does not show up when launching GAMA, it probably means that you inherit from an older workspace
used with a previous GAMA version (and still "remembered"). In that case, a warning will be produced to
indicate that the model library is out of date, offering you the possibility to create a new workspace.

You can enter its address or browse your filesystem using the appropriate button. If the folder already
exists, it will be reused (after a warning if it is not already a workspace). If not, it will be created. It is



always a good idea, when you launch a new version of GAMA for the first time, to create a new
workspace. You will then, later, be able to import your existing models into it. Failing to do so might lead
to odd errors in the various validation processes.

When you try to choose a workspace used with a previous of GAMA, the following pop-up will appear.

The following pop-up appears when the user wants to create a new workspace in a folder that does not
exist. Click on OK to create the folder and set this new folder as the GAMA workspace.

Welcome Page
As soon as the workspace is created, GAMA will open and you will be presented with its first window.
GAMA is based on Eclipse and reuses most of its visual metaphors for organizing the work of the

http://localhost:3000/wiki/ImportingModels
http://www.eclipse.org/


modeler. The main window is then composed of several parts, which can be views or editors, and are
organized in a perspective. GAMA proposes 2 main perspectives: Modeling, dedicated to the creation of
models, and Simulation, dedicated to their execution and exploration. Other perspectives are available if
you use shared models.

The default perspective in which GAMA opens is Modeling. It is composed of a central area where GAML
editors are displayed, which is surrounded by a Navigator view on the left-hand side of the window, an
Outline view (linked with the open editor), the Problems view, which indicates errors and warnings
present in the models stored in the workspace and an interactive console, which allows the modeler to
try some expressions and get an immediate result.

In the absence of previously open models, GAMA will display a Welcome page (actually a web page), from
which you can find links to the website, current documentation, tutorials, etc. This page can be kept
open (for instance if you want to display the documentation when editing models) but it can also be
safely closed (and reopened later from the "Help" menu).

http://localhost:3000/wiki/GamlEditorGeneralities
http://localhost:3000/wiki/GamlEditorGeneralities
http://localhost:3000/wiki/NavigatingWorkspace


From this point, you are now able to edit a new model, navigate in the model library, or import an
existing model.

http://localhost:3000/wiki/EditingModels
http://localhost:3000/wiki/NavigatingWorkspace
http://localhost:3000/wiki/ImportingModels
http://localhost:3000/wiki/ImportingModels


Version: 1.9.3

Updating GAMA
Unless you are using the version of GAMA built from the sources available in the GIT repository of the
project (see here), you are normally running a specific release of GAMA that sports a given version
number (e.g. GAMA 1.8.1, GAMA 1.7, GAMA 1.6.1, etc.). When new features were developed, or when
serious issues were fixed, the release you had on your disk, prior to GAMA 1.6.1, could not benefit from
them. Since the version 1.6.1, however, GAMA has been enhanced to support a self_update mechanism,
which allows you to import from the GAMA update site additional plugins (offering new features) or
updated versions of the plugins that constitute the core of GAMA.

The update of GAMA will be detailed on this page; to install new additional plugins (from the GAMA
community or third-party developers) see the page dedicated to the installation of new plugins.

Table of contents
Updating GAMA

Manual Update

Automatic Update

Manual Update
To activate this feature, you have to invoke the "Check for Updates" or "Install New Software..." menu
commands in the "Help" menu.

The first one will only check if the existing plugins have any updates available, while the second will, in
addition, scan the update site to detect any new plugins that might be added to the current installation.

http://localhost:3000/wiki/InstallingGitVersion
http://localhost:3000/wiki/InstallingPlugins


In general, it is preferable to use the second command, as more options (including that of uninstalling
some plugins) are provided. Once invoked, it makes the following dialog appear:



GAMA expects the user to enter a so-called update site. You can copy and paste the following line (or
choose it from the drop-down menu as this address is built inside GAMA):

GAMA will then scan the entire update site, looking both for new plugins of the GAMA kernel and
updates to existing plugins. The list available in your installation will, of course, be different from the
one displayed here.

In order to make the plugins appear, you need to uncheck the option "Group items by category".
Choose the ones you want to update (or install) and click "Next >".

http://updates.gama-platform.org



A summary page will appear, indicating which plugins will actually be installed (since some plugins
might require additional plugins to run properly). Click on the "Next >" button.

A license page will then appear: you have to accept all of them. Click on "Finish".



GAMA will then proceed to the installation (that can be canceled at any time) of the chosen plugins.

During the course of the installation, you might receive the following warning, that you can dismiss by
clicking "OK". You can click on the "Details" button to see which plugins contain unsigned contents.

Once the plugins are installed, GAMA will ask you whether you want to restart or not. It is always safer
to do so, so select "Restart now" and let it close by itself, register the new plugins and restart.



Automatic Update
GAMA offers a mechanism to monitor the availability of updates to the plugins already installed. To
activate this feature, open the preferences of GAMA and choose the button "Advanced...", which gives
access to additional preferences.

http://localhost:3000/wiki/Preferences


In the dialog that appears, navigate to "Install/Update > Automatic Updates". Then, enable the option
using the check-box in the top of the dialog and choose the best settings for your workflow. Clicking on
"Apply and close" will save these preferences and dismiss the dialog.



From now on, GAMA will continuously support you in having an up-to-date version of the platform,
provided you accept the updates.



Version: 1.9.3

Installing Plugins
Besides the plugins delivered by the developers of the GAMA platform, there are a number of additional
plugins that can be installed to add new functionalities to GAMA or enhance the existing ones. GAMA
being based on Eclipse, a number of plugins developed for Eclipse are then available (a complete listing
of Eclipse plugins can be found in the so-called Eclipse MarketPlace).

There are, however, three important restrictions:

1. The current version of GAMA is based on Eclipse 2022-12 (version number 4.26.0), which excludes
de facto all the plugins targeting solely a specific different version of Eclipse. These will refuse to
install anyway.

2. The Eclipse foundations in GAMA are only a subset of the complete Eclipse platform, and a number
of libraries or frameworks (for example the Java Development Toolkit) are not (and will never be)
installed in GAMA. So plugins relying on their existence will refuse to install as well.

3. Some components of GAMA rely on a specific version of other plugins and will refuse to work with
other versions, essentially because their compatibility will not be ensured anymore. For instance,
the parser and validator of the GAML language in GAMA 1.9.2 require XText v. 2.29.0 to be installed.

With these restrictions in mind, it is, however, possible to install interesting additional plugins. We
propose here a list of some of these plugins (known to work with GAMA), but feel free to either add a
comment if you have tested plugins not listed here or create an issue if a plugin does not work, in order
for us to see what the requirements to make it work are and how we can satisfy them (or not) in GAMA.

Table of contents
Installing Plugins

Installation

Selected plugins provided by GAMA community
Toward participative simulations with Remote.Gui and Gaming plugins

RJava plugin

Weka and Matlab plugins

Selected Plugins
Git

CSV Edit

http://marketplace.eclipse.org/
http://www.eclipse.org/Xtext/
http://localhost:3000/wiki/Troubleshooting


Quickimage

RSS/Atom Feed View

CKEditor

Startexplorer

Pathtools

Installation
Installing new plugins is a process identical to the one described when updating GAMA, with one
exception: the update site to enter is normally provided by the vendor of the additional plugin and must
be entered instead of GAMA's one in the dialog.

Let suppose that we want to install a GAMA plugin developed in order to allow GAMA to ask R to do
some computations. This plugin is developed by the GAMA community, but the installation of any plugin
will be similar, only the address of the update site will change. To install this plugin, open the pane to
install new plugins: "Help > Install new plugins ... ".

Choose in the "Work with..." text field:

If it is not available, you can simply type the address of the update site in the text field:

Note: The <GAMA-VERSION>  should be replaced by the version of GAMA you are using.

For example, current latest version is GAMA 1.9.2, then the address is this : http://updates.gama-
platform.org/experimental/1.9.2

Among all the plugins, select RJava  in the category "Optional components of GAMA" and click on "Next
>" button.

msi.gama.experimental.p2updatesite - http://updates.gama-platform.org/experimental

http://updates.gama-platform.org/experimental/<GAMA-VERSION>

http://localhost:3000/wiki/Updating
https://www.r-project.org/
http://localhost:3000/wiki/Updating#manual-update
http://localhost:3000/wiki/Updating#manual-update


The initial dialog is followed by two other ones, a first to report that the plugin satisfies all the
dependencies, a second to ask the user to accept the license agreement.



Once we dismiss the warning that the plugin is not signed and accept to restart GAMA, we can test the
new plugin. In the case of plugins extending the features of GAMA, some example models are often
provided with the new plugins to illustrate its use (and it is the case for RJava ). These new models are
accessible in GAMA from Plugin models  in a dedicated folder ( GAMA to Rjava  in the case of RJava ).
We may need to refresh the model library to let it appear. Notice that you need to configure GAMA to
access R before running these models.

http://localhost:3000/wiki/CallingR
http://localhost:3000/wiki/CallingR


Selected plugins provided by the GAMA
community
The update site located at the address http://updates.gama-platform.org/experimental  contains
new plugins for GAMA mainly developed by the GAMA community (its Github repository is available
here). As the name of the repository highlights it, these plugins are most of them still in
development, before integration in the kernel of GAMA.

Toward participative simulations with Remote.Gui  and Gaming
plugins

There are more and more applications of GAMA for participative simulations (LittoSim, MarakAir,
HoanKiemAir...). There was thus a need for new features to improve the possible interactions with
simulations and the definition of the Graphical User Interface. The two plugins Remote.Gui  and Gaming
(available in the "Participative simulation" category) attempts to fill this need.

Remote.Gui  allows exposing some model parameters, in order that they can be modified through a
network. This allows, for example, to develop a remote application (e.g. Android application) to
control the parameters' values during the simulation.

Gaming  allows the modeler to define displays that are much more interactive. This is used to define
serious games in which the users can have a wide range of possible interactions with the

https://github.com/gama-platform/gama.experimental
https://github.com/gama-platform/gama.experimental
https://littosim.hypotheses.org/
https://github.com/gnoubi/MarrakAir
https://github.com/WARMTeam/HoanKiemAir
http://localhost:3000/wiki/UsingNetwork
http://localhost:3000/wiki/UsingNetwork


simulation.

RJava  plugin

This plugin allows the modeler to launch some computation on the R  software. To this purpose, R
should be installed on your computer and GAMA should be properly configured.

This possible connection to R  opens thus the possibility for the modeler to use all the statistical
functions and libraries developed in this tool of reference. In addition, R scripts defined by the modeler
can also be used directly from his/her GAMA model.

Weka  and Matlab  plugins

Similarly to RJava , Matlab  and Weka  plugins allow the modeler to run computations on the Matlab  and
Weka software, taking advantages of all the possibilities of these softwares and of scripts defined by
him/herself.

Notice that the Matlab  plugin requires that MATLAB 2019a is installed and activated on your computer.

https://www.r-project.org/
http://localhost:3000/wiki/CallingR
https://fr.mathworks.com/products/matlab.html
https://www.cs.waikato.ac.nz/ml/weka/


Version: 1.9.3

Workspace, Projects and Models
The workspace is a directory in which GAMA stores all the current projects on which the user is working,
links to other projects, as well as some meta-data like preference settings, the current status of the
different projects, error markers, and so on.

Except when running in headless mode, GAMA cannot function without a valid workspace.

The workspace is organized in 4 categories, which are themselves organized into projects.

The projects present in the workspace can be either directly stored within it (as sub-directories), which
is usually the case when the user creates a new project, or linked from it (so the workspace will only
contain a link to the directory of the project, supposed to be somewhere in the filesystem or on the
network). A same project can be linked from different workspaces.

GAMA models files are stored in these projects, which may contain also other files (called resources)
necessary for the models to function. A project may, of course, contain several model files, especially if
they are importing each other, if they represent different views on the same topic, or if they share the
same resources.

Learning how to navigate in the workspace, how to switch workspace or how to import, export is a
necessity to use GAMA correctly. It is the purpose of the following sections.

1. Navigating in the Workspace

2. Changing Workspace

3. Importing Models

http://localhost:3000/wiki/ValidationOfModels
http://localhost:3000/wiki/Headless
http://localhost:3000/wiki/NavigatingWorkspace
http://localhost:3000/wiki/EditingModels#Creating_a_first_model
http://localhost:3000/wiki/NavigatingWorkspace
http://localhost:3000/wiki/ChangingWorkspace
http://localhost:3000/wiki/ImportingModels
http://localhost:3000/wiki/NavigatingWorkspace
http://localhost:3000/wiki/ChangingWorkspace
http://localhost:3000/wiki/ImportingModels


Version: 1.9.3

Navigating in the Workspace
All the models that you edit or run using GAMA are accessible from a central location: the Navigator,
which is always on the left-hand side of the main window and cannot be closed. This view presents the
models currently present in (or linked from) your workspace.

Table of contents
Navigating in the Workspace

Status of projects and models

The Different Categories of Models
Library models

Plugin models

Test models

User models

Inspect Models



Moving Models Around

Closing and Deleting Projects

Status of projects and models
All the projects and models have an icon with a red or green circle on it. This eases to locate models
containing compilation errors (red circle) and projects that have been successfully validated (green
circle).

The Different Categories of Models
In the Navigator, models are organized in four different categories: Models library, Plugin models, Test
models, and User models. This organization is purely logical and does not reflect where the models are
actually stored in the workspace (or elsewhere). Whatever their actual location, model files need to be
stored in projects, which may contain also other files (called resources) needed for the models to
function (such as data files). A project may, of course, contain several model files, especially if they are
importing each other, if they represent different models on the same topic, or if they share the same
resources.



Library models

This category represents the models that are shipped with each version of GAMA. They do not reside in
the workspace but are considered as linked from it. This link is established every time a new workspace
is created. Their actual location is within a plugin (msi.gama.models) of the GAMA application. This
category contains 7 main projects in GAMA 1.9, which are further refined in folders and sub-folders that
contain model files and resources.



The 7 main projects on the Library models are:

Data: all these plugins illustrate how to manage data in GAML. This includes how to import data (in
all the supported formats) into a model, export (i.e. save) agents or data in the simulations in files,
clean data (e.g. clean a road network), get and save data in databases, and use data analysis
operators.

GAML Syntax: these models have the only goal to illustrate the syntax of the GAML language. This
includes how to use the various data structures (list, map, matrix...), architectures, loop,
interactions, and conditional structures, or how to schedule agents...

Model Exploration: all these models illustrate the various ways to explore models and in particular
the various possible experiment (batch, multi-simulations...).



Modeling: these models provide implementations of various classical difficulties encountered by
modelers: how to make agents move (on a graph, a grid...), how to implement decision-making
process...

Toy Models: these models are replications of classical models from the literature, including
Sugarscape, Schelling, ants, boids...

Tutorials: this project contains all the files of the various tutorials (available from the website).

Visualization and User Interaction: these models illustrate most of the GAMA features in terms of
visualization and interactions with the simulation, e.g. the 3D visualization...

It may happen, on some occasions, that the library of models is not synchronized with the version of
GAMA that uses your workspace. This is the case if you use different versions of GAMA to work with the
same workspace. In that case, it is required that the library be manually updated. This can be done
using the "Update library" item in the contextual menu.



To look up for a particular model in the library, users can use the "Find model..." search bar, which allows
looking for models by their title (for example, models containing "BDI" in the example below).



Plugin models

This category represents the models that are related to a specific plugin (additional or integrated by
default). The corresponding plugin is shown between parenthesis.



When you add an additional plugin extending the GAML language is added, a new project can be added
to this category.

Test models
These models are unit tests for the GAML language: they aim at testing each element of the language to
check whether they produce the expected result. The aim is to avoid regression after evolutions of the
software. They can be run from the validation view.

User models

This category regroups all the projects that have been created or imported in the workspace by the user.
Each project can be actually a folder that resides in the folder of the workspace (so they can be easily
located from within the filesystem) or a link to a folder located anywhere in the filesystem (in case of a
project importation). Any modification (addition, removal of files...) made to them in the file system (or
using another application) is immediately reflected in the Navigator and vice-versa.

Model files, although it is by no means mandatory, usually reside in a sub-folder of the project called
models . Similarly, all the test models are located in the tests  folder.

http://localhost:3000/wiki/InstallingPlugins
http://localhost:3000/wiki/ValidationOfModels
http://localhost:3000/wiki/GamlEditorGeneralities
http://localhost:3000/wiki/ImportingModels


Inspect Models
Each model is presented as a node in the navigation workspace, including Experiment buttons and/or a
Contents node and/or a Uses node and/or a Tags node and/or an Imports node.



Imports: The node Impots lists all the model files that are imported in the current model.



Uses node: The node Uses is present if your model uses some external resources, and if the path
to the resource is correct (if the path to the resource is not correct, the resource will not be
displayed under Uses).

Tags node: The node Tags lists all the tags that have been specified in the header of the model.

Contents: The node Contents describes the tree of all the elements in the model. It is similar to the
Overview view.

**Experiment button **: Experiment buttons are present if your model contains experiments (it is
usually the case !). To run the corresponding experiment, just click on it. To learn more about



running experiments, jump into this section.

Moving Models Around
Model files, as well as resources, or even complete projects, can be moved around between the "Models
Library"/"Plugin Models" and "Users Models" categories, or within them, directly in the Navigator.
Drag'n drop operations are supported, as well as copy and paste. For example, the model Life.gaml ,
present in the "Models Library", can perfectly be copied and then pasted in a project in the "Users
Model". This local copy in the workspace can then be further edited by the user without altering the
original one.

http://localhost:3000/wiki/LaunchingExperiments


Closing and Deleting Projects
Users can choose to get rid of old projects by either closing or deleting them. Closing a project means
that it will still reside in the workspace (and be still visible, although a bit differently, in the Navigator) but
its model(s) won't participate to the build process and won't be displayable until the project is opened
again.





Deleting a project must be invoked when the user wants this project to not appear in the workspace
anymore (unless that is, it is imported again). Invoking this command will effectively make the
workspace "forget" about this project, and this can be further doubled with a deletion of the project's
resources and models from the filesystem.

http://localhost:3000/wiki/ImportingModels






Version: 1.9.3

Changing Workspace
It is possible, and actually common, to store different projects/models in different workspaces and to tell
GAMA to switch between these workspaces. Doing so involves being able to create one or several new
workspace locations (even if GAMA has been told to remember the current one) and being able to easily
switch between them.

Table of contents
Changing Workspace

Switching to another Workspace

Cloning the Current Workspace

Switching to another Workspace
This process is similar to the choice of the workspace location when GAMA is launched for the first time.
The only preliminary step is to invoke the appropriate command ("Switch Workspace") from the "File"
menu.

http://localhost:3000/wiki/Launching#Choosing_a_Workspace
http://localhost:3000/wiki/Launching#Choosing_a_Workspace


In the dialog that appears, the current workspace location should already be entered. Changing it to a
new location (or choosing one in the file selector invoked by clicking on "Browse...") and pressing "OK"
will then either create a new workspace if none existed at that location or switch to this new workspace.
Both operations will restart GAMA and set the new workspace location. To come back to the previous
location, just repeat this step (the previous location is normally now accessible from the combo box).



Notice that, when GAMA restarts and that you have not ticked "Remember workspace", GAMA will ask
you again the workspace (just as when you launch GAMA).

Cloning the Current Workspace
Another possibility, if you have models in your current workspace that you would like to keep in the new
one (and that you do not want to import one by one after switching workspace), or if you change
workspace because you suspect the current one is corrupted, or outdated, etc. but you still want to keep
your models, is to clone the current workspace into a new (or existing) one.

Please note that cloning (as its name implies) is an operation that will make a copy of the files into
a new workspace. So, if projects are stored in the current workspace, this will result in two
different instances of the same projects/models with the same name in the two workspaces.
However, for projects that are simply linked from the current workspace, only the link will be
copied (which allows having different workspaces "containing" the same project)

This can be done by entering the new workspace location and choosing "Clone current workspace" in
the previous dialog instead of "Ok".

http://localhost:3000/wiki/ImportingModels


If the new location does not exist, GAMA will ask you to confirm the creation and cloning using a specific
dialog box. Dismissing it will cancel the operation.

If the new location is already the location of an existing workspace, another confirmation dialog is
produced. It is important to note that all projects in the target workspace will be erased and
replaced by the projects in the current workspace if you proceed. Dismissing it will cancel the
operation.



There are two cases where cloning is not accepted. The first one is when the user tries to clone the
current workspace into itself (i.e. the new location is the same as the current location).

The second case is when the user tries to clone the current workspace into one of its subdirectories
(which is not feasible).





Version: 1.9.3

Importing Models
Importing a model refers to making a model file (or a complete project) available for edition and
experimentation in the workspace. With the exception of headless experiments, GAMA requires that
models be manageable in the current workspace to be able to validate them and eventually experiment
them.

There are many situations where a model needs to be imported by the user: someone sent it to him/her
by mail, it has been attached to an issue report, it has been shared on the web or a Git repository, or it
belongs to a previous workspace after the user has switched workspace. The instructions below apply
equally to all these situations.

Since model files need to reside in a project to be managed by GAMA, it is usually preferable to import a
whole project rather than individual files (unless, of course, the corresponding models are simple
enough to not require any additional resources, in which case, the model file can be imported with no
harm into an existing project). GAMA will then try to detect situations where a model file is imported
alone and, if a corresponding project can be found (for instance, in the upper directories of this file), to
import the project instead of the file. As the last resort, GAMA will import orphan model files into a
generic project called "Unclassified Models" (which will be created if it does not exist yet).

The simplest, safest and most secure way to import a project into the workspace is to follow
instructions from this section.

Table of contents
Importing Models

The "Import..." Menu Command
Import "GAMA Project..."

Import "External files from disk..." and "External files from archive..."

"Other" imports

Silent import

Drag'n Drop / Copy-Paste Limitations

Import from GitHub repository

http://localhost:3000/wiki/Headless
http://localhost:3000/wiki/Troubleshooting
http://localhost:3000/wiki/ChangingWorkspace
http://localhost:3000/wiki/ImportingModels#import-gama-project
http://localhost:3000/wiki/ImportingModels#import-gama-project
http://localhost:3000/wiki/ImportingModels#import-external-files-from-disk-and-external-files-from-archive
http://localhost:3000/wiki/ImportingModels#other-imports


The "Import..." Menu Command
The simplest, safest and most secure way to import a project into the workspace is to use the built-in
"Import..." menu command, available in the contextual menu on the User models (the modeler can only
import projects in this category).

The "Import..." command allows the modeler to choose between:

"GAMA Project...": import a project in the workspace (from another folder or an archive),

"External files from disk...": import any files in a project of the workspace (from a folder),

"External files from archive...": import any files in a project of the workspace (from an archive),

"Other": other ways of importation.

Import "GAMA Project..."

When "GAMA project..." is chosen, a dialog box will pop-up where the user will be asked to:

1. Enter a location (or browse to a location) containing the GAMA project(s) to import. This can be the
folder of a single project or a folder containing several projects. 2 possibilities are available:



"Select root directory": the user selects a folder containing the project,

"Select archive file": the user selects an archive file (e.g. a .zipfile) containing the project.

2. Choose among the list of available projects (computed by GAMA) the ones to effectively import.
Only projects that are not already in the workspace can be imported.

3. Indicate whether or not these projects need to be copied to or linked from the workspace (the
latter is done by default). In the case of an import from an archive, the content will be automatically
copied in the workspace.



Import "External files from disk..." and "External files from
archive..."

These two commands allow the user to import some external files into an existing project of the
workspace. These two commands are very similar, only the source of files is different: a folder or an
archive. They allow to filter and select the files to import. The user will be asked to:



1. Enter a location (or browse to a location) containing the files to import.

2. Select the files to import.

3. Select the project in the workspace where the files will be copied.

"Other" imports

When invoked, this command will open a dialog asking the user to choose the source of the
importation. It can be a directory in the filesystem (in which GAMA will look for existing projects), a zip
file, etc. It is safer, in any case, to choose "Existing Projects into Workspace".



If some extensions have been installed, they could add some entries in this menu (e.g. the Git
extension).

Silent import

http://localhost:3000/wiki/InstallingPlugins#git
http://localhost:3000/wiki/InstallingPlugins#git


Another (possibly simpler, but less controllable) way of importing projects and models is to either pass a
path to a model when launching GAMA from the command line or to double-click on a model file
(ending in .gaml) in the Explorer or Finder (depending on your OS).

If the file is not already part of an imported project in the current workspace, GAMA will:

1. silently import the project (by creating a link to it),

2. open an editor on the file selected.

This procedure may fail, however, if a project of the same name (but in a different location) already exists
in the workspace, in which case GAMA will refuse to import the project (and hence, the file). The
solution, in this case, is to rename the project to import (or to rename the existing project in the
workspace).

Drag'n Drop / Copy-Paste Limitations
Currently, there is no way to drag and drop an entire project into GAMA Navigator (or to copy a project
in the filesystem and paste it in the Navigator). Only individual model files, folders or resources can be
moved this way (and they have to be dropped or pasted into existing projects).

This limitation might be removed sometime in the future, however, allowing users to use the Navigator
as a project drop or paste target, but it is not the case yet.

Import from GitHub repository
In the case where the Git plugin is installed in GAMA, projects can be imported from a Git repository, as
detailed in the recipes related to the use of Git in GAMA.

http://localhost:3000/wiki/Launching
http://localhost:3000/wiki/InstallingPlugins#git
http://localhost:3000/wiki/Using_Git


Version: 1.9.3

Editing models
Editing models in GAMA is very similar to editing programs in a modern IDE like Eclipse. After having
successfully launched the program, the user has two fundamental concepts at its disposal: a
workspace, which contains models or links to models organized like a hierarchy of files in a filesystem,
and the workbench (aka, the main window), which contains the tools to create, modify and experiment
these models.

Understanding how to navigate in the workspace is covered in another section and, for the purpose of
this section, we just need to understand that it is organized in projects, which contain models and their
associated data. Projects are further categorized, in GAMA, into four categories: Models Library, Plugin
models, Test models (built-in models shipped with GAMA and automatically linked from the workspace),
and User Models.

This section covers the following sub-sections:

1. GAML Editor Generalities

2. GAML Editor Toolbar

3. Validation of Models

4. Graphical Editor

http://www.eclipse.org/
http://localhost:3000/wiki/Launching
http://localhost:3000/wiki/NavigatingWorkspace
http://localhost:3000/wiki/GamlEditorGeneralities
http://localhost:3000/wiki/GamlEditorToolbar
http://localhost:3000/wiki/ValidationOfModels
http://localhost:3000/wiki/G__GraphicalEditor


Version: 1.9.3

The GAML Editor - Generalities
The GAML Editor is a text editor that proposes several services to support the modeler in writing correct
models: an integrated live validation system, a ribbon header that gives access to experiments,
information, warning and error markers.

Table of contents
The GAML Editor - Generalities

Creating a first model
Create a new model or test file

Create a new experiment file

Status of models in editors

Editor Preferences

Additional information in the Editor

Multiple editors

Local history

Creating a first model
Editing a model requires that at least one project is created in User Models. If there is none, right-click
on User Models and choose "New... > Gama Project..." (if you already have user projects and want to
create a model in one of them, skip the next step).

http://localhost:3000/wiki/LaunchingExperiments


A dialog is then displayed, offering you to enter the name of the project. You can also choose whether
you want to create at the same time a first model file and if you want the project contains test models.
An error will be displayed if the project name already exists in the workspace, in which case you will have
to change it. Two projects with similar names cannot coexist in the workspace (even if they belong to
different categories).

http://localhost:3000/wiki/Writing_Tests


If you want to create a new model file in your project, navigate to it and right-click on it and on the
command "New ...>". You have a choice between three kinds of file:

Model file: to create a normal .gaml  model file used to define your model.

Experiment file: to create a file containing only an experiment on an existing model.

Test experiment file: to create unit test experiment. It is typically used to define some unit test on a
given model, to ensure its quality and prevent regression bugs.

http://localhost:3000/wiki/Writing_Tests


Create a new model or test file

A new dialog is displayed, which asks for several required or optional information:

1. The Container is normally the name of the project you have selected, but you can choose to place
the file elsewhere. An error will be displayed if the container does not exist (yet) in the workspace.

2. You can then choose whether you want to create an empty file, a file with already a skeleton of model
(with the main needed elements of a model file) or simply a test model.

3. Finally, you are invited to give this file a name. An error is displayed if this name already exists in this
project. The name of the model, which is by default computed with respect to the name of the file,
can be actually completely different (but it may not contain white spaces or punctuation characters).
The name of the author, as well as the textual description of the model and the creation of an HTML
documentation, are optional.

http://localhost:3000/wiki/ModelOrganization


Create a new experiment file

A new dialog is displayed, which asks for several required or optional information:

1. The Container is normally the name of the project you have selected, but you can choose to place
the file elsewhere. An error will be displayed if the container does not exist (yet) in the workspace.

2. You can then choose the model you want to experiment on. Just type the path toward this gaml
model, or browse and select one among all the models existing in the workspace.



3. Finally, you are invited to give this file a name. An error is displayed if this name already exists in this
project. The name of the model, which is by default computed with respect to the name of the file,
can be actually completely different (but it may not contain white spaces or punctuation characters).
The name of the author, as well as the textual description of the model and the creation of an HTML
documentation, are optional.

Status of models in editors
Once this dialog is filled and accepted, GAMA will display the new "empty" model.



Although GAML files are just plain text files, and can, therefore, be produced or modified in any text
processor, using the dedicated GAML editor offers many advantages, among which the live display of
errors and model statuses. A model can actually be in four different states, which are visually accessible
above the editing area: Functional (grey color), Experimentable (green color), InError (red color),
InImportedError (red color). See the section on model compilation for more precise information about
these statuses.

In its initial state, a model is always in the Functional state (when it is empty), which means it compiles
without problems, but cannot be used to launch experiments. If the model is created with a skeleton, it
is Experimentable. The InError state, depicted below, occurs when the file contains errors (syntactic or
semantic ones).

http://localhost:3000/wiki/ValidationOfModels


While the file is not saved, these errors remain displayed in the editor and nowhere else. If you save the
file, they are now considered as "workspace errors" and get displayed in the "Syntax errors" view below
the editor and explanation is available on the error icon in the GAML editor.



Reaching the Experimentable state requires that all errors are eliminated and that at least one
experiment is defined in the model, which is the case now in our toy model. The experiment is
immediately displayed as a button in the toolbar, and clicking on it will allow to launch this experiment
on your model. See the section about running experiments for more information on this point.

http://localhost:3000/wiki/RunningExperiments


Experiment buttons are updated in real-time to reflect what is in your code. If more than one
experiment is defined, corresponding buttons will be displayed in addition to the first one.



The toolbar on the top of the GAML editor displays, in addition to the green experiment buttons, a
button to add an experiment in the current model.

Editor Preferences
Text editing in general, and especially in Eclipse-based editors, sports several options and preferences.
You might want to turn off/on the numbering of the lines, change the fonts used, change the colors
used to highlight the code, etc. All of these preferences are accessible from the "Preferences..." item of
the editor contextual menu.



Explore the different items present there, keeping in mind that these preferences will apply to all the
editors of GAMA and will be stored in your workspace.



Additional information in the Editor
You can choose to display or not some information in your Editor, from the Models menu available when
the GAML editor is active.



In particular, this menu allows the user to activate/deactivate the additional information that can be
displayed in the editor:

"Display line number": the display of the line number in the left margin.

"Fold code sections": the -  and +  icons on the left of each code section can fold/unfold the
associated code section.

"Mark occurrence of symbols": when the name of a variable or species is selected in the code, all its
other occurrences will be also marked.

"Colorize code sections": the code section can be colorized, improving the visualization of the model
organization (see below).

"Show markers overview": a right-click on the left margin of the editor allows the user to add either
bookmarks or tasks to the editor (with a mark on the right margin.



One particular option, shipped by default with GAMA, is the possibility to not only highlight the code of
your model, but also its structure (complementing, in that sense, the Outline view). It is a slightly
modified version of a plugin called EditBox.

http://sourceforge.net/projects/editbox/


The Default theme of EditBox might not suit everyone's tastes, so the preferences allow to entirely
customize how the "boxes" are displayed and how they can support the modeler in better
understanding "where" it is in the code. The "themes" defined in this way are stored in the workspace,
but can also be exported for reuse in other workspaces, or sharing them with other modelers.

http://sourceforge.net/projects/editbox/


Multiple editors
GAMA inherits from Eclipse the possibility to entirely configure the placement of the views, editors, etc.
This can be done by rearranging their position using the mouse (click and hold on an editor's title and
move it around). In particular, you can have several editors side by side, which can be useful for viewing
the documentation while coding a model.

http://www.eclipse.org/


Local history
Among the various options present to work with models, which you are invited to try out and test at will,
one, called Local history is particularly interesting and worth a small explanation. When you edit models,
GAMA keeps in the background all the successive versions you save (the history duration is configurable
in the preferences), whether or not you are using a versioning system like SVN or Git. This local history is
accessible from the contextual menu on the chosen model.



This command invokes the opening of a new view, which you can see in the figure below, and which lists
the different versions of your file so far. You can then choose one and, right-clicking on it, either open it
in a new editor or compare it to your current version.



This allows you to precisely pinpoint the modifications brought to the file and, in case of problems, to
revert them easily, or even revert the entire file to a previous version. Never lose your work again!



This short introduction to GAML editors is now over. You might want to take a look, now, at how the
models you edit are parsed, validated and compiled, and how this information is accessible to the
modeler.

http://localhost:3000/wiki/ValidationOfModels
http://localhost:3000/wiki/ValidationOfModels


Version: 1.9.3

GAML Editor tools
The GAML Editor provides some tools to make the editing easier, covering a lot of functionalities, such as
tools for changes of visualization, tools for navigation through your model, tools to format your code, or
also tools to help you to find the correct keywords to use in a given context. Some can be accessed
directly from the toolbar on top of the editor, but most of the tools are available in the menu "Model",
that is only available when the GAML editor is active (i.e. when the modeler is editing the model).

Table of contents
GAML Editor tools

Navigation tools in the editor

Visualization tools in the menu

Vocabulary tools in the menu

Vocabulary tools in the toolbar

Formatting tools in the contextual menu

Mini-map

Navigation tools in the editor



In the Editor toolbar, you have some tools for search and navigation through the code. Here are
explanations for each functionality:

Previous/next edit locations

The two arrow shape buttons that are coming first are used to jump from the current location of your
cursor to the last position, even if the last position was in another file (and even if this file has been
closed !).

The search engine

To search an occurrence of a word (or the part of a word), you can type your search in the field, and the
result will be highlighted automatically in the text editor.



With the left/right arrows, you can highlight the previous/next occurrence of the word. If you prefer the
eclipse interface for the search engine, you can also access the tool by taping Ctrl+F .

Show outline

This last tool of this section is used to show the global architecture of your model, with explicit icons for
each section. A search field is also available if you want to search for a specific section. By double-
clicking one line of the outline, you can jump directly to the chosen section. This feature can be useful if
you have a big model to manipulate.



Visualization Tools in the menu
You can choose to display or not some information in your Editor, from the Model menu. Here are the
different features available.



Display line number

The first toggle is used to show/hide the number of lines.

Fold code sections

The second toggle provides you the possibility to expand or collapse lines in your model depending on
the indentation. This feature can be very useful for big models, to collapse the part you have already
finished.

Mark occurrences of symbols

This third toggle is used to show occurrences when your cursor is pointing on one word.

Colorize code sections



One particular option, shipped by default with GAMA, is the possibility to not only highlight the code of
your model but also its structure (complementing, in that sense, the Outline view). It is a slightly
modified version of a plugin called EditBox, which can be activated by clicking on the "green square"
icon in the toolbar.

The Default theme of EditBox might not suit everyone's tastes, so the preferences allow to entirely
customize how the "boxes" are displayed and how they can support the modeler in better
understanding "where" it is in the code. The "themes" defined in this way are stored in the workspace,
but can also be exported for reuse in other workspaces, or sharing them with other modelers.

http://sourceforge.net/projects/editbox/
http://sourceforge.net/projects/editbox/


Show markers overview

It is possible to add two kinds of marker on the code: Bookmarks (a simple bookmark on a line of code
that helps to go back to some lines of interest) and Tasks (in addition to a marker on a line, a Task
expresses that something should be done, with a given priority, on the code line). The markers are also
visible in the right margin of the editor. An additional view (named Tasks, that can be opened from the
Views menu) gathers all the tasks, helping modelers to organize their work.



Vocabulary tools in the menu



The second group of commands in the Model menu are used to search the correct way to write a certain
keyword.

Templates

The templates button is used to insert directly a code snippet in the current position of the cursor. Some
snippets are already available, ordered by scope. You can custom the list of templates as much as you
want, new templates can be added from the Preferences dialog.

For example, if the modeler clicks on Template  > Species  > grid  > insert , the following code is
generated:

Built-in structures

With this feature, you can easily know the list of built-in attributes and built-in actions you can use in
such or such context. With this feature, you can also insert some templates to help you, for example, to
insert a pre-made species using a particular skill, as it is shown it the following screenshot:

grid name width:grid_w height:grid_h {

}



... will generate the following code:

All the comments are generated automatically from the current documentation.

Operators

Once again, this powerful feature can be used to generate an example of structures for all the
operators, ordered by categories.



Colors

Here is the list of the name for the different pre-made colors you can use. You can also add some
custom colors.

Vocabulary tools in the toolbar



All the information that is available in the "Model" menu can also be accessed, in another way, from the
research engine located in the GAMA interface toolbar, named "GAML reference". Any word typed in this
search engine will be searched in all the keyword of the GAML language: for example, if the word
experiment  is searched, the search engine retrieves its occurrence as a built-in species, a statement, an
attribute or a type... This is definitely the easiest way to get information about any GAML keyword.

Formatting tools in the contextual menu



Some other tools are available in the contextual menu to help for the formatting and refactoring of the
model:

Rename element

Once an element selected, this command allows the modeler to rename it. All the occurrences of this
element name will be altered. This is particularly useful in a model when we want to refactor the model:
e.g. rename an attribute and that this modification to be taken into account in all the model code.

Source > Comment

This command is used to comment a line (or a group of lines).

Source > Format

This useful feature re-indent automatically all your model.

Mini-map
The mini-map provides a view of the whole model in a very tiny font. It helps to have an overview of the
model. The mini-map is a View that needs to be shown, from the View menu.



The mini-map view can be moved close to the editor. The modeler can navigate in the mini-map to move
quickly between the various parts of the model.



Version: 1.9.3

Validation of Models
When editing a model, GAMA will continuously validate (i.e. compile) what the modeler is entering and
indicate, with specific visual affordances, various information on the state of the model. This information
ranges from documentation items to errors indications. We will review some of them in this section.

Table of contents
Validation of Models

Syntactic errors

Semantic errors

Semantic warnings

Semantic information

Semantic documentation

Changing the visual indicators

Errors in imported files

Cleaning models

Syntactic errors
These errors are produced when the modeler enters a sentence that has no meaning in the
grammar of GAML (see the documentation of the language). It can either be a non-existing symbol (like
"globals" (instead of global) in the example below), a wrong punctuation scheme, or any other construct
that puts the parser in the incapacity of producing a correct syntax tree. These errors are extremely
common when editing models (since incomplete keywords or sentences are continuously validated).
GAMA will report them using several indicators: the icon of the file in the title of the editor will sport an
error icon and the gutter of the editor (i.e. the vertical space beside the line numbers) will use error
markers to report two or more errors: one on the statement defining the model, and one (or more) in
the various places where the parser has failed to produce the syntax tree. In addition, the toolbar over
the editor will turn red and indicate that errors have been detected. Finally, the validation view gathers
all the errors of the workspace.

http://localhost:3000/wiki/GamlLanguage


Hovering over one of these markers indicates what went wrong during the syntactic validation. Note
that these errors are sometimes difficult to interpret since the parser might fail in places that are not
precisely those where a wrong syntax is being used (it will usually fail after).



Semantic errors
When syntactic errors are eliminated, the validation enters a so-called semantic phase, during which it
ensures that what the modeler has written makes sense with respect to the various rules of the
language. To understand the difference between the two phases, take a look at the following example.

This sentence below is syntactically correct:

But it is semantically incorrect because a species cannot be parent of itself. No syntactic errors will be
reported here, but the validation will fail with a semantic error.

Semantic errors are reported in a way similar to syntactic errors, except that no marker are displayed
beside the model statement. The compiler tries to report them as precisely as possible, underlining the
places where they have been found and outputting hopefully meaningful error messages. In the
example below, for instance, we use the wrong number of arguments for defining a square geometry.
Although the sentence is syntactically correct, GAMA will nevertheless issue an error and prevent the
model from being experimentable. The message accompanying this error can be obtained by hovering
over the error marker found in the gutter (multiple messages can actually be produced for the same
error, see below).

Semantic warnings

species my_species parent: my_species;



The semantic validation phase does not only report errors. It also outputs various indicators that can
help the modeler in verifying the correctness of his/her model. Among them are warnings. A warning is
an indication that something is not completely right in the way the model is written, although it can
probably be worked around by GAMA when the model will be executed. For instance, in the example
below, we pass a string argument to the facet "number:" of the "create" statement.

GAMA will emit a warning in such a case, indicating that number:  expects an integer and that the string
passed will be cast to int when the model will be executed. Warnings are to be considered seriously, as
they usually indicate some flaws in the logic of the model.

Hovering over the warning marker will allow the modeler to have access to the explanation and
hopefully fix the cause of the warning.

create people number: "10";



Semantic information
Besides warnings, another type of harmless feedback is produced by the semantic validation phase:
information markers. They are used to indicate useful information to the modeler, for example, that an
attribute has been redefined in a sub-species, or that some operation will take place when running the
model (for instance, the truncation of a float to an int). The visual affordance used in this case is
voluntarily discrete (a small "i" in the editor's gutter).



As with the other types of markers, information markers unveil their messages when being hovered.

Semantic documentation
The last type of output of the semantic validation phase consists of a complete documentation of the
various elements present in the model, which the user can retrieve by hovering over the different
symbols. Note that although the best effort is being made in producing a complete and consistent
documentation, it may happen that some symbols do not produce anything. In that case, please report
a new Issue here.

https://code.google.com/p/gama-platform/issues/list


Changing the visual indicators
The default visual indicators depicted in the examples above to report errors, warnings and information
can be customized to be less (or more) intrusive. This can be done by choosing the "Preferences..." item
of the editor contextual menu and navigating to "General > Editors > Text Editors > Annotations". There,
you will find the various markers used, and you will be able to change how they are displayed in the
editor's view. For instance, if you prefer to highlight errors in the text, you can change it here.



Which will result in the following visual feedback for errors:



Errors in imported files
Finally, even if your model has been cleansed of all errors, it may happen that it refuses to launch
because it imports another model that cannot be compiled. In the following screenshot,
MyFirstModel.gaml  imports Imported Model.gaml , which sports an error.



In such a case, the importing model refuses to compile (although it is itself valid), showing an error in
the import  statement of the model with errors. There are cases, however, where the same importation
can work. Consider the previous example, where Imported Model.gaml  sports a semantic error in the
definition of the global 'shape' attribute.



However, if MyFirstModel.gaml  happens to redefine the shape  attribute (in global ), it is now
considered as valid. All the valid sections of Imported Model.gaml  are effectively imported, while the
erroneous definition is superseded by the new one.



This process is described by the information marker next to the redefinition.



Cleaning models
It may happen that the metadata that GAMA maintains about the different projects (which includes the
various markers on files in the workspace, etc.) becomes corrupted from time to time. This especially
happens if you frequently switch workspaces, but not only. In those (hopefully rare) cases, GAMA may
report incorrect errors for perfectly legible files.

When such odd behaviors are detected, or if you want to regularly keep your metadata in a good shape,
you can clean all your project, by clicking on the button "Clear and validate all projects" (in the syntax
errors view).





Version: 1.9.3

Running Experiments
Running an experiment is the only way, in GAMA, to execute simulations on a model. Experiments can be
run in different ways.

1. The first, and most common way, consists in launching an experiment from the Modeling
perspective, using the user interface proposed by the simulation perspective to run simulations.

2. The second way, detailed on this page, allows to automatically launch an experiment when opening
GAMA, subsequently using the same user interface.

3. The last way, known as running headless experiments, does not make use of the user interface and
allows to manipulate GAMA entirely from the command line.

All three ways are strictly equivalent in terms of computations (with the exception of the last one
omitting all the computations necessary to render simulations on displays or in the UI). They simply
differ by their usage:

1. The first one is heavily used when designing models or demonstrating several models.

2. The second is intended to be used when demonstrating or experimenting a single model.

3. The last one is useful when running large sets of simulations, especially over networks or grids of
computers.

Generic knowledge to start GAMA Headless
There are two ways to run a GAMA experiment in headless mode: using a dedicated bash wrapper
(recommended) or directly from the command line.

Bash Wrapper

The file can be found in the headless  directory located inside the GAMA's installed folder. It is named
gama-headless.sh  on macOS and Linux, or gama-headless.bat  on Windows.

with:

 bash gama-headless.sh [m/c/t/hpc/v] $1 $2

http://localhost:3000/wiki/LaunchingExperiments
http://localhost:3000/wiki/ExperimentsUserInterface
http://localhost:3000/wiki/Launching
http://localhost:3000/wiki/ExperimentsUserInterface
http://localhost:3000/wiki/RunningHeadless
http://localhost:3000/wiki/Installation


$1 input parameter file : an xml file determining experiment parameters and attended outputs

$2 output directory path : a directory which contains simulation results (numerical data and
simulation snapshot)

options [-m/c/t/hpc/v]
-m memory : memory allocated to gama

-c : console mode, the simulation description could be written with the stdin

-t : tunneling mode, simulation description are read from the stdin, simulation results are
printed out in stdout

-hpc nb_of_cores : allocate a specific number of cores for the experiment plan

-v : verbose mode. trace are displayed in the console

For example (using the provided sample), navigate in your terminal to the headless  folder inside
your GAMA root folder and type:

As specified in predatorPrey.xml, this command runs the prey - predator model for 1000 steps and
record a screenshot of the main display every 5 steps. The screenshots are recorded in the directory
outputHeadLess  (under the GAMA root folder).

Note that the current directory to run gama-headless command must be $GAMA_PATH/headless

Java Command

with:
$GAMA_CLASSPATH GAMA classpath: contains the relative or absolute path of jars inside the
GAMA plugin directory and jars created by users

$1 input parameter file: an XML file determining experiment parameters and attended outputs

$2 output directory path: a directory which contains simulation results (numerical data and
simulation snapshot)

Note that the output directory is created during the experiment and should not exist before.

bash gama-headless.sh samples/predatorPrey.xml outputHeadLess

java -cp $GAMA_CLASSPATH -Xms512m -Xmx2048m -Djava.awt.headless=true 
org.eclipse.core.launcher.Main -application msi.gama.headless.id4 $1 $2



Version: 1.9.3

Launching Experiments from
the User Interface
GAMA supports multiple ways of launching experiments from within the Modeling Perspective, in
editors or in the navigator.

Table of contents
Launching Experiments from the User Interface

From an Editor

From the Navigator

Running Experiments Automatically

Running Several Simulations

From an Editor
As already mentioned in this page, GAML editors will provide the easiest way to launch experiments.
Whenever a model that contains the definition of experiments is validated, these experiments will
appear as distinct buttons, in the order in which they are defined in the file, in the header ribbon above
the text. Simply clicking one of these buttons launches the corresponding experiment.

http://localhost:3000/wiki/NavigatingWorkspace
http://localhost:3000/wiki/GamlEditorGeneralities


For each of those launching buttons, you can see different pictograms, showing the type of experiment.
The various kinds of experiment are described in this page.

From the Navigator
You can also launch your experiments from the navigator, by expanding a model and double-clicking on
one of the experiments available (the number of experiments for each model is visible also in the
navigator). As for the editor, the various types of experimentations are differentiated by a pictogram.

http://localhost:3000/wiki/ModelOrganization#experiment-declarations


Running Experiments Automatically
Once an experiment has been launched (unless it is run in headless mode, of course), it normally
displays its views and waits from an input from the user, usually a click on the "Run" or "Step" buttons
(see here).

It is, however, possible to make experiments run directly once launched, without requiring any
intervention from the user. To activate this feature, open the preferences of GAMA. In the "Execution"
tab, simply check "Auto-run experiments when they are launched" (which is unchecked by default) and
hit "Save" to dismiss the dialog. Next time you will launch an experiment, it will run automatically (this
option also applies to experiments launched from the command line).

http://localhost:3000/wiki/Headless
http://localhost:3000/wiki/MenusAndCommands
http://localhost:3000/wiki/Preferences


When the autorun is set in the Preferences, all the experiments in the workspace will be in autorun
mode. If you want to activate this option only for a single experiment, it can be done programmatically
by adding the autorun:  to the experiment  statement as detailed in this page.

Running Several Simulations
It is possible in GAMA to run several simulations (multi-simulation feature). Each simulation will be
launched with the same seed (which means that if the parameters are the same, then the result will be
exactly the same). All those simulations are synchronized in the same cycle.

To run several simulations, you have to write it directly in your model.

http://localhost:3000/wiki/DefiningGUIExperiment
http://localhost:3000/wiki/RunSeveralSimulations




Version: 1.9.3

Experiments User Interface
As soon as an experiment is launched, the modeler is facing a new environment (with different menus
and views) called the Simulation Perspective). The Navigator is still available in this perspective (below the
parameter view), though, and it is still possible to edit models in it, but it is considered as good practice
to use each perspective for what it has been designed for: editing models in the Modeling perspective
and running simulations in the Simulation perspective. Switching perspectives is easy. The small
button in the top-left corner of the window allows to switch back and forth the two perspectives.

The actual contents of the simulation perspective will depend on the experiment being run and the
outputs it defines. The next sections will present the most common ones (inspectors, monitors and
displays), as well as the views that are not defined in outputs, like the Parameters or Errors view. An
overview of the menus and commands specific to the simulation perspective is also available.

http://localhost:3000/wiki/LaunchingExperiments
http://localhost:3000/wiki/EditingModels
http://localhost:3000/wiki/DefiningDisplaysGeneralities
http://localhost:3000/wiki/InspectorsAndMonitors
http://localhost:3000/wiki/Displays
http://localhost:3000/wiki/ParametersView
http://localhost:3000/wiki/ErrorsView
http://localhost:3000/wiki/MenusAndCommands


Version: 1.9.3

Controls of experiments
The simulation perspective adds on the user interface a number of new menus and commands (i.e.
buttons) that are specific to experiment-related tasks.

Table of contents
Controls of experiments

Experiment Menu

Agents Menu

General Toolbar

Experiment Menu
A menu, called "Experiment", allows controlling the current experiment. It shares some of its
commands with the general toolbar (see below).

Run/Pause Experiment: allows to run or pause the experiment depending on its current state.

Step Experiment: runs the experiment for one cycle and pauses it after.



Reload Experiment: stops the current experiment, deletes its contents and reloads it, taking into
account the parameters values that might have been changed by the user.

Stop at first error: if checked, the current experiment will stop running when an error is issued. The
default value can be configured in the preferences.

Treat warnings like errors: if checked, a warning will be considered as an error (and if the previous
item is checked, will stop the experiment). The default value can be configured in the preferences.

Display errors and warning: if checked, displays the errors and warnings issued by the
experiment. If not, do not display them. The default value can be configured in the preferences.

Close Experiment: forces the experiment to stop, whatever it is currently doing, purges the
memory from it, and switches to the modeling perspective. Use this command with caution, as it
can have undesirable effects depending on the state of the experiment (for example, if it is reading
files, or outputting data, etc.).

Agents Menu
A second menu is added in the simulation perspective: "Agents". This menu allows for easy access to
the different agents that populate an experiment.

http://localhost:3000/wiki/ParametersView
http://localhost:3000/wiki/Preferences
http://localhost:3000/wiki/Preferences
http://localhost:3000/wiki/Preferences


This hierarchical menu is always organized in the same way, whatever the experiment being run. A first
level is dedicated to the current top-level experiment agent: it allows the modeler to inspect the agent
itself and to browse its population(s) (i.e. the simulation agents). A second level lists the "micro-
populations" present in each simulation agent and allows to inspect the agent itself. And the third level
will give access to an overview of all the agents of the population in a table ("Browse ant population...")
and to each individual agent in these populations. This organization is, of course, recursive: if these
agents are themselves, hosts of micro-populations, they will be displayed in their individual menu.

Each agent, when selected, will reveal a similar individual menu. This menu will contain a set of
predefined actions, the commands defined by the user for this species if any, and then the micro-
populations hosted by this agent, if any. Agents (like the instances of "ant" below) that do not host other
agents and whose species has no user commands will have a "simple" individual menu.

These are the 4 actions that will be there most of the time:

Inspect: open an inspector on this agent.

Focus on all displays: this option is not accessible if no displays are defined. Makes all the displays
zoom on the selected agent (if it is displayed) so that it occupies the whole view.

Highlight: makes this agent the current "highlighted" agent, forcing it to appear "highlighted" in all
the displays that might have been defined.

Kill: destroys the selected agent and disposes of it. Use this command with caution, as it can have
undesirable effects if the agent is currently executing its behavior.

http://localhost:3000/wiki/InspectorsAndMonitors
http://localhost:3000/wiki/DefiningUserInteraction#define-user-command
http://localhost:3000/wiki/InspectorsAndMonitors


If an agent hosts other agents (it is the case in multi-level architecture), you can access to the micro-
population quite easily (e.g. in the model Library models/Modeling/Multi-Level
Usage/Corridor.gaml ):

If user commands are defined for a species (for example in the existing model Library
models/Visualization and User Interaction/User Interaction/User Command.gaml ), their
individuals' menu will look like the following. Notice that in this model two species have user command:

1. the simulation agent (2 user commands are defined in the global  section of the model),

2. the ants agents (2 user commands defined in the species  definition section).

http://localhost:3000/wiki/MultiLevelArchitecture
http://localhost:3000/wiki/DefiningUserInteraction#define-user-command


General Toolbar
The last piece of user interface specific to the Simulation Perspective is a toolbar, which contains
controls and information displays related to the current experiment.

This toolbar is voluntarily minimalist, with four buttons already present in the experiment menu
(namely, "Play/Pause Experiment", "Step Experiment", "Reload Experiment" and "Close Experiment"),
which do not need to be detailed here, and two new controls ("Experiment status" and "Cycle Delay"),
which are explained below.

While opening an experiment, the status will display some information about what's going on. For
instance, GAMA is busy instantiating the agents or opening the displays.



The orange color usually means that, although the experiment is not ready, things are progressing
without problems (a red color message is an indication that something went wrong). When the loading
of the experiment is finished, GAMA displays the message "Simulation ready" on a green background. If
the user runs the simulation, the status changes and displays the number of cycles already elapsed in
the simulation currently managed by the experiment.

Hovering over the status produces more accurate information about the internal clock of the simulation.

When we launch an experiment, an experiment agent is created with its own internal clock. It will then
create 1 (or more) simulation agent(s). The toolbar provides thus information about both the experiment
agent and the simulation(s), from top to bottom:

the number of cycles elapsed,



the simulated time already elapsed (in the example above, one cycle lasts one second of simulated
time) for the simulation agents only,

the duration of cycle in milliseconds,

the average duration of one cycle (computed over the number of cycles elapsed),

the total duration, so far, of the simulation (still in milliseconds).

In the case of a multi-simulation (i.e. an experiment launching several simulations), one block per
simulation is displayed.

Although these durations are entirely dependent on the speed of the simulation engine (and, of course,
the number of agents, their behaviors, etc.), there is a way to control it partially with the second control,
which allows the user to force a minimal duration (in milliseconds) for a cycle, from 0s (its initial position)
to 1s. Note that this minimal duration (or delay) will remain the same for the subsequent reloads of the
experiment.



In case it is necessary to have more than 1s of delay, it has to be defined, instead, as an attribute of the
experiment.

http://localhost:3000/wiki/ExperimentBuiltIn


Version: 1.9.3

Parameters View
In the case of an experiment, the modeler can define the parameters s/he wants to be able to modify to
explore the simulation, and thus the ones he wants to be able to display and alter in the GUI interface.

It important to notice that all modifications made in the parameters will be taken into account in
case of simulation reload only. Launch of a new experiment from the model perspective will erase
the modifications.

Table of contents
Parameters View

Parameters View

Modification of parameters values

Parameters View
The modeler can define parameters that can be displayed in the GUI and that are sorted by categories.
Note that the interface will depend on the data type of the parameter: e.g. for string parameters, a
simple text box will be displayed whereas a color selector will be available for color parameters. It can
also depend on the way the parameter is defined: an integer or a float parameter will be displayed with
a slider if its min and max values are defined, and a simple text field otherwise. The parameter's value
displayed is the initial value provided to the variables associated with the parameters in the model.

http://localhost:3000/wiki/DefiningGUIExperiment
http://localhost:3000/wiki/DefiningParameters
http://localhost:3000/wiki/DefiningParameters


The above parameters view is generated from the following code:

global
{

int i;
float f;
string s;
list l;
matrix m;
pair p;
rgb c;

}

experiment maths type: gui {
    parameter "my_integer" var: i <- 0 category:"Simple types";



Click on Edit button in case of list or map parameters or the color or matrix will open an additional
window to modify the parameter value.

The model Library models > Visualization and User Interaction > GUI Design > Interactive
Elements.gaml  exemplifies all the possible way of displaying parameters (and other interactive
elements). Even interactive elements (buttons or parameters will a behavior associated with a value
change) can be added to the Parameter View.

    parameter "my_float" var: f <- 0.0 category:"Simple types";
    parameter "my_string" var: s <- "" category:"Simple types";

    parameter "my_list" var: l <- [] category:"Complex types";
    parameter "my_matrix" var: m <- matrix([[1,2],[3,4]]) category:"Complex types";
    parameter "my_pair" var: p <- 3::5 category:"Complex types";
    parameter "my_color" var: c <- #green category:"Complex types";

    output {}
}



Modification of parameters values
The modeler can modify the parameter values. After modifying the parameter values, you can reload
the simulation by clicking on the top-right circular arrow button.

It is important to understand that modification of a parameter value is immediately taken into account
in the simulation: the value of the variable in the model is modified. BUT the effect on the simulation
will depend on the use of this variable in the model:

if the variable is used at initialization of the simulation (e.g. it contains the number of agents to be
created), then a change of its value will not be visible in the simulation running as it is not used,



if the variable is used during the simulation (e.g. the pheromones evaporation rate in ants models),
a change in the parameter view will have an impact on the simulation behavior.

You can also add a new simulation to the old one, using those new parameters, by clicking on the top-
right plus symbol button.

If he wants to come back to the initial value of parameters, he can click on the top-right red curved
arrow of the parameters view.



Version: 1.9.3

Inspectors and monitors
GAMA offers some tools to obtain information about one or several agents. There are two kinds of tools:

agent browser

agent inspector

GAMA offers as well a tool to get the value of a specific expression: monitors.

Table of contents
Inspectors and monitors

Agent Browser

Agent Inspector

Monitor

Agent Browser
The species browser provides information about all or a selection of agents of a species.

The agent browser is available through the Agents menu.



It displays in a table all the values of the agent variables of the considered species; each line
corresponding to an agent. The list of attributes is displayed on the left side of the view, and you can
select the attributes you want to be displayed, simply by clicking on it (Ctrl + Click for multi-selection).



By clicking on the right mouse button on a line, it is possible to perform some actions on the
corresponding agent (the same actions as when we right-click on it in a display).

The Browse view provides also two interesting additional features:

1. Browse a species: change the population displayed in the table.

2. Save the agents and their attributes in a .csv  file: this allows the modeler to manipulate and
analyze the agent population at will in external software.



Agent Inspector
The agent inspector provides information about one specific agent. It also allows the modeler to change
the values of its variables during the simulation. The agent inspector is available from the Agents menu,
by right_clicking on a display, in the species inspector or when inspecting another agent.

It is possible to "highlight" the selected agent, to focus on it in all the displays, or to kill it.



To change the color of the highlighted agent, go to Preferences/Display.



Monitor
Monitors allow the user to follow the value of a GAML expression. For instance, the following ones
monitor the number of prey and predator agents during the simulation (the model is available in the
Prey Predator tutorial). The monitor is updated at each simulation step.



It is possible to define a monitor inside a model (see this page). It is also possible to define a monitor
through the graphical interface.

To define a monitor, first choose Add Monitor in the Views menu (or by clicking on the icon in the
Monitor view), then define the display legend and the expression to monitor. The expression is compiled
when it is written in the text field: as long as the text field is surrounded by a red rectangle, it is
incorrect. When the surrounding color becomes green, GAMA has accepted the expression and its value
can be displayed in the monitor.

http://localhost:3000/wiki/DefiningMonitorsAndInspectors


In the following example, we defined a monitor with the legend "Total number of agents" and its value
is defined by the GAML expression computing the sum of the number of agents in each population:
length(prey) + length(predator) .

The expression should be written with the GAML language. See this page for more details about the
GAML language.

http://localhost:3000/wiki/GamlReference


Version: 1.9.3

Displays
GAMA allows modelers to define two kinds of displays in a GUI experiment:

java 2D displays

OpenGL displays

These 2 displays allow modeler to display the same objects (agents, charts, texts ...). However, the
OpenGL display offers extended features in particular in terms of 3D visualization and provdies better
performance for large scale simulation.

Classical displays (java2D)
The classical displays displaying any kind of content can be manipulated via the mouse (if no mouse
event has been defined):

the mouse left press and move allows to move the camera (in 2D),

the mouse right click opens a context menu allowing the modeler to inspect displayed agents,

the wheel allows the modeler to zoom in or out.

http://localhost:3000/wiki/DefiningDisplaysGeneralities
http://localhost:3000/wiki/DefiningGUIExperiment


Each display provides several buttons to manipulate the display (from left to right):

Pause or resume the current view: when pressed, the display will not be displayed anymore while
the simulation is still running,

Synchronize, when pressed, the display and the execution of the model are synchronized. Most of
the time, this will reduce the speed of the simulation.

Zoom in,

Zoom to fit view,

Zoom out,

Take a snapshot: take a snapshot saved as a png image in the snapshots  folder of the model
folder.

Toggle antialias: Antialising produces smoother outputs, but comes with a cost in terms of speed
and memory used.



Toggle fullscreen ESC: when pressed, the current view will be displayed in fullscreen. To exit this
mode, press ESC  key.

Browse through all displayed agents: when pressed a browse view will be open. Only the species
displayed can be browsed.

In addition to these commands, the contextual menu on the display provides three more commands (in
"Presentation"):

Toggle overlay: display/hide a semi-transparent toolbar on the bottom of the display, showing the
coordinates of the mouse, the zoom, the number of fps (frame per second) of the simulation, and a
scale (taking into account the zoom level).

Toggle toolbar: display/hide the toolbar on the top of the display.

Background: Change the background color.

When the View is displayed in fullscreen mode, the toolbar is now located in the bottom of the View
and contain in addition to the previously detailed toolbar, the toggle side-control, and overlay controls
and controls of the experiment (run, pause, step...).

http://localhost:3000/wiki/InspectorsAndMonitors#agent-browser
http://localhost:3000/wiki/MenusAndCommands


OpenGL displays
The OpenGL displays displaying offers all the feature provided by java2D but a 3D environnement:

same behaviors with left-click, right-click and wheel than in the Java2D displays.

command  pressed (on Mac OS) or Ctrl  (on Windows and Linux) + Left-Click  pressed + mouse
move: it controls the camera and modify its location/target/orientation.

It opens many ways to visualize and understand your simulation(s) with most of the classical features
provided by a 3D environment. More details and illustrations of those features can be found here

Any OpenGL display has the same menu and buttons as the classical Java2D displays. Nevertheless, the
sidebar provides more options to manage camera and other options related to OpenGL displays
management.

http://localhost:3000/wiki/Defining3DDisplays


Camera commands

Key Function

Double Click Zoom Fit

+ Zoom In

- Zoom Out

Up Vertical movement to the top

Down Vertical movement to the bottom



Key Function

Left Horizontal movement to the left

Right Horizontal movement to the right

CTRL or CMD + Up
Rotate the model up (decrease the phi angle of the spherical
coordinates)

CTRL or CMD + Down
Rotate the model down (increase the phi angle of the spherical
coordinates)

CTRL or CMD + Left
Rotate the model left (increase the theta angle of the spherical
coordinates)

CTRL or CMD + Right
Rotate the model right (decrease the theta angle of the spherical
coordinates)

SPACE Reset the pivot to the center of the envelope

KEYPAD 2,4,6,8 Quick rotation (increase/decrease phi/theta by 30°)

CTRL or CMD +
LEFT_MOUSE

Makes the camera rotate around the model

ALT+LEFT_MOUSE Begins Agent Selection using an ROI (Region of Interest)

SHIFT+LEFT_MOUSE Draws an ROI on the display, allowing to maintain it across frames

SCROLL Zoom-in/out to the current target (center of the sphere)

WHEEL CLICK Reset the pivot to the center of the envelope

Keystone: the keystone allows to modify the location of the 4 corner points of the environment
bounding box. It can be use to project a simulation on a physical model as the projector can
introduce some image distortions. Press k  to enter in keystone mode, ones the keystone is done
repress k  to copy the facet in the clipboard. You can now paste your keystone value as a facet in the
display.





Version: 1.9.3

Batch Specific UI
When an experiment of type Batch is run, a dedicated UI is displayed, depending on the parameters to
explore and of the exploration methods.

Table of contents
Batch Specific UI

Information bar

Batch UI

Information bar
In batch mode, the top information bar displays 3 distinct information (instead of only the cycle number
in the GUI experiment):

The run number: One run corresponds to N executions of simulation with one given parameters
values (N is an integer given by the facet repeat  in the definition of a batch experiment . The
number of runs is chosen by the exploration method).

The simulation number: the number of replications done (and the number of replications specified
with the repeat  facet);

The number of thread: the number of threads used for the simulation.

http://localhost:3000/wiki/BatchExperiments
http://localhost:3000/wiki/BatchExperiments
http://localhost:3000/wiki/ExplorationMethods


Batch UI
The parameters view is also a bit different in the case of a Batch UI:

it shows both the parameters of the experiment, with a distinction between the ones that will be
explored and the ones that will not.

it also shows the state of the exploration. The provided information will depend on the exploration
method.

The following interface is generated given the following experiment  (the exploration method is here the
exhaustive one ):

experiment Batch type: batch repeat: 2 keep_seed: true until: (food_gathered = 
food_placed) or (time > 400) {
   parameter 'Size of the grid:' var: gridsize init: 75 unit: 'width and height';
   parameter 'Number:' var: ants_number init: 200 unit: 'ants';
   parameter 'Evaporation:' var: evaporation_per_cycle among: [0.1, 0.2, 0.5, 0.8, 1.0] 
unit: 'rate every cycle (1.0 means 100%)';
   parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0 unit: 'rate every cycle 
(1.0 means 100%)' step: 0.3;

   method exhaustive maximize: food_gathered;
}

http://localhost:3000/wiki/ExplorationMethods#exhaustive-exploration-of-the-parameter-space
http://localhost:3000/wiki/ExplorationMethods#exhaustive-exploration-of-the-parameter-space


The interface summarises all model parameters and the parameters given to the exploration method:

Environment and Population: displays all the model parameters that should not be explored.
Those parameters must be initialized with a fixed value when they are defined in the experiment .

Parameters to explore: the parameters to explore are the parameters defined in the experiment
with a range of values (with among  facet or min , max  and step  facets);

Exploration method: it displays information about the exploration method and the stop condition.
It displays the size of the parameter space in the case of the exhaustive method, and different
parameters (e.g. mutation or crossover probability...) for other methods. Finally, the best and the
last fitnesses found are shown, along with the associated parameter sets.

The following interface corresponds to the same experiment as previously, but with the genetic
exploration method.

experiment Batch type: batch repeat: 2 keep_seed: true until: (food_gathered = 
food_placed) or (time > 400) {
   // [Parameters]

http://localhost:3000/wiki/ExplorationMethods#genetic-algorithm
http://localhost:3000/wiki/ExplorationMethods#genetic-algorithm


   method genetic maximize: food_gathered;
}



Version: 1.9.3

Errors View
Whenever a runtime error, or a warning, is issued by the currently running experiment, a view called
"Errors" is opened automatically. This view provides, together with the error/warning itself, some
contextual information about who raised the error (i.e. which agent(s)) and where (i.e. in which portion
of the model code). As with other "status" in GAMA, errors will appear in red color and warnings in
orange.

Since an error appearing in the code is likely to be raised by several agents at once, GAMA groups
similar errors together, simply indicating which agent(s) raised them. Note that, unless the error is
raised by the experiment agent itself, its message will indicate that at least 2 agents raised it: the
original agent and the experiment in which it is plunged.

When we unfold the error, to have an idea of its location in the code. In addition clicking on one of the
lines should highlight the corresponding line in the code.

One of the most current (and sometimes the most mysterious) error is linked to an empty agent (with
the value nil ) on which we want to access to one of its attributes. It is expressed by Cannot evaluate
ATTRIBUTE_NAME as the target agent is nil  or Java nil . In this case, modelers have to check
carefully their codes to be sure that all the agent variables have a not nil value.





Version: 1.9.3

Running Headless
What is GAMA Headless
The headless mode gives the possibility run one or multiple instances of GAMA without any user
interface so that models and experiments can be launched on a grid or a cluster. Without GUI, the
memory footprint, as well as the speed of the simulations, are usually greatly improved.

In this mode, GAMA can only be used to run experiments. Editing or managing models is not possible.
In order to launch experiments and still benefit from a user interface (which can be used to prepare
headless experiments), launch GAMA normally (see here) and refer to this page for instructions.

Different headless modes
1. The first and oldest way, called Legacy mode and detailed here, consists in explicitly writing your full

experiment plan (i.e each simulation you want to run, with each parameter sets) in an XML file. This
way of using the Headless was the first implementation of the headless inside GAMA.

2. The second way, called Headless Batch and detailed on this page, allows launching a GAML batch
experiment in headless mode (i.e. without having to open GAMA's interface). This way is the most
natural way to use the headless as it works exactly like in GUI Batch mode.

3. The last way, called Headless Server and described there, let you open an interactive GAMA
headless server on which you can dynamically send experiments to run. This last mode is
interesting for using GAMA as back-end of other project like web projects.

General knowledge about using GAMA
Headless
There are two ways to run a GAMA experiment in headless mode: using a dedicated bash wrapper
(recommended) or directly from the command line.

Bash Wrapper (recommended)

http://localhost:3000/wiki/Launching
http://localhost:3000/wiki/RunningExperiments
http://localhost:3000/wiki/HeadlessLegacy
http://localhost:3000/wiki/HeadlessBatch
http://localhost:3000/wiki/BatchExperiments
http://localhost:3000/wiki/BatchExperiments
http://localhost:3000/wiki/HeadlessServer


The wrapper file can be found in the headless  directory located inside Gama's installed folder. It is
named gama-headless.sh  on macOS and Linux, or gama-headless.bat  on Windows.

You can start using it like so :

with:

general headless options [-m/c/hpc/v]:
-m memory  : memory allocated to gama (e.g. -m 8g  to set it at 8GiB)

-c  : console mode, the simulation description could be written with the stdin

-hpc nb_of_cores  : limit to a specific number of cores the number of simulation running in
parallel (eg. -hpc 3  to limit GAMA at using 3 cores/running 3 simulation at a time)

-v  : verbose mode. trace are displayed in the console

launchingMode will depend on which headless mode you'll use and explained in following pages

You also can display general help on every options with this command:

Which, for release 1.9.2, will output:

./gama-headless.sh [m/c/hpc/v] [launchingMode]

./gama-headless.sh -help

******************************************************************
* GAMA version 1.9.2                                             *
* http://gama-platform.org                                       *
* (c) 2007-2023 UMI 209 UMMISCO IRD/SU & Partners                *
******************************************************************
Welcome to Gama-platform.org version GAMA 1.9.2

sh ./gama-headless.sh [Options]

List of available options:
=== Headless Options ===

-m [mem]                     -- allocate memory (ex 2048m)
-c                           -- start the console to write xml 

parameter file
-v                           -- verbose mode
-hpc [core]                  -- set the number of core available for 

experimentation
-socket [socketPort]         -- start socket pipeline to interact with 

http://localhost:3000/wiki/Installation


Java Command (hard)

As GAMA is developed in Java, you can start the Headless mode by load appropriate bundle and starting
it like this:

with:

$GAMA_CLASSPATH : contains the relative or absolute path of jars inside the GAMA plugin directory
and jars created by users

options as explained above and in following pages

Note that we recommend you to open bash wrapper to have more detailed about how we imagine
starting GAMA in headless mode.

another framework
-p                           -- start pipeline to interact with another 

framework
=== Infos ===

-help                        -- get the help of the command line
-version                     -- get the the version of gama

=== Library Runner ===
-validate                    -- invokes GAMA to validate models present 

in built-in library and plugins
-test                        -- invokes GAMA to execute the tests 

present in built-in library and plugins and display their results
=== GAMA Headless Runner ===

-batch [experimentName] [modelFile.gaml]
                             -- Run batch experiment in headless mode
-xml [experimentName] [modelFile.gaml] [xmlOutputFile.xml]
                             -- build an xml parameter file from a 

model
[xmlHeadlessFile.xml] [outputDirectory]
                             -- default usage of GAMA headless

java -cp $GAMA_CLASSPATH -Xms512m -Xmx2048m -Djava.awt.headless=true 
org.eclipse.core.launcher.Main -application msi.gama.headless.id4 [options]



Version: 1.9.3

Headless Batch
Getting started
This headless mode is the Batch one.

The advantage of this mode is how easily it is to prepare and launch, contrarily to the Headless Legacy,
this mode does not need any other file than the GAML file holding the experiment of type batch.

You can run your gama experiment with a command similar to this:

with:
-batch : the flag that indicates it is a batch exploration

experimentName : the name of your batch experiment in the following file

/path/to/file.gaml : the path (relative or absolute) to the batch experiment

Simulation Output
Unfortunatly, this mode can't save output data automatically, the actual way to do is saving wanted data
inside CSV files from your model.

Calling GAMA headless on Windows
The example below assumes that your GAMA application is in folder D:\software\  and your project
(model) file is in folder D:\my_models\

Windows PowerShell

You can open Windows PowerShell, change your directory to the headless folder and run gama-
headless command:

./gama-headless.sh [option] -batch experimentName /path/to/file.gaml

http://localhost:3000/wiki/HeadlessLegacy
http://localhost:3000/wiki/BatchExperiments


Command Prompt

You can open Command Prompt, change your directory to the headless folder and run gama-
headless command:

Python Script

Your python script will have the following lines of code, mainly using the os  package to run the
native system commands

cd D:\software\GAMA_1.9.2_Windows_with_JDK\headless\
.\gama-headless.bat -batch Optimization D:\my_models\predatorPrey\predatorPrey.gaml

cd D:\software\GAMA_1.9.2_Windows_with_JDK\headless\
gama-headless.bat -batch Optimization D:\my_models\predatorPrey\predatorPrey.gaml

import os
os.chdir("D:\software\GAMA_1.9.2_Windows_with_JDK\headless")
os.system("gama-headless.bat -batch Optimization 
D:\my_models\predatorPrey\predatorPrey.gaml") 



Version: 1.9.3

Headless Server
Running a Gama Headless server
Before doing anything, make sure that you possess the rights to create files and directories at the
location you are running gama-server because it will need it to create workspaces on the fly.

From the release

Go to the headless  directory in your Gama installation folder and run the script gama-headless.sh  (or
gama-headless.bat ) with the argument -socket  followed by the port number you want your Gama
server to run on.

For example on Mac OS you could do:

to move to the right directory, then run the script to listen on port 6868  with:

From the command-line tool

The users who installed gama through a .deb  file or aur  have access to the command gama-headless
and thus only need to open a terminal and run

to run a Gama server on the port 6868 .

From the source code

cd Gama.app/Contents/headless

gama-headless.sh -socket 6868

gama-headless -socket 6868



In Eclipse, instantiate a headless server by running msi.gama.headless.id4_full  with the following
argument -os ${target.os} -ws ${target.ws} -arch ${target.arch} -nl ${target.nl} -socket
6868  (you can specify any other port)

From docker

First ensure to pull the official docker image

Then, run the container with the image you just pulled.

Do not forget to (1) expose the port you're starting your server on, and (2) mount your workspace inside
the started container as below :

For more informations, please refer to Docker's official documentation or GAMA image's repository.

Connection
To connect to gama-server as a client you just need to access the following address: ws://<ip>:<port> .
For example if you try to connect to a gama-server running on your current computer and started with
the command gama-headless -socket 6868 , you will have to connect to ws://localhost:6868 .

Once a client is connected, gama-server will send a json object of type ConnectionSuccessful .

General description of interactions
Once connected, you can ask gama-server to execute different commands to control the execution of
different simulations.

If you close your client application (or just close the socket on client-side) gama-server will destroy all
running simulations of that client, so you have to keep your client alive.

docker pull gamaplatform/gama:<version>

docker run -v <path/to/your/workspace>:/working_dir -p 6868:6868 gamaplatform/gama:
<version> -socket 6868

https://docs.docker.com/engine/reference/commandline/run/
https://github.com/gama-platform/gama.docker


For every command treated by gama-server, it will send back a json object describing if the command
has been executed correctly or if there was a problem. If an unexpected exception is raised in gama-
server, it will try to send the connected clients a json-object describing it. The same goes if a simulation
throws an exception/error while running, the client that asked for it to run will receive it as a json-object.

In addition, the client can ask gama-server to receive (or not) the different outputs of a simulation:
write  statements, dialogs, status-bar changes etc. they will be sent as they come, in a specific json
wrapper.

Available commands
All the commands sent to gama-server must be formatted as a json  object.

The available commands are:

The exit  command

This command is used to kill gama-server. It is triggered by sending a json object formatted as follows to
the server

Answer from gama-server

It is the only command that won't send back a json object.

The load  command

This command is used to ask the server to initialize a specific experiment in a gaml file on the server's
file-system. It is triggered by sending a json object formatted as follows to the server:

{
  "type": "exit"
}

{
  "type": "load",
  "model": "<gaml_file_path>",
  "experiment": "<experiment_name>",
  "console": "<console>", //optional
  "status": "<status>", //optional
  "dialog": "<dialog>", //optional



The model  parameter indicates the path of the experiment file on the server's file-system, and
experiment  is the actual name of the experiment to run. The four parameters console , status ,
dialog  and runtime  are booleans used to determine if the messages from respectively the console, the
status-bar, the dialogs and the runtime errors should be redirected to the client. They are optional as per
default console  and runtime  are set to true  and the two others to false . You can add an array of
parameters that will be used to initialize the experiment's variables with the values you picked. The
value of parameters  should be formatted as follows:

You can also add an ending condition to your simulation with the parameter until , the condition must
be expressed in gaml.

Answer from gama-server

The content  field of the response json sent by gama-server after processing this command will directly
contain the experiment_id  value stored as a string. The experiment id should be used in all the other
commands to refer to that specific experiment in order to control it.

The play  command

This command is used to actually run an experimented already initialized. It is triggered by sending a
json object formatted as follows to the server

  "runtime": "<runtime>",//optional
  "parameters": "<params>", //optional
  "until": "<end_condition>", //optional
}

[
  {
    "type": "<type of the first parameter>",
    "value": "<value of the first parameter>",
    "name": "<name of the first parameter in the gaml file>"
  },
  {
    "type": "<type of the second parameter>",
    "value": "<value of the second parameter>",
    "name": "<name of the second parameter in the gaml file>"
  },
 ...
]



The experiment_id  is used to identify the experiment to play, and the optional sync  is a boolean used
in the case where there was an end condition defined in the load  command, if it is true, gama-server
will not send a response to the command, but only a end of simulation message once the condition is
reached, if it's false gama-server will send both the response to the command and the SimulationEnded
message.

Answer from gama-server

This command has an empty content  field in the response json sent by gama-server after processing it.
In case where the end condition is reached, a message of type SimulationEnded  is sent to the client
with an empty content .

The pause  command

This command is used to pause a running experiment. It is triggered by sending a json object formatted
as follows to the server

Answer from gama-server

This command has an empty content  field in the response json sent by gama-server after processing it.

The step  command

This command is used to process one (or a defined number of) step(s) of a simulation that has already
been loaded. It is triggered by sending a json object formatted as follows to the server

{
  "type": "play",
  "exp_id": "<experiment_id>",
  "sync": "<synchronized>", //optional
}

{
  "type": "pause",
  "exp_id": "<experiment_id>"
}

{
  "type": "step",
  "exp_id": "<experiment_id>",



As usual exp_id  refers to the experiment you want to apply the command to. The nb_step  parameter
indicates how many steps you want to execute, if you do not give that parameter gama-server will
execute one step. The sync  parameter indicates whether gama-server must wait for the end of the
step(s) to send back a success message (when its value is true), or just plan the step(s) and send one
directly after (when its value is false), this parameter can be ignored and will be interpreted as if it were
false .

Answer from gama-server

This command has an empty content  field in the response json sent by gama-server after processing it.

The stepBack  command

This command is used to rollback the simulation one (or a defined number of) step(s) back. This
command only works on experiments of type memorize . It is triggered by sending a json object
formatted as follows to the server

The parameters are exactly the same as in the step  command.

Answer from gama-server

This command has an empty content  field in the response json sent by gama-server after processing it.

The stop  command

This command is used to stop (kill) a running experiment. It is triggered by sending a json object
formatted as follows to the server

  "nb_step": "<number_of_steps>", //optional
  "sync": "<synchronized>", // optional
}

{
  "type": "stepBack",
  "exp_id": "<experiment_id>",
  "nb_step": "<number_of_steps>", //optional
  "sync": "<synchronized>", // optional
}



Answer from gama-server

This command has an empty content  field in the response json sent by gama-server after processing it.

The reload  command

This command is used to reload an experiment. The experiment will be stop and the initialization
process run again. You can use this command to change the simulation parameters or the ending
condition. It is triggered by sending a json object formatted as follows to the server

Just like for the load  command, the parameters  and the until  parameters are optional and must
follow the same formatting.

Answer from gama-server

This command has an empty content  field in the response json sent by gama-server after processing it.

The expression  command

This command is used to ask the server to evaluate a gaml  expression having an experiment as context.
It is triggered by sending a json object formatted as follows to the server

{
  "type": "stop",
  "exp_id": "<experiment_id>",
}

{
  "type": "reload",
  "exp_id": "<experiment_id>",
  "parameters": "<params>", //optional
  "until": "<end_condition>", //optional
}

{
  "type": "expression",
  "exp_id": "<experiment_id>",
  "expr": "<expression to evaluate>"
}



For example if you want to know the number of agents of species people  currently present in the
simulation represented by the id 123 , you could send this command to gama-server:

Answer from gama-server

If the command is executed successfully by gama-server the content  field of the response json will
directly contain the result of the evaluated expression as a string.

The ask  command

This command is used to execute an action defined in an agent inside of an experiment.
It is triggered by sending a json object formatted as follows to the server:

Answer from gama-server

If the action has been executed without any problem, gama-server will return a
CommandExecutedSuccessfully  message, else if errors occur it will be a UnableToExecuteRequest  type
of message.

The validate  command

This command is used to ask the server to validate (compile and check for errors) a set of gaml
expressions.
It is triggered by sending a json object formatted as follows to the server

{
  "type": "expression",
  "exp_id": "123",
  "expr": "length(people)"
}

{
  "type": "ask",
  "exp_id": "<experiment_id>", // only required in headless
  "socket_id": "<socket_id>", // only required in headless
  "action": "<expression to evaluate>",
  "args": "<the arguments of the action>",
  "agent": "<the agent to apply the action to>",
  "escaped": "<the expression is escaped or not>", //optional
}



The syntax  parameter is a boolean and can be used to ask for a syntactical check only ( true ) or
syntactical + semantic check ( false ) if not provided it will be considered false .

Answer from gama-server

If no error has been found, the server will return a CommandExecutedSuccessfully  message, else it will
be a UnableToExecuteRequest  where the content will be the list of errors.

The download  command

This command is used to download a file from the gama-server file system. It is triggered by sending a
json object formatted as follows to the server

The file  parameter is mandatory, it represents the path of the file to download expressed in gama-
server's file system.

Answer from gama-server

On success, this command will trigger a json response message which content  field will be filled with
the file's content.

The upload  command

This command is used to upload a file to the gama-server file system. It is triggered by sending a json
object formatted as follows to the server

{
  "type": "validate",
  "expr": "<expressions to validate>",
  "syntax": "<check the syntax only>", // optional
  "escaped": "<the expressions are escaped or not>", //optional
}

{
  "type": "download",
  "file": "<path_to_file>",
}

{
  "type": "download",



The file  and content  parameters are mandatory, they represent respectively the path where the file
will be uploaded on gama-server's file system and the content of the file as a string of characters.

Answer from gama-server

This command has an empty content  field in the response json sent by gama-server after processing it.

Gama-server messages
All messages send by gama-server follow a json architecture that is formatted as follows:

Messages types

All messages have in common a type  field that informs the client of the type of message sent. The
different types possibles are:

ConnectionSuccessful : Used when a client connected without any problem to gama-server

SimulationStatus : Signals a message representing a simulation status

SimulationStatusInform : Signals a message representing a simulation inform status

SimulationStatusError : Signals a message representing a simulation error status

SimulationStatusNeutral : Signals a message representing a simulation neutral status

SimulationOutput : Signals a message as would be written in the console by a write  statement in
gama with an interface

  "file": "<path_to_file>",
  "content": "<file_content>",
}

{
  "type": "some string describing the type of message",
  "content": "a field containing everything additional information for the message", 
//It can be a string, an int or a json object
  "exp_id": "contains the experiment id (as a string) to which this message is linked 
to", //Optional, its presence depends on the message's type
  "command": "a json containing the original command to which gama is 
responding",//Optional, is only present in messages responding directly to a command 
sent by the client
}



SimulationDebug : Signals a message as would be written in the console by a debug  statement in
gama with an interface

SimulationDialog : Signals a message representing what would be a dialog in gama with an
interface

SimulationErrorDialog : Signals a message representing what would be an dialog in gama with an
interface

SimulationError : Signals a message representing an error raised in a running simulation

RuntimeError : Signals a message representing an exception raised in gama-server while trying to
process a command

GamaServerError : Signals a message representing an unknown exception raised in gama-server
(can be unrelated to any command)

MalformedRequest : Signals that a command sent by the client doesn't follow the expected format
(lack of parameter, wrong type etc.)

CommandExecutedSuccessfully : Signals that a command sent by the client was executed without
any problem on gama-server

SimulationEnded : Signals that a running simulation reached its end condition and stopped.
Beware if the simulation stops for another reason, this message won't be send.

UnableToExecuteRequest : Signals that a command cannot be executed, though it may be
formatted correctly. It mainly occurs when trying to execute a command on a simulation that is not
currently running.

Connection related answers

When your client is connected correctly to gama-server, a message is sent. Its type is
ConnectionSuccessful  with an empty content. In case of problem, the client may receive a message of
type GamaServerError  or just get a timeout/broken connection message at the socket level.

Command answers

For every command described in the commands section, the client will received a json answer formatted
as follows:

{
  "type": "some string describing the type of message",
  "content": "a field containing every additional information for the message", //It 
can be a string, an int or a json object, depending on the type of message, it could 
also be empty



So for example if you send an expression command to gama, with an experiment_id  of value 2 and you
want to evaluate the expression length(people)  to know the number of agent people in that
simulation. You may receive an answer looking like this:

The command  field is very useful for clients that run multiple simulations and commands at the same
time, as it can be used to retrace which command the message responds to. Note: The command  field
contains all the parameters of the command sent by the client, including those that are not useful for
GAMA to execute the command, you can thus use it to store more data, like an internal id used by the
client, some kind of counter etc..

In case there is an error resulting from the processing of your command, you may receive an error
message of type:

MalformedRequest if you forgot a mandatory parameter to execute the command or gave objects
that couldn't be de-serialized. The list of required parameters will be sent as a string in the content
field.

UnableToExecuteRequest if you are trying to execute a command on a simulation that is not
currently running or some other problem of "logic". You will find more informations in the content
field.

RuntimeError and GamaServerError if while executing your command, an exception happens,
either in gaml code for RuntimeError or in gama's code for GamaServerError. The exception's
description will be given in the content  field, as a json object containing the error message and the
stack trace.

  "command": "a json containing the original command to which gama is responding"
}

{
  "type": "CommandExecutedSuccessfully", //The type indicates that everything went 
normally
  "content": 102, //There are 102 agents of the species people in your simulation at 
the time of evaluation
  "command": //The description of the command you sent, as interpreted by gama-server 
and turned into a json
  {
    "type": "expression",
    "exp_id": "2",
    "expr": "length(people)",
  }
}



There is no exp_id  field in those messages, because it is already included in all the command  fields that
are related to an experiment.

Errors and exceptions

In addition to the error messages you can receive when directly requesting to execute a command
( MalformedRequest , UnableToExecuteRequest ) described in the command answers section, or the
network errors that can be raised for external problems, it is possible that gama-server encounters an
exception while running. In that case gama-server will send a json message formatted as described in
the Gama-server messages section, the two different types would either be GamaServerError ,
RuntimeError  or SimulationError  and the content  field would be filled as follows:

the exp_id  and command  fields would be present if possible, depending on where the exception
happens.

Simulations outputs

As mentioned in the introduction and the description of the load command. You can ask gama-server to
redirect the simulation's outputs. There are 3 different types of output produced by a simulation that
you can chose to redirect or not:

the messages in the dialogs

the messages in the status-bar

the messages in the gama console Each has an associated boolean that you have to set to true  in
the load command in order to have it redirected to the client.

The output messages are sent directly to the client as soon as they are asked by the simulation. The
format of the output messages follows the usual message format. The exp_id  will always be filled with
the current experiment id, the 'command' field won't be present. The different types of messages
possible are:

for dialog messages: SimulationDialog  and SimulationErrorDialog  respectively for normal
dialogs and error dialogs

{
  "exception": "The java class of the exception",
  "message": "The message describing the problem",
  "stack": [],//The stack trace of the exception given as a list of strings
}



for status messages: SimulationStatusNeutral , SimulationStatusError ,
SimulationStatusInform , SimulationStatus

for console messages: SimulationOutput  for the messages written with the write  statement and
SimulationDebug  for the ones written with the debug  statement.

The content  field will be formatted as follows:

for dialog messages, it's directly a string containing the message

for status messages:

for console messages:

Python wrapper
A python package is available to interact with Gama server as a client, you can find it here. It will take
care of formatting the queries to the server and receiving the answers. You simply have to install the

{
  "message": "the status message",
  "icon": "the name/path of the associated icon", //only present for some 
SimulationStatus and SimulationStatusInform messages
  "color": 
  {
    "r": "red value", 
    "g": "green value", 
    "b": "blue value",
  }, // The background color in the status-bar, only present in some SimulationStatus 
messages
}

{
  "message": "the message as it would be written in the console",
  "color": 
  {
    "r": red_value, 
    "g": green_value, 
    "b": blue value,
  }, // The text color
  "cycle": simulation_cycle, // the cycle of the simulation at the moment the debug 
statement is executed, only for SimulationDebug messages
}

https://github.com/gama-platform/Gama-client-python


package into your python environment with the command pip install gama-client  and then import
gama_client  into your python files. For more information follow the README.md  available on the
package's github.

Javascript Client
There is also a javascript client being developed in this repository gama.client

Hello World Visualization in MapBox

Clone the repository gama.client

In js/gama_client.js  edit the following variable ABSOLUTE_PATH_TO_GAMA  to your local path (e.g
var ABSOLUTE_PATH_TO_GAMA = '/Users/arno/'; )

open index.html in a browser

Hello World Message example

In js/simple_syntax.js  edit the following variable modelPath  to your model's path

open syntax.html in a browser

Troubleshooting

crash on load  command

It is possible that gama-server starts and accepts connections, but crashes when receiving a load
command with a message of the type:

java.lang.Exception: java.lang.NoClassDefFoundError: org/eclipse/core/resources/Resources
        at org.java_websocket.server.WebSocketServer$WebSocketWorker.run(WebSocketServer.
Caused by: java.lang.NoClassDefFoundError: org/eclipse/core/resources/ResourcesPlugin
        at msi.gama.lang.gaml.indexer.GamlResourceIndexer.<clinit>(GamlResourceIndexer.ja
        at msi.gama.lang.gaml.resource.GamlResource.doLinking(GamlResource.java:362)
        at org.eclipse.xtext.resource.XtextResource.updateInternalState(XtextResource.jav
        at org.eclipse.xtext.resource.XtextResource.updateInternalState(XtextResource.jav
        at msi.gama.lang.gaml.resource.GamlResource.updateInternalState(GamlResource.java
        at org.eclipse.xtext.resource.XtextResource.doLoad(XtextResource.java:182)
        at org.eclipse.xtext.linking.lazy.LazyLinkingResource.doLoad(LazyLinkingResource.
        at org.eclipse.emf.ecore.resource.impl.ResourceImpl.load(ResourceImpl.java:1563)

https://github.com/gama-platform/gama.client
https://github.com/gama-platform/gama.client


This issue arises because gama-server tries to create a workspace for your experiment but does not
have the appropriate rights to do it. It can be the case in windows if you run gama-server directly from
the headless  directory from the installation folder (protected by default) and that you are not an Admin

        at org.eclipse.emf.ecore.resource.impl.ResourceImpl.load(ResourceImpl.java:1342)
        at org.eclipse.emf.ecore.resource.impl.ResourceSetImpl.demandLoad(ResourceSetImpl
        at 
org.eclipse.emf.ecore.resource.impl.ResourceSetImpl.demandLoadHelper(ResourceSetImpl.java
        at org.eclipse.xtext.resource.XtextResourceSet.getResource(XtextResourceSet.java:
        at 
org.eclipse.xtext.resource.SynchronizedXtextResourceSet.getResource(SynchronizedXtextReso
        at 
msi.gama.lang.gaml.validation.GamlModelBuilder.buildModelDescription(GamlModelBuilder.jav
        at msi.gama.lang.gaml.validation.GamlModelBuilder.compile(GamlModelBuilder.java:9
        at msi.gama.headless.core.HeadlessSimulationLoader.loadModel(HeadlessSimulationLo
        at msi.gama.headless.core.HeadlessSimulationLoader.loadModel(HeadlessSimulationLo
        at msi.gama.headless.job.JobListFactory.constructAllJobs(JobListFactory.java:46)
        at 
msi.gama.headless.script.ExperimentationPlanFactory.buildExperiment(ExperimentationPlanFa
        at msi.gama.headless.listener.LoadCommand.launchGamlSimulation(LoadCommand.java:7
        at msi.gama.headless.listener.LoadCommand.execute(LoadCommand.java:37)
        at msi.gama.headless.listener.LoadCommand.execute(LoadCommand.java:1)
        at msi.gama.headless.listener.CommandExecutor.process(CommandExecutor.java:43)
        at msi.gama.headless.listener.GamaWebSocketServer.onMessage(GamaWebSocketServer.j
        at org.java_websocket.server.WebSocketServer.onWebsocketMessage(WebSocketServer.j
        at org.java_websocket.drafts.Draft_6455.processFrameText(Draft_6455.java:986)
        at org.java_websocket.drafts.Draft_6455.processFrame(Draft_6455.java:910)
...



Version: 1.9.3

Headless Legacy
Getting started
This headless mode is the Legacy one. So, if you are already familiar with headless from version 1.8.1 or
older, nothing changed.

This mode relies on writing an explicit simulation plan in XML file. Those simulations, mostly for legacy
reason, have to be of type gui  (which is pretty counterintuitive, but this type let you set the parameter
value to each simulation independently), but you don't have to write it explicitly as it's the default type
for an experiment.

You can generate a first XML file corresponding to an existing experiment with the following command:

with:
-xml : the flag asking the headless to generate a XML file well-formatted for our experiment

experimentName : the name of the experiment  you want to run in headless

/path/to/inputFile.gaml : the path (relative or absolute) to your GAML file containing the
experiment you want to run

/path/to/outputFile.xml : the path (relative or absolute) to the generated XML file

You can see more in details the content of the generated XML file (applied on the model Predator Prey) in
the Experiment Input File part.

Once you finished preparing your XML file, you can run it with a command similar to the following one:

with:
/path/to/file.xml : the path (relative or absolute) to the XML file containing the full
exploration plan to run by the headless

./gama-headless.sh -xml experimentName /path/to/inputFile.gaml /path/to/outputFile.xml

./gama-headless.sh /path/to/file.xml /path/to/generated/outputFolder



/path/to/generated/outputFolder : the path (relative or absolute) which will be generated by
GAMA and hold every output files (variables, snapshots, and console messages)

You can see result output folder in the Simulation Output part

Experiment Input File
The XML input file contains for example (you can find it next to the file gama-headless.sh  at the path
samples/predatorPrey.xml :

NB: Several simulations can be determined in one experiment plan. These simulations are run in
parallel according to the number of allocated cores.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Experiment_plan>

<Simulation experiment="prey_predatorExp" finalStep="1000" id="0" seed="1.0" 
sourcePath="./samples/predatorPrey/predatorPrey.gaml">

<Parameters>
<Parameter name="Nb Preys: " type="INT" value="200" 

var="nb_preys_init"/>
<Parameter name="Prey max energy: " type="FLOAT" value="1.0" 

var="prey_max_energy"/>
<Parameter name="Prey max transfert: " type="FLOAT" value="0.1" 

var="prey_max_transfert"/>
<Parameter name="Prey energy consumption: " type="FLOAT" 

value="0.05" var="prey_energy_consum"/>
<Parameter name="Nb predators: " type="INT" value="20" 

var="nb_predators_init"/>
<Parameter name="Predator max energy: " type="FLOAT" 

value="1.0" var="predator_max_energy"/>
<Parameter name="Predator energy transfert: " type="FLOAT" 

value="0.5" var="predator_energy_transfert"/>
<Parameter name="Predator energy consumption: " type="FLOAT" 

value="0.02" var="predator_energy_consum"/>
</Parameters>
<Outputs>

<Output framerate="1" id="0" name="Number of preys"/>
<Output framerate="1" id="1" name="Number of predators"/>
<Output framerate="1" id="2" name="main_display"/>

</Outputs>
</Simulation>

</Experiment_plan>



Simulation

with:
experiment  (required): determines which experiment should be run on the model. This
experiment should exist, otherwise, the headless mode will exit.

finalStep  (required): determines the number of simulation steps you want to run.

id  (required): permits to prefix output files for experiment plans with huge simulations.

seed  (optional): permits to set the seed value of the simulation.

sourcePath  (required): contains the relative or absolute path to read the gaml model.

until  (optional): defines a stop condition in GAML. It can be combined with the finalStep
facet (in this case a simulation will finish when the stop condition is fulfilled or when the final
step is reached).

Parameters

One line per parameter you want to specify a value to:

with:
name : name of the parameter in the gaml model

type  (required): type of the parameter (INT, FLOAT, BOOLEAN, STRING)

value  (required): the chosen value

var : name of the parameter variable in the gaml model

NB: You need to set at least one of the attributes name  or var  in your Parameter  tag)

Outputs

One line per output value you want to retrieve. Outputs can be the name of monitors or displays
defined in the 'output' section of experiments, or the names of attributes defined in the experiment or
the model itself (in the 'global' section).

<Simulation experiment="prey_predatorExp" finalStep="1000" id="0" seed="1.0" 
sourcePath="./samples/predatorPrey/predatorPrey.gaml">

<Parameter name="Nb Preys: " type="INT" value="200" var="nb_preys_init"/>

http://localhost:3000/wiki/GlobalSpecies#seed


with:
framerate  (required): the frequency of the monitoring (each step, every 2 steps, every 100
steps...).

id  (optional): permits to prefix output files for simulation with huge outputs

name  (required): name of the output in the 'output'/'permanent' section in the experiment or
name of the experiment/model attribute to retrieve

output_path  (optional): change the output directory where snapshot images are saved (for
display output only!)

NB: the lower the framerate value is, the longer the experiment.

NB2: if the chosen output is a display, an image is produced and the output file contains the path to
access this image

Output Directory
During headless experiments, a directory is created with the following structure:

with:
console-outputs-<simulationId>.xml : containing every message written in GAMA's console

simulation-outputs<simulationId>.xml : containing variables' results in a XML format

    ... with the name of a monitor defined in the 'output' section of the experiment...
    <Output framerate="1" id="1" name="Number of predators"/>
    ... with the name of a (built-in) variable defined in the experiment itself...
    <Output framerate="1" id="2" name="main_display"/>

Outputed-directory-path/
out
├── console-outputs-0.txt
├── simulation-outputs0.xml
└── snapshot
    ├── main_display0-0.png
    ├── main_display0-1.png
    ├── main_display0-2.png
    ├── main_display0-3.png
    ├── main_display0-4.png
    └── ...



snapshot : containing the snapshots (i.e. screenshots of gui displays) produced during the
simulation

Simulation Output
A file named simulation-output.xml  is created with the following contents when the experiment runs.

With:
<Simulation id="0" > : tag containing results of the simulation. The id  is set one set in the
input file, in the heading part

<Step id='0' > : one block per step done containing the value of outputs variables. The id
corresponds to the step number

<Variable />  with:
name : name of the output

value : the current value of the model variable at the given step.

NB: The value of an output is repeated according to the framerate defined in the input experiment
file.

NB2: The value  of an output display gives the relative path to the generated image saved in '.png'
format.

<?xml version="1.0" encoding="UTF-8"?>
<Simulation id="0" >

<Step id='0' >
<Variable name='main_display' value='main_display2-0.png'/>
<Variable name='number_of_preys' value='613'/>
<Variable name='number_of_predators' value='51'/>

                <Variable name='duration' value='6' />
</Step>
<Step id='1' >

<Variable name='main_display' value='main_display2-0.png'/>
<Variable name='number_of_preys' value='624'/>
<Variable name='number_of_predators' value='51'/>

                <Variable name='duration' value='5' />
</Step>

        <Step id='2'>

...



Calling GAMA headless legacy on Windows
The example below assumes that your GAMA application is in folder D:\software\  and your project
(model) file is in folder D:\my_models\  The data structure of the example model as in following. The
example models can be found in the GAMA headless folder
(GAMA_1.9.2_Windows_with_JDK\headless\samples\predatorPrey)

In the predatorPrey model, we have a GUI experiment named prey_predator

Windows PowerShell

You can open Windows PowerShell, change your directory to the headless folder and run gama-
headless command:

Command Prompt

You can open Command Prompt, change your directory to the headless folder
D:\software\GAMA_1.9.2_Windows_with_JDK\headless\ then run the commands:

Python Script

predatorPrey
├── includes
└── models
    ├── ...
    └── predatorPrey.gaml

cd D:\software\GAMA_1.9.2_Windows_with_JDK\headless\
.\gama-headless.bat -xml prey_predator 
D:\my_models\predatorPrey\models\predatorPrey.gaml 
D:\my_models\predatorPrey\models\predatorPrey.xml
.\gama-headless.bat D:\my_models\predatorPrey\models\predatorPrey.xml 
D:\my_models\predatorPrey\results

gama-headless.bat -xml prey_predator D:\my_models\predatorPrey\models\predatorPrey.gaml 
D:\my_models\predatorPrey\models\predatorPrey.xml
gama-headless.bat D:\my_models\predatorPrey\models\predatorPrey.xml 
D:\my_models\predatorPrey\results



Your python script will have the following lines of code, mainly using the os  package to run the
native system commands

import os
os.chdir("D:\software\GAMA_1.9.2_Windows_with_JDK\headless")
os.system("gama-headless.bat -xml prey_predator 
D:\my_models\predatorPrey\models\predatorPrey.gaml 
D:\my_models\predatorPrey\models\predatorPrey.xml")
os.system("gama-headless.bat D:\my_models\predatorPrey\models\predatorPrey.xml 
D:\my_models\predatorPrey\results")



Version: 1.9.3

Preferences
Various preferences are accessible in GAMA to allow users and modelers to personalize their working
environment, runtime options and simulation displays. This section reviews the different preference
tabs available in the current version of GAMA, as well as how to access the preferences and settings
inherited by GAMA from Eclipse.

Please note that, as default behavior the preferences specific to GAMA will be shared, on the same
machine, and for the same user, among all the workspaces managed by GAMA. If you want your
preferences to be workspace specific you have to turn use_global_preference_store  preferences to
false using tags

Table of contents
Manage preferences

Preferences panel

Within model

Tags

Preferences
Interface

Editors

Execution

Displays

Data and Operators

Experimental

Manage preferences in GAML

Advanced Preferences

Manage preferences
There is three different way to specify the preferences you want Gama to use. The first, and most
intuitive way, is to open preference panel in the user interface of Gama. The second is to specify
preferences within your model (global) using gaml syntax, like in this example model code. Last and

https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/GAML%20Syntax/System/Preferences.gaml


least intuitive for modelers, is to use tags when launching Gama either from git or command line. The
three methods are exposed below.

Preferences panel

To open the preferences dialog of GAMA, either click on the small "form" button on the top-left corner of
the window or select "Preferences..." from the Gama, "Help" or "Views" menu depending on your OS.

Within model

To modify one or several preferences for a specific execution of a model, one can use gaml references to
the corresponding preferences and directly assigne the desired value. For instance, if you want your
batch experiment to use all core when simulation are running in parallel, you can add this line to the
init  block of your model gama.pref_parallel_simulations_all <- true; . The same can be done for
every preferences. A non exhaustive list, with code example can be found here; while having the mouse
pointer over preferences in the preference panel, display the associated name.

Tags

The last way to customize preferences attached to Gama is to use tags . Those are passed to the Gama
execution (when Gama is launched) using the eclipse syntax: -Dname_of_the_preference=true/false
where name_of_the_preference is the name of the variable associated with the preference, and
true/false one of the possible value for the preference (which is not limited to boolean but can be
number, specific string or any value type). There is two main ways to input those tags: with Gama git

https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/GAML%20Syntax/System/Preferences.gaml


using eclipse Run configuration, in tab called Arguments and when launching Gama from the java
command line (e.g. see the headless-game.sh to have an example).

Interface
The Interface pane gathers all the preferences related to the appearance and behavior of the elements
of the Graphical User Interface of GAMA.

Interface pane in Preferences.

Startup
Display welcome page: if true, and if no editors are opened, the welcome page is displayed
when opening GAMA.

Remember GAMA windows size and position: if true, the windows size and position will be
saved.

Maximize GAMA window: if true, the GAMA window is open with the maximal dimensions at
startup.

Ask before rebuilding a corrupted workspace: if true, GAMA will ask if the user want to
rebuild a detected corrupted workspace.

Ask before using a workspace created by another version: if true, GAMA will ask if the user
want to use the workspace detected as generated from another version of GAMA.

Open a model or an experiment at startup: if true, GAMA display a model or an experiment
at startup.

Choose the model to open at startup: Model to open at startup.

Choose the experiment to run at startup: Experiment to run at startup.

Menus
Break down agents in menu every: when inspecting a large number of agents, this preference
sets how many should be displayed before the decision is made to separate the population in
sub-menus.

Sort operators menu by: among [category, name], this preference sets how the operators
should be displayed in the menu "Model" > "Operators"  (available only in Modeling
perspective, when a model editor is active).

Sort colors menu by: among [RGB value, Name, Brightness, Luminescence], this sets how are
sorted the colors in the menu "Model" > "Colors"  (available only in Modeling perspective,
when a model editor is active).

Reverse order: if true, reverse the sort order of colors sets above.

Group colors: if true, the colors in the previous menu are displays in several sub-menus.

https://github.com/gama-platform/gama/blob/GAMA_1.9.2/ummisco.gama.product/extraresources/headless/osx/gama-headless.sh
http://localhost:3000/wiki/Launching#Welcome_Page
http://localhost:3000/wiki/InspectorsAndMonitors
http://localhost:3000/wiki/GamlEditorToolbar#vocabulary-tools-in-the-menu
http://localhost:3000/wiki/GamlEditorToolbar#vocabulary-tools-in-the-menu
http://localhost:3000/wiki/GamlEditorToolbar#vocabulary-tools-in-the-menu


Console
Max. number of characters to display in the console (-1 means no limit)

Max. number of characters to keep when paused (-1 means no limit)

Wrap long lines (can slow down output)

Simulations
Append the name of simulations to their outputs: if true, the name of the simulation is
added after the name of the display or monitor (interesting in case of multi-simulations).

Color of Simulation X in the UI (console, view tabs): each simulation has a specific color. This
is particularly interesting in case of a multi-simulations experiment to identify the displays of
each simulation and its console messages.

Appearance
Follow OS theme : if true, GAMA theme will match the OS theme.

Light theme : if true, GAMA theme will be Light.

Highlight in yellow the title of value editors when they change

Shapefile viewer fill color

Shapefile viewer line color

Image viewer background color: Background color for the image viewer (when you select an
image from the model explorer for example)

Display metadata in navigator: if true, GAMA provides some metadata (orange, in
parenthesis) after the name of files in the navigator: for a GAML model, it is the number of
experiments; for data files, it depends on the kind of data: (for shapefiles) number of objects,
CRS and dimensions of the bounding box, (for csv) the dimensions of the table, the delimiter,
the data type ...

Editors
Most of the settings and preferences regarding editors can also be found in the advanced preferences.

Editors pane in Preferences.

Options
Show warning markers in the editor: if false, the warning will only be available from the
Validation View.

Show information markers in the editor: if false, the information will only be available from
the Validation View.

Save all editors when switching perspectives



Hide editors when switching to simulation perspectives (can be overridden in the 'layout'
statement)

Applying formatting on save: if true, every time a model file is saved, its code is formatted.

Save all model files before launching an experiment

Drag files and resources as references in GAML files: a GAML model file is dropped in
another file as an import and other resources as the definition of a variable accessing to this
resource.

Ask before saving each file

Edition
Automatically close single quotes '..'

Automatically close double quotes ".."

Automatically close curly brackets {..}

Automatically close square brackets [..]

Automatically close parentheses (..)

Turn on colorization of code sections: if true, it activates the colorization of code blocks in
order to improve the visual understanding of the code structure.

Font of editors

Background color of editors

Mark occurrences of symbols: if true, when a symbol is selected, all its other occurrences are
also highlighted.

Always display experiments as a menu bar rather than button: if true, all experiment will be
displayed in a single menu bar rather than having a button for each experiment.

Display experiments as a menu bar when the combined width of the buttons exceed the
width of the toolbar: if true, display a menu bar instead of having a button for each
experiment when the total width of the buttons exceed the width of the toolbar.

Execution
This pane gathers all the preferences related to the execution of experiments, memory management,
the errors management, and the parallelism.

Execution pane in Preferences.

Experiments: various settings regarding the execution of experiments.
Auto-run experiments when they are launched: see this page.

http://localhost:3000/wiki/LaunchingExperiments#Running_Experiments_Automatically


Ask to close the previous simulation before launching a new one: if false, previous
simulations (if any) will be closed without warning.

Set the step duration slider incrementation to linear. If false set to logarithmic: if true, the
slider will follow a linear incrementation. If false, the slider will follow a logarithmic
incrementation.

Synchronize outputs with the simulation: if true, simulation cycles will wait for the displays to
have finished their rendering before passing to the next cycle (this setting can be changed on
an individual basis dynamically here).

Parameters
Automatically expand the parameters categories : if true, automatically expand the
parameters categories.

Display monitors in the parameters view : if true, display monitors within the parameters
view.

Include random number generation parameters in the parameters view : if true, display
the random number generator in the parameter view.

Tests
Sorts the results of tests by severity

Run tests at each start of the platform

Include user-defined tests in the tests suite

Only display (in the UI and in headless runs) failed and aborted tests

Memory: a given amount of memory (RAM) is allocated to the execution of GAMA (it has to be set in
the Gama.ini  file). The allocated memory size should be chosen in accordance with the
requirements of the model that is developed and the other applications running in your OS.

Monitor memory and emit a warning if it is low: a warning will appear during an experiment
run when the memory is low.

Trigger warnings when the percentage of available memory is below

Interval (in seconds) at which memory should be monitored

If true, when running out of memory, GAMA will try to close the experiment, otherwise it
exits

The max memory allocated in Megabytes. It can be modified in Eclipse (developer
version) or in Gama.ini file

Runtime errors: how to manage and consider simulation errors.
Show execution errors: whether errors should be displayed or not.

Show errors thrown in displays and outputs: the code defined inside the aspect  block of a
species will be executed each time the agents are repainted in a display. In particular, when the
displays are not synchronized, some errors can occur due to some inconsistency between the

http://localhost:3000/wiki/Displays


model and the display (e.g. drawing a dead agent). As a consequence, the code executed inside
an aspect should be limited as much as possible.

Number of errors to display: how many errors should be displayed at once

Display most recent first: errors will be sorted in the inverse chronological order if true.

Stop simulation at first error: if false, the simulations will display the errors and continue (or
try to).

Treat warnings as errors: if true, no more distinction is made between warnings (which do not
stop the simulation) and errors (which can potentially stop it).

Automatically open an editor and point at the faulty part of the model if an error or a
warning is thrown

Text color of errors

Text color of warnings

Parallelism: various settings regarding the parallel execution of experiments.
Make experiments run simulations in parallel: if true, in the case of a multi-simulations
experiment, the simulation will be executed in parallel (note that the number of simulations
that can be executed in parallel will depend on the number of threads to use).

In batch, allows to run simulations with all available processors [WARNING: disables
reflexes and permanent display of batch experiments]

Make grids schedule their agents in parallel: the agents of grid species will be executed in
parallel. Depending on the model, this could increase the simulation speed, but the modeler
cannot have any control over the execution order of the agents.

Make species schedule their agents in parallel

Number under which agents are executed sequentially

Max. number of threads to use (available processors: 8)

Displays
Displays pane in Preferences.

Presentation and Behavior of Graphical Display Views
Default layout of display views: among [None, stacked, Split, Horizontal, Vertical]. When an
experiment defines several displays, they are by default (layout None) opened in the same View.
This preference can set automatically this layout. A layout  statement can also be used in
experiment  to redefine programmatically the layout of display views.

Display a border around display views



Continue to draw displays when in Modeling perspective: if true, when the simulation is
running and the modeler chooses to switch to the Modeling perspective the displays are still
updated. This is particularly relevant for displays showing plots of data over time.

Enable fast snapshots (uncomplete when the display is obscured but much faster)

Show the display top toolbar: this could also be configured manually for each display (cf
displays related page).

Show the display bottom overlay: this could also be configured manually for each display (cf
displays related page).

Charts Preferences
Display 'flat' histograms: if false, the histograms are displayed in a 3D style.

Keep values in memory (to save them as csv)

Display grid lines: in charts (and in particular series ), if true, a grid is displayed in
background.

Resolution of the charts (from 0, small but fast, to 1, best but resource consuming)

Default Rendering Properties: various properties of displays
Default rendering method (Java2D for 2D, OpenGL for 3D): use either 'Java2D' or 'OpenGL' if
nothing is specified in the declaration of a display.

Apply antialiasing: if true, displays are drawn using antialiasing, which is slower but renders a
better quality of image and text (this setting can be changed on an individual basis dynamically
here).

Default background color: indicates which color to use when none is specified in the
declaration of a display.

Default highlight color: indicates which color to use for highlighting agents in the displays.

Default shape of agents: a choice between shape  (which represents the actual geometrical
shape of the agent) and geometrical operators ( circle , square , triangle , point , cube ,
sphere  etc.) as default shape to display agents when no aspect  is defined.

Default size of agents: what size to use. This expression must be constant.

Default color of agents: what color to use.

Default font to use in 'draw'

OpenGL Rendering Properties: various properties specific to OpenGL-based displays
Only display visible agents (faster, may create visual oddities)

Draw 3D axes: if true, the shape of the world and the 3 axes are drawn

Draw rotation axes: if true, a sphere appears when rotating the scene to illustrate the
rotations.

Default line width (facet width  of draw ): the value is used in draw  statement that draws a
line without specifying the width  facet.

http://localhost:3000/wiki/Displays
http://localhost:3000/wiki/Displays
http://localhost:3000/wiki/DefiningCharts
http://localhost:3000/wiki/DefiningDisplaysGeneralities
http://localhost:3000/wiki/Displays
http://localhost:3000/wiki/DefiningDisplaysGeneralities
http://localhost:3000/wiki/Statements#draw


Number of slices of circular geometries: when a circular geometry (circle, sphere, cylinder) is
displayed, it needs to be discretized in a given number of slices.

Add a small increment to the z ordinate of objects to fight visual artefacts: if true, add a
small increment to objects to prevent visual artifacts to form when two or more objects have
the same z ordinate.

Orient the textures according to the geometry on which they are displayed (may create
visual oddities): if true, the textures will be displayed following the orientation of the geometry
they are displayed on.

Set the zoom factor (0 for slow, 1 fast): this determines the speed of the zoom (in and out),
and thus its precision.

Set the sensitivity of the keyboard movements (0 for slow, 1 fast): this determines the
speed of the keyboard movement, and thus its precision.

Set the sensitivity of mouse/trackpad (0 for slow, 1 fast): this determines the speed of the
mouse/trackpad movement, and thus their precision.

Limit the number of frames per second
Max. number of frames per second

Use Numeric Keypad (2,4,6,8) for camera interaction: use these numeric keys to make quick
rotations.

Default camera when none is specified: choose the camera to be used when none are
specified.

Use GAMA image cache when building textures in OpenGL (potentially faster when
running several simulations, but uses more memory)

Set the default intensity of the ambient and default lights (from 0, completely dark, to
255, completely light)

Data and Operators
These preferences pertain to the use of external libraries or data with GAMA.

The Data and Operators pane in Preferences.

Http connections
Connection timeout (in ms): set the connection timeout when the model tries to access a
resource on the web. This value is used to decide when to give up the connection try to an HTTP
server in case of response absence.

Read timeout (in ms): similar to connection timeout, but related to the time GAMA will wait for
a response in case of reading demand.

http://localhost:3000/wiki/Displays#arcball-camera-commands
http://localhost:3000/wiki/Displays#arcball-camera-commands


Number of times to retry if connection cannot be established

Empty the local cache of files downloaded from the web: if true, after having downloaded
the files and used them in the model, the files will be deleted.

Random Number Generation: all the options pertaining to generating random numbers in
simulations

Default random number generator: the name of the generator to use by default (if none is
specified in the model).

Define a default seed: whether or not a default seed should be used if none is specified in the
model (otherwise it is chosen randomly by GAMA)

Default seed value (0 is undefined): the value of this default seed

Optimizations
Optimize the 'at_distance' operator: an optimisation that considers the number of elements
on each side and changes the loop to consider the fastest case.

Optimize the path computation operators and goto action (but with possible 'jump'
issues): when an agent is not already on a path, simplifies its choice of the closest segment to
choose and makes it jump directly on it rather than letting it move towards the segment.

Tolerance for the comparison of points: depending on the way they are computed, 2 points
who should be the same, could not be equal. This preference allows to be more tolerant in the
way points are compared.

In-memory shapefile mapping (optimizes access to shapefile data in exchange for
increased memory usage)

GIS Coordinate Reference Systems (http://spatialreference.org/ref/epsg/ for EPSG codes):
settings about CRS to use when loading or saving GIS files

Let GAMA decide which CRS to use to project GIS data: if true, GAMA will decide which CRS,
based on input, should be used to project GIS data. Default is true  (i.e. GAMA will always try to
find the relevant CRS, and, if none can be found, will fall back one the one provided below)

...or use the following CRS (EPSG code): choose a CRS that will be applied to all GIS data when
projected in the models. Please refer to http://spatialreference.org/ref/epsg/ for a list of EPSG
codes. If the option above is false , then the use of this CRS will be enforced in all
models.Otherwise, GAMA will first try to find the most relevant CRS and then fall back on this
one.

When no .prj file or CRS is supplied, consider GIS data to be already projected in the CRS: if
true, GIS data that is not accompanied by a CRS information will be considered as projected
using the above code.

...or use the following CRS (EPSG code): choose a CRS that will represent the default code for
loading uninformed GIS data.

http://spatialreference.org/ref/epsg/
http://spatialreference.org/ref/epsg/


When no CRS is provided, save the GIS data with the current CRS: if true, saving GIS data will
use the projected CRS unless a CRS is provided.

...or use the following CRS (EPSG code): otherwise, you might enter a CRS to use to save files.

CSV Files
Default separator for strings : set the separator used to separate strings in CSV Files.

Default separator for fields : set the separator used to separate fields in CSV Files.

Management of dates: some preferences for default values related to the dates in GAMA.
Custom date pattern
(https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimerFormatter.html#
patterns)

Default date pattern for writing dates (i.e. string(date1))

Default starting date of models: set the default value of the global variable starting_date .

Default time step of models: define the default duration of a simulation step, i.e. the value of
the variable step  (by default, it is set to 1s).

Experimental
These features have not been fully tested. Enable them at your own risks.

The Experimental pane in Preferences.

Automatically add the plugins required to compile and run a model when editing it

Verify that the required plugins are present before compiling a model

Optimize spatial queries: add agents only when necessary in the quadtree (still experimental)

Forces the spatial index to synchronize its operations. Useful for interactive models where the
users interface or parallel models with concurrency errors. Note that it may slow down
simulations with a lot of mobile agents

Manage preferences in GAML
All these preferences can be accessed (set or read) directly in a GAML model. To share your preferences
with others (e.g. when you report an issue), you can simply export your preferences in a GAML model.
Importing preferences will set your preferences from an external GAML file.

http://localhost:3000/wiki/ManipulateDates
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimerFormatter.html#patterns
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimerFormatter.html#patterns
http://localhost:3000/wiki/ManipulateDates#the-date-variable-type-and-the-use-of-a-real-calendar
http://localhost:3000/wiki/ManipulateDates#definition-of-the-step-and-use-of-temporal-unity-values
http://localhost:3000/wiki/Troubleshooting#submitting-an-issue


When you export your preferences, the GAML file will look like the following code. It contains 2
experiments: one to display all the preferences in the console and the other one to set your preferences
will the values written in the model.

Advanced Preferences

model preferences

experiment 'Display Preferences' type: gui {
init {

//Append the name of simulations to their outputs
write sample(gama.pref_append_simulation_name);

//Display grid lines
write sample(gama.pref_chart_display_gridlines);

//Monitor memory and emit a warning if it is low
write sample(gama.pref_check_memory);

//Max. number of characters to keep when paused (-1 = unlimited)
write sample(gama.pref_console_buffer);

//Max. number of characters to display (-1 = unlimited)
write sample(gama.pref_console_size);

//Wrap long lines (can slow down output)
write sample(gama.pref_console_wrap);

//Custom date pattern 
(https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#patter

write sample(gama.pref_date_custom_formatter);

// ...



The set of preferences described above are specific to GAMA. But there are other preferences or settings
that are inherited from the Eclipse underpinnings of GAMA, which concern either the "core" of the
platform (workspace, editors, updates, etc.) or plugins (like SVN, for instance) that are part of the
distribution of GAMA.

These "advanced" preferences are accessible by clicking on the "Advanced..." button in the Preferences
view.

Depending on what is installed, the second view that appears will contain a tree of options on the left
and preference pages on the right. Contrary to the first set of preferences, please note that these
preferences will be saved in the current workspace, which means that changing workspace will
revert them to their default values. It is, however, possible to import them in the new workspace using of
the wizards provided in the standard "Import..." command (see here).

http://localhost:3000/wiki/ImportingModels




Version: 1.9.3

Troubleshooting
This page exposes some of the most common problems a user may encounter when running GAMA —
and offers advices and workarounds for them. It will be regularly enriched with new contents. Note also
that the Issues section of the website might contain precious information on crashes and bugs
encountered by other users. If neither the workarounds described here nor the solutions provided by
other users allow to solve your particular problem, please submit a new issue report to the developers.

On Ubuntu (& Linux Systems)

Workaround if OpenGL display crash GAMA

In case GAMA crashes whenever trying to display an OpenGL display or a Java2D, and you are running
Ubuntu 21.10 (or earlier), it probably means that you're using Wayland as Display backend. You can fix it
by running in a terminal export GDK_BACKEND=x11  and launch GAMA from this same terminal. This
workaround is described here and in Issue 3373.

Wrong dark theme

GAMA have trouble managing custom GTK theme (specially dark ones, see this issue). The simplest
solution is to explicit change the theme to the default Adwaita as an override of the environment
variable.

Change desktop application

Simply edit the file at /usr/share/applications/gama-platform.desktop  and add GTK_THEME=Adwaita
on the line starting by Exec= . You should have something like this :

Save the file wait a few seconds and restart GAMA normally.

Note, if you want to force the dark mode, add this instead GTK_THEME=Adwaita:dark

From command line (hard)

Exec=env GTK_THEME=Adwaita GDK_BACKEND=x11 /opt/gama-platform/Gama

https://github.com/gama-platform/gama/issues
https://bugs.eclipse.org/bugs/show_bug.cgi?id=577515
https://github.com/gama-platform/gama/issues/3373
https://github.com/gama-platform/gama/issues/3137#issuecomment-881300323


If you are starting GAMA from the command line, use this command :

or this one to use the dark theme variant :

On macOS

First launch of GAMA should be in GUI mode

When GAMA has just been downloaded and installed, it needs to be first launched in its GUI version
before using it in the headless mode. If it is first launched in the headless mode, GAMA will be damaged
and the installed version needs to be removed and re-installed.

Detached displays "vanish" when moved to a secondary monitor
(see #3670)

This is a know bug in Eclipse as well, only on macOS. The only workaround consists in (1) detaching the
display as usual on the same monitor than GAMA; (2) pressing F3 to display all active windows on
screen; (3) grabbing and moving "by hand" the window corresponding to the detached display to the
second monitor. It will then work as usual.

On Windows

Problem with some Radeon graphics cards and Opengl display

Some Radeon graphics cards may cause GAMA to crash when using Opengl displays. The best solutions
in this case are either to switch to java2D display or, if the computer is equipped with two graphics cards,
to specify that the other graphics card should be used for GAMA (see here). Sometimes just setting the
second GPU as recommended for GAMA won't be enough and Windows will still try to run it from the
Radeon chipset, you can try setting the second GPU as the default GPU for everything, for example with
NVIDIA cards, in NVidia control panel you can set it as prefered graphics processor  in the Global
settings  tab. Alternatively, it has been reported that installing the latest version of AMD Software:

GTK_THEME=Adwaita /path/to/Gama

GTK_THEME=Adwaita:dark /path/to/Gama

https://pureinfotech.com/set-gpu-app-windows-10/


Adrenalin edition  (last tried successfully with 22.10.1) solved the problem but at the cost of very
slower rendering.

Problem with java2D displays

For high-DPI screens, it is possible to observe an offset in java2D displays (not centered, not taking the
whole panel, with an erroneous mouse location) with some scaling ratios. Changing the scaling factor to
100%, 125%, 150% or 200% should solve the problem.

General display problems (blurry icons, strange experiment
displays, dark icons, blurry text, different appearance on second
screen etc.)

In some computer we noticed numerous display problems those are hard to reproduce because they
depend on a specific mix between hardware and software. If you ever encounter that kind of issue,
there are two ways for you to try and act on them: the high DPI settings and the Windows scaling ratio.

High DPI settings

Most of those problems can be solved by setting the right high DPI settings in Windows. To do so, go to
your Gama.exe  file and right click on it. There chose Properties  and then click on the Compatibility
tab. Finally click on the Change high DPI settings  button:

https://support.microsoft.com/en-us/windows/view-display-settings-in-windows-37f0e05e-98a9-474c-317a-e85422daa8bb#WindowsVersion=Windows_10


A new window opens, if you installed gama through the installer you should see the High DPI scaling
override  option checked and the System  value selected.



If it's not the case, you can try to set it and then in the properties window click on Apply  and try to run
gama again to see if there's some improvement. If not you can try with different values or to play with
the Program DPI  setting too.

Scaling ratio

Many of those issues are related to the the scaling ratio you are using in your windows. If the previous
tip didn't work, you can try to play a bit with your scaling ratios to see if there's any improvement. In
general, if you have problems we recommend that you stick to the 100% or 200% as those are the values
that works the best from our experience. If you have multiple displays and experience problems when
moving gama from one to another, we also recommend that you use the same scaling ratio for the two
displays. If not possible, setting as you main monitor the one were gama is going to run could also solve
some issues.

Memory problems



The most common causes of problems when running GAMA are memory problems. Depending on your
activities, on the size of the models you are editing, on the size of the experiments you are running, etc.,
you have a chance to require more memory than what is currently allocated to GAMA. A typical GAMA
installation will need between 2 and 4GB of memory to run "normally" and launch small models.
Memory problems are easy to detect: in the bottom-right corner of its window, GAMA will always display
the status of the current memory. The first number represents the memory currently used (in MB), the
second (always larger) the memory currently allocated by the JVM. And the little trash icon allows to
"garbage collect" the memory still used by agents that are not used anymore (if any). If GAMA appears
to hang or crash and if you can see that the two numbers are very close, it means that the memory
required by GAMA exceeds the memory allocated.

There are two ways to circumvent this problem: the first one is to increase the memory allocated to
GAMA by the Java Virtual Machine. The second, detailed on this page is to try to optimize your models to
reduce their memory footprint at runtime. To increase the memory allocated, first locate the file called
Gama.ini . On Windows and Ubuntu, it is located next to the executable. On Mac OS X, you have to right-
click on Gama.app , choose "Display Package Contents...", and you will find Gama.ini  in
Contents/Eclipse . This file typically looks like the following (some options/keywords may vary
depending on the system), and we are interested in two JVM arguments:

http://localhost:3000/wiki/OptimizingModels


-Xms  supplies the minimal amount of memory the JVM should allocate to GAMA, -Xmx  the maximal
amount. By changing these values (esp. the second one, of course, for example to 4096M, or 4g, or
more!), saving the file and relaunching GAMA, you can probably solve your problem. Note that 32 bits
versions of GAMA will not accept to run with a value of -Xmx  greater than 1500M. See here for
additional information on these two options.

Charting problems
By default the charts of a running experiment are only updated when you are in the experiment view.
Therefore if you want to be able to run an experiment and plot its results while still working on the code
of a model, you should make sure that the option Continue to draw displays when in Modeling
perspective  is set to true in the Presentation and Behavior of Graphical Display Views  section of
the Display  tab in the settings.

Installation is broken

http://stackoverflow.com/questions/14763079/what-are-the-xms-and-xmx-parameters-when-starting-jvms


It may happen that after switching from one GAMA version to another, or after installing a plugin,
something breaks your GAMA installation completely and uninstalling/reinstalling won't solve the
problem. To fix this, you can go to your home directory and find the .eclipse  (hidden) folder. For
example on Windows it would be at:

There you will find a list of directories all starting with org.  and one directory with the name starting
with a number followed by the system you are using, for example for Windows it could be :
306334380_win32_win32_x86_64 , for linux 1164258503_linux_gtk_x86_64  etc. That directory contains
the list of plugins and some config files that are persistent from one version to another, you can rename
it (to 306334380_win32_win32_x86_64-backup  for example) to keep a track of what was your
configuration before, and run GAMA again. GAMA should then create a new clean directory with the
basic configuration and no plugin installed, which should solve configuration related problems.

Silent error when saving a file
In certain configurations, when using the save statement an error can happen while the simulation is
running and trying to perform the save. To prevent those, make sure that you specified the format in
which to save your data ( csv , text , json  etc.) with the format  facet.

Saving SHP file raises an error
If you encounter a runtime error while trying to save an SHP file multiple times, especially if the
message is something like Java error: I/O error ... FileNotFoundException... , you can try going
into your gama preferences and go to Data and Operators  -> Optimizations  -> In-memory shapefile
mapping [...]  and set it to false.

Submitting an Issue
If you think you have found a new bug/issue in GAMA, it is time to create an issue report here!
Alternatively, you can click the Issues tab on the project site, search if a similar problem has already
been reported (and, maybe, solved) and, if not, enter a new issue with as much information as possible:

A complete description of the problem and how it occurred.

The GAMA model or code you are having trouble with. If possible, attach a complete model.

C:\Users\username\.eclipse

http://localhost:3000/wiki/Statements#save
https://github.com/gama-platform/gama/issues/new
https://github.com/gama-platform/gama/issues


Screenshots or other files that help describe the issue.

Two files may be particularly interesting to attach to your issue: the configuration details and the error
log. Both can be obtained quite easily from within GAMA itself in a few steps. First, click the "About
GAMA..." menu item (under the "Gama Platform" menu on Mac OS X, "Help" menu on Linux & Windows)

In the dialog that appears, you will find a button called "Installation Details".



Click this button and a new dialog appears with several tabs.

To provide complete information about the status of your system at the time of the error, you can

(1) copy and paste the text found in the tab "Configuration" into your issue. Although, it is preferable to
attach it as a text file (using TextEdit, Notepad or Emacs e.g.) as it may be too long for the comment
section of the issue form.

(2) click the "View error log" button, which will bring you to the location, in your file system, of a file
called "log", which you can then attach to your issue as well.





Version: 1.9.3

Learn GAML Step by Step
This large progressive tutorial has been designed to help you to learn GAML (GAma Modeling
Language). It will cover the main part of the possibilities provided by GAML, and guide you to learn
some more.

How to proceed to learn better?
As you will progress in the tutorial, you will see several links (written in blue to makes you jump to
another part. You can click on them if you want to learn directly about a specific topic, but we do not
encourage to do this, because you can get easily lost by reading this tutorial this way. As it is named, we
encourage you to follow this tutorial "step by step". For each chapter, some links are available in the
"search" tab, if you want to learn more about this subject.

Although, if you really want to learn about a specific topic, our advice is to use the "learning graph"
interface, in the website, so that you can choose your area of interest, and a learning path will be
automatically designed for you to assimilate the specific concept better.

Good luck with your reading, and please do not hesitate to contact us through the mailing list if you
have a question/suggestion!

https://en.wikipedia.org/wiki/Hyperlink
https://groups.google.com/forum/#!forum/gama-platform


Version: 1.9.3

Introduction
GAML is an agent-oriented language dedicated to the definition of agent-based simulations. It takes its
roots in object-oriented languages like Java or Smalltalk, but extends the object-oriented programming
approach with powerful concepts (like skills, declarative definitions or agent migration) to allow for a
better expressivity in models.

It is of course very close to agent_based modeling languages like, e.g., NetLogo, but, in addition to
enriching the traditional representation of agents with modern computing notions like inheritance, type
safety or multi-level agency, and providing the possibility to use different behavioral architectures for
programming agents, GAML extends the agent-based paradigm to eliminate the boundaries between
the domain of a model (which, in ABM, is represented with agents) and the experimental processes
surrounding its simulations (which are usually not represented with agents), including, for example,
visualization processes. This paper (Drogoul A., Vanbergue D., Meurisse T., Multi-Agent Based Simulation:
Where are the Agents ?, Multi-Agent Based Simulation 3, pp. 1-15, LNCS, Springer-Verlag. 2003) was in
particular foundational in the definition of the concepts on which GAMA (and GAML) are based today.

This orientation has several conceptual consequences among which at least two are of immediate
practical interest for modelers:

Since simulations, or experiments, are represented by agents, GAMA is bound to support high-level
model compositionality, i.e. the definition of models that can use other models as inner agents,
leveraging multi-modeling or multi-paradigm modeling as particular cases of composition.

The visualization of models can be expressed by models of visualization, composed of agents entirely
dedicated to visually represent other agents, allowing for a clear separation of concerns between a
simulation and its representation and, hence, the possibility to play with multiple representations of
the same model at once.

Table of contents
Key Concepts (Under construction)

Lexical semantics of GAML

Translation into a concrete syntax

Vocabulary correspondance with the object-oriented paradigm as in Java

Vocabulary correspondance with the agent-based paradigm as in NetLogo

http://ccl.northwestern.edu/netlogo/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.7241&rep=rep1&type=pdf


Lexical semantics of GAML
The vocabulary of GAML is described in the following sentences, in which the meaning and relationships
of the important words of the language (in bold face) are summarized.

1. The role of GAML is to support modelers in writing models, which are specifications of simulations
that can be executed and controlled during experiments, themselves specified by experiment
plans.

2. The agent-oriented modeling paradigm means that everything "active" (entities of a model,
systems, processes, activities, like simulations and experiments) can be represented in GAML as an
agent (which can be thought of as a computational component owning its own data and executing
its own behavior, alone or in interaction with other agents).

3. Like in the object-oriented paradigm, where the notion of class is used to supply a specification for
objects, agents in GAML are specified by their species, which provide them with a set of attributes
(what they know), actions (what they can do), behaviors (what they actually do) and also specifies
properties of their population, for instance its topology (how they are connected) or schedule (in
which order and when they should execute).

4. Any species can be nested in another species (called its macro-species), in which case the
populations of its instances will imperatively be hosted by an instance of this macro-species. A
species can also inherit its properties from another species (called its parent species), creating a
relationship similar to specialization in object-oriented design. In addition to this, species can be
constructed in a compositional way with the notion of skills, bundles of attributes and actions that
can be shared between different species and inherited by their children.

5. Given that all agents are specified by a species, simulations and experiments are then instances
of two species which are, respectively, called model and experiment plan. Think of them as
"specialized" categories of species.

6. The relationships between species, models and experiment plans are codified in the meta-model
of GAML in the form of a framework composed of three abstract species respectively called agent
(direct or indirect parent of all species), model (parent of all species that define a model) and
experiment (parent of all species that define an experiment plan). In this meta-model, instances of
the children of agent know the instance of the child of model in which they are hosted as their
world, while the instance of experiment plan identifies the same agent as one of the simulations
it is in charge of. The following diagram summarizes this framework:



Putting this all together, writing a model in GAML then consists in defining a species which inherits from
model, in which other species, inheriting (directly or not) from agent and representing the entities that
populate this model, will be nested, and which is itself nested in one or several experiment plans
among which a user will be able to choose which experiment he/she wants to execute.

At the operational level, i.e. when running an experiment in GAMA, an experiment agent is created. Its
behavior, specified by its experiment plan, will create simulations agents (instance of the user model) and
execute them. Recursively, the initialization of a simulation agent will create the agent population of the
species defined in the model. Each of these agents, when they are created, can create the population of
their micro-species...



Translation into a concrete syntax
The concepts presented above are expressed in GAML using a syntax which bears resemblances with
mainstream programming languages like Java, while reusing some structures from Smalltalk (namely,
the syntax of facets or the infix notation of operators). While this syntax is fully described in the
subsequent sections of the documentation, we summarize here the meaning of its most prominent
structures and their correspondence (when it exists) with the ones used in Java and NetLogo.

1. A model is composed of a header, in which it can refer to other models, and a sequence of species
and experiments declarations, in the form of special declarative statements of the language.

2. A statement can be either a declaration or a command. It is always composed of a keyword
followed by an optional expression, followed by a sequence of facets, each of them composed of a
keyword (terminated by a ‘:’) and an expression.

3. facets allow to pass arguments to statements. Their value is an expression of a given type. An
expression can be a literary constant, the name of an attribute, variable or pseudo-variable, the
name of a unit or constant of the language, or the application of an operator.

4. A type can be a primitive type, a species type or a parametric type (i.e. a composition of types).

5. Some statements can include sub-statements in a block (sequence of statements enclosed in
curly brackets).

6. declarative statements support the definition of special constructs of the language: for instance,
species (including global and experiment species), attributes, actions, behaviors, aspects,
variables, parameters and outputs of experiments.

7. imperative statements that execute something or control the flow of execution of actions,
behaviors and aspects are called commands.

8. A species declaration (global, species or grid keywords) can only include 6 types of declarative
statements : attributes, actions, behaviors, aspects, equations and (nested) species. In addition,
experiment species allow to declare parameters, outputs and batch methods.

Vocabulary correspondence with the object-
oriented paradigm as in Java

GAML Java

species class



GAML Java

micro-species nested class

parent species superclass

child species subclass

model program

experiment (main) class

agent object

attribute member

action method

behavior collection of methods

aspect collection of methods, mixed with the behavior

skill interface (on steroids)

statement statement

type type

parametric type generics

Vocabulary correspondence with the agent-
based paradigm as in NetLogo

GAML NetLogo

species breed



GAML NetLogo

micro-species -

parent species -

child species - (only from 'turtle')

model model

experiment observer

agent turtle/observer

attribute 'breed'-own

action global function applied only to one breed

behavior collection of global functions applied to one breed

aspect only one, mixed with the behavior

skill -

statement primitive

type type

parametric type -



Version: 1.9.3

Start with GAML
In this part, we will present you some basic concepts of GAML that will help you a lot for the next pages.

You will first learn how to organize a standard model, then you will learn about some basis about
GAML, such as how to declare a variable, how to use the basic operators, how to write a conditional
structure or a loop, how to manipulate containers and how to generate random values.

http://localhost:3000/wiki/ModelOrganization
http://localhost:3000/wiki/BasicProgrammingConceptsInGAML
http://localhost:3000/wiki/BasicProgrammingConceptsInGAML


Version: 1.9.3

Organization of a model
As already extensively detailed in the introduction page, defining a model in GAML amounts to defining
a model species, which later allows to instantiate a model agent (aka a simulation), which may or may not
contain micro-species, and which can be flanked by experiment plans in order to be simulated.

This conceptual structure is respected in the definition of model files, which follows a similar pattern:

1. Definition of the global species, preceded by a header, in order to represent the model species

2. Definition of the different micro-species (either nested inside the global species or at the same level)

3. Definition of the different experiment plans that target this model

Table of contents
Model Header (model species)

Import gaml file

Species declarations

Experiment declarations

Basic skeleton of a model

Model Header (model species)
The header of a model file begins with the declaration of the name of the model. Contrarily to other
statements, this declaration does not end with a semi-colon.

The name of the model is not necessarily the same as the name of the file. It must conform to the
general rule for naming species, i.e. be a valid identifier (beginning with a letter, containing only letters,
digits, and dashes). This name will be used for building the name of the model species, from which
simulations will be instantiated. For instance, the following declaration:

model name_of_the_model

model dummy

http://localhost:3000/wiki/Introduction


will internally create a species called dummy_model , child of the abstract species model , from which
simulations (called dummy_model0 , dummy_model1 , etc.) will be instantiated.

Import gaml file
This declaration is followed by optional import statements that indicate which other models this model
is importing. Import statements do not end with a semi-colon.

Importing a model can take two forms. The first one, called inheritance import, is declared as follows:

The second one, called usage import, is declared as follows:

When importing models using the first form, all the declarations of the model(s) imported will be
merged with those of the current model (in the order with which the import statements are declared, i.e.
the latest definitions of global attributes or behaviors superseding the previous ones).

The second form is reserved for using models as micro-models of the current model. This possibility is
still experimental in the current version of GAMA.

The last part of the header is the definition of the global  species, which is the actual definition of the
model species itself.

Note that neither the imports nor the definition of global  is mandatory. Only the model  statement is.

INFO

While importing a model, every file is concatenated. Therefore, every variable will be processed
from the gaml file where the experiment is located.

import "relative_path_to_a_model_file"
import "relative_path_to_another_model_file"

import "relative_path_to_a_model_file" as model_identifier

global {
    // Definition of [global attributes](GlobalSpecies#declaration), [actions and 
behaviors](DefiningActionsAndBehaviors)
}

http://localhost:3000/wiki/Comodel
http://localhost:3000/wiki/Comodel
http://localhost:3000/wiki/Comodel
http://localhost:3000/wiki/GlobalSpecies


This might lead to some issues explained in #137 where relative path set in an imported file will be
based on the model you're starting and not the file you defined it.

Species declarations
The header is followed by the declaration of the different species of agents that populate the model.

The special species global  is the world species. You will declare here all the global
attributes/actions/behaviors. The global species does not have a name, and is unique in your model.

Regular species can be declared with the keyword species . You can declare several regular species, and
they all have to be named. A species defines its attributes, actions and behaviors and aspects.

Note that the possibility to define the species after the global  definition is actually a convenience: these
species are micro-species of the model species and, hence, could be perfectly defined as nested species
of global . For instance:

is completely equivalent to:

global {
    // definition of global attributes, actions, behaviors
}

species nameOfSpecies {
// definition of your species attributes, actions and behaviors and aspects

}

global {
    // definition of global attributes, actions, behaviors
}

species A {...}

species B {...}

global {
    // definition of [global attributes](GlobalSpecies#declaration), actions, behaviors

    species A {...}

https://github.com/gama-platform/gama-platform.github.io/issues/137
http://localhost:3000/wiki/GlobalSpecies
http://localhost:3000/wiki/RegularSpecies
http://localhost:3000/wiki/RegularSpecies#declaration
http://localhost:3000/wiki/DefiningActionsAndBehaviors
http://localhost:3000/wiki/RegularSpecies#the-aspect-statement


Experiment declarations
Experiments are usually declared at the end of the file. They start with the keyword experiment . They
contains the simulation parameters, and the definition of the output (such as displays, monitors or
inspectors). You can declare as many experiments as you want.

Note that you have four types of experiments:

A GUI experiment allows you to display a graphical interface with input parameters and outputs. It
is declared with the following structure:

A Batch experiment allows you to execute numerous successive simulation runs (often used for
model exploration). It is declared with the following structure:

    species B {...}
}

experiment first_experiment {
    // definition of parameters (intputs)

    // definition of output
    output {...}
}

experiment second_experiment {
    // definition of parameters (inputs)

    // definition of output
}

experiment gui_experiment type:gui {
   [parameters]
   [output]
   [...]
}

experiment batch_experiment type:batch {
   [parameters]
   [exploration method]

http://localhost:3000/wiki/DefiningParameters
http://localhost:3000/wiki/DefiningDisplaysGeneralities
http://localhost:3000/wiki/DefiningMonitorsAndInspectors
http://localhost:3000/wiki/DefiningMonitorsAndInspectors
http://localhost:3000/wiki/DefiningGUIExperiment
http://localhost:3000/wiki/BatchExperiments


A Test experiment allows you to write unit tests on a model (used to ensure its quality). It is declared
with the following structure:

A memorize experiment allows you to store each step of the simulation in memory and to backtrack
to previous steps. It is declared with the following structure:

Basic skeleton of a model
Here is the basic skeleton of a model :

   [...]
}

experiment test_experiment type:test autorun: true {
   [setup]
   [tests]
   [...]
}

experiment test_experiment type:memorize {
   [parameters]
   [output]
   [...]
}

model name_of_the_model

global {
// definition of [global attributes](GlobalSpecies#declaration), actions, 

behaviours
}

species my_specie {
// definition of attributes, actions, behaviors

}

experiment my_experiment /* + specify the type : "type:gui", "type:batch", "type:test", 
or "test:memorize" */
{

// here the definition of your experiment, with...
// ... your inputs
output {

http://localhost:3000/wiki/Writing_Tests
http://localhost:3000/wiki/Save-and-restore-simulations


Don't forget this structure! This will be the basis for all the models you will create from now.

// ... and your outputs
}

}



Version: 1.9.3

Basic programming concepts in
GAML
In this part, we will focus on the very basic structures in GAML, such as how to declare a variable, how to
use loops, or how to manipulate lists. We will overfly quickly all those basic programming concepts,
admitting that you already have some basics in coding.

Index
Variables

Basic types

The point type

A word about dimensions

Declare variables using facet

Operators in GAMA
Logical operators

Comparison operators

Type casting operators

Other operators

Conditional structures

Loop

Manipulate containers

Random values

Variables
Variables are declared very easily in GAML, starting with the keyword for the type, following by the name
you want for your variable. NB: The declaration has to be inside the global , the experiment , or the
species  scope.

typeName myVariableName;

http://localhost:3000/wiki/DataTypes


Basic types

All the "basic" types are present in GAML: int , float , string , bool  (see the data type page for
information about all the available datatype). The operator for the affectation in GAML is <-  (the
operator =  is used to test the equality).

To follow the behavior of a variable, we can write  their value in the console. Let's go back to our basic
skeleton of a model, and let's create a reflex in the global scope (to be short, a reflex is a procedure that
is executed in each step. We will come back to this concept later). The write  statement works very
easily, simply writing down the keyword write  and the name of the variable we want to be displayed.

The statement write  is overloaded for each type of variable (even for the more complex type, such as
containers).

Note that before being initialized, a variable has the value nil .

int integerVariable <- 3;
float floatVariable <- 2.5;
string stringVariable <- "test"; // you can also write simple ' : <- 'test'
bool booleanVariable <- true; // or false

model firstModel

global {
    int integerVariable <- 3;
    float floatVariable <- 2.5;
    string stringVariable <- "test"; // you can also write simple ' : <- 'test'
    bool booleanVariable <- true; // or false
    
    reflex writeDebug {

 write integerVariable;
 write floatVariable;
 write stringVariable;
 write booleanVariable;

    }
}

experiment myExperiment {}

reflex update {
    string my_string;
    write my_string; // this will write "nil".

http://localhost:3000/wiki/DataTypes
http://localhost:3000/wiki/DefiningActionsAndBehaviors


nil  is also a literal you can use to initialize your variables (you can learn more about the concept of
literal in this page).

The point type

Another variable type you should know is the point  type. This type of variable is used to describe
coordinates. It is in fact a complex variable, composed of two float variables (or three if you are working
in 3D). To declare it, you have to use the curly bracket { :

The first field is related to the x  value, and the second one to the y  value. You can easily get this value
as follows:

You cannot modify directly the value. But if you want, you can do a simple operation to get what you
want:

    int my_int;
    write my_int; // this will write "0", which is the default value for int.
}

reflex update {
    string my_string <- "a string";
    my_string <- nil;
    write my_string; // this will write "nil".
    int my_int <- 6;
    my_int <- nil;
    write my_int; // this will write "0", which is the default value for int.
}

point p <- {0.2,2.4};

point p <- {0.2,2.4};
write p.x; // the output will be 0.2
write p.y; // the output will be 2.4

point p <- {0.2,2.4};
p <- p + {0.0,1.0};
write p.y; // the output will be 3.4

http://localhost:3000/wiki/Literals


A world about dimensions

When manipulating float values, you can specify the dimension (also called unit) of your value.
Dimensions are preceded by # or ° (exactly the same).

Declare variables using facet
Facets are used to describe the behavior of a variable during its declaration, by adding the keyword
facet  just after the variable name, followed by the value you want for the facet (or also just after the
initial value). See the page related to the variable declaration for all the facets.

You can use the facet update  if you want the value of your variable to change at every simulation step.
For example, to increment your integer variable each step, you can do as follow:

You can use the facets min  and max  to constraint the value in a specific range of values:

The facet among  can also be useful (that can be seen as an enum):

float a <- 5°m;
float b <- 4#cm;
float c <- a + b; // c is equal to 5.0399999 (it's not equal to 5.04 because it is a 
float value, not as precise as int)

type variableName <- initialValue facet1:valueForFacet1 facet2:valueForFacet2;
// or:
type variableName facet1:valueForFacet1 facet2:valueForFacet2;
variableName <- initialValue;

int integerVariable <- 3 min: 0 max: 10 update: integerVariable+1;
// nb: the operator "++" doesn't exist in gaml.

int integerVariable <- 3 min: 0 max: 10 update: integerVariable+1;
// the result will be 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 10 - 10 - ...

string fruits <- "banana" among: ["pear","apple","banana"];

http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/Statements#variable_number


Operators in GAMA
In GAML language, you can use a lot of different operators. An operator is a function, i.e. a way to get
the result of a computation. All of them are listed in this page, but here are the most useful ones:

Mathematical operators

The basic arithmetical operators, such as + (add), - (substract), * (multiply), / (divide), ^ (power) are used
this way:

Some other operators, such as cos (cosinus), sin (sinus), tan (tangent), sqrt (square root),
round (rounding) etc... are used this way:

Logical operators

Logical operators such as and (and), or (inclusive or) are used the same way as basic arithmetical
operators. The operator ! (negation) has to be placed just before the operand. They return a boolean
result.

Comparison operators

// FirstOperand BinaryOperator SecondOperand 
//   --> ex: 5 * 3; // return 15

int fif <- 5 * 3;

// UnaryOperator(Operand) 
//   --> ex: sqrt(49); // return 7.0

float sq <- sqrt(49);

// FirstOperand Operator SecondOperand 
//   --> ex: true or false; // return true

// NegationOperator Operand 
//   --> ex: !(true or false); // return false

http://localhost:3000/wiki/Operators


The comparison operators != (different than), < (smaller than), <= (smaller of equal), = (equal), > (bigger
than), >= (bigger or equal) are used the same way as basic arithmetical operators:

Type casting operators

You can cast an operand to a special type using casting operator:

Other operators

A lot of other operators exist in GAML. The standard way to use those operators is as followed:

Some others are used in a more intuitive way:

Conditional structures
You can write conditionals with if/else in GAML:

// FirstOperand Operator SecondOperand 
//   --> ex: 5 < 3; // return false

bool cmp <- 5 < 3;

// Operator(Operand); 
//  --> ex: int(2.1); // return 2

int intTwo <- int(2.1);

Operator(FirstOperand,SecondOperand,...) --> ex: rnd(1,8);

FirstOperand Operator SecondOperand --> ex: 2[6,4,5] contains(5);

if (integerVariable<0) {
    write "my value is negative !! The exact value is " + integerVariable;
}
else if (integerVariable>0) {
    write "my value is positive !! The exact value is " + integerVariable;
}

http://localhost:3000/wiki/Statements#if


GAML also accepts ternary operator:

Loop
Loops in GAML are designed by the keyword loop . As for variables, a loop have multiple facets to
determine its behavior:

The facet times , to repeat a fixed number of times a set of statements:

The facet while , to repeat a set of statements while a condition is true:

The facet from  / to , to repeat a set of statements while an index iterates over a range of values
with a fixed step of 1:

The facet from  / to  combine with the facet step  to choose the step:

else if (integerVariable=0) {
    write "my value is equal to 0 !!";
}
else {
    write "hey... This is not possible, right ?";
}

stringVariable <- (booleanVariable) ? "booleanVariable = true" : "booleanVariable = 
false";

loop times: 2 {
    write "helloWorld";
} 
// the output will be helloWorld - helloWorld

loop while: true {
}
// infinity loop

loop i from: 0 to: 5 { 
    write i;
}
// the output will be 0 - 1 - 2 - 3 - 4 - 5

http://localhost:3000/wiki/Statements#loop


The facet over  to browse containers, as we will see in the next part.

Nb: you can interrupt a loop at any time by using the break  statement.

Manipulate containers
We saw in the previous parts "simple" types of variable. You also have multiple containers types, such as
list, matrix, map, pair... In this section, we will only focus on the container list  (you can learn the other
by reading the section about datatypes).

How to declare a list?

To declare a list, you can either or not specify the type of the data of its elements:

How to know the number of elements of a list?

To know the number of elements of a list, you can use the operator length  that returns the number of
elements (note that this operator also works with strings).

There is another operator, empty , that returns you a boolean telling you if the list is empty or not.

loop i from: 0 to: 5 step: 2 {
    write i;
}
// the output will be 0 - 2 - 4

loop i over: [0, 2, 4] {
    write i;
}
// the output will be 0 - 2 - 4

list<int> listOfInt <- [5,4,9,8];
list listWithoutType <- [2,4.6,"oij",["hoh",0.0]];

int numberOfElements <- length([12,13]); // will return 2
int numberOfElements <- length([]); // will return 0
int numberOfElements <- length("stuff"); // will return 5

http://localhost:3000/wiki/DataTypes#complex-built-in-types


How to get an element from a list?

To get an element from a list by its index, you have to use the operator at  (nb: it is indeed an operator
and not a facet, so no ":" after the keyword).

How to know the index of an element of a list?

You can know the index of the first occurrence of a value in a list using the operator index_of . You can
know the index of the last occurrence of a value in a list using the operator last_index_of .

How to know if an element exists in a list?

You can use the operator contains  (return a boolean):

How to insert/remove an element to/from a list?

For those operation, you can use dedicated statements. The statements add  and put  are used to
insert/modify an element, while the statement remove  is used to remove an element. Here are some
examples of how to use those 3 statements with the most common facets:

bool isEmpty <- empty([12,13]); // will return false
bool isEmpty <- empty([]); // will return true
bool isEmpty <- empty("stuff"); // will return false

int theFirstElementOfTheList <- [5,4,9,8] at 0; // this will return 5
int theThirdElementOfTheList <- [5,4,9,8] at 2; // this will return 9

int result <- [4,2,3,4,5,4] last_index_of 4;  // result equals 5
int result <- [4,2,3,4,5,4] index_of 4;  // result equals 0

bool result <- [{1,2}, {3,4}, {5,6}] contains {3,4};  // result equals true

list<int> list_int <- [1,5,7,6,7];

remove from:list_int index:1; // remove the 2nd element of the list
write list_int; // the output is : [1,7,6,7]
remove item:7 from:list_int; // remove the 1st occurrence of 7
write list_int; // the output is : [1,6,7]



Note that the +  and -  operators can be used to add an element at the end of a list and to remove the
last element of a list:

How to add 2 lists?

You can add 2 lists by creating a third one and browsing the 2 first one, but you can do it much easily by
using the operator +  :

How to browse a list?

You can use the facet over  of a loop:

How to filter a list?

add item:9 to: list_int at: 2; // add 9 in the 3rd position
write list_int; // the output is : [1,6,9,7]
add 0 to: list_int; // add 0 in the last position
write list_int; // the output is : [1,6,9,7,0]

put 3 in: list_int at: 0; // put 3 in the 1st position
write list_int; // the output is : [3,6,9,7,0]
put 2 in: list_int key: 2; // put 2 in the 3rd position
write list_int; // the output is : [3,6,2,7,0]

list<int> list_int <- [1,5,7,6,7];

list_int <- list_int + 8;
write list_int;  // the output is : [1,5,7,6,7,8]
list_int <- list_int - 7;
write list_int;  // the output is : [1,5,7,6,8]

list<int> list_int1 <- [1,5,7,6,7];
list<int> list_int2 <- [6,9];
list<int> list_int_result <- list_int1 + list_int2;

list<int> exampleOfList <- [4,2,3,4,5,4];
loop i over: exampleOfList {

write i;
}
// the output will be 4 - 2 - 3 - 4 - 5 - 4



If you want to get all the elements of a list that fulfill a particular condition, you need the operator
where. In the condition, you can design all the elements of a particular list by using the pseudo-variable
each  as followed:

Other useful operators for the manipulation of lists:

Here are some other operators which can be useful to manipulate lists: sort , sort_by , shuffle ,
reverse , collect , accumulate , among . Please read the GAML Reference if you want to know more
about those operators.

Random values
When you will implement your model, you will have to manipulate some random values quite often.

To get a random value in a range of value, use the operator rnd . You can use this operator in many
ways:

Use the operator flip  if you want to pick a boolean value with a certain probability:

list<int> exampleOfList <- [4,2,3,4,5,4] where (each <= 3); 
// the list is now [2,3]

int var0 <- rnd (2);    // var0 equals 0, 1 or 2
float var1 <- rnd (1000) / 1000;    // var1 equals a float between 0 and 1 with a 
precision of 0.001
float var2 <- rnd(3.4);     // var4 equals a random float between 0.0 and 3.4
point var3 <- rnd ({2.0, 4.0}, {2.0, 5.0, 10.0}, 1);    // var2 equals a point with x = 
2.0, y equal to 2.0, 3.0 or 4.0 and z between 0.0 and 10.0 every 1.0
float var4 <- rnd (2.0, 4.0, 0.5);  // var3 equals a float number between 2.0 and 4.0 
every 0.5
int var5 <- rnd (2, 4);     // var7 equals 2, 3 or 4
int var6 <- rnd (2, 12, 4);     // var5 equals 2, 6 or 10
point var7 <- rnd ({2.5,3, 0.0});   // var6 equals {x,y} with x in [0.0,2.0], y in 
[0.0,3.0], z = 0.0
point var8 <- rnd ({2.0, 4.0}, {2.0, 5.0, 10.0});   // var8 equals a point with x = 
2.0, y between 2.0 and 4.0 and z between 0.0 and 10.0
float var9 <- rnd (2.0, 4.0);   // var9 equals a float number between 2.0 and 4.0

bool result <- flip(0.2); // result will have 20% of chance to be true

http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsDH#flip


You can use randomness in list, by using the operator shuffle , or also by using the operator among  to
pick randomly one (or several) element of your list:

You can use probabilistic laws, using operators such as gauss , poisson , binomial , or truncated_gauss
(we invite you to read the documentation for those operators).

list TwoRandomValuesFromTheList <- 2 among [5,4,9,8];
// the list will be for example [5,9].

http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsAA#among
http://localhost:3000/wiki/OperatorsDH#gauss
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss


Version: 1.9.3

Manipulate basic species
In this chapter, we will learn how to manipulate some basic species. As you already know, a species can
be seen as the definition of a type of agent (we call agent the instance of a species). In OOP (Object-
Oriented Programming), a species can be seen as the class. Each species is then defined by some
attributes ("member" in OOP), actions ("method" in OOP) and behavior ("method" in OOP).

In this section, we will first learn how to declare the world agent, using the global species. We will then
learn how to declare regular species which will populate our world. The following lesson will be
dedicated to learn how to define actions and behaviors for all those species. We will then learn how
agents can interact between each other, especially with the statement ask . In the next chapter then,
we will see how to attach skills to our species, giving them new attributes and actions. This section will
be closed with a last lesson dealing with how inheritance works in GAML.

http://localhost:3000/wiki/GlobalSpecies
http://localhost:3000/wiki/RegularSpecies
http://localhost:3000/wiki/DefiningActionsAndBehaviors
http://localhost:3000/wiki/InteractionBetweenAgents
http://localhost:3000/wiki/AttachingSkills
http://localhost:3000/wiki/Inheritance


Version: 1.9.3

The global species
We will start this chapter by studying a special species: the global species. In the global species, you can
define the attributes, actions, and behaviors that describe the world agent. There is one unique world
agent per simulation: it is this agent that is created when a user runs an experiment and that initializes
the simulation through its init scope. The global species is a species like others and can be manipulated
as them. In addition, the global species automatically inherits from several built-in variables and actions.
Note that a specificity of the global species is that all its attributes can be referred by all agents of the
simulation.

Index
Declaration

Environment Size

Built-in Attributes

Built-in Actions

The init statement

Declaration
A GAMA model contains a unique global section that defines the global species.

global  can use facets, such as the torus  facet, to make the environment a torus or not (if it is a torus,
all the agents going out of the environment will appear on the other side. If it's not, the agents won't be
able to go out of the environment). By default, the environment is not a torus.

global {
// definition of global attributes, actions, behaviours

}



Other facets such as control  or schedules  are also available, but we will explain them later.

Directly in the global  scope, you have to declare all your global attributes (can be seen as "static
members" in Java or C++). To declare them, proceed exactly as for declaring basic variables. Those
attributes are accessible wherever you want inside the species scope.

Environment size
In the global context, you have to define the size and shape for your environment. In fact, an attribute
already exists for the global species (inherited from agent): it's called shape , and its type is a geometry .
By default, shape  is equal to a 100m*100m square. You can change the geometry of the shape by
initializing it with another value:

global torus:true {
// definition of global attributes, actions, behaviours

}

http://localhost:3000/wiki/DataTypes#geometry


Note that the final shape of the world will always be a rectangle equal to the envelope of the geometry
provided.

nb: there are just examples. Try to avoid mixing dimensions! If no dimensions are specified, it will be
meter by default.

Built-in attributes
Some attributes exist by default for the global species. The attribute shape  is one of them (refers to the
shape of the environment). Here is the list of the other built-in attributes:

Like the other attributes of the global species, global built-in attributes can be accessed (and sometimes
modified) by the world agent and every other agent in the model.

world

represents the sole instance of the model species (i.e. the one defined in the global  section). It is
accessible from everywhere (including experiments) and gives access to built-in or user-defined
global attributes and actions.

experiment

contains the experiment  agent that has created this simulation agent.

cycle

integer, read-only, designates the (integer) number of executions of the simulation cycles. Note that
the first cycle is the cycle with number 0.

To learn more about time, please read the recipe about dates.

step

geometry shape <- circle(50#mm);
geometry shape <- rectangle(10#m,20#m);
geometry shape <- polygon([{1°m,2°m},{3°m,50°cm},{3.4°m,60°dm}]);

http://localhost:3000/wiki/ManipulateDates


float, is the length, in model time, of an interval between two cycles, in seconds. Its default value is 1
(second). Each turn, the value of time is incremented by the value of step. The definition of step
must be coherent with that of the agents' variables like speed. The use of time units is particularly
relevant for its definition.

To learn more about time, please read the recipe about dates.

time

float, read-only, represents the current simulated time in seconds (the default unit). It is the time in
the model time. Begins at zero. Basically, we have: time = cycle *  step .

To learn more about time, please read the recipe about dates.

starting_date  and current_date

date, represent the starting date (resp. the current date) of the simulation. The current_date  is
updated from the starting_date  by the value step  at each simulation step.

To learn more about time, please read the recipe about dates.

duration

string, read-only, represents the value that is equal to the duration in real machine time of the last
cycle.

total_duration

global {
...
    float step <- 10 #h;
...
}

global {
...
    int nb_minutes function: { int(time / 60)};
...
}

http://localhost:3000/wiki/ManipulateDates
http://localhost:3000/wiki/ManipulateDates
http://localhost:3000/wiki/ManipulateDates


string, read-only, represents the sum of duration since the beginning of the simulation.

average_duration

string, read-only, represents the average of duration since the beginning of the simulation.

machine_time

float, read-only, represents the current machine time in milliseconds.

seed

float, the seed of the random number generator. It will influence the set of random numbers that
will be generated all over the simulation. 2 simulations of a model with the same parameters' values
should behave identically when the seed is set to the same value. If it is not redefined by the
modeler, it will be chosen randomly.

agents

list, read-only, returns a list of all the agents of the model that are considered as "active" (i.e. all the
agents with behaviors, excluding the places). Note that obtaining this list can be quite time
consuming, as the world has to go through all the species and get their agents before assembling
the result. For instance, instead of writing something like:

one would prefer to write (which is much faster):

Note that any agent has the agents  attribute, representing the agents it contains. So to get all the
agents of the simulation, we need to access the agents  of the world using: world.agents .

ask agents of_species my_species {
...
}

ask my_species {
...
}



Built-in Actions
The global species is provided with two specific actions.

pause

pauses the simulation, which can then be continued by the user.

die

stops the simulation (in fact it kills the simulation).

But beware, it will not kill the simulation, instead the simulation will continue running with a dead global
species (so everything will close and nothing will happen except for the cycles still increasing). If you
want to completely stop the simulation you will have to call the die  action of the host  of the global
species.

global {
    ...
    reflex toto when: time = 100 {
        do pause;
    }
}

global {
    ...
    reflex halting when: empty (agents) {
        do die;
    }
}

global {
    ...
    reflex halting when: empty (agents) {
        ask host {
            do die;
        }
    }
}



Other actions

Other built-in actions are defined for the model species, just as in any other regular species.

The init  statement
After declaring all the global attributes and defining your environment size, you can define an initial
state (before launching the simulation). Here, you normally initialize your global variables, and you
instantiate your species. We will see in the next session how to initialize a regular species.

http://localhost:3000/wiki/RegularSpecies#built-in-action


Version: 1.9.3

Regular species
Regular species are composed of attributes, actions, reflex, aspect, etc... They describe the behavior of
our agents. You can instantiate as much as you want agents from a regular species, and you can define
as much as you want different regular species. You can see a species as a "class" in OOP.

Index
Declaration

Built-in Attributes

Species built-in Attributes

Built-in Actions

The init statement

The aspect statement

Instantiate an agent

Declaration
The regular species declaration starts with the keyword species  followed by the name (or followed by
the facet name: ) :

Directly in the "species" scope, you have to declare all your attributes (or "member" in OOP). You declare
them exactly the way you declare basic variables. Those attributes are accessible wherever you want
inside the species scope.

species my_specie {
}

species my_specie {
    int variableA;
}



Built-in attributes
As for the global species, some attributes exist already by default in a regular species. Here is the list of
built-in attributes:

name (type: string) is used to name your agent. By default, the name is equal to the name of your
species + an incremental number. This name is the one visible on the species inspector.

location (type: point) is used to control the position of your agent. It refers to the center of the
envelope of the shape associated with the agent.

shape (type: geometry) is used to describe the geometry of your agent. If you want to use some
intersection operator between agents, for instance, it is this geometry that is computed (nb: it can
be totally different from the aspect you want to display for your agent!). By default, the shape is a
point.

host (type: agent) is used when your agent is part of another agent. We will see this concept a bit
further, in the topic multi-level architecture.

members (type: list of agents) contain the agents for the population(s) of which the receiver agent
is a direct host.

All those built-in attributes can be accessed in both reading and writing very easily:

All those built-in attributes are attributes of an agent (an instance of a species).

Notice that the world  agent is also an agent! It has all the built-in attributes declared above. The world
agent is defined inside the global  scope. From the global  scope then, you can for example access to
the center of the envelope of the world shape:

species my_species {
    init {
        name <- "custom_name";

location <- {0,1};
shape <- rectangle(5,1);

    }
}

global
{
    init {
    write location; // writes {50.0,50.0,0.0}
    }
}

http://localhost:3000/wiki/MultiLevelArchitecture


Species built-in Attributes
Species have also their own attributes, which can be accessed with the following syntax (read-only) :

Here is the list of those attributes:

name: (type: string) returns the name of your species.

attributes: (type: list of string) returns the list of the names of the attributes of your species.

actions: (type: list of string) returns the list of the names of the actions defined in your species.

aspects: (type: list of string) returns the list of the names of the aspects defined in your species.

population: (type: list) returns the list of agents that belong to this species.

subspecies: (type: list of string) returns the list of species that inherit directly from this species (we
will talk about the concept of inheritance later)

parent (type: species) returns its parent species if it belongs to the model, or nil  otherwise (we will
talk about the concept of inheritance later)

As an example, the following code illustrates all these attributes:

name_of_your_species.attribute_you_want

model NewModel

global {
    init {

create my_species ;
    }
}

species my_species {
    int att1;

    init {
create my_micro_species;

write species(self).name;        // write in the console: my_species
write species(self).attributes;  

        // write in the console: 
['name','shape','location','peers','host','agents','members','att1','my_micro_species']

write species(self).actions;     
        // write in the console: 
['a1','a2','die','debug','_step_','tell','_init_','error','write']

write species(self).aspects;     

http://localhost:3000/wiki/Inheritance
http://localhost:3000/wiki/Inheritance


Built-in actions
Some actions are defined by default for a minimal agent. We already saw quickly the action write , used
to display a message in the console. Another very useful built-in action is the action die , used to
destroy an agent.

Here is the list of the other built-in actions which you can find in the documentation: debug , tell ,
_init_ , and _step_ .

The 2 actions _init_and _step_  are very important, as they allow the modeler to change totally the
agents' dynamics:

        // write in the console: ['asp1]
write species(self).population;  

        // write in the console: [my_species(0)]
write species(self).subspecies;  

        // write in the console: []
write species(self).microspecies;

        // write in the console: [my_micro_species]
write species(self).parent;      

        // write in the console: nil
    }

    reflex r1 {}
    reflex r2 {}

    action a1 {}
    action a2 {}

    species my_micro_species {}

    aspect asp1 {}
}

experiment name type: gui {}

species my_species{
    reflex being_killed {
        do debug("I will disappear from the simulation");
        do die;
    }
}



when the action _init_  is defined in a species, it will be called instead of the init  block.

when the action _step_  is defined in a species, it will be called at each simulation step instead of
the species' behaviors (e.g. instead of the reflexes blocks).

The init statement
After declaring all the attributes of your species, you can define an initial state (before launching the
simulation). It can be seen as the "constructor of the class" in OOP.

The aspect statement
Inside each species, you can define one or several aspects. This block allows you to define how you want
your species to be represented in the simulation. Each aspect has a special name (so that they can be
called from the experiment). Once again, you can name your aspect by using the facet name: , or simply
by naming it just after the aspect  keyword.

You can then define your aspect by using the statement draw . You can then choose a geometry for your
aspect, an image, a text (facet text ), and its color (facet color )... It is common to have several draw
statement in an aspect  to enrich its display. We invite you to read the documentation about the draw
statement to know more about.

species my_species {
    int variableA;
    init {
        variableA <- 5;
    }
}

species my_species {
    aspect standard_aspect {
    }
}

species my_species {
    aspect standard_aspect {
        draw circle(1) color:#blue border: #black;

http://localhost:3000/wiki/Statements#draw


In the experiment block, you have to tell the program to display a particular species with a particular
aspect (nb: you can also choose to display your species with several aspects in the same display).

Now there is only one thing missing to display our agent: we have to instantiate them.

Instantiate an agent
As already said quickly in the last session, the instantiation of the agents is most often in the init  scope
of the global  species (this is not mandatory of course. You can instantiate your agents from an
action/behavior of any species). Use the statement create  to instantiate an agent:

The first element given to the create  statement (i.e. the facet species ) is used to specify which
species you want to instantiate.

The facet number  is used to tell how many agents you want to create.

The facet with  is used to specify some default values for some attributes of your instance. For
example, you can specify the location.

    }
}

experiment my_experiment type: gui {
    output{
        display my_display {
            species my_species aspect:standard_aspect;
        }
    }
}

global {
    init{
        create my_species number: 1 with: (location:{0,0},vA:8);
    }
}

species my_species {
    int vA;
}

http://localhost:3000/wiki/DefiningDisplaysGeneralities
http://localhost:3000/wiki/DefiningDisplaysGeneralities
http://localhost:3000/wiki/Statements#create


Here is an example of a model that displays an agent with a circle aspect in the center of the
environment:

model display_one_agent

global{
    float worldDimension <- 50#m;
    geometry shape <- square(worldDimension);

    init{
        point center <- {worldDimension/2,worldDimension/2};
        create my_species number: 1 with: (location:center);
    }
}

species my_species {
    aspect standard_aspect {
        draw circle(1#m);
    }
}

experiment my_experiment type:gui {
    output{
        display myDisplay {
            species my_species aspect:standard_aspect;
        }
    }
}



Version: 1.9.3

Defining actions and behaviors
Both actions and behaviors can be seen as methods in OOP. They can be defined in any species.

Index
Action

Declare an action

Call an action

Behavior

Example

Action

Declare an action

An action is a function or procedure run by an instance of species. An action can return a value (in that
case, the type of return has to be specified just before the name of the action), or not (in that case, you
just have to put the keyword action  before the name of the action). The former ones are often named
functions, whereas the latter ones are named procedures in many programming languages.

Arguments can also be mandated in your action. You have to specify the type and the name of the
argument:

species my_species {
    int action_with_return_value {

// statements...
return 1;

    }
    action action_without_return_value {

// statements...
    }
}



If you want to have some optional arguments in the list, you can give some by default values to turn
them optional. Nb: it is better to define the optional arguments at the end of the list of argument.

Call an action

To call an action, it depends whether you want to get the returned value of not:

to call a procedure (without getting any returned value): you have to use the statement do .

to call a function and thus get the returned value, you need to use any_agent action(arguments)
and assigned this value to a variable.

You can use the statement do  in different ways:

With facets: after specifying the name of your action, you can specify the values of your arguments
as if the name of your arguments were facets:

With parenthesis: after specifying the name of your action, you can specify the values of your
arguments in the same order they were declared, between parenthesis (just as if you used an
operator):

We encourage you to use the second way.

To catch the returned value, you have to skip the do  statement, and store the value directly in a
temporary variable:

action action_without_return_value (int argA, float argB) {
    // statements...
}

action my_action (int argA, float argB <- 5.1, point argC <- {0,0}) {
// statements...

}

do my_action argA: 5 argB: 5.1;

do my_action (5,5.1);



Behavior
A behavior, or reflex, is a set of statements which is called automatically at each time step by an agent.
Note that, a behavior is linked to an architecture; the reflex-based architecture is the default one,
others can be used with the controls  facet of the species`.

With the facet when , this reflex is only executed when the boolean expression evaluates to true. It is a
convenient way to specify the behavior of agents.

Reflex, unlike actions, cannot be called from another context. But a reflex can, of course, call actions.

NB: Init is a special reflex, that occurs only when the agent is created.

Example
To practice a bit with those notions, we will build an easy example. Let's build a model with a species
balloon that has 2 attributes: balloon_size (float) and balloon_color (rgb). Each balloon has a random
position and color, his aspect is a sphere. Each step, a balloon has a probability to spawn in the
environment. Once a balloon is created, its size is 10cm, and each step, the size increases by 1cm. Once
the balloon size reaches 50cm, the balloon has a probability to burst. Once 10 balloons are destroyed,
the simulation stops. The volume of each balloon is displayed in the balloon position.

int var1 <- my_action(5,5.1);
// or
int var1 <- my_action(argA: 5, argB: 5.1);

reflex my_reflex {
    write ("Executing the inconditional reflex");
    // statements...
}

reflex my_reflex when: flip(0.5) {
    write ("Executing the conditional reflex");
    // statements...
}

http://localhost:3000/wiki/BuiltInArchitectures
http://localhost:3000/wiki/ControlArchitecture


Here is one of the multiple possible implementations:

model burst_the_baloon

global{
    float worldDimension <- 5#m;
    geometry shape <- square(worldDimension);
    int nbBaloonDead <- 0;

    reflex buildBaloon when: (flip(0.1)) {
create balloon number: 1;

    }

    reflex endSimulation when: nbBaloonDead>10 {
do pause;

    }
}

species balloon {
    float balloon_size;



    rgb balloon_color;
    
    init {

balloon_size <- 0.1;
balloon_color <- rgb(rnd(255),rnd(255),rnd(255));

    }

    reflex balloon_grow {
balloon_size <- balloon_size + 0.01;
if (balloon_size > 0.5) {
    if (flip(0.2)) {

do balloon_burst;
    }
}

    }

    float balloon_volume (float diameter) {
float exact_value <- 2/3 * #pi * diameter^3;
float round_value <- round(exact_value*1000)/1000;
return round_value;

    }

    action balloon_burst {
write "the baloon is dead !";
nbBaloonDead <- nbBaloonDead + 1;
do die;

    }

    aspect balloon_aspect {
draw circle(balloon_size) color: balloon_color;
draw string(balloon_volume(balloon_size)) color: #black;

    }
}

experiment my_experiment type: gui {
    output {

display myDisplay {
    species balloon aspect: balloon_aspect;
}

    }
}



Version: 1.9.3

Interaction between agents
In this part, we will learn how interactions between agents works. We will also present you a bunch of
operators useful for your modelling.

Index
The ask statement

Pseudo variables

Some useful interaction operators

Example

The ask statement
The ask  statement can be used in any reflex  or action  scope. It is used to specify the interaction
between the instances of your species and the other agents. You only have to specify the species of the
agents you want to interact with. Here are the different ways of calling the ask  statement:

If you want to interact with one particular agent (for example, defined as an attribute of your
species):

If you want to interact with a group of agents:

species my_species {
    agent target;
    
    reflex update {

ask target {
    // statements
}

    }
}

species my_species {
    list<agent> targets;



If you want to interact with agents, as if they were instance of a certain species (can raise an error if
it's not the case!):

If you want to interact with all the agents of a species (note that the name of the species can be
used in the ask , and in many other situations, as the population of this species, i.e. the list of
agents instance of this species):

Note that you can use the attribute population of species  if you find it more explicit:

If you want to interact with all the agents of a particular species from a list of agents (for example,
using the global variable "agents"):

    reflex update {
ask targets {
    // statements
}

    }
}

species my_species {
    list<agent> targets;

    reflex update {
ask targets as:my_species {
    // statements
}

    }
}

species my_species {
    reflex update {

ask other_species {
    // statements
}

    }
}

species other_species { }

ask other_species.population



Pseudo-variables
Once you are in the ask  scope, you can use some pseudo-variables to refer to the receiver agent (the
one specified just after the ask statement) or the transmitter agent (the agent which is asking). We use
the pseudo-variable self  to refer to the receiver agent, and the pseudo-variable myself  to refer to the
transmitter agent. The pseudo variable self  can be omitted when calling actions or attributes.

Now, if we introduce a third species, we can write an ask  statement inside another.

species my_specie {
    reflex update {

ask agents of_species my_specie {
    // statements
}

    }
}

species speciesA {
    init {

name <- "speciesA";
    }

    reflex update {
ask speciesB {

            write name; // output : "speciesB"
            write self.name; // output : "speciesB"

    write myself.name; // output : "speciesA"
        }
    }
}

species speciesB {
    init {

name <- "speciesB";
    }
}

species speciesA {
    init {

name <- "speciesA";
    }



Nb: try to avoid multiple imbrications of ask statements. Most of the time, there is another way to do the
same thing.

Some useful interaction operators
The operator at_distance  can be used to know the list of agents that are in a certain distance from
another agent.

The operator closest_to  returns the closest agent of a position among a container.

    reflex update {
ask speciesB {
    write self.name; // output : "speciesB"
    write myself.name; // output : "speciesA"
    ask speciesC {

write self.name; // output : "speciesC"
write myself.name; // output : "speciesB"

    }
}

    }
}

species speciesB {
    init {

name <- "speciesB";
    }
}

species speciesC {
    init {

name <- "speciesC";
    }
}

species my_species {
    reflex update {

list<agent> neighbors <- agents at_distance(5);
// neighbors contains the list of all the agents located at a distance <= 5 

from the caller agent.
    }
}



Example
To practice those notions, here is a short basic example. Let's build a model with a given number of
agents with a circle display (keep in mind that their shape has kept its default value: a point). They can
move randomly on the environment (i.e. here move can be understood as changing its location), and
when they are close enough from another agent, a line is displayed between them. This line is destroyed
when the distance between the two agents is too important.

Hint: use the operator polyline  to construct a line. List the points between angle brackets [  and ] .

species my_species {
    reflex update {

agent agentA <- agents closest_to(self);
// agentA contains the closest agent from the caller agent.
agent agentB <- other_specie closest_to({2,3});
// agentB contains the closest instance of other_specie from the location 

{2,3}.
    }
}

species other_specie { }



Here is one example of implementation:

model connect_the_neighbors

global{
    float speed <- 0.2;
    float distance_to_intercept <- 10.0;
    int number_of_circle <- 100;

    init {
create my_species number:number_of_circle;

    }
}

species my_species {
    reflex move {

location <- {location.x+rnd(-speed,speed),location.y+rnd(-speed,speed)};
    }

    aspect default {



draw circle(1) color: #yellow border: #black;
ask my_species at_distance(distance_to_intercept) {
    draw polyline([self.location,myself.location]) color:#black;
}

    }
}

experiment my_experiment type:gui {
    output{

display myDisplay {
    species my_species aspect:default;
}

    }
}



Version: 1.9.3

Attaching Skills
GAMA allows the modeler to increase the capabilities of the GAMA agents by attaching skills to them
through the facet skills . Skills are built-in modules that provide a set of related built-in attributes and
built-in actions (in addition to those already proposed by GAMA) to the species that declare them. The
list of the available skills can be found on the dedicated page.

Index
The moving skill

Other skills

Example of implementation

Skills
A declaration of skill is done by filling the skills  facet in the species definition:

A very useful and common skill is the moving  skill.

Once your species has the moving skill, it earns automatically the following attributes: speed , heading ,
destination  and the following actions: move , goto , follow , wander  and wander_3D .

Attributes:

speed  (float) designs the speed of the agent, in m/s.

heading  (int) designs the heading of an agent in degrees, which means that is the maximum angle
the agent can turn around each step.

species my_species skills: [skill1,skill2] {
}

species my_species skills: [moving] {
}

http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills#moving


destination  (point) is the updated destination of the agent, with respect to its speed and heading.
It's a read-only attribute, you can't change its value.

Actions:

follow

moves the agent along a given path passed in the arguments.

returns: path

speed  (float): the speed to use for this move (replaces the current value of speed)

path  (path): a path to be followed.

move_weights  (map): Weights used for the moving.

return_path  (boolean): if true, return the path followed (by default: false)

goto

moves the agent towards the target passed in the arguments.

returns: path

target  (agent,point,geometry): the location or entity towards which to move.

speed  (float): the speed to use for this move (replaces the current value of speed)

on  (graph): graph that restrains this move

recompute_path  (boolean): if false, the path is not recompute even if the graph is modified (by
default: true)

return_path  (boolean): if true, return the path followed (by default: false)

move_weights  (map): Weights used for the moving.

move

moves the agent forward, the distance being computed with respect to its speed and heading. The value
of the corresponding variables are used unless arguments are passed.

returns: path

speed  (float): the speed to use for this move (replaces the current value of speed)

heading  (int): a restriction placed on the random heading choice. The new heading is chosen in the
range (heading - amplitude/2, heading+amplitude/2)

bounds  (geometry,agent): the geometry (the localized entity geometry) that restrains this move (the
agent moves inside this geometry



wander

Moves the agent towards a random location at the maximum distance (with respect to its speed). The
heading of the agent is chosen randomly if no amplitude is specified. This action changes the value of
heading.

returns: void

speed  (float): the speed to use for this move (replaces the current value of speed)

amplitude  (int): a restriction placed on the random heading choice. The new heading is chosen in
the range (heading - amplitude/2, heading+amplitude/2)

bounds  (agent,geometry): the geometry (the localized entity geometry) that restrains this move (the
agent moves inside this geometry

wander_3D

Moves the agent towards a random location (3D point) at the maximum distance (with respect to its
speed). The heading of the agent is chosen randomly if no amplitude is specified. This action changes
the value of heading.

returns: path

speed  (float): the speed to use for this move (replaces the current value of speed)

amplitude  (int): a restriction placed on the random heading choice. The new heading is chosen in
the range (heading - amplitude/2, heading+amplitude/2)

z_max  (int): the maximum altitude (z) the geometry can reach

bounds  (agent,geometry): the geometry (the localized entity geometry) that restrains this move (the
agent moves inside this geometry

Other skills

A lot of other skills are available. Some of them can be built in skills, integrated by default in GAMA,
other are linked to additional plugins.

This is the list of skills: Advanced_driving , communication , driving , GAMASQL , graphic , grid ,
MDXSKILL , moving , moving3D , physical3D , skill_road , skill_road , skill_road_node , SQLSKILL

Example

We can now build a model using the skill moving. Let's design 2 species, one is "species_red", the other
is "species_green". Species_green agents are moving randomly with a certain speed and a certain

http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/Extension


heading. Species_red agents wait for a species_green agent to be in a certain range of distance. Once it
is the case, the agent move toward the species_green agent. A line link the red_species agent and its
target.

Here is an example of implementation:

model green_and_red_species

global{
    float distance_to_intercept <- 10.0;
    int number_of_green_species <- 50;
    int number_of_red_species <- 50;

    init {
create speciesA number:number_of_green_species;
create speciesB number:number_of_red_species;

    }
}



species speciesA skills:[moving] {
    init {

speed <- 1.0;
    }
    reflex move {

do wander amplitude: 90.0;
    }
    aspect default {

draw circle(1) color:#green border: #black;
    }
}

species speciesB skills:[moving] {
    speciesA target;
    init {

speed <- 0.0;
heading <- 90.0;

    }
    reflex search_target when: target=nil {

ask speciesA at_distance(distance_to_intercept) {
    myself.target <- self;
}

    }
    reflex follow when: target!=nil {

speed <- 0.8;
do goto target: target;

    }
    aspect default {

draw circle(1) color:#red border: #black;
if (target!=nil) {
    draw polyline([self.location,target.location]) color:#black;
}

    }
}

experiment my_experiment type: gui {
    output{

display myDisplay {
    species speciesA aspect:default;
    species speciesB aspect:default;
}

    }
}



Version: 1.9.3

Inheritance
As for many object-oriented programming languages, inheritance can be used in GAML. It is used to
structure better your code when you have some complex models. It is, for example, useful when you
have defined two different species with many attributes and behaviors in common: you can factorize
everything in common in a parent species, and let in the child species only the differences between
these 2 species. Notice that behaviors and actiond defined in a parent species can be redefined in a
children species, in order to code a difference in terms of behavior, or simply execute the action of the
parent and complete it with some other statements.

Index
Mother species / child species

Virtual actions

Get all the subspecies from a species

Mother species/child species
To make a species inherit from a mother species, you have to add the facet parent , and specify the
mother species.

Thus, all the attributes, actions and reflex of the mother species are inherited to the child species.

species mother_species { }

species child_species parent: mother_species { }

species mother_species {
    int attribute_A;
    action action_A {}
}

species child_species parent: mother_species {
    init {

attribute_A <- 5;
do action_A;



If the mother species has a particular skill, its children will inherit all the attributes and actions.

You can redefine an action or a reflex by declaring an action or a reflex with the same name.

In the redefined action, it is common to call the action of the mother species with some specific
parameters or to add more computations. To this purpose, you need to use:

invoke  instead of do  to call an action (procedure) of the mother species.

super.action_name()  to call an action (function) of the mother species.

    }
}

species mother_species skills:[moving] { }

species child_species parent:mother_species {
    init {

speed <- 2.0;
    }
    reflex update {

do wander;
    }
}

species animal {
    int age <- 0;

    action grow {
age <- age + 1;

    }

    int get_age {
return age;

    }
}

species cat parent: animal {
    action grow {

invoke grow();   // call the action growth of the mother species animal
write "I am a cat and I grow up";

    }

    int get_age {
return super.get_age() * 7;  // call the action get_age from the mother species 



Virtual action
You have also the possibility to declare a virtual action in the mother species, which means an action
without implementation, by using the facet virtual . Note that, when using virtual  facet, the
statement has to start by action  and not a return type. If the action is expecting to return a value you
need to add the type  facet:

When you declare an action as virtual in a species, this species becomes abstract, which means you
cannot instantiate agent from it. All the children of this species have to implement this virtual action.

Get all the subspecies from a species
If you declare a mother  species, you create a child  agent, then mother  will return the population of
agents mother  and not the population of agents child , as it is shown in the following example:

animal
                                     // 1 year is 7 year for cats
    }
}

action virtual_action virtual: true;

action vistual_action_with_return_value virtual: true type: any_type;

species virtual_mother_species {
    action my_action virtual:true;
}

species child_species parent: virtual_mother_species {
    action my_action {

// some statements
    }
}

global {
    init {
        create child number: 2;
        create mother number: 1;
    }



We remind you that subspecies  is a built-in attribute of the agent. Using this attribute, you can easily
get all the subspecies agents of the mother species by writing the following GAML function:

The operator of_generic_species  can also be used to filter a list of agents and get all the agents of a
given species or of its children species. As a consequence, in the previous example, to count all the
agents of mother  and child  species you can only write:

    reflex update {
        write length(mother); // will write 1 and not 3
    }
}

species mother {}

species child parent: mother {}

global
{
    init {
        create child number: 2;
        create mother number: 1;
    }
    reflex update {
        write length(get_all_instances(mother)); // will write 3 (1+2)
    }
    list<agent> get_all_instances(species<agent> spec) {
        return spec.population +  spec.subspecies accumulate (get_all_instances(each));
    }
}

species mother {}

species child parent: mother {}

write length(agents of_generic_species mother);



Version: 1.9.3

Defining advanced species
In the previous chapter, we saw how to declare and manipulate regular species and the global species
(as a reminder, the instance of the global species is the world agent).

We will now see that GAMA provides you the possibility to declare some special species, such as grids or
graphs, with their own built-in attributes and their own built-in actions. We will also see how to declare
mirror species, which is a "copy" of a regular species, in order to give it an other representation. Finally,
we will learn how to represent several agents through one unique agent, with multi-level architecture.

http://localhost:3000/wiki/RegularSpecies
http://localhost:3000/wiki/GlobalSpecies
http://localhost:3000/wiki/GridSpecies
http://localhost:3000/wiki/GraphSpecies
http://localhost:3000/wiki/MirrorSpecies
http://localhost:3000/wiki/MultiLevelArchitecture


Version: 1.9.3

Grid Species
A grid is a particular species of agents. Indeed, a grid is a set of agents that share a grid topology (until
now, we only saw species with continuous topology). Like other agents, a grid species can have
attributes, attributes, behaviors, aspects. However, contrary to regular species, grid agents are created
automatically at the beginning of the simulation. It is thus not necessary to use the create
statement to create them. Moreover, in addition to classic built-in variables, grid  comes with a set of
additional built-in variables.

Index
Declaration

Built-in attributes

Access to a cell

Display grid

Grid from a matrix

Example

Declaration
Instead of using the species  keyword, use the keyword grid  to declare a grid species. The grid species
has exactly the same facets as the regular species, plus some others. To declare a grid, you can specify
the number of columns and rows first (another possibility to declare the grid  is detailed below when
(we create a grid from a matrix)[GridSpecies#grid-from-a-matrix]). You can do it in two different ways:

Using the two facets width  and height  to fix the number of cells (the size of each cell will be
determined thanks to the environment dimension).

Using the two facets cell_width  and cell_height  to fix the size of each cell (the number of cells
will be determined thanks to the environment dimension).

grid my_grid width: 8 height: 10 {
    // my_grid has 8 columns and 10 rows
}



By default, a grid is composed of 100 rows and 100 columns.

Another facet exists for grid only, very useful. It is the neighbors  facet, used to determine how many
neighbors each cell has. You can choose among 3 values: 4 (Von Neumann), 6 (hexagon) or 8 (Moore).

A grid can also be provided with specific facets that allow to optimize the computation time and the
memory space, such as use_regular_agents , use_indivitual_shapes  and use_neighbors_cache .
Please refer to the GAML Reference for more explanation about those particular facets.

Built-in attributes

grid_x

This variable stores the column index of a cell.

grid_y

This variable stores the row index of a cell.

grid my_grid cell_width: 3 cell_height: 2 {
    // my_grid has cells with dimension 3m width by 2m height
}

grid cell width: 10 height: 10 neighbors: 4 {
    init {
        write "my column index is:" + grid_x;
    }
}

grid cell width: 10 height: 10 neighbors: 4 {
    init {

http://localhost:3000/wiki/Statements#species


color

The color  built-in variable is used by the optimized grid display. Indeed, it is possible to use for grid
agents an optimized aspect by using in a display the grid  keyword. In this case, the grid will be
displayed using the color defined by the color  variable. The border of the cells can be displayed with a
specific color by using the lines  facet.

Here an example of the display of a grid species named cell with black border.

neighbors

The neighbors built-in variable returns the list of cells at a distance of 1. This list obviously depends on
the neighbor type defined in the grid  statement (4,6, or 8).

grid_value

The grid_value  built-in variable is used when initializing a grid from grid file (see later). It contains the
value stored in the data file for the associated cell. It is also used for the 3D representation of DEM.

"Missing" attribute

        write "my row index is:" + grid_y;
    }
}

experiment main_xp type: gui{
    output {

display map {
    grid cell lines: #black ;
}

    }
}

grid my_grid {
  reflex writeNeighbors {
    write neighbors;
  }
}



Information that is commonly asked a cell agent is the set of agents located inside it. This information is
not stored in the agent, but can be computed using the inside  operator:

Access to a cell
There are several ways to access a specific cell:

by a location: by casting a location variable (of type point ) to a cell, GAMA will compute the cell that
covers the given location:

by the row and column indexes: like matrix, it is possible to directly access to a cell from its indexes

The operator grid_at  also exists to get a particular cell. You just have to specify the index of the cell
you want (in x and y):

 grid cell width: 10 height: 10 neighbors: 4 { 
        list<bug> bugs_inside -> {bug inside self};
   }

global {
    init {
        write "cell at {57.5, 45} :" + cell({57.5, 45});
    }
}

grid cell width: 10 height: 10 neighbors: 4 { }

global {
    init {

write "cell [5,8] :" + cell[5, 8];
    }
}

grid cell width: 10 height: 10 neighbors: 4 { }

global {
    init {

agent cellAgent <- cell grid_at {5, 8};
write "cell [5,8] :" + cellAgent;

    }



Display Grid
You can easily display your grid in your experiment as followed:

The grid will be displayed, using the color you defined for each cell (with the color  built-in attribute).
You can also show the border of each cell by using the facet lines  and choosing a color:

Another way to display a grid will be to define an aspect in your grid agent (the same way as for a
regular species), and add your grid as a regular species in the display of in your experiment and thus by
specifying its aspect:

}

grid cell width: 10 height: 10 neighbors: 4 { }

experiment MyExperiment type: gui {
    output {
        display MyDisplay type: opengl {
            grid MyGrid;
        }
    }
}

display MyDisplay type: opengl {
    grid MyGrid lines: #black;
}

grid MyGrid {
    aspect firstAspect {
        draw square(1);
    }
    aspect secondAspect {
        draw circle(1);
    }
}

experiment MyExperiment type: gui {
    output {
        display MyDisplay type: opengl {
            species MyGrid aspect: firstAspect;
        }

http://localhost:3000/wiki/RegularSpecies


Beware: do not use this second display when you have large grids: it is much slower.

Grid from a matrix
An easy way to load some values in a grid is to use matrix data. A matrix  is a type of container (we
invite you to learn some more about this useful type here). Once you have declared your matrix, you can
set the values of your cells using the ask  statement :

Declaring larger matrix in GAML can be boring as you can imagine. You can load your matrix directly
from a csv file with the operator matrix  (used for the contruction of the matrix).

You can try to read the following csv :

With the following model:

    }
}

global {
    init {
        matrix data <- matrix([[0,1,1],[1,2,0]]);
        ask cell {
            grid_value <- float(data[grid_x, grid_y]);
        } 
    }
}

file my_file <- csv_file("path/file.csv","separator");
matrix my_matrix <- matrix(my_file);

0,0,0,0,0,0,0,0,0,0,0
0,0,0,1,1,1,1,1,0,0,0
0,0,1,1,0,0,0,1,1,0,0
0,1,1,0,0,0,0,0,0,0,0
0,1,1,0,0,1,1,1,1,0,0
0,0,1,1,0,0,1,1,1,0,0
0,0,0,1,1,1,1,0,1,0,0
0,0,0,0,0,0,0,0,0,0,0

http://localhost:3000/wiki/DataTypes#matrix


For more complicated models, you can read some other files, such as ASCII files (asc), DEM files. In this
case, the creation of the grid is even easier as the dimensions of the grid can be read from the file with
the file  facet:

Example
To practice a bit those notions, we will build a quick model. A "regular" species will move randomly on
the environment. A grid is displayed, and its cells becomes red when an instance of the regular species
is waking inside this cell, and yellow when the regular agent is in the surrounding of this cell. If no
regular agent is on the surrounding, the cell turns green.

model import_csv

global {
    file my_csv_file <- csv_file("../includes/test.csv",",");
    init {
        matrix data <- matrix(my_csv_file);
        ask my_gama_grid {
            grid_value <- float(data[grid_x,grid_y]);
            write data[grid_x,grid_y];
        }
    }
}

grid my_gama_grid width: 11 height: 8 {
    reflex update_color {
        write grid_value;
        color <- (grid_value = 1) ? #blue : #white;
    }
}

experiment main type: gui{
    output {
        display display_grid {
            grid my_gama_grid;
        }
    }
}

grid my_grid from: my_asc_file {
   
}



Here is an example of implementation:

model my_grid_model

global{
    float max_range <- 5.0;
    int number_of_agents <- 5;
    init {

create my_species number: number_of_agents;
    }
    
    reflex update {

ask my_species {
    do wander amplitude: 180.0;
    ask my_grid at_distance(max_range) {

if(self overlaps myself) {
    self.color_value <- 2;
} else if (self.color_value != 2) {
    self.color_value <- 1;
}

    }
}
ask my_grid {



    do update_color;
}

    }
}

species my_species skills:[moving] {
    float speed <- 2.0;
    aspect default {

draw circle(1) color: #blue;
    }
}

grid my_grid width:30 height:30 {
    int color_value <- 0;
    action update_color {

if (color_value = 0) {
    color <- #green;
} else if (color_value = 1) {
    color <- #yellow;
} else if (color_value = 2) {
    color <- #red;
}
color_value <- 0;

    }
}

experiment MyExperiment type: gui {
    output {
        display MyDisplay type: java2D {
            grid my_grid lines: #black;
            species my_species aspect: default; 
        }
    }
}



Version: 1.9.3

Graph Species
Using a graph in a model enables to easily show and manage interactions between agents: this can be
the link between 2 points in space linked by a road or (non-spatial) interactions that exist between
friends agents. It can also be a powerful tool to compute the shortest path between 2 points in space.

A graph is a concept that has several implementations in GAML: (i) it can be a datatype ( graph ), that can
be created from a road shapefile (e.g. using as_edge_graph ), (ii) it can be implemented as node and
edge species,and (iii) it is a topology , i.e. an organisation of agents that influences the way distance and
neighborhood is computed.

Index
Declaration

Declare a graph with handmade agents

Declare a graph by using an geometry file

Declare a graph with nodes and edges

Useful operators with graph
Knowing the degree of a node

Get the neighbors of a node

Compute the shortest path

Control the weight in graph

Example

Declaration

Declare a graph with handmade agents

To instantiate this graph , we rely on the two built-in species graph_node  and base_edge . We need to
define our own node and edge species as children species of the 2 built-in species. First, the node
species must inherit from the abstract species graph_node , then the method related_to  must be
redefined and finally an auxiliary species that inherits from base_edge  used to represent the edges of



the generated graph must be declared. A graph node is an abstract species that must redefine one
method called related_to .

The method related_to  returns a boolean and takes the agents from the current species as argument.
If the method returns true, the two agents (the current instance and the one as argument) will be linked.
The method is automatically called for each agent with each other agent of the given species in
argument. Note that in the following example, related_to  returns always true, so each agent will be
linked to each other agent: we will get a complete graph.

species my_node parent: graph_node edge_species: edge_agent{
  bool related_to(my_node other){
  return true;
  }
}

species edge_agent parent: base_edge {
}

model NewModel

global {
    int number_of_agents <- 5;

    init {
create my_node number: number_of_agents;

    }
}

species my_node parent: graph_node edge_species: edge_agent {
    bool related_to (my_node other) {

return true;
    }

    aspect base {
draw circle(1) color: #green;

    }
}

species edge_agent parent: base_edge {
    aspect base {

draw shape color: #blue;
    }
}

experiment MyExperiment type: gui {



You can, for example, link 2 agents when they are closer than a certain distance. Beware: The topology
used in graph species is the graph topology and not the continuous topology. You can force the use of
the continuous topology with the action using  as follow:

    output {
display MyDisplay type: java2D {
    species my_node aspect: base;
    species edge_agent aspect: base;
}

    }
}

bool related_to(my_node other){
    using topology(world) {
        return (self.location distance_to other.location < 20);
    }
}



The abstract mother species graph_node  has an attribute my_graph , with the type graph . The graph
type represents a graph composed of vertices linked with edges. This type has built-in attributes such as
edges  (the list of all the edges agents), or vertices  (the list of all the vertices agents).

Declare a graph by using a geometry file

In most cases, you will have to construct a graph from an existing file (example: a "shp" file). In that
case, you will have to first instantiate a species from the shape file (with the create  statement, using
the facet from ). Then, you will have to construct a graph from the agent, using one of the available
operators such as as_edge_graph .

model load_shape_file 
 
global {
    file roads_shapefile <- file("../includes/road.shp");
    geometry shape <- envelope(roads_shapefile);
    graph road_network;

    init {
create road from: roads_shapefile;
road_network <- as_edge_graph(road);

    }

http://localhost:3000/wiki/DataTypes#graph
http://localhost:3000/wiki/DataTypes#graph


Declare a graph with nodes and edges

Another way to create a graph is building it manually nodes by nodes, and then edges by edges, without
using agent structures. Use the add_node  operator and the add_edge  operator to do so. Here is an
example of how to do:

Using this solution, my_graph can have two types: it can be an a-spatial graph, or a spatial graph. The
spatial graph will have a proper geometry, with segments that follow the position of your graph (you can
access to the segments by using the built-in "segments"). The a-spatial graph will not have any shape.

}

species road {
    aspect geom {

draw shape color: #black;
    }
}

experiment main_experiment type:gui{
    output {

display map {
    species road aspect:geom;
}

    }
}

list<point> nodes <- [];
graph my_graph <- graph([]);

add point(0.0,0.0) to:nodes;
add point(90.0,90.0) to:nodes;
add point(20.0,20.0) to:nodes;
add point(40.0,50.0) to:nodes;
add point(100.0,0.0) to:nodes;

loop nod over: nodes {
    my_graph <- my_graph add_node(nod);
}

my_graph <- my_graph add_edge (nodes at 0::nodes at 2);
my_graph <- my_graph add_edge (nodes at 2::nodes at 3);
my_graph <- my_graph add_edge (nodes at 3::nodes at 1);
my_graph <- my_graph add_edge (nodes at 0::nodes at 4);
my_graph <- my_graph add_edge (nodes at 4::nodes at 1);



Useful operators with graph

Knowing the degree of a node

The operator degree_of  returns the number of edges attached to a node. To use it, you have to specify
a graph (on the left side of the operator), and a node (on the right side of the operator).

The following code (to put inside the node species) displays the number of edges attached to each node:

Get the neighbors of a node

To get the list of neighbors of a node, you should use the neighbors_of operator. On the left side of the
operator, specify the graph you are using, and on the right side, specify the node. The operator returns
the list of nodes located at a distance inferior or equal to 1, considering the graph topology.

global {
    graph my_spatial_graph<-spatial_graph([]);
    graph my_aspatial_graph<-graph([]);

    init {
point node1 <- {0.0,0.0};
point node2 <- {10.0,10.0};

        my_spatial_graph <- my_spatial_graph add_node(node1);
my_spatial_graph <- my_spatial_graph add_node(node2);
my_spatial_graph <- my_spatial_graph add_edge(node1::node2);
write my_spatial_graph.edges;

// the output is [polyline ([{0.0,0.0,0.0},{10.0,10.0,0.0}])]
my_aspatial_graph <- my_aspatial_graph add_node(node1);
my_aspatial_graph <- my_aspatial_graph add_node(node2);
my_aspatial_graph <- my_aspatial_graph add_edge(node1::node2);
write my_aspatial_graph.edges;
// the output is [{0.0,0.0,0.0}::{10.0,10.0,0.0}]

    }
}

aspect base {
    draw string(my_graph degree_of node(5)) color:# black;
}



Here is an example of a model using those two previous concepts (a random node is chosen each step,
displayed in red, and his neighbors are displayed in yellow):

species graph_agent parent: graph_node edge_species: edge_agent
{
  list<graph_agent> list_neighbors <- list<graph_agent>(my_graph neighbors_of (self));
}

model graph_model

global {
    int number_of_agents <- 50;

    init {
create my_node number: number_of_agents;

    }

    reflex update {
ask one_of(my_node) {
    status <- 2;
    do update_neighbors;



}
    }
}

species my_node parent: graph_node edge_species: edge_agent {
    int status <- 0;
    list<int> list_connected_index;

    init {
int i <- 0;
loop g over: my_node {
    if (flip(0.1)) {

add i to:list_connected_index;
    }
    i <- i+1;
}

    }

    bool related_to(my_node other){
        if (list_connected_index contains (my_node index_of other)) {

    return true;
}

        return false;
    }

    action update_neighbors {
list<my_node> list_neighbors <- my_graph neighbors_of (self);

loop neighb over: list_neighbors {
    neighb.status <- 1;
}

    }

    aspect base {
if (status = 0) {
    draw circle(2) color: #green border: #black;
} else if (status = 1) {
    draw circle(2) color: #yellow border: #black;
} else if (status = 2) {
    draw circle(2) color: #red border: #black;
}

        draw string(my_graph degree_of self) color: #black size: 4 at: 
{self.location.x-1, self.location.y-2};

status <- 0;
    }
}

species edge_agent parent: base_edge {



Compute the shortest path

To compute the shortest path to go from a point to another one, pick a source and a destination among
the vertices you have for your graph. Store those values as point type.

Then, you can use the operator path_between  to return the shortest path. To use this operator, you
have to give the graph, then the source point, and the destination point. This operator returns a path
type object.

Another operator exists, paths_between , that returns a list of shortest paths between two points. Please
read the documentation to learn more about this operator.

Here is an example of code that shows the shortest path between two points of a graph:

    aspect base {
draw shape color: #blue;

    }
}

experiment MyExperiment type: gui {
    output {

display MyDisplay type: java2D {
    species my_node aspect: base;
    species edge_agent aspect: base;
}

    }
}

point source;
point destination;
source <- point(one_of(my_graph.vertices));
destination <- point(one_of(my_graph.vertices));

path shortest_path;
shortest_path <- path_between (my_graph, source,destination);

http://localhost:3000/wiki/DataTypes#path
http://localhost:3000/wiki/DataTypes#path


model graph_model

global {
    int number_of_agents <- 50;
    point source;
    point target;
    graph the_graph;
    path shortest_path;

    init {
create my_node number: number_of_agents;

    }

    reflex pick_two_points {
if (the_graph = nil) {
    the_graph <- one_of(my_node).my_graph;
}

shortest_path <- nil;
loop while: shortest_path = nil {
    source <- (one_of(the_graph.vertices));
    target <- (one_of(the_graph.vertices));
    if (source != target) {

shortest_path <- path_between(the_graph, source, target);



    }
}

    }
}

species my_node parent: graph_node edge_species: edge_agent {
    list<int> list_connected_index;

    init {
int i <- 0;
loop g over: my_node {
    if (flip(0.1)) {

add i to: list_connected_index;
    }

    i <- i + 1;
}

    }

    bool related_to (my_node other) {
using topology(world) {
    return (self.location distance_to other.location < 20);
}

    }

    aspect base {
draw circle(2) color: #green border: #black;

    }
}

species edge_agent parent: base_edge {

    aspect base {
draw shape color: #blue;

    }
}

experiment MyExperiment type: gui {
    output {

display MyDisplay type: java2D {
    species my_node aspect: base;
    species edge_agent aspect: base;
    graphics "shortest path" {

if (shortest_path != nil) {
    draw circle(3) at: source color: #yellow border: #black;
    draw circle(3) at: target color: #cyan border: #black;
    draw (shortest_path.shape + 1) color: #magenta;
}

    }



Control the weight in graph

You can add a map of weight for the edges that compose the graph. Use the operator with_weights  to
put weights in your graph. The graph has to be on the left side of the operator, and the map has to be
on the right side. In the map, you have to put edges as key, and the weight for that edge as value. One
common use is to put the distance as weight:

The calculation of the shortest path can change according to the weight you choose for your edges. For
example, here is the result of the calculation of the shortest path when all the edges have 1 as weight
value (it is the default graph topology), and when the edges have their length as weight.

Here is an example of implementation:

}
    }
}

my_graph <- my_graph with_weights (my_graph.edges as_map 
(each::geometry(each).perimeter));

model shortest_path_with_weight

global {



    graph my_graph<-spatial_graph([]);
    path shortest_path;
    list<point> nodes;

    init {
add point(10.0,10.0) to:nodes;
add point(90.0,90.0) to:nodes;
add point(40.0,20.0) to:nodes;
add point(80.0,50.0) to:nodes;
add point(90.0,20.0) to:nodes;

loop nod over: nodes {
    my_graph <- my_graph add_node(nod);
}

my_graph <- my_graph add_edge (nodes at 0::nodes at 2);
my_graph <- my_graph add_edge (nodes at 2::nodes at 3);
my_graph <- my_graph add_edge (nodes at 3::nodes at 1);
my_graph <- my_graph add_edge (nodes at 0::nodes at 4);
my_graph <- my_graph add_edge (nodes at 4::nodes at 1);

// comment/decomment the following line to see the difference.
my_graph <- my_graph with_weights (my_graph.edges as_map 

(each::geometry(each).perimeter));

shortest_path <- path_between(my_graph,nodes at 0, nodes at 1);
    }
}

experiment MyExperiment type: gui {
    output {

display MyDisplay type: java2D {
    graphics "shortest path" {

if (shortest_path != nil) {
    draw circle(3) at: point(shortest_path.source) color: #yellow;
    draw circle(3) at: point(shortest_path.target) color: #cyan;
    draw (shortest_path.shape+1) color: #magenta;
}
loop edges over: my_graph.edges {
    draw geometry(edges) color: #black;
}

    }
}

    }
}



Version: 1.9.3

Mirror species
A mirror species is a species whose population is automatically managed with respect to another
species. Whenever an agent is created or destroyed from the other species, an instance of the mirror
species is created or destroyed. Each of these 'mirror agents' has access to its reference agent (called its
target ). Mirror species can be used in different situations but the one we describe here is more
oriented towards visualization purposes.

Index
Declaration

Example

Declaration
A mirror species can be defined using the mirrors  facet as following:

In this case, the species B mirrors the species A.

By default, the location of the species B will be random but in many cases, one wants to place the mirror
agent at the same location as the reference species. This can be achieved by simply adding the following
lines in the mirror species:

target  is a built-in attribute of a mirror species. It refers to the instance of the species tracked.

In the same spirit, any attribute of a reference species can be reached using the same syntax. For
instance, if the species A has an attribute called attribute1  of type int  it is possible to get this
attribute from the mirror species B using the following syntax:

species B mirrors: A { }

species B mirrors: A{
    point location <- target.location update: target.location;
}



Example
To practice a bit with the mirror notion, we will now build a simple model displaying a species A (aspect:
white circle) moving randomly, and another species B (aspect: blue sphere) with the species A location
on x and y, with an upper value for the z-axis.

Here is an example of an implementation for this model:

int value <- target.attribute1;

model Mirror

global {
  init{
    create A number:100;    
  }
}

species A skills:[moving]{
    reflex update{
        do wander;
    }
    aspect base{
        draw circle(1) color: #white border: #black;



    }
}
species B mirrors: A{
    point location <- target.location update: 
{target.location.x,target.location.y,target.location.z+5};    
    aspect base {
        draw sphere(2) color: #blue;
    }
}

experiment mirroExp type: gui {
    output {
        display superposedView type: opengl{ 
          species A aspect: base;
          species B aspect: base transparency:0.5;
        }
    }
}



Version: 1.9.3

Multi-level architecture
The multi-level architecture offers the modeler the following possibilities: the declaration of a species as
a micro-species of another species, the representation of an entity as different types of agent (i.e., GAML
species), the dynamic migration of agents between populations.

Index
Declaration of micro-species

Access to micro-agents / host agent

Representation of an entity as different types of agent

Dynamic migration of agents

Example

Declaration of micro-species
A species can have other species as micro-species. The micro-species of a species is declared inside the
species' declaration.

In the above example, micro_species_in_group  is a micro-species of macro_species . An agent of
macro_species  can have agents micro_species_in_group  as micro-agents. Agents of
micro_species_in_group  have an agent of macro_species  as host  agent.

As the species micro_species_in_group  is declared inside the species macro_species ,
micro_species_in_group  will return a list of micro_species_in_group  agent inside the given
macro_species  agent.

species macro_species {
      species micro_species_in_group {
      }
}

global {
    init {



In the above example, we create 5 macro-species agents, and each one creates a random number of
inner micro-species agents. We can see that micro_species_in_group  refers to the list of micro-species
agents inside the given macro-species agent.

Access to micro-agents, host agent
To access micro-agents (from a macro-agent), and to host agent (from a micro-agents), you have to use
two built-in attributes.

The members  built-in attribute is used inside the macro-agent, to get the list of all its micro-agents.

The host  built-in attribute is used inside a micro-agent to get its host macro-agent.

create macro_species number:5;
    }
}

species macro_species  {
    init {

create micro_species_in_group number: rnd(10);
write "the macro species agent named "+name+" contains 

"+length(micro_species_in_group)+" agents of micro-species.";
    }

    species micro_species_in_group { }
}

experiment my_experiment type: gui { }

species macro_species  {
    init {

create first_micro_species number: 3;
create second_micro_species number: 6;
write "the macro-agent named "+name+" contains "+length(members)+" micro-

agents.";
    }

    species first_micro_species { }
    
    species second_micro_species { }
}



NB: We already said that the world  agent is a particular agent, instantiated just once. In fact, the world
agent is the host of all the agents. You can try to get the host for a regular species agent, you will get
the world  agent itself (named as you named your model). You can also try to get the members of your
world  (from the global scope for example), and you will get the list of the agents presents in the world.

Representation of an entity as different types of
agent
The multi-level architecture is often used in order to represent an entity through different types of
agent. For example, an agent "bee" can have a behavior when it is alone, but when the agent is near
from a lot of agents, he can changes his type to "bee_in_swarm", defined as a micro-species agent of a

species macro_species {

    micro_species_in_group micro_agent;

    init {
create micro_species_in_group number: rnd(10);
write "the macro-agent named "+name+" contains "+length(members)+" micro-

agents.";
    }

    species micro_species_in_group {
    init {
        write "the micro-agent named "+name+" is hosted by "+host;
    }
    }
}

global {
    init {

create macro_species number:5;
write "the world has "+length(members)+" members.";

    }
}

species macro_species  {
    init {

write "the macro agent named "+name+" is hosted by "+host;
    }
}



macro-species "swarm" agent. Another example: an agent "pedestrian" can have a certain behavior
when walking on the street, and then change his type to "pedestrian_in_building" when he is in a macro-
agent "building".

You have then to distinguish two different species to define your micro-species:

The first can be seen as a regular species (it is the "bee" or the "pedestrian" for instance). We will
name this species as "micro_species".

The second is the real micro-species, defined inside the macro-species (it is the "bee_in_swarm" or
the "pedestrian_in_building" for instance). We will name this species as "micro_species_in_group".
This species has to inherit from the "micro_species" in order to allow migrations between
micro_species_in_group  and micro_species .

Dynamic migration of agents
In our example about bees, a "swarm" entity is composed of nearby flying "bee" entities. When a "bee"
entity approaches a "swarm" entity, this "bee" entity will become a member of the group. To represent
this, the modeler lets the "bee" agent change its species to "bee_in_swarm" species. The "bee" agent
hence becomes a "bee_in_swarm" agent. To change species of an agent, we can use one of the following
statements: capture , release , migrate .

The statement capture  is used by the "macro_species" to capture one (or several) "micro_species"
agent(s), and turn it (them) to a "micro_species_in_group". You can specify which agent (or list of agents)
you want to capture by passing them as the first argument of the statement capture . The facet as  is
used to cast the agent(s) from "micro_species" to the species "micro_species_in_group". You can use the
facet returns  to get the newly captured agent(s).

The statement release  is used by a "macro_species" agent to release one (or several)
"micro_species_in_group" agent(s), and turn it (them) to a "micro_species". You can specify which agent
(or list of agents) you want to release by giving them as the first argument of the release  statement.

species micro_species { }

species macro_species  {
    species micro_species_in_group parent: micro_species { }
}

capture agents_of_micro_species as: micro_species_in_group;



The facet as  is used to cast the agents from "micro_species_in_group" species to "micro_species"
species. The facet in  is used to specify the new host (by default, it is the host of the "macro_species").
You can use the facet returns  to get the newly released agent(s).

The statement migrate , less used, permits agents to migrate from one population/species to another
population/species and stay in the same host after the migration. Read the GAML Reference to learn
more about this statement.

Example:
Here is an example of micro_species that gather together in macro_species when they are close enough.

release agents_of_micro_species_in_group as: micro_species in: world;

model multilevel

global {
    int release_time <- 20;



    int capture_time <- 100;
    int remaining_release_time <- 0;
    int remaining_capture_time <- capture_time;
    init {

create micro_species number:200;
    }
    reflex reflex_timer {

if (remaining_release_time=1) {
    remaining_release_time <- 0;
    remaining_capture_time <- capture_time;
} else if (remaining_capture_time=1) {
    remaining_capture_time <- 0;
    remaining_release_time <- release_time;
}
remaining_release_time <- remaining_release_time - 1;
remaining_capture_time <- remaining_capture_time - 1;

    }
    reflex capture_micro_species when:(remaining_capture_time>0 and flip(0.1)) {

ask macro_species {
    list<micro_species> micro_species_in_range <- micro_species at_distance 1;
    if (micro_species_in_range != []) {

do capture_micro_species(micro_species_in_range);
    }
}
ask micro_species {
    list<micro_species> micro_species_list_to_be_captured <- micro_species 

at_distance 1;
    if(micro_species_list_to_be_captured != []) {

create macro_species {
    location <- myself.location;
    add myself to:micro_species_list_to_be_captured;
    do capture_micro_species(micro_species_list_to_be_captured);
}

    }
}

    }
}

species micro_species skills:[moving] {
    geometry shape <- circle(1);

    reflex move{
do wander;

    }

    aspect base {
draw shape border: #black;

    }
}



species macro_species {
    geometry shape <- circle(1) update:circle(length(members));

    species micro_species_in_group parent:micro_species { }

    action capture_micro_species(list<micro_species> micro_list) {
loop mic_sp over:micro_list {
    capture mic_sp as:micro_species_in_group;
}

    }

    reflex release_reflex when: (remaining_release_time>0 and flip(0.1)) {
release members as: micro_species in:world;
do die;

    }

    aspect base {
draw shape border: #black;
draw string(length(members)) color:#black size:4;

    }
}

experiment MyExperiment type: gui {
    output {

display MyDisplay type: java2D {
    species macro_species aspect: base;
    species micro_species aspect: base;
}

    }
}



Version: 1.9.3

Defining GUI Experiment
When you execute your simulation, you will often need to display some information. For each
simulation, you can define some inputs, outputs and behaviors:

The inputs will be composed of parameters manipulated by the user for each simulation.

The behaviors will be used to define behavior executed at each step of the experiment.

The outputs will be composed of displays, monitors and inspectors. They will be defined inside the
scope output . The definition of their layout can also be set with the layout  statement.

A typical GUI experiment code follows this pattern:

Types of experiments
You can define fours types of experiments (through the facet type ):

gui  experiments (the default type) are used to play an experiment and displays its outputs. It is also
used when the user wants to interact with the simulation.

batch  experiments are used to play an experiment several times (usually with other input values),
used for model exploration. We will come back to this notion a bit further in the tutorial.

test  experiments are used to write unit tests on a model (used to ensure its quality).

memorize  experiments are GUI experiments in which the simulation state is kept in memory and
the user can backtrack to any previous step.

Experiment attributes

experiment exp_name type: gui {
    [input]
    [behaviors]
    output {
        layout [layout_option]
        [display statements]
        [monitor statements]
    }
}

http://localhost:3000/wiki/BatchExperiments
http://localhost:3000/wiki/Writing_Tests
http://localhost:3000/wiki/Save-and-restore-simulations
http://localhost:3000/wiki/Save-and-restore-simulations


Inside experiment scope, you can access to some built-in attributes which can be useful, such as
minimum_cycle_duration , to force the duration of one cycle.

In addition, the attribute simulations  contain the list of all the simulation agents that are running in
the current experiment. Whereas the attribute simulation  represents a single simulation, the last
element of the simulation list.

Experiment facets
Finally, in the case of a GUI experiment, the facets autorun  and benchmark  can be used as follows:

When autorun  is set to true  the launch of the experiment will be followed automatically by its run.
When benchmark  is set to true, GAMA records the number of invocations and running time of the
statements and operators of the simulations launched in this experiment. The results are automatically
saved in a csv file in a folder called 'benchmarks' when the experiment is closed.

Other built-ins are available, to learn more about, go to the page experiment built-in.

Defining displays layout
A layout  can be added to output  to specify the layout of the various displays defined below (e.g.
#none , #split , #stack , #vertical  or #horizontal ). It will also define which elements of the interface
are displayed: parameters , navigator , editors , consoles , toolbars , tray , or tabs  facets (expecting
a boolean value). You will find more detailed information in the statement's documentation

Defining elements of the GUI experiment
In this part, we will focus on the gui experiments. We will start with learning how to define input
parameters, then we will study the outputs, such as displays, monitors and inspectors, and export
files. We will finish this part with how to define user commands.

experiment my_experiment type: gui {
    float minimum_cycle_duration <- 2.0#minute;
}

experiment name type: gui autorun: true benchmark: true { }

http://localhost:3000/wiki/Statements#experiment
http://localhost:3000/wiki/Statements#layout
http://localhost:3000/wiki/DefiningParameters
http://localhost:3000/wiki/DefiningParameters
http://localhost:3000/wiki/DefiningDisplaysGeneralities
http://localhost:3000/wiki/DefiningMonitorsAndInspectors
http://localhost:3000/wiki/DefiningExportFiles
http://localhost:3000/wiki/DefiningExportFiles
http://localhost:3000/wiki/DefiningUserInteraction




Version: 1.9.3

Defining Parameters
When playing a simulation, you have the possibility to define input parameters, in order to change them
and replay the simulation. Defining parameters allows to make the value of a global variable definable
by the user through the user graphic interface.

Index
Defining parameters

Additional facets

Defining parameters
You can define parameters inside the global scope when defining your global variables with the facet
parameter  (this way of defining parameters is not the recommended one, as it makes the variable a
parameter of all the experiments that will be defined and does not offer the possibility to redefine its
initial and possible values in several ways in each experiment):

When launching your experiment, the parameter will appear in your "Parameters" panel, with the name
you chose for the parameter  facet.

global {
    int my_integer_global_value <- 5 parameter: "My integer global value";
}



You can also define your parameter inside the experiment (recommended), using the statement
parameter . You have to specify first the name of your parameter, then the name of the global variable
through the facet var .

NB: This variable has to be initialized with a value. If you do not want to initialize your value in the
global  block, you can initialize the value directly in the parameter  statement, using the facet init  or
<- .

global {
    int my_integer_global_value <- 5;
}

experiment MyExperiment type: gui {
    parameter "My integer global value" var:my_integer_global_value;
}

global {
    int my_integer_global_value;
}

experiment MyExperiment type: gui {
    parameter "My integer global value" var: my_integer_global_value init: 5;
}



Additional facets
You can use some facets to arrange your parameters. For example, you can categorize your parameters
under a label, using the facet category :

You also can add some facets such as min , max , step  or among  to improve the declaration of the
parameter (and define the possible values the parameter can take).

global {
    int attr_1 <- 5 ;
    int attr_2 <- 5 ;
    int attr_3 <- 5 ;
}

experiment MyExperiment type: gui {
    parameter "attr 1" category: "Category 1" var: attr_1 <- 5;
    parameter "attr 2" category: "Category 1" var: attr_2 <- 5;
    parameter "attr 3" category: "Category 2" var: attr_3 init: 5;
}

global {
    string fruit <- "none" ;
    string vegetable <- "none";
    int integer_variable <- 5;
}



We can notice that the parameters will not appear graphically in the same way if they are defined with a
set of possible values (with among ) or with a range of possible values (defined by a min , max  and a
step ).

The definition of the initial value and of the possible values can be set in the global  or in the
experiment  depending on the aim of this limitation: for example if a variable has a maximum value set
to 1 in the global, this limitation can be used in the model in order that the variable value does not
exceed this value. If the maximum boundary is set in the experiment, some executions of the model can
be done without it...

experiment MyExperiment type: gui {
    parameter "fruit" category:"food" var: fruit <- "none" among:
["none","apple","banana"] ;
    parameter "vegetable" category:"food" var: vegetable <- "none" among:
["none","cabbage","carrot"];
    parameter "integer variable" category:"other"var: integer_variable <- 5 min:0 
max:100 step:5;
}



Version: 1.9.3

Defining displays (Generalities)
Index

Displays and layers

Organize your layers

Example of layers
species layer

grid layer

agents layer

image layer

graphics layer

Displays and layers
A display is one of the graphical outputs of your simulation. You can define several displays related to
what you want to represent from your model execution. To define a display, use the keyword display
inside the output  scope, and specify a name ( name  facet).

Other facets are available when defining your display:

Use background  to define a color for your background:

experiment my_experiment type: gui {
    output {

display "display1" {
}
display name:"display2" {
}

    }
}

display "my_display" background: #red



Use refresh  if you want to refresh the display when a condition is true (to refresh your display
every number of steps, use the operator every )

You can choose between two types of displays, by using the facet type :

java2D  displays will be used when you want to have 2D visualization. It is used for example
when you manipulate charts. This is the default value for the facet type.

opengl  displays allows you to have 3D visualization.

You can save the display on the disk, as a png file, in the folder name_of_model/models/snapshots, by
using the facet autosave . This facet takes a boolean as argument (to allow or not to save each frame) or
a point to define the size of your image (note that when no unit is provided, the unit is #px  (pixel) ).

The complete list of the display's facets are available in the documentation

Each display can be decomposed in one or several layers. Most of the time, all the layers are
superimposed and cover all the environment space. In a 3D (OpenGL) display the layers can be split in
order to be visualized separately (cf the page about displays).

Organize your layers
In one 2D display, you will have several types of layers, giving what you want to display in your model.
You have a large number of layers available. You already know some of them, such as species , agents ,
grid , but other specific layers such as image  (to display image) and graphics  (to freely draw
shapes/geometries/texts without having to define a species) are also available

Each layer will be displayed in the same order as you declare them. The last declared layer will be above
the others. As a consequence, any layer can hide elements of the lower levels.

Thus, the following code:

display "my_display" refresh:every(10)

display my_display autosave: true type: java2D {}

experiment expe type: gui {
    output {
        display my_display {

http://localhost:3000/wiki/Statements#display
http://localhost:3000/wiki/Displays


Will have this output:

Most of the layers have a transparency  facet that you can use in order to see the layers which are
under.

            graphics "layer1" {
                draw square(20) at: {10,10} color: #gold;
            }
            graphics "layer2" {
                draw square(20) at: {15,15} color: #darkorange;
            }
            graphics "layer3" {
                draw square(20) at: {20,20} color: #cornflowerblue;
            }
        }
    }
}

experiment expe type:gui {
    output {

display my_display {
    graphics "layer1" {

draw square(20) at:{10,10} color:#darkorange;
    }
    graphics "layer2" transparency:0.5 {

draw square(20) at:{15,15} color:#cornflowerblue;
    }
}



To specify a position and a size for your layer, you can use the position  and the size  facets.

The position  facet is used with a point type, between {0,0}  and {1,1} , which corresponds to the
position of the upper left corner of your layer in percentage of the display's dimensions. Thus, if you
choose the point {0.5,0.5} , the upper left corner of your layer will be in the center of your display. By
default, this value is {0,0}  which corresponds to the top-left corner.

The size  facet is used with a point type, between {0,0}  and {1,1}  also. It corresponds to the size
occupied by the layer in percentage of the display's dimensions. By default, this value is {1,1}  which
represents 100% of the width and height available.

    }
}

experiment expe type:gui {
    output {

display my_display {
    graphics "layer1" position:{0,0} size:{0.5,0.8} {

draw shape color:#darkorange;
    }
    graphics "layer2" position:{0.3,0.1} size:{0.6,0.2} {

draw shape color:#cornflowerblue;
    }
    graphics "layer3" position:{0.4,0.2} size:{0.3,0.8} {
        draw shape color:#gold;
    }
}

    }
}



NB: displays  can have a background , while graphics  can't. If you want to put a background for your
graphics , a solution can be to draw the shape  of the world (which is, by default, a square 100m*100m).

A lot of other facets are available for the various layers. Please read the documentation of graphics  for
more information.

Example of layers

species layer

species  allows the modeler to display all the agents of a given species in the current display. In
particular, the modeler can choose the aspect used to display them.

Please read the documentation about species  statement if you are interested.

grid layer

Similarly to species , grid  allows the modeler to display all the agents of a given species in the current
display, but only in the case where the species is a grid. The lines  color can be specified. The inner
color of the cells is determined by the color  built-in attribute of grid agents. This is an optimized way of
displaying the grid agents (compared to the species layers).

http://localhost:3000/wiki/Statements#graphics
http://localhost:3000/wiki/Statements#species


Please read the documentation about grid  agents if you are interested.

agents layer

agents  allows the modeler to display only the agents that fulfill a given condition.

Please read the documentation about agents  statement if you are interested.

image layer

image  allows the modeler to display an image (e.g. as the background of a simulation).

Please read the documentation about image  statement if you are interested.

graphics layer

graphics  allows the modeler to freely draw shapes/geometries/texts without having to define a
species.

Please read the documentation about graphics  statement if you are interested.

http://localhost:3000/wiki/GridSpecies
http://localhost:3000/wiki/Statements#agents
http://localhost:3000/wiki/Statements#image
http://localhost:3000/wiki/Statements#graphics


Version: 1.9.3

Defining 3D Displays
OpenGL display
The use an OpenGL display, we have to define the attribute type  of the display with type:opengl  in the
chosen display  of your model (or use the preferences->display windows to use it by default):

The OpenGL display shares most of the features that the java2D offers and that are described here.
Using 3D display offers much more options to draw and show a simulation. A layer can be positioned
and scaled in a 3D world. It is possible to superpose layers on different z value and display different
information on the model at different positions on the screen.

Most of the features offers by GAMA in 3D can be found as model example in the model library in the
Visualization and User Interaction/3D Visualization

Such as:

3D Model: Creating a simple model with building in 3D from a GIS file extruded in Building
Elevation.gaml

output {
    display DisplayName type: opengl {
        species mySpecies;
    }
}

http://localhost:3000/wiki/DefiningDisplaysGeneralities
https://github.com/gama-platform/gama/tree/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Building%20Elevation.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Building%20Elevation.gaml


Built-in 3D shapes supported by GAMA are described in Built-In Shapes.gaml

https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Built-In%20Shapes.gaml


Features related to camera and the way to manipulate it are found in Camera Definitions.gaml

Different point of view can be described on the same simulation and shared by different displays in
Camera Shared Zoom.experiment

https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Camera%20Definitions.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Camera%20Shared%20Zoom.experiment


Any GIS file can be visualized in 3D and a texture can be applied to the 3D shape in GIS
Visualization.gaml

https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/GIS%20Visualization.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/GIS%20Visualization.gaml


GAMA is handling different kind of lighting such as spot lights and point lights as illustrated in
Lighting.gaml

Moving 3D object.gaml which shows how to draw a moving objet as a OBJ File and how to apply a
3D rotation on it

https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Lighting.gaml
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Moving%203D%20object.gaml


Specular light can also be defined as illustrated in Specular effects.gaml

https://github.com/gama-platform/gama/blob/GAMA_1.9.2/msi.gama.models/models/Visualization%20and%20User%20Interaction/Visualization/3D%20Visualization/models/Specular%20effects.gaml




Version: 1.9.3

Defining Charts
To visualize results and make analysis about your model, you will certainly have to use charts. You can
define several types of charts in GAML among histograms, pie, series, radar, heatmap... For each type,
you will have to determine the data you want to highlight.

Index
Define a chart

Data definition

Various types of charts
pie

series

histogram

xy

heatmap

radar

scatter

box_whisker

Other charts possibilities

Define a chart
To define a chart, we have to use the chart  statement. A chart has to be named (with the name  facet),
and the type has to be specified (with the type  facet). The value of the type  facet can be histogram ,
pie , series , scatter , xy , radar , heatmap  or box_whisker . A chart has to be defined inside a display.

experiment my_experiment type: gui {
    output {

display "my_display" {
    chart "my_chart" type:pie {

            
            }

}

http://localhost:3000/wiki/Statements#chart


chart  can be configured by setting by facets: in particular the labels in x and y-axis can be set
( x_serie_labels , y_serie_labels ), axes colors ( axes ), a third axis can be added...

After declaring your chart, you have to define the data you want to display in your chart.

Data definition
Data can be specified with:

several data  statements to specify each series.

one datalist  statement to give a list of series. It can be useful if the number of series is unknown,
variable or too high.

The data  statement is used to specify which expression will be displayed. You have to give your data a
name (that will be displayed in your chart), the value of the expression you want to follow (using the
value  facet). You can add some optional facets such as color  to specify the color of your data.

    }
}

global {
    int numberA <- 2 update: numberA*2;
    int numberB <- 10000 update: numberB-1000;
}

experiment my_experiment type: gui {
   float minimum_cycle_duration <- 0.1;
   output {

display "my_display" {
    chart "my_chart" type: pie {

data "numberA" value: numberA color: #red;
data "numberB" value: numberB color: #blue;

    }
}

    }
}

http://localhost:3000/wiki/Statements#data
http://localhost:3000/wiki/Statements#datalist


The datalist  statement is used to write several data  statements in one statement. Instead of giving
simple values, datalist  is expecting value lists. The previous chart is thus equivalent to the following
one using the datalist  statement:

datalist  is particularly suitable in the case where the number of data series to plot can change during
the simulation. As an example, when we want to plot the evolution of an attribute value for each agent
(and new agents are created), we need to use this statement. As an example, in the following model, we
want to plot the energy  of each people  agent. Each simulation step one agent is created.

display "my_display2" {
    chart "my_chart2" type: pie {

datalist ["numberA","numberB"] value:  [numberA,numberB] color: [#red,#blue] ;
    }
}

global {
    
    init {

create people number:15;    
    }
    



    reflex population_growth when: length(people) < 50 {
    create people number:1;
    }

}

species people {

        int energy <- rnd(100) min:0;
rgb color <- rnd_color(255);

reflex aging {
    energy <- energy - 3;
}

}

experiment my_experiment type: gui {
    float minimum_cycle_duration <- 0.1;
    output {
    display "my_display" {

   chart "my_chart" type: series {
datalist people collect (each.name) value:  people 

collect (each.energy) color: people collect (each.color) ;
    }
}

    }
}



datalist  provides you some additional facets you can use. If you want to learn more about them,
please read the documentation.

Various types of charts
As we already said, you can display several types of graphs: the histograms, the pies, the series, the
radars, heatmap...

pie

The pie  chart shows on a single pie diagram the ratio of each data series over the sum of all the series.
It has already been illustrated above.

series

The series  type is perhaps the most basic plot: it displays in an x-y coordinates space the value of each
data series over time (simulation step): the x-axis displays the simulation step, the y-axis represents the
value of the data series. The previously defined pie  chart, can be displayed using a series  simply by
changing the chart type .

http://localhost:3000/wiki/Statements#datalist


histogram

The histogram  charts represent with bars the value of several data series. The previous example can be
displayed with a histogram  chart.

global {
    int numberA <- 2 update: numberA*2;
    int numberB <- 10000 update: numberB-1000;
}

experiment my_experiment type: gui {
     float minimum_cycle_duration <- 0.1;
     output {

display "my_display" {
chart "my_chart" type: series {

data "numberA" value: numberA color: #red;
data "numberB" value: numberB color: #blue;

}
}

    }
}



Histograms are often used to display the distribution of a value inside a population. For example, let
consider a population of agents representing human beings with an age  attribute. The following model
illustrates the plot of the age distribution over the population. We used the operator distribution_of
to compute the distribution to plot: here we display the number of people agent in 20 ranges computed
among the ages between 0 and 100.

model NewModel

global {
    init {

create people number: 10000;
    }
}

species people {
    float age <- gauss(40.0, 15.0);
}

experiment my_experiment type: gui {
    float minimum_cycle_duration <- 0.1;
    output {
        display "my_display" {

    chart "my_chart" type: histogram {
datalist (distribution_of(people collect each.age,20,0,100) at 



Note that the facet reverse_axes  (with true  value) can be added to the chart  statement to display
horizontal bars.

xy

The xy  displays are used when we want to display a value in function of another one (instead of plotting
a value in function of the time): in this case, the x-axis does not represent the time in general. It can be
used for example to plot a phase portrait, e.g. in the Lotka-Volterra model (prey-predator model) in
which we want to plot the number of preys according to the number of predators. The code for the
chart is then:

"legend") 
    value:(distribution_of(people collect each.age,20,0,100) at 

"values");
    }
}

    }
}

display PhasePortrait  {
    chart "Lotka Volterra Phase Portrait" type: xy {
        data 'Preys/Predators' value: {first(LotkaVolterra_agent).nb_prey, 



radar

A radar  chart displays the evolution of expression over time in a kind of circular representation: the
radar representation. If reuse the example describes previously and used in the previous types of charts,
we get the following adapted model:

first(LotkaVolterra_agent).nb_predator} color: #black ;
    }
}

global {
    int numberA <- 2 update: numberA*2;
    int numberB <- 10000 update: numberB-1000;
}

experiment my_experiment type: gui {
    float minimum_cycle_duration <- 0.1;
    output {

display "my_display" {
    chart "my_chart" type: radar background: #white axes:#black {

data "numberA" value: numberA color: #red accumulate_values: true;
data "numberB" value: numberB color: #blue accumulate_values: true;

    }



heatmap

The heatmap in GAMA is close to a stack of histograms charts (allowing to keep a view of the evolution
of values over time), representing the height of the bars by color in a gradient.

Let consider the model of a human population characterized by their age. We had a population dynamic:
at each step, their age is incremented by 1. They also have a probability to die at each step (that
increases with their age). When an agent dies, it creates a new agent with an age equals to 0.

}
    }
}

model NewModel

global {
    init {

create people number: 10000;
    }
}

species people {



We thus displayed the evolution of the age distribution using both a histogram chart (for the
instantaneous distribution) and a heatmap display to key a track of the evolution over time. In the
heatmap, the left Y-axis represents the time (the simulation step number); as a consequence 1 line
represents the state at 1 simulation step. The x-axis represents the various ranges of the distribution
(same meaning as for histograms). The right Y-axis shows the meaning of the color gradient.

    float age <- gauss(40.0, 15.0);

    reflex older {
age <- age + 1;

    }

    reflex die when: flip(age / 1000) {
create people {
    age <- 0.0;
}

do die;
    }
}

experiment my_experiment type: gui {
    output {

display "my_display" {
    chart "my_chart" type: histogram {

datalist (distribution_of(people collect each.age, 20, 0, 100) at 
"legend") 
                    value: (distribution_of(people collect each.age, 20, 0, 100) at 
"values");

    }
}

display DistributionPosition {
    chart "Distribution of age" type: heatmap 

                  x_serie_labels: (distribution_of(people collect each.age, 20, 0, 100) 
at "legend") {

data "Agedistrib" value: (distribution_of(people collect each.age, 20, 
0, 100) at "values") color: #red; 

    }
}

    }
}



scatter

The scatter chart allows us to represent in a 2D space the "spatial distribution" of a set of values. As an
example, it allows us to plot the age  of all the people  agents: the X-axis represents the possible age
value and not the time as in a series  charts.

Here is an example of a chart of type scatter  on the previous model example:

experiment my_experiment type: gui {
    output {

display "my_display" {
    chart "my_chart" type: scatter {

data "Avg age" value: (people collect each.age) accumulate_values: true 
line_visible:false ;

    }
}

    }
}



box_whisker

The box_whisker  charts represent the distribution of a value. A circle for the average, a horizontal line
for the median, a filled bar (the "box") for the top 75% and the bottom 25% and a line (the "whisker") for
the maximum and minimum values.

For example, let consider again a population of agents representing human beings with an age
attribute (with an aging mechanism). The following model illustrates the plot of the age distribution over
the population.

model NewModel

global {
    init {

create people number: 100;
    }
}

species people {
    float age <- gauss(40.0, 15.0);
    reflex older {

age <- age + 1;
    }



    reflex die when: flip(age / 1000) {
create people {
    age <- 0.0;
}
do die;
}

}

experiment my_experiment type: gui {
    float minimum_cycle_duration <- 0.1;
    output {

display "chart age" {
    chart "age" type: box_whisker 
    series_label_position:yaxis
    {

data "age"
   value: [mean(people collect each.age),median(people collect 

each.age),
   quantile((people sort_by each.age) collect 

each.age,0.25),quantile((people sort_by each.age)collect each.age,0.75),
   min(people collect each.age),max(people collect each.age)]
   color: #green

accumulate_values: true;
    } 
  }

    }
}



Note that the facet series_label_position  (with yaxis  value) int the chart  statement is used to
display the serie label ("age") on the y axis. With more series, we can display the labels as a legend (with
the 'legend' value).

Other charts possibilities
The chart , data  and datalist  come with a huge number of additional facets, allowing you to design
advanced result display. We can mention here some of them.

Error values

Just as a box plot, drawing error values around a value, allows the user to visually identify a value (e.g. a
mean value) and the distribution of this value around it. The y_err_values  facet of data  can be used to
show in the data plot and a range around it (e.g. the min and max value of an expression in the agent
population).

In this example, we plot the average age of agents in the population, with the minimum and maximum
value. Here is only the experiment code related to the model shown in the previous parts.

experiment my_experiment type: gui {
    float minimum_cycle_duration <- 0.1;
    output {



display "my_display" {
    chart "my_chart" type: series {

data "average age" value: people mean_of each.age color: #red 
                           y_err_values: [people min_of each.age,people max_of 
each.age];

    }
}

    }
}



Version: 1.9.3

Defining monitors and
inspectors
Other outputs can be very useful to study better the behavior of your agents.

Index
Define a monitor

Define an inspector

Define a monitor
A monitor allows to follow the value of an arbitrary expression in GAML. It will appear, in the User
Interface, in a small window on its own and be recomputed every time step (or according to its refresh
facet).

Definition of a monitor:

with:

value:  mandatory, the expression whose value will be displayed by the monitor.

refresh:  bool statement, optional: the new value is computed if the bool statement returns true.

Example:

monitor monitor_name value: an_expression refresh: boolean_statement;

experiment my_experiment type: gui {
    output {

monitor monitor_name value: cycle refresh: every(1#cycle);
    }
}

http://localhost:3000/wiki/InspectorsAndMonitors#monitor


NB: you can also declare monitors during the simulation, by clicking on the button "Add new monitor",
and specifying the name of the variable you want to follow.

Define an inspector
During the simulation, the user interface of GAMA provides the user the possibility to inspect an agent,
or a group of agents. But you can also define the inspector you want directly from your model, as an
output of the experiment.

Use the statement inspect  to define your inspector, in the output scope of your GUI experiment. The
inspector has to be named (using the facet name ), a value has to be specified (with the value  facet).

Note that you can inspect any type of species (regular species, grid species, even the world...) or agent.

The optional facet type  is used to specify the type of your inspector. 2 values are possible:

agent  (default value) if you want to display the information as a regular agent inspector. Note that if
you want to inspect a large number of agents, this can take a lot of time. In this case, prefer the
other type table

table  if you want to display the information as an agent browser.

The optional facet attributes  is used to filter the attributes you want to display in your inspector.

Beware: only one agent inspector ( type: agent ) can be used for an experiment. Besides, you can add
as many agent browsers ( type: table ) as you want for your experiment.

Example of implementation:

inspect "inspector_name" value: the_value_you_want_to_display;

model new

global {
    init {

create my_species number:3;
    }
}

species my_species {
    int int_attr <- 6;
    string str_attr <- "my_value";

http://localhost:3000/wiki/InspectorsAndMonitors
http://localhost:3000/wiki/InspectorsAndMonitors#agent-inspector
http://localhost:3000/wiki/InspectorsAndMonitors#agent-browser


Another statement, browse , is doing a similar thing, but prefer the table  type (if you want to browse an
agent species, the default type will be the table  type).

    string str_attr_not_important <- "blabla";
}

grid my_grid_species width: 10 height: 10 {
    int rnd_value <- rnd(5);
}

experiment my_experiment type:gui {
    output {

inspect "my_species_inspector" value: my_species attributes: 
["int_attr","str_attr"];

inspect "my_species_browser" value: my_species type: table;
inspect "my_grid_species_browser" value: 5 among my_grid_species type: table;

    }
}



Version: 1.9.3

Defining export files
The Save Statement
Allows to save data in a file. The type of file can be "shp", "json" and "kml" for vector spatial data (agents
and geometries), "asc" and "geotiff" for raster spatial data (grid), "image" for image, "dimacs", "dot",
"gexf", "graphml", "gml" and "graph6" for graphs, "text" and "csv". The save  statement can be use in an
init block, a reflex, an action or in a user command.

Facets

attributes , optional, expects any type in [map, list] - Allows to specify the attributes of a shape file
or GeoJson file where agents are saved. Can be expressed as a list of string or as a literal map. When
expressed as a list, each value should represent the name of an attribute of the shape or agent. The
keys of the map are the names of the attributes that will be present in the file, the values are
whatever expressions needed to define their value.

crs , optional, expects any type - the name of the projection, e.g. crs:"EPSG:4326" or its EPSG id, e.g.
crs:4326. Here a list of the CRS codes (and EPSG id)

data , optional, expects any type - the data that will be saved to the file

header , optional, expects bool - an expression that evaluates to a boolean, specifying whether the
save will write a header if the file does not exist

rewrite , optional, expects bool - a boolean expression specifying whether to erase the file if it
exists or append data at the end of it. Only applicable to "text" or "csv" files. Default is true

to , optional, expects string - an expression that evaluates to an string, the path to the file, or
directly to a file

format , optional, a string representing the format of the output file (e.g. shp , asc , geotiff , png ,
text , csv ). If the file extension is non ambiguous in facet 'to:', this format does not need to be
specified. However, in many cases, it can be useful to do it (for instance, when saving a string to a
.pgw file, it is always better to clearly indicate that the expected format is 'text').

type , optional, deprecated, use format  instead.

Usages

Its simple syntax is:

http://spatialreference.org/


To save data in a text file:

To save the values of some attributes of the current agent in csv file:

To save the geometries of all the agents of a species into a shapefile or a geojson (with optional
attributes):

To save a grid into a geotiff or a asc file (the value considered will be the "grid_value" attribute of the
cell):

To save a grid into an image file:

INFO

Relative path are processed from the gaml file where the experiment is located.

This might lead to some issues explained in #137 where relative path set in an imported file will be
based on the model you are running and not the file you defined it.

save data to: output_file format: a_type_file;

save (string(cycle) + "->"  + name + ":" + location) to: "save_data.txt" format: text;

save [name, location, host] to: "save_data.csv" format: csv;

save species_of(self) to: "save_shapefile.shp" format: shp attributes: 
[name::"nameAgent", location::"locationAgent"] crs: "EPSG:4326";
save species_of(self) to: "save_shapefile.geojson" format: json attributes: 
[name::"nameAgent", location::"locationAgent"] ;

save cell to:"../results/grid.tif" format:geotiff;
save cell to:"../results/grid.asc" format:asc;

save cell to:"../results/grid.png" format:image;

https://github.com/gama-platform/gama-platform.github.io/issues/137


Export files in an experiment
When the modeler wants to save data at each simulation step, it is recommended to use the save
statement either in the model itself or in a reflex  of the experiment  (the syntax and the use are similar
in all the cases).

The use of save  in experiment  is mandatory when we want to save a value related to several
simulations running in parallel (e.g. the average of a value over several simulations). It is in particular in
batch  experiments to save a value at the end of simulations.

Autosave
Image files can be exported also through the autosave  facet of the display, as explained in this previous
part.

http://localhost:3000/wiki/BatchExperiments
http://localhost:3000/wiki/DefiningDisplaysGeneralities#displays-and-layers
http://localhost:3000/wiki/DefiningDisplaysGeneralities#displays-and-layers


Version: 1.9.3

Defining user interaction
During the simulation, GAML provides you the possibility to define some function the user can execute
during the execution. In this chapter, we will see how to define buttons to execute action during the
simulation, how to catch click event, and how to use the user control architecture.

Index
Catch Mouse Event

Define User command
... in the GUI Experiment scope

... in global or regular species

user_location

user_input

User Control Architecture

Catch Mouse Event
You can catch mouse event during the simulation using the statement event . This statement has 2
required facets:

name  (identifier) : Specify which event do you want to trigger (among the following values :
mouse_down , mouse_up , mouse_move , mouse_enter , mouse_exit  or any alphanumeric symbol/key of
the keyboard, such as, 'a' , 'b' ...).

action  (identifier) : Specify the name of the global action to call.

The event  statement has to be defined in the experiment / output / display  scope. Once the event is
triggered, the global action linked will be called. The action linked cannot have arguments. To get the
location of the mouse click, the #user_location  can be used; to get the agents on which the mouse has
clicked, you can use spatial query (e.g. my_species overlapping #user_location ).

event mouse_down action: my_action;



Define User command
Anywhere in the global block, in a species or in an (GUI) experiment, user_command  statements can be
implemented. They can either call directly an existing action (with or without arguments) or be followed
by a block that describes what to do when this command is run.

Their syntax can be (depending of the modeler needs) either:

For instance:

global
{

action my_action
{

write "do action";
}

}

species my_species
{
}

experiment my_experiment type: gui
{

output
{

display my_display
{

species my_species;
event mouse_down action: my_action;

}
}

}

user_command cmd_name action: action_without_arg_name;
//or
user_command cmd_name action: action_name with: [arg1::val1, arg2::val2];
//or
user_command cmd_name {
   // statements
}



Defining User command in GUI Experiment scope

The user command can be defined directly inside the GUI experiment scope. In that case, the
implemented action appears as a button in the top of the parameter view.

Here is a very short code example :

And here is screenshots of the execution :

user_command kill_myself action: die;
//or
user_command kill_myself action: some_action with: [arg1::5, arg2::3];
//or
user_command kill_myself {
    do die;
}

model quick_user_command_model

global {
action createAgent
{

create my_species;
}

}

species my_species {
aspect base {

draw circle(1) color:#blue;
}

}

experiment expe type:gui {
user_command cmd_inside_experiment action:createAgent;
output {

display my_display {
species my_species aspect:base;

}
}

}



Defining User command in a global or regular species

The user command can also be defined inside a species scope (either global or regular one). Here is a
quick example of model :

model quick_user_command_model

global {
init {

create my_species number:10;
}

}

species my_species {
user_command cmd_inside_experiment action:die;
aspect base {

draw circle(1) color:#blue;
}

}

experiment expe type:gui {
output {

display my_display {



During the execution, you have 2 ways to access to the action:

When the agent is inspected, they appear as buttons above the agents' attributes

When the agent is selected by a right-click in a display, these commands appear under the usual
"Inspect", "Focus" and "Highlight" commands in the pop-up menu.

species my_species aspect:base;
}

}
}



Remark: The execution of a command obeys the following rules:

when the command is called from right-click pop-menu, it is executed immediately

when the command is called from panels, its execution is postponed until the end of the current
step and then executed at that time.

user_location

In the special case when the user_command  is called from the pop-up menu (from a right-click on an
agent in a display), the location chosen by the user (translated into the model coordinates) is passed to
the execution scope under the name user_location .

Example:

global {
   user_command "Create agents here" {
      create my_species number: 10 with: [location::user_location];
   }
}



This will allow the user to click on a display, choose the world (always present now), and select the menu
item "Create agents here".

Note that if the world is inspected (this user_command  appears thus as a button) and the user chooses to
push the button, the agent will be created at a random location.

user_input

As it is also, sometimes, necessary to ask the user for some values (not defined as parameters), the
user_input  unary operator has been introduced. This operator takes a map [string::value] as argument
(the key is the name of the chosen parameter, the value is the default value), displays a dialog asking the
user for these values, and returns the same map with the modified values (if any). You can also add a
text as first argument of the operator, which will be displayed as a title for your dialog popup. The dialog
is modal and will interrupt the execution of the simulation until the user has either dismissed or
accepted it. It can be used, for instance, in an init section like the following one to force the user to input
new values instead of relying on the initial values of parameters.

Here is an example of implementation:

When running this model, you will first have to input a number:

model quick_user_command_model

global {
   init {
      map values <- user_input("Choose a number of agent to create",["Number" :: 100]);
      create my_species number: int(values at "Number");
   }
}

species my_species {
aspect base {

draw circle(1) color:#blue;
}

}

experiment expe type:gui {
output {

display my_display {
species my_species aspect:base;

}
}

}



User Control Architecture
The other way to define user interaction is to use user control architecture. Please jump directly to the
section user control architecture if you want to learn more about this point.

http://localhost:3000/wiki/ControlArchitecture#user-control-architecture


Version: 1.9.3

Exploring Models
We just learnt how to launch GUI Experiments from GAMA. A GUI Experiment will start with a particular
set of input, compute several outputs, and will stop at the end (if asked).

In order to explore models (by automatically running the Experiment using several configurations to
analyze the outputs), a first approach is to run several simulations from the same experiment,
considering each simulation as an agent. A second approach, much more efficient for larger
explorations, is to run an other type of experiment : the Batch Experiment.

We will start this part by learning how to run several simulations from the same experiment. Then, we
will see how batch experiments work, and we will focus on how to use those batch experiments to
explore models by using exploration methods.

http://localhost:3000/wiki/RunSeveralSimulations
http://localhost:3000/wiki/BatchExperiments
http://localhost:3000/wiki/ExplorationMethods


Version: 1.9.3

Run Several Simulations
To explore a model, the easiest and the most intuitive way to proceed is running several simulations
with several parameter value, and see the differences from the output. GAMA provides you the
possibility to launch several simulations from the GUI.

Create a simulation
Let's remind you that in GAMA, everything is an agent. We already saw that the "world" agent is the
agent of the model. The model is thus a species, called modelName_model :

New highlight of the day : an Experiment is also an agent ! It's a special agent which will instantiate
automatically an agent from the model species. You can then perfectly create agents (model agents)
from your experiment, using the statement create  :

This sort model will instantiate 2 simulations (two instance of the model) : one is created automatically
by the experiment, and the second one is explicitly created through the statement create .

To simplify the syntax, you can use the built-in attribute simulation  of your experiment. When you
have a model called "multi_simulations", the two following lines are strictly equal :

model toto // <- the name of the species is "toto_model"

model multi_simulations // the "world" is an instance of the "multi_simulations_model"

global {
}

experiment my_experiment type:gui  {
init {

create multi_simulations_model;
}

}

create multi_simulations_model;
create simulation;



As it was the case for creating regular species, you can specify the parameters of your agent during the
creation through the facet with:  :

Manipulate simulations

Generate simulations on-the-fly

When you think the simulations as agents, it gives you a lot of new possibilities. You can for example
create a reflex from your experiment, asking to create simulations during the experiment execution !

The following short model for example will create a new simulation at each 10 cycles :

model multi_simulations

global {
rgb bgd_color;

}

experiment my_experiment type:gui  {
parameter name:"background color:" var:bgd_color init:#blue;
init {

create simulation with:[bgd_color::#red];
}
output {

display "my_display" background:bgd_color{}
}

}

model multi_simulations

global {
init {

write "new simulation created ! Its name is "+name;
}

}

experiment my_experiment type:gui  {
init {
}
reflex when:(mod(cycle,10)=0 and cycle!=0) {

create simulation;
}
output {



You may ask, what is the purpose of such a thing ? Well, with such a short model, it is not very
interesting, for sure. But you can imagine running a simulation, and if the simulation reaches a certain
state, it can be closed, and another simulation can be run instead with different parameters (a
simulation can be closed by doing a "do die" on itself).

Communication between simulations

You can also imagine to run two simulations, and to communicate from one to an other through the
experiment, as it is shown in this easy model, where agents can move from one simulation to another :

}
}

model smallWorld

global {
int grid_size <- 10;
bool modelleft <- true;
int id<- 0;
int nb_agents <- 50;

init {



create people number: nb_agents {
my_cell <- one_of(cell);
location <- my_cell.location;

}
if (modelleft) {

ask cell where (each.grid_x = (grid_size - 1))  {
color <- #red;

}
} else {

ask cell where (each.grid_x = 0)  {
color <- #red;

}
}

}

action changeWorld(rgb color, point loc) {
create people with:[color::color, location::loc] {

my_cell <- cell(location);
}

}
}

species people {
rgb color <- rnd_color(255);
cell my_cell;

reflex move {
if (modelleft and my_cell.color = #red) {

ask smallWorld_model[1] {
do changeWorld(myself.color, {100 - 

myself.location.x,myself.location.y});
 }
 do die;
} else {

list<cell> free_cells <- list<cell> (my_cell.neighbors) where 
empty(people inside each);

if not empty(free_cells) {
my_cell <- one_of(free_cells);
location <- my_cell.location;

}
}

} 
aspect default {

draw circle(50/grid_size) color: color;
}

}

grid cell width: grid_size height: grid_size;



For more complex communication example you can look into the example models from the network
plugin> TCP Server And Client Example .gaml  runs a first simulation that will create two servers (one
of them being the lead server), then the experiment will create a new simulation with different
parameters, and this simulation will itself create two clients, after this, clients and servers from both
simulations will communicate together through the TCP protocol. The same behavior can be found in
the WebSocket Server And Client Example .gaml  model but with the use of websocket  instead of
TCP.

Going a step further, TCP Teleportation.gaml  recreates the same behavior as the Small world
example from the previous statement but this time the whole agent is serialized and de-serialized from
one simulation to another then sent through TCP. And this time you can chain as many simulation as
you want thanks to an experiment parameter. 1 Pong Teleportation (send agent).gaml  exhibits the
same behavior but uses the MQTT  protocol.

Permanent displays

Here is an other example of application available in the model library under the name Ant
Foraging.gaml  with the experiment 3 Simulations . In this simulation, we run 3 times the Ant Foraging
model, with different parameters and plot in a unique graph the evolution of the total gathered food by
each model.

experiment fromWorldToWorld type: gui {
init {

 create simulation with:[grid_size::20, modelleft::false, id::1, 
nb_agents::0];

}

output {
display map {

grid cell lines: #black;
species people;

}
}

}



This graph is done thanks to the permanent  block:

This block defines a display that is linked to the experiment only, it can thus access all the currently
running simulations with the list simulations . From there you can define displays to summarize what's
happening in all the simulations, display some statistics on them etc.

Random seed

Defining the seed from the model

permanent {
display Comparison background: #white {

chart "Food Gathered" type: series {
loop s over: simulations {

data "Food " + int(s) value: s.food_gathered color: 
s.color marker: false style: line thickness: 5;

}
}

}
}



If you run several simulations, you may want to use the same seed for each one of those simulations (to
compare the influence of a certain parameter, in exactly the same conditions).

Let's remind you that seed  is a built-in attribute of the model. You than just need to specify the value of
your seed during the creation of the simulation if you want to fix the seed :

You can also specify the seed if you are inside the init  scope of your global  agent.

Notice that if you affect the value of your seed built-in directly in the global scope, the affectation of the
parameters (for instance specified with the facet with  of the statement create ), and the "init" will be
done after will be done at the end.

Defining the seed from the experiment

The experiment agent also have a built-in attribute seed . The value of this seed is defined in your
simulation preferences. The first simulation created is created with the seed value of the experiment.

The following sequence diagram can explain you better how the affectation of the seed attribute works :

create simulation with:[seed::10.0];

global {
init {

seed<-10.0;
}

}

http://localhost:3000/wiki/Preferences#simulation


The affectation of an attribute is always done in this order : (1) the attribute is affected with a specific
value in the species scope. If no attribute value is specified, the value is a default value. (2) if a value is
specified for this attribute in the create  statement, then the attribute value is affected again. (3) the
attribute value can be changed again in the init  scope.

Run several simulations with the same random numbers

The following code shows how to run several simulations with a specific seed, determined from the
experiment agent :

model multi_simulations

global {
init {

create my_species;
}

}

species my_species skills:[moving] {
reflex update {

do wander;
}
aspect base {

draw circle(2) color:#green;
}

}

experiment my_experiment type:gui  {
float seedValue <- 10.0;



When you run this simulation, their execution is exactly similar.

Let's try now to add a new species in this model, and to add a parameter to the simulation for the
number of agents created for this species.

float seed <- seedValue; // force the value of the seed.
init {

// create a second simulation with the same seed as the main simulation
create simulation with:[seed::seedValue];

}
output {

display my_display {
species my_species aspect:base;

}
}

}

model multi_simulations

global {
int number_of_speciesB <- 1;
init {

create my_speciesA;
create my_speciesB number:number_of_speciesB;

}
}

species my_speciesA skills:[moving] {
reflex update {

do wander;



Then you run the experiment, you may find something strange...

}
aspect base {

draw circle(2) color:#green;
}

}

species my_speciesB skills:[moving] {
reflex update {

do wander;
}
aspect base {

draw circle(2) color:#red;
}

}

experiment my_experiment type:gui  {
float seedValue <- 10.0;
float seed <- seedValue; // force the value of the seed.
init {

create simulation with:[seed::seedValue,number_of_speciesB::2];
}
output {

display my_display {
species my_speciesA aspect:base;
species my_speciesB aspect:base;

}
}

}



Even if the first step seems ok (the green agent and one of the two red agent is initialized with the same
location), the simulation differs completely. You should have expected to have the same behavior for the
green agent in both of the simulation, but it is not the case. The explanation of this behavior is that a
random number generator has generated more random numbers in the second simulation than in the
first one.

If you don't understand, here is a short example that may help you to understand better :

The output will be something like that :

model multi_simulations

global {
int iteration_number <- 1;
reflex update {

float value;
loop times:iteration_number {

value<-rnd(10.0);
write value;

}
write "cycle "+cycle+" in experiment "+name+" : "+value;

}
}

experiment my_experiment type:gui  {
float seedValue <- 10.0;
float seed <- seedValue; // force the value of the seed.
init {

create simulation with:[seed::seedValue,iteration_number::2];
}
output {
}

}

7.67003069780383
cycle 0 in experiment multi_simulations_model0 : 7.67003069780383
7.67003069780383
0.22889843360303863
cycle 0 in experiment multi_simulations_model1 : 0.22889843360303863
0.22889843360303863
cycle 1 in experiment multi_simulations_model0 : 0.22889843360303863
4.5220913306263855
0.8363180333035425
cycle 1 in experiment multi_simulations_model1 : 0.8363180333035425
4.5220913306263855



Which means :

Cycle Value generated in simulation 0 Value generated in simulation 1

1 7.67003069780383 7.67003069780383

0.22889843360303863

2 0.22889843360303863 4.5220913306263855

0.8363180333035425

3 4.5220913306263855 5.460148568140819

4.158355846617511

When writing your models, you have to be aware of this behavior. Remember that each simulation has
it's own random number generator.

Change the RNG

The RNG (random number generator) can also be changed : rng  is a string built-in attribute of the
experiment (and also of the model). You can choose among the following rng :

mersenne (by default)

cellular

java

The following model shows how to run 4 simulations with the same seed but with some different RNG :

cycle 2 in experiment multi_simulations_model0 : 4.5220913306263855
5.460148568140819
4.158355846617511
cycle 2 in experiment multi_simulations_model1 : 4.158355846617511
0.8363180333035425
cycle 3 in experiment multi_simulations_model0 : 0.8363180333035425
1.886091659169562
4.371253083874633
cycle 3 in experiment multi_simulations_model1 : 4.371253083874633



model multi_simulations

global {
init {

create my_species number:50;
}

}

species my_species skills:[moving] {
reflex update {

do wander;
}
aspect base {

draw square(2) color:#blue;
}

}

experiment my_experiment type:gui  {
float seed <- 10.0;
init {

create simulation with:[rng::"cellular",seed::10.0];
create simulation with:[rng::"java",seed::10.0];

}
output {

display my_display {
species my_species aspect:base;
graphics "my_graphic" {

draw rectangle(35,10) at:{0,0} color:#lightgrey;
draw rng at:{3,3} font:font("Helvetica", 20 , #plain) 

color:#black;
}

}
}

}



Version: 1.9.3

Defining Batch Experiments
Batch experiments allow to execute numerous successive simulation runs. They are used to explore the
parameter space of a model or to optimize a set of model parameters. Exploration methods are detailed
in this page.

A Batch experiment is defined by:

The batch experiment facets
Batch experiments have the following three facets:

until : (expression) Specifies when to stop each simulation. Its value is a condition on variables
defined in the model. The run will stop when the condition is evaluated to true. If omitted, the first
simulation run will go forever, preventing any subsequent run to take place (unless a halt command
is used in the model itself).

repeat : (integer) Specifies the number of simulations replications for each parameter configuration
(a set of values assigned to the parameters). This means that several simulation will be run with the
same parameter values, however a different random seed will be used for the pseudo-random
number generator for each simulation. This allows to get some statistical power from the
experiments conducted for stochastic models. The default value is 1.

keep_seed : (boolean) If true, the same series of random seeds will be used from one parameter
configuration to another. The default value is false.

experiment exp_title type: batch until: condition {
   [parameter to explore]
   [exploration method]
   [reflex]
   [permanent]
}

experiment my_batch_experiment type: batch repeat: 5 keep_seed: true until: (cycle = 
300) {
   [parameter to explore]
   [exploration method]
}

http://localhost:3000/wiki/ExplorationMethods
http://localhost:3000/wiki/ExplorationMethods


Action _step_  and reflexes
As for any species, experiment  can define as many reflex  as needed. In a batch  experiment, they will
be executed at the end of each bunch of simulations (set of replications) for a given parameters
configuration. Note that at the experiment level, you have access to all the species and all the global
variables and to all the simulations (variable simulations ).

To be complete, each experiment (as any agent) will call at each step (i.e. the end of the replications set)
the _step_  action: this action is in charge of executing the behavior of the experiment agent, that is by
default the execution of each of its reflex . It is possible to redefine the action _step_ , but this should
be used with care since this inhibits the reflexes.

For instance, the following experiment runs the simulation 5 times, and saves the people agents in a
single shapefile at the end of the 5 simulations.

The same can be done using the action _step_ {  instead of reflex save_people { .

But if now we want to save information from the 5 simulations and save 1 shapefile per replication, we
need to use the built-in attribute simulations . To save 1 shapefile per simulation run, we thus need to
write:

experiment 'Run 5 simulations' type: batch repeat: 5 keep_seed: true until: ( time > 
1000 ) {
    int cpt <- 0;

    reflex save_people {
    save people type:"shp" to:"people_shape" + cpt + ".shp" with: 

[is_infected::"INFECTED", is_immune::"IMMUNE"];
    cpt <- cpt + 1;

    }
}

experiment 'Run 5 simulations' type: batch repeat: 5 keep_seed: true until: ( time > 
1000 ) {
    reflex end_of_runs {

int cpt <- 0;
    ask simulations {
        save people type: "shp" to: "result/people_shape" + cpt + ".shp" with: 

[is_infected::"INFECTED", is_immune::"IMMUNE"];
        cpt <- cpt + 1;
    }



If now we want to save in a file aggregated values over the five simulations, such as the average number
of infected people over the five simulations, we need to write:

Permanent
The permanent  statement allows the modeler to define an output block that will not be re-initialized at
the beginning of each simulation but will be filled instead at the end of each simulation. For instance,
this permanent  section will plot for each simulation the end value of the food_gathered  variable
(defined as a global variable in the model).

It can be particularly useful when exploring values of parameters to plot their influence over some
metric. For example here is a model based on Thomas Schelling's model of residential segregation
(described in many library models) where we use batch to explore the parameter number_of_groups .
For each value of this parameter we will run 10 simulations to mitigate the impact of randomness. We
will then use the permanent  statement to display the average happiness after 50 simulation steps in
function of the number of groups in which the population is split:

    }
}

experiment 'Run 5 simulations' type: batch repeat: 5 keep_seed: true until: ( cycle > 
1000 ) {
    reflex t {
        save [cycle, simulations mean_of each.nb_infected] to: "result.txt" type: 
"csv";
    }
}

permanent {
    display Ants background: #white refresh: every(1#cycle) {
    chart "Food Gathered" type: series {

        data "Food" value: food_gathered;
    }

    }
}

/**
* Name: NewModel
* Based on the internal empty template. 
* Author: baptiste



* Tags: 
*/

model shelling_exploration

global {
//Different colors for the group

    list colors <- [rgb ("yellow"), rgb ("red"), rgb ("blue"), 
    rgb ("orange"), rgb ("green"), rgb ("pink"), rgb ("magenta") , rgb ("cyan")
    ] of: rgb;

//Number of groups
int number_of_groups <- 2 max: 8 parameter: "Number of groups:" category: 

"Population";
//Density of the people
float density_of_people <- 0.7 parameter: "Density of people:" category: 

"Population" min: 0.01 max: 0.99;
//Percentage of similar wanted for segregation
float percent_similar_wanted <- 0.5 min: float (0) max: float (1) parameter: 

"Desired percentage of similarity:" category: "Population";
//Dimension of the grid
int dimensions <- 40 max: 400 min: 10 parameter: "Width and height of the 

environment:" category: "Environment";
//Neighbours distance for the perception of the agents
int neighbours_distance <- 2 max: 10 min: 1 parameter: "Distance of 

perception:" category: "Population";
//Number of people agents
int number_of_people <- 0;
//Number of happy people
int sum_happy_people <- 0 update: all_people count (each.is_happy);
//Number of similar neighbours
int sum_similar_neighbours <- 0 update: sum (all_people collect 

each.similar_nearby);
//Number of neighbours
int sum_total_neighbours <- 1 update: sum (all_people collect 

each.total_nearby) min: 1;
//List of all the places
list<space> all_places ;
//List of all the people
list<base> all_people;  
//List of all the free places
list<space> free_places ;

//Shape of the world
geometry shape <- square(dimensions);



//Initialization of the model
init {

//Initialization of the places
do initialize_places;
//Computation of the number of people according to the density of 

people
number_of_people <- int( length (all_places) * density_of_people);
//Initialization of the people
do initialize_people;

}

//Action to initialize the people agents
action initialize_people { 

create people number: number_of_people; 
all_people <- people as list ;  

} 
//Action to initialize the places
action initialize_places { 

all_places <- shuffle (space);
free_places <- all_places;  

} 
}

//Species base representing the people agents
species base {

rgb color;
//List of all the neighbours agents
list<base> my_neighbours;
//computation of the similar neighbours
int similar_nearby -> 

(my_neighbours count (each.color = color))
;
//Computation of the total neighbours nearby
int total_nearby -> 

length (my_neighbours)
;
//Boolean to know if the agent is happy or not
bool is_happy -> similar_nearby >= (percent_similar_wanted * total_nearby ) ;

}

//Grid to discretize space, each cell representing a free space for the people agents
grid space width: dimensions height: dimensions neighbors: 8 use_regular_agents: false 
frequency: 0{



rgb color  <- #black;
}

//Species representing the people agents
species people parent: base  {

//Color of the people agent
rgb color <- colors at (rnd (number_of_groups - 1));
//List of all the neighbours of the agent
list<people> my_neighbours -> people at_distance neighbours_distance ;
//Cell representing the place of the agent
space my_place;
init {

//The agent will be located on one of the free places
my_place <- one_of(free_places);
location <- my_place.location; 
//As one agent is in the place, the place is removed from the free 

places
free_places >> my_place;

} 
//Reflex to migrate the people agent when it is not happy 
reflex migrate when: !is_happy {

//Add the place to the free places as it will move to another place
free_places << my_place;
//Change the place of the agent
my_place <- one_of(free_places);
location <- my_place.location; 
//Remove the new place from the free places
free_places >> my_place;

}

}

experiment explo type:batch until:cycle>50 repeat:10 parallel:10{

parameter "nb groups" var:number_of_groups min:2 max:8;

method exploration;

permanent {
display Comparison background: #white {

chart "Number of happy people" type: xy {
data "Groups "  value:{number_of_groups, simulations 

mean_of (each.sum_happy_people)} ;

}
}

}



Which gives us a result that looks something like this:

Parameter sets in parallel
There is an option in the Preferences...  menu of Gama to allow multiple replications to be executed in
parallel, that is to fully use assigned cores to computation. In that case, permanent  and reflex  blocks in
the experiment  will only be triggered once at the end of the whole set of simulations, rather than after
each set of replications. Therefor, this option should only be used when doing none GUI batch
experiment

}



Version: 1.9.3

Exploration calibration methods
Several methods are currently available in GAMA to explore and calibrate your simulation model.

Table of contents
The method  statement

Exploration, analysis and calibration methods in a nutshell

The exploration method

Exhaustive sampling: factorial

Random sampling: uniform

Latin Hypercube sampling: latinhypercube

Othrogonal sampling: orthogonal

Analysis methods

Analysis of stochasticity: stochanalyse

Sobol analysis: sobol

Morris analysis: morris

Beta analysis: betad

Calibration methods

Hill Climbing: hill_climbing

Simulated Annealing: annealing

Tabu Search: tabu

Reactive Tabu Search: reactive_tabu

Genetic Algorithm: genetic

Particle Swarm Optimization: pso

The method  statement
The optional method  statement controls the algorithm which drives the batch.



If this element is omitted, the batch will run an exploration  method with default facets, see the
exploration section for more details.

Examples of the use of method  statement:

another examples with custom options

Rationals behind using batch methods
Overall Gama provides three uses of batch method  for exploration, analysis and calibration:

The first type stands for classical exploration of simulation models by launching simulations for a
given set of parameters. The purpose of such approach is to better understand the behavior of the
model exploring different scenarios corresponding to a set of points in the parameter space. See
the section dedicated to exploration.

The set of methods dedicated to analysis are meant to better understand how the model outputs
are determined by stochastic processes and input parameters, what usually is referred to as
Sensitivity Analysis. See the section dedicated to analysis

The last set of methods are used to choose a satisfying set of parameter value to achieve as close as
possible desired outputs, what usually is referred to as Calibration. See the section dedicated to
calibration

Exploration methods
Exploration is the simplest and the most intuitive way to get a better understanding of the behavior of a
model simulation across various input conditions. Basically it consists in launching simulations replicates
(using facet repeat ) for a parameter set (a vector of parameter values), retrieve outcomes, going to
explore another parameter set, retrieve outcomes, and so on so force. The list or set of points in the
parameter space to explore depend on the sampling algorithms used, via the sampling  facet. Gama

method exploration;

method genetic 
    pop_dim: 3 crossover_prob: 0.7 mutation_prob: 0.1 
    nb_prelim_gen: 1 max_gen: 5  
    minimize: nb_infected 
    aggregation: "max";



provides 6 different algorithms, saltelli , morris , latinhypercube , orthogonal , uniform  and
factorial , among which 4 are detailed in the sections below. Another aspect is the outcome of the
exploration: it is up to the modelers to define, in the model or the experiment how outputs of the
simulation should be saved. Most detailed outputs will be a record of any variable of interest step by
step for each simulation, or an aggregate value over the course of a simulation for each simulation and
at the most, only an aggregate value over each simulations replications. It depends on what you want to
observe and how you want to statistically explore results of simulation. For state of the art exploration
strategy for agent-based simulation, see for instance Borgonovo et al., Sensitivity analysis of agent-
based models: a new protocol. Comput Math Organ Theory 28, 52–94 (2022).

Generic method facets (i.e. parameters):

sample : number of points to explore in the parameter space. Optional, when omitted default value
is 124.

sampling : the methods used to automatically draw points from the parameter space. Optional,
when omitted default sampling is factorial

with : the explicit list of points (map) to explore. Optional, when omitted no default value, when
used the two previous facet are bypassed.

from : the explicit list of points to explore, encoded in a csv file where the line corresponds to one
point in the parameter space, each column a parameter value. Optional, when omitted no default
value, when used the two previous facet are bypassed.

Examples:

When you want to explicitly define the points in the parameter space to explore, just put them (a point is
a map of parameter name as key and parameter value as value) in a list

An alternative is to put the list of points in a csv file, where each lines will stands for a point in the
parameter space, each column defining a parameter.

method exploration with: [
["parameter1"::0.1, "parameter2":: 0.01],
["parameter1"::0.5, "parameter2":: 0.2],
["parameter1"::1.0, "parameter2":: 0.05],

];

experiment exploration type: batch keep_seed:true until:( time > 5000 ) repeat:40 {
method exploration from:"../includes/my_custom_batch_exploration.csv";

}



When no precise hypothesis is made on the configuration of the parameter space, Gama provides built-
in exploration strategies using the sampling  facet:

In the next sub-sections we detail the various sampling methods modelers can use as exploration
strategies.

Exhaustive exploration of the parameter space: factorial
sampling

This is the default batch exploration sampling algorithm. It explores all the combination of parameter
values in a sequential way.

Example:

The order of the simulations depends on the order of the parameters. In our example, the first
combinations will be the followings:

evaporation_rate = 0.1, diffusion_rate = 0.1, (2 times)

evaporation_rate = 0.1, diffusion_rate = 0.4, (2 times)

evaporation_rate = 0.1, diffusion_rate = 0.7, (2 times)

evaporation_rate = 0.1, diffusion_rate = 1.0, (2 times)

evaporation_rate = 0.2, diffusion_rate = 0.1, (2 times)

...

random exploration of the parameter space: uniform  sampling

experiment exploration type: batch keep_seed:true until:( time > 5000 ) repeat:40 {
method exploration sample:100 sampling:uniform;

}

experiment Batch type: batch repeat: 2 keep_seed: true until: (food_gathered = 
food_placed ) or ( time > 400 ) {
    parameter 'Evaporation:' var: evaporation_rate among: [ 0.1 , 0.2 , 0.5 , 0.8 , 1.0 
] unit: 'rate every cycle (1.0 means 100%)';
    parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0 unit: 'rate every 
cycle (1.0 means 100%)' step: 0.3;
}



Provides a quick and simple way to explore the parameter space, drawing uniformly each points. The
drawing algorithm treat parameters in two distinctive ways: when min  and max  facet of the parameter
is used, the value is drawn uniformly within the boundaries (included); when a list/set of values is
defined, the value is drawn uniformly within this list/set. Each parameter value is treated independently.
The algorithm select as many points as defined by the sample  facet.

Example:

latin hypercube sampling

The procedure of Latin Hypercube Sampling (LHS) works upon a grid view of the parameter space: each
parameter is divided into n slices, with n based on sample  facet, making up a matrix with d dimensions,
with d the number of parameters. At first iteration, the procedure select one slice per parameter, draw a
value for each ones (within the boundaries of the slice) and exclude each selected slice; then procedure
continue until no more slices remains. For a simple yet more precise definition, see the wikipedia page.

Example:

orthogonal sampling

The procedure behind orthogonal sampling is an extension of LHS optimizing the density of points over
the parameter space. It means that, based on the a grid view constraint, it will try to minimize the
distance between each points. see the wikipedia page of LHS.

Example:

experiment exploration type: batch until:( time > 5000 ) repeat:40 {
method exploration sample:100 sampling:uniform;

}

experiment exploration type: batch until:( time > 5000 ) repeat:40 {
method exploration sample:100 sampling:latinhypercube;

}

experiment exploration type: batch until:( time > 5000 ) repeat:40 {
method exploration sample:100 sampling:othogonal;

}

https://en.wikipedia.org/wiki/Latin_hypercube_sampling
https://en.wikipedia.org/wiki/Latin_hypercube_sampling


Analysis Methods
Analysis methods provide statistical insights into the understanding of simulation model behavior.
Contrary to mere exploration procedure, analysis methods refer in Gama to as statistical analysis of
outputs based on input parameters; that is, sensitivity analysis. Gama embeds two types of such
analysis : one to gauge the impact of stochasticity and three other options to evaluate the contribution
of parameters, i.e. Sobol, Morris and Beta_d.

The first method relies on statistical tests to evaluate how much simulations output generated with the
exact same input parameter values are correlated. Consequently modelers can decide, based on a
correlation threshold of their choice, how many simulation replications they need to build coherent
aggregated outputs (i.e. one that do not rely to much on stochastic discretion of results). More
explanation is provided in the corresponding section. The other set of methods focuses on contribution
of parameters over outputs variability.

Gama provides three different measurements of inputs contribution to outputs variability : the Sobol,
Morris and Beta indexes. Each cover different aspect of output variability and provide various insight on
parameters contribution. For instance Sobol depicts weights, whereas Morris proposes valence (i.e.
positive or negative impacts) on parameters contributions. Beta index gains insight based on the
general distribution of results, while the two other look at variance of results. More information to be
found on corresponding sub-sections.

There is generic parameters of such methods, in particular the targeted outputs  which are to be
determine for all analysis methods. However sobol  and morris  methods have specific facets, while
stochanalyse  and betad  don't.

Common facets of all analysis methods:

outputs : the list of output variables to analyse through the chosen method. Mandatory.

report : the path to the file where the results of the chosen method will be written. Mandatory.

results : the path to the file where the variable designated in outputs  and the corresponding
parameter values (point) will be written. Optional, when omitted no raw result report will be written.

Stochastic Analysis: stochanalyse

This method embedded three different index to measure the impact of stochastic processes. For each of
them, given thresholds make it possible to outline the number of replicates required to satisfy statistical
criteria such as p-value or student test. The three indicators are:



student t test (see Lee et al., 2015)

standard error (see Bobachev and Morris, 2010)

coefficient of variation (see this blog post for neat concise explanation)

Each measure is made n times, one for each simulation point, with n the value of facet sample , and m
replicates for each point, with m the value of facet experiment repeat . It means that, we provide n
statistical tests, for which we have m instance. The tests are conducted with 2 replicates, then 3, 4, etc.
up to m; repeated n times. Tests gives you correlation, error and variation indexes, for 2 to m replicates,
with various build-in thresholds to decide if test is successful on not. Those tests are repeated n times to
ensure that the test is not only processed on a particular configuration of the simulation, for example a
point in the parameter space that emphasis or decrease stochastic processes.

Useful facets:

sample : the number of point of the parameter space to build. Optional, when omitted default value
is 1.

sampling : the sampling algorithm used to draw sample  number of points

from : a file with corresponding points of scenarios that might have higher stochastic impact.
Optional.

with : a given list of points (map). Optional.

Exemple

In this example, 40 x 3 simulations will be run; stochastic indexes will be computed over 3 different point
in the parameter space and failure/success computed from 2 to 40 replicates.

Sobol Analysis: sobol

This is an implementation of the Sobol sensitivity analysis exploration. It is based on the implementation
of the algorithm provided by http://moeaframework.org under the GPL GNU licence.

Rational behind the Sobol sensitivity analysis can be found in Saltelli article
(https://doi.org/10.1016/S0010-4655(02)00280-1). To put it simple, the procedure randomly drawn N x P
points in the parameter space (with N defined by the sample  parameter and P the number of

experiment stoch type: batch until: time > end_cycle repeat:40 keep_simulations:false {
method stochanalyse outputs:["num_dead"] results:"Results/stochanalysis.txt" 

sample:3;
} 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwii2v6Q4939AhVNTKQEHRt2AugQFnoECAcQAQ&url=https%3A%2F%2Fwww.jasss.org%2F18%2F4%2F4.html&usg=AOvVaw0XACedj9zAa5PFAL7ePiyG
https://ieeexplore.ieee.org/abstract/document/5601895/
https://eracons.com/resources/mcs-post-processing
http://moeaframework.org/
https://doi.org/10.1016/S0010-4655(02)00280-1


parameters to explore), execute the set of associated simulation and compute first, second and total
ordered sensitivity indexes. Intuitively, those values give an estimated contribution of the parameters to
the variability of one or several outputs (the outputs  list in parameter of the method).

Useful facet:

sample , the size of the sample N for the sobol sequence. Mandatory.

Example:

Morris Analysis: morris

The corresponding method is an implementation of the Morris sensitivity analysis exploration. It is a
Java re-implementation of the R package sensitivity and proposes two main feature : the sampling
method and a sensitivity analysis, both attached to the statement morris  (both as the name of an
analysis method and a keyword to define a sampling method).

Rational behind the Morris sensitivity analysis can be found in the Morris's seminal article; more
resources (including open access ones) can be found here. Compared to Sobol analysis, Morris does not
include interaction effect between parameters but provide a positive/negative valence to the impact of
parameters in addition to the magnitude of the contribution. In short, Morris analysis the contribution
of parameter one factor at a time (OFAT), making it possible to elicit most impactful parameters, also
giving insight on the direction of contribution of parameters, that is increasing the value of one
parameter with a negative Morris index, will impact negatively the value of the outputs of interest.

Useful facet:

sample : the size of the sample for the sobol sequence. Mandatory.

level : the number of times the Morris sampling will slightly change the value of parameters to
evaluate sensitivity of outputs. Optional, when omitted default value is 4

Example:

experiment Sobol type: batch keep_seed:true until:( time > 5000 ) {
method sobol outputs:["num_dead"] sample:100 report:"Results/sobol.txt" 

results:"Results/sobol_raw.csv";
}

experiment Morris type: batch keep_seed:true until:( time > 5000 ) {
method morris outputs:["num_dead"] sample:100 level:4 

https://cran.r-project.org/web/packages/sensitivity/index.html
https://www.tandfonline.com/doi/abs/10.1080/00401706.1991.10484804
https://www.sciencedirect.com/topics/engineering/morris-method


Beta Analysis: betad

This method corresponds to the proposed sensitivity analysis by Baucells and Borgonovo. Contrary to
both Sobol and Morris SA methods, betad  is not based on results variance but rely on the global
distribution of results; which means that it includes full interactions between parameters in the
assessment of one factor impact on the whole distribution of outputs. To put it simply, beta distribution
evaluates how much variation on a parameter input will increase the maximum absolute differences

Most important contribution of this method is to provide a third evaluation which may push or hinder
results from Morris and Sobol. Used together, the three method provides solid understanding of input
contribution over outputs of interests.

Useful facet:

sample : the size of the sample for the sobol sequence. Mandatory.

sampling : contrary to sobol and morris, no particular sampling algorithm had been defined to fit
beta^d  index computation. Optional, when omitted default is factorial.

Example:

Calibration Methods
Calibration is the third exploration feature of the batch experiments. Conversely to previous exploration
methods, calibration will try to find the best combination of inputs to obtain best matching for desired
outputs. In short, calibration is an optimization of input parameter values in order to be as close as
possible to desired outputs. To elicit how close the input allows to be relatively to requested output, the
algorithm uses a fitness measure, that is a variable, defined in the model, which evaluate the 'distance'
between a specific simulation outputs and the requested one. It is up to modelers to define this variable
within the model keeping in mind that the fitness could be minimize (with 0 a perfect match) or
maximized (can always be improved).

report:"Results/morris.txt" results:"Results/morris_raw.csv";
}

experiment Morris type: batch keep_seed:true until:( time > 5000 ) {
method betad outputs:["num_dead"] sample:100 sampling:orthogonal 

report:"Results/betad.txt" results:"Results/beta_raw.csv";
}

https://doi.org/10.1287/mnsc.2013.1719


Specific facets dedicated to calibration methods are:

minimize  or maximize  (mandatory for optimization methods): a facet defining the expression to be
optimized.

aggregation  (optional): the possible values are min  or max  (string). Each combination of parameter
values is tested repeat  times. The aggregated fitness of one combination is by default the average
of fitness values obtained with those repetitions. This aggregated fitness can be turned to the
minimum or the maximum of the obtained fitness values using this facet.

other parameters that are specific to the exploration method (optional): see below for a description
of these facets.

Hill Climbing: hill_climbing

This algorithm is an implementation of the Hill Climbing algorithm. See the Wikipedia article for a more
detailed explanation. This is a local search method that tries at each step, given a solution s , to find a
solution s'  in the neighborhood of s  that increases (or decreases depending on the aim of the
exploration) the fitness. This method is more efficient than the global exploration to find an optimum,
but with the risk of finding a local optimum, whereas a global optimum could exist.

Algorithm:

Method facets (i.e. parameters):

iter_max : number of iterations before stoping the exploration.

Example:

 Initialization of an initial solution s 
 iter = 0
 While iter <= iter_max, do:
   Choice of the solution s' in the neighborhood of s that maximize the fitness 
function
   If f(s') > f(s)
     s = s'
   Else
     end of the search process
   EndIf
   iter = iter + 1
 EndWhile

https://en.wikipedia.org/wiki/Hill_climbing
https://en.wikipedia.org/wiki/Hill_climbing


Simulated Annealing: annealing

This algorithm is an implementation of the Simulated Annealing algorithm. See the Wikipedia article for
more details. This is a global search method able to find an approximation of a global optimum. The
idea is close to the one of slow cooling: given a solution, the algorithm will look for a better one in its
neighborhood. This size of the neighborhood (represented by the temperature) will decrease over the
execution of the algorithm.

Algorithm:

Method facets (i.e. parameters):

temp_init : Initial temperature.

experiment Batch type: batch repeat: 2 keep_seed: true until: (food_gathered = 
food_placed ) or ( time > 400 ) {
    parameter 'Evaporation:' var: evaporation_rate among: [ 0.1 , 0.2 , 0.5 , 0.8 , 1.0 
] unit: 'rate every cycle (1.0 means 100%)';
    parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0 unit: 'rate every 
cycle (1.0 means 100%)' step: 0.3;

    method hill_climbing iter_max: 50 maximize: food_gathered;
}

 Initialization of an initial solution s 
 temp = temp_init
 While temp > temp_end, do:
   iter = 0
   While iter < nb_iter_cst_temp, do:
     Random choice of a solution s2 in the neighborhood of s  
     df = f(s2)-f(s)
     If df > 0 
       s = s2
     Else,
       rand = random number between 0 and 1
       If rand < exp(df/temp)
         s = s2
       EndIf
     EndIf
     iter = iter + 1
   EndWhile
   temp = temp * temp_decrease
 EndWhile

https://en.wikipedia.org/wiki/Simulated_annealing


temp_end : Final temperature.

temp_decrease : Temperature decrease coefficient.

nb_iter_cst_temp : Number of iterations per level of temperature.

Example:

Tabu Search: tabu

This algorithm is an implementation of the Tabu Search algorithm. See the Wikipedia article for more
details. This is a local search method. To avoid the issue of local optimum, two additional principals are
added: (i) worsening, i.e. the algorithm can sometimes choose a worse solution, (ii) prohibitions, i.e.
solutions that have already been explored will become tabu in order to avoid that the algorithm
considers them repeatedly.

Algorithm:

experiment Batch type: batch repeat: 2 keep_seed: true until: (food_gathered = 
food_placed ) or ( time > 400 ) {
    parameter 'Evaporation:' var: evaporation_rate among: [ 0.1 , 0.2 , 0.5 , 0.8 , 1.0 
] unit: 'rate every cycle (1.0 means 100%)';
    parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0 unit: 'rate every 
cycle (1.0 means 100%)' step: 0.3;

    method annealing 
        temp_init: 100  temp_end: 1 
        temp_decrease: 0.5 nb_iter_cst_temp: 5 
        maximize: food_gathered;
}

 Initialization of an initial solution s 
 tabuList = {}
 iter = 0
 While iter <= iter_max, do:
   Choice of the solution s2 in the neighborhood of s such that:
     s2 is not in tabuList
     the fitness function is maximal for s2
   s = s2
   If size of tabuList = tabu_list_size
     removing of the oldest solution in tabuList 
   EndIf
   tabuList = tabuList + s

https://en.wikipedia.org/wiki/Tabu_search


Method facets (i.e. parameters):

iter_max : number of iterations.

tabu_list_size : size of the tabu list.

Example:

Reactive Tabu Search: reactive_tabu

This algorithm is a simple implementation of the Reactive Tabu Search algorithm (Battiti et al., 1993).
This Reactive Tabu Search is an enhanced version of the Tabu search. It adds two new elements to the
classic Tabu Search. The first one concerns the size of the tabu list: in the Reactive Tabu Search, this one
is not constant anymore but it dynamically evolves according to the context. Thus, when the exploration
process visits too often the same solutions, the tabu list is extended in order to favor the diversification
of the search process. On the other hand, when the process has not visited an already known solution
for a high number of iterations, the tabu list is shortened in order to favor the intensification of the
search process. The second new element concerns the adding of cycle detection capacities. Thus, when
a cycle is detected, the process applies random movements in order to break the cycle.

Method parameters:

iter_max : number of iterations.

tabu_list_size_ini : initial size of the tabu list.

tabu_list_size_min : minimal size of the tabu list.

tabu_list_size_max : maximal size of the tabu list.

   iter = iter + 1
 EndWhile

experiment Batch type: batch repeat: 2 keep_seed: true until: (food_gathered = 
food_placed ) or ( time > 400 ) {
    parameter 'Evaporation:' var: evaporation_rate among: [ 0.1 , 0.2 , 0.5 , 0.8 , 1.0 
] unit: 'rate every cycle (1.0 means 100%)';
    parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0 unit: 'rate every 
cycle (1.0 means 100%)' step: 0.3;

    method tabu 
        iter_max: 50 tabu_list_size: 5 
        maximize: food_gathered;
}



nb_tests_wthout_col_max : number of movements without collision before shortening the tabu list.

cycle_size_min : minimal size of the considered cycles.

cycle_size_max : maximal size of the considered cycles.

Example:

Genetic Algorithm: genetic

This is a simple implementation of Genetic Algorithms (GA). See the Wikipedia article for more details.
The principle of GA is to search an optimal solution by applying evolution operators on an initial
population of solutions. There are three types of evolution operators:

Crossover: Two solutions are combined in order to produce new solutions.

Mutation: a solution is modified.

Selection: only a part of the population is kept. Different techniques can be applied to this selection.
Most of them are based on solution quality (fitness).

Representation of the solutions:

Individual solution: {Param1 = val1; Param2 = val2; ...}

Gene: Parami = vali

Initial population building: the system builds nb_prelim_gen random initial populations composed of
pop_dim individual solutions. Then, the best pop_dim solutions are selected to be part of the initial
population.

experiment Batch type: batch repeat: 2 keep_seed: true until: (food_gathered = 
food_placed ) or ( time > 400 ) {
    parameter 'Evaporation:' var: evaporation_rate among: [ 0.1 , 0.2 , 0.5 , 0.8 , 1.0 
] unit: 'rate every cycle (1.0 means 100%)';
    parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0 unit: 'rate every 
cycle (1.0 means 100%)' step: 0.3;

    method reactive_tabu 
        iter_max: 50 tabu_list_size_init: 5 tabu_list_size_min: 2 tabu_list_size_max: 
10 
        nb_tests_wthout_col_max: 20 cycle_size_min: 2 cycle_size_max: 20 
        maximize: food_gathered;
}

https://en.wikipedia.org/wiki/Genetic_algorithm


Selection operator: roulette-wheel selection: the probability to choose a solution is equal to
fitness(solution)/ Sum of the population fitness. A solution can be selected several times. Ex: population
composed of 3 solutions with fitness (that we want to maximize) 1, 4 and 5. Their probability to be
chosen is equal to 0.1, 0.4 and 0.5.

Mutation operator: The value of one parameter is modified. Ex: The solution {Param1 = 3; Param2 = 2}
can mute to {Param1 = 3; Param2 = 4}

Crossover operator: A cut point is randomly selected and two new solutions are built by taking the half
of each parent solution. Ex: let {Param1 = 4; Param2 = 1} and {Param1 = 2; Param2 = 3} be two solutions.
The crossover operator builds two new solutions: {Param1 = 2; Param2 = 1} and {Param1 = 4; Param2 =
3}.

Method facets (i.e. parameters):

pop_dim : size of the population (number of individual solutions).

crossover_prob : crossover probability between two individual solutions.

mutation_prob : mutation probability for an individual solution.

nb_prelim_gen : number of random populations used to build the initial population.

max_gen : number of generations.

Example:

Particle Swarm Optimization: pso

This is an implementation of the Partical Swarm Optimization algorithme (PSO). See the Wikipedia article
for more details. It solves a problem by having a population of candidate solutions, here dubbed
particles, and moving these particles around in the search-space according to simple mathematical
formula over the particle's position and velocity. Each particle's movement is influenced by its local best

experiment Batch type: batch repeat: 2 keep_seed: true until: (food_gathered = 
food_placed ) or ( time > 400 ) {
    parameter 'Evaporation:' var: evaporation_rate among: [ 0.1 , 0.2 , 0.5 , 0.8 , 1.0 
] unit: 'rate every cycle (1.0 means 100%)';
    parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0 unit: 'rate every 
cycle (1.0 means 100%)' step: 0.3;

    method genetic maximize: food_gathered 
        pop_dim: 5 crossover_prob: 0.7 mutation_prob: 0.1 
        nb_prelim_gen: 1 max_gen: 20; 
}

https://en.wikipedia.org/wiki/Particle_swarm_optimization


known position, but is also guided toward the best known positions in the search-space, which are
updated as better positions are found by other particles. This is expected to move the swarm toward the
best solutions.

Method facets (i.e. parameters):

iter_max , number of iterations.

num_particles , number of particles.

weight_cognitive , weight for the cognitive component.

weight_inertia , weight for the inertia component.

weight_social , weight for the social component.

Example:

experiment PSO type: batch keep_seed: true repeat: 3 until: ( time > 5000 ) {
parameter 'Infection rate' var: infection_rate min: 0.1 max:0.5 step:0.01;
parameter 'Probability of dying:' var: dying_proba min: 0.01 max: 0.2 

step:0.01;
method pso num_particles: 3 weight_inertia:0.7 weight_cognitive: 1.5 

weight_social: 1.5  iter_max: 5  minimize: num_dead  ; 
}



Version: 1.9.3

Optimizing Models
Now you are becoming more comfortable with GAML, it is time to think about how the runtime works,
to be able to run some more optimized models. Indeed, if you already tried to write some models by
yourself using GAML, you could have noticed that the execution time depends a lot of how you
implemented your model!

We will first present you in this part some runtime concepts (and present you the species facet
scheduler ), and we will then show you some tips to optimize your models (how to increase
performances using scheduler, grids, displays and how to choose your operators).

http://localhost:3000/wiki/RuntimeConcepts
http://localhost:3000/wiki/RuntimeConcepts#schedule-agents
http://localhost:3000/wiki/OptimizingModels
http://localhost:3000/wiki/OptimizingModels#scheduling
http://localhost:3000/wiki/OptimizingModels#grid
http://localhost:3000/wiki/OptimizingModels#displays
http://localhost:3000/wiki/OptimizingModels#operators


Version: 1.9.3

Runtime Concepts
When a model is being simulated, a number of algorithms are applied, for instance, to determine the
order in which to run the different agents, or the order in which the initialization of agents is performed,
etc. This section details some of them, which can be important when building models and
understanding how they will be effectively simulated.

Table of contents
Simulation initialization

Agents Creation

Agents Step

Schedule Agents

Simulation initialization
Once the user launches an experiment, GAMA starts by creating an experiment agent that will manage
the initialization of the simulation(s). For each simulation, first, it creates a world  agent.

It initializes all its attributes with their init values. This includes its shape  (that will be used as the
environment of the simulation).

If a species of type grid exists in the model, agents of this species are created.

Finally, the init  statement of the global  is executed. It should include the creation of all the other
agents of regular species of the simulation. After their creation and initialization, they are added in the
list members  the world  (that contains all the micro-agent of the world ).

Agents Creation
Except grid  agents, other agents are created using the create  statement. It is used to allocate
memory for each agent and to initialize all its attributes.

If no explicit initialization exists for an attribute, it will get the default value corresponding to its type.

http://localhost:3000/wiki/GlobalSpecies
http://localhost:3000/wiki/GridSpecies
http://localhost:3000/wiki/RegularSpecies
http://localhost:3000/wiki/GridSpecies
http://localhost:3000/wiki/Statements#create
http://localhost:3000/wiki/DataTypes


The initialization of an attribute can be located at several places in the code; they are executed in the
following order (which means that, if several ways are used, the attribute will finally have the value of
the last applied one):

in the attribute declaration, using the init  or <-  facet.

using the from:  or with  facet of the create  statement.

in the init  block of the species.

in the embedded block of the create  statement.

Agents Step
When an agent is asked to step, it means that it is expected to:

update its variables (facet update  in the variable declaration),

run its behaviors (reflex, state...),

step its micro-agents (if any).

Notice that, using architecture to manage the behavior of agents, is only a possibility provided by GAMA
to ease the development of a model. Modelers who need precise control on the agents' step can:

redefine the _step_  action of the species, in order to explicit how the agents will behave,

implement no behavior in the species (but only action ). The execution of agents can thus be
controlled from a reflex of the global  that can control the execution of each of them.

step of agent agent_a
    {
        species_a <- agent_a.species
        architecture_a <- species_a.architecture
        ask architecture_a to step agent_a {
             ask agent_a to update species_a.variables
             ask agent_a to run architecture_a.behaviors
        }

        ask each micro-population mp of agent_a to step {
            list<agent> sub-agents <- mp.compute_agents_to_schedule
            ask each agent_b of sub-agents to step //... recursive call...
        }
    }



Schedule Agents
The global scheduling of agents is then simply the application of this previous step to the experiment
agent, keeping in mind that this agent has only one micro-population (of simulation agents, each
instance of the model species), and that the simulation(s) inside this population contain(s), in turn, all
the "regular" populations of agents of the model.

To influence this schedule, then, one possible way is to change the way populations compute their lists
of agents to schedule, which can be done in a model by providing custom definitions to the schedules
facet of one or several species.

A practical application of this facet is to reduce simulation artifacts created by the default scheduling of
populations, which is sequential (i.e. their agents are executed in turn in their order of creation). To
enable pseudo-parallel scheduling based on a random scheduling recomputed at each step, one has
simply to define the corresponding species like in the following example:

Moving further, it is possible to enable completely random scheduling, that will eliminate the sequential
scheduling of populations, by defining a custom species acting as a scheduler of the agents (that will be
executed after the world  agent):

It is important to suppress the population-based scheduling to avoid having agents being scheduled 2
times (one time in the custom definition, one time by their population). Note that it is not necessary to
create a scheduler agent.

Other schemes are possible. For instance, the following definition will completely suppress the default
scheduling mechanism to replace it with a custom scheduler that will execute the world, then all agents
of species A in a random way and then all agents of species B in their order of creation:

species A schedules: shuffle(A) {...}

global {...}

species scheduler schedules: shuffle(A + B + C);

species A schedules: [] {...}
species B schedules: [] {...}
species C schedules: [] {...}



Complex conditions can be used to express which agents need to be scheduled at each step. For
instance, in the following definition, only agents of A that return true to a particular condition are
scheduled:

Be aware that enabling a custom scheduling can potentially end up in non-functional simulations. For
example, the following definition will result in an infinite loop (which will trigger a stack overflow at
some point):

Note that schedules  facet will not be taken into account when it is added to the global . It is thus not
possible to unschedule the world  agent.

global {...} 

species scheduler schedules: shuffle(A) + B; // explicit scheduling in the world

species A schedules [];
species B schedules: [];

species A schedules: A where each.can_be_scheduled() {

    bool can_be_scheduled() {
         ...
         returns true_or_false;
    }
}

global {} // The world is normally scheduled...

species my_scheduler schedules: [world]; // ... but schedules itself again as a 
consequence of scheduling the micro-species 'my_scheduler'



Version: 1.9.3

Optimizing Models
This page aims at presenting some tips to optimize the memory footprint or the execution time of a
model in GAMA.

Note: since GAMA 1.6.1, some optimizations have become obsolete because they have been included in the
compiler. They have, then, been removed from this page. For instance, writing 'rgb(0,0,0)' is now compiled
directly as '#black'.

Table of contents
Benchmarking

Scheduling

Grid
Optimization Facets

use_regular_agents

use_individual_shapes

Operators
List operators

first_with

where / count

Spatial operators
container of agents in closest_to, at_distance, overlapping, inside

Accelerate with a first spatial filtering

Displays
shape

circle vs square / sphere vs cube

OpenGL refresh facets

Benchmarking
In order to optimize a model, it is important to exactly know which part of the model take times. It is
thus possible to benchmark the global execution of the model using the benchmark  facet of the



experiment  statement: it will produce a global report on the number of times any keyword has been
used and how long has been spent to execute them.

benchmark  is also a statement that can be used on a block of codes to evaluate its execution. In
addition, it provides the possibility to run the block of code several times to get more accurate results.

Finally the manual way to evaluate the execution of a code could be using the machine_time  built-in
global variable that gives the current time in milliseconds. Then to compute the time taken by a
statement, a possible way is to write:

Scheduling
If you have a species of agents that, once created, are not supposed to do anything more (i.e. no
behavior, no reflex, their actions triggered by other agents, their attributes being simply read and
written by other agents), such as a "data" grid, or agents representing a "background" (from a shape file,
etc.), consider using the schedules: []  facet on the definition of their species. This trick allows to tell
GAMA to not schedule any of these agents.

experiment Benchmarking type: gui benchmark: true { }

global {
    init {

create people number: 300;
    }

    reflex neighboorhood {
benchmark "Benchmark of closest_to operator" repeat: 100 {
    ask people {

do get_closest_people;
    }
}

    }
}

float t <- machine_time;
// here a block of instructions that you consider as "critical"
// ...
write "duration of the last instructions: " + (machine_time - t);



The schedules  facet is dynamically computed (even if the agents are not scheduled), so, if you happen
to define agents that only need to be scheduled every x cycles, or depending on a condition, you can
also write schedules  to implement this. For instance, the following species will see its instances
scheduled every 10 steps and only if a certain condition is met:

In the same way, modelers can use the frequency facet to define when the agents of a species are going
to be activated. By setting this facet to 0, the agents are never activated.

Grid

Optimization Facets

In this section, we present some facets that allow to optimize the use of grid (in particular in terms of
memories). Note that all these facet can be combined (see the Life model from the Models library).

use_regular_agents

If false, then a special class of agents is used. This special class of agents used less memories but has
some limitation: the agents cannot inherit from a "normal" species, they cannot have sub-populations,
their name cannot be modified, etc.

use_individual_shapes

grid my_grid height: 100 width: 100 schedules: []  {
      ...
}

species my_species schedules: (every 10) ? (condition ? my_species : []) : []  {
     ...
}

species my_species frequency: 0 {
     ...
}

grid cell width: 50 height: 50 use_regular_agents: false ;



If false, then only one geometry is used for all agents. This facet allows to gain a lot of memory, but
should not be used if the geometries of the agents are often activated (for instance, by an aspect).

Parallel execution

The grid  statement can also specify whether the agents of the grid are computed in parallel, using the
facet parallel . This could increase (depending on the computation) the execution time.

Operators

List operators

first_with

It is sometimes necessary to randomly select an element of a list that verifies a given condition. Many
modelers use the one_of  and the where  operators to do this:

Whereas it is often more optimized to use the shuffle  operator to shuffle the list, then the first_with
operator to select the first element that verifies the condition:

where / count

It is quite common to want to count the number of elements of a list or a container that verify a
condition. The obvious to do it is:

This will however create an intermediary list before counting it, and this operation can be time
consuming if the number of elements is important. To alleviate this problem, GAMA includes an

grid cell width: 50 height: 50 use_individual_shapes: false ;

bug one_big_bug <- one_of (bug where (each.size > 10));

bug one_big_bug <- shuffle(bug) first_with (each.size > 10);

int n <- length(my_container where (each.size > 10));



operator called count  that will count the elements that verify the condition by iterating directly on the
container (no useless list created):

Spatial operators

container of agents in closest_to , at_distance , overlapping , inside

Several spatial query operators (such as closest_to , at_distance , overlapping  or inside ) allow to
restrict the agents being queried to a container of agents. For instance, one can write:

This expression is formally equivalent to :

But it is much faster if your container is large, as it will query the agents using a spatial index (instead
of browsing through the whole container). Note that in some cases, when you have a small number of
agents, the first syntax will be faster. The same applies to the other operators.

Now consider a very common case: you need to restrict the agents being queried, not to a container, but
to a species (which, actually, acts as a container in most cases). For instance, you want to know which
predator is the closest to the current agent. If we apply the pattern above, we would write:

or

But these two operators can be painfully slow if your species has many instances (even in the second
form). In that case, always prefer using directly the species as the left member:

int n <- my_container count (each.size > 10);

agent closest_agent <- a_container_containing_agents closest_to self;

agent closest_agent <- a_container_containing_agent with_min_of (each distance_to 
self);

predator closest_predator <- predator with_min_of (each distance_to self);

predator closest_predator <- list(predator) closest_to self;



Not only is the syntax clearer, but the speed gain can be phenomenal because, in that case, the list of
instances is not used (we just check if the agent is an instance of the left species).

However, what happens if one wants to query instances belonging to 2 or more species? If we follow our
reasoning, the immediate way to write it would be (if predator 1 and predator 2 are two species):

or, more simply:

The first syntax suffers from the same problem than the previous syntax: GAMA has to browse through
the list (created by the concatenation of the species populations) to filter agents. The solution, then, is
again to use directly the species, as GAMA is clever enough to create a temporary "fake" population out
of the concatenation of several species, which can be used exactly like a list of agents, but provides the
advantages of a species population (no iteration made during filtering).

Accelerate closest_to  with a first spatial filtering

The closest_to  operator can sometimes be slow if numerous agents are concerned by this query. If the
modeler is just interested in a small subset of agents, it is possible to apply a first spatial filtering on the
agent list by using the at_distance  operator.

For example, if the modeler wants first to do a spatial filtering of 10m:

To be sure to find an agent, the modeler can use a test statement:

Displays

predator closest_ predator <- predator closest_to self;

agent closest_agent <- (list(predator1) + list(predator2)) closest_to self; 

agent closest_agent <- (predator1 + predator2) closest_to self;

agent closest_agent <- (predator1 at_distance 10) closest_to self;

agent closest_agent <- (predator1 at_distance 10) closest_to self;
if (closest_agent = nil) {closest_agent  <- predator1 closest_to self;}



shape

It is quite common to want to display an agent as a circle or a square. A common mistake is to mix up
the shape to draw and the geometry of the agent in the model. If the modeler just wants to display a
particular shape, he/she should not modify the agent geometry (i.e. its shape  attribute, which is a point
by default), but just specify the shape to draw in the agent aspect.

circle vs square / sphere vs cube

Note that in OpenGL and Java2D (the two rendering subsystems used in GAMA), creating and drawing a
circle geometry is more time consuming than creating and drawing a square (or a rectangle). In the
same way, drawing a sphere is more time consuming than drawing a cube. Hence, if you want to
optimize your model displays and if the rendering does not explicitly need "rounded" agents, try to use
squares/cubes rather than circles/spheres.

OpenGL refresh facets

In OpenGL display, it is possible to specify that it is not necessary to refresh a layer with the facet
refresh . If a species of agents is never modified in terms of visualization (location, shape or color), you
can set refresh  to false. Example:

species bug {
     int size <- rnd(100);

      aspect circle {
          draw circle(2) color: #blue;
      }
}

display city_display_opengl type: opengl{
     species building aspect: base refresh: false;
     species road aspect: base refresh: false;
     species people aspect: base;
}



Version: 1.9.3

Multi-Paradigm Modeling

Multi-paradigm modeling is a research field focused on how to define a model semantically. From the
beginning of this step by step tutorial, our approach is based on behavior (or reflex), for each agents. In

http://localhost:3000/wiki/DefiningActionsAndBehaviors#behaviors


this part, we will see that GAMA provides other ways to implement your model, using several control
architectures. Sometime, it will be easier to implement your models choosing other paradigms.

In a first part, we will see how to use some control architectures which already exist in GAML, such as
finite state machine architecture, task based architecture or user control architecture. In a second part,
we will see an approach based on mathematical modeling through use of differential equations.

http://localhost:3000/wiki/ControlArchitecture
http://localhost:3000/wiki/ControlArchitecture#finite-state-machine
http://localhost:3000/wiki/ControlArchitecture#task-based
http://localhost:3000/wiki/ControlArchitecture#user-control-architecture
http://localhost:3000/wiki/DifferentialEquations


Version: 1.9.3

Control Architectures
GAMA allows the modeler to attach built-in control architecture to agents.

These control architectures will give the possibility to the modeler to use for a species a specific control
architecture in addition to the common behavior structure. Note that only one control architecture can
be used per species.

The attachment of a control architecture to a species is done through the facets control .

For example, the given code attaches the fsm  control architecture to the dummy species.

GAMA integrates several agent control architectures that can be used in addition to the common
behavior structure:

fsm: finite state machine based behavior model. During its life cycle, the agent can be in several
states. At any given time step, it is in one single state. Such an agent needs to have one initial state
(the state in which it will be at its initialization)

weighted_tasks: task-based control architecture. At any given time, only the task with the maximal
weight is executed.

sorted_tasks: task-based control architecture. At any given time, the tasks are all executed in the
order specified by their weights (highest first).

probabilistic_tasks: task-based control architecture. This architecture uses the weights as a support
for making a weighted probabilistic choice among the different tasks. If all tasks have the same
weight, one is randomly chosen at each step.

rules: rules-based control architecture. This architecture uses a set of rules, that will be executed if a
given condition is fulfilled and in an order defined by a priority.

user_only: allows users to take control over an agent during the course of the simulation. With this
architecture, only the user control the agents (no reflexes).

user_first: allows users to take control over an agent during the course of the simulation. With this
architecture, the user actions are executed before the agent reflexes.

user_last: allows users to take control over an agent during the course of the simulation. With this
architecture, the user actions are executed after the agent reflexes.

species dummy control: fsm {
}

http://localhost:3000/wiki/DefiningActionsAndBehaviors#Behaviour


An exhaustive list of the architectures available with GAMA provides all the variables and additional
actions provided by an architecture.

Index
Finite State Machine

Declaration

state  statement

Task Based
Declaration

task

User Control Architecture
user_only, user_first, user_last

Additional attribute

user_panel

Other Control Architectures

Finite State Machine
FSM (Finite State Machine) is a finite state machine-based behavior model. During its life cycle, the
agent can be in several states. At any given time step, it is in one single state. Such an agent needs to
have one initial state (the state in which it will be at its initialization).

At each time step, the agent will:

first (only if he just entered in its current state) execute statement embedded in the enter
statement,

then all the statements in the state  statement,

it will evaluate the condition of each embedded transition  statements. If one condition is fulfilled,
the agent executes the embedded statements.

Note that an agent executes only one state at each step.

Declaration

Using the FSM architecture for a species require to use the control facet:

http://localhost:3000/wiki/BuiltInArchitectures


state  statement

Facets

initial : a boolean expression, indicates the initial state of the agent (only one state with initial
set to true is allowed in a species).

final : a boolean expression, indicates the final state of the agent.

Sub Statements

enter : a sequence of statements to execute upon entering the state.

exit : a sequence of statements to execute right before exiting the state. Note that the exit
statement will be executed even if the fired transition points to the same state (the FSM architecture
in GAMA does not implement 'internal transitions' like the ones found in UML statecharts: all
transitions, even "self-transitions", follow the same rules).

transition : allows to define a condition that, when evaluated to true, will designate the next state
of the life-cycle. Note that the evaluation of transitions is short-circuited: the first one that evaluates
to true, in the order in which they have been defined, will be followed. I.e., if two transitions
evaluate to true during the same time step, only the first one will be triggered.

Things worth to be mentioned regarding these sub-statements:

Obviously, only one definition of exit  and enter  is accepted in a given state .

transition  statements written in the middle of the state statements will only be evaluated at the
end, so, even if it evaluates to true, the remaining of the statements found after the definition of the
transition will be nevertheless executed. So, despite the appearance, a transition written
somewhere in the sequence will "not stop" the state at that point (but only at the end).

Definition

A state can contain several statements that will be executed, at each time step, by the agent. There are
three exceptions to this rule:

1. statements enclosed in enter  will only be executed when the state is entered (after a transition, or
because it is the initial state).

species dummy control: fsm {
   ...
}



2. Those enclosed in exit  will be executed when leaving the state as a result of a successful transition
(and before the statements enclosed in the transition).

3. Those enclosed in a transition will be executed when performing this transition (but after the exit
sequence has been executed).

For example, consider the following example:

The dummy agents start at state1. At each simulation step, they have a probability of 0.5 to change their
state to state2. If they do not change their state to state2, they have a probability of 0.2 to change their
state to state3. In state2, at each simulation step, they have a probability of 0.5 to change their state to
state1. At last, in step3, at each simulation step, they have a probability of 0.5 to change their state to
state1. If they do not change their state to state1, they have a probability of 0.2 to change their state to
state2.

Here a possible result that can be obtained with one dummy agent:

species dummy control: fsm {       
    state state1 initial: true { 

write string(cycle) + ":" + name + "->" + "state1";
transition to: state2 when: flip(0.5) {
    write string(cycle) + ":" + name + "->" + "transition to state1";
}
transition to: state3 when: flip(0.2) ; 

    }

    state state2 {
write string(cycle) + ":" + name + "->" + "state2";
transition to: state1 when: flip(0.5) { 
    write string(cycle) + ":" + name + "->" + "transition to state1";
}
exit {
    write string(cycle) + ":" + name + "->" + "leave state2";
}

    }

    state state3 {
write string(cycle) + ":" + name + "->" + "state3";
transition to: state1 when: flip(0.5)  {
    write string(cycle) + ":" + name + "->" + "transition to state1";
}
transition to: state2 when: flip(0.2)  ;

    }   
}



Task-Based
GAMA integrated several task-based control architectures. Species can define any number of tasks
within their body. At any given time, only one or several tasks are executed according to the architecture
chosen:

weighted_tasks : in this architecture, only the task with the maximal weight is executed.

sorted_tasks : in this architecture, the tasks are all executed in the order specified by their weights
(biggest first)

probabilistic_tasks : this architecture uses the weights as a support for making a weighted
probabilistic choice among the different tasks. If all tasks have the same weight, one is randomly
chosen each step.

Declaration

Using one of the task architectures for a species requires to use the control facet:

0:dummy0->state1
0:dummy0->transition to state1
1:dummy0->state2
2:dummy0->state2
2:dummy0->leave state2
2:dummy0->transition to state1
3:dummy0->state1
3:dummy0->transition to state1
4:dummy0->state2
5:dummy0->state2
5:dummy0->leave state2
5:dummy0->transition to state1
6:dummy0->state1
7:dummy0->state3
8:dummy0->state2

species dummy control: weighted_tasks {
   ...
}

species dummy control: sorted_tasks {
   ...



task  statement

Facets

Besides a sequence of statements like reflex , a task contains the following additional facet:

weight : Mandatory. The priority level of the task.

Definition

As reflex , a task  is a sequence of statements that can be executed, at each time step, by the agent. If
an agent owns several tasks, the scheduler chooses a task to execute based on its current priority
weight value.

For example, consider the following example:

As the weighted_tasks control architecture was chosen, at each simulation step, the dummy agents
execute only the task with the highest behavior. Thus, when cycle modulo 3 is higher to 2, task1 is
executed; when cycle modulo 3 is lower than 2, task2 is executed. In case when cycle modulo 3 is equal 2
(at cycle 2, 5, ...), the only the first task defined (here task1) is executed.

Here the result obtained with one dummy agent:

}

species dummy control: probabilistic_tasks {
   ...
}

species dummy control: weighted_tasks {   
    task task1 weight: cycle mod 3 { 

write string(cycle) + ":" + name + "->" + "task1";
    }
    task task2 weight: 2 { 

write string(cycle) + ":" + name + "->" + "task2";
    }
}

0:dummy0->task2
1:dummy0->task2
2:dummy0->task1



Rules-based architecture
The behavior of an agent with the rules-based architecture can contain reflex  and rule  statements.
The reflex  block will always be executed first. Then the rules are fired (executed) when their condition
becomes true and in the order defined by their decreasing priorities.

Declaration

Using the rules-based architectures for a species requires to use the control facet:

rule  statement

facets

when : (boolean), the condition that needs to be fulfilled to execute the rule.

priority : (float), an optional priority for the rule, which is used to sort activable rules and run them
in that order.

Definition

As reflex , a rule  is a sequence of statements that can be executed, at each time step, by the agent.
They are executed if and only if their condition expression ( when  facet) is fulfilled. Among all the rules
that fulfill their condition, the tasks are executed in the decreasing order of their priority ( priority
facet).

For example, consider the following example:

3:dummy0->task2
4:dummy0->task2
5:dummy0->task1
6:dummy0->task2

species dummy control: rules {
   ...
}

species simple_rules_statements control: rules {

    int priority_of_a <- 0 update: rnd(100);



At each simulation step, first, the agents update the priority values associated with the rules. The
reflex  will first display these values. Then the conditions are evaluated and the rules that can be
executed are executed in their priority order.

Here a possible result:

    int priority_of_b <- 0 update: rnd(100);

    reflex show_priorities {
write "Priority of rule a = " + priority_of_a + ", priority of rule b = " + 

priority_of_b;
    }

    rule a when: priority_of_a < 50 priority: priority_of_a {
write "  Rule a fired with priority: " + priority_of_a;

    }

    rule b when: priority_of_b > 25 priority: priority_of_b {
write "  Rule b fired with priority: " + priority_of_b;

    }
}

Priority of rule a = 38, priority of rule b = 32
  Rule a fired with priority: 38
  Rule b fired with priority: 32
Priority of rule a = 91, priority of rule b = 32
  Rule b fired with priority: 32
Priority of rule a = 37, priority of rule b = 2
  Rule a fired with priority: 37
Priority of rule a = 77, priority of rule b = 90
  Rule b fired with priority: 90
Priority of rule a = 32, priority of rule b = 23
  Rule a fired with priority: 32
Priority of rule a = 18, priority of rule b = 7
  Rule a fired with priority: 18
Priority of rule a = 95, priority of rule b = 94
  Rule b fired with priority: 94
Priority of rule a = 20, priority of rule b = 5
  Rule a fired with priority: 20
Priority of rule a = 78, priority of rule b = 47
  Rule b fired with priority: 47
Priority of rule a = 77, priority of rule b = 76
  Rule b fired with priority: 76



User Control Architecture

user_only , user_first , user_last

A specific type of control architecture has been introduced to allow users to take control of an agent
during the course of the simulation. When the user gets control of the agent, a control panel will appear
in the interface. This architecture can be invoked using three different keywords: user_only ,
user_first , user_last .

If the control chosen is user_first , it means that the user-controlled panel is opened first, and then the
agent has a chance to run its "own" behaviors (reflexes, essentially, or "init" in the case of a "user_init"
panel). If the control chosen is user_last , it is the contrary.

Additional attribute

Each agent provided with this architecture inherits a boolean attribute called user_controlled . If this
attribute becomes false, no panels will be displayed and the agent will run "normally" unless its species
is defined with a user_only  control.

user_panel

This control architecture is a specialization of the Finite State Machine Architecture where the
"behaviors" of agents can be defined by using new constructs called user_panel  (and one user_init ),
mixed with state  or reflex . This user_panel  translates, in the interface, in a semi-modal view that
awaits the user to choose action buttons, change attributes of the controlled agent, etc. Each
user_panel , like a state  in FSM, can have an enter  and exit  sections, but it is only defined in terms
of a set of user_command s which describe the different action buttons present in the panel.

user_command  can also accept inputs, in order to create more interesting commands for the user. This
uses the user_input  statement (and not operator), which is basically the same as a temporary variable
declaration whose value is asked to the user.

As user_panel  is a specialization of state , the modeler has the possibility to describe several panels
and choose the one to open depending on some condition, using the same syntax than for finite state

species user control: user_only {
   ...
}



machines:

either adding transitions  to the user_panels,

or setting the state  attribute to a new value, from inside or from another agent.

This ensures great flexibility for the design of the user interface proposed to the user, as it can be
adapted to the different stages of the simulation, etc...

Follows a simple example, where, every 10 steps, and depending on the value of an attribute called
"advanced", either the basic or the advanced panel is proposed. (The full model is provided in the GAMA
model library.)

species user control:user_only {
   user_panel default initial: true {
      transition to: "Basic Control" when: every (10 #cycles) and 
!advanced_user_control;
      transition to: "Advanced Control" when: every(10 #cycles) and 
advanced_user_control;
   }
   
   user_panel "Basic Control" {
      user_command "Kill one cell" {
         ask (one_of(cell)){
            do die;
         }
      }
      user_command "Create one cell" {
        create cell ;
      } 
      transition to: default when: true;
   }
   user_panel "Advanced Control" {
      user_command "Kill cells" {
        user_input "Number" returns: number type: int <- 10;
        ask (number among cell){
           do die;
        }
      }
      user_command "Create cells" {
        user_input "Number" returns: number type: int <- 10;
        create cell number: number ;
      } 
      transition to: default when: true;
   }
}



The panel marked with the initial: true  facet will be the one run first when the agent is supposed to
run. If none is marked, the first panel (in their definition order) is chosen.

A special panel called user_init  will be invoked only once when initializing the agent if it is defined. If
no panel is described or if all panels are empty (i.e. no user_command ), the control view is never invoked.
If the control is said to be user_only , the agent will then not run any of its behaviors.

Other Control Architectures
Some other control architectures are available in additional plugins. For instance, BDI (Belief, desire,
intention) architecture is available. Feel free to read about it if you want to learn more.

Do you need some other control architectures for your model? Feel free to make your suggestion to the
team of developers through the mailing list. Remember also that GAMA is an open-source platform, you
can design your own control architecture easily. Go to the section Community/contribute if you want to
jump into coding!

https://github.com/gama-platform/gama/wiki/BDIAgents
https://github.com/gama-platform/gama/wiki/BDIAgents
https://groups.google.com/forum/#!forum/gama-platform


Version: 1.9.3

Using Differential Equations
Introduction
ODEs (Ordinary Differential Equations) models are often used in physics, chemistry, biology, ecology and
epidemiology. They allow tracking continuous changes of a system, and offer the possibility of a
mathematical analysis. The possibility to find a numerical solution (for a given Cauchy problem) of first
order differential equations has been implemented in Gama.

In population dynamics, systems of ODEs are used to describe the macroscopic evolution over time of a
population, which is usually split into several compartments. The state of the population is described by
the number of individuals in each compartment. Each equation of the ODE system describes the
evolution of the number of individuals in a compartment. In such an approach, individuals are not taken
into account individually, with own features and behaviors. On the contrary, they are aggregated and
only the population density is considered.

Compartmental models are widely used to represent the spread of a disease in a population, with a
large variety of models derived from the classical Kermack-McKendrick model, often referred to as the
SIR model. More information about compartmental models in epidemiology can be found here.

In SIR class models, the population is split into 3 (or more) compartments: S (Susceptible), I (Infected), R
(Recovered). It is not usually possible to find an analytical solution of the ODE system, and an
approximate solution has to be found, using various numerical schemes (such as Euler, Runge-Kutta,
Dormand-Prince...)

Example of a SIR model
In the SIR model, the population is split into 3 compartments: S (Susceptible), I (Infected), R (Recovered).
Susceptible individuals become infected (move from compartment S to I) at a rate proportional to the
size of both S and I populations. People recover (are removed from compartment I) at a constant rate.
This can be represented by the following Forrester diagram: boxes represent compartments and arrows
are flows. Arrows hold the rate of a compartment population flowing to another compartment.

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology


The corresponding ODE system contains one equation per compartment. For example, the I
compartment evolution is influenced by an inner (so positive) flow from the S compartment and an
outer (so negative) flow to the R compartment.

Given an initial condition (initial values) at time t=0, such as

S = 499

I = 1

R = 0

beta = 0.4

gamma = 0.1

h = 0.1

one can obtain the evolution of the evolution of S, I and R over time, by integrating the ODE system
using a numerical scheme.



Why and when can we use ODE in agent-based
models?
ODE models are often used when a system can be considered at a macro (population) level, i.e when the
individual variability as little influence on dynamics at the aggregated level.

It is relevant to use ODE in agent-based models in several cases:

Large scale agent-based models require many resources to run and a very large computation time.
For example, if we want to implement a model describing the worldwide epidemic spread and the
impact of air traffic on it, we cannot simulate the 7 billion people. Instead we can represent only
cities with airports and airplanes as agents. In this case, cities are entities are represented by a
compartment, on which a SIR class epidemiological model can be run, using an ODE system. Such a
model combines some advantages of agent-based models (detailed description of the disease
spread from one city to another with the plane agents) and mathematical modeling (good
description of an epidemiological dynamics at a city level, using fewer resources and less
computation time).

Some processes may be easier to manipulate at the aggregated level, for several reasons: 1) a
global description of a system may turn sometimes more informative than a detailed one, 2) a
detailed description may require to fit too many parameters for which there is no sufficient data, in
that case it is easier to fit a global model with less parameters, and 3) when one wants to keep a low
number of parameters, in order to avoid overfitting or to optimize Akaike Information Criterion.

Some systems are better described with a continuous dynamics than with a discrete one. This is the
case for many physical or biological systems (physics laws such as gravity or water dynamics,

https://en.wikipedia.org/wiki/Akaike_information_criterion


biological processes such as respiration or cell growth). Coupling ABM and ODE model allow
considering individual/discrete processes along with continuous processes.

Some models already exist in an ODE version, and could be coupled to another model in Gama
without having to rewrite an Agent-Based version of the model.

Use of ODE in a GAML model
A stereotypical use of ODE in a GAMA agent-based model is to describe species where some agents
attribute evolution is described using an ODE system.

As a consequence, the GAML language has been increased by two main concepts (as two statements):

equations can be written with the equation  statement. An equation  block is composed of a set of
diff  statement describing the evolution of species attributes.

an equation can be numerically integrated using the solve  statement

Additionnally, Gama provides an intuitive, flexible and natural framework to build ODE models, since an
ODE system may be split among several entities. For example, if there are three species (resp. agent)
involved in a common dynamics, it is possible to declare each equation inside the corresponding species
(resp. agent) definition. An example is shown below.

Defining and solving an ODE system

Defining an ODE system with equation

Defining a new ODE system needs to define a new equation  block in a species. As an example, the
following eqSI  system describes the evolution of a population with 2 compartments (S and I) and the
flow from S to I compartments:

species userSI {
    float t ;
    float I ; 
    float S ; 
    int N ;
    float beta<-0.4 ;
    float h ;

    equation eqSI {



This equation has to be defined in a species with t , S  and I  attributes. beta  (and other similar
parameters) can be defined either in the specific species (if it is specific to each agent) or in the global
if it is a constant.

Note: it is mandatory to declare a differenciation variable (here t ) as an attribute in the species. It is
automatically updated using the solve  statement and contains the time elapsed in the equation
integration.

solve  an ODE system
Once the equation or system of equations has been defined, it is necessary to execute a solve
statement inside a reflex in order to numerically integrate the ODE system. The reflex is executed at
each cycle, and the values of the attributes used in the equations ( S  and I  in the previous example) are
updated with the values obtained by integrating the system between the start time end and end time of
the current cycle.

Several numerical schemes are available to solve the ODE system. More details about the numerical
schemes and the solve  syntax are provided below.

Alternative way to define an ODE system

Split a system into several agents

An equation system can be split into several species and each part of the system are synchronized using
the simultaneously  facet of equation . The system split into several agents can be integrated using a
single call to the solve  statement. Notice that all the equation  definition must have the same name.

For example, the SI system presented above can be defined in two different species S_agt  (containing
the equation defining the evolution of the S value) and I_agt  (containing the equation defining the

diff(S,t) = -beta * S * I / N ;
diff(I,t) = beta * S * I / N ;

    }
}

reflex solving {
    solve eqSI method: #rk4 step_size: h;
}



evolution of the I value). These two equations are linked using the simultaneously  facet of the
equation  statement. This facet expects a set of agents. The integration is called only once in a
simulation step, e.g. in the S_agt  agent.

The interest is that the modeler can create several agents for each compartment, which different values.
For example in the SI model, the modeler can choose to create 1 agent S_agt  and 2 agents I_agt . The
beta  attribute will have different values in the two agents, in order to represent 2 different strains.

global {
    int N <- 1000;
    float hRK4 <- 0.01;
}

species S_agt {
    float t ;
    float Ssize ;

    equation evol simultaneously: [ I_agt ] {
diff(Ssize, t) = (- sum(I_agt accumulate [each.beta * each.Isize]) * self.Ssize 

/ N);
    }

    reflex solving {solve evol method: #rk4 step_size: hRK4 ;}
}

species I_agt {
    float t ;
    float Isize ; // number of infected
    float beta ;

    equation evol simultaneously: [ S_agt ] {
diff(Isize, t) = (beta * first(S_agt).Ssize * Isize / N);

    }
}

global {
    int number_S <- 495 ; // The number of susceptible
    int number_I <- 5   ; // The number of infected
    int nb_I <- 2;
    float gbeta  <- 0.3  ; // The parameter Beta

    int N <- number_S + nb_I * number_I ;
    float hRK4 <- 0.1 ;

    init {



The results are computed using the RK4 (Runge-Kutta 4) method with:

number_S = 495

number_I = 5

nb_I = 2

gbeta = 0.3

hKR4 = 0.1

Important note: the solve  statement must be called once and only once per cycle. In this example, is it
executed in the 'solving' reflex of the only S_agt  agent. There is no 'solving' reflex in the I_agt  agents:
since the equations definitions blocks are connected through the simultaneously  facet, there equation
blocks will be integrated by the S_agt  agent. Note also that if they were several S_agt  agents, with the
same definition of the 'solving' reflex, the solve  statement would be executed several times, which
could result in wrong results. To ensure that it is called only once, the 'solving' reflex should be rewritten.
For example, it is possible to write this:

More details

create S_agt {
    Ssize <- float(number_S) ;
}
create I_agt number: nb_I {
    Isize <- float(number_I) ;
    self.beta <- myself.gbeta + rnd(0.5) ;
}

    }
}

    reflex solving when: (int(self)=0) {solve evol method: #rk4 step_size: hRK4 ;}



Details about the solve  statement

The solve  statement can have a huge set of facets (see this page for more details). The basic use of the
solve  statement requires only the equation identifier. By default, the integration method is Runge-
Kutta 4 with a fixed integration step of 0.005*step , which means that each simulation step (cycle) is
divided into 200 smaller integration steps that are used to simulate a continuous evolution of the
system.

For fixed integration step numerical schemes such as Runge-Kutta 4, the length of the integration step
is defined in the step_size  facet. Increasing the integration step results in faster computation at the
cost of accuracy.

Integration method with the method  facet

Several integration methods can be used in the method  facet. GAMA relies on the Apache Commons
Math library to provide numerical schemes; it thus provides access to the various solvers integrated into
the library. The list of all the solver is detailed in this page, section 15.4 Available integrators. The GAML
constants associated with each of them (to use in the method  statement) are: )

Fixed Step Integrators
#Euler  for Euler. It implements the Euler integration method, which is mainly used for
academic illustration of numerical schemes. It should not be used outside of this purpose due
to its lack of precision (a very small integration step is required for an acceptable precision).

#Midpoint  for Midpoint

#rk4  for Runge-Kutta 4. It implements the Runge-Kutta 4 integration method. It provides a
faster convergence than the Euler method, and thus does not require very small integration
steps. However the user has to determine manually the ideal integration step. For that reason,
it is recommended to try first an adaptative stepsize integrator such as the Dorman-Prince 5(4)
integration method.

#Gill  for Gill

#ThreeEighthes  for 3/8

#Luther  for Luther

Adaptive Stepsize Integrators
#HighamHall54  for Higham and Hall

#DormandPrince54  for Dormand-Prince 5(4) It implements the Dorman-Prince 5(4) integration
method. It is similar to the ode45 in Matlab. This method is based on the Runge-Kutta solvers
family. It evaluates the error between the numerical solution and the analytic solution, and
adapt the integration step in order to minimize it. It is recommended to try this method first,
even it may not the best one in case of stiff problems.

http://localhost:3000/wiki/Statements#solve
http://commons.apache.org/math/
http://commons.apache.org/math/
http://commons.apache.org/proper/commons-math/userguide/ode.html
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ode/nonstiff/EulerIntegrator.html
https://en.wikipedia.org/wiki/Euler_method
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ode/nonstiff/MidpointIntegrator.html
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ode/nonstiff/ClassicalRungeKuttaIntegrator.html
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ode/nonstiff/GillIntegrator.html
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ode/nonstiff/ThreeEighthesIntegrator.html
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ode/nonstiff/LutherIntegrator.html
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ode/nonstiff/HighamHall54Integrator.html
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ode/nonstiff/DormandPrince54Integrator.html
https://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method
https://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method
https://en.wikipedia.org/wiki/Stiff_equation


#dp853  for Dormand-Prince 8(5,3).

#GraggBulirschStoer  for Gragg-Bulirsch-Stoer

#AdamsBashforth  for Adams-Bashforth

#AdamsMoulton  for Adams-Moulton

Integration steps

The length of the integration step has a huge impact on precision: a smaller integration step means
more evaluation points, which results in a better precision but a longer computation time. In order to
improve the precision of the integration or its speed, the integration step can be set using the
step_size  facet for fixed steps methods.

step_size  (float): integration step, use with most fixed steps integrator methods (default value:
0.005*step )

Adaptative stepsize integrators (e.g. #DormandPrince54 ) automatically determine and set the
integration step according to a given error tolerance. Some of them also use different integration steps
all over the computation, since parts of the solution that are stable enough do not require a very small
integration step, while parts with high variations need more precision. Such integrators require thus
more information, through the following mandatory facets:

min_step , max_step  (float): these 2 values define the range of variation for the integration step. As
an example, we can use: min_step:0.01 max_step:0.1 .

scalAbsoluteTolerance  and scalRelativeTolerance  (float): they defined the allowed absolute
(resp. relative) error. As an example, we can use: scalAbsoluteTolerance:0.0001
scalRelativeTolerance:0.0001 .

Synchronization between simulation and integration

The simulation and the integration are synchronized: if one simulation step represents 1 second,
then one call of the solve  statement will integrate over 1s in the ODE system. This means that the step
attribute of the global  has an impact on the integration. See below to observe this influence.

It is thus important to specify the unit of the parameters used in the ODE system (in particular relatively
to time).

It is also important to notice that the integration step step_size  will only control the precision of the
integration. If step  (of the global ) is 1#s , then after 1 call of solve , 1#s  has flowed in the equation
system. If step_size  is set to 1#s  or to 0.01#s  will not impact this fact. The only difference is that in

http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ode/nonstiff/DormandPrince853Integrator.html
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ode/nonstiff/GraggBulirschStoerIntegrator.html
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ode/nonstiff/AdamsBashforthIntegrator.html
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ode/nonstiff/AdamsMoultonIntegrator.html


the latter case, the solver made 100x more computations than in the former one (increasing the
precision of the final result).

Additional facets

Here are additional facets that be added to the solve  statement:

t0  (float): the first bound of the integration interval (default value: cycle*step, the time at the
beginning of the current cycle.)

tf  (float): the second bound of the integration interval. Can be smaller than t0 for a backward
integration (default value: cycle*step, the time at the beginning of the current cycle.)

This might be useful more model coupling, when the sytem to integrate is not linked to the time
evolution of the main simulation.

Intermediate results

In one simulation step, if the statement solve  is called one time, several integration steps will be done
internally. Intermediate computation results can be accessed using the notation: var[]  that returns the
list of intermediate values of the variable var  involved in a differential equation. As an example, with a
SIR equation:

species agent_with_SIR_dynamic {
    int N <- 1500 ;
    int iInit <- 1;
    float t;  
    float S <- N - float(iInit);       
    float I <- float(iInit); 
    float R <- 0.0; 

    float alpha <- 0.2 min: 0.0 max: 1.0;
    float beta <- 0.8 min: 0.0 max: 1.0;
    float h <- 0.01;
   
    equation SIR{ 

diff(S,t) = (- beta * S * I / N);
diff(I,t) = (beta * S * I / N) - (alpha * I);
diff(R,t) = (alpha * I);

    }
  
    reflex solving {
        solve SIR method: #rk4 step_size: h ;
    
    write S[];



We can use S[] , I[] , R[]  and t[]  to access the list of intermediate variables of these 4 variables.
Since S[]  is a list the first element can be accessed with S[][0] .

Note that the current value of a variable, i.e. S , equals to the last value of the list S[] : S  = last(S[]) .

Accessing the intermediate values can be useful to provide smooth continuous charts. A way to do so is
to provide the display with the full list of integration times and values, such as:

The following picture illustrates the result: the top subfigure shows the dynamics with discrete
visualization and the bottom one the continuous curves.

      write I[];
      write R[];
    write t[];
    }  
}

experiment continuous_display type: gui {
output {

display display_charts axes: false{
chart 'SIR' type: series x_serie: 

first(agent_with_SIR_dynamic).t[] y_range: {0,1000} background: #white {
data "S" value: first(agent_with_SIR_dynamic).S[] 

color: #green marker: false;
data "I" value: first(agent_with_SIR_dynamic).I[] 

color: #red marker: false;
data "R" value: first(agent_with_SIR_dynamic).R[] 

color: #blue marker: false;
}

}
}

}



Example of the influence of the integration step

The step  (of the global ) and step_size (of solve) facets may have a huge influence on the results.
step_size  only has an impact on the result accuracy. The step  facet changes the cycle duration and so
the time scale and results in curves being horizontally scales.



In the following image, the step facet has been change from 1.0 (first simulation) to 2.0 (second
simulation). The dynamics are exactly the same, but they are viewed at different time scales.

The following image illustrates this impact, by calling (with 3 different values of step) :

When changing this facet, be sure that the time scale of the ODE system remains consistent with the
one of the other agents.



Version: 1.9.3

Recipes
Understanding the structure of models in GAML and gaining some insight of the language is required,
but is usually not sufficient to build correct models or models that need to deal with specific approaches
(like equation-based modeling). This section is intended to provide readers with practical "how to"s on
various subjects, ranging from the use of database access to the design of agent communication
languages. It is by no means exhaustive, and will progressively be extended with more "recipes" in the
future, depending on the concrete questions asked by users.

http://localhost:3000/wiki/ModelOrganization
http://localhost:3000/wiki/GamlReference
http://localhost:3000/wiki/Equations
http://localhost:3000/wiki/UsingDatabase
http://localhost:3000/wiki/UsingFIPAACL
http://localhost:3000/wiki/UsingFIPAACL


Version: 1.9.3

Manipulate OSM Datas
This section will be presented as a quick tutorial, showing how to proceed to manipulate OSM (Open
street map) data, clean them and load them into GAMA. We will use the software QGIS to change the
attributes of the OSM file.

Note that GAMA can read and import OpenStreetMap data natively and create agents from them. An
example model is provided in the Model Library (Data Importation / OSM File Import.gaml). In this case,
you will have to write a model to import, select data from OpenStreetMap before creating agents and
then could export them into shapefiles, much easier to use in GAMA.

From the website openstreetmap.org, we will choose a place (in this example, we will take a
neighborhood in New York City). Directly from the website, you can export the chosen area in the osm
format.

We have now to manipulate the attributes for the exported osm file. Several softwares can be used, but
we will focus on QGIS, which is totally free and provides a lot of possibilities in term of manipulation of
data.

Once you have installed correctly QGIS, launch QGIS Desktop, and start to import the topology from the
osm file.

http://www.qgis.org/en/site/
https://www.openstreetmap.org/
http://www.qgis.org/en/site/


QGis 3, the version we are using to build this tutorial, needs us to install a plugin to process files
downloaded from OSM website. There are several versions of plugins allowing to do that. However, the
most stable and simple one to use is QuickOSM. Go to your extension manager, select "All extensions"
on the top left corner, look for "QuickOSM" extension and install it.

You should now be able to use the extension QuickOSM. Open its menu by entering the vector menu on
the top QGis panel, go to QuickOSM, then select :

1. OSM file

2. Browse your xml file.

3. Browse to select the folder that will welcome the processed file through QGis (select the "includes"
folder of your current GAMA project for more efficiency).

4. Select the format you want for your processed file (in the example, ESRI shapefile will give a .shp,
very well processed by GAMA afterwards).

5. Open your file.



You will go back naturally to the main QGis UI and you downloaded OSM layer will be visible.

Before beginning the layer treatment process with QGis, please note that it is easier to use separated
shapefiles for each entities if the objective is to use GAMA afterwards. Therefore, we recommend
importing in GAMA separated shapefiles for each spatial entity you want to make appear in your model.
Indeed, it is simpler to create one species for each spatial entity instead of having one species declined
by different arributes. If you want to represent buildings and houses, it's recommended to have two
separated files : one for buildings and one for houses.

First, we want buildings to be isolated from the other polygons. We can use the field 'building' to make
an attribute selection to do that. By opening the attribute table of the file, we can check that this field
exists and that every building has been attributed a "yes". If other information are given, replace the
information by "yes" to facilitate the process of selection. Once it's done, go to the attribute selection
menu on the top panel and type this in the dialogue box : "building" = 'yes'. Click on "select features"
once it's done and close the window.





If typed correctly, QGis should understand that you want to select only polygons that are recognized as
buildings. The buildings polygons should be highlighted in yellow now. Save the selected features as a
new .shp file in your "includes" folder. We called ours "OSM_For_GAMA_Buildings". The new layer which
just appeared should only comprise buildings of the area.

Then, we can create a new field for the new buildings layer to allow a better handling in GAMA platform
do differentiate colors : first, enter you attribute table of the layer.



Then, go to edit mode (the pen icon on the top left corner) and select field calculator.

Stay on the left hand side, we will now set up the field's characteristics, you can copy what you see in the
screenshot bellow. Pay attention to selecting "string" to the field type, otherwise you won't be able to
get the proper format of attributes in the following steps of this tutorial.

We want to create this attribute and associate to it variables that will be colors. We want to ask QGis to
do that randomly on its own. Therefore, we have to provide the software a function. Go to the "function



editor" tab, click on the "+" to add a new function file and write these lines down after having deleted
the default help :

Save and run the function using the proper button on the bottom right corner.

Then go to the expression type and call your function by typing : myFun('attrForGam')  Click on "Ok"
which will get you back to your attribute table : you can now check the layer's attributes to see if the new
field 'attrForGam' has been filled with random values "red" or "blue".

from qgis.core import *
from qgis.gui import *
import random, string

@qgsfunction(args='auto', group='Custom')
def myFun(value1, feature, parent):
    return random.choice(["blue","red"])



When you download data from OSM website, some fields might be missing. For instance, the file we
downloaded here doesn't include the buildings' height. To give realistic aspects to our model, we want
here to call another function to make QGis create a "Height" field and associate automatically a height
to buildings between 20 and 50 meters high. You can repeat the previous steps for the 'attrForGam' field
to create a 'Height' field using the following code :

Don't forget to call this new function in the expression tab : myFunHeight('Height') . Then, check if the
new field has been added and save the modifications of your attributes.

from qgis.core import *
from qgis.gui import *
import random, string

@qgsfunction(args='auto', group='Custom')
def myFunHeight(value1, feature, parent):
    return random.randrange(20, 50, 1)



Our work on the buildings layer is done. You don't have to save it since QGis is automatically saving the
modifications you do on your files (the one we previously called "OSM_For_GAMA_Buildings"). The file
for buildings is now ready to be used in GAMA for modelling. We now have to take care our other
polygons and lines we downloaded.

We now want to add the main natural elements to our model : parks. For this, we only have to select the
few parks we have in the area thanks to the spatial selection tool provided by QGis. To do that, you have
to use the original polygons layer you downloaded to make a spatial selection of the parks. To select
several polygons using this tool, just press shift + left click on each polygons you are interested with.
Before beginning the selection, locate where the parks are so that you are sure the polygons you select
are the parks you want to represent.

1. Select the polygon layer.

2. Select the tool "select features by area or single click" on the top panel.

3. Select the right polygons using left click and pressing maj to select several polygons.



Then, save the selected polygons as a new shapefile which will only comprise parks areas. For this
tutorial, we called the parks shapefile "OSM_For_GAMA_Parks".

Finally, we need roads for our possible agents to travel the city. The shapefile already exists from the
OSM file we downloaded. It is possible to modify it using the edition mode after selecting the lines layer,
and delete the roads we don't want.



Don't forget to save your layer as a .shp file in your "includes" folder of your current GAMA project. For
this tutorial, we call the roads shapefile "OSM_For_GAMA_Parks"

Please note that you can repeat these steps as many times as you want according to the level of details
you need in your model. As OSM provides a large possibility of land use types, we cannot go over every
one of them in this tutorial. The steps are the same as the ones described above.

You can now import your three .shp files that should be in your "includes" folder of your current project.

model OSMtutorial

global {
    // Global variables related to the Management units 
 

file shapeFile1 <- file("../includes/OSM_For_GAMA_Buildings.shp");
    file shapeFile2 <- file("../includes/OSM_For_GAMA_Parks.shp");

file shapeFile3 <- file("../includes/OSM_For_GAMA_Roads.shp");

    //definition of the environment size from the shapefile. 
    //Note that is possible to define it from several files by using: geometry shape <- 
envelope(envelope(file1) + envelope(file2) + ...);
    geometry shape <- envelope(envelope(shapeFile1) + envelope(shapeFile2) + 
envelope(shapeFile3));
    
    init {
    //Creation of Buildings agents from the shapefile (and reading some of the 
shapefile attributes)
    create Buildings from: shapeFile1
        with: [elementId::int(read('full_id')), elementHeight::int(read('Height')), 
elementColor::string(read('attrForGam'))] ;
        
    create Parks from: shapeFile2;
    
    create Roads from: shapeFile3 where (each != nil);
    }
}
    
species Buildings{
    int elementId;
    int elementHeight;
    string elementColor;
    
    aspect basic{
    draw shape color: (elementColor = "blue") ? #blue : ( (elementColor = "red") ? #red 
: #yellow) depth: elementHeight;
    }
} 



Here is the result, with a special colorization of the different elements regarding the value of the
attribute "attrForGama", an elevation regarding the value of the attribute "height", and basic species
creation for roads and parks.

species Parks {

aspect basic {
draw shape color: #green;

}
} 

species Roads {

aspect basic {
draw shape color: #grey width: 3#meter;

}
}

experiment main type: gui {     
    output {
    display HowToUseOpenStreetMap type:opengl {
       species Buildings aspect: basic; 
       species Parks aspect: basic;
       species Roads aspect: basic;
    }
    }





Version: 1.9.3

Implementing diffusion
GAMA provides you the possibility to represent and simulate the diffusion of a variable through a grid
topology.

Index
Diffuse statement

Diffusion with matrix
Diffusion matrix

Gradient matrix

Compute multiple propagations at the same step

Executing several diffusion matrix

Diffusion with parameters

Computation methods
Convolution

Dot Product

Use mask
Generalities

Tips

Pseudo code

Diffuse statement
The statement to use for the diffusion is diffuse . It has to be used in a grid  species. The diffuse  uses
the following facets:

var  (an identifier), (omissible) : the variable to be diffused

on  (any type in [container, species]): the list of agents (in general cells of a grid), on which the
diffusion will occur

avoid_mask  (boolean): if true, the value will not be diffused in the masked cells, but will be
restituted to the neighboring cells, multiplied by the variation value (no signal loss). If false, the



value will be diffused in the masked cells, but masked cells won't diffuse the value afterward (loss of
signal). (default value : false)

cycle_length  (int): the number of diffusion operation applied in one simulation step

mask  (matrix): a matrix masking the diffusion (matrix created from an image for example). The cells
corresponding to the values smaller than "-1" in the mask matrix will not diffuse, and the other will
diffuse.

matrix  (matrix): the diffusion matrix ("kernel" or "filter" in image processing). Can have any size, as
long as dimensions are odd values.

method  (an identifier), takes values in: {convolution, dot_product}: the diffusion method

min  (float): if a value is smaller than this value, it will not be diffused. By default, this value is equal
to 0.0. This value cannot be smaller than 0.

propagation  (a label), takes values in {diffusion, gradient} represents both the way the signal is
propagated and the way to treat multiple propagations of the same signal occurring at once from
different places. If propagation equals 'diffusion', the intensity of a signal is shared between its
neighbors with respect to 'proportion', 'variation' and the number of neighbors of the environment
places (4, 6 or 8). I.e., for a given signal S propagated from place P, the value transmitted to its N
neighbors is S' = (S / N / proportion) - variation. The intensity of S is then diminished by S *
proportion on P. In diffusion, the different signals of the same name see their intensities added to
each other on each place. If propagation equals 'gradient', the original intensity is not modified, and
each neighbor receives the intensity: S / proportion - variation. If multiple propagations occur at
once, only the maximum intensity is kept on each place. If 'propagation' is not defined, it is assumed
that it is equal to 'diffusion'.

proportion  (float): a diffusion rate

radius  (int): a diffusion radius (in number of cells from the center)

variation  (float): an absolute value to decrease at each neighbor

To write a diffusion, you first have to declare a grid and declare a special attribute for the diffusion. You
will then have to write the diffuse  statement in another scope (such as the global  scope for instance),
which will permit the values to be diffused at each step. There, you will specify which variable you want
to diffuse (through the var  facet), on which species or list of agents you want the diffusion (through the
on  facet), and how you want this value to be diffused (through all the other facets, we will see how it
works with matrix and with special parameters just after).

Here is the template of code we will use for the next following part of this page:

global {
    int size <- 64; // the size has to be a power of 2.
    cells selected_cells;



This model will simulate a diffusion through a grid at each step, affecting 1 to the center cell diffusing
variable value. The diffusion will be seen during the simulation through a color code, and through the
elevation of the cell.

Diffusion with matrix

    // Initialize the emitter cell as the cell at the center of the word
    init {

selected_cells <- location as cells;
    }
    // Affecting "1" to each step
    reflex new_Value {

ask(selected_cells){
    phero <- 1.0;
}

    }

    reflex diff {
// Declare a diffusion on the grid "cells" and on "quick_cells". 

        // The diffusion declared on "quick_cells" will make 10 computations at each 
step to accelerate the process. 

// The value of the diffusion will be store in the new variable "phero" of the 
cell.

diffuse var: phero on: cells /*HERE WRITE DOWN THE DIFFUSION PROPERTIES*/;
    }
}

grid cells height: size width: size {
    // "phero" is the variable storing the value of the diffusion
    float phero  <- 0.0;
    // The color of the cell is linked to the value of "phero".
    rgb color <- hsb(phero,1.0,1.0) update: hsb(phero,1.0,1.0);
}

experiment diffusion type: gui {
    output {

display a type: opengl {
    // Display the grid with elevation
    grid cells elevation: phero * 10 triangulation: true;
}

    }
}



A first way of specifying the behavior of your diffusion is using diffusion matrix. A diffusion matrix is a 2-
dimension matrix [n][m]  with float  values, where both n  and m  have to be odd values. The most
often, diffusion matrices are square matrices, but you can also declare a rectangular matrix.

Example of matrix:

In the diffuse  statement, you then have to specify the matrix of diffusion you want in the facet
matrix .

Using the facet propagation , you can specify if you want the value to be propagated as a diffusion or as
a gradient.

Diffusion matrix

A diffusion (the default value of the facet propagation ) will spread the values to the neighbors' cells
according to the diffusion matrix, and all those values will be added together, as it is the case in the
following example:

Note that the sum of all the values diffused at the next step is equal to the sum of the values that will be
diffused multiply by the sum of the values of the diffusion matrix. That means that if the sum of the

matrix<float> mat_diff <- matrix([
[1/9,1/9,1/9],
[1/9,1/9,1/9],
[1/9,1/9,1/9]]);

diffuse var: phero on: cells matrix:mat_diff;



values of your diffusion matrix is larger than 1, the values will increase exponentially at each step. The
sum of the value of a diffusion matrix is usually equal to 1.

Here are some matrix examples you can use, played with the template model:

Gradient matrix

A gradient  (use facet : propagation:gradient ) is another type of propagation. This time, only the
larger value diffused will be chosen as the new one.



Note that unlike the diffusion propagation, the sum of your matrix can be greater than 1 (and it is the
case, most often !).

Here are some matrix examples with gradient propagation:



Compute multiple propagations at the same step

You can compute several times the propagation you want by using the facet cycle_length . GAMA will
compute for you the corresponding new matrix and will apply it.

Writing those two things are exactly equivalent (for diffusion):

matrix<float> mat_diff <- matrix([
[1/81,2/81,3/81,2/81,1/81],
[2/81,4/81,6/81,4/81,2/81],
[3/81,6/81,1/9,6/81,3/81],
[2/81,4/81,6/81,4/81,2/81],
[1/81,2/81,3/81,2/81,1/81]]);

reflex diff {
    diffuse var: phero on: cells matrix:mat_diff;



and

Executing several diffusion matrix

If you execute several times the statement diffuse  with different matrix on the same variable, their
values will be added (and centered if their dimensions are not equal).

Thus, the following 3 matrices will be combined to create one unique matrix:

Diffusion with parameters
Sometimes writing diffusion matrix is not exactly what you want, and you may prefer to just give some
parameters to compute the correct diffusion matrix. You can use the following facets in order to do that:
propagation , variation  and radius .

Depending on which propagation  you choose, and how many neighbors your grid has, the propagation
matrix will be computed differently. The propagation matrix will have the size: range*2+1.

matrix<float> mat_diff <- matrix([
[1/9,1/9,1/9],
[1/9,1/9,1/9],
[1/9,1/9,1/9]]);

reflex diff {
    diffuse var: phero on: cells matrix:mat_diff cycle_length:2;



Let's note P for the propagation value, V for the variation, R for the range and N for the number of
neighbors.

With diffusion propagation

For diffusion propagation, we compute following the following steps:

(1) We determine the "minimale" matrix according to N (if N = 8, the matrix will be [[P/9,P/9,P/9]
[P/9,1/9,P/9][P/9,P/9,P/9]] . if N = 4, the matrix will be [[0,P/5,0][P/5,1/5,P/5][0,P/5,0]] ).

(2) If R != 1, we propagate the matrix R times to obtain a [2*R+1][2*R+1]  matrix (same computation as
for cycle_length ).

(3) If V != 0, we substract each value by V*DistanceFromCenter (DistanceFromCenter depends on N).

Ex with the default values (P=1, R=1, V=0, N=8):

With gradient propagation

The value of each cell will be equal to P/POW(N,DistanceFromCenter)-DistanceFromCenter*V.
(DistanceFromCenter depends on N).

Ex with R=2, other parameters default values (R=2, P=1, V=0, N=8):



Note that if you declared a diffusion matrix, you cannot use those 3 facets (it will raise a warning). Note
also that if you use parameters, you will only have a uniform matrix.

Computation methods
You can compute the output matrix using two computation methods by using the facet method  : the dot
product and the convolution. Note that the result of those two methods is exactly the same (except if
you use the avoid_mask  facet, the results can be slightly different between the two computations).

Convolution

convolution  is the default computation method for diffusion. For every output cells, we will multiply
the input values and the flipped kernel together, as shown in the following image :



Pseudo-code ( k  the kernel, x  the input matrix, y  the output matrix) :

Dot Product

dot_product  method will compute the matrix using a simple dot product between the matrix. For every
input cells, we multiply the cell by the kernel matrix, as shown in the following image :

for (i = 0 ; i < y.nbRows ; i++)
  for (j = 0 ; j < y.nbCols ; j++)
    for (m = 0 ; m < k.nbRows ; m++)
      for (n = 0 ; n < k.nbCols ; n++)
        y[i,j] += k[k.nbRows - m - 1, k.nbCols - n - 1] 
            * x[i - k.nbRows/2 + m, j - k.nbCols/2 + n]



Pseudo-code ( k  the kernel, x  the input matrix, y  the output matrix) :

Using a mask

Generalities

If you want to propagate some values in a heterogeneous grid, you can use some mask to forbid some
cells to propagate their values.

You can pass a matrix to the facet mask . All the values smaller than -1  will not propagate, and all the
values greater or equal to -1  will propagate.

A simple way to use mask is by loading an image :

for (i = 0 ; i < y.nbRows ; i++)
  for (j = 0 ; j < y.nbCols ; j++)
    for (m = 0 ; m < k.nbRows ; m++)
      for (n = 0 ; n < k.nbCols ; n++)
        y[i - k.nbRows/2 + m, j - k.nbCols/2 + n] += k[m, n] * x[i, j]



Note that when you use the on  facet for the diffuse  statement, you can choose only some cells, and
not every cell. In fact, when you restrain the values to be diffuse, it is exactly the same process as if you
were defining a mask.

When your diffusion is combined with a mask, the default behavior is that the non-masked cells will
diffuse their values in all existing cells (that means, even the masked cells !). To change this behavior,
you can use the facet avoid_mask . In that case, the value which was supposed to be affected to the
masked cell will be redistributed to the neighboring non-masked cells.

Tips

Masks can be used to simulate a lot of environments. Here are some ideas for your models:

Wall blocking the diffusion



If you want to simulate a wall blocking a uniform diffusion, you can declare a second diffusion matrix
that will be applied only on the cells where your wall will be. This diffusion matrix will "push" the values
outside from himself, but conserving the values (the sum of the values of the diffusion still have to be
equal to 1) :

Note that almost the same result can be obtained by using the facet avoid_mask : the value of all
masked cells will remain at 0, and the value which was supposed to be affected to the masked cell will
be distributed to the neighboring cells. Notice that the results can be slightly different if you are using

matrix<float> mat_diff <- matrix([
[1/9,1/9,1/9],
[1/9,1/9,1/9],
[1/9,1/9,1/9]]);

matrix<float> mat_diff_left_wall <- matrix([
[0.0,0.0,2/9],
[0.0,0.0,4/9],
[0.0,0.0,2/9]]);

reflex diff { 
    diffuse var: phero on: (cells where(each.grid_x>30)) matrix:mat_diff;
    diffuse var: phero on: (cells where(each.grid_x=30)) matrix:mat_diff_left_wall;
}



the convolution  or the dot_product  method: the algorithm of redistribution of the value to the
neighboring cells is a bit different. We advise you to use the dot_product  with the avoid_mask  facet,
the results are more accurate.

Wind pushing the diffusion

Let's simulate a uniform diffusion that is pushed by a wind from "north" everywhere in the grid. A wind
from "west" as blowing at the top side of the grid. We will here have to build 2 matrices: one for the
uniform diffusion, one for the "north" wind and one for the "west" wind. The sum of the values for the 2
matrices meant to simulate the wind will be equal to 0 (as it will be added to the diffusion matrix).

matrix<float> mat_diff <- matrix([
[1/9,1/9,1/9],
[1/9,1/9,1/9],
[1/9,1/9,1/9]]);

matrix<float> mat_wind_from_west <- matrix([
[-1/9,0.0,1/9],
[-1/9,0.0,1/9],
[-1/9,0.0,1/9]]);

matrix<float> mat_wind_from_north <- matrix([
[-1/9,-1/9,-1/9],
[0.0,0.0,0.0],
[1/9,1/9,1/9]]);

reflex diff { 
    diffuse var: phero on: cells matrix:mat_diff;
    diffuse var: phero on: cells matrix:mat_wind_from_north;
    diffuse var: phero on: (cells where (each.grid_y>=32)) matrix:mat_wind_from_west;
}



Endless world

Note that when your world is not a torus, it has the same effect as a mask, since all the values outside
from the world cannot diffuse some values back :



You can "fake" the fact that your world is endless by adding a different diffusion for the cells with
grid_x=0  to have almost the same result :

matrix<float> mat_diff <- matrix([
[1/9,1/9,1/9],
[1/9,1/9,1/9],



Pseudo-code
This section is more for a better understanding of the source code.

Here is the pseudo-code for the computation of diffusion :

1. : Execute the statement diffuse , store the diffusions in a map (from class DiffusionStatement to
class GridDiffuser) :

2. : At the end of the step, execute the diffusions (class GridDiffuser) :

[1/9,1/9,1/9]]);

matrix<float> mat_diff_upper_edge <- matrix([
[0.0,0.0,0.0],
[1/9+7/81,2/9+1/81,1/9+7/81],
[1/9,1/9,1/9]]);

reflex diff { 
    diffuse var: phero on: (cells where(each.grid_y>0)) matrix:mat_diff;
    diffuse var: phero on: (cells where(each.grid_y=0)) matrix:mat_diff_upper_edge;
}

- Get all the facet values
- Compute the "real" mask, from the facet "mask:" and the facet "on:".
  - If no value for "mask:" and "on:" all the grid, the mask is equal to null.
- Compute the matrix of diffusion
  - If no value for "matrix:", compute with "nb_neighbors", "is_gradient", 
"proportion", "propagation", "variation", "range".
  - Then, compute the matrix of diffusion with "cycle_length".
- Store the diffusion properties in a map
  - Map : ["method_diffu", "is_gradient", "matrix", "mask", "min_value"] is value, 
["var_diffu", "grid_name"] is key.
  - If the key exists in the map, try to "mix" the diffusions
    - If "method_diffu", "mask" and "is_gradient" equal for the 2 diffusions, mix the 
diffusion matrix.

- For each key of the map,
  - Load the couple "var_diffu" / "grid_name"
  - Build the "output" and "input" array with the dimension of the grid. 
  - Initialize the "output" array with -Double.MAX_VALUE.
  - For each value of the map for that key,
    - Load all the properties : "method_diffu", "is_gradient", "matrix", "mask", 



"min_value"
    - Compute :
      - If the cell is not masked, if the value of input is > min_value, diffuse to the 
neighbors.
        - If the value of the cell is equal to -Double.MAX_VALUE, remplace it by 
input[idx] * matDiffu[i][j].
        - Else, do the computation (gradient or diffusion).
    - Finish the diffusion :
      - If output[idx] > -Double.MAX_VALUE, write the new value in the cell.



Version: 1.9.3

Using Database Access
Database features of GAMA provide a set of actions on Database Management Systems (DBMS).
Database features are implemented in the irit.gaml.extensions.database plug-in with these features:

Agents can execute SQL queries (create, Insert, select, update, drop, delete) to various kinds of
DBMS.

These features are implemented in two kinds of components: skill ( SQLSKILL ) and agent ( AgentDB ).

SQLSKILL  and AgentDB  provide almost the same features (the same set of actions on DBMS) but with
certain slight differences:

An agent of species AgentDB  will maintain a unique connection to the database during the whole
simulation. The connection is thus initialized when the agent is created and destroyed when it is
killed.

In contrast, an agent of a species with the SQLSKILL  skill will open a connection each time it wants
to execute a query. This means that each action will be composed of three running steps:

Make a database connection.

Execute an SQL statement.

Close database connection.

An agent with the SQLSKILL  spends a lot of time to create/close the connection each time it needs
to send a query; it saves the database connection (a DBMS often limits the number of simultaneous
connections). In contrast, an AgentDB  agent only needs to establish one database connection that
can be used for any action. Because it does not need to create and close the database connection
for each action, therefore actions of AgentDB  agents are executed faster than the actions of
SQLSKILL  ones but we must pay a connection for each agent.

With an inheritance agent of species AgentDB  or an agent of a species using SQLSKILL , we can query
data from relational database to create agents, define the environment, or analyze or store simulation
results in RDBMS. The database features help us to have more flexibility in the management of
simulation models and analysis of simulation results.

Description



Plug-in: irit.gaml.extensions.database

Author: TRUONG Minh Thai, Frederic AMBLARD, Benoit GAUDOU, Christophe SIBERTIN-BLANC

Supported DBMS
The following DBMS are currently supported:

SQLite

MySQL

PostgreSQL: The GIS extension needs to be installed and activated in the database.

Note that, MySQL and Postgres DBMSs require a dedicated server to work while SQLite only needs a file
to be accessed.

All the actions are independent from the chosen DBMS. Only the connection parameters are DBMS-
dependent.

We chose to implement 3 main query actions:

select : that will execute the SELECT SQL queries. It will return a result dataset.

insert : that will execute the INSERT SQL queries. It will return the number of records that are
affected by the SQL query.

executeUpdate : that can execute any CREATE/INSERT/DROP/DELETE SQL queries (basically all the
queries that do not return a dataset. It generalizes the insert  action.

SQLSKILL skill

Define a species that uses the SQLSKILL  skill

Example of declaration:

Agents with such a skill can use new actions defined in the skill. All these actions need information for
the database connection.

species toto skills: [SQLSKILL] {
//insert your descriptions here

}



Map of connection parameters for SQL

In the actions defined in the SQLSKILL , a parameter containing the connection parameters is required.
It is a map with key::value pairs with the following keys:

dbtype  (mandatory): DBMS type value. Its value is a string. We must use "mysql" when we want to
connect to a MySQL. That is the same for "postgres", "sqlite" (ignore case sensitive)

host  (optional): Host name or IP address of data server. It is absent when we work with SQlite.

port  (optional): Port of connection. It is not required when we work with SQLite.

database  (mandatory): Name of database. It is the file name including the path when we work with
SQLite.

user  (optional): Username. It is not required when we work with SQLite.

passwd  (optional): Password. It is not required when we work with SQLite.

srid  (optional): srid (Spatial Reference Identifier) corresponds to a spatial reference system. This
value is specified when GAMA connects to spatial database. If it is absent then GAMA uses spatial
reference system defined in Preferences->External configuration.

Example: Definitions of connection parameters

// POSTGRES connection parameter
map <string, string>  POSTGRES <- [
     'host'::'localhost',
     'dbtype'::'postgres',
     'database'::'BPH',
     'port'::'5432',
     'user'::'postgres',
     'passwd'::'abc'];

//SQLite
map <string, string>  SQLITE <- [
    'dbtype'::'sqlite',
    'database'::'../includes/meteo.db'];

// MySQL connection parameter
map <string, string>  MySQL <- [
    'host'::'localhost',
    'dbtype'::'MySQL',
    'database'::'', // it may be a empty string
    'port'::'3306',
    'user'::'root',
    'passwd'::'abc'];



Action testConnection : test a connection to a database

Syntax:

testConnection (params: map <string, string>) The action tests the connection to a given database.

Return: boolean. It is:
true : the agent can connect to the DBMS (to the given Database with the given name and
password).

false : the agent cannot connect (either the server is not started, the database does not exist
or the user/password are not correct).

Arguments:
params  (type = map <string, string> ): map of connection parameters

Exceptions: GamaRuntimeException

Example: Check a connection to a MySQL database.

Action select : select data from a database

Syntax:

select (params: map <string, string>, select: string, values: list) The action creates a connection to a
DBMS and executes the select statement. If the connection or selection fails then it throws a
GamaRuntimeException.

Return: list<list> . If the selection succeeds, it returns a list with three elements:
The first element is a list of column names.

The second element is a list of column types.

The third element is a data set.

Arguments:
params  (type = map<string,string>): map containing the connection parameters

// Needs to be executed in the context of an agent with the SQLSKILL skill.
// MySQL is the connection parameters map defined above.
if (testConnection(MySQL)){

write "Connection is OK" ;
}else{

write "Connection is false" ;
}



select  (type = string): A SQL query returning values, i.e. a SELECT query. The selection query
can be a parametric query (i.e. it can contain question marks).

values  (type = list): List of values that are used to replace question marks. This is an optional
parameter.

Exceptions: GamaRuntimeException

Example: select data from table points.

Example: select data from table point with question marks from table points.

Action insert : Insert data into a database

Syntax:

insert (param: map<string,string>, into: string, columns: list<string>, values: list) The action creates a
connection to a DBMS and executes the insert statement. If the connection or insertion fails then it
throws a_GamaRuntimeException_.

Return: int

If the insertion succeeds, it returns a number of records inserted by the insert.

Arguments: * params  (type = map<string,string>): map containing the connection parameters.
* into  (type = string): the table name. * columns  (type=list<string>): list of column names of the
table. It is an optional argument. If it is not specified then all columns of table are selected. * values
(type=list): list of values that are used to insert into the table chosen columns. Hence the columns
and values must have same size.

Exceptions:_GamaRuntimeException

Example: Insert data into table registration.

map <string, string>   PARAMS <- ['dbtype'::'sqlite', 
'database'::'../includes/meteo.db'];
list<list> t <- select(PARAMS, "SELECT * FROM points ;");

map <string, string> PARAMS <- ['dbtype'::'sqlite', 
'database'::'../includes/meteo.db'];
list<list> t <- select(params: PARAMS, 
                       select: "SELECT temp_min FROM points where (day>? and day<?);",
                       values: [10,20] );



Action executeUpdate : Execution update commands

Syntax:

executeUpdate (param: map<string,string>, updateComm: string, columns: list<string>, values: list) The
action executeUpdate executes an update command (create/insert/delete/drop) by using the
current database connection of the agent. If the database connection or the update command fails
then it throws a GamaRuntimeException. Otherwise, it returns an integer value.

Return: int. It returns a number of records affected by the SQL query.

Arguments:
params  (type = map<string,string>): map containing the connection parameters,

updateComm  (type = string): SQL query string. It may be one of the SQL commands: create,
update, delete and drop with or without question marks.

columns  (type=list<string>): list of column names of the table.

values  (type=list): list of values that are used to replace question marks if appropriate. This is
an optional parameter.

Exceptions: GamaRuntimeException

Examples: Using action executeUpdate  to execute some SQL commands (create, insert, update, delete
and drop).

map<string, string> PARAMS <- ['dbtype'::'sqlite', 
'database'::'../../includes/Student.db'];

do insert (params: PARAMS, 
           into: "registration", 
           values: [102, 'Mahnaz', 'Fatma', 25]);

do insert (params: PARAMS, 
                into: "registration", 
                columns: ["id", "first", "last"], 
                values: [103, 'Zaid tim', 'Kha']);

int n <- insert (params: PARAMS, 
                 into: "registration", 
                 columns: ["id", "first", "last"], 
                 values: [104, 'Bill', 'Clark']);

map<string, string> PARAMS <- ['dbtype'::'sqlite',  
'database'::'../../includes/Student.db'];



AgentDB
AgentBD  is a built-in species, which supports behaviors that look like actions in SQLSKILL  but differs in
that it uses only one connection for several actions. It means that AgentDB  creates a connection to the
database and keeps that connection open for its later operations.

Define a species that is an inheritance of AgentDB

Example of declaration:

// Create table
do executeUpdate (params: PARAMS, 
                  updateComm: "CREATE TABLE registration" 
                              + "(id INTEGER PRIMARY KEY, " 
                              + " first TEXT NOT NULL, " + " last TEXT NOT NULL, " 
                              + " age INTEGER);");

// Insert into 
do executeUpdate (params: PARAMS,  
                  updateComm: "INSERT INTO registration " + "VALUES(100, 'Zara', 'Ali', 
18);");
do insert (params: PARAMS, into: "registration", 
           columns: ["id", "first", "last"], 
           values: [103, 'Zaid tim', 'Kha']);

// executeUpdate with question marks
do executeUpdate (params: PARAMS,
                  updateComm: "INSERT INTO registration " + "VALUES(?, ?, ?, ?);",  
                 values: [101, 'Mr', 'Mme', 45]);

//update 
int n <-  executeUpdate (params: PARAMS, 
                          updateComm: "UPDATE registration SET age = 30 WHERE id IN 
(100, 101)" );

// delete
int n <- executeUpdate (params: PARAMS, 
                        updateComm: "DELETE FROM registration where id=? ",  
                        values: [101] );

// Drop table
do executeUpdate (params: PARAMS, updateComm: "DROP TABLE registration");



Action connect : Connect to a database

Syntax:

connect (params: map<string,string>) This action makes a connection to the database. If a
connection is established then it will assign the connection object into a built-in attribute of the
species (conn) otherwise it throws a GamaRuntimeException.

Return: connection

Arguments:
params  (type = map<string,string>): map containing the connection parameters

Exceptions: GamaRuntimeException

Example: Connect to PostgreSQL

Action isConnected : Check whether an agent is connected to a
database

Syntax:

isConnected (params: map<string,string>) This action checks if an agent is connected to a database.

Return: Boolean. If the agent is connected to a database then isConnected returns true; otherwise
it returns false.

species agtDB parent: AgentDB {  
//insert your descriptions here

} 

// POSTGRES connection parameter
map <string, string>  POSTGRES <- [
                                        'host'::'localhost',
                                        'dbtype'::'postgres',
                                        'database'::'BPH',
                                        'port'::'5433',
                                        'user'::'postgres',
                                        'passwd'::'abc'];
ask agtDB {
      do connect (params: POSTGRES);
}



Arguments:
params  (type = map<string,string>): map containing the connection parameters

Example: Check whether the agents agtDB are connected.

Action close : Close the current connection

Syntax:

close This action closes the current database connection of the current agent. If the agent does not
have any database connection then it throws a GamaRuntimeException.

Example: close the connection of all the agtDB agents.

Action getParameter : Get connection parameters

Syntax:

getParameter This action returns the connection parameters of the current agent.

Return: map<string,string>

Example:

ask agtDB {
if (self isConnected){

              write "It already has a connection";
}else{

              do connect (params: POSTGRES);
        } 
}

ask agtDB {
if (self.isConnected()){
      do close;
}

}

ask agtDB {
if (self.isConnected()){

write "the connection parameter: " +self.getParameter();



Set connection parameters

Syntax:

setParameter (params: map<string,string>) This action sets new values for connection parameters
and closes the current connection of the agent. If it can not close the current connection then it will
throw GamaRuntimeException. If the species wants to make the connection to database with the
new values then action connect  must be called.

Return: null

Arguments:
params  (type = map<string,string>): map containing the connection parameters

Exceptions: GamaRuntimeException

Example:

Retrieve data from a database by using AgentDB

Because AgentDB 's connection to the database is kept alive, it can execute several SQL queries using
only the connect  action once. Hence AgentDB  can do actions such as select , insert , executeUpdate
with the same parameters as those of SQLSKILL  except for the params parameter which is always absent.

Examples:

        }
}

ask agtDB {
if (self.isConnected()){

             do setParameter params: MySQL;
             do connect params: self.getParameter();
        }
}

map<string, string> PARAMS <- ['dbtype'::'sqlite', 
'database'::'../../includes/Student.db'];
ask agtDB {
   do connect params: PARAMS;

   // Create table
   do executeUpdate updateComm: "CREATE TABLE registration" 



Using database features to define the
environment and create agents
In GAMA, it is possible to initialize the simulations from data stored in a database: we can use the results
of the select  action of SQLSKILL  or AgentDB  to create agents or to define the boundary of the
environment in the same way we do with shape files. Further more, we can also save simulation data
that are generated by the simulation including geometry data.

Note that GAMA only supports PostGIS and MySQL as spatial DBMS.

Define the boundary of the environment from the database

Step 1: specify the SELECT query by declaring a map object with keys as below:

+ "(id INTEGER PRIMARY KEY, " 
        + " first TEXT NOT NULL, " + " last TEXT NOT NULL, " 
        + " age INTEGER);";

   // Insert into 
   do executeUpdate updateComm: "INSERT INTO registration " 
        + "VALUES(100, 'Zara', 'Ali', 18);";
   do insert into: "registration" columns: ["id", "first", "last"]

     values: [103, 'Zaid tim', 'Kha'];
 
   // executeUpdate with question marks
   do executeUpdate updateComm: "INSERT INTO registration VALUES(?, ?, ?, ?);" 

            values: [101, 'Mr', 'Mme', 45];
   
   //select
   list<list> t <- self.select("SELECT * FROM registration;");
    
   //update 
   int n <- self.executeUpdate(updateComm: "UPDATE registration SET age = 30 WHERE id 
IN (100, 101)");
     
   // delete
   int n <- executeUpdate ( updateComm: "DELETE FROM registration where id=? ",  
values: [101] );
     
   // Drop table
   do executeUpdate updateComm: "DROP TABLE registration";
}



dbtype  (mandatory): DBMS type value. Its value is a string. We must use "mysql" when we want
to connect to a MySQL. That is the same for "postgres", "sqlite" (ignore case sensitive)

host  (optional): Host name or IP address of data server.

port  (optional): Port of connection.

database  (mandatory): Name of database.

user  (optional): Username.

passwd  (optional): Password.

srid  (optional): srid (Spatial Reference Identifier) corresponds to a spatial reference system.
This value is specified when GAMA connects to spatial database. If it is absent then GAMA uses
spatial reference system defined in Preferences->External configuration.

select  (mandatory): selection query.

Example:

Step 2: define the boundary of the environment by using the map object defined in the first step (in
the global  block of the model).

Note: We can do the same way if we work with MySQL and we must convert Geometry format in GIS
database to binary format.

Create agents from the result of a select  action

If we are familiar with how to create agents from a shapefile then it becomes very simple to create
agents from datbase data. We can do as below:

Step 1: Define a species with SQLSKILL  or AgentDB

map<string,string> BOUNDS <- [
//'srid'::'32648',
'host'::'localhost',

        'dbtype'::'postgres',
'database'::'spatial_DB',
'port'::'5433',

        'user'::'postgres',
'passwd'::'tmt',
'select'::'SELECT ST_AsBinary(geom) as geom FROM bounds;' ];

geometry shape <- envelope(BOUNDS);



Step 2: Define a connection and selection parameters

Step 3: Create species by using selected results

Save Geometry data to database

Saving agents in a database will be simply a set of insertion into the database. We can do as below:

Step 1: Define a species with SQLSKILL or AgentDB

Step 2: Define a connection and create GIS database and tables

species DB_accessor skills: SQLSKILL {
//insert your descriptions here

}

global {
map<string,string> PARAMS <- [ //'srid'::'32648', // optional

'host'::'localhost',
'dbtype'::'postgis',
'database'::'spatial_db',
'port'::'5432',
'user'::'postgres',
'passwd'::''];

string QUERY <- "SELECT type, ST_AsEWKB(geom) as geom FROM buildings;";
}      

init {
create DB_accessor {

create buildings from: select(PARAMS, QUERY)
 with:[ nature::"type", shape::"geom"];

 }
   ...
}

species DB_accessor skills: SQLSKILL {  
//insert your descriptions here

} 



Step 3: Insert geometry data to the GIS database

global {
map<string,string> PARAMS <-  [//'srid'::'4326', // optional

'host'::'localhost','dbtype'::'postgres','database'::'spatial_db',

'port'::'5432','user'::'postgres','passwd'::''];

init {
   create DB_accessor ;
   ask DB_accessor {

if (self.testConnection(PARAMS)){
           // create GIS database

    do executeUpdate(params:PARAMS, 
      updateComm: "CREATE DATABASE spatial_db with TEMPLATE = 

template_postgis;"); 
    remove key: "database" from: PARAMS;

   put "spatial_db" key:"database" in: PARAMS;

                   //create table
                   do executeUpdate params: PARAMS 

  updateComm : "CREATE TABLE buildings "+
  "( "  +

                                  " name character varying(255), " + 
                                       " type character varying(255), " + 
                                       " geom GEOMETRY " + 
                                   ")";

    }else {
 write "Connection to MySQL can not be established ";
     }

}
}

}

ask building {
   ask DB_Accessor {

do insert(params: PARAMS, 
                  into: "buildings",

  columns: ["name", "type","geom"],
  values: [myself.name, myself.type, myself.shape];

   }
}



Version: 1.9.3

Using FIPA ACL
GAMA allows modelers to provide agents the capability to communicate with other agents using FIPA
Communication Acts (such as inform, request, call for proposal...) and Interaction Protocols (such
Contract Net Interaction Protocol, Request Interaction Protocol).

To add these capabilities to the chosen species, the modeler needs to attach the fipa  skill: it adds to
agents of the species some additional attributes (e.g. the list of messages received) and available actions
(e.g. the possibility to send messages given the chosen Communication Act).

The exhaustive list of available Communication Acts and Interaction Protocols is available from the
technical description of the fipa  skill page. Examples can be found in the model library bundled with
GAMA ( Plugin models / FIPA Skill ).

Table of Contents
Main steps to create a conversation using FIPA Communication Acts and Interaction Protocols

Attach the fipa skill to a species

Initiate a conversation

Receive messages

Reply to a received message

The message  data type

The conversation  data type

Main steps to create a conversation using FIPA
Communication Acts and Interaction Protocols

1. Attach the skill fipa  to the agents' species that need to use Communication Acts

2. An initiator agent starts a conversation with some agents: it chooses the Interaction Protocol and
starts it by sending the first Communication Acts of the protocol

3. Each agent involved in the conversation needs to check its received messages and respond to them
by choosing the appropriate Communication Act.

http://www.fipa.org/
http://www.fipa.org/repository/ips.php3
http://www.fipa.org/specs/fipa00029/index.html
http://www.fipa.org/specs/fipa00026/index.html
http://localhost:3000/wiki/AttachingSkills
http://localhost:3000/wiki/BuiltInSkills#fipa
http://localhost:3000/wiki/UsingFIPAACL#main-steps-to-create-a-conversation-using-fipa-communication-acts-and-interaction-protocols
http://localhost:3000/wiki/UsingFIPAACL#initiate-a-conversation
http://localhost:3000/wiki/UsingFIPAACL#initiate-a-conversation
http://localhost:3000/wiki/UsingFIPAACL#receive-messages
http://localhost:3000/wiki/UsingFIPAACL#reply-to-a-received-message
http://localhost:3000/wiki/UsingFIPAACL#the-message-data-type
http://localhost:3000/wiki/UsingFIPAACL#the-conversation-data-type


Attach the fipa  skill to a species
To attach the fipa  skill to a species, the modeler has to add it in the skills  facet of the species
statement (in a way similar to any other skill).

Agents of any species can communicate in the same conversation. The only constraint is that they need
to have the capabilities to receive and send messages, i.e. to have the skill fipa .

Species can have several attached skills: a single species can be provided with both the moving  and
fipa  skills (and any other ones).

This skill adds to every agent of the species:

some additional attributes:
conversations  is the list of the agent's current conversations,

mailbox  is the list of messages of all types of performatives,

requests , informs , proposes ... are respectively the list of the 'request', 'inform', 'propose'
performative messages.

some additional actions, such as:
inform , accept_proposal ... that replies a message with an 'inform' (respectively
'accept_proposal' performative message).

start_conversation  that starts a conversation with a chosen interaction protocol.

end_conversation  that replies a message with an 'end_conversation' performative message.
This message marks the end of a conversation. In a 'no-protocol' conversation, it is the
responsibility of the modeler to explicitly send this message to mark the end of a
conversation/interaction protocol.

reply  that replies a message. This action should be only used to reply a message in a 'no-
protocol' conversation and with a 'user-defined performative'. For performatives supported by
GAMA, please use the 'action' with the same name as the 'performative'. For example, to reply a
message with a 'request' performative message, the modeler should use the 'request' action.

Initiate a conversation

species any_species skills: [fipa] {
   ...
}

http://localhost:3000/wiki/AttachingSkills


An interaction using an Interaction Protocol starts with the creation of a conversation by an agent, using
the start_conversation  action.

The modeler specifies the chosen protocol (facet protocol ), list of participants (facet to ),
communication act (facet performative ) and message (facet contents ).

Receive messages
Each agent (with the fipa  skill) is provided with several "mailbox" attributes filtering the various
received messages by communication act: e.g. proposes  contains the list of the received messages with
the "Propose" communication act.

Receiving a message consists thus in looking at each message from the mailbox, and acting in
accordance with its contents, participants...

Important remark: once the contents  field of a received message has been read, it is removed from all
the lists it appears in.

species Initiator skills: [fipa] {
reflex send_propose_message when: (time = 1) {

do start_conversation to: [p] protocol: 'fipa-propose' performative: 
'propose' contents: ['Go swimming?'] ;

}

species Initiator skills: [fipa] {
reflex read_accept_proposals when: !(empty(accept_proposals)) {

write name + ' receives accept_proposal messages';
loop i over: accept_proposals {

write 'accept_proposal message with content: ' + 
string(i.contents);

}
}

}

species Participant skills: [fipa] {
reflex accept_proposal when: !(empty(proposes)) {

message proposalFromInitiator <- proposes at 0;

do accept_proposal message: proposalFromInitiator contents: ['OK! It 
\'s hot today!'] ;



Remark:

To test that the agent has received a new message is simply done by testing whether the dedicated
mailing box contains messages.

To get a message, the modeler can either loop over the message list to get all the messages or get a
message by its index in the message box.

Reply to a received message
Given the message it has received, an agent can reply using the appropriate Communication Act (using
the appropriate action). It simply has to specify the message to which it replies and the content of the
reply.

Note that it does not need to specify the receiver as it is contained in the message.

End a conversation
When a conversation is made in the scope of an Interaction Protocol, it is ended automatically when the
last Communicative Act has been sent.

In the case of a 'no-protocol conversation', it is the responsibility of the modeler to explicitly send the
end_conversation  message to mark the end of a conversation/interaction protocol.

When a conversation ends, it is automatically removed from the list conversations .

The message  type

}
}

species Participant skills: [fipa] {
reflex accept_proposal when: !(empty(proposes)) {

message proposalFromInitiator <- proposes at 0;

do accept_proposal message: proposalFromInitiator contents: ['OK! It 
\'s hot today!'] ;

}
}



The agents' mailbox is defined as a list of messages. Each message is a GAML object of type message .
An exhaustive description of this type is provided in the dedicated GAML Data Types page.

A message  object is defined by a set of several fields, such as:

contents  (type unknown ): the content of the message

sender  (type unknown ): the sender of the message. In the case where the sender is an agent, it is
possible to get the corresponding agent with agent(m.sender)  (where m  is the considered
message).

unread  (type bool ): specify whether the message has been read.

emission_timestamp  (type int )

recention_timestamp  (type int )

The conversation  data type
The agents' conversations  contain the list of the conversations in which the agent takes part. Each
conversation is a GAML object of type conversation  that contains the list of messages exchanged, the
protocol, initiator... An exhaustive description of this type is provided in the dedicated GAML Data Types
page.

A conversation  object is defined by a set of several fields, such as:

messages  (type = list of messages): the list of messages that compose this conversation

protocol  (type = string): the name of the protocol followed by the conversation

initiator  (type = agent): the agent that has initiated this conversation

participants  (type = list of agents): the list of agents that participate in this conversation

ended  (type = bool): whether this conversation has ended or not

http://localhost:3000/wiki/DataTypes#message
http://localhost:3000/wiki/DataTypes#conversation
http://localhost:3000/wiki/DataTypes#conversation


Version: 1.9.3

Using BEN (simple_bdi)
Introduction to BEN
BEN (Behavior with Emotions and Norms) is an agent architecture providing social agents with
cognition, emotions, emotional contagion, personality, social relations, and norms. This work has been
done during the Ph.D. of Mathieu Bourgais, funded by the ANR ACTEUR.

The BEN architecture is accessible in GAMA through the use of the simple_bdi  architecture when
defining agents. This page indicates the theoretical running of BEN as well as the practical way it has
been implemented in GAMA.

This page features all the descriptions for the running of the BEN architecture. This page is updated with
the version of BEN implemented in GAMA. To get more details on its implementation in GAMA, see
operators related to BDI, BDI tutorial or BDI built-in architecture reference.

The BEN architecture
The BEN Architecture used by agents to make a decision at each time step is represented by the image
right below:

http://localhost:3000/wiki/OperatorsAA#bdi
http://localhost:3000/wiki/BDIAgents
http://localhost:3000/wiki/BuiltInArchitectures#simple_bdi


Each social agent has its own instance of the BEN architecture to make a decision. The architecture is
composed of 4 main parts connected to the agent's knowledge bases, seated on the agent's
personnality. Each part is made up of processes that are automatically computed (in blue) or which need
to be manually defined by the modeler (in pink). Some of these processes are mandatory (in solid line)
and some others are optional (in dotted line). This modularity enables each modeler to only use
components that seem pertinent to the studied situation without creating heavy and useless
computations.

The Activity diagram bellow shows the order in which each module and each process is activated. The
rest of this page explains in details how each process from each module works and what is the
difference between the theoretical architecture and its implementation.



Predicates, knowledge and personality
In BEN, an agent represents its environment through the concept of predicates.

A predicate represents information about the world. This means it may represent a situation, an event
or an action, depending on the context. As the goal is to create behaviors for agents in a social
environment, that is to say taking actions performed by other agents into account with facts from the
environment in the decision making process, an information P caused by an agent j with an associated
list of value V is represented by Pj(V). A predicate P represents an information caused by any or none

agent, with no particular value associated. The opposite of a predicate P is defined as not P.

In GAML, the simple_bdi architecture adds a new type called predicate which is made of a name
(mandatory), a map of values (optional) an agent causing it (optional) and a truth value (optional, by
default at true). To manipulate these predicates, there are operators like set_agent_cause , set_truth ,
with_values  and add_values  to modify the corresponding attribute of a given predicate ( with_values
changes all the map of values while add_values  enables to add a new value without changing the rest
of the map). These values can be accessed with operators get_agent_cause , get_truth , get_values .
An operator not  is also defined for predicates.



Below is an example of how to define predicates in GAML:

Cognitive mental states

Through the architecture, an agent manipulates cognitive mental states to make a decision; they
constitute the agent's mind. A cognitive mental state possessed by the agent $i$ is represented by
Mi(PMEm,Val,Li) with the following meaning:

M: the modality indicating the type of the cognitive mental state (e.g. a belief).

PMEm: the object with which the cognitive mental state relates. It can be a predicate, another
cognitive mental state, or an emotion.

Val: a real value which meaning depends on the modality.

Li: a lifetime value indicating the time before the cognitive mental state is forgotten.

A cognitive mental state with no particular value and no particular lifetime is written Mi(PMEm).

Val[Mi(PMEm)] represents the value attached to a particular cognitive mental state and Li[Mi(PMEm)]

represents its lifetime.

The cognitive part of BEN is based on the BDI paradigm (Bratman, 1987) in which agents have a belief
base, a desire base and an intention base to store the cognitive mental states about the world. In order
to connect cognition with other social features, the architecture outlines a total of 6 different modalities
which are defined as follows:

Belief: represents what the agent knows about the world. The value attached to this mental state
indicates the strength of the belief.

Uncertainty: represents an uncertain information about the world. The value attached to this
mental state indicates the importance of the uncertainty.

Desire: represents a state of the world the agent wants to achieve. The value attached to this
mental state indicates the priority of the desire.

Intention: represents a state of the world the agent is committed to achieve. The value attached to
this mental state indicates the priority of the intention.

predicate a <- new_predicate("test");
predicate b <- new_predicate("test",["value1"::10]);
predicate c <- new_predicate("test",agentBob);
predicate d <- new_predicate("test",false);
predicate e <- new_predicate("test",agenBob,false);



Ideal: represents an information socially judged by the agent. The value attached to this mental
state indicates the praiseworthiness value of the ideal about P. It can be positive (the ideal about P is
praiseworthy) or negative (the ideal about P is blameworthy).

Obligation: represents a state of the world the agent has to achieve. The value attached to this
mental state indicates the priority of the obligation.

In GAML, mental states are manipulated thanks to add, remove and get actions related to each
modality: add_belief , remove_belief , get_belief , add_desire , remove_desire  ... Then, operators
enables to acces or modify each attribute of a given mental state: get_predicate , set_predicate ,
get_strength , set_strength , get_lifetime , set_lifetime , etc.

Below is an exemple of code in GAML concerning cognitive mental states:

Emotions

In BEN, the definition of emotions is based on the OCC theory of emotions (Ortony, 90). According to
this theory, an emotion is a valued answer to the appraisal of a situation. Once again, as the agents are
taken into consideration in the context of a society and should act depending on it, the definition of an
emotion needs to contain the agent causing it. Thus, an emotion is represented by Emi(P,Ag,I,De) with

the following elements :

Emi: the name of the emotion felt by agent i.

P: the predicate representing the fact about which the emotion is expressed.

Ag: the agent causing the emotion.

I: the intensity of the emotion.

De: the decay withdrawal from the emotion's intensity at each time step.

An emotion with any intensity and any decay is represented by Emi(P,Ag) and an emotion caused by any

agent is written Emi(P). I[Emi(P,Ag)] stands for the intensity of a particular emotion and De[Emi(P,Ag)]

stands for its decay value.

reflex testCognition{
    predicate a <- new_predicate("test");
    do add_belief(a,strength1,lifetime1);
    mental_state b <- get_uncertainty(a);
    int c <- get_lifetime(b);
}



In GAML, emotions are manipulated thanks to add_emotion , remove_emotion  and get_emotion  actions
and attributes of an emotion are manipulated with set and get operators ( set_intensity , set_about ,
set_decay , set_agent_cause , get_intensity , get_about , get_decay , get_agent_cause ).

Below is an exemple of code in GAML concerning emotions:

Social relations

As people create social relations when living with other people and change their behavior based on
these relationships, BEN architecture makes it possible to describe social relations in order to use them
in agents' behavior. Based on the research carried out by (Svennevig, 2000), a social relation is described
by using a finite set of variables. Svennevig identifies a minimal set of four variables: liking, dominance,
solidarity, and familiarity. A trust variable is added to interact with the enforcement of social norms.
Therefore, in BEN, a social relation between agent i and agent j is expressed as Ri,j(L,D,S,F,T) with the

following elements:

R: the identifier of the social relation.

L: a real value between -1 and 1 representing the degree of liking with the agent concerned by the
link. A value of -1 indicates that agent j is hated, a value of 1 indicates that agent j is liked.

D: a real value between -1 and 1 representing the degree of power exerted on the agent concerned
by the link. A value of -1 indicates that agent j is dominating, a value of 1 indicates that agent j is
dominated.

S: a real value between 0 and 1 representing the degree of solidarity with the agent concerned by
the link. A value of 0 indicates that there is no solidarity with agent j, a value of 1 indicates a
complete solidarity with agent j.

F: a real value between 0 and 1 representing the degree of familiarity with the agent concerned by
the link. A value of 0 indicates that there is no familiarity with agent j, a value of 1 indicates a
complete familiarity with agent j.

T: a real value between -1 and 1 representing the degree of trust with the agent j. A value of -1
indicates doubts about agent j while a value of 1 indicates complete trust with agent j. The trust
value does not evolve automatically in accordance with emotions.

reflex testEmotion{
    predicate a <- new_predicate("test");
    do add_emotion(new_emotion("hope",a));
    do add_emotion(new_emotion("joy",intesity1,a, decay1));
    float c <- get_intensity(get_emotion(new_emotion("joy",a)));
}



With this definition, a social relation is not necessarily symmetric, which means Ri,j(L,D,S,F,T) is not equal

by definition to Rj,i(L,D,S,F,T). L[Ri,j] stands for the liking value of the social relation between agent i and

agent j, D[i,j] stands for its dominance value, S[Ri,j] for its solidarity value, F[Ri,j] represents its familiarity

value and T[Ri,j] its trust value.

In GAML, social relations are manipulated with add_social_link, remove_social_link and get_social_link
actions. Each feature of a social link is accessible with set and gt operators (set_agent, get_agent,
set_liking, get_liking, set_dominance, etc.)

Below is an exemple of code to manipulates social relations in GAML:

Personality and additional variables

In order to define personality traits, BEN relies on the OCEAN model (McCrae, 1992), also known as the
big five factors model. In the BEN architecture, this model is represented through a vector of five values
between 0 and 1, with 0.5 as the neutral value. The five personality traits are:

O: represents the openness of someone. A value of 0 stands for someone narrow-minded, a value
of 1 stands for someone open-minded.

C: represents the consciousness of someone. A value of 0 stands for someone impulsive, a value of
1 stands for someone who acts with preparations.

E: represents the extroversion of someone. A value of 0 stands for someone shy, a value of 1 stands
for someone extrovert.

A: represents the agreeableness of someone. A value of 0 stands for someone hostile, a value of 1
stands for someone friendly.

N: represents the degree of control someone has on his/her emotions, called neurotism. A value of
0 stands for someones neurotic, a value of 1 stands for someone calm.

In GAML, these variables are build-in attributes of agents using the simple_bdi control architecture. They
are called openness, conscientiousness, extroversion, agreeableness and neurotism. To use this personality
to automaticaly parametrize the other modules, a modeler needs to indicate it as shown in the GAML
example below:

reflex testSocialRelations{
   do add_social_link(new_social_link(agentAlice));
   do add_social_link(new_social_link(agentBob,0.5,-0.3,0.2,0.1));
   float val <- get_liking(get_social_link(new_social_link(agentBob)));
   social_link sl <- set_dominance(get_social_link(new_social_link(agentBob)),0.3);
}



With BEN, the agent has variables related to some of the social features. The idea behind the BEN
architecture is to connect these variables to the personality module and in particular to the five
dimensions of the OCEAN model in order to reduce the number of parameters which need to be entered
by the user. These additional variables are:

The probability to keep the current plan.

The probability to keep the current intention.

A charisma value linked to the emotional contagion process.

An emotional receptivity value linked to the emotional contagion.

An obedience value used by the normative engine.

With the cognition, the agent has two parameters representing the probability to randomly remove the
current plan or the current intention in order to check whether there could be a better plan or a better
intention in the current context. These two values are connected to the consciousness components of
the OCEAN model as it describes the tendency of the agent to prepare its actions (with a high value) or
act impulsively (with a low value).

Probability Keeping Plans = C1/2

Probability Keeping Intentions = C1/2

For the emotional contagion, the process (presented later) requires charisma (Ch) and emotional
receptivity (R) to be defined for each agent. In BEN, charisma is related to the capacity of expression,
which is related to the extroversion of the OCEAN model, while the emotional receptivity is related to the
capacity to control the emotions, which is expressed with the neurotism value of OCEAN.

Ch = E

R = 1 - N

species miner control:simple_bdi {
    ...
    bool use_personality <- true;
    float openness <- 0.1;
    float conscientiousness <- 0.2;
    float extroversion <- 0.3;
    float agreeableness <- 0.4;
    float neurotism <- 0.5;
    ...
}



With the concept of norms, the agent has a value of obedience between 0 and 1, which indicates its
tendency to follow laws, obligations, and norms. According to research in psychology, which tried to
explain the behavior of people participating in a recreation of the Milgram's experiment (Begue, 2015),
obedience is linked with the notions of consciousness and agreeableness which gives the following
equation:

obedience = ((C+A)/2)1/2

With the same idea, all the parameters required by each process are linked to the OCEAN model.

If a modeler wants to put a different value to one of these variables, he/she just need to indicate a new
value manualy. For the probability to keep the current plan and the probability to keep the current
intention, he/she also has to indicates it with a particular boolean value, as shown in the GAML example
below:

Perception
The first step of BEN is the perception of the environment. This module is used to connect the
environment to the knowledge of the agent, transforming information from the world into cognitive
mental states, emotions or social links but also used to apply sanctions during the enforcement of
norms from other agents.

Below is an example of code to define a perception in GAML:

species miner control: simple_bdi {
    ...
    bool use_personality <- true;
    bool use_persistence <- true;
    float plan_persistence <- 0.3;
    float intention_persistence <- 0.4;
    float obedience <- 0.2;
    float charisma <- 0.3;
    float receptivity <- 0.6;
    ...
}

perceive target: fireArea in: 10{
    ...
}



The first process in this perception consists of adding beliefs about the world. During this phase,
information from the environment is transformed into predicates which are included in beliefs or
uncertainties and then added to the agent's knowledge bases. This process enables the agent to update
its knowledge about the world. From the modeler's point of view, it is only necessary to specify which
information is transformed into which predicate. The addition of a belief BeliefA(X) triggers multiple

processes :

it removes BeliefA(not X).

it removes IntentionA(X).

it removes DesireA(X) if IntentionA(X) has just been removed.

it removes UncertaintyA(X) or UncertaintyA(not X).

it removes ObligationA(X). \end{itemize}

In GAML, the focus statement eases the use of this process. Below is an example that adds a belief and
an uncertainty with the focus statement during a perception:

The emotional contagion enables the agent to update its emotions according to the emotions of other
agents perceived. The modeler has to indicate the emotion triggering the contagion, the emotion
created in the perceiving agent and the threshold of this contagion; the charisma (Ch) and receptivity (R)
values are automatically computed as explained previously. The contagion from agent i to agent j occurs
only if Chi x Rj is superior or equal to the threshold, which value is 0.25 by default. Then, the presence of

the trigger emotion in the perceived agent is checked in order to create the emotion indicated.

The intensity and decay value of the emotion acquired by contagion are automatically computed.

If Emj(P) already exists:

I[Emj(P)] = I[Emj(P)] + I[Emi(P)] x Chi x Rj

if pEmi(P)] > I[Emj(P)]:

De[Emj(P)] = De[Emi(P)]

perceive target: fireArea in: 10{
    focus id:"fireLocation" var:location strength:10.0;
    //is equivalent to ask myself {do add_belief(new_predicate("fireLocation",
["location_value"::myself.location],10.0);}
    focus id:"hazardLocation" var:location strength:1.0 is_uncertain:true;
    //is equivalent to ask myself {do add_uncertainty(new_predicate("hazardLocation",
["location_value"::myself.location],1.0);}
}



if I[Emj(P)] > I[Emi(P)]:

De[Emj(P)] = De[Emj(P)]

If Emj(P) does not already exist:

I[Emj(P)] = I[Emi(P)] x Chi x Rj

De[Emj(P)] = De[Emi(P)].

In GAML, emotional_contagion statement helps to define an emotional contagion during a perception, as
shown below:

During the perception, the agent has the possibility of creating social relations with other perceived
agents. The modeler indicates the initial value for each component of the social link, as explained
previously. By default, a neutral relation is created, with each value of the link at 0.0. Social relations can
also be defined before the start of the simulation, to indicate that an agent has links with other agents
at the start of the simulation, like links with friends or family members.

In GAML, the socialize statement help creating dynamicaly new social relations, as shown below:

Finally, the agent may apply sanctions through the norm enforcement of other agents perceived. The
modeler needs to indicate which modality is enforced and the sanction and reward used in the process.
Then, the agent checks if the norm, the obligation, or the law, is violated, applied or not activated by the
perceived agent. Notions of norms laws and obligations and how they work are explained later in this
ocument.

perceive target: otherHumanAgents in: 10{
    emotional_contagion emotion_detected:fearFire threshold:contagionThreshold;
    //creates the detected emotion, if detected, in the agent doing the perception.
    emotional_contagion emotion_detected:joyDance emotion_created:joyPartying;
    //creates the emotion "joyPartying", if emotion "joyDance" is detected in the 
perceived agent.
}

perceive target:otherHumanAgents in: 10{
    socialize;
    //creates a neutral relation
    socialize dominance: -0.8 familiarity:0.2 when: isBoss;
    //example of a social link with precise values for some of its dimensions in a 
certain context
}



A norm is considered violated when its context is verified, and yet the agent chose another norm or
another plan to execute because it decided to disobey. A law is considered violated when its context is
verified, but the agent disobeyed it, not creating the corresponding obligation. Finally, an obligation is
considered violated if the agent did not execute the corresponding norm because it chose to disobey.

Below is an example of how to define an enforcement in GAML:

Managing knowledge bases
The second step of the architecture, corresponding to the module number 2, consists of managing the
agent's knowledge. This means updating the knowledge bases according to the latest perceptions,
adding new desires, new obligations, new emotions or updating social relations, for example.

Modelers have to use inference rules for this purpose. Theses rules are triggered by a new belief, a new
uncertainty or a new emotion, in a certain context, and may add or remove any cognitive mental state or
emotion indicated by the user. Using multiple inference rules helps the agent to adapt its mind to the
situation perceived without removing all its older cognitive mental states or emotions, thus enabling the
creation of a cognitive behavior. These inference rules enable to link manually the various dimensions of
an agent, for example creating desires depending on emotions, social relations and personality.

In GAML, the rule statement enables to define inference rules:

species miner skills: [moving] control:simple_bdi {
    ...
    perceive target: miner in: viewdist {

myself.agent_perceived<-self;
enforcement norm:"share_information" sanction:"sanctionToNorm" 

reward:"rewardToNorm";
    }

    sanction sanctionToNorm{
do change_liking(agent_perceived,-0.1);

    }

    sanction rewardToNorm{
do change_liking(agent_perceived,0.1);

    }
}

species miner skills: [moving] control: simple_bdi {
    ...



Using the same idea, modelers can define laws. These laws enable the creation of obligations in a given
context based on the newest beliefs created by the agent through its perception or its inference rules.
The modeler also needs to indicate an obedience threshold and if the agent's obedience value is below
that threshold, the law is violated. If the law is activated, the obligation is added to the agent's cognitive
mental state bases. The definition of laws makes it possible to create a behavior based on obligations
imposed upon the agent.

Below is an example of the definition of a law statement in GAML:

Emotional engine

BEN enables the agent to get emotions about its cognitive mental states. This addition of emotions is
based on the OCC model (Ortony, 1990) and its logical formalism (Adam, 2007), which has been
proposed to integrate the OCC model in a BDI formalism.

According to the OCC theory, emotions can be split into three groups: emotions linked to events,
emotions linked to people and actions performed by people, and emotions linked to objects. In BEN, as
the focus is on relations between social agents, only the first two groups of emotions (emotions linked
to events and people) are considered.

The twenty emotions defined in this paper can be divided into seven groups depending on their
relations with mental states: emotions about beliefs, emotions about uncertainties, combined emotions
about uncertainties, emotions about other agents with a positive liking value, emotions about other
agents with a negative liking value, emotions about ideals and combined emotions about ideals. All the
initial intensities and decay value are computed using the OCEAN model and the value attached to the
concerned mental states.

The emotions about beliefs are joy and sadness and are expressed this way:

Joyi(Pj,j) = Beliefi(Pj) & Desirei(P)

    perceive target: miner in: viewdist {
...

    }
    ...
    rule belief: new_predicate("testA") new_desire: new_predicate("testB");
}

law belief: new_predicate("testA") new_obligation:new_predicate("testB") 
threshold:thresholdLaw;



Sadnessi(Pj,j) = Beliefi(Pj) & Desirei(not P)

Their initial intensity is computed according to the following equation with N the neurotism component
from the OCEAN model:

I[Emi(P)] = V[Beliefi(P)] x V[Desirei(P)] x (1+(0,5-N))

The emotions about uncertainties are fear and hope and are defined this way:

Hopei(Pj,j) = Uncertaintyi(Pj) & Desirei(P)

Feari(Pj,j) = Uncertaintyi(Pj) & Desirei(not P)

Their initial intensity is computed according to the following equation:

I[Emi(P)] = V[Uncertaintyi(P)] x V[Desirei(P)] x (1+(0,5-N))

Combined emotions about uncertainties are emotions built upon fear and hope. They appear when an
uncertainty is replaced by a belief, transforming fear and hope into satisfaction, disappointment, relief
or fear confirmed and they are defined this way:

Satisfactioni(Pj,j) = Hopei(Pj,j) & Beliefi(Pj)

Disappointmenti(Pj,j) = Hopei(Pj,j) & Beliefi(not Pj)

Reliefi(Pj,j) = Feari(Pj,j) & Beliefi(not Pj)

Fear confirmedi(Pj,j) = Feari(Pj,j) & Beliefi(Pj)

Their initial intensity is computed according to the following equation with Em'i(P) the emotion of

fear/hope.

I[Emi(P)] = V[Beliefi(P)] x I[Em'i(P)]

On top of that, according to the logical formalism (Adam, 2007), four inference rules are triggered by
these emotions:

The creation of fear confirmed or the creation of relief will replace the emotion of fear.

The creation of satisfaction or the creation of disappointment will replace a hope emotion.

The creation of satisfaction or relief leads to the creation of joy.

The creation of disappointment or fear confirmed leads to the creation of sadness.



The emotions about other agents with a positive liking value are emotions related to emotions of other
agents which are in a the social relation base with a positive liking value on that link. They are the
emotions called "happy for" and "sorry for" which are defined this way :

Happy fori(P,j) = L[Ri,j]>0 & Joyj(P)

Sorry fori(P,j) = L[Ri,j]>0 & Sadnessj(P)

Their initial intensity is computed according to the following equation with A the agreeableness value
from the OCEAN model.

I[Emi(P)] = I[Emj(P)] x L[Ri,j] x (1-(0,5-A))

Emotions about other agents with a negative liking value are close to the previous definitions, however,
they are related to the emotions of other agents which are in the social relation base with a negative
liking value. These emotions are resentment and gloating and have the following definition:

Resentmenti(P,j) = L[Ri,j]<0 & Joyj(P)

Gloatingi(P,j) = L[Ri,j]<0 & Sadnessj(P)

Their initial intensity is computed according to the following equation. This equation can be seen as the
inverse of Equation \eqref{eqIntensEmo4}, and means that the intensity of resentment or gloating is
greater if the agent has a low level of agreeableness contrary to the intensity of "happy for" and "sorry
for".

I[Emi(P)] = I[Emj(P)] x |L[Ri,j]| x (1+(0,5-A))

Emotions about ideals are related to the agent's ideal base which contains, at the start of the simulation,
all the actions about which the agent has a praiseworthiness value to give. These ideals can be
praiseworthy (their praiseworthiness value is positive) or blameworthy (their praiseworthiness value is
negative). The emotions coming from these ideals are pride, shame, admiration and reproach and have
the following definition:

Pridei(Pi,i) = Beliefi(Pi) & Ideali(Pi) & V[Ideali(Pi)]>0

Shamei(Pi,i) = Beliefi(Pi) & Ideali(Pi) & V[Ideali(Pi)]<0

Admirationi(Pj,j) = Beliefi(Pj) & Ideali(Pj) & V[Ideali(Pj)]>0

Reproachi(Pj,j) = Beliefi(Pj) & Ideali(Pj) & V[Ideali(Pj)]<0

Their initial intensity is computed according to the following equation with O the openness value from
the OCEAN model:



I[Emi(P)] = V[Beliefi(P)] x |V[Ideali(P)]| x (1+(0,5-O))

Finally, combined emotions about ideals are emotions built upon pride, shame, admiration and
reproach. They appear when joy or sadness appear with an emotion about ideals. They are gratification,
remorse, gratitude and anger which are defined as follows:

Gratificationi(Pi,i) = Pridei(Pi,i) & Joyi(Pi)

Remorsei(Pi,i) = Shamei(Pi,i) & Sadnessi(Pi)

Gratitudei(Pj,j) = Admirationi(Pj,j) & Joyi(Pj)

Angeri(Pj,j) = Reproachi(Pj,j) & Sadnessi(Pj)

Their initial intensity is computed according to the following equation with Em'i(P) the emotion about

ideals and Em"i(P) the emotion about beliefs.

I[Emi(P)] = I[Em'i(P)] x I[Em"i(P)]

In order to keep the initial intensity of each emotion between 0 and 1, each equation is truncated
between 0 an 1 if necessary.

The initial decay value for each of these twenty emotions is computed according to the same equation
with Deltat a time step which enables to define that an emotion does not last more than a given time:

De[Emi(P)] = N x I[Emi(P)] x Deltat

To use this automatic computation of emotion, a modeler need to activate it as shown in the GAML
example below :

Social Engine

When an agent already known is perceived (i.e. there is already a social link with it), the social
relationship with this agent is updated automatically by BEN. This update is based on the work of (Ochs,
2009) and takes the agent's cognitive mental states and emotions into account. In this section, the

species miner control:simple_bdi {
    ...
    bool use_emotions_architecture <- true;
    ...
}



automatic update of each variable of a social link Ri,j(L,D,S,F,T) by the architecture is described in

details; the trust variable of the link is however not updated automatically.

Liking: according to (Ortony, 1991), the degree of liking between two agents depends on the
valence (positive or negative) of the emotions induced by the corresponding agent. In the emotional
model of the architecture, joy and hope are considered as positive emotions (satisfaction and relief
automatically raise joy with the emotional engine) while sadness and fear are considered as negative
emotions (fear confirmed and disappointment automatically raise sadness with the emotional engine).
So, if an agent i has a positive (resp. negative) emotion caused by an agent j, this will increase (resp.
decrease) the value of appreciation in the social link from i concerning j.

Moreover, research has shown that the degree of liking is influenced by the solidarity value
\cite{smith2014social}. This may be explained by the fact that people tend to appreciate people similar
to them.

The computation formula is described with the following equation with mPos the mean value of all
positive emotions caused by agent j, mNeg the mean value of all negative emotions caused by agent j
and aL a coefficient depending of the agent's personality, indicating the importance of emotions in the

process, and which is described below.

L[Ri,j]=L[Ri,j]+|L[Ri,j]|(1-|L[Ri,j]|)S[Ri,j] + aL (1-|L[Ri,j]|)(mPos-mNeg)

aL = 1-N

Dominance : (Keltner, 2001) and (Shiota, 2004) explain that an emotion of fear or sadness caused by
another agent represent an inferior status. But (Knutson, 1996) explains that perceiving fear and
sadness in others increases the sensation of power over those persons.

The computation formula is described by the following equation with mSE the mean value of all
negative emotions caused by agent i to agent j, mOE the mean value of all negative emotions caused by
agent j to agent i and aD a coefficient depending on the agent's personality, indicating the importance of

emotions in the process.

D[Ri,j]=D[Ri,j] + aD (1-|D[Ri,j]|)(mSE-mOE)

aD = 1-N

Solidarity: The solidarity represents the degree of similarity of desires, beliefs, and uncertainties
between two agents. In BEN, the evolution of the solidarity value depends on the ratio of similarity
between the desires, beliefs, and uncertainties of agent i and those of agent j. To compute the



similarities and oppositions between agent i and agent j, agent i needs to have beliefs about agent
j's cognitive mental states. Then it compares these cognitive mental states with its own to detect
similar or opposite knowledge.

On top of that, negative emotions tend to decrease the value of solidarity between two people. The
computation formula is described by the following equation with sim the number of cognitive mental
states similar between agent i and agent j, opp the number of opposite cognitive mental states between
agent i and agent j, NbKnow the number of cognitive mental states in common between agent i and
agent j, mNeg the mean value of all negative emotions caused by agent j, aS1 a coefficient depending of

the agent's personality, indicating the importance of similarities and oppositions in the process, and aS2

a coefficient depending of the agent's personality, indicating the importance of emotions in the process.

S[Ri,j]=S[Ri,j] + S[Ri,j] x (1-S[Ri,j]) x (aS1 (sim-opp)/(NbKnow) - aS2 mNeg))

aS1 = 1-O

aS2 = 1-N

Familiarity: In psychology, emotions and cognition do not seem to impact the familiarity. However,
(Collins, 1994) explains that people tend to be more familiar with people whom they appreciate. This
notion is modeled by basing the evolution of the familiarity value on the liking value between two
agents. The computation formula is defined by the following equation.

F[Ri,j]=F[Ri,j] x (1+L[Ri,j])

The trust value is not evolving automatically in BEN, as there is no clear and automatic link with
cognition or emotions. However, this value can evolve manually, especially with sanctions and rewards to
social norms where the modeler can indicate a modification of the trust value during the enforcement
process.

To use this automatic update of social relations, a modeler need to activate it as shown in the GAML
example below:

species miner control: simple_bdi {
    ...
    bool use_social_architecture <- true;
    ...
}



Making Decision
The third part of the architecture is the only one mandatory as it is where the agent makes a decision. A
cognitive engine can be coupled with a normative engine to chose an intention and a plan to execute.
The complete engine is summed up in the figure below:

The decision-making process can be divided into seven steps:

Step 1: the engine checks the current intention. If it is still valid, the intention is kept so the agent
may continue to carry out its current plan.

Step 2: the engine checks if the current plan/norm is still usable or not, depending on its context.

Step 3: the engine checks if the agent obeys an obligation taken from the obligations
corresponding to a norm with a valid context in the current situation and with a threshold level



lower than the agent's obedience value as computed in Section 4.1.

Step 4: the obligation with the highest priority is taken as the current intention.

Step 5: the desire with the highest priority is taken as the current intention.

Step 6: the plan or norm with the highest priority is selected as the current plan/norm, among the
plans or norms corresponding to the current intention with a valid context.

Step 7: the behavior associated with the current plan/norm is executed.

Steps 4, 5 and 6 do not have to be deterministic; they may be probabilistic. In this case, the priority value
associated with obligations, desires, plans, and norms serves as a probability.

In GAML, a modeler may indicate the use of a probabilistic or deterministic cognitive engine with the
variable probabilistic_choice, as shown in the example code below:

Defining plans

The modeler needs to define action plans which are used by the cognitive engine, as explained earlier.
These plans are a set of behaviors executed in a certain context in response to an intention. In BEN, a
plan owned by agent i is represented by Pli(Int,Cont,Pr,B) with:

Pl: the name of the plan.

Int: the intention triggering this plan.

Cont: the context in which this plan may be applied.

Pr: a priority value used to choose between multiple plans relevant at the same time. If two plans
are relevant to the same priority, one is chosen at random.

B: the behavior, as a sequence of instructions, to execute if the plan is chosen by the agent.

The context of a plan is a particular state of the world in which this plan should be considered by the
agent making a decision. This feature enables to define multiple plans answering the same intention but
activated in various contexts.

Below is an example for the definition of two plans answering the same intention in different contexts in
GAML:

species miner control: simple_bdi {
    ...
    bool probabilistic_choice <- true;
    ...
}



Defining norms

A normative engine may be used within the cognitive engine, as it has been explained above. This
normative engine means choosing an obligation as the current intention and selecting a set of actions
to answer this intention. Also, the concept of social norms is modeled as a set of action answering an
intention, which an agent could disobey. tention and selecting a set of actions to answer this intention.
Also, the concept of social norms is modeled as a set of action answering an intention, which an agent
could disobey.

species miner control: simple_bdi skills: [moving]{
    ...
    plan evacuationFast intention: in_shelter emotion: fearConfirmed priority:2 {

color <- #yellow;
speed <- 60 #km/#h;
if (target = nil or noTarget) {
    target <- (shelter with_min_of (each.location distance_to 

location)).location;
    noTarget <- false;
} else  {
    do goto target: target on: road_network move_weights: current_weights 

recompute_path: false;
    if (target = location)  {

do die;
    }
}

    }

    plan evacuation intention: in_shelter finished_when: has_emotion(fearConfirmed){
color <-#darkred;
if (target = nil or noTarget) {
    target <- (shelter with_min_of (each.location distance_to 

location)).location;
    noTarget <- false;
} else  {
    do goto target: target on: road_network move_weights: current_weights 

recompute_path: false;
    if (target = location)  {

do die;
    }
}

    }
    ...
}



In BEN, this concept of behavior which may be disobeyed is formally represented by a norm possessed
by agent i Noi(Int,Cont,Ob,Pr,B,Vi) with:

No: the name of the norm.

Int: the intention which triggers this norm.

Cont: the context in which this norm can be applied.

Ob: an obedience value that serves as a threshold to determine whether or not the norm is applied
depending on the agent's obedience value (if the agent's value is above the threshold, the norm
may be executed).

Pr: a priority value used to choose between multiple norms applicable at the same time.

B: the behavior, as a sequence of instructions, to execute if the norm is followed by the agent.

Vi: a violation time indicating how long the norm is considered violated once it has been violated.

In GAML, a norm is defined as follows:

species miner control: simple_bdi {
    ...
//this first norm answer an intention coming from an obligation
    norm doingJob obligation:has_gold finished_when: has_belief(has_gold) 
threshold:thresholdObligation{
        if (target = nil) {

    do add_subintention(has_gold,choose_goldmine, true);
    do current_intention_on_hold();

        } else {
    do goto target: target ;
    if (target = location)  {

goldmine current_mine<- goldmine first_with (target = each.location);
if current_mine.quantity > 0 {
    gold_transported <- gold_transported+1;

     do add_belief(has_gold);
    ask current_mine {quantity <- quantity - 1;}
} else {
    do add_belief(new_predicate(empty_mine_location, 

["location_value"::target]));
    do remove_belief(new_predicate(mine_at_location, 

["location_value"::target]));
}
target <- nil;

    }
}

    }

//this norm may be seen as a "social norm" as it answers an intention not coming from 
an obligation but may be disobeyed



Dynamic knowledge
The final part of the architecture is used to create a temporal dynamic to the agent's behavior, useful in
a simulation context. To do so, this module automatically degrades mental states and emotions and
updates the status of each norm.

The degradation of mental states consists of reducing their lifetime. When the lifetime is null, the
mental state is removed from its base. The degradation of emotions consists of reducing the intensity
of each emotion stored by its decay value. When the intensity of an emotion is null, the emotion is
removed from the emotional base.

In GAML, if a mental state has a lifetime value or if an emotion has an intensity and a decay value, this
degradation process is done automatically.

Finally, the status of each norm is updated to indicate if the norm was activated or not (if the context
was right or wrong) and if it was violated or not (the norm was activated but the agent disobeyed it).
Also, a norm can be violated for a certain time which is updated and if it becomes null, the norm is not
violated anymore.

These last steps enable the agent's behavior's components to automatically evolve through time,
leading the agents to forget a piece of knowledge after a certain amount of time, creating dynamics in
their behavior.

    norm share_information intention:share_information threshold:thresholdNorm 
instantaneous: true{

list<miner> my_friends <- list<miner>((social_link_base where (each.liking > 
0)) collect each.agent);

loop known_goldmine over: get_beliefs_with_name(mine_at_location) {
    ask my_friends {

do add_belief(known_goldmine);
    }
}
loop known_empty_goldmine over: get_beliefs_with_name(empty_mine_location) {
    ask my_friends {

do add_belief(known_empty_goldmine);
    }
}

do remove_intention(share_information, true); 
    }
    ...
}



Conclusion
The BEN architecture is already implemented in GAMA and may be accessed by adding the simple_bdi
control architecture to the definition of a species.

A tutorial may be found with the BDI Tutorial.

http://localhost:3000/wiki/BDIAgents


Version: 1.9.3

Driving Skill
This page aims at presenting how to use the driving skill in models.

The use of the driving skill requires to use 3 skills:

driving skill: dedicated to the definition of the driver species. It provides the driver agents with
variables and actions allowing to move an agent on a graph network and to tune its behavior.

road skill: dedicated to the definition of roads. It provides the road agents with variables and
actions allowing to registers agents on the road.

intersection skill: dedicated to the definition of nodes. It provides the node agents with variables
allowing to take into account the intersection of roads and the traffic signals.

Table of contents
Driving Skill

Structure of the network: road and road node skills

Driving skill

Application example

Structure of the network: road and road_node
skills
The driving skill is versatile enough to be usable with most of classic road GIS data, in particular, OSM
data. We use a classic format for the roads and intersections. Each road is a polyline composed of road
sections (segments). Each road has a target intersection and a source intersection. Each intersection
knows all its input and output roads. A road is considered as directed. For bidirectional roads, 2 roads
have to be defined corresponding to both directions. Each road will be the linked_road  of the other.
Note that for some GIS data, only one road is defined for bidirectional roads, and the intersections are
not explicitly defined. In this case, it is very easy, using the GAML language, to create the reverse roads
and the corresponding intersections (it only requires a few lines of GAML).



A road can be composed of several lanes and the vehicles will be able to change at any time its lane.
What a lane represents will depend a lot on the context of application. Typically, if in developed
countries, the lanes are most of times well defined, in many other countries this notion is much more
abstract. For example in Vietnam where the main means of locomotion is the motorcycle, a lane can
designate a "place" for a motorcycle and thus be much narrower than classical lanes. Another property
of the road that will be taken into account is the maximal authorized speed on it. Note that even if the
user of the plug-in has no information about these values for some of the roads (the OSM data are often
incomplete), it is very easy using the GAML language to fill the missing value by a default value. It is also
possible to change these values dynamically during the simulation (for example, to take into account
that after an accident, a lane of a road is closed or that the speed of a road is decreased by the
authorities).



The road skill ( road_skill ) provides the road agents with several variables that will define the road
properties:

num_lanes : integer, number of lanes.

maxspeed : float; maximal authorized speed on the road.

linked_road : road agent; reverse road (if there is one).

source_node : intersection agent; source intersection of the road.

target_node : intersection agent; target intersection of the road.

It provides as well the road agents with read-only variables:

agents_on : list of list (of driver agents); for each lane, the list of driver agents on the road.

all_agents : list (of driver agents): the list of agents on the road.

The intersection skill ( intersection_skill ) provides the road node agents with several variables that
will define the road node properties:

roads_in : list of road agents; the list of road agents that have this node for target node.

roads_out : list of road agents; the list of road agents that have this node for source node.

stop : list of list of road agents; list of stop signals, and for each stop signal, the list of concerned
roads.

priority_roads : list of road agents: the list of priority roads.

It provides as well the road agents with one read-only variable:

block : map: key: driver agent, value: list of road agents; the list of driver agents blocking the node,
and for each agent, the list of concerned roads.

Driving skill
A vehicle is first characterized by its location, a 3D-point (coordinate) that represents the centroid of the
vehicle. The actual geometry of the vehicle is not taken into account. However, the size of a vehicle is
determined by two attributes: vehicle_length  and num_lanes_occupied . Indeed, if we go back to our
Vietnamese example where the lanes are defined according to the size of the motorcycles, we can
consider that a motorcycle will occupy one lane, but that a car, which is much wider, will occupy two.

Each vehicle agent has also a planned trajectory that consists of a succession of edges. When the vehicle
agent enters a new edge, it first chooses its lane according to the traffic density, with a bias for the
rightmost lane. The movement on an edge is inspired by the Intelligent Driver Model. The drivers have



the possibility to change their lane at any time (and not only when entering a new edge). The lane-
changing model is inspired from the MOBIL model.

The driving skill ( driving ) provides the driver agents with several variables that will define the car
properties and the personality of the driver:

final_target : point; final location that the agent wants to reach (its goal).

vehicle_length : float; length of the vehicle.

num_lanes_occupied : float; the number of lanes occupied by the vehicle.

max_acceleration : float; maximal acceleration of the vehicle.

max_speed : float; maximal speed of the vehicle.

right_side_driving : boolean; do drivers drive on the right side of the road?

speed_coeff : float; coefficient that defines if the driver will try to drive above or below the speed
limits.

safety_distance_coeff : float; coefficient for the security distance. The security distance will
depend on the driver speed and on this coefficient.

proba_lane_change_up : float; probability to change lane to an upper lane if necessary (and if
possible).

proba_lane_change_down : float; probability to change lane to a lower lane if necessary (and if
possible).

proba_use_linked_road : float; probability to take the reverse road if necessary (if there is a reverse
road).

proba_respect_priorities : float; probability to respect left/right (according to the driving side)
priority at intersections.

proba_respect_stops : list of float; probabilities to respect each type of stop signals (traffic light,
stop sign...).

proba_block_node : float; probability to accept to block the intersecting roads to enter a new road.

lane_change_cooldown : float; the duration that a vehicle must wait before changing lanes again

max_safe_deceleration : float; the maximum deceleration that the vehicle is willing to induce on its
back vehicle when changing lanes. Known as the parameter 'b_save' in the MOBIL lane changing
model

min_safety_distance : float; the minimum distance of the vehicle's front bumper to the leading
vehicle's rear bumper, known as the parameter s0 in the Intelligent Driver Model

lane_change_limit : int; the maximum number of lanes that the vehicle can change during a
simulation step



acc_gain_threshold : float; the minimum acceleration gain for the vehicle to switch to another
lane, introduced to prevent frantic lane changing. Known as the parameter 'a_th' in the MOBIL lane
changing model

linked_lane_limit : int; the maximum number of linked lanes that the vehicle can use; the default
value is -1, i.e. the vehicle can use all available linked lanes

ignore_oneway : bool; if set to true , the vehicle will be able to violate one-way traffic rule

lowest_lane : int; the lane with the smallest index that the vehicle is in

acc_bias : float; the bias term used for asymmetric lane changing, parameter 'a_bias' in MOBIL

allowed_lanes : list of int; a list containing possible lane index values for the attribute lowest_lane

time_headway : float; the time gap that to the leading vehicle that the driver must maintain. Known
as the parameter 'T' in the Intelligent Driver Model

delta_idm : float; the exponent used in the computation of free-road acceleration in the Intelligent
Driver Model

max_deceleration : float; the maximum deceleration of the vehicle. Known as the parameter 'b' in
the Intelligent Driver Model

politeness_factor : float; determines the politeness level of the vehicle when changing lanes.
Known as the parameter 'p' in the MOBIL lane changing model

It provides as well the driver agents with several read-only variables:

speed : float; speed expected according to the road max_value , the car properties, the personality
of the driver and its real_speed .

real_speed : float; real speed of the car (that takes into account the other drivers and the traffic
signals).

current_path : path (list of roads to follow); the path that the agent is currently following.

current_road : agent; the road on which the agent is driving on.

lowest_lane : agent; the index of the lowest lane occupied.

current_target : point; the next target to reach (sub-goal). It corresponds to a node.

targets : list of points; list of locations (sub-goals) to reach the final target.

current_index : integer; the index of the current goal the agent has to reach.

using_linked_road : boolean; is the agent on the linked road?

Of course, the values of these variables can be modified at any time during the simulation. For example,
the probability to take a reverse road (proba_use_linked_road) can be increased if the driver is stuck for
several minutes behind a slow vehicle.

In addition, the driving skill provides driver agents with several actions:



compute_path : arguments: a graph and a target node. This action computes from a graph the
shortest path to reach a given node.

drive : no argument. This action moves the driver on its current path according to the traffic
condition and the driver properties (vehicle properties and driver personality). The drive_random
make the agent drives on a road and chooses randomly a new road at each intersection.

The drive  action works as follow: while the agent has the time to move ( remaining_time > 0 ), it first
defines the speed expected. This speed is computed from the max_speed  of the road, the current
real_speed , the max_speed , the max_acceleration  and the speed_coef  of the driver.

Then, the agent moves toward the current target and compute the remaining time. During the
movement, the agents can change lanes. If the agent reaches its final target, it stops; if it reaches its
current target (that is not the final target), it tests if it can cross the intersection to reach the next road of
the current path. If it is possible, it defines its new target (target node of the next road) and continues to
move.

The function that defines if the agent crosses or not the intersection to continue to move works as
follow: first, it tests if the road is blocked by a driver at the intersection (if the road is blocked, the agent
does not cross the intersection). Then, if there is at least one stop signal at the intersection (traffic
signal, stop sign...), for each of these signals, the agent tests its probability to respect or not the signal
(note that the agent has a specific probability to respect each type of signals). If there is no stopping
signal or if the agent does not respect it, the agent checks if there is at least one vehicle coming from a
right (or left if the agent drives on the left side) road at a distance lower than its security distance. If
there is one, it tests its probability to respect this priority. If there is no vehicle from the right roads or if
it chooses to do not respect the right priority, it tests if it is possible to cross the intersection to its target
road without blocking the intersection (i.e. if there is enough space in the target road). If it can cross the
intersection, it crosses it; otherwise, it tests its probability to block the node: if the agent decides
nevertheless to cross the intersection, then the perpendicular roads will be blocked at the intersection
level (these roads will be unblocked when the agent is going to move).

Concerning the movement of the driver agents on the current road, the agent moves from a section of
the road (i.e. segment composing the polyline) to another section according to the maximal distance
that the agent can moves (that will depend on the remaining time). For each road section, the agent first
computes the maximal distance it can travel according to the remaining time and its speed. Then, the
agent computes its security distance according to its speed and its safety_distance_coeff . While its
remaining distance is not null, the agent computes the maximal distance it can travel (and the
corresponding lane), then it moves according to this distance (and update its current lane if necessary).
If the agent is not blocked by another vehicle and can reach the end of the road section, it updates its
current road section and continues to move.



The computation of the maximal distance an agent can move on a road section consists of computing
for each possible lane the maximal distance the agent can move. First, if there is a lower lane, the agent
tests the probability to change its lane to a lower one. If it decides to test the lower lane, the agent
computes the distance to the next vehicle on this lane and memorizes it. If this distance corresponds to
the maximal distance it can travel, it chooses this lane; otherwise, it computes the distance to the next
vehicle on its current lane and memorizes it if it is higher than the current memorized maximal distance.
Then if the memorized distance is lower than the maximal distance the agent can travel and if there is
an upper lane, the agents test the probability to change its lane to an upper one. If it decides to test the
upper lane, the agent computes the distance to the next vehicle on this lane and memorizes it if it is
higher than the current memorized maximal distance. At last, if the memorized distance is still lower
than the maximal distance it can travel if the agent is on the highest lane and if there is a reverse road,
the agent tests the probability to use the reverse road (linked road). If it decides to use the reverse road,
the agent computes the distance to the next vehicle on the lane 0 of this road and memorizes the
distance if it is higher than the current memorized maximal distance.

More details about the driving skill can be found here

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281658


Version: 1.9.3

Manipulate Dates
Managing Time in Models
If some models are based on an abstract time - only the number of cycles is important - others are
based on a real time. To this purpose, GAMA provides some tools to manage time.

First, GAMA allows the modeler to define the duration of a simulation step. It provides access to
different time variables. At last, since GAMA 1.7, it provides a date variable type and some global
variables allowing to use a real calendar to manage time.

Definition of the step and use of temporal unity
values
GAMA provides three important global variables to manage time:

cycle  (int - not modifiable): the current simulation step - this variable is incremented by 1 at each
simulation step

step  (float - can be modified): the duration of a simulation step (in seconds). By default, the
duration is one second.

time  (float - not modifiable): the current time spent since the beginning of the simulation - this
variable is computed at each simulation step by: time = cycle * step.

The value of the cycle and time variables are shown in the top left (green rectangle) of the simulation
interface. Clicking on the green rectangle allows to display either the number cycles or the time variable.
Concerning this variable, it is presented following a years - months - days - hours - minutes - seconds
format. In this presentation, every month is considered as being composed of 30 days (the different
number of days of months are not taken into account).

Concerning step global variable, the variable can be modified by the modeler. A classic way of doing it
consists of reediting the variable in the global section:

global {
    float step <- 1 #hour;

http://localhost:3000/wiki/GlobalSpecies#cycle


In this example, each simulation step will represent 1 hour. This time will be taken into account for all
actions based on time (e.g. moving actions).

Note that the value of the step  variable should be given in seconds. To facilitate the definition of the
step value and of all expressions based on time, GAMA provides different built-in constant variables
accessible with the " # " symbol:

#s  : second - 1 second

#mn  : minute - 60 seconds

#hour  : hour - 60 minutes - 3600 seconds

#day  : day - 24 hours - 86400 seconds

#week : week - 7 days - 604800 seconds

#month  : month - 30 days - 2592000 seconds

#year  : year - 12 month - 3.1104E7 seconds

The date variable type and the use of a real
calendar
Since GAMA 1.7, it is possible to use a real calendar to manage the time. For that, the modeler has only
to define the starting date of the simulation. This variable is of type date  which allows him/her to
represent a date and time. A date variable has several attributes:

year  (int): the year component of the date

month  (int): the month component of the date

day  (int): the day component of the date

hour  (int): the hour component of the date

minute  (int): the minute component of the date

second  (int): the second component of the date

day_of_week  (int): the day of the week

week_of_year  (int): the week of the year

Several ways can be used to define a date. The simplest one consists in using a list of int values:
[year,month of the year,day of the month, hour of the day, minute of the hour, second of the minute]

}

http://localhost:3000/wiki/UnitsAndConstants#time-units
http://localhost:3000/wiki/UnitsAndConstants#time-units


Another way consists in using a string with the good format. The following one is perhaps the most
complete, with year, month, day, hour, minute, second and also the time zone.

But the following ones can also be used:

Note that the current (real) date can be accessed through the #now  built-in variable (variable of type
date).

In addition, GAMA provides different useful operators working on dates. For instance, it is possible to
compute the duration in seconds between 2 dates using the " - " operator. The result is given in seconds:

It is also possible to add or subtract a duration (in seconds) to a date:

At last, it is possible to add or subtract a duration (in years, months, weeks, days, hours, minutes,
seconds) to a date:

date my_date <- date([2010,3,23,17,30,10]); // the 23th of March 2010, at 17:30:10

date my_date <- date("2010-3-23T17:30:10+07:00"); 

// without time zone:
my_date3 <- date("2010-03-23 17:30:10"); 
//Dates (without time)
my_date3 <- date("20100323");
my_date3 <- date("2010-03-23");
// Dates using some patterns:
my_date3 <- date("03 23 2010","MM dd yyyy");
my_date3 <- date("01 23 20","HH mm ss");

float d <- starting_date - my_date;

write "my_date + 10: " + (my_date + 10);
write "my_date - 10: " + (my_date - 10);

write "my_date add_years 1: " + (my_date add_years 1);
write "my_date add_months 1: " + (my_date add_months 1);
write "my_date add_weeks 1: " + (my_date add_weeks 1);
write "my_date add_days 1: " + (my_date add_days 1);



Date variables in the model
For the modelers, two global date variables are available:

starting_date : date considered as the beginning of the simulation (by default the starting date is
1970-01-01 07:00:00 .

current_date : current date of the simulation.

Defining a value of the starting_date allows to change the normal time management of the simulation
by a more realistic one (using a calendar):

When a value is set to this variable, the current_date  variable is automatically initialized with the same
value. However, at each simulation step, the current_date  variable is incremented by the step  variable.
The value of the current_date  will replace the value of the time variable in the top left green panel.

Note that you have to be careful when a real calendar is used, the built-in constants #month  and #year
should not be used as there are not consistent with the calendar (where month can be composed of 28,
29, 30 or 31 days).

write "my_date add_hours 1: " + (my_date add_hours 1);
write "my_date add_minutes 1: " + (my_date add_minutes 1);
write "my_date add_seconds 1: " + (my_date add_seconds 1);

  
write "my_date subtract_years 1: " + (my_date subtract_years 1);
write "my_date subtract_months 1: " + (my_date subtract_months 1);
write "my_date subtract_weeks 1: " + (my_date subtract_weeks 1);
write "my_date subtract_days 1: " + (my_date subtract_days 1);
write "my_date subtract_hours 1: " + (my_date subtract_hours 1);
write "my_date subtract_minutes 1: " + (my_date subtract_minutes 1);
write "my_date subtract_seconds 1: " + (my_date subtract_seconds 1);

global {
    date starting_date <- date([1979,12,17,19,45,10]);
}



Version: 1.9.3

Implementing light
When using OpenGL display, GAMA provides you the possibility to manipulate one or several lights,
making your display more realistic. Most of the following screenshots will be taken with the following
short example gaml:

Index
Light generalities

Default light

Custom lights

model test_light

grid cells {
    aspect base {

draw square(1) at:{grid_x,grid_y} color:#white;
    }
}

experiment my_experiment type:gui{
    output {

display my_display type: opengl background: #darkblue {
    species cells aspect: base;
    graphics "my_layer" {

draw square(100) color:#white at:{50,50};
draw cube(5) color:#lightgrey at:{50,30};
draw cube(5) color:#lightgrey at:{30,35};
draw cube(5) color:#lightgrey at:{60,35};
draw sphere(5) color:#lightgrey at:{10,10,2.5};
draw sphere(5) color:#lightgrey at:{20,30,2.5};
draw sphere(5) color:#lightgrey at:{40,30,2.5};
draw sphere(5) color:#lightgrey at:{40,60,2.5};
draw cone3D(5,5) color:#lightgrey at:{55,10,0};
draw cylinder(5,5) color:#lightgrey at:{10,60,0};

    }
}

    }
}



Light generalities
Before going deep into the code, here is a quick explanation about how light works in OpenGL. First of
all, you need to know that there are 3 types of lights you can manipulate: the ambient light, the diffuse
light and the specular light. Each "light" in OpenGL is in fact composed of those 3 types of lights.

Ambient light

The ambient light is the light of your world without any lighting. If a face of a cube is not stricken by the
light rays, for instance, this face will appear totally black if there is no ambient light. To make your world
more realistic, it is better to have ambient light. Ambient light has then no position or direction. It is
equally distributed to all the objects of your scene.

Here is an example of our GAML scene using only ambient light (color red) (see below how to define
ambient light in GAML):

Diffuse light

The diffuse light can be seen as the light rays: if a face of a cube is stricken by the diffuse light, it will
take the color of this diffuse light. You have to know that the more perpendicular the face of your object
will be to the light ray, the more lightened the face will be.

A diffuse light has then a direction. It can have also a position. You have 2 categories of diffuse light: the
positional lights, and the directional lights.

Positional lights

http://localhost:3000/wiki/ManipulateLight#ambient-light-1
http://localhost:3000/wiki/ManipulateLight#ambient-light-1


Those lights have a position in your world. It is the case of point lights and spot lights.

Point lights

Points lights can be seen as a candle in your world, diffusing the light equally in all the direction.

Here is an example of our GAML scene using only diffuse light, with a point light (color red, the light
source is displayed as a red sphere) :

Spot lights

Spot lights can be seen as a torch light in your world. It needs a position, and also a direction and an
angle.

Here is an example of our GAML scene using only diffusion light, with a spot light (color red, the light
source is displayed as a red cone) :



Positional lights, as they have a position, can also have an attenuation according to the distance
between the light source and the object. The value of positional lights are computed with the following
formula:

By changing those 3 values (constante_attenuation, linear_attenuation and quadratic_attenuation), you
can control the way light is diffused over your world (if your world is "foggy" for instance, you may turn
your linear and quadratic attenuation on). Note that by default, all those attenuations are equal to 0.

Here is an example of our GAML scene using only diffusion light, with a point light with linear
attenuation (color red, the light source is displayed as a red sphere):

diffuse_light = diffuse_light * ( 1 / (1 + constante_attenuation + linear_attenuation * 
d + quadratic_attenuation * d))



Directional lights

Directional lights have no real "position": they only have a direction. A directional light will strike all the
objects of your world in the same direction. An example of directional light you have in the real world
would be the light of the sun: the sun is so far away from us that you can consider that the rays have the
same direction and the same intensity wherever they strike. Since there is no position for directional
lights, there is no attenuation either.

Here is an example of our GAML scene using only diffusion light, with a directional light (color red) :

Specular light



This is a more advanced concept, giving an aspect a little bit "shinny" to the objects stricken by the
specular light. It is used to simulate the interaction between the light and a special material (ex: wood,
steel, rubber...). This specular light is not implemented yet in GAMA, only the two others are.

Default light
In your OpenGL display, without specifying any light, you will have only one light, with those following
properties :

Those values have been chosen in order to have the same visual effect in both OpenGL and java2D
displays, when you display 2D objects, and also to have a nice "3D effect" when using the OpenGL
displays. We chose the following setting by default:

The ambient light value: rgb(127,127,127,255)

diffuse light value: rgb(127,127,127,255)

type of light: direction

direction of the light: (0.5,0.5,-1);

Here is an example of our GAML scene using the default light:

Custom lights
In your OpenGL display, you can create several lights, giving them the properties you want.



In order to add lights, or modifying the existing lights, you have to use the statement light  inside your
display  scope:

A name has to be declared for the light. Through this facet, you can specify which light you want. Once
you are manipulating a light through the light  statement, the light is turned on. To switch off the light,
you have to add the facet active , and turn it to false . The light you are declaring through the light
statement is, in fact, a "diffuse" light. You can specify the color of the diffuse light through the facet
intensity  (by default, the color will be turned to white). Another very important facet is the type  facet.
This facet accepts a value among #direction , #point  and #spot .

Ambient light

The ambient light can be set when declaring a light, using the #ambient constant, through the facet
intensity :

Note for developers: Note that this ambient light is set to the GL_LIGHT0. This GL_LIGHT0 only contains
an ambient light, and no either diffuse nor specular light.

Declaring direction light

A direction light, as explained in the first part, is a light without any position. Instead of the facet
position , you will use the facet direction , giving a 3D vector.

Example of implementation:

experiment my_experiment type:gui {
    output {

display "my_display" type:opengl {
    light "my_light";
}

    }
}

experiment my_experiment type: gui {
    output {

display "my_display" type: opengl  {
    light #ambient intensity: 100;
}

    }
}



Declaring point light

A point light will need a facet position , in order to give the position of the light source.

Example of implementation of a basic point light:

You can add, if you want, a custom attenuation of the light, through the facets linear_attenuation  or
quadratic_attenuation .

Example of implementation of a point light with attenuation :

Declaring spot light

A spot light will need the facet position  (a spot light is a positional light) and the facet direction . A
spot light will also need a special facet spot_angle  to determine the angle of the spot (by default, this
value is set to 45 degree).

Example of implementation of a basic spot light:

Same as for point light, you can specify an attenuation for a spot light.

Example of implementation of a spot light with attenuation:

Note that when you are working with lights, you can display your lights through the facet show  (of
light ) to help you to implement your model. The three types of lights are displayed differently:

light "my_direction_light" type: #direction direction: {1,1,1} intensity: #red;

light "my_point_light" type: #point location: {10,20,10} intensity: #red;

light "my_point_light"  type: #point location: {10,20,10} intensity: #red 
linear_attenuation: 0.1;

light "my_spot_light" type: #spot location: {0,0,100}direction:{0.5,0.5,-1} intensity: 
#red angle: 20;

light "my_spot_light" type:#spot location:{0,0,100} direction:{0.5,0.5,-1} 
intensity:#red angle:30 linear_attenuation: 0.1;



The point light is represented by a sphere with the color of the diffuse light you specified, in the
position of your light source.

The spot light is represented by a cone with the color of the diffuse light you specified, in the
position of your light source, the orientation of your light source. The size of the base of the cone
will depend on the angle you specified.

The direction light, as it has no real position, is represented with arrows a bit above the world, with
the direction of your direction light, and the color of the diffuse light you specified.

Note for developers: Note that, since the GL_LIGHT0 is already reserved for the ambient light (only !), all
the other lights (from 1 to 7) are the lights from GL_LIGHT1 to GL_LIGHT7.



Version: 1.9.3

Using Comodel
Introduction
In the trend of developing a complex system of multi-disciplinary, composing and coupling models are
days by days becoming the most attractive research objectives. GAMA is supporting the co-modeling
and co-simulation which are supposed to be a common coupling infrastructure.

Example of a Comodel
A Comodel is a model, especially an agent-based model, composed of several sub-models, called micro-
models. A comodel itself could be also a micro-model of another comodel. From the point of view of a
micro-model, the comodel is called a macro-model.

A micro-model must be imported, instantiated, and life-controlled by a macro-model.

Why and when can we use Comodel?
Co-models ca definitely be very useful when the whole model can be decomposed in several sub-
models, each of them representing, in general, a dynamics of the whole model, and that interact
through some entities of the model. In particular, it allows several modelers to develop the part of the
model dedicated to their expertise field, to test it extensively, before integrating it inside the whole
model (where integration tests should not be omitted!).



Use of Comodel in a GAML model
The GAML language has evolved by extending the import section. The old importation told the compiler
to merge all imported elements into as one model, but the new one allows modelers to keep the
elements coming from imported models separately from the caller model.

Definition of a micro-model

Defining a micro-model of comodel is to import an existing model with an alias name. The syntax is:

The identifier is then become the new name of the micro-model.

As an example taken from the model library, we can write:

Instantiation of a micro-model

After the importation and giving an identifier, micro-model must be explicitly instantiated. It could be
done by the create  statement.

The <exeperiment name>  is an experiment inside micro-model. This syntax will generate some
experiment agents and attach an implicit simulation.

Note: The creation of several instances is not multi-simulation, but multi-experiment. Modelers could
create an experiment with multi-simulation by explicitly do the init inside the experiment scope.

As an example taken from the model library, we can write:

import <path to the GAML model> as <identifier>

import "Prey Predator Adapter.gaml" as Organism

create <micro-model identifier> . <experiment name> [optional parameter];

global {
    init {
        //instantiate three instant of micro-model PreyPredator
        create Organism.Simple number: 3 with: [shape::square(100), preyinit::10, 
predatorinit::1] ;



Control micro-model life-cycle

A micro-model can be controlled as any normal agent by asking the corresponding identifier, and also
be destroyed by the do die;  statement. And it can be recreated any time we need.

More generally, to schedule all the created simulations, we can do:

Visualization of the micro-model
The micro-model species could display in comodel with the support of agent layer

As an example:

More details

    }
}

ask (<micro-model identifier> . <experiment name>  at <number> ) . simulation {
    ...
}

reflex simulate_micro_models {
    // ask all simulation do their job
    ask (Organism.Simple collect each.simulation) {
        do _step_;
    }
}

agents "name of layer" value: (<micro-model> . <experiment name> at <number>).<get List 
of agents>;

display "Comodel display" {
    agents "agentprey" value: (Organism.Simple accumulate each.get_prey());
    agents "agentpredator" value: (Organism.Simple accumulate each.get_predator());
}



Example of the comodel
The following illustrations are taken from the model library provided with the GAMA platform.

Urbanization model with a Traffic model

Flood model with Evacuation model

The aim of this model is to couple the two existing models: Flood Simulation and Evacuation.

Toy Models/Evacuation/models/continuous_move.gaml



Toy Models/Flood Simulation/models/Hydrological Model.gaml

The comodel explores the effect of a flood on an evacuation plan:



Simulation results:



Version: 1.9.3

Save and Restore simulations
Last version of GAMA has introduced new features to save the state of a simulation at a given simulation
cycle. This has two main applications:

The possibility to save the state of a simulation

The possibility to restore a simulation from this file.

The possibility to go backward to an older state of a simulation.

Save a simulation

Restore a simulation

experiment saveSimu type: gui {

reflex store when: cycle = 5 {
write "================ START SAVE + self " + " - " + cycle ;
write "Save of simulation : " + save_simulation('saveSimu.gsim');
write "================ END SAVE + self " + " - " + cycle ;

}

output {
display main_display {

species road aspect: geom;
species people aspect: base;

}
}

}

experiment reloadSavedSimuOnly type: gui {

action _init_ {
create simulation from: saved_simulation_file("saveSimu.gsim");

}

output {
display main_display {

species road aspect: geom;



Memorize simulation

species people aspect: base;
}

}
}

model memorize

global {
init{

create people number:1;
}

}

species people skills: [moving] {

init{
location <- {50, 50};

}
reflex movement {

location <- {location.x + 1,location.y};
}

aspect base {
draw circle(5) color: color;
draw ""+cycle;

}
}

experiment memorizeExp type: memorize {

output {
display map {

species people aspect: base;
}

}
}



Version: 1.9.3

Using network
Introduction
GAMA provides features to allow agents to communicate with other agents (and other applications)
through network and to exchange messages of various types (from simple number to agents). To this
purpose, the network  skill should be used on agents intending to use these capabilities.

Notice that in this communication, roles are asymetric: the simulations should contain a server and
some clients to communicate. Message exchanges are made between agents through this server. 6
protocols are supported (TCP, UDP, MQTT, HTTP, Websocket, Arduino):

when TCP, UDP or Websocket protocols are used: Agents can be either clients or server
depending on the needs of the simulation.

when the MQTT protocol is used: all the agents are clients and the server is an external software.
A free solution (ActiveMQ) can be freely downloaded from: http://activemq.apache.org.

when HTTP is used: the agents can interact with webpages/webservices through raw GET, POST,
PUT, and DELETE requests

when arduino is used: one agent of the simulation can connect to an Arduino as a client.

Which protocol to use ?
In the GAMA network, 6 kinds of protocol can be used. Each of them has a particular purpose.

MQTT: this is the default protocol that should be used to make agents of various GAMA instances to
communicate through a MQTT server (that should be run as an external application, e.g. ActiveMQ
that can be downloaded from: http://activemq.apache.org/),

UDP: this protocol should be limited to fast (and unsecured) exchanges of small pieces of data from
GAMA to an external application (for example, mouse location from a Processing application to
GAMA, c.f. model library),

TCP and Websocket: these protocols can be used both to communicate between GAMA agents in a
simulation or between GAMA and an external application.

HTTP requests: this protocol should be used to communicate with an external webservice.

Arduino: this protocol should be used to communicate with an arduino device

http://activemq.apache.org/
http://activemq.apache.org/


Disclaimer
In all the models using any network communication, the server should be launched before the
clients. As a consequence, when TCP, Websocket or UDP protocols are used, a model creating a server
agent should always be run first. Using MQTT protocol, the external software server should be launched
before running any model using it.

Declaring a network species
To create agents able to communicate through a network, their species should have the skill network :

A list exhaustive of the additional attributes and available actions provided by this skill are described
here: network skill preference page.

Creation of a network agent
The network agents are created as any other agents, but (in general) at the creation of the agents, the
connection is also created, using the connect  built-in action:

Each protocol has its specificities regarding the connection:

TCP:
protocol : the 2 possibles keywords are tcp_server  or tcp_client , depending on the wanted
role of the agent in the communication.

port : traditionally the port 3001  is used.

raw : false by default for compatibility purposes, however it is highly recommended to turn it to
true  when communicating with external applications as it will remove all the wrapper
information used for communication inside gama and prevent some bugs when
communicating inside gama.

species Networking_Client skills: [network] {
    ...
}

create Networking_Client {
    do connect to: "localhost" protocol: "tcp_client" port: 3001 with_name: "Client";
}

https://github.com/gama-platform/gama/wiki/BuiltInSkills#network


Websocket:
protocol : the 2 possibles keywords are websocket_server  or websocket_client , depending
on the wanted role of the agent in the communication.

port : traditionally the port 3001  is used.

raw : false by default, it is better to turn it to true  when communicating with external
applications as it will remove all the wrapper informations used for communication inside
gama.

UDP:
protocol : the 2 possibles keywords are udp_server  or udp_emitter , depending on the
wanted role of the agent in the communication.

port : traditionally the port 9876  is used.

MQTT:
protocol : MQTT is the default protocol value (if no value is given, MQTT will be used)

port : traditionally the port 1883  is used (when ActiveMQ is used as the server application)

admin  and password : traditionally the default login and password are "admin" (when ActiveMQ
is used as the server application)

HTTP requests:
protocol : the only keyword to use is http .

port : traditionally the port 80  is used for http connections and 443  for https.

Note: if no connection information is provided with the MQTT protocol (no port ), then GAMA connects
to an MQTT server provided by the GAMA community (for test purpose only!).

Sending messages
To send any message, the agent has to use the send  action:

The network skill in GAMA allows the modeler to send simple string messages between agents but also
to send more complex objects (and in particular agents). In this case, the use of the MQTT protocol is
highly recommended.

do send to: "server" contents: name + " " + cycle + " sent to server";

do send to: "receiver" contents: (9 among NetworkingAgent);



Receiving messages

Asynchronous reading

The messages sent by other agents are received in the mailbox  attribute of each agent. So to get its
new message, the agent has simply to check whether it has a new message (with action
has_more_message()  ) and fetch it (that gets it and remove it from the mailing box) with the action
fetch_message() .

Note that when an agent is received, the fetch of the message will recreate the agent in the current
simulation.

Alternatively, the mailbox  attribute can be directly accessed (notice that the mailbox  is a list of
messages):

Synchronous reading

In certain cases you need to wait for a message from another application to continue the execution of
your simulation. To do so, you can use the fetch_message_from_network  action to force the mailbox to
refresh (which normally is only done once per cycle) until you receive a message:

reflex fetch when: has_more_message() {
    message mess <- fetch_message();
    write name + " fecth this message: " + mess.contents;
}

reflex receive {  
    if (length(mailbox) > 0) {
        write mailbox;
    }
}

reflex fetch {
write "waiting for server to send data"; 
loop while: !has_more_message()  { 

do fetch_message_from_network;
}

//This second loop will only be reached once a message has been found into the 
agent's mailbox



Broadcasting a message to all the agents'
members of a given group
Each time an agent creates a connection to another agent as a client, a way to communicate with it is
stored in the network_groups  attribute. So an agent can use this attribute to broadcast messages to all
the agents with whose it can communicate:

To go further:

network skill reference page.

example models can be found in the GAMA model library, in: Plugin models > Network .

loop while: has_more_message() {
message s <- fetch_message();
write "at cycle: " + cycle + ", received from server: " + s.contents;

}
}

reflex broad {
    loop id over: network_groups {
        do send to: id contents: "I am Server " + name + " I give order to " + id;
    }
}

http://localhost:3000/wiki/BuiltInSkills#network


Version: 1.9.3

Headless mode for dummies
Overview
This tutorial presents the headless mode usage of GAMA. We will execute the Predator-Prey model,
already presented in this tutorial. Headless mode is documented in its dedicated part, here, we focus on
the definition of an experiment plan, where the model is run several times. We only consider the shell
script execution, not the java command execution.

In headless-mode, GAMA can be seen as any shell command, whose behavior is controlled by passing
arguments to it. You must provide 2 arguments :

an **input experiment file **, used to describe the execution plan of your model, its inputs and the
expected outputs.

an ** output directory **, where the results of the execution are stored

Headless-mode is a little more technical to handle than the general GAMA use-case, and the following
commands and code have been solely tested on a Linux Ubuntu 22.04 machine with the default GAMA
1.9.2 (installer version, with embedded JDK).

You may have to perform some adjustments (such as paths definition) according to your machine, OS,
java and GAMA versions and so on.

Setup

GAMA version

Headless mode is frequently updated by GAMA developers, so you have to get the very latest build
version of GAMA. You can download it here https://github.com/gama-platform/gama/releases Be sure
to pick the ** Continuous build ** version (The name looks like
GAMA1.7_Linux_64_02.26.17_da33f5b.zip ) and ** not ** the major release, e.g.
GAMA1.7_Linux_64.zip . Big note on Windows OS (maybe on others), GAMA must be placed outside of
several sensible folders (Program Files, Program Filesx64, Windows). RECOMMENDED: Place GAMA in
Users Folder of windows OS.

http://localhost:3000/wiki/PredatorPrey_step1
http://localhost:3000/wiki/RunningHeadless
https://github.com/gama-platform/gama/releases


gama-headless.sh script setup

The gama-headless.sh  script can be found under the headless  directory, in GAMA installation directory
e.g. : `~/GAMA/headless/

Modifying the script (a little bit)

The original script looks like this :

Notice the final command of the script rm -rf $passWork . It is intended to remove the temporary file
used during the execution of the script. For now, we should comment this commmand, in order to check
the logs if an error appears: #rm -rf $passWork

#! /bin/bash
memory=2048m
declare -i i

i=0
echo ${!i}

for ((i=1;i<=$#;i=$i+1))
do
if test ${!i} = "-m"
then
    i=$i+1
    memory=${!i}
else
    PARAM=$PARAM\ ${!i}
    i=$i+1
    PARAM=$PARAM\ ${!i}
fi
done

echo "******************************************************************"
echo "* GAMA version 1.9.2                                             *"
echo "* http://gama-platform.org                                       *"
echo "* (c) 2007-2023 UMI 209 UMMISCO IRD/UPMC & Partners              *"
echo "******************************************************************"
passWork=.work$RANDOM

java -cp ../plugins/org.eclipse.equinox.launcher*.jar -Xms512m -Xmx$memory  -
Djava.awt.headless=true org.eclipse.core.launcher.Main  -application 
msi.gama.headless.id4 -data $passWork $PARAM $mfull $outputFile

rm -rf $passWork



Setting the experiment file

Headless mode uses a XML file to describe the execution plan of a model. An example is given in the
headless mode documentation page.

The script looks like this : ** N.B. this version of the script, given as an example, is deprecated**

As you can see, you need to define 3 things in this minimal example:

Simulation: its id, path to the model, finalStep (or stop condition), and name of the experiment

Parameters name, of the model for this simulation (i.e. Simulation of id= 2)

Outputs of the model: their id, name, type, and the rate (expressed in cycles) at which they are
logged in the results file during the simulation

We now describe how to constitute your experiment file.

Experiment File: Simulation

id

For now, we only consider one single execution of the model, so the simulation id  is not critical, let it
unchanged. Later example will include different simulations in the same experiment file. Simulation id
is a string. Don't introduce weird symbols into it.

<?xml version="1.0" encoding="UTF-8"?>
<Experiment_plan>

<Simulation id="2" sourcePath="./predatorPrey/predatorPrey.gaml" 
finalStep="1000" experiment="predPrey">

<Parameters>
<Parameter name="nb_predator_init" type="INT" value="53" />
<Parameter name="nb_preys_init" type="INT" value="621" />

</Parameters>
<Outputs>

<Output id="1" name="main_display" framerate="10" />
<Output id="2" name="number_of_preys" framerate="1" />
<Output id="3" name="number_of_predators" framerate="1" />
<Output id="4" name="duration" framerate="1" />

</Outputs>
</Simulation>

</Experiment_plan>

http://localhost:3000/wiki/RunningHeadless


sourcePath

sourcePath  is the relative (or absolute) path to the model file you want to execute headlessly.

Here we want to execute the fourth model of the Predator Prey tutorial suite, located in
~/GAMA/plugins/msi.gama.models_1.7.0.XXXXXXXXXXXX/models/Tutorials/Predator Prey/models

(with XXXXXXXXXXXX replaced by the number of the release you downloaded)

So we set sourcePath="../plugins/msi.gama.models_1.7.0.201702260518/models/Tutorials/Predator
Prey/models/Model 07.gaml" (Remember that the headless script is located in ~/GAMA/headless/ )

Depending on the directory you want to run the gama-headless.sh  script, sourcePath must me
modified accordingly. Another workaround for shell more advanced users is to define a $GAMA_PATH ,
$MODEL_PATH  and $OUPUT_PATH  in gama-headless.sh  script. Don't forget the quotes "  around your
path.

finalStep

The duration, in cycles, of the simulation.

experiment

This is the name of (one of) the experiment statement at the end of the model code.

In our case there is only one, called prey_predator  and it looks like this :

experiment prey_predator type: gui {
parameter "Initial number of preys: " var: nb_preys_init min: 1 max: 1000 

category: "Prey" ;
parameter "Prey max energy: " var: prey_max_energy category: "Prey" ;
parameter "Prey max transfert: " var: prey_max_transfert  category: "Prey" ;
parameter "Prey energy consumption: " var: prey_energy_consum  category: "Prey" 

;
output {

display main_display {
grid vegetation_cell lines: #black ;
species prey aspect: base ;

}
monitor "Number of preys" value: nb_preys ;

}
}  

http://localhost:3000/wiki/PredatorPrey_step4


So we are now able to constitute the entire Simulation tag:

N.B. the numbers after msi.gama.models  (the number of your GAMA release actually) have to be
adapted to your own release of GAMA number. The path to the GAMA installation directory has also to
be adapted of course.

Experiment File: Parameters
The parameters section of the experiment file describes the parameters names, types and values to be
passed to the model for its execution.

Let's say we want to fix the number of preys and their max energy for this simulation. We look at the
experiment section of the model code and use their ** title **. The title of a parameter is the name that
comes right after the parameter  statement. In our case, the strings "Initial number of preys: " and "Prey
max energy: " (Mind the spaces, quotes and colon)

The parameters section of the file would look like :

Any declared parameter can be set this way, yet you don't have to set all of them, provided they are
initialized with a default value in the model (see the global statement part of the model code).

Experiment File: Outputs
Output section of the experiment file is pretty similar to the previous one, except for the id  that have to
be set for each of the outputs .

We can log some of the declared outputs : main_display  and number_of_preys .

The outputs section would look like the following:

<Simulation id="2" 
sourcePath="~/GAMA/plugins/msi.gama.models_1.7.0.201702260518/models/Tutorials/Predator 
Prey/models/Model 01.gaml" finalStep="1000" experiment="prey_predator">

<Parameters>
<Parameter name="Initial number of preys: " type="INT" value="621" />
<Parameter name="Prey max energy: " type="FLOAT" value="1.0" />

</Parameters>



Outputs must have an id, a name, and a framerate.

id  is a number that identifies the output

framerate is the rate at which the output is written in the result file. It's a number of cycle of
simulation (integer). In this example the display is saved every 10 cycle

name  is either the "title" of the corresponding monitor. In our case, the second output's is the title of
the monitor "Number of preys" , i.e. "Number of preys"

We also save a **display ** output, that is an image of the simulation graphical display named
main_display  in the code of the model. Theses images is what you would have seen if you had run the
model in the traditional GUI mode.

Execution and results
Our new version of the experiment file is ready :

Execution

<Outputs>
<Output id="1" name="main_display" framerate="10" />
<Output id="2" name="Number of preys" framerate="1" />

</Outputs>

<?xml version="1.0" encoding="UTF-8"?>
<Experiment_plan>

<Simulation id="2" sourcePath="/absolute/path/to/your/model/file/Model 04.gaml" 
finalStep="1000" experiment="prey_predator">

<Parameters>
<Parameter name="Initial number of preys: " type="INT" 

value="621" />
<Parameter name="Prey max energy: " type="FLOAT" value="1.0" />

</Parameters>
<Outputs>

<Output id="1" name="main_display" framerate="10" />
<Output id="2" name="Number of preys" framerate="1" />

</Outputs>
</Simulation>

</Experiment_plan>



We have to launch the gama-headless.sh  script and provide two arguments : the experiment file we
just completed and the path of a directory where the results will be written.

** Warning ** In this example ,we are lazy and define the source path as the absolute path to the model
we want to execute. If you want to use a relative path, note that it has to be define relatively to the
location of your ** ExperimentFile.xml location ** (and the location where you launched the script)

In a terminal, position yourself in the headless directory : `~/GAMA/headless/'.

Then type the following command :

And replace paths by the location of your ExperimentFile and output directory

You should obtain the following output in the terminal :

gama-headless.sh -v ~/a/path/to/MyExperimentFile.xml  
/path/to/the/desired/output/directory  

******************************************************************
* GAMA version 1.7.0 V7                                          *
* http://gama-platform.org                                       *
* (c) 2007-2016 UMI 209 UMMISCO IRD/UPMC & Partners              *
******************************************************************
>GAMA plugin loaded in 2927 ms: msi.gama.core
>GAMA plugin loaded in 67 ms: ummisco.gama.network
>GAMA plugin loaded in 56 ms: simtools.gaml.extensions.traffic
>GAMA plugin loaded in 75 ms: simtools.gaml.extensions.physics
>GAMA plugin loaded in 1 ms: irit.gaml.extensions.test
>GAMA plugin loaded in 75 ms: ummisco.gaml.extensions.maths
>GAMA plugin loaded in 47 ms: msi.gaml.extensions.fipa
>GAMA plugin loaded in 92 ms: ummisco.gama.serialize
>GAMA plugin loaded in 49 ms: irit.gaml.extensions.database
>GAMA plugin loaded in 2 ms: msi.gama.lang.gaml
>GAMA plugin loaded in 1 ms: msi.gama.headless
>GAMA plugin loaded in 103 ms: ummisco.gama.java2d
>GAMA plugin loaded in 189 ms: msi.gaml.architecture.simplebdi
>GAMA plugin loaded in 129 ms: ummisco.gama.opengl
>GAMA building GAML artefacts>GAMA total load time 4502 ms.
 in 714 ms
cpus :8
Simulation is running...
.........................................................................................
Simulation duration: 7089ms



Results

The results are stored in the output directory you provided as the second argument of the script.

3 items have appeared:

A console_output.txt  file, containing the output of the GAMA console of the model execution if
any

a XML file simulation-outputXX.xml , where XX is the id  number of your simulation. In our case it
should be 2.

the folder snapshots  containing the screenshots coming from the second declared output :
main_display . image name format is main_display[id]_[cycle].png .

The values of the monitor "Number of preys" are stored in the xml file simulation-outputXX.xml

Common error messages
Exception in thread "Thread-7" No parameter named prey_max_energy in experiment

prey_predator  Probably a typo in the name or the title of a parameter. check spaces, capital letters,
symbols and so on.

java.io.IOException: Model file does not exist:

/home/ubuntu/dev/tutoGamaHeadless/../plugins/msi.gama.models_1  This may be a relative path
mistake; try with absolute path.

java.lang.NumberFormatException: For input string: "1.0"  This may be a problem of type
declaration in the parameter section.

Going further

Experiments of several simulation

You can launch several simulation by replicating the simulation declaration in your ExperimentFile.xml
and varying the values of the parameters. Since you will have to edit the experiment file by hand, you
should do that only for a reasonable number of simulations (e.g. <10 )

Design of experiments plans



For more systematic parameter values samples, you should turn towards a more adapted tool such as
GAMAR, to generate a ExperimentFile.xml  with a huge number of simulations.



Version: 1.9.3

Calling gama from another
program
This tutorial presents an example for using Headless. The tutorial shows how to use Headless Legacy
mode, Headless batch and Headless server. All the files related to this tutorial (images and models) are
available in the Headless folder (headless/samples/predatorPrey).

1. Example using python with Headless legacy

The results of the experiment is stored in the set folder. In which the snapshot for every step is also
saved in the snapshot folder.

import os

GAMA_folder_with_SDK = r"D:\software\GAMA_1.9.2_Windows_with_JDK\headless"

Model_file = GAMA_folder_with_SDK + r"\samples\predatorPrey\predatorPrey.gaml"

ExperimentName = "prey_predator"
XML_file = GAMA_folder_with_SDK + r"\samples\predatorPrey.xml"
Output_folder = GAMA_folder_with_SDK + r"\samples\predatorPrey"

os.chdir(GAMA_folder_with_SDK)
os.system("gama-headless.bat -xml " + ExperimentName + " " + Model_file + " " + 
XML_file)
os.system("gama-headless.bat " + XML_file + " "+ Output_folder)
print("Results of the model is in the folder:" + Output_folder)
print("Snapshot is store in the folder:" + Output_folder + r"\snapshot")



2. Example on using python with Headless
batch

import os
GAMA_folder_with_SDK = r"D:\software\GAMA_1.9.2_Windows_with_JDK\headless"

Model_file = GAMA_folder_with_SDK + r"\samples\predatorPrey\predatorPrey.gaml"

ExperimentName = "Optimization"

os.chdir(GAMA_folder_with_SDK)
os.system("gama-headless.bat -batch " + ExperimentName + " " + Model_file)

print("The result is store in the file:" + GAMA_folder_with_SDK + 
r"\samples\predatorPrey\results.csv")



3. Example on using python with Headless
server
The legacy version allows you to access the headless feature of GAMA by controling the model
parameters and experiment plan from oustide GAMA model file . The headless batch, allows you to
access the headless feature of GAMA with the model parameters and experiment plans defined inside
the GAMA model file. The headless server, allows you to not only to access the headless feature but also
to interact with the currently running GAMA experiment. You can load, play, pause, reload, stop and exit
an experiment with very specific commands as described here.

The general sequence of operations is:

Start the server from a command line gama-headless.sh -socket 6868  , this opens the
communication via port 6868 using websockets.

Connect to the server from another application/script that supports interacting with websockets.
e.g., python. See below to use a python wrapper.

Start with the load  command to load an experiment and then use one of the specific commands as
described here to construct a sequence of operations as required by your workflow.

Start the GAMA server

On your command line, execute the following commmand, you will find the gama-headless.sh in the
headless folder inside your GAMA installation.

Use the Python wrapper instead

The GAMA developers have made available an elegant python wrapper that simplifies using GAMA
server with python scripts and is available here. However if you are not a serious programmer and just
want to use this tool, the following bare minimum code shall get you started and you can slowly add one
command after another to build your sequence of operations to interact with the GAMA server. Before
you can start, you have to install the wrapper. In your python environment, install the gama-client
package with the command:

pip install gama-client

You can check that everything went well by opening a python console and try the following line:

gama-headless.sh -socket 6868

https://github.com/gama-platform/gama/wiki/HeadlessServer#available-commands
https://github.com/gama-platform/gama/wiki/HeadlessServer#available-commands
https://github.com/gama-platform/Gama-client-python


from gama_client.base_client import GamaBaseClient

If you don't see any error messages, then the python wrapper has been installed correctly.

Bare minimum code

The whole interaction with the GAMA server is facilitated using the asyncio  library in Python and our
wrapper that we installed in the previous step. The discussion on use of asyncio is beyond the scope of
this tutorial, so just take it as granted. This whole interaction can be considered a dialouge (two way
communication) between the client (you/ your script) and the server (GAMA server). You send a
command to the server, and the server sends back a message. You parse this message and its contents
and construct the next command to interact with the server. This back and forth continues untill you use
the exit  command or if an error occurs on the server.

Among all the messages sent by the server, as a beginner you should know about these four main
messages: ConnectionSuccessful  (you connected to the server), CommandExecutedSuccessfully  (your
command was well received and executed), UnableToExecuteRequest  (something is wrong with your
model), MalformedRequest  (something is wrong with your command format)

Just run the following python script and if all goes well, you are ready to use the GAMA server via
python.

It gets even better !

import asyncio
from gama_client.base_client import GamaBaseClient

async def message_handler(message):
    print("received message:", message)

async def main():
    client = GamaBaseClient("localhost", 6868, message_handler)
    await client.connect(False)

    while True:
        await asyncio.sleep(1)

if __name__ == "__main__":
    asyncio.run(main())



A word of caution It is recommended that you slowly build on to the above script by adding commands
step by step. You may use the script below as guidance to learn and to stay on course and not having to
search a lot through the documentation. Blindly copy-pasting the code and changing the parameters
without understanding is not advised.

The python wrapper makes it even easier for beginners. So easy that you just have to change values of
the following 5 variables in the sample python script below to make use of GAMA server.

Sample python script

    MY_SERVER_URL = "localhost"
    MY_SERVER_PORT = 6868
    GAML_FILE_PATH_ON_SERVER = 
r"D:\Gama\headless\samples\predatorPrey\predatorPrey.gaml"  
    EXPERIMENT_NAME = "prey_predatorExp"
    MY_EXP_INIT_PARAMETERS = [{"type": "int", "name": "nb_preys_init", "value": 100}]

import asyncio
from asyncio import Future
from typing import Dict

from gama_client.base_client import GamaBaseClient
from gama_client.command_types import CommandTypes
from gama_client.message_types import MessageTypes

experiment_future: Future
play_future: Future
pause_future: Future
expression_future: Future
step_future: Future
stop_future: Future

async def message_handler(message: Dict):
    print("received", message)
    if "command" in message:
        if message["command"]["type"] == CommandTypes.Load.value:
            experiment_future.set_result(message)
        elif message["command"]["type"] == CommandTypes.Play.value:
            play_future.set_result(message)
        elif message["command"]["type"] == CommandTypes.Pause.value:
            pause_future.set_result(message)
        elif message["command"]["type"] == CommandTypes.Expression.value:
            expression_future.set_result(message)
        elif message["command"]["type"] == CommandTypes.Step.value:

https://github.com/gama-platform/gama/wiki/HeadlessServer#available-commands


            step_future.set_result(message)
        elif message["command"]["type"] == CommandTypes.Stop.value:
            stop_future.set_result(message)

async def main():

    global experiment_future
    global play_future
    global pause_future
    global expression_future
    global step_future
    global stop_future

    # Experiment and Gama-server constants
    MY_SERVER_URL = "localhost"
    MY_SERVER_PORT = 6868
    GAML_FILE_PATH_ON_SERVER = 
r"D:\Gama\headless\samples\predatorPrey\predatorPrey.gaml"
    EXPERIMENT_NAME = "prey_predatorExp"
    MY_EXP_INIT_PARAMETERS = [{"type": "int", "name": "nb_preys_init", "value": 100}]

    client = GamaBaseClient(MY_SERVER_URL, MY_SERVER_PORT, message_handler)

    print("connecting to Gama server")
    await client.connect()

    print("initialize a gaml model")
    experiment_future = asyncio.get_running_loop().create_future()
    await client.load(GAML_FILE_PATH_ON_SERVER, EXPERIMENT_NAME, True, True, True, 
MY_EXP_INIT_PARAMETERS)
    gama_response = await experiment_future

    try:
        experiment_id = gama_response["content"]
    except Exception as e:
        print("error while initializing", gama_response, e)
        return

    print("initialization successful, running the model")
    play_future = asyncio.get_running_loop().create_future()
    await client.play(experiment_id)
    gama_response = await play_future
    if gama_response["type"] != MessageTypes.CommandExecutedSuccessfully.value:
        print("error while trying to run the experiment", gama_response)
        return

    print("model running, waiting a bit")
    await asyncio.sleep(2)



    print("pausing the model")
    pause_future = asyncio.get_running_loop().create_future()
    await client.pause(experiment_id)
    gama_response = await pause_future
    if gama_response["type"] != MessageTypes.CommandExecutedSuccessfully.value:
        print("Unable to pause the experiment", gama_response)
        return

    expression_future = asyncio.get_running_loop().create_future()
    await client.expression(experiment_id, r"cycle")
    gama_response = await expression_future
    print("asking simulation the value of: cycle=", gama_response["content"])

    expression_future = asyncio.get_running_loop().create_future()
    await client.expression(experiment_id, r"nb_preys/nb_preys_init")
    gama_response = await expression_future
    print("asking simulation the value of: nb_preys/nb_preys_init=",  
gama_response["content"])

    print("asking gama to run 10 more steps of the experiment")
    step_future = asyncio.get_running_loop().create_future()
    await client.step(experiment_id, 10, True)
    gama_response = await step_future
    if gama_response["type"] != MessageTypes.CommandExecutedSuccessfully.value:
        print("Unable to execute 10 new steps in the experiment", gama_response)
        return

    expression_future = asyncio.get_running_loop().create_future()
    await client.expression(experiment_id, r"cycle")
    gama_response = await expression_future
    print("asking simulation the value of: cycle=", gama_response["content"])

    print("killing the simulation")
    stop_future = asyncio.get_running_loop().create_future()
    await client.stop(experiment_id)
    gama_response = await stop_future
    if gama_response["type"] != MessageTypes.CommandExecutedSuccessfully.value:
        print("Unable to stop the experiment", gama_response)
        return

if __name__ == "__main__":
    asyncio.run(main())



Version: 1.9.3

Writing Unit Tests in GAML
Unit testing is an essential instrument to ensure the quality of any software and it has been
implemented in GAMA: this allows in particular that parts of the model are behaving as expected and
that evolutions in the model do not introduce unexpected changes. To these purposes, the modeler can
define a set of assertions that will be tested. Before the execution of the embedded set of instructions, if
a setup is defined in the species, model or experiment, it is executed. In a test, if one assertion fails, the
evaluation of other assertions continue.

Writing tests in GAML involves the use of 4 keywords:

assert  statement,

test  statement,

setup  statement,

type: test  facet of experiment .

In this unit testing tutorial, we intend to show how to write unit tests in GAML using the statement
test .

What is test  in GAML?
In GAML, the statement test  allows the modeler to write a part of code lines to verify if portions of our
GAML model are doing exactly what they are expected to do: this is done through the use of several
assertions (using assert  statements). This is done independently from other parts of the model.

To write a typical GAML unit test, we can follow three steps:

1. Define a set of attributes to use within the test,

2. Write initialization instructions,

3. Write assertions.

The aim of using unit testing is to observe the resulting behavior of some parts of our model. If the
observed behavior is consistent with the expectations, the unit test passes, otherwise, it fails, indicating
that there is a problem concerning the tested part of the model.

https://en.wikipedia.org/wiki/Unit_testing
http://localhost:3000/wiki/Statements#assert
http://localhost:3000/wiki/Statements#test
http://localhost:3000/wiki/Statements#setup
http://localhost:3000/wiki/ModelOrganization#experiment-declarations


Introduction to assertions
The basis of Unit tests is to check that given pieces of codes provide expected results. To this purpose,
the modeler can write some basic tests that should be true: s/he thus asserts that such expression can
be evaluated to true using the assert  statement. Here are some examples of assert  uses:

With the above statements, the modeler states the 1+1  is equal to 2 , isGreater(5,6)  is false (given the
fact that isGreater  is an action defined in a species) and rnd(1.0)  always returns a value below 1.0.

assert  can be used in any behavior statement (as an example in a reflex , a state  or in a test . Note
that, if they are written outside of a test  and that the test is not fulfilled, then an exception is thrown
during their execution.

As an example, the following model throws the exception: Assert failed 3>4  (as obviously 3 is not
greater than 4 and that the GAML >  operator is properly implemented on this case).

To be able to have a dashboard of the state of your model w.r.t. the unit tests, they need to be written in
a test  and the model launched with an experiment of type test .

How to write a GAML test?
A test  statement can be used in any species (regular species, global or experiment species) everywhere
a reflex  can be used. Its aim is to gather several asserts in one block. If the tests are executed with any
kind of experiment but test , they will be executed, but nothing is reported. With a test  experiment, a
kind of dashboard will be displayed.

assert 1 + 1 = 2;
assert isGreater(5, 6) = false;
assert rnd(1.0) <= 1.0;

model NewModel

global {
    init {

assert 3 > 4;
    }
}

experiment NewModel type: gui {}



So we will consider that we start by adding an experiment  with type  set to test . The following code
shows an example.

Let's consider the following GAML code:

In this example, the defined action, isGreater , returns true  if a parameter p1  is greater than a
parameter p2  and false  if not. So to test it, we declare a unit test using test  and add inside several
assert  statements. For instance, assert isGreater(5, 6) = false;  will return true  if the result of
isGreater(5, 6)  is really false and false  if not. So, if the action isGreater  is well-defined, it should
return false . Considering that "greater" and "greater and equal" should be two different functions, we

experiment MyTest type: test autorun: true { 
    ...
}

model TestModel

global {
    init {

create test_agent number: 1;
    }
}

species test_agent {
    bool isGreater (int p1, int p2) {

if (p1 >= p2) {
    return true;
} else {
    return false;
}

    }

    test testsOK {
assert isGreater(5, 6) = false;
assert isGreater(6, 5) = true;

    }
    
    test failingTests {

assert ! isGreater(6, 6);
    }        
}

experiment MyTest type: test autorun: true { }



add a test to check that isGreater  does not return true in case of equality of its 2 operands. In this
case, as the action is not-well implemented the test fails.

The following picture illustrates the GUI dashboard for unit tests, showing for each test and even each
assert whether it passes or fails. Clicking on the button will display in the GAML editor the code line.

Use of the setup  statement
In a species where we want to execute several tests, it is common to want to have the same initial states,
in order to prevent the previous tests to have modified the tested object and thus altering the unit test
results. To this purpose, we can add the setup  statement in the species and use it to set the expected
initial state of the object to be tested. It will be called before every test .

As an example, in the following model, we want to test the operator translated_by  and
translated_to  on a point. As each of them will modify the point object to be tested, wed add a setup
to reinitialize it.

model TestModel

global {
    geometry loc <- {0,0};

    setup {
loc <- {0,0};

    }



The test experiment
It is also possible to write tests in the experiment . The main idea is here to totally separate the model
and its tests. As an example let's consider the following GAML code, which aims to test several GAML
operators, related to the graph datatype:

    test translate_to {
loc <- loc translated_to {10,10};
loc <- loc translated_to {10,10};
assert loc.location = {10,10};

    }

    test translated_by {
loc <- loc translated_by {10,10};
loc <- loc translated_by {10,10};
assert loc.location = {20,20};

    }
}

experiment MyTest type: test autorun: true { }

model TestGraphs

global {
    graph the_graph;

    init {
int i <- 10;
create node_agent number: 7 {
    location <- {i, i + ((i / 10) mod 2) * 10};
    i <- i + 10;
}

the_graph <- as_distance_graph(node_agent, 30.0);
    }
}

species edge_agent {
    aspect default {

draw shape color: #black;
    }
}

species node_agent {
    aspect default {



draw circle(1) color: #red;
loop neigh over: the_graph neighbors_of self {
    draw line([self.location, agent(neigh).location]) color: #black;
}

    }
}

experiment loadgraph type: gui {
    output {

display map type: opengl {
    species edge_agent;
    species node_agent;
}

    }
}

experiment MyTest type: test autorun: true {
    test "MyFirstTest" {

write the_graph;
write (node_agent[2]);
write ("Degrees");
write (the_graph in_degree_of (node_agent[2]));
write (the_graph out_degree_of (node_agent[2]));
write (the_graph degree_of (node_agent[2]));
assert the_graph in_degree_of (node_agent[2]) = 4;
write (the_graph out_degree_of (node_agent[2]));
assert the_graph out_degree_of (node_agent[2]) = 4;
assert the_graph degree_of (node_agent[2]) = 8;

    }
}



Version: 1.9.3

Ensure model's reproducibility
There has been a huge effort made in GAMA development in order to ensure the reproducibility of the
simulations, i.e. when several simulations of the same models are launched with the same random
generator seed and same parameter values, they are supposed to provide the same results.

Nevertheless, GAMA provides several ways to speed up simulations runs, e.g. by making parallel the
execution of some agents' behaviors. The use of parallelism may destroy the reproducibility of the
simulations. More generally, there are many sources of uncertainty which can break this reproducibility.

How to ensure reproducibility of a model?
If you aim at reproducibility, you need to reduce as much as possible all the sources of uncertainty.

Set the random number generator seed (explicitly set a value to the model's seed  global attribute).

Reduce the parallel execution of agents' behaviors.
remove all the explicitly parallel execution, in particular remove / set to false all the parallel
facets (e.g. in the loop, ask...).

Set all of GAMA's settings regarding parallelization to false. You can find them in the
Preferences  menu, then under the tab Execution  at the section Parallelism  to disable them
globally, or you can set them to false only in your experiment with the corresponding variables
as shown belown:

Displays are computed independently of the simulation, and in parallel. Limit computation and
model modifications in the aspects.

Remove any modification of the model in the aspects.

experiment 'any exp' {
  init {

//Make grids schedule their agents in parallel
gama.pref_parallel_grids <- false;
//Make experiments run simulations in parallel
gama.pref_parallel_simulations <- true;
//Make species schedule their agents in parallel
gama.pref_parallel_species <- false;

  }
}



Do not use any random operators in the aspects (e.g. rnd , one_of , any  ...).

The use of asynchronous communications (using network) with external applications, the use of
files (in particular if they are changed externally) can also modify the behavior of simulations

As a safety measure, you can also set your random number generator to mersenne  as others may
not have been as much tested for reproducibility



Version: 1.9.3

Using extensions
The core GAMA software can be extended with some additional plugins, allowing the model to give
more capabilities to agents (negotiation, using fuzzy logic, or Bayesian network) or providing
connections to external softwares such as R or Matlab.

For instructions to install these additional plugins, interested readers can refer to the dedicated page.

Selected plugins provided by the GAMA
community
The update site located at the address http://updates.gama-platform.org/experimental  contains
new plugins for GAMA mainly developed by the GAMA community (its Github repository is available
here). As the name of the repository highlights it, these plugins are for most of them still in
development, before integration in the kernel of GAMA.. In addition, there are a few eclipse plugins
that also work with GAMA.

The following plugins have been tested and are still supported:

RJava: to connect GAMA and R

Weka: to connect GAMA and Weka

Matlab: to connect GAMA and Matlab

Argumentation feature: to allow agents to reason on an argument system

Bayesian Network feature: to use Bayesian Network to make decision

Fuzzy logic: to use fuzzy logic model to make decision

Launchpad:

Camisole:

ImageAnalysis: to add image processing algorithms to gama

Mike and Hecras:

MPI:

QRCode: to add primitives to encode/decode QRCodes in gaml

Switch project:

Uml Generator: to be able to generate uml from gaml models inside the GAMA IDE

http://localhost:3000/wiki/InstallingPlugins
https://github.com/gama-platform/gama.experimental
https://github.com/gama-platform/gama.experimental
https://github.com/gama-platform/gama.experimental/tree/GAMA_1.9.2/ummisco.gama.extensions.matlab#readme
https://github.com/gama-platform/gama.experimental/tree/GAMA_1.9.2/ummisco.gama.extensions.matlab#readme


Unity: to connect GAMA to Unity

VR:

Gaming: to add more interactive types of displays

Remote.Gui: to allow exposing some model parameters in order to interact with external
application through a network communication

ifcfile: to add support for ifc files in gaml

Netcdf: to add support for the NetCDF file format in gaml

Webcam: to add webcam handling primitives in gaml

Graphical editor: to edit gaml models with graphical blocks instead of code

Markdown documentation: to add the possibility to generate the markdown documentation of a
model

Easy shell: to add the eclipse Easy shell plugin to the GAMA IDE

git client: to add the eclipse git client into the GAMA IDE

RJava  plugin

This plugin allows the modeler to launch some computation on the R  software. To this purpose, R
should be installed on your computer and GAMA should be properly configured.

This possible connection to R  opens thus the possibility for the modeler to use all the statistical
functions and libraries developed in this tool of reference. In addition, R scripts defined by the modeler
can also be used directly from their GAMA model.

Toward participative simulations with Remote.Gui  and Gaming
plugins

There are more and more applications of GAMA for participative simulations (LittoSim, MarakAir,
HoanKiemAir...). There was thus a need for new features to improve the possible interactions with
simulations and the definition of the Graphical User Interface. The two plugins Remote.Gui  and Gaming
(available in the "Participative simulation" category) attempts to fill this need.

Remote.Gui  allows exposing some model parameters, in order that they can be modified through a
network. This allows, for example, to develop a remote application (e.g. Android application) to
control the parameters' values during the simulation.

Gaming  allows the modeler to define displays that are much more interactive. This is used to define
serious games in which the users can have a wide range of possible interactions with the
simulation.

https://marketplace.eclipse.org/content/easyshell
https://www.r-project.org/
http://localhost:3000/wiki/CallingR
https://littosim.hypotheses.org/
https://github.com/gnoubi/MarrakAir
https://github.com/WARMTeam/HoanKiemAir
http://localhost:3000/wiki/UsingNetwork
http://localhost:3000/wiki/UsingNetwork


Weka  and Matlab  plugins

Similarly to RJava , Matlab  and Weka  plugins allow the modeler to run computations on the Matlab  and
Weka software, taking advantages of all the possibilities of these softwares and of scripts defined by
themselves.

Notice that the Matlab  plugin requires MATLAB 2019a to be installed and activated on your computer.

The graphical editor

The graphical editor allows to create or edit existing GAMA models using only graphical elements, in a
similar way to the scratch programming language. You can find a complete overview of the plugin here.

The Git client

This plugin gives you the possibility to have the same git integration in GAMA than in eclipse, with
dedicated views and contextual menus directly in the IDE. For more information you can go to it's
dedicated documentation.

https://fr.mathworks.com/products/matlab.html
https://www.cs.waikato.ac.nz/ml/weka/
https://scratch.mit.edu/
http://localhost:3000/wiki/G__GraphicalEditor
http://localhost:3000/wiki/Using_Git


Version: 1.9.3

Calling R from GAMA models
Introduction
The R language is a powerful tool for statistical computing and graphics, and its community is very large
in the world (See the website). Adding a support for the R language is one of our strong endeavors to
accelerate many statistical and data mining tools integration into the GAMA platform.

Installing R and rJava

Install R on your computer

Please refer to the R official website, or to RStudio if you want in addition a nice IDE.

install the rJava library in R

In the R (RStudio) console, write:

to install the library. To check that the install is correct, you load the library using library(rJava)  (in
the R console). If no error message appears, it means the installation is correct.

In case of trouble

For MacOSX

in recent versions you should first write in a terminal:

For Linux

install.packages("rJava")

R CMD javareconf
sudo ln -f -s $(/usr/libexec/java_home)/jre/lib/server/libjvm.dylib /usr/local/lib

http://www.r-project.org/
https://www.r-project.org/
https://www.rstudio.com/


make sure you have the default-jdk  and default-jre  packages installed and then execute the
command sudo R CMD javareconf

For Windows

make sure you have a JAVA_HOME  and a CLASSPATH  environment variable setup, if not you need to
create and set them, for example:

Set the environment variable R_HOME

On Windows

set the environment variables as follows. R_HOME  is the root directory where we can find the library
folder in your R  installation, so it should look like this:

R_PATH  should point to the folder containing your R  interpreter, the variable should be set with
something similar to this (adapting with your R version and R installation path):

On Linux

By default it should be /usr/lib/R , you can thus just append the line R_HOME=/usr/lib/R  to your
/etc/environment  file and reboot your computer

On macOS

You need to create (or update) the file environment.plist  in the folder: ~/Library/LaunchAgents/  (for
the current user, note that this folder is a hidden folder) or in  /Library/LaunchAgents/  (for all users) It
should look like:

JAVA_HOME="C:\Program Files\Java\OpenJDK17\"
CLASSPATH="C:\Program Files\Java\OpenJDK17\bin\"

R_HOME="C:\Program Files\R\R-4.2.2\" 

R_PATH="C:\Program Files\R\R-4.2.0\bin\x64" 

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">



Recommended

If the rJava library doesn't appear in the R library directory, copy the installed rJava library from where it
was installed (with install.packages("rJava") ) to the library  folder in your R_HOME .

Updating the Path  variable (Windows only)

In addition, on Windows you also need to add to your Path  environment variable the path to your R
binaries, by default located in C:\Program Files\R\R-4.2.2\bin\x64  for R-4.2.2 64bits . The Path
variable is a variable already created by Windows, so you just have to edit it to add a new path, no need
to delete anything.

Configuration in GAMA

Linking the R connector

From GAMA 1.9.0, you need to specify the path to the R connector library in the GAMA launching
arguments. To this purpose, you need to add to either:

1. the GAMA.ini  file if you use the release version of GAMA

2. or the launching configuration (if you use the source code version) the following line: (replace
PATH_TO_R  by the path to R, i.e. the value in $R_HOME ):

on macOS: -Djava.library.path=PATH_TO_R/library/rJava/jri/rlibjri.jnilib

<plist version="1.0">
  <dict>
    <key>Label</key>
    <string>my.startup</string>
    <key>ProgramArguments</key>
    <array>
      <string>sh</string>
      <string>-c</string>
      <string> launchctl setenv R_HOME 
/Library/Frameworks/R.framework/Resources/ </string>
    </array>
    <key>RunAtLoad</key>
    <true/>
  </dict>
</plist>



on Windows: -Djava.library.path=PATH_TO_R\library\rJava\jri\

on Linux: -Djava.library.path=PATH/TO/JRI

As an example, under macOS, you need to add:

On Windows and Linux, the jri library could be in a different location than the R_HOME , for example on
Linux by default it would be in:

On Windows it can be located in the user's AppData\local  or in Documents\R .

Installing the R plugin

Next you need to install the R plugin from Gama. To do it, select "Install new plugins..." in the "Help"
menu of Gama. In the Work with  drop down select the repository ending with "experimental/" followed

-Djava.library.path=/Library/Frameworks/R.framework/Resources/library/rJava/jri/

-Djava.library.path=/home/user_name/R/x86_64-pc-linux-gnu-library/3.6/rJava/jri/



by your Gama version. Once done, you need to select the plugin rJava , click on next  and then finish .

After this, you could be asked to "trust" the plugin, simply select the first line and click on Trust
selected



Finally, you will be asked to restart Gama, click on Restart now .

For more details, readers can refer to the page dedicated to the installation of additional plugins.

Calling R from GAML

Before computation

Any agent aiming at using R for some computation needs to be provided with the RSkill .

Before calling any computation, this agent needs to start a connection with the R software.

As an example, if we want that the global  agent can use R, we need to have the following minimal
model:

Computation

global skills: [RSkill] {
   init {
      do startR;
   }
}

http://localhost:3000/wiki/InstallingPlugins


Evaluate an R expression

The R_eval  operator can be used to evaluate any R expression. It can also be used to initialize a variable
or call any function. It can return any data type (depending on the R output). As in an R session, the
various evaluations are dependent on the previous ones.

Example:

Evaluate an R script

To evaluate an R script, stored in a (text) file, open the file and execute each of its lines.

Convert GAMA object to R object

To use GAMA complex objects into R functions, we need to transform them using the to_R_data
operator: it transforms any GAMA object into a R object.

global skills: [RSkill] {

init{
do startR;

write R_eval("x<-1");
write R_eval("rnorm(50,0,5)");

}

}

global skills:[RSkill]{
file Rcode <- text_file("../includes/rScript.txt");

init{
do startR;
// Loop that takes each line of the R script and execute it.

 loop s over: Rcode.contents{
unknown a <- R_eval(s);
write "R>"+s;
write a;

}
}

}

global skills:[RSkill] {
init {



Convert a species to a dataframe

Dataframe is a powerful R data type allowing to ease data manipulation... Dataframe wan of course be
defined at hand using R commands. But GAML provides the to_R_dataframe  operator to directly
transform a species of agents into a dataframe for future analysis.

Troubleshooting
It is possible that after installing everything, Gama works normally but crashes every time you try to use
the skill RSkill  without any error message. If that's the case, the problem is certainly that Gama is
unable to load the jri  library or its dependencies (other R packages). Make sure that the path you
wrote in the .ini  file is correct and that every environment variable is set with proper values.

Also on windows, check that the Path  variable contains the path to your R  installation.

If after checking everything the problem is still there, you can try copying the .dll  files at the R_PATH
location and the jri.dll  and paste them into your JAVA_PATH  directory (the bin  folder of your jdk).

do startR();

string s2 <- "s2";
list<int> numlist <- [1,2,3,4]; 

  write R_eval("numlist = " + to_R_data(numlist));
}

}

global skills: [RSkill] {

init{
do startR();

create people number: 10;

do R_eval("df<-" + to_R_dataframe(people));
write R_eval("df");
write R_eval("df$flipCoin");

}
}
species people {

bool flipCoin <- flip(0.5);
}





Version: 1.9.3

The Graphical Editor
The graphical editor allows defining a GAMA model through a graphical interface ( gadl  files). It is based
on the Graphiti Eclipse plugin. It allows as well to produce a graphical model (diagram) from a gaml
model. A tutorial is available here.

Installing the graphical editor
Using the graphical editor requires to install the graphical modeling plug-in. See here for information
about plug-ins and their installation.

The graphical editor plug-in is called Graphical_modeling and is directly available from the GAMA
update site https://updates.gama-platform.org/graphical_modeling/1.9.0

Note that the graphical editor is still under development. Updates of the plug-in will be added to the
GAMA website. After installing the plug-in (and periodically), check for updates for this plug-in: in the

http://localhost:3000/wiki/G__GraphicalEditorTutorial
http://localhost:3000/wiki/InstallingPlugins
https://updates.gama-platform.org/graphical_modeling/1.9.0


"Help" menu, choose "Check for Updates" and install the proposed updates for the graphical modeling
plug-in.

Creating a first model
A new diagram can be created in a new GAMA project. First, right-click on a project, then select "New" on
the contextual menu. In the New Wizard, select "GAMA -> Model Diagram", then "Next>"

In the next Wizard dialog, select the type of diagram (Empty, Skeleton or Example) then the name of the
file and the author.



Skeleton and Example diagram types allow to add to the diagram some basic features.

Status of models in editors
Similarly to GAML editor, the graphical editor proposes a live display of errors and model statuses. A
graphical model can actually be in three different states, which are visually accessible above the editing
area: Functional (orange color), Experimentable (green color) and InError (red color). See the section
on model validation for more precise information about these statuses.

In its initial state, a model is always in the Functional state, which means it compiles without problems,
but cannot be used to launch experiments. The InError state occurs when the file contains errors
(syntactic or semantic ones).

Reaching the Experimentable state requires that all errors are eliminated and that at least one
experiment is defined in the model. The experiment is immediately displayed as a button in the toolbar,
and clicking on it will allow the modeler to launch this experiment on your model.

Experiment buttons are updated in real-time to reflect what's in your code. If more than one experiment
is defined, corresponding buttons will be displayed in addition to the first one.

http://localhost:3000/wiki/ValidationOfModels
http://localhost:3000/wiki/ValidationOfModels


Diagram definition framework
The following figure presents the editing framework:

Features

agents

species

The species feature allows the modeler to define a species with a continuous topology. A species is
always a micro-species of another species. The top-level (macro-species of all species) is the world
species.

source: a species (macro-species)

target: -



grid

The grid feature allows the modeler to define a species with a grid topology. A grid is always a micro-
species of another species.

source: a species (macro-species)

target: -

http://localhost:3000/wiki/ManipulateBasicSpecies
http://localhost:3000/wiki/GridSpecies


Inheriting link

The inheriting link feature allows the modeler to define an inheriting link between two species.

source: a species (parent)

target: a species (child)



world

When a model is created, a world species is always defined. It represents the global part of the model.
The world species, which is unique, is the top-level species. All other species are micro-species of the
world species.

agent features

action



The action feature allows the modeler to define an action for a species.

source: a species (owner of the action)

target: -

reflex

The reflex feature allows the modeler to define a reflex for a species.

source: a species (owner of the reflex)

target: -



aspect

The aspect feature allows the modeler to define an aspect for a species.

source: a species (owner of the aspect)

target: -



equation



The equation feature allows the modeler to define an equation for a species.

source: a species (owner of the equation)

target: -

experiment

GUI experiment

The GUI Experiment feature allows the modeler to define a GUI experiment.

source: world species

target: -

display



The display feature allows the modeler to define a display.

source: GUI experiment

target: -



batch experiment

The Batch Experiment feature allows the modeler to define a Batch experiment.

source: world species

target: -

BDI Architecture

Plan



The Plan feature allows the modeler to define a plan for a BDI species, i.e. a sequence of statements that
will be executed in order to fulfill a particular intention.

source: a species with a BDI architecture

target: - s

Rule

The Rule feature allows the modeler to define a rule for a BDI species, i.e. a function executed at each
iteration to infer new desires or beliefs from the agent's current beliefs and desires.

source: a species with a BDI architecture

target: -

Perception

The Perception feature allows the modeler to define a perception for a BDI species, i.e. a function
executed at each iteration that updates the agent's Belief base according to the agent perception.

source: a species with a BDI architecture

target: -

Finite State Machine Architecture

State

The State feature allows the modeler to define a state for a FSM species, i.e. sequence of statements
that will be executed if the agent is in this state (an agent has a unique state at a time).

source: a species with a finite state machine architecture

target: -



Task-based Architecture

Task

The Task feature allows the modeler to define a task for a Tasked-based species, i.e. sequence of
statements that can be executed, at each time step, by the agent. If an agent owns several tasks, the
scheduler chooses a task to execute based on its current priority weight value.

source: a species with a task-based architecture

target: -

Pictogram color modification
It is possible to change the color of a pictogram.

Right-click on a pictogram, then select the "Chance the color".

GAML Model generation
It is possible to automatically generate a Gaml model from a diagram.

Right-click on the graphical framework (where the diagram is defined), then select the "Generate
Gaml model". A new GAML model with the same name as the diagram is created (and open).



Version: 1.9.3

Using Git from GAMA to version
and share models
Install the Git client [Tested on the GAMA 1.9.0]
The Git client for GAMA needs to be installed as an external plugin.

1. Help > Install new plugins...

2. Add the following address in the text field "Work with":
https://download.eclipse.org/egit/updates . (press Enter key)

3. In the available plugins to install, choose Git integration for Eclipse  > Git integration for
Eclipse

4. Click on the Next button and follow the instructions (GAMA will be relaunched).

Open the Git view
To use Git in GAMA select Views -> Other... -> Show View -> Other...

In the Show view window that appears select Git -> Git Repositories and click on Open.



Create a Local Repository
With Git you can easily create local repositories to version your work locally. First, you have to create a
GAMA project (e.g GitNewProject) that you want to share via your local repository.

After you have created your GAMA project, go to the Git Repository view and click on Create a new local
Git repository.

In the following window specify the directory for the new repository (select the folder of the created
GAMA project - GitNewProject -), throught the button Browse...



then hit the Create button.

Now your local repository is created, you can add models and files into your GAMA project. As you
selected the folder of the new created GAMA Project, the repository will not be empty. So, it will be
initialized with all the folders and files of the GAMA project. Note the changed icons: the project node
will have a repository icon, the child nodes will have an icon with a question mark.

Before you can commit the files to your repository, you need to add them. Simply right click the shared
project's node and navigate to Team -> Add to Index.



After this operation, the question mark should change to a plus symbol.



To set certain folders or files to be ignored by Git, right click them and select Team -> Ignore. The
ignored items will be stored in a file called .gitignore, which you should add to the repository.

Commit
Now you can modify files in your project, save changes made in your workspace to your repository and
commit them. You can do commit the project by right clicking the project node and selecting Team ->
Commit... from the context menu. In the Commit wizard, all files should be selected automatically. Enter
a commit message and hit the Commit button.

If the commit was successful, the plus symbols will have turned into repository icons.

After changing files in your project, a ">" sign will appear right after the icon, telling you the status of
these files is dirty. Any parent folder of this file will be marked as dirty as well.



If you want to commit the changes to your repository, right click the project (or the files you want to
commit) and select Team -> Commit... . Enter a commit message and click Commit to commit the
selected files to your repository.

Add Files
To add a new file to the repository, you need to create it in your shared GAMA project first. Then, the
new file will appear with a question mark.

Right click it and navigate to Team -> Add to Index. The question mark will turn into a plus symbol and
the file will be tracked by Git, but it is not yet committed. In the next commit, the file will be added to the
repository and the plus symbol will turn into a repository icon.

Revert Changes
If you want to revert any changes, there are two options. You can compare each file you want to revert
with the HEAD revision (or the index, or the previous version) and undo some or all changes done.
Second, you can hard reset your project, causing any changes to be reverted.

Revert via Compare



Right click the file you want to revert and select Compare With -> HEAD Revision. This will open a
comparison with the HEAD Revision, highlighting any changes done. You can revert several lines. select
the line you want to revert and hit the Copy Current Change from Right to Left button (in the toolbar).

Revert via Reset

To reset all changes made to your project, right click the project node and navigate to Team -> Reset... .
Select the branch you want to reset to (if you haven't created any other branches, there will be just one).
Click the reset button. All changes will be reset to this branch's last commit. Be careful with this option
as all last changes in your Gama Project will be lost.





Clone Repositories
To checkout a remote project, you will have to clone its repository first. Open the GAMA Import wizard:
right click the User models node -> Import... -> Other...

Select Git -> Projects from Git and click Next.

Select "Clone URI" and click Next.



Now you will have to enter the repository's location. Entering the URI will automatically fill some fields.
Complete any other required fields and hit Next (e.g, Authentification fields). If you use GitHub, you can
copy the URI from the web page.

Select all branches you wish to clone and hit Next again.



Hit next, then choose a local storage location to save the repository in.

To import the projects, select the cloned repository and hit Next.

Select Import Existing Projects and hit Next.



In the following window, select all projects you want to import and click Finish.



The projects should now appear in the Models Explorer. (Note the repository symbol in the icons
indicating that the projects are already shared.)

Create Branches



To create a new branch in your repository, right click your project and navigate to Team -> Switch to ->
New Branch... from the context menu. Select the branch you want to create a new branch from, hit New
branch and enter a name for the new branch.

The new branch (NewBranch) should appear in the branch selection window.

You can see all the branches in the Git Repositories view.



If you would like to checkout the a branch, select it and click Checkout.

Merge
To merge one branch into another, right click the project node and navigate to Team -> Merge...

The merge will execute and a window will pop-up with the results. The possible results are Already-up-
to-date, Fast-forward, Merged, Conflicting, Failed.



Note that a conflicting result will leave the merge process incomplete. You will have to resolve the
conflicts and try again. When there are conflicting changes in the working project, the merge will fail.

Fetch and Pull
To update the remote branches when cloning remote repositories (Git creates copies of the branches as
local branches and as remote branches) you will have to use Fetch. To perform a Fetch, select Team ->
Fetch From... from the project's context menu.

To update your local branches, you will have to perform a Merge operation after fetching.

Pull
Pull combines Fetch and Merge. Select Team -> Pull.

Push
Local changes made to your local branches can be pushed to remote repositories causing a merge from
your branches into the branches of the remote repository (X pulls from Y is the same as Y pushes to X).
The Push wizard is pretty much the same as the Fetch wizard.



History View
To show the repository history, right click it and select Team -> Show in History. This will open the History
View, giving an overview of the commits and allowing you to perform several actions (creating
branches/tags, revert, reset...).



Version: 1.9.3

GAML References
The GAML references describe in details all the keywords of the GAML language. In particular, they detail
all the expressions (operators, units, literals...), statements, data types, file types, skills, architectures,
built-in species...

Index of keywords
The Index page contains the exhaustive list of the GAML keywords, with a link to a detailed description
of each of them.

http://localhost:3000/wiki/expressions
http://localhost:3000/wiki/Statements
http://localhost:3000/wiki/DataTypes
http://localhost:3000/wiki/FileTypes
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInArchitectures
http://localhost:3000/wiki/BuiltInSpecies
http://localhost:3000/wiki/Index


Version: 1.9.3

Built-in Species
This file is automatically generated from java files. Do Not Edit It.

It is possible to use in the models a set of built-in agents. These agents allow to directly use some
advance features like clustering, multi-criteria analysis, etc. The creation of these agents are similar as
for other kinds of agents:

So, for instance, to be able to use clustering techniques in the model:

Table of Contents
agent, AgentDB, base_edge, experiment, graph_edge, graph_node, physical_world,

agent

Variables

host  ( agent ): Returns the agent that hosts the population of the receiver agent

index  ( int ): Returns the unique index of this agent in its population. Read-only attribute

location  ( point ): Returns the location of the agent

name  ( string ): Returns the name of the agent (not necessarily unique in its population)

peers  ( list ): Returns the population of agents of the same species, in the same host, minus the
receiver agent

shape  ( geometry ): Returns the shape of the receiver agent

create species: my_built_in_agent returns: the_agent;

create cluster_builder returns: clusterer;



Actions

_init_

Returned type: unknown

_step_

Returned type: unknown

AgentDB

AgentDB is an abstract species that can be extended to provide agents with capabilities to access
databases

Variables

agents  ( list ): Returns the list of agents for the population(s) of which the receiver agent is a direct
or undirect host

members  ( container ): Returns the list of agents for the population(s) of which the receiver agent is
a direct host

Actions

close

Close the established database connection.

Returned type: unknown  : Returns null if the connection was successfully closed, otherwise, it returns
an error.

connect

Establish a database connection.

Returned type: unknown  : Returns null if connection to the server was successfully established,
otherwise, it returns an error.



Additional facets:

params  (map): Connection parameters

executeUpdate

- Make a connection to DBMS - Executes the SQL statement in this PreparedStatement object,
which must be an SQL INSERT, UPDATE or DELETE statement; or an SQL statement that returns
nothing, such as a DDL statement.

Returned type: int  : Returns the number of updated rows.

Additional facets:

updateComm  (string): SQL commands such as Create, Update, Delete, Drop with question mark

values  (list): List of values that are used to replace question mark

getParameter

Returns the list used parameters to make a connection to DBMS (dbtype, url, port, database, user
and passwd).

Returned type: unknown  : Returns the list of used parameters to make a connection to DBMS.

insert

- Make a connection to DBMS - Executes the insert statement.

Returned type: int  : Returns the number of updated rows.

Additional facets:

into  (string): Table name

columns  (list): List of column name of table

values  (list): List of values that are used to insert into table. Columns and values must have same
size

isConnected

To check if connection to the server was successfully established or not.

Returned type: bool  : Returns true if connection to the server was successfully established, otherwise,
it returns false.



select

Make a connection to DBMS and execute the select statement.

Returned type: list  : Returns the obtained result from executing the select statement.

Additional facets:

select  (string): select string

values  (list): List of values that are used to replace question marks

setParameter

Sets the parameters to use in order to make a connection to the DBMS (dbtype, url, port,
database, user and passwd).

Returned type: unknown  : null.

Additional facets:

params  (map): Connection parameters

testConnection

To test a database connection .

Returned type: bool  : Returns true if connection to the server was successfully established, otherwise,
it returns false.

Additional facets:

params  (map): Connection parameters

timeStamp

Get the current time of the system.

Returned type: float  : Current time of the system in millisecondes

base_edge

A built-in species for agents representing the edges of a graph, from which one can inherit



Variables

source  ( agent ): The source agent of this edge

target  ( agent ): The target agent of this edge

Actions

experiment

GUI experiments are experiments used to visualise and interact with simulations through the regular
user interface of GAMA. They can declare, parameters, used to populate the Parameters view, outputs
like displays or monitors

Variables

maximum_cycle_duration  ( float ): The maximum duration (in seconds) a simulation cycle should
last. Default is 1. Units can be used to pass values greater than a second (for instance '10 #sec')

minimum_cycle_duration  ( float ): The minimum duration (in seconds) a simulation cycle should
last. Default is 0. Units can be used to pass values smaller than a second (for instance '10 #msec')

model_path  ( string ): Contains the absolute path to the folder in which the current model is
located

parameters  ( map ): A parameters set of this experiment agent

project_path  ( string ): Contains the absolute path to the project in which the current model is
located

rng  ( string ): The random number generator to use. Four different ones are at the disposal of the
modeler: 'mersenne' represents the default generator, based on the Mersenne-Twister algorithm.
Very reliable, fast and deterministic (that is, using the same seed and the same sequence of calls, it
will return the same stream of pseudo-random numbers). This algorithm is however not safe to use
in simulations where agents can behave in parallel; 'threaded' is a very fast generator, based on the
DotMix algorithm, that can be safely used in parallel simulations as it creates one instance per
thread. However, determinism cannot be guaranteed and this algorithm does not accept a seed as
each instance will compute its own;'parallel' is a version of the Mersenne-Twister algorithm that can
be safely used in parallel simulations by preventing a concurrent access to its internal state.
Determinism is guaranteed (in terms of generation, but not in terms of execution, as the sequence
in which the threads will access it cannot be determined) and it performs a bit slower than its base



version.'java' invokes the standard generator provided by the JDK, deterministic and thread-safe,
albeit slower than all the other ones

rng_usage  ( int ): Returns the number of times the random number generator of the experiment
has been drawn

seed  ( float ): The seed of the random number generator. Each time it is set, the random number
generator is reinitialized. WARNING: Setting it to zero actually means that you let GAMA choose a
random seed

simulation  ( agent ): Contains a reference to the current simulation being run by this experiment

simulations  ( list ): Contains the list of currently running simulations

workspace_path  ( string ): Contains the absolute path to the workspace of GAMA

Actions

compact_memory

Forces a 'garbage collect' of the unused objects in GAMA

Returned type: unknown

update_outputs

Forces all outputs to refresh, optionally recomputing their values

Returned type: unknown

Additional facets:

recompute  (boolean): Whether or not to force the outputs to make a computation step

graph_edge

A species that represents an edge of a graph made of agents. The source and the target of the edge
should be agents

Variables

source  ( agent ): The source agent of this edge

target  ( agent ): The target agent of this edge



Actions

graph_node

A base species to use as a parent for species representing agents that are nodes of a graph

Variables

my_graph  ( graph ): A reference to the graph containing the agent

Actions

related_to

This operator should never be called

Returned type: bool

Additional facets:

other  (agent): The other agent

physical_world

The base species for models that act as a 3D physical world. Can register and manage agents provided
with either the 'static_body' or 'dynamic_body' skill. Inherits from 'static_body', so it can also act as a
physical body itself (with a 'mass', 'friction', 'gravity'), of course without motion -- in this case, it needs to
register itself as a physical agent using the 'register' action

Variables

accurate_collision_detection  ( boolean ): Enables or not a better (but slower) collision detection

automated_registration  ( boolean ): If set to true (the default), makes the world automatically
register and unregister agents provided with either the 'static_body' or 'dynamic_body' skill.
Otherwise, they must be registered using the 'register' action, which can be useful when only some



agents need to be considered as 'physical agents'. Note that, in any case, the world needs to
manually register itself if it is supposed to act as a physical body.

gravity  ( point ): Defines the value of gravity in this world. The default value is set to -9.80665 on
the z-axis, that is 9.80665 m/s2 towards the 'bottom' of the world. Can be set to any direction and
intensity and applies to all the bodies present in the physical world

library  ( string ): This attribute allows to manually switch between two physics library, named
'bullet' and 'box2D'. The Bullet library, which comes in two flavors (see 'use_native') and the Box2D
libray in its Java version (https://github.com/jbox2d/jbox2d). Bullet is the default library but models
in 2D should better use Box2D

max_substeps  ( int ): If equal to 0 (the default), makes the simulation engine be stepped alongside
the simulation (no substeps allowed). Otherwise, sets the maximum number of physical simulation
substeps that may occur within one GAMA simulation step

terrain  ( field ): This attribute is a matrix of float that can be used to represent a 3D terrain. The
shape of the world, in that case, should be a box, where thedimension on the z-axis is used to scale
the z-values of the DEM. The world needs to be register itself as a physical object

use_native  ( boolean ): This attribute allows to manually switch between the Java version of the
Bullet library (JBullet, a modified version of https://github.com/stephengold/jbullet, which
corresponds to version 2.72 of the original library) and the native Bullet library (Libbulletjme,
https://github.com/stephengold/Libbulletjme, which is kept up-to-date with the 3.x branch of the
original library).The native version is the default one unless the libraries cannot be loaded, making
JBullet the default

Actions

register

An action that allows to register agents in this physical world. Unregistered agents will not be
governed by the physical laws of this world. If the world is to play a role in the physical world,then
it needs to register itself (i.e. do register([self]);

Returned type: unknown

Additional facets:

bodies  (container): the list or container of agents to register in this physical world

https://github.com/jbox2d/jbox2d
https://github.com/stephengold/jbullet
https://github.com/stephengold/Libbulletjme


Version: 1.9.3

Built-in Skills
This file is automatically generated from java files. Do Not Edit It.

Introduction
Skills are built-in modules, written in Java, that provide a set of related built-in variables and built-in
actions (in addition to those already provided by GAMA) to the species that declare them. A declaration
of skill is done by filling the skills attribute in the species definition:

Skills have been designed to be mutually compatible so that any combination of them will result in a
functional species. An example of skill is the moving  skill.

So, for instance, if a species is declared as:

Its agents will automatically be provided with the following variables : speed , heading , destination
and the following actions: move , goto , wander , follow  in addition to those built-in in species and
declared by the modeller. Most of these variables, except the ones marked read-only, can be customized
and modified like normal variables by the modeller. For instance, one could want to set a maximum for
the speed; this would be done by redeclaring it like this:

Or, to obtain a speed increasing at each simulation step:

species my_species skills: [skill1, skill2] {
    ...
}

species foo skills: [moving]{
...
}

float speed max:100 min:0;



Or, to change the speed in a behavior:

Table of Contents
advanced_driving, dynamic_body, fipa, messaging, moving, moving3D, network, pedestrian,
pedestrian_road, skill_road, skill_road_node, SQLSKILL, static_body, thread,

advanced_driving

Variables

acc_bias  ( float ): the bias term used for asymmetric lane changing, parameter 'a_bias' in MOBIL

acc_gain_threshold  ( float ): the minimum acceleration gain for the vehicle to switch to another
lane, introduced to prevent frantic lane changing. Known as the parameter 'a_th' in the MOBIL lane
changing model

acceleration  ( float ): the current acceleration of the vehicle (in m/s^2)

allowed_lanes  ( list ): a list containing possible lane index values for the attribute lowest_lane

current_index  ( int ): the index of the current edge (road) in the path

current_lane  ( int ): the current lane on which the agent is

current_path  ( path ): the path which the agent is currently following

current_road  ( agent ): the road which the vehicle is currently on

current_target  ( agent ): the current target of the agent

delta_idm  ( float ): the exponent used in the computation of free-road acceleration in the
Intelligent Driver Model

distance_to_current_target  ( float ): euclidean distance to the current target node

distance_to_goal  ( float ): euclidean distance to the endpoint of the current segment

float speed max:100 min:0  <- 1 update: speed * 1.01;

if speed = 5 {
    speed <- 10;
}



final_target  ( agent ): the final target of the agent

follower  ( agent ): the vehicle following this vehicle

ignore_oneway  ( boolean ): if set to true , the vehicle will be able to violate one-way traffic rule

lane_change_cooldown  ( float ): the duration that a vehicle must wait before changing lanes again

lane_change_limit  ( int ): the maximum number of lanes that the vehicle can change during a
simulation step

leading_distance  ( float ): the distance to the leading vehicle

leading_speed  ( float ): the speed of the leading vehicle

leading_vehicle  ( agent ): the vehicle which is right ahead of the current vehicle. If this is set to nil,
the leading vehicle does not exist or might be very far away.

linked_lane_limit  ( int ): the maximum number of linked lanes that the vehicle can use; the
default value is -1, i.e. the vehicle can use all available linked lanes

lowest_lane  ( int ): the lane with the smallest index that the vehicle is in

max_acceleration  ( float ): the maximum acceleration of the vehicle. Known as the parameter 'a' in
the Intelligent Driver Model

max_deceleration  ( float ): the maximum deceleration of the vehicle. Known as the parameter 'b'
in the Intelligent Driver Model

max_safe_deceleration  ( float ): the maximum deceleration that the vehicle is willing to induce on
its back vehicle when changing lanes. Known as the parameter 'b_save' in the MOBIL lane changing
model

max_speed  ( float ): the maximum speed that the vehicle can achieve. Known as the parameter 'v0'
in the Intelligent Driver Model

min_safety_distance  ( float ): the minimum distance of the vehicle's front bumper to the leading
vehicle's rear bumper, known as the parameter s0 in the Intelligent Driver Model

min_security_distance  ( float ): the minimal distance to another vehicle

next_road  ( agent ): the road which the vehicle will enter next

num_lanes_occupied  ( int ): the number of lanes that the vehicle occupies

on_linked_road  ( boolean ): is the agent on the linked road?

politeness_factor  ( float ): determines the politeness level of the vehicle when changing lanes.
Known as the parameter 'p' in the MOBIL lane changing model

proba_block_node  ( float ): probability to block a node (do not let other vehicle cross the
crossroad), within one second

proba_lane_change_down  ( float ): probability to change to a lower lane (right lane if right side
driving) to gain acceleration, within one second



proba_lane_change_up  ( float ): probability to change to a upper lane (left lane if right side driving)
to gain acceleration, within one second

proba_respect_priorities  ( float ): probability to respect priority (right or left) laws, within one
second

proba_respect_stops  ( list ): probability to respect stop laws - one value for each type of stop,
within one second

proba_use_linked_road  ( float ): probability to change to a linked lane to gain acceleration, within
one second

real_speed  ( float ): the actual speed of the agent (in meter/second)

right_side_driving  ( boolean ): are vehicles driving on the right size of the road?

safety_distance_coeff  ( float ): the coefficient for the computation of the the min distance
between two vehicles (according to the vehicle speed - security_distance
=max(min_security_distance, security_distance_coeff *  min(self.real_speed, other.real_speed) )

security_distance_coeff  ( float ): the coefficient for the computation of the the min distance
between two vehicles (according to the vehicle speed - safety_distance =max(min_safety_distance,
safety_distance_coeff *  min(self.real_speed, other.real_speed) )

segment_index_on_road  ( int ): current segment index of the agent on the current road

speed  ( float ): the speed of the agent (in meter/second)

speed_coeff  ( float ): speed coefficient for the speed that the vehicle want to reach (according to
the max speed of the road)

targets  ( list ): the current list of points that the agent has to reach (path)

time_headway  ( float ): the time gap that to the leading vehicle that the driver must maintain.
Known as the parameter 'T' in the Intelligent Driver Model

time_since_lane_change  ( float ): the elapsed time since the last lane change

using_linked_road  ( boolean ): indicates if the vehicle is occupying at least one lane on the linked
road

vehicle_length  ( float ): the length of the vehicle (in meters)

violating_oneway  ( boolean ): indicates if the vehicle is moving in the wrong direction on an one-
way (unlinked) road

Actions

advanced_follow_driving

moves the agent towards along the path passed in the arguments while considering the other
agents in the network (only for graph topology)



Returned type: float  : the remaining time

Additional facets:

path  (path): a path to be followed.

target  (point): the target to reach

speed  (float): the speed to use for this move (replaces the current value of speed)

time  (float): time to travel

Examples:

choose_lane

Override this if you want to manually choose a lane when entering new road. By default, the
vehicle tries to stay in the current lane. If the new road has fewer lanes than the current one and
the current lane index is too big, it tries to enter the most uppermost lane.

Returned type: int  : an integer representing the lane index

Additional facets:

new_road  (agent): the new road that's the vehicle is going to enter

compute_path

Action to compute the shortest path to the target node, or shortest path based on the provided
list of nodes

Returned type: path  : the computed path, or nil if no valid path is found

Additional facets:

graph  (graph): the graph representing the road network

target  (agent): the target node to reach

source  (agent): the source node (optional, if not defined, closest node to the agent location)

nodes  (list): the nodes forming the resulting path

Examples:

do osm_follow path: the_path on: road_network;



drive

action to drive toward the target

Returned type: bool

Examples:

drive_random

action to drive by chosen randomly the next road

Returned type: bool

Additional facets:

graph  (graph): a graph representing the road network

proba_roads  (map): a map containing for each road (key), the probability to be selected as next
road (value)

Examples:

external_factor_impact

action that allows to define how the remaining time is impacted by external factor

Returned type: float  : the remaining time

Additional facets:

new_road  (agent): the road on which to the vehicle wants to go

remaining_time  (float): the remaining time

Examples:

do compute_path graph: road_network target: target_node; 
do compute_path graph: road_network nodes: [node1, node5, node10];

do drive;

do drive_random init_node: some_node;



force_move

action to drive by chosen randomly the next road

Returned type: float

Additional facets:

lane  (int): the lane on which to make the agent move

acceleration  (float): acceleration of the vehicle

time  (float): time of move

Examples:

goto_drive

moves the agent towards the target passed in the arguments.

Returned type: path  : optional: the path followed by the agent.

Additional facets:

target  (geometry): the entity towards which to move.

speed  (float): the speed to use for this move (replaces the current value of speed)

on  (any type): graph, topology, list of geometries or map of geometries that restrain this move

recompute_path  (boolean): if false, the path is not recompute even if the graph is modified (by
default: true)

return_path  (boolean): if true, return the path followed (by default: false)

following  (path): Path to follow.

Examples:

lane_choice

do external_factor_impact new_road: a_road remaining_time: 0.5;

do drive_random init_node: some_node;

do goto_drive target: one_of road on: road_network;



action to choose a lane

Returned type: int  : the chosen lane, return -1 if no lane can be taken

Additional facets:

new_road  (agent): the road on which to choose the lane

Examples:

on_entering_new_road

override this if you want to do something when the vehicle enters a new road (e.g. adjust
parameters)

Returned type: void

path_from_nodes

action to compute a path from a list of nodes according to a given graph

Returned type: path  : the computed path, return nil if no path can be taken

Additional facets:

graph  (graph): the graph representing the road network

nodes  (list): the list of nodes composing the path

Examples:

ready_to_cross

action to test if the vehicle cross a road node to move to a new road

Returned type: bool  : true if the vehicle can cross the road node, false otherwise

Additional facets:

do lane_choice new_road: a_road;

do compute_path_from_nodes graph: road_network nodes: [node1, node5, node10];



node  (agent): the road node to test

new_road  (agent): the road to test

Examples:

speed_choice

action to choose a speed

Returned type: float  : the chosen speed

Additional facets:

new_road  (agent): the road on which to choose the speed

Examples:

test_next_road

action to test if the vehicle can take the given road

Returned type: bool  : true (the vehicle can take the road) or false (the vehicle cannot take the road)

Additional facets:

new_road  (agent): the road to test

Examples:

unregister

remove the vehicle from its current roads

Returned type: bool

do is_ready_next_road new_road: a_road lane: 0;

do speed_choice new_road: the_road;

do test_next_road new_road: a_road;



Examples:

dynamic_body

Variables

angular_damping  ( float ): Between 0 and 1. an angular decelaration coefficient that occurs even
without contact

angular_velocity  ( point ): The angular velocity of the agent in the three directions, expressed as a
point.

contact_damping  ( float ): Between 0 and 1. a decelaration coefficient that occurs in case of
contact. Only available in the native Bullet library (no effect on the Java implementation)

damping  ( float ): Between 0 and 1. a linear decelaration coefficient that occurs even without
contact

velocity  ( point ): The linear velocity of the agent in the three directions, expressed as a point.

Actions

apply

An action that allows to apply different effects to the object, like forces, impulses, etc.

Returned type: unknown

Additional facets:

clearance  (boolean): If true clears all forces applied to the agent and clears its veolicity as well

impulse  (point): An idealised change of momentum. Adds to the velocity of the object. This is the
kind of push that you would use on a pool billiard ball.

force  (point): Move (push) the object once with a certain moment, expressed as a point (vector).
Adds to the existing forces.

torque  (point): Rotate (twist) the object once around its axes, expressed as a point (vector)

do unregister



fipa

The fipa skill offers some primitives and built-in variables which enable agent to communicate with each
other using the FIPA interaction protocol.

Variables

accept_proposals  ( list ): A list of 'accept_proposal' performative messages in the agent's mailbox

agrees  ( list ): A list of 'agree' performative messages.

cancels  ( list ): A list of 'cancel' performative messages.

cfps  ( list ): A list of 'cfp' (call for proposal) performative messages.

conversations  ( list ): A list containing the current conversations of agent. Ended conversations
are automatically removed from this list.

failures  ( list ): A list of 'failure' performative messages.

informs  ( list ): A list of 'inform' performative messages.

proposes  ( list ): A list of 'propose' performative messages .

queries  ( list ): A list of 'query' performative messages.

refuses  ( list ): A list of 'propose' performative messages.

reject_proposals  ( list ): A list of 'reject_proposal' performative messages.

requests  ( list ): A list of 'request' performative messages.

requestWhens  ( list ): A list of 'request-when' performative messages.

subscribes  ( list ): A list of 'subscribe' performative messages.

Actions

accept_proposal

Replies a message with an 'accept_proposal' performative message.

Returned type: unknown

Additional facets:

message  (message): The message to be replied

contents  (list): The content of the replying message

agree



Replies a message with an 'agree' performative message.

Returned type: unknown

Additional facets:

message  (message): The message to be replied

contents  (list): The content of the replying message

cancel

Replies a message with a 'cancel' peformative message.

Returned type: unknown

Additional facets:

message  (message): The message to be replied

contents  (list): The content of the replying message

cfp

Replies a message with a 'cfp' performative message.

Returned type: unknown

Additional facets:

message  (message): The message to be replied

contents  (list): The content of the replying message

end_conversation

Reply a message with an 'end_conversation' peprformative message. This message marks the end
of a conversation. In a 'no-protocol' conversation, it is the responsible of the modeler to explicitly
send this message to mark the end of a conversation/interaction protocol. Please note that if the
contents of the messages of the conversation are not read, then this command has no effect (i.e.
it must be read by at least one of the agents in the conversation)

Returned type: unknown

Additional facets:



message  (message): The message to be replied

contents  (list): The content of the replying message

failure

Replies a message with a 'failure' performative message.

Returned type: unknown

Additional facets:

message  (message): The message to be replied

contents  (list): The content of the replying message

inform

Replies a message with an 'inform' performative message.

Returned type: unknown

Additional facets:

message  (message): The message to be replied

contents  (list): The content of the replying message

propose

Replies a message with a 'propose' performative message.

Returned type: unknown

Additional facets:

message  (message): The message to be replied

contents  (list): The content of the replying message

query

Replies a message with a 'query' performative message.

Returned type: unknown

Additional facets:



message  (message): The message to be replied

contents  (list): The content of the replying message

refuse

Replies a message with a 'refuse' performative message.

Returned type: unknown

Additional facets:

message  (message): The message to be replied

contents  (list): The contents of the replying message

reject_proposal

Replies a message with a 'reject_proposal' performative message.

Returned type: unknown

Additional facets:

message  (message): The message to be replied

contents  (list): The content of the replying message

reply

Replies a message. This action should be only used to reply a message in a 'no-protocol'
conversation and with a 'user defined performative'. For performatives supported by GAMA (i.e.,
standard FIPA performatives), please use the 'action' with the same name of 'performative'. For
example, to reply a message with a 'request' performative message, the modeller should use the
'request' action.

Returned type: unknown

Additional facets:

message  (message): The message to be replied

performative  (string): The performative of the replying message

contents  (list): The content of the replying message

request



Replies a message with a 'request' performative message.

Returned type: unknown

Additional facets:

message  (message): The message to be replied

contents  (list): The content of the replying message

send

Starts a conversation/interaction protocol.

Returned type: message

Additional facets:

to  (list): A list of receiver agents

contents  (list): The content of the message. A list of any GAML type

performative  (string): A string, representing the message performative

protocol  (string): A string representing the name of interaction protocol

start_conversation

Starts a conversation/interaction protocol.

Returned type: message

Additional facets:

to  (list): A list of receiver agents

contents  (list): The content of the message. A list of any GAML type

performative  (string): A string, representing the message performative

protocol  (string): A string representing the name of interaction protocol

subscribe

Replies a message with a 'subscribe' performative message.

Returned type: unknown

Additional facets:



message  (message): The message to be replied

contents  (list): The content of the replying message

messaging

A simple skill that provides agents with a mailbox than can be filled with messages

Variables

mailbox  ( list ): The list of messages that can be consulted by the agent

Actions

send

Action used to send a message (that can be of any kind of object) to an agent or a server.

Returned type: message

Additional facets:

to  (any type): The agent, or server, to which this message will be sent to

contents  (any type): The contents of the message, an arbitrary object

Examples:

moving

The moving skill is intended to define the minimal set of behaviours required for agents that are able to
move on different topologies

Variables

do send to:dest contents:"This message is sent by " + name + " to " + dest;



current_edge  ( geometry ): Represents the agent/geometry on which the agent is located (only used
with a graph)

current_path  ( path ): Represents the path on which the agent is moving on (goto action on a
graph)

destination  ( point ): Represents the next location of the agent if it keeps its current speed and
heading (read-only). ** Only correct in continuous topologies and may return nil values if the
destination is outside the environment **

heading  ( float ): Represents the absolute heading of the agent in degrees.

location  ( point ): Represents the current position of the agent

real_speed  ( float ): Represents the actual speed of the agent (in meter/second)

speed  ( float ): Represents the speed of the agent (in meter/second)

Actions

follow

moves the agent along a given path passed in the arguments.

Returned type: path  : optional: the path followed by the agent.

Additional facets:

speed  (float): the speed to use for this move (replaces the current value of speed)

path  (path): a path to be followed.

move_weights  (map): Weights used for the moving.

return_path  (boolean): if true, return the path followed (by default: false)

Examples:

goto

moves the agent towards the target passed in the arguments.

Returned type: path  : optional: the path followed by the agent.

Additional facets:

do follow speed: speed * 2 path: road_path;



target  (geometry): the location or entity towards which to move.

speed  (float): the speed to use for this move (replaces the current value of speed)

on  (any type): graph, topology, list of geometries or map of geometries that restrain this move

recompute_path  (boolean): if false, the path is not recompute even if the graph is modified (by
default: true)

return_path  (boolean): if true, return the path followed (by default: false)

move_weights  (map): Weights used for the moving.

Examples:

move

moves the agent forward, the distance being computed with respect to its speed and heading.
The value of the corresponding variables are used unless arguments are passed.

Returned type: path

Additional facets:

speed  (float): the speed to use for this move (replaces the current value of speed)

heading  (float): the angle (in degree) of the target direction.

bounds  (geometry): the geometry (the localized entity geometry) that restrains this move (the agent
moves inside this geometry

Examples:

wander

Moves the agent towards a random location at the maximum distance (with respect to its speed).
The heading of the agent is chosen randomly if no amplitude is specified. This action changes the
value of heading.

Returned type: bool

Additional facets:

do goto target: (one_of road).location speed: speed * 2 on: road_network;

do move speed: speed - 10 heading: heading + rnd (30) bounds: agentA;



speed  (float): the speed to use for this move (replaces the current value of speed)

amplitude  (float): a restriction placed on the random heading choice. The new heading is chosen in
the range (heading - amplitude/2, heading+amplitude/2)

bounds  (geometry): the geometry (the localized entity geometry) that restrains this move (the agent
moves inside this geometry)

on  (graph): the graph that restrains this move (the agent moves on the graph

proba_edges  (map): When the agent moves on a graph, the probability to choose another edge. If
not defined, each edge has the same probability to be chosen

Examples:

moving3D

The moving skill 3D is intended to define the minimal set of behaviours required for agents that are able
to move on different topologies

Variables

destination  ( point ): continuously updated destination of the agent with respect to its speed and
heading (read-only)

heading  ( float ): the absolute heading of the agent in degrees (in the range 0-359)

pitch  ( float ): the absolute pitch of the agent in degrees (in the range 0-359)

roll  ( float ): the absolute roll of the agent in degrees (in the range 0-359)

speed  ( float ): the speed of the agent (in meter/second)

Actions

move

moves the agent forward, the distance being computed with respect to its speed and heading.
The value of the corresponding variables are used unless arguments are passed.

Returned type: path

do wander speed: speed - 10 amplitude: 120 bounds: agentA;



Additional facets:

speed  (float): the speed to use for this move (replaces the current value of speed)

heading  (int): int, optional, the direction to take for this move (replaces the current value of
heading)

pitch  (int): int, optional, the direction to take for this move (replaces the current value of pitch)

roll  (int): int, optional, the direction to take for this move (replaces the current value of roll)

bounds  (geometry): the geometry (the localized entity geometry) that restrains this move (the agent
moves inside this geometry

Examples:

network

The network skill provides new features to let agents exchange message through network. Sending and
receiving data is done with the messaging skill's actions.

Variables

network_groups  ( list ): The set of groups the agent belongs to

network_name  ( string ): Net ID of the agent

network_server  ( list ): The list of all the servers to which the agent is connected

Actions

connect

Action used by a networking agent to connect to a server or to create a server.

Returned type: bool

Additional facets:

protocol  (string): protocol type (MQTT (by default), TCP, UDP, websocket, arduino): the possible
value ares 'udp_server', 'udp_emitter', 'tcp_server', 'tcp_client', 'websocket_server',

do move speed: speed - 10 heading: heading + rnd (30) bounds: agentA;



'websocket_client', 'http', 'arduino', otherwise the MQTT protocol is used.

port  (int): Port number

raw  (boolean): message type raw or rich

with_name  (string): ID of the agent (its name) for the simulation

login  (string): login for the connection to the server

password  (string): password associated to the login

force_network_use  (boolean): force the use of the network even interaction between local agents

to  (string): server URL (localhost or a server URL)

size_packet  (int): For UDP connection, it sets the maximum size of received packets (default =
1024bits).

Examples:

execute

Action that executes a command in the OS, as if it is executed from a terminal.

Returned type: string  : The error message if any

Additional facets:

command  (string): command to execute

fetch_message

Fetch the first message from the mailbox (and remove it from the mailing box). If the mailbox is
empty, it returns a nil message.

Returned type: message

 do connect with_name:"any_name"; 
 do connect to:"localhost" port:9876 with_name:"any_name"; 
 do connect to:"localhost" protocol:"MQTT" port:9876 with_name:"any_name"; 
 do connect to:"localhost" protocol:"udp_server" port:9876 with_name:"Server"; 
 do connect to:"localhost" protocol:"udp_client" port:9876 with_name:"Client"; 
 do connect to:"localhost" protocol:"udp_server" port:9877 size_packet: 4096; 
 do connect to:"localhost" protocol:"tcp_client" port:9876; 
 do connect to:"localhost" protocol:"tcp_server" port:9876 raw:true; 
 do connect to: "https://openlibrary.org" protocol: "http" port: 443 raw: true; 
 do connect protocol: "arduino";



Examples:

fetch_message_from_network

Fetch all messages from network to mailbox. Use this in specific case only, this action is done at
the end of each step.

Returned type: bool

Examples:

has_more_message

Check whether the mailbox contains any message.

Returned type: bool

Examples:

join_group

Allow an agent to join a group of agents in order to broadcast messages to other members or to
receive messages sent by other members. Note that all members of the group called : "ALL".

message mess <- fetch_message(); 
loop while:has_more_message(){ 

message mess <- fetch_message();
write message.contents;

}

do fetch_message_from_network;//forces gama to get all the new messages since the 
begining of the cycle
loop while: has_more_message(){ 

message mess <- fetch_message();
write message.contents;

}

bool mailbox_contain_messages <- has_more_message(); 
loop while:has_more_message(){ 

message mess <- fetch_message();
write message.contents;

}



Returned type: bool

Additional facets:

with_name  (string): name of the group

Examples:

leave_group

leave a group of agents. The leaving agent will not receive any message from the group.
Overwhise, it can send messages to the left group

Returned type: bool

Additional facets:

with_name  (string): name of the group the agent wants to leave

Examples:

pedestrian

Variables

A_obstacles_SFM  ( float ): Value of A in the SFM model for obstacles - the force of repulsive
interactions (classic values : mean = 4.5, std = 0.3)

A_pedestrians_SFM  ( float ): Value of A in the SFM model for pedestrians - the force of repulsive
interactions (classic values : mean = 4.5, std = 0.3)

avoid_other  ( boolean ): has the pedestrian to avoid other pedestrians?

B_obstacles_SFM  ( float ): Value of B in the SFM model for obstacles - the range (in meters) of
repulsive interactions

do join_group with_name:"group name"; 
do join_group with_name:"group name";
do send to:"group name" contents:"I am new in this group";

 do leave_group with_name:"my_group";



B_pedestrians_SFM  ( float ): Value of B in the SFM model for pedestrians - the range (in meters) of
repulsive interactions

current_index  ( int ): the current index of the agent waypoint (according to the waypoint list)

current_waypoint  ( geometry ): the current waypoint of the agent

final_waypoint  ( geometry ): the final waypoint of the agent

forces  ( map ): the map of forces

gama_SFM  ( float ): Value of gama in the SFM model the amount of normal social force added in
tangential direction. between 0.0 and 1.0 (classic values : mean = 0.35, std = 0.01)

k_SFM  ( float ): Value of k in the SFM model: force counteracting body compression

kappa_SFM  ( float ): Value of kappa in the SFM model: friction counteracting body compression

lambda_SFM  ( float ): Value of lambda in the SFM model - the (an-)isotropy (between 0.0 and 1.0)

minimal_distance  ( float ): Minimal distance between pedestrians

n_prime_SFM  ( float ): Value of n' in the SFM model (classic values : mean = 3.0, std = 0.7)

n_SFM  ( float ): Value of n in the SFM model (classic values : mean = 2.0, std = 0.1)

obstacle_consideration_distance  ( float ): Distance of consideration of obstacles (to compute
the nearby obstacles, used as distance, the max between this value and (step * speed) - classic
value: 3.5m

obstacle_species  ( list ): the list of species that are considered as obstacles

pedestrian_consideration_distance  ( float ): Distance of consideration of other pedestrians (to
compute the nearby obstacles, used as distance, the max between this value and (step * speed) -
classic value: 3.5m

pedestrian_model  ( string ): Model use for the movement of agents (Social Force Model). Can be
either "simple" or "advanced" (default) for different versions of SFM Helbing model

pedestrian_species  ( list ): the list of species that are considered as pedestrians

proba_detour  ( float ): probability to accept to do a detour

relaxion_SFM  ( float ): Value of relaxion in the SFM model - the amount of delay time for an agent
to adapt.(classic values : mean = 0.54, std = 0.05)

roads_waypoints  ( map ): for each waypoint, the associated road

shoulder_length  ( float ): The width of the pedestrian (in meters) - classic values: [0.39, 0.515]

tolerance_waypoint  ( float ): distance to a waypoint (in meters) to consider that an agent is
arrived at the waypoint

use_geometry_waypoint  ( boolean ): use geometries as waypoint instead of points

velocity  ( point ): The velocity of the pedestrian (in meters)

waypoints  ( list ): the current list of points/shape that the agent has to reach (path)



Actions

compute_virtual_path

action to compute a path to a location according to a given graph

Returned type: path  : the computed path, return nil if no path can be taken

Additional facets:

pedestrian_graph  (graph): the graph on wich compute the path

target  (geometry): the target to reach, can be any agent

Examples:

release_path

clean all the interne state of the agent

Returned type: bool

Additional facets:

current_road  (agent): current road on which the agent is located (can be nil)

walk

action to walk toward the final target using the current_path (requires to use the
compute_virtual_path action before)

Returned type: bool

Examples:

walk_to

action to walk toward a target

do compute_virtual_path graph: pedestrian_network target: any_point;

do walk;



Returned type: bool

Additional facets:

target  (geometry): Move toward the target using the SFM model

bounds  (geometry): the geometry (the localized entity geometry) that restrains this move (the agent
moves inside this geometry

Examples:

pedestrian_road

Variables

agents_on  ( list ): for each people on the road

exit_nodes  ( map ): The exit hub (several exit connected to each road extremities) that makes it
possible to reduce angular distance when travelling to connected pedestrian roads

free_space  ( geometry ): for each people on the road

intersection_areas  ( map ): map of geometries to connect segments linked to this road

linked_pedestrian_roads  ( list ): the close pedestrian roads

road_status  ( int ): When road status equals 1 it has 2D continuous space property for pedestrian;
when equal to 2 is simply a 1D road

Actions

build_exit_hub

Add exit hub to pedestrian corridor to reduce angular distance between node of the network

Returned type: bool

Additional facets:

pedestrian_graph  (graph): The pedestrian network from which to find connected corridors

distance_between_targets  (float): min distances between 2 targets

do walk_to {10,10};



Examples:

build_intersection_areas

Build intersection areas with connected roads

Returned type: bool

Additional facets:

pedestrian_graph  (graph): The pedestrian network from which to find connected corridors

Examples:

initialize

action to initialize the free space of roads

Returned type: bool

Additional facets:

distance  (float): the maximal distance to the road

obstacles  (container): the list of species to consider as obstacles to remove from the free space

distance_extremity  (float): the distance added to the extremimity to connect to other road (in
meters)

bounds  (container): the geometries (the localized entity geometries) that restrains the agent
movement (the agent moves inside this geometry

masked_by  (container): if defined, keep only the part of the geometry that is visible from the
location of the road considering the given obstacles

masked_by_precision  (int): if masked_by is defined, number of triangles used to compute the
visible geometries (default: 120)

status  (int): the status (int) of the road: 1 (default) for roads where agent move on a continuous 2D
space and 0 for 1D roads with queu-in queu-out like movement

Examples:

do build_exit_hub pedestrian_graph: pedestrian_network distance_between_targets: 10.0;

do build_intersection_areas pedestrian_graph: pedestrian_network;



skill_road

Variables

agents_on  ( list ): for each lane of the road, the list of agents for each segment

all_agents  ( list ): the list of agents on the road

linked_road  ( agent ): the linked road: the lanes of this linked road will be usable by drivers on the
road

maxspeed  ( float ): the maximal speed on the road

num_lanes  ( int ): the number of lanes

num_segments  ( int ): the number of road segments

segment_lengths  ( list ): stores the length of each road segment. The index of each element
corresponds to the segment index.

source_node  ( agent ): the source node of the road

target_node  ( agent ): the target node of the road

vehicle_ordering  ( list ): provides information about the ordering of vehicle on any given lane

Actions

register

register the agent on the road at the given lane

Returned type: bool

Additional facets:

agent  (agent): the agent to register on the road.

lane  (int): the lane index on which to register; if lane index >= number of lanes, then register on the
linked road

Examples:

do initialize distance: 10.0 obstacles: [building];



unregister

unregister the agent on the road

Returned type: bool

Additional facets:

agent  (agent): the agent to unregister on the road.

Examples:

skill_road_node

Variables

block  ( map ): define the list of agents blocking the node, and for each agent, the list of concerned
roads

priority_roads  ( list ): the list of priority roads

roads_in  ( list ): the list of input roads

roads_out  ( list ): the list of output roads

stop  ( list ): define for each type of stop, the list of concerned roads

Actions

SQLSKILL

This skill allows agents to be provided with actions and attributes in order to connect to SQL databases

Variables

do register agent: the_driver lane: 0;

do unregister agent: the_driver;



Actions

executeUpdate

Action used to execute any update query (CREATE, DROP, INSERT...) to the database (query written
in SQL).

Returned type: int

Additional facets:

params  (map): Connection parameters

updateComm  (string): SQL commands such as Create, Update, Delete, Drop with question mark

values  (list): List of values that are used to replace question mark

Examples:

insert

Action used to insert new data in a database

Returned type: int

Additional facets:

params  (map): Connection parameters

into  (string): Table name

columns  (list): List of column name of table

values  (list): List of values that are used to insert into table. Columns and values must have same
size

Examples:

do executeUpdate params: PARAMS updateComm: "DROP TABLE IF EXISTS registration"; 
do executeUpdate params: PARAMS updateComm: "INSERT INTO registration " + "VALUES(100, 
'Zara', 'Ali', 18);"; 
do executeUpdate params: PARAMS updateComm: "INSERT INTO registration " + "VALUES(?, ?, 
?, ?);" values: [101, 'Mr', 'Mme', 45];

do insert params: PARAMS into: "registration" values: [102, 'Mahnaz', 'Fatma', 25]; 
do insert params: PARAMS into: "registration" columns: ["id", "first", "last"] values: 



list2Matrix

Action that transforms the list of list of data and metadata (resulting from a query) into a matrix.

Returned type: matrix

Additional facets:

param  (list): Param: a list of records and metadata

getName  (boolean): getType: a boolean value, optional parameter

getType  (boolean): getType: a boolean value, optional parameter

Examples:

select

Action used to restrieve data from a database

Returned type: list

Additional facets:

params  (map): Connection parameters

select  (string): select string with question marks

values  (list): List of values that are used to replace question marks

Examples:

testConnection

Action used to test the connection to a database

Returned type: bool

[103, 'Zaid tim', 'Kha'];

list<list> t <- list<list> (select(PARAMS, "SELECT * FROM registration"));
write list2Matrix(t, true, true);

list<list> t <- list<list> (select(PARAMS, "SELECT * FROM registration"));



Additional facets:

params  (map): Connection parameters

Examples:

static_body

Variables

aabb  ( geometry ): The axis-aligned bounding box. A box used to evaluate the probability of contacts
between objects. Can be displayed as any other GAMA shapes/geometries in order to verify that the
physical representation of the agent corresponds to its geometry in the model

friction  ( float ): Between 0 and 1. The coefficient of friction of the agent (how much it
decelerates the agents in contact with him). Default is 0.5

mass  ( float ): The mass of the agent. Should be equal to 0.0 for static, motionless agents

restitution  ( float ): Between 0 and 1. The coefficient of restitution of the agent (defines the
'bounciness' of the agent). Default is 0

rotation  ( pair ): The rotation of the physical body, expressed as a pair which key is the angle in
degrees and value the axis around which it is measured

Actions

contact_added_with

This action can be redefined in order for the agent to implement a specific behavior when it
comes into contact (collision) with another agent. It is automatically called by the physics
simulation engine on both colliding agents. The default built-in behavior does nothing.

Returned type: unknown

Additional facets:

if (!first(DB_Accessor).testConnection(PARAMS)) {
write "Connection impossible";
do pause;

}



other  (agent): represents the other agent with which a collision has been detected

contact_removed_with

This action can be redefined in order for the agent to implement a specific behavior when a
previous contact with another agent is removed. It is automatically called by the physics
simulation engine on both colliding agents. The default built-in behavior does nothing.

Returned type: unknown

Additional facets:

other  (agent): represents the other agent with which a collision has been detected

update_body

This action must be called when the geometry of the agent changes in the simulation world and
this change must be propagated to the physical world. The change of location (in either worlds) or
the rotation due to physical forces do not count as changes, as they are already taken into
account. However, a rotation in the simulation world need to be handled by calling this action. As
it involves long operations (removing the agent from the physical world, then reinserting it with
its new shape), this action should not be called too often.

Returned type: unknown

thread

The thread skill is intended to define the minimal set of behaviours required for agents that are able to
run an action in a thread

Variables

Actions

end_thread

End the current thread.

Returned type: bool  : true if the thread was well stopped, false otherwise



Examples:

run_thread

Start a new thread that will run the 'thread_action' either once if no facets are defined, of at a
fixed rate if 'every:' is defined or with a fixed delay if 'interval:' is defined.

Returned type: bool  : true if the thread was well created and started, false otherwise

Additional facets:

every  (float): Rate in machine time at which this action is run. Default unit is in seconds, use explicit
units to specify another, like 10 #ms. If no rate (and no interval) is specified, the action is run once. If
the action takes longer than the interval to run, it it run immediately after the previous execution

interval  (float): Interval -- or delay -- between two executions of the action. Default unit is in
seconds, use explicit units to specify another, like 10 #ms. If no interval (and no rate) is specified, the
action is run once. An interval of 0 will make the action run continuously without delays

Examples:

thread_action

A virtual action, which contains what to execute in the thread. It needs to be redefined in the
species that implement the thread  skill

Returned type: unknown

do end_thread;

do run_thread every: 10#ms;



Version: 1.9.3

Built-in Architectures
This file is automatically generated from java files. Do Not Edit It.

INTRODUCTION

Table of Contents
fsm, parallel_bdi, probabilistic_tasks, reflex, rules, simple_bdi, sorted_tasks, user_first, user_last,
user_only, weighted_tasks,

fsm

Variables

state  (string): Returns the name of the current state of the agent

states  (list): Returns the list of all the states defined in the species

Actions

parallel_bdi
compute the bdi architecture in parallel. This skill inherit all actions and variables from
SimpleBdiArchitecture

Variables



Actions

probabilistic_tasks
A control architecture, based on the concept of tasks, which are executed with a probability depending
on their weight. This skill extends WeightedTasksArchitecture skills and have all his actions and variables

Variables

Actions

reflex
Represents the default behavioral architecture attached to species of agents if none is specified. This
skills extends AbstractArchitecture and have all his actions and variables

Variables

Actions

rules
A control architecture based on the concept of rules. Allows to declare simple rules with the keyword
do_rule  and to execute them given with respect to their conditions and priority

Variables

Actions

simple_bdi



this architecture enables to define a behaviour using BDI. It is an implementation of the BEN
architecture (Behaviour with Emotions and Norms)

Variables

agreeableness  (float): an agreeableness value for the personality

belief_base  (list): the belief base of the agent

charisma  (float): a charisma value. By default, it is computed with personality

conscientiousness  (float): a conscientiousness value for the personality

current_norm  (any type): the current norm of the agent

current_plan  (any type): thecurrent plan of the agent

desire_base  (list): the desire base of the agent

emotion_base  (list): the emotion base of the agent

extroversion  (float): an extraversion value for the personality

ideal_base  (list): the ideal base of the agent

intention_base  (list): the intention base of the agent

intention_persistence  (float): intention persistence

law_base  (list): the law base of the agent

neurotism  (float): a neurotism value for the personality

norm_base  (list): the norm base of the agent

obedience  (float): an obedience value. By default, it is computed with personality

obligation_base  (list): the obligation base of the agent

openness  (float): an openness value for the personality

plan_base  (list): the plan base of the agent

plan_persistence  (float): plan persistence

probabilistic_choice  (boolean): indicates if the choice is deterministic or probabilistic

receptivity  (float): a receptivity value. By default, it is computed with personality

sanction_base  (list): the sanction base of the agent

social_link_base  (list): the social link base of the agent

thinking  (list): the list of the last thoughts of the agent

uncertainty_base  (list): the uncertainty base of the agent

use_emotions_architecture  (boolean): indicates if emotions are automaticaly computed

use_norms  (boolean): indicates if the normative engine is used



use_persistence  (boolean): indicates if the persistence coefficient is computed with personality
(false) or with the value given by the modeler

use_personality  (boolean): indicates if the personnality is used

use_social_architecture  (boolean): indicates if social relations are automaticaly computed

Actions

add_belief

add the predicate in the belief base.

returns: bool

predicate  (predicate): predicate to add as a belief

strength  (float): the stregth of the belief

lifetime  (int): the lifetime of the belief

add_belief_emotion

add the belief about an emotion in the belief base.

returns: bool

emotion  (emotion): emotion to add as a belief

strength  (float): the stregth of the belief

lifetime  (int): the lifetime of the belief

add_belief_mental_state

add the predicate in the belief base.

returns: bool

mental_state  (mental_state): predicate to add as a belief

strength  (float): the stregth of the belief

lifetime  (int): the lifetime of the belief

add_desire

adds the predicates is in the desire base.

returns: bool

predicate  (predicate): predicate to add as a desire



strength  (float): the stregth of the belief

lifetime  (int): the lifetime of the belief

todo  (predicate): add the desire as a subintention of this parameter

add_desire_emotion

adds the emotion in the desire base.

returns: bool

emotion  (emotion): emotion to add as a desire

strength  (float): the stregth of the desire

lifetime  (int): the lifetime of the desire

todo  (predicate): add the desire as a subintention of this parameter

add_desire_mental_state

adds the mental state is in the desire base.

returns: bool

mental_state  (mental_state): mental_state to add as a desire

strength  (float): the stregth of the desire

lifetime  (int): the lifetime of the desire

todo  (predicate): add the desire as a subintention of this parameter

add_directly_belief

add the belief in the belief base.

returns: bool

belief  (mental_state): belief to add in th belief base

add_directly_desire

add the desire in the desire base.

returns: bool

desire  (mental_state): desire to add in th belief base

add_directly_ideal



add the ideal in the ideal base.

returns: bool

ideal  (mental_state): ideal to add in the ideal base

add_directly_uncertainty

add the uncertainty in the uncertainty base.

returns: bool

uncertainty  (mental_state): uncertainty to add in the uncertainty base

add_emotion

add the emotion to the emotion base.

returns: bool

emotion  (emotion): emotion to add to the base

add_ideal

add a predicate in the ideal base.

returns: bool

predicate  (predicate): predicate to add as an ideal

praiseworthiness  (float): the praiseworthiness value of the ideal

lifetime  (int): the lifetime of the ideal

add_ideal_emotion

add a predicate in the ideal base.

returns: bool

emotion  (emotion): emotion to add as an ideal

praiseworthiness  (float): the praiseworthiness value of the ideal

lifetime  (int): the lifetime of the ideal

add_ideal_mental_state

add a predicate in the ideal base.



returns: bool

mental_state  (mental_state): mental state to add as an ideal

praiseworthiness  (float): the praiseworthiness value of the ideal

lifetime  (int): the lifetime of the ideal

add_intention

check if the predicates is in the desire base.

returns: bool

predicate  (predicate): predicate to check

strength  (float): the stregth of the belief

lifetime  (int): the lifetime of the belief

add_intention_emotion

check if the predicates is in the desire base.

returns: bool

emotion  (emotion): emotion to add as an intention

strength  (float): the stregth of the belief

lifetime  (int): the lifetime of the belief

add_intention_mental_state

check if the predicates is in the desire base.

returns: bool

mental_state  (mental_state): predicate to add as an intention

strength  (float): the stregth of the belief

lifetime  (int): the lifetime of the belief

add_obligation

add a predicate in the ideal base.

returns: bool

predicate  (predicate): predicate to add as an obligation

strength  (float): the strength value of the obligation



lifetime  (int): the lifetime of the obligation

add_social_link

add the social link to the social link base.

returns: bool

social_link  (social_link): social link to add to the base

add_subintention

adds the predicates is in the desire base.

returns: bool

predicate  (mental_state): the intention that receives the sub_intention

subintentions  (predicate): the predicate to add as a subintention to the intention

add_as_desire  (boolean): add the subintention as a desire as well (by default, false)

add_uncertainty

add a predicate in the uncertainty base.

returns: bool

predicate  (predicate): predicate to add

strength  (float): the stregth of the belief

lifetime  (int): the lifetime of the belief

add_uncertainty_emotion

add a predicate in the uncertainty base.

returns: bool

emotion  (emotion): emotion to add as an uncertainty

strength  (float): the stregth of the belief

lifetime  (int): the lifetime of the belief

add_uncertainty_mental_state

add a predicate in the uncertainty base.

returns: bool



mental_state  (mental_state): mental state to add as an uncertainty

strength  (float): the stregth of the belief

lifetime  (int): the lifetime of the belief

change_dominance

changes the dominance value of the social relation with the agent specified.

returns: bool

agent  (agent): an agent with who I get a social link

dominance  (float): a value to change the dominance value

change_familiarity

changes the familiarity value of the social relation with the agent specified.

returns: bool

agent  (agent): an agent with who I get a social link

familiarity  (float): a value to change the familiarity value

change_liking

changes the liking value of the social relation with the agent specified.

returns: bool

agent  (agent): an agent with who I get a social link

liking  (float): a value to change the liking value

change_solidarity

changes the solidarity value of the social relation with the agent specified.

returns: bool

agent  (agent): an agent with who I get a social link

solidarity  (float): a value to change the solidarity value

change_trust

changes the trust value of the social relation with the agent specified.

returns: bool



agent  (agent): an agent with who I get a social link

trust  (float): a value to change the trust value

clear_beliefs

clear the belief base

returns: bool

clear_desires

clear the desire base

returns: bool

clear_emotions

clear the emotion base

returns: bool

clear_ideals

clear the ideal base

returns: bool

clear_intentions

clear the intention base

returns: bool

clear_obligations

clear the obligation base

returns: bool

clear_social_links

clear the intention base

returns: bool



clear_uncertainties

clear the uncertainty base

returns: bool

current_intention_on_hold

puts the current intention on hold until the specified condition is reached or all subintentions are
reached (not in desire base anymore).

returns: bool

until  (any type): the current intention is put on hold (fited plan are not considered) until specific
condition is reached. Can be an expression (which will be tested), a list (of subintentions), or nil (by
default the condition will be the current list of subintentions of the intention)

get_belief

return the belief about the predicate in the belief base (if several, returns the first one).

returns: mental_state

predicate  (predicate): predicate to get

get_belief_emotion

return the belief about the emotion in the belief base (if several, returns the first one).

returns: mental_state

emotion  (emotion): emotion about which the belief to get is

get_belief_mental_state

return the belief about the mental state in the belief base (if several, returns the first one).

returns: mental_state

mental_state  (mental_state): mental state to get

get_belief_with_name

get the predicates is in the belief base (if several, returns the first one).

returns: mental_state



name  (string): name of the predicate to check

get_beliefs

get the list of predicates in the belief base

returns: list<mental_state>

predicate  (predicate): predicate to check

get_beliefs_metal_state

get the list of bliefs in the belief base containing the mental state

returns: list<mental_state>

mental_state  (mental_state): mental state to check

get_beliefs_with_name

get the list of predicates is in the belief base with the given name.

returns: list<mental_state>

name  (string): name of the predicates to check

get_current_intention

returns the current intention (last entry of intention base).

returns: mental_state

get_current_plan

get the current plan.

returns: BDIPlan

get_desire

get the predicates is in the desire base (if several, returns the first one).

returns: mental_state

predicate  (predicate): predicate to check

get_desire_mental_state



get the mental state is in the desire base (if several, returns the first one).

returns: mental_state

mental_state  (mental_state): mental state to check

get_desire_with_name

get the predicates is in the belief base (if several, returns the first one).

returns: mental_state

name  (string): name of the predicate to check

get_desires

get the list of predicates is in the desire base

returns: list<mental_state>

predicate  (predicate): name of the predicates to check

get_desires_mental_state

get the list of mental states is in the desire base

returns: list<mental_state>

mental_state  (mental_state): name of the mental states to check

get_desires_with_name

get the list of predicates is in the belief base with the given name.

returns: list<mental_state>

name  (string): name of the predicates to check

get_emotion

get the emotion in the emotion base (if several, returns the first one).

returns: emotion

emotion  (emotion): emotion to get

get_emotion_with_name



get the emotion is in the emotion base (if several, returns the first one).

returns: emotion

name  (string): name of the emotion to check

get_ideal

get the ideal about the predicate in the ideal base (if several, returns the first one).

returns: mental_state

predicate  (predicate): predicate to check ad an ideal

get_ideal_mental_state

get the mental state in the ideal base (if several, returns the first one).

returns: mental_state

mental_state  (mental_state): mental state to return

get_intention

get the predicates in the intention base (if several, returns the first one).

returns: mental_state

predicate  (predicate): predicate to check

get_intention_mental_state

get the mental state is in the intention base (if several, returns the first one).

returns: mental_state

mental_state  (mental_state): mental state to check

get_intention_with_name

get the predicates is in the belief base (if several, returns the first one).

returns: mental_state

name  (string): name of the predicate to check

get_intentions



get the list of predicates is in the intention base

returns: list<mental_state>

predicate  (predicate): name of the predicates to check

get_intentions_mental_state

get the list of mental state is in the intention base

returns: list<mental_state>

mental_state  (mental_state): mental state to check

get_intentions_with_name

get the list of predicates is in the belief base with the given name.

returns: list<mental_state>

name  (string): name of the predicates to check

get_obligation

get the predicates in the obligation base (if several, returns the first one).

returns: mental_state

predicate  (predicate): predicate to return

get_plan

get the first plan with the given name

returns: BDIPlan

name  (string): the name of the planto get

get_plans

get the list of plans.

returns: list<BDIPlan>

get_social_link

get the social link (if several, returns the first one).



returns: social_link

social_link  (social_link): social link to check

get_social_link_with_agent

get the social link with the agent concerned (if several, returns the first one).

returns: social_link

agent  (agent): an agent with who I get a social link

get_uncertainty

get the predicates is in the uncertainty base (if several, returns the first one).

returns: mental_state

predicate  (predicate): predicate to return

get_uncertainty_mental_state

get the mental state is in the uncertainty base (if several, returns the first one).

returns: mental_state

mental_state  (mental_state): mental state to return

has_belief

check if the predicates is in the belief base.

returns: bool

predicate  (predicate): predicate to check

has_belief_mental_state

check if the mental state is in the belief base.

returns: bool

mental_state  (mental_state): mental state to check

has_belief_with_name

check if the predicate is in the belief base.



returns: bool

name  (string): name of the predicate to check

has_desire

check if the predicates is in the desire base.

returns: bool

predicate  (predicate): predicate to check

has_desire_mental_state

check if the mental state is in the desire base.

returns: bool

mental_state  (mental_state): mental state to check

has_desire_with_name

check if the prediate is in the desire base.

returns: bool

name  (string): name of the predicate to check

has_emotion

check if the emotion is in the belief base.

returns: bool

emotion  (emotion): emotion to check

has_emotion_with_name

check if the emotion is in the emotion base.

returns: bool

name  (string): name of the emotion to check

has_ideal

check if the predicates is in the ideal base.



returns: bool

predicate  (predicate): predicate to check

has_ideal_mental_state

check if the mental state is in the ideal base.

returns: bool

mental_state  (mental_state): mental state to check

has_ideal_with_name

check if the predicate is in the ideal base.

returns: bool

name  (string): name of the predicate to check

has_obligation

check if the predicates is in the obligation base.

returns: bool

predicate  (predicate): predicate to check

has_social_link

check if the social link base.

returns: bool

social_link  (social_link): social link to check

has_social_link_with_agent

check if the social link base.

returns: bool

agent  (agent): an agent with who I want to check if I have a social link

has_uncertainty

check if the predicates is in the uncertainty base.



returns: bool

predicate  (predicate): predicate to check

has_uncertainty_mental_state

check if the mental state is in the uncertainty base.

returns: bool

mental_state  (mental_state): mental state to check

has_uncertainty_with_name

check if the predicate is in the uncertainty base.

returns: bool

name  (string): name of the uncertainty to check

is_current_intention

check if the predicates is the current intention (last entry of intention base).

returns: bool

predicate  (predicate): predicate to check

is_current_intention_mental_state

check if the mental state is the current intention (last entry of intention base).

returns: bool

mental_state  (mental_state): mental state to check

is_current_plan

tell if the current plan has the same name as tested

returns: bool

name  (string): the name of the plan to test

remove_all_beliefs

removes the predicates from the belief base.



returns: bool

predicate  (predicate): predicate to remove

remove_belief

removes the predicate from the belief base.

returns: bool

predicate  (predicate): predicate to remove

remove_belief_mental_state

removes the mental state from the belief base.

returns: bool

mental_state  (mental_state): mental state to remove

remove_desire

removes the predicates from the desire base.

returns: bool

predicate  (predicate): predicate to remove from desire base

remove_desire_mental_state

removes the mental state from the desire base.

returns: bool

mental_state  (mental_state): mental state to remove from desire base

remove_emotion

removes the emotion from the emotion base.

returns: bool

emotion  (emotion): emotion to remove

remove_ideal

removes the predicates from the ideal base.



returns: bool

predicate  (predicate): predicate to remove

remove_ideal_mental_state

removes the mental state from the ideal base.

returns: bool

mental_state  (mental_state): metal state to remove

remove_intention

removes the predicates from the intention base.

returns: bool

predicate  (predicate): intention's predicate to remove

desire_also  (boolean): removes also desire

remove_intention_mental_state

removes the mental state from the intention base.

returns: bool

mental_state  (mental_state): intention's mental state to remove

desire_also  (boolean): removes also desire

remove_obligation

removes the predicates from the obligation base.

returns: bool

predicate  (predicate): predicate to remove

remove_social_link

removes the social link from the social relation base.

returns: bool

social_link  (social_link): social link to remove

remove_social_link_with_agent



removes the social link from the social relation base.

returns: bool

agent  (agent): an agent with who I get the social link to remove

remove_uncertainty

removes the predicates from the uncertainty base.

returns: bool

predicate  (predicate): predicate to remove

remove_uncertainty_mental_state

removes the mental state from the uncertainty base.

returns: bool

mental_state  (mental_state): mental state to remove

replace_belief

replace the old predicate by the new one.

returns: bool

old_predicate  (predicate): predicate to remove

predicate  (predicate): predicate to add

sorted_tasks
A control architecture, based on the concept of tasks, which are executed in an order defined by their
weight. This skill extends the WeightedTasksArchitecture skill and take all his actions and variables

Variables

Actions



user_first
A control architecture, based on FSM, where the user is being given control before states / reflexes of
the agent are executed. This skill extends the UserControlArchitecture skill and take all his actions and
variables

Variables

Actions

user_last
A control architecture, based on FSM, where the user is being given control after states / reflexes of the
agent are executed. This skill extends the UserControlArchitecture skill and take all his actions and
variables

Variables

Actions

user_only
A control architecture, based on FSM, where the user is being given complete control of the agents. This
skill extends the UserControlArchitecture skill and take all his actions and variables

Variables

Actions

weighted_tasks



The class WeightedTasksArchitecture. A simple architecture of competing tasks, where one can be active
at a time. Weights of the tasks are computed every step and the chosen task is simply the one with the
maximal weight

Variables

Actions



Version: 1.9.3

Statements
This file is automatically generated from java files. Do Not Edit It.

Table of Contents
=, abort, action, add, agents, annealing, ask, aspect, assert, benchmark, betad, break, browse, camera,
capture, catch, category, chart, conscious_contagion, continue, coping, create, data, datalist, default,
diffuse, diffusion, display, display_grid, do, do_rule, draw, else, emotional_contagion, enforcement,
enter, equation, error, event, exit, experiment, exploration, focus, focus_on, genetic, global, graphics,
grid, highlight, hill_climbing, if, image_layer, init, inspect, invoke, law, layout, let, light, loop, match,
match_between, match_one, match_regex, mesh, migrate, monitor, morris, norm, output, output_file,
overlay, parameter, perceive, permanent, plan, pso, put, reactive_tabu, reflex, release, remove, restore,
return, rotation, rule, run, sanction, save, set, setup, sobol, socialize, solve, species, species_layer,
start_simulation, state, status, stochanalyse, switch, tabu, task, test, text, trace, transition, try,
unconscious_contagion, user_command, user_init, user_input, user_panel, using, Variable_container,
Variable_number, Variable_regular, warn, write,

Statements by kinds
Batch method

annealing, betad, exploration, genetic, hill_climbing, morris, pso, reactive_tabu, sobol,
stochanalyse, tabu,

Behavior
abort, aspect, coping, do_rule, init, norm, perceive, plan, reflex, sanction, state, task, test,
user_init, user_panel,

Experiment
experiment,

Layer
agents, camera, chart, display_grid, event, graphics, image_layer, light, mesh, overlay, rotation,
species_layer,

Output



browse, display, inspect, layout, monitor, output, output_file, permanent,

Parameter
parameter,

Sequence of statements or action
action, ask, benchmark, capture, catch, create, default, else, enter, equation, exit, if, loop,
match, match_between, match_one, match_regex, migrate, release, run, setup,
start_simulation, switch, trace, transition, try, user_command, using,

Single statement
=, add, assert, break, category, conscious_contagion, continue, data, datalist, diffuse, diffusion,
do, draw, emotional_contagion, enforcement, error, focus, focus_on, highlight, invoke, law, let,
put, remove, restore, return, rule, save, set, socialize, solve, status, text, unconscious_contagion,
user_input, warn, write,

Species
global, grid, species,

Variable (container)
Variable_container,

Variable (number)
Variable_number,

Variable (regular)
Variable_regular,

Statements by embedment
Behavior

add, ask, assert, benchmark, capture, conscious_contagion, create, diffuse, do,
emotional_contagion, enforcement, error, focus, focus_on, highlight, if, inspect, let, loop,
migrate, put, release, remove, restore, return, run, save, set, socialize, solve, start_simulation,
status, switch, trace, transition, try, unconscious_contagion, using, warn, write,

Environment
species,

Experiment
action, annealing, betad, category, do_rule, exploration, genetic, hill_climbing, morris, output,
parameter, permanent, pso, reactive_tabu, reflex, setup, sobol, state, stochanalyse, tabu, task,
test, text, user_command, user_init, user_panel, Variable_container, Variable_number,
Variable_regular,

Layer



add, ask, benchmark, do, draw, error, focus_on, highlight, if, let, loop, put, remove, set, status,
switch, trace, try, using, warn, write,

Model
action, aspect, coping, do_rule, equation, experiment, law, norm, output, perceive, plan, reflex,
rule, run, sanction, setup, species, start_simulation, state, task, test, user_command, user_init,
user_panel, Variable_container, Variable_number, Variable_regular,

Output
ask, if,

Sequence of statements or action
add, ask, assert, assert, benchmark, break, capture, conscious_contagion, continue, create,
data, datalist, diffuse, do, draw, emotional_contagion, enforcement, error, focus, focus_on,
highlight, if, inspect, let, loop, migrate, put, release, remove, restore, return, save, set, socialize,
solve, status, switch, trace, transition, try, unconscious_contagion, using, warn, write,

Single statement
run, start_simulation,

Species
action, aspect, coping, do_rule, equation, law, norm, perceive, plan, reflex, rule, run, sanction,
setup, species, start_simulation, state, task, test, user_command, user_init, user_panel,
Variable_container, Variable_number, Variable_regular,

action
assert, return,

aspect
draw,

chart
add, ask, data, datalist, do, put, remove, set, using,

display
agents, camera, chart, display_grid, event, graphics, image_layer, light, mesh, overlay, rotation,
species_layer,

equation
=,

fsm
state, user_panel,

if
else,

output
display, inspect, layout, monitor, output_file,

parallel_bdi



coping, rule,

permanent
display, inspect, monitor, output_file,

probabilistic_tasks
task,

rules
do_rule,

simple_bdi
coping, rule,

sorted_tasks
task,

species_layer
species_layer,

state
enter, exit,

switch
default, match,

test
assert,

try
catch,

user_command
user_input,

user_first
user_panel,

user_init
user_panel,

user_last
user_panel,

user_only
user_panel,

user_panel
user_command,

weighted_tasks
task,



General syntax
A statement represents either a declaration or an imperative command. It consists in a keyword,
followed by specific facets, some of them mandatory (in bold), some of them optional. One of the facet
names can be omitted (the one denoted as omissible). It has to be the first one.

If the statement encloses other statements, it is called a sequence statement, and its sub-statements
(either sequence statements or single statements) are declared between curly brackets, as in:

=

Facets

right  (float), (omissible) : the right part of the equation (it is mandatory that it can be evaluated as
a float

left  (any type): the left part of the equation (it should be a variable or a call to the diff() or diff2()
operators)

Definition

Allows to implement an equation in the form function(n, t) = expression. The left function is only here as
a placeholder for enabling a simpler syntax and grabbing the variable as its left member.

Usages

The syntax of the = statement is a bit different from the other statements. It has to be used as
follows (in an equation):

statement_keyword expression1 facet2: expression2 ... ;
or
statement_keyword facet1: expression1 facet2: expression2 ...;

statement_keyword1 expression1 facet2: expression2... { // a sequence statement
     statement_keyword2 expression1 facet2: expression2...;  // a single statement
     statement_keyword3 expression1 facet2: expression2...;
}



See also: equation, solve,

Embedments

The =  statement is of type: Single statement

The =  statement can be embedded into: equation,

The =  statement embeds statements:

action

Facets

name  (an identifier), (omissible) : identifier of the action

index  (a datatype identifier): if the action returns a map, the type of its keys

of  (a datatype identifier): if the action returns a container, the type of its elements

type  (a datatype identifier): the action returned type

virtual  (boolean): whether the action is virtual (defined without a set of instructions) (false by
default)

Definition

Allows to define in a species, model or experiment a new action that can be called elsewhere.

Usages

The simplest syntax to define an action that does not take any parameter and does not return
anything is:

float t; 
float S; 
float I; 
equation SI {  
   diff(S,t) = (- 0.3 * S * I / 100); 
   diff(I,t) = (0.3 * S * I / 100); 
} 

action simple_action { 
   // [set of statements] 
}



If the action needs some parameters, they can be specified betwee, braquets after the identifier of
the action:

If the action returns any value, the returned type should be used instead of the "action" keyword. A
return statement inside the body of the action statement is mandatory.

If virtual: is true, then the action is abstract, which means that the action is defined without body. A
species containing at least one abstract action is abstract. Agents of this species cannot be created.
The common use of an abstract action is to define an action that can be used by all its sub-species,
which should redefine all abstract actions and implements its body.

See also: do,

Embedments

The action  statement is of type: Sequence of statements or action

The action  statement can be embedded into: Species, Experiment, Model,

The action  statement embeds statements: assert, return,

add

action action_parameters(int i, string s){ 
   // [set of statements using i and s] 
}

int action_return_val(int i, string s){ 
   // [set of statements using i and s] 
   return i + i; 
}

species parent_species { 
   int virtual_action(int i, string s); 
} 
 
species children parent: parent_species { 
   int virtual_action(int i, string s) { 
      return i + i; 
   } 
}



Facets

to  (any type in [container, species, agent, geometry]): the left member of the addition assignment
('cont << expr;') is an expression cont that evaluates to a container (list, map, matrix, graph)

item  (any type), (omissible) : the right member of the addition assignment ('cont << expr;') is an
expression expr that evaluates to the element(s) to be added to the container

all  (any type): the symbol '<<+' allows to pass a container as item so as to add all its elements to
the receiving container

at  (any type): the index at which to add the item can be specified using 'container[index]' and the
symbol '+<-' must prefix the item (instead of '<<', which would be ambiguous if the container
contains other containers)'

Definition

A statement used to add items to containers. It can be written using the classic syntax ( add ... to:
... ) or a compact one, which is now preferred.

To add an element to a container (other than a matrix), use container << element;  or container
<+ element;  (classic form: add element to: container; )

To add all the elements contained in another container, use container <<+ elements;  (classic
form: add all: elements to: container; )

To add an element to a container at a certain index, use container[index] +<- element;  (classic
form: add element at: index to: container; )

Usages

The new element can be added either at the end of the container or at a particular position.

For lists, the index can only be integers

expr_container << expr;    // Add expr at the end 
expr_container[index] +<- expr;   // Add expr at position index

list<int> workingList <- []; 
workingList[0] +<- 0; // workingList equals [0] 
workingList[0] +<- 10; // workingList equals [10,0] 
workingList[2] +<- 20; // workingList equals [10,0,20] 
workingList <+ 50; // or workingList << 50; // workingList equals [10,0,20,50] 
workingList <<+ [60,70]; // Add all the values in the list // workingList equals 
[10,0,20,50,60,70]



Case of a map: As a map is basically a list of pairs key::value, we can also use the add statement on
it. It is important to note that the behavior of the statement is slightly different, in particular in the
use of the at facet, which denotes the key of the pair.

If no index is provided, a pair (expr_item::expr_item) will be added to the map. An important
exception is the case where the expr_item is a pair itself: in this case, the pair is added.

Notice that, as the key should be unique, the addition of an item at an existing position (i.e. existing
key) will only modify the value associated with the given key.

On a map, the all facet will add all the values of a container in the map: if the argument is a map
itself, all its pairs will be added, otherwise a set of pairs <cont_value, cont_value> will be added

In case of a graph, it is advised to use the various edge(), node(), edges(), nodes() operators, which
can build the correct objects to add to the graph

map<string,string> workingMap <- []; 
workingMap['x'] +<- 'val1'; //equivalent to workingMap['x'] <- 'val1' // workingMap 
equals ["x"::"val1"]

 workingMap << 'val2'; // workingMap equals ["x"::"val1", "val2"::"val2"] 
workingMap << "5"::"val4";  // workingMap equals ["x"::"val1", "val2"::"val2", 
"5"::"val4"]

workingMap['x'] +<- "val3"; // workingMap equals ["x"::"val3", "val2"::"val2", 
"5"::"val4"]

workingMap <<+ ["val4","val5"]; // workingMap equals ["x"::"val3", "val2"::"val2", 
"5"::"val4","val4"::"val4","val5"::"val5"]

graph g <- as_edge_graph([{1,5}::{12,45}]); 
g << edge({1,5}::{2,3}); 
list var <- g.vertices; // var equals [{1,5},{12,45},{2,3}] 
list var <- g.edges; // var equals [polyline({1.0,5.0}::
{12.0,45.0}),polyline({1.0,5.0}::{2.0,3.0})] 
g << node({5,5}); 
list var <- g.vertices; // var equals [{1.0,5.0},{12.0,45.0},{2.0,3.0},{5.0,5.0}] 
list var <- g.edges; // var equals [polyline({1.0,5.0}::
{12.0,45.0}),polyline({1.0,5.0}::{2.0,3.0})]



This statement can not be used on matrix. Please refer to the statement put.

See also: put, remove,

Embedments

The add  statement is of type: Single statement

The add  statement can be embedded into: chart, Behavior, Sequence of statements or action, Layer,

The add  statement embeds statements:

agents

Facets

value  (container): the set of agents to display

name  (a label), (omissible) : Human readable title of the layer

aspect  (an identifier): the name of the aspect that should be used to display the species

fading  (boolean): Used in conjunction with 'trace:', allows to apply a fading effect to the previous
traces. Default is false

position  (point): position of the upper-left corner of the layer. Note that if coordinates are in [0,1[,
the position is relative to the size of the environment (e.g. {0.5,0.5} refers to the middle of the
display) whereas it is absolute when coordinates are greater than 1 for x and y. The z-ordinate can
only be defined between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last
coordinate specifying the elevation of the layer. In case of negative value OpenGl will position the
layer out of the environment.

refresh  (boolean): (openGL only) specify whether the display of the species is refreshed. (true by
default, useful in case of agents that do not move)

rotate  (float): Defines the angle of rotation of this layer, in degrees, around the z-axis.

selectable  (boolean): Indicates whether the agents present on this layer are selectable by the user.
Default is true

size  (point): extent of the layer in the screen from its position. Coordinates in [0,1[ are treated as
percentages of the total surface, while coordinates > 1 are treated as absolute sizes in model units
(i.e. considering the model occupies the entire view). Like in 'position', an elevation can be provided
with the z coordinate, allowing to scale the layer in the 3 directions

trace  (any type in [boolean, int]): Allows to aggregate the visualization of agents at each timestep
on the display. Default is false. If set to an int value, only the last n-th steps will be visualized. If set
to true, no limit of timesteps is applied.



transparency  (float): the transparency level of the layer (between 0 -- opaque -- and 1 -- fully
transparent)

visible  (boolean): Defines whether this layer is visible or not

Definition

agents  allows the modeler to display only the agents that fulfill a given condition.

Usages

The general syntax is:

For instance, in a segregation model, agents  will only display unhappy agents:

See also: display, chart, event, graphics, display_grid, image_layer, overlay, species_layer,

Embedments

The agents  statement is of type: Layer

The agents  statement can be embedded into: display,

The agents  statement embeds statements:

annealing

Facets

name  (an identifier), (omissible) : The name of the method. For internal use only

aggregation  (a label), takes values in: {min, max}: the agregation method

init_solution  (map): init solution: key: name of the variable, value: value of the variable

maximize  (float): the value the algorithm tries to maximize

display my_display { 
   agents layer_name value: expression [additional options]; 
}

display Segregation { 
   agents agentDisappear value: people as list where (each.is_happy = false) aspect: 
with_group_color; 
}



minimize  (float): the value the algorithm tries to minimize

nb_iter_cst_temp  (int): number of iterations per level of temperature

temp_decrease  (float): temperature decrease coefficient. At each iteration, the current temperature
is multiplied by this coefficient.

temp_end  (float): final temperature

temp_init  (float): initial temperature

Definition

This algorithm is an implementation of the Simulated Annealing algorithm. See the wikipedia article and
[batch161 the batch dedicated page].

Usages

As other batch methods, the basic syntax of the annealing statement uses method annealing
instead of the expected annealing name: id  :

For example:

Embedments

The annealing  statement is of type: Batch method

The annealing  statement can be embedded into: Experiment,

The annealing  statement embeds statements:

ask

Facets

target  (any type in [container, agent]), (omissible) : an expression that evaluates to an agent or a
list of agents

as  (species): an expression that evaluates to a species

method annealing [facet: value];

method annealing temp_init: 100  temp_end: 1 temp_decrease: 0.5 nb_iter_cst_temp: 5 
maximize: food_gathered;



parallel  (any type in [boolean, int]): (experimental) setting this facet to 'true' will allow 'ask' to use
concurrency when traversing the targets; setting it to an integer will set the threshold under which
they will be run sequentially (the default is initially 20, but can be fixed in the preferences). This facet
is false by default.

Definition

Allows an agent, the sender agent (that can be the [Sections161#global world agent]), to ask another (or
other) agent(s) to perform a set of statements. If the value of the target facet is nil or empty, the
statement is ignored.

Usages

Ask a set of receiver agents, stored in a container, to perform a block of statements. The block is
evaluated in the context of the agents' species

Ask one agent to perform a block of statements. The block is evaluated in the context of the agent's
species

If the species of the receiver agent(s) cannot be determined, it is possible to force it using the as
facet. An error is thrown if an agent is not a direct or undirect instance of this species

To ask a set of agents to do something only if they belong to a given species, the of_species
operator can be used. If none of the agents belong to the species, nothing happens

ask ${receiver_agents} { 
     ${cursor} 
}

ask ${one_agent} { 
     ${cursor} 
}

ask ${receiver_agent(s)} as: ${a_species_expression} { 
     ${cursor} 
}

ask ${receiver_agents} of_species ${species_name} { 
     ${cursor} 



Any statement can be declared in the block statements. All the statements will be evaluated in the
context of the receiver agent(s), as if they were defined in their species, which means that an
expression like self  will represent the receiver agent and not the sender. If the sender needs to
refer to itself, some of its own attributes (or temporary variables) within the block statements, it has
to use the keyword myself .

If the species of the receiver agent cannot be determined, it is possible to force it by casting the
agent. Nothing happens if the agent cannot be casted to this species

Embedments

The ask  statement is of type: Sequence of statements or action

The ask  statement can be embedded into: chart, Behavior, Sequence of statements or action, Layer,
Output,

The ask  statement embeds statements:

aspect

Facets

}

species animal { 
    float energy <- rnd (1000) min: 0.0; 
    reflex when: energy > 500 { // executed when the energy is above the given 
threshold 
         list<animal> others <- (animal at_distance 5); // find all the neighboring 
animals in a radius of 5 meters 
         float shared_energy  <- (energy - 500) / length (others); // compute the 
amount of energy to share with each of them 
         ask others { // no need to cast, since others has already been filtered to 
only include animals 
              if (energy < 500) { // refers to the energy of each animal in others 
                   energy <- energy + myself.shared_energy; // increases the energy of 
each animal 
                   myself.energy <- myself.energy - myself.shared_energy; // decreases 
the energy of the sender 
              } 
         } 
    } 
}



name  (an identifier), (omissible) : identifier of the aspect (it can be used in a display to identify which
aspect should be used for the given species). Two special names can also be used: 'default' will allow
this aspect to be used as a replacement for the default aspect defined in preferences; 'highlighted'
will allow the aspect to be used when the agent is highlighted as a replacement for the default
(application of a color)

Definition

Aspect statement is used to define a way to draw the current agent. Several aspects can be defined in
one species. It can use attributes to customize each agent's aspect. The aspect is evaluate for each
agent each time it has to be displayed.

Usages

An example of use of the aspect statement:

Embedments

The aspect  statement is of type: Behavior

The aspect  statement can be embedded into: Species, Model,

The aspect  statement embeds statements: draw,

assert

Facets

value  (boolean), (omissible) : a boolean expression. If its evaluation is true, the assertion is
successful. Otherwise, an error (or a warning) is raised.

label  (string): a string displayed instead of the failed expression in order to customize the error or
warning if the assertion is false

warning  (boolean): if set to true, makes the assertion emit a warning instead of an error

species one_species { 
int a <- rnd(10); 
aspect aspect1 { 

if(a mod 2 = 0) { draw circle(a);} 
else {draw square(a);} 
draw text: "a= " + a color: #black size: 5; 

} 
}



Definition

Allows to check if the evaluation of a given expression returns true. If not, an error (or a warning) is
raised. If the statement is used inside a test, the error is not propagagated but invalidates the test (in
case of a warning, it partially invalidates it). Otherwise, it is normally propagated

Usages

Any boolean expression can be used

if the 'warn:' facet is set to true, the statement emits a warning (instead of an error) in case the
expression is false

See also: test, setup, is_error, is_warning,

Embedments

The assert  statement is of type: Single statement

The assert  statement can be embedded into: test, action, Sequence of statements or action,
Behavior, Sequence of statements or action,

The assert  statement embeds statements:

benchmark

Facets

message  (any type), (omissible) : A message to display alongside the results. Should concisely
describe the contents of the benchmark

repeat  (int): An int expression describing how many executions of the block must be handled. The
output in this case will return the min, max and average durations

Definition

assert (2+2) = 4; 
assert self != nil; 
int t <- 0; assert is_error(3/t); 
(1 / 2) is float

assert 'abc' is string warning: true



Displays in the console the duration in ms of the execution of the statements included in the block. It is
possible to indicate, with the 'repeat' facet, how many times the sequence should be run

Usages

Embedments

The benchmark  statement is of type: Sequence of statements or action

The benchmark  statement can be embedded into: Behavior, Sequence of statements or action,
Layer,

The benchmark  statement embeds statements:

betad

Facets

name  (an identifier), (omissible) : The name of the method. For internal use only

outputs  (list): The list of output variables to analyse

report  (string): The path to the file where the Betad report will be written

sampling  (an identifier): The sampling method to build parameters sets that must be factorial
based to some extends - available are saltelli and default uniform

factorial  (list): The number of automated steps to swip over, when step facet is missing in
parameter definition. Default is 9

results  (string): The path to the file where the automatic batch report will be written

sample  (int): The number of sample required.

Definition

This algorithm runs an exploration with a given sampling to compute BetadKu - see doi:
10.1007/s10588-021-09358-5

Usages

For example:

Embedments

method sobol sample_size:100 outputs:['my_var'] report:'../path/to/report/file.txt'; 



The betad  statement is of type: Batch method

The betad  statement can be embedded into: Experiment,

The betad  statement embeds statements:

break

Facets

Definition

break  allows to interrupt the current sequence of statements.

Usages

Embedments

The break  statement is of type: Single statement

The break  statement can be embedded into: Sequence of statements or action,

The break  statement embeds statements:

camera

Facets

name  (string), (omissible) : The name of the camera. Will be used to populate a menu with the other
camera presets. Can provide a value to the 'camera:' facet of the display, which specifies which
camera to use.Using the special constant #default will make it the default of the surrounding
display

distance  (float): If the 'location:' facet is not defined, defines the distance (in world units) that
separates the camera from its target. If 'location:' is defined, especially if it is using a symbolic
position, allows to specify the distance to keep from the target. If neither 'location:' or 'distance:' is
defined, the default distance is the maximum between the width and the height of the world

dynamic  (boolean): If true, the location, distance and target are automatically recomputed every
step. Default is false. When true, will also set 'locked' to true, to avoid interferences from users

lens  (any type in [float, int]): Allows to define the lens -- field of view in degrees -- of the camera.
Between 0 and 360. Defaults to 45°



location  (any type in [point, string]): Allows to define the location of the camera in the world, i.e.
from where it looks at its target. If 'distance:' is specified, the final location is translated on the
target-camera axis to respect the distance. Can be a (possibly dynamically computed) point or a
symbolic position (#from_above, #from_left, #from_right, #from_up_right, #from_up_left,
#from_front, #from_up_front) that will be dynamically recomputed if the target movesIf 'location:' is
not defined, it will be that of the default camera (#from_top, #from_left...) defined in the
preferences.

locked  (boolean): If true, the user cannot modify the camera location and target by interacting with
the display. It is automatically set when the camera is dynamic, so that the display can 'follow' the
coordinates; but it can also be used with fixed coordinates to 'focus' the display on a specific scene

target  (any type in [point, agent, geometry]): Allows to define the target of the camera (what does
it look at). It can be a point (in world coordinates), a geometry or an agent, in which case its
(possibly dynamic) location it used as the target. This facet can be complemented by 'distance:'
and/or 'location:' to specify from where the target is looked at. If 'target:' is not defined, the default
target is the centroid of the world shape.

Definition

camera  allows the modeler to define a camera. The display will then be able to choose among the
camera defined (either within this statement or globally in GAMA) in a dynamic way. Several preset
cameras are provided and accessible in the preferences (to choose the default) or in GAML using the
keywords #from_above, #from_left, #from_right, #from_up_right, #from_up_left, #from_front,
#from_up_front, #isometric.These cameras are unlocked (so that they can be manipulated by the user),
look at the center of the world from a symbolic position, and the distance between this position and the
target is equal to the maximum of the width and height of the world's shape. These preset cameras can
be reused when defining new cameras, since their names can become symbolic positions for them. For
instance: camera 'my_camera' location: #from_top distance: 10; will lower (or extend) the distance
between the camera and the center of the world to 10. camera 'my_camera' locked: true location:
#from_up_front target: people(0); will continuously follow the first agent of the people species from the
up-front position.

Usages

See also: display, agents, chart, event, graphics, display_grid, image_layer, species_layer,

Embedments

The camera  statement is of type: Layer

The camera  statement can be embedded into: display,

The camera  statement embeds statements:



capture

Facets

target  (any type in [agent, container]), (omissible) : an expression that is evaluated as an agent or a
list of the agent to be captured

as  (species): the species that the captured agent(s) will become, this is a micro-species of the calling
agent's species

returns  (a new identifier): a list of the newly captured agent(s)

Definition

Allows an agent to capture other agent(s) as its micro-agent(s).

Usages

The preliminary for an agent A to capture an agent B as its micro-agent is that the A's species must
defined a micro-species which is a sub-species of B's species (cf. [Species161#Nesting_species
Nesting species]).

To capture all "A" agents as "C" agents, we can ask an "B" agent to execute the following statement:

Deprecated writing:

species A { 
... 
} 
species B { 
... 
   species C parent: A { 
   ... 
   } 
... 
}

capture list(B) as: C;

capture target: list (B) as: C;



See also: release,

Embedments

The capture  statement is of type: Sequence of statements or action

The capture  statement can be embedded into: Behavior, Sequence of statements or action,

The capture  statement embeds statements:

catch

Facets

Definition

This statement cannot be used alone

Usages

See also: try,

Embedments

The catch  statement is of type: Sequence of statements or action

The catch  statement can be embedded into: try,

The catch  statement embeds statements:

category

Facets

name  (a label), (omissible) : The title of the category displayed in the UI

color  (rgb): The background color of the category in the UI

expanded  (boolean): Whether the category is initially expanded or not

Definition

Allows to define a category of parameters that will serve to group parameters in the UI. The category
can be declared as initially expanded or closed (overriding the corresponding preference) and with a
background color



Usages

Embedments

The category  statement is of type: Single statement

The category  statement can be embedded into: Experiment,

The category  statement embeds statements:

chart

Facets

name  (string), (omissible) : the identifier of the chart layer

axes  (rgb): the axis color

background  (rgb): the background color

color  (rgb): Text color

gap  (float): minimum gap between bars (in proportion)

label_background_color  (rgb): Color of the label background (for Pie chart)

label_font  (any type in [string, font]): Label font face. Either the name of a font face or a font

label_text_color  (rgb): Color of the label text (for Pie chart)

legend_font  (any type in [string, font]): Legend font face. Either the name of a font face or a font

memorize  (boolean): Whether or not to keep the values in memory (in order to produce a csv file,
for instance). The default value, true, can also be changed in the preferences

position  (point): position of the upper-left corner of the layer. Note that if coordinates are in [0,1[,
the position is relative to the size of the environment (e.g. {0.5,0.5} refers to the middle of the
display) whereas it is absolute when coordinates are greater than 1 for x and y. The z-ordinate can
only be defined between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last
coordinate specifying the elevation of the layer.

reverse_axes  (boolean): reverse X and Y axis (for example to get horizental bar charts

series_label_position  (an identifier), takes values in: {default, none, legend, onchart, yaxis,
xaxis}: Position of the Series names: default (best guess), none, legend, onchart, xaxis (for category
plots) or yaxis (uses the first serie name).

size  (point): the layer resize factor: {1,1} refers to the original size whereas {0.5,0.5} divides by 2 the
height and the width of the layer. In case of a 3D layer, a 3D point can be used (note that {1,1} is
equivalent to {1,1,0}, so a resize of a layer containing 3D objects with a 2D points will remove the
elevation)



style  (an identifier), takes values in: {line, area, bar, dot, step, spline, stack, 3d, ring, exploded,
default}: The sub-style style, also default style for the series.

tick_font  (any type in [string, font]): Tick font face. Either the name of a font face or a font. When
used for a series chart, it will set the font of values on the axes, but When used with a pie, it will
modify the font of messages associated to each pie section.

tick_line_color  (rgb): the tick lines color

title_font  (any type in [string, font]): Title font face. Either the name of a font face or a font

title_visible  (boolean): chart title visible

transparency  (float): the transparency level of the layer (between 0 -- opaque -- and 1 -- fully
transparent)

type  (an identifier), takes values in: {xy, scatter, histogram, series, pie, radar, heatmap,
box_whisker}: the type of chart. It could be histogram, series, xy, pie, radar, heatmap or box whisker.
The difference between series and xy is that the former adds an implicit x-axis that refers to the
numbers of cycles, while the latter considers the first declaration of data to be its x-axis.

visible  (boolean): Defines whether this layer is visible or not

x_label  (string): the title for the X axis

x_log_scale  (boolean): use Log Scale for X axis

x_range  (any type in [float, int, point, list]): range of the x-axis. Can be a number (which will set the
axis total range) or a point (which will set the min and max of the axis).

x_serie  (any type in [list, float, int]): for series charts, change the default common x serie
(simulation cycle) for an other value (list or numerical).

x_serie_labels  (any type in [list, float, int, string]): change the default common x series labels
(replace x value or categories) for an other value (string or numerical).

x_tick_line_visible  (boolean): X tick line visible

x_tick_unit  (float): the tick unit for the y-axis (distance between horizontal lines and values on the
left of the axis).

x_tick_values_visible  (boolean): X tick values visible

y_label  (string): the title for the Y axis

y_log_scale  (boolean): use Log Scale for Y axis

y_range  (any type in [float, int, point, list]): range of the y-axis. Can be a number (which will set the
axis total range) or a point (which will set the min and max of the axis).

y_serie_labels  (any type in [list, float, int, string]): for heatmaps/3d charts, change the default y
serie for an other value (string or numerical in a list or cumulative).

y_tick_line_visible  (boolean): Y tick line visible



y_tick_unit  (float): the tick unit for the x-axis (distance between vertical lines and values bellow
the axis).

y_tick_values_visible  (boolean): Y tick values visible

y2_label  (string): the title for the second Y axis

y2_log_scale  (boolean): use Log Scale for second Y axis

y2_range  (any type in [float, int, point, list]): range of the second y-axis. Can be a number (which will
set the axis total range) or a point (which will set the min and max of the axis).

y2_tick_unit  (float): the tick unit for the x-axis (distance between vertical lines and values bellow
the axis).

Definition

chart  allows modeler to display a chart: this enables to display specific values of the model at each
iteration. GAMA can display various chart types: time series (series), pie charts (pie) and histograms
(histogram).

Usages

The general syntax is:

See also: display, agents, event, graphics, display_grid, image_layer, overlay, quadtree, species_layer,
text,

Embedments

The chart  statement is of type: Layer

The chart  statement can be embedded into: display,

The chart  statement embeds statements: add, ask, data, datalist, do, put, remove, set, using,

conscious_contagion

Facets

display chart_display { 
   chart "chart name" type: series [additional options] { 
      [Set of data, datalists statements] 
   } 
}



emotion_created  (emotion): the emotion that will be created with the contagion

emotion_detected  (emotion): the emotion that will start the contagion

name  (an identifier), (omissible) : the identifier of the unconscious contagion

charisma  (float): The charisma value of the perceived agent (between 0 and 1)

decay  (float): The decay value of the emotion added to the agent

intensity  (float): The intensity value of the emotion added to the agent

receptivity  (float): The receptivity value of the current agent (between 0 and 1)

threshold  (float): The threshold value to make the contagion

when  (boolean): A boolean value to get the emotion only with a certain condition

Definition

enables to directly add an emotion of a perceived species if the perceived agent gets a particular
emotion.

Usages

Other examples of use:

Embedments

The conscious_contagion  statement is of type: Single statement

The conscious_contagion  statement can be embedded into: Behavior, Sequence of statements or
action,

The conscious_contagion  statement embeds statements:

continue

Facets

Definition

continue  allows to skip the remaining statements inside a loop and an ask and directly move to the
next element. Inside a switch, it has the same effect as break.

conscious_contagion emotion_detected:fear emotion_created:fearConfirmed; 
conscious_contagion emotion_detected:fear emotion_created:fearConfirmed charisma: 0.5 
receptivity: 0.5;



Usages

Embedments

The continue  statement is of type: Single statement

The continue  statement can be embedded into: Sequence of statements or action,

The continue  statement embeds statements:

coping

Facets

name  (an identifier), (omissible) : The name of the rule

belief  (predicate): The mandatory belief

beliefs  (list): The mandatory beliefs

desire  (predicate): The mandatory desire

desires  (list): The mandatory desires

emotion  (emotion): The mandatory emotion

emotions  (list): The mandatory emotions

ideal  (predicate): The mandatory ideal

ideals  (list): The mandatory ideals

lifetime  (int): the lifetime value of the mental state created

new_belief  (predicate): The belief that will be added

new_beliefs  (list): The belief that will be added

new_desire  (predicate): The desire that will be added

new_desires  (list): The desire that will be added

new_emotion  (emotion): The emotion that will be added

new_emotions  (list): The emotion that will be added

new_ideal  (predicate): The ideal that will be added

new_ideals  (list): The ideals that will be added

new_uncertainties  (list): The uncertainty that will be added

new_uncertainty  (predicate): The uncertainty that will be added

obligation  (predicate): The mandatory obligation

obligations  (list): The mandatory obligations



parallel  (any type in [boolean, int]): setting this facet to 'true' will allow 'perceive' to use
concurrency with a parallel_bdi architecture; setting it to an integer will set the threshold under
which they will be run sequentially (the default is initially 20, but can be fixed in the preferences).
This facet is true by default.

remove_belief  (predicate): The belief that will be removed

remove_beliefs  (list): The belief that will be removed

remove_desire  (predicate): The desire that will be removed

remove_desires  (list): The desire that will be removed

remove_emotion  (emotion): The emotion that will be removed

remove_emotions  (list): The emotion that will be removed

remove_ideal  (predicate): The ideal that will be removed

remove_ideals  (list): The ideals that will be removed

remove_intention  (predicate): The intention that will be removed

remove_obligation  (predicate): The obligation that will be removed

remove_obligations  (list): The obligation that will be removed

remove_uncertainties  (list): The uncertainty that will be removed

remove_uncertainty  (predicate): The uncertainty that will be removed

strength  (any type in [float, int]): The stregth of the mental state created

threshold  (float): Threshold linked to the emotion.

uncertainties  (list): The mandatory uncertainties

uncertainty  (predicate): The mandatory uncertainty

when  (boolean):

Definition

enables to add or remove mantal states depending on the emotions of the agent, after the emotional
engine and before the cognitive or normative engine.

Usages

Other examples of use:

Embedments

The coping  statement is of type: Behavior

coping emotion: new_emotion("fear") when: flip(0.5) new_desire: new_predicate("test");



The coping  statement can be embedded into: simple_bdi, parallel_bdi, Species, Model,

The coping  statement embeds statements:

create

Facets

species  (any type in [species, agent]), (omissible) : an expression that evaluates to a species, the
species of the agents to be created. In the case of simulations, the name 'simulation', which
represents the current instance of simulation, can also be used as a proxy to their species

as  (species): optionally indicates a species into which to cast the created agents.

from  (any type): an expression that evaluates to a localized entity, a list of localized entities, a string
(the path of a file), a file (shapefile, a .csv, a .asc or a OSM file) or a container returned by a request
to a database

number  (int): an expression that evaluates to an int, the number of created agents

returns  (a new identifier): a new temporary variable name containing the list of created agents (a
list, even if only one agent has been created)

with  (map): an expression that evaluates to a map, for each pair the key is a species attribute and
the value the assigned value

Definition

Allows an agent to create number  agents of species species , to create agents of species species  from
a shapefile or to create agents of species species  from one or several localized entities (discretization
of the localized entity geometries).

Usages

Its simple syntax to create an_int  agents of species a_species  is:

In GAML modelers can create agents of species a_species  (with two attributes type  and nature
with types corresponding to the types of the shapefile attributes) from a shapefile the_shapefile
while reading attributes 'TYPE_OCC' and 'NATURE' of the shapefile. One agent will be created by
object contained in the shapefile:

create a_species number: an_int; 
create species_of(self) number: 5 returns: list5Agents;



In order to create agents from a .csv file, facet header  can be used to specified whether we can use
columns header:

Similarly to the creation from shapefile, modelers can create agents from a set of geometries. In
this case, one agent per geometry will be created (with the geometry as shape)

Created agents are initialized following the rules of their species. If one wants to refer to them after
the statement is executed, the returns keyword has to be defined: the agents created will then be
referred to by the temporary variable it declares. For instance, the following statement creates 0 to
4 agents of the same species as the sender, and puts them in the temporary variable children for
later use.

If one wants to specify a special initialization sequence for the agents created, create provides the
same possibilities as ask. This extended syntax is:

The same rules as in ask apply. The only difference is that, for the agents created, the assignments
of variables will bypass the initialization defined in species. For instance:

create a_species from: the_shapefile with: [type:: read('TYPE_OCC'), 
nature::read('NATURE')];

create toto from: "toto.csv" header: true with:[att1::read("NAME"), 
att2::read("TYPE")]; 
or 
create toto from: "toto.csv" with:[att1::read(0), att2::read(1)]; //with read(int), the 
index of the column

create species_of(self) from: [square(4), circle(4)]; // 2 agents have been created, 
with shapes respectively square(4) and circle(4)

create species (self) number: rnd (4) returns: children; 
ask children { 
        // ... 
}

create a_species number: an_int { 
     [statements] 
}



Deprecated uses:

If number  equals 0 or species is not a species, the statement is ignored.

Embedments

The create  statement is of type: Sequence of statements or action

The create  statement can be embedded into: Behavior, Sequence of statements or action,

The create  statement embeds statements:

data

Facets

legend  (string), (omissible) : The legend of the chart

value  (any type in [float, point, list]): The value to output on the chart

accumulate_values  (boolean): Force to replace values at each step (false) or accumulate with
previous steps (true)

color  (any type in [rgb, list]): color of the serie, for heatmap can be a list to specify
[minColor,maxColor] or [minColor,medColor,maxColor]

fill  (boolean): Marker filled (true) or not (false)

line_visible  (boolean): Whether lines are visible or not

marker  (boolean): marker visible or not

marker_shape  (an identifier), takes values in: {marker_empty, marker_square, marker_circle,
marker_up_triangle, marker_diamond, marker_hor_rectangle, marker_down_triangle,
marker_hor_ellipse, marker_right_triangle, marker_vert_rectangle, marker_left_triangle}: Shape of
the marker

create species(self) number: rnd (4) returns: children { 
     set location <- myself.location + {rnd (2), rnd (2)}; // tells the children to be 
initially located close to me 
     set parent <- myself; // tells the children that their parent is me (provided the 
variable parent is declared in this species)  
}

// Simple syntax 
create species: a_species number: an_int;



marker_size  (float): Size in pixels of the marker

style  (an identifier), takes values in: {line, area, bar, dot, step, spline, stack, 3d, ring, exploded}:
Style for the serie (if not the default one sepecified on chart statement)

thickness  (float): The thickness of the lines to draw

use_second_y_axis  (boolean): Use second y axis for this serie

x_err_values  (any type in [float, list]): the X Error bar values to display. Has to be a List. Each
element can be a number or a list with two values (low and high value)

y_err_values  (any type in [float, list]): the Y Error bar values to display. Has to be a List. Each
element can be a number or a list with two values (low and high value)

y_minmax_values  (list): the Y MinMax bar values to display (BW charts). Has to be a List. Each
element can be a number or a list with two values (low and high value)

Definition

This statement allows to describe the values that will be displayed on the chart.

Usages

Embedments

The data  statement is of type: Single statement

The data  statement can be embedded into: chart, Sequence of statements or action,

The data  statement embeds statements:

datalist

Facets

value  (list): the values to display. Has to be a matrix, a list or a List of List. Each element can be a
number (series/histogram) or a list with two values (XY chart)

legend  (list), (omissible) : the name of the series: a list of strings (can be a variable with dynamic
names)

accumulate_values  (boolean): Force to replace values at each step (false) or accumulate with
previous steps (true)

color  (list): list of colors, for heatmaps can be a list of [minColor,maxColor] or
[minColor,medColor,maxColor]

fill  (boolean): Marker filled (true) or not (false), same for all series.



line_visible  (boolean): Line visible or not (same for all series)

marker  (boolean): marker visible or not

marker_shape  (an identifier), takes values in: {marker_empty, marker_square, marker_circle,
marker_up_triangle, marker_diamond, marker_hor_rectangle, marker_down_triangle,
marker_hor_ellipse, marker_right_triangle, marker_vert_rectangle, marker_left_triangle}: Shape of
the marker. Same one for all series.

marker_size  (list): the marker sizes to display. Can be a list of numbers (same size for each marker
of the series) or a list of list (different sizes by point)

style  (an identifier), takes values in: {line, area, bar, dot, step, spline, stack, 3d, ring, exploded}:
Style for the serie (if not the default one sepecified on chart statement)

thickness  (float): The thickness of the lines to draw

use_second_y_axis  (boolean): Use second y axis for this serie

x_err_values  (list): the X Error bar values to display. Has to be a List. Each element can be a
number or a list with two values (low and high value)

y_err_values  (list): the Y Error bar values to display. Has to be a List. Each element can be a
number or a list with two values (low and high value)

y_minmax_values  (list): the Y MinMax bar values to display (BW charts). Has to be a List. Each
element can be a number or a list with two values (low and high value)

Definition

add a list of series to a chart. The number of series can be dynamic (the size of the list changes each
step). See Ant Foraging (Charts) model in ChartTest for examples.

Usages

Embedments

The datalist  statement is of type: Single statement

The datalist  statement can be embedded into: chart, Sequence of statements or action,

The datalist  statement embeds statements:

default

Facets

value  (any type), (omissible) : The value or values this statement tries to match



Definition

Used in a switch match structure, the block prefixed by default is executed only if no other block has
matched (otherwise it is not).

Usages

See also: switch, match,

Embedments

The default  statement is of type: Sequence of statements or action

The default  statement can be embedded into: switch,

The default  statement embeds statements:

diffuse

Facets

var  (an identifier), (omissible) : the variable to be diffused. If diffused over a field, then this name
will serve to identify the diffusion

on  (any type in [species, field, list]): the list of agents (in general cells of a grid), or a field on which
the diffusion will occur

avoid_mask  (boolean): if true, the value will not be diffused in the masked cells, but will be restitute
to the neighboring cells, multiplied by the proportion value (no signal lost). If false, the value will be
diffused in the masked cells, but masked cells won't diffuse the value afterward (lost of signal).
(default value : false)

cycle_length  (int): the number of diffusion operation applied in one simulation step

mask  (matrix): a matrix that masks the diffusion ( created from an image for instance). The cells
corresponding to the values smaller than "-1" in the mask matrix will not diffuse, and the other will
diffuse.

matrix  (matrix): the diffusion matrix ("kernel" or "filter" in image processing). Can have any size, as
long as dimensions are odd values.

method  (an identifier), takes values in: {convolution, dot_product}: the diffusion method. One of
'convolution' or 'dot_product'

min  (float): if a value is smaller than this value, it will not be diffused. By default, this value is equal
to 0.0. This value cannot be smaller than 0.



propagation  (a label), takes values in: {diffusion, gradient}: represents both the way the signal is
propagated and the way to treat multiple propagation of the same signal occurring at once from
different places. If propagation equals 'diffusion', the intensity of a signal is shared between its
neighbors with respect to 'proportion', 'variation' and the number of neighbors of the environment
places (4, 6 or 8). I.e., for a given signal S propagated from place P, the value transmitted to its N
neighbors is : S' = (S / N / proportion) - variation. The intensity of S is then diminished by S *
proportion on P. In a diffusion, the different signals of the same name see their intensities added to
each other on each place. If propagation equals 'gradient', the original intensity is not modified, and
each neighbors receives the intensity : S / proportion - variation. If multiple propagation occur at
once, only the maximum intensity is kept on each place. If 'propagation' is not defined, it is assumed
that it is equal to 'diffusion'.

proportion  (float): a diffusion rate

radius  (int): a diffusion radius (in number of cells from the center)

variation  (float): an absolute value to decrease at each neighbors

Definition

This statements allows a value to diffuse among a species on agents (generally on a grid) depending on
a given diffusion matrix.

Usages

A basic example of diffusion of the variable phero defined in the species cells, given a diffusion
matrix math_diff is:

The diffusion can be masked by obstacles, created from a bitmap image:

A convenient way to have an uniform diffusion in a given radius is (which is equivalent to the above
diffusion):

Embedments

matrix<float> math_diff <- matrix([[1/9,1/9,1/9],[1/9,1/9,1/9],[1/9,1/9,1/9]]); 
diffuse var: phero on: cells matrix: math_diff;

diffuse var: phero on: cells matrix: math_diff mask: mymask;

diffuse var: phero on: cells proportion: 1/9 radius: 1;



The diffuse  statement is of type: Single statement

The diffuse  statement can be embedded into: Behavior, Sequence of statements or action,

The diffuse  statement embeds statements:

display

Facets

name  (a label), (omissible) : the identifier of the display

antialias  (boolean): Indicates whether to use advanced antialiasing for the display or not. The
default value is the one indicated in the preferences of GAMA ('false' is its factory default).
Antialising produces smoother outputs, but comes with a cost in terms of speed and memory used.

autosave  (any type in [boolean, point, string]): Allows to save this display on disk. This facet accepts
bool, point or string values. If it is false or nil, nothing happens. 'true' will save it at a resolution of
500x500 with a standard name (containing the name of the model, display, resolution, cycle and
time). A non-nil point will change that resolution. A non-nil string will keep 500x500 and change the
filename (if it is not dynamically built, the previous file will be erased). Note that setting autosave to
true in a display will synchronize all the displays defined in the experiment

axes  (boolean): Allows to enable/disable the drawing of the world shape and the ordinate axes.
Default can be configured in Preferences

background  (rgb): Allows to fill the background of the display and its toolbar with a specific color.
Beware that this color, used in the UI, will not be affected by the light used in the display.

camera  (string): Allows to define the name of the camera to use. Default value is 'default'. Accepted
values are (1) the name of one of the cameras defined using the 'camera' statement or (2) one of the
preset cameras, accessible using constants: #from_above, #from_left, #from_right, #from_up_left,
#from_up_right, #from_front, #from_up_front, #isometric

fullscreen  (any type in [boolean, int]): Indicates, when using a boolean value, whether or not the
display should cover the whole screen (default is false). If an integer is passed, specifies also the
screen to use: 0 for the primary monitor, 1 for the secondary one, and so on and so forth. If the
monitor is not available, the first one is used

keystone  (container): Set the position of the 4 corners of your screen
([topLeft,topRight,botLeft,botRight]), in (x,y) coordinate ( the (0,0) position is the top left corner,
while the (1,1) position is the bottom right corner). The default value is : [{0,0},{1,0},{0,1},{1,1}]

light  (boolean): Allows to enable/disable the light at once. Default is true

orthographic_projection  (boolean): Allows to enable/disable the orthographic projection. Default
can be configured in Preferences



parent  (an identifier): Declares that this display inherits its layers and attributes from the parent
display named as the argument. Expects the identifier of the parent display or a string if the name
of the parent contains spaces

refresh  (boolean): Indicates the condition under which this output should be refreshed (default is
true)

show_fps  (boolean): Allows to enable/disable the drawing of the number of frames per second

toolbar  (any type in [boolean, rgb]): Indicates whether the top toolbar of the display view should
be initially visible or not. If a color is passed, then the background of the toolbar takes this color

type  (a label): Allows to use either Java2D (for planar models) or OpenGL (for 3D models) as the
rendering subsystem

virtual  (boolean): Declaring a display as virtual makes it invisible on screen, and only usable for
display inheritance

z_far  (float): Set the distances to the far depth clipping planes. Must be positive.

z_near  (float): Set the distances to the near depth clipping planes. Must be positive.

Definition

A display refers to an independent and mobile part of the interface that can display species, images,
texts or charts.

Usages

The general syntax is:

Each display can include different layers (like in a GIS).

Embedments

The display  statement is of type: Output

The display  statement can be embedded into: output, permanent,

display my_display [additional options] { ... }

display gridWithElevationTriangulated type: opengl ambient_light: 100 { 
grid cell elevation: true triangulation: true; 
species people aspect: base; 

}



The display  statement embeds statements: agents, camera, chart, display_grid, event, graphics,
image_layer, light, mesh, overlay, rotation, species_layer,

display_grid

Facets

species  (species), (omissible) : the species of the agents in the grid

border  (rgb): the color to draw lines (borders of cells)

elevation  (any type in [matrix, float, int, boolean]): Allows to specify the elevation of each cell, if
any. Can be a matrix of float (provided it has the same size than the grid), an int or float variable of
the grid species, or simply true (in which case, the variable called 'grid_value' is used to compute the
elevation of each cell)

grayscale  (boolean): if true, givse a grey value to each polygon depending on its elevation (false by
default)

hexagonal  (boolean):

position  (point): position of the upper-left corner of the layer. Note that if coordinates are in [0,1[,
the position is relative to the size of the environment (e.g. {0.5,0.5} refers to the middle of the
display) whereas it is absolute when coordinates are greater than 1 for x and y. The z-ordinate can
only be defined between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last
coordinate specifying the elevation of the layer. In case of negative value OpenGl will position the
layer out of the environment.

refresh  (boolean): (openGL only) specify whether the display of the species is refreshed. (true by
default, usefull in case of agents that do not move)

rotate  (float): Defines the angle of rotation of this layer, in degrees, around the z-axis.

selectable  (boolean): Indicates whether the agents present on this layer are selectable by the user.
Default is true

size  (point): extent of the layer in the screen from its position. Coordinates in [0,1[ are treated as
percentages of the total surface, while coordinates > 1 are treated as absolute sizes in model units
(i.e. considering the model occupies the entire view). Like in 'position', an elevation can be provided
with the z coordinate, allowing to scale the layer in the 3 directions

smooth  (boolean): Applies a simple convolution (box filter) to smooth out the terrain produced by
this field. Does not change the values of course.

text  (boolean): specify whether the attribute used to compute the elevation is displayed on each
cells (false by default)



texture  (file): Either file containing the texture image to be applied on the grid or, if not specified,
the use of the image composed by the colors of the cells

transparency  (float): the transparency level of the layer (between 0 -- opaque -- and 1 -- fully
transparent)

triangulation  (boolean): specifies whther the cells will be triangulated: if it is false, they will be
displayed as horizontal squares at a given elevation, whereas if it is true, cells will be triangulated
and linked to neighbors in order to have a continuous surface (false by default)

visible  (boolean): Defines whether this layer is visible or not

wireframe  (boolean): if true displays the grid in wireframe using the lines color

Definition

display_grid  is used using the grid  keyword. It allows the modeler to display in an optimized way all
cell agents of a grid (i.e. all agents of a species having a grid topology).

Usages

The general syntax is:

To display a grid as a DEM:

See also: display, agents, chart, event, graphics, image, overlay, species_layer,

Embedments

The display_grid  statement is of type: Layer

The display_grid  statement can be embedded into: display,

The display_grid  statement embeds statements:

do

display my_display { 
   grid ant_grid lines: #black position: { 0.5, 0 } size: {0.5,0.5}; 
}

display my_display { 
    grid cell texture: texture_file text: false triangulation: true elevation: true; 
}



Facets

action  (an identifier), (omissible) : the name of an action or a primitive

internal_function  (any type):

with  (map): a map expression containing the parameters of the action

Definition

Allows the agent to execute an action or a primitive. For a list of primitives available in every species, see
this [BuiltIn161 page]; for the list of primitives defined by the different skills, see this [Skills161 page].
Finally, see this [Species161 page] to know how to declare custom actions.

Usages

The simple syntax (when the action does not expect any argument and the result is not to be kept)
is:

In case the action expects one or more arguments to be passed, they are defined by using facets
(enclosed tags or a map are now deprecated):

In case the result of the action needs to be made available to the agent, the action can be called
with the agent calling the action ( self  when the agent itself calls the action) instead of do ; the
result should be assigned to a temporary variable:

In case of an action expecting arguments and returning a value, the following syntax is used:

Deprecated uses: following uses of the do  statement (still accepted) are now deprecated:

do name_of_action_or_primitive;

do name_of_action_or_primitive arg1: expression1 arg2: expression2;

type_returned_by_action result <- self name_of_action_or_primitive [];

type_returned_by_action result <- self name_of_action_or_primitive [arg1::expression1, 
arg2::expression2];



Embedments

The do  statement is of type: Single statement

The do  statement can be embedded into: chart, Behavior, Sequence of statements or action, Layer,

The do  statement embeds statements:

do_rule

Facets

name  (an identifier), (omissible) : the identifier of the rule

when  (boolean): The condition to fulfill in order to execute the statements embedded in the rule.
when: true makes the rule always activable

priority  (float): An optional priority for the rule, which is used to sort activable rules and run them
in that order

// Simple syntax:  
do action: name_of_action_or_primitive; 
 
// In case the result of the action needs to be made available to the agent, the 
`returns` keyword can be defined; the result will then be referred to by the temporary 
variable declared in this attribute: 
do name_of_action_or_primitive returns: result; 
do name_of_action_or_primitive arg1: expression1 arg2: expression2 returns: result; 
type_returned_by_action result <- name_of_action_or_primitive(self, [arg1::expression1, 
arg2::expression2]); 
 
// In case the result of the action needs to be made available to the agent 
let result <- name_of_action_or_primitive(self, []); 
 
// In case the action expects one or more arguments to be passed, they can also be 
defined by using enclosed `arg` statements, or the `with` facet with a map of 
parameters: 
do name_of_action_or_primitive with: [arg1::expression1, arg2::expression2]; 
 
or 
 
do name_of_action_or_primitive { 
     arg arg1 value: expression1; 
     arg arg2 value: expression2; 
     ... 
}



Definition

A simple definition of a rule (set of statements which execution depend on a condition and a priority).

Usages

Embedments

The do_rule  statement is of type: Behavior

The do_rule  statement can be embedded into: rules, Species, Experiment, Model,

The do_rule  statement embeds statements:

draw

Facets

geometry  (any type), (omissible) : any type of data (it can be geometry, image, text)

anchor  (point): Only used when perspective: true in OpenGL. The anchor point of the location with
respect to the envelope of the text to draw, can take one of the following values: #center, #top_left,
#left_center, #bottom_left, #bottom_center, #bottom_right, #right_center, #top_right, #top_center;
or any point between {0,0} (#bottom_left) and {1,1} (#top_right)

at  (point): location where the shape/text/icon is drawn

begin_arrow  (any type in [int, float]): the size of the arrow, located at the beginning of the drawn
geometry

border  (any type in [rgb, boolean]): if used with a color, represents the color of the geometry
border. If set to false, expresses that no border should be drawn. If not set, the borders will be
drawn using the color of the geometry.

color  (any type in [rgb, container]): the color to use to display the object. In case of images, will try
to colorize it. You can also pass a list of colors : in that case, each color will be matched to its
corresponding vertex.

depth  (float): (only if the display type is opengl) Add an artificial depth to the geometry previously
defined (a line becomes a plan, a circle becomes a cylinder, a square becomes a cube, a polygon
becomes a polyhedron with height equal to the depth value). Note: This only works if the geometry
is not a point

end_arrow  (any type in [int, float]): the size of the arrow, located at the end of the drawn geometry

font  (any type in [font, string]): the font used to draw the text, if any. Applying this facet to
geometries or images has no effect. You can construct here your font with the operator "font". ex :
font:font("Helvetica", 20 , #plain)



lighted  (boolean): Whether the object should be lighted or not (only applicable in the context of
opengl displays)

perspective  (boolean): Whether to render the text in perspective or facing the user. Default is in
perspective.

precision  (float): (only if the display type is opengl and only for text drawing) controls the accuracy
with which curves are rendered in glyphs. Between 0 and 1, the default is 0.1. Smaller values will
output much more faithful curves but can be considerably slower, so it is better if they concern text
that does not change and can be drawn inside layers marked as 'refresh: false'

rotate  (any type in [float, int, pair]): orientation of the shape/text/icon; can be either an int/float
(angle) or a pair float::point (angle::rotation axis). The rotation axis, when expressed as an angle, is
by defaut {0,0,1}

size  (any type in [float, point]): Size of the shape/icon/image to draw, expressed as a bounding box
(width, height, depth; if expressed as a float, represents the box as a cube). Does not apply to texts:
use a font with the required size instead

texture  (any type): the texture(s) that should be applied to the geometry. Either a path to a file or a
list of paths

width  (float): The line width to use for drawing this object. In OpenGL displays, this attribute is
considered as optional and not implemented by all gaphic card vendors. The default value is set by
the preference found in Displays>OpenGL Rendering Properties (which, when inspected, also
provides the maximal possible value on the local graphics configuration)

wireframe  (boolean): a condition specifying whether to draw the geometry in wireframe or not

Definition

draw  is used in an aspect block to express how agents of the species will be drawn. It is evaluated each
time the agent has to be drawn. It can also be used in the graphics block.

Usages

Any kind of geometry as any location can be drawn when displaying an agent (independently of his
shape)

Image or text can also be drawn

aspect geometryAspect { 
draw circle(1.0) empty: !hasFood color: #orange ; 

}



Arrows can be drawn with any kind of geometry, using begin_arrow and end_arrow facets,
combined with the empty: facet to specify whether it is plain or empty

Embedments

The draw  statement is of type: Single statement

The draw  statement can be embedded into: aspect, Sequence of statements or action, Layer,

The draw  statement embeds statements:

else

Facets

Definition

This statement cannot be used alone

Usages

See also: if,

Embedments

The else  statement is of type: Sequence of statements or action

The else  statement can be embedded into: if,

The else  statement embeds statements:

aspect arrowAspect { 
draw "Current state= "+state at: location + {-3,1.5} color: #white font: 

font('Default', 12, #bold) ; 
draw file(ant_shape_full) rotate: heading at: location size: 5 

}

aspect arrowAspect { 
draw line([{20, 20}, {40, 40}]) color: #black begin_arrow:5; 
draw line([{10, 10},{20, 50}, {40, 70}]) color: #green end_arrow: 2 

begin_arrow: 2 empty: true; 
draw square(10) at: {80,20} color: #purple begin_arrow: 2 empty: true; 

}



emotional_contagion

Facets

emotion_detected  (emotion): the emotion that will start the contagion

name  (an identifier), (omissible) : the identifier of the emotional contagion

charisma  (float): The charisma value of the perceived agent (between 0 and 1)

decay  (float): The decay value of the emotion added to the agent

emotion_created  (emotion): the emotion that will be created with the contagion

intensity  (float): The intensity value of the emotion created to the agent

receptivity  (float): The receptivity value of the current agent (between 0 and 1)

threshold  (float): The threshold value to make the contagion

when  (boolean): A boolean value to get the emotion only with a certain condition

Definition

enables to make conscious or unconscious emotional contagion

Usages

Other examples of use:

Embedments

The emotional_contagion  statement is of type: Single statement

The emotional_contagion  statement can be embedded into: Behavior, Sequence of statements or
action,

The emotional_contagion  statement embeds statements:

enforcement

Facets

emotional_contagion emotion_detected:fearConfirmed; 
emotional_contagion emotion_detected:fear emotion_created:fearConfirmed; 
emotional_contagion emotion_detected:fear emotion_created:fearConfirmed charisma: 0.5 
receptivity: 0.5;



name  (an identifier), (omissible) : the identifier of the enforcement

law  (string): The law to enforce

norm  (string): The norm to enforce

obligation  (predicate): The obligation to enforce

reward  (string): The positive sanction to apply if the norm has been followed

sanction  (string): The sanction to apply if the norm is violated

when  (boolean): A boolean value to enforce only with a certain condition

Definition

apply a sanction if the norm specified is violated, or a reward if the norm is applied by the perceived
agent

Usages

Other examples of use:

Embedments

The enforcement  statement is of type: Single statement

The enforcement  statement can be embedded into: Behavior, Sequence of statements or action,

The enforcement  statement embeds statements:

enter

Facets

Definition

In an FSM architecture, enter  introduces a sequence of statements to execute upon entering a state.

Usages

In the following example, at the step it enters into the state s_init, the message 'Enter in s_init' is
displayed followed by the display of the state name:

focus var:speed; //where speed is a variable from a species that is being perceived



See also: state, exit, transition,

Embedments

The enter  statement is of type: Sequence of statements or action

The enter  statement can be embedded into: state,

The enter  statement embeds statements:

equation

Facets

name  (an identifier), (omissible) : the equation identifier

params  (list): the list of parameters used in predefined equation systems

simultaneously  (list): a list of species containing a system of equations (all systems will be solved
simultaneously)

vars  (list): the list of variables used in predefined equation systems

Definition

The equation statement is used to create an equation system from several single equations.

Usages

The basic syntax to define an equation system is:

state s_init { 
enter {  

write "Enter in" + state; 
} 
write state; 

}

float t; 
float S; 
float I; 
equation SI {  
   diff(S,t) = (- 0.3 * S * I / 100); 
   diff(I,t) = (0.3 * S * I / 100); 
} 



If the type: facet is used, a predefined equation system is defined using variables vars: and
parameters params: in the right order. All possible predefined equation systems are the following
ones (see [EquationPresentation161 EquationPresentation161] for precise definition of each
classical equation system):

If the simultaneously: facet is used, system of all the agents will be solved simultaneously.

See also: =, solve,

Embedments

The equation  statement is of type: Sequence of statements or action

The equation  statement can be embedded into: Species, Model,

The equation  statement embeds statements: =,

error

Facets

message  (string), (omissible) : the message to display in the error.

Definition

The statement makes the agent output an error dialog (if the simulation contains a user interface).
Otherwise displays the error in the console.

Usages

Throwing an error

Embedments

equation eqSI type: SI vars: [S,I,t] params: [N,beta]; 
equation eqSIS type: SIS vars: [S,I,t] params: [N,beta,gamma]; 
equation eqSIR type:SIR vars:[S,I,R,t] params:[N,beta,gamma]; 
equation eqSIRS type: SIRS vars: [S,I,R,t] params: [N,beta,gamma,omega,mu]; 
equation eqSEIR type: SEIR vars: [S,E,I,R,t] params: [N,beta,gamma,sigma,mu]; 
equation eqLV type: LV vars: [x,y,t] params: [alpha,beta,delta,gamma];

error 'This is an error raised by ' + self;



The error  statement is of type: Single statement

The error  statement can be embedded into: Behavior, Sequence of statements or action, Layer,

The error  statement embeds statements:

event

Facets

name  (string), (omissible) : the type of event captured: basic events include #mouse_up,
#mouse_down, #mouse_move, #mouse_exit, #mouse_enter, #mouse_menu, #mouse_drag,
#arrow_down, #arrow_up, #arrow_left, #arrow_right, #escape, #tab, #enter, #page_up, #page_down
or a character

action  (action): The identifier of the action to be executed in the context of the simulation. This
action needs to be defined in 'global' or in the current experiment, without any arguments. The
location of the mouse in the world can be retrieved in this action with the pseudo-constant
#user_location

type  (string): Type of device used to generate events. Defaults to 'default', which encompasses
keyboard and mouse

Definition

event  allows to interact with the simulation by capturing mouse or key events and doing an action. The
name of this action can be defined with the 'action:' facet, in which case the action needs to be defined
in 'global' or in the current experiment, without any arguments. The location of the mouse in the world
can be retrieved in this action with the pseudo-constant #user_location. The statements to execute can
also be defined in the block at the end of this statement, in which case they will be executed in the
context of the experiment

Usages

The general syntax is:

For instance:

event [event_type] action: myAction;

global { 
   // ...  



See also: display, agents, chart, graphics, display_grid, image_layer, overlay, species_layer,

Embedments

The event  statement is of type: Layer

The event  statement can be embedded into: display,

The event  statement embeds statements:

exit

Facets

Definition

In an FSM architecture, exit  introduces a sequence of statements to execute right before exiting the
state.

Usages

In the following example, at the state it leaves the state s_init, he will display the message 'EXIT from
s_init':

   action myAction () { 
      point loc <- #user_location; // contains the location of the mouse in the world 
      list<agent> selected_agents <- agents inside (10#m around loc); // contains 
agents clicked by the event 
       
      // code written by modelers 
   } 
} 
 
experiment Simple type:gui { 
   display my_display { 
      event #mouse_up action: myAction; 
   } 
}

state s_init initial: true { 
write state; 
transition to: s1 when: (cycle > 2) { 

write "transition s_init -> s1"; 
} 



See also: enter, state, transition,

Embedments

The exit  statement is of type: Sequence of statements or action

The exit  statement can be embedded into: state,

The exit  statement embeds statements:

experiment

Facets

name  (a label), (omissible) : identifier of the experiment

title  (string):

type  (a label): The type of the experiment: gui , batch , test , etc.

autorun  (boolean): Whether this experiment should be run automatically when launched (false by
default)

benchmark  (boolean): If true, make GAMA record the number of invocations and running time of
the statements and operators of the simulations launched in this experiment. The results are
automatically saved in a csv file in a folder called 'benchmarks' when the experiment is closed

control  (an identifier): the control architecture used for defining the behavior of the experiment

keep_seed  (boolean): Allows to keep the same seed between simulations. Mainly useful for batch
experiments

keep_simulations  (boolean): In the case of a batch experiment, specifies whether or not the
simulations should be kept in memory for further analysis or immediately discarded with only their
fitness kept in memory

parallel  (any type in [boolean, int]): When set to true, use multiple threads to run its simulations.
Setting it to n will set the numbers of threads to use

parent  (an identifier): the parent experiment (in case of inheritance between experiments)

record  (boolean): Cannot be used in batch experiments. Whether the simulations run by this
experiment are recorded so that they be run backward. Boolean expression expected, which will be

exit { 
write "EXIT from "+state; 

} 
}



evaluated by simulations at each cycle, so that the recording can occur based on specific conditions
(for instance 'every(10#cycles)'). A value of 'true' will record each step.

repeat  (int): In the case of a batch experiment, expresses hom many times the simulations must be
repeated

schedules  (container): A container of agents (a species, a dynamic list, or a combination of species
and containers) , which represents which agents will be actually scheduled when the population is
scheduled for execution. For instance, 'species a schedules: (10 among a)' will result in a population
that schedules only 10 of its own agents every cycle. 'species b schedules: []' will prevent the agents
of 'b' to be scheduled. Note that the scope of agents covered here can be larger than the
population, which allows to build complex scheduling controls; for instance, defining 'global
schedules: [] {...} species b schedules: []; species c schedules: b + world; ' allows to simulate a model
where the agents of b are scheduled first, followed by the world, without even having to create an
instance of c.

skills  (list): the skills attached to the experiment

until  (boolean): In the case of a batch experiment, an expression that will be evaluated to know
when a simulation should be terminated

virtual  (boolean): Whether the experiment is virtual (cannot be instantiated, but only used as a
parent, false by default)

Definition

Declaration of a particular type of agent that can manage simulations. If the experiment directly imports
a model using the 'model:' facet, this facet must be the first one after the name of the experiment. Any
experiment attached to a model is a species (introduced by the keyword 'experiment' which directly or
indirectly inherits from an abstract species called 'experiment' itself. This abstract species (sub-species of
'agent') defines several attributes and actions that can then be used in any experiment. Experiments
also define several attributes, which, in addition to the attributes inherited from agent, form the
minimal set of knowledge any experiment will have access to.

Usages

Embedments

The experiment  statement is of type: Experiment

The experiment  statement can be embedded into: Model,

The experiment  statement embeds statements:

exploration



Facets

name  (an identifier), (omissible) : The name of the method. For internal use only

factorial  (list): The number of sample required.

from  (string): a path to a file where each lines correspond to one parameter set and each colon a
parameter

iterations  (int): The number of iteration for orthogonal sampling, 5 by default

levels  (int): The number of levels for morris sampling, 4 by default

sample  (int): The number of sample required, 132 by default

sampling  (string): The name of the sampling method (among
saltelli/morris/latinhypercube/orthogonal/uniform/factorial)

with  (list): the list of parameter sets to explore; a parameter set is defined by a map: key: name of
the variable, value: expression for the value of the variable

Definition

This is the standard batch method. The exploration mode is defined by default when there is no method
element present in the batch section. It explores all the combination of parameter values in a sequential
way. You can also choose a sampling method for the exploration. See [batch161 the batch dedicated
page].

Usages

As other batch methods, the basic syntax of the exploration statement uses method exploration
instead of the expected exploration name: id  :

Simplest example:

Using sampling facet:

Using from facet:

method exploration;

method exploration;

method exploration sampling:latinhypercube sample:100; 



Using with facet:

Embedments

The exploration  statement is of type: Batch method

The exploration  statement can be embedded into: Experiment,

The exploration  statement embeds statements:

focus

Facets

agent_cause  (agent): the agentCause value of the created belief (can be nil

belief  (predicate): The predicate to focus on the beliefs of the other agent

desire  (predicate): The predicate to focus on the desires of the other agent

emotion  (emotion): The emotion to focus on the emotions of the other agent

expression  (any type): an expression that will be the value kept in the belief

id  (string): the identifier of the focus

ideal  (predicate): The predicate to focus on the ideals of the other agent

is_uncertain  (boolean): a boolean to indicate if the mental state created is an uncertainty

lifetime  (int): the lifetime value of the created belief

strength  (any type in [float, int]): The priority of the created predicate

truth  (boolean): the truth value of the created belief

uncertainty  (predicate): The predicate to focus on the uncertainties of the other agent

var  (any type in [any type, list, container]): the variable of the perceived agent you want to add to
your beliefs

when  (boolean): A boolean value to focus only with a certain condition

Definition

enables to directly add a belief from the variable of a perceived species.

method exploration from:"../path/to/my/exploration/plan.csv"; 

method exploration with:[["a"::0.5, "b"::10],["a"::0.1, "b"::100]]; 



Usages

Other examples of use:

Embedments

The focus  statement is of type: Single statement

The focus  statement can be embedded into: Behavior, Sequence of statements or action,

The focus  statement embeds statements:

focus_on

Facets

value  (any type), (omissible) : The agent, list of agents, geometry to focus on

Definition

Allows to focus on the passed parameter in all available displays. Passing 'nil' for the parameter will
make all screens return to their normal zoom

Usages

Focuses on an agent, a geometry, a set of agents, etc...

Embedments

The focus_on  statement is of type: Single statement

The focus_on  statement can be embedded into: Behavior, Sequence of statements or action, Layer,

The focus_on  statement embeds statements:

genetic

Facets

focus var:speed /*where speed is a variable from a species that is being perceived*/

focus_on my_species(0);



name  (an identifier), (omissible) : The name of this method. For internal use only

aggregation  (a label), takes values in: {min, max, avr}: the agregation method

crossover_prob  (float): crossover probability between two individual solutions

improve_sol  (boolean): if true, use a hill climbing algorithm to improve the solutions at each
generation

max_gen  (int): number of generations

maximize  (float): the value the algorithm tries to maximize

minimize  (float): the value the algorithm tries to minimize

mutation_prob  (float): mutation probability for an individual solution

nb_prelim_gen  (int): number of random populations used to build the initial population

pop_dim  (int): size of the population (number of individual solutions)

stochastic_sel  (boolean): if true, use a stochastic selection algorithm (roulette) rather a
determistic one (keep the best solutions)

Definition

This is a simple implementation of Genetic Algorithms (GA). See the wikipedia article and [batch161 the
batch dedicated page]. The principle of the GA is to search an optimal solution by applying evolution
operators on an initial population of solutions. There are three types of evolution operators: crossover,
mutation and selection. Different techniques can be applied for this selection. Most of them are based
on the solution quality (fitness).

Usages

As other batch methods, the basic syntax of the genetic  statement uses method genetic  instead
of the expected genetic name: id  :

For example:

Embedments

The genetic  statement is of type: Batch method

method genetic [facet: value];

method genetic maximize: food_gathered pop_dim: 5 crossover_prob: 0.7 mutation_prob: 
0.1 nb_prelim_gen: 1 max_gen: 20; 



The genetic  statement can be embedded into: Experiment,

The genetic  statement embeds statements:

graphics

Facets

name  (a label), (omissible) : the human readable title of the graphics

background  (rgb): the background color of the layer. Default is none

border  (rgb): Color to apply to the border of the rectangular shape of the layer. Default is none

fading  (boolean): Used in conjunction with 'trace:', allows to apply a fading effect to the previous
traces. Default is false

position  (point): position of the upper-left corner of the layer. Note that if coordinates are in [0,1[,
the position is relative to the size of the environment (e.g. {0.5,0.5} refers to the middle of the
display) whereas it is absolute when coordinates are greater than 1 for x and y. The z-ordinate can
only be defined between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last
coordinate specifying the elevation of the layer. In case of negative value OpenGl will position the
layer out of the environment.

refresh  (boolean): (openGL only) specify whether the display of the species is refreshed. (true by
default, usefull in case of agents that do not move)

rotate  (float): Defines the angle of rotation of this layer, in degrees, around the z-axis.

size  (point): extent of the layer in the screen from its position. Coordinates in [0,1[ are treated as
percentages of the total surface, while coordinates > 1 are treated as absolute sizes in model units
(i.e. considering the model occupies the entire view). Like in 'position', an elevation can be provided
with the z coordinate, allowing to scale the layer in the 3 directions

trace  (any type in [boolean, int]): Allows to aggregate the visualization at each timestep on the
display. Default is false. If set to an int value, only the last n-th steps will be visualized. If set to true,
no limit of timesteps is applied.

transparency  (float): the transparency level of the layer (between 0 -- opaque -- and 1 -- fully
transparent)

visible  (boolean): Defines whether this layer is visible or not

Definition

graphics  allows the modeler to freely draw shapes/geometries/texts without having to define a
species. It works exactly like a species [Aspect161 aspect]: the draw statement can be used in the same
way.



Usages

The general syntax is:

See also: display, agents, chart, event, graphics, display_grid, image_layer, overlay, species_layer,

Embedments

The graphics  statement is of type: Layer

The graphics  statement can be embedded into: display,

The graphics  statement embeds statements:

highlight

Facets

value  (agent), (omissible) : The agent to hightlight

color  (rgb): An optional color to highlight the agent. Note that this color will become the default
color for further higlight operations

Definition

Allows to highlight the agent passed in parameter in all available displays, optionaly setting a color.
Passing 'nil' for the agent will remove the current highlight

Usages

Highlighting an agent

Embedments

display my_display { 
   graphics "my new layer" { 
      draw circle(5) at: {10,10} color: #red; 
      draw "test" at: {10,10} size: 20 color: #black; 
   } 
}

highlight my_species(0) color: #blue;



The highlight  statement is of type: Single statement

The highlight  statement can be embedded into: Behavior, Sequence of statements or action,
Layer,

The highlight  statement embeds statements:

hill_climbing

Facets

name  (an identifier), (omissible) : The name of the method. For internal use only

aggregation  (a label), takes values in: {min, max, avr}: the agregation method

init_solution  (map): init solution: key: name of the variable, value: value of the variable

iter_max  (int): number of iterations. this number corresponds to the number of "moves" in the
parameter space. For each move, the algorithm will test the whole neighborhood of the current
solution, each neighbor corresponding to a particular set of parameters and thus to a run. Thus,
there can be several runs per iteration (maximum: 2^(number of parameters)).

maximize  (float): the value the algorithm tries to maximize

minimize  (float): the value the algorithm tries to minimize

Definition

This algorithm is an implementation of the Hill Climbing algorithm. See the wikipedia article and
[batch161 the batch dedicated page].

Usages

As other batch methods, the basic syntax of the hill_climbing  statement uses method
hill_climbing  instead of the expected hill_climbing name: id  :

For example:

Embedments

method hill_climbing [facet: value];

method hill_climbing iter_max: 50 maximize : food_gathered; 



The hill_climbing  statement is of type: Batch method

The hill_climbing  statement can be embedded into: Experiment,

The hill_climbing  statement embeds statements:

if

Facets

condition  (boolean), (omissible) : A boolean expression: the condition that is evaluated.

Definition

Allows the agent to execute a sequence of statements if and only if the condition evaluates to true.

Usages

The generic syntax is:

Optionally, the statements to execute when the condition evaluates to false can be defined in a
following statement else. The syntax then becomes:

if bool_expr { 
    [statements] 
}

if bool_expr { 
    [statements] 
} 
else { 
    [statements] 
} 
string valTrue <- ""; 
if true { 

valTrue <- "true"; 
} 
else { 

valTrue <- "false"; 
} 
 // valTrue equals "true" 
string valFalse <- ""; 
if false { 

valFalse <- "true"; 



ifs and elses can be imbricated as needed. For instance:

Embedments

The if  statement is of type: Sequence of statements or action

The if  statement can be embedded into: Behavior, Sequence of statements or action, Layer,
Output,

The if  statement embeds statements: else,

image_layer

Facets

name  (any type), (omissible) : the name/path of the image (in the case of a raster image), a matrix of
int, an image file

color  (rgb): in the case of a shapefile, this the color used to fill in geometries of the shapefile. In
the case of an image, it is used to tint the image

gis  (any type in [file, string]): the name/path of the shape file (to display a shapefile as background,
without creating agents from it)

position  (point): position of the upper-left corner of the layer. Note that if coordinates are in [0,1[,
the position is relative to the size of the environment (e.g. {0.5,0.5} refers to the middle of the
display) whereas it is absolute when coordinates are greater than 1 for x and y. The z-ordinate can
only be defined between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last

} 
else { 

valFalse <- "false"; 
} 
 // valFalse equals "false"

if bool_expr { 
    [statements] 
} 
else if bool_expr2 { 
    [statements] 
} 
else { 
    [statements] 
}



coordinate specifying the elevation of the layer. In case of negative value OpenGl will position the
layer out of the environment.

refresh  (boolean): (openGL only) specify whether the image display is refreshed or not. (false by
default, true should be used in cases of images that are modified over the simulation)

rotate  (float): Defines the angle of rotation of this layer, in degrees, around the z-axis.

size  (point): extent of the layer in the screen from its position. Coordinates in [0,1[ are treated as
percentages of the total surface, while coordinates > 1 are treated as absolute sizes in model units
(i.e. considering the model occupies the entire view). Like in 'position', an elevation can be provided
with the z coordinate, allowing to scale the layer in the 3 directions

transparency  (float): the transparency level of the layer (between 0 -- opaque -- and 1 -- fully
transparent)

visible  (boolean): Defines whether this layer is visible or not

Definition

image_layer  allows modeler to display an image (e.g. as background of a simulation). Note that this
image will not be dynamically changed or moved in OpenGL, unless the refresh: facet is set to true.

Usages

The general syntax is:

For instance, in the case of a bitmap image

If you already have your image stored in a matrix

Or in the case of a shapefile:

display my_display { 
   image image_file [additional options]; 
}

display my_display { 
   image "../images/my_backgound.jpg"; 
}

display my_display { 
   image my_image_matrix; 
}



It is also possible to superpose images on different layers in the same way as for species using
opengl display:

See also: display, agents, chart, event, graphics, display_grid, overlay, species_layer,

Embedments

The image_layer  statement is of type: Layer

The image_layer  statement can be embedded into: display,

The image_layer  statement embeds statements:

inspect

Facets

name  (any type), (omissible) : the identifier of the inspector

attributes  (list): the list of attributes to inspect. A list that can contain strings or pair<string,type>,
or a mix of them. These can be variables of the species, but also attributes present in the attributes
table of the agent. The type is necessary in that case

refresh  (boolean): Indicates the condition under which this output should be refreshed (default is
true)

type  (an identifier), takes values in: {agent, table}: the way to inspect agents: in a table, or a set of
inspectors

value  (any type): the set of agents to inspect, could be a species, a list of agents or an agent

Definition

display my_display { 
   image testGIS gis: "../includes/building.shp" color: rgb('blue'); 
}

display my_display { 
  image "../images/image1.jpg"; 
  image "../images/image2.jpg"; 
  image "../images/image3.jpg" position: {0,0,0.5}; 
}



inspect  (and browse ) statements allows modeler to inspect a set of agents, in a table with agents and
all their attributes or an agent inspector per agent, depending on the type: chosen. Modeler can choose
which attributes to display. When browse  is used, type: default value is table, whereas when inspect  is
used, type: default value is agent.

Usages

An example of syntax is:

Embedments

The inspect  statement is of type: Output

The inspect  statement can be embedded into: output, permanent, Behavior, Sequence of
statements or action,

The inspect  statement embeds statements:

law

Facets

name  (an identifier), (omissible) : The name of the law

all  (boolean): add an obligation for each belief

belief  (predicate): The mandatory belief

beliefs  (list): The mandatory beliefs

lifetime  (int): the lifetime value of the mental state created

new_obligation  (predicate): The predicate that will be added as an obligation

new_obligations  (list): The list of predicates that will be added as obligations

parallel  (any type in [boolean, int]): setting this facet to 'true' will allow 'perceive' to use
concurrency with a parallel_bdi architecture; setting it to an integer will set the threshold under
which they will be run sequentially (the default is initially 20, but can be fixed in the preferences).
This facet is true by default.

strength  (any type in [float, int]): The stregth of the mental state created

threshold  (float): Threshold linked to the obedience value.

when  (boolean):

inspect "my_inspector" value: ant attributes: ["name", "location"];



Definition

enables to add a desire or a belief or to remove a belief, a desire or an intention if the agent gets the
belief or/and desire or/and condition mentioned.

Usages

Other examples of use:

Embedments

The law  statement is of type: Single statement

The law  statement can be embedded into: Species, Model,

The law  statement embeds statements:

layout

Facets

value  (any type), (omissible) : Either #none, to indicate that no layout will be imposed, or one of the
four possible predefined layouts: #stack, #split, #horizontal or #vertical. This layout will be applied
to both experiment and simulation display views. In addition, it is possible to define a custom layout
using the horizontal() and vertical() operators

background  (rgb): Whether the whole interface of GAMA should be colored or not (nil by default)

consoles  (boolean): Whether the consoles are visible or not (true by default)

controls  (boolean): Whether the experiment should show its control toolbar on top or not

editors  (boolean): Whether the editors should initially be visible or not

navigator  (boolean): Whether the navigator view is visible or not (false by default)

parameters  (boolean): Whether the parameters view is visible or not (true by default)

tabs  (boolean): Whether the displays should show their tab or not

toolbars  (boolean): Whether the displays should show their toolbar or not

tray  (boolean): Whether the bottom tray is visible or not (true by default)

Definition

Represents the layout of the display views of simulations and experiments

rule belief: new_predicate("test") when: flip(0.5) new_desire: new_predicate("test");



Usages

For instance, this layout statement will allow to split the screen occupied by displays in four equal
parts, with no tabs. Pairs of display::weight represent the number of the display in their order of
definition and their respective weight within a horizontal and vertical section

Embedments

The layout  statement is of type: Output

The layout  statement can be embedded into: output,

The layout  statement embeds statements:

let

Facets

name  (a new identifier), (omissible) : The name of the temporary variable

index  (a datatype identifier): The type of the index if this declaration concerns a container

of  (a datatype identifier): The type of the contents if this declaration concerns a container

type  (a datatype identifier): The type of the temporary variable

value  (any type): The value assigned to the temporary variable

Definition

Declaration and initialization of a temporary variable.

Usages

Embedments

The let  statement is of type: Single statement

The let  statement can be embedded into: Behavior, Sequence of statements or action, Layer,

The let  statement embeds statements:

layout 
horizontal([vertical([0::5000,1::5000])::5000,vertical([2::5000,3::5000])::5000]) tabs: 
false;



light

Facets

name  (string), (omissible) : The name of the light source, must be unique (otherwise the last
definition prevails). Will be used to populate a menu where light sources can be easily turned on
and off. Special names can be used:Using the special constant #ambient will allow to redefine or
control the ambient light intensity and presenceUsing the special constant #default will replace the
default directional light of the surrounding display

active  (boolean): a boolean expression telling if the light is on or off. (default value if not specified :
true)

angle  (float): the angle of the spot light in degree (only for spot light). (default value : 45)

direction  (point): the direction of the light (only for direction and spot light). (default value :
{0.5,0.5,-1})

dynamic  (boolean): specify if the parameters of the light need to be updated every cycle or treated
as constants. (default value : true).

intensity  (any type in [int, rgb]): an int / rgb / rgba value to specify either the color+intensity of the
light or simply its intensity. (default value if not specified can be set in the Preferences. If not, it is
equal to: (160,160,160,255) ).

linear_attenuation  (float): the linear attenuation of the positionnal light. (default value : 0)

location  (point): the location of the light (only for point and spot light) in model coordinates.
Default is {0,0,20}

quadratic_attenuation  (float): the quadratic attenuation of the positionnal light. (default value : 0)

show  (boolean): If true, draws the light source. (default value if not specified : false).

type  (string): the type of light to create. A value among {#point, #direction, #spot}

Definition

light  allows to define diffusion lights in your 3D display. They must be given a name, which will help
track them in the UI. Two names have however special meanings: #ambient, which designates the
ambient luminosity and color of the scene (with a default intensity of (160,160,160,255) or the value set
in the Preferences) and #default, which designates the default directional light applied to a scene (with a
default medium intensity of (160,160,160,255) or the value set in the Preferences in the direction given
by (0.5,0.5,1)). Redefining a light named #ambient or #regular will then modify these default lights (for
example changing their color or deactivating them). To be more precise, and given all the default values
of the facets, the existence of these two lights is effectively equivalent to redefining:light #ambient
intensity: gama.pref_display_light_intensity; light #default type: #direction intensity:
gama.pref_display_light_intensity direction: {0.5,0.5,-1};



Usages

The general syntax is:

See also: display,

Embedments

The light  statement is of type: Layer

The light  statement can be embedded into: display,

The light  statement embeds statements:

loop

Facets

name  (a new identifier), (omissible) : a temporary variable name

from  (any type in [int, float]): an int or float expression that represents the lower bound of the loop

over  (any type in [container, point]): a list, point, matrix or map expression

step  (any type in [int, float]): an int or float expression that represents the incrementation of the
loop

times  (int): an int expression

to  (any type in [int, float]): an int or float expression that represents the higher bound of the loop

while  (boolean): a boolean expression

Definition

Allows the agent to perform the same set of statements either a fixed number of times, or while a
condition is true, or by progressing in a collection of elements or along an interval of numbers. Be aware
that there are no prevention of infinite loops. As a consequence, open loops should be used with
caution, as one agent may block the execution of the whole model.

Usages

light 1 type:point location:{20,20,20} color:255, linear_attenuation:0.01 
quadratic_attenuation:0.0001 draw_light:true update:false; 
light 'spot1' type: #spot location:{20,20,20} direction:{0,0,-1} color:255 angle:25 
linear_attenuation:0.01 quadratic_attenuation:0.0001 draw:true dynamic: false; 
light 'point2' type: #point direction:{1,1,-1} color:255 draw:true dynamic: false;



The basic syntax for repeating a fixed number of times a set of statements is:

The basic syntax for repeating a set of statements while a condition holds is:

The basic syntax for repeating a set of statements by progressing over a container of a point is:

The basic syntax for repeating a set of statements while an index iterates over a range of values
with a fixed step of 1 is:

The incrementation step of the index can also be chosen:

In these latter three cases, the name facet designates the name of a temporary variable, whose
scope is the loop, and that takes, in turn, the value of each of the element of the list (or each value
in the interval). For example, in the first instance of the "loop over" syntax :

loop times: an_int_expression { 
     // [statements] 
}

loop while: a_bool_expression { 
     // [statements] 
}

loop a_temp_var over: a_collection_expression { 
     // [statements] 
}

loop a_temp_var from: int_expression_1 to: int_expression_2 { 
     // [statements] 
}

loop a_temp_var from: int_expression_1 to: int_expression_2 step: int_expression3 { 
     // [statements] 
}

int a <- 0; 
loop i over: [10, 20, 30] { 



The second (quite common) case of the loop syntax allows one to use an interval of integers or
floats. The from and to facets take an int or float expression as arguments, with the first (resp. the
last) specifying the beginning (resp. end) of the inclusive interval (i.e. [to, from]). If the step is not
defined, it is assumed to be equal to 1 or -1, depending on the direction of the range. If it is defined,
its sign will be respected, so that a positive step will never allow the loop to enter a loop from i to j
where i is greater than j

Embedments

The loop  statement is of type: Sequence of statements or action

The loop  statement can be embedded into: Behavior, Sequence of statements or action, Layer,

The loop  statement embeds statements:

match

Facets

value  (any type), (omissible) : The value or values this statement tries to match

Definition

In a switch...match structure, the value of each match block is compared to the value in the switch. If
they match, the embedded statement set is executed. Four kinds of match can be used, equality,
containment, betweenness and regex matching

Usages

match block is executed if the switch value is equals to the value of the match:

     a <- a + i; 
} // a now equals 60

list the_list <-list (species_of (self)); 
loop i from: 0 to: length (the_list) - 1 { 
     ask the_list at i { 
        // ... 
     } 
} // every  agent of the list is asked to do something



match_between block is executed if the switch value is in the interval given in value of the
match_between:

match_one block is executed if the switch value is equals to one of the values of the match_one:

See also: switch, default,

Embedments

The match  statement is of type: Sequence of statements or action

The match  statement can be embedded into: switch,

The match  statement embeds statements:

mesh

Facets

source  (any type in [file, matrix, species]), (omissible) : Allows to specify the elevation/value of each
cell by passing a grid, a raster, image or csv file or directly a matrix of int/float. The dimensions of
the field are those of the file or matrix.

above  (float): Can be used to specify a 'minimal' value under which the render will not render the
cells with this value

border  (rgb): the color to draw lines (borders of cells)

switch 3 { 
   match 1 {write "Match 1"; } 
   match 3 {write "Match 2"; } 
}

switch 3 { 
   match_between [1,2] {write "Match OK between [1,2]"; } 
   match_between [2,5] {write "Match OK between [2,5]"; } 
}

switch 3 { 
   match_one [0,1,2] {write "Match OK with one of [0,1,2]"; } 
   match_between [2,3,4,5] {write "Match OK with one of [2,3,4,5]"; } 
}



color  (any type in [rgb, list, map]): displays the field using the given color or colors. When a simple
color is provided, paints each cell with this color, with a brightness depending on the value of the
cell.When a list of colors is provided, they are used in a cyclic manner to color each cell,
independently from their value. When this list is casted to a palette  (using the corresponding
operator), it is used to color each cell based on its value (with interpolation between the colors).
When a gradient  (see the corresponding operator) is passed, the interpolation between the two
extreme colors is computed by GAMA.When a scale  (see the corresponding operator) is passed,
cells are colored depending on where their value fits in the scale, with no interpolation

grayscale  (boolean): if true, paints each cell with a value of grey depending on its value.
Supersedes 'color' if it is defined (it is actually equivalent to passing '#gray' to color: ). False by
default

no_data  (float): Can be used to specify a 'no_data' value, forcing the renderer to not render the cells
with this value. If not specified, that value will be searched in the field to display

position  (point): position of the upper-left corner of the layer. Note that if coordinates are in [0,1[,
the position is relative to the size of the environment (e.g. {0.5,0.5} refers to the middle of the
display) whereas it is absolute when coordinates are greater than 1 for x and y. The z-ordinate can
only be defined between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last
coordinate specifying the elevation of the layer.

refresh  (boolean): (openGL only) specify whether the display of the species is refreshed. (true by
default, but should be deactivated if the field is static)

rotate  (float): Defines the angle of rotation of this layer, in degrees, around the z-axis.

scale  (float): Represents the z-scaling factor, which allows to scale all values of the field.

size  (any type in [point, float]): Represents the extent of the layer in the screen from its position.
Coordinates in [0,1[ are treated as percentages of the total surface, while coordinates > 1 are
treated as absolute sizes in model units (i.e. considering the model occupies the entire view). Like in
'position', an elevation can be provided with the z coordinate, allowing to scale the layer in the 3
directions. This latter possibility allows to limit the height of the field. If only a flat value is provided,
it is considered implicitly as the z maximal amplitude (or z scaling factor if < 1)

smooth  (any type in [boolean, int]): Applies a simple convolution (box filter) to smooth out the
terrain produced by this field. If true, one pass is done with a simple 3x3 kernel. Otherwise, the user
can specify the number of successive passes (up to 4). Specifying 0 is equivalent to passing false

text  (boolean): specify whether the value that represents the elevation is displayed on each cell
(false by default)

texture  (file): A file containing the texture image to be applied to the field. If not specified, the field
will be displayed either in color or grayscale, depending on the other facets. Supersedes both
grayscale  and color



transparency  (float): the transparency level of the layer (between 0 -- opaque -- and 1 -- fully
transparent)

triangulation  (boolean): specifies wether the cells of th field will be triangulated: if it is false, they
will be displayed as horizontal squares at a given elevation, whereas if it is true, cells will be
triangulated and linked to neighbors in order to have a continuous surface (false by default)

visible  (boolean): Defines whether this layer is visible or not

wireframe  (boolean): if true displays the field in wireframe using the lines color

Definition

Allows the modeler to display in an optimized way a field of values, optionally using elevation. Useful for
displaying DEMs, for instance, without having to load them into a grid. Can be fed with a matrix of
int/float, a grid, a csv/raster/image file and supports many visualisation options

Usages

The general syntax is:

See also: display, agents, grid, event, graphics, image, overlay, species_layer,

Embedments

The mesh  statement is of type: Layer

The mesh  statement can be embedded into: display,

The mesh  statement embeds statements:

migrate

Facets

source  (any type in [agent, species, container, an identifier]), (omissible) : can be an agent, a list of
agents, a agent's population to be migrated

target  (species): target species/population that source agent(s) migrate to.

returns  (a new identifier): the list of returned agents in a new local variable

display my_display { 
   field a_filename lines: #black position: { 0.5, 0 } size: {0.5,0.5} triangulated: 
true texture: anothe_file; 
}



Definition

This command permits agents to migrate from one population/species to another population/species
and stay in the same host after the migration. Species of source agents and target species respect the
following constraints: (i) they are "peer" species (sharing the same direct macro-species), (ii) they have
sub-species vs. parent-species relationship.

Usages

It can be used in a 3-levels model, in case where individual agents can be captured into group meso
agents and groups into clouds macro agents. migrate is used to allows agents captured by groups
to migrate into clouds. See the model 'Balls, Groups and Clouds.gaml' in the library.

See also: capture, release,

Embedments

The migrate  statement is of type: Sequence of statements or action

The migrate  statement can be embedded into: Behavior, Sequence of statements or action,

The migrate  statement embeds statements:

monitor

Facets

name  (a label), (omissible) : identifier of the monitor

value  (any type): expression that will be evaluated to be displayed in the monitor

color  (rgb): Indicates the (possibly dynamic) color of this output (default is a light gray)

refresh  (boolean): Indicates the condition under which this output should be refreshed (default is
true)

Definition

A monitor allows to follow the value of an arbitrary expression in GAML.

Usages

migrate ball_in_group target: ball_in_cloud;



An example of use is:

Embedments

The monitor  statement is of type: Output

The monitor  statement can be embedded into: output, permanent,

The monitor  statement embeds statements:

morris

Facets

name  (an identifier), (omissible) : The name of the method. For internal use only

levels  (an identifier): Number of level for the Morris method, can't be 1

outputs  (list): The list of output variables to analyze through morris method

report  (string): The path to the file where the Morris report will be written

sample  (an identifier): The size of the sample for Morris samples

csv  (string): The path of morris sample .csv file. If don't use, automatic morris sampling will be
perform and saved in the corresponding file

results  (string): The path to the file where the automatic batch report will be written

Definition

This algorithm runs a Morris exploration - it has been built upon the SILAB librairy - disabled the repeat
facet of the experiment

Usages

For example:

Embedments

The morris  statement is of type: Batch method

monitor "nb preys" value: length(prey as list) refresh_every: 5;  

method morris sample_size:100 nb_levels:4 outputs:['my_var'] 
report:'../path/to/report.txt;



The morris  statement can be embedded into: Experiment,

The morris  statement embeds statements:

norm

Facets

name  (an identifier), (omissible) : the name of the norm

finished_when  (boolean): the boolean condition when the norm is finished

instantaneous  (boolean): indicates if the norm is instananeous

intention  (predicate): the intention triggering the norm

lifetime  (int): the lifetime of the norm

obligation  (predicate): the obligation triggering of the norm

priority  (float): the priority value of the norm

threshold  (float): the threshold to trigger the norm

when  (boolean): the boolean condition when the norm is active

Definition

a norm indicates what action the agent has to do in a certain context and with and obedience value
higher than the threshold

Usages

Embedments

The norm  statement is of type: Behavior

The norm  statement can be embedded into: Species, Model,

The norm  statement embeds statements:

output

Facets

autosave  (any type in [boolean, string]): Allows to save the whole screen on disk. A value of
true/false will save it with the resolution of the physical screen. Passing it a string allows to define



the filename Note that setting autosave to true (or to any other value than false) will synchronize all
the displays defined in the experiment

synchronized  (boolean): Indicates whether the displays that compose this output should be
synchronized with the simulation cycles

Definition

output  blocks define how to visualize a simulation (with one or more display blocks that define separate
windows). It will include a set of displays, monitors and files statements. It will be taken into account
only if the experiment type is gui .

Usages

Its basic syntax is:

See also: display, monitor, inspect, output_file, layout,

Embedments

The output  statement is of type: Output

The output  statement can be embedded into: Model, Experiment,

The output  statement embeds statements: display, inspect, layout, monitor, output_file,

output_file

Facets

name  (an identifier), (omissible) : The name of the file where you want to export the data

data  (string): The data you want to export

footer  (string): Define a footer for your export file

header  (string): Define a header for your export file

refresh  (boolean): Indicates the condition under which this file should be saved (default is true)

experiment exp_name type: gui { 
   // [inputs] 
   output { 
      // [display, file, inspect, layout or monitor statements] 
   } 
}



rewrite  (boolean): Rewrite or not the existing file

type  (an identifier), takes values in: {csv, text, xml}: The type of your output data

Definition

Represents an output that writes the result of expressions into a file

Usages

Embedments

The output_file  statement is of type: Output

The output_file  statement can be embedded into: output, permanent,

The output_file  statement embeds statements:

overlay

Facets

background  (rgb): the background color of the overlay displayed inside the view (the bottom overlay
remains black)

border  (rgb): Color to apply to the border of the rectangular shape of the overlay. Nil by default

center  (any type): an expression that will be evaluated and displayed in the center section of the
bottom overlay

color  (any type in [list, rgb]): the color(s) used to display the expressions given in the 'left', 'center'
and 'right' facets

left  (any type): an expression that will be evaluated and displayed in the left section of the bottom
overlay

position  (point): position of the upper-left corner of the layer. Note that if coordinates are in [0,1[,
the position is relative to the size of the environment (e.g. {0.5,0.5} refers to the middle of the
display) whereas it is absolute when coordinates are greater than 1 for x and y. The z-ordinate can
only be defined between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last
coordinate specifying the elevation of the layer. In case of negative value OpenGl will position the
layer out of the environment.

right  (any type): an expression that will be evaluated and displayed in the right section of the
bottom overlay

rounded  (boolean): Whether or not the rectangular shape of the overlay should be rounded. True by
default



size  (point): extent of the layer in the view from its position. Coordinates in [0,1[ are treated as
percentages of the total surface of the view, while coordinates > 1 are treated as absolute sizes in
model units (i.e. considering the model occupies the entire view). Unlike 'position', no elevation can
be provided with the z coordinate

transparency  (float): the transparency rate of the overlay (between 0 -- opaque and 1 -- fully
transparent) when it is displayed inside the view. The bottom overlay will remain at 0.75

visible  (boolean): Defines whether this layer is visible or not

Definition

overlay  allows the modeler to display a line to the already existing bottom overlay, where the results of
'left', 'center' and 'right' facets, when they are defined, are displayed with the corresponding color if
defined.

Usages

To display information in the bottom overlay, the syntax is:

See also: display, agents, chart, event, graphics, display_grid, image, species_layer,

Embedments

The overlay  statement is of type: Layer

The overlay  statement can be embedded into: display,

The overlay  statement embeds statements:

parameter

Facets

var  (an identifier): the name of the variable (that should be declared in global)

name  (a label), (omissible) : The message displayed in the interface

among  (list): the list of possible values that this parameter can take

category  (string): a category label, used to group parameters in the interface

overlay "Cycle: " + (cycle) center: "Duration: " + total_duration + "ms" right: "Model 
time: " + as_date(time,"") color: [#yellow, #orange, #yellow];



colors  (list): The colors of the control in the UI. An empty list has no effects. Only used for sliders
and switches so far. For sliders, 3 colors will allow to specify the color of the left section, the thumb
and the right section (in this order); 2 colors will define the left and right sections only (thumb will
be dark green); 1 color will define the left section and the thumb. For switches, 2 colors will define
the background for respectively the left 'true' and right 'false' sections. 1 color will define both
backgrounds

disables  (list): a list of global variables whose parameter editors will be disabled when this
parameter value is set to true or to a value that casts to true (they are otherwise enabled)

enables  (list): a list of global variables whose parameter editors will be enabled when this
parameter value is set to true or to a value that casts to true (they are otherwise disabled)

extensions  (list): Makes only sense for file parameters. A list of file extensions (like 'gaml', 'shp',
etc.) that restricts the choice offered to the users to certain file types (folders not concerned).
Default is empty, effectively accepting all files

in_workspace  (boolean): Makes only sense for file parameters. Whether the file selector will be
restricted to the workspace or not

init  (any type): the init value

labels  (list): The labels that will be displayed for switches (instead of True/False)

max  (any type): the maximum value

min  (any type): the minimum value

on_change  (any type): Provides a block of statements that will be executed whenever the value of
the parameter changes

read_only  (boolean): Whether this parameter is read-only or editable

slider  (boolean): Whether or not to display a slider for entering an int or float value. Default is true
when max and min values are defined, false otherwise. If no max or min value is defined, setting
this facet to true will have no effect

step  (float): the increment step (mainly used in batch mode to express the variation step between
simulation)

type  (a datatype identifier): the variable type

unit  (string): the variable unit

updates  (list): a list of global variables whose parameter editors will be updated when this
parameter value is changed (their min, max, step and among values will be updated accordingly if
they depend on this parameter. Note that it might lead to some inconsistencies, for instance a
parameter value which becomes out of range, or which does not belong anymore to a list of
possible values. In these cases, the value of the affected parameter will not change)

Definition



The parameter statement specifies which global attributes (i) will change through the successive
simulations (in batch experiments), (ii) can be modified by user via the interface (in gui experiments). In
GUI experiments, parameters are displayed depending on their type.

Usages

In gui experiment, the general syntax is the following:

In batch experiment, the two following syntaxes can be used to describe the possible values of a
parameter:

Embedments

The parameter  statement is of type: Parameter

The parameter  statement can be embedded into: Experiment,

The parameter  statement embeds statements:

perceive

Facets

target  (any type in [container, agent]): the list of the agent you want to perceive

name  (an identifier), (omissible) : the name of the perception

as  (species): an expression that evaluates to a species

emotion  (emotion): The emotion needed to do the perception

in  (any type in [float, geometry]): a float or a geometry. If it is a float, it's a radius of a detection
area. If it is a geometry, it is the area of detection of others species.

parallel  (any type in [boolean, int]): setting this facet to 'true' will allow 'perceive' to use
concurrency with a parallel_bdi architecture; setting it to an integer will set the threshold under
which they will be run sequentially (the default is initially 20, but can be fixed in the preferences).
This facet is true by default.

threshold  (float): Threshold linked to the emotion.

parameter title var: global_var category: cat;

parameter 'Value of toto:' var: toto among: [1, 3, 7, 15, 100];  
parameter 'Value of titi:' var: titi min: 1 max: 100 step: 2; 



when  (boolean): a boolean to tell when does the perceive is active

Definition

Allow the agent, with a bdi architecture, to perceive others agents

Usages

the basic syntax to perceive agents inside a circle of perception

Embedments

The perceive  statement is of type: Behavior

The perceive  statement can be embedded into: Species, Model,

The perceive  statement embeds statements:

permanent

Facets

synchronized  (boolean): Indicates whether the displays that compose this output should be
synchronized with the simulation cycles

Definition

Represents the outputs of the experiment itself. In a batch experiment, the permanent section allows to
define an output block that will NOT be re-initialized at the beginning of each simulation but will be filled
at the end of each simulation.

Usages

For instance, this permanent section will allow to display for each simulation the end value of the
food_gathered variable:

perceive name_of_perception target: the_agents_you_want_to_perceive in: distance when: 
condition { 

//Here you are in the context of the perceived agents. To refer to the agent 
who does the perception, use myself. 

//If you want to make an action (such as adding a belief for example), use ask 
myself{ do the_action} 
}



Embedments

The permanent  statement is of type: Output

The permanent  statement can be embedded into: Experiment,

The permanent  statement embeds statements: display, inspect, monitor, output_file,

plan

Facets

name  (an identifier), (omissible) :

emotion  (emotion):

finished_when  (boolean):

instantaneous  (boolean):

intention  (predicate):

priority  (float):

threshold  (float):

when  (boolean):

Definition

define an action plan performed by an agent using the BDI engine

Usages

Embedments

The plan  statement is of type: Behavior

The plan  statement can be embedded into: Species, Model,

The plan  statement embeds statements:

permanent { 
display Ants background: rgb('white') refresh_every: 1 { 

chart "Food Gathered" type: series { 
data "Food" value: food_gathered; 

} 
} 

}



pso

Facets

name  (an identifier), (omissible) : The name of the method. For internal use only

iter_max  (int): number of iterations

aggregation  (a label), takes values in: {min, max, avr}: the agregation method

maximize  (float): the value the algorithm tries to maximize

minimize  (float): the value the algorithm tries to minimize

num_particles  (int): number of particles

weight_cognitive  (float): weight for the cognitive component

weight_inertia  (float): weight for the inertia component

weight_social  (float): weight for the social component

Definition

This algorithm is an implementation of the Particle Swarm Optimization algorithm. Only usable for
numerical paramaters and based on a continuous parameter space search. See the wikipedia article for
more details.

Usages

As other batch methods, the basic syntax of the pso  statement uses method pso  instead of the
expected pso name: id  :

For example:

Embedments

The pso  statement is of type: Batch method

The pso  statement can be embedded into: Experiment,

The pso  statement embeds statements:

method pso [facet: value];

method pso iter_max: 50 num_particles: 10 weight_inertia:0.7 weight_cognitive: 1.5 
weight_social: 1.5 maximize: food_gathered; 



put

Facets

in  (any type in [container, species, agent, geometry]): the left member of the put assignment
('cont[index] <- expr;') is an expression cont that evaluates to a container (list, map, matrix). It makes
no sense for graphs

item  (any type), (omissible) : the right member of the put assignment ('cont[index] <- expr;') is an
expression expr that evaluates to the element(s) to be put in the container

all  (any type): when no index is specified between the square brackets, the put assignement
applies to all elements and changes their value to the one provided

at  (any type): the key or index at which to put the new value is specified by container[index]

key  (any type): the key or index at which to put the new value is specified by container[index]

Definition

A statement used to put items into containers at specific keys or indices. It can be written using the
classic syntax ( put ... in: ... ) or a compact one, which is now preferred.

To put an element in a container at a given index, use container[index] <- element;  (classic
form: put element in: container at: index; )

To put an element in a container at all indices (i.e. replace all values by the element), use
container[] <- element  (classic form: put element in: container all: true; )

Usages

The allowed configurations are the following ones:

In the case of a list, the position should be an integer in the bounds of the list. The facet all: is used
to replace all the elements of the list by the given value.

expr_container[index] <- expr; // put or replace expr at index in the container 
expr_container[] <- expr;  // put expr at every index in the container (replace all 
values)

list<int>putList <- [1,2,3,4,5];  // putList equals [1,2,3,4,5] 
putList[1] <- -10; // putList equals [1,-10,3,4,5] 
putList[] <- 10; // putList equals [10,10,10,10,10]



In the case of a matrix, the position should be a point in the bounds of the matrix. If no position is
provided, it is used to replace all the elements of the matrix by the given value.

In the case of a map, the position should be one of the key values of the map. Notice that if the
given key value does not exist in the map, a new pair key::value will be added to the map. The facet
all is used to replace the value of all the pairs of the map.

Embedments

The put  statement is of type: Single statement

The put  statement can be embedded into: chart, Behavior, Sequence of statements or action, Layer,

The put  statement embeds statements:

reactive_tabu

Facets

name  (an identifier), (omissible) :

aggregation  (a label), takes values in: {min, max, avr}: the agregation method

cycle_size_max  (int): minimal size of the considered cycles

cycle_size_min  (int): maximal size of the considered cycles

init_solution  (map): init solution: key: name of the variable, value: value of the variable

iter_max  (int): number of iterations. this number corresponds to the number of "moves" in the
parameter space. For each move, the algorithm will test the whole neighborhood of the current
solution, each neighbor corresponding to a particular set of parameters and thus to a run. Thus,
there can be several runs per iteration (maximum: 2^(number of parameters)).

maximize  (float): the value the algorithm tries to maximize

matrix<int>putMatrix <- matrix([[0,1],[2,3]]);  // putMatrix equals matrix([[0,1],
[2,3]]) 
putMatrix[{1,1}] <- -10; // putMatrix equals matrix([[0,1],[2,-10]]); 
putMatrix[] <- 10; // putMatrix equals matrix([[10,10],[10,10]])

map<string,int>putMap <- ["x"::4,"y"::7];  // putMap equals ["x"::4,"y"::7] 
putMap['y'] <- -10; // putMap equals ["x"::4,"y"::-10] 
putMap['z'] <- -20; // putMap equals ["x"::4,"y"::-10, "z"::-20] 
putMap[] <- -30 ; // putMap equals ["x"::-30,"y"::-30, "z"::-30]



minimize  (float): the value the algorithm tries to minimize

nb_tests_wthout_col_max  (int): number of movements without collision before shortening the
tabu list

tabu_list_size_init  (int): initial size of the tabu list

tabu_list_size_max  (int): maximal size of the tabu list

tabu_list_size_min  (int): minimal size of the tabu list

Definition

This algorithm is a simple implementation of the Reactive Tabu Search algorithm ((Battiti et al., 1993)).
This Reactive Tabu Search is an enhance version of the Tabu search. It adds two new elements to the
classic Tabu Search. The first one concerns the size of the tabu list: in the Reactive Tabu Search, this one
is not constant anymore but it dynamically evolves according to the context. Thus, when the exploration
process visits too often the same solutions, the tabu list is extended in order to favor the diversification
of the search process. On the other hand, when the process has not visited an already known solution
for a high number of iterations, the tabu list is shortened in order to favor the intensification of the
search process. The second new element concerns the adding of cycle detection capacities. Thus, when
a cycle is detected, the process applies random movements in order to break the cycle. See the batch
dedicated page.

Usages

As other batch methods, the basic syntax of the reactive_tabu statement uses method
reactive_tabu  instead of the expected reactive_tabu name: id  :

For example:

Embedments

The reactive_tabu  statement is of type: Batch method

The reactive_tabu  statement can be embedded into: Experiment,

The reactive_tabu  statement embeds statements:

method reactive_tabu [facet: value];

method reactive_tabu iter_max: 50 tabu_list_size_init: 5 tabu_list_size_min: 2 
tabu_list_size_max: 10 nb_tests_wthout_col_max: 20 cycle_size_min: 2 cycle_size_max: 20 
maximize: food_gathered;



reflex

Facets

name  (an identifier), (omissible) : the identifier of the reflex

when  (boolean): an expression that evaluates a boolean, the condition to fulfill in order to execute
the statements embedded in the reflex.

Definition

Reflexes are sequences of statements that can be executed by the agent. Reflexes prefixed by the 'reflex'
keyword are executed continuously. Reflexes prefixed by 'init' are executed only immediately after the
agent has been created. Reflexes prefixed by 'abort' just before the agent is killed. If a facet when: is
defined, a reflex is executed only if the boolean expression evaluates to true.

Usages

Example:

Embedments

The reflex  statement is of type: Behavior

The reflex  statement can be embedded into: Species, Experiment, Model,

The reflex  statement embeds statements:

release

Facets

target  (any type in [agent, list]), (omissible) : an expression that is evaluated as an agent/a list of
the agents to be released

as  (species): an expression that is evaluated as a species in which the micro-agent will be released

in  (agent): an expression that is evaluated as an agent that will be the macro-agent in which micro-
agent will be released, i.e. their new host

reflex my_reflex when: flip (0.5){ //Only executed when flip returns true 
    write "Executing the unconditional reflex"; 
}



returns  (a new identifier): a new variable containing a list of the newly released agent(s)

Definition

Allows an agent to release its micro-agent(s). The preliminary for an agent to release its micro-agents is
that species of these micro-agents are sub-species of other species (cf. [Species161#Nesting_species
Nesting species]). The released agents won't be micro-agents of the calling agent anymore. Being
released from a macro-agent, the micro-agents will change their species and host (macro-agent).

Usages

We consider the following species. Agents of "C" species can be released from a "B" agent to
become agents of "A" species. Agents of "D" species cannot be released from the "A" agent because
species "D" has no parent species.

To release all "C" agents from a "B" agent, agent "C" has to execute the following statement. The "C"
agent will change to "A" agent. The won't consider "B" agent as their macro-agent (host) anymore.
Their host (macro-agent) will the be the host (macro-agent) of the "B" agent.

The modeler can specify the new host and the new species of the released agents:

See also: capture,

species A { 
... 
} 
species B { 
... 
   species C parent: A { 
   ... 
   } 
   species D { 
   ... 
   } 
... 
}

release list(C);

release list (C) as: new_species in: new host;



Embedments

The release  statement is of type: Sequence of statements or action

The release  statement can be embedded into: Behavior, Sequence of statements or action,

The release  statement embeds statements:

remove

Facets

from  (any type in [container, species, agent, geometry]): the left member of the removal assignment
('cont >> expr;') is an expression cont that evaluates to a container (list, map, graph)

item  (any type), (omissible) : the right member of the removal assignment ('cont >> expr;') is an
expression expr that evaluates to the element(s) to be removed from the container

all  (any type): the symbol '>>-' allows to pass a container as item so as to remove all of its elements
from the receiving container. If the item is not a container, all of its occurrences are removed

index  (any type): any expression, the key at which to remove the element from the container

key  (any type): If a key/index is to be removed (instead of a value), it must be indicated by using
container[]  instead of container

Definition

A statement used to remove items from containers. It can be written using the classic syntax ( remove
... from: ... ) or a compact one, which is now preferred.

To remove an element from a container (other than a matrix), use container >> element;  or
container >- element;  (classic form: remove element from: container; )

To remove an index/key from a container (other than a matrix) use container[] >> index  or
container[] >- index  (classic form: remove key: index from: container; )

To remove all the elements contained in another container, use container >>- elements;  (classic
form: remove all: elements from: container; )

To remove all the indexes contained in another container, use container[] >>- indices;  (classic
form: remove key: indices all: true from: container; )

To remove all the occurences of an element in the container, use container >>- element;  (classic
form: remove element from: container all: true; )

Usages



This statement should be used in the following ways, depending on the kind of container used and
the expected action on it:

In the case of list, >-  of >>  is used to remove the first occurence of a given expression, whereas
>>-  is used to remove all its occurrences. Indices can also be removed in the same way

In the case of map, to remove the pair identified by a given key, we have to specify that we are
working on the keys. Same for lists

A map can be managed as a list of pairs: remove then operates on the values by default

In the case of a graph, if a node is removed, all edges to and from this node are also removed. Note
that the use of edge()/node()/edges()/nodes() operators is necessary

expr_container >> expr (or expr_container >- expr) to remove an element 
expr_container[] >> expr (or expr_container[] >- expr) to remove an index or a key; 
expr_container >>- expr (to remove all occurences of expr), expr_container >>- 
container_of_expr (to remove all the elements in the passed argument), expr_container[] 
>>- container_of_expr (to remove all the index/keys in the passed argument)

list<int> removeList <- [3,2,1,2,3]; 
removeList >- 2; // removeList equals [3,1,2,3] 
removeList >>- 3; // removeList equals [1,2] 
removeList[] >- 1; // removeList equals [1]

map<string,int> removeMap <- ["x"::5, "y"::7, "z"::7]; 
removeMap[] >- "x"; // removeMap equals ["y"::7, "z"::7] 
removeMap[] >>- removeMap.keys; // removeMap equals map([])

map<string,int> removeMapList <- ["x"::5, "y"::7, "z"::7, "t"::5]; 
removeMapList >> 7; // removeMapList equals ["x"::5, "z"::7, "t"::5] 
removeMapList >>- [5,7]; // removeMapList equals ["t"::5] 
removeMapList[] >- "t"; // removeMapList equals map([])

graph removeGraph <- as_edge_graph([{1,2}::{3,4},{3,4}::{5,6}]); 
removeGraph >> node(1,2); 
list var <- removeGraph.vertices; // var equals [{3,4},{5,6}] 
list var <- removeGraph.edges; // var equals [polyline({3,4}::{5,6})] 
removeGraph >> edge({3,4},{5,6}); 



In the case of an agent or a shape, remove  allows to remove an attribute from the attributes map of
the receiver. However, for agents, it will only remove attributes that have been added dynamically,
not the ones defined in the species or in its built-in parent.

This statement can not be used on matrix.

See also: add, put,

Embedments

The remove  statement is of type: Single statement

The remove  statement can be embedded into: chart, Behavior, Sequence of statements or action,
Layer,

The remove  statement embeds statements:

restore

Facets

target  (agent), (omissible) : The agent to restore. Its attributes will be replaced by the ones stored
in the file or string. No verification is done regarding the compatibility

from  (any type in [string, file]): The file or the string from which to restore the agent

Definition

Allows to restore any agent that has been previously serialised or saved to a file, e.g. string s <-
serialize(a, 'json'); ... restore a from: s; or save simulation to: 'sim.gsim' format:
binary ; ... restore simulation from: file('sim.gsim')

list var <- removeGraph.vertices; // var equals [{3,4},{5,6}] 
list var <- removeGraph.edges; // var equals []

global { 
   init { 
      create speciesRemove; 
      speciesRemove sR <- speciesRemove(0); 
      sR['a'] <- 100; // sR.a now equals 100 
      sR[] >> "a"; // sR.a does not exist anymore 
   } 
} 



Usages

Embedments

The restore  statement is of type: Single statement

The restore  statement can be embedded into: Behavior, Sequence of statements or action,

The restore  statement embeds statements:

return

Facets

value  (any type), (omissible) : an expression that is returned

Definition

Allows to immediately stop and tell which value to return from the evaluation of the surrounding action
or top-level statement (reflex, init, etc.). Usually used within the declaration of an action. For more
details about actions, see the following [Section161 section].

Usages

Example:

In the specific case one wants an agent to ask another agent to execute a statement with a return, it
can be done similarly to:

string foo { 
     return "foo"; 
} 
 
reflex { 
    string foo_result <- foo(); // foos_result is now equals to "foo" 
}

// In Species A: 
string foo_different { 
     return "foo_not_same"; 
} 
/// .... 
// In Species B: 



Embedments

The return  statement is of type: Single statement

The return  statement can be embedded into: action, Behavior, Sequence of statements or action,

The return  statement embeds statements:

rotation

Facets

angle  (any type in [float, int]), (omissible) : Defines the angle of rotation around the axis. No default
defined.

axis  (point): The axis of rotation, defined by a vector. Default is {0,0,1} (rotation around the z
axis)This facet can be complemented by 'distance:' and/or 'location:' to specify from where the
target is looked at. If 'target:' is not defined, the default target is the centroid of the world shape.

dynamic  (boolean): If true, the rotation is applied every step. Default is false.

location  (point): Allows to define the center of the rotation. Defaut value is not specified is the
center of mass of the world (i.e. {width/2, height/2, max(width, height) / 2})

Definition

camera  allows the modeler to define a camera. The display will then be able to choose among the
camera defined (either within this statement or globally in GAMA) in a dynamic way. Several preset
cameras are provided and accessible in the preferences (to choose the default) or in GAML using the
keywords #from_above, #from_left, #from_right, #from_up_right, #from_up_left, #from_front,
#from_up_front.These cameras are unlocked (so that they can be manipulated by the user), look at the
center of the world from a symbolic position, and the distance between this position and the target is
equal to the maximum of the width and height of the world's shape. These preset cameras can be
reused when defining new cameras, since their names can become symbolic positions for them. For
instance: camera 'my_camera' location: #from_top distance: 10; will lower (or extend) the distance
between the camera and the center of the world to 10. camera 'my_camera' locked: true location:
#from_up_front target: people(0); will continuously follow the first agent of the people species from the
up-front position.

reflex writing { 
    string temp <- some_agent_A.foo_different []; // temp is now equals to 
"foo_not_same"  
}



Usages

See also: display, agents, chart, event, graphics, display_grid, image_layer, species_layer,

Embedments

The rotation  statement is of type: Layer

The rotation  statement can be embedded into: display,

The rotation  statement embeds statements:

rule

Facets

name  (an identifier), (omissible) : The name of the rule

all  (boolean): add a desire for each belief

belief  (predicate): The mandatory belief

beliefs  (list): The mandatory beliefs

desire  (predicate): The mandatory desire

desires  (list): The mandatory desires

emotion  (emotion): The mandatory emotion

emotions  (list): The mandatory emotions

ideal  (predicate): The mandatory ideal

ideals  (list): The mandatory ideals

lifetime  (any type in [int, list]): the lifetime value of the mental state created

new_belief  (predicate): The belief that will be added

new_beliefs  (list): The belief that will be added

new_desire  (predicate): The desire that will be added

new_desires  (list): The desire that will be added

new_emotion  (emotion): The emotion that will be added

new_emotions  (list): The emotion that will be added

new_ideal  (predicate): The ideal that will be added

new_ideals  (list): The ideals that will be added

new_uncertainties  (list): The uncertainty that will be added

new_uncertainty  (predicate): The uncertainty that will be added



obligation  (predicate): The mandatory obligation

obligations  (list): The mandatory obligations

parallel  (any type in [boolean, int]): setting this facet to 'true' will allow 'perceive' to use
concurrency with a parallel_bdi architecture; setting it to an integer will set the threshold under
which they will be run sequentially (the default is initially 20, but can be fixed in the preferences).
This facet is true by default.

remove_belief  (predicate): The belief that will be removed

remove_beliefs  (list): The belief that will be removed

remove_desire  (predicate): The desire that will be removed

remove_desires  (list): The desire that will be removed

remove_emotion  (emotion): The emotion that will be removed

remove_emotions  (list): The emotion that will be removed

remove_ideal  (predicate): The ideal that will be removed

remove_ideals  (list): The ideals that will be removed

remove_intention  (predicate): The intention that will be removed

remove_obligation  (predicate): The obligation that will be removed

remove_obligations  (list): The obligation that will be removed

remove_uncertainties  (list): The uncertainty that will be removed

remove_uncertainty  (predicate): The uncertainty that will be removed

strength  (any type in [float, int, list]): The stregth of the mental state created

threshold  (float): Threshold linked to the emotion.

uncertainties  (list): The mandatory uncertainties

uncertainty  (predicate): The mandatory uncertainty

when  (boolean):

Definition

enables to add a desire or a belief or to remove a belief, a desire or an intention if the agent gets the
belief or/and desire or/and condition mentioned.

Usages

Embedments

The rule  statement is of type: Single statement

The rule  statement can be embedded into: simple_bdi, parallel_bdi, Species, Model,

The rule  statement embeds statements:



run

Facets

name  (string), (omissible) : Indicates the name of the experiment to run

of  (string): Indicates the model containing the experiment to run

core  (int): Indicates the number of cores to use to run the experiments

end_cycle  (int): Indicates the cycle at which the experiment should stop

seed  (int): Provides a predetermined seed instead of letting GAMA choose one

with_output  (map): This needs to be docummented

with_param  (map): The parameters to pass to the new experiment

Embedments

The run  statement is of type: Sequence of statements or action

The run  statement can be embedded into: Behavior, Single statement, Species, Model,

The run  statement embeds statements:

sanction

Facets

name  (an identifier), (omissible) :

Definition

declare the actions an agent execute when enforcing norms of others during a perception

Usages

Embedments

The sanction  statement is of type: Behavior

The sanction  statement can be embedded into: Species, Model,

The sanction  statement embeds statements:



save

Facets

data  (any type), (omissible) : the data that will be saved to the file or the file itself to save when data
is used in its simplest form

attributes  (any type in [map, list]): Allows to specify the attributes of a shape file or GeoJson file
where agents are saved. Can be expressed as a list of string or as a literal map. When expressed as
a list, each value should represent the name of an attribute of the shape or agent. The keys of the
map are the names of the attributes that will be present in the file, the values are whatever
expressions neeeded to define their value.

crs  (any type): the name of the projection, e.g. crs:"EPSG:4326" or its EPSG id, e.g. crs:4326. Here a
list of the CRS codes (and EPSG id): http://spatialreference.org

format  (string): a string representing the format of the output file (e.g. "shp", "asc", "geotiff", "png",
"text", "csv"). If the file extension is non ambiguous in facet 'to:', this format does not need to be
specified. However, in many cases, it can be useful to do it (for instance, when saving a string to a
.pgw file, it is always better to clearly indicate that the expected format is 'text').

header  (boolean): an expression that evaluates to a boolean, specifying whether the save will write
a header if the file does not exist

rewrite  (boolean): a boolean expression specifying whether to erase the file if it exists or append
data at the end of it. Only applicable to "text" or "csv" files. Default is true

to  (string): an expression that evaluates to an string, the path to the file, or directly to a file

Definition

Allows to save data in a file.

Usages

Its simple syntax is:

To save data in a text file:

To save the values of some attributes of the current agent in csv file:

save data to: output_file type: a_type_file;

save (string(cycle) + "->"  + name + ":" + location) to: "save_data.txt" type: "text";

http://spatialreference.org/


To save the values of all attributes of all the agents of a species into a csv (with optional attributes):

To save the geometries of all the agents of a species into a shapefile (with optional attributes):

To save the grid_value attributes of all the cells of a grid into an ESRI ASCII Raster file:

To save the grid_value attributes of all the cells of a grid into geotiff:

To save the grid_value attributes of all the cells of a grid into png (with a worldfile):

The save statement can be use in an init block, a reflex, an action or in a user command. Do not use
it in experiments.

Embedments

The save  statement is of type: Single statement

The save  statement can be embedded into: Behavior, Sequence of statements or action,

The save  statement embeds statements:

set

Facets

save [name, location, host] to: "save_data.csv" type: "csv";

save species_of(self) to: "save_csvfile.csv" type: "csv" header: false;

save species_of(self) to: "save_shapefile.shp" type: "shp" attributes: 
['nameAgent'::name, 'locationAgent'::location] crs: "EPSG:4326";

save grid to: "save_grid.asc" type: "asc";

save grid to: "save_grid.tif" type: "geotiff";

save grid to: "save_grid.png" type: "image";



name  (any type), (omissible) : the name of an existing variable or attribute to be modified

value  (any type): the value to affect to the variable or attribute

Definition

Allows to assign a value to the variable or attribute specified

Usages

Embedments

The set  statement is of type: Single statement

The set  statement can be embedded into: chart, Behavior, Sequence of statements or action, Layer,

The set  statement embeds statements:

setup

Facets

Definition

The setup statement is used to define the set of instructions that will be executed before every [#test
test].

Usages

As every test should be independent from the others, the setup will mainly contain initialization of
variables that will be used in each test.

species Tester { 
    int val_to_test; 
 
    setup { 
        val_to_test <- 0; 
    } 
 
    test t1 { 
       // [set of instructions, including asserts] 
    } 
}



See also: test, assert,

Embedments

The setup  statement is of type: Sequence of statements or action

The setup  statement can be embedded into: Species, Experiment, Model,

The setup  statement embeds statements:

sobol

Facets

name  (an identifier), (omissible) : The name of the method. For internal use only

outputs  (list): The list of output variables to analyse through sobol indexes

report  (string): The path to the file where the Sobol report will be written

sample  (an identifier): The size of the sample for the sobol sequence

path  (string): The path to the saltelli sample csv file. If the file doesn't exist automatic Saltelli
sampling will be performed and saved in the corresponding location

results  (string): The path to the file where the automatic batch report will be written

Definition

This algorithm runs a Sobol exploration - it has been built upon the moea framework at
https://github.com/MOEAFramework/MOEAFramework - disabled the repeat facet of the experiment

Usages

For example:

Embedments

The sobol  statement is of type: Batch method

The sobol  statement can be embedded into: Experiment,

The sobol  statement embeds statements:

method sobol sample_size:100 outputs:['my_var'] report:'../path/to/report/file.txt'; 

https://github.com/MOEAFramework/MOEAFramework


socialize

Facets

name  (an identifier), (omissible) : the identifier of the socialize statement

agent  (agent): the agent value of the created social link

dominance  (float): the dominance value of the created social link

familiarity  (float): the familiarity value of the created social link

liking  (float): the appreciation value of the created social link

solidarity  (float): the solidarity value of the created social link

trust  (float): the trust value of the created social link

when  (boolean): A boolean value to socialize only with a certain condition

Definition

enables to directly add a social link from a perceived agent.

Usages

Other examples of use:

Embedments

The socialize  statement is of type: Single statement

The socialize  statement can be embedded into: Behavior, Sequence of statements or action,

The socialize  statement embeds statements:

solve

Facets

equation  (an identifier), (omissible) : the equation system identifier to be numerically solved

max_step  (float): maximal step, (used with dp853 method only), (sign is irrelevant, regardless of
integration direction, forward or backward), the last step can be smaller than this value

do socialize;



method  (string): integration method (can be one of "Euler", "ThreeEighthes", "Midpoint", "Gill",
"Luther", "rk4" or "dp853", "AdamsBashforth", "AdamsMoulton", "DormandPrince54",
"GraggBulirschStoer", "HighamHall54") (default value: "rk4") or the corresponding constant

min_step  (float): minimal step, (used with dp853 method only), (sign is irrelevant, regardless of
integration direction, forward or backward), the last step can be smaller than this value

nSteps  (float): Adams-Bashforth and Adams-Moulton methods only. The number of past steps used
for computation excluding the one being computed (default value: 2

scalAbsoluteTolerance  (float): allowed absolute error (used with dp853 method only)

scalRelativeTolerance  (float): allowed relative error (used with dp853 method only)

step  (float): (deprecated) integration step, use with fixed step integrator methods (default value:
0.005*step)

step_size  (float): integration step, use with fixed step integrator methods (default value:
0.005*step)

t0  (float): the first bound of the integration interval (defaut value: cycle*step, the time at the
begining of the current cycle.)

tf  (float): the second bound of the integration interval. Can be smaller than t0 for a backward
integration (defaut value: cycle*step, the time at the begining of the current cycle.)

Definition

Solves all equations which matched the given name, with all systems of agents that should solved
simultaneously.

Usages

Other examples of use:

Embedments

The solve  statement is of type: Single statement

The solve  statement can be embedded into: Behavior, Sequence of statements or action,

The solve  statement embeds statements:

species

solve SIR method: #rk4 step:0.001;



Facets

name  (an identifier), (omissible) : the identifier of the species

cell_height  (float): (grid only), the height of the cells of the grid

cell_width  (float): (grid only), the width of the cells of the grid

compile  (boolean):

control  (skill): defines the architecture of the species (e.g. fsm...)

edge_species  (species): In the case of a species defining a graph topology for its instances (nodes
of the graph), specifies the species to use for representing the edges

file  (file): (grid only), a bitmap file that will be loaded at runtime so that the value of each pixel can
be assigned to the attribute 'grid_value'

files  (list): (grid only), a list of bitmap file that will be loaded at runtime so that the value of each
pixel of each file can be assigned to the attribute 'bands'

frequency  (int): The execution frequency of the species (default value: 1). For instance, if frequency
is set to 10, the population of agents will be executed only every 10 cycles.

height  (int): (grid only), the height of the grid (in terms of agent number)

horizontal_orientation  (boolean): (hexagonal grid only),(true by default). Allows use a hexagonal
grid with a horizontal or vertical orientation.

mirrors  (any type in [list, species]): The species this species is mirroring. The population of this
current species will be dependent of that of the species mirrored (i.e. agents creation and death are
entirely taken in charge by GAMA with respect to the demographics of the species mirrored). In
addition, this species is provided with an attribute called 'target', which allows each agent to know
which agent of the mirrored species it is representing.

neighbors  (int): (grid only), the chosen neighborhood (4, 6 or 8)

optimizer  (string): (grid only),("A*" by default). Allows to specify the algorithm for the shortest path
computation ("BF", "Dijkstra", "A*" or "JPS*"

parallel  (any type in [boolean, int]): (experimental) setting this facet to 'true' will allow this species
to use concurrency when scheduling its agents; setting it to an integer will set the threshold under
which they will be run sequentially (the default is initially 20, but can be fixed in the preferences).
This facet has a default set in the preferences (Under Performances > Concurrency)

parent  (species): the parent class (inheritance)

schedules  (container): A container of agents (a species, a dynamic list, or a combination of species
and containers) , which represents which agents will be actually scheduled when the population is
scheduled for execution. Note that the world (or the simulation) is always scheduled first, so there is
no need to explicitly mention it. Doing so would result in a runtime error. For instance, 'species a
schedules: (10 among a)' will result in a population that schedules only 10 of its own agents every
cycle. 'species b schedules: []' will prevent the agents of 'b' to be scheduled. Note that the scope of



agents covered here can be larger than the population, which allows to build complex scheduling
controls; for instance, defining 'global schedules: [] {...} species b schedules: []; species c schedules:
b; ' allows to simulate a model where only the world and the agents of b are scheduled, without
even having to create an instance of c.

skills  (list): The list of skills that will be made available to the instances of this species. Each new
skill provides attributes and actions that will be added to the ones defined in this species

topology  (topology): The topology of the population of agents defined by this species. In case of
nested species, it can for example be the shape of the macro-agent. In case of grid or graph species,
the topology is automatically computed and cannot be redefined

torus  (boolean): is the topology toric (defaut: false). Needs to be defined on the global species.

use_individual_shapes  (boolean): (grid only),(true by default). Allows to specify whether or not the
agents of the grid will have distinct geometries. If set to false, they will all have simpler proxy
geometries

use_neighbors_cache  (boolean): (grid only),(true by default). Allows to turn on or off the use of the
neighbors cache used for grids. Note that if a diffusion of variable occurs, GAMA will emit a warning
and automatically switch to a caching version

use_regular_agents  (boolean): (grid only),(true by default). Allows to specify if the agents of the
grid are regular agents (like those of any other species) or minimal ones (which can't have sub-
populations, can't inherit from a regular species, etc.)

virtual  (boolean): whether the species is virtual (cannot be instantiated, but only used as a parent)
(false by default)

width  (int): (grid only), the width of the grid (in terms of agent number)

Definition

The species statement allows modelers to define new species in the model. global  and grid  are
speciel cases of species: global  being the definition of the global agent (which has automatically one
instance, world) and grid  being a species with a grid topology.

Usages

Here is an example of a species definition with a FSM architecture and the additional skill moving:

In the case of a species aiming at mirroring another one:

species ant skills: [moving] control: fsm { }



The definition of the single grid of a model will automatically create gridwidth x gridheight agents:

Using a file to initialize the grid can replace width/height facets:

Embedments

The species  statement is of type: Species

The species  statement can be embedded into: Model, Environment, Species,

The species  statement embeds statements:

species_layer

Facets

species  (species), (omissible) : the species to be displayed

aspect  (an identifier): the name of the aspect that should be used to display the species

fading  (boolean): Used in conjunction with 'trace:', allows to apply a fading effect to the previous
traces. Default is false

position  (point): position of the upper-left corner of the layer. Note that if coordinates are in [0,1[,
the position is relative to the size of the environment (e.g. {0.5,0.5} refers to the middle of the
display) whereas it is absolute when coordinates are greater than 1 for x and y. The z-ordinate can
only be defined between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last
coordinate specifying the elevation of the layer. In case of negative value OpenGl will position the
layer out of the environment.

refresh  (boolean): (openGL only) specify whether the display of the species is refreshed. (true by
default, usefull in case of agents that do not move)

rotate  (float): Defines the angle of rotation of this layer, in degrees, around the z-axis.

species node_agent mirrors: list(bug) parent: graph_node edge_species: edge_agent { }

grid ant_grid width: gridwidth height: gridheight file: grid_file neighbors: 8 
use_regular_agents: false { }

grid ant_grid file: grid_file neighbors: 8 use_regular_agents: false { }



selectable  (boolean): Indicates whether the agents present on this layer are selectable by the user.
Default is true

size  (point): extent of the layer in the screen from its position. Coordinates in [0,1[ are treated as
percentages of the total surface, while coordinates > 1 are treated as absolute sizes in model units
(i.e. considering the model occupies the entire view). Like in 'position', an elevation can be provided
with the z coordinate, allowing to scale the layer in the 3 directions

trace  (any type in [boolean, int]): Allows to aggregate the visualization of agents at each timestep
on the display. Default is false. If set to an int value, only the last n-th steps will be visualized. If set
to true, no limit of timesteps is applied.

transparency  (float): the transparency level of the layer (between 0 -- opaque -- and 1 -- fully
transparent)

visible  (boolean): Defines whether this layer is visible or not

Definition

The species_layer  statement is used using the species keyword . It allows modeler to display all the
agent of a given species in the current display. In particular, modeler can choose the aspect used to
display them.

Usages

The general syntax is:

Species can be superposed on the same plan (be careful with the order, the last one will be above all
the others):

Each species layer can be placed at a different z value using the opengl display. position:{0,0,0}
means the layer will be placed on the ground and position:{0,0,1} means it will be placed at an
height equal to the maximum size of the environment.

display my_display { 
   species species_name [additional options]; 
}

display my_display { 
   species agent1 aspect: base; 
   species agent2 aspect: base; 
   species agent3 aspect: base; 
}



See also: display, agents, chart, event, graphics, display_grid, image, overlay,

Embedments

The species_layer  statement is of type: Layer

The species_layer  statement can be embedded into: display, species_layer,

The species_layer  statement embeds statements: species_layer,

start_simulation

Facets

name  (string), (omissible) : The name of the experiment to run

of  (string): The path to the model containing the experiment

seed  (int): The seed to use for initializing the random number generator of the new experiment

with_param  (map): The parameters to pass to the new experiment

Embedments

The start_simulation  statement is of type: Sequence of statements or action

The start_simulation  statement can be embedded into: Behavior, Single statement, Species,
Model,

The start_simulation  statement embeds statements:

state

Facets

name  (an identifier), (omissible) : the identifier of the state

final  (boolean): specifies whether the state is a final one (i.e. there is no transition from this state
to another state) (default value= false)

display my_display type: opengl{ 
   species agent1 aspect: base ; 
   species agent2 aspect: base position:{0,0,0.5}; 
   species agent3 aspect: base position:{0,0,1}; 
}



initial  (boolean): specifies whether the state is the initial one (default value = false)

Definition

A state, like a reflex, can contains several statements that can be executed at each time step by the
agent.

Usages

Here is an exemple integrating 2 states and the statements in the FSM architecture:

See also: enter, exit, transition,

Embedments

The state  statement is of type: Behavior

The state  statement can be embedded into: fsm, Species, Experiment, Model,

The state  statement embeds statements: enter, exit,

state s_init initial: true { 
enter {  

write "Enter in" + state; 
} 

 
write state; 

 
transition to: s1 when: (cycle > 2) { 

write "transition s_init -> s1"; 
} 

 
exit { 

write "EXIT from "+state; 
} 

} 
state s1 { 
 

enter {write 'Enter in '+state;} 
 

write state; 
 

exit {write 'EXIT from '+state;} 
}



status

Facets

message  (any type), (omissible) : Allows to display a necessarily short message in the status box in
the upper left corner. No formatting characters (carriage returns, tabs, or Unicode characters)
should be used, but a background color can be specified. The message will remain in place until it is
replaced by another one or by nil, in which case the standard status (number of cycles) will be
displayed again

color  (rgb): The color used for displaying the background of the status message

Definition

The statement makes the agent output an arbitrary message in the status box.

Usages

Outputting a message

Embedments

The status  statement is of type: Single statement

The status  statement can be embedded into: Behavior, Sequence of statements or action, Layer,

The status  statement embeds statements:

stochanalyse

Facets

name  (an identifier), (omissible) : The name of the method. For internal use only

outputs  (list): The list of output variables to analyse

report  (string): The path to the file where the Sobol report will be written

results  (string): The path to the file where the automatic batch report will be written

sample  (int): The number of sample required , 10 by default

sampling  (an identifier): The sampling method to build parameters sets. Available methods are:
latinhypercube, orthogonal, factorial, uniform, saltelli, morris

status ("This is my status " + self) color: #yellow;



Definition

This algorithm runs an exploration with a given sampling to compute a Stochasticity Analysis

Usages

For example:

Embedments

The stochanalyse  statement is of type: Batch method

The stochanalyse  statement can be embedded into: Experiment,

The stochanalyse  statement embeds statements:

switch

Facets

value  (any type), (omissible) : an expression

Definition

The "switch... match" statement is a powerful replacement for imbricated "if ... else ..." constructs. All the
blocks that match are executed in the order they are defined, unless one invokes 'break', in which case
the switch statement is exited. The block prefixed by default is executed only if none have matched
(otherwise it is not).

Usages

The prototypical syntax is as follows:

method stochanalyse sampling:'latinhypercube' outputs:['my_var'] replicat:10 
report:'../path/to/report/file.txt'; 

switch an_expression { 
        match value1 {...} 
        match_one [value1, value2, value3] {...} 
        match_between [value1, value2] {...} 
        default {...} 
}



Example:

See also: match, default, if,

Embedments

The switch  statement is of type: Sequence of statements or action

The switch  statement can be embedded into: Behavior, Sequence of statements or action, Layer,

The switch  statement embeds statements: default, match,

tabu

Facets

name  (an identifier), (omissible) : The name of the method. For internal use only

aggregation  (a label), takes values in: {min, max, avr}: the agregation method

init_solution  (map): init solution: key: name of the variable, value: value of the variable

iter_max  (int): number of iterations. this number corresponds to the number of "moves" in the
parameter space. For each move, the algorithm will test the whole neighborhood of the current
solution, each neighbor corresponding to a particular set of parameters and thus to a run. Thus,
there can be several runs per iteration (maximum: 2^(number of parameters)).

maximize  (float): the value the algorithm tries to maximize

minimize  (float): the value the algorithm tries to minimize

tabu_list_size  (int): size of the tabu list

Definition

This algorithm is an implementation of the Tabu Search algorithm. See the wikipedia article and
[batch161 the batch dedicated page].

switch 3 { 
   match 1 {write "Match 1"; } 
   match 2 {write "Match 2"; } 
   match 3 {write "Match 3"; } 
   match_one [4,4,6,3,7]  {write "Match one_of"; } 
   match_between [2, 4] {write "Match between"; } 
   default {write "Match Default"; } 
}



Usages

As other batch methods, the basic syntax of the tabu statement uses method tabu  instead of the
expected tabu name: id  :

For example:

Embedments

The tabu  statement is of type: Batch method

The tabu  statement can be embedded into: Experiment,

The tabu  statement embeds statements:

task

Facets

name  (an identifier), (omissible) : the identifier of the task

weight  (float): the priority level of the task

Definition

As reflex, a task is a sequence of statements that can be executed, at each time step, by the agent. If an
agent owns several tasks, the scheduler chooses a task to execute based on its current priority weight
value.

Usages

Embedments

The task  statement is of type: Behavior

The task  statement can be embedded into: weighted_tasks, sorted_tasks, probabilistic_tasks,
Species, Experiment, Model,

The task  statement embeds statements:

method tabu [facet: value];

method tabu iter_max: 50 tabu_list_size: 5 maximize: food_gathered;



test

Facets

name  (an identifier), (omissible) : identifier of the test

Definition

The test statement allows modeler to define a set of assertions that will be tested. Before the execution
of the embedded set of instructions, if a setup is defined in the species, model or experiment, it is
executed. In a test, if one assertion fails, the evaluation of other assertions continue.

Usages

An example of use:

See also: setup, assert,

Embedments

The test  statement is of type: Behavior

The test  statement can be embedded into: Species, Experiment, Model,

The test  statement embeds statements: assert,

text

Facets

species Tester { 
    // set of attributes that will be used in test 
 
    setup { 
        // [set of instructions... in particular initializations] 
    } 
 
    test t1 { 
       // [set of instructions, including asserts] 
    } 
}



message  (any type), (omissible) : the text to display.

background  (rgb): The color of the background of the text

category  (a label): a category label, used to group parameters in the interface

color  (rgb): The color with wich the text will be displayed

font  (any type in [font, string]): the font used to draw the text, which can be built with the operator
"font". ex : font:font("Helvetica", 20 , #bold)

Definition

The statement makes an experiment display text in the parameters view.

Usages

Embedments

The text  statement is of type: Single statement

The text  statement can be embedded into: Experiment,

The text  statement embeds statements:

trace

Facets

Definition

All the statements executed in the trace statement are displayed in the console.

Usages

Embedments

The trace  statement is of type: Sequence of statements or action

The trace  statement can be embedded into: Behavior, Sequence of statements or action, Layer,

The trace  statement embeds statements:

transition

Facets



to  (an identifier): the identifier of the next state

when  (boolean), (omissible) : a condition to be fulfilled to have a transition to another given state

Definition

In an FSM architecture, transition  specifies the next state of the life cycle. The transition occurs when
the condition is fulfilled. The embedded statements are executed when the transition is triggered.

Usages

In the following example, the transition is executed when after 2 steps:

See also: enter, state, exit,

Embedments

The transition  statement is of type: Sequence of statements or action

The transition  statement can be embedded into: Sequence of statements or action, Behavior,

The transition  statement embeds statements:

try

Facets

Definition

Allows the agent to execute a sequence of statements and to catch any runtime error that might happen
in a subsequent catch  block, either to ignore it (not a good idea, usually) or to safely stop the model

Usages

The generic syntax is:

state s_init initial: true { 
write state; 
transition to: s1 when: (cycle > 2) { 

write "transition s_init -> s1"; 
} 

}



Optionally, the statements to execute when a runtime error happens in the block can be defined in
a following statement 'catch'. The syntax then becomes:

Embedments

The try  statement is of type: Sequence of statements or action

The try  statement can be embedded into: Behavior, Sequence of statements or action, Layer,

The try  statement embeds statements: catch,

unconscious_contagion

Facets

emotion  (emotion): the emotion that will be copied with the contagion

name  (an identifier), (omissible) : the identifier of the unconscious contagion

charisma  (float): The charisma value of the perceived agent (between 0 and 1)

decay  (float): The decay value of the emotion added to the agent

receptivity  (float): The receptivity value of the current agent (between 0 and 1)

threshold  (float): The threshold value to make the contagion

when  (boolean): A boolean value to get the emotion only with a certain condition

Definition

enables to directly copy an emotion present in the perceived species.

Usages

try { 
    [statements] 
}

try { 
    [statements] 
} 
catch { 
    [statements] 
}



Other examples of use:

Embedments

The unconscious_contagion  statement is of type: Single statement

The unconscious_contagion  statement can be embedded into: Behavior, Sequence of statements
or action,

The unconscious_contagion  statement embeds statements:

user_command

Facets

name  (a label), (omissible) : the identifier of the user_command

action  (action): the identifier of the action to be executed. This action should be accessible in the
context in which the user_command is defined (an experiment, the global section or a species). A
special case is allowed to maintain the compatibility with older versions of GAMA, when the
user_command is declared in an experiment and the action is declared in 'global'. In that case, all
the simulations managed by the experiment will run the action in response to the user executing
the command

category  (string): a category label, used to group parameters in the interface

color  (rgb): The color of the button to display

continue  (boolean): Whether or not the button, when clicked, should dismiss the user panel it is
defined in. Has no effect in other contexts (menu, parameters, inspectors)

when  (boolean): the condition that should be fulfilled (in addition to the user clicking it) in order to
execute this action

with  (map): the map of the parameters::values required by the action

Definition

Anywhere in the global block, in a species or in an (GUI) experiment, user_command statements allows
to either call directly an existing action (with or without arguments) or to be followed by a block that
describes what to do when this command is run.

Usages

unconscious_contagion emotion:fearConfirmed;  
unconscious_contagion emotion:fearConfirmed charisma: 0.5 receptivity: 0.5;



The general syntax is for example:

See also: user_init, user_panel, user_input,

Embedments

The user_command  statement is of type: Sequence of statements or action

The user_command  statement can be embedded into: user_panel, Species, Experiment, Model,

The user_command  statement embeds statements: user_input,

user_init

Facets

name  (an identifier), (omissible) : The name of the panel

initial  (boolean): Whether or not this panel will be the initial one

Definition

Used in the user control architecture, user_init is executed only once when the agent is created. It opens
a special panel (if it contains user_commands statements). It is the equivalent to the init block in the
basic agent architecture.

Usages

See also: user_command, user_init, user_input,

Embedments

The user_init  statement is of type: Behavior

The user_init  statement can be embedded into: Species, Experiment, Model,

The user_init  statement embeds statements: user_panel,

user_input

Facets

user_command kill_myself action: some_action with: [arg1::val1, arg2::val2, ...];



init  (any type): the init value

returns  (a new identifier): a new local variable containing the value given by the user

name  (a label), (omissible) : the displayed name

among  (list): the set of acceptable values, only for string inputs

max  (float): the maximum value

min  (float): the minimum value

slider  (boolean): Whether to display a slider or not when applicable

type  (a datatype identifier): the variable type

Definition

It allows to let the user define the value of a variable.

Usages

Other examples of use:

See also: user_command, user_init, user_panel,

Embedments

The user_input  statement is of type: Single statement

The user_input  statement can be embedded into: user_command,

The user_input  statement embeds statements:

user_panel

Facets

name  (an identifier), (omissible) : The name of the panel

initial  (boolean): Whether or not this panel will be the initial one

Definition

user_panel "Advanced Control" { 
user_input "Location" returns: loc type: point <- {0,0}; 
create cells number: 10 with: [location::loc]; 

}



It is the basic behavior of the user control architecture (it is similar to state for the FSM architecture).
This user_panel translates, in the interface, in a semi-modal view that awaits the user to choose action
buttons, change attributes of the controlled agent, etc. Each user_panel, like a state in FSM, can have a
enter and exit sections, but it is only defined in terms of a set of user_commands which describe the
different action buttons present in the panel.

Usages

The general syntax is for example:

See also: user_command, user_init, user_input,

Embedments

The user_panel  statement is of type: Behavior

The user_panel  statement can be embedded into: fsm, user_first, user_last, user_init, user_only,
Species, Experiment, Model,

The user_panel  statement embeds statements: user_command,

using

Facets

topology  (topology), (omissible) : the topology

Definition

using  is a statement that allows to set the topology to use by its sub-statements. They can gather it by
asking the scope to provide it.

user_panel default initial: true { 
user_input 'Number' returns: number type: int <- 10; 
ask (number among list(cells)){ do die; } 
transition to: "Advanced Control" when: every (10); 

} 
 
user_panel "Advanced Control" { 

user_input "Location" returns: loc type: point <- {0,0}; 
create cells number: 10 with: [location::loc]; 

}



Usages

All the spatial operations are topology-dependent (e.g. neighbors are not the same in a continuous
and in a grid topology). So using  statement allows modelers to specify the topology in which the
spatial operation will be computed.

Embedments

The using  statement is of type: Sequence of statements or action

The using  statement can be embedded into: chart, Behavior, Sequence of statements or action,
Layer,

The using  statement embeds statements:

Variable_container

Facets

name  (a new identifier), (omissible) : The name of the attribute

<-  (any type): The initial value of the attribute. Same as init:

->  (any type in [int, float, point, date]): Used to specify an expression that will be evaluated each
time the attribute is accessed. Equivalent to 'function:'. This facet is incompatible with both 'init:' and
'update:' and 'on_change:' (or the equivalent final block)

category  (string): Soon to be deprecated. Declare the parameter in an experiment instead

const  (boolean): Indicates whether this attribute can be subsequently modified or not

function  (any type): Used to specify an expression that will be evaluated each time the attribute is
accessed. Equivalent to '->'. This facet is incompatible with both 'init:', 'update:' and 'on_change:' (or
the equivalent final block)

index  (a datatype identifier): The type of the key used to retrieve the contents of this attribute

init  (any type): The initial value of the attribute. Same as <-

of  (a datatype identifier): The type of the contents of this container attribute

on_change  (any type): Provides a block of statements that will be executed whenever the value of
the attribute changes

float dist <- 0.0; 
using topology(grid_ant) { 

d (self.location distance_to target.location); 
}



parameter  (any type in [string, boolean]): Soon to be deprecated. Declare the parameter in an
experiment instead

type  (a datatype identifier): The type of the attribute

update  (any type): An expression that will be evaluated each cycle to compute a new value for the
attribute

Definition

Declaration of an attribute of a species or an experiment

Usages

Embedments

The Variable_container  statement is of type: Variable (container)

The Variable_container  statement can be embedded into: Species, Experiment, Model,

The Variable_container  statement embeds statements:

Variable_number

Facets

name  (a new identifier), (omissible) : The name of the attribute

<-  (any type in [int, float, point, date]): The initial value of the attribute. Same as 'init:'

->  (any type in [int, float, point, date]): Used to specify an expression that will be evaluated each
time the attribute is accessed. Equivalent to 'function:'. This facet is incompatible with both 'init:' and
'update:' and 'on_change:' (or the equivalent final block)

among  (list): A list of constant values among which the attribute can take its value

category  (string): Soon to be deprecated. Declare the parameter in an experiment instead

const  (boolean): Indicates whether this attribute can be subsequently modified or not

function  (any type in [int, float, point, date]): Used to specify an expression that will be evaluated
each time the attribute is accessed. Equivalent to '->'. This facet is incompatible with both 'init:' and
'update:'

init  (any type in [int, float, point, date]): The initial value of the attribute. Same as '<-'

max  (any type in [int, float, point, date]): The maximum value this attribute can take. The value will
be automatically clampled if it is higher.



min  (any type in [int, float, point, date]): The minimum value this attribute can take. The value will
be automatically clamped if it is lower.

on_change  (any type): Provides a block of statements that will be executed whenever the value of
the attribute changes

parameter  (any type in [string, boolean]): Soon to be deprecated. Declare the parameter in an
experiment instead

step  (any type in [int, float, point, date]): A discrete step (used in conjunction with min and max)
that constrains the values this variable can take

type  (a datatype identifier): The type of the attribute, either 'int', 'float', 'point' or 'date'

update  (any type in [int, float, point, date]): An expression that will be evaluated each cycle to
compute a new value for the attribute

Definition

Declaration of an attribute of a species or an experiment; this type of attributes accepts min:, max: and
step: facets, automatically clamping the value if it is lower than min or higher than max.

Usages

Embedments

The Variable_number  statement is of type: Variable (number)

The Variable_number  statement can be embedded into: Species, Experiment, Model,

The Variable_number  statement embeds statements:

Variable_regular

Facets

name  (a new identifier), (omissible) : The name of the attribute

<-  (any type): The initial value of the attribute. Same as init:

->  (any type in [int, float, point, date]): Used to specify an expression that will be evaluated each
time the attribute is accessed. Equivalent to 'function:'. This facet is incompatible with both 'init:' and
'update:' and 'on_change:' (or the equivalent final block)

among  (list): A list of constant values among which the attribute can take its value

category  (string): Soon to be deprecated. Declare the parameter in an experiment instead

const  (boolean): Indicates whether this attribute can be subsequently modified or not



function  (any type): Used to specify an expression that will be evaluated each time the attribute is
accessed. This facet is incompatible with both 'init:', 'update:' and 'on_change:' (or the equivalent
final block)

index  (a datatype identifier): The type of the index used to retrieve elements if the type of the
attribute is a container type

init  (any type): The initial value of the attribute. Same as <-

of  (a datatype identifier): The type of the elements contained in the type of this attribute if it is a
container type

on_change  (any type): Provides a block of statements that will be executed whenever the value of
the attribute changes

parameter  (any type in [string, boolean]): Soon to be deprecated. Declare the parameter in an
experiment instead

type  (a datatype identifier): The type of this attribute. Can be combined with facets 'of' and 'index'
to describe container types

update  (any type): An expression that will be evaluated each cycle to compute a new value for the
attribute

Definition

Declaration of an attribute of a species or an experiment

Usages

Embedments

The Variable_regular  statement is of type: Variable (regular)

The Variable_regular  statement can be embedded into: Species, Experiment, Model,

The Variable_regular  statement embeds statements:

warn

Facets

message  (string), (omissible) : the message to display as a warning.

Definition

The statement makes the agent output an arbitrary message in the error view as a warning.



Usages

Emmitting a warning

Embedments

The warn  statement is of type: Single statement

The warn  statement can be embedded into: Behavior, Sequence of statements or action, Layer,

The warn  statement embeds statements:

write

Facets

message  (any type), (omissible) : the message to display. Modelers can add some formatting
characters to the message (carriage returns, tabs, or Unicode characters), which will be used
accordingly in the console.

color  (rgb): The color with wich the message will be displayed. Note that different simulations will
have different (default) colors to use for this purpose if this facet is not specified

Definition

The statement makes the agent output an arbitrary message in the console.

Usages

Outputting a message

Embedments

The write  statement is of type: Single statement

The write  statement can be embedded into: Behavior, Sequence of statements or action, Layer,

The write  statement embeds statements:

warn "This is a warning from " + self;

write "This is a message from " + self;





Version: 1.9.3

Types
A variable's or expression's type (or data type) determines the values it can take, plus the operations that
can be performed on or with it. GAML is a statically-typed language, which means that the type of an
expression is always known at compile time, and is even enforced with casting operations. There are 4
categories of types:

primitive types, declared as keyword in the language,

complex types, also declared as keyword in the language,

parametric types, a refinement of complex types (mainly children of container) that is dynamically
constructed using an enclosing type, a contents type and a key type,

species types, dynamically constructed from the species declarations made by the modeler (and the
built-in species present).

The hierarchy of types in GAML (only primitive and complex types are displayed here, of course, as the
other ones are model-dependent) is the following:

Primitive built-in types



bool

Definition: primitive datatype providing two values: true  or false .

Litteral declaration: both true  or false  are interpreted as boolean constants.

Other declarations: expressions that require a boolean operand often directly apply a casting to
bool to their operand. It is a convenient way to directly obtain a bool value.

Top of the page

float

Definition: primitive datatype holding floating point values, its absolute value is comprised
between 4.9E-324 and 1.8E308.

Comments: this datatype is internally backed up by the Java double datatype.

Litteral declaration: decimal notation 123.45 or exponential notation 123e45 are supported.

Other declarations: expressions that require an integer operand often directly apply a casting to
float to their operand. Using it is a way to obtain a float constant.

Top of the page

int

Definition: primitive datatype holding integer values comprised between -2147483648 and
2147483647 (i.e. between -2^31  and 2^31 - 1 .

Comments: this datatype is internally backed up by the Java int datatype.

Litteral declaration: decimal notation like 1, 256790 or hexadecimal notation like #1209FF are
automatically interpreted.

Other declarations: expressions that require an integer operand often directly apply a casting to
int to their operand. Using it is a way to obtain an integer constant.

bool (0) -> false

float (12) -> 12.0

int (234.5) -> 234.



Top of the page

string

Definition: a datatype holding a sequence of characters.

Comments: this datatype is internally backed up by the Java String class. However, contrary to Java,
strings are considered as a primitive type, which means they do not contain character objects. This
can be seen when casting a string to a list using the list operator: the result is a list of one-character
strings, not a list of characters.

Litteral declaration: a sequence of characters enclosed in quotes, like 'this is a string' . If one wants
to literally declare strings that contain quotes, one has to double these quotes in the declaration.
Strings accept escape characters like \n  (newline), \r  (carriage return), \t  (tabulation), as well as
any Unicode character ( \uXXXX ).

Other declarations: see string

Example: see string operators.

Top of the page

Complex built-in types
Contrarily to primitive built-in types, complex types have often various attributes. They can be accessed
in the same way as attributes of agents:

For example:

agent

Definition: a generic datatype that represents an agent whatever its actual species.

Built-in attributes: these attributes are common to any agent of the simulation
location (type = point): the location of the agent

complex_type nom_var <- init_var;
ltype_attr attr_var <- nom_var.attr_name;

file fileText <- file("../data/cell.Data");
bool fileTextReadable <- fileText.readable;

http://localhost:3000/wiki/OperatorsAA#strings-related-operators


shape (type = geometry): the shape of the agent

name (type = string): name of the agent (not necessarily unique in its population)

peers (type = list of agents of the same species): the population of agents of the same species,
in the same host, minus the receiver agent

host (type = agent): the agent that hosts the population of the agent

Comments: This datatype is barely used since species name can be directly used as datatypes
themselves.

Declaration: the agent casting operator can be applied to any unknown object to cast it as an
agent.

Top of the page

container

Definition: a generic datatype that represents a collection of data.

Comments: a container variable can be a list, a matrix, a map... Conversely, each list, matrix, and
map is a kind of container. In consequence, every container can be used in container-related
operators.

See also: Container operators

Declaration:

Top of the page

conversation

Definition: a datatype that represents a conversation between agents in a FIPA-ACL interaction. It
contains in particular all the exchanged messages.

Built-in attributes:
messages  (type = list of messages): the list of messages that compose this conversation

protocol  (type = string): the name of the protocol followed by the conversation

initiator  (type = agent): the agent that has initiated this conversation

participants  (type = list of agents): the list of agents that participate to this conversation

container c  <- [1,2,3];
container c  <- matrix [[1,2,3],[4,5,6]];
container c  <- map ["x"::5, "y"::12];
container c  <- list species1;

http://localhost:3000/wiki/OperatorsAA#containers-related-operators


ended  (type = bool): whether this conversation has ended or not

Top of the page

date

Definition: a datatype that represents a date (day, month, year, and time). Any date variable can be
created in the model. 2 built-in variables exist in a model: starting_date  (containing the date at
the start of the simulation), current_date  (the date at the current step of the simulation, it is
updated automatically from starting_date , step  and time ). In addition, the constant #now
contains the current (real) date. Many operators can be used on dates (such as + , - , add_years ...).

Built-in attributes:

year  (type = int): the year component of the date

month  (type = int): the month component of the date (1-12)

day  (type = int): the day component of the date (1-31)

hour  (type = int): the number of hours in the current day of this date (0-23)

minute  (type = int): the number of minutes in the current hour of this date (0-59)

second  (type = int): the number of seconds in the current minute of this date (0-59)

day_of_year  (type = int): the current day number in the year of this date (1-366)

day_of_week  (type = int): the index of the day in the current week (with Monday being 1)

second_of_day  (type = int): the index of seconds in the day of this date (0-86399)

minute_of_day  (type = int): the index of the minute in the day of this date (0-1439)

week_of_year  (type = int): the index of the week in the current year (1-52)

days_in_month  (type = int): the number of days in the current month of this date (28-31)

days_in_year  (type = int): the number of days in the current year of this date (365-366)

leap  (type = bool): returns true if the year is a leap year

date  (type = date): returns a new date object with only the year-month-day components of this
date

Declaration: a date can be created using different sets of information.

The simplest one consists in using a list of int values: [year, month of the year, day of the month,
hour of the day, minute of the hour, second of the minute] or simply [year, month of the year,
day of the month] (time is set to 0 in this case).

date my_date <- date([2010,3,23,17,30,10]); // the 23th of March 2010, at 17:30:10



Another way consists in using a string with the good format. The following one is perhaps the
most complete, with year, month, day, hour, minute, second, and also the time zone.

But the following ones can also be used:

Note: date creation format has been defined in an ISO norm. More examples can be found here:
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#patterns

See also: Date operators

Top of the page

field

Definition: Fields are two-dimensional matrices holding float values. They can be easily created
from arbitrary sources (grid, raster or DEM files, matrices grids) and of course by hand. The values
they hold are accessible by agents like grids are, using their current location. They can be the target
of the 'diffuse' statement and can be displayed using the 'mesh' layer definition. As such, they
represent a lightweight alternative to grids, as they hold spatialized discrete values without having
to build agents, which can be particularly interesting for models with large raster data. Several fields
can of course be defined, and it makes sense to define them in the global section as, for the
moment, they cover by default the whole environment, exactly like grids, and are created alongside
them.

Built-in attributes: a field is a kind of matrix, it thus inherits from the matrix's attributes.
dimension (type = point): the dimension (columns x rows) of the receiver matrix

columns (type = int): the number of columns of the receiver matrix

rows (type = int): the number of rows of the receiver matrix

date my_date2 <- date([2010,3,23]); // the 23th of March 2010, at 00:00:00

date my_date <- date("2010-3-23T17:30:10+07:00"); 

// without time zone:
my_date3 <- date("2010-03-23 17:30:10"); 
//Dates (without time)
my_date3 <- date("20100323");
my_date3 <- date("2010-03-23");
// Dates using some patterns:
my_date3 <- date("03 23 2010","MM dd yyyy");
my_date3 <- date("01 23 20","HH mm ss");

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#patterns
http://localhost:3000/wiki/OperatorsAA#date-related-operators


cell_size (type = point): the dimension of an individual cell as a point (width, height). Setting it
will only change the interpretation made by the field of the values it contains, but not the values
themselves.

bands (type = list of field): The list of bands that are optionally present in the field. The first band
is the primary field itself, and each of these bands is a field w/o bands

no_data (type = float): the value that indicates the absence of data. Setting it will only change
the interpretation made by the field of the values it contains, but not the values themselves.

See also: Field operators

Declaration: a field can be created from a raster datafile (such as .asc of .tif files), a matrix or be
specifying its dimensions.

a field can be created from a raster datafile

a field can be created manually:

a field can be created from a grid of cells, the value stored will be the grid's grid_value attribute

file

// Initialize a field from a asc simple raster file
field field_from_asc <- field(grid_file("includes/grid.asc"));

// initialize using a tiff raster file
field field_from_tiff  <-  field(grid_file("includes/Lesponne.tif"));

// Init from a user defined matrix
field field_from_matrix  <- field(matrix([[1,2,3],[4,5,6],[7,8,9]]));

//  init an empty field of a given size
field empty_field_from_size <- field(10,10);

// init a field for of a given value
field full_field_from_size<- field(10,10,1.0);  

// init a field of given size, with a given value and no data
field full_field_from_size_with_nodata <- field (1,1,1.0,0.0);

global {
  field field_from_grid <- field(matrix(cell));
}
grid cell width: 100 height: 100 {
  float grid_value <- rnd(1.0,self distance_to world.location);
}

http://localhost:3000/wiki/OperatorsAA#grid-related-operators


Definition: a datatype that represents a file.

Built-in attributes:
name (type = string): the name of the represented file (with its extension)

extension(type = string): the extension of the file

path (type = string): the absolute path of the file
readable (type = bool, read-only): a flag expressing whether the file is readable

writable (type = bool, read-only): a flag expressing whether the file is writable

exists (type = bool, read-only): a flag expressing whether the file exists

is_folder (type = bool, read-only): a flag expressing whether the file is folder

contents (type = container): a container storing the content of the file

Comments: a variable with the file  type can handle any kind of file (text, image or shape files...).
The type of the content  attribute will depend on the kind of file. Note that the allowed kinds of file
are the followings:

text files: files with the extensions .txt, .data, .csv, .text, .tsv, .asc. The content  is by default a list
of string.

image files: files with the extensions .pgm, .tif, .tiff, .jpg, .jpeg, .png, .gif, .pict, .bmp. The
content  is by default a matrix of int.

shapefiles: files with the extension .shp. The content  is by default a list of geometry.

properties files: files with the extension .properties. The content  is by default a map of
string::string.

folders. The content  is by default a list of string.

Remark: Files are also a particular kind of container and can thus be read, written or iterated using
the container operators and commands.

See also: File operators

Declaration: a file can be created using the generic file  (that opens a file in read only mode and
tries to determine its contents), folder  or the new_folder  (to open an existing folder or create a
new one) unary operators. But things can be specialized with the combination of the read / write
and image / text / shapefile / properties  unary operators.

folder(a_string)  // returns a file managing a existing folder
file(a_string) // returns any kind of file in read-only mode
read(text(a_string)) // returns a text file in read-only mode
read(image(a_string)) // does the same with an image file.
write(properties(a_string)) // returns a property file which is available for writing 
                            // (if it exists, contents will be appended unless it is 
cleared 

http://localhost:3000/wiki/OperatorsAA#files-related-operators


Top of the page

geometry

Definition: a datatype that represents a vector geometry, i.e. a list of georeferenced points.

Built-in attributes:
location (type = point): the centroid of the geometry

area (type = float): the area of the geometry

perimeter (type = float): the perimeter of the geometry

holes (type = list of geometry): the list of the hole inside the given geometry

contour (type = geometry): the exterior ring of the given geometry and of his holes

envelope (type = geometry): the geometry bounding box

width (type = float): the width of the bounding box

height (type = float): the height of the bounding box

points (type = list of point): the set of the points composing the geometry

Comments: a geometry can be either a point, a polyline or a polygon. Operators working on
geometries handle transparently these three kinds of geometry. The envelope (a.k.a. the bounding
box) of the geometry depends on the kind of geometry:

If this Geometry is the empty geometry, it is an empty point.

If the Geometry is a point, it is a non-empty point.

Otherwise, it is a Polygon whose points are (minx, miny), (maxx, miny), (maxx, maxy), (minx,
maxy), (minx, miny).

See also: Spatial operators

Declaration: geometries can be built from a point, a list of points, or by using specific operators
(circle, square, triangle...).

Top of the page

graph

                            // using the standard container operations).

geometry varGeom <- circle(5);
geometry polygonGeom <- polygon([{3,5}, {5,6},{1,4}]);

http://localhost:3000/wiki/OperatorsAA#spatial-operators


Definition: a datatype that represents a graph composed of vertices linked by edges.

Built-in attributes:
edges(type = list of agent/geometry): the list of all edges

vertices(type = list of agent/geometry): the list of all vertices

circuit (type = path): an approximate minimal traveling salesman tour (hamiltonian cycle)

spanning_tree (type = list of agent/geometry): minimum spanning tree of the graph, i.e. a sub-
graph such as every vertex lies in the tree, and as much edges lies in it but no cycles (or loops)
are formed.

connected(type = bool): test whether the graph is connected

Remark:
graphs are also a particular kind of container and can thus be manipulated using the container
operators and commands.

This algorithm used to compute the circuit requires that the graph be complete and the triangle
inequality exists (if x,y,z are vertices then d(x,y)+d(y,z)>=d(x,z) for all x,y,z) then this algorithm
will guarantee a hamiltonian cycle such that the total weight of the cycle is less than or equal to
double the total weight of the optimal hamiltonian cycle.

The computation of the spanning tree uses an implementation of the Kruskal's minimum
spanning tree algorithm. If the given graph is connected it computes the minimum spanning
tree, otherwise it computes the minimum spanning forest.

See also: Graph operators

Declaration: graphs can be built from a list of vertices (agents or geometries) or from a list of edges
(agents or geometries) by using specific operators. They are often used to deal with a road network
and are built from a shapefile.

Top of the page

list

create road from: shape_file_road;
graph the_graph <- as_edge_graph(road);

graph([1,9,5])        --: ([1: in[] + out[], 5: in[] + out[], 9: in[] + out[]], [])
graph([node(0), node(1), node(2)]      // if node is a species
graph(['a'::345, 'b'::13])  --:  ([b: in[] + out[b::13], a: in[] + out[a::345], 13: 
in[b::13] + out[], 345: in[a::345] + out[]], [a::345=(a,345), b::13=(b,13)])
graph(a_graph)  --: a_graph
graph(node1)    --: null

http://localhost:3000/wiki/OperatorsAA#graph-related-operators


Definition: a composite datatype holding an ordered collection of values.

Comments: lists are more or less equivalent to instances of ArrayList in Java (although they are
backed up by a specific class). They grow and shrink as needed, can be accessed via an index (see @
or index_of), support set operations (like union and difference), and provide the modeller with a
number of utilities that make it easy to deal with collections of agents (see, for instance, shuffle,
reverse,where,sort_by,...).

Remark: lists can contain values of any datatypes, including other lists. Note, however, that due to
limitations in the current parser, lists of lists cannot be declared literally; they have to be built using
assignments. Lists are also a particular kind of container and can thus be manipulated using the
container operators and commands.

Litteral declaration: a set of expressions separated by commas, enclosed in square brackets, like
[12, 14, 'abc', self]. An empty list is noted [] .

Other declarations: lists can be built literally from a point, or a string, or any other element by
using the list casting operator.

Top of the page

map

Definition: a composite datatype holding an ordered collection of pairs (a key, and its associated
value).

Built-in attributes:
keys (type = list): the list of all keys

values (type = list): the list of all values

pairs (type = list of pairs): the list of all pairs key::value

Comments: maps are more or less equivalent to instances of Hashtable in Java (although they are
backed up by a specific class).

Remark: maps can contain values of any datatypes, including other maps or lists. Maps are also a
particular kind of container and can thus be manipulated using the container operators and
commands.

list (1) -> [1]

list<int> myList <- [1,2,3,4]; 
myList[2] => 3



Litteral declaration: a set of pair expressions separated by commas, enclosed in square brackets;
each pair is represented by a key and a value separated by :: . An example of map is
[agentA::'big', agentB::'small', agentC::'big'] . An empty map is noted [] .

Other declarations: lists can be built literally from a point, or a string, or any other element by
using the map casting operator.

Top of the page

matrix

Definition: a composite datatype that represents either a two-dimension array (matrix) or a one-
dimension array (vector), holding any type of data (including other matrices).

Built-in attributes:
dimension (type = point): the dimension (columns x rows) of the receiver matrix

columns (type = int): the number of columns of the receiver matrix

rows (type = int): the number of rows of the receiver matrix

Comments: Matrices are fixed-size structures that can be accessed by index (point for two-
dimension matrices, integer for vectors).

Litteral declaration: Matrices cannot be defined literally. One-dimension matrices can be built by
using the matrix casting operator applied on a list. Two-dimensions matrices need to be declared as
variables first, before being filled.

Top of the page

map (1) -> [1::1]
map ({1,5}) -> [x::1, y::5]
[]   // empty map 

//builds a one-dimension matrix, of size 5
matrix mat1 <- matrix ([10, 20, 30, 40, 50]);
//  builds a two-dimensions matrix with 10 columns and 5 rows, where each cell is 
initialized to 0.0
matrix mat2 <- 0.0 as_matrix({10,5}); 
// builds a two-dimensions matrix with 2 columns and 3 rows, with initialized cells
matrix mat3 <- matrix([["c11","c12","c13"],["c21","c22","c23"]]);     
    -> c11;c21
       c12;c22
       c13;c23



message

Definition: a datatype containing a message (sent during a communication, such as the one
sent/received in a FIPA interaction).

Built-in attributes:
contents (type = unknown): the contents of this message, as a list of arbitrary objects

sender (type = unknown): the sender that has sent this message

unread (type = bool): whether this message is unread or not

emission_timestamp (type = int): the emission time stamp of this message (I.e. at what cycle it
has been emitted)

recention_timestamp (type = int): the reception time stamp of this message (I.e. at what cycle it
has been received)

pair

Definition: a datatype holding a key and its associated value.

Built-in attributes:
key (type = unknown, read-only): the key of the pair, i.e. the first element of the pair

value (type = unknown, read-only): the value of the pair, i.e. the second element of the pair

Remark: pairs are also a particular kind of container and can thus be manipulated using container
operators and commands.

Litteral declaration: a pair is defined by a key and a value separated by :: . The type of the key and
value can also be specified.

Top of the page

path

Definition: a datatype representing a path linking two agents or geometries in a graph.

Built-in attributes:
source (type = point): the source point, i.e. the first point of the path

target (type = point): the target point, i.e. the last point of the path

graph (type = graph): the current topology (in the case it is a spatial graph), null otherwise

pair testPair <- "key"::56;
pair<string,int> pairWithType <- "tot"::23;



edges (type = list of agents/geometries): the edges of the graph composing the path

vertices (type = list of agents/geometries): the vertices of the graph composing the path

segments (type = list of geometries): the list of the geometries composing the path

shape (type = geometry) : the global geometry of the path (polyline)

Comments: the path created between two agents/geometries or locations will strongly depend on
the topology in which it is created.

Remark: a path is immutable, i.e. it can not be modified after it is created.

Declaration: paths are very barely defined literally. We can nevertheless use the path  unary
operator on a list of points to build a path. Operators dedicated to the computation of paths (such
as path_to or path_between) are often used to build a path.

Top of the page

point

Definition: a datatype normally holding two positive float values. Represents the absolute
coordinates of agents in the model.

Built-in attributes:
x (type = float): coordinate of the point on the x-axis

y (type = float): coordinate of the point on the y-axis

path([{1,5},{2,9},{5,8}]) // a path from {1,5} to {5,8} through {2,9}
       
geometry rect <- rectangle(5);
geometry poly <- polygon([{10,20},{11,21},{10,21},{11,22}]);
path pa <- rect path_to poly;  // built a path between rect and poly, in the topolopy   
                               // of the current agent (i.e. a line in a& continuous 
topology, 
                               // a path in a graph  in a graph topology )

a_topology path_between a_container_of_geometries // idem with an explicit topology and 
the possibility 
                                                  // to have more than 2 geometries 
                                                  // (the path is then built 
incrementally)

path_between (a_graph, a_source, a_target) // idem with a the given graph as topology



Comments: point coordinates should be positive, if a negative value is used in its declaration, the
point is built with the absolute value.

Remark: points are particular cases of geometries and containers. Thus they have also all the built-
in attributes of both the geometry and the container datatypes and can be used with every kind of
operator or command admitting geometry and container.

Litteral declaration: two numbers, separated by a comma, enclosed in braces, like {12.3, 14.5}

Other declarations: points can be built literally from a list, or from an integer or float value by
using the point casting operator.

Top of the page

rgb

Definition: a datatype that represents a color in the RGB space.

Built-in attributes:
red(type = int): the red component of the color

green(type = int): the green component of the color

blue(type = int): the blue component of the color

darker(type = rgb): a new color that is a darker version of this color

brighter(type = rgb): a new color that is a brighter version of this color

Remark: rgb is also a particular kind of container and can thus be manipulated using the container
operators and commands.

Litteral declaration: there exist a lot of ways to declare a color. We use the rgb  casting operator
applied to:

a string. The allowed color names are the constants defined in the Color Java class, i.e.: black,
blue, cyan, darkGray, lightGray, gray, green, magenta, orange, pink, red, white, yellow.

a list. The integer value associated to the three first elements of the list are used to define the
three red (element 0 of the list), green (element 1 of the list) and blue (element 2 of the list)
components of the color.

a map. The red, green, blue components take the value associated to the keys "r", "g", "b" in the
map.

an integer <- the decimal integer is translated into a hexadecimal <- OxRRGGBB. The red (resp.
green, blue) component of the color takes the value RR (resp. GG, BB) translated in decimal.

point ([12,123.45]) -> {12.0, 123.45} 
point (2) -> {2.0, 2.0}



Since GAMA 1.6.1, colors can be directly obtained like units, by using the ° or # symbol followed
by the name in lowercase of one of the 147 CSS colors (see http://www.cssportal.com/css3-
color-names/).

Declaration:

Top of the page

species

Definition: a generic datatype that represents a species

Built-in attributes:
topology (type=topology): the topology is which lives the population of agents

Comments: this datatype is actually a "meta-type". It allows to manipulate (in a rather limited
fashion, however) the species themselves as any other values.

Litteral declaration: the name of a declared species is already a literal declaration of species.

Other declarations: the species casting operator, or its variant called species_of can be applied to an
agent in order to get its species.

Top of the page

Species names as types

Once a species has been declared in a model, it automatically becomes a datatype. This means that:

It can be used to declare variables, parameters or constants,

It can be used as an operand to commands or operators that require species parameters,

It can be used as a casting operator (with the same capabilities as the built-in type agent)

In the simple following example, we create a set of "humans" and initialize a random "friendship
network" among them. See how the name of the species, human, is used in the create command, as an
argument to the list casting operator, and as the type of the variable named friend.

rgb cssRed <- #red;   // Since 1.6.1
rgb testColor <- rgb('white');                 // rgb [255,255,255]
rgb test <- rgb(3,5,67);                     // rgb [3,5,67]
rgb te <- rgb(340);                            // rgb [0,1,84]
rgb tete <- rgb(["r"::34, "g"::56, "b"::345]); // rgb [34,56,255]

http://www.cssportal.com/css3-color-names/
http://www.cssportal.com/css3-color-names/


Top of the page

topology

Definition: a topology is basically on neighborhoods, distance,... structures in which agents evolves.
It is the environment or the context in which all these values are computed. It also provides the
access to the spatial index shared by all the agents. And it maintains a (eventually dynamic) link with
the 'environment' which is a geometrical border.

Built-in attributes:
places(type = container): the collection of places (geometry) defined by this topology.

environment(type = geometry): the environment of this topology (i.e. the geometry that defines
its boundaries)

Comments: the attributes places  depends on the kind of the considered topology. For continuous
topologies, it is a list with their environment. For discrete topologies, it can be any of the container
supporting the inclusion of geometries (list, graph, map, matrix)

Remark: There exist various kinds of topology: continuous topology and discrete topology (e.g.
grid, graph...)

Declaration: To create a topology, we can use the topology  unary casting operator applied to:
an agent: returns a continuous topology built from the agent's geometry

a species name: returns the topology defined for this species population

a geometry: returns a continuous topology built on this geometry

a geometry container (list, map, shapefile): returns an half-discrete (with corresponding places),
half-continuous topology (to compute distances...)

a geometry matrix (i.e. a grid): returns a grid topology which computes specifically
neighborhood and distances

global {
    init {
         create human number: 10;
         ask human {
               friend <- one_of (human - self);
         }
     }
}
entities {
    species human {
        human friend <- nil;
    }
}



a geometry graph: returns a graph topology which computes specifically neighborhood and
distances More complex topologies can also be built using dedicated operators, e.g. to
decompose a geometry...

Defining custom types
Sometimes, besides the species of agents that compose the model, it can be necessary to declare
custom datatypes. Species serve this purpose as well, and can be seen as "classes" that can help to
instantiate simple "objects". In the following example, we declare a new kind of "object", bottle, that
lacks the skills habitually associated with agents (moving, visible, etc.), but can nevertheless group
together attributes and behaviors within the same closure. The following example demonstrates how to
create the species:

How to use this species to create new bottles:

And how to use bottles as any other agent in a species (a drinker owns a bottle; when he gets thirsty, it
drinks a random quantity from it; when it is empty, it refills it):

species bottle {
    float volume <- 0.0 max:1 min:0.0;
    bool is_empty -> {volume = 0.0};
    action fill {
         volume <- 1.0;
    }
}

create bottle {
    volume <- 0.5;
}

species drinker {
     ...
    bottle my_bottle<- nil;
    float quantity <- rnd (100) / 100;
    bool thirsty <- false update: flip (0.1);
    ...
    action drink {
         if condition: ! bottle.is_empty {
              bottle.volume <-bottle.volume - quantity;
              thirsty <- false;



         }
    }
    ...
    init {
          create bottle return: created_bottle;
              volume <- 0.5;
          }
          my_bottle <- first(created_bottle);
    }
    ...
    reflex filling_bottle when: bottle.is_empty {
         ask  my_bottle {
              do fill;
         }
    }
    ...
    reflex drinking when: thirsty {
         do drink;
    }
}



Version: 1.9.3

File Types
GAMA provides modelers with a generic type for files called file. It is possible to load a file using the file
operator:

However, internally, GAMA makes the difference between the different types of files. Indeed, for
instance:

will give:

file my_file <- file("../includes/data.csv");

global {
init {

file my_file <- file("../includes/data.csv");
loop el over: my_file {

write el;
}

}
}

sepallength
sepalwidth
petallength
petalwidth
type
5.1
3.5
1.4
0.2
Iris-setosa
4.9
3.0
1.4
0.2
Iris-setosa
...



Indeed, the content of CSV file is a matrix: each row of the matrix is a line of the file; each column of the
matrix is value delimited by the separator (by default ",").

In contrary:

will give:

The content of a shapefile is a list of geometries corresponding to the objects of the shapefile.

In order to know how to load a file, GAMA analyzes its extension. For instance for a file with a ".csv"
extension, GAMA knows that the file is a csv one and will try to split each line with the , separator.
However, if the modeler wants to split each line with a different separator (for instance ;) or load it as a
text file, he/she will have to use a specific file operator.

Indeed, GAMA integrates specific operators corresponding to different types of files.

Table of contents
File Types

Text File
Extensions

Content

Operators

global {
init {

file my_file <- file("../includes/data.shp");
loop el over: my_file {

write el;
}

}
}

Polygon
Polygon
Polygon
Polygon
Polygon
Polygon
Polygon



CSV File
Extensions

Content

Operators

Shapefile
Extensions

Content

Operators

OSM File
Extensions

Content

Operators

Grid File
Extensions

Content

Operators

Image File
Extensions

Content

Operators

SVG File
Extensions

Content

Operators

Property File
Extensions

Content

Operators

R File
Extensions

Content

Operators

3DS File
Extensions

Content



Operators

OBJ File
Extensions

Content

Operators

Text File

Extensions

Here the list of possible extensions for text file:

"txt"

"data"

"csv"

"text"

"tsv"

"xml"

Note that when trying to define the type of a file with the default file loading operator (file), GAMA will
first try to test the other type of file. For example, for files with ".csv" extension, GAMA will cast them as
csv file and not as text file.

Content

The content of a text file is a list of string corresponding to each line of the text file. For example:

will give:

global {
init {

file my_file <- text_file("../includes/data.txt");
loop el over: my_file {

write el;
}

}
}



Operators

List of operators related to text files:

text_file(string path): load a file (with an authorized extension) as a text file.

text_file(string path, list content): load a file (with an authorized extension) as a text file and fill it
with the given content.

is_text(op): tests whether the operand is a text file

CSV File

Extensions

Here the list of possible extensions for csv file:

"csv"

"tsv"

Content

The content of a csv file is a matrix of objects: each row of the matrix is a line of the file; each column of
the matrix is values delimited by the separator. By default, the delimiter is the "," and the datatype
depends on the dataset. For example:

sepallength,sepalwidth,petallength,petalwidth,type
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa

global {
init {

file my_file <- csv_file("../includes/data.csv");
loop el over: my_file {

write el;
}

}
}



will give:

To manipulate easily the data, we can consider the contents  of the data file, that is a matrix. As an
example, we can access the number of lines and columns of a data file named my_file  with
my_file.contents.dimension .

Operators

There are many operators available to load a csv_file.

csv_file(string path): load a file (with an authorized extension) as a csv file with default separator
(","), and no assumption on the type of data.

csv_file(string path,bool header)": load a file as a CSV file with the default separator (coma), with
specifying if the model has a header or not (boolean), and no assumption on the type of data.

csv_file(string path, string separator): load a file (with an authorized extension) as a csv file with
the given separator, without making any assumption on the type of data. Headers should be
detected automatically if they exist.

csv_file(string path, string separator, bool header): load a file (with an authorized extension) as a
csv file, specifying (1) the separator used; (2) if the model has a header or not, without making any
assumption on the type of data.

sepallength
sepalwidth
petallength
petalwidth
type
5.1
3.5
1.4
0.2
Iris-setosa
4.9
3.0
1.4
0.2
Iris-setosa
...

file my_file <- csv_file("../includes/data.csv", ";");



csv_file(string path, string separator, string text_qualifier, bool header): load a file as a csv file
specifying (1) the separator used; (2) the text qualifier used; (3) if the model has a header or not,
without making any assumption on the type of data",

csv_file(string path, string separator, type datatype): load a file as a csv file specifying a given
separator, no header, and the type of data. No text qualifier will be used.

csv_file(string path, string separator, string text_qualifier, type datatype): load a file as a csv file
specifying the separator, text qualifier to use, and the type of data to read. Headers should be
detected automatically if they exist.

csv_file(string path, string separator, type datatype, bool header): load a file as a csv file
specifying the given separator, the type of data, with specifying if the model has a header or not
(boolean). No text qualifier will be used".

csv_file(string path, string separator, type datatype, bool header, point dimensions): load a file
as a csv file specifying a given separator, the type of data, with specifying the number of cols and
rows taken into account. No text qualifier will be used.

csv_file(string path, matrix content): This file constructor allows to store a matrix in a CSV file (it
does not save it - just store it in memory)

Finally, it is possible to check whether a file is a csv file:

is_csv(op): tests whether the operand is a csv file

Shapefile
Shapefiles are classical GIS data files. A shapefile is not simple file, but a set of several files (source:
wikipedia):

Mandatory files :
.shp - shape format; the feature geometry itself

.shx - shape index format; a positional index of the feature geometry to allow seeking forwards
and backwards quickly

.dbf - attribute format; columnar attributes for each shape, in dBase IV format

Optional files :
.prj - projection format; the coordinate system and projection information, a plain text file
describing the projection using well-known text format

file my_file <- csv_file("../includes/data.csv", ";", int);



.sbn and .sbx - a spatial index of the features

.fbn and .fbx - a spatial index of the features for shapefiles that are read-only

.ain and .aih - an attribute index of the active fields in a table

.ixs - a geocoding index for read-write shapefiles

.mxs - a geocoding index for read-write shapefiles (ODB format)

.atx - an attribute index for the .dbf file in the form of shapefile.columnname.atx (ArcGIS 8 and
later)

.shp.xml - geospatial metadata in XML format, such as ISO 19115 or other XML schema

.cpg - used to specify the code page (only for .dbf) for identifying the character encoding to be
used

More details about shapefiles can be found here.

Extensions

Here the list of possible extension for shapefile:

"shp"

Content

The content of a shapefile is a list of geometries corresponding to the objects of the shapefile. For
example:

will give:

global {
init {

file my_file <- shape_file("../includes/data.shp");
loop el over: my_file {

write el;
}

}
}

Polygon
Polygon
Polygon
Polygon
Polygon

http://en.wikipedia.org/wiki/Shapefile


Note that the attributes of each object of the shapefile are stored in their corresponding GAMA
geometry. The operator "get" (or "read") allows to get the value of corresponding attributes.

For example:

Operators

List of operators related to shapefiles:

shape_file(string path): load a file (with an authorized extension) as a shapefile with default
projection (if a prj file is defined, use it, otherwise use the default projection defined in the
preference).

shape_file(string path, string code): load a file (with an authorized extension) as a shapefile with
the given projection (GAMA will automatically decode the code. For a list of the possible projections
see: http://spatialreference.org/ref/)

shape_file(string path, int EPSG_ID): load a file (with an authorized extension) as a shapefile with
the given projection (GAMA will automatically decode the epsg code. For a list of the possible
projections see: http://spatialreference.org/ref/)

shape_file(string path, list content): load a file (with an authorized extension) as a shapefile and
fill it with the given content.

is_shape(op): tests whether the operand is a shapefile

OSM File

Polygon
Polygon
...

file my_file <- shape_file("../includes/data.shp");
write "my_file: " + my_file.contents;
loop el over: my_file {

write (el get "TYPE");
}

file my_file <- shape_file("../includes/data.shp", "EPSG:32601");

http://spatialreference.org/ref/
http://spatialreference.org/ref/


OSM (Open Street Map) is a collaborative project to create a free editable map of the world. The data
produced in this project (OSM File) represent physical features on the ground (e.g., roads or buildings)
using tags attached to its basic data structures (its nodes, ways, and relations). Each tag describes a
geographic attribute of the feature being shown by that specific node, way or relation (source:
openstreetmap.org).

More details about OSM data can be found here.

Extensions

Here the list of possible extension for shapefile:

"osm"

"pbf"

"bz2"

"gz"

Content

The content of an OSM data is a list of geometries corresponding to the objects of the OSM file. For
example:

will give:

global {
init {

file my_file <- osm_file("../includes/data.gz");
loop el over: my_file {

write el;
}

}
}

Point
Point
Point
Point
Point
LineString
LineString
Polygon

http://wiki.openstreetmap.org/wiki/Map_Features


Note that like for shapefiles, the attributes of each object of the osm file is stored in their corresponding
GAMA geometry. The operator "get" (or "read") allows to get the value of corresponding attributes.

Operators

List of operators related to osm file:

osm_file(string path): load a file (with an authorized extension) as an osm file with default
projection (if a prj file is defined, use it, otherwise use the default projection defined in the
preference). In this case, all the nodes and ways of the OSM file will become a geometry.

osm_file(string path, string code): load a file (with an authorized extension) as an osm file with the
given projection (GAMA will automatically decode the code. For a list of the possible projections see:
http://spatialreference.org/ref/). In this case, all the nodes and ways of the OSM file will become a
geometry.

osm_file(string path, int EPSG_ID): load a file (with an authorized extension) as an osm file with the
given projection (GAMA will automatically decode the epsg code. For a list of the possible
projections see: http://spatialreference.org/ref/). In this case, all the nodes and ways of the OSM file
will become a geometry.

osm_file(string path, map filter): load a file (with an authorized extension) as an osm file with
default projection (if a prj file is defined, use it, otherwise use the default projection defined in the
preference). In this case, only the elements with the defined values are loaded from the file.

osm_file(string path, map filter, string code): load a file (with an authorized extension) as a osm
file with the given projection (GAMA will automatically decode the code. For a list of the possible

Polygon
Polygon
...

file my_file <- osm_file("../includes/data.gz", "EPSG:32601");

//map used to filter the object to build from the OSM file according to attributes. 
map filtering <- map(["highway"::["primary", "secondary", "tertiary", "motorway", 
"living_street","residential", "unclassified"], "building"::["yes"]]);

//OSM file to load
file<geometry> osmfile <-  file<geometry (osm_file("../includes/rouen.gz", filtering))  
;

http://spatialreference.org/ref/
http://spatialreference.org/ref/


projections see: http://spatialreference.org/ref/). In this case, only the elements with the defined
values are loaded from the file.

osm_file(string path, map filter, int EPSG_ID): load a file (with an authorized extension) as a osm
file with the given projection (GAMA will automatically decode the epsg code. For a list of the
possible projections see: http://spatialreference.org/ref/). In this case, only the elements with the
defined values are loaded from the file.

is_osm(op): tests whether the operand is a osm file

Grid File
Esri ASCII Grid files are classic text raster GIS data.

More details about Esri ASCII grid file can be found here.

Note that grid files can be used to initialize a grid species. The number of rows and columns will be read
from the file. Similarly, the values of each cell contained in the grid file will be accessible through the
grid_value attribute.

Extensions

Here the list of possible extension for grid file:

"asc"

Content

The content of a grid file is a list of geometries corresponding to the cells of the grid. For example:

grid cell file: grid_file {
}

global {
init {

file my_file <- grid_file("../includes/data.asc");
loop el over: my_file {

write el;
}

http://spatialreference.org/ref/
http://spatialreference.org/ref/
http://en.wikipedia.org/wiki/Esri_grid


will give:

Note that the values of each cell of the grid file is stored in their corresponding GAMA geometry
(grid_value attribute). The operator "get" (or "read") allows to get the value of this attribute.

For example:

Operators

List of operators related to shapefiles:

grid_file(string path): load a file (with an authorized extension) as a grid file with default projection
(if a prj file is defined, use it, otherwise use the default projection defined in the preference).

grid_file(string path, string code): load a file (with an authorized extension) as a grid file with the
given projection (GAMA will automatically decode the code. For a list of the possible projections see:
http://spatialreference.org/ref/)

grid_file(string path, int EPSG_ID): load a file (with an authorized extension) as a grid file with the
given projection (GAMA will automatically decode the epsg code. For a list of the possible
projections see: http://spatialreference.org/ref/)

}
}

Polygon
Polygon
Polygon
Polygon
Polygon
Polygon
Polygon
...

file my_file <- grid_file("../includes/data.asc");
write "my_file: " + my_file.contents;
loop el over: my_file {

write el get "grid_value";
}

file my_file <- grid_file("../includes/data.shp", "EPSG:32601");

http://spatialreference.org/ref/
http://spatialreference.org/ref/


is_grid(op): tests whether the operand is a grid file.

Image File

Extensions

Here the list of possible extensions for image file:

"tif"

"tiff"

"jpg"

"jpeg"

"png"

"gif"

"pict"

"bmp"

Content

The content of an image file is a matrix of int: each pixel is a value in the matrix.

For example:

will give:

global {
init {

file my_file <- image_file("../includes/DEM.png");
loop el over: my_file {

write el;
}

}
}

-9671572
-9671572
-9671572
-9671572
-9934744



Operators

List of operators related to csv files:

image_file(string path): load a file (with an authorized extension) as an image file.

image_file(string path, matrix content): load a file (with an authorized extension) as an image file
and fill it with the given content.

is_image(op): tests whether the operand is an image file

SVG File
Scalable Vector Graphics (SVG) is an XML-based vector image format for two-dimensional graphics with
support for interactivity and animation. Note that interactivity and animation features are not supported
in GAMA.

More details about SVG file can be found here.

Extensions

Here the list of possible extension for SVG file:

"svg"

Content

The content of a SVG file is a list of geometries. For example:

-9934744
-9868951
-9868951
-10000537
-10000537
...

global {
init {

file my_file <- svg_file("../includes/data.svg");
loop el over: my_file {

write el;
}

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics


will give:

Operators

List of operators related to svg files:

shape_file(string path): load a file (with an authorized extension) as a SVG file.

shape_file(string path, point size): load a file (with an authorized extension) as a SVG file with the
given size:

is_svg(op): tests whether the operand is a SVG file

Property File

Extensions

Here the list of possible extensions for property file:

"properties"

Content

The content of a property file is a map of string corresponding to the content of the file. For example:

}
}

Polygon

file my_file <- svg_file("../includes/data.svg", {5.0,5.0});

global {
init {

file my_file <- property_file("../includes/data.properties");
loop el over: my_file {

write el;
}



with the given property file:

will give:

Operators

List of operators related to text files:

property_file(string path): load a file (with an authorized extension) as a property file.

is_property(op): tests whether the operand is a property file

R File
R is a free software environment for statistical computing and graphics. GAMA allows to execute R script
(if R is installed on the computer).

More details about R can be found here.

Note that GAMA also integrates some operators to manage R scripts:

R_compute

R_compute_param

Extensions

}
}

sepallength = 5.0
sepalwidth = 3.0
petallength = 4.0
petalwidth = 2.5
type = Iris-setosa

3.0
4.0
5.0
Iris-setosa
2.5

http://www.r-project.org/
http://localhost:3000/wiki/OperatorsAA#R_compute
http://localhost:3000/wiki/OperatorsAA#R_compute_param


Here the list of possible extensions for R file:

"r"

Content

The content of a R file corresponds to the results of the application of the script contained in the file.

For example:

will give:

Operators

List of operators related to R files:

R_file(string path): load a file (with an authorized extension) as a R file.

is_R(op): tests whether the operand is a R file.

3DS File
3DS is one of the file formats used by the Autodesk 3ds Max 3D modeling, animation and rendering
software. 3DS files can be used in GAMA to load 3D geometries.

More details about 3DS file can be found here.

Extensions

global {
init {

file my_file <- R_file("../includes/data.r");
loop el over: my_file {

write el;
}

}
}

3.0

http://en.wikipedia.org/wiki/.3ds


Here the list of possible extension for 3DS file:

"3ds"

"max"

Content

The content of a 3DS file is a list of geometries. For example:

will give:

Operators

List of operators related to 3ds files:

threeds_file(string path): load a file (with an authorized extension) as a 3ds file.

is_threeds(op): tests whether the operand is a 3DS file

OBJ File
OBJ file is a geometry definition file format first developed by Wavefront Technologies for its Advanced
Visualizer animation package. The file format is open and has been adopted by other 3D graphics
application vendors.

More details about Obj file can be found here.

Extensions

global {
init {

file my_file <- threeds_file("../includes/data.3ds");
loop el over: my_file {

write el;
}

}
}

Polygon

http://en.wikipedia.org/wiki/Wavefront_.obj_file


Here the list of possible extension for OBJ files:

"obj"

Content

The content of a OBJ file is a list of geometries. For example:

will give:

Operators

List of operators related to obj files:

obj_file(string path): load a file (with an authorized extension) as a obj file.

is_obj(op): tests whether the operand is a OBJ file

global {
init {

file my_file <- obj_file("../includes/data.obj");
loop el over: my_file {

write el;
}

}
}

Polygon



Version: 1.9.3

Expressions
Expressions in GAML are the value part of the statements' facets. They represent or compute data that
will be used as the value of the facet when the statement will be executed.

An expression can be either a literal, a unit, a constant, a variable, an attribute or the application of one
or several operators to compose a complex expression.

http://localhost:3000/wiki/Statements
http://localhost:3000/wiki/Literals
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/PseudoVariables
http://localhost:3000/wiki/VariablesAndAttributes
http://localhost:3000/wiki/Operators


Version: 1.9.3

Literals
(some literal expressions are also described in data types)

A literal is a way to specify an unnamed constant value corresponding to a given data type. GAML
supports various types of literals for often — or less often — used data types.

Table of contents
Literals

Simple Types

Literal Constructors

Universal Literal

Simple Types
Values of simple (i.e. not composed) types can all be expressed using literal expressions. Namely:

bool: true  and false .

int: decimal value, such as 100 , or hexadecimal value if preceded by '#'  (e.g. #AAAAAA , which
returns the int 11184810 )

float: the value in plain digits, using '.'  for the decimal point (e.g. 123.297 )

string: a sequence of characters enclosed between quotes ( 'my string' ) or double quotes ( "my
string" )

Literal Constructors
Although they are not strictly literals in the sense given above, some special constructs (called literal
constructors) allow the modeler to declare constants of other data types. They are actually operators but
can be thought of literals when used with constant operands.

pair: the key and the value separated by ::  (e.g. 12::'abc' )

list: the elements, separated by commas, enclosed inside square brackets (e.g. [12,15,15] )

http://localhost:3000/wiki/DataTypes
http://localhost:3000/wiki/Operators


map: a list of pairs (e.g. [12::'abc', 13::'def'] )

point: 2 or 3 int or float ordinates enclosed inside curly brackets (e.g. {10.0,10.0,10.0} )

Universal Literal
Finally, a special literal, of type unknown , is shared between the data types and all the agent types (aka
species). Only bool , int  and float , which do not derive from unknown , do not accept this literal. All the
others will accept it (e.g. string s <- nil;  is ok).

unknown: nil , which represents the non-initialized (or, literally, unknown) value.



Version: 1.9.3

Units and constants
This file is automatically generated from java files. Do Not Edit It.

Introduction
Units can be used to qualify the values of numeric variables. By default, unqualified values are
considered as:

meters for distances, lengths...

seconds for durations

cubic meters for volumes

kilograms for masses

So, an expression like:

will be considered as 1 meter if foo  is a distance, or 1 second if it is a duration, or 1 meter/second if it is
a speed. If one wants to specify the unit, it can be done very simply by adding the unit symbol (° or # )
followed by an unit name after the numeric value, like:

or

In that case, the numeric value of foo  will be automatically translated to 0.01 (meter). It is
recommended to always use float as the type of the variables that might be qualified by units
(otherwise, for example in the previous case, they might be truncated to 0). Several units names are
allowed as qualifiers of numeric variables. These units represent the basic metric and US units.

float foo <- 1;

float foo <- 1 °centimeter;

float foo <- 1 #centimeter;



Composed and derived units (like velocity, acceleration, special volumes or surfaces) can be obtained by
combining these units using the *  and /  operators. For instance:

3D
#ambient , value= Ambient light, Comment: Represent the 'ambient' type of light

#direction , value= Directional light, Comment: Represent the 'direction' type of light

#from_above , value= From above, Comment: Represent the position of the camera, above the scene

#from_front , value= From front, Comment: Represent the position of the camera, in front of the
scene

#from_left , value= From left, Comment: Represent the position of the camera, on the left of the
scene

#from_right , value= From right, Comment: Represent the position of the camera, on the right of
the scene

#from_up_front , value= From up front, Comment: Represent the position of the camera, in front
and slightly above the scene

#from_up_left , value= From up left, Comment: Represent the position of the camera, on the left,
slightly above the scene

#from_up_right , value= From up right, Comment: Represent the position of the camera on the
right, slightly above the scene

#isometric , value= Isometric, Comment: Represent the position of the camera, on the left of the
scene

#point , value= Point light, Comment: Represent the 'point' type of light

#spot , value= Spot light, Comment: Represent the 'spot' type of light

Constants
#AStar , value= AStar, Comment: AStar shortest path computation algorithm

float one_kmh <- 1 °km / °h const: true;
float one_millisecond <-1 °sec / 1000;
float one_cubic_inch <- 1 °sqin * 1 °inch;
... etc ...



#BellmannFord , value= BellmannFord, Comment: BellmannFord shortest path computation
algorithm

#Bhandari , value= Bhandari, Comment: Bhandari K shortest paths computation algorithm

#BidirectionalDijkstra , value= BidirectionalDijkstra, Comment: BidirectionalDijkstra shortest
path computation algorithm

#CHBidirectionalDijkstra , value= CHBidirectionalDijkstra, Comment: CHBidirectionalDijkstra
shortest path computation algorithm

#current_error , value= , Comment: The text of the last error thrown during the current execution

#DeltaStepping , value= DeltaStepping, Comment: DeltaStepping shortest path computation
algorithm

#Dijkstra , value= Dijkstra, Comment: Dijkstra shortest path computation algorithm

#e , value= 2.718281828459045, Comment: The e constant

#Eppstein , value= Eppstein, Comment: Eppstein K shortest paths computation algorithm

#FloydWarshall , value= FloydWarshall, Comment: FloydWarshall shortest path computation
algorithm

#infinity , value= Infinity, Comment: A constant holding the positive infinity of type float (Java
Double.POSITIVE_INFINITY)

#max_float , value= 1.7976931348623157E308, Comment: A constant holding the largest positive
finite value of type float (Java Double.MAX_VALUE)

#max_int , value= 2147483647, Comment: A constant holding the maximum value an int can have
(Java Integer.MAX_VALUE)

#min_float , value= 4.9E-324, Comment: A constant holding the smallest positive nonzero value of
type float (Java Double.MIN_VALUE)

#min_int , value= -2147483648, Comment: A constant holding the minimum value an int can have
(Java Integer.MIN_VALUE)

#nan , value= NaN, Comment: A constant holding a Not-a-Number (NaN) value of type float (Java
Double.POSITIVE_INFINITY)

#NBAStar , value= NBAStar, Comment: NBAStar shortest path computation algorithm

#NBAStarApprox , value= NBAStarApprox, Comment: NBAStarApprox shortest path computation
algorithm

#pi , value= 3.141592653589793, Comment: The PI constant

#Suurballe , value= Suurballe, Comment: Suurballe K shortest paths computation algorithm

#to_deg , value= 57.29577951308232, Comment: A constant holding the value to convert radians
into degrees



#to_rad , value= 0.017453292519943295, Comment: A constant holding the value to convert
degrees into radians

#TransitNodeRouting , value= TransitNodeRouting, Comment: TransitNodeRouting shortest path
computation algorithm

#Yen , value= Yen, Comment: Yen K shortest paths computation algorithm

Graphics units
#bold , value= 1, Comment: This constant allows to build a font with a bold face. Can be combined
with #italic

#bottom_center , value= No Default Value, Comment: Represents an anchor situated at the center
of the bottom side of the text to draw

#bottom_left , value= No Default Value, Comment: Represents an anchor situated at the bottom
left corner of the text to draw

#bottom_right , value= No Default Value, Comment: Represents an anchor situated at the bottom
right corner of the text to draw

#camera_location , value= No Default Value, Comment: This unit, only available when running
aspects or declaring displays, returns the current position of the camera as a point

#camera_orientation , value= No Default Value, Comment: This unit, only available when running
aspects or declaring displays, returns the current orientation of the camera as a point

#camera_target , value= No Default Value, Comment: This unit, only available when running aspects
or declaring displays, returns the current target of the camera as a point

#center , value= No Default Value, Comment: Represents an anchor situated at the center of the
text to draw

#display_height , value= 1.0, Comment: This constant is only accessible in a graphical context:
display, graphics...

#display_width , value= 1.0, Comment: This constant is only accessible in a graphical context:
display, graphics...

#flat , value= 2, Comment: This constant represents a flat line buffer end cap style

#fullscreen , value= false, Comment: This unit, only available when running aspects or declaring
displays, returns whether the display is currently fullscreen or not

#hidpi , value= false, Comment: This unit, only available when running aspects or declaring
displays, returns whether the display is currently in HiDPI mode or not

#horizontal , value= 3, Comment: This constant represents a layout where all display views are
aligned horizontally



#italic , value= 2, Comment: This constant allows to build a font with an italic face. Can be
combined with #bold

#left_center , value= No Default Value, Comment: Represents an anchor situated at the center of
the left side of the text to draw

#none , value= 0, Comment: This constant represents the absence of a predefined layout

#pixels  (#px), value= 1.0, Comment: This unit, only available when running aspects or declaring
displays, returns a dynamic value instead of a fixed one. px (or pixels), returns the value of one pixel
on the current view in terms of model units.

#plain , value= 0, Comment: This constant allows to build a font with a plain face

#right_center , value= No Default Value, Comment: Represents an anchor situated at the center of
the right side of the text to draw

#round , value= 1, Comment: This constant represents a round line buffer end cap style

#split , value= 2, Comment: This constant represents a layout where all display views are split in a
grid-like structure

#square , value= 3, Comment: This constant represents a square line buffer end cap style

#stack , value= 1, Comment: This constant represents a layout where all display views are stacked

#top_center , value= No Default Value, Comment: Represents an anchor situated at the center of
the top side of the text to draw

#top_left , value= No Default Value, Comment: Represents an anchor situated at the top left corner
of the text to draw

#top_right , value= No Default Value, Comment: Represents an anchor situated at the top right
corner of the text to draw

#user_location  (#user_location_in_world), value= No Default Value, Comment: This unit
permanently holds the mouse's location in the world's coordinates. If it is outside a display window,
its last position is used.

#user_location_in_display , value= No Default Value, Comment: This unit permanently holds the
mouse's location in the display's coordinates. If it is outside a display window, its last position is
used.

#vertical , value= 4, Comment: This constant represents a layout where all display views are
aligned vertically

#zoom , value= 1.0, Comment: This unit, only available when running aspects or declaring displays,
returns the current zoom level of the display as a positive float, where 1.0 represent the neutral
zoom (100%)



Length units
#µm  (#micrometer,#micrometers), value= 1.0E-6, Comment: micrometer unit

#cm  (#centimeter,#centimeters), value= 0.01, Comment: centimeter unit

#dm  (#decimeter,#decimeters), value= 0.1, Comment: decimeter unit

#foot  (#feet,#ft), value= 0.3048, Comment: foot unit

#inch  (#inches), value= 0.025400000000000002, Comment: inch unit

#km  (#kilometer,#kilometers), value= 1000.0, Comment: kilometer unit

#m  (#meter,#meters), value= 1.0, Comment: meter: the length basic unit

#mile  (#miles), value= 1609.344, Comment: mile unit

#mm  (#milimeter,#milimeters), value= 0.001, Comment: millimeter unit

#nm  (#nanometer,#nanometers), value= 9.999999999999999E-10, Comment: nanometer unit

#yard  (#yards), value= 0.9144, Comment: yard unit

Math constants
#AdamsBashforth , value= AdamsBashforth, Comment: AdamsBashforth solver

#AdamsMoulton , value= AdamsMoulton, Comment: AdamsMoulton solver

#DormandPrince54 , value= DormandPrince54, Comment: DormandPrince54 solver

#dp853 , value= dp853, Comment: dp853 solver

#Euler , value= Euler, Comment: Euler solver

#Gill , value= Gill, Comment: Gill solver

#GraggBulirschStoer , value= GraggBulirschStoer, Comment: GraggBulirschStoer solver

#HighamHall54 , value= HighamHall54, Comment: HighamHall54 solver

#Luther , value= Luther, Comment: Luther solver

#Midpoint , value= Midpoint, Comment: Midpoint solver

#rk4 , value= rk4, Comment: rk4 solver

#ThreeEighthes , value= ThreeEighthes, Comment: ThreeEighthes solver

Surface units
#m2 , value= 1.0, Comment: square meter: the basic unit for surfaces



#sqft  (#square_foot,#square_feet), value= 0.09290304, Comment: square foot unit

#sqin  (#square_inch,#square_inches), value= 6.451600000000001E-4, Comment: square inch unit

#sqmi  (#square_mile,#square_miles), value= 2589988.110336, Comment: square mile unit

Time units
#custom , value= CUSTOM, Comment: custom: a custom date/time pattern that can be defined in
the preferences of GAMA and reused in models

#cycle  (#cycles), value= 1, Comment: cycle: the discrete measure of time in the simulation. Used to
force a temporal expression to be expressed in terms of cycles rather than seconds

#day  (#d,#days), value= 86400.0, Comment: day time unit: defines an exact duration of 24 hours

#epoch , value= No Default Value, Comment: The epoch default starting date as defined by the ISO
format (1970-01-01T00:00Z)

#h  (#hour,#hours), value= 3600.0, Comment: hour time unit: defines an exact duration of 60
minutes

#iso_local , value= ISO_LOCAL_DATE_TIME, Comment: iso_local: the standard ISO 8601 output /
parsing format for local dates (i.e. with no time-zone information)

#iso_offset , value= ISO_OFFSET_DATE_TIME, Comment: iso_offset: the standard ISO 8601 output /
parsing format for dates with a time offset

#iso_zoned , value= ISO_ZONED_DATE_TIME, Comment: iso_zoned: the standard ISO 8601 output /
parsing format for dates with a time zone

#minute  (#minutes,#mn), value= 60.0, Comment: minute time unit: defined an exact duration of 60
seconds

#month  (#months), value= 2592000.0, Comment: month time unit: an approximate duration of 30
days. The number of days of each #month depend of course on the current_date of the model and
cannot be constant

#msec  (#millisecond,#milliseconds,#ms), value= 0.001, Comment: millisecond time unit: defines an
exact duration of 0.001 second

#now , value= 1.0, Comment: This value represents the current date

#sec  (#second,#seconds,#s), value= 1.0, Comment: second: the time basic unit, with a fixed value of
1. All other durations are expressed with respect to it

#week  (#weeks), value= 604800.0, Comment: week time unit: defines an exact duration of 7 days

#year  (#years,#y), value= 3.1536E7, Comment: year time unit: an approximate duration of 365 days.
The value of #year in number of days varies depending on leap years, etc. and is dependend on the



current_date of the model

User control operators

Volume units
#cl  (#centiliter,#centiliters), value= 1.0E-5, Comment: centiliter unit

#dl  (#deciliter,#deciliters), value= 1.0E-4, Comment: deciliter unit

#hl  (#hectoliter,#hectoliters), value= 0.1, Comment: hectoliter unit

#l  (#liter,#liters,#dm3), value= 0.001, Comment: liter unit

#m3 , value= 1.0, Comment: cube meter: the basic unit for volumes

Weight units
#gram  (#grams), value= 0.001, Comment: gram unit

#kg  (#kilo,#kilogram,#kilos), value= 1.0, Comment: second: the basic unit for weights

#longton  (#lton), value= 1016.0469088000001, Comment: short ton unit

#ounce  (#oz,#ounces), value= 0.028349523125, Comment: ounce unit

#pound  (#lb,#pounds,#lbm), value= 0.45359237, Comment: pound unit

#shortton  (#ston), value= 907.18474, Comment: short ton unit

#stone  (#st), value= 6.35029318, Comment: stone unit

#ton  (#tons), value= 1000.0, Comment: ton unit

Colors
In addition to the previous units, GAML provides a direct access to the 147 named colors defined in CSS
(see http://www.cssportal.com/css3-color-names/). E.g,

rgb my_color <- °teal;

http://www.cssportal.com/css3-color-names/




Version: 1.9.3

Pseudo-variables
The expressions known as pseudo-variables are special read-only variables that are not declared
anywhere (at least not in a species), and which represent a value that changes depending on the context
of execution.

Table of contents
Pseudo-variables

self

myself

each

super

self
The pseudo-variable self  always holds a reference to the agent executing the current statement.

Example (sets the friend  attribute of another random agent of the same species to self  and
conversely):

super
The pseudo-variable super  behaves exactly in the same way as self  except when calling an action, in
which case it represents an indirection to the parent species. It is mainly used for allowing to call
inherited actions within redefined ones. For instance:

friend potential_friend <- one_of (species(self) - self);
if potential_friend != nil {
    potential_friend.friend <- self;
    friend <- potential_friend;
}



myself
myself  plays the same role as self  but in remotely-executed code ( ask , create , capture  and
release  statements), where it represents the calling agent when the code is executed by the remote
agent.

Example (asks the first agent of my species to set its color to my color):

Example (create 10 new agents of the species of my species, share the energy between them, turn
them towards me, and make them move 4 times to get closer to me):

species parent {

    int add(int a, int b) {
        return a + b;
    }

}

species child parent: parent {

    int add(int a, int b) {
        // Calls the action defined in 'parent' with modified arguments
        return super.add(a + 20, b + 20);
    }

}

ask first (species (self)){
    color <- myself.color;
}

create species (self) number: 10 {
   energy <- myself.energy / 10.0;
   loop times: 4 {
       heading <- towards (myself);
       do move;
   }
}



each
each  is available only in the right-hand argument of iterators. It is a pseudo-variable that represents, in
turn, each of the elements of the left-hand container. It can then take any type depending on the
context.

Example:

list<string> names <- my_species collect each.name;  // each is of type my_species
int max <- max(['aa', 'bbb', 'cccc'] collect length(each)); // each is of type string

http://localhost:3000/wiki/OperatorsSZ#Iterator-operators


Version: 1.9.3

Variables and Attributes
Variables and attributes represent named data that can be used in an expression. They can be accessed
depending on their scope:

the scope of attributes declared in a species is itself, its child species and its micro-species.

the scope of temporary variables is the one in which they have been declared, and all its sub-scopes.
Outside its scope of validity, an expression cannot use a variable or an attribute directly. However,
attributes can be used in a remote fashion by using a dotted notation on a given agent (see here).

Table of contents
Variables and Attributes

Direct Access

Remote Access

Direct Access
When an agent wants to use either one of the variables declared locally, one of the attributes declared
in its species (or parent species), one of the attributes declared in the macro-species of its species, it can
directly invoke its name and the compiler will do the rest (i.e. finding the variable or attribute in the right
scope). For instance, we can have a look at the following example:

species animal {
   float energy <- 1000 min: 0 max: 2000 update: energy - 0.001;
   int age_in_years <- 1 update: age_in_years + int (time / 365);
   
   action eat (float amount <- 0) {
       float gain <- amount / age_in_years;
       energy <- energy + gain;
   }

   reflex feed {
      int food_found <- rnd(100);
      do eat (amount: food_found); 
   }



Species declaration

Everywhere in the species declaration, we are able to directly name and use:

time , a global built-in variable,

energy  and age_in_years , the two species attributes.

Nevertheless, in the species declaration, but outside of the action eat  and the reflex feed , we cannot
name the variables:

amount , the argument of eat  action,

gain , a local variable defined into the eat  action,

food_found , the local variable defined into the feed  reflex.

Eat  action declaration

In the eat  action declaration, we can directly name and use:

time , a global built-in variable,

energy  and age_in_years , the two species attributes,

amount , which is an argument to the action eat ,

gain , a temporary variable within the action.

We cannot name and use the variables:

food_found , the local variable defined into the feed  reflex.

feed  reflex declaration

Similarly, in the feed  reflex declaration, we can directly name and use:

time , a global built-in variable,

energy  and age_in_years , the two species variables,

food_found , the local variable defined into the reflex.

But we cannot access to variables:

}



amount , the argument of eat  action,

gain , a local variable defined into the eat  action.

Remote Access
When an expression needs to get access to the attribute of an agent which does not belong to its scope
of execution, a special notation (similar to that used in Java) has to be used:

where remote_agent can be the name of an agent, an expression returning an agent, self, myself or
each. For instance, if we modify the previous species by giving its agents the possibility to feed another
agent found in its neighborhood, the result would be:

In this example, agent_to_feed.energy , myself.energy  and each.energy  show different remote
accesses to the attribute energy. The dotted notation used here can be employed in assignments as

remote_agent.variable

species animal {
   float energy <- 1000 min: 0 max: 2000 update: energy - 0.001;
   int age_in_years <- 1 update: age_in_years + int (time / 365);
   action eat (float amount <- 0.0) {
       float gain <- amount / age_in_years;
       energy <- energy + gain;
   }
   action feed (animal target){
       if (agent_to_feed != nil) and (agent_to_feed.energy < energy { // verifies that 
the agent exists and that it need to be fed
            ask agent_to_feed {
                do eat amount: myself.energy / 10; // asks the agent to eat 10% of our 
own energy
            }
            energy <- energy - (energy / 10); // reduces the energy by 10%
       }
   }
   reflex {
       animal candidates <- agents_overlapping (10 around agent.shape); gathers all the 
neighbors
       agent_to_feed value: candidates with_min_of (each.energy); //grabs one agent 
with the lowest energy 
       do feed target: agent_to_feed; // tries to feed it
   }
}



well. For instance, an action allowing two agents to exchange their energy could be defined as:

action random_exchange {//exchanges our energy with that of the closest agent
     animal one_agent <- agent_closest_to (self);
     float temp <- one_agent.energy; // temporary storage of the agent's energy
     one_agent.energy <- energy; // assignment of the agent's energy with our energy
     energy <- temp;
}



Version: 1.9.3

Operators (A to A)
This file is automatically generated from java files. Do Not Edit It.

Definition
Operators in the GAML language are used to compose complex expressions. An operator performs a
function on one, two, or n operands (which are other expressions and thus may be themselves
composed of operators) and returns the result of this function.

Most of them use a classical prefixed functional syntax (i.e. operator_name(operand1, operand2,
operand3) , see below), with the exception of arithmetic (e.g. + , / ), logical ( and , or ), comparison (e.g.
> , < ), access ( . , [..] ) and pair ( :: ) operators, which require an infixed notation (i.e. operand1
operator_symbol operand1 ).

The ternary functional if-else operator, ? : , uses a special infixed syntax composed with two symbols
(e.g. operand1 ? operand2 : operand3 ). Two unary operators ( -  and ! ) use a traditional prefixed
syntax that does not require parentheses unless the operand is itself a complex expression (e.g. - 10 , !
(operand1 or operand2) ).

Finally, special constructor operators ( {...}  for constructing points, [...]  for constructing lists and
maps) will require their operands to be placed between their two symbols (e.g. {1,2,3} , [operand1,
operand2, ..., operandn]  or [key1::value1, key2::value2... keyn::valuen] ).

With the exception of these special cases above, the following rules apply to the syntax of operators:

if they only have one operand, the functional prefixed syntax is mandatory (e.g.
operator_name(operand1) )

if they have two arguments, either the functional prefixed syntax (e.g. operator_name(operand1,
operand2) ) or the infixed syntax (e.g. operand1 operator_name operand2 ) can be used.

if they have more than two arguments, either the functional prefixed syntax (e.g.
operator_name(operand1, operand2, ..., operand) ) or a special infixed syntax with the first
operand on the left-hand side of the operator name (e.g. operand1 operator_name(operand2, ...,
operand) ) can be used.



All of these alternative syntaxes are completely equivalent.

Operators in GAML are purely functional, i.e. they are guaranteed to not have any side effects on their
operands. For instance, the shuffle  operator, which randomizes the positions of elements in a list, does
not modify its list operand but returns a new shuffled list.

Priority between operators
The priority of operators determines, in the case of complex expressions composed of several operators,
which one(s) will be evaluated first.

GAML follows in general the traditional priorities attributed to arithmetic, boolean, comparison
operators, with some twists. Namely:

the constructor operators, like :: , used to compose pairs of operands, have the lowest priority of
all operators (e.g. a > b :: b > c  will return a pair of boolean values, which means that the two
comparisons are evaluated before the operator applies. Similarly, [a > 10, b > 5]  will return a list
of boolean values.

it is followed by the ?:  operator, the functional if-else (e.g. a > b ? a + 10 : a - 10  will return
the result of the if-else).

next are the logical operators, and  and or  (e.g. a > b or b > c  will return the value of the test)

next are the comparison operators (i.e. > , < , <= , >= , = , != )

next the arithmetic operators in their logical order (multiplicative operators have a higher priority
than additive operators)

next the unary operators -  and !

next the access operators .  and []  (e.g. {1,2,3}.x > 20 + {4,5,6}.y  will return the result of the
comparison between the x and y ordinates of the two points)

and finally the functional operators, which have the highest priority of all.

Using actions as operators
Actions defined in species can be used as operators, provided they are called on the correct agent. The
syntax is that of normal functional operators, but the agent that will perform the action must be added
as the first operand.



For instance, if the following species is defined:

Any agent instance of spec1 can use min  as an operator (if the action conflicts with an existing operator,
a warning will be emitted). For instance, in the same model, the following line is perfectly acceptable:

If the action doesn't have any operands, the syntax to use is my_agent the_action() . Finally, if it does
not return a value, it might still be used but is considering as returning a value of type unknown  (e.g.
unknown result <- my_agent the_action(op1, op2); ).

Note that due to the fact that actions are written by modelers, the general functional contract is not
respected in that case: actions might perfectly have side effects on their operands (including the agent).

Table of Contents

Operators by categories

3D

box, cone3D, cube, cylinder, hexagon, pyramid, set_z, sphere, teapot,

species spec1 {
        int min(int x, int y) {
                return x > y ? x : y;
        }
}

global {
        init {
                create spec1;
                spec1 my_agent <- spec1[0];
                int the_min <- my_agent min(10,20); // or min(my_agent, 10, 20);
        }
}

http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#teapot


Arithmetic operators

-, /, ^, *, +, abs, acos, asin, atan, atan2, ceil, cos, cos_rad, div, even, exp, fact, floor, hypot, is_finite,
is_number, ln, log, mod, round, signum, sin, sin_rad, sqrt, tan, tan_rad, tanh, with_precision,

BDI

add_values, and, eval_when, get_about, get_agent, get_agent_cause, get_belief_op,
get_belief_with_name_op, get_beliefs_op, get_beliefs_with_name_op, get_current_intention_op,
get_decay, get_desire_op, get_desire_with_name_op, get_desires_op, get_desires_with_name_op,
get_dominance, get_familiarity, get_ideal_op, get_ideal_with_name_op, get_ideals_op,
get_ideals_with_name_op, get_intensity, get_intention_op, get_intention_with_name_op,
get_intentions_op, get_intentions_with_name_op, get_lifetime, get_liking, get_modality,
get_obligation_op, get_obligation_with_name_op, get_obligations_op, get_obligations_with_name_op,
get_plan_name, get_predicate, get_solidarity, get_strength, get_super_intention, get_trust, get_truth,
get_uncertainties_op, get_uncertainties_with_name_op, get_uncertainty_op,
get_uncertainty_with_name_op, get_values, has_belief_op, has_belief_with_name_op, has_desire_op,
has_desire_with_name_op, has_ideal_op, has_ideal_with_name_op, has_intention_op,
has_intention_with_name_op, has_obligation_op, has_obligation_with_name_op, has_uncertainty_op,
has_uncertainty_with_name_op, new_emotion, new_mental_state, new_predicate, new_social_link, not,
or, set_about, set_agent, set_agent_cause, set_decay, set_dominance, set_familiarity, set_intensity,
set_lifetime, set_liking, set_modality, set_predicate, set_solidarity, set_strength, set_trust, set_truth,
with_values,

Casting operators

as, as_int, as_matrix, deserialize, field_with, font, from_gaml, from_json, is, is_skill, list_with, matrix_with,
serialize, species_of, to_gaml, to_geojson, to_json, to_list, with_size, with_style,

Color-related operators

-, /, *, +, blend, brewer_colors, brewer_palettes, gradient, grayscale, hsb, mean, median, palette, rgb,
rnd_color, scale, sum, to_hsb,

Comparison operators

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#%5E
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#abs
http://localhost:3000/wiki/OperatorsAA#acos
http://localhost:3000/wiki/OperatorsAA#asin
http://localhost:3000/wiki/OperatorsAA#atan
http://localhost:3000/wiki/OperatorsAA#atan2
http://localhost:3000/wiki/OperatorsBC#ceil
http://localhost:3000/wiki/OperatorsBC#cos
http://localhost:3000/wiki/OperatorsBC#cos_rad
http://localhost:3000/wiki/OperatorsDH#div
http://localhost:3000/wiki/OperatorsDH#even
http://localhost:3000/wiki/OperatorsDH#exp
http://localhost:3000/wiki/OperatorsDH#fact
http://localhost:3000/wiki/OperatorsDH#floor
http://localhost:3000/wiki/OperatorsDH#hypot
http://localhost:3000/wiki/OperatorsIM#is_finite
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#ln
http://localhost:3000/wiki/OperatorsIM#log
http://localhost:3000/wiki/OperatorsIM#mod
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsSZ#signum
http://localhost:3000/wiki/OperatorsSZ#sin
http://localhost:3000/wiki/OperatorsSZ#sin_rad
http://localhost:3000/wiki/OperatorsSZ#sqrt
http://localhost:3000/wiki/OperatorsSZ#tan
http://localhost:3000/wiki/OperatorsSZ#tan_rad
http://localhost:3000/wiki/OperatorsSZ#tanh
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsAA#add_values
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsDH#eval_when
http://localhost:3000/wiki/OperatorsDH#get_about
http://localhost:3000/wiki/OperatorsDH#get_agent
http://localhost:3000/wiki/OperatorsDH#get_agent_cause
http://localhost:3000/wiki/OperatorsDH#get_belief_op
http://localhost:3000/wiki/OperatorsDH#get_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_current_intention_op
http://localhost:3000/wiki/OperatorsDH#get_decay
http://localhost:3000/wiki/OperatorsDH#get_desire_op
http://localhost:3000/wiki/OperatorsDH#get_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_desires_op
http://localhost:3000/wiki/OperatorsDH#get_desires_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_dominance
http://localhost:3000/wiki/OperatorsDH#get_familiarity
http://localhost:3000/wiki/OperatorsDH#get_ideal_op
http://localhost:3000/wiki/OperatorsDH#get_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intensity
http://localhost:3000/wiki/OperatorsDH#get_intention_op
http://localhost:3000/wiki/OperatorsDH#get_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_lifetime
http://localhost:3000/wiki/OperatorsDH#get_liking
http://localhost:3000/wiki/OperatorsDH#get_modality
http://localhost:3000/wiki/OperatorsDH#get_obligation_op
http://localhost:3000/wiki/OperatorsDH#get_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_plan_name
http://localhost:3000/wiki/OperatorsDH#get_predicate
http://localhost:3000/wiki/OperatorsDH#get_solidarity
http://localhost:3000/wiki/OperatorsDH#get_strength
http://localhost:3000/wiki/OperatorsDH#get_super_intention
http://localhost:3000/wiki/OperatorsDH#get_trust
http://localhost:3000/wiki/OperatorsDH#get_truth
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_values
http://localhost:3000/wiki/OperatorsDH#has_belief_op
http://localhost:3000/wiki/OperatorsDH#has_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_desire_op
http://localhost:3000/wiki/OperatorsDH#has_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_intention_op
http://localhost:3000/wiki/OperatorsDH#has_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsNR#new_emotion
http://localhost:3000/wiki/OperatorsNR#new_mental_state
http://localhost:3000/wiki/OperatorsNR#new_predicate
http://localhost:3000/wiki/OperatorsNR#new_social_link
http://localhost:3000/wiki/OperatorsNR#not
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsSZ#set_about
http://localhost:3000/wiki/OperatorsSZ#set_agent
http://localhost:3000/wiki/OperatorsSZ#set_agent_cause
http://localhost:3000/wiki/OperatorsSZ#set_decay
http://localhost:3000/wiki/OperatorsSZ#set_dominance
http://localhost:3000/wiki/OperatorsSZ#set_familiarity
http://localhost:3000/wiki/OperatorsSZ#set_intensity
http://localhost:3000/wiki/OperatorsSZ#set_lifetime
http://localhost:3000/wiki/OperatorsSZ#set_liking
http://localhost:3000/wiki/OperatorsSZ#set_modality
http://localhost:3000/wiki/OperatorsSZ#set_predicate
http://localhost:3000/wiki/OperatorsSZ#set_solidarity
http://localhost:3000/wiki/OperatorsSZ#set_strength
http://localhost:3000/wiki/OperatorsSZ#set_trust
http://localhost:3000/wiki/OperatorsSZ#set_truth
http://localhost:3000/wiki/OperatorsSZ#with_values
http://localhost:3000/wiki/OperatorsAA#as
http://localhost:3000/wiki/OperatorsAA#as_int
http://localhost:3000/wiki/OperatorsAA#as_matrix
http://localhost:3000/wiki/OperatorsDH#deserialize
http://localhost:3000/wiki/OperatorsDH#field_with
http://localhost:3000/wiki/OperatorsDH#font
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsDH#from_json
http://localhost:3000/wiki/OperatorsIM#is
http://localhost:3000/wiki/OperatorsIM#is_skill
http://localhost:3000/wiki/OperatorsIM#list_with
http://localhost:3000/wiki/OperatorsIM#matrix_with
http://localhost:3000/wiki/OperatorsSZ#serialize
http://localhost:3000/wiki/OperatorsSZ#species_of
http://localhost:3000/wiki/OperatorsSZ#to_gaml
http://localhost:3000/wiki/OperatorsSZ#to_geojson
http://localhost:3000/wiki/OperatorsSZ#to_json
http://localhost:3000/wiki/OperatorsSZ#to_list
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_style
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#brewer_colors
http://localhost:3000/wiki/OperatorsBC#brewer_palettes
http://localhost:3000/wiki/OperatorsDH#gradient
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#hsb
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsNR#palette
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsNR#rnd_color
http://localhost:3000/wiki/OperatorsSZ#scale
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#to_hsb


!=, <, <=, =, >, >=, between,

Containers-related operators

-, ::, +, accumulate, all_match, among, at, cartesian_product, collect, contains, contains_all, contains_any,
contains_key, count, empty, every, first, first_with, get, group_by, in, index_by, inter, interleave,
internal_integrated_value, last, last_with, length, max, max_of, mean, mean_of, median, min, min_of,
mul, none_matches, one_matches, one_of, product_of, range, remove_duplicates, reverse, shuffle,
sort_by, split, split_in, split_using, sum, sum_of, union, variance_of, where, with_max_of, with_min_of,

Date-related operators

-, !=, +, <, <=, =, >, >=, after, before, between, every, milliseconds_between, minus_days, minus_hours,
minus_minutes, minus_months, minus_ms, minus_weeks, minus_years, months_between, plus_days,
plus_hours, plus_minutes, plus_months, plus_ms, plus_weeks, plus_years, since, to, until,
years_between,

Dates

Displays

horizontal, stack, vertical,

edge

edge_between, strahler,

EDP-related operators

diff, diff2,

http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#::
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#among
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsBC#cartesian_product
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#contains_key
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#interleave
http://localhost:3000/wiki/OperatorsIM#internal_integrated_value
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#one_of
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsNR#range
http://localhost:3000/wiki/OperatorsNR#remove_duplicates
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#after
http://localhost:3000/wiki/OperatorsBC#before
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsIM#milliseconds_between
http://localhost:3000/wiki/OperatorsIM#minus_days
http://localhost:3000/wiki/OperatorsIM#minus_hours
http://localhost:3000/wiki/OperatorsIM#minus_minutes
http://localhost:3000/wiki/OperatorsIM#minus_months
http://localhost:3000/wiki/OperatorsIM#minus_ms
http://localhost:3000/wiki/OperatorsIM#minus_weeks
http://localhost:3000/wiki/OperatorsIM#minus_years
http://localhost:3000/wiki/OperatorsIM#months_between
http://localhost:3000/wiki/OperatorsNR#plus_days
http://localhost:3000/wiki/OperatorsNR#plus_hours
http://localhost:3000/wiki/OperatorsNR#plus_minutes
http://localhost:3000/wiki/OperatorsNR#plus_months
http://localhost:3000/wiki/OperatorsNR#plus_ms
http://localhost:3000/wiki/OperatorsNR#plus_weeks
http://localhost:3000/wiki/OperatorsNR#plus_years
http://localhost:3000/wiki/OperatorsSZ#since
http://localhost:3000/wiki/OperatorsSZ#to
http://localhost:3000/wiki/OperatorsSZ#until
http://localhost:3000/wiki/OperatorsSZ#years_between
http://localhost:3000/wiki/OperatorsDH#horizontal
http://localhost:3000/wiki/OperatorsSZ#stack
http://localhost:3000/wiki/OperatorsSZ#vertical
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsDH#diff
http://localhost:3000/wiki/OperatorsDH#diff2


Files-related operators

agent_file, copy_file, crs, csv_file, delete_file, dxf_file, evaluate_sub_model, file_exists, folder,
folder_exists, gaml_file, geojson_file, get, gif_file, gml_file, graph6_file, graphdimacs_file, graphdot_file,
graphgexf_file, graphgml_file, graphml_file, graphtsplib_file, grid_file, image_file, is_agent, is_csv, is_dxf,
is_gaml, is_geojson, is_gif, is_gml, is_graph6, is_graphdimacs, is_graphdot, is_graphgexf, is_graphgml,
is_graphml, is_graphtsplib, is_grid, is_image, is_json, is_obj, is_osm, is_pgm, is_property, is_shape,
is_simulation, is_svg, is_text, is_threeds, is_xml, json_file, new_folder, obj_file, osm_file, pgm_file,
property_file, read, rename_file, shape_file, simulation_file, step_sub_model, svg_file, text_file,
threeds_file, unzip, writable, xml_file, zip,

GamaMetaType

type_of,

GamaSVGFile

image,

Graphs-related operators

add_edge, add_node, adjacency, agent_from_geometry, all_pairs_shortest_path, alpha_index,
as_distance_graph, as_edge_graph, as_intersection_graph, as_path, as_spatial_graph, beta_index,
betweenness_centrality, biggest_cliques_of, connected_components_of, connectivity_index,
contains_edge, contains_vertex, degree_of, directed, edge, edge_between, edge_betweenness, edges,
gamma_index, generate_barabasi_albert, generate_complete_graph, generate_random_graph,
generate_watts_strogatz, girvan_newman_clustering, grid_cells_to_graph, in_degree_of, in_edges_of,
k_spanning_tree_clustering, label_propagation_clustering, layout_circle, layout_force, layout_force_FR,
layout_force_FR_indexed, layout_grid, load_shortest_paths, main_connected_component,
max_flow_between, maximal_cliques_of, nb_cycles, neighbors_of, node, nodes, out_degree_of,
out_edges_of, path_between, paths_between, predecessors_of, remove_node_from, rewire_n, source_of,
spatial_graph, strahler, successors_of, sum, target_of, undirected, use_cache, weight_of,
with_k_shortest_path_algorithm, with_shortest_path_algorithm, with_weights,

Grid-related operators

http://localhost:3000/wiki/OperatorsAA#agent_file
http://localhost:3000/wiki/OperatorsBC#copy_file
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#csv_file
http://localhost:3000/wiki/OperatorsDH#delete_file
http://localhost:3000/wiki/OperatorsDH#dxf_file
http://localhost:3000/wiki/OperatorsDH#evaluate_sub_model
http://localhost:3000/wiki/OperatorsDH#file_exists
http://localhost:3000/wiki/OperatorsDH#folder
http://localhost:3000/wiki/OperatorsDH#folder_exists
http://localhost:3000/wiki/OperatorsDH#gaml_file
http://localhost:3000/wiki/OperatorsDH#geojson_file
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#gif_file
http://localhost:3000/wiki/OperatorsDH#gml_file
http://localhost:3000/wiki/OperatorsDH#graph6_file
http://localhost:3000/wiki/OperatorsDH#graphdimacs_file
http://localhost:3000/wiki/OperatorsDH#graphdot_file
http://localhost:3000/wiki/OperatorsDH#graphgexf_file
http://localhost:3000/wiki/OperatorsDH#graphgml_file
http://localhost:3000/wiki/OperatorsDH#graphml_file
http://localhost:3000/wiki/OperatorsDH#graphtsplib_file
http://localhost:3000/wiki/OperatorsDH#grid_file
http://localhost:3000/wiki/OperatorsIM#image_file
http://localhost:3000/wiki/OperatorsIM#is_agent
http://localhost:3000/wiki/OperatorsIM#is_csv
http://localhost:3000/wiki/OperatorsIM#is_dxf
http://localhost:3000/wiki/OperatorsIM#is_gaml
http://localhost:3000/wiki/OperatorsIM#is_geojson
http://localhost:3000/wiki/OperatorsIM#is_gif
http://localhost:3000/wiki/OperatorsIM#is_gml
http://localhost:3000/wiki/OperatorsIM#is_graph6
http://localhost:3000/wiki/OperatorsIM#is_graphdimacs
http://localhost:3000/wiki/OperatorsIM#is_graphdot
http://localhost:3000/wiki/OperatorsIM#is_graphgexf
http://localhost:3000/wiki/OperatorsIM#is_graphgml
http://localhost:3000/wiki/OperatorsIM#is_graphml
http://localhost:3000/wiki/OperatorsIM#is_graphtsplib
http://localhost:3000/wiki/OperatorsIM#is_grid
http://localhost:3000/wiki/OperatorsIM#is_image
http://localhost:3000/wiki/OperatorsIM#is_json
http://localhost:3000/wiki/OperatorsIM#is_obj
http://localhost:3000/wiki/OperatorsIM#is_osm
http://localhost:3000/wiki/OperatorsIM#is_pgm
http://localhost:3000/wiki/OperatorsIM#is_property
http://localhost:3000/wiki/OperatorsIM#is_shape
http://localhost:3000/wiki/OperatorsIM#is_simulation
http://localhost:3000/wiki/OperatorsIM#is_svg
http://localhost:3000/wiki/OperatorsIM#is_text
http://localhost:3000/wiki/OperatorsIM#is_threeds
http://localhost:3000/wiki/OperatorsIM#is_xml
http://localhost:3000/wiki/OperatorsIM#json_file
http://localhost:3000/wiki/OperatorsNR#new_folder
http://localhost:3000/wiki/OperatorsNR#obj_file
http://localhost:3000/wiki/OperatorsNR#osm_file
http://localhost:3000/wiki/OperatorsNR#pgm_file
http://localhost:3000/wiki/OperatorsNR#property_file
http://localhost:3000/wiki/OperatorsNR#read
http://localhost:3000/wiki/OperatorsNR#rename_file
http://localhost:3000/wiki/OperatorsSZ#shape_file
http://localhost:3000/wiki/OperatorsSZ#simulation_file
http://localhost:3000/wiki/OperatorsSZ#step_sub_model
http://localhost:3000/wiki/OperatorsSZ#svg_file
http://localhost:3000/wiki/OperatorsSZ#text_file
http://localhost:3000/wiki/OperatorsSZ#threeds_file
http://localhost:3000/wiki/OperatorsSZ#unzip
http://localhost:3000/wiki/OperatorsSZ#writable
http://localhost:3000/wiki/OperatorsSZ#xml_file
http://localhost:3000/wiki/OperatorsSZ#zip
http://localhost:3000/wiki/OperatorsSZ#type_of
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsAA#add_edge
http://localhost:3000/wiki/OperatorsAA#add_node
http://localhost:3000/wiki/OperatorsAA#adjacency
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#alpha_index
http://localhost:3000/wiki/OperatorsAA#as_distance_graph
http://localhost:3000/wiki/OperatorsAA#as_edge_graph
http://localhost:3000/wiki/OperatorsAA#as_intersection_graph
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsAA#as_spatial_graph
http://localhost:3000/wiki/OperatorsBC#beta_index
http://localhost:3000/wiki/OperatorsBC#betweenness_centrality
http://localhost:3000/wiki/OperatorsBC#biggest_cliques_of
http://localhost:3000/wiki/OperatorsBC#connected_components_of
http://localhost:3000/wiki/OperatorsBC#connectivity_index
http://localhost:3000/wiki/OperatorsBC#contains_edge
http://localhost:3000/wiki/OperatorsBC#contains_vertex
http://localhost:3000/wiki/OperatorsDH#degree_of
http://localhost:3000/wiki/OperatorsDH#directed
http://localhost:3000/wiki/OperatorsDH#edge
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsDH#edge_betweenness
http://localhost:3000/wiki/OperatorsDH#edges
http://localhost:3000/wiki/OperatorsDH#gamma_index
http://localhost:3000/wiki/OperatorsDH#generate_barabasi_albert
http://localhost:3000/wiki/OperatorsDH#generate_complete_graph
http://localhost:3000/wiki/OperatorsDH#generate_random_graph
http://localhost:3000/wiki/OperatorsDH#generate_watts_strogatz
http://localhost:3000/wiki/OperatorsDH#girvan_newman_clustering
http://localhost:3000/wiki/OperatorsDH#grid_cells_to_graph
http://localhost:3000/wiki/OperatorsIM#in_degree_of
http://localhost:3000/wiki/OperatorsIM#in_edges_of
http://localhost:3000/wiki/OperatorsIM#k_spanning_tree_clustering
http://localhost:3000/wiki/OperatorsIM#label_propagation_clustering
http://localhost:3000/wiki/OperatorsIM#layout_circle
http://localhost:3000/wiki/OperatorsIM#layout_force
http://localhost:3000/wiki/OperatorsIM#layout_force_fr
http://localhost:3000/wiki/OperatorsIM#layout_force_fr_indexed
http://localhost:3000/wiki/OperatorsIM#layout_grid
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#main_connected_component
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsIM#maximal_cliques_of
http://localhost:3000/wiki/OperatorsNR#nb_cycles
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#node
http://localhost:3000/wiki/OperatorsNR#nodes
http://localhost:3000/wiki/OperatorsNR#out_degree_of
http://localhost:3000/wiki/OperatorsNR#out_edges_of
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsNR#predecessors_of
http://localhost:3000/wiki/OperatorsNR#remove_node_from
http://localhost:3000/wiki/OperatorsNR#rewire_n
http://localhost:3000/wiki/OperatorsSZ#source_of
http://localhost:3000/wiki/OperatorsSZ#spatial_graph
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsSZ#successors_of
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#target_of
http://localhost:3000/wiki/OperatorsSZ#undirected
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsSZ#weight_of
http://localhost:3000/wiki/OperatorsSZ#with_k_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_weights


as_4_grid, as_grid, as_hexagonal_grid, cell_at, cells_in, cells_overlapping, field, grid_at, neighbors_of,
path_between, points_in, values_in,

ImageOperators

*, antialiased, blend, blurred, brighter, clipped_with, darker, grayscale, horizontal_flip, image, matrix,
rotated_by, sharpened, snapshot, tinted_with, vertical_flip, with_height, with_size, with_width,

Iterator operators

accumulate, all_match, as_map, collect, count, create_map, first_with, frequency_of, group_by, index_by,
last_with, max_of, mean_of, min_of, none_matches, one_matches, product_of, sort_by, sum_of,
variance_of, where, where, where, with_max_of, with_min_of,

List-related operators

all_indexes_of, copy_between, index_of, last_index_of,

Logical operators

:, !, ?, add_3Dmodel, add_geometry, add_icon, and, or, xor,

Map comparaison operators

fuzzy_kappa, fuzzy_kappa_sim, kappa, kappa_sim, percent_absolute_deviation,

Map-related operators

as_map, create_map, index_of, last_index_of,

Matrix-related operators

http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsBC#cell_at
http://localhost:3000/wiki/OperatorsBC#cells_in
http://localhost:3000/wiki/OperatorsBC#cells_overlapping
http://localhost:3000/wiki/OperatorsDH#field
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#points_in
http://localhost:3000/wiki/OperatorsSZ#values_in
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#antialiased
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#blurred
http://localhost:3000/wiki/OperatorsBC#brighter
http://localhost:3000/wiki/OperatorsBC#clipped_with
http://localhost:3000/wiki/OperatorsDH#darker
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#horizontal_flip
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsSZ#sharpened
http://localhost:3000/wiki/OperatorsSZ#snapshot
http://localhost:3000/wiki/OperatorsSZ#tinted_with
http://localhost:3000/wiki/OperatorsSZ#vertical_flip
http://localhost:3000/wiki/OperatorsSZ#with_height
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_width
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsAA#all_indexes_of
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsAA#:
http://localhost:3000/wiki/OperatorsAA#!
http://localhost:3000/wiki/OperatorsAA#?
http://localhost:3000/wiki/OperatorsAA#add_3dmodel
http://localhost:3000/wiki/OperatorsAA#add_geometry
http://localhost:3000/wiki/OperatorsAA#add_icon
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsSZ#xor
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa_sim
http://localhost:3000/wiki/OperatorsIM#kappa
http://localhost:3000/wiki/OperatorsIM#kappa_sim
http://localhost:3000/wiki/OperatorsNR#percent_absolute_deviation
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of


-, /, ., *, +, append_horizontally, append_vertically, column_at, columns_list, determinant, eigenvalues,
flatten, index_of, inverse, last_index_of, row_at, rows_list, shuffle, trace, transpose,

multicriteria operators

electre_DM, evidence_theory_DM, fuzzy_choquet_DM, promethee_DM, weighted_means_DM,

Path-related operators

agent_from_geometry, all_pairs_shortest_path, as_path, load_shortest_paths, max_flow_between,
path_between, path_to, paths_between, use_cache,

Pedestrian

generate_pedestrian_network,

Points-related operators

-, /, *, +, <, <=, >, >=, add_point, angle_between, any_location_in, centroid, closest_points_with,
farthest_point_to, grid_at, norm, points_along, points_at, points_on,

Random operators

binomial, exp_density, exp_rnd, flip, gamma_density, gamma_rnd, gamma_trunc_rnd, gauss,
generate_terrain, lognormal_density, lognormal_rnd, lognormal_trunc_rnd, poisson, rnd, rnd_choice,
sample, shuffle, skew_gauss, truncated_gauss, weibull_density, weibull_rnd, weibull_trunc_rnd,

Shape

arc, box, circle, cone, cone3D, cross, cube, curve, cylinder, ellipse, elliptical_arc, envelope,
geometry_collection, hexagon, line, link, plan, polygon, polyhedron, pyramid, rectangle, sphere, square,
squircle, teapot, triangle,

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#append_horizontally
http://localhost:3000/wiki/OperatorsAA#append_vertically
http://localhost:3000/wiki/OperatorsBC#column_at
http://localhost:3000/wiki/OperatorsBC#columns_list
http://localhost:3000/wiki/OperatorsDH#determinant
http://localhost:3000/wiki/OperatorsDH#eigenvalues
http://localhost:3000/wiki/OperatorsDH#flatten
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#inverse
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#row_at
http://localhost:3000/wiki/OperatorsNR#rows_list
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#trace
http://localhost:3000/wiki/OperatorsSZ#transpose
http://localhost:3000/wiki/OperatorsDH#electre_dm
http://localhost:3000/wiki/OperatorsDH#evidence_theory_dm
http://localhost:3000/wiki/OperatorsDH#fuzzy_choquet_dm
http://localhost:3000/wiki/OperatorsNR#promethee_dm
http://localhost:3000/wiki/OperatorsSZ#weighted_means_dm
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsDH#generate_pedestrian_network
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#exp_density
http://localhost:3000/wiki/OperatorsDH#exp_rnd
http://localhost:3000/wiki/OperatorsDH#flip
http://localhost:3000/wiki/OperatorsDH#gamma_density
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gamma_trunc_rnd
http://localhost:3000/wiki/OperatorsDH#gauss
http://localhost:3000/wiki/OperatorsDH#generate_terrain
http://localhost:3000/wiki/OperatorsIM#lognormal_density
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_trunc_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsNR#rnd_choice
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_density
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsSZ#weibull_trunc_rnd
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#triangle


Spatial operators

-, *, +, add_point, agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering,
agents_crossing, agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching,
angle_between, any_location_in, arc, around, as_4_grid, as_driving_graph, as_grid, as_hexagonal_grid,
at_distance, at_location, box, centroid, circle, clean, clean_network, closest_points_with, closest_to, cone,
cone3D, convex_hull, covering, covers, cross, crosses, crossing, crs, CRS_transform, cube, curve, cylinder,
direction_between, disjoint_from, distance_between, distance_to, ellipse, elliptical_arc, envelope,
farthest_point_to, farthest_to, geometry_collection, gini, hexagon, hierarchical_clustering, IDW, inside,
inter, intersects, inverse_rotation, k_nearest_neighbors, line, link, masked_by, moran, neighbors_at,
neighbors_of, normalized_rotation, overlapping, overlaps, partially_overlapping, partially_overlaps,
path_between, path_to, plan, points_along, points_at, points_on, polygon, polyhedron, pyramid,
rectangle, rotated_by, rotation_composition, round, scaled_to, set_z, simple_clustering_by_distance,
simplification, skeletonize, smooth, sphere, split_at, split_geometry, split_lines, square, squircle, teapot,
to_GAMA_CRS, to_rectangles, to_segments, to_squares, to_sub_geometries, touches, touching, towards,
transformed_by, translated_by, triangle, triangulate, union, using, voronoi, with_precision,
without_holes,

Spatial properties operators

covers, crosses, intersects, partially_overlaps, touches,

Spatial queries operators

agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering, agents_crossing,
agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching, at_distance,
closest_to, covering, crossing, farthest_to, inside, neighbors_at, neighbors_of, overlapping,
partially_overlapping, touching,

Spatial relations operators

direction_between, distance_between, distance_to, path_between, path_to, towards,

Spatial statistical operators

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_driving_graph
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#crs_transform
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#idw
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsIM#masked_by
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#split_at
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#to_gama_crs
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsSZ#towards
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#using
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsSZ#towards


hierarchical_clustering, k_nearest_neighbors, simple_clustering_by_distance,

Spatial transformations operators

-, *, +, as_4_grid, as_grid, as_hexagonal_grid, at_location, clean, clean_network, convex_hull,
CRS_transform, inverse_rotation, normalized_rotation, rotated_by, rotation_composition, scaled_to,
simplification, skeletonize, smooth, split_geometry, split_lines, to_GAMA_CRS, to_rectangles,
to_segments, to_squares, to_sub_geometries, transformed_by, translated_by, triangulate, voronoi,
with_precision, without_holes,

Species-related operators

index_of, last_index_of, of_generic_species, of_species,

Statistical operators

auto_correlation, beta, binomial_coeff, binomial_complemented, binomial_sum, build, chi_square,
chi_square_complemented, correlation, covariance, dbscan, distribution_of, distribution2d_of, dtw,
durbin_watson, frequency_of, gamma, gamma_distribution, gamma_distribution_complemented,
geometric_mean, gini, harmonic_mean, hierarchical_clustering, incomplete_beta, incomplete_gamma,
incomplete_gamma_complement, k_nearest_neighbors, kmeans, kurtosis, log_gamma, max, mean,
mean_deviation, median, min, moment, moran, morrisAnalysis, mul, normal_area, normal_density,
normal_inverse, predict, pValue_for_fStat, pValue_for_tStat, quantile, quantile_inverse,
rank_interpolated, residuals, rms, rSquare, simple_clustering_by_distance, skewness, sobolAnalysis,
split, split_in, split_using, standard_deviation, student_area, student_t_inverse, sum, t_test, variance,

Strings-related operators

+, <, <=, >, >=, at, capitalize, char, compress, contains, contains_all, contains_any, copy_between, date,
empty, first, in, indented_by, index_of, is_number, last, last_index_of, length, lower_case, regex_matches,
replace, replace_regex, reverse, sample, shuffle, split_with, string, uncompress, upper_case,

SubModel

http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#crs_transform
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#to_gama_crs
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#of_generic_species
http://localhost:3000/wiki/OperatorsNR#of_species
http://localhost:3000/wiki/OperatorsAA#auto_correlation
http://localhost:3000/wiki/OperatorsBC#beta
http://localhost:3000/wiki/OperatorsBC#binomial_coeff
http://localhost:3000/wiki/OperatorsBC#binomial_complemented
http://localhost:3000/wiki/OperatorsBC#binomial_sum
http://localhost:3000/wiki/OperatorsBC#build
http://localhost:3000/wiki/OperatorsBC#chi_square
http://localhost:3000/wiki/OperatorsBC#chi_square_complemented
http://localhost:3000/wiki/OperatorsBC#correlation
http://localhost:3000/wiki/OperatorsBC#covariance
http://localhost:3000/wiki/OperatorsDH#dbscan
http://localhost:3000/wiki/OperatorsDH#distribution_of
http://localhost:3000/wiki/OperatorsDH#distribution2d_of
http://localhost:3000/wiki/OperatorsDH#dtw
http://localhost:3000/wiki/OperatorsDH#durbin_watson
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#gamma
http://localhost:3000/wiki/OperatorsDH#gamma_distribution
http://localhost:3000/wiki/OperatorsDH#gamma_distribution_complemented
http://localhost:3000/wiki/OperatorsDH#geometric_mean
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#harmonic_mean
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#incomplete_beta
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma_complement
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#kmeans
http://localhost:3000/wiki/OperatorsIM#kurtosis
http://localhost:3000/wiki/OperatorsIM#log_gamma
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_deviation
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#moment
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsIM#morrisanalysis
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#normal_area
http://localhost:3000/wiki/OperatorsNR#normal_density
http://localhost:3000/wiki/OperatorsNR#normal_inverse
http://localhost:3000/wiki/OperatorsNR#predict
http://localhost:3000/wiki/OperatorsNR#pvalue_for_fstat
http://localhost:3000/wiki/OperatorsNR#pvalue_for_tstat
http://localhost:3000/wiki/OperatorsNR#quantile
http://localhost:3000/wiki/OperatorsNR#quantile_inverse
http://localhost:3000/wiki/OperatorsNR#rank_interpolated
http://localhost:3000/wiki/OperatorsNR#residuals
http://localhost:3000/wiki/OperatorsNR#rms
http://localhost:3000/wiki/OperatorsNR#rsquare
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#skewness
http://localhost:3000/wiki/OperatorsSZ#sobolanalysis
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#standard_deviation
http://localhost:3000/wiki/OperatorsSZ#student_area
http://localhost:3000/wiki/OperatorsSZ#student_t_inverse
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#t_test
http://localhost:3000/wiki/OperatorsSZ#variance
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsBC#capitalize
http://localhost:3000/wiki/OperatorsBC#char
http://localhost:3000/wiki/OperatorsBC#compress
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#indented_by
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#lower_case
http://localhost:3000/wiki/OperatorsNR#regex_matches
http://localhost:3000/wiki/OperatorsNR#replace
http://localhost:3000/wiki/OperatorsNR#replace_regex
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#split_with
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsSZ#uncompress
http://localhost:3000/wiki/OperatorsSZ#upper_case


load_sub_model,

System

., choose, command, copy, copy_from_clipboard, copy_to_clipboard, copy_to_clipboard, dead, enter,
every, from_gaml, is_error, is_reachable, is_warning, play_sound, user_confirm, user_input_dialog,
wizard, wizard_page,

Time-related operators

date, string,

Types-related operators

action, agent, BDIPlan, bool, container, conversation, directory, emotion, file, float, gaml_type, geometry,
graph, int, kml, list, map, matrix, mental_state, message, Norm, pair, path, point, predicate, regression,
rgb, Sanction, skill, social_link, species, topology, unknown,

User control operators

choose, enter, user_confirm, user_input_dialog, wizard, wizard_page,

Operators

-

Possible uses:

-  ( int ) ---> int

-  ( float ) ---> float

-  ( point ) ---> point

matrix<unknown>  -  int  ---> matrix

http://localhost:3000/wiki/OperatorsIM#load_sub_model
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsBC#command
http://localhost:3000/wiki/OperatorsBC#copy
http://localhost:3000/wiki/OperatorsBC#copy_from_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsDH#dead
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsIM#is_error
http://localhost:3000/wiki/OperatorsIM#is_reachable
http://localhost:3000/wiki/OperatorsIM#is_warning
http://localhost:3000/wiki/OperatorsNR#play_sound
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsAA#action
http://localhost:3000/wiki/OperatorsAA#agent
http://localhost:3000/wiki/OperatorsBC#bdiplan
http://localhost:3000/wiki/OperatorsBC#bool
http://localhost:3000/wiki/OperatorsBC#container
http://localhost:3000/wiki/OperatorsBC#conversation
http://localhost:3000/wiki/OperatorsDH#directory
http://localhost:3000/wiki/OperatorsDH#emotion
http://localhost:3000/wiki/OperatorsDH#file
http://localhost:3000/wiki/OperatorsDH#float
http://localhost:3000/wiki/OperatorsDH#gaml_type
http://localhost:3000/wiki/OperatorsDH#geometry
http://localhost:3000/wiki/OperatorsDH#graph
http://localhost:3000/wiki/OperatorsIM#int
http://localhost:3000/wiki/OperatorsIM#kml
http://localhost:3000/wiki/OperatorsIM#list
http://localhost:3000/wiki/OperatorsIM#map
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsIM#mental_state
http://localhost:3000/wiki/OperatorsIM#message
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#pair
http://localhost:3000/wiki/OperatorsNR#path
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#predicate
http://localhost:3000/wiki/OperatorsNR#regression
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsSZ#sanction
http://localhost:3000/wiki/OperatorsSZ#skill
http://localhost:3000/wiki/OperatorsSZ#social_link
http://localhost:3000/wiki/OperatorsSZ#species
http://localhost:3000/wiki/OperatorsSZ#topology
http://localhost:3000/wiki/OperatorsSZ#unknown
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page


-  ( matrix<unknown>  , int ) ---> matrix

map  -  pair  ---> map

-  ( map  , pair ) ---> map

float  -  float  ---> float

-  ( float  , float ) ---> float

int  -  int  ---> int

-  ( int  , int ) ---> int

field  -  matrix  ---> field

-  ( field  , matrix ) ---> field

point  -  point  ---> point

-  ( point  , point ) ---> point

field  -  float  ---> field

-  ( field  , float ) ---> field

field  -  int  ---> field

-  ( field  , int ) ---> field

container  -  container  ---> list

-  ( container  , container ) ---> list

species  -  agent  ---> list

-  ( species  , agent ) ---> list

date  -  date  ---> float

-  ( date  , date ) ---> float

point  -  float  ---> point

-  ( point  , float ) ---> point

int  -  float  ---> float

-  ( int  , float ) ---> float

float  -  matrix  ---> matrix

-  ( float  , matrix ) ---> matrix

date  -  float  ---> date

-  ( date  , float ) ---> date

geometry  -  geometry  ---> geometry

-  ( geometry  , geometry ) ---> geometry

int  -  matrix  ---> matrix

-  ( int  , matrix ) ---> matrix



matrix<unknown>  -  matrix  ---> matrix

-  ( matrix<unknown>  , matrix ) ---> matrix

float  -  int  ---> float

-  ( float  , int ) ---> float

list  -  unknown  ---> list

-  ( list  , unknown ) ---> list

geometry  -  container<unknown,geometry>  ---> geometry

-  ( geometry  , container<unknown,geometry> ) ---> geometry

rgb  -  rgb  ---> rgb

-  ( rgb  , rgb ) ---> rgb

rgb  -  int  ---> rgb

-  ( rgb  , int ) ---> rgb

matrix<unknown>  -  float  ---> matrix

-  ( matrix<unknown>  , float ) ---> matrix

point  -  int  ---> point

-  ( point  , int ) ---> point

geometry  -  float  ---> geometry

-  ( geometry  , float ) ---> geometry

date  -  int  ---> date

-  ( date  , int ) ---> date

map  -  map  ---> map

-  ( map  , map ) ---> map

Result:

Returns the difference of the two operands. If it is used as an unary operator, it returns the opposite of
the operand.

Comment:

The behavior of the operator depends on the type of the operands.

Special cases:

if both operands are containers and the right operand is empty, - returns the left operand

if the left operand is a species and the right operand is an agent of the species, - returns a list
containing all the agents of the species minus this agent



if both operands are numbers, performs a normal arithmetic difference and returns a float if one of
them is a float.

if both operands are points, returns their difference (coordinates per coordinates).

if both operands are containers, returns a new list in which all the elements of the right operand
have been removed from the left one

if both operands are dates, returns the duration in seconds between date2 and date1. To obtain a
more precise duration, in milliseconds, use milliseconds_between(date1, date2)

if left-hand operand is a point and the right-hand a number, returns a new point with each
coordinate as the difference of the operand coordinate with this number.

if both operands are a point, a geometry or an agent, returns the geometry resulting from the
difference between both geometries

if one operand is a matrix and the other a number (float or int), performs a normal arithmetic
difference of the number with each element of the matrix (results are float if the number is a float.

int var0 <- 1 - 1; // var0 equals 0

point var1 <- {1, 2} - {4, 5}; // var1 equals {-3.0, -3.0}

list<int> var2 <- [1,2,3,4,5,6] - [2,4,9]; // var2 equals [1,3,5,6] 
list<int> var3 <- [1,2,3,4,5,6] - [0,8]; // var3 equals [1,2,3,4,5,6]

float var4 <- date('2000-01-02') - date('2000-01-01'); // var4 equals 86400

point var5 <- {1, 2} - 4.5; // var5 equals {-3.5, -2.5, -4.5} 
point var6 <- {1, 2} - 4; // var6 equals {-3.0,-2.0,-4.0}

geometry var7 <- geom1 - geom2; // var7 equals a geometry corresponding to difference 
between geom1 and geom2



if the left operand is a list and the right operand is an object of any type (except list), - returns a list
containing the elements of the left operand minus the first occurence of this object

if the right-operand is a list of points, geometries or agents, returns the geometry resulting from
the difference between the left-geometry and all of the right-geometries

if both operands are colors, returns a new color resulting from the subtraction of the two operands,
component by component

if one operand is a color and the other an integer, returns a new color resulting from the subtraction
of each component of the color with the right operand

if the left-hand operand is a geometry and the right-hand operand a float, returns a geometry
corresponding to the left-hand operand (geometry, agent, point) reduced by the right-hand
operand distance

if one of the operands is a date and the other a number, returns a date corresponding to the date
minus the given number as duration (in seconds)

matrix var8 <- 3.5 - matrix([[2,5],[3,4]]); // var8 equals matrix([[1.5,-1.5],
[0.5,-0.5]])

list<int> var9 <- [1,2,3,4,5,6,2] - 2; // var9 equals [1,3,4,5,6,2] 
list<int> var10 <- [1,2,3,4,5,6] - 0; // var10 equals [1,2,3,4,5,6]

geometry var11 <- rectangle(10,10) - [circle(2), square(2)]; // var11 equals 
rectangle(10,10) - (circle(2) + square(2))

rgb var12 <- rgb([255, 128, 32]) - rgb('red'); // var12 equals rgb([0,128,32])

rgb var13 <- rgb([255, 128, 32]) - 3; // var13 equals rgb([252,125,29])

geometry var14 <- shape - 5; // var14 equals a geometry corresponding to the geometry 
of the agent applying the operator reduced by a distance of 5



Examples:

See also: -, +, *, /, milliseconds_between,

:

Possible uses:

unknown  :  unknown  ---> unknown

:  ( unknown  , unknown ) ---> unknown

Result:

It is used in combination with the ? operator. If the left-hand of ? operand evaluates to true, returns the
value of the left-hand operand of the :, otherwise that of the right-hand operand of the :

Examples:

date var15 <- date('2000-01-01') - 86400; // var15 equals date('1999-12-31')

int var16 <- - (-56); // var16 equals 56 
map var17 <- ['a'::1,'b'::2] - ('b'::2); // var17 equals ['a'::1] 
map var18 <- ['a'::1,'b'::2] - ('c'::3); // var18 equals ['a'::1,'b'::2] 
float var19 <- 1.0 - 1.0; // var19 equals 0.0 
float var20 <- 3.7 - 1.2; // var20 equals 2.5 
float var21 <- 3.0 - 1.2; // var21 equals 1.8 
float var22 <- 1 - 1.0; // var22 equals 0.0 
float var23 <- 3 - 1.2; // var23 equals 1.8 
matrix var24 <- (10.0 - (3.0 as_matrix({2,3}))); // var24 equals matrix([[7.0,7.0,7.0],
[7.0,7.0,7.0]]) 
date var25 <- date('2000-01-01') - 86400; // var25 equals date('1999-12-31') 
float var26 <- 1.0 - 1; // var26 equals 0.0 
float var27 <- 3.7 - 1; // var27 equals 2.7 
float var28 <- 3.0 - 1; // var28 equals 2.0 
point var29 <- -{3.0,5.0}; // var29 equals {-3.0,-5.0} 
point var30 <- -{1.0,6.0,7.0}; // var30 equals {-1.0,-6.0,-7.0} 
point var31 <- {2.0,3.0,4.0} - 1; // var31 equals {1.0,2.0,3.0} 
map var32 <- ['a'::1,'b'::2] - ['b'::2]; // var32 equals ['a'::1] 
map var33 <- ['a'::1,'b'::2] - ['b'::2,'c'::3]; // var33 equals ['a'::1]

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsIM#milliseconds_between


See also: ?,

::

Possible uses:

any expression  ::  any expression  ---> pair

::  ( any expression  , any expression ) ---> pair

Result:

produces a new pair combining the left and the right operands

Special cases:

nil is not acceptable as a key (although it is as a value). If such a case happens, :: will throw an
appropriate error

!

Possible uses:

!  ( bool ) ---> bool

Result:

opposite boolean value.

Special cases:

if the parameter is not boolean, it is casted to a boolean value.

Examples:

list<string> var0 <- [10, 19, 43, 12, 7, 22] collect ((each > 20) ? 'above' : 'below'); 
// var0 equals ['below', 'below', 'above', 'below', 'below', 'above']

bool var0 <- ! (true); // var0 equals false

http://localhost:3000/wiki/OperatorsAA#?


See also: bool, and, or,

!=

Possible uses:

unknown  !=  unknown  ---> bool

!=  ( unknown  , unknown ) ---> bool

float  !=  int  ---> bool

!=  ( float  , int ) ---> bool

date  !=  date  ---> bool

!=  ( date  , date ) ---> bool

int  !=  float  ---> bool

!=  ( int  , float ) ---> bool

float  !=  float  ---> bool

!=  ( float  , float ) ---> bool

Result:

true if both operands are different, false otherwise

Examples:

See also: =, >, <, >=, <=,

?

Possible uses:

bool var0 <- [2,3] != [2,3]; // var0 equals false 
bool var1 <- [2,4] != [2,3]; // var1 equals true 
bool var2 <- 3.0 != 3; // var2 equals false 
bool var3 <- 4.7 != 4; // var3 equals true 
bool var4 <- #now != #now minus_hours 1; // var4 equals true 
bool var5 <- 3 != 3.0; // var5 equals false 
bool var6 <- 4 != 4.7; // var6 equals true 
bool var7 <- 3.0 != 3.0; // var7 equals false 
bool var8 <- 4.0 != 4.7; // var8 equals true

http://localhost:3000/wiki/OperatorsBC#bool
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#%3C=


bool  ?  any expression  ---> unknown

?  ( bool  , any expression ) ---> unknown

Result:

It is used in combination with the : operator: if the left-hand operand evaluates to true, returns the value
of the left-hand operand of the :, otherwise that of the right-hand operand of the :

Comment:

These functional tests can be combined together.

Examples:

See also: :,

/

Possible uses:

rgb  /  float  ---> rgb

/  ( rgb  , float ) ---> rgb

point  /  int  ---> point

/  ( point  , int ) ---> point

point  /  float  ---> point

/  ( point  , float ) ---> point

rgb  /  int  ---> rgb

/  ( rgb  , int ) ---> rgb

matrix<unknown>  /  matrix  ---> matrix

/  ( matrix<unknown>  , matrix ) ---> matrix

float  /  int  ---> float

/  ( float  , int ) ---> float

field  /  float  ---> field

list<string> var0 <- [10, 19, 43, 12, 7, 22] collect ((each > 20) ? 'above' : 'below'); 
// var0 equals ['below', 'below', 'above', 'below', 'below', 'above'] 
rgb col <- (flip(0.3) ? #red : (flip(0.9) ? #blue : #green));

http://localhost:3000/wiki/OperatorsAA#:


/  ( field  , float ) ---> field

field  /  int  ---> field

/  ( field  , int ) ---> field

matrix<unknown>  /  int  ---> matrix

/  ( matrix<unknown>  , int ) ---> matrix

matrix<unknown>  /  float  ---> matrix

/  ( matrix<unknown>  , float ) ---> matrix

int  /  float  ---> float

/  ( int  , float ) ---> float

int  /  int  ---> float

/  ( int  , int ) ---> float

float  /  float  ---> float

/  ( float  , float ) ---> float

Result:

Returns the division of the two operands.

Special cases:

if the right-hand operand is equal to zero, raises a "Division by zero" exception

if one operand is a color and the other a double, returns a new color resulting from the division of
each component of the color by the right operand. The result on each component is then truncated.

if the left operand is a point, returns a new point with coordinates divided by the right operand

if one operand is a color and the other an integer, returns a new color resulting from the division of
each component of the color by the right operand

rgb var0 <- rgb([255, 128, 32]) / 2.5; // var0 equals rgb([102,51,13])

point var1 <- {5, 7.5} / 2.5; // var1 equals {2, 3} 
point var2 <- {2,5} / 4; // var2 equals {0.5,1.25}

rgb var3 <- rgb([255, 128, 32]) / 2; // var3 equals rgb([127,64,16])



if both operands are numbers (float or int), performs a normal arithmetic division and returns a
float.

See also: *, +, -,

.

Possible uses:

agent  .  any expression  ---> unknown

.  ( agent  , any expression ) ---> unknown

Result:

It has two different uses: it can be the dot product between 2 matrices or return an evaluation of the
expression (right-hand operand) in the scope the given agent.

Special cases:

if the agent is nil or dead, throws an exception

if the left operand is an agent, it evaluates of the expression (right-hand operand) in the scope the
given agent

.

Possible uses:

matrix  .  matrix  ---> matrix

.  ( matrix  , matrix ) ---> matrix

Special cases:

if both operands are matrix, returns the dot product of them

float var4 <- 3 / 5.0; // var4 equals 0.6

unknown var0 <- agent1.location; // var0 equals the location of the agent agent1

http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#-


^

Possible uses:

int  ^  int  ---> float

^  ( int  , int ) ---> float

float  ^  int  ---> float

^  ( float  , int ) ---> float

int  ^  float  ---> float

^  ( int  , float ) ---> float

float  ^  float  ---> float

^  ( float  , float ) ---> float

Result:

Returns the value (always a float) of the left operand raised to the power of the right operand.

Special cases:

if the right-hand operand is equal to 0, returns 1

if it is equal to 1, returns the left-hand operand.

Various examples of power

Examples:

See also: *, sqrt,

@

matrix var0 <- matrix([[1,1],[1,2]]) . matrix([[1,1],[1,2]]); // var0 equals 
matrix([[2,3],[3,5]])

float var0 <- 2 ^ 3; // var0 equals 8.0

float var1 <- 4.84 ^ 0.5; // var1 equals 2.2

http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsSZ#sqrt


Same signification as at

*

Possible uses:

int  *  int  ---> int

*  ( int  , int ) ---> int

float  *  matrix  ---> matrix

*  ( float  , matrix ) ---> matrix

field  *  float  ---> field

*  ( field  , float ) ---> field

field  *  int  ---> field

*  ( field  , int ) ---> field

geometry  *  float  ---> geometry

*  ( geometry  , float ) ---> geometry

matrix<unknown>  *  matrix  ---> matrix

*  ( matrix<unknown>  , matrix ) ---> matrix

point  *  int  ---> point

*  ( point  , int ) ---> point

point  *  point  ---> float

*  ( point  , point ) ---> float

matrix<unknown>  *  int  ---> matrix

*  ( matrix<unknown>  , int ) ---> matrix

geometry  *  point  ---> geometry

*  ( geometry  , point ) ---> geometry

matrix<unknown>  *  float  ---> matrix

*  ( matrix<unknown>  , float ) ---> matrix

rgb  *  int  ---> rgb

*  ( rgb  , int ) ---> rgb

float  *  int  ---> float

*  ( float  , int ) ---> float

float  *  float  ---> float

*  ( float  , float ) ---> float

http://localhost:3000/wiki/OperatorsAA#at


rgb  *  float  ---> rgb

*  ( rgb  , float ) ---> rgb

int  *  matrix  ---> matrix

*  ( int  , matrix ) ---> matrix

int  *  float  ---> float

*  ( int  , float ) ---> float

point  *  float  ---> point

*  ( point  , float ) ---> point

Result:

Returns the product of the two operands.

Special cases:

if both operands are numbers (float or int), performs a normal arithmetic product and returns a
float if one of them is a float.

if the left-hand operand is a geometry and the right-hand operand a float, returns a geometry
corresponding to the left-hand operand (geometry, agent, point) scaled by the right-hand operand
coefficient

if the left-hand operator is a point and the right-hand a number, returns a point with coordinates
multiplied by the number

if both operands are points, returns their scalar product

int var1 <- 1 * 1; // var1 equals 1

geometry var2 <- circle(10) * 2; // var2 equals circle(20) 
geometry var3 <- (circle(10) * 2).location with_precision 9; // var3 equals 
(circle(20)).location with_precision 9 
float var4 <- (circle(10) * 2).height with_precision 9; // var4 equals 
(circle(20)).height with_precision 9

point var5 <- {2,5} * 4; // var5 equals {8.0, 20.0} 
point var6 <- {2, 4} * 2.5; // var6 equals {5.0, 10.0}



if the left-hand operand is a geometry and the right-hand operand a point, returns a geometry
corresponding to the left-hand operand (geometry, agent, point) scaled by the right-hand operand
coefficients in the 3 dimensions

if one operand is a color and the other an integer, returns a new color resulting from the product of
each component of the color with the right operand (with a maximum value at 255)

if one operand is a color and the other a float, returns a new color resulting from the product of
each component of the color with the right operand (with a maximum value at 255)

if one operand is a matrix and the other a number (float or int), performs a normal arithmetic
product of the number with each element of the matrix (results are float if the number is a float.

Examples:

See also: +, -, /,

*

Possible uses:

float var7 <- {2,5} * {4.5, 5}; // var7 equals 34.0

geometry var8 <- shape * {0.5,0.5,2}; // var8 equals a geometry corresponding to the 
geometry of the agent applying the operator scaled by a coefficient of 0.5 in x, 0.5 in 
y and 2 in z

rgb var9 <- rgb([255, 128, 32]) * 2; // var9 equals rgb([255,255,64])

rgb var10 <- rgb([255, 128, 32]) * 2.0; // var10 equals rgb([255,255,64])

matrix var11 <- 2 * matrix([[2,5],[3,4]]); // var11 equals matrix([[4,10],[6,8]])

float var0 <- 2.5 * 2; // var0 equals 5.0

http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/


image  *  float  ---> image

*  ( image  , float ) ---> image

Result:

Applies a proportional scaling ratio to the image passed in parameter and returns a new scaled image. A
ratio of 0 will return nil, a ratio of 1 will return the original image. Automatic scaling and resizing
methods are used. The original image is left untouched

+

Possible uses:

container  +  unknown  ---> list

+  ( container  , unknown ) ---> list

float  +  float  ---> float

+  ( float  , float ) ---> float

rgb  +  rgb  ---> rgb

+  ( rgb  , rgb ) ---> rgb

map  +  pair  ---> map

+  ( map  , pair ) ---> map

map  +  map  ---> map

+  ( map  , map ) ---> map

field  +  matrix  ---> field

+  ( field  , matrix ) ---> field

int  +  float  ---> float

+  ( int  , float ) ---> float

string  +  string  ---> string

+  ( string  , string ) ---> string

string  +  unknown  ---> string

+  ( string  , unknown ) ---> string

point  +  float  ---> point

+  ( point  , float ) ---> point

container  +  container  ---> container

+  ( container  , container ) ---> container



matrix<unknown>  +  int  ---> matrix

+  ( matrix<unknown>  , int ) ---> matrix

point  +  point  ---> point

+  ( point  , point ) ---> point

int  +  int  ---> int

+  ( int  , int ) ---> int

date  +  float  ---> date

+  ( date  , float ) ---> date

matrix<unknown>  +  float  ---> matrix

+  ( matrix<unknown>  , float ) ---> matrix

date  +  int  ---> date

+  ( date  , int ) ---> date

date  +  string  ---> string

+  ( date  , string ) ---> string

float  +  int  ---> float

+  ( float  , int ) ---> float

point  +  int  ---> point

+  ( point  , int ) ---> point

matrix<unknown>  +  matrix  ---> matrix

+  ( matrix<unknown>  , matrix ) ---> matrix

geometry  +  float  ---> geometry

+  ( geometry  , float ) ---> geometry

int  +  matrix  ---> matrix

+  ( int  , matrix ) ---> matrix

float  +  matrix  ---> matrix

+  ( float  , matrix ) ---> matrix

field  +  float  ---> field

+  ( field  , float ) ---> field

rgb  +  int  ---> rgb

+  ( rgb  , int ) ---> rgb

field  +  int  ---> field

+  ( field  , int ) ---> field

geometry  +  geometry  ---> geometry



+  ( geometry  , geometry ) ---> geometry

+  ( geometry , float , int ) ---> geometry

+  ( geometry , float , bool ) ---> geometry

+  ( geometry , float , int , int ) ---> geometry

+  ( geometry , float , int , int , bool ) ---> geometry

Result:

Returns the sum, union or concatenation of the two operands.

Special cases:

if one of the operands is nil, + throws an error

if both operands are species, returns a special type of list called meta-population

if the right operand is an object of any type (except a container), + returns a list of the elements of
the left operand, to which this object has been added

if both operands are colors, returns a new color resulting from the sum of the two operands,
component by component

if the left-hand and right-hand operand are a string, returns the concatenation of the two operands

if the left-hand operand is a geometry and the right-hand operands a float and an integer, returns a
geometry corresponding to the left-hand operand (geometry, agent, point) enlarged by the first
right-hand operand (distance), using a number of segments equal to the second right-hand
operand

list<int> var9 <- [1,2,3,4,5,6] + 2; // var9 equals [1,2,3,4,5,6,2] 
list<int> var10 <- [1,2,3,4,5,6] + 0; // var10 equals [1,2,3,4,5,6,0]

rgb var11 <- rgb([255, 128, 32]) + rgb('red'); // var11 equals rgb([255,128,32])

string var12 <- "hello " + "World"; // var12 equals "hello World"

geometry var13 <- circle(5) + (5,32); // var13 equals circle(10)



if the left-hand operand is a string, returns the concatenation of the two operands (the left-hand
one beind casted into a string)

if the left-hand operand is a point and the right-hand a number, returns a new point with each
coordinate as the sum of the operand coordinate with this number.

if both operands are list, +returns the concatenation of both lists.

if both operands are points, returns their sum.

if both operands are numbers (float or int), performs a normal arithmetic sum and returns a float if
one of them is a float.

if the left-hand operand is a geometry and the right-hand operands a float and a boolean, returns a
geometry corresponding to the left-hand operand (geometry, agent, point) enlarged by the first
right-hand operand (distance), single sided is the boolean is true

if one of the operands is a date and the other a number, returns a date corresponding to the date
plus the given number as duration (in seconds)

string var14 <- "hello " + 12; // var14 equals "hello 12"

point var15 <- {1, 2} + 4.5; // var15 equals {5.5, 6.5,4.5}

list<int> var16 <- [1,2,3,4,5,6] + [2,4,9]; // var16 equals [1,2,3,4,5,6,2,4,9] 
list<int> var17 <- [1,2,3,4,5,6] + [0,8]; // var17 equals [1,2,3,4,5,6,0,8]

point var18 <- {1, 2} + {4, 5}; // var18 equals {5.0, 7.0}

int var19 <- 1 + 1; // var19 equals 2

geometry var20 <- line([{10,10}, {50,50}]) + (5, true); // var20 equals A ploygon 
corresponding to the buffer generated

date var21 <- date('2000-01-01') + 86400; // var21 equals date('2000-01-02')



if the left-hand operand is a geometry and the right-hand operands a float, an integer and one of
#round, #square or #flat, returns a geometry corresponding to the left-hand operand (geometry,
agent, point) enlarged by the first right-hand operand (distance), using a number of segments equal
to the second right-hand operand and a flat, square or round end cap style

if the left-hand operand is a geometry and the right-hand operand a float, returns a geometry
corresponding to the left-hand operand (geometry, agent, point) enlarged by the right-hand
operand distance. The number of segments used by default is 8 and the end cap style is #round

if one operand is a matrix and the other a number (float or int), performs a normal arithmetic sum
of the number with each element of the matrix (results are float if the number is a float.

if the left-hand operand is a geometry and the right-hand operands a float, an integer, one of
#round, #square or #flat and a boolean, returns a geometry corresponding to the left-hand
operand (geometry, agent, point) enlarged by the first right-hand operand (distance), using a
number of segments equal to the second right-hand operand and a flat, square or round end cap
style and single sided is the boolean is true

if one operand is a color and the other an integer, returns a new color resulting from the sum of
each component of the color with the right operand

if the right-operand is a point, a geometry or an agent, returns the geometry resulting from the
union between both geometries

geometry var22 <- circle(5) + (5,32,#round); // var22 equals circle(10)

geometry var23 <- circle(5) + 5; // var23 equals circle(10)

matrix var24 <- 3.5 + matrix([[2,5],[3,4]]); // var24 equals matrix([[5.5,8.5],
[6.5,7.5]])

geometry var25 <- line([{10,10}, {50,50}]) + (5,32,#round, true); // var25 equals A 
ploygon corresponding to the buffer generated

rgb var26 <- rgb([255, 128, 32]) + 3; // var26 equals rgb([255,131,35])



Examples:

See also: -, *, /,

<

Possible uses:

int  <  int  ---> bool

<  ( int  , int ) ---> bool

float  <  int  ---> bool

<  ( float  , int ) ---> bool

string  <  string  ---> bool

<  ( string  , string ) ---> bool

point  <  point  ---> bool

<  ( point  , point ) ---> bool

float  <  float  ---> bool

<  ( float  , float ) ---> bool

date  <  date  ---> bool

<  ( date  , date ) ---> bool

int  <  float  ---> bool

<  ( int  , float ) ---> bool

geometry var27 <- geom1 + geom2; // var27 equals a geometry corresponding to union 
between geom1 and geom2

map var0 <- ['a'::1,'b'::2] + ('c'::3); // var0 equals ['a'::1,'b'::2,'c'::3] 
map var1 <- ['a'::1,'b'::2] + ('c'::3); // var1 equals ['a'::1,'b'::2,'c'::3] 
map var2 <- ['a'::1,'b'::2] + ['c'::3]; // var2 equals ['a'::1,'b'::2,'c'::3] 
map var3 <- ['a'::1,'b'::2] + [5::3.0]; // var3 equals ['a'::1,'b'::2,5::3.0] 
date var4 <- date('2016-01-01 00:00:01') + 86400; // var4 equals date('2016-01-02 
00:00:01') 
string var5 <- date('2000-01-01 00:00:00') + '_Test'; // var5 equals '2000-01-01 
00:00:00_Test' 
float var6 <- 1.0 + 1; // var6 equals 2.0 
float var7 <- 1.0 + 2.5; // var7 equals 3.5 
point var8 <- {1, 2} + 4; // var8 equals {5.0, 6.0,4.0}

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#/


Result:

true if the left-hand operand is less than the right-hand operand, false otherwise.

Special cases:

if one of the operands is nil, returns false

if both operands are String, uses a lexicographic comparison of two strings

if both operands are points, returns true if and only if the left component (x) of the left operand if
less than or equal to x of the right one and if the right component (y) of the left operand is greater
than or equal to y of the right one.

Examples:

See also: >, >=, <=, =, !=,

<=

Possible uses:

int  <=  int  ---> bool

<=  ( int  , int ) ---> bool

date  <=  date  ---> bool

<=  ( date  , date ) ---> bool

float  <=  int  ---> bool

<=  ( float  , int ) ---> bool

bool var0 <- 'abc' < 'aeb'; // var0 equals true

bool var1 <- {5,7} < {4,6}; // var1 equals false 
bool var2 <- {5,7} < {4,8}; // var2 equals false

bool var3 <- 3 < 7; // var3 equals true 
bool var4 <- 3.5 < 7; // var4 equals true 
bool var5 <- 3.5 < 7.6; // var5 equals true 
bool var6 <- #now < #now minus_hours 1; // var6 equals false 
bool var7 <- 3 < 2.5; // var7 equals false

http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#!=


string  <=  string  ---> bool

<=  ( string  , string ) ---> bool

point  <=  point  ---> bool

<=  ( point  , point ) ---> bool

int  <=  float  ---> bool

<=  ( int  , float ) ---> bool

float  <=  float  ---> bool

<=  ( float  , float ) ---> bool

Result:

true if the left-hand operand is less or equal than the right-hand operand, false otherwise.

Special cases:

if one of the operands is nil, returns false

if both operands are String, uses a lexicographic comparison of two strings

if both operands are points, returns true if and only if the left component (x) of the left operand if
less than or equal to x of the right one and if the right component (y) of the left operand is greater
than or equal to y of the right one.

Examples:

See also: >, <, >=, =, !=,

bool var0 <- 'abc' <= 'aeb'; // var0 equals true

bool var1 <- {5,7} <= {4,6}; // var1 equals false 
bool var2 <- {5,7} <= {4,8}; // var2 equals false

bool var3 <- 3 <= 7; // var3 equals true 
bool var4 <- (#now <= (#now minus_hours 1)); // var4 equals false 
bool var5 <- 7.0 <= 7; // var5 equals true 
bool var6 <- 3 <= 2.5; // var6 equals false 
bool var7 <- 3.5 <= 3.5; // var7 equals true

http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#!=


=

Possible uses:

date  =  date  ---> bool

=  ( date  , date ) ---> bool

int  =  float  ---> bool

=  ( int  , float ) ---> bool

float  =  int  ---> bool

=  ( float  , int ) ---> bool

float  =  float  ---> bool

=  ( float  , float ) ---> bool

unknown  =  unknown  ---> bool

=  ( unknown  , unknown ) ---> bool

int  =  int  ---> bool

=  ( int  , int ) ---> bool

Result:

returns true if both operands are equal, false otherwise returns true if both operands are equal, false
otherwise

Special cases:

if both operands are any kind of objects, returns true if they are identical (i.e., the same object) or
equal (comparisons between nil values are permitted)

Examples:

bool var0 <- [2,3] = [2,3]; // var0 equals true

bool var1 <- #now = #now minus_hours 1; // var1 equals false 
bool var2 <- 3 = 3.0; // var2 equals true 
bool var3 <- 4 = 4.7; // var3 equals false 
bool var4 <- 4.7 = 4; // var4 equals false 
bool var5 <- 4.5 = 4.7; // var5 equals false 
bool var6 <- 4 = 5; // var6 equals false



See also: !=, >, <, >=, <=,

>

Possible uses:

point  >  point  ---> bool

>  ( point  , point ) ---> bool

int  >  int  ---> bool

>  ( int  , int ) ---> bool

float  >  float  ---> bool

>  ( float  , float ) ---> bool

float  >  int  ---> bool

>  ( float  , int ) ---> bool

int  >  float  ---> bool

>  ( int  , float ) ---> bool

date  >  date  ---> bool

>  ( date  , date ) ---> bool

string  >  string  ---> bool

>  ( string  , string ) ---> bool

Result:

true if the left-hand operand is greater than the right-hand operand, false otherwise.

Special cases:

if one of the operands is nil, returns false

if both operands are points, returns true if and only if the left component (x) of the left operand if
greater than x of the right one and if the right component (y) of the left operand is greater than y of
the right one.

if both operands are String, uses a lexicographic comparison of two strings

bool var5 <- {5,7} > {4,6}; // var5 equals true 
bool var6 <- {5,7} > {4,8}; // var6 equals false

http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#%3C=


Examples:

See also: <, >=, <=, =, !=,

>=

Possible uses:

float  >=  float  ---> bool

>=  ( float  , float ) ---> bool

int  >=  float  ---> bool

>=  ( int  , float ) ---> bool

int  >=  int  ---> bool

>=  ( int  , int ) ---> bool

point  >=  point  ---> bool

>=  ( point  , point ) ---> bool

string  >=  string  ---> bool

>=  ( string  , string ) ---> bool

float  >=  int  ---> bool

>=  ( float  , int ) ---> bool

date  >=  date  ---> bool

>=  ( date  , date ) ---> bool

Result:

true if the left-hand operand is greater or equal than the right-hand operand, false otherwise.

Special cases:

bool var7 <- 'abc' > 'aeb'; // var7 equals false

bool var0 <- 13.0 > 7.0; // var0 equals true 
bool var1 <- 3.5 > 7.6; // var1 equals false 
bool var2 <- 3.5 > 7; // var2 equals false 
bool var3 <- 3 > 2.5; // var3 equals true 
bool var4 <- (#now > (#now minus_hours 1)); // var4 equals true

http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#!=


if one of the operands is nil, returns false

if both operands are points, returns true if and only if the left component (x) of the left operand if
greater or equal than x of the right one and if the right component (y) of the left operand is greater
than or equal to y of the right one.

if both operands are string, uses a lexicographic comparison of the two strings

Examples:

See also: >, <, <=, =, !=,

abs

Possible uses:

abs  ( float ) ---> float

abs  ( int ) ---> int

Result:

Returns the absolute value of the operand (so a positive int or float depending on the type of the
operand).

Examples:

bool var0 <- {5,7} >= {4,6}; // var0 equals true 
bool var1 <- {5,7} >= {4,8}; // var1 equals false

bool var2 <- 'abc' >= 'aeb'; // var2 equals false 
bool var3 <- 'abc' >= 'abc'; // var3 equals true

bool var4 <- 3.5 >= 3.5; // var4 equals true 
bool var5 <- 3 >= 2.5; // var5 equals true 
bool var6 <- 3 >= 7; // var6 equals false 
bool var7 <- 3.5 >= 7; // var7 equals false 
bool var8 <- #now >= #now minus_hours 1; // var8 equals true

http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#!=


accumulate

Possible uses:

container  accumulate  any expression  ---> list

accumulate  ( container  , any expression ) ---> list

Result:

returns a new flat list, in which each element is the evaluation of the right-hand operand. If this
evaluation returns a list, the elements of this result are added directly to the list returned

Comment:

accumulate is dedicated to the application of a same computation on each element of a container (and
returns a list). In the right-hand operand, the keyword each can be used to represent, in turn, each of
the left-hand operand elements.

Examples:

See also: collect,

acos

Possible uses:

acos  ( int ) ---> float

acos  ( float ) ---> float

float var0 <- abs (200 * -1 + 0.5); // var0 equals 199.5 
int var1 <- abs (-10); // var1 equals 10 
int var2 <- abs (10); // var2 equals 10

list var0 <- [a1,a2,a3] accumulate (each neighbors_at 10); // var0 equals a flat list 
of all the neighbors of these three agents 
list<int> var1 <- [1,2,4] accumulate ([2,4]); // var1 equals [2,4,2,4,2,4] 
list<int> var2 <- [1,2,4] accumulate (each * 2); // var2 equals [2,4,8]

http://localhost:3000/wiki/OperatorsBC#collect


Result:

Returns the value (in the interval [0,180], in decimal degrees) of the arccos of the operand (which should
be in [-1,1]).

Special cases:

if the right-hand operand is outside of the [-1,1] interval, returns NaN

Examples:

See also: asin, atan, cos,

action

Possible uses:

action  ( any ) ---> action

Result:

casts the operand in a action object.

add_3Dmodel

Possible uses:

add_3Dmodel  ( kml , point , float , float , string ) ---> kml

add_3Dmodel  ( kml , point , float , float , string , date , date ) ---> kml

Result:

the kml export manager with new 3D model: specify the 3D model (collada) to add to the kml

See also: add_geometry, add_icon, add_label,

float var0 <- acos (0); // var0 equals 90.0

http://localhost:3000/wiki/OperatorsAA#asin
http://localhost:3000/wiki/OperatorsAA#atan
http://localhost:3000/wiki/OperatorsBC#cos
http://localhost:3000/wiki/OperatorsAA#add_geometry
http://localhost:3000/wiki/OperatorsAA#add_icon
http://localhost:3000/wiki/OperatorsSZ#add_label


add_days

Same signification as plus_days

add_edge

Possible uses:

graph  add_edge  pair  ---> graph

add_edge  ( graph  , pair ) ---> graph

Result:

add an edge between a source vertex and a target vertex (resp. the left and the right element of the pair
operand)

Comment:

WARNING / side effect: this operator modifies the operand and does not create a new graph. If the edge
already exists, the graph is unchanged

Examples:

See also: add_node, graph,

add_geometry

Possible uses:

add_geometry  ( kml , geometry , float , rgb ) ---> kml

add_geometry  ( kml , geometry , rgb , rgb ) ---> kml

add_geometry  ( kml , geometry , float , rgb , rgb ) ---> kml

add_geometry  ( kml , geometry , float , rgb , rgb , date ) ---> kml

add_geometry  ( kml , geometry , float , rgb , rgb , date , date ) ---> kml

Result:

graph <- graph add_edge (source::target);

http://localhost:3000/wiki/OperatorsNR#plus_days
http://localhost:3000/wiki/OperatorsAA#add_node
http://localhost:3000/wiki/OperatorsDH#graph


Define the kml export manager with new geometry

See also: add_3Dmodel, add_icon, add_label,

add_hours

Same signification as plus_hours

add_icon

Possible uses:

add_icon  ( kml , point , float , float , string ) ---> kml

add_icon  ( kml , point , float , float , string , date , date ) ---> kml

Result:

Define the kml export manager with new icons

See also: add_geometry, add_icon,

add_minutes

Same signification as plus_minutes

add_months

Same signification as plus_months

add_ms

Same signification as plus_ms

add_node

http://localhost:3000/wiki/OperatorsAA#add_3dmodel
http://localhost:3000/wiki/OperatorsAA#add_icon
http://localhost:3000/wiki/OperatorsSZ#add_label
http://localhost:3000/wiki/OperatorsNR#plus_hours
http://localhost:3000/wiki/OperatorsAA#add_geometry
http://localhost:3000/wiki/OperatorsAA#add_icon
http://localhost:3000/wiki/OperatorsNR#plus_minutes
http://localhost:3000/wiki/OperatorsNR#plus_months
http://localhost:3000/wiki/OperatorsNR#plus_ms


Possible uses:

graph  add_node  geometry  ---> graph

add_node  ( graph  , geometry ) ---> graph

Result:

adds a node in a graph.

Comment:

WARNING / side effect: this operator modifies the operand and does not create a new graph

Examples:

See also: add_edge, graph,

add_point

Possible uses:

geometry  add_point  point  ---> geometry

add_point  ( geometry  , point ) ---> geometry

Result:

A new geometry resulting from the addition of the right point (coordinate) to the left-hand geometry.
Note that adding a point to a line or polyline will always return a closed contour. Also note that the
position at which the added point will appear in the geometry is not necessarily the last one, as points
are always ordered in a clockwise fashion in geometries

Examples:

graph var0 <- graph add_node node(0); // var0 equals the graph, to which node(0) has 
been added

geometry var0 <- polygon([{10,10},{10,20},{20,20}]) add_point {20,10}; // var0 equals 
polygon([{10,10},{10,20},{20,20},{20,10}])

http://localhost:3000/wiki/OperatorsAA#add_edge
http://localhost:3000/wiki/OperatorsDH#graph


add_seconds

Same signification as +

add_values

Possible uses:

predicate  add_values  map  ---> predicate

add_values  ( predicate  , map ) ---> predicate

Result:

add a new value to the map of the given predicate

Examples:

add_weeks

Same signification as plus_weeks

add_years

Same signification as plus_years

adjacency

Possible uses:

adjacency  ( graph ) ---> matrix<float>

Result:

adjacency matrix of the given graph.

predicate add_values ["time"::10];

http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsNR#plus_weeks
http://localhost:3000/wiki/OperatorsNR#plus_years


after

Possible uses:

after  ( date ) ---> bool

any expression  after  date  ---> bool

after  ( any expression  , date ) ---> bool

Result:

Returns true if the current_date of the model is strictly after the date passed in argument. Synonym of
'current_date > argument'. Can be used in its composed form with 2 arguments to express the lower
boundary for the computation of a frequency. Note that only dates strictly after this one will be tested
against the frequency

Examples:

agent

Possible uses:

agent  ( any ) ---> agent

Result:

casts the operand in a agent object.

agent_closest_to

Possible uses:

reflex when: after(starting_date) {} // this reflex will always be run after the 
first step 
reflex when: false after(starting date + #10days) {} // This reflex will not be run 
after this date. Better to use 'until' or 'before' in that case 
every(2#days) after (starting_date + 1#day) // the computation will return true 
every two days (using the starting_date of the model as the starting point) only for 
the dates strictly after this starting_date + 1#day



agent_closest_to  ( unknown ) ---> agent

Result:

An agent, the closest to the operand (casted as a geometry).

Comment:

the distance is computed in the topology of the calling agent (the agent in which this operator is used),
with the distance algorithm specific to the topology.

Examples:

See also: neighbors_at, neighbors_of, agents_inside, agents_overlapping, closest_to, inside,
overlapping,

agent_farthest_to

Possible uses:

agent_farthest_to  ( unknown ) ---> agent

Result:

An agent, the farthest to the operand (casted as a geometry).

Comment:

the distance is computed in the topology of the calling agent (the agent in which this operator is used),
with the distance algorithm specific to the topology.

Examples:

agent var0 <- agent_closest_to(self); // var0 equals the closest agent to the agent 
applying the operator.

agent var0 <- agent_farthest_to(self); // var0 equals the farthest agent to the agent 
applying the operator.

http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#overlapping


See also: neighbors_at, neighbors_of, agents_inside, agents_overlapping, closest_to, inside,
overlapping, agent_closest_to, farthest_to,

agent_file

Possible uses:

agent_file  ( string ) ---> file

Result:

Constructs a file of type agent. Allowed extensions are limited to agent

Special cases:

agent_file(string): File containing a saved agent in the java binary serialisation protocol

See also: is_agent,

agent_from_geometry

Possible uses:

path  agent_from_geometry  geometry  ---> agent

agent_from_geometry  ( path  , geometry ) ---> agent

Result:

returns the agent corresponding to given geometry (right-hand operand) in the given path (left-hand
operand).

Special cases:

if the left-hand operand is nil, returns nil

Examples:

geometry line <- one_of(path_followed.segments); 
road ag <- road(path_followed agent_from_geometry line);

http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsIM#is_agent


See also: path,

agent_intersecting

Same signification as agents_overlapping

agents_at_distance

Possible uses:

agents_at_distance  ( float ) ---> list

Result:

A list of agents situated at a distance lower than the right argument.

Examples:

See also: neighbors_at, neighbors_of, agent_closest_to, agents_inside, closest_to, inside, overlapping,
at_distance,

agents_covering

Possible uses:

agents_covering  ( unknown ) ---> list<agent>

Result:

A list of agents covered by the operand (casted as a geometry).

Examples:

list var0 <- agents_at_distance(20); // var0 equals all the agents (excluding the 
caller) which distance to the caller is lower than 20

list<agent> var0 <- agents_covering(self); // var0 equals the agents that cover the 

http://localhost:3000/wiki/OperatorsNR#path
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#at_distance


See also: agent_closest_to, agents_overlapping, closest_to, inside, overlapping,

agents_crossing

Possible uses:

agents_crossing  ( unknown ) ---> list<agent>

Result:

A list of agents cross the operand (casted as a geometry).

Examples:

See also: agent_closest_to, agents_overlapping, closest_to, inside, overlapping,

agents_inside

Possible uses:

agents_inside  ( unknown ) ---> list<agent>

Result:

A list of agents covered by the operand (casted as a geometry).

Examples:

See also: agent_closest_to, agents_overlapping, closest_to, inside, overlapping,

shape of the agent applying the operator.

list<agent> var0 <- agents_crossing(self); // var0 equals the agents that crossing the 
shape of the agent applying the operator.

list<agent> var0 <- agents_inside(self); // var0 equals the agents that are covered by 
the shape of the agent applying the operator.

http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#overlapping


agents_overlapping

Possible uses:

agents_overlapping  ( unknown ) ---> list<agent>

Result:

A list of agents overlapping the operand (casted as a geometry).

Examples:

See also: neighbors_at, neighbors_of, agent_closest_to, agents_inside, closest_to, inside, overlapping,
at_distance,

agents_partially_overlapping

Possible uses:

agents_partially_overlapping  ( unknown ) ---> list<agent>

Result:

A list of agents that partially overlap the operand (casted as a geometry).

Examples:

See also: agent_closest_to, agents_overlapping, closest_to, inside, overlapping,

agents_touching

Possible uses:

list<agent> var0 <- agents_overlapping(self); // var0 equals the agents that overlap 
the shape of the agent applying the operator.

list<agent> var0 <- agents_partially_overlapping(self); // var0 equals the agents that 
partially overlap the shape of the agent applying the operator.

http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#overlapping


agents_touching  ( unknown ) ---> list<agent>

Result:

A list of agents touching the operand (casted as a geometry).

Examples:

See also: agent_closest_to, agents_overlapping, closest_to, inside, overlapping,

all_indexes_of

Possible uses:

list  all_indexes_of  unknown  ---> list

all_indexes_of  ( list  , unknown ) ---> list

Result:

all the index of all the occurences of the right operand in the left operand container

Comment:

The definition of all_indexes_of and the type of the index depend on the container

Special cases:

if the left operand is a list, all_indexes_of returns a list of all the indexes as integers

See also: index_of, last_index_of,

all_match

list<agent> var0 <- agents_touching(self); // var0 equals the agents that touch the 
shape of the agent applying the operator.

list var0 <- [1,2,3,1,2,3] all_indexes_of 1; // var0 equals [0,3] 
list var1 <- [1,2,3,1,2,3] all_indexes_of 4; // var1 equals []

http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of


Possible uses:

container  all_match  any expression  ---> bool

all_match  ( container  , any expression ) ---> bool

Result:

Returns true if all the elements of the left-hand operand make the right-hand operand evaluate to true.
Returns true if the left-hand operand is empty. 'c all_match each.property' is strictly equivalent to '(c
count each.property) = length(c)' but faster in most cases (as it is a shortcircuited operator)

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the elements.

Special cases:

if the left-hand operand is nil, all_match throws an error

Examples:

See also: none_matches, one_matches, count,

all_pairs_shortest_path

Possible uses:

all_pairs_shortest_path  ( graph ) ---> matrix<int>

Result:

returns the successor matrix of shortest paths between all node pairs (rows: source, columns: target): a
cell (i,j) will thus contains the next node in the shortest path between i and j.

Examples:

bool var0 <- [1,2,3,4,5,6,7,8] all_match (each > 3); // var0 equals false 
bool var1 <- [1::2, 3::4, 5::6] all_match (each > 4); // var1 equals false

matrix<int> var0 <- all_pairs_shortest_paths(my_graph); // var0 equals 

http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsBC#count


all_verify

Same signification as all_match

alpha_index

Possible uses:

alpha_index  ( graph ) ---> float

Result:

returns the alpha index of the graph (measure of connectivity which evaluates the number of cycles in a
graph in comparison with the maximum number of cycles. The higher the alpha index, the more a
network is connected: alpha = nb_cycles / (2 *S-5) - planar graph)

Examples:

See also: beta_index, gamma_index, nb_cycles, connectivity_index,

among

Possible uses:

int  among  container  ---> list

among  ( int  , container ) ---> list

Result:

Returns a list of length the value of the left-hand operand, containing random elements from the right-
hand operand. As of GAMA 1.6, the order in which the elements are returned can be different than the
order in which they appear in the right-hand container

shortest_paths_matrix will contain all pairs of shortest paths

float var1 <- alpha_index(graphEpidemio); // var1 equals the alpha index of the graph

http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsBC#beta_index
http://localhost:3000/wiki/OperatorsDH#gamma_index
http://localhost:3000/wiki/OperatorsNR#nb_cycles
http://localhost:3000/wiki/OperatorsBC#connectivity_index


Special cases:

if the right-hand operand is empty, among returns a new empty list. If it is nil, it throws an error.

if the left-hand operand is greater than the length of the right-hand operand, among returns the
right-hand operand (converted as a list). If it is smaller or equal to zero, it returns an empty list

Examples:

and

Possible uses:

bool  and  any expression  ---> bool

and  ( bool  , any expression ) ---> bool

Result:

a bool value, equal to the logical and between the left-hand operand and the right-hand operand.

Comment:

both operands are always casted to bool before applying the operator. Thus, an expression like (1 and 0)
is accepted and returns false.

Examples:

See also: bool, or, !,

list<int> var0 <- 3 among [1,2,4,3,5,7,6,8]; // var0 equals [1,2,8] (for example) 
list var1 <- 3 among g2; // var1 equals [node6,node11,node7] 
list var2 <- 3 among list(node); // var2 equals [node1,node11,node4] 
list<int> var3 <- 1 among [1::2,3::4]; // var3 equals 2 or 4

bool var0 <- true and false; // var0 equals false 
bool var1 <- false and false; // var1 equals false 
bool var2 <- false and true; // var2 equals false 
bool var3 <- true and true; // var3 equals true 
 int a <-3 ; int b <- 4; int c <- 7; 
bool var5 <- ((a+b) = c ) and ((a+b) > c ); // var5 equals false

http://localhost:3000/wiki/OperatorsBC#bool
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsAA#!


and

Possible uses:

predicate  and  predicate  ---> predicate

and  ( predicate  , predicate ) ---> predicate

Result:

create a new predicate from two others by including them as subintentions

Examples:

angle_between

Possible uses:

angle_between  ( point , point , point ) ---> float

Result:

the angle between vectors P0P1 and P0P2 (P0, P1, P2 being the three point operands)

Examples:

antialiased

Possible uses:

antialiased  ( image ) ---> image

image  antialiased  int  ---> image

antialiased  ( image  , int ) ---> image

Result:

predicate1 and predicate2

float var0 <- angle_between({5,5},{10,5},{5,10}); // var0 equals 90



Application of a very light blur kernel that acts like an anti-aliasing filter when applied to an image. This
operation can be applied multiple times in a row if greater. Application of a very light blur kernel that
acts like an anti-aliasing filter when applied to an image. If the last argument is > 0, applies the filter the
equivalent number of times. If it is equal or smaller than zero, the image is returned untouched

any

Same signification as one_of

any_location_in

Possible uses:

any_location_in  ( geometry ) ---> point

Result:

A point inside (or touching) the operand-geometry.

Examples:

See also: closest_points_with, farthest_point_to, points_at,

any_point_in

Same signification as any_location_in

append_horizontally

Possible uses:

matrix  append_horizontally  matrix  ---> matrix

append_horizontally  ( matrix  , matrix ) ---> matrix

point var0 <- any_location_in(square(5)); // var0 equals a point in the square, for 
example : {3,4.6}.

http://localhost:3000/wiki/OperatorsNR#one_of
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsAA#any_location_in


Result:

A matrix resulting from the concatenation of the rows of the two given matrices.

append_vertically

Possible uses:

matrix  append_vertically  matrix  ---> matrix

append_vertically  ( matrix  , matrix ) ---> matrix

Result:

A matrix resulting from the concatenation of the columns of the two given matrices.

Examples:

arc

Possible uses:

arc  ( float , float , float ) ---> geometry

arc  ( float , float , float , bool ) ---> geometry

Result:

An arc, which radius is equal to the first operand, heading to the second, amplitude to the third and a
boolean indicating whether to return a linestring or a polygon to the fourth

Comment:

the center of the arc is by default the location of the current agent in which has been called this
operator.the center of the arc is by default the location of the current agent in which has been called this
operator. This operator returns a polygon by default.

Special cases:

matrix var0 <- matrix([[1,2],[3,4]]) append_vertically matrix([[1,2],[3,4]]); // var0 
equals matrix([[1,2,1,2],[3,4,3,4]])



returns a point if the radius operand is lower or equal to 0.

returns a point if the radius operand is lower or equal to 0.

Examples:

See also: around, cone, line, link, norm, point, polygon, polyline, super_ellipse, rectangle, square, circle,
ellipse, triangle,

around

Possible uses:

float  around  unknown  ---> geometry

around  ( float  , unknown ) ---> geometry

Result:

A geometry resulting from the difference between a buffer around the right-operand casted in
geometry at a distance left-operand (right-operand buffer left-operand) and the right-operand casted as
geometry.

Special cases:

returns a circle geometry of radius right-operand if the left-operand is nil

Examples:

See also: circle, cone, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

geometry var0 <- arc(4,45,90, false); // var0 equals a geometry as an arc of radius 4, 
in a direction of 45° and an amplitude of 90°, which only contains the points on the 
arc 
geometry var1 <- arc(4,45,90); // var1 equals a geometry as an arc of radius 4, in a 
direction of 45° and an amplitude of 90°

geometry var0 <- 10 around circle(5); // var0 equals the ring geometry between 5 and 
10.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsSZ#super_ellipse
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle


as

Possible uses:

unknown  as  any GAML type  ---> unknown

as  ( unknown  , any GAML type ) ---> unknown

Result:

Casting of the first argument into a given type

Comment:

It is equivalent to the application of the type operator on the left operand.

Examples:

as_4_grid

Possible uses:

geometry  as_4_grid  point  ---> matrix

as_4_grid  ( geometry  , point ) ---> matrix

Result:

A matrix of square geometries (grid with 4-neighborhood) with dimension given by the right-hand
operand ({nb_cols, nb_lines}) corresponding to the square tessellation of the left-hand operand
geometry (geometry, agent)

Examples:

See also: as_grid, as_hexagonal_grid,

int var0 <- 3.5 as int; // var0 equals int(3.5)

matrix var0 <- self as_4_grid {10, 5}; // var0 equals the matrix of square geometries 
(grid with 4-neighborhood) with 10 columns and 5 lines corresponding to the square 
tessellation of the geometry of the agent applying the operator.

http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid


as_distance_graph

Possible uses:

container  as_distance_graph  float  ---> graph

as_distance_graph  ( container  , float ) ---> graph

as_distance_graph  ( container , float , species ) ---> graph

Result:

creates a graph from a list of vertices (left-hand operand). An edge is created between each pair of
vertices close enough (less than a distance, right-hand operand).

Comment:

as_distance_graph is more efficient for a list of points than as_intersection_graph.

Examples:

See also: as_intersection_graph, as_edge_graph,

as_driving_graph

Possible uses:

container  as_driving_graph  container  ---> graph

as_driving_graph  ( container  , container ) ---> graph

Result:

creates a graph from the list/map of edges given as operand and connect the node to the edge

Examples:

list(ant) as_distance_graph 3.0

as_driving_graph(road, node)  --:  build a graph while using the road agents as edges 
and the node agents as nodes

http://localhost:3000/wiki/OperatorsAA#as_intersection_graph
http://localhost:3000/wiki/OperatorsAA#as_edge_graph


See also: as_intersection_graph, as_distance_graph, as_edge_graph,

as_edge_graph

Possible uses:

as_edge_graph  ( map ) ---> graph

as_edge_graph  ( container ) ---> graph

container  as_edge_graph  float  ---> graph

as_edge_graph  ( container  , float ) ---> graph

container  as_edge_graph  container  ---> graph

as_edge_graph  ( container  , container ) ---> graph

Result:

creates a graph from the list/map of edges given as operand

Special cases:

if the operand is a map, the graph will be built by creating edges from pairs of the map

if the operand is a list and a tolerance (max distance in meters to consider that 2 points are the
same node) is given, the graph will be built with elements of the list as edges and two edges will be
connected by a node if the distance between their extremity (first or last points) are at distance
lower or equal to the tolerance

if the operand is a list, the graph will be built with elements of the list as edges

graph var0 <- as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]); // var0 equals a graph 
with these three vertices and two edges

graph var1 <- as_edge_graph([line([{1,5},{12,45}]),line([{13,45},{34,56}])],1); // var1 
equals a graph with two edges and three vertices

graph var2 <- as_edge_graph([line([{1,5},{12,45}]),line([{12,45},{34,56}])]); // var2 
equals a graph with two edges and three vertices

http://localhost:3000/wiki/OperatorsAA#as_intersection_graph
http://localhost:3000/wiki/OperatorsAA#as_distance_graph
http://localhost:3000/wiki/OperatorsAA#as_edge_graph


See also: as_intersection_graph, as_distance_graph,

as_grid

Possible uses:

geometry  as_grid  point  ---> matrix

as_grid  ( geometry  , point ) ---> matrix

Result:

A matrix of square geometries (grid with 8-neighborhood) with dimension given by the right-hand
operand ({nb_cols, nb_lines}) corresponding to the square tessellation of the left-hand operand
geometry (geometry, agent)

Examples:

See also: as_4_grid, as_hexagonal_grid,

as_hexagonal_grid

Possible uses:

geometry  as_hexagonal_grid  point  ---> list<geometry>

as_hexagonal_grid  ( geometry  , point ) ---> list<geometry>

Result:

A list of geometries (hexagonal) corresponding to the hexagonal tesselation of the first operand
geometry

Examples:

matrix var0 <- self as_grid {10, 5}; // var0 equals a matrix of square geometries (grid 
with 8-neighborhood) with 10 columns and 5 lines corresponding to the square 
tessellation of the geometry of the agent applying the operator.

list<geometry> var0 <- self as_hexagonal_grid {10, 5}; // var0 equals list of 
geometries (hexagonal) corresponding to the hexagonal tesselation of the first operand 

http://localhost:3000/wiki/OperatorsAA#as_intersection_graph
http://localhost:3000/wiki/OperatorsAA#as_distance_graph
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid


See also: as_4_grid, as_grid,

as_int

Possible uses:

string  as_int  int  ---> int

as_int  ( string  , int ) ---> int

Result:

parses the string argument as a signed integer in the radix specified by the second argument.

Special cases:

if the left operand is nil or empty, as_int returns 0

if the left operand does not represent an integer in the specified radix, as_int throws an exception

Examples:

See also: int,

as_intersection_graph

Possible uses:

container  as_intersection_graph  float  ---> graph

as_intersection_graph  ( container  , float ) ---> graph

as_intersection_graph  ( container , float , species ) ---> graph

geometry

int var0 <- '20' as_int 10; // var0 equals 20 
int var1 <- '20' as_int 8; // var1 equals 16 
int var2 <- '20' as_int 16; // var2 equals 32 
int var3 <- '1F' as_int 16; // var3 equals 31 
int var4 <- 'hello' as_int 32; // var4 equals 18306744

http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsIM#int


Result:

creates a graph from a list of vertices (left-hand operand). An edge is created between each pair of
vertices with an intersection (with a given tolerance). creates a graph from a list of vertices (left-hand
operand). An edge is created between each pair of vertices with an intersection (with a given tolerance).

Comment:

as_intersection_graph is more efficient for a list of geometries (but less accurate) than
as_distance_graph.

Examples:

See also: as_distance_graph, as_edge_graph,

as_map

Possible uses:

container  as_map  any expression  ---> map

as_map  ( container  , any expression ) ---> map

Result:

produces a new map from the evaluation of the right-hand operand for each element of the left-hand
operand

Comment:

the right-hand operand should be a pair

Special cases:

if the left-hand operand is nil, as_map throws an error.

Examples:

list(ant) as_intersection_graph 0.5

map<int,int> var0 <- [1,2,3,4,5,6,7,8] as_map (each::(each * 2)); // var0 equals [1::2, 
2::4, 3::6, 4::8, 5::10, 6::12, 7::14, 8::16] 

http://localhost:3000/wiki/OperatorsAA#as_distance_graph
http://localhost:3000/wiki/OperatorsAA#as_edge_graph


as_matrix

Possible uses:

unknown  as_matrix  point  ---> matrix

as_matrix  ( unknown  , point ) ---> matrix

Result:

casts the left operand into a matrix with right operand as preferred size

Comment:

This operator is very useful to cast a file containing raster data into a matrix.Note that both components
of the right operand point should be positive, otherwise an exception is raised.The operator as_matrix
creates a matrix of preferred size. It fills in it with elements of the left operand until the matrix is full If
the size is to short, some elements will be omitted. Matrix remaining elements will be filled in by nil.

Special cases:

if the right operand is nil, as_matrix is equivalent to the matrix operator

See also: matrix,

as_path

Possible uses:

list<geometry>  as_path  graph  ---> path

as_path  ( list<geometry>  , graph ) ---> path

Result:

create a graph path from the list of shape

Examples:

map<int,int> var1 <- [1::2,3::4,5::6] as_map (each::(each * 2)); // var1 equals [2::4, 
4::8, 6::12] 

http://localhost:3000/wiki/OperatorsIM#matrix


as_spatial_graph

Possible uses:

as_spatial_graph  ( graph ) ---> msi.gama.metamodel.topology.graph.ISpatialGraph

Result:

Creates a spatial graph out of an arbitrary graph. If the argument is already a spatial graph, returns it
unchanged. If it contains geometrical nodes or edges, they are kept unchanged

asin

Possible uses:

asin  ( int ) ---> float

asin  ( float ) ---> float

Result:

the arcsin of the operand

Special cases:

if the right-hand operand is outside of the [-1,1] interval, returns NaN

Examples:

See also: acos, atan, sin,

at

path var0 <- [road1,road2,road3] as_path my_graph; // var0 equals a path road1->road2-
>road3 of my_graph

float var0 <- asin (90); // var0 equals #nan 
float var1 <- asin (0); // var1 equals 0.0

http://localhost:3000/wiki/OperatorsAA#acos
http://localhost:3000/wiki/OperatorsAA#atan
http://localhost:3000/wiki/OperatorsSZ#sin


Possible uses:

species  at  int  ---> agent

at  ( species  , int ) ---> agent

matrix  at  point  ---> unknown

at  ( matrix  , point ) ---> unknown

list  at  int  ---> unknown

at  ( list  , int ) ---> unknown

container  at  unknown  ---> unknown

at  ( container  , unknown ) ---> unknown

string  at  int  ---> string

at  ( string  , int ) ---> string

Result:

the element at the right operand index of the container

Comment:

The first element of the container is located at the index 0. In addition, if the user tries to get the
element at an index higher or equals than the length of the container, he will get an
IndexOutOfBoundException.The at operator behavior depends on the nature of the operand

Special cases:

if it is a file, at returns the element of the file content at the index specified by the right operand

if it is a population, at returns the agent at the index specified by the right operand

if it is a graph and if the right operand is a node, at returns the in and out edges corresponding to
that node

if it is a graph and if the right operand is an edge, at returns the pair node_out::node_in of the edge

if it is a graph and if the right operand is a pair node1::node2, at returns the edge from node1 to
node2 in the graph

if it is a list or a matrix, at returns the element at the index specified by the right operand

Examples:

int var0 <- [1, 2, 3] at 2; // var0 equals 3 
point var1 <- [{1,2}, {3,4}, {5,6}] at 0; // var1 equals {1.0,2.0}



See also: contains_all, contains_any,

at_distance

Possible uses:

container<unknown,geometry>  at_distance  float  ---> list<geometry>

at_distance  ( container<unknown,geometry>  , float ) ---> list<geometry>

Result:

A list of agents or geometries among the left-operand list that are located at a distance <= the right
operand from the caller agent (in its topology)

Examples:

See also: neighbors_at, neighbors_of, agent_closest_to, agents_inside, closest_to, inside, overlapping,

at_location

Possible uses:

geometry  at_location  point  ---> geometry

at_location  ( geometry  , point ) ---> geometry

Result:

A geometry resulting from the tran of a translation to the right-hand operand point of the left-hand
operand (geometry, agent, point)

Examples:

string var2 <- 'abcdef' at 0; // var2 equals 'a'

list<geometry> var0 <- [ag1, ag2, ag3] at_distance 20; // var0 equals the agents of the 
list located at a distance <= 20 from the caller agent (in the same order).

http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#overlapping


atan

Possible uses:

atan  ( float ) ---> float

atan  ( int ) ---> float

Result:

Returns the value (in the interval [-90,90], in decimal degrees) of the arctan of the operand (which can be
any real number).

Examples:

See also: acos, asin, tan,

atan2

Possible uses:

float  atan2  float  ---> float

atan2  ( float  , float ) ---> float

Result:

the atan2 value of the two operands.

Comment:

The function atan2 is the arctangent function with two arguments. The purpose of using two arguments
instead of one is to gather information on the signs of the inputs in order to return the appropriate

geometry var0 <- self at_location {10, 20}; // var0 equals the geometry resulting from 
a translation to the location {10, 20} of the left-hand geometry (or agent). 
float var1 <-  (box({10, 10 , 5}) at_location point(50,50,0)).location.x; // var1 
equals 50.0

float var0 <- atan (1); // var0 equals 45.0

http://localhost:3000/wiki/OperatorsAA#acos
http://localhost:3000/wiki/OperatorsAA#asin
http://localhost:3000/wiki/OperatorsSZ#tan


quadrant of the computed angle, which is not possible for the single-argument arctangent function.
Beware: the first argument is y and the second is x

Examples:

See also: atan, acos, asin,

auto_correlation

Possible uses:

container  auto_correlation  int  ---> float

auto_correlation  ( container  , int ) ---> float

Result:

Returns the auto-correlation of a data sequence given some lag

Examples:

float var0 <- atan2 (0,0); // var0 equals 0.0 
float var1 <- atan2 (0,1); // var1 equals 0.0 
float var2 <- atan2 (0,-1); // var2 equals 180.0 
float var3 <- atan2 (1,0); // var3 equals 90.0 
float var4 <- atan2 (1,1); // var4 equals 45.0 
float var5 <- atan2 (1,-1); // var5 equals 135.0 
float var6 <- atan2 (-1,0); // var6 equals -90.0 
float var7 <- atan2 (-1,1); // var7 equals -45.0 
float var8 <- atan2 (-1,-1); // var8 equals -135.0

float var0 <- auto_correlation([1,0,1,0,1,0],2); // var0 equals 1 
float var1 <- auto_correlation([1,0,1,0,1,0],1); // var1 equals -1

http://localhost:3000/wiki/OperatorsAA#atan
http://localhost:3000/wiki/OperatorsAA#acos
http://localhost:3000/wiki/OperatorsAA#asin


Version: 1.9.3

Operators (B to C)
This file is automatically generated from java files. Do Not Edit It.

Definition
Operators in the GAML language are used to compose complex expressions. An operator performs a
function on one, two, or n operands (which are other expressions and thus may be themselves
composed of operators) and returns the result of this function.

Most of them use a classical prefixed functional syntax (i.e. operator_name(operand1, operand2,
operand3) , see below), with the exception of arithmetic (e.g. + , / ), logical ( and , or ), comparison (e.g.
> , < ), access ( . , [..] ) and pair ( :: ) operators, which require an infixed notation (i.e. operand1
operator_symbol operand1 ).

The ternary functional if-else operator, ? : , uses a special infixed syntax composed with two symbols
(e.g. operand1 ? operand2 : operand3 ). Two unary operators ( -  and ! ) use a traditional prefixed
syntax that does not require parentheses unless the operand is itself a complex expression (e.g. - 10 , !
(operand1 or operand2) ).

Finally, special constructor operators ( {...}  for constructing points, [...]  for constructing lists and
maps) will require their operands to be placed between their two symbols (e.g. {1,2,3} , [operand1,
operand2, ..., operandn]  or [key1::value1, key2::value2... keyn::valuen] ).

With the exception of these special cases above, the following rules apply to the syntax of operators:

if they only have one operand, the functional prefixed syntax is mandatory (e.g.
operator_name(operand1) )

if they have two arguments, either the functional prefixed syntax (e.g. operator_name(operand1,
operand2) ) or the infixed syntax (e.g. operand1 operator_name operand2 ) can be used.

if they have more than two arguments, either the functional prefixed syntax (e.g.
operator_name(operand1, operand2, ..., operand) ) or a special infixed syntax with the first
operand on the left-hand side of the operator name (e.g. operand1 operator_name(operand2, ...,
operand) ) can be used.



All of these alternative syntaxes are completely equivalent.

Operators in GAML are purely functional, i.e. they are guaranteed to not have any side effects on their
operands. For instance, the shuffle  operator, which randomizes the positions of elements in a list, does
not modify its list operand but returns a new shuffled list.

Priority between operators
The priority of operators determines, in the case of complex expressions composed of several operators,
which one(s) will be evaluated first.

GAML follows in general the traditional priorities attributed to arithmetic, boolean, comparison
operators, with some twists. Namely:

the constructor operators, like :: , used to compose pairs of operands, have the lowest priority of
all operators (e.g. a > b :: b > c  will return a pair of boolean values, which means that the two
comparisons are evaluated before the operator applies. Similarly, [a > 10, b > 5]  will return a list
of boolean values.

it is followed by the ?:  operator, the functional if-else (e.g. a > b ? a + 10 : a - 10  will return
the result of the if-else).

next are the logical operators, and  and or  (e.g. a > b or b > c  will return the value of the test)

next are the comparison operators (i.e. > , < , <= , >= , = , != )

next the arithmetic operators in their logical order (multiplicative operators have a higher priority
than additive operators)

next the unary operators -  and !

next the access operators .  and []  (e.g. {1,2,3}.x > 20 + {4,5,6}.y  will return the result of the
comparison between the x and y ordinates of the two points)

and finally the functional operators, which have the highest priority of all.

Using actions as operators
Actions defined in species can be used as operators, provided they are called on the correct agent. The
syntax is that of normal functional operators, but the agent that will perform the action must be added
as the first operand.



For instance, if the following species is defined:

Any agent instance of spec1 can use min  as an operator (if the action conflicts with an existing operator,
a warning will be emitted). For instance, in the same model, the following line is perfectly acceptable:

If the action doesn't have any operands, the syntax to use is my_agent the_action() . Finally, if it does
not return a value, it might still be used but is considering as returning a value of type unknown  (e.g.
unknown result <- my_agent the_action(op1, op2); ).

Note that due to the fact that actions are written by modelers, the general functional contract is not
respected in that case: actions might perfectly have side effects on their operands (including the agent).

Table of Contents

Operators by categories

3D

box, cone3D, cube, cylinder, hexagon, pyramid, set_z, sphere, teapot,

species spec1 {
        int min(int x, int y) {
                return x > y ? x : y;
        }
}

global {
        init {
                create spec1;
                spec1 my_agent <- spec1[0];
                int the_min <- my_agent min(10,20); // or min(my_agent, 10, 20);
        }
}

http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#teapot


Arithmetic operators

-, /, ^, *, +, abs, acos, asin, atan, atan2, ceil, cos, cos_rad, div, even, exp, fact, floor, hypot, is_finite,
is_number, ln, log, mod, round, signum, sin, sin_rad, sqrt, tan, tan_rad, tanh, with_precision,

BDI

add_values, and, eval_when, get_about, get_agent, get_agent_cause, get_belief_op,
get_belief_with_name_op, get_beliefs_op, get_beliefs_with_name_op, get_current_intention_op,
get_decay, get_desire_op, get_desire_with_name_op, get_desires_op, get_desires_with_name_op,
get_dominance, get_familiarity, get_ideal_op, get_ideal_with_name_op, get_ideals_op,
get_ideals_with_name_op, get_intensity, get_intention_op, get_intention_with_name_op,
get_intentions_op, get_intentions_with_name_op, get_lifetime, get_liking, get_modality,
get_obligation_op, get_obligation_with_name_op, get_obligations_op, get_obligations_with_name_op,
get_plan_name, get_predicate, get_solidarity, get_strength, get_super_intention, get_trust, get_truth,
get_uncertainties_op, get_uncertainties_with_name_op, get_uncertainty_op,
get_uncertainty_with_name_op, get_values, has_belief_op, has_belief_with_name_op, has_desire_op,
has_desire_with_name_op, has_ideal_op, has_ideal_with_name_op, has_intention_op,
has_intention_with_name_op, has_obligation_op, has_obligation_with_name_op, has_uncertainty_op,
has_uncertainty_with_name_op, new_emotion, new_mental_state, new_predicate, new_social_link, not,
or, set_about, set_agent, set_agent_cause, set_decay, set_dominance, set_familiarity, set_intensity,
set_lifetime, set_liking, set_modality, set_predicate, set_solidarity, set_strength, set_trust, set_truth,
with_values,

Casting operators

as, as_int, as_matrix, deserialize, field_with, font, from_gaml, from_json, is, is_skill, list_with, matrix_with,
serialize, species_of, to_gaml, to_geojson, to_json, to_list, with_size, with_style,

Color-related operators

-, /, *, +, blend, brewer_colors, brewer_palettes, gradient, grayscale, hsb, mean, median, palette, rgb,
rnd_color, scale, sum, to_hsb,

Comparison operators

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#%5E
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#abs
http://localhost:3000/wiki/OperatorsAA#acos
http://localhost:3000/wiki/OperatorsAA#asin
http://localhost:3000/wiki/OperatorsAA#atan
http://localhost:3000/wiki/OperatorsAA#atan2
http://localhost:3000/wiki/OperatorsBC#ceil
http://localhost:3000/wiki/OperatorsBC#cos
http://localhost:3000/wiki/OperatorsBC#cos_rad
http://localhost:3000/wiki/OperatorsDH#div
http://localhost:3000/wiki/OperatorsDH#even
http://localhost:3000/wiki/OperatorsDH#exp
http://localhost:3000/wiki/OperatorsDH#fact
http://localhost:3000/wiki/OperatorsDH#floor
http://localhost:3000/wiki/OperatorsDH#hypot
http://localhost:3000/wiki/OperatorsIM#is_finite
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#ln
http://localhost:3000/wiki/OperatorsIM#log
http://localhost:3000/wiki/OperatorsIM#mod
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsSZ#signum
http://localhost:3000/wiki/OperatorsSZ#sin
http://localhost:3000/wiki/OperatorsSZ#sin_rad
http://localhost:3000/wiki/OperatorsSZ#sqrt
http://localhost:3000/wiki/OperatorsSZ#tan
http://localhost:3000/wiki/OperatorsSZ#tan_rad
http://localhost:3000/wiki/OperatorsSZ#tanh
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsAA#add_values
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsDH#eval_when
http://localhost:3000/wiki/OperatorsDH#get_about
http://localhost:3000/wiki/OperatorsDH#get_agent
http://localhost:3000/wiki/OperatorsDH#get_agent_cause
http://localhost:3000/wiki/OperatorsDH#get_belief_op
http://localhost:3000/wiki/OperatorsDH#get_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_current_intention_op
http://localhost:3000/wiki/OperatorsDH#get_decay
http://localhost:3000/wiki/OperatorsDH#get_desire_op
http://localhost:3000/wiki/OperatorsDH#get_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_desires_op
http://localhost:3000/wiki/OperatorsDH#get_desires_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_dominance
http://localhost:3000/wiki/OperatorsDH#get_familiarity
http://localhost:3000/wiki/OperatorsDH#get_ideal_op
http://localhost:3000/wiki/OperatorsDH#get_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intensity
http://localhost:3000/wiki/OperatorsDH#get_intention_op
http://localhost:3000/wiki/OperatorsDH#get_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_lifetime
http://localhost:3000/wiki/OperatorsDH#get_liking
http://localhost:3000/wiki/OperatorsDH#get_modality
http://localhost:3000/wiki/OperatorsDH#get_obligation_op
http://localhost:3000/wiki/OperatorsDH#get_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_plan_name
http://localhost:3000/wiki/OperatorsDH#get_predicate
http://localhost:3000/wiki/OperatorsDH#get_solidarity
http://localhost:3000/wiki/OperatorsDH#get_strength
http://localhost:3000/wiki/OperatorsDH#get_super_intention
http://localhost:3000/wiki/OperatorsDH#get_trust
http://localhost:3000/wiki/OperatorsDH#get_truth
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_values
http://localhost:3000/wiki/OperatorsDH#has_belief_op
http://localhost:3000/wiki/OperatorsDH#has_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_desire_op
http://localhost:3000/wiki/OperatorsDH#has_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_intention_op
http://localhost:3000/wiki/OperatorsDH#has_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsNR#new_emotion
http://localhost:3000/wiki/OperatorsNR#new_mental_state
http://localhost:3000/wiki/OperatorsNR#new_predicate
http://localhost:3000/wiki/OperatorsNR#new_social_link
http://localhost:3000/wiki/OperatorsNR#not
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsSZ#set_about
http://localhost:3000/wiki/OperatorsSZ#set_agent
http://localhost:3000/wiki/OperatorsSZ#set_agent_cause
http://localhost:3000/wiki/OperatorsSZ#set_decay
http://localhost:3000/wiki/OperatorsSZ#set_dominance
http://localhost:3000/wiki/OperatorsSZ#set_familiarity
http://localhost:3000/wiki/OperatorsSZ#set_intensity
http://localhost:3000/wiki/OperatorsSZ#set_lifetime
http://localhost:3000/wiki/OperatorsSZ#set_liking
http://localhost:3000/wiki/OperatorsSZ#set_modality
http://localhost:3000/wiki/OperatorsSZ#set_predicate
http://localhost:3000/wiki/OperatorsSZ#set_solidarity
http://localhost:3000/wiki/OperatorsSZ#set_strength
http://localhost:3000/wiki/OperatorsSZ#set_trust
http://localhost:3000/wiki/OperatorsSZ#set_truth
http://localhost:3000/wiki/OperatorsSZ#with_values
http://localhost:3000/wiki/OperatorsAA#as
http://localhost:3000/wiki/OperatorsAA#as_int
http://localhost:3000/wiki/OperatorsAA#as_matrix
http://localhost:3000/wiki/OperatorsDH#deserialize
http://localhost:3000/wiki/OperatorsDH#field_with
http://localhost:3000/wiki/OperatorsDH#font
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsDH#from_json
http://localhost:3000/wiki/OperatorsIM#is
http://localhost:3000/wiki/OperatorsIM#is_skill
http://localhost:3000/wiki/OperatorsIM#list_with
http://localhost:3000/wiki/OperatorsIM#matrix_with
http://localhost:3000/wiki/OperatorsSZ#serialize
http://localhost:3000/wiki/OperatorsSZ#species_of
http://localhost:3000/wiki/OperatorsSZ#to_gaml
http://localhost:3000/wiki/OperatorsSZ#to_geojson
http://localhost:3000/wiki/OperatorsSZ#to_json
http://localhost:3000/wiki/OperatorsSZ#to_list
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_style
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#brewer_colors
http://localhost:3000/wiki/OperatorsBC#brewer_palettes
http://localhost:3000/wiki/OperatorsDH#gradient
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#hsb
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsNR#palette
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsNR#rnd_color
http://localhost:3000/wiki/OperatorsSZ#scale
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#to_hsb


!=, <, <=, =, >, >=, between,

Containers-related operators

-, ::, +, accumulate, all_match, among, at, cartesian_product, collect, contains, contains_all, contains_any,
contains_key, count, empty, every, first, first_with, get, group_by, in, index_by, inter, interleave,
internal_integrated_value, last, last_with, length, max, max_of, mean, mean_of, median, min, min_of,
mul, none_matches, one_matches, one_of, product_of, range, remove_duplicates, reverse, shuffle,
sort_by, split, split_in, split_using, sum, sum_of, union, variance_of, where, with_max_of, with_min_of,

Date-related operators

-, !=, +, <, <=, =, >, >=, after, before, between, every, milliseconds_between, minus_days, minus_hours,
minus_minutes, minus_months, minus_ms, minus_weeks, minus_years, months_between, plus_days,
plus_hours, plus_minutes, plus_months, plus_ms, plus_weeks, plus_years, since, to, until,
years_between,

Dates

Displays

horizontal, stack, vertical,

edge

edge_between, strahler,

EDP-related operators

diff, diff2,

http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#::
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#among
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsBC#cartesian_product
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#contains_key
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#interleave
http://localhost:3000/wiki/OperatorsIM#internal_integrated_value
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#one_of
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsNR#range
http://localhost:3000/wiki/OperatorsNR#remove_duplicates
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#after
http://localhost:3000/wiki/OperatorsBC#before
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsIM#milliseconds_between
http://localhost:3000/wiki/OperatorsIM#minus_days
http://localhost:3000/wiki/OperatorsIM#minus_hours
http://localhost:3000/wiki/OperatorsIM#minus_minutes
http://localhost:3000/wiki/OperatorsIM#minus_months
http://localhost:3000/wiki/OperatorsIM#minus_ms
http://localhost:3000/wiki/OperatorsIM#minus_weeks
http://localhost:3000/wiki/OperatorsIM#minus_years
http://localhost:3000/wiki/OperatorsIM#months_between
http://localhost:3000/wiki/OperatorsNR#plus_days
http://localhost:3000/wiki/OperatorsNR#plus_hours
http://localhost:3000/wiki/OperatorsNR#plus_minutes
http://localhost:3000/wiki/OperatorsNR#plus_months
http://localhost:3000/wiki/OperatorsNR#plus_ms
http://localhost:3000/wiki/OperatorsNR#plus_weeks
http://localhost:3000/wiki/OperatorsNR#plus_years
http://localhost:3000/wiki/OperatorsSZ#since
http://localhost:3000/wiki/OperatorsSZ#to
http://localhost:3000/wiki/OperatorsSZ#until
http://localhost:3000/wiki/OperatorsSZ#years_between
http://localhost:3000/wiki/OperatorsDH#horizontal
http://localhost:3000/wiki/OperatorsSZ#stack
http://localhost:3000/wiki/OperatorsSZ#vertical
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsDH#diff
http://localhost:3000/wiki/OperatorsDH#diff2


Files-related operators

agent_file, copy_file, crs, csv_file, delete_file, dxf_file, evaluate_sub_model, file_exists, folder,
folder_exists, gaml_file, geojson_file, get, gif_file, gml_file, graph6_file, graphdimacs_file, graphdot_file,
graphgexf_file, graphgml_file, graphml_file, graphtsplib_file, grid_file, image_file, is_agent, is_csv, is_dxf,
is_gaml, is_geojson, is_gif, is_gml, is_graph6, is_graphdimacs, is_graphdot, is_graphgexf, is_graphgml,
is_graphml, is_graphtsplib, is_grid, is_image, is_json, is_obj, is_osm, is_pgm, is_property, is_shape,
is_simulation, is_svg, is_text, is_threeds, is_xml, json_file, new_folder, obj_file, osm_file, pgm_file,
property_file, read, rename_file, shape_file, simulation_file, step_sub_model, svg_file, text_file,
threeds_file, unzip, writable, xml_file, zip,

GamaMetaType

type_of,

GamaSVGFile

image,

Graphs-related operators

add_edge, add_node, adjacency, agent_from_geometry, all_pairs_shortest_path, alpha_index,
as_distance_graph, as_edge_graph, as_intersection_graph, as_path, as_spatial_graph, beta_index,
betweenness_centrality, biggest_cliques_of, connected_components_of, connectivity_index,
contains_edge, contains_vertex, degree_of, directed, edge, edge_between, edge_betweenness, edges,
gamma_index, generate_barabasi_albert, generate_complete_graph, generate_random_graph,
generate_watts_strogatz, girvan_newman_clustering, grid_cells_to_graph, in_degree_of, in_edges_of,
k_spanning_tree_clustering, label_propagation_clustering, layout_circle, layout_force, layout_force_FR,
layout_force_FR_indexed, layout_grid, load_shortest_paths, main_connected_component,
max_flow_between, maximal_cliques_of, nb_cycles, neighbors_of, node, nodes, out_degree_of,
out_edges_of, path_between, paths_between, predecessors_of, remove_node_from, rewire_n, source_of,
spatial_graph, strahler, successors_of, sum, target_of, undirected, use_cache, weight_of,
with_k_shortest_path_algorithm, with_shortest_path_algorithm, with_weights,

Grid-related operators

http://localhost:3000/wiki/OperatorsAA#agent_file
http://localhost:3000/wiki/OperatorsBC#copy_file
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#csv_file
http://localhost:3000/wiki/OperatorsDH#delete_file
http://localhost:3000/wiki/OperatorsDH#dxf_file
http://localhost:3000/wiki/OperatorsDH#evaluate_sub_model
http://localhost:3000/wiki/OperatorsDH#file_exists
http://localhost:3000/wiki/OperatorsDH#folder
http://localhost:3000/wiki/OperatorsDH#folder_exists
http://localhost:3000/wiki/OperatorsDH#gaml_file
http://localhost:3000/wiki/OperatorsDH#geojson_file
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#gif_file
http://localhost:3000/wiki/OperatorsDH#gml_file
http://localhost:3000/wiki/OperatorsDH#graph6_file
http://localhost:3000/wiki/OperatorsDH#graphdimacs_file
http://localhost:3000/wiki/OperatorsDH#graphdot_file
http://localhost:3000/wiki/OperatorsDH#graphgexf_file
http://localhost:3000/wiki/OperatorsDH#graphgml_file
http://localhost:3000/wiki/OperatorsDH#graphml_file
http://localhost:3000/wiki/OperatorsDH#graphtsplib_file
http://localhost:3000/wiki/OperatorsDH#grid_file
http://localhost:3000/wiki/OperatorsIM#image_file
http://localhost:3000/wiki/OperatorsIM#is_agent
http://localhost:3000/wiki/OperatorsIM#is_csv
http://localhost:3000/wiki/OperatorsIM#is_dxf
http://localhost:3000/wiki/OperatorsIM#is_gaml
http://localhost:3000/wiki/OperatorsIM#is_geojson
http://localhost:3000/wiki/OperatorsIM#is_gif
http://localhost:3000/wiki/OperatorsIM#is_gml
http://localhost:3000/wiki/OperatorsIM#is_graph6
http://localhost:3000/wiki/OperatorsIM#is_graphdimacs
http://localhost:3000/wiki/OperatorsIM#is_graphdot
http://localhost:3000/wiki/OperatorsIM#is_graphgexf
http://localhost:3000/wiki/OperatorsIM#is_graphgml
http://localhost:3000/wiki/OperatorsIM#is_graphml
http://localhost:3000/wiki/OperatorsIM#is_graphtsplib
http://localhost:3000/wiki/OperatorsIM#is_grid
http://localhost:3000/wiki/OperatorsIM#is_image
http://localhost:3000/wiki/OperatorsIM#is_json
http://localhost:3000/wiki/OperatorsIM#is_obj
http://localhost:3000/wiki/OperatorsIM#is_osm
http://localhost:3000/wiki/OperatorsIM#is_pgm
http://localhost:3000/wiki/OperatorsIM#is_property
http://localhost:3000/wiki/OperatorsIM#is_shape
http://localhost:3000/wiki/OperatorsIM#is_simulation
http://localhost:3000/wiki/OperatorsIM#is_svg
http://localhost:3000/wiki/OperatorsIM#is_text
http://localhost:3000/wiki/OperatorsIM#is_threeds
http://localhost:3000/wiki/OperatorsIM#is_xml
http://localhost:3000/wiki/OperatorsIM#json_file
http://localhost:3000/wiki/OperatorsNR#new_folder
http://localhost:3000/wiki/OperatorsNR#obj_file
http://localhost:3000/wiki/OperatorsNR#osm_file
http://localhost:3000/wiki/OperatorsNR#pgm_file
http://localhost:3000/wiki/OperatorsNR#property_file
http://localhost:3000/wiki/OperatorsNR#read
http://localhost:3000/wiki/OperatorsNR#rename_file
http://localhost:3000/wiki/OperatorsSZ#shape_file
http://localhost:3000/wiki/OperatorsSZ#simulation_file
http://localhost:3000/wiki/OperatorsSZ#step_sub_model
http://localhost:3000/wiki/OperatorsSZ#svg_file
http://localhost:3000/wiki/OperatorsSZ#text_file
http://localhost:3000/wiki/OperatorsSZ#threeds_file
http://localhost:3000/wiki/OperatorsSZ#unzip
http://localhost:3000/wiki/OperatorsSZ#writable
http://localhost:3000/wiki/OperatorsSZ#xml_file
http://localhost:3000/wiki/OperatorsSZ#zip
http://localhost:3000/wiki/OperatorsSZ#type_of
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsAA#add_edge
http://localhost:3000/wiki/OperatorsAA#add_node
http://localhost:3000/wiki/OperatorsAA#adjacency
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#alpha_index
http://localhost:3000/wiki/OperatorsAA#as_distance_graph
http://localhost:3000/wiki/OperatorsAA#as_edge_graph
http://localhost:3000/wiki/OperatorsAA#as_intersection_graph
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsAA#as_spatial_graph
http://localhost:3000/wiki/OperatorsBC#beta_index
http://localhost:3000/wiki/OperatorsBC#betweenness_centrality
http://localhost:3000/wiki/OperatorsBC#biggest_cliques_of
http://localhost:3000/wiki/OperatorsBC#connected_components_of
http://localhost:3000/wiki/OperatorsBC#connectivity_index
http://localhost:3000/wiki/OperatorsBC#contains_edge
http://localhost:3000/wiki/OperatorsBC#contains_vertex
http://localhost:3000/wiki/OperatorsDH#degree_of
http://localhost:3000/wiki/OperatorsDH#directed
http://localhost:3000/wiki/OperatorsDH#edge
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsDH#edge_betweenness
http://localhost:3000/wiki/OperatorsDH#edges
http://localhost:3000/wiki/OperatorsDH#gamma_index
http://localhost:3000/wiki/OperatorsDH#generate_barabasi_albert
http://localhost:3000/wiki/OperatorsDH#generate_complete_graph
http://localhost:3000/wiki/OperatorsDH#generate_random_graph
http://localhost:3000/wiki/OperatorsDH#generate_watts_strogatz
http://localhost:3000/wiki/OperatorsDH#girvan_newman_clustering
http://localhost:3000/wiki/OperatorsDH#grid_cells_to_graph
http://localhost:3000/wiki/OperatorsIM#in_degree_of
http://localhost:3000/wiki/OperatorsIM#in_edges_of
http://localhost:3000/wiki/OperatorsIM#k_spanning_tree_clustering
http://localhost:3000/wiki/OperatorsIM#label_propagation_clustering
http://localhost:3000/wiki/OperatorsIM#layout_circle
http://localhost:3000/wiki/OperatorsIM#layout_force
http://localhost:3000/wiki/OperatorsIM#layout_force_fr
http://localhost:3000/wiki/OperatorsIM#layout_force_fr_indexed
http://localhost:3000/wiki/OperatorsIM#layout_grid
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#main_connected_component
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsIM#maximal_cliques_of
http://localhost:3000/wiki/OperatorsNR#nb_cycles
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#node
http://localhost:3000/wiki/OperatorsNR#nodes
http://localhost:3000/wiki/OperatorsNR#out_degree_of
http://localhost:3000/wiki/OperatorsNR#out_edges_of
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsNR#predecessors_of
http://localhost:3000/wiki/OperatorsNR#remove_node_from
http://localhost:3000/wiki/OperatorsNR#rewire_n
http://localhost:3000/wiki/OperatorsSZ#source_of
http://localhost:3000/wiki/OperatorsSZ#spatial_graph
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsSZ#successors_of
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#target_of
http://localhost:3000/wiki/OperatorsSZ#undirected
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsSZ#weight_of
http://localhost:3000/wiki/OperatorsSZ#with_k_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_weights


as_4_grid, as_grid, as_hexagonal_grid, cell_at, cells_in, cells_overlapping, field, grid_at, neighbors_of,
path_between, points_in, values_in,

ImageOperators

*, antialiased, blend, blurred, brighter, clipped_with, darker, grayscale, horizontal_flip, image, matrix,
rotated_by, sharpened, snapshot, tinted_with, vertical_flip, with_height, with_size, with_width,

Iterator operators

accumulate, all_match, as_map, collect, count, create_map, first_with, frequency_of, group_by, index_by,
last_with, max_of, mean_of, min_of, none_matches, one_matches, product_of, sort_by, sum_of,
variance_of, where, where, where, with_max_of, with_min_of,

List-related operators

all_indexes_of, copy_between, index_of, last_index_of,

Logical operators

:, !, ?, add_3Dmodel, add_geometry, add_icon, and, or, xor,

Map comparaison operators

fuzzy_kappa, fuzzy_kappa_sim, kappa, kappa_sim, percent_absolute_deviation,

Map-related operators

as_map, create_map, index_of, last_index_of,

Matrix-related operators

http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsBC#cell_at
http://localhost:3000/wiki/OperatorsBC#cells_in
http://localhost:3000/wiki/OperatorsBC#cells_overlapping
http://localhost:3000/wiki/OperatorsDH#field
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#points_in
http://localhost:3000/wiki/OperatorsSZ#values_in
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#antialiased
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#blurred
http://localhost:3000/wiki/OperatorsBC#brighter
http://localhost:3000/wiki/OperatorsBC#clipped_with
http://localhost:3000/wiki/OperatorsDH#darker
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#horizontal_flip
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsSZ#sharpened
http://localhost:3000/wiki/OperatorsSZ#snapshot
http://localhost:3000/wiki/OperatorsSZ#tinted_with
http://localhost:3000/wiki/OperatorsSZ#vertical_flip
http://localhost:3000/wiki/OperatorsSZ#with_height
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_width
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsAA#all_indexes_of
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsAA#:
http://localhost:3000/wiki/OperatorsAA#!
http://localhost:3000/wiki/OperatorsAA#?
http://localhost:3000/wiki/OperatorsAA#add_3dmodel
http://localhost:3000/wiki/OperatorsAA#add_geometry
http://localhost:3000/wiki/OperatorsAA#add_icon
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsSZ#xor
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa_sim
http://localhost:3000/wiki/OperatorsIM#kappa
http://localhost:3000/wiki/OperatorsIM#kappa_sim
http://localhost:3000/wiki/OperatorsNR#percent_absolute_deviation
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of


-, /, ., *, +, append_horizontally, append_vertically, column_at, columns_list, determinant, eigenvalues,
flatten, index_of, inverse, last_index_of, row_at, rows_list, shuffle, trace, transpose,

multicriteria operators

electre_DM, evidence_theory_DM, fuzzy_choquet_DM, promethee_DM, weighted_means_DM,

Path-related operators

agent_from_geometry, all_pairs_shortest_path, as_path, load_shortest_paths, max_flow_between,
path_between, path_to, paths_between, use_cache,

Pedestrian

generate_pedestrian_network,

Points-related operators

-, /, *, +, <, <=, >, >=, add_point, angle_between, any_location_in, centroid, closest_points_with,
farthest_point_to, grid_at, norm, points_along, points_at, points_on,

Random operators

binomial, exp_density, exp_rnd, flip, gamma_density, gamma_rnd, gamma_trunc_rnd, gauss,
generate_terrain, lognormal_density, lognormal_rnd, lognormal_trunc_rnd, poisson, rnd, rnd_choice,
sample, shuffle, skew_gauss, truncated_gauss, weibull_density, weibull_rnd, weibull_trunc_rnd,

Shape

arc, box, circle, cone, cone3D, cross, cube, curve, cylinder, ellipse, elliptical_arc, envelope,
geometry_collection, hexagon, line, link, plan, polygon, polyhedron, pyramid, rectangle, sphere, square,
squircle, teapot, triangle,

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#append_horizontally
http://localhost:3000/wiki/OperatorsAA#append_vertically
http://localhost:3000/wiki/OperatorsBC#column_at
http://localhost:3000/wiki/OperatorsBC#columns_list
http://localhost:3000/wiki/OperatorsDH#determinant
http://localhost:3000/wiki/OperatorsDH#eigenvalues
http://localhost:3000/wiki/OperatorsDH#flatten
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#inverse
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#row_at
http://localhost:3000/wiki/OperatorsNR#rows_list
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#trace
http://localhost:3000/wiki/OperatorsSZ#transpose
http://localhost:3000/wiki/OperatorsDH#electre_dm
http://localhost:3000/wiki/OperatorsDH#evidence_theory_dm
http://localhost:3000/wiki/OperatorsDH#fuzzy_choquet_dm
http://localhost:3000/wiki/OperatorsNR#promethee_dm
http://localhost:3000/wiki/OperatorsSZ#weighted_means_dm
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsDH#generate_pedestrian_network
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#exp_density
http://localhost:3000/wiki/OperatorsDH#exp_rnd
http://localhost:3000/wiki/OperatorsDH#flip
http://localhost:3000/wiki/OperatorsDH#gamma_density
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gamma_trunc_rnd
http://localhost:3000/wiki/OperatorsDH#gauss
http://localhost:3000/wiki/OperatorsDH#generate_terrain
http://localhost:3000/wiki/OperatorsIM#lognormal_density
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_trunc_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsNR#rnd_choice
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_density
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsSZ#weibull_trunc_rnd
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#triangle


Spatial operators

-, *, +, add_point, agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering,
agents_crossing, agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching,
angle_between, any_location_in, arc, around, as_4_grid, as_driving_graph, as_grid, as_hexagonal_grid,
at_distance, at_location, box, centroid, circle, clean, clean_network, closest_points_with, closest_to, cone,
cone3D, convex_hull, covering, covers, cross, crosses, crossing, crs, CRS_transform, cube, curve, cylinder,
direction_between, disjoint_from, distance_between, distance_to, ellipse, elliptical_arc, envelope,
farthest_point_to, farthest_to, geometry_collection, gini, hexagon, hierarchical_clustering, IDW, inside,
inter, intersects, inverse_rotation, k_nearest_neighbors, line, link, masked_by, moran, neighbors_at,
neighbors_of, normalized_rotation, overlapping, overlaps, partially_overlapping, partially_overlaps,
path_between, path_to, plan, points_along, points_at, points_on, polygon, polyhedron, pyramid,
rectangle, rotated_by, rotation_composition, round, scaled_to, set_z, simple_clustering_by_distance,
simplification, skeletonize, smooth, sphere, split_at, split_geometry, split_lines, square, squircle, teapot,
to_GAMA_CRS, to_rectangles, to_segments, to_squares, to_sub_geometries, touches, touching, towards,
transformed_by, translated_by, triangle, triangulate, union, using, voronoi, with_precision,
without_holes,

Spatial properties operators

covers, crosses, intersects, partially_overlaps, touches,

Spatial queries operators

agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering, agents_crossing,
agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching, at_distance,
closest_to, covering, crossing, farthest_to, inside, neighbors_at, neighbors_of, overlapping,
partially_overlapping, touching,

Spatial relations operators

direction_between, distance_between, distance_to, path_between, path_to, towards,

Spatial statistical operators

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_driving_graph
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#crs_transform
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#idw
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsIM#masked_by
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#split_at
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#to_gama_crs
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsSZ#towards
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#using
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsSZ#towards


hierarchical_clustering, k_nearest_neighbors, simple_clustering_by_distance,

Spatial transformations operators

-, *, +, as_4_grid, as_grid, as_hexagonal_grid, at_location, clean, clean_network, convex_hull,
CRS_transform, inverse_rotation, normalized_rotation, rotated_by, rotation_composition, scaled_to,
simplification, skeletonize, smooth, split_geometry, split_lines, to_GAMA_CRS, to_rectangles,
to_segments, to_squares, to_sub_geometries, transformed_by, translated_by, triangulate, voronoi,
with_precision, without_holes,

Species-related operators

index_of, last_index_of, of_generic_species, of_species,

Statistical operators

auto_correlation, beta, binomial_coeff, binomial_complemented, binomial_sum, build, chi_square,
chi_square_complemented, correlation, covariance, dbscan, distribution_of, distribution2d_of, dtw,
durbin_watson, frequency_of, gamma, gamma_distribution, gamma_distribution_complemented,
geometric_mean, gini, harmonic_mean, hierarchical_clustering, incomplete_beta, incomplete_gamma,
incomplete_gamma_complement, k_nearest_neighbors, kmeans, kurtosis, log_gamma, max, mean,
mean_deviation, median, min, moment, moran, morrisAnalysis, mul, normal_area, normal_density,
normal_inverse, predict, pValue_for_fStat, pValue_for_tStat, quantile, quantile_inverse,
rank_interpolated, residuals, rms, rSquare, simple_clustering_by_distance, skewness, sobolAnalysis,
split, split_in, split_using, standard_deviation, student_area, student_t_inverse, sum, t_test, variance,

Strings-related operators

+, <, <=, >, >=, at, capitalize, char, compress, contains, contains_all, contains_any, copy_between, date,
empty, first, in, indented_by, index_of, is_number, last, last_index_of, length, lower_case, regex_matches,
replace, replace_regex, reverse, sample, shuffle, split_with, string, uncompress, upper_case,

SubModel

http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#crs_transform
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#to_gama_crs
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#of_generic_species
http://localhost:3000/wiki/OperatorsNR#of_species
http://localhost:3000/wiki/OperatorsAA#auto_correlation
http://localhost:3000/wiki/OperatorsBC#beta
http://localhost:3000/wiki/OperatorsBC#binomial_coeff
http://localhost:3000/wiki/OperatorsBC#binomial_complemented
http://localhost:3000/wiki/OperatorsBC#binomial_sum
http://localhost:3000/wiki/OperatorsBC#build
http://localhost:3000/wiki/OperatorsBC#chi_square
http://localhost:3000/wiki/OperatorsBC#chi_square_complemented
http://localhost:3000/wiki/OperatorsBC#correlation
http://localhost:3000/wiki/OperatorsBC#covariance
http://localhost:3000/wiki/OperatorsDH#dbscan
http://localhost:3000/wiki/OperatorsDH#distribution_of
http://localhost:3000/wiki/OperatorsDH#distribution2d_of
http://localhost:3000/wiki/OperatorsDH#dtw
http://localhost:3000/wiki/OperatorsDH#durbin_watson
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#gamma
http://localhost:3000/wiki/OperatorsDH#gamma_distribution
http://localhost:3000/wiki/OperatorsDH#gamma_distribution_complemented
http://localhost:3000/wiki/OperatorsDH#geometric_mean
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#harmonic_mean
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#incomplete_beta
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma_complement
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#kmeans
http://localhost:3000/wiki/OperatorsIM#kurtosis
http://localhost:3000/wiki/OperatorsIM#log_gamma
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_deviation
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#moment
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsIM#morrisanalysis
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#normal_area
http://localhost:3000/wiki/OperatorsNR#normal_density
http://localhost:3000/wiki/OperatorsNR#normal_inverse
http://localhost:3000/wiki/OperatorsNR#predict
http://localhost:3000/wiki/OperatorsNR#pvalue_for_fstat
http://localhost:3000/wiki/OperatorsNR#pvalue_for_tstat
http://localhost:3000/wiki/OperatorsNR#quantile
http://localhost:3000/wiki/OperatorsNR#quantile_inverse
http://localhost:3000/wiki/OperatorsNR#rank_interpolated
http://localhost:3000/wiki/OperatorsNR#residuals
http://localhost:3000/wiki/OperatorsNR#rms
http://localhost:3000/wiki/OperatorsNR#rsquare
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#skewness
http://localhost:3000/wiki/OperatorsSZ#sobolanalysis
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#standard_deviation
http://localhost:3000/wiki/OperatorsSZ#student_area
http://localhost:3000/wiki/OperatorsSZ#student_t_inverse
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#t_test
http://localhost:3000/wiki/OperatorsSZ#variance
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsBC#capitalize
http://localhost:3000/wiki/OperatorsBC#char
http://localhost:3000/wiki/OperatorsBC#compress
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#indented_by
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#lower_case
http://localhost:3000/wiki/OperatorsNR#regex_matches
http://localhost:3000/wiki/OperatorsNR#replace
http://localhost:3000/wiki/OperatorsNR#replace_regex
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#split_with
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsSZ#uncompress
http://localhost:3000/wiki/OperatorsSZ#upper_case


load_sub_model,

System

., choose, command, copy, copy_from_clipboard, copy_to_clipboard, copy_to_clipboard, dead, enter,
every, from_gaml, is_error, is_reachable, is_warning, play_sound, user_confirm, user_input_dialog,
wizard, wizard_page,

Time-related operators

date, string,

Types-related operators

action, agent, BDIPlan, bool, container, conversation, directory, emotion, file, float, gaml_type, geometry,
graph, int, kml, list, map, matrix, mental_state, message, Norm, pair, path, point, predicate, regression,
rgb, Sanction, skill, social_link, species, topology, unknown,

User control operators

choose, enter, user_confirm, user_input_dialog, wizard, wizard_page,

Operators

BDIPlan

Possible uses:

BDIPlan  ( any ) ---> BDIPlan

Result:

casts the operand in a BDIPlan object.

http://localhost:3000/wiki/OperatorsIM#load_sub_model
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsBC#command
http://localhost:3000/wiki/OperatorsBC#copy
http://localhost:3000/wiki/OperatorsBC#copy_from_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsDH#dead
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsIM#is_error
http://localhost:3000/wiki/OperatorsIM#is_reachable
http://localhost:3000/wiki/OperatorsIM#is_warning
http://localhost:3000/wiki/OperatorsNR#play_sound
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsAA#action
http://localhost:3000/wiki/OperatorsAA#agent
http://localhost:3000/wiki/OperatorsBC#bdiplan
http://localhost:3000/wiki/OperatorsBC#bool
http://localhost:3000/wiki/OperatorsBC#container
http://localhost:3000/wiki/OperatorsBC#conversation
http://localhost:3000/wiki/OperatorsDH#directory
http://localhost:3000/wiki/OperatorsDH#emotion
http://localhost:3000/wiki/OperatorsDH#file
http://localhost:3000/wiki/OperatorsDH#float
http://localhost:3000/wiki/OperatorsDH#gaml_type
http://localhost:3000/wiki/OperatorsDH#geometry
http://localhost:3000/wiki/OperatorsDH#graph
http://localhost:3000/wiki/OperatorsIM#int
http://localhost:3000/wiki/OperatorsIM#kml
http://localhost:3000/wiki/OperatorsIM#list
http://localhost:3000/wiki/OperatorsIM#map
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsIM#mental_state
http://localhost:3000/wiki/OperatorsIM#message
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#pair
http://localhost:3000/wiki/OperatorsNR#path
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#predicate
http://localhost:3000/wiki/OperatorsNR#regression
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsSZ#sanction
http://localhost:3000/wiki/OperatorsSZ#skill
http://localhost:3000/wiki/OperatorsSZ#social_link
http://localhost:3000/wiki/OperatorsSZ#species
http://localhost:3000/wiki/OperatorsSZ#topology
http://localhost:3000/wiki/OperatorsSZ#unknown
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page


before

Possible uses:

before  ( date ) ---> bool

any expression  before  date  ---> bool

before  ( any expression  , date ) ---> bool

Result:

Returns true if the current_date of the model is strictly before the date passed in argument. Synonym of
'current_date < argument'

Examples:

beta

Possible uses:

float  beta  float  ---> float

beta  ( float  , float ) ---> float

Result:

Returns the beta function with arguments a, b.

Comment:

Checked on R. beta(4,5)

Examples:

reflex when: before(starting_date) {} // this reflex will never be run

float var0 <- beta(4,5) with_precision(4); // var0 equals 0.0036



beta_index

Possible uses:

beta_index  ( graph ) ---> float

Result:

returns the beta index of the graph (Measures the level of connectivity in a graph and is expressed by
the relationship between the number of links (e) over the number of nodes (v) : beta = e/v.

Examples:

See also: alpha_index, gamma_index, nb_cycles, connectivity_index,

between

Possible uses:

date  between  date  ---> bool

between  ( date  , date ) ---> bool

between  ( any expression , date , date ) ---> bool

between  ( int , int , int ) ---> bool

between  ( float , float , float ) ---> bool

between  ( date , date , date ) ---> bool

Result:

returns true the first operand is bigger than the second operand and smaller than the third operand

Special cases:

returns true if the first operand is between the two dates passed in arguments (both exclusive). Can
be combined with 'every' to express a frequency between two dates

graph graphEpidemio <- graph([]); 
float var1 <- beta_index(graphEpidemio); // var1 equals the beta index of the graph

http://localhost:3000/wiki/OperatorsAA#alpha_index
http://localhost:3000/wiki/OperatorsDH#gamma_index
http://localhost:3000/wiki/OperatorsNR#nb_cycles
http://localhost:3000/wiki/OperatorsBC#connectivity_index


With only 2 date operands, it returns true if the current_date is between the 2 date operands.

Examples:

betweenness_centrality

Possible uses:

betweenness_centrality  ( graph ) ---> map

Result:

returns a map containing for each vertex (key), its betweenness centrality (value): number of shortest
paths passing through each vertex

Examples:

biggest_cliques_of

Possible uses:

biggest_cliques_of  ( graph ) ---> list<list>

bool var2 <- (date('2016-01-01') between(date('2000-01-01'), date('2020-02-02'))); // 
var2 equals true 
// will return true every new day between these two dates, taking the first one as the 
starting point 
every(#day between(date('2000-01-01'), date('2020-02-02'))) 

bool var5 <- between(date('2000-01-01'), date('2020-02-02')); // var5 equals false

bool var0 <- between(5, 1, 10); // var0 equals true 
bool var1 <- between(5.0, 1.0, 10.0); // var1 equals true

graph graphEpidemio <- graph([]); 
map var1 <- betweenness_centrality(graphEpidemio); // var1 equals the betweenness 
centrality index of the graph



Result:

returns the biggest cliques of a graph using the Bron-Kerbosch clique detection algorithm

Examples:

See also: maximal_cliques_of,

binomial

Possible uses:

int  binomial  float  ---> int

binomial  ( int  , float ) ---> int

Result:

A value from a random variable following a binomial distribution. The operands represent the number
of experiments n and the success probability p.

Comment:

The binomial distribution is the discrete probability distribution of the number of successes in a
sequence of n independent yes/no experiments, each of which yields success with probability p, cf.
Binomial distribution on Wikipedia.

Examples:

See also: gamma_rnd, gauss_rnd, lognormal_rnd, poisson, rnd, skew_gauss, truncated_gauss,
weibull_rnd,

binomial_coeff

graph my_graph <- graph([]); 
list<list> var1 <- biggest_cliques_of (my_graph); // var1 equals the list of the 
biggest cliques as list

int var0 <- binomial(15,0.6); // var0 equals a random positive integer

http://localhost:3000/wiki/OperatorsIM#maximal_cliques_of
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd


Possible uses:

int  binomial_coeff  int  ---> float

binomial_coeff  ( int  , int ) ---> float

Result:

Returns n choose k as a double. Note the integerization of the double return value.

Examples:

binomial_complemented

Possible uses:

binomial_complemented  ( int , int , float ) ---> float

Result:

Returns the sum of the terms k+1 through n of the Binomial probability density, where n is the number
of trials and P is the probability of success in the range 0 to 1.

Examples:

binomial_sum

Possible uses:

binomial_sum  ( int , int , float ) ---> float

Result:

Returns the sum of the terms 0 through k of the Binomial probability density, where n is the number of
trials and p is the probability of success in the range 0 to 1.

float var0 <- binomial_coeff(10,2); // var0 equals 45

float var0 <- binomial_complemented(10,5,0.5) with_precision(2); // var0 equals 0.38



Examples:

blend

Possible uses:

rgb  blend  rgb  ---> rgb

blend  ( rgb  , rgb ) ---> rgb

blend  ( rgb , rgb , float ) ---> rgb

Result:

Blend two colors with an optional ratio (c1 *  r + c2 *  (1 - r)) between 0 and 1

Special cases:

If the ratio is omitted, an even blend is done

Examples:

See also: rgb, hsb,

blend

Possible uses:

blend  ( image , image , float ) ---> image

Result:

float var0 <- binomial_sum(5,10,0.5) with_precision(2); // var0 equals 0.62

rgb var0 <- blend(#red, #blue); // var0 equals to a color very close to the purple

rgb var1 <- blend(#red, #blue, 0.3); // var1 equals to a color between the purple and 
the blue

http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsDH#hsb


Blend two images with an optional ratio between 0 and 1 (determines the transparency of the second
image, applied as an overlay to the first). The size of the resulting image is that of the first parameter.
The original image is left untouched

Examples:

blurred

Possible uses:

blurred  ( image ) ---> image

image  blurred  int  ---> image

blurred  ( image  , int ) ---> image

Result:

Application of a blurrying filter to the image passed in parameter. This operation is applied multiple
times if the last argument is > 0. The original image is left untouched Application of a blurrying filter to
the image passed in parameter. This operation can be applied multiple times. The original image is left
untouched

bool

Possible uses:

bool  ( any ) ---> bool

Result:

casts the operand in a bool object.

box

Possible uses:

image var0 <- blend(img1, img2, 0.3); // var0 equals to a composed image with the two



box  ( point ) ---> geometry

box  ( float , float , float ) ---> geometry

Result:

A box geometry which side sizes are given by the operands.

Comment:

the center of the box is by default the location of the current agent in which has been called this
operator.the center of the box is by default the location of the current agent in which has been called
this operator.

Special cases:

returns nil if the operand is nil.

returns nil if the operand is nil.

Examples:

See also: around, circle, sphere, cone, line, link, norm, point, polygon, polyline, square, cube, triangle,

brewer_colors

Possible uses:

brewer_colors  ( string ) ---> list<rgb>

string  brewer_colors  int  ---> list<rgb>

brewer_colors  ( string  , int ) ---> list<rgb>

Result:

geometry var0 <- box({10, 5 , 5}); // var0 equals a geometry as a rectangle with width 
= 10, height = 5 depth= 5. 
float var1 <-  (box({10, 10 , 5}) at_location point(50,50,0)).location.y; // var1 
equals 50.0 
geometry var2 <- box(10, 5 , 5); // var2 equals a geometry as a rectangle with width = 
10, height = 5 depth= 5.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsSZ#triangle


Build a list of colors of a given type (see website http://colorbrewer2.org/). The list of palettes can be
obtained by calling brewer_palettes. This list can be safely modified afterwards (adding or removing
colors) Build a list of colors of a given type (see website http://colorbrewer2.org/) with a given number of
classes

Examples:

See also: brewer_palettes,

brewer_palettes

Possible uses:

brewer_palettes  ( int ) ---> list<string>

int  brewer_palettes  int  ---> list<string>

brewer_palettes  ( int  , int ) ---> list<string>

Result:

Returns the list of palettes with a given min number of classes and max number of classes) Returns the
list of palettes with a given min number of classes)

Examples:

See also: brewer_colors,

brighter

list<rgb> var0 <- list<rgb> colors <- brewer_colors("OrRd"); // var0 equals a list of 6 
blue colors 
list<rgb> var1 <- list<rgb> colors <- brewer_colors("Pastel1", 5); // var1 equals a 
list of 5 sequential colors in the palette named 'Pastel1'. The list of palettes can be 
obtained by calling brewer_palettes

list<string> var0 <- list<string> palettes <- brewer_palettes(5,10); // var0 equals a 
list of palettes that are composed of a min of 5 colors and a max of 10 colors 
list<string> var1 <- list<string> palettes <- brewer_palettes(3); // var1 equals a list 
of palettes that are composed of a min of 3 colors

http://colorbrewer2.org/
http://colorbrewer2.org/
http://localhost:3000/wiki/OperatorsBC#brewer_palettes
http://localhost:3000/wiki/OperatorsBC#brewer_colors


Possible uses:

brighter  ( image ) ---> image

Result:

Used to return an image 10% brigther. This operation can be applied multiple times in a row if greater
than 10% changes in brightness are desired.

buffer

Same signification as +

build

Possible uses:

build  ( matrix ) ---> regression

Result:

returns the regression build from the matrix data (a row = an instance, the first value of each line is the y
value) while using the given ordinary least squares method. Usage: build(data)

Examples:

capitalize

Possible uses:

capitalize  ( string ) ---> string

Result:

Returns a string where the first letter is capitalized

build(matrix([[1.0,2.0,3.0,4.0],[2.0,3.0,4.0,2.0]]))

http://localhost:3000/wiki/OperatorsAA#+


Examples:

See also: lower_case, upper_case,

cartesian_product

Possible uses:

cartesian_product  ( list ) ---> unknown

ceil

Possible uses:

ceil  ( float ) ---> float

Result:

Maps the operand to the smallest following integer, i.e. the smallest integer not less than x.

Examples:

See also: floor, round,

cell_at

Possible uses:

field  cell_at  point  ---> geometry

cell_at  ( field  , point ) ---> geometry

cell_at  ( field , int , int ) ---> geometry

string var0 <- capitalize("abc"); // var0 equals 'Abc'

float var0 <- ceil(3); // var0 equals 3.0 
float var1 <- ceil(3.5); // var1 equals 4.0 
float var2 <- ceil(-4.7); // var2 equals -4.0

http://localhost:3000/wiki/OperatorsIM#lower_case
http://localhost:3000/wiki/OperatorsSZ#upper_case
http://localhost:3000/wiki/OperatorsDH#floor
http://localhost:3000/wiki/OperatorsNR#round


cells_in

Possible uses:

field  cells_in  geometry  ---> list<geometry>

cells_in  ( field  , geometry ) ---> list<geometry>

cells_overlapping

Possible uses:

field  cells_overlapping  geometry  ---> list<geometry>

cells_overlapping  ( field  , geometry ) ---> list<geometry>

centroid

Possible uses:

centroid  ( geometry ) ---> point

Result:

Centroid (weighted sum of the centroids of a decomposition of the area into triangles) of the operand-
geometry. Can be different to the location of the geometry

Examples:

See also: any_location_in, closest_points_with, farthest_point_to, points_at,

char

Possible uses:

point var0 <- centroid(world); // var0 equals the centroid of the square, for example : 
{50.0,50.0}.

http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsNR#points_at


char  ( int ) ---> string

Special cases:

converts ACSII integer value to character

chi_square

Possible uses:

float  chi_square  float  ---> float

chi_square  ( float  , float ) ---> float

Result:

Returns the area under the left hand tail (from 0 to x) of the Chi square probability density function with
df degrees of freedom.

Examples:

chi_square_complemented

Possible uses:

float  chi_square_complemented  float  ---> float

chi_square_complemented  ( float  , float ) ---> float

Result:

Returns the area under the right hand tail (from x to infinity) of the Chi square probability density
function with df degrees of freedom.

Examples:

string var0 <- char (34); // var0 equals '"'

float var0 <- chi_square(20.0,10) with_precision(3); // var0 equals 0.971



choose

Possible uses:

choose  ( string , any GAML type , unknown , list ) ---> unknown

Result:

Allows the user to choose a value by specifying a title, a type, and a list of possible values

circle

Possible uses:

circle  ( float ) ---> geometry

float  circle  point  ---> geometry

circle  ( float  , point ) ---> geometry

Result:

A circle geometry which radius is equal to the operand.

Comment:

the center of the circle is by default the location of the current agent in which has been called this
operator.

Special cases:

returns a point if the radius operand is lower or equal to 0.

When circle is used with 2 operands, the second one is the center of the created circle.

Examples:

float var0 <- chi_square_complemented(2,10) with_precision(3); // var0 equals 0.996

geometry var0 <- circle(10,{80,30}); // var0 equals a geometry as a circle of radius 
10, the center will be in the location {80,30}.



See also: around, cone, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

clean

Possible uses:

clean  ( geometry ) ---> geometry

Result:

A geometry corresponding to the cleaning of the operand (geometry, agent, point)

Comment:

The cleaning corresponds to a buffer with a distance of 0.0

Examples:

clean_network

Possible uses:

clean_network  ( list<geometry> , float , bool , bool ) ---> list<geometry>

Result:

A list of polylines corresponding to the cleaning of the first operand (list of polyline geometry or agents),
considering the tolerance distance given by the second operand; the third operator is used to define if
the operator should as well split the lines at their intersections(true to split the lines); the last operandis
used to specify if the operator should as well keep only the main connected component of the network.
Usage: clean_network(lines:list of geometries or agents, tolerance: float, split_lines: bool,
keepMainConnectedComponent: bool)

geometry var1 <- circle(10); // var1 equals a geometry as a circle of radius 10.

geometry var0 <- clean(self); // var0 equals returns the geometry resulting from the 
cleaning of the geometry of the agent applying the operator.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle


Comment:

The cleaned set of polylines

Examples:

clipped_with

Possible uses:

clipped_with  ( image , int , int , int , int ) ---> image

Result:

Used to crop the given image using a rectangle starting at the top-left x, y coordinates and expanding
using the width and height. If one of the dimensions of the resulting image is 0, of if they are equal to
that of the given image, returns it. The original image is left untouched

closest_points_with

Possible uses:

geometry  closest_points_with  geometry  ---> list<point>

closest_points_with  ( geometry  , geometry ) ---> list<point>

Result:

A list of two closest points between the two geometries.

Examples:

list<geometry> var0 <- clean_network(my_road_shapefile.contents, 1.0, true, false); // 
var0 equals returns the list of polulines resulting from the cleaning of the geometry 
of the agent applying the operator with a tolerance of 1m, and splitting the lines at 
their intersections. 
list<geometry> var1 <- clean_network([line({10,10}, {20,20}), line({10,20},
{20,10})],3.0,true,false); // var1 equals [line({10.0,20.0,0.0},
{15.0,15.0,0.0}),line({15.0,15.0,0.0},{20.0,10.0,0.0}), line({10.0,10.0,0.0},
{15.0,15.0,0.0}), line({15.0,15.0,0.0},{20.0,20.0,0.0})]



See also: any_location_in, any_point_in, farthest_point_to, points_at,

closest_to

Possible uses:

container<unknown,geometry>  closest_to  geometry  ---> geometry

closest_to  ( container<unknown,geometry>  , geometry ) ---> geometry

closest_to  ( container<unknown,geometry> , geometry , int ) ---> list<geometry>

Result:

An agent or a geometry among the left-operand list of agents, species or meta-population (addition of
species), the closest to the operand (casted as a geometry). The N agents or geometries among the left-
operand list of agents, species or meta-population (addition of species), that are the closest to the
operand (casted as a geometry).

Comment:

the distance is computed in the topology of the calling agent (the agent in which this operator is used),
with the distance algorithm specific to the topology.the distance is computed in the topology of the
calling agent (the agent in which this operator is used), with the distance algorithm specific to the
topology.

Examples:

See also: neighbors_at, neighbors_of, inside, overlapping, agents_overlapping, agents_inside,
agent_closest_to,

list<point> var0 <- geom1 closest_points_with(geom2); // var0 equals [pt1, pt2] with 
pt1 the closest point of geom1 to geom2 and pt1 the closest point of geom2 to geom1

geometry var0 <- [ag1, ag2, ag3] closest_to(self); // var0 equals return the closest 
agent among ag1, ag2 and ag3 to the agent applying the operator. 
(species1 + species2) closest_to self 
list<geometry> var2 <- [ag1, ag2, ag3] closest_to(self, 2); // var2 equals return the 2 
closest agents among ag1, ag2 and ag3 to the agent applying the operator. 
(species1 + species2) closest_to (self, 5)

http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsAA#any_point_in
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agent_closest_to


collect

Possible uses:

container  collect  any expression  ---> list

collect  ( container  , any expression ) ---> list

Result:

returns a new list, in which each element is the evaluation of the right-hand operand.

Comment:

collect is similar to accumulate except that accumulate always produces flat lists if the right-hand
operand returns a list.In addition, collect can be applied to any container.

Special cases:

if the left-hand operand is nil, collect throws an error

Examples:

See also: accumulate,

column_at

Possible uses:

matrix<unknown>  column_at  int  ---> list<unknown>

column_at  ( matrix<unknown>  , int ) ---> list<unknown>

Result:

returns the column at a num_col (right-hand operand)

list var0 <- [1,2,4] collect (each *2); // var0 equals [2,4,8] 
list var1 <- [1,2,4] collect ([2,4]); // var1 equals [[2,4],[2,4],[2,4]] 
list var2 <- [1::2, 3::4, 5::6] collect (each + 2); // var2 equals [4,6,8] 
list var3 <- (list(node) collect (node(each).location.x * 2); // var3 equals the list 
of nodes with their x multiplied by 2

http://localhost:3000/wiki/OperatorsAA#accumulate


Examples:

See also: row_at, rows_list,

columns_list

Possible uses:

columns_list  ( matrix<unknown> ) ---> list<list<unknown>>

Result:

returns a list of the columns of the matrix, with each column as a list of elements

Examples:

See also: rows_list,

command

Possible uses:

command  ( string ) ---> string

string  command  string  ---> string

command  ( string  , string ) ---> string

command  ( string , string , map<string,string> ) ---> string

Result:

command allows GAMA to issue a system command using the system terminal or shell and to receive a
string containing the outcome of the command or script executed. By default, commands are blocking

list<unknown> var0 <- matrix([["el11","el12","el13"],["el21","el22","el23"],
["el31","el32","el33"]]) column_at 2; // var0 equals ["el31","el32","el33"]

list<list<unknown>> var0 <- columns_list(matrix([["el11","el12","el13"],
["el21","el22","el23"],["el31","el32","el33"]])); // var0 equals 
[["el11","el12","el13"],["el21","el22","el23"],["el31","el32","el33"]]

http://localhost:3000/wiki/OperatorsNR#row_at
http://localhost:3000/wiki/OperatorsNR#rows_list
http://localhost:3000/wiki/OperatorsNR#rows_list


the agent calling them, unless the sequence ' &' is used at the end. In this case, the result of the
operator is an empty string. The basic form with only one string in argument uses the directory of the
model and does not set any environment variables. Two other forms (with a directory and a map<string,
string> of environment variables) are available.

compress

Possible uses:

compress  ( string ) ---> string

Result:

Returns a string that represents the compressed form (using gzip) of the argument

See also: uncompress,

cone

Possible uses:

cone  ( point ) ---> geometry

int  cone  int  ---> geometry

cone  ( int  , int ) ---> geometry

Result:

A cone geometry which min and max angles are given by the operands.

Comment:

the center of the cone is by default the location of the current agent in which has been called this
operator.

Special cases:

returns nil if the operand is nil.

Examples:

http://localhost:3000/wiki/OperatorsSZ#uncompress


See also: around, circle, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

cone3D

Possible uses:

float  cone3D  float  ---> geometry

cone3D  ( float  , float ) ---> geometry

Result:

A cone geometry which base radius size is equal to the first operand, and which the height is equal to
the second operand.

Comment:

the center of the cone is by default the location of the current agent in which has been called this
operator.

Special cases:

returns a point if the operand is lower or equal to 0.

Examples:

See also: around, cone, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

connected_components_of

Possible uses:

geometry var0 <- cone({0, 45}); // var0 equals a geometry as a cone with min angle is 0 
and max angle is 45. 
geometry var1 <- cone(0, 45); // var1 equals a geometry as a cone with min angle is 0 
and max angle is 45.

geometry var0 <- cone3D(10.0,5.0); // var0 equals a geometry as a cone with a base 
circle of radius 10 and a height of 5.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle


connected_components_of  ( graph ) ---> list<list>

graph  connected_components_of  bool  ---> list<list>

connected_components_of  ( graph  , bool ) ---> list<list>

Result:

returns the connected components of a graph, i.e. the list of all vertices that are in the maximally
connected component together with the specified vertex. returns the connected components of a
graph, i.e. the list of all edges (if the boolean is true) or vertices (if the boolean is false) that are in the
connected components.

Examples:

See also: alpha_index, connectivity_index, nb_cycles,

connectivity_index

Possible uses:

connectivity_index  ( graph ) ---> float

Result:

returns a simple connectivity index. This number is estimated through the number of nodes (v) and of
sub-graphs (p) : IC = (v - p) /(v - 1).

Examples:

See also: alpha_index, beta_index, gamma_index, nb_cycles,

graph my_graph <- graph([]); 
list<list> var1 <- connected_components_of (my_graph); // var1 equals the list of all 
the components as list 
graph my_graph2 <- graph([]); 
list<list> var3 <- connected_components_of (my_graph2, true); // var3 equals the list 
of all the components as list

graph graphEpidemio <- graph([]); 
float var1 <- connectivity_index(graphEpidemio); // var1 equals the connectivity index 
of the graph

http://localhost:3000/wiki/OperatorsAA#alpha_index
http://localhost:3000/wiki/OperatorsBC#connectivity_index
http://localhost:3000/wiki/OperatorsNR#nb_cycles
http://localhost:3000/wiki/OperatorsAA#alpha_index
http://localhost:3000/wiki/OperatorsBC#beta_index
http://localhost:3000/wiki/OperatorsDH#gamma_index
http://localhost:3000/wiki/OperatorsNR#nb_cycles


container

Possible uses:

container  ( any ) ---> container

Result:

casts the operand in a container object.

contains

Possible uses:

container<KeyType,ValueType>  contains  unknown  ---> bool

contains  ( container<KeyType,ValueType>  , unknown ) ---> bool

string  contains  string  ---> bool

contains  ( string  , string ) ---> bool

Result:

true, if the container contains the right operand, false otherwise. 'contains' can also be written
'contains_value'. On graphs, it is equivalent to calling 'contains_edge'

Comment:

the contains operator behavior depends on the nature of the operand

Special cases:

if it is a map, contains, which can also be written 'contains_value', returns true if the operand is a
value of the map

if it is a pair, contains_key returns true if the operand is equal to the value of the pair

if it is a file, contains returns true it the operand is contained in the file content

if it is a population, contains returns true if the operand is an agent of the population, false
otherwise

if it is a graph, contains can be written 'contains_edge' and returns true if the operand is an edge of
the graph, false otherwise (use 'contains_node' for testing the presence of a node)



if both operands are strings, returns true if the right-hand operand contains the right-hand pattern;

if it is a list or a matrix, contains returns true if the list or matrix contains the right operand

Examples:

See also: contains_all, contains_any, contains_key,

contains_all

Possible uses:

string  contains_all  list  ---> bool

contains_all  ( string  , list ) ---> bool

container  contains_all  container  ---> bool

contains_all  ( container  , container ) ---> bool

Result:

true if the left operand contains all the elements of the right operand, false otherwise

Comment:

the definition of contains depends on the container

Special cases:

if the right operand is nil or empty, contains_all returns true

if the left-operand is a string, test whether the string contains all the element of the list;

Examples:

bool var0 <- [1, 2, 3] contains 2; // var0 equals true 
bool var1 <- [{1,2}, {3,4}, {5,6}] contains {3,4}; // var1 equals true

bool var2 <- 'abcded' contains 'bc'; // var2 equals true

bool var0 <- "abcabcabc" contains_all ["ca","xy"]; // var0 equals false

http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#contains_key


See also: contains, contains_any,

contains_any

Possible uses:

string  contains_any  list  ---> bool

contains_any  ( string  , list ) ---> bool

container  contains_any  container  ---> bool

contains_any  ( container  , container ) ---> bool

Result:

true if the left operand contains one of the elements of the right operand, false otherwise

Comment:

the definition of contains depends on the container

Special cases:

if the right operand is nil or empty, contains_any returns false

Examples:

See also: contains, contains_all,

bool var1 <- [1,2,3,4,5,6] contains_all [2,4]; // var1 equals true  
bool var2 <- [1,2,3,4,5,6] contains_all [2,8]; // var2 equals false 
bool var3 <- [1::2, 3::4, 5::6] contains_all [1,3]; // var3 equals false  
bool var4 <- [1::2, 3::4, 5::6] contains_all [2,4]; // var4 equals true

bool var0 <- "abcabcabc" contains_any ["ca","xy"]; // var0 equals true 
bool var1 <- [1,2,3,4,5,6] contains_any [2,4]; // var1 equals true  
bool var2 <- [1,2,3,4,5,6] contains_any [2,8]; // var2 equals true 
bool var3 <- [1::2, 3::4, 5::6] contains_any [1,3]; // var3 equals false 
bool var4 <- [1::2, 3::4, 5::6] contains_any [2,4]; // var4 equals true

http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all


contains_edge

Possible uses:

graph  contains_edge  unknown  ---> bool

contains_edge  ( graph  , unknown ) ---> bool

graph  contains_edge  pair  ---> bool

contains_edge  ( graph  , pair ) ---> bool

Result:

returns true if the graph(left-hand operand) contains the given edge (righ-hand operand), false
otherwise

Special cases:

if the left-hand operand is nil, returns false

if the right-hand operand is a pair, returns true if it exists an edge between the two elements of the
pair in the graph

Examples:

See also: contains_vertex,

contains_key

Possible uses:

container<KeyType,ValueType>  contains_key  unknown  ---> bool

contains_key  ( container<KeyType,ValueType>  , unknown ) ---> bool

Result:

bool var2 <- graphEpidemio contains_edge (node(0)::node(3)); // var2 equals true

graph graphFromMap <-  as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]); 
bool var1 <- graphFromMap contains_edge link({1,5},{12,45}); // var1 equals true

http://localhost:3000/wiki/OperatorsBC#contains_vertex


true, if the left-hand operand -- the container -- contains a key -- or an index -- equal to the right-hand
operand, false otherwise. On graphs, 'contains_key' is equivalent to calling 'contains_vertex'

Comment:

the behavior of contains_key depends on the nature of the container

Special cases:

if it is a map, contains_key returns true if the operand is a key of the map

if it is a pair, contains_key returns true if the operand is equal to the key of the pair

if it is a matrix, contains_key returns true if the point operand is a valid index of the matrix (i.e. >=
{0,0} and < {rows, col})

if it is a file, contains_key is applied to the file contents -- a container

if it is a graph, contains_key returns true if the graph contains the corresponding vertex

if it is a list, contains_key returns true if the right-hand operand is an integer and if it is a valid index
(i.e. >= 0 and < length)

See also: contains_all, contains, contains_any,

contains_node

Same signification as contains_key

contains_value

Same signification as contains

contains_vertex

Possible uses:

graph  contains_vertex  unknown  ---> bool

bool var0 <- [1, 2, 3] contains_key 3; // var0 equals false 
bool var1 <- [{1,2}, {3,4}, {5,6}] contains_key 0; // var1 equals true

http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#contains_key
http://localhost:3000/wiki/OperatorsBC#contains


contains_vertex  ( graph  , unknown ) ---> bool

Result:

returns true if the graph(left-hand operand) contains the given vertex (righ-hand operand), false
otherwise

Special cases:

if the left-hand operand is nil, returns false

Examples:

See also: contains_edge,

conversation

Possible uses:

conversation  ( any ) ---> conversation

Result:

casts the operand in a conversation object.

convex_hull

Possible uses:

convex_hull  ( geometry ) ---> geometry

Result:

A geometry corresponding to the convex hull of the operand.

Examples:

graph graphFromMap<-  as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]); 
bool var1 <- graphFromMap contains_vertex {1,5}; // var1 equals true

http://localhost:3000/wiki/OperatorsBC#contains_edge


copy

Possible uses:

copy  ( unknown ) ---> unknown

Result:

returns a copy of the operand.

copy_between

Possible uses:

copy_between  ( list , int , int ) ---> list

copy_between  ( string , int , int ) ---> string

Result:

Returns a copy of the first operand between the indexes determined by the second (inclusive) and third
operands (exclusive)

Special cases:

If the first operand is empty, returns an empty object of the same type

If the second operand is greater than or equal to the third operand, return an empty object of the
same type

If the first operand is nil, raises an error

Examples:

geometry var0 <- convex_hull(self); // var0 equals the convex hull of the geometry of 
the agent applying the operator

list var0 <-  copy_between ([4, 1, 6, 9 ,7], 1, 3); // var0 equals [1, 6] 
string var1 <- copy_between("abcabcabc", 2,6); // var1 equals "cabc"



copy_file

Possible uses:

string  copy_file  string  ---> bool

copy_file  ( string  , string ) ---> bool

copy_file  ( string , string , bool ) ---> bool

Result:

copy a file or a folder copy a file or a folder

Examples:

copy_from_clipboard

Possible uses:

copy_from_clipboard  ( any GAML type ) ---> unknown

Result:

Tries to copy data from the clipboard by passing its expected type. Returns nil if it has not been correctly
retrieved, or not retrievable using the given type or if GAMA is in a headless environment

Examples:

copy_to_clipboard

Possible uses:

copy_to_clipboard  ( string ) ---> bool

bool copy_file_ok <- 
copy_file("../includes/my_folder","../includes/my_new_folder",true); 
bool copy_file_ok <- copy_file("../includes/my_folder","../includes/my_new_folder");

string copied  <- copy_from_clipboard(string);



Result:

Tries to copy the text in parameter to the clipboard and returns whether it has been correctly copied or
not (for instance it might be impossible in a headless environment)

Examples:

copy_to_clipboard

Possible uses:

copy_to_clipboard  ( image ) ---> bool

Result:

Tries to copy the given image to the clipboard and returns whether it has been correctly copied or not
(for instance it might be impossible in a headless environment)

Examples:

correlation

Possible uses:

container  correlation  container  ---> float

correlation  ( container  , container ) ---> float

Result:

Returns the correlation of two data sequences (having the same size)

Examples:

bool copied  <- copy_to_clipboard('text to copy');

bool copied  <- copy_to_clipboard(img);



cos

Possible uses:

cos  ( float ) ---> float

cos  ( int ) ---> float

Result:

Returns the value (in [-1,1]) of the cosinus of the operand (in decimal degrees). The argument is casted
to an int before being evaluated.

Special cases:

Operand values out of the range [0-359] are normalized.

Examples:

See also: sin, tan,

cos_rad

Possible uses:

cos_rad  ( float ) ---> float

Result:

float var0 <- correlation([1,2,1,3,1,2], [1,2,1,3,1,2]) with_precision(4); // var0 
equals 1.2 
float var1 <- correlation([13,2,1,4,1,2], [1,2,1,3,1,2]) with_precision(2); // var1 
equals -0.21

float var0 <- cos (0.0); // var0 equals 1.0 
float var1 <- cos(360.0); // var1 equals 1.0 
float var2 <- cos(-720.0); // var2 equals 1.0 
float var3 <- cos (0); // var3 equals 1.0 
float var4 <- cos(360); // var4 equals 1.0 
float var5 <- cos(-720); // var5 equals 1.0

http://localhost:3000/wiki/OperatorsSZ#sin
http://localhost:3000/wiki/OperatorsSZ#tan


Returns the value (in [-1,1]) of the cosinus of the operand (in radians).

Special cases:

Operand values out of the range [0-359] are normalized.

Examples:

See also: sin, tan,

count

Possible uses:

container  count  any expression  ---> int

count  ( container  , any expression ) ---> int

Result:

returns an int, equal to the number of elements of the left-hand operand that make the right-hand
operand evaluate to true.

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the elements.

Special cases:

if the left-hand operand is nil, count throws an error

Examples:

float var0 <- cos_rad(0.0); // var0 equals 1.0 
float var1 <- cos_rad(#pi); // var1 equals -1.0

int var0 <- [1,2,3,4,5,6,7,8] count (each > 3); // var0 equals 5 
// Number of nodes of graph g2 without any out edge 
graph g2 <- graph([]); 
int var3 <- g2 count (length(g2 out_edges_of each) = 0  ) ; // var3 equals the total 
number of out edges 
// Number of agents node with x > 32 

http://localhost:3000/wiki/OperatorsSZ#sin
http://localhost:3000/wiki/OperatorsSZ#tan


See also: group_by,

covariance

Possible uses:

container  covariance  container  ---> float

covariance  ( container  , container ) ---> float

Result:

Returns the covariance of two data sequences

Examples:

covering

Possible uses:

container<unknown,geometry>  covering  geometry  ---> list<geometry>

covering  ( container<unknown,geometry>  , geometry ) ---> list<geometry>

Result:

A list of agents or geometries among the left-operand list, species or meta-population (addition of
species), covering the operand (casted as a geometry).

Examples:

int n <- (list(node) count (round(node(each).location.x) > 32); 
int var6 <- [1::2, 3::4, 5::6] count (each > 4); // var6 equals 1

float var0 <- covariance([13,2,1,4,1,2], [1,2,1,3,1,2]) with_precision(2); // var0 
equals -0.67

list<geometry> var0 <- [ag1, ag2, ag3] covering(self); // var0 equals the agents among 
ag1, ag2 and ag3 that cover the shape of the right-hand argument. 

http://localhost:3000/wiki/OperatorsDH#group_by


See also: neighbors_at, neighbors_of, closest_to, overlapping, agents_overlapping, inside,
agents_inside, agent_closest_to,

covers

Possible uses:

geometry  covers  geometry  ---> bool

covers  ( geometry  , geometry ) ---> bool

Result:

A boolean, equal to true if the left-geometry (or agent/point) covers the right-geometry (or agent/point).

Special cases:

if one of the operand is null, returns false.

Examples:

See also: disjoint_from, crosses, overlaps, partially_overlaps, touches,

create_map

Possible uses:

list  create_map  list  ---> map

create_map  ( list  , list ) ---> map

Result:

returns a new map using the left operand as keys for the right operand

Special cases:

list<geometry> var1 <- (species1 + species2) covering (self); // var1 equals the agents 
among species species1 and species2 that covers the shape of the right-hand argument.

bool var0 <- square(5) covers square(2); // var0 equals true

http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsSZ#touches


if the left operand contains duplicates, create_map throws an error.

if both operands have different lengths, choose the minimum length between the two operandsfor
the size of the map

Examples:

cropped_to

Same signification as clipped_with

cross

Possible uses:

cross  ( float ) ---> geometry

float  cross  float  ---> geometry

cross  ( float  , float ) ---> geometry

Result:

A cross, which radius is equal to the first operand (and eventually the width of the lines for the second)

Examples:

See also: around, cone, line, link, norm, point, polygon, polyline, super_ellipse, rectangle, square, circle,
ellipse, triangle,

map<int,string> var0 <- create_map([0,1,2],['a','b','c']); // var0 equals 
[0::'a',1::'b',2::'c'] 
map<int,float> var1 <- create_map([0,1],[0.1,0.2,0.3]); // var1 equals [0::0.1,1::0.2] 
map<string,float> var2 <- create_map(['a','b','c','d'],[1.0,2.0,3.0]); // var2 equals 
['a'::1.0,'b'::2.0,'c'::3.0]

geometry var0 <- cross(10); // var0 equals a geometry as a cross of radius 10 
geometry var1 <- cross(10,2); // var1 equals a geometry as a cross of radius 10, and 
with a width of 2 for the lines 

http://localhost:3000/wiki/OperatorsBC#clipped_with
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsSZ#super_ellipse
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsSZ#triangle


crosses

Possible uses:

geometry  crosses  geometry  ---> bool

crosses  ( geometry  , geometry ) ---> bool

Result:

A boolean, equal to true if the left-geometry (or agent/point) crosses the right-geometry (or
agent/point).

Special cases:

if one of the operand is null, returns false.

if one operand is a point, returns false.

Examples:

See also: disjoint_from, intersects, overlaps, partially_overlaps, touches,

crossing

Possible uses:

container<unknown,geometry>  crossing  geometry  ---> list<geometry>

crossing  ( container<unknown,geometry>  , geometry ) ---> list<geometry>

Result:

A list of agents or geometries among the left-operand list, species or meta-population (addition of
species), crossing the operand (casted as a geometry).

Examples:

bool var0 <- polyline([{10,10},{20,20}]) crosses polyline([{10,20},{20,10}]); // var0 
equals true 
bool var1 <- polyline([{10,10},{20,20}]) crosses {15,15}; // var1 equals true 
bool var2 <- polyline([{0,0},{25,25}]) crosses polygon([{10,10},{10,20},{20,20},
{20,10}]); // var2 equals true

http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsSZ#touches


See also: neighbors_at, neighbors_of, closest_to, overlapping, agents_overlapping, inside,
agents_inside, agent_closest_to,

crs

Possible uses:

crs  ( file ) ---> string

Result:

the Coordinate Reference System (CRS) of the GIS file

Examples:

CRS_transform

Possible uses:

CRS_transform  ( geometry ) ---> geometry

geometry  CRS_transform  string  ---> geometry

CRS_transform  ( geometry  , string ) ---> geometry

CRS_transform  ( geometry , string , string ) ---> geometry

Special cases:

returns the geometry corresponding to the transformation of the given geometry from the first CRS
to the second CRS (Coordinate Reference System)

list<geometry> var0 <- [ag1, ag2, ag3] crossing(self); // var0 equals the agents among 
ag1, ag2 and ag3 that cross the shape of the right-hand argument. 
list<geometry> var1 <- (species1 + species2) crossing (self); // var1 equals the agents 
among species species1 and species2 that cross the shape of the right-hand argument.

string var0 <- crs(my_shapefile); // var0 equals the crs of the shapefile

http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agent_closest_to


returns the geometry corresponding to the transformation of the given geometry by the current
CRS (Coordinate Reference System), the one corresponding to the world's agent one

returns the geometry corresponding to the transformation of the given geometry by the left
operand CRS (Coordinate Reference System)

csv_file

Possible uses:

csv_file  ( string ) ---> file

string  csv_file  bool  ---> file

csv_file  ( string  , bool ) ---> file

string  csv_file  string  ---> file

csv_file  ( string  , string ) ---> file

string  csv_file  matrix<unknown>  ---> file

csv_file  ( string  , matrix<unknown> ) ---> file

csv_file  ( string , string , bool ) ---> file

csv_file  ( string , string , any GAML type ) ---> file

csv_file  ( string , string , string , bool ) ---> file

csv_file  ( string , string , string , any GAML type ) ---> file

csv_file  ( string , string , any GAML type , bool ) ---> file

csv_file  ( string , string , any GAML type , point ) ---> file

Result:

geometry var0 <- {8.35,47.22} CRS_transform("EPSG:4326","EPSG:4326"); // var0 equals 
{929517.7481238344,5978057.894895313,0.0}

geometry var1 <- CRS_transform(shape); // var1 equals a geometry corresponding to the 
agent geometry transformed into the current CRS

geometry var2 <- shape CRS_transform("EPSG:4326"); // var2 equals a geometry 
corresponding to the agent geometry transformed into the EPSG:4326 CRS



Constructs a file of type csv. Allowed extensions are limited to csv, tsv

Special cases:

csv_file(string): This file constructor allows to read a CSV file with the default separator (coma), no
header, and no assumption on the type of data. No text qualifier will be used

csv_file(string,bool): This file constructor allows to read a CSV file with the default separator (coma),
with specifying if the model has a header or not (boolean), and no assumption on the type of data.
No text qualifier will be used

csv_file(string,string): This file constructor allows to read a CSV file and specify the separator used,
without making any assumption on the type of data. Headers should be detected automatically if
they exist. No text qualifier will be used

csv_file(string,string,bool): This file constructor allows to read a CSV file and specify (1) the separator
used; (2) if the model has a header or not, without making any assumption on the type of data. No
text qualifier will be used

csv_file(string,string,string,bool): This file constructor allows to read a CSV file and specify (1) the
separator used; (2) the text qualifier used; (3) if the model has a header or not, without making any
assumption on the type of data

csv_file(string,string,any GAML type): This file constructor allows to read a CSV file with a given
separator, no header, and the type of data. No text qualifier will be used

csv_file f <- csv_file("file.csv");

csv_file f <- csv_file("file.csv",true);

csv_file f <- csv_file("file.csv", ";");

csv_file f <- csv_file("file.csv", ";",true);

csv_file f <- csv_file("file.csv", ';', '"', true);



csv_file(string,string,string,any GAML type): This file constructor allows to read a CSV file and specify
the separator, text qualifier to use, and the type of data to read. Headers should be detected
automatically if they exist.

csv_file(string,string,any GAML type,bool): This file constructor allows to read a CSV file with a given
separator, the type of data, with specifying if the model has a header or not (boolean). No text
qualifier will be used

csv_file(string,string,any GAML type,point): This file constructor allows to read a CSV file with a given
separator, the type of data, with specifying the number of cols and rows taken into account. No text
qualifier will be used

csv_file(string,matrix<unknown>): This file constructor allows to store a matrix in a CSV file (it does
not save it - just store it in memory),

See also: is_csv,

cube

Possible uses:

cube  ( float ) ---> geometry

Result:

A cube geometry which side size is equal to the operand.

csv_file f <- csv_file("file.csv", ";",int);

csv_file f <- csv_file("file.csv", ';', '"', int);

csv_file f <- csv_file("file.csv", ";",int,true);

csv_file f <- csv_file("file.csv", ";",int,true, {5, 100});

csv_file f <- csv_file("file.csv", matrix([10,10],[10,10]));

http://localhost:3000/wiki/OperatorsIM#is_csv


Comment:

the center of the cube is by default the location of the current agent in which has been called this
operator.

Special cases:

returns nil if the operand is nil.

Examples:

See also: around, circle, cone, line, link, norm, point, polygon, polyline, rectangle, triangle,

curve

Possible uses:

curve  ( point , point , point ) ---> geometry

curve  ( point , point , float ) ---> geometry

curve  ( point , point , point , point ) ---> geometry

curve  ( point , point , float , float ) ---> geometry

curve  ( point , point , point , int ) ---> geometry

curve  ( point , point , float , bool ) ---> geometry

curve  ( point , point , point , point , int ) ---> geometry

curve  ( point , point , float , int , float ) ---> geometry

curve  ( point , point , float , bool , int ) ---> geometry

curve  ( point , point , float , bool , int , float ) ---> geometry

curve  ( point , point , float , int , float , float ) ---> geometry

Result:

The operator computes a Bezier curve geometry between the given operators, with 10 or a given
number of points, and from left to rigth or right to left.

Special cases:

geometry var0 <- cube(10); // var0 equals a geometry as a square of side size 10.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#triangle


if one of the operand is nil, returns nil

When used with 2 points, a float coefficient, a boolean, an integer number of points, and a float
proportion, it computes a cubic Bezier curve geometry built from the two given points with the
given coefficient for the radius and composed of the given number of points - the boolean is used
to specified if it is the right side and the last value to indicate where is the inflection point (between
0.0 and 1.0 - default 0.5).

When used with 4 points and an integer number of points, it computes a cubic Bezier curve
geometry built from the four given points composed of a given number of points. If the number of
points is lower than 2, it returns nil.

When used with 4 points, it computes, it computes a cubic Bezier curve geometry built from the
four given points and composed of 10 points.

When used with 2 points, a float coefficient, a boolean, an integer number of points, a float
proportion, and a float angle, it computes a cubic Bezier curve geometry built from the two given
points with the given coefficient for the radius and composed of the given number of points,
considering the given inflection point (between 0.0 and 1.0 - default 0.5), and the given rotation
angle (90 = along the z axis).

When used with 3 points, it computes a quadratic Bezier curve geometry built from the three given
points and composed of 10 points.

geometry var0 <- curve({0,0},{10,10}, 0.5, false, 100, 0.8); // var0 equals a cubic 
Bezier curve geometry composed of 100 points from p0 to p1 at the right side.

geometry var1 <- curve({0,0}, {0,10}, {10,10}); // var1 equals a cubic Bezier curve 
geometry composed of 10 points from p0 to p3.

geometry var2 <- curve({0,0}, {0,10}, {10,10}); // var2 equals a cubic Bezier curve 
geometry composed of 10 points from p0 to p3.

geometry var3 <- curve({0,0},{10,10}, 0.5, 100, 0.8, 90); // var3 equals a cubic Bezier 
curve geometry composed of 100 points from p0 to p1 at the right side.

geometry var4 <- curve({0,0}, {0,10}, {10,10}); // var4 equals a quadratic Bezier curve 
geometry composed of 10 points from p0 to p2.



When used with 2 points and a float coefficient, it computes a cubic Bezier curve geometry built
from the two given points with the given coefficient for the radius and composed of 10 points.

When used with 2 points, a float coefficient, a boolean, an integer number of points, and a float
angle, it computes a cubic Bezier curve geometry built from the two given points with the given
coefficient for the radius and composed of the given number of points, considering the given
rotation angle (90 = along the z axis).

When used with 2 points, a float coefficient, a boolean, and an integer number of points, it
computes a cubic Bezier curve geometry built from the two given points with the given coefficient
for the radius and composed of the given number of points - the boolean is used to specified if it is
the right side.

When used with 2 points, a float coefficient, and a float angle, it computes a cubic Bezier curve
geometry built from the two given points with the given coefficient for the radius considering the
given rotation angle (90 = along the z axis).

When used with 3 points and an integer, it computes a quadratic Bezier curve geometry built from
the three given points. If the last operand (number of points) is inferior to 2, returns nil

When used with 2 points, a float coefficient and a boolean, it computes a cubic Bezier curve
geometry built from the two given points with the given coefficient for the radius and composed of

geometry var5 <- curve({0,0},{10,10}, 0.5); // var5 equals a cubic Bezier curve 
geometry composed of 10 points from p0 to p1.

geometry var6 <- curve({0,0},{10,10}, 0.5, 100, 90); // var6 equals a cubic Bezier 
curve geometry composed of 100 points from p0 to p1 at the right side.

geometry var7 <- curve({0,0},{10,10}, 0.5, false, 100); // var7 equals a cubic Bezier 
curve geometry composed of 100 points from p0 to p1 at the right side.

geometry var8 <- curve({0,0},{10,10}, 0.5, 90); // var8 equals a cubic Bezier curve 
geometry composed of 100 points from p0 to p1 at the right side.

geometry var9 <- curve({0,0}, {0,10}, {10,10}, 20); // var9 equals a quadratic Bezier 
curve geometry composed of 20 points from p0 to p2.



10 points. The last boolean is used to specified if it is the right side.

See also: around, circle, cone, link, norm, point, polygone, rectangle, square, triangle, line,

cylinder

Possible uses:

float  cylinder  float  ---> geometry

cylinder  ( float  , float ) ---> geometry

Result:

A cylinder geometry which radius is equal to the operand.

Comment:

the center of the cylinder is by default the location of the current agent in which has been called this
operator.

Special cases:

returns a point if the operand is lower or equal to 0.

Examples:

See also: around, cone, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

geometry var10 <- curve({0,0},{10,10}, 0.5, false); // var10 equals a cubic Bezier 
curve geometry composed of 10 points from p0 to p1 at the left side.

geometry var0 <- cylinder(10,10); // var0 equals a geometry as a circle of radius 10.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsSZ#polygone
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle


Version: 1.9.3

Operators (D to H)
This file is automatically generated from java files. Do Not Edit It.

Definition
Operators in the GAML language are used to compose complex expressions. An operator performs a
function on one, two, or n operands (which are other expressions and thus may be themselves
composed of operators) and returns the result of this function.

Most of them use a classical prefixed functional syntax (i.e. operator_name(operand1, operand2,
operand3) , see below), with the exception of arithmetic (e.g. + , / ), logical ( and , or ), comparison (e.g.
> , < ), access ( . , [..] ) and pair ( :: ) operators, which require an infixed notation (i.e. operand1
operator_symbol operand1 ).

The ternary functional if-else operator, ? : , uses a special infixed syntax composed with two symbols
(e.g. operand1 ? operand2 : operand3 ). Two unary operators ( -  and ! ) use a traditional prefixed
syntax that does not require parentheses unless the operand is itself a complex expression (e.g. - 10 , !
(operand1 or operand2) ).

Finally, special constructor operators ( {...}  for constructing points, [...]  for constructing lists and
maps) will require their operands to be placed between their two symbols (e.g. {1,2,3} , [operand1,
operand2, ..., operandn]  or [key1::value1, key2::value2... keyn::valuen] ).

With the exception of these special cases above, the following rules apply to the syntax of operators:

if they only have one operand, the functional prefixed syntax is mandatory (e.g.
operator_name(operand1) )

if they have two arguments, either the functional prefixed syntax (e.g. operator_name(operand1,
operand2) ) or the infixed syntax (e.g. operand1 operator_name operand2 ) can be used.

if they have more than two arguments, either the functional prefixed syntax (e.g.
operator_name(operand1, operand2, ..., operand) ) or a special infixed syntax with the first
operand on the left-hand side of the operator name (e.g. operand1 operator_name(operand2, ...,
operand) ) can be used.



All of these alternative syntaxes are completely equivalent.

Operators in GAML are purely functional, i.e. they are guaranteed to not have any side effects on their
operands. For instance, the shuffle  operator, which randomizes the positions of elements in a list, does
not modify its list operand but returns a new shuffled list.

Priority between operators
The priority of operators determines, in the case of complex expressions composed of several operators,
which one(s) will be evaluated first.

GAML follows in general the traditional priorities attributed to arithmetic, boolean, comparison
operators, with some twists. Namely:

the constructor operators, like :: , used to compose pairs of operands, have the lowest priority of
all operators (e.g. a > b :: b > c  will return a pair of boolean values, which means that the two
comparisons are evaluated before the operator applies. Similarly, [a > 10, b > 5]  will return a list
of boolean values.

it is followed by the ?:  operator, the functional if-else (e.g. a > b ? a + 10 : a - 10  will return
the result of the if-else).

next are the logical operators, and  and or  (e.g. a > b or b > c  will return the value of the test)

next are the comparison operators (i.e. > , < , <= , >= , = , != )

next the arithmetic operators in their logical order (multiplicative operators have a higher priority
than additive operators)

next the unary operators -  and !

next the access operators .  and []  (e.g. {1,2,3}.x > 20 + {4,5,6}.y  will return the result of the
comparison between the x and y ordinates of the two points)

and finally the functional operators, which have the highest priority of all.

Using actions as operators
Actions defined in species can be used as operators, provided they are called on the correct agent. The
syntax is that of normal functional operators, but the agent that will perform the action must be added
as the first operand.



For instance, if the following species is defined:

Any agent instance of spec1 can use min  as an operator (if the action conflicts with an existing operator,
a warning will be emitted). For instance, in the same model, the following line is perfectly acceptable:

If the action doesn't have any operands, the syntax to use is my_agent the_action() . Finally, if it does
not return a value, it might still be used but is considering as returning a value of type unknown  (e.g.
unknown result <- my_agent the_action(op1, op2); ).

Note that due to the fact that actions are written by modelers, the general functional contract is not
respected in that case: actions might perfectly have side effects on their operands (including the agent).

Table of Contents

Operators by categories

3D

box, cone3D, cube, cylinder, hexagon, pyramid, set_z, sphere, teapot,

species spec1 {
        int min(int x, int y) {
                return x > y ? x : y;
        }
}

global {
        init {
                create spec1;
                spec1 my_agent <- spec1[0];
                int the_min <- my_agent min(10,20); // or min(my_agent, 10, 20);
        }
}

http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#teapot


Arithmetic operators

-, /, ^, *, +, abs, acos, asin, atan, atan2, ceil, cos, cos_rad, div, even, exp, fact, floor, hypot, is_finite,
is_number, ln, log, mod, round, signum, sin, sin_rad, sqrt, tan, tan_rad, tanh, with_precision,

BDI

add_values, and, eval_when, get_about, get_agent, get_agent_cause, get_belief_op,
get_belief_with_name_op, get_beliefs_op, get_beliefs_with_name_op, get_current_intention_op,
get_decay, get_desire_op, get_desire_with_name_op, get_desires_op, get_desires_with_name_op,
get_dominance, get_familiarity, get_ideal_op, get_ideal_with_name_op, get_ideals_op,
get_ideals_with_name_op, get_intensity, get_intention_op, get_intention_with_name_op,
get_intentions_op, get_intentions_with_name_op, get_lifetime, get_liking, get_modality,
get_obligation_op, get_obligation_with_name_op, get_obligations_op, get_obligations_with_name_op,
get_plan_name, get_predicate, get_solidarity, get_strength, get_super_intention, get_trust, get_truth,
get_uncertainties_op, get_uncertainties_with_name_op, get_uncertainty_op,
get_uncertainty_with_name_op, get_values, has_belief_op, has_belief_with_name_op, has_desire_op,
has_desire_with_name_op, has_ideal_op, has_ideal_with_name_op, has_intention_op,
has_intention_with_name_op, has_obligation_op, has_obligation_with_name_op, has_uncertainty_op,
has_uncertainty_with_name_op, new_emotion, new_mental_state, new_predicate, new_social_link, not,
or, set_about, set_agent, set_agent_cause, set_decay, set_dominance, set_familiarity, set_intensity,
set_lifetime, set_liking, set_modality, set_predicate, set_solidarity, set_strength, set_trust, set_truth,
with_values,

Casting operators

as, as_int, as_matrix, deserialize, field_with, font, from_gaml, from_json, is, is_skill, list_with, matrix_with,
serialize, species_of, to_gaml, to_geojson, to_json, to_list, with_size, with_style,

Color-related operators

-, /, *, +, blend, brewer_colors, brewer_palettes, gradient, grayscale, hsb, mean, median, palette, rgb,
rnd_color, scale, sum, to_hsb,

Comparison operators

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#%5E
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#abs
http://localhost:3000/wiki/OperatorsAA#acos
http://localhost:3000/wiki/OperatorsAA#asin
http://localhost:3000/wiki/OperatorsAA#atan
http://localhost:3000/wiki/OperatorsAA#atan2
http://localhost:3000/wiki/OperatorsBC#ceil
http://localhost:3000/wiki/OperatorsBC#cos
http://localhost:3000/wiki/OperatorsBC#cos_rad
http://localhost:3000/wiki/OperatorsDH#div
http://localhost:3000/wiki/OperatorsDH#even
http://localhost:3000/wiki/OperatorsDH#exp
http://localhost:3000/wiki/OperatorsDH#fact
http://localhost:3000/wiki/OperatorsDH#floor
http://localhost:3000/wiki/OperatorsDH#hypot
http://localhost:3000/wiki/OperatorsIM#is_finite
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#ln
http://localhost:3000/wiki/OperatorsIM#log
http://localhost:3000/wiki/OperatorsIM#mod
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsSZ#signum
http://localhost:3000/wiki/OperatorsSZ#sin
http://localhost:3000/wiki/OperatorsSZ#sin_rad
http://localhost:3000/wiki/OperatorsSZ#sqrt
http://localhost:3000/wiki/OperatorsSZ#tan
http://localhost:3000/wiki/OperatorsSZ#tan_rad
http://localhost:3000/wiki/OperatorsSZ#tanh
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsAA#add_values
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsDH#eval_when
http://localhost:3000/wiki/OperatorsDH#get_about
http://localhost:3000/wiki/OperatorsDH#get_agent
http://localhost:3000/wiki/OperatorsDH#get_agent_cause
http://localhost:3000/wiki/OperatorsDH#get_belief_op
http://localhost:3000/wiki/OperatorsDH#get_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_current_intention_op
http://localhost:3000/wiki/OperatorsDH#get_decay
http://localhost:3000/wiki/OperatorsDH#get_desire_op
http://localhost:3000/wiki/OperatorsDH#get_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_desires_op
http://localhost:3000/wiki/OperatorsDH#get_desires_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_dominance
http://localhost:3000/wiki/OperatorsDH#get_familiarity
http://localhost:3000/wiki/OperatorsDH#get_ideal_op
http://localhost:3000/wiki/OperatorsDH#get_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intensity
http://localhost:3000/wiki/OperatorsDH#get_intention_op
http://localhost:3000/wiki/OperatorsDH#get_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_lifetime
http://localhost:3000/wiki/OperatorsDH#get_liking
http://localhost:3000/wiki/OperatorsDH#get_modality
http://localhost:3000/wiki/OperatorsDH#get_obligation_op
http://localhost:3000/wiki/OperatorsDH#get_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_plan_name
http://localhost:3000/wiki/OperatorsDH#get_predicate
http://localhost:3000/wiki/OperatorsDH#get_solidarity
http://localhost:3000/wiki/OperatorsDH#get_strength
http://localhost:3000/wiki/OperatorsDH#get_super_intention
http://localhost:3000/wiki/OperatorsDH#get_trust
http://localhost:3000/wiki/OperatorsDH#get_truth
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_values
http://localhost:3000/wiki/OperatorsDH#has_belief_op
http://localhost:3000/wiki/OperatorsDH#has_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_desire_op
http://localhost:3000/wiki/OperatorsDH#has_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_intention_op
http://localhost:3000/wiki/OperatorsDH#has_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsNR#new_emotion
http://localhost:3000/wiki/OperatorsNR#new_mental_state
http://localhost:3000/wiki/OperatorsNR#new_predicate
http://localhost:3000/wiki/OperatorsNR#new_social_link
http://localhost:3000/wiki/OperatorsNR#not
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsSZ#set_about
http://localhost:3000/wiki/OperatorsSZ#set_agent
http://localhost:3000/wiki/OperatorsSZ#set_agent_cause
http://localhost:3000/wiki/OperatorsSZ#set_decay
http://localhost:3000/wiki/OperatorsSZ#set_dominance
http://localhost:3000/wiki/OperatorsSZ#set_familiarity
http://localhost:3000/wiki/OperatorsSZ#set_intensity
http://localhost:3000/wiki/OperatorsSZ#set_lifetime
http://localhost:3000/wiki/OperatorsSZ#set_liking
http://localhost:3000/wiki/OperatorsSZ#set_modality
http://localhost:3000/wiki/OperatorsSZ#set_predicate
http://localhost:3000/wiki/OperatorsSZ#set_solidarity
http://localhost:3000/wiki/OperatorsSZ#set_strength
http://localhost:3000/wiki/OperatorsSZ#set_trust
http://localhost:3000/wiki/OperatorsSZ#set_truth
http://localhost:3000/wiki/OperatorsSZ#with_values
http://localhost:3000/wiki/OperatorsAA#as
http://localhost:3000/wiki/OperatorsAA#as_int
http://localhost:3000/wiki/OperatorsAA#as_matrix
http://localhost:3000/wiki/OperatorsDH#deserialize
http://localhost:3000/wiki/OperatorsDH#field_with
http://localhost:3000/wiki/OperatorsDH#font
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsDH#from_json
http://localhost:3000/wiki/OperatorsIM#is
http://localhost:3000/wiki/OperatorsIM#is_skill
http://localhost:3000/wiki/OperatorsIM#list_with
http://localhost:3000/wiki/OperatorsIM#matrix_with
http://localhost:3000/wiki/OperatorsSZ#serialize
http://localhost:3000/wiki/OperatorsSZ#species_of
http://localhost:3000/wiki/OperatorsSZ#to_gaml
http://localhost:3000/wiki/OperatorsSZ#to_geojson
http://localhost:3000/wiki/OperatorsSZ#to_json
http://localhost:3000/wiki/OperatorsSZ#to_list
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_style
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#brewer_colors
http://localhost:3000/wiki/OperatorsBC#brewer_palettes
http://localhost:3000/wiki/OperatorsDH#gradient
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#hsb
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsNR#palette
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsNR#rnd_color
http://localhost:3000/wiki/OperatorsSZ#scale
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#to_hsb


!=, <, <=, =, >, >=, between,

Containers-related operators

-, ::, +, accumulate, all_match, among, at, cartesian_product, collect, contains, contains_all, contains_any,
contains_key, count, empty, every, first, first_with, get, group_by, in, index_by, inter, interleave,
internal_integrated_value, last, last_with, length, max, max_of, mean, mean_of, median, min, min_of,
mul, none_matches, one_matches, one_of, product_of, range, remove_duplicates, reverse, shuffle,
sort_by, split, split_in, split_using, sum, sum_of, union, variance_of, where, with_max_of, with_min_of,

Date-related operators

-, !=, +, <, <=, =, >, >=, after, before, between, every, milliseconds_between, minus_days, minus_hours,
minus_minutes, minus_months, minus_ms, minus_weeks, minus_years, months_between, plus_days,
plus_hours, plus_minutes, plus_months, plus_ms, plus_weeks, plus_years, since, to, until,
years_between,

Dates

Displays

horizontal, stack, vertical,

edge

edge_between, strahler,

EDP-related operators

diff, diff2,

http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#::
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#among
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsBC#cartesian_product
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#contains_key
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#interleave
http://localhost:3000/wiki/OperatorsIM#internal_integrated_value
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#one_of
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsNR#range
http://localhost:3000/wiki/OperatorsNR#remove_duplicates
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#after
http://localhost:3000/wiki/OperatorsBC#before
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsIM#milliseconds_between
http://localhost:3000/wiki/OperatorsIM#minus_days
http://localhost:3000/wiki/OperatorsIM#minus_hours
http://localhost:3000/wiki/OperatorsIM#minus_minutes
http://localhost:3000/wiki/OperatorsIM#minus_months
http://localhost:3000/wiki/OperatorsIM#minus_ms
http://localhost:3000/wiki/OperatorsIM#minus_weeks
http://localhost:3000/wiki/OperatorsIM#minus_years
http://localhost:3000/wiki/OperatorsIM#months_between
http://localhost:3000/wiki/OperatorsNR#plus_days
http://localhost:3000/wiki/OperatorsNR#plus_hours
http://localhost:3000/wiki/OperatorsNR#plus_minutes
http://localhost:3000/wiki/OperatorsNR#plus_months
http://localhost:3000/wiki/OperatorsNR#plus_ms
http://localhost:3000/wiki/OperatorsNR#plus_weeks
http://localhost:3000/wiki/OperatorsNR#plus_years
http://localhost:3000/wiki/OperatorsSZ#since
http://localhost:3000/wiki/OperatorsSZ#to
http://localhost:3000/wiki/OperatorsSZ#until
http://localhost:3000/wiki/OperatorsSZ#years_between
http://localhost:3000/wiki/OperatorsDH#horizontal
http://localhost:3000/wiki/OperatorsSZ#stack
http://localhost:3000/wiki/OperatorsSZ#vertical
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsDH#diff
http://localhost:3000/wiki/OperatorsDH#diff2


Files-related operators

agent_file, copy_file, crs, csv_file, delete_file, dxf_file, evaluate_sub_model, file_exists, folder,
folder_exists, gaml_file, geojson_file, get, gif_file, gml_file, graph6_file, graphdimacs_file, graphdot_file,
graphgexf_file, graphgml_file, graphml_file, graphtsplib_file, grid_file, image_file, is_agent, is_csv, is_dxf,
is_gaml, is_geojson, is_gif, is_gml, is_graph6, is_graphdimacs, is_graphdot, is_graphgexf, is_graphgml,
is_graphml, is_graphtsplib, is_grid, is_image, is_json, is_obj, is_osm, is_pgm, is_property, is_shape,
is_simulation, is_svg, is_text, is_threeds, is_xml, json_file, new_folder, obj_file, osm_file, pgm_file,
property_file, read, rename_file, shape_file, simulation_file, step_sub_model, svg_file, text_file,
threeds_file, unzip, writable, xml_file, zip,

GamaMetaType

type_of,

GamaSVGFile

image,

Graphs-related operators

add_edge, add_node, adjacency, agent_from_geometry, all_pairs_shortest_path, alpha_index,
as_distance_graph, as_edge_graph, as_intersection_graph, as_path, as_spatial_graph, beta_index,
betweenness_centrality, biggest_cliques_of, connected_components_of, connectivity_index,
contains_edge, contains_vertex, degree_of, directed, edge, edge_between, edge_betweenness, edges,
gamma_index, generate_barabasi_albert, generate_complete_graph, generate_random_graph,
generate_watts_strogatz, girvan_newman_clustering, grid_cells_to_graph, in_degree_of, in_edges_of,
k_spanning_tree_clustering, label_propagation_clustering, layout_circle, layout_force, layout_force_FR,
layout_force_FR_indexed, layout_grid, load_shortest_paths, main_connected_component,
max_flow_between, maximal_cliques_of, nb_cycles, neighbors_of, node, nodes, out_degree_of,
out_edges_of, path_between, paths_between, predecessors_of, remove_node_from, rewire_n, source_of,
spatial_graph, strahler, successors_of, sum, target_of, undirected, use_cache, weight_of,
with_k_shortest_path_algorithm, with_shortest_path_algorithm, with_weights,

Grid-related operators

http://localhost:3000/wiki/OperatorsAA#agent_file
http://localhost:3000/wiki/OperatorsBC#copy_file
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#csv_file
http://localhost:3000/wiki/OperatorsDH#delete_file
http://localhost:3000/wiki/OperatorsDH#dxf_file
http://localhost:3000/wiki/OperatorsDH#evaluate_sub_model
http://localhost:3000/wiki/OperatorsDH#file_exists
http://localhost:3000/wiki/OperatorsDH#folder
http://localhost:3000/wiki/OperatorsDH#folder_exists
http://localhost:3000/wiki/OperatorsDH#gaml_file
http://localhost:3000/wiki/OperatorsDH#geojson_file
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#gif_file
http://localhost:3000/wiki/OperatorsDH#gml_file
http://localhost:3000/wiki/OperatorsDH#graph6_file
http://localhost:3000/wiki/OperatorsDH#graphdimacs_file
http://localhost:3000/wiki/OperatorsDH#graphdot_file
http://localhost:3000/wiki/OperatorsDH#graphgexf_file
http://localhost:3000/wiki/OperatorsDH#graphgml_file
http://localhost:3000/wiki/OperatorsDH#graphml_file
http://localhost:3000/wiki/OperatorsDH#graphtsplib_file
http://localhost:3000/wiki/OperatorsDH#grid_file
http://localhost:3000/wiki/OperatorsIM#image_file
http://localhost:3000/wiki/OperatorsIM#is_agent
http://localhost:3000/wiki/OperatorsIM#is_csv
http://localhost:3000/wiki/OperatorsIM#is_dxf
http://localhost:3000/wiki/OperatorsIM#is_gaml
http://localhost:3000/wiki/OperatorsIM#is_geojson
http://localhost:3000/wiki/OperatorsIM#is_gif
http://localhost:3000/wiki/OperatorsIM#is_gml
http://localhost:3000/wiki/OperatorsIM#is_graph6
http://localhost:3000/wiki/OperatorsIM#is_graphdimacs
http://localhost:3000/wiki/OperatorsIM#is_graphdot
http://localhost:3000/wiki/OperatorsIM#is_graphgexf
http://localhost:3000/wiki/OperatorsIM#is_graphgml
http://localhost:3000/wiki/OperatorsIM#is_graphml
http://localhost:3000/wiki/OperatorsIM#is_graphtsplib
http://localhost:3000/wiki/OperatorsIM#is_grid
http://localhost:3000/wiki/OperatorsIM#is_image
http://localhost:3000/wiki/OperatorsIM#is_json
http://localhost:3000/wiki/OperatorsIM#is_obj
http://localhost:3000/wiki/OperatorsIM#is_osm
http://localhost:3000/wiki/OperatorsIM#is_pgm
http://localhost:3000/wiki/OperatorsIM#is_property
http://localhost:3000/wiki/OperatorsIM#is_shape
http://localhost:3000/wiki/OperatorsIM#is_simulation
http://localhost:3000/wiki/OperatorsIM#is_svg
http://localhost:3000/wiki/OperatorsIM#is_text
http://localhost:3000/wiki/OperatorsIM#is_threeds
http://localhost:3000/wiki/OperatorsIM#is_xml
http://localhost:3000/wiki/OperatorsIM#json_file
http://localhost:3000/wiki/OperatorsNR#new_folder
http://localhost:3000/wiki/OperatorsNR#obj_file
http://localhost:3000/wiki/OperatorsNR#osm_file
http://localhost:3000/wiki/OperatorsNR#pgm_file
http://localhost:3000/wiki/OperatorsNR#property_file
http://localhost:3000/wiki/OperatorsNR#read
http://localhost:3000/wiki/OperatorsNR#rename_file
http://localhost:3000/wiki/OperatorsSZ#shape_file
http://localhost:3000/wiki/OperatorsSZ#simulation_file
http://localhost:3000/wiki/OperatorsSZ#step_sub_model
http://localhost:3000/wiki/OperatorsSZ#svg_file
http://localhost:3000/wiki/OperatorsSZ#text_file
http://localhost:3000/wiki/OperatorsSZ#threeds_file
http://localhost:3000/wiki/OperatorsSZ#unzip
http://localhost:3000/wiki/OperatorsSZ#writable
http://localhost:3000/wiki/OperatorsSZ#xml_file
http://localhost:3000/wiki/OperatorsSZ#zip
http://localhost:3000/wiki/OperatorsSZ#type_of
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsAA#add_edge
http://localhost:3000/wiki/OperatorsAA#add_node
http://localhost:3000/wiki/OperatorsAA#adjacency
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#alpha_index
http://localhost:3000/wiki/OperatorsAA#as_distance_graph
http://localhost:3000/wiki/OperatorsAA#as_edge_graph
http://localhost:3000/wiki/OperatorsAA#as_intersection_graph
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsAA#as_spatial_graph
http://localhost:3000/wiki/OperatorsBC#beta_index
http://localhost:3000/wiki/OperatorsBC#betweenness_centrality
http://localhost:3000/wiki/OperatorsBC#biggest_cliques_of
http://localhost:3000/wiki/OperatorsBC#connected_components_of
http://localhost:3000/wiki/OperatorsBC#connectivity_index
http://localhost:3000/wiki/OperatorsBC#contains_edge
http://localhost:3000/wiki/OperatorsBC#contains_vertex
http://localhost:3000/wiki/OperatorsDH#degree_of
http://localhost:3000/wiki/OperatorsDH#directed
http://localhost:3000/wiki/OperatorsDH#edge
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsDH#edge_betweenness
http://localhost:3000/wiki/OperatorsDH#edges
http://localhost:3000/wiki/OperatorsDH#gamma_index
http://localhost:3000/wiki/OperatorsDH#generate_barabasi_albert
http://localhost:3000/wiki/OperatorsDH#generate_complete_graph
http://localhost:3000/wiki/OperatorsDH#generate_random_graph
http://localhost:3000/wiki/OperatorsDH#generate_watts_strogatz
http://localhost:3000/wiki/OperatorsDH#girvan_newman_clustering
http://localhost:3000/wiki/OperatorsDH#grid_cells_to_graph
http://localhost:3000/wiki/OperatorsIM#in_degree_of
http://localhost:3000/wiki/OperatorsIM#in_edges_of
http://localhost:3000/wiki/OperatorsIM#k_spanning_tree_clustering
http://localhost:3000/wiki/OperatorsIM#label_propagation_clustering
http://localhost:3000/wiki/OperatorsIM#layout_circle
http://localhost:3000/wiki/OperatorsIM#layout_force
http://localhost:3000/wiki/OperatorsIM#layout_force_fr
http://localhost:3000/wiki/OperatorsIM#layout_force_fr_indexed
http://localhost:3000/wiki/OperatorsIM#layout_grid
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#main_connected_component
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsIM#maximal_cliques_of
http://localhost:3000/wiki/OperatorsNR#nb_cycles
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#node
http://localhost:3000/wiki/OperatorsNR#nodes
http://localhost:3000/wiki/OperatorsNR#out_degree_of
http://localhost:3000/wiki/OperatorsNR#out_edges_of
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsNR#predecessors_of
http://localhost:3000/wiki/OperatorsNR#remove_node_from
http://localhost:3000/wiki/OperatorsNR#rewire_n
http://localhost:3000/wiki/OperatorsSZ#source_of
http://localhost:3000/wiki/OperatorsSZ#spatial_graph
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsSZ#successors_of
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#target_of
http://localhost:3000/wiki/OperatorsSZ#undirected
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsSZ#weight_of
http://localhost:3000/wiki/OperatorsSZ#with_k_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_weights


as_4_grid, as_grid, as_hexagonal_grid, cell_at, cells_in, cells_overlapping, field, grid_at, neighbors_of,
path_between, points_in, values_in,

ImageOperators

*, antialiased, blend, blurred, brighter, clipped_with, darker, grayscale, horizontal_flip, image, matrix,
rotated_by, sharpened, snapshot, tinted_with, vertical_flip, with_height, with_size, with_width,

Iterator operators

accumulate, all_match, as_map, collect, count, create_map, first_with, frequency_of, group_by, index_by,
last_with, max_of, mean_of, min_of, none_matches, one_matches, product_of, sort_by, sum_of,
variance_of, where, where, where, with_max_of, with_min_of,

List-related operators

all_indexes_of, copy_between, index_of, last_index_of,

Logical operators

:, !, ?, add_3Dmodel, add_geometry, add_icon, and, or, xor,

Map comparaison operators

fuzzy_kappa, fuzzy_kappa_sim, kappa, kappa_sim, percent_absolute_deviation,

Map-related operators

as_map, create_map, index_of, last_index_of,

Matrix-related operators

http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsBC#cell_at
http://localhost:3000/wiki/OperatorsBC#cells_in
http://localhost:3000/wiki/OperatorsBC#cells_overlapping
http://localhost:3000/wiki/OperatorsDH#field
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#points_in
http://localhost:3000/wiki/OperatorsSZ#values_in
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#antialiased
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#blurred
http://localhost:3000/wiki/OperatorsBC#brighter
http://localhost:3000/wiki/OperatorsBC#clipped_with
http://localhost:3000/wiki/OperatorsDH#darker
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#horizontal_flip
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsSZ#sharpened
http://localhost:3000/wiki/OperatorsSZ#snapshot
http://localhost:3000/wiki/OperatorsSZ#tinted_with
http://localhost:3000/wiki/OperatorsSZ#vertical_flip
http://localhost:3000/wiki/OperatorsSZ#with_height
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_width
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsAA#all_indexes_of
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsAA#:
http://localhost:3000/wiki/OperatorsAA#!
http://localhost:3000/wiki/OperatorsAA#?
http://localhost:3000/wiki/OperatorsAA#add_3dmodel
http://localhost:3000/wiki/OperatorsAA#add_geometry
http://localhost:3000/wiki/OperatorsAA#add_icon
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsSZ#xor
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa_sim
http://localhost:3000/wiki/OperatorsIM#kappa
http://localhost:3000/wiki/OperatorsIM#kappa_sim
http://localhost:3000/wiki/OperatorsNR#percent_absolute_deviation
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of


-, /, ., *, +, append_horizontally, append_vertically, column_at, columns_list, determinant, eigenvalues,
flatten, index_of, inverse, last_index_of, row_at, rows_list, shuffle, trace, transpose,

multicriteria operators

electre_DM, evidence_theory_DM, fuzzy_choquet_DM, promethee_DM, weighted_means_DM,

Path-related operators

agent_from_geometry, all_pairs_shortest_path, as_path, load_shortest_paths, max_flow_between,
path_between, path_to, paths_between, use_cache,

Pedestrian

generate_pedestrian_network,

Points-related operators

-, /, *, +, <, <=, >, >=, add_point, angle_between, any_location_in, centroid, closest_points_with,
farthest_point_to, grid_at, norm, points_along, points_at, points_on,

Random operators

binomial, exp_density, exp_rnd, flip, gamma_density, gamma_rnd, gamma_trunc_rnd, gauss,
generate_terrain, lognormal_density, lognormal_rnd, lognormal_trunc_rnd, poisson, rnd, rnd_choice,
sample, shuffle, skew_gauss, truncated_gauss, weibull_density, weibull_rnd, weibull_trunc_rnd,

Shape

arc, box, circle, cone, cone3D, cross, cube, curve, cylinder, ellipse, elliptical_arc, envelope,
geometry_collection, hexagon, line, link, plan, polygon, polyhedron, pyramid, rectangle, sphere, square,
squircle, teapot, triangle,

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#append_horizontally
http://localhost:3000/wiki/OperatorsAA#append_vertically
http://localhost:3000/wiki/OperatorsBC#column_at
http://localhost:3000/wiki/OperatorsBC#columns_list
http://localhost:3000/wiki/OperatorsDH#determinant
http://localhost:3000/wiki/OperatorsDH#eigenvalues
http://localhost:3000/wiki/OperatorsDH#flatten
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#inverse
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#row_at
http://localhost:3000/wiki/OperatorsNR#rows_list
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#trace
http://localhost:3000/wiki/OperatorsSZ#transpose
http://localhost:3000/wiki/OperatorsDH#electre_dm
http://localhost:3000/wiki/OperatorsDH#evidence_theory_dm
http://localhost:3000/wiki/OperatorsDH#fuzzy_choquet_dm
http://localhost:3000/wiki/OperatorsNR#promethee_dm
http://localhost:3000/wiki/OperatorsSZ#weighted_means_dm
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsDH#generate_pedestrian_network
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#exp_density
http://localhost:3000/wiki/OperatorsDH#exp_rnd
http://localhost:3000/wiki/OperatorsDH#flip
http://localhost:3000/wiki/OperatorsDH#gamma_density
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gamma_trunc_rnd
http://localhost:3000/wiki/OperatorsDH#gauss
http://localhost:3000/wiki/OperatorsDH#generate_terrain
http://localhost:3000/wiki/OperatorsIM#lognormal_density
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_trunc_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsNR#rnd_choice
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_density
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsSZ#weibull_trunc_rnd
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#triangle


Spatial operators

-, *, +, add_point, agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering,
agents_crossing, agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching,
angle_between, any_location_in, arc, around, as_4_grid, as_driving_graph, as_grid, as_hexagonal_grid,
at_distance, at_location, box, centroid, circle, clean, clean_network, closest_points_with, closest_to, cone,
cone3D, convex_hull, covering, covers, cross, crosses, crossing, crs, CRS_transform, cube, curve, cylinder,
direction_between, disjoint_from, distance_between, distance_to, ellipse, elliptical_arc, envelope,
farthest_point_to, farthest_to, geometry_collection, gini, hexagon, hierarchical_clustering, IDW, inside,
inter, intersects, inverse_rotation, k_nearest_neighbors, line, link, masked_by, moran, neighbors_at,
neighbors_of, normalized_rotation, overlapping, overlaps, partially_overlapping, partially_overlaps,
path_between, path_to, plan, points_along, points_at, points_on, polygon, polyhedron, pyramid,
rectangle, rotated_by, rotation_composition, round, scaled_to, set_z, simple_clustering_by_distance,
simplification, skeletonize, smooth, sphere, split_at, split_geometry, split_lines, square, squircle, teapot,
to_GAMA_CRS, to_rectangles, to_segments, to_squares, to_sub_geometries, touches, touching, towards,
transformed_by, translated_by, triangle, triangulate, union, using, voronoi, with_precision,
without_holes,

Spatial properties operators

covers, crosses, intersects, partially_overlaps, touches,

Spatial queries operators

agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering, agents_crossing,
agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching, at_distance,
closest_to, covering, crossing, farthest_to, inside, neighbors_at, neighbors_of, overlapping,
partially_overlapping, touching,

Spatial relations operators

direction_between, distance_between, distance_to, path_between, path_to, towards,

Spatial statistical operators

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_driving_graph
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#crs_transform
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#idw
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsIM#masked_by
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#split_at
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#to_gama_crs
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsSZ#towards
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#using
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsSZ#towards


hierarchical_clustering, k_nearest_neighbors, simple_clustering_by_distance,

Spatial transformations operators

-, *, +, as_4_grid, as_grid, as_hexagonal_grid, at_location, clean, clean_network, convex_hull,
CRS_transform, inverse_rotation, normalized_rotation, rotated_by, rotation_composition, scaled_to,
simplification, skeletonize, smooth, split_geometry, split_lines, to_GAMA_CRS, to_rectangles,
to_segments, to_squares, to_sub_geometries, transformed_by, translated_by, triangulate, voronoi,
with_precision, without_holes,

Species-related operators

index_of, last_index_of, of_generic_species, of_species,

Statistical operators

auto_correlation, beta, binomial_coeff, binomial_complemented, binomial_sum, build, chi_square,
chi_square_complemented, correlation, covariance, dbscan, distribution_of, distribution2d_of, dtw,
durbin_watson, frequency_of, gamma, gamma_distribution, gamma_distribution_complemented,
geometric_mean, gini, harmonic_mean, hierarchical_clustering, incomplete_beta, incomplete_gamma,
incomplete_gamma_complement, k_nearest_neighbors, kmeans, kurtosis, log_gamma, max, mean,
mean_deviation, median, min, moment, moran, morrisAnalysis, mul, normal_area, normal_density,
normal_inverse, predict, pValue_for_fStat, pValue_for_tStat, quantile, quantile_inverse,
rank_interpolated, residuals, rms, rSquare, simple_clustering_by_distance, skewness, sobolAnalysis,
split, split_in, split_using, standard_deviation, student_area, student_t_inverse, sum, t_test, variance,

Strings-related operators

+, <, <=, >, >=, at, capitalize, char, compress, contains, contains_all, contains_any, copy_between, date,
empty, first, in, indented_by, index_of, is_number, last, last_index_of, length, lower_case, regex_matches,
replace, replace_regex, reverse, sample, shuffle, split_with, string, uncompress, upper_case,

SubModel

http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#crs_transform
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#to_gama_crs
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#of_generic_species
http://localhost:3000/wiki/OperatorsNR#of_species
http://localhost:3000/wiki/OperatorsAA#auto_correlation
http://localhost:3000/wiki/OperatorsBC#beta
http://localhost:3000/wiki/OperatorsBC#binomial_coeff
http://localhost:3000/wiki/OperatorsBC#binomial_complemented
http://localhost:3000/wiki/OperatorsBC#binomial_sum
http://localhost:3000/wiki/OperatorsBC#build
http://localhost:3000/wiki/OperatorsBC#chi_square
http://localhost:3000/wiki/OperatorsBC#chi_square_complemented
http://localhost:3000/wiki/OperatorsBC#correlation
http://localhost:3000/wiki/OperatorsBC#covariance
http://localhost:3000/wiki/OperatorsDH#dbscan
http://localhost:3000/wiki/OperatorsDH#distribution_of
http://localhost:3000/wiki/OperatorsDH#distribution2d_of
http://localhost:3000/wiki/OperatorsDH#dtw
http://localhost:3000/wiki/OperatorsDH#durbin_watson
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#gamma
http://localhost:3000/wiki/OperatorsDH#gamma_distribution
http://localhost:3000/wiki/OperatorsDH#gamma_distribution_complemented
http://localhost:3000/wiki/OperatorsDH#geometric_mean
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#harmonic_mean
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#incomplete_beta
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma_complement
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#kmeans
http://localhost:3000/wiki/OperatorsIM#kurtosis
http://localhost:3000/wiki/OperatorsIM#log_gamma
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_deviation
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#moment
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsIM#morrisanalysis
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#normal_area
http://localhost:3000/wiki/OperatorsNR#normal_density
http://localhost:3000/wiki/OperatorsNR#normal_inverse
http://localhost:3000/wiki/OperatorsNR#predict
http://localhost:3000/wiki/OperatorsNR#pvalue_for_fstat
http://localhost:3000/wiki/OperatorsNR#pvalue_for_tstat
http://localhost:3000/wiki/OperatorsNR#quantile
http://localhost:3000/wiki/OperatorsNR#quantile_inverse
http://localhost:3000/wiki/OperatorsNR#rank_interpolated
http://localhost:3000/wiki/OperatorsNR#residuals
http://localhost:3000/wiki/OperatorsNR#rms
http://localhost:3000/wiki/OperatorsNR#rsquare
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#skewness
http://localhost:3000/wiki/OperatorsSZ#sobolanalysis
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#standard_deviation
http://localhost:3000/wiki/OperatorsSZ#student_area
http://localhost:3000/wiki/OperatorsSZ#student_t_inverse
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#t_test
http://localhost:3000/wiki/OperatorsSZ#variance
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsBC#capitalize
http://localhost:3000/wiki/OperatorsBC#char
http://localhost:3000/wiki/OperatorsBC#compress
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#indented_by
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#lower_case
http://localhost:3000/wiki/OperatorsNR#regex_matches
http://localhost:3000/wiki/OperatorsNR#replace
http://localhost:3000/wiki/OperatorsNR#replace_regex
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#split_with
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsSZ#uncompress
http://localhost:3000/wiki/OperatorsSZ#upper_case


load_sub_model,

System

., choose, command, copy, copy_from_clipboard, copy_to_clipboard, copy_to_clipboard, dead, enter,
every, from_gaml, is_error, is_reachable, is_warning, play_sound, user_confirm, user_input_dialog,
wizard, wizard_page,

Time-related operators

date, string,

Types-related operators

action, agent, BDIPlan, bool, container, conversation, directory, emotion, file, float, gaml_type, geometry,
graph, int, kml, list, map, matrix, mental_state, message, Norm, pair, path, point, predicate, regression,
rgb, Sanction, skill, social_link, species, topology, unknown,

User control operators

choose, enter, user_confirm, user_input_dialog, wizard, wizard_page,

Operators

darker

Possible uses:

darker  ( image ) ---> image

image  darker  float  ---> image

darker  ( image  , float ) ---> image

http://localhost:3000/wiki/OperatorsIM#load_sub_model
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsBC#command
http://localhost:3000/wiki/OperatorsBC#copy
http://localhost:3000/wiki/OperatorsBC#copy_from_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsDH#dead
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsIM#is_error
http://localhost:3000/wiki/OperatorsIM#is_reachable
http://localhost:3000/wiki/OperatorsIM#is_warning
http://localhost:3000/wiki/OperatorsNR#play_sound
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsAA#action
http://localhost:3000/wiki/OperatorsAA#agent
http://localhost:3000/wiki/OperatorsBC#bdiplan
http://localhost:3000/wiki/OperatorsBC#bool
http://localhost:3000/wiki/OperatorsBC#container
http://localhost:3000/wiki/OperatorsBC#conversation
http://localhost:3000/wiki/OperatorsDH#directory
http://localhost:3000/wiki/OperatorsDH#emotion
http://localhost:3000/wiki/OperatorsDH#file
http://localhost:3000/wiki/OperatorsDH#float
http://localhost:3000/wiki/OperatorsDH#gaml_type
http://localhost:3000/wiki/OperatorsDH#geometry
http://localhost:3000/wiki/OperatorsDH#graph
http://localhost:3000/wiki/OperatorsIM#int
http://localhost:3000/wiki/OperatorsIM#kml
http://localhost:3000/wiki/OperatorsIM#list
http://localhost:3000/wiki/OperatorsIM#map
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsIM#mental_state
http://localhost:3000/wiki/OperatorsIM#message
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#pair
http://localhost:3000/wiki/OperatorsNR#path
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#predicate
http://localhost:3000/wiki/OperatorsNR#regression
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsSZ#sanction
http://localhost:3000/wiki/OperatorsSZ#skill
http://localhost:3000/wiki/OperatorsSZ#social_link
http://localhost:3000/wiki/OperatorsSZ#species
http://localhost:3000/wiki/OperatorsSZ#topology
http://localhost:3000/wiki/OperatorsSZ#unknown
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page


Result:

Used to return an image darker by a percentage (between 0 - no change - and 1 - 100% darker). If the
percentage is below zero or abovde 1, returns the image untouched Used to return an image 10%
darker. This operation can be applied multiple times in a row if greater than 10% changes in brightness
are desired.

date

Possible uses:

string  date  string  ---> date

date  ( string  , string ) ---> date

date  ( string , string , string ) ---> date

Result:

converts a string to a date following a custom pattern. The pattern can use "%Y %M %N %D %E %h %m
%s %z" for outputting years, months, name of month, days, name of days, hours, minutes, seconds and
the time-zone. A null or empty pattern will parse the date using one of the ISO date & time formats
(similar to date('...') in that case). The pattern can also follow the pattern definition found here, which
gives much more control over what will be parsed:
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#patterns.
Different patterns are available by default as constant: #iso_local, #iso_simple, #iso_offset, #iso_zoned
and #custom, which can be changed in the preferences

Special cases:

In addition to the date and pattern string operands, a specific locale (e.g. 'fr', 'en'...) can be added.

Examples:

dbscan

date d <- date("1999-january-30", 'yyyy-MMMM-dd', 'en');

date den <- date("1999-12-30", 'yyyy-MM-dd');

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#patterns


Possible uses:

dbscan  ( list , float , int ) ---> list<list>

Result:

returns the list of clusters (list of instance indices) computed with the dbscan (density-based spatial
clustering of applications with noise) algorithm from the first operand data according to the maximum
radius of the neighborhood to be considered (eps) and the minimum number of points needed for a
cluster (minPts). Usage: dbscan(data,eps,minPoints)

Special cases:

if the lengths of two vectors in the right-hand aren't equal, returns 0

Examples:

dead

Possible uses:

dead  ( agent ) ---> bool

Result:

true if the agent is dead (or null), false otherwise.

Examples:

decompress

Same signification as uncompress

list<list> var0 <- dbscan ([[2,4,5], [3,8,2], [1,1,3], [4,3,4]],10,2); // var0 equals 
[[0,1,2,3]]

bool var0 <- dead(agent_A); // var0 equals true or false

http://localhost:3000/wiki/OperatorsSZ#uncompress


degree_of

Possible uses:

graph  degree_of  unknown  ---> int

degree_of  ( graph  , unknown ) ---> int

Result:

returns the degree (in+out) of a vertex (right-hand operand) in the graph given as left-hand operand.

Examples:

See also: in_degree_of, out_degree_of,

delete_file

Possible uses:

delete_file  ( string ) ---> bool

Result:

delete a file or a folder

Examples:

deserialize

Possible uses:

deserialize  ( string ) ---> unknown

Result:

int var1 <- graphFromMap degree_of (node(3)); // var1 equals 3

bool delete_file_ok <- delete_file(["../includes/my_folder"];

http://localhost:3000/wiki/OperatorsIM#in_degree_of
http://localhost:3000/wiki/OperatorsNR#out_degree_of


Deserializes an object precedently serialized using serialize  or to_binary .It is safer to deserialize
agents or simulations with the 'restore' or 'create' statements rather than with this operator.

See also: from_gaml, from_json,

det

Same signification as determinant

determinant

Possible uses:

determinant  ( matrix ) ---> float

Result:

The determinant of the given matrix

Examples:

diff

Possible uses:

float  diff  float  ---> float

diff  ( float  , float ) ---> float

Result:

A placeholder function for expressing equations

diff2

float var0 <- determinant(matrix([[1,2],[3,4]])); // var0 equals -2

http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsDH#from_json
http://localhost:3000/wiki/OperatorsDH#determinant


Possible uses:

float  diff2  float  ---> float

diff2  ( float  , float ) ---> float

Result:

A placeholder function for expressing equations

directed

Possible uses:

directed  ( graph ) ---> graph

Result:

the operand graph becomes a directed graph.

Comment:

WARNING / side effect: this operator modifies the operand and does not create a new graph.

See also: undirected,

direction_between

Possible uses:

topology  direction_between  container<unknown,geometry>  ---> float

direction_between  ( topology  , container<unknown,geometry> ) ---> float

Result:

A direction (in degree) between a list of two geometries (geometries, agents, points) considering a
topology.

Examples:

http://localhost:3000/wiki/OperatorsSZ#undirected


See also: towards, direction_to, distance_to, distance_between, path_between, path_to,

direction_to

Same signification as towards

directory

Possible uses:

directory  ( any ) ---> directory

Result:

casts the operand in a directory object.

disjoint_from

Possible uses:

geometry  disjoint_from  geometry  ---> bool

disjoint_from  ( geometry  , geometry ) ---> bool

Result:

A boolean, equal to true if the left-geometry (or agent/point) is disjoints from the right-geometry (or
agent/point).

Special cases:

if one of the operand is null, returns true.

if one operand is a point, returns false if the point is included in the geometry.

Examples:

float var0 <- my_topology direction_between [ag1, ag2]; // var0 equals the direction 
between ag1 and ag2 considering the topology my_topology

http://localhost:3000/wiki/OperatorsSZ#towards
http://localhost:3000/wiki/OperatorsDH#direction_to
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsSZ#towards


See also: intersects, crosses, overlaps, partially_overlaps, touches,

distance_between

Possible uses:

topology  distance_between  container<unknown,geometry>  ---> float

distance_between  ( topology  , container<unknown,geometry> ) ---> float

Result:

A distance between a list of geometries (geometries, agents, points) considering a topology.

Examples:

See also: towards, direction_to, distance_to, direction_between, path_between, path_to,

distance_to

Possible uses:

point  distance_to  point  ---> float

distance_to  ( point  , point ) ---> float

geometry  distance_to  geometry  ---> float

distance_to  ( geometry  , geometry ) ---> float

bool var0 <- polyline([{10,10},{20,20}]) disjoint_from polyline([{15,15},{25,25}]); // 
var0 equals false 
bool var1 <- polygon([{10,10},{10,20},{20,20},{20,10}]) disjoint_from polygon([{15,15},
{15,25},{25,25},{25,15}]); // var1 equals false 
bool var2 <- polygon([{10,10},{10,20},{20,20},{20,10}]) disjoint_from {25,25}; // var2 
equals true 
bool var3 <- polygon([{10,10},{10,20},{20,20},{20,10}]) disjoint_from polygon([{35,35},
{35,45},{45,45},{45,35}]); // var3 equals true

float var0 <- my_topology distance_between [ag1, ag2, ag3]; // var0 equals the distance 
between ag1, ag2 and ag3 considering the topology my_topology

http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsSZ#towards
http://localhost:3000/wiki/OperatorsDH#direction_to
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to


Result:

A distance between two geometries (geometries, agents or points) considering the topology of the
agent applying the operator.

Examples:

See also: towards, direction_to, distance_between, direction_between, path_between, path_to,

distinct

Same signification as remove_duplicates

distribution_of

Possible uses:

distribution_of  ( container ) ---> map

container  distribution_of  int  ---> map

distribution_of  ( container  , int ) ---> map

distribution_of  ( container , int , float , float ) ---> map

Result:

Discretize a list of values into n bins (computes the bins from a numerical variable into n (default 10)
bins. Returns a distribution map with the values (values key), the interval legends (legend key), the
distribution parameters (params keys, for cumulative charts). Parameters can be (list), (list, nbbins) or
(list,nbbins,valmin,valmax)

Examples:

float var0 <- ag1 distance_to ag2; // var0 equals the distance between ag1 and ag2 
considering the topology of the agent applying the operator

map var0 <- distribution_of([1,1,2,12.5]); // var0 equals map(['values'::[2,1,0,0,0,0,1,0
['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]'
[1,0]]) 
map var1 <- distribution_of([1,1,2,12.5]); // var1 equals map(['values'::[2,1,0,0,0,0,1,0

http://localhost:3000/wiki/OperatorsSZ#towards
http://localhost:3000/wiki/OperatorsDH#direction_to
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#remove_duplicates


See also: as_map,

distribution2d_of

Possible uses:

container  distribution2d_of  container  ---> map

distribution2d_of  ( container  , container ) ---> map

distribution2d_of  ( container , container , int , int ) ---> map

distribution2d_of  ( container , container , int , float , float , int , float , float ) ---> map

Result:

Discretize two lists of values into n bins (computes the bins from a numerical variable into n (default 10)
bins. Returns a distribution map with the values (values key), the interval legends (legend key), the
distribution parameters (params keys, for cumulative charts). Parameters can be (list), (list, nbbins) or
(list,nbbins,valmin,valmax)

Examples:

See also: as_map,

div

['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]'
[1,0]]) 
map var2 <- distribution_of([1,1,2,12.5],10); // var2 equals map(['values'::[2,1,0,0,0,0,
['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]'
[1,0]])

map var0 <- distribution2d_of([1,1,2,12.5]); // var0 equals map(['values'::[2,1,0,0,0,0,1
['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]'
[1,0]]) 
map var1 <- distribution2d_of([1,1,2,12.5],10); // var1 equals map(['values'::[2,1,0,0,0,
['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]'
[1,0]]) 
map var2 <- distribution2d_of([1,1,2,12.5],10); // var2 equals map(['values'::[2,1,0,0,0,
['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]'
[1,0]])

http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsAA#as_map


Possible uses:

float  div  float  ---> int

div  ( float  , float ) ---> int

float  div  int  ---> int

div  ( float  , int ) ---> int

int  div  int  ---> int

div  ( int  , int ) ---> int

int  div  float  ---> int

div  ( int  , float ) ---> int

Result:

Returns the truncation of the division of the left-hand operand by the right-hand operand.

Special cases:

if the right-hand operand is equal to zero, raises an exception.

Examples:

See also: mod,

dnorm

Same signification as normal_density

dtw

Possible uses:

list  dtw  list  ---> float

dtw  ( list  , list ) ---> float

int var0 <- 40.1 div 4.5; // var0 equals 8 
int var1 <- 40.5 div 3; // var1 equals 13 
int var2 <- 40 div 3; // var2 equals 13 
int var3 <- 40 div 4.1; // var3 equals 9

http://localhost:3000/wiki/OperatorsIM#mod
http://localhost:3000/wiki/OperatorsNR#normal_density


dtw  ( list , list , int ) ---> float

Result:

returns the dynamic time warping between the two series of values (step pattern used: symetric1)
returns the dynamic time warping between the two series of values (step pattern used: symetric1) with
Sakoe-Chiba band (radius: the window width of Sakoe-Chiba band)

Examples:

durbin_watson

Possible uses:

durbin_watson  ( container ) ---> float

Result:

Durbin-Watson computation

Examples:

dxf_file

Possible uses:

dxf_file  ( string ) ---> file

string  dxf_file  float  ---> file

dxf_file  ( string  , float ) ---> file

Result:

Constructs a file of type dxf. Allowed extensions are limited to dxf

float var0 <- dtw([32.0,5.0,1.0,3.0],[1.0,10.0,5.0,1.0]); // var0 equals 38.0 
float var1 <- dtw([10.0,5.0,1.0, 3.0],[1.0,10.0,5.0,1.0], 2); // var1 equals 11.0

float var0 <- durbin_watson([13,2,1,4,1,2]) with_precision(4); // var0 equals 0.7231



Special cases:

dxf_file(string): This file constructor allows to read a dxf (.dxf) file

dxf_file(string,float): This file constructor allows to read a dxf (.dxf) file and specify the unit (meter by
default)

See also: is_dxf,

edge

Possible uses:

edge  ( unknown ) ---> unknown

edge  ( pair ) ---> unknown

pair  edge  float  ---> unknown

edge  ( pair  , float ) ---> unknown

unknown  edge  unknown  ---> unknown

edge  ( unknown  , unknown ) ---> unknown

unknown  edge  float  ---> unknown

edge  ( unknown  , float ) ---> unknown

pair  edge  int  ---> unknown

edge  ( pair  , int ) ---> unknown

unknown  edge  int  ---> unknown

edge  ( unknown  , int ) ---> unknown

edge  ( pair , unknown , int ) ---> unknown

edge  ( unknown , unknown , float ) ---> unknown

edge  ( unknown , unknown , int ) ---> unknown

edge  ( unknown , unknown , unknown ) ---> unknown

edge  ( pair , unknown , float ) ---> unknown

edge  ( unknown , unknown , unknown , int ) ---> unknown

file f <- dxf_file("file.dxf");

file f <- dxf_file("file.dxf",#m);

http://localhost:3000/wiki/OperatorsIM#is_dxf


edge  ( unknown , unknown , unknown , float ) ---> unknown

Result:

Allows to create a wrapper (of type unknown) that wraps two objects and indicates they should be
considered as the source and the target of a new edge of a graph. The third (omissible) parameter
indicates which weight this edge should have in the graph

Comment:

Useful only in graph-related operations (addition, removal of edges, creation of graphs)

edge_between

Possible uses:

graph  edge_between  pair  ---> unknown

edge_between  ( graph  , pair ) ---> unknown

Result:

returns the edge linking two nodes

Examples:

See also: out_edges_of, in_edges_of,

edge_betweenness

Possible uses:

edge_betweenness  ( graph ) ---> map

Result:

returns a map containing for each edge (key), its betweenness centrality (value): number of shortest
paths passing through each edge

unknown var0 <- graphFromMap edge_between node1::node2; // var0 equals edge1

http://localhost:3000/wiki/OperatorsNR#out_edges_of
http://localhost:3000/wiki/OperatorsIM#in_edges_of


Examples:

edges

Possible uses:

edges  ( container ) ---> container

Result:

Allows to create a wrapper (of type list) that wraps a list of objects and indicates they should be
considered as edges of a graph

eigenvalues

Possible uses:

eigenvalues  ( matrix ) ---> list<float>

Result:

The list of the eigen values of the given matrix

Examples:

electre_DM

Possible uses:

electre_DM  ( list<list> , list<map<string,unknown>> , float ) ---> int

graph graphEpidemio <- graph([]); 
map var1 <- edge_betweenness(graphEpidemio); // var1 equals the edge betweenness index 
of the graph

list<float> var0 <- eigenvalues(matrix([[5,-3],[6,-4]])); // var0 equals 
[2.0000000000000004,-0.9999999999999998]



Result:

The index of the best candidate according to a method based on the ELECTRE methods. The principle of
the ELECTRE methods is to compare the possible candidates by pair. These methods analyses the
possible outranking relation existing between two candidates. A candidate outranks another if this one
is at least as good as the other one. The ELECTRE methods are based on two concepts: the concordance
and the discordance. The concordance characterizes the fact that, for an outranking relation to be
validated, a sufficient majority of criteria should be in favor of this assertion. The discordance
characterizes the fact that, for an outranking relation to be validated, none of the criteria in the minority
should oppose too strongly this assertion. These two conditions must be true for validating the
outranking assertion. More information about the ELECTRE methods can be found in Figueira, J.,
Mousseau, V., Roy, B.: ELECTRE Methods. In: Figueira, J., Greco, S., and Ehrgott, M., (Eds.), Multiple
Criteria Decision Analysis: State of the Art Surveys, Springer, New York, 133--162 (2005). The first operand
is the list of candidates (a candidate is a list of criterion values); the second operand the list of criterion:
A criterion is a map that contains fives elements: a name, a weight, a preference value (p), an
indifference value (q) and a veto value (v). The preference value represents the threshold from which the
difference between two criterion values allows to prefer one vector of values over another. The
indifference value represents the threshold from which the difference between two criterion values is
considered significant. The veto value represents the threshold from which the difference between two
criterion values disqualifies the candidate that obtained the smaller value; the last operand is the fuzzy
cut.

Special cases:

returns -1 is the list of candidates is nil or empty

Examples:

See also: weighted_means_DM, promethee_DM, evidence_theory_DM,

ellipse

Possible uses:

float  ellipse  float  ---> geometry

int var0 <- electre_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], [["name"::"utility", "weight" 
:: 2.0,"p"::0.5, "q"::0.0, "s"::1.0, "maximize" :: true],["name"::"price", "weight" :: 
1.0,"p"::0.5, "q"::0.0, "s"::1.0, "maximize" :: false]],0.7); // var0 equals 0

https://link.springer.com/book/10.1007/b100605
https://link.springer.com/book/10.1007/b100605
https://link.springer.com/book/10.1007/b100605
http://localhost:3000/wiki/OperatorsSZ#weighted_means_dm
http://localhost:3000/wiki/OperatorsNR#promethee_dm
http://localhost:3000/wiki/OperatorsDH#evidence_theory_dm


ellipse  ( float  , float ) ---> geometry

Result:

An ellipse geometry which x-radius is equal to the first operand and y-radius is equal to the second
operand

Comment:

the center of the ellipse is by default the location of the current agent in which has been called this
operator.

Special cases:

returns a point if both operands are lower or equal to 0, a line if only one is.

Examples:

See also: around, cone, line, link, norm, point, polygon, polyline, rectangle, square, circle, squircle,
triangle,

elliptical_arc

Possible uses:

elliptical_arc  ( point , point , float , int ) ---> geometry

Result:

An elliptical arc from the first operand (point) to the second operand (point), which radius is equal to the
third operand, and a int giving the number of points to use as a last operand

Examples:

geometry var0 <- ellipse(10, 10); // var0 equals a geometry as an ellipse of width 10 
and height 10.

geometry var0 <- elliptical_arc({0,0},{10,10},5.0, 20); // var0 equals a geometry from 
{0,0} to {10,10} considering a radius of 5.0 built using 20 points

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#triangle


See also: arc, around, cone, line, link, norm, point, polygon, polyline, super_ellipse, rectangle, square,
circle, ellipse, triangle,

emotion

Possible uses:

emotion  ( any ) ---> emotion

Result:

casts the operand in a emotion object.

empty

Possible uses:

empty  ( container<KeyType,ValueType> ) ---> bool

empty  ( string ) ---> bool

Result:

true if the operand is empty, false otherwise.

Comment:

the empty operator behavior depends on the nature of the operand

Special cases:

if it is a map, empty returns true if the map contains no key-value mappings, and false otherwise

if it is a file, empty returns true if the content of the file (that is also a container) is empty, and false
otherwise

if it is a population, empty returns true if there is no agent in the population, and false otherwise

if it is a graph, empty returns true if it contains no vertex and no edge, and false otherwise

if it is a matrix of int, float or object, it will return true if all elements are respectively 0, 0.0 or null,
and false otherwise

if it is a matrix of geometry, it will return true if the matrix contains no cell, and false otherwise

http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsSZ#super_ellipse
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsSZ#triangle


if it is a list, empty returns true if there is no element in the list, and false otherwise

if it is a string, empty returns true if the string does not contain any character, and false otherwise

enlarged_by

Same signification as +

enter

Possible uses:

string  enter  float  ---> unknown

enter  ( string  , float ) ---> unknown

string  enter  bool  ---> unknown

enter  ( string  , bool ) ---> unknown

string  enter  unknown  ---> unknown

enter  ( string  , unknown ) ---> unknown

string  enter  any GAML type  ---> unknown

enter  ( string  , any GAML type ) ---> unknown

string  enter  string  ---> unknown

enter  ( string  , string ) ---> unknown

string  enter  int  ---> unknown

enter  ( string  , int ) ---> unknown

enter  ( string , any GAML type , unknown ) ---> unknown

enter  ( string , float , float , float ) ---> unknown

enter  ( string , int , int , int ) ---> unknown

enter  ( string , float , float , float , float ) ---> unknown

enter  ( string , int , int , int , int ) ---> unknown

bool var0 <- empty([]); // var0 equals true

bool var1 <- empty ('abced'); // var1 equals false

http://localhost:3000/wiki/OperatorsAA#+


Result:

Allows the user to enter a string by specifying a title and an initial value

Special cases:

The GUI is then a slider when an init value, a min (int or float), a max (int or float) (and eventually a
step (int or float) ) operands.

When the second operand is the boolean type or a boolean value, the GUI is then a switch

envelope

Possible uses:

envelope  ( unknown ) ---> geometry

Result:

A 3D geometry that represents the box that surrounds the geometries or the surface described by the
arguments. More general than geometry(arguments).envelope, as it allows to pass int, double, point,
image files, shape files, asc files, or any list combining these arguments, in which case the envelope will
be correctly expanded. If an envelope cannot be determined from the arguments, a default one of
dimensions (0,100, 0, 100, 0, 100) is returned

Special cases:

This operator is often used to define the environment of simulation

Examples:

map resMinMax <- user_input([enter("Title",5,0)]) 
map resMinMax <- user_input([enter("Title",5,0,10)]) 
map resMMStepFF <- user_input([enter("Title",5,0.1,10.1,0.5)]);

map<string,unknown> m <- user_input(enter("Title",true)); 
map<string,unknown> m2 <- user_input(enter("Title",bool));

file road_shapefile <- file("../includes/roads.shp"); 
geometry shape <- envelope(road_shapefile); 



eval_gaml

Same signification as from_gaml

eval_when

Possible uses:

eval_when  ( BDIPlan ) ---> bool

Result:

evaluate the facet when of a given plan

Examples:

evaluate_sub_model

Possible uses:

agent  evaluate_sub_model  string  ---> unknown

evaluate_sub_model  ( agent  , string ) ---> unknown

Result:

Load a submodel

Comment:

loaded submodel

// shape is the system variable of  the environment 
geometry var3 <- polygon([{0,0}, {20,0}, {10,10}, {10,0}]); // var3 equals create a 
polygon to get the envolpe 
float var4 <- envelope(polygon([{0,0}, {20,0}, {10,10}, {10,0}])).area; // var4 equals 
200.0

eval_when(plan1)

http://localhost:3000/wiki/OperatorsDH#from_gaml


even

Possible uses:

even  ( int ) ---> bool

Result:

Returns true if the operand is even and false if it is odd.

Special cases:

if the operand is equal to 0, it returns true.

if the operand is a float, it is truncated before

Examples:

every

Possible uses:

every  ( any expression ) ---> bool

every  ( int ) ---> bool

bool  every  int  ---> bool

every  ( bool  , int ) ---> bool

int  every  int  ---> int

every  ( int  , int ) ---> int

float  every  int  ---> float

every  ( float  , int ) ---> float

unknown  every  int  ---> unknown

every  ( unknown  , int ) ---> unknown

list  every  any expression  ---> list<date>

every  ( list  , any expression ) ---> list<date>

bool var0 <- even (3); // var0 equals false 
bool var1 <- even(-12); // var1 equals true



list  every  int  ---> list

every  ( list  , int ) ---> list

Result:

returns the first bool operand every 2nd operand * cycle, false otherwise expects a frequency (expressed
in seconds of simulated time) as argument. Will return true every time the current_date matches with
this frequency returns the first integer operand every 2nd operand * cycle, 0 otherwise returns the first
float operand every 2nd operand * cycle, 0.0 otherwise returns the first operand every 2nd operand *
cycle, nil otherwise true every operand * cycle, false otherwise applies a step to an interval of dates
defined by 'date1 to date2'. Beware that using every with #month or #year will produce odd results,as
these pseudo-constants are not constant; only the first value will be used to compute the intervals, so,
for instance, if current_date is set to February#month will only represent 28 or 29 days. Retrieves
elements from the first argument every step  (second argument) elements. Raises an error if the step is
negative or equal to zero

Comment:

the value of the every operator depends on the cycle. It can be used to return a value every x cycle.
object every(10#cycle)  is strictly equivalent to every(10#cycle) ? object : falseUsed to do
something at regular intervals of time. Can be used in conjunction with 'since', 'after', 'before', 'until' or
'between', so that this computation only takes place in the temporal segment defined by these
operators. In all cases, the starting_date of the model is used as a reference starting pointthe value of
the every operator depends on the cycle. It can be used to return a value every x cycle. 1000
every(10#cycle)  is strictly equivalent to every(10#cycle) ? 1000 : 0 the value of the every operator
depends on the cycle. It can be used to return a value every x cycle. 1000.0 every(10#cycle)  is strictly
equivalent to every(10#cycle) ? 1000.0 : 0.0 the value of the every operator depends on the cycle. It
can be used to return a value every x cycle. object every(10#cycle)  is strictly equivalent to
every(10#cycle) ? object : nil the value of the every operator depends on the cycle. It can be used
to do something every x cycle.

Examples:

if (true every(2#cycle) != false) {write "this is true";} 
     else {write "this is false";} 

reflex when: every(2#days) since date('2000-01-01') { .. } 
state a { transition to: b when: every(2#mn);} state b { transition to: a when: 
every(30#s);} // This oscillatory behavior will use the starting_date of the model as 
its starting point in time 
if (1000 every(2#cycle) != 0) {write "this is a value";} 

     else {write "this is 0";} 



See also: since, after, to,

every_cycle

Same signification as every

evidence_theory_DM

Possible uses:

list<list>  evidence_theory_DM  list<map<string,unknown>>  ---> int

evidence_theory_DM  ( list<list>  , list<map<string,unknown>> ) ---> int

evidence_theory_DM  ( list<list> , list<map<string,unknown>> , bool ) ---> int

Result:

The index of the best candidate according to a method based on the Evidence theory. This theory, which
was proposed by Shafer (Shafer G (1976) A mathematical theory of evidence, Princeton University Press),
is based on the work of Dempster (Dempster A (1967) Upper and lower probabilities induced by
multivalued mapping. Annals of Mathematical Statistics, vol. 38, pp. 325--339) on lower and upper
probability distributions. The first operand is the list of candidates (a candidate is a list of criterion
values); the second operand the list of criterion: A criterion is a map that contains seven elements: a
name, a first threshold s1, a second threshold s2, a value for the assertion "this candidate is the best" at
threshold s1 (v1p), a value for the assertion "this candidate is the best" at threshold s2 (v2p), a value for
the assertion "this candidate is not the best" at threshold s1 (v1c), a value for the assertion "this
candidate is not the best" at threshold s2 (v2c). v1p, v2p, v1c and v2c have to been defined in order that:
v1p + v1c <= 1.0; v2p + v2c <= 1.0.; the last operand allows to use a simple version of this multi-criteria
decision making method (simple if true)

Special cases:

if (1000.0 every(2#cycle) != 0) {write "this is a value";} 
     else {write "this is 0.0";} 

if ({2000,2000} every(2#cycle) != nil) {write "this is a point";} 
     else {write "this is nil";} 

if every(2#cycle) {write "the cycle number is even";} 
     else {write "the cycle number is odd";} 

(date('2000-01-01') to date('2010-01-01')) every (#day) // builds an interval between 
these two dates which contains all the days starting from the beginning of the interval

http://localhost:3000/wiki/OperatorsSZ#since
http://localhost:3000/wiki/OperatorsAA#after
http://localhost:3000/wiki/OperatorsSZ#to
http://localhost:3000/wiki/OperatorsDH#every
http://www.glennshafer.com/books/amte.html
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-38/issue-2/Upper-and-Lower-Probabilities-Induced-by-a-Multivalued-Mapping/10.1214/aoms/1177698950.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-38/issue-2/Upper-and-Lower-Probabilities-Induced-by-a-Multivalued-Mapping/10.1214/aoms/1177698950.full


if the operator is used with only 2 operands (the candidates and the criteria), the last parameter
(use simple method) is set to true

returns -1 is the list of candidates is nil or empty

Examples:

See also: weighted_means_DM, electre_DM,

exp

Possible uses:

exp  ( float ) ---> float

exp  ( int ) ---> float

Result:

Returns Euler's number e raised to the power of the operand.

Special cases:

the operand is casted to a float before being evaluated.

Examples:

See also: ln,

int var0 <- evidence_theory_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], [["name"::"utility", 
"s1" :: 0.0,"s2"::1.0, "v1p"::0.0, "v2p"::1.0, "v1c"::0.0, "v2c"::0.0, "maximize" :: 
true],["name"::"price",  "s1" :: 0.0,"s2"::1.0, "v1p"::0.0, "v2p"::1.0, "v1c"::0.0, 
"v2c"::0.0, "maximize" :: true]]); // var0 equals 0 
int var1 <- evidence_theory_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], [["name"::"utility", 
"s1" :: 0.0,"s2"::1.0, "v1p"::0.0, "v2p"::1.0, "v1c"::0.0, "v2c"::0.0, "maximize" :: 
true],["name"::"price",  "s1" :: 0.0,"s2"::1.0, "v1p"::0.0, "v2p"::1.0, "v1c"::0.0, 
"v2c"::0.0, "maximize" :: true]], false); // var1 equals 0

float var0 <- exp (0.0); // var0 equals 1.0

http://localhost:3000/wiki/OperatorsSZ#weighted_means_dm
http://localhost:3000/wiki/OperatorsDH#electre_dm
http://localhost:3000/wiki/OperatorsIM#ln


exp_density

Possible uses:

float  exp_density  float  ---> float

exp_density  ( float  , float ) ---> float

Result:

returns the probability density function (PDF) at the specified point x of the exponential distribution with
the given rate.

Examples:

See also: binomial, gamma_rnd, gauss_rnd, lognormal_rnd, poisson, rnd, skew_gauss,
lognormal_density, gamma_density,

exp_rnd

Possible uses:

exp_rnd  ( float ) ---> float

Result:

returns a random value from a exponential distribution with specified values of the rate (lambda)
parameters. See https://mathworld.wolfram.com/ExponentialDistribution.html for more details ).

Examples:

See also: binomial, gamma_rnd, gauss_rnd, lognormal_rnd, poisson, rnd, skew_gauss, truncated_gauss,
weibull_trunc_rnd,

fact

float var0 <- exp_density(5,3) ; // var0 equals 0.731

float var0 <- exp_rnd(5) ; // var0 equals 0.731

http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsIM#lognormal_density
http://localhost:3000/wiki/OperatorsDH#gamma_density
https://mathworld.wolfram.com/ExponentialDistribution.html
http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_trunc_rnd


Possible uses:

fact  ( int ) ---> float

Result:

Returns the factorial of the operand.

Special cases:

if the operand is less than 0, fact returns 0.

Examples:

farthest_point_to

Possible uses:

geometry  farthest_point_to  point  ---> point

farthest_point_to  ( geometry  , point ) ---> point

Result:

the farthest point of the left-operand to the left-point.

Examples:

See also: any_location_in, any_point_in, closest_points_with, points_at,

farthest_to

Possible uses:

container<unknown,geometry>  farthest_to  geometry  ---> geometry

float var0 <- fact(4); // var0 equals 24

point var0 <- geom farthest_point_to(pt); // var0 equals the farthest point of geom to 
pt

http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsAA#any_point_in
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsNR#points_at


farthest_to  ( container<unknown,geometry>  , geometry ) ---> geometry

Result:

An agent or a geometry among the left-operand list of agents, species or meta-population (addition of
species), the farthest to the operand (casted as a geometry).

Comment:

the distance is computed in the topology of the calling agent (the agent in which this operator is used),
with the distance algorithm specific to the topology.

Examples:

See also: neighbors_at, neighbors_of, inside, overlapping, agents_overlapping, agents_inside,
agent_closest_to, closest_to, agent_farthest_to,

field

Possible uses:

int  field  int  ---> field

field  ( int  , int ) ---> field

unknown  field  float  ---> field

field  ( unknown  , float ) ---> field

field  ( int , int , float ) ---> field

field  ( int , int , float , float ) ---> field

field_with

Possible uses:

point  field_with  any expression  ---> field

field_with  ( point  , any expression ) ---> field

geometry var0 <- [ag1, ag2, ag3] closest_to(self); // var0 equals return the farthest 
agent among ag1, ag2 and ag3 to the agent applying the operator. 
(species1 + species2) closest_to self

http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to


Result:

creates a field with a size provided by the first operand, and filled by the evaluation of the second
operand for each cell

Comment:

Note that both components of the right operand point should be positive, otherwise an exception is
raised.

See also: matrix, as_matrix,

file

Possible uses:

file  ( any ) ---> file

Result:

casts the operand in a file object.

file_exists

Possible uses:

file_exists  ( string ) ---> bool

Result:

Test whether the parameter is the path to an existing file. False if it does not exist of if it is a folder

Examples:

string file_name <-"../includes/buildings.shp"; 
if file_exists(file_name){ 

write "File exists in the computer"; 
}

http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsAA#as_matrix


first

Possible uses:

first  ( container<KeyType,ValueType> ) ---> ValueType

first  ( string ) ---> string

int  first  container  ---> list

first  ( int  , container ) ---> list

Result:

the first value of the operand

Comment:

the first operator behavior depends on the nature of the operand

Special cases:

if it is a map, first returns the first value of the first pair (in insertion order)

if it is a file, first returns the first element of the content of the file (that is also a container)

if it is a population, first returns the first agent of the population

if it is a graph, first returns the first edge (in creation order)

if it is a matrix, first returns the element at {0,0} in the matrix

for a matrix of int or float, it will return 0 if the matrix is empty

for a matrix of object or geometry, it will return nil if the matrix is empty

if it is a list, first returns the first element of the list, or nil if the list is empty

if it is a string, first returns a string composed of its first character

See also: last,

first_of

int var0 <- first ([1, 2, 3]); // var0 equals 1

string var1 <- first ('abce'); // var1 equals 'a'

http://localhost:3000/wiki/OperatorsIM#last


Same signification as first

first_with

Possible uses:

container  first_with  any expression  ---> unknown

first_with  ( container  , any expression ) ---> unknown

Result:

the first element of the left-hand operand that makes the right-hand operand evaluate to true.

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand
operand elements.

Special cases:

if the left-hand operand is nil, first_with throws an error. If there is no element that satisfies the
condition, it returns nil

if the left-operand is a map, the keyword each will contain each value

Examples:

See also: group_by, last_with, where,

flatten

int var4 <- [1::2, 3::4, 5::6] first_with (each >= 4); // var4 equals 4 
pair var5 <- [1::2, 3::4, 5::6].pairs first_with (each.value >= 4); // var5 equals 
(3::4)

unknown var0 <- [1,2,3,4,5,6,7,8] first_with (each > 3); // var0 equals 4 
unknown var2 <- g2 first_with (length(g2 out_edges_of each) = 0); // var2 equals node9 
unknown var3 <- (list(node) first_with (round(node(each).location.x) > 32); // var3 
equals node2

http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsSZ#where


Possible uses:

flatten  ( field ) ---> field

field  flatten  unknown  ---> field

flatten  ( field  , unknown ) ---> field

flip

Possible uses:

flip  ( float ) ---> bool

Result:

true or false given the probability represented by the operand

Special cases:

flip 0 always returns false, flip 1 true

Examples:

See also: rnd,

float

Possible uses:

float  ( any ) ---> float

Result:

casts the operand in a float object.

floor

bool var0 <- flip (0.66666); // var0 equals 2/3 chances to return true.

http://localhost:3000/wiki/OperatorsNR#rnd


Possible uses:

floor  ( float ) ---> int

Result:

Maps the operand to the largest previous following integer, i.e. the largest integer not greater than x.

Examples:

See also: ceil, round,

folder

Possible uses:

folder  ( string ) ---> file

Result:

opens an existing repository

Special cases:

If the specified string does not refer to an existing repository, an exception is risen.

Examples:

See also: file, new_folder,

int var0 <- floor(3); // var0 equals 3 
int var1 <- floor(3.5); // var1 equals 3 
int var2 <- floor(-4.7); // var2 equals -5

file dirT <- folder("../includes/"); 
// dirT represents the repository "../includes/" 
// dirT.contents here contains the list of the names of 

included files

http://localhost:3000/wiki/OperatorsBC#ceil
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsDH#file
http://localhost:3000/wiki/OperatorsNR#new_folder


folder_exists

Possible uses:

folder_exists  ( string ) ---> bool

Result:

Test whether the parameter is the path to an existing folder. False if it doesnt exist or if it is a file

Examples:

font

Possible uses:

string  font  int  ---> font

font  ( string  , int ) ---> font

font  ( string , int , int ) ---> font

Result:

Creates a new font, by specifying its name (either a font face name like 'Lucida Grande Bold' or
'Helvetica', or a logical name like 'Dialog', 'SansSerif', 'Serif', etc.), a size in points and a style, either
#bold, #italic or #plain or a combination (addition) of them.

Examples:

frequency_of

string file_name <-"../includes/"; 
if folder_exists(file_name){ 

write "Folder exists in the computer"; 
}

font var0 <- font ('Helvetica Neue',12, #bold + #italic); // var0 equals a bold and 
italic face of the Helvetica Neue family



Possible uses:

container  frequency_of  any expression  ---> map

frequency_of  ( container  , any expression ) ---> map

Result:

Returns a map with keys equal to the application of the right-hand argument (like collect) and values
equal to the frequency of this key (i.e. how many times it has been obtained)

Examples:

from

Same signification as since

from_binary

Same signification as deserialize

from_gaml

Possible uses:

from_gaml  ( string ) ---> unknown

Result:

Evaluates/deserialises the given GAML string into a value.

Examples:

map var0 <- [1, 2, 3, 3, 4, 4, 5, 3, 3, 4] frequency_of each; // var0 equals 
map([1::1,2::1,3::4,4::3,5::1])

unknown var0 <- eval_gaml("2+3"); // var0 equals 5

http://localhost:3000/wiki/OperatorsSZ#since
http://localhost:3000/wiki/OperatorsDH#deserialize


from_json

Possible uses:

from_json  ( string ) ---> unknown

Result:

Deserializes an object precedently serialized using 'to_json' (or an arbitrary json string obtained
elsewhere). Agents and populations are not supported yet (i.e. they will return maps)

See also: from_gaml, from_binary,

fuzzy_choquet_DM

Possible uses:

fuzzy_choquet_DM  ( list<list> , list<string> , map ) ---> int

Result:

The index of the candidate that maximizes the Fuzzy Choquet Integral value. The first operand is the list
of candidates (a candidate is a list of criterion values); the second operand the list of criterion (list of
string); the third operand the weights of each sub-set of criteria (map with list for key and float for value)

Special cases:

returns -1 is the list of candidates is nil or empty

Examples:

See also: promethee_DM, electre_DM, evidence_theory_DM,

fuzzy_kappa

int var0 <- fuzzy_choquet_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], ["utility", "price", 
"size"],[["utility"]::0.5,["size"]::0.1,["price"]::0.4,["utility", "price"]::0.55]); // 
var0 equals 0

http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsDH#from_binary
http://localhost:3000/wiki/OperatorsNR#promethee_dm
http://localhost:3000/wiki/OperatorsDH#electre_dm
http://localhost:3000/wiki/OperatorsDH#evidence_theory_dm


Possible uses:

fuzzy_kappa  ( list<agent> , list<unknown> , list<unknown> , list<float> , list<unknown> ,
matrix<float> , float ) ---> float

fuzzy_kappa  ( list<agent> , list<unknown> , list<unknown> , list<float> , list<unknown> ,
matrix<float> , float , list<unknown> ) ---> float

Result:

fuzzy kappa indicator for 2 map comparisons: fuzzy_kappa(agents_list,list_vals1,list_vals2,
output_similarity_per_agents,categories,fuzzy_categories_matrix, fuzzy_distance). Reference: Visser, H.,
and T. de Nijs, 2006. The map comparison kit, Environmental Modelling & Software, 21 fuzzy kappa
indicator for 2 map comparisons: fuzzy_kappa(agents_list,list_vals1,list_vals2,
output_similarity_per_agents,categories,fuzzy_categories_matrix, fuzzy_distance, weights). Reference:
Visser, H., and T. de Nijs, 2006. The map comparison kit, Environmental Modelling & Software, 21

Examples:

fuzzy_kappa_sim

Possible uses:

fuzzy_kappa_sim  ( list<agent> , list<unknown> , list<unknown> , list<unknown> , list<float> ,
list<unknown> , matrix<float> , float ) ---> float

fuzzy_kappa_sim  ( list<agent> , list<unknown> , list<unknown> , list<unknown> , list<float> ,
list<unknown> , matrix<float> , float , list<unknown> ) ---> float

Result:

fuzzy kappa simulation indicator for 2 map comparisons:
fuzzy_kappa_sim(agents_list,list_vals1,list_vals2, output_similarity_per_agents,fuzzy_transitions_matrix,
fuzzy_distance). Reference: Jasper van Vliet, Alex Hagen-Zanker, Jelle Hurkens, Hedwig van Delden, A
fuzzy set approach to assess the predictive accuracy of land use simulations, Ecological Modelling, 24

fuzzy_kappa([ag1, ag2, ag3, ag4, ag5],[cat1,cat1,cat2,cat3,cat2],
[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0],[0,1,0],
[0,0,1]], 2) 
fuzzy_kappa([ag1, ag2, ag3, ag4, ag5],[cat1,cat1,cat2,cat3,cat2],
[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0],[0,1,0],
[0,0,1]], 2, [1.0,3.0,2.0,2.0,4.0])



July 2013, Pages 32-42, ISSN 0304-3800, fuzzy kappa simulation indicator for 2 map comparisons:
fuzzy_kappa_sim(agents_list,list_vals1,list_vals2, output_similarity_per_agents,fuzzy_transitions_matrix,
fuzzy_distance, weights). Reference: Jasper van Vliet, Alex Hagen-Zanker, Jelle Hurkens, Hedwig van
Delden, A fuzzy set approach to assess the predictive accuracy of land use simulations, Ecological
Modelling, 24 July 2013, Pages 32-42, ISSN 0304-3800,

Examples:

gaml_file

Possible uses:

gaml_file  ( string ) ---> file

Result:

Constructs a file of type gaml. Allowed extensions are limited to gaml, experiment

Special cases:

gaml_file(string): This file constructor allows to read a gaml file (.gaml)

See also: is_gaml,

gaml_type

fuzzy_kappa_sim([ag1, ag2, ag3, ag4, ag5], [cat1,cat1,cat2,cat3,cat2],
[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],
[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],
[0,0,0,0,0,0,0,0,1]], 2) 
fuzzy_kappa_sim([ag1, ag2, ag3, ag4, ag5], [cat1,cat1,cat2,cat3,cat2],
[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],
[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],
[0,0,0,0,0,0,0,0,1]], 2,[1.0,3.0,2.0,2.0,4.0])

file f <- gaml_file("file.gaml");

http://localhost:3000/wiki/OperatorsIM#is_gaml


Possible uses:

gaml_type  ( any ) ---> gaml_type

Result:

casts the operand in a gaml_type object.

gamma

Possible uses:

gamma  ( float ) ---> float

Result:

Returns the value of the Gamma function at x.

Examples:

gamma_density

Possible uses:

gamma_density  ( float , float , float ) ---> float

Result:

gamma_density(x,shape,scale) returns the probability density function (PDF) at the specified point x of
the Gamma distribution with the given shape and scale.

Examples:

See also: binomial, gauss_rnd, lognormal_rnd, poisson, rnd, skew_gauss, truncated_gauss, weibull_rnd,
weibull_density, lognormal_density,

float var0 <- gamma(5); // var0 equals 24.0

float var0 <- gamma_density(1,9,0.5); // var0 equals 0.731

http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsSZ#weibull_density
http://localhost:3000/wiki/OperatorsIM#lognormal_density


gamma_distribution

Possible uses:

gamma_distribution  ( float , float , float ) ---> float

Result:

Returns the integral from zero to x of the gamma probability density function.

Comment:

incomplete_gamma(a,x) is equal to pgamma(a,1,x).

Examples:

gamma_distribution_complemented

Possible uses:

gamma_distribution_complemented  ( float , float , float ) ---> float

Result:

Returns the integral from x to infinity of the gamma probability density function.

Examples:

gamma_index

Possible uses:

float var0 <- gamma_distribution(2,3,0.9) with_precision(3); // var0 equals 0.269

float var0 <- gamma_distribution_complemented(2,3,0.9) with_precision(3); // var0 
equals 0.731



gamma_index  ( graph ) ---> float

Result:

returns the gamma index of the graph (A measure of connectivity that considers the relationship
between the number of observed links and the number of possible links: gamma = e/(3 *  (v - 2)) - for
planar graph.

Examples:

See also: alpha_index, beta_index, nb_cycles, connectivity_index,

gamma_rnd

Possible uses:

float  gamma_rnd  float  ---> float

gamma_rnd  ( float  , float ) ---> float

Result:

returns a random value from a gamma distribution with specified values of the shape and scale
parameters

Examples:

See also: binomial, gauss_rnd, lognormal_rnd, poisson, rnd, skew_gauss, truncated_gauss, weibull_rnd,
gamma_trunc_rnd,

gamma_trunc_rnd

Possible uses:

graph graphEpidemio <- graph([]); 
float var1 <- gamma_index(graphEpidemio); // var1 equals the gamma index of the graph

float var0 <- gamma_rnd(9,0.5); // var0 equals 0.731

http://localhost:3000/wiki/OperatorsAA#alpha_index
http://localhost:3000/wiki/OperatorsBC#beta_index
http://localhost:3000/wiki/OperatorsNR#nb_cycles
http://localhost:3000/wiki/OperatorsBC#connectivity_index
http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsDH#gamma_trunc_rnd


gamma_trunc_rnd  ( float , float , float , bool ) ---> float

gamma_trunc_rnd  ( float , float , float , float ) ---> float

Result:

returns a random value from a truncated gamma distribution (in a range or given only one boundary)
with specified values of the shape and scale parameters.

Special cases:

when 1 float and a boolean (isMax) operands are specified, the float value represents the single
boundary (max if the boolean is true, min otherwise),

when 2 float operands are specified, they are taken as mininimum and maximum values for the
result

See also: gamma_rnd, weibull_trunc_rnd, lognormal_trunc_rnd, truncated_gauss,

gauss

Possible uses:

gauss  ( point ) ---> float

float  gauss  float  ---> float

gauss  ( float  , float ) ---> float

Result:

The operator can be used with an operand of type point {meand,standardDeviation}. A value from a
normally distributed random variable with expected value (mean as first operand) and variance
(standardDeviation as second operand). The probability density function of such a variable is a Gaussian.

Special cases:

when the operand is a point, it is read as {mean, standardDeviation}

gamma_trunc_rnd(2,3,5,true)

gamma_trunc_rnd(2,3,0,5)

http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsSZ#weibull_trunc_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_trunc_rnd
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss


when standardDeviation value is 0.0, it always returns the mean value

Examples:

See also: binomial, gamma_rnd, lognormal_rnd, poisson, rnd, skew_gauss, truncated_gauss,
weibull_rnd,

gauss_rnd

Same signification as gauss

generate_barabasi_albert

Possible uses:

generate_barabasi_albert  ( int , int , int , bool ) ---> graph

generate_barabasi_albert  ( container , int , int , bool ) ---> graph

generate_barabasi_albert  ( int , int , int , bool , species ) ---> graph

generate_barabasi_albert  ( int , int , int , bool , species , species ) ---> graph

Result:

returns a random scale-free network (following Barabasi-Albert (BA) model).

Comment:

The Barabasi-Albert (BA) model is an algorithm for generating random scale-free networks using a
preferential attachment mechanism. A scale-free network is a network whose degree distribution
follows a power law, at least asymptotically.Such networks are widely observed in natural and human-
made systems, including the Internet, the world wide web, citation networks, and some social networks.
[From Wikipedia article]The map operand should includes following elements:The Barabasi-Albert (BA)
model is an algorithm for generating random scale-free networks using a preferential attachment
mechanism. A scale-free network is a network whose degree distribution follows a power law, at least
asymptotically.Such networks are widely observed in natural and human-made systems, including the
Internet, the world wide web, citation networks, and some social networks. [From Wikipedia article]The

float var0 <- gauss({0,0.3}); // var0 equals 0.22354 
float var1 <- gauss(0,0.3); // var1 equals 0.22354

http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsDH#gauss


map operand should includes following elements:The Barabasi-Albert (BA) model is an algorithm for
generating random scale-free networks using a preferential attachment mechanism. A scale-free
network is a network whose degree distribution follows a power law, at least asymptotically.Such
networks are widely observed in natural and human-made systems, including the Internet, the world
wide web, citation networks, and some social networks. [From Wikipedia article]The map operand
should includes following elements:The Barabasi-Albert (BA) model is an algorithm for generating
random scale-free networks using a preferential attachment mechanism. A scale-free network is a
network whose degree distribution follows a power law, at least asymptotically.Such networks are
widely observed in natural and human-made systems, including the Internet, the world wide web,
citation networks, and some social networks. [From Wikipedia article]The map operand should includes
following elements:

Special cases:

"nbInitNodes": number of initial nodes; "nbEdgesAdded": number of edges of each new node added
during the network growth; "nbNodes": final number of nodes; "directed": is the graph directed or
not; "node_species": the species of vertices; "edges_species": the species of edges

"nbInitNodes": number of initial nodes; "nbEdgesAdded": number of edges of each new node added
during the network growth; "nbNodes": final number of nodes; "directed": is the graph directed or
not;

"nbInitNodes": number of initial nodes; "nbEdgesAdded": number of edges of each new node added
during the network growth; "nbNodes": final number of nodes; "directed": is the graph directed or
not; "node_species": the species of vertices; "edges_species": the species of edges

graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_watts_strogatz( 
60, 
1, 
100, 

true, 
myVertexSpecies, 
myEdgeSpecies);

graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_watts_strogatz( 
60, 
1, 
100, 

true);



"nbInitNodes": number of initial nodes; "nodes": list of existing nodes to connect (agents or
geometries); "nbEdgesAdded": number of edges of each new node added during the network
growth; "directed": is the graph directed or not;

See also: generate_watts_strogatz,

generate_complete_graph

Possible uses:

int  generate_complete_graph  bool  ---> graph

generate_complete_graph  ( int  , bool ) ---> graph

bool  generate_complete_graph  list  ---> graph

generate_complete_graph  ( bool  , list ) ---> graph

generate_complete_graph  ( int , bool , species ) ---> graph

generate_complete_graph  ( bool , list , species ) ---> graph

generate_complete_graph  ( int , bool , species , species ) ---> graph

Result:

returns a fully connected graph.

Special cases:

nbNodes : number of nodes to create; directed : is the graph directed or not

graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_watts_strogatz( 
60, 
1, 
100, 

true, 
myVertexSpecies);

graph myGraph <- generate_watts_strogatz(people, 10,1,false);

graph myGraph <- generate_complete_graph( 
100, 

http://localhost:3000/wiki/OperatorsDH#generate_watts_strogatz


nbNodes : number of nodes to create; directed : is the graph directed or not; node_species : the
species of nodes; edges_species : the species of edges

nbNodes : number of nodes to create; directed : is the graph directed or not; node_species : the
species of nodes

"directed": is the graph has to be directed or not;"nodes": the list of existing nodes

"directed": is the graph has to be directed or not;"nodes": the list of existing nodes; "edges_species":
the species of edges

See also: generate_barabasi_albert, generate_watts_strogatz,

generate_pedestrian_network

Possible uses:

true);

graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_complete_graph( 
100, 
true, 
node_species, 
edge_species);

graph myGraph <- generate_complete_graph( 
100, 
true, 
node_species);

graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_complete_graph( 
true, 
nodes);

graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_complete_graph( 
true, 
nodes, 
edge_species);

http://localhost:3000/wiki/OperatorsDH#generate_barabasi_albert
http://localhost:3000/wiki/OperatorsDH#generate_watts_strogatz


generate_pedestrian_network  ( list<container<unknown,geometry>> ,
container<unknown,geometry> , bool , bool , float , float , bool , float , float , float , float ) ---
> list<geometry>

generate_pedestrian_network  ( list<container<unknown,geometry>> ,
container<unknown,geometry> , bool , bool , float , float , bool , float , float , float , float ,
float ) ---> list<geometry>

generate_pedestrian_network  ( list<container<unknown,geometry>> ,
container<unknown,geometry> , container<unknown,geometry> , bool , bool , float , float , bool ,
float , float , float , float ) ---> list<geometry>

generate_pedestrian_network  ( list<container<unknown,geometry>> ,
container<unknown,geometry> , container<unknown,geometry> , bool , bool , float , float , bool ,
float , float , float , float , float ) ---> list<geometry>

Result:

The method allows to build a network of corridors to be used by pedestrian while traveling around a
space made of obstacles and other users. It makes it possible to avoide collision with other agents (e.g.
buildings) including other pedestrians and in the same time managing a path to a destination in a
complex environment (e.g. a city). The method is highly customizable, with many parameters listed as
below:

1. obstacles : a list containing the lists of geometries or agents that are obstacles for pedestrians (e.g.
walls, cars).

2. bounds : a list of geometries that represent the spatial boundary of the network (i.e. the enclosing
space of the network).

3. open : a boolean expression that will add nodes in the network within open areas. More precisely,
new invisible points are added to improve triangulation in areas with very few obstacles.

4. randomDist : a boolean expression, related to the previous 'open' parameter, that allows to switch
between a random (true) spatial distribution or a distribution (false) that build upon a equidistant
repartition of points all around the area.

5. open area : a float in meters representing the minimum distance for an area to be considered as an
open area (i.e. euclidian distance between centroid and farest obstacle)

6. density point : a float representing the density of points per meter within open areas.

7. clean network : a boolean expression that allows to enhance the network (true) or living as it is
generated (false). Enhancement includes filling very small gaps between edges and nodes.

8. cliping : tolerance for the cliping in triangulation (float; distance) - see skeletonize operator

9. tolerance : tolerance for the triangulation (float)

10. min dist obstacle : minimal distance to obstacles to keep a path (float; if 0.0, no filtering)



11. simplification : simplification distance for the final geometries

12. square size : size of squares for decomposition (optimization)

Special cases:

The method allows to build a network of corridors to be used by pedestrian while traveling around a
space made of obstacles and other users. It makes it possible to avoide collision with other agents
(e.g. buildings) including other pedestrians and in the same time managing a path to a destination
in a complex environment (e.g. a city). The method is highly customizable, with many parameters
listed as below:

i. obstacles : a list containing the lists of geometries or agents that are obstacles for pedestrians
(e.g. walls, cars).

ii. bounds : a list of geometries that represent the spatial boundary of the network (i.e. the
enclosing space of the network).

iii. open : a boolean expression that will add nodes in the network within open areas. More
precisely, new invisible points are added to improve triangulation in areas with very few
obstacles.

iv. randomDist : a boolean expression, related to the previous 'open' parameter, that allows to
switch between a random (true) spatial distribution or a distribution (false) that build upon a
equidistant repartition of points all around the area.

v. open area : a float in meters representing the minimum distance for an area to be considered
as an open area (i.e. euclidian distance between centroid and farest obstacle)

vi. density point : a float representing the density of points per meter within open areas.

vii. clean network : a boolean expression that allows to enhance the network (true) or living as it is
generated (false). Enhancement includes filling very small gaps between edges and nodes.

viii. cliping : tolerance for the cliping in triangulation (float; distance) - see skeletonize operator

ix. tolerance : tolerance for the triangulation (float)

x. min dist obstacle : minimal distance to obstacles to keep a path (float; if 0.0, no filtering)

xi. simplification : simplification distance for the final geometries

The method allows to build a network of corridors to be used by pedestrian while traveling around a
space made of obstacles and other users. It makes it possible to avoide collision with other agents
(e.g. buildings) including other pedestrians and in the same time managing a path to a destination
in a complex environment (e.g. a city). The method is highly customizable, with many parameters
listed as below:



i. obstacles : a list containing the lists of geometries or agents that are obstacles for pedestrians
(e.g. walls, cars).

ii. bounds : a list of geometries that represent the spatial boundary of the network (i.e. the
enclosing space of the network).

iii. regular network : allows to combine the generated network with a simplified car user oriented
network. More specifically, the network generated will combine enhance pedestrian oriented
generated network with the given network: The property of the latter does not allows
pedestrian to avoid collision (1D) when using its edges (while moving in 2D space and avoiding
collision in the former).

iv. open : a boolean expression that will add nodes in the network within open areas. More
precisely, new invisible points are added to improve triangulation in areas with very few
obstacles.

v. randomDist : a boolean expression, related to the previous 'open' parameter, that allows to
switch between a random (true) spatial distribution or a distribution (false) that build upon a
equidistant repartition of points all around the area.

vi. open area : a float in meters representing the minimum distance for an area to be considered
as an open area (i.e. euclidian distance between centroid and farest obstacle)

vii. density point : a float representing the density of points per meter within open areas.

viii. clean network : a boolean expression that allows to enhance the network (true) or living as it is
generated (false). Enhancement includes filling very small gaps between edges and nodes.

ix. cliping : tolerance for the cliping in triangulation (float; distance) - see skeletonize operator

x. tolerance : tolerance for the triangulation (float)

xi. min dist obstacle : minimal distance to obstacles to keep a path (float; if 0.0, no filtering)

xii. simplification : simplification distance for the final geometries

The method allows to build a network of corridors to be used by pedestrian while traveling around a
space made of obstacles and other users. It makes it possible to avoide collision with other agents
(e.g. buildings) including other pedestrians and in the same time managing a path to a destination
in a complex environment (e.g. a city). The method is highly customizable, with many parameters
listed as below:

i. obstacles : a list containing the lists of geometries or agents that are obstacles for pedestrians
(e.g. walls, cars).

ii. bounds : a list of geometries that represent the spatial boundary of the network (i.e. the
enclosing space of the network).

iii. regular network : allows to combine the generated network with a simplified car user oriented
network. More specifically, the network generated will combine enhance pedestrian oriented
generated network with the given network: The property of the latter does not allows



pedestrian to avoid collision (1D) when using its edges (while moving in 2D space and avoiding
collision in the former).

iv. open : a boolean expression that will add nodes in the network within open areas. More
precisely, new invisible points are added to improve triangulation in areas with very few
obstacles.

v. randomDist : a boolean expression, related to the previous 'open' parameter, that allows to
switch between a random (true) spatial distribution or a distribution (false) that build upon a
equidistant repartition of points all around the area.

vi. open area : a float in meters representing the minimum distance for an area to be considered
as an open area (i.e. euclidian distance between centroid and farest obstacle)

vii. density point : a float representing the density of points per meter within open areas.

viii. clean network : a boolean expression that allows to enhance the network (true) or living as it is
generated (false). Enhancement includes filling very small gaps between edges and nodes.

ix. cliping : tolerance for the cliping in triangulation (float; distance) - see skeletonize operator

x. tolerance : tolerance for the triangulation (float)

xi. min dist obstacle : minimal distance to obstacles to keep a path (float; if 0.0, no filtering)

Examples:

generate_random_graph

Possible uses:

generate_random_graph  ( int , int , bool ) ---> graph

generate_random_graph  ( int , int , bool , species ) ---> graph

list<geometry> var0 <- generate_pedestrian_network([wall], [world],true,false,3.0,0.1, 
true,0.1,0.0,0.0,0.0,0.0); // var0 equals a list of polylines corresponding to the 
pedestrian paths 
list<geometry> var1 <- generate_pedestrian_network([wall], [world], [road], 
true,false,3.0,0.1, true,0.1,0.0,0.0,0.0,50.0); // var1 equals a list of polylines 
corresponding to the pedestrian paths 
list<geometry> var2 <- generate_pedestrian_network([wall], [world],true,false,3.0,0.1, 
true,0.1,0.0,0.0,0.0,50.0); // var2 equals a list of polylines corresponding to the 
pedestrian paths 
list<geometry> var3 <- generate_pedestrian_network([wall], [world], [road], 
true,false,3.0,0.1, true,0.1,0.0,0.0,0.0); // var3 equals a list of polylines 
corresponding to the pedestrian paths



generate_random_graph  ( int , int , bool , species , species ) ---> graph

Result:

returns a random graph.

Special cases:

nbNodes : number of nodes to create; nbEdges : number of edges to create; directed : is the graph
directed or not; node_species : the species of nodes

nbNodes : number of nodes to create; nbEdges : number of edges to create; directed : is the graph
directed or not

nbNodes : number of nodes to be created; nbEdges : number of edges to be created; directed : is
the graph has to be directed or not; node_species : the species of nodes; edges_species : the
species of edges

See also: generate_barabasi_albert, generate_watts_strogatz,

generate_terrain

graph myGraph <- generate_random_graph( 
50, 
100, 
true, 
node_species);

graph myGraph <- generate_random_graph( 
50, 
100, 
true);

graph<node_species,edge_species> myGraph <- generate_random_graph( 
50, 
100, 
true, 
node_species, 
edge_species);

http://localhost:3000/wiki/OperatorsDH#generate_barabasi_albert
http://localhost:3000/wiki/OperatorsDH#generate_watts_strogatz


Possible uses:

generate_terrain  ( int , int , int , float , float , float ) ---> field

Result:

This operator allows to generate a pseudo-terrain using a simplex noise generator. Its usage is kept
simple: it takes first a seed (random or not), then the dimensions (width and height) of the field to
generate, then a level (between 0 and 1) of details (which actually determines the number of passes to
make), then the value (between 0 and 1) of smoothess, with 0 being completely rought and 1 super
smooth, and finally the value (between 0 and 1) of scattering, with 0 building maps in 'one piece' and 1
completely scattered ones.

generate_watts_strogatz

Possible uses:

generate_watts_strogatz  ( container , float , int , bool ) ---> graph

generate_watts_strogatz  ( int , float , int , bool ) ---> graph

generate_watts_strogatz  ( int , float , int , bool , species ) ---> graph

generate_watts_strogatz  ( int , float , int , bool , species , species ) ---> graph

Result:

returns a random small-world network (following Watts-Strogatz model).

Comment:

The Watts-Strogatz model is a random graph generation model that produces graphs with small-world
properties, including short average path lengths and high clustering.A small-world network is a type of
graph in which most nodes are not neighbors of one another, but most nodes can be reached from
every other by a small number of hops or steps. [From Wikipedia article]The map operand should
includes following elements:The Watts-Strogatz model is a random graph generation model that
produces graphs with small-world properties, including short average path lengths and high
clustering.A small-world network is a type of graph in which most nodes are not neighbors of one
another, but most nodes can be reached from every other by a small number of hops or steps. [From
Wikipedia article]The map operand should includes following elements:The Watts-Strogatz model is a
random graph generation model that produces graphs with small-world properties, including short
average path lengths and high clustering.A small-world network is a type of graph in which most nodes
are not neighbors of one another, but most nodes can be reached from every other by a small number



of hops or steps. [From Wikipedia article]The map operand should includes following elements:The
Watts-Strogatz model is a random graph generation model that produces graphs with small-world
properties, including short average path lengths and high clustering.A small-world network is a type of
graph in which most nodes are not neighbors of one another, but most nodes can be reached from
every other by a small number of hops or steps. [From Wikipedia article]The map operand should
includes following elements:

Special cases:

"nodes": the list of nodes to connect; "p": probability to "rewire" an edge (so it must be between 0
and 1, the parameter is often called beta in the literature); "k": the base degree of each node (k must
be greater than 2 and even); "directed": is the graph directed or not

"nbNodes": the graph will contain (size + 1) nodes (size must be greater than k); "p": probability to
"rewire" an edge (so it must be between 0 and 1, the parameter is often called beta in the literature);
"k": the base degree of each node (k must be greater than 2 and even); "directed": is the graph
directed or not

"nbNodes": the graph will contain (size + 1) nodes (size must be greater than k); "p": probability to
"rewire" an edge (so it must be between 0 and 1, the parameter is often called beta in the literature);
"k": the base degree of each node (k must be greater than 2 and even); "directed": is the graph
directed or not; "node_species": the species of vertices

graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_watts_strogatz( 
people, 
0.3, 
5, 

true);

graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_watts_strogatz( 
100, 
0.3, 
5, 

true);

graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_watts_strogatz( 
100, 
0.3, 
5, 



"nbNodes": the graph will contain (size + 1) nodes (size must be greater than k); "p": probability to
"rewire" an edge (so it must be between 0 and 1, the parameter is often called beta in the literature);
"k": the base degree of each node (k must be greater than 2 and even); "directed": is the graph
directed or not; "node_species": the species of vertices; "edges_species": the species of edges

See also: generate_barabasi_albert,

geojson_file

Possible uses:

geojson_file  ( string ) ---> file

string  geojson_file  int  ---> file

geojson_file  ( string  , int ) ---> file

string  geojson_file  string  ---> file

geojson_file  ( string  , string ) ---> file

string  geojson_file  bool  ---> file

geojson_file  ( string  , bool ) ---> file

geojson_file  ( string , int , bool ) ---> file

geojson_file  ( string , string , bool ) ---> file

Result:

Constructs a file of type geojson. Allowed extensions are limited to json, geojson, geo.json

Special cases:

geojson_file(string): This file constructor allows to read a geojson file (https://geojson.org/)

true, 
myVertexSpecies);

graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_watts_strogatz( 
100, 
0.3, 
5, 

true, 
myVertexSpecies, 
myEdgeSpecies);

http://localhost:3000/wiki/OperatorsDH#generate_barabasi_albert
https://geojson.org/


geojson_file(string,int): This file constructor allows to read a geojson file and specifying the
coordinates system code, as an int

geojson_file(string,string): This file constructor allows to read a geojson file and specifying the
coordinates system code (epg,...,), as a string

geojson_file(string,bool): This file constructor allows to read a geojson file and take a potential z
value (not taken in account by default)

geojson_file(string,int,bool): This file constructor allows to read a geojson file, specifying the
coordinates system code, as an int and take a potential z value (not taken in account by default)

geojson_file(string,string,bool): This file constructor allows to read a geojson file, specifying the
coordinates system code (epg,...,), as a string and take a potential z value (not taken in account by
default

See also: is_geojson,

geometric_mean

Possible uses:

geometric_mean  ( container ) ---> float

file f <- geojson_file("file.json");

file f <- geojson_file("file.json", 32648);

file f <- geojson_file("file.json", "EPSG:32648");

file f <- geojson_file("file.json", true);

file f <- geojson_file("file.json",32648, true);

file f <- geojson_file("file.json", "EPSG:32648",true);

http://localhost:3000/wiki/OperatorsIM#is_geojson


Result:

the geometric mean of the elements of the operand. See Geometric_mean for more details.

Comment:

The operator casts all the numerical element of the list into float. The elements that are not numerical
are discarded.

Examples:

See also: mean, median, harmonic_mean,

geometry

Possible uses:

geometry  ( any ) ---> geometry

Result:

casts the operand in a geometry object.

geometry_collection

Possible uses:

geometry_collection  ( container<unknown,geometry> ) ---> geometry

Result:

A geometry collection (multi-geometry) composed of the given list of geometries.

Special cases:

if the operand is nil, returns the point geometry {0,0}

if the operand is composed of a single geometry, returns a copy of the geometry.

float var0 <- geometric_mean ([4.5, 3.5, 5.5, 7.0]); // var0 equals 4.962326343467649

http://en.wikipedia.org/wiki/Geometric_mean
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsDH#harmonic_mean


Examples:

See also: around, circle, cone, link, norm, point, polygone, rectangle, square, triangle, line,

get

Possible uses:

agent  get  string  ---> unknown

get  ( agent  , string ) ---> unknown

geometry  get  string  ---> unknown

get  ( geometry  , string ) ---> unknown

Result:

Reads an attribute of the specified agent (or geometry) (left operand). The attribute name is specified by
the right operand.

Special cases:

Reading the attribute of another agent

Reading the attribute of a geometry

get_about

Possible uses:

geometry var0 <- geometry_collection([{0,0}, {0,10}, {10,10}, {10,0}]); // var0 equals 
a geometry composed of the 4 points (multi-point).

string agent_name <- an_agent get('name');     // reads then 'name' attribute of 
an_agent then assigns the returned value to the agent_name variable

string geom_area <- a_geometry get('area');     // reads then 'area' attribute of 
'a_geometry' variable then assigns the returned value to the geom_area variable

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsSZ#polygone
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsIM#line


get_about  ( emotion ) ---> predicate

Result:

get the about value of the given emotion

Examples:

get_agent

Possible uses:

get_agent  ( social_link ) ---> agent

Result:

get the agent value of the given social link

Examples:

get_agent_cause

Possible uses:

get_agent_cause  ( emotion ) ---> agent

get_agent_cause  ( predicate ) ---> agent

Result:

get the agent cause value of the given emotion evaluate the agent_cause value of a predicate

Examples:

get_about(emotion)

get_agent(social_link1)



get_belief_op

Possible uses:

agent  get_belief_op  predicate  ---> mental_state

get_belief_op  ( agent  , predicate ) ---> mental_state

Result:

get the belief in the belief base with the given predicate.

Examples:

get_belief_with_name_op

Possible uses:

agent  get_belief_with_name_op  string  ---> mental_state

get_belief_with_name_op  ( agent  , string ) ---> mental_state

Result:

get the belief in the belief base with the given name.

Examples:

get_beliefs_op

get_agent_cause(emotion) 
get_agent_cause(pred1)

mental_state var0 <- get_belief_op(self,predicate("has_water")); // var0 equals nil

mental_state var0 <- get_belief_with_name_op(self,"has_water"); // var0 equals nil



Possible uses:

agent  get_beliefs_op  predicate  ---> list<mental_state>

get_beliefs_op  ( agent  , predicate ) ---> list<mental_state>

Result:

get the beliefs in the belief base with the given predicate.

Examples:

get_beliefs_with_name_op

Possible uses:

agent  get_beliefs_with_name_op  string  ---> list<mental_state>

get_beliefs_with_name_op  ( agent  , string ) ---> list<mental_state>

Result:

get the list of beliefs in the belief base which predicate has the given name.

Examples:

get_current_intention_op

Possible uses:

get_current_intention_op  ( agent ) ---> mental_state

Result:

get the current intention.

get_beliefs_op(self,predicate("has_water"))

get_beliefs_with_name_op(self,"has_water")



Examples:

get_decay

Possible uses:

get_decay  ( emotion ) ---> float

Result:

get the decay value of the given emotion

Examples:

get_desire_op

Possible uses:

agent  get_desire_op  predicate  ---> mental_state

get_desire_op  ( agent  , predicate ) ---> mental_state

Result:

get the desire in the desire base with the given predicate.

Examples:

get_desire_with_name_op

Possible uses:

mental_state var0 <- get_current_intention_op(self); // var0 equals nil

get_decay(emotion)

mental_state var0 <- get_belief_op(self,predicate("has_water")); // var0 equals nil



agent  get_desire_with_name_op  string  ---> mental_state

get_desire_with_name_op  ( agent  , string ) ---> mental_state

Result:

get the desire in the desire base with the given name.

Examples:

get_desires_op

Possible uses:

agent  get_desires_op  predicate  ---> list<mental_state>

get_desires_op  ( agent  , predicate ) ---> list<mental_state>

Result:

get the desires in the desire base with the given predicate.

Examples:

get_desires_with_name_op

Possible uses:

agent  get_desires_with_name_op  string  ---> list<mental_state>

get_desires_with_name_op  ( agent  , string ) ---> list<mental_state>

Result:

get the list of desires in the desire base which predicate has the given name.

Examples:

mental_state var0 <- get_desire_with_name_op(self,"has_water"); // var0 equals nil

get_desires_op(self,predicate("has_water"))



get_dominance

Possible uses:

get_dominance  ( social_link ) ---> float

Result:

get the dominance value of the given social link

Examples:

get_familiarity

Possible uses:

get_familiarity  ( social_link ) ---> float

Result:

get the familiarity value of the given social link

Examples:

get_ideal_op

Possible uses:

agent  get_ideal_op  predicate  ---> mental_state

get_desires_with_name_op(self,"has_water")

get_dominance(social_link1)

get_familiarity(social_link1)



get_ideal_op  ( agent  , predicate ) ---> mental_state

Result:

get the ideal in the ideal base with the given name.

Examples:

get_ideal_with_name_op

Possible uses:

agent  get_ideal_with_name_op  string  ---> mental_state

get_ideal_with_name_op  ( agent  , string ) ---> mental_state

Result:

get the ideal in the ideal base with the given name.

Examples:

get_ideals_op

Possible uses:

agent  get_ideals_op  predicate  ---> list<mental_state>

get_ideals_op  ( agent  , predicate ) ---> list<mental_state>

Result:

get the ideal in the ideal base with the given name.

Examples:

mental_state var0 <- get_ideal_op(self,predicate("has_water")); // var0 equals nil

mental_state var0 <- get_ideal_with_name_op(self,"has_water"); // var0 equals nil



get_ideals_with_name_op

Possible uses:

agent  get_ideals_with_name_op  string  ---> list<mental_state>

get_ideals_with_name_op  ( agent  , string ) ---> list<mental_state>

Result:

get the list of ideals in the ideal base which predicate has the given name.

Examples:

get_intensity

Possible uses:

get_intensity  ( emotion ) ---> float

Result:

get the intensity value of the given emotion

Examples:

get_intention_op

Possible uses:

get_ideals_op(self,predicate("has_water"))

get_ideals_with_name_op(self,"has_water")

get_intensity(emo1)



agent  get_intention_op  predicate  ---> mental_state

get_intention_op  ( agent  , predicate ) ---> mental_state

Result:

get the intention in the intention base with the given predicate.

Examples:

get_intention_with_name_op

Possible uses:

agent  get_intention_with_name_op  string  ---> mental_state

get_intention_with_name_op  ( agent  , string ) ---> mental_state

Result:

get the intention in the intention base with the given name.

Examples:

get_intentions_op

Possible uses:

agent  get_intentions_op  predicate  ---> list<mental_state>

get_intentions_op  ( agent  , predicate ) ---> list<mental_state>

Result:

get the intentions in the intention base with the given predicate.

Examples:

get_intention_op(self,predicate("has_water"))

get_intention_with_name_op(self,"has_water")



get_intentions_with_name_op

Possible uses:

agent  get_intentions_with_name_op  string  ---> list<mental_state>

get_intentions_with_name_op  ( agent  , string ) ---> list<mental_state>

Result:

get the list of intentions in the intention base which predicate has the given name.

Examples:

get_lifetime

Possible uses:

get_lifetime  ( mental_state ) ---> int

Result:

get the lifetime value of the given mental state

Examples:

get_liking

Possible uses:

get_intentions_op(self,predicate("has_water"))

get_intentions_with_name_op(self,"has_water")

get_lifetime(mental_state1)



get_liking  ( social_link ) ---> float

Result:

get the liking value of the given social link

Examples:

get_modality

Possible uses:

get_modality  ( mental_state ) ---> string

Result:

get the modality value of the given mental state

Examples:

get_obligation_op

Possible uses:

agent  get_obligation_op  predicate  ---> mental_state

get_obligation_op  ( agent  , predicate ) ---> mental_state

Result:

get the obligation in the obligation base with the given predicate.

Examples:

get_liking(social_link1)

get_modality(mental_state1)



get_obligation_with_name_op

Possible uses:

agent  get_obligation_with_name_op  string  ---> mental_state

get_obligation_with_name_op  ( agent  , string ) ---> mental_state

Result:

get the obligation in the obligation base with the given name.

Examples:

get_obligations_op

Possible uses:

agent  get_obligations_op  predicate  ---> list<mental_state>

get_obligations_op  ( agent  , predicate ) ---> list<mental_state>

Result:

get the obligations in the obligation base with the given predicate.

Examples:

get_obligations_with_name_op

Possible uses:

mental_state var0 <- get_obligation_op(self,predicate("has_water")); // var0 equals nil

mental_state var0 <- get_obligation_with_name_op(self,"has_water"); // var0 equals nil

get_obligations_op(self,predicate("has_water"))



agent  get_obligations_with_name_op  string  ---> list<mental_state>

get_obligations_with_name_op  ( agent  , string ) ---> list<mental_state>

Result:

get the list of obligations in the obligation base which predicate has the given name.

Examples:

get_plan_name

Possible uses:

get_plan_name  ( BDIPlan ) ---> string

Result:

get the name of a given plan

Examples:

get_predicate

Possible uses:

get_predicate  ( mental_state ) ---> predicate

Result:

get the predicate value of the given mental state

Examples:

get_obligations_with_name_op(self,"has_water")

get_plan_name(agent.current_plan)



get_solidarity

Possible uses:

get_solidarity  ( social_link ) ---> float

Result:

get the solidarity value of the given social link

Examples:

get_strength

Possible uses:

get_strength  ( mental_state ) ---> float

Result:

get the strength value of the given mental state

Examples:

get_super_intention

Possible uses:

get_super_intention  ( predicate ) ---> mental_state

get_predicate(mental_state1)

get_solidarity(social_link1)

get_strength(mental_state1)



Result:

get the super intention linked to a mental state

Examples:

get_trust

Possible uses:

get_trust  ( social_link ) ---> float

Result:

get the familiarity value of the given social link

Examples:

get_truth

Possible uses:

get_truth  ( predicate ) ---> bool

Result:

evaluate the truth value of a predicate

Examples:

get_super_intention(get_belief(pred1))

get_familiarity(social_link1)

get_truth(pred1)



get_uncertainties_op

Possible uses:

agent  get_uncertainties_op  predicate  ---> list<mental_state>

get_uncertainties_op  ( agent  , predicate ) ---> list<mental_state>

Result:

get the uncertainties in the uncertainty base with the given predicate.

Examples:

get_uncertainties_with_name_op

Possible uses:

agent  get_uncertainties_with_name_op  string  ---> list<mental_state>

get_uncertainties_with_name_op  ( agent  , string ) ---> list<mental_state>

Result:

get the list of uncertainties in the uncertainty base which predicate has the given name.

Examples:

get_uncertainty_op

Possible uses:

agent  get_uncertainty_op  predicate  ---> mental_state

get_uncertainty_op  ( agent  , predicate ) ---> mental_state

Result:

get_uncertainties_op(self,predicate("has_water"))

get_uncertainties_with_name_op(self,"has_water")



get the uncertainty in the uncertainty base with the given predicate.

Examples:

get_uncertainty_with_name_op

Possible uses:

agent  get_uncertainty_with_name_op  string  ---> mental_state

get_uncertainty_with_name_op  ( agent  , string ) ---> mental_state

Result:

get the uncertainty in the uncertainty base with the given name.

Examples:

get_values

Possible uses:

get_values  ( predicate ) ---> map<string,unknown>

Result:

return the map values of a predicate

Examples:

mental_state var0 <- get_uncertainty_op(self,predicate("has_water")); // var0 equals 
nil

mental_state var0 <- get_uncertainty_with_name_op(self,"has_water"); // var0 equals nil

get_values(pred1)



gif_file

Possible uses:

gif_file  ( string ) ---> file

string  gif_file  matrix<int>  ---> file

gif_file  ( string  , matrix<int> ) ---> file

Result:

Constructs a file of type gif. Allowed extensions are limited to gif

Special cases:

gif_file(string): This file constructor allows to read a gif file

gif_file(string,matrix<int>): This file constructor allows to store a matrix in a gif file (it does not save
it - just store it in memory)

See also: is_gif,

gini

Possible uses:

gini  ( list<float> ) ---> float

Special cases:

return the Gini Index of the given list of values (list of floats)

gif_file f <- gif_file("file.gif");

gif_file f <- gif_file("file.gif",matrix([10,10],[10,10]));

float var0 <- gini([1.0, 0.5, 2.0]); // var0 equals the gini index computed i.e. 
0.2857143

http://localhost:3000/wiki/OperatorsIM#is_gif


girvan_newman_clustering

Possible uses:

graph  girvan_newman_clustering  int  ---> list

girvan_newman_clustering  ( graph  , int ) ---> list

Result:

The Girvan�Newman algorithm is a hierarchical method used to detect communities. It detects
communities by progressively removing edges from the original network.It returns a list of list of
vertices and takes as operand the graph and the number of clusters

gml_file

Possible uses:

gml_file  ( string ) ---> file

string  gml_file  int  ---> file

gml_file  ( string  , int ) ---> file

string  gml_file  string  ---> file

gml_file  ( string  , string ) ---> file

string  gml_file  bool  ---> file

gml_file  ( string  , bool ) ---> file

gml_file  ( string , int , bool ) ---> file

gml_file  ( string , string , bool ) ---> file

Result:

Constructs a file of type gml. Allowed extensions are limited to gml

Special cases:

gml_file(string): This file constructor allows to read a gml file

file f <- gml_file("file.gml");



gml_file(string,int): This file constructor allows to read a gml file and specifying the coordinates
system code, as an int (epsg code)

gml_file(string,string): This file constructor allows to read a gml file and specifying the coordinates
system code (epg,...,), as a string

gml_file(string,bool): This file constructor allows to read a gml file and take a potential z value (not
taken in account by default)

gml_file(string,int,bool): This file constructor allows to read a gml file, specifying the coordinates
system code, as an int (epsg code) and take a potential z value (not taken in account by default)

gml_file(string,string,bool): This file constructor allows to read a gml file, specifying the coordinates
system code (epg,...,), as a string and take a potential z value (not taken in account by default

See also: is_gml,

gradient

Possible uses:

gradient  ( map<rgb,float> ) ---> map<rgb,float>

gradient  ( list<rgb> ) ---> map<rgb,float>

rgb  gradient  rgb  ---> map<rgb,float>

gradient  ( rgb  , rgb ) ---> map<rgb,float>

file f <- gml_file("file.gml", 32648);

file f <- gml_file("file.gml", "EPSG:32648");

file f <- gml_file("file.gml", true);

file f <- gml_file("file.gml", 32648, true);

file f <- gml_file("file.gml", "EPSG:32648",true);

http://localhost:3000/wiki/OperatorsIM#is_gml


gradient  ( rgb , rgb , float ) ---> map<rgb,float>

Result:

returns the definition of a linear gradient between n colors provided with their positions on a scale
between 0 and 1. A similar color map is returned, in the same color order, with all the positions
normalized (so that they are shifted and scaled to fit between 0 and 1). Throws an error if the number of
colors is less than 2 or if the positions are not strictly ordered returns the definition of a linear gradient
between n colors, represented internally as a color map [c1::0,c2::1/n-1, ... cn::n-1/n-1] returns the
definition of a linear gradient between two colors, with a ratio (between 0 and 1, otherwise clamped)
represented internally as a color map [start::0.0,(startr+stop(1-r))::r, stop::1.0] returns the definition of a
linear gradient between two colors, represented internally as a color map [start::0.0,stop::1.0]

graph

Possible uses:

graph  ( any ) ---> graph

Result:

casts the operand in a graph object.

graph6_file

Possible uses:

graph6_file  ( string ) ---> file

string  graph6_file  species  ---> file

graph6_file  ( string  , species ) ---> file

graph6_file  ( string , species , species ) ---> file

Result:

Constructs a file of type graph6. Allowed extensions are limited to graph6

Special cases:

graph6_file(string): References a graph6 file by its filename



graph6_file(string,species): References a graph6 file by its filename and the species to use to
instantiate the nodes

graph6_file(string,species,species): References a graph6 file by its filename and the species to use to
instantiate the nodes and the edges

See also: is_graph6,

graphdimacs_file

Possible uses:

graphdimacs_file  ( string ) ---> file

string  graphdimacs_file  species  ---> file

graphdimacs_file  ( string  , species ) ---> file

graphdimacs_file  ( string , species , species ) ---> file

Result:

Constructs a file of type graphdimacs. Allowed extensions are limited to dimacs

Special cases:

graphdimacs_file(string): References a dimacs file by its filename

graphdimacs_file(string,species): References a dimacs file by its filename and the species to use to
instantiate the nodes

graphdimacs_file(string,species,species): References a dimacs file by its filename and the species to
use to instantiate the nodes and the edges

See also: is_graphdimacs,

graphdot_file

Possible uses:

graphdot_file  ( string ) ---> file

string  graphdot_file  species  ---> file

graphdot_file  ( string  , species ) ---> file

http://localhost:3000/wiki/OperatorsIM#is_graph6
http://localhost:3000/wiki/OperatorsIM#is_graphdimacs


graphdot_file  ( string , species , species ) ---> file

Result:

Constructs a file of type graphdot. Allowed extensions are limited to dot

Special cases:

graphdot_file(string): References a dot graph file by its filename

graphdot_file(string,species): References a dot graph file by its filename and the species to use to
instantiate the nodes

graphdot_file(string,species,species): References a dot graph file by its filename and the 2 species to
use to instantiate the nodes and the edges

See also: is_graphdot,

graphgexf_file

Possible uses:

graphgexf_file  ( string ) ---> file

string  graphgexf_file  species  ---> file

graphgexf_file  ( string  , species ) ---> file

graphgexf_file  ( string , species , species ) ---> file

Result:

Constructs a file of type graphgexf. Allowed extensions are limited to gexf

Special cases:

graphgexf_file(string): References a gexf graph file by its filename

graphgexf_file(string,species): References a gexf graph file by its filename and the species to use to
instantiate the nodes

graphgexf_file(string,species,species): References a gexf graph file by its filename and the 2 species
to use to instantiate the nodes and the edges

See also: is_graphgexf,

http://localhost:3000/wiki/OperatorsIM#is_graphdot
http://localhost:3000/wiki/OperatorsIM#is_graphgexf


graphgml_file

Possible uses:

graphgml_file  ( string ) ---> file

string  graphgml_file  species  ---> file

graphgml_file  ( string  , species ) ---> file

graphgml_file  ( string , species , species ) ---> file

Result:

Constructs a file of type graphgml. Allowed extensions are limited to gml

Special cases:

graphgml_file(string): References a gml graph file by its filename

graphgml_file(string,species): References a gml graph file by its filename and the species to use to
instantiate the nodes

graphgml_file(string,species,species): References a gml graph file by its filename and the 2 species
to use to instantiate the nodes and the edges

See also: is_graphgml,

graphml_file

Possible uses:

graphml_file  ( string ) ---> file

string  graphml_file  species  ---> file

graphml_file  ( string  , species ) ---> file

graphml_file  ( string , species , species ) ---> file

graphml_file  ( string , species , species , string , string ) ---> file

Result:

Constructs a file of type graphml. Allowed extensions are limited to graphml

Special cases:

http://localhost:3000/wiki/OperatorsIM#is_graphgml


graphml_file(string): References a graphml graph file by its filename

graphml_file(string,species): References a graphml graph file by its filename and the species to use
to instantiate the nodes

graphml_file(string,species,species): References a graphml graph file by its filename and the 2
species to use to instantiate the nodes and the edges

graphml_file(string,species,species,string,string): References a graphml graph file by its filename
and the 2 species to use to instantiate the nodes and the edges

See also: is_graphml,

graphtsplib_file

Possible uses:

graphtsplib_file  ( string ) ---> file

string  graphtsplib_file  species  ---> file

graphtsplib_file  ( string  , species ) ---> file

graphtsplib_file  ( string , species , species ) ---> file

Result:

Constructs a file of type graphtsplib. Allowed extensions are limited to tsplib

Special cases:

graphtsplib_file(string): References a tsplib graph file by its filename

graphtsplib_file(string,species): References a tsplib graph file by its filename and the species to use
to instantiate the nodes

graphtsplib_file(string,species,species): References a tsplib graph file by its filename and the 2
species to use to instantiate the nodes and the edges

See also: is_graphtsplib,

grayscale

Possible uses:

grayscale  ( rgb ) ---> rgb

http://localhost:3000/wiki/OperatorsIM#is_graphml
http://localhost:3000/wiki/OperatorsIM#is_graphtsplib


Result:

Converts rgb color to grayscale value

Comment:

r=red, g=green, b=blue. Between 0 and 255 and gray = 0.299 *  red + 0.587 *  green + 0.114 *  blue
(Photoshop value)

Examples:

See also: rgb, hsb,

grayscale

Possible uses:

grayscale  ( image ) ---> image

Result:

Used to convert any image to a grayscale color palette and return it. The original image is left
untouched

grid_at

Possible uses:

species  grid_at  point  ---> agent

grid_at  ( species  , point ) ---> agent

Result:

returns the cell of the grid (right-hand operand) at the position given by the right-hand operand

Comment:

rgb var0 <- grayscale (rgb(255,0,0)); // var0 equals to a dark grey

http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsDH#hsb


If the left-hand operand is a point of floats, it is used as a point of ints.

Special cases:

if the left-hand operand is not a grid cell species, returns nil

Examples:

grid_cells_to_graph

Possible uses:

grid_cells_to_graph  ( container ) ---> graph

container  grid_cells_to_graph  species  ---> graph

grid_cells_to_graph  ( container  , species ) ---> graph

Result:

creates a graph from a list of cells (operand). An edge is created between neighbors.

Examples:

See also: as_intersection_graph, as_edge_graph,

grid_file

Possible uses:

grid_file  ( string ) ---> file

string  grid_file  bool  ---> file

grid_file  ( string  , bool ) ---> file

string  grid_file  int  ---> file

agent var0 <- grid_cell grid_at {1,2}; // var0 equals the agent grid_cell with grid_x=1 
and grid_y = 2

my_cell_graph <- grid_cells_to_graph(cells_list);

http://localhost:3000/wiki/OperatorsAA#as_intersection_graph
http://localhost:3000/wiki/OperatorsAA#as_edge_graph


grid_file  ( string  , int ) ---> file

string  grid_file  string  ---> file

grid_file  ( string  , string ) ---> file

string  grid_file  field  ---> file

grid_file  ( string  , field ) ---> file

Result:

Constructs a file of type grid. Allowed extensions are limited to asc, tif

Special cases:

grid_file(string): This file constructor allows to read a asc file or a tif (geotif) file

grid_file(string,bool): This file constructor allows to read a asc file or a tif (geotif) file, but without
converting it into shapes. Only a matrix of float values is created

grid_file(string,int): This file constructor allows to read a asc file or a tif (geotif) file specifying the
coordinates system code, as an int (epsg code)

grid_file(string,string): This file constructor allows to read a asc file or a tif (geotif) file specifying the
coordinates system code (epg,...,), as a string

grid_file(string,field): This allows to build a writable grid file from the values of a field

See also: is_grid,

file f <- grid_file("file.asc");

file f <- grid_file("file.asc", false);

file f <- grid_file("file.asc", 32648);

file f <- grid_file("file.asc","EPSG:32648");

file f <- grid_file("file.tif",my_field); save f;

http://localhost:3000/wiki/OperatorsIM#is_grid


group_by

Possible uses:

container  group_by  any expression  ---> map

group_by  ( container  , any expression ) ---> map

Result:

Returns a map, where the keys take the possible values of the right-hand operand and the map values
are the list of elements of the left-hand operand associated to the key value

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand
operand elements.

Special cases:

if the left-hand operand is nil, group_by throws an error

Examples:

See also: first_with, last_with, where,

harmonic_mean

Possible uses:

harmonic_mean  ( container ) ---> float

Result:

map var0 <- [1,2,3,4,5,6,7,8] group_by (each > 3); // var0 equals [false::[1, 2, 3], 
true::[4, 5, 6, 7, 8]] 
map var1 <- g2 group_by (length(g2 out_edges_of each) ); // var1 equals [ 0::[node9, 
node7, node10, node8, node11], 1::[node6], 2::[node5], 3::[node4]] 
map var2 <- (list(node) group_by (round(node(each).location.x)); // var2 equals [32::
[node5], 21::[node1], 4::[node0], 66::[node2], 96::[node3]] 
map<bool,list> var3 <- [1::2, 3::4, 5::6] group_by (each > 4); // var3 equals [false::
[2, 4], true::[6]]

http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsSZ#where


the harmonic mean of the elements of the operand. See Harmonic_mean for more details.

Comment:

The operator casts all the numerical element of the list into float. The elements that are not numerical
are discarded.

Examples:

See also: mean, median, geometric_mean,

has_belief_op

Possible uses:

agent  has_belief_op  predicate  ---> bool

has_belief_op  ( agent  , predicate ) ---> bool

Result:

indicates if there already is a belief about the given predicate.

Examples:

has_belief_with_name_op

Possible uses:

agent  has_belief_with_name_op  string  ---> bool

has_belief_with_name_op  ( agent  , string ) ---> bool

Result:

indicates if there already is a belief about the given name.

float var0 <- harmonic_mean ([4.5, 3.5, 5.5, 7.0]); // var0 equals 4.804159445407279

bool var0 <- has_belief_op(self,predicate("has_water")); // var0 equals false

http://en.wikipedia.org/wiki/Harmonic_mean
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsDH#geometric_mean


Examples:

has_desire_op

Possible uses:

agent  has_desire_op  predicate  ---> bool

has_desire_op  ( agent  , predicate ) ---> bool

Result:

indicates if there already is a desire about the given predicate.

Examples:

has_desire_with_name_op

Possible uses:

agent  has_desire_with_name_op  string  ---> bool

has_desire_with_name_op  ( agent  , string ) ---> bool

Result:

indicates if there already is a desire about the given name.

Examples:

has_ideal_op

bool var0 <- has_belief_with_name_op(self,"has_water"); // var0 equals false

bool var0 <- has_desire_op(self,predicate("has_water")); // var0 equals false

bool var0 <- has_desire_with_name_op(self,"has_water"); // var0 equals false



Possible uses:

agent  has_ideal_op  predicate  ---> bool

has_ideal_op  ( agent  , predicate ) ---> bool

Result:

indicates if there already is an ideal about the given predicate.

Examples:

has_ideal_with_name_op

Possible uses:

agent  has_ideal_with_name_op  string  ---> bool

has_ideal_with_name_op  ( agent  , string ) ---> bool

Result:

indicates if there already is an ideal about the given name.

Examples:

has_intention_op

Possible uses:

agent  has_intention_op  predicate  ---> bool

has_intention_op  ( agent  , predicate ) ---> bool

Result:

indicates if there already is an intention about the given predicate.

bool var0 <- has_ideal_op(self,predicate("has_water")); // var0 equals false

bool var0 <- has_ideal_with_name_op(self,"has_water"); // var0 equals false



Examples:

has_intention_with_name_op

Possible uses:

agent  has_intention_with_name_op  string  ---> bool

has_intention_with_name_op  ( agent  , string ) ---> bool

Result:

indicates if there already is an intention about the given name.

Examples:

has_obligation_op

Possible uses:

agent  has_obligation_op  predicate  ---> bool

has_obligation_op  ( agent  , predicate ) ---> bool

Result:

indicates if there already is an obligation about the given predicate.

Examples:

has_obligation_with_name_op

bool var0 <- has_intention_op(self,predicate("has_water")); // var0 equals false

bool var0 <- has_intention_with_name_op(self,"has_water"); // var0 equals false

bool var0 <- has_obligation_op(self,predicate("has_water")); // var0 equals false



Possible uses:

agent  has_obligation_with_name_op  string  ---> bool

has_obligation_with_name_op  ( agent  , string ) ---> bool

Result:

indicates if there already is an obligation about the given name.

Examples:

has_uncertainty_op

Possible uses:

agent  has_uncertainty_op  predicate  ---> bool

has_uncertainty_op  ( agent  , predicate ) ---> bool

Result:

indicates if there already is an uncertainty about the given predicate.

Examples:

has_uncertainty_with_name_op

Possible uses:

agent  has_uncertainty_with_name_op  string  ---> bool

has_uncertainty_with_name_op  ( agent  , string ) ---> bool

Result:

indicates if there already is an uncertainty about the given name.

bool var0 <- has_obligation_with_name_op(self,"has_water"); // var0 equals false

bool var0 <- has_uncertainty_op(self,predicate("has_water")); // var0 equals false



Examples:

hexagon

Possible uses:

hexagon  ( point ) ---> geometry

hexagon  ( float ) ---> geometry

float  hexagon  float  ---> geometry

hexagon  ( float  , float ) ---> geometry

Result:

A hexagon geometry which the given with and height

Comment:

the center of the hexagon is by default the location of the current agent in which has been called this
operator.

Special cases:

returns nil if the operand is nil.

Examples:

See also: around, circle, cone, line, link, norm, point, polygon, polyline, rectangle, triangle,

hierarchical_clustering

bool var0 <- has_uncertainty_with_name_op(self,"has_water"); // var0 equals false

geometry var0 <- hexagon({10,5}); // var0 equals a geometry as a hexagon of width of 10 
and height of 5. 
geometry var1 <- hexagon(10,5); // var1 equals a geometry as a hexagon of width of 10 
and height of 5. 
geometry var2 <- hexagon(10); // var2 equals a geometry as a hexagon of width of 10 and 
height of 10.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#triangle


Possible uses:

container<unknown,agent>  hierarchical_clustering  float  ---> list

hierarchical_clustering  ( container<unknown,agent>  , float ) ---> list

Result:

A tree (list of list) contained groups of agents clustered by distance considering a distance min between
two groups.

Comment:

use of hierarchical clustering with Minimum for linkage criterion between two groups of agents.

Examples:

See also: simple_clustering_by_distance,

horizontal

Possible uses:

horizontal  ( map<unknown,int> ) ---> unknown<string>

Result:

Creates a horizontal layout node (a sash). Sashes can contain any number (> 1) of other elements:
stacks, horizontal or vertical sashes, or display indices. Each element is represented by a pair in the map,
where the key is the element and the value its weight within the sash

horizontal_flip

Possible uses:

horizontal_flip  ( image ) ---> image

list var0 <- [ag1, ag2, ag3, ag4, ag5] hierarchical_clustering 20.0; // var0 equals for 
example, can return [[[ag1],[ag3]], [ag2], [[[ag4],[ag5]],[ag6]]

http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance


Result:

Returns an image flipped horizontally by reflecting the original image around the y axis. The original
image is left untouched

hsb

Possible uses:

hsb  ( float , float , float ) ---> rgb

hsb  ( float , float , float , int ) ---> rgb

hsb  ( float , float , float , float ) ---> rgb

Result:

Converts hsb (h=hue, s=saturation, b=brightness) value to Gama color

Comment:

h,s and b components should be floating-point values between 0.0 and 1.0 and when used alpha should
be an integer (between 0 and 255) or a float (between 0 and 1) . Examples: Red=(0.0,1.0,1.0), Yellow=
(0.16,1.0,1.0), Green=(0.33,1.0,1.0), Cyan=(0.5,1.0,1.0), Blue=(0.66,1.0,1.0), Magenta=(0.83,1.0,1.0)

Examples:

See also: rgb,

hypot

Possible uses:

hypot  ( float , float , float , float ) ---> float

Result:

Returns sqrt(x2 +y2) without intermediate overflow or underflow.

rgb var0 <- hsb (0.0,1.0,1.0); // var0 equals rgb("red") 
rgb var1 <- hsb (0.5,1.0,1.0,0.0); // var1 equals rgb("cyan",0)

http://localhost:3000/wiki/OperatorsNR#rgb


Special cases:

If either argument is infinite, then the result is positive infinity. If either argument is NaN and
neither argument is infinite, then the result is NaN.

Examples:

float var0 <- hypot(0,1,0,1); // var0 equals sqrt(2)



Version: 1.9.3

Operators (I to M)
This file is automatically generated from java files. Do Not Edit It.

Definition
Operators in the GAML language are used to compose complex expressions. An operator performs a
function on one, two, or n operands (which are other expressions and thus may be themselves
composed of operators) and returns the result of this function.

Most of them use a classical prefixed functional syntax (i.e. operator_name(operand1, operand2,
operand3) , see below), with the exception of arithmetic (e.g. + , / ), logical ( and , or ), comparison (e.g.
> , < ), access ( . , [..] ) and pair ( :: ) operators, which require an infixed notation (i.e. operand1
operator_symbol operand1 ).

The ternary functional if-else operator, ? : , uses a special infixed syntax composed with two symbols
(e.g. operand1 ? operand2 : operand3 ). Two unary operators ( -  and ! ) use a traditional prefixed
syntax that does not require parentheses unless the operand is itself a complex expression (e.g. - 10 , !
(operand1 or operand2) ).

Finally, special constructor operators ( {...}  for constructing points, [...]  for constructing lists and
maps) will require their operands to be placed between their two symbols (e.g. {1,2,3} , [operand1,
operand2, ..., operandn]  or [key1::value1, key2::value2... keyn::valuen] ).

With the exception of these special cases above, the following rules apply to the syntax of operators:

if they only have one operand, the functional prefixed syntax is mandatory (e.g.
operator_name(operand1) )

if they have two arguments, either the functional prefixed syntax (e.g. operator_name(operand1,
operand2) ) or the infixed syntax (e.g. operand1 operator_name operand2 ) can be used.

if they have more than two arguments, either the functional prefixed syntax (e.g.
operator_name(operand1, operand2, ..., operand) ) or a special infixed syntax with the first
operand on the left-hand side of the operator name (e.g. operand1 operator_name(operand2, ...,
operand) ) can be used.



All of these alternative syntaxes are completely equivalent.

Operators in GAML are purely functional, i.e. they are guaranteed to not have any side effects on their
operands. For instance, the shuffle  operator, which randomizes the positions of elements in a list, does
not modify its list operand but returns a new shuffled list.

Priority between operators
The priority of operators determines, in the case of complex expressions composed of several operators,
which one(s) will be evaluated first.

GAML follows in general the traditional priorities attributed to arithmetic, boolean, comparison
operators, with some twists. Namely:

the constructor operators, like :: , used to compose pairs of operands, have the lowest priority of
all operators (e.g. a > b :: b > c  will return a pair of boolean values, which means that the two
comparisons are evaluated before the operator applies. Similarly, [a > 10, b > 5]  will return a list
of boolean values.

it is followed by the ?:  operator, the functional if-else (e.g. a > b ? a + 10 : a - 10  will return
the result of the if-else).

next are the logical operators, and  and or  (e.g. a > b or b > c  will return the value of the test)

next are the comparison operators (i.e. > , < , <= , >= , = , != )

next the arithmetic operators in their logical order (multiplicative operators have a higher priority
than additive operators)

next the unary operators -  and !

next the access operators .  and []  (e.g. {1,2,3}.x > 20 + {4,5,6}.y  will return the result of the
comparison between the x and y ordinates of the two points)

and finally the functional operators, which have the highest priority of all.

Using actions as operators
Actions defined in species can be used as operators, provided they are called on the correct agent. The
syntax is that of normal functional operators, but the agent that will perform the action must be added
as the first operand.



For instance, if the following species is defined:

Any agent instance of spec1 can use min  as an operator (if the action conflicts with an existing operator,
a warning will be emitted). For instance, in the same model, the following line is perfectly acceptable:

If the action doesn't have any operands, the syntax to use is my_agent the_action() . Finally, if it does
not return a value, it might still be used but is considering as returning a value of type unknown  (e.g.
unknown result <- my_agent the_action(op1, op2); ).

Note that due to the fact that actions are written by modelers, the general functional contract is not
respected in that case: actions might perfectly have side effects on their operands (including the agent).

Table of Contents

Operators by categories

3D

box, cone3D, cube, cylinder, hexagon, pyramid, set_z, sphere, teapot,

species spec1 {
        int min(int x, int y) {
                return x > y ? x : y;
        }
}

global {
        init {
                create spec1;
                spec1 my_agent <- spec1[0];
                int the_min <- my_agent min(10,20); // or min(my_agent, 10, 20);
        }
}

http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#teapot


Arithmetic operators

-, /, ^, *, +, abs, acos, asin, atan, atan2, ceil, cos, cos_rad, div, even, exp, fact, floor, hypot, is_finite,
is_number, ln, log, mod, round, signum, sin, sin_rad, sqrt, tan, tan_rad, tanh, with_precision,

BDI

add_values, and, eval_when, get_about, get_agent, get_agent_cause, get_belief_op,
get_belief_with_name_op, get_beliefs_op, get_beliefs_with_name_op, get_current_intention_op,
get_decay, get_desire_op, get_desire_with_name_op, get_desires_op, get_desires_with_name_op,
get_dominance, get_familiarity, get_ideal_op, get_ideal_with_name_op, get_ideals_op,
get_ideals_with_name_op, get_intensity, get_intention_op, get_intention_with_name_op,
get_intentions_op, get_intentions_with_name_op, get_lifetime, get_liking, get_modality,
get_obligation_op, get_obligation_with_name_op, get_obligations_op, get_obligations_with_name_op,
get_plan_name, get_predicate, get_solidarity, get_strength, get_super_intention, get_trust, get_truth,
get_uncertainties_op, get_uncertainties_with_name_op, get_uncertainty_op,
get_uncertainty_with_name_op, get_values, has_belief_op, has_belief_with_name_op, has_desire_op,
has_desire_with_name_op, has_ideal_op, has_ideal_with_name_op, has_intention_op,
has_intention_with_name_op, has_obligation_op, has_obligation_with_name_op, has_uncertainty_op,
has_uncertainty_with_name_op, new_emotion, new_mental_state, new_predicate, new_social_link, not,
or, set_about, set_agent, set_agent_cause, set_decay, set_dominance, set_familiarity, set_intensity,
set_lifetime, set_liking, set_modality, set_predicate, set_solidarity, set_strength, set_trust, set_truth,
with_values,

Casting operators

as, as_int, as_matrix, deserialize, field_with, font, from_gaml, from_json, is, is_skill, list_with, matrix_with,
serialize, species_of, to_gaml, to_geojson, to_json, to_list, with_size, with_style,

Color-related operators

-, /, *, +, blend, brewer_colors, brewer_palettes, gradient, grayscale, hsb, mean, median, palette, rgb,
rnd_color, scale, sum, to_hsb,

Comparison operators

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#%5E
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#abs
http://localhost:3000/wiki/OperatorsAA#acos
http://localhost:3000/wiki/OperatorsAA#asin
http://localhost:3000/wiki/OperatorsAA#atan
http://localhost:3000/wiki/OperatorsAA#atan2
http://localhost:3000/wiki/OperatorsBC#ceil
http://localhost:3000/wiki/OperatorsBC#cos
http://localhost:3000/wiki/OperatorsBC#cos_rad
http://localhost:3000/wiki/OperatorsDH#div
http://localhost:3000/wiki/OperatorsDH#even
http://localhost:3000/wiki/OperatorsDH#exp
http://localhost:3000/wiki/OperatorsDH#fact
http://localhost:3000/wiki/OperatorsDH#floor
http://localhost:3000/wiki/OperatorsDH#hypot
http://localhost:3000/wiki/OperatorsIM#is_finite
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#ln
http://localhost:3000/wiki/OperatorsIM#log
http://localhost:3000/wiki/OperatorsIM#mod
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsSZ#signum
http://localhost:3000/wiki/OperatorsSZ#sin
http://localhost:3000/wiki/OperatorsSZ#sin_rad
http://localhost:3000/wiki/OperatorsSZ#sqrt
http://localhost:3000/wiki/OperatorsSZ#tan
http://localhost:3000/wiki/OperatorsSZ#tan_rad
http://localhost:3000/wiki/OperatorsSZ#tanh
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsAA#add_values
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsDH#eval_when
http://localhost:3000/wiki/OperatorsDH#get_about
http://localhost:3000/wiki/OperatorsDH#get_agent
http://localhost:3000/wiki/OperatorsDH#get_agent_cause
http://localhost:3000/wiki/OperatorsDH#get_belief_op
http://localhost:3000/wiki/OperatorsDH#get_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_current_intention_op
http://localhost:3000/wiki/OperatorsDH#get_decay
http://localhost:3000/wiki/OperatorsDH#get_desire_op
http://localhost:3000/wiki/OperatorsDH#get_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_desires_op
http://localhost:3000/wiki/OperatorsDH#get_desires_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_dominance
http://localhost:3000/wiki/OperatorsDH#get_familiarity
http://localhost:3000/wiki/OperatorsDH#get_ideal_op
http://localhost:3000/wiki/OperatorsDH#get_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intensity
http://localhost:3000/wiki/OperatorsDH#get_intention_op
http://localhost:3000/wiki/OperatorsDH#get_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_lifetime
http://localhost:3000/wiki/OperatorsDH#get_liking
http://localhost:3000/wiki/OperatorsDH#get_modality
http://localhost:3000/wiki/OperatorsDH#get_obligation_op
http://localhost:3000/wiki/OperatorsDH#get_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_plan_name
http://localhost:3000/wiki/OperatorsDH#get_predicate
http://localhost:3000/wiki/OperatorsDH#get_solidarity
http://localhost:3000/wiki/OperatorsDH#get_strength
http://localhost:3000/wiki/OperatorsDH#get_super_intention
http://localhost:3000/wiki/OperatorsDH#get_trust
http://localhost:3000/wiki/OperatorsDH#get_truth
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_values
http://localhost:3000/wiki/OperatorsDH#has_belief_op
http://localhost:3000/wiki/OperatorsDH#has_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_desire_op
http://localhost:3000/wiki/OperatorsDH#has_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_intention_op
http://localhost:3000/wiki/OperatorsDH#has_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsNR#new_emotion
http://localhost:3000/wiki/OperatorsNR#new_mental_state
http://localhost:3000/wiki/OperatorsNR#new_predicate
http://localhost:3000/wiki/OperatorsNR#new_social_link
http://localhost:3000/wiki/OperatorsNR#not
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsSZ#set_about
http://localhost:3000/wiki/OperatorsSZ#set_agent
http://localhost:3000/wiki/OperatorsSZ#set_agent_cause
http://localhost:3000/wiki/OperatorsSZ#set_decay
http://localhost:3000/wiki/OperatorsSZ#set_dominance
http://localhost:3000/wiki/OperatorsSZ#set_familiarity
http://localhost:3000/wiki/OperatorsSZ#set_intensity
http://localhost:3000/wiki/OperatorsSZ#set_lifetime
http://localhost:3000/wiki/OperatorsSZ#set_liking
http://localhost:3000/wiki/OperatorsSZ#set_modality
http://localhost:3000/wiki/OperatorsSZ#set_predicate
http://localhost:3000/wiki/OperatorsSZ#set_solidarity
http://localhost:3000/wiki/OperatorsSZ#set_strength
http://localhost:3000/wiki/OperatorsSZ#set_trust
http://localhost:3000/wiki/OperatorsSZ#set_truth
http://localhost:3000/wiki/OperatorsSZ#with_values
http://localhost:3000/wiki/OperatorsAA#as
http://localhost:3000/wiki/OperatorsAA#as_int
http://localhost:3000/wiki/OperatorsAA#as_matrix
http://localhost:3000/wiki/OperatorsDH#deserialize
http://localhost:3000/wiki/OperatorsDH#field_with
http://localhost:3000/wiki/OperatorsDH#font
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsDH#from_json
http://localhost:3000/wiki/OperatorsIM#is
http://localhost:3000/wiki/OperatorsIM#is_skill
http://localhost:3000/wiki/OperatorsIM#list_with
http://localhost:3000/wiki/OperatorsIM#matrix_with
http://localhost:3000/wiki/OperatorsSZ#serialize
http://localhost:3000/wiki/OperatorsSZ#species_of
http://localhost:3000/wiki/OperatorsSZ#to_gaml
http://localhost:3000/wiki/OperatorsSZ#to_geojson
http://localhost:3000/wiki/OperatorsSZ#to_json
http://localhost:3000/wiki/OperatorsSZ#to_list
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_style
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#brewer_colors
http://localhost:3000/wiki/OperatorsBC#brewer_palettes
http://localhost:3000/wiki/OperatorsDH#gradient
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#hsb
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsNR#palette
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsNR#rnd_color
http://localhost:3000/wiki/OperatorsSZ#scale
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#to_hsb


!=, <, <=, =, >, >=, between,

Containers-related operators

-, ::, +, accumulate, all_match, among, at, cartesian_product, collect, contains, contains_all, contains_any,
contains_key, count, empty, every, first, first_with, get, group_by, in, index_by, inter, interleave,
internal_integrated_value, last, last_with, length, max, max_of, mean, mean_of, median, min, min_of,
mul, none_matches, one_matches, one_of, product_of, range, remove_duplicates, reverse, shuffle,
sort_by, split, split_in, split_using, sum, sum_of, union, variance_of, where, with_max_of, with_min_of,

Date-related operators

-, !=, +, <, <=, =, >, >=, after, before, between, every, milliseconds_between, minus_days, minus_hours,
minus_minutes, minus_months, minus_ms, minus_weeks, minus_years, months_between, plus_days,
plus_hours, plus_minutes, plus_months, plus_ms, plus_weeks, plus_years, since, to, until,
years_between,

Dates

Displays

horizontal, stack, vertical,

edge

edge_between, strahler,

EDP-related operators

diff, diff2,

http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#::
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#among
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsBC#cartesian_product
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#contains_key
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#interleave
http://localhost:3000/wiki/OperatorsIM#internal_integrated_value
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#one_of
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsNR#range
http://localhost:3000/wiki/OperatorsNR#remove_duplicates
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#after
http://localhost:3000/wiki/OperatorsBC#before
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsIM#milliseconds_between
http://localhost:3000/wiki/OperatorsIM#minus_days
http://localhost:3000/wiki/OperatorsIM#minus_hours
http://localhost:3000/wiki/OperatorsIM#minus_minutes
http://localhost:3000/wiki/OperatorsIM#minus_months
http://localhost:3000/wiki/OperatorsIM#minus_ms
http://localhost:3000/wiki/OperatorsIM#minus_weeks
http://localhost:3000/wiki/OperatorsIM#minus_years
http://localhost:3000/wiki/OperatorsIM#months_between
http://localhost:3000/wiki/OperatorsNR#plus_days
http://localhost:3000/wiki/OperatorsNR#plus_hours
http://localhost:3000/wiki/OperatorsNR#plus_minutes
http://localhost:3000/wiki/OperatorsNR#plus_months
http://localhost:3000/wiki/OperatorsNR#plus_ms
http://localhost:3000/wiki/OperatorsNR#plus_weeks
http://localhost:3000/wiki/OperatorsNR#plus_years
http://localhost:3000/wiki/OperatorsSZ#since
http://localhost:3000/wiki/OperatorsSZ#to
http://localhost:3000/wiki/OperatorsSZ#until
http://localhost:3000/wiki/OperatorsSZ#years_between
http://localhost:3000/wiki/OperatorsDH#horizontal
http://localhost:3000/wiki/OperatorsSZ#stack
http://localhost:3000/wiki/OperatorsSZ#vertical
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsDH#diff
http://localhost:3000/wiki/OperatorsDH#diff2


Files-related operators

agent_file, copy_file, crs, csv_file, delete_file, dxf_file, evaluate_sub_model, file_exists, folder,
folder_exists, gaml_file, geojson_file, get, gif_file, gml_file, graph6_file, graphdimacs_file, graphdot_file,
graphgexf_file, graphgml_file, graphml_file, graphtsplib_file, grid_file, image_file, is_agent, is_csv, is_dxf,
is_gaml, is_geojson, is_gif, is_gml, is_graph6, is_graphdimacs, is_graphdot, is_graphgexf, is_graphgml,
is_graphml, is_graphtsplib, is_grid, is_image, is_json, is_obj, is_osm, is_pgm, is_property, is_shape,
is_simulation, is_svg, is_text, is_threeds, is_xml, json_file, new_folder, obj_file, osm_file, pgm_file,
property_file, read, rename_file, shape_file, simulation_file, step_sub_model, svg_file, text_file,
threeds_file, unzip, writable, xml_file, zip,

GamaMetaType

type_of,

GamaSVGFile

image,

Graphs-related operators

add_edge, add_node, adjacency, agent_from_geometry, all_pairs_shortest_path, alpha_index,
as_distance_graph, as_edge_graph, as_intersection_graph, as_path, as_spatial_graph, beta_index,
betweenness_centrality, biggest_cliques_of, connected_components_of, connectivity_index,
contains_edge, contains_vertex, degree_of, directed, edge, edge_between, edge_betweenness, edges,
gamma_index, generate_barabasi_albert, generate_complete_graph, generate_random_graph,
generate_watts_strogatz, girvan_newman_clustering, grid_cells_to_graph, in_degree_of, in_edges_of,
k_spanning_tree_clustering, label_propagation_clustering, layout_circle, layout_force, layout_force_FR,
layout_force_FR_indexed, layout_grid, load_shortest_paths, main_connected_component,
max_flow_between, maximal_cliques_of, nb_cycles, neighbors_of, node, nodes, out_degree_of,
out_edges_of, path_between, paths_between, predecessors_of, remove_node_from, rewire_n, source_of,
spatial_graph, strahler, successors_of, sum, target_of, undirected, use_cache, weight_of,
with_k_shortest_path_algorithm, with_shortest_path_algorithm, with_weights,

Grid-related operators

http://localhost:3000/wiki/OperatorsAA#agent_file
http://localhost:3000/wiki/OperatorsBC#copy_file
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#csv_file
http://localhost:3000/wiki/OperatorsDH#delete_file
http://localhost:3000/wiki/OperatorsDH#dxf_file
http://localhost:3000/wiki/OperatorsDH#evaluate_sub_model
http://localhost:3000/wiki/OperatorsDH#file_exists
http://localhost:3000/wiki/OperatorsDH#folder
http://localhost:3000/wiki/OperatorsDH#folder_exists
http://localhost:3000/wiki/OperatorsDH#gaml_file
http://localhost:3000/wiki/OperatorsDH#geojson_file
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#gif_file
http://localhost:3000/wiki/OperatorsDH#gml_file
http://localhost:3000/wiki/OperatorsDH#graph6_file
http://localhost:3000/wiki/OperatorsDH#graphdimacs_file
http://localhost:3000/wiki/OperatorsDH#graphdot_file
http://localhost:3000/wiki/OperatorsDH#graphgexf_file
http://localhost:3000/wiki/OperatorsDH#graphgml_file
http://localhost:3000/wiki/OperatorsDH#graphml_file
http://localhost:3000/wiki/OperatorsDH#graphtsplib_file
http://localhost:3000/wiki/OperatorsDH#grid_file
http://localhost:3000/wiki/OperatorsIM#image_file
http://localhost:3000/wiki/OperatorsIM#is_agent
http://localhost:3000/wiki/OperatorsIM#is_csv
http://localhost:3000/wiki/OperatorsIM#is_dxf
http://localhost:3000/wiki/OperatorsIM#is_gaml
http://localhost:3000/wiki/OperatorsIM#is_geojson
http://localhost:3000/wiki/OperatorsIM#is_gif
http://localhost:3000/wiki/OperatorsIM#is_gml
http://localhost:3000/wiki/OperatorsIM#is_graph6
http://localhost:3000/wiki/OperatorsIM#is_graphdimacs
http://localhost:3000/wiki/OperatorsIM#is_graphdot
http://localhost:3000/wiki/OperatorsIM#is_graphgexf
http://localhost:3000/wiki/OperatorsIM#is_graphgml
http://localhost:3000/wiki/OperatorsIM#is_graphml
http://localhost:3000/wiki/OperatorsIM#is_graphtsplib
http://localhost:3000/wiki/OperatorsIM#is_grid
http://localhost:3000/wiki/OperatorsIM#is_image
http://localhost:3000/wiki/OperatorsIM#is_json
http://localhost:3000/wiki/OperatorsIM#is_obj
http://localhost:3000/wiki/OperatorsIM#is_osm
http://localhost:3000/wiki/OperatorsIM#is_pgm
http://localhost:3000/wiki/OperatorsIM#is_property
http://localhost:3000/wiki/OperatorsIM#is_shape
http://localhost:3000/wiki/OperatorsIM#is_simulation
http://localhost:3000/wiki/OperatorsIM#is_svg
http://localhost:3000/wiki/OperatorsIM#is_text
http://localhost:3000/wiki/OperatorsIM#is_threeds
http://localhost:3000/wiki/OperatorsIM#is_xml
http://localhost:3000/wiki/OperatorsIM#json_file
http://localhost:3000/wiki/OperatorsNR#new_folder
http://localhost:3000/wiki/OperatorsNR#obj_file
http://localhost:3000/wiki/OperatorsNR#osm_file
http://localhost:3000/wiki/OperatorsNR#pgm_file
http://localhost:3000/wiki/OperatorsNR#property_file
http://localhost:3000/wiki/OperatorsNR#read
http://localhost:3000/wiki/OperatorsNR#rename_file
http://localhost:3000/wiki/OperatorsSZ#shape_file
http://localhost:3000/wiki/OperatorsSZ#simulation_file
http://localhost:3000/wiki/OperatorsSZ#step_sub_model
http://localhost:3000/wiki/OperatorsSZ#svg_file
http://localhost:3000/wiki/OperatorsSZ#text_file
http://localhost:3000/wiki/OperatorsSZ#threeds_file
http://localhost:3000/wiki/OperatorsSZ#unzip
http://localhost:3000/wiki/OperatorsSZ#writable
http://localhost:3000/wiki/OperatorsSZ#xml_file
http://localhost:3000/wiki/OperatorsSZ#zip
http://localhost:3000/wiki/OperatorsSZ#type_of
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsAA#add_edge
http://localhost:3000/wiki/OperatorsAA#add_node
http://localhost:3000/wiki/OperatorsAA#adjacency
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#alpha_index
http://localhost:3000/wiki/OperatorsAA#as_distance_graph
http://localhost:3000/wiki/OperatorsAA#as_edge_graph
http://localhost:3000/wiki/OperatorsAA#as_intersection_graph
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsAA#as_spatial_graph
http://localhost:3000/wiki/OperatorsBC#beta_index
http://localhost:3000/wiki/OperatorsBC#betweenness_centrality
http://localhost:3000/wiki/OperatorsBC#biggest_cliques_of
http://localhost:3000/wiki/OperatorsBC#connected_components_of
http://localhost:3000/wiki/OperatorsBC#connectivity_index
http://localhost:3000/wiki/OperatorsBC#contains_edge
http://localhost:3000/wiki/OperatorsBC#contains_vertex
http://localhost:3000/wiki/OperatorsDH#degree_of
http://localhost:3000/wiki/OperatorsDH#directed
http://localhost:3000/wiki/OperatorsDH#edge
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsDH#edge_betweenness
http://localhost:3000/wiki/OperatorsDH#edges
http://localhost:3000/wiki/OperatorsDH#gamma_index
http://localhost:3000/wiki/OperatorsDH#generate_barabasi_albert
http://localhost:3000/wiki/OperatorsDH#generate_complete_graph
http://localhost:3000/wiki/OperatorsDH#generate_random_graph
http://localhost:3000/wiki/OperatorsDH#generate_watts_strogatz
http://localhost:3000/wiki/OperatorsDH#girvan_newman_clustering
http://localhost:3000/wiki/OperatorsDH#grid_cells_to_graph
http://localhost:3000/wiki/OperatorsIM#in_degree_of
http://localhost:3000/wiki/OperatorsIM#in_edges_of
http://localhost:3000/wiki/OperatorsIM#k_spanning_tree_clustering
http://localhost:3000/wiki/OperatorsIM#label_propagation_clustering
http://localhost:3000/wiki/OperatorsIM#layout_circle
http://localhost:3000/wiki/OperatorsIM#layout_force
http://localhost:3000/wiki/OperatorsIM#layout_force_fr
http://localhost:3000/wiki/OperatorsIM#layout_force_fr_indexed
http://localhost:3000/wiki/OperatorsIM#layout_grid
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#main_connected_component
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsIM#maximal_cliques_of
http://localhost:3000/wiki/OperatorsNR#nb_cycles
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#node
http://localhost:3000/wiki/OperatorsNR#nodes
http://localhost:3000/wiki/OperatorsNR#out_degree_of
http://localhost:3000/wiki/OperatorsNR#out_edges_of
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsNR#predecessors_of
http://localhost:3000/wiki/OperatorsNR#remove_node_from
http://localhost:3000/wiki/OperatorsNR#rewire_n
http://localhost:3000/wiki/OperatorsSZ#source_of
http://localhost:3000/wiki/OperatorsSZ#spatial_graph
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsSZ#successors_of
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#target_of
http://localhost:3000/wiki/OperatorsSZ#undirected
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsSZ#weight_of
http://localhost:3000/wiki/OperatorsSZ#with_k_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_weights


as_4_grid, as_grid, as_hexagonal_grid, cell_at, cells_in, cells_overlapping, field, grid_at, neighbors_of,
path_between, points_in, values_in,

ImageOperators

*, antialiased, blend, blurred, brighter, clipped_with, darker, grayscale, horizontal_flip, image, matrix,
rotated_by, sharpened, snapshot, tinted_with, vertical_flip, with_height, with_size, with_width,

Iterator operators

accumulate, all_match, as_map, collect, count, create_map, first_with, frequency_of, group_by, index_by,
last_with, max_of, mean_of, min_of, none_matches, one_matches, product_of, sort_by, sum_of,
variance_of, where, where, where, with_max_of, with_min_of,

List-related operators

all_indexes_of, copy_between, index_of, last_index_of,

Logical operators

:, !, ?, add_3Dmodel, add_geometry, add_icon, and, or, xor,

Map comparaison operators

fuzzy_kappa, fuzzy_kappa_sim, kappa, kappa_sim, percent_absolute_deviation,

Map-related operators

as_map, create_map, index_of, last_index_of,

Matrix-related operators

http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsBC#cell_at
http://localhost:3000/wiki/OperatorsBC#cells_in
http://localhost:3000/wiki/OperatorsBC#cells_overlapping
http://localhost:3000/wiki/OperatorsDH#field
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#points_in
http://localhost:3000/wiki/OperatorsSZ#values_in
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#antialiased
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#blurred
http://localhost:3000/wiki/OperatorsBC#brighter
http://localhost:3000/wiki/OperatorsBC#clipped_with
http://localhost:3000/wiki/OperatorsDH#darker
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#horizontal_flip
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsSZ#sharpened
http://localhost:3000/wiki/OperatorsSZ#snapshot
http://localhost:3000/wiki/OperatorsSZ#tinted_with
http://localhost:3000/wiki/OperatorsSZ#vertical_flip
http://localhost:3000/wiki/OperatorsSZ#with_height
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_width
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsAA#all_indexes_of
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsAA#:
http://localhost:3000/wiki/OperatorsAA#!
http://localhost:3000/wiki/OperatorsAA#?
http://localhost:3000/wiki/OperatorsAA#add_3dmodel
http://localhost:3000/wiki/OperatorsAA#add_geometry
http://localhost:3000/wiki/OperatorsAA#add_icon
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsSZ#xor
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa_sim
http://localhost:3000/wiki/OperatorsIM#kappa
http://localhost:3000/wiki/OperatorsIM#kappa_sim
http://localhost:3000/wiki/OperatorsNR#percent_absolute_deviation
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of


-, /, ., *, +, append_horizontally, append_vertically, column_at, columns_list, determinant, eigenvalues,
flatten, index_of, inverse, last_index_of, row_at, rows_list, shuffle, trace, transpose,

multicriteria operators

electre_DM, evidence_theory_DM, fuzzy_choquet_DM, promethee_DM, weighted_means_DM,

Path-related operators

agent_from_geometry, all_pairs_shortest_path, as_path, load_shortest_paths, max_flow_between,
path_between, path_to, paths_between, use_cache,

Pedestrian

generate_pedestrian_network,

Points-related operators

-, /, *, +, <, <=, >, >=, add_point, angle_between, any_location_in, centroid, closest_points_with,
farthest_point_to, grid_at, norm, points_along, points_at, points_on,

Random operators

binomial, exp_density, exp_rnd, flip, gamma_density, gamma_rnd, gamma_trunc_rnd, gauss,
generate_terrain, lognormal_density, lognormal_rnd, lognormal_trunc_rnd, poisson, rnd, rnd_choice,
sample, shuffle, skew_gauss, truncated_gauss, weibull_density, weibull_rnd, weibull_trunc_rnd,

Shape

arc, box, circle, cone, cone3D, cross, cube, curve, cylinder, ellipse, elliptical_arc, envelope,
geometry_collection, hexagon, line, link, plan, polygon, polyhedron, pyramid, rectangle, sphere, square,
squircle, teapot, triangle,

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#append_horizontally
http://localhost:3000/wiki/OperatorsAA#append_vertically
http://localhost:3000/wiki/OperatorsBC#column_at
http://localhost:3000/wiki/OperatorsBC#columns_list
http://localhost:3000/wiki/OperatorsDH#determinant
http://localhost:3000/wiki/OperatorsDH#eigenvalues
http://localhost:3000/wiki/OperatorsDH#flatten
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#inverse
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#row_at
http://localhost:3000/wiki/OperatorsNR#rows_list
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#trace
http://localhost:3000/wiki/OperatorsSZ#transpose
http://localhost:3000/wiki/OperatorsDH#electre_dm
http://localhost:3000/wiki/OperatorsDH#evidence_theory_dm
http://localhost:3000/wiki/OperatorsDH#fuzzy_choquet_dm
http://localhost:3000/wiki/OperatorsNR#promethee_dm
http://localhost:3000/wiki/OperatorsSZ#weighted_means_dm
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsDH#generate_pedestrian_network
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#exp_density
http://localhost:3000/wiki/OperatorsDH#exp_rnd
http://localhost:3000/wiki/OperatorsDH#flip
http://localhost:3000/wiki/OperatorsDH#gamma_density
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gamma_trunc_rnd
http://localhost:3000/wiki/OperatorsDH#gauss
http://localhost:3000/wiki/OperatorsDH#generate_terrain
http://localhost:3000/wiki/OperatorsIM#lognormal_density
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_trunc_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsNR#rnd_choice
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_density
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsSZ#weibull_trunc_rnd
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#triangle


Spatial operators

-, *, +, add_point, agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering,
agents_crossing, agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching,
angle_between, any_location_in, arc, around, as_4_grid, as_driving_graph, as_grid, as_hexagonal_grid,
at_distance, at_location, box, centroid, circle, clean, clean_network, closest_points_with, closest_to, cone,
cone3D, convex_hull, covering, covers, cross, crosses, crossing, crs, CRS_transform, cube, curve, cylinder,
direction_between, disjoint_from, distance_between, distance_to, ellipse, elliptical_arc, envelope,
farthest_point_to, farthest_to, geometry_collection, gini, hexagon, hierarchical_clustering, IDW, inside,
inter, intersects, inverse_rotation, k_nearest_neighbors, line, link, masked_by, moran, neighbors_at,
neighbors_of, normalized_rotation, overlapping, overlaps, partially_overlapping, partially_overlaps,
path_between, path_to, plan, points_along, points_at, points_on, polygon, polyhedron, pyramid,
rectangle, rotated_by, rotation_composition, round, scaled_to, set_z, simple_clustering_by_distance,
simplification, skeletonize, smooth, sphere, split_at, split_geometry, split_lines, square, squircle, teapot,
to_GAMA_CRS, to_rectangles, to_segments, to_squares, to_sub_geometries, touches, touching, towards,
transformed_by, translated_by, triangle, triangulate, union, using, voronoi, with_precision,
without_holes,

Spatial properties operators

covers, crosses, intersects, partially_overlaps, touches,

Spatial queries operators

agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering, agents_crossing,
agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching, at_distance,
closest_to, covering, crossing, farthest_to, inside, neighbors_at, neighbors_of, overlapping,
partially_overlapping, touching,

Spatial relations operators

direction_between, distance_between, distance_to, path_between, path_to, towards,

Spatial statistical operators

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_driving_graph
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#crs_transform
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#idw
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsIM#masked_by
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#split_at
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#to_gama_crs
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsSZ#towards
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#using
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsSZ#towards


hierarchical_clustering, k_nearest_neighbors, simple_clustering_by_distance,

Spatial transformations operators

-, *, +, as_4_grid, as_grid, as_hexagonal_grid, at_location, clean, clean_network, convex_hull,
CRS_transform, inverse_rotation, normalized_rotation, rotated_by, rotation_composition, scaled_to,
simplification, skeletonize, smooth, split_geometry, split_lines, to_GAMA_CRS, to_rectangles,
to_segments, to_squares, to_sub_geometries, transformed_by, translated_by, triangulate, voronoi,
with_precision, without_holes,

Species-related operators

index_of, last_index_of, of_generic_species, of_species,

Statistical operators

auto_correlation, beta, binomial_coeff, binomial_complemented, binomial_sum, build, chi_square,
chi_square_complemented, correlation, covariance, dbscan, distribution_of, distribution2d_of, dtw,
durbin_watson, frequency_of, gamma, gamma_distribution, gamma_distribution_complemented,
geometric_mean, gini, harmonic_mean, hierarchical_clustering, incomplete_beta, incomplete_gamma,
incomplete_gamma_complement, k_nearest_neighbors, kmeans, kurtosis, log_gamma, max, mean,
mean_deviation, median, min, moment, moran, morrisAnalysis, mul, normal_area, normal_density,
normal_inverse, predict, pValue_for_fStat, pValue_for_tStat, quantile, quantile_inverse,
rank_interpolated, residuals, rms, rSquare, simple_clustering_by_distance, skewness, sobolAnalysis,
split, split_in, split_using, standard_deviation, student_area, student_t_inverse, sum, t_test, variance,

Strings-related operators

+, <, <=, >, >=, at, capitalize, char, compress, contains, contains_all, contains_any, copy_between, date,
empty, first, in, indented_by, index_of, is_number, last, last_index_of, length, lower_case, regex_matches,
replace, replace_regex, reverse, sample, shuffle, split_with, string, uncompress, upper_case,

SubModel

http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#crs_transform
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#to_gama_crs
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#of_generic_species
http://localhost:3000/wiki/OperatorsNR#of_species
http://localhost:3000/wiki/OperatorsAA#auto_correlation
http://localhost:3000/wiki/OperatorsBC#beta
http://localhost:3000/wiki/OperatorsBC#binomial_coeff
http://localhost:3000/wiki/OperatorsBC#binomial_complemented
http://localhost:3000/wiki/OperatorsBC#binomial_sum
http://localhost:3000/wiki/OperatorsBC#build
http://localhost:3000/wiki/OperatorsBC#chi_square
http://localhost:3000/wiki/OperatorsBC#chi_square_complemented
http://localhost:3000/wiki/OperatorsBC#correlation
http://localhost:3000/wiki/OperatorsBC#covariance
http://localhost:3000/wiki/OperatorsDH#dbscan
http://localhost:3000/wiki/OperatorsDH#distribution_of
http://localhost:3000/wiki/OperatorsDH#distribution2d_of
http://localhost:3000/wiki/OperatorsDH#dtw
http://localhost:3000/wiki/OperatorsDH#durbin_watson
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#gamma
http://localhost:3000/wiki/OperatorsDH#gamma_distribution
http://localhost:3000/wiki/OperatorsDH#gamma_distribution_complemented
http://localhost:3000/wiki/OperatorsDH#geometric_mean
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#harmonic_mean
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#incomplete_beta
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma_complement
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#kmeans
http://localhost:3000/wiki/OperatorsIM#kurtosis
http://localhost:3000/wiki/OperatorsIM#log_gamma
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_deviation
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#moment
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsIM#morrisanalysis
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#normal_area
http://localhost:3000/wiki/OperatorsNR#normal_density
http://localhost:3000/wiki/OperatorsNR#normal_inverse
http://localhost:3000/wiki/OperatorsNR#predict
http://localhost:3000/wiki/OperatorsNR#pvalue_for_fstat
http://localhost:3000/wiki/OperatorsNR#pvalue_for_tstat
http://localhost:3000/wiki/OperatorsNR#quantile
http://localhost:3000/wiki/OperatorsNR#quantile_inverse
http://localhost:3000/wiki/OperatorsNR#rank_interpolated
http://localhost:3000/wiki/OperatorsNR#residuals
http://localhost:3000/wiki/OperatorsNR#rms
http://localhost:3000/wiki/OperatorsNR#rsquare
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#skewness
http://localhost:3000/wiki/OperatorsSZ#sobolanalysis
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#standard_deviation
http://localhost:3000/wiki/OperatorsSZ#student_area
http://localhost:3000/wiki/OperatorsSZ#student_t_inverse
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#t_test
http://localhost:3000/wiki/OperatorsSZ#variance
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsBC#capitalize
http://localhost:3000/wiki/OperatorsBC#char
http://localhost:3000/wiki/OperatorsBC#compress
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#indented_by
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#lower_case
http://localhost:3000/wiki/OperatorsNR#regex_matches
http://localhost:3000/wiki/OperatorsNR#replace
http://localhost:3000/wiki/OperatorsNR#replace_regex
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#split_with
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsSZ#uncompress
http://localhost:3000/wiki/OperatorsSZ#upper_case


load_sub_model,

System

., choose, command, copy, copy_from_clipboard, copy_to_clipboard, copy_to_clipboard, dead, enter,
every, from_gaml, is_error, is_reachable, is_warning, play_sound, user_confirm, user_input_dialog,
wizard, wizard_page,

Time-related operators

date, string,

Types-related operators

action, agent, BDIPlan, bool, container, conversation, directory, emotion, file, float, gaml_type, geometry,
graph, int, kml, list, map, matrix, mental_state, message, Norm, pair, path, point, predicate, regression,
rgb, Sanction, skill, social_link, species, topology, unknown,

User control operators

choose, enter, user_confirm, user_input_dialog, wizard, wizard_page,

Operators

IDW

Possible uses:

IDW  ( container<unknown,geometry> , map , int ) ---> map<geometry,float>

Result:

http://localhost:3000/wiki/OperatorsIM#load_sub_model
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsBC#command
http://localhost:3000/wiki/OperatorsBC#copy
http://localhost:3000/wiki/OperatorsBC#copy_from_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsDH#dead
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsIM#is_error
http://localhost:3000/wiki/OperatorsIM#is_reachable
http://localhost:3000/wiki/OperatorsIM#is_warning
http://localhost:3000/wiki/OperatorsNR#play_sound
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsAA#action
http://localhost:3000/wiki/OperatorsAA#agent
http://localhost:3000/wiki/OperatorsBC#bdiplan
http://localhost:3000/wiki/OperatorsBC#bool
http://localhost:3000/wiki/OperatorsBC#container
http://localhost:3000/wiki/OperatorsBC#conversation
http://localhost:3000/wiki/OperatorsDH#directory
http://localhost:3000/wiki/OperatorsDH#emotion
http://localhost:3000/wiki/OperatorsDH#file
http://localhost:3000/wiki/OperatorsDH#float
http://localhost:3000/wiki/OperatorsDH#gaml_type
http://localhost:3000/wiki/OperatorsDH#geometry
http://localhost:3000/wiki/OperatorsDH#graph
http://localhost:3000/wiki/OperatorsIM#int
http://localhost:3000/wiki/OperatorsIM#kml
http://localhost:3000/wiki/OperatorsIM#list
http://localhost:3000/wiki/OperatorsIM#map
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsIM#mental_state
http://localhost:3000/wiki/OperatorsIM#message
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#pair
http://localhost:3000/wiki/OperatorsNR#path
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#predicate
http://localhost:3000/wiki/OperatorsNR#regression
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsSZ#sanction
http://localhost:3000/wiki/OperatorsSZ#skill
http://localhost:3000/wiki/OperatorsSZ#social_link
http://localhost:3000/wiki/OperatorsSZ#species
http://localhost:3000/wiki/OperatorsSZ#topology
http://localhost:3000/wiki/OperatorsSZ#unknown
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page


Inverse Distance Weighting (IDW) is a type of deterministic method for multivariate interpolation with a
known scattered set of points. The assigned values to each geometry are calculated with a weighted
average of the values available at the known points. See:
http://en.wikipedia.org/wiki/Inverse_distance_weighting Usage: IDW (list of geometries, map of points
(key: point, value: value), power parameter)

Examples:

image

Possible uses:

int  image  int  ---> image

image  ( int  , int ) ---> image

image  ( int , int , bool ) ---> image

image  ( file , int , int ) ---> image

image  ( int , int , rgb ) ---> image

Result:

Builds a new blank image of the specified dimensions, which does not accept transparency Builds a new
blank image with the specified dimensions and indicates if it will support transparency or not Builds a
new image from the specified file, p assing the width and height in parameter Builds a new image with
the specified dimensions and already filled with the given rgb color

image_file

Possible uses:

image_file  ( string ) ---> file

string  image_file  string  ---> file

image_file  ( string  , string ) ---> file

string  image_file  matrix<int>  ---> file

map<geometry,float> var0 <- IDW([ag1, ag2, ag3, ag4, ag5],[{10,10}::25.0, 
{10,80}::10.0, {100,10}::15.0], 2); // var0 equals for example, can return [ag1::12.0, 
ag2::23.0,ag3::12.0,ag4::14.0,ag5::17.0]

http://en.wikipedia.org/wiki/Inverse_distance_weighting


image_file  ( string  , matrix<int> ) ---> file

string  image_file  java.awt.image.BufferedImage  ---> file

image_file  ( string  , java.awt.image.BufferedImage ) ---> file

Result:

Constructs a file of type image. Allowed extensions are limited to tiff, jpg, jpeg, png, pict, bmp

Special cases:

image_file(string,java.awt.image.BufferedImage):

image_file(string): This file constructor allows to read an image file (tiff, jpg, jpeg, png, pict, bmp)

image_file(string,string): This file constructor allows to read an image file (tiff, jpg, jpeg, png, pict,
bmp) and to force the extension of the file (can be useful for images coming from URL)

image_file(string,matrix<int>): This file constructor allows to store a matrix in a image file (it does
not save it - just store it in memory)

See also: is_image,

in

Possible uses:

string  in  string  ---> bool

in  ( string  , string ) ---> bool

unknown  in  container  ---> bool

in  ( unknown  , container ) ---> bool

Result:

file f <-image_file("file.png");

file f <-image_file("http://my_url", "png");

file f <-image_file("file.png");

http://localhost:3000/wiki/OperatorsIM#is_image


true if the right operand contains the left operand, false otherwise

Comment:

the definition of in depends on the container

Special cases:

if both operands are strings, returns true if the left-hand operand patterns is included in to the
right-hand string;

if the right operand is nil or empty, in returns false

Examples:

See also: contains,

in_degree_of

Possible uses:

graph  in_degree_of  unknown  ---> int

in_degree_of  ( graph  , unknown ) ---> int

Result:

returns the in degree of a vertex (right-hand operand) in the graph given as left-hand operand.

Examples:

See also: out_degree_of, degree_of,

bool var0 <-  'bc' in 'abcded'; // var0 equals true 
bool var1 <- 2 in [1,2,3,4,5,6]; // var1 equals true 
bool var2 <- 7 in [1,2,3,4,5,6]; // var2 equals false 
bool var3 <- 3 in [1::2, 3::4, 5::6]; // var3 equals false 
bool var4 <- 6 in [1::2, 3::4, 5::6]; // var4 equals true

int var1 <- graphFromMap in_degree_of (node(3)); // var1 equals 2

http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsNR#out_degree_of
http://localhost:3000/wiki/OperatorsDH#degree_of


in_edges_of

Possible uses:

graph  in_edges_of  unknown  ---> list

in_edges_of  ( graph  , unknown ) ---> list

Result:

returns the list of the in-edges of a vertex (right-hand operand) in the graph given as left-hand operand.

Examples:

See also: out_edges_of,

incomplete_beta

Possible uses:

incomplete_beta  ( float , float , float ) ---> float

Result:

Returns the regularized integral of the beta function with arguments a and b, from zero to x.

Examples:

incomplete_gamma

Possible uses:

float  incomplete_gamma  float  ---> float

incomplete_gamma  ( float  , float ) ---> float

list var1 <- graphFromMap in_edges_of node({12,45}); // var1 equals [LineString]

float var0 <- incomplete_beta(2,3,0.9) with_precision(3); // var0 equals 0.996

http://localhost:3000/wiki/OperatorsNR#out_edges_of


Result:

Returns the regularized integral of the Gamma function with argument a to the integration end point x.

Examples:

incomplete_gamma_complement

Possible uses:

float  incomplete_gamma_complement  float  ---> float

incomplete_gamma_complement  ( float  , float ) ---> float

Result:

Returns the complemented regularized incomplete Gamma function of the argument a and integration
start point x.

Comment:

Is the complement to 1 of incomplete_gamma.

Examples:

indented_by

Possible uses:

string  indented_by  int  ---> string

indented_by  ( string  , int ) ---> string

Result:

float var0 <- incomplete_gamma(1,5.3) with_precision(3); // var0 equals 0.995

float var0 <- incomplete_gamma_complement(1,5.3) with_precision(3); // var0 equals 
0.005



Converts a (possibly multiline) string by indenting it by a number -- specified by the second operand -- of
tabulations to the right

Examples:

index_by

Possible uses:

container  index_by  any expression  ---> map

index_by  ( container  , any expression ) ---> map

Result:

produces a new map from the evaluation of the right-hand operand for each element of the left-hand
operand

Special cases:

if the left-hand operand is nil, index_by throws an error. If the operation results in duplicate keys,
only the first value corresponding to the key is kept

Examples:

index_of

Possible uses:

string  index_of  string  ---> int

index_of  ( string  , string ) ---> int

list  index_of  unknown  ---> int

index_of  ( list  , unknown ) ---> int

string var0 <- "my" + indented_by("text", 1); // var0 equals "my text"

map var0 <- [1,2,3,4,5,6,7,8] index_by (each - 1); // var0 equals [0::1, 1::2, 2::3, 
3::4, 4::5, 5::6, 6::7, 7::8]



species  index_of  unknown  ---> int

index_of  ( species  , unknown ) ---> int

map<unknown,unknown>  index_of  unknown  ---> unknown

index_of  ( map<unknown,unknown>  , unknown ) ---> unknown

matrix  index_of  unknown  ---> point

index_of  ( matrix  , unknown ) ---> point

Result:

the index of the first occurence of the right operand in the left operand container

Comment:

The definition of index_of and the type of the index depend on the container

Special cases:

if the left operator is a species, returns the index of an agent in a species. If the argument is not an
agent of this species, returns -1. Use int(agent) instead

if the left operand is a map, index_of returns the index of a value or nil if the value is not mapped

if both operands are strings, returns the index within the left-hand string of the first occurrence of
the given right-hand string

if the left operand is a list, index_of returns the index as an integer

if the left operand is a matrix, index_of returns the index as a point

Examples:

int var1 <- "abcabcabc" index_of "ca"; // var1 equals 2

int var2 <- [1,2,3,4,5,6] index_of 4; // var2 equals 3 
int var3 <- [4,2,3,4,5,4] index_of 4; // var3 equals 0

point var4 <- matrix([[1,2,3],[4,5,6]]) index_of 4; // var4 equals {1.0,0.0}

unknown var0 <- [1::2, 3::4, 5::6] index_of 4; // var0 equals 3



See also: at, last_index_of,

inside

Possible uses:

container<unknown,geometry>  inside  geometry  ---> list<geometry>

inside  ( container<unknown,geometry>  , geometry ) ---> list<geometry>

Result:

A list of agents or geometries among the left-operand list, species or meta-population (addition of
species), covered by the operand (casted as a geometry).

Examples:

See also: neighbors_at, neighbors_of, closest_to, overlapping, agents_overlapping, agents_inside,
agent_closest_to,

int

Possible uses:

int  ( any ) ---> int

Result:

casts the operand in a int object.

inter

Possible uses:

list<geometry> var0 <- [ag1, ag2, ag3] inside(self); // var0 equals the agents among 
ag1, ag2 and ag3 that are covered by the shape of the right-hand argument. 
list<geometry> var1 <- (species1 + species2) inside (self); // var1 equals the agents 
among species species1 and species2 that are covered by the shape of the right-hand 
argument.

http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agent_closest_to


geometry  inter  geometry  ---> geometry

inter  ( geometry  , geometry ) ---> geometry

container  inter  container  ---> list

inter  ( container  , container ) ---> list

Result:

A geometry resulting from the intersection between the two geometries the intersection of the two
operands

Comment:

both containers are transformed into sets (so without duplicated element, cf. remove_deplicates
operator) before the set intersection is computed.

Special cases:

returns nil if one of the operands is nil

if an operand is a graph, it will be transformed into the set of its nodes

if an operand is a map, it will be transformed into the set of its values

if an operand is a matrix, it will be transformed into the set of the lines

Examples:

See also: union, +, -, remove_duplicates,

interleave

list var3 <- [1::2, 3::4, 5::6] inter [2,4]; // var3 equals [2,4] 
list var4 <- [1::2, 3::4, 5::6] inter [1,3]; // var4 equals []

list var5 <- matrix([[3,2,1],[4,5,4]]) inter [3,4]; // var5 equals [3,4]

geometry var0 <- square(10) inter circle(5); // var0 equals circle(5) 
list var1 <- [1,2,3,4,5,6] inter [2,4]; // var1 equals [2,4] 
list var2 <- [1,2,3,4,5,6] inter [0,8]; // var2 equals []

http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsNR#remove_duplicates


Possible uses:

interleave  ( container ) ---> list

Result:

Returns a new list containing the interleaved elements of the containers contained in the operand

Comment:

the operand should be a list of lists of elements. The result is a list of elements.

Examples:

internal_integrated_value

Possible uses:

any expression  internal_integrated_value  any expression  ---> list

internal_integrated_value  ( any expression  , any expression ) ---> list

Result:

For internal use only. Corresponds to the implementation, for agents, of the access to containers with
[index]

intersecting

Same signification as overlapping

intersection

Same signification as inter

list var0 <- interleave([1,2,4,3,5,7,6,8]); // var0 equals [1,2,4,3,5,7,6,8] 
list var1 <- interleave([['e11','e12','e13'],['e21','e22','e23'],['e31','e32','e33']]); 
// var1 equals ['e11','e21','e31','e12','e22','e32','e13','e23','e33']

http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsIM#inter


intersects

Possible uses:

geometry  intersects  geometry  ---> bool

intersects  ( geometry  , geometry ) ---> bool

Result:

A boolean, equal to true if the left-geometry (or agent/point) intersects the right-geometry (or
agent/point).

Special cases:

if one of the operand is null, returns false.

Examples:

See also: disjoint_from, crosses, overlaps, partially_overlaps, touches,

inverse

Possible uses:

inverse  ( matrix ) ---> matrix<float>

Result:

The inverse matrix of the given matrix. If no inverse exists, returns a matrix that has properties that
resemble that of an inverse.

Examples:

bool var0 <- square(5) intersects {10,10}; // var0 equals false

matrix<float> var0 <- inverse(matrix([[4,3],[3,2]])); // var0 equals 
matrix([[-2.0,3.0],[3.0,-4.0]])

http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsSZ#touches


inverse_distance_weighting

Same signification as IDW

inverse_rotation

Possible uses:

inverse_rotation  ( pair<float,point> ) ---> pair<float,point>

Result:

The inverse rotation. It is a rotation around the same axis with the opposite angle.

Examples:

See also: [rotation_composition, normalized_rotation](OperatorsSZ#rotation_composition,
normalized_rotation),

is

Possible uses:

unknown  is  any expression  ---> bool

is  ( unknown  , any expression ) ---> bool

Result:

returns true if the left operand is of the right operand type, false otherwise

Examples:

pair<float,point> var0 <- inverse_rotation(38.0::{1,1,1}); // var0 equals -38.0::
{1,1,1}

bool var0 <- 0 is int; // var0 equals true 
bool var1 <- an_agent is node; // var1 equals true 
bool var2 <- 1 is float; // var2 equals false

http://localhost:3000/wiki/OperatorsIM#IDW


is_agent

Possible uses:

is_agent  ( any ) ---> bool

Result:

Tests whether the operand is a agent file.

See also: agent_file,

is_csv

Possible uses:

is_csv  ( any ) ---> bool

Result:

Tests whether the operand is a csv file.

See also: csv_file,

is_dxf

Possible uses:

is_dxf  ( any ) ---> bool

Result:

Tests whether the operand is a dxf file.

See also: dxf_file,

is_error

http://localhost:3000/wiki/OperatorsAA#agent_file
http://localhost:3000/wiki/OperatorsBC#csv_file
http://localhost:3000/wiki/OperatorsDH#dxf_file


Possible uses:

is_error  ( any expression ) ---> bool

Result:

Returns whether or not the argument raises an error when evaluated

is_finite

Possible uses:

is_finite  ( float ) ---> bool

Result:

Returns whether the argument is a finite number or not

Examples:

is_gaml

Possible uses:

is_gaml  ( any ) ---> bool

Result:

Tests whether the operand is a gaml file.

See also: gaml_file,

is_geojson

Possible uses:

bool var0 <- is_finite(4.66); // var0 equals true 
bool var1 <- is_finite(#infinity); // var1 equals false

http://localhost:3000/wiki/OperatorsDH#gaml_file


is_geojson  ( any ) ---> bool

Result:

Tests whether the operand is a geojson file.

See also: geojson_file,

is_gif

Possible uses:

is_gif  ( any ) ---> bool

Result:

Tests whether the operand is a gif file.

See also: gif_file,

is_gml

Possible uses:

is_gml  ( any ) ---> bool

Result:

Tests whether the operand is a gml file.

See also: gml_file,

is_graph6

Possible uses:

is_graph6  ( any ) ---> bool

Result:

http://localhost:3000/wiki/OperatorsDH#geojson_file
http://localhost:3000/wiki/OperatorsDH#gif_file
http://localhost:3000/wiki/OperatorsDH#gml_file


Tests whether the operand is a graph6 file.

See also: graph6_file,

is_graphdimacs

Possible uses:

is_graphdimacs  ( any ) ---> bool

Result:

Tests whether the operand is a graphdimacs file.

See also: graphdimacs_file,

is_graphdot

Possible uses:

is_graphdot  ( any ) ---> bool

Result:

Tests whether the operand is a graphdot file.

See also: graphdot_file,

is_graphgexf

Possible uses:

is_graphgexf  ( any ) ---> bool

Result:

Tests whether the operand is a graphgexf file.

See also: graphgexf_file,

http://localhost:3000/wiki/OperatorsDH#graph6_file
http://localhost:3000/wiki/OperatorsDH#graphdimacs_file
http://localhost:3000/wiki/OperatorsDH#graphdot_file
http://localhost:3000/wiki/OperatorsDH#graphgexf_file


is_graphgml

Possible uses:

is_graphgml  ( any ) ---> bool

Result:

Tests whether the operand is a graphgml file.

See also: graphgml_file,

is_graphml

Possible uses:

is_graphml  ( any ) ---> bool

Result:

Tests whether the operand is a graphml file.

See also: graphml_file,

is_graphtsplib

Possible uses:

is_graphtsplib  ( any ) ---> bool

Result:

Tests whether the operand is a graphtsplib file.

See also: graphtsplib_file,

is_grid

http://localhost:3000/wiki/OperatorsDH#graphgml_file
http://localhost:3000/wiki/OperatorsDH#graphml_file
http://localhost:3000/wiki/OperatorsDH#graphtsplib_file


Possible uses:

is_grid  ( any ) ---> bool

Result:

Tests whether the operand is a grid file.

See also: grid_file,

is_image

Possible uses:

is_image  ( any ) ---> bool

Result:

Tests whether the operand is a image file.

See also: image_file,

is_json

Possible uses:

is_json  ( any ) ---> bool

Result:

Tests whether the operand is a json file.

See also: json_file,

is_number

Possible uses:

is_number  ( string ) ---> bool

http://localhost:3000/wiki/OperatorsDH#grid_file
http://localhost:3000/wiki/OperatorsIM#image_file
http://localhost:3000/wiki/OperatorsIM#json_file


is_number  ( float ) ---> bool

Result:

tests whether the operand represents a numerical value Returns whether the argument is a real
number or not

Comment:

Note that the symbol . should be used for a float value (a string with , will not be considered as a
numeric value). Symbols e and E are also accepted. A hexadecimal value should begin with #.

Examples:

is_obj

Possible uses:

is_obj  ( any ) ---> bool

Result:

Tests whether the operand is a obj file.

See also: obj_file,

is_osm

Possible uses:

is_osm  ( any ) ---> bool

bool var0 <- is_number("test"); // var0 equals false 
bool var1 <- is_number("123.56"); // var1 equals true 
bool var2 <- is_number("-1.2e5"); // var2 equals true 
bool var3 <- is_number("1,2"); // var3 equals false 
bool var4 <- is_number("#12FA"); // var4 equals true 
bool var5 <- is_number(4.66); // var5 equals true 
bool var6 <- is_number(#infinity); // var6 equals true 
bool var7 <- is_number(#nan); // var7 equals false

http://localhost:3000/wiki/OperatorsNR#obj_file


Result:

Tests whether the operand is a osm file.

See also: osm_file,

is_pgm

Possible uses:

is_pgm  ( any ) ---> bool

Result:

Tests whether the operand is a pgm file.

See also: pgm_file,

is_property

Possible uses:

is_property  ( any ) ---> bool

Result:

Tests whether the operand is a property file.

See also: property_file,

is_reachable

Possible uses:

string  is_reachable  int  ---> bool

is_reachable  ( string  , int ) ---> bool

is_reachable  ( string , int , int ) ---> bool

Result:

http://localhost:3000/wiki/OperatorsNR#osm_file
http://localhost:3000/wiki/OperatorsNR#pgm_file
http://localhost:3000/wiki/OperatorsNR#property_file


Returns whether or not the given web address is reachable or not before a time_out time in milliseconds
Returns whether or not the given web address is reachable or not before a time_out time in milliseconds

Examples:

is_shape

Possible uses:

is_shape  ( any ) ---> bool

Result:

Tests whether the operand is a shape file.

See also: shape_file,

is_simulation

Possible uses:

is_simulation  ( any ) ---> bool

Result:

Tests whether the operand is a simulation file.

See also: simulation_file,

is_skill

Possible uses:

unknown  is_skill  string  ---> bool

is_skill  ( unknown  , string ) ---> bool

write sample(is_reachable("www.google.com", 200)); 
write sample(is_reachable("www.google.com", 200));

http://localhost:3000/wiki/OperatorsSZ#shape_file
http://localhost:3000/wiki/OperatorsSZ#simulation_file


Result:

returns true if the left operand is an agent whose species implements the right-hand skill name

Examples:

is_svg

Possible uses:

is_svg  ( any ) ---> bool

Result:

Tests whether the operand is a svg file.

See also: svg_file,

is_text

Possible uses:

is_text  ( any ) ---> bool

Result:

Tests whether the operand is a text file.

See also: text_file,

is_threeds

Possible uses:

is_threeds  ( any ) ---> bool

bool var0 <- agentA is_skill 'moving'; // var0 equals true

http://localhost:3000/wiki/OperatorsSZ#svg_file
http://localhost:3000/wiki/OperatorsSZ#text_file


Result:

Tests whether the operand is a threeds file.

See also: threeds_file,

is_warning

Possible uses:

is_warning  ( any expression ) ---> bool

Result:

Returns whether or not the argument raises a warning when evaluated

is_xml

Possible uses:

is_xml  ( any ) ---> bool

Result:

Tests whether the operand is a xml file.

See also: xml_file,

json_file

Possible uses:

json_file  ( string ) ---> file

string  json_file  map<string,unknown>  ---> file

json_file  ( string  , map<string,unknown> ) ---> file

Result:

Constructs a file of type json. Allowed extensions are limited to json

http://localhost:3000/wiki/OperatorsSZ#threeds_file
http://localhost:3000/wiki/OperatorsSZ#xml_file


Special cases:

json_file(string): This file constructor allows to read a json file

json_file(string,map<string,unknown>): This constructor allows to store a map in a json file (it does
not save it). The file can then be saved later using the save  statement

See also: is_json,

k_nearest_neighbors

Possible uses:

k_nearest_neighbors  ( agent , map<agent,unknown> , int ) ---> unknown

Result:

This operator allows user to find the attribute of an agent basing on its k-nearest agents

Comment:

In order to use this operator, users have to create a map which map the agents with one of their
attributes (for example color or size,..). In the example below, 'map' is the map that I mention above, 'k'
is the number of the nearest agents that we areconsidering

Examples:

k_spanning_tree_clustering

Possible uses:

file f <-json_file("file.json");

file f <-json_file("file.json", map(["var1"::1.0, "var2"::3.0]));

unknown var0 <- self k_nearest_neighbors (map,k); // var0 equals this will return the 
attribute which has highest frequency in the k-nearest neighbors of our agent 

http://localhost:3000/wiki/OperatorsIM#is_json


graph  k_spanning_tree_clustering  int  ---> list

k_spanning_tree_clustering  ( graph  , int ) ---> list

Result:

The algorithm finds a minimum spanning tree T using Prim's algorithm, then executes Kruskal's
algorithm only on the edges of T until k trees are formed. The resulting trees are the final clusters.It
returns a list of list of vertices and takes as operand the graph and the number of clusters

kappa

Possible uses:

kappa  ( list<unknown> , list<unknown> , list<unknown> ) ---> float

kappa  ( list<unknown> , list<unknown> , list<unknown> , list<unknown> ) ---> float

Result:

kappa indicator for 2 map comparisons: kappa(list_vals1,list_vals2,categories). Reference: Cohen, J. A
coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20. kappa indicator for 2 map
comparisons: kappa(list_vals1,list_vals2,categories, weights). Reference: Cohen, J. A coefficient of
agreement for nominal scales. Educ. Psychol. Meas. 1960, 20.

Examples:

kappa_sim

Possible uses:

kappa_sim  ( list<unknown> , list<unknown> , list<unknown> , list<unknown> ) ---> float

kappa([cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2],[cat1,cat2,cat3]) 
float var1 <- kappa([1,3,5,1,5],[1,1,1,1,5],[1,3,5]); // var1 equals 0.3333333333333334 
float var2 <- kappa([1,1,1,1,5],[1,1,1,1,5],[1,3,5]); // var2 equals 1.0 
float var3 <- kappa(["cat1","cat3","cat2","cat1","cat3"],
["cat1","cat3","cat2","cat3","cat1"],["cat1","cat2","cat3"], [1.0, 2.0, 3.0, 1.0, 
5.0]); // var3 equals 0.29411764705882354



kappa_sim  ( list<unknown> , list<unknown> , list<unknown> , list<unknown> , list<unknown> ) --->
float

Result:

Kappa simulation indicator for 2 map comparisons. Reference: van Vliet, J., Bregt, A.K. & Hagen-
Zanker, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of

land-use change models, Ecological Modelling 222(8).

Special cases:

kappa_sim can be used with an additional weights operand

Examples:

kmeans

Possible uses:

list  kmeans  int  ---> list<list>

kmeans  ( list  , int ) ---> list<list>

kmeans  ( list , int , int ) ---> list<list>

Result:

returns the list of clusters (list of instance indices) computed with the kmeans++ algorithm from the first
operand data according to the number of clusters to split the data into (k) and the maximum number of
iterations to run the algorithm.(If negative, no maximum will be used) (maxIt). Usage:
kmeans(data,k,maxit)

Special cases:

float var1 <- kappa_sim(["cat1","cat1","cat2","cat2","cat2"],
["cat1","cat3","cat2","cat1","cat3"],["cat1","cat3","cat2","cat3","cat1"],
["cat1","cat2","cat3"], [1.0, 2.0, 3.0, 1.0, 5.0]); // var1 equals 0.2702702702702703

float var0 <- kappa_sim(["cat1","cat1","cat2","cat2","cat2"],
["cat1","cat3","cat2","cat1","cat3"],["cat1","cat3","cat2","cat3","cat1"],
["cat1","cat2","cat3"]); // var0 equals 0.3333333333333335



The maximum number of (third operand) can be omitted.

Examples:

kml

Possible uses:

kml  ( any ) ---> kml

Result:

casts the operand in a kml object.

kurtosis

Possible uses:

kurtosis  ( list ) ---> float

float  kurtosis  float  ---> float

kurtosis  ( float  , float ) ---> float

Result:

Returns the kurtosis from a moment and a standard deviation Returns the kurtosis (aka excess) of a list
of values (kurtosis = { [n(n+1) / (n -1)(n - 2)(n-3)] sum[(x_i - mean)^4] / std^4 } - [3(n-1)^2 / (n-2)(n-3)])

Special cases:

if the length of the list is lower than 3, returns NaN

Examples:

list<list> var0 <- kmeans ([[2,4,5], [3,8,2], [1,1,3], [4,3,4]],2); // var0 equals 
[[0,2,3],[1]]

list<list> var1 <- kmeans ([[2,4,5], [3,8,2], [1,1,3], [4,3,4]],2,10); // var1 equals 
[[0,2,3],[1]]



label_propagation_clustering

Possible uses:

graph  label_propagation_clustering  int  ---> list

label_propagation_clustering  ( graph  , int ) ---> list

Result:

The algorithm is a near linear time algorithm capable of discovering communities in large graphs. It is
described in detail in the following: Raghavan, U. N., Albert, R., and Kumara, S. (2007). Near linear time
algorithm to detect

community structures in large-scale networks. Physical review E, 76(3), 036106.It returns a list of list
of vertices and takes as operand the graph and maximal number of iteration

last

Possible uses:

last  ( string ) ---> string

last  ( container<KeyType,ValueType> ) ---> ValueType

int  last  container  ---> list

last  ( int  , container ) ---> list

Result:

the last element of the operand

Comment:

the last operator behavior depends on the nature of the operand

Special cases:

float var0 <- kurtosis(3,12) with_precision(4); // var0 equals -2.9999 
float var1 <- kurtosis ([1,2,3,4,5]); // var1 equals -1.200000000000002 
float var2 <- kurtosis([13,2,1,4,1,2]) with_precision(4); // var2 equals 4.8083



if it is a map, last returns the value of the last pair (in insertion order)

if it is a file, last returns the last element of the content of the file (that is also a container)

if it is a population, last returns the last agent of the population

if it is a graph, last returns a list containing the last edge created

if it is a matrix, last returns the element at {length-1,length-1} in the matrix

for a matrix of int or float, it will return 0 if the matrix is empty

for a matrix of object or geometry, it will return nil if the matrix is empty

if it is a string, last returns a string composed of its last character, or an empty string if the operand
is empty

if it is a list, last returns the last element of the list, or nil if the list is empty

See also: first,

last_index_of

Possible uses:

species  last_index_of  unknown  ---> int

last_index_of  ( species  , unknown ) ---> int

list  last_index_of  unknown  ---> int

last_index_of  ( list  , unknown ) ---> int

map<unknown,unknown>  last_index_of  unknown  ---> unknown

last_index_of  ( map<unknown,unknown>  , unknown ) ---> unknown

string  last_index_of  string  ---> int

last_index_of  ( string  , string ) ---> int

matrix  last_index_of  unknown  ---> point

last_index_of  ( matrix  , unknown ) ---> point

Result:

string var0 <- last ('abce'); // var0 equals 'e'

int var1 <- last ([1, 2, 3]); // var1 equals 3

http://localhost:3000/wiki/OperatorsDH#first


the index of the last occurence of the right operand in the left operand container

Comment:

The definition of last_index_of and the type of the index depend on the container

Special cases:

if the left operand is a species, the last index of an agent is the same as its index

if the left operand is a list, last_index_of returns the index as an integer

if the left operand is a map, last_index_of returns the index as an int (the key of the pair)

if both operands are strings, returns the index within the left-hand string of the rightmost
occurrence of the given right-hand string

if the left operand is a matrix, last_index_of returns the index as a point

See also: at, index_of, last_index_of,

last_of

Same signification as last

last_with

Possible uses:

int var0 <- [1,2,3,4,5,6] last_index_of 4; // var0 equals 3 
int var1 <- [4,2,3,4,5,4] last_index_of 4; // var1 equals 5

unknown var2 <- [1::2, 3::4, 5::4] last_index_of 4; // var2 equals 5

int var3 <- "abcabcabc" last_index_of "ca"; // var3 equals 5

point var4 <- matrix([[1,2,3],[4,5,4]]) last_index_of 4; // var4 equals {1.0,2.0}

http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsIM#last


container  last_with  any expression  ---> unknown

last_with  ( container  , any expression ) ---> unknown

Result:

the last element of the left-hand operand that makes the right-hand operand evaluate to true.

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand
operand elements.

Special cases:

if the left-hand operand is nil, last_with throws an error.

If there is no element that satisfies the condition, it returns nil

if the left-operand is a map, the keyword each will contain each value

Examples:

See also: group_by, first_with, where,

layout_circle

Possible uses:

layout_circle  ( graph , geometry , bool ) ---> graph

Result:

unknown var4 <- [1::2, 3::4, 5::6] last_with (each >= 4); // var4 equals 6 
unknown var5 <- [1::2, 3::4, 5::6].pairs last_with (each.value >= 4); // var5 equals 
(5::6)

int var0 <- [1,2,3,4,5,6,7,8] last_with (each > 3); // var0 equals 8 
unknown var2 <- g2 last_with (length(g2 out_edges_of each) = 0 ); // var2 equals a node 
unknown var3 <- (list(node) last_with (round(node(each).location.x) > 32); // var3 
equals node3

http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsSZ#where


layouts a Gama graph on a circle with equidistance between nodes. For now there is no optimization on
node ordering.

Special cases:

Usage: layoutCircle(graph, bound, shuffle) => graph : the graph to layout, bound : the geometry to
display the graph within, shuffle : if true shuffle the nodes, then render same ordering

Examples:

layout_force

Possible uses:

layout_force  ( graph , geometry , float , float , int ) ---> graph

layout_force  ( graph , geometry , float , float , int , float ) ---> graph

Result:

layouts a GAMA graph using Force model (in a given spatial bound and given coeff_force, cooling_rate,
max_iteration, and equilibirum criterion parameters).

Special cases:

usage: layoutForce(graph, bounds, coeff_force, cooling_rate, max_iteration, equilibirum criterion).
graph is the graph to which applied the layout; bounds is the shape (geometry) in which the graph
should be located; coeff_force is the coefficien use to compute the force, typical value is 0.4; cooling
rate is the decreasing coefficient of the temperature, typical value is 0.01; max_iteration is the
maximal number of iterations; equilibirum criterion is the maximaldistance of displacement for a
vertice to be considered as in equilibrium

usage: layoutForce(graph, bounds, coeff_force, cooling_rate, max_iteration). graph is the graph to
which applied the layout; bounds is the shape (geometry) in which the graph should be located;
coeff_force is the coefficient used to compute the force, typical value is 0.4; cooling rate is the
decreasing coefficient of the temperature, typical value is 0.01; max_iteration is the maximal
number of iterationsdistance of displacement for a vertice to be considered as in equilibrium

layout_circle(graph, world.shape, false);



layout_force_FR

Possible uses:

layout_force_FR  ( graph , geometry , float , int ) ---> graph

Result:

layouts a GAMA graph using Fruchterman and Reingold Force-Directed Placement Algorithm (in a given
spatial bound, normalization factor and max_iteration parameters).

Special cases:

usage: layoutForce(graph, bounds, normalization_factor, max_iteration, equilibirum criterion). graph
is the graph to which applied the layout; bounds is the shape (geometry) in which the graph should
be located; normalization_factor is the normalization factor for the optimal distance, typical value is
1.0; max_iteration is the maximal number of iterations

layout_force_FR_indexed

Possible uses:

layout_force_FR_indexed  ( graph , geometry , float , float , int ) ---> graph

Result:

layouts a GAMA graph using Fruchterman and Reingold Force-Directed Placement Algorithm with The
Barnes-Hut indexing technique(in a given spatial bound, theta, normalization factor and max_iteration
parameters).

Special cases:

usage: layoutForce(graph, bounds, normalization_factor, max_iteration, equilibirum criterion). graph
is the graph to which applied the layout; bounds is the shape (geometry) in which the graph should
be located; theta value for approximation using the Barnes-Hut technique, typical value is 0.5;
normalization_factor is the normalization factor for the optimal distance, typical value is 1.0;
max_iteration is the maximal number of iterations

layout_grid



Possible uses:

layout_grid  ( graph , geometry , float ) ---> graph

Result:

layouts a Gama graph based on a grid latice. usage: layoutForce(graph, bounds, coeff_nb_cells). graph is
the graph to which the layout is applied; bounds is the shape (geometry) in which the graph should be
located; coeff_nb_cellsthe coefficient for the number of cells to locate the vertices (nb of places =
coeff_nb_cells * nb of vertices).

Examples:

length

Possible uses:

length  ( string ) ---> int

length  ( container<KeyType,ValueType> ) ---> int

Result:

the number of elements contained in the operand

Comment:

the length operator behavior depends on the nature of the operand

Special cases:

if it is a population, length returns number of agents of the population

if it is a graph, length returns the number of vertexes or of edges (depending on the way it was
created)

if it is a string, length returns the number of characters

layout_grid(graph, world.shape);

int var0 <- length ("I am an agent"); // var0 equals 13



if it is a list or a map, length returns the number of elements in the list or map

if it is a matrix, length returns the number of cells

lgamma

Same signification as log_gamma

line

Possible uses:

line  ( container<unknown,geometry> ) ---> geometry

container<unknown,geometry>  line  float  ---> geometry

line  ( container<unknown,geometry>  , float ) ---> geometry

Result:

A polyline geometry from the given list of points.

Special cases:

if the points list operand is nil, returns the point geometry {0,0}

if the points list operand is composed of a single point, returns a point geometry.

if a radius is added, the given list of points represented as a cylinder of radius r

Examples:

int var1 <- length([12,13]); // var1 equals 2 
int var2 <- length([]); // var2 equals 0

int var3 <- length(matrix([["c11","c12","c13"],["c21","c22","c23"]])); // var3 equals 6

geometry var3 <- polyline([{0,0}, {0,10}, {10,10}, {10,0}],0.2); // var3 equals a 
polyline geometry composed of the 4 points.

http://localhost:3000/wiki/OperatorsIM#log_gamma


See also: around, circle, cone, link, norm, point, polygone, rectangle, square, triangle,

link

Possible uses:

geometry  link  geometry  ---> geometry

link  ( geometry  , geometry ) ---> geometry

Result:

A dynamic line geometry between the location of the two operands

Comment:

The geometry of the link is a line between the locations of the two operands, which is built and
maintained dynamically

Special cases:

if one of the operands is nil, link returns a point geometry at the location of the other. If both are
null, it returns a point geometry at {0,0}

Examples:

See also: around, circle, cone, line, norm, point, polygon, polyline, rectangle, square, triangle,

list

Possible uses:

geometry var0 <- polyline([{0,0}, {0,10}, {10,10}]); // var0 equals a polyline geometry 
composed of the 3 points. 
geometry var1 <- line([{10,10}, {10,0}]); // var1 equals a line from 2 points. 
string var2 <- string(polyline([{0,0}, {0,10}, {10,10}])+line([{10,10}, {10,0}])); // 
var2 equals "MULTILINESTRING ((0 0, 0 10, 10 10), (10 10, 10 0))"

geometry var0 <- link (geom1,geom2); // var0 equals a link geometry between geom1 and 
geom2.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsSZ#polygone
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle


list  ( any ) ---> list

Result:

casts the operand in a list object.

list_with

Possible uses:

int  list_with  any expression  ---> list

list_with  ( int  , any expression ) ---> list

Result:

creates a list with a size provided by the first operand, and filled with the second operand

Comment:

Note that the first operand should be positive, and that the second one is evaluated for each position in
the list.

Examples:

See also: list,

ln

Possible uses:

ln  ( int ) ---> float

ln  ( float ) ---> float

Result:

Returns the natural logarithm (base e) of the operand.

list var0 <- list_with(5,2); // var0 equals [2,2,2,2,2]

http://localhost:3000/wiki/OperatorsIM#list


Special cases:

an exception is raised if the operand is less than zero.

Examples:

See also: exp,

load_shortest_paths

Possible uses:

graph  load_shortest_paths  matrix  ---> graph

load_shortest_paths  ( graph  , matrix ) ---> graph

Result:

put in the graph cache the computed shortest paths contained in the matrix (rows: source, columns:
target)

Examples:

load_sub_model

Possible uses:

string  load_sub_model  string  ---> agent

load_sub_model  ( string  , string ) ---> agent

Result:

Load a submodel

float var0 <- ln(1); // var0 equals 0.0 
float var1 <- ln(exp(1)); // var1 equals 1.0

graph var0 <- load_shortest_paths(shortest_paths_matrix); // var0 equals return 
my_graph with all the shortest paths computed

http://localhost:3000/wiki/OperatorsDH#exp


Comment:

loaded submodel

log

Possible uses:

log  ( int ) ---> float

log  ( float ) ---> float

Result:

Returns the logarithm (base 10) of the operand.

Special cases:

an exception is raised if the operand is equals or less than zero.

Examples:

See also: ln,

log_gamma

Possible uses:

log_gamma  ( float ) ---> float

Result:

Returns the log of the value of the Gamma function at x.

Examples:

float var0 <- log(1); // var0 equals 0.0 
float var1 <- log(10); // var1 equals 1.0

float var0 <- log_gamma(0.6) with_precision(4); // var0 equals 0.3982

http://localhost:3000/wiki/OperatorsIM#ln


lognormal_density

Possible uses:

lognormal_density  ( float , float , float ) ---> float

Result:

lognormal_density(x,shape,scale) returns the probability density function (PDF) at the specified point x
of the logNormal distribution with the given shape and scale.

Examples:

See also: binomial, gamma_rnd, gauss_rnd, poisson, rnd, skew_gauss, truncated_gauss, weibull_rnd,
weibull_density, gamma_density,

lognormal_rnd

Possible uses:

float  lognormal_rnd  float  ---> float

lognormal_rnd  ( float  , float ) ---> float

Result:

returns a random value from a Log-Normal distribution with specified values of the shape (alpha) and
scale (beta) parameters. See https://en.wikipedia.org/wiki/Log-normal_distribution for more details.

Examples:

See also: binomial, gamma_rnd, gauss_rnd, poisson, rnd, skew_gauss, truncated_gauss, weibull_rnd,
lognormal_trunc_rnd,

float var0 <- lognormal_density(1,2,3) ; // var0 equals 0.731

float var0 <- lognormal_rnd(2,3); // var0 equals 0.731

http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsSZ#weibull_density
http://localhost:3000/wiki/OperatorsDH#gamma_density
https://en.wikipedia.org/wiki/Log-normal_distribution
http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_trunc_rnd


lognormal_trunc_rnd

Possible uses:

lognormal_trunc_rnd  ( float , float , float , float ) ---> float

lognormal_trunc_rnd  ( float , float , float , bool ) ---> float

Result:

returns a random value from a truncated Log-Normal distribution (in a range or given only one
boundary) with specified values of the shape (alpha) and scale (beta) parameters. See
https://en.wikipedia.org/wiki/Log-normal_distribution for more details.

Special cases:

when 2 float operands are specified, they are taken as mininimum and maximum values for the
result

when 1 float and a boolean (isMax) operands are specified, the float value represents the single
boundary (max if the boolean is true, min otherwise),

See also: lognormal_rnd, gamma_trunc_rnd, weibull_trunc_rnd, truncated_gauss,

lower_case

Possible uses:

lower_case  ( string ) ---> string

Result:

Converts all of the characters in the string operand to lower case

Examples:

lognormal_trunc_rnd(2,3,0,5)

lognormal_trunc_rnd(2,3,5,true)

https://en.wikipedia.org/wiki/Log-normal_distribution
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsDH#gamma_trunc_rnd
http://localhost:3000/wiki/OperatorsSZ#weibull_trunc_rnd
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss


See also: upper_case,

main_connected_component

Possible uses:

main_connected_component  ( graph ) ---> graph

Result:

returns the sub-graph corresponding to the main connected components of the graph

Examples:

See also: connected_components_of,

map

Possible uses:

map  ( any ) ---> map

Result:

casts the operand in a map object.

masked_by

Possible uses:

geometry  masked_by  container<unknown,geometry>  ---> geometry

masked_by  ( geometry  , container<unknown,geometry> ) ---> geometry

string var0 <- lower_case("Abc"); // var0 equals 'abc'

graph var0 <- main_connected_component(my_graph); // var0 equals the sub-graph 
corresponding to the main connected components of the graph

http://localhost:3000/wiki/OperatorsSZ#upper_case
http://localhost:3000/wiki/OperatorsBC#connected_components_of


masked_by  ( geometry , container<unknown,geometry> , int ) ---> geometry

Examples:

matrix

Possible uses:

matrix  ( any ) ---> matrix

Result:

casts the operand in a matrix object.

matrix

Possible uses:

matrix  ( image ) ---> matrix

Result:

Returns the matrix<int> value of the image passed in parameter, where each pixel is represented by the
RGB int value. The dimensions of the matrix are those of the image.

matrix_with

Possible uses:

point  matrix_with  any expression  ---> matrix

matrix_with  ( point  , any expression ) ---> matrix

geometry var0 <- perception_geom masked_by obstacle_list; // var0 equals the geometry 
representing the part of perception_geom visible from the agent position considering 
the list of obstacles obstacle_list. 
geometry var1 <- perception_geom masked_by obstacle_list; // var1 equals the geometry 
representing the part of perception_geom visible from the agent position considering 
the list of obstacles obstacle_list.



Result:

creates a matrix with a size provided by the first operand, and filled with the second operand. The given
expression, unless constant, is evaluated for each cell

Comment:

Note that both components of the right operand point should be positive, otherwise an exception is
raised.

See also: matrix, as_matrix,

max

Possible uses:

max  ( container ) ---> unknown

Result:

the maximum element found in the operand

Comment:

the max operator behavior depends on the nature of the operand

Special cases:

if it is a population of a list of other type: max transforms all elements into integer and returns the
maximum of them

if it is a map, max returns the maximum among the list of all elements value

if it is a file, max returns the maximum of the content of the file (that is also a container)

if it is a graph, max returns the maximum of the list of the elements of the graph (that can be the
list of edges or vertexes depending on the graph)

if it is a matrix of int, float or object, max returns the maximum of all the numerical elements (thus
all elements for integer and float matrices)

if it is a matrix of geometry, max returns the maximum of the list of the geometries

if it is a matrix of another type, max returns the maximum of the elements transformed into float

if it is a list of int of float, max returns the maximum of all the elements

http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsAA#as_matrix


if it is a list of points: max returns the maximum of all points as a point (i.e. the point with the
greatest coordinate on the x-axis, in case of equality the point with the greatest coordinate on the y-
axis is chosen. If all the points are equal, the first one is returned. )

See also: min,

max_flow_between

Possible uses:

max_flow_between  ( graph , unknown , unknown ) ---> map<unknown,float>

Result:

The max flow (map<edge,flow> in a graph between the source and the sink using Edmonds-Karp
algorithm

Examples:

max_of

Possible uses:

container  max_of  any expression  ---> unknown

max_of  ( container  , any expression ) ---> unknown

Result:

the maximum value of the right-hand expression evaluated on each of the elements of the left-hand
operand

unknown var0 <- max ([100, 23.2, 34.5]); // var0 equals 100.0

unknown var1 <- max([{1.0,3.0},{3.0,5.0},{9.0,1.0},{7.0,8.0}]); // var1 equals 
{9.0,1.0}

max_flow_between(my_graph, vertice1, vertice2)

http://localhost:3000/wiki/OperatorsIM#min


Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand
operand elements.

Special cases:

As of GAMA 1.6, if the left-hand operand is nil or empty, max_of throws an error

if the left-operand is a map, the keyword each will contain each value

Examples:

See also: min_of,

maximal_cliques_of

Possible uses:

maximal_cliques_of  ( graph ) ---> list<list>

Result:

returns the maximal cliques of a graph using the Bron-Kerbosch clique detection algorithm: A clique is
maximal if it is impossible to enlarge it by adding another vertex from the graph. Note that a maximal
clique is not necessarily the biggest clique in the graph.

Examples:

unknown var4 <- [1::2, 3::4, 5::6] max_of (each + 3); // var4 equals 9

unknown var0 <- [1,2,4,3,5,7,6,8] max_of (each * 100 ); // var0 equals 800 
graph g2 <- as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]); 
unknown var2 <- g2.vertices max_of (g2 degree_of( each )); // var2 equals 2 
unknown var3 <- (list(node) max_of (round(node(each).location.x)); // var3 equals 96

graph my_graph <- graph([]); 
list<list> var1 <- maximal_cliques_of (my_graph); // var1 equals the list of all the 
maximal cliques as list

http://localhost:3000/wiki/OperatorsIM#min_of


See also: biggest_cliques_of,

mean

Possible uses:

mean  ( container ) ---> unknown

Result:

the mean of all the elements of the operand

Comment:

the elements of the operand are summed (see sum for more details about the sum of container
elements ) and then the sum value is divided by the number of elements.

Special cases:

if the container contains points, the result will be a point. If the container contains rgb values, the
result will be a rgb color

Examples:

See also: sum,

mean_deviation

Possible uses:

mean_deviation  ( container ) ---> float

Result:

the deviation from the mean of all the elements of the operand. See Mean_deviation for more details.

Comment:

unknown var0 <- mean ([4.5, 3.5, 5.5, 7.0]); // var0 equals 5.125 

http://localhost:3000/wiki/OperatorsBC#biggest_cliques_of
http://localhost:3000/wiki/OperatorsSZ#sum
http://en.wikipedia.org/wiki/Absolute_deviation


The operator casts all the numerical element of the list into float. The elements that are not numerical
are discarded.

Examples:

See also: mean, standard_deviation,

mean_of

Possible uses:

container  mean_of  any expression  ---> unknown

mean_of  ( container  , any expression ) ---> unknown

Result:

the mean of the right-hand expression evaluated on each of the elements of the left-hand operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand
operand elements.

Special cases:

if the left-operand is a map, the keyword each will contain each value

Examples:

See also: min_of, max_of, sum_of, product_of,

float var0 <- mean_deviation ([4.5, 3.5, 5.5, 7.0]); // var0 equals 1.125

unknown var1 <- [1::2, 3::4, 5::6] mean_of (each); // var1 equals 4

unknown var0 <- [1,2] mean_of (each * 10 ); // var0 equals 15

http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsSZ#standard_deviation
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsNR#product_of


median

Possible uses:

median  ( container ) ---> unknown

Result:

the median of all the elements of the operand.

Special cases:

if the container contains points, the result will be a point. If the container contains rgb values, the
result will be a rgb color

Examples:

See also: mean,

mental_state

Possible uses:

mental_state  ( any ) ---> mental_state

Result:

casts the operand in a mental_state object.

message

Possible uses:

message  ( any ) ---> message

Result:

casts the operand in a message object.

unknown var0 <- median ([4.5, 3.5, 5.5, 3.4, 7.0]); // var0 equals 4.5

http://localhost:3000/wiki/OperatorsIM#mean


milliseconds_between

Possible uses:

date  milliseconds_between  date  ---> float

milliseconds_between  ( date  , date ) ---> float

Result:

Provide the exact number of milliseconds between two dates. This number can be positive or negative
(if the second operand is smaller than the first one)

Examples:

min

Possible uses:

min  ( container ) ---> unknown

Result:

the minimum element found in the operand.

Comment:

the min operator behavior depends on the nature of the operand

Special cases:

if it is a list of points: min returns the minimum of all points as a point (i.e. the point with the
smallest coordinate on the x-axis, in case of equality the point with the smallest coordinate on the y-
axis is chosen. If all the points are equal, the first one is returned. )

if it is a population of a list of other types: min transforms all elements into integer and returns the
minimum of them

if it is a map, min returns the minimum among the list of all elements value

float var0 <- milliseconds_between(date('2000-01-01'), date('2000-02-01')); // var0 
equals 2.6784E9



if it is a file, min returns the minimum of the content of the file (that is also a container)

if it is a graph, min returns the minimum of the list of the elements of the graph (that can be the list
of edges or vertexes depending on the graph)

if it is a matrix of int, float or object, min returns the minimum of all the numerical elements (thus all
elements for integer and float matrices)

if it is a matrix of geometry, min returns the minimum of the list of the geometries

if it is a matrix of another type, min returns the minimum of the elements transformed into float

if it is a list of int or float: min returns the minimum of all the elements

See also: max,

min_of

Possible uses:

container  min_of  any expression  ---> unknown

min_of  ( container  , any expression ) ---> unknown

Result:

the minimum value of the right-hand expression evaluated on each of the elements of the left-hand
operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand
operand elements.

Special cases:

if the left-hand operand is nil or empty, min_of throws an error

if the left-operand is a map, the keyword each will contain each value

Examples:

unknown var0 <- min ([100, 23.2, 34.5]); // var0 equals 23.2

unknown var4 <- [1::2, 3::4, 5::6] min_of (each + 3); // var4 equals 5

http://localhost:3000/wiki/OperatorsIM#max


See also: max_of,

minus_days

Possible uses:

date  minus_days  int  ---> date

minus_days  ( date  , int ) ---> date

Result:

Subtract a given number of days from a date

Examples:

minus_hours

Possible uses:

date  minus_hours  int  ---> date

minus_hours  ( date  , int ) ---> date

Result:

Remove a given number of hours from a date

Examples:

unknown var0 <- [1,2,4,3,5,7,6,8] min_of (each * 100 ); // var0 equals 100 
graph g2 <- as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]); 
unknown var2 <- g2 min_of (length(g2 out_edges_of each) ); // var2 equals 0 
unknown var3 <- (list(node) min_of (round(node(each).location.x)); // var3 equals 4

date var0 <- date('2000-01-01') minus_days 20; // var0 equals date('1999-12-12')

// equivalent to date1 - 15 #h 
date var1 <- date('2000-01-01') minus_hours 15 ; // var1 equals date('1999-12-31 

http://localhost:3000/wiki/OperatorsIM#max_of


minus_minutes

Possible uses:

date  minus_minutes  int  ---> date

minus_minutes  ( date  , int ) ---> date

Result:

Subtract a given number of minutes from a date

Examples:

minus_months

Possible uses:

date  minus_months  int  ---> date

minus_months  ( date  , int ) ---> date

Result:

Subtract a given number of months from a date

Examples:

minus_ms

09:00:00')

// date('2000-01-01') to date1 - 5#mn 
date var1 <- date('2000-01-01') minus_minutes 5 ; // var1 equals date('1999-12-31 
23:55:00')

date var0 <- date('2000-01-01') minus_months 5; // var0 equals date('1999-08-01')



Possible uses:

date  minus_ms  int  ---> date

minus_ms  ( date  , int ) ---> date

Result:

Remove a given number of milliseconds from a date

Examples:

minus_seconds

Same signification as -

minus_weeks

Possible uses:

date  minus_weeks  int  ---> date

minus_weeks  ( date  , int ) ---> date

Result:

Subtract a given number of weeks from a date

Examples:

minus_years

Possible uses:

// equivalent to date1 - 15 #ms 
date var1 <- date('2000-01-01') minus_ms 1000 ; // var1 equals date('1999-12-31 
23:59:59')

date var0 <- date('2000-01-01') minus_weeks 15; // var0 equals date('1999-09-18')

http://localhost:3000/wiki/OperatorsAA#-


date  minus_years  int  ---> date

minus_years  ( date  , int ) ---> date

Result:

Subtract a given number of year from a date

Examples:

mod

Possible uses:

int  mod  int  ---> int

mod  ( int  , int ) ---> int

Result:

Returns the remainder of the integer division of the left-hand operand by the right-hand operand.

Special cases:

if operands are float, they are truncated

if the right-hand operand is equal to zero, raises an exception.

Examples:

See also: div,

moment

Possible uses:

moment  ( container , int , float ) ---> float

date var0 <- date('2000-01-01') minus_years 3; // var0 equals date('1997-01-01')

int var0 <- 40 mod 3; // var0 equals 1

http://localhost:3000/wiki/OperatorsDH#div


Result:

Returns the moment of k-th order with constant c of a data sequence

Examples:

months_between

Possible uses:

date  months_between  date  ---> int

months_between  ( date  , date ) ---> int

Result:

Provide the exact number of months between two dates. This number can be positive or negative (if the
second operand is smaller than the first one)

Examples:

moran

Possible uses:

list<float>  moran  matrix<float>  ---> float

moran  ( list<float>  , matrix<float> ) ---> float

Special cases:

return the Moran Index of the given list of interest points (list of floats) and the weight matrix
(matrix of float)

float var0 <- moment([13,2,1,4,1,2], 2, 1.2) with_precision(4); // var0 equals 24.74

int var0 <- months_between(date('2000-01-01'), date('2000-02-01')); // var0 equals 1

float var0 <- moran([1.0, 0.5, 2.0], weight_matrix); // var0 equals the Moran index is 



morrisAnalysis

Possible uses:

morrisAnalysis  ( string , int , int ) ---> string

Result:

Return a string containing the Report of the morris analysis for the corresponding CSV file

mul

Possible uses:

mul  ( container ) ---> unknown

Result:

the product of all the elements of the operand

Comment:

the mul operator behavior depends on the nature of the operand

Special cases:

if it is a list of points: mul returns the product of all points as a point (each coordinate is the product
of the corresponding coordinate of each element)

if it is a list of other types: mul transforms all elements into integer and multiplies them

if it is a map, mul returns the product of the value of all elements

if it is a file, mul returns the product of the content of the file (that is also a container)

if it is a graph, mul returns the product of the list of the elements of the graph (that can be the list of
edges or vertexes depending on the graph)

if it is a matrix of int, float or object, mul returns the product of all the numerical elements (thus all
elements for integer and float matrices)

if it is a matrix of geometry, mul returns the product of the list of the geometries

computed



if it is a matrix of other types: mul transforms all elements into float and multiplies them

if it is a list of int or float: mul returns the product of all the elements

See also: sum,

unknown var0 <- mul ([100, 23.2, 34.5]); // var0 equals 80040.0

http://localhost:3000/wiki/OperatorsSZ#sum


Version: 1.9.3

Operators (N to R)
This file is automatically generated from java files. Do Not Edit It.

Definition
Operators in the GAML language are used to compose complex expressions. An operator performs a
function on one, two, or n operands (which are other expressions and thus may be themselves
composed of operators) and returns the result of this function.

Most of them use a classical prefixed functional syntax (i.e. operator_name(operand1, operand2,
operand3) , see below), with the exception of arithmetic (e.g. + , / ), logical ( and , or ), comparison (e.g.
> , < ), access ( . , [..] ) and pair ( :: ) operators, which require an infixed notation (i.e. operand1
operator_symbol operand1 ).

The ternary functional if-else operator, ? : , uses a special infixed syntax composed with two symbols
(e.g. operand1 ? operand2 : operand3 ). Two unary operators ( -  and ! ) use a traditional prefixed
syntax that does not require parentheses unless the operand is itself a complex expression (e.g. - 10 , !
(operand1 or operand2) ).

Finally, special constructor operators ( {...}  for constructing points, [...]  for constructing lists and
maps) will require their operands to be placed between their two symbols (e.g. {1,2,3} , [operand1,
operand2, ..., operandn]  or [key1::value1, key2::value2... keyn::valuen] ).

With the exception of these special cases above, the following rules apply to the syntax of operators:

if they only have one operand, the functional prefixed syntax is mandatory (e.g.
operator_name(operand1) )

if they have two arguments, either the functional prefixed syntax (e.g. operator_name(operand1,
operand2) ) or the infixed syntax (e.g. operand1 operator_name operand2 ) can be used.

if they have more than two arguments, either the functional prefixed syntax (e.g.
operator_name(operand1, operand2, ..., operand) ) or a special infixed syntax with the first
operand on the left-hand side of the operator name (e.g. operand1 operator_name(operand2, ...,
operand) ) can be used.



All of these alternative syntaxes are completely equivalent.

Operators in GAML are purely functional, i.e. they are guaranteed to not have any side effects on their
operands. For instance, the shuffle  operator, which randomizes the positions of elements in a list, does
not modify its list operand but returns a new shuffled list.

Priority between operators
The priority of operators determines, in the case of complex expressions composed of several operators,
which one(s) will be evaluated first.

GAML follows in general the traditional priorities attributed to arithmetic, boolean, comparison
operators, with some twists. Namely:

the constructor operators, like :: , used to compose pairs of operands, have the lowest priority of
all operators (e.g. a > b :: b > c  will return a pair of boolean values, which means that the two
comparisons are evaluated before the operator applies. Similarly, [a > 10, b > 5]  will return a list
of boolean values.

it is followed by the ?:  operator, the functional if-else (e.g. a > b ? a + 10 : a - 10  will return
the result of the if-else).

next are the logical operators, and  and or  (e.g. a > b or b > c  will return the value of the test)

next are the comparison operators (i.e. > , < , <= , >= , = , != )

next the arithmetic operators in their logical order (multiplicative operators have a higher priority
than additive operators)

next the unary operators -  and !

next the access operators .  and []  (e.g. {1,2,3}.x > 20 + {4,5,6}.y  will return the result of the
comparison between the x and y ordinates of the two points)

and finally the functional operators, which have the highest priority of all.

Using actions as operators
Actions defined in species can be used as operators, provided they are called on the correct agent. The
syntax is that of normal functional operators, but the agent that will perform the action must be added
as the first operand.



For instance, if the following species is defined:

Any agent instance of spec1 can use min  as an operator (if the action conflicts with an existing operator,
a warning will be emitted). For instance, in the same model, the following line is perfectly acceptable:

If the action doesn't have any operands, the syntax to use is my_agent the_action() . Finally, if it does
not return a value, it might still be used but is considering as returning a value of type unknown  (e.g.
unknown result <- my_agent the_action(op1, op2); ).

Note that due to the fact that actions are written by modelers, the general functional contract is not
respected in that case: actions might perfectly have side effects on their operands (including the agent).

Table of Contents

Operators by categories

3D

box, cone3D, cube, cylinder, hexagon, pyramid, set_z, sphere, teapot,

species spec1 {
        int min(int x, int y) {
                return x > y ? x : y;
        }
}

global {
        init {
                create spec1;
                spec1 my_agent <- spec1[0];
                int the_min <- my_agent min(10,20); // or min(my_agent, 10, 20);
        }
}

http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#teapot


Arithmetic operators

-, /, ^, *, +, abs, acos, asin, atan, atan2, ceil, cos, cos_rad, div, even, exp, fact, floor, hypot, is_finite,
is_number, ln, log, mod, round, signum, sin, sin_rad, sqrt, tan, tan_rad, tanh, with_precision,

BDI

add_values, and, eval_when, get_about, get_agent, get_agent_cause, get_belief_op,
get_belief_with_name_op, get_beliefs_op, get_beliefs_with_name_op, get_current_intention_op,
get_decay, get_desire_op, get_desire_with_name_op, get_desires_op, get_desires_with_name_op,
get_dominance, get_familiarity, get_ideal_op, get_ideal_with_name_op, get_ideals_op,
get_ideals_with_name_op, get_intensity, get_intention_op, get_intention_with_name_op,
get_intentions_op, get_intentions_with_name_op, get_lifetime, get_liking, get_modality,
get_obligation_op, get_obligation_with_name_op, get_obligations_op, get_obligations_with_name_op,
get_plan_name, get_predicate, get_solidarity, get_strength, get_super_intention, get_trust, get_truth,
get_uncertainties_op, get_uncertainties_with_name_op, get_uncertainty_op,
get_uncertainty_with_name_op, get_values, has_belief_op, has_belief_with_name_op, has_desire_op,
has_desire_with_name_op, has_ideal_op, has_ideal_with_name_op, has_intention_op,
has_intention_with_name_op, has_obligation_op, has_obligation_with_name_op, has_uncertainty_op,
has_uncertainty_with_name_op, new_emotion, new_mental_state, new_predicate, new_social_link, not,
or, set_about, set_agent, set_agent_cause, set_decay, set_dominance, set_familiarity, set_intensity,
set_lifetime, set_liking, set_modality, set_predicate, set_solidarity, set_strength, set_trust, set_truth,
with_values,

Casting operators

as, as_int, as_matrix, deserialize, field_with, font, from_gaml, from_json, is, is_skill, list_with, matrix_with,
serialize, species_of, to_gaml, to_geojson, to_json, to_list, with_size, with_style,

Color-related operators

-, /, *, +, blend, brewer_colors, brewer_palettes, gradient, grayscale, hsb, mean, median, palette, rgb,
rnd_color, scale, sum, to_hsb,

Comparison operators

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#%5E
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#abs
http://localhost:3000/wiki/OperatorsAA#acos
http://localhost:3000/wiki/OperatorsAA#asin
http://localhost:3000/wiki/OperatorsAA#atan
http://localhost:3000/wiki/OperatorsAA#atan2
http://localhost:3000/wiki/OperatorsBC#ceil
http://localhost:3000/wiki/OperatorsBC#cos
http://localhost:3000/wiki/OperatorsBC#cos_rad
http://localhost:3000/wiki/OperatorsDH#div
http://localhost:3000/wiki/OperatorsDH#even
http://localhost:3000/wiki/OperatorsDH#exp
http://localhost:3000/wiki/OperatorsDH#fact
http://localhost:3000/wiki/OperatorsDH#floor
http://localhost:3000/wiki/OperatorsDH#hypot
http://localhost:3000/wiki/OperatorsIM#is_finite
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#ln
http://localhost:3000/wiki/OperatorsIM#log
http://localhost:3000/wiki/OperatorsIM#mod
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsSZ#signum
http://localhost:3000/wiki/OperatorsSZ#sin
http://localhost:3000/wiki/OperatorsSZ#sin_rad
http://localhost:3000/wiki/OperatorsSZ#sqrt
http://localhost:3000/wiki/OperatorsSZ#tan
http://localhost:3000/wiki/OperatorsSZ#tan_rad
http://localhost:3000/wiki/OperatorsSZ#tanh
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsAA#add_values
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsDH#eval_when
http://localhost:3000/wiki/OperatorsDH#get_about
http://localhost:3000/wiki/OperatorsDH#get_agent
http://localhost:3000/wiki/OperatorsDH#get_agent_cause
http://localhost:3000/wiki/OperatorsDH#get_belief_op
http://localhost:3000/wiki/OperatorsDH#get_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_current_intention_op
http://localhost:3000/wiki/OperatorsDH#get_decay
http://localhost:3000/wiki/OperatorsDH#get_desire_op
http://localhost:3000/wiki/OperatorsDH#get_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_desires_op
http://localhost:3000/wiki/OperatorsDH#get_desires_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_dominance
http://localhost:3000/wiki/OperatorsDH#get_familiarity
http://localhost:3000/wiki/OperatorsDH#get_ideal_op
http://localhost:3000/wiki/OperatorsDH#get_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intensity
http://localhost:3000/wiki/OperatorsDH#get_intention_op
http://localhost:3000/wiki/OperatorsDH#get_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_lifetime
http://localhost:3000/wiki/OperatorsDH#get_liking
http://localhost:3000/wiki/OperatorsDH#get_modality
http://localhost:3000/wiki/OperatorsDH#get_obligation_op
http://localhost:3000/wiki/OperatorsDH#get_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_plan_name
http://localhost:3000/wiki/OperatorsDH#get_predicate
http://localhost:3000/wiki/OperatorsDH#get_solidarity
http://localhost:3000/wiki/OperatorsDH#get_strength
http://localhost:3000/wiki/OperatorsDH#get_super_intention
http://localhost:3000/wiki/OperatorsDH#get_trust
http://localhost:3000/wiki/OperatorsDH#get_truth
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_values
http://localhost:3000/wiki/OperatorsDH#has_belief_op
http://localhost:3000/wiki/OperatorsDH#has_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_desire_op
http://localhost:3000/wiki/OperatorsDH#has_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_intention_op
http://localhost:3000/wiki/OperatorsDH#has_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsNR#new_emotion
http://localhost:3000/wiki/OperatorsNR#new_mental_state
http://localhost:3000/wiki/OperatorsNR#new_predicate
http://localhost:3000/wiki/OperatorsNR#new_social_link
http://localhost:3000/wiki/OperatorsNR#not
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsSZ#set_about
http://localhost:3000/wiki/OperatorsSZ#set_agent
http://localhost:3000/wiki/OperatorsSZ#set_agent_cause
http://localhost:3000/wiki/OperatorsSZ#set_decay
http://localhost:3000/wiki/OperatorsSZ#set_dominance
http://localhost:3000/wiki/OperatorsSZ#set_familiarity
http://localhost:3000/wiki/OperatorsSZ#set_intensity
http://localhost:3000/wiki/OperatorsSZ#set_lifetime
http://localhost:3000/wiki/OperatorsSZ#set_liking
http://localhost:3000/wiki/OperatorsSZ#set_modality
http://localhost:3000/wiki/OperatorsSZ#set_predicate
http://localhost:3000/wiki/OperatorsSZ#set_solidarity
http://localhost:3000/wiki/OperatorsSZ#set_strength
http://localhost:3000/wiki/OperatorsSZ#set_trust
http://localhost:3000/wiki/OperatorsSZ#set_truth
http://localhost:3000/wiki/OperatorsSZ#with_values
http://localhost:3000/wiki/OperatorsAA#as
http://localhost:3000/wiki/OperatorsAA#as_int
http://localhost:3000/wiki/OperatorsAA#as_matrix
http://localhost:3000/wiki/OperatorsDH#deserialize
http://localhost:3000/wiki/OperatorsDH#field_with
http://localhost:3000/wiki/OperatorsDH#font
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsDH#from_json
http://localhost:3000/wiki/OperatorsIM#is
http://localhost:3000/wiki/OperatorsIM#is_skill
http://localhost:3000/wiki/OperatorsIM#list_with
http://localhost:3000/wiki/OperatorsIM#matrix_with
http://localhost:3000/wiki/OperatorsSZ#serialize
http://localhost:3000/wiki/OperatorsSZ#species_of
http://localhost:3000/wiki/OperatorsSZ#to_gaml
http://localhost:3000/wiki/OperatorsSZ#to_geojson
http://localhost:3000/wiki/OperatorsSZ#to_json
http://localhost:3000/wiki/OperatorsSZ#to_list
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_style
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#brewer_colors
http://localhost:3000/wiki/OperatorsBC#brewer_palettes
http://localhost:3000/wiki/OperatorsDH#gradient
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#hsb
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsNR#palette
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsNR#rnd_color
http://localhost:3000/wiki/OperatorsSZ#scale
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#to_hsb


!=, <, <=, =, >, >=, between,

Containers-related operators

-, ::, +, accumulate, all_match, among, at, cartesian_product, collect, contains, contains_all, contains_any,
contains_key, count, empty, every, first, first_with, get, group_by, in, index_by, inter, interleave,
internal_integrated_value, last, last_with, length, max, max_of, mean, mean_of, median, min, min_of,
mul, none_matches, one_matches, one_of, product_of, range, remove_duplicates, reverse, shuffle,
sort_by, split, split_in, split_using, sum, sum_of, union, variance_of, where, with_max_of, with_min_of,

Date-related operators

-, !=, +, <, <=, =, >, >=, after, before, between, every, milliseconds_between, minus_days, minus_hours,
minus_minutes, minus_months, minus_ms, minus_weeks, minus_years, months_between, plus_days,
plus_hours, plus_minutes, plus_months, plus_ms, plus_weeks, plus_years, since, to, until,
years_between,

Dates

Displays

horizontal, stack, vertical,

edge

edge_between, strahler,

EDP-related operators

diff, diff2,

http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#::
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#among
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsBC#cartesian_product
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#contains_key
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#interleave
http://localhost:3000/wiki/OperatorsIM#internal_integrated_value
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#one_of
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsNR#range
http://localhost:3000/wiki/OperatorsNR#remove_duplicates
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#after
http://localhost:3000/wiki/OperatorsBC#before
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsIM#milliseconds_between
http://localhost:3000/wiki/OperatorsIM#minus_days
http://localhost:3000/wiki/OperatorsIM#minus_hours
http://localhost:3000/wiki/OperatorsIM#minus_minutes
http://localhost:3000/wiki/OperatorsIM#minus_months
http://localhost:3000/wiki/OperatorsIM#minus_ms
http://localhost:3000/wiki/OperatorsIM#minus_weeks
http://localhost:3000/wiki/OperatorsIM#minus_years
http://localhost:3000/wiki/OperatorsIM#months_between
http://localhost:3000/wiki/OperatorsNR#plus_days
http://localhost:3000/wiki/OperatorsNR#plus_hours
http://localhost:3000/wiki/OperatorsNR#plus_minutes
http://localhost:3000/wiki/OperatorsNR#plus_months
http://localhost:3000/wiki/OperatorsNR#plus_ms
http://localhost:3000/wiki/OperatorsNR#plus_weeks
http://localhost:3000/wiki/OperatorsNR#plus_years
http://localhost:3000/wiki/OperatorsSZ#since
http://localhost:3000/wiki/OperatorsSZ#to
http://localhost:3000/wiki/OperatorsSZ#until
http://localhost:3000/wiki/OperatorsSZ#years_between
http://localhost:3000/wiki/OperatorsDH#horizontal
http://localhost:3000/wiki/OperatorsSZ#stack
http://localhost:3000/wiki/OperatorsSZ#vertical
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsDH#diff
http://localhost:3000/wiki/OperatorsDH#diff2


Files-related operators

agent_file, copy_file, crs, csv_file, delete_file, dxf_file, evaluate_sub_model, file_exists, folder,
folder_exists, gaml_file, geojson_file, get, gif_file, gml_file, graph6_file, graphdimacs_file, graphdot_file,
graphgexf_file, graphgml_file, graphml_file, graphtsplib_file, grid_file, image_file, is_agent, is_csv, is_dxf,
is_gaml, is_geojson, is_gif, is_gml, is_graph6, is_graphdimacs, is_graphdot, is_graphgexf, is_graphgml,
is_graphml, is_graphtsplib, is_grid, is_image, is_json, is_obj, is_osm, is_pgm, is_property, is_shape,
is_simulation, is_svg, is_text, is_threeds, is_xml, json_file, new_folder, obj_file, osm_file, pgm_file,
property_file, read, rename_file, shape_file, simulation_file, step_sub_model, svg_file, text_file,
threeds_file, unzip, writable, xml_file, zip,

GamaMetaType

type_of,

GamaSVGFile

image,

Graphs-related operators

add_edge, add_node, adjacency, agent_from_geometry, all_pairs_shortest_path, alpha_index,
as_distance_graph, as_edge_graph, as_intersection_graph, as_path, as_spatial_graph, beta_index,
betweenness_centrality, biggest_cliques_of, connected_components_of, connectivity_index,
contains_edge, contains_vertex, degree_of, directed, edge, edge_between, edge_betweenness, edges,
gamma_index, generate_barabasi_albert, generate_complete_graph, generate_random_graph,
generate_watts_strogatz, girvan_newman_clustering, grid_cells_to_graph, in_degree_of, in_edges_of,
k_spanning_tree_clustering, label_propagation_clustering, layout_circle, layout_force, layout_force_FR,
layout_force_FR_indexed, layout_grid, load_shortest_paths, main_connected_component,
max_flow_between, maximal_cliques_of, nb_cycles, neighbors_of, node, nodes, out_degree_of,
out_edges_of, path_between, paths_between, predecessors_of, remove_node_from, rewire_n, source_of,
spatial_graph, strahler, successors_of, sum, target_of, undirected, use_cache, weight_of,
with_k_shortest_path_algorithm, with_shortest_path_algorithm, with_weights,

Grid-related operators

http://localhost:3000/wiki/OperatorsAA#agent_file
http://localhost:3000/wiki/OperatorsBC#copy_file
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#csv_file
http://localhost:3000/wiki/OperatorsDH#delete_file
http://localhost:3000/wiki/OperatorsDH#dxf_file
http://localhost:3000/wiki/OperatorsDH#evaluate_sub_model
http://localhost:3000/wiki/OperatorsDH#file_exists
http://localhost:3000/wiki/OperatorsDH#folder
http://localhost:3000/wiki/OperatorsDH#folder_exists
http://localhost:3000/wiki/OperatorsDH#gaml_file
http://localhost:3000/wiki/OperatorsDH#geojson_file
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#gif_file
http://localhost:3000/wiki/OperatorsDH#gml_file
http://localhost:3000/wiki/OperatorsDH#graph6_file
http://localhost:3000/wiki/OperatorsDH#graphdimacs_file
http://localhost:3000/wiki/OperatorsDH#graphdot_file
http://localhost:3000/wiki/OperatorsDH#graphgexf_file
http://localhost:3000/wiki/OperatorsDH#graphgml_file
http://localhost:3000/wiki/OperatorsDH#graphml_file
http://localhost:3000/wiki/OperatorsDH#graphtsplib_file
http://localhost:3000/wiki/OperatorsDH#grid_file
http://localhost:3000/wiki/OperatorsIM#image_file
http://localhost:3000/wiki/OperatorsIM#is_agent
http://localhost:3000/wiki/OperatorsIM#is_csv
http://localhost:3000/wiki/OperatorsIM#is_dxf
http://localhost:3000/wiki/OperatorsIM#is_gaml
http://localhost:3000/wiki/OperatorsIM#is_geojson
http://localhost:3000/wiki/OperatorsIM#is_gif
http://localhost:3000/wiki/OperatorsIM#is_gml
http://localhost:3000/wiki/OperatorsIM#is_graph6
http://localhost:3000/wiki/OperatorsIM#is_graphdimacs
http://localhost:3000/wiki/OperatorsIM#is_graphdot
http://localhost:3000/wiki/OperatorsIM#is_graphgexf
http://localhost:3000/wiki/OperatorsIM#is_graphgml
http://localhost:3000/wiki/OperatorsIM#is_graphml
http://localhost:3000/wiki/OperatorsIM#is_graphtsplib
http://localhost:3000/wiki/OperatorsIM#is_grid
http://localhost:3000/wiki/OperatorsIM#is_image
http://localhost:3000/wiki/OperatorsIM#is_json
http://localhost:3000/wiki/OperatorsIM#is_obj
http://localhost:3000/wiki/OperatorsIM#is_osm
http://localhost:3000/wiki/OperatorsIM#is_pgm
http://localhost:3000/wiki/OperatorsIM#is_property
http://localhost:3000/wiki/OperatorsIM#is_shape
http://localhost:3000/wiki/OperatorsIM#is_simulation
http://localhost:3000/wiki/OperatorsIM#is_svg
http://localhost:3000/wiki/OperatorsIM#is_text
http://localhost:3000/wiki/OperatorsIM#is_threeds
http://localhost:3000/wiki/OperatorsIM#is_xml
http://localhost:3000/wiki/OperatorsIM#json_file
http://localhost:3000/wiki/OperatorsNR#new_folder
http://localhost:3000/wiki/OperatorsNR#obj_file
http://localhost:3000/wiki/OperatorsNR#osm_file
http://localhost:3000/wiki/OperatorsNR#pgm_file
http://localhost:3000/wiki/OperatorsNR#property_file
http://localhost:3000/wiki/OperatorsNR#read
http://localhost:3000/wiki/OperatorsNR#rename_file
http://localhost:3000/wiki/OperatorsSZ#shape_file
http://localhost:3000/wiki/OperatorsSZ#simulation_file
http://localhost:3000/wiki/OperatorsSZ#step_sub_model
http://localhost:3000/wiki/OperatorsSZ#svg_file
http://localhost:3000/wiki/OperatorsSZ#text_file
http://localhost:3000/wiki/OperatorsSZ#threeds_file
http://localhost:3000/wiki/OperatorsSZ#unzip
http://localhost:3000/wiki/OperatorsSZ#writable
http://localhost:3000/wiki/OperatorsSZ#xml_file
http://localhost:3000/wiki/OperatorsSZ#zip
http://localhost:3000/wiki/OperatorsSZ#type_of
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsAA#add_edge
http://localhost:3000/wiki/OperatorsAA#add_node
http://localhost:3000/wiki/OperatorsAA#adjacency
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#alpha_index
http://localhost:3000/wiki/OperatorsAA#as_distance_graph
http://localhost:3000/wiki/OperatorsAA#as_edge_graph
http://localhost:3000/wiki/OperatorsAA#as_intersection_graph
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsAA#as_spatial_graph
http://localhost:3000/wiki/OperatorsBC#beta_index
http://localhost:3000/wiki/OperatorsBC#betweenness_centrality
http://localhost:3000/wiki/OperatorsBC#biggest_cliques_of
http://localhost:3000/wiki/OperatorsBC#connected_components_of
http://localhost:3000/wiki/OperatorsBC#connectivity_index
http://localhost:3000/wiki/OperatorsBC#contains_edge
http://localhost:3000/wiki/OperatorsBC#contains_vertex
http://localhost:3000/wiki/OperatorsDH#degree_of
http://localhost:3000/wiki/OperatorsDH#directed
http://localhost:3000/wiki/OperatorsDH#edge
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsDH#edge_betweenness
http://localhost:3000/wiki/OperatorsDH#edges
http://localhost:3000/wiki/OperatorsDH#gamma_index
http://localhost:3000/wiki/OperatorsDH#generate_barabasi_albert
http://localhost:3000/wiki/OperatorsDH#generate_complete_graph
http://localhost:3000/wiki/OperatorsDH#generate_random_graph
http://localhost:3000/wiki/OperatorsDH#generate_watts_strogatz
http://localhost:3000/wiki/OperatorsDH#girvan_newman_clustering
http://localhost:3000/wiki/OperatorsDH#grid_cells_to_graph
http://localhost:3000/wiki/OperatorsIM#in_degree_of
http://localhost:3000/wiki/OperatorsIM#in_edges_of
http://localhost:3000/wiki/OperatorsIM#k_spanning_tree_clustering
http://localhost:3000/wiki/OperatorsIM#label_propagation_clustering
http://localhost:3000/wiki/OperatorsIM#layout_circle
http://localhost:3000/wiki/OperatorsIM#layout_force
http://localhost:3000/wiki/OperatorsIM#layout_force_fr
http://localhost:3000/wiki/OperatorsIM#layout_force_fr_indexed
http://localhost:3000/wiki/OperatorsIM#layout_grid
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#main_connected_component
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsIM#maximal_cliques_of
http://localhost:3000/wiki/OperatorsNR#nb_cycles
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#node
http://localhost:3000/wiki/OperatorsNR#nodes
http://localhost:3000/wiki/OperatorsNR#out_degree_of
http://localhost:3000/wiki/OperatorsNR#out_edges_of
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsNR#predecessors_of
http://localhost:3000/wiki/OperatorsNR#remove_node_from
http://localhost:3000/wiki/OperatorsNR#rewire_n
http://localhost:3000/wiki/OperatorsSZ#source_of
http://localhost:3000/wiki/OperatorsSZ#spatial_graph
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsSZ#successors_of
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#target_of
http://localhost:3000/wiki/OperatorsSZ#undirected
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsSZ#weight_of
http://localhost:3000/wiki/OperatorsSZ#with_k_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_weights


as_4_grid, as_grid, as_hexagonal_grid, cell_at, cells_in, cells_overlapping, field, grid_at, neighbors_of,
path_between, points_in, values_in,

ImageOperators

*, antialiased, blend, blurred, brighter, clipped_with, darker, grayscale, horizontal_flip, image, matrix,
rotated_by, sharpened, snapshot, tinted_with, vertical_flip, with_height, with_size, with_width,

Iterator operators

accumulate, all_match, as_map, collect, count, create_map, first_with, frequency_of, group_by, index_by,
last_with, max_of, mean_of, min_of, none_matches, one_matches, product_of, sort_by, sum_of,
variance_of, where, where, where, with_max_of, with_min_of,

List-related operators

all_indexes_of, copy_between, index_of, last_index_of,

Logical operators

:, !, ?, add_3Dmodel, add_geometry, add_icon, and, or, xor,

Map comparaison operators

fuzzy_kappa, fuzzy_kappa_sim, kappa, kappa_sim, percent_absolute_deviation,

Map-related operators

as_map, create_map, index_of, last_index_of,

Matrix-related operators

http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsBC#cell_at
http://localhost:3000/wiki/OperatorsBC#cells_in
http://localhost:3000/wiki/OperatorsBC#cells_overlapping
http://localhost:3000/wiki/OperatorsDH#field
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#points_in
http://localhost:3000/wiki/OperatorsSZ#values_in
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#antialiased
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#blurred
http://localhost:3000/wiki/OperatorsBC#brighter
http://localhost:3000/wiki/OperatorsBC#clipped_with
http://localhost:3000/wiki/OperatorsDH#darker
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#horizontal_flip
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsSZ#sharpened
http://localhost:3000/wiki/OperatorsSZ#snapshot
http://localhost:3000/wiki/OperatorsSZ#tinted_with
http://localhost:3000/wiki/OperatorsSZ#vertical_flip
http://localhost:3000/wiki/OperatorsSZ#with_height
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_width
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsAA#all_indexes_of
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsAA#:
http://localhost:3000/wiki/OperatorsAA#!
http://localhost:3000/wiki/OperatorsAA#?
http://localhost:3000/wiki/OperatorsAA#add_3dmodel
http://localhost:3000/wiki/OperatorsAA#add_geometry
http://localhost:3000/wiki/OperatorsAA#add_icon
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsSZ#xor
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa_sim
http://localhost:3000/wiki/OperatorsIM#kappa
http://localhost:3000/wiki/OperatorsIM#kappa_sim
http://localhost:3000/wiki/OperatorsNR#percent_absolute_deviation
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of


-, /, ., *, +, append_horizontally, append_vertically, column_at, columns_list, determinant, eigenvalues,
flatten, index_of, inverse, last_index_of, row_at, rows_list, shuffle, trace, transpose,

multicriteria operators

electre_DM, evidence_theory_DM, fuzzy_choquet_DM, promethee_DM, weighted_means_DM,

Path-related operators

agent_from_geometry, all_pairs_shortest_path, as_path, load_shortest_paths, max_flow_between,
path_between, path_to, paths_between, use_cache,

Pedestrian

generate_pedestrian_network,

Points-related operators

-, /, *, +, <, <=, >, >=, add_point, angle_between, any_location_in, centroid, closest_points_with,
farthest_point_to, grid_at, norm, points_along, points_at, points_on,

Random operators

binomial, exp_density, exp_rnd, flip, gamma_density, gamma_rnd, gamma_trunc_rnd, gauss,
generate_terrain, lognormal_density, lognormal_rnd, lognormal_trunc_rnd, poisson, rnd, rnd_choice,
sample, shuffle, skew_gauss, truncated_gauss, weibull_density, weibull_rnd, weibull_trunc_rnd,

Shape

arc, box, circle, cone, cone3D, cross, cube, curve, cylinder, ellipse, elliptical_arc, envelope,
geometry_collection, hexagon, line, link, plan, polygon, polyhedron, pyramid, rectangle, sphere, square,
squircle, teapot, triangle,

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#append_horizontally
http://localhost:3000/wiki/OperatorsAA#append_vertically
http://localhost:3000/wiki/OperatorsBC#column_at
http://localhost:3000/wiki/OperatorsBC#columns_list
http://localhost:3000/wiki/OperatorsDH#determinant
http://localhost:3000/wiki/OperatorsDH#eigenvalues
http://localhost:3000/wiki/OperatorsDH#flatten
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#inverse
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#row_at
http://localhost:3000/wiki/OperatorsNR#rows_list
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#trace
http://localhost:3000/wiki/OperatorsSZ#transpose
http://localhost:3000/wiki/OperatorsDH#electre_dm
http://localhost:3000/wiki/OperatorsDH#evidence_theory_dm
http://localhost:3000/wiki/OperatorsDH#fuzzy_choquet_dm
http://localhost:3000/wiki/OperatorsNR#promethee_dm
http://localhost:3000/wiki/OperatorsSZ#weighted_means_dm
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsDH#generate_pedestrian_network
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#exp_density
http://localhost:3000/wiki/OperatorsDH#exp_rnd
http://localhost:3000/wiki/OperatorsDH#flip
http://localhost:3000/wiki/OperatorsDH#gamma_density
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gamma_trunc_rnd
http://localhost:3000/wiki/OperatorsDH#gauss
http://localhost:3000/wiki/OperatorsDH#generate_terrain
http://localhost:3000/wiki/OperatorsIM#lognormal_density
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_trunc_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsNR#rnd_choice
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_density
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsSZ#weibull_trunc_rnd
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#triangle


Spatial operators

-, *, +, add_point, agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering,
agents_crossing, agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching,
angle_between, any_location_in, arc, around, as_4_grid, as_driving_graph, as_grid, as_hexagonal_grid,
at_distance, at_location, box, centroid, circle, clean, clean_network, closest_points_with, closest_to, cone,
cone3D, convex_hull, covering, covers, cross, crosses, crossing, crs, CRS_transform, cube, curve, cylinder,
direction_between, disjoint_from, distance_between, distance_to, ellipse, elliptical_arc, envelope,
farthest_point_to, farthest_to, geometry_collection, gini, hexagon, hierarchical_clustering, IDW, inside,
inter, intersects, inverse_rotation, k_nearest_neighbors, line, link, masked_by, moran, neighbors_at,
neighbors_of, normalized_rotation, overlapping, overlaps, partially_overlapping, partially_overlaps,
path_between, path_to, plan, points_along, points_at, points_on, polygon, polyhedron, pyramid,
rectangle, rotated_by, rotation_composition, round, scaled_to, set_z, simple_clustering_by_distance,
simplification, skeletonize, smooth, sphere, split_at, split_geometry, split_lines, square, squircle, teapot,
to_GAMA_CRS, to_rectangles, to_segments, to_squares, to_sub_geometries, touches, touching, towards,
transformed_by, translated_by, triangle, triangulate, union, using, voronoi, with_precision,
without_holes,

Spatial properties operators

covers, crosses, intersects, partially_overlaps, touches,

Spatial queries operators

agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering, agents_crossing,
agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching, at_distance,
closest_to, covering, crossing, farthest_to, inside, neighbors_at, neighbors_of, overlapping,
partially_overlapping, touching,

Spatial relations operators

direction_between, distance_between, distance_to, path_between, path_to, towards,

Spatial statistical operators

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_driving_graph
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#crs_transform
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#idw
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsIM#masked_by
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#split_at
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#to_gama_crs
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsSZ#towards
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#using
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsSZ#towards


hierarchical_clustering, k_nearest_neighbors, simple_clustering_by_distance,

Spatial transformations operators

-, *, +, as_4_grid, as_grid, as_hexagonal_grid, at_location, clean, clean_network, convex_hull,
CRS_transform, inverse_rotation, normalized_rotation, rotated_by, rotation_composition, scaled_to,
simplification, skeletonize, smooth, split_geometry, split_lines, to_GAMA_CRS, to_rectangles,
to_segments, to_squares, to_sub_geometries, transformed_by, translated_by, triangulate, voronoi,
with_precision, without_holes,

Species-related operators

index_of, last_index_of, of_generic_species, of_species,

Statistical operators

auto_correlation, beta, binomial_coeff, binomial_complemented, binomial_sum, build, chi_square,
chi_square_complemented, correlation, covariance, dbscan, distribution_of, distribution2d_of, dtw,
durbin_watson, frequency_of, gamma, gamma_distribution, gamma_distribution_complemented,
geometric_mean, gini, harmonic_mean, hierarchical_clustering, incomplete_beta, incomplete_gamma,
incomplete_gamma_complement, k_nearest_neighbors, kmeans, kurtosis, log_gamma, max, mean,
mean_deviation, median, min, moment, moran, morrisAnalysis, mul, normal_area, normal_density,
normal_inverse, predict, pValue_for_fStat, pValue_for_tStat, quantile, quantile_inverse,
rank_interpolated, residuals, rms, rSquare, simple_clustering_by_distance, skewness, sobolAnalysis,
split, split_in, split_using, standard_deviation, student_area, student_t_inverse, sum, t_test, variance,

Strings-related operators

+, <, <=, >, >=, at, capitalize, char, compress, contains, contains_all, contains_any, copy_between, date,
empty, first, in, indented_by, index_of, is_number, last, last_index_of, length, lower_case, regex_matches,
replace, replace_regex, reverse, sample, shuffle, split_with, string, uncompress, upper_case,

SubModel

http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#crs_transform
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#to_gama_crs
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#of_generic_species
http://localhost:3000/wiki/OperatorsNR#of_species
http://localhost:3000/wiki/OperatorsAA#auto_correlation
http://localhost:3000/wiki/OperatorsBC#beta
http://localhost:3000/wiki/OperatorsBC#binomial_coeff
http://localhost:3000/wiki/OperatorsBC#binomial_complemented
http://localhost:3000/wiki/OperatorsBC#binomial_sum
http://localhost:3000/wiki/OperatorsBC#build
http://localhost:3000/wiki/OperatorsBC#chi_square
http://localhost:3000/wiki/OperatorsBC#chi_square_complemented
http://localhost:3000/wiki/OperatorsBC#correlation
http://localhost:3000/wiki/OperatorsBC#covariance
http://localhost:3000/wiki/OperatorsDH#dbscan
http://localhost:3000/wiki/OperatorsDH#distribution_of
http://localhost:3000/wiki/OperatorsDH#distribution2d_of
http://localhost:3000/wiki/OperatorsDH#dtw
http://localhost:3000/wiki/OperatorsDH#durbin_watson
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#gamma
http://localhost:3000/wiki/OperatorsDH#gamma_distribution
http://localhost:3000/wiki/OperatorsDH#gamma_distribution_complemented
http://localhost:3000/wiki/OperatorsDH#geometric_mean
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#harmonic_mean
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#incomplete_beta
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma_complement
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#kmeans
http://localhost:3000/wiki/OperatorsIM#kurtosis
http://localhost:3000/wiki/OperatorsIM#log_gamma
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_deviation
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#moment
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsIM#morrisanalysis
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#normal_area
http://localhost:3000/wiki/OperatorsNR#normal_density
http://localhost:3000/wiki/OperatorsNR#normal_inverse
http://localhost:3000/wiki/OperatorsNR#predict
http://localhost:3000/wiki/OperatorsNR#pvalue_for_fstat
http://localhost:3000/wiki/OperatorsNR#pvalue_for_tstat
http://localhost:3000/wiki/OperatorsNR#quantile
http://localhost:3000/wiki/OperatorsNR#quantile_inverse
http://localhost:3000/wiki/OperatorsNR#rank_interpolated
http://localhost:3000/wiki/OperatorsNR#residuals
http://localhost:3000/wiki/OperatorsNR#rms
http://localhost:3000/wiki/OperatorsNR#rsquare
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#skewness
http://localhost:3000/wiki/OperatorsSZ#sobolanalysis
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#standard_deviation
http://localhost:3000/wiki/OperatorsSZ#student_area
http://localhost:3000/wiki/OperatorsSZ#student_t_inverse
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#t_test
http://localhost:3000/wiki/OperatorsSZ#variance
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsBC#capitalize
http://localhost:3000/wiki/OperatorsBC#char
http://localhost:3000/wiki/OperatorsBC#compress
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#indented_by
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#lower_case
http://localhost:3000/wiki/OperatorsNR#regex_matches
http://localhost:3000/wiki/OperatorsNR#replace
http://localhost:3000/wiki/OperatorsNR#replace_regex
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#split_with
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsSZ#uncompress
http://localhost:3000/wiki/OperatorsSZ#upper_case


load_sub_model,

System

., choose, command, copy, copy_from_clipboard, copy_to_clipboard, copy_to_clipboard, dead, enter,
every, from_gaml, is_error, is_reachable, is_warning, play_sound, user_confirm, user_input_dialog,
wizard, wizard_page,

Time-related operators

date, string,

Types-related operators

action, agent, BDIPlan, bool, container, conversation, directory, emotion, file, float, gaml_type, geometry,
graph, int, kml, list, map, matrix, mental_state, message, Norm, pair, path, point, predicate, regression,
rgb, Sanction, skill, social_link, species, topology, unknown,

User control operators

choose, enter, user_confirm, user_input_dialog, wizard, wizard_page,

Operators

nb_cycles

Possible uses:

nb_cycles  ( graph ) ---> int

Result:

http://localhost:3000/wiki/OperatorsIM#load_sub_model
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsBC#command
http://localhost:3000/wiki/OperatorsBC#copy
http://localhost:3000/wiki/OperatorsBC#copy_from_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsDH#dead
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsIM#is_error
http://localhost:3000/wiki/OperatorsIM#is_reachable
http://localhost:3000/wiki/OperatorsIM#is_warning
http://localhost:3000/wiki/OperatorsNR#play_sound
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsAA#action
http://localhost:3000/wiki/OperatorsAA#agent
http://localhost:3000/wiki/OperatorsBC#bdiplan
http://localhost:3000/wiki/OperatorsBC#bool
http://localhost:3000/wiki/OperatorsBC#container
http://localhost:3000/wiki/OperatorsBC#conversation
http://localhost:3000/wiki/OperatorsDH#directory
http://localhost:3000/wiki/OperatorsDH#emotion
http://localhost:3000/wiki/OperatorsDH#file
http://localhost:3000/wiki/OperatorsDH#float
http://localhost:3000/wiki/OperatorsDH#gaml_type
http://localhost:3000/wiki/OperatorsDH#geometry
http://localhost:3000/wiki/OperatorsDH#graph
http://localhost:3000/wiki/OperatorsIM#int
http://localhost:3000/wiki/OperatorsIM#kml
http://localhost:3000/wiki/OperatorsIM#list
http://localhost:3000/wiki/OperatorsIM#map
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsIM#mental_state
http://localhost:3000/wiki/OperatorsIM#message
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#pair
http://localhost:3000/wiki/OperatorsNR#path
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#predicate
http://localhost:3000/wiki/OperatorsNR#regression
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsSZ#sanction
http://localhost:3000/wiki/OperatorsSZ#skill
http://localhost:3000/wiki/OperatorsSZ#social_link
http://localhost:3000/wiki/OperatorsSZ#species
http://localhost:3000/wiki/OperatorsSZ#topology
http://localhost:3000/wiki/OperatorsSZ#unknown
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page


returns the maximum number of independent cycles in a graph. This number (u) is estimated through
the number of nodes (v), links (e) and of sub-graphs (p): u = e - v + p.

Examples:

See also: alpha_index, beta_index, gamma_index, connectivity_index,

neighbors_at

Possible uses:

geometry  neighbors_at  float  ---> list

neighbors_at  ( geometry  , float ) ---> list

Result:

a list, containing all the agents of the same species than the left argument (if it is an agent) located at a
distance inferior or equal to the right-hand operand to the left-hand operand (geometry, agent, point).

Comment:

The topology used to compute the neighborhood is the one of the left-operand if this one is an agent;
otherwise the one of the agent applying the operator.

Examples:

See also: neighbors_of, closest_to, overlapping, agents_overlapping, agents_inside, agent_closest_to,
at_distance,

neighbors_of

Possible uses:

graph graphEpidemio <- graph([]); 
int var1 <- nb_cycles(graphEpidemio); // var1 equals the number of cycles in the graph

list var0 <- (self neighbors_at (10)); // var0 equals all the agents located at a 
distance lower or equal to 10 to the agent applying the operator.

http://localhost:3000/wiki/OperatorsAA#alpha_index
http://localhost:3000/wiki/OperatorsBC#beta_index
http://localhost:3000/wiki/OperatorsDH#gamma_index
http://localhost:3000/wiki/OperatorsBC#connectivity_index
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#at_distance


graph  neighbors_of  unknown  ---> list

neighbors_of  ( graph  , unknown ) ---> list

topology  neighbors_of  agent  ---> list

neighbors_of  ( topology  , agent ) ---> list

field  neighbors_of  point  ---> list<point>

neighbors_of  ( field  , point ) ---> list<point>

neighbors_of  ( topology , geometry , float ) ---> list

Result:

a list, containing all the agents of the same species than the argument (if it is an agent) located at a
distance inferior or equal to 1 to the right-hand operand agent considering the left-hand operand
topology.

Special cases:

a list, containing all the agents of the same species than the left argument (if it is an agent) located
at a distance inferior or equal to the third argument to the second argument (agent, geometry or
point) considering the first operand topology.

Examples:

See also: predecessors_of, successors_of, neighbors_at, closest_to, overlapping, agents_overlapping,
agents_inside, agent_closest_to,

new_emotion

list var0 <- neighbors_of (topology(self), self,10); // var0 equals all the agents 
located at a distance lower or equal to 10 to the agent applying the operator 
considering its topology.

list var1 <- graphEpidemio neighbors_of (node(3)); // var1 equals [node0,node2] 
list var2 <- graphFromMap neighbors_of node({12,45}); // var2 equals [{1.0,5.0},
{34.0,56.0}] 
list var3 <- topology(self) neighbors_of self; // var3 equals returns all the agents 
located at a distance lower or equal to 1 to the agent applying the operator 
considering its topology.

http://localhost:3000/wiki/OperatorsNR#predecessors_of
http://localhost:3000/wiki/OperatorsSZ#successors_of
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agent_closest_to


Possible uses:

new_emotion  ( string ) ---> emotion

string  new_emotion  float  ---> emotion

new_emotion  ( string  , float ) ---> emotion

string  new_emotion  predicate  ---> emotion

new_emotion  ( string  , predicate ) ---> emotion

string  new_emotion  agent  ---> emotion

new_emotion  ( string  , agent ) ---> emotion

new_emotion  ( string , float , float ) ---> emotion

new_emotion  ( string , float , predicate ) ---> emotion

new_emotion  ( string , predicate , agent ) ---> emotion

new_emotion  ( string , float , agent ) ---> emotion

new_emotion  ( string , float , predicate , float ) ---> emotion

new_emotion  ( string , float , float , agent ) ---> emotion

new_emotion  ( string , float , predicate , agent ) ---> emotion

new_emotion  ( string , float , predicate , float , agent ) ---> emotion

Result:

a new emotion with the given properties (at least its name, and eventually intensity, parameters...)

Special cases:

a new emotion with a name and an initial intensity:

a new emotion with a given name and the predicate it is about

A decay value value can be added to define a new emotion.

new_emotion("joy",12.3)

new_emotion("joy",estFood) 
new_emotion("joy",agent1)

new_emotion("joy",12.3,4.0)



Various combinations are possible to create the emotion: (name,intensity,about),
(name,about,cause), (name,intensity,cause)...

a new emotion with a given name and the agent which has caused this emotion

Examples:

new_folder

Possible uses:

new_folder  ( string ) ---> file

Result:

opens an existing repository or create a new folder if it does not exist.

Special cases:

If the specified string does not refer to an existing repository, the repository is created.

If the string refers to an existing file, an exception is risen.

Examples:

new_emotion("joy",12.3,eatFood) 
new_emotion("joy",eatFood,agent1) 
new_emotion("joy",12.3,agent1)

new_emotion("joy",agent1)

new_emotion("joy",12.3,eatFood,4.0) 
emotion("joy", 12.3, 4, agent1) 
new_emotion("joy",12.3,eatFood,agent1) 
emotion("joy",12.3,eatFood,4,agent1) 
new_emotion("joy")

file dirNewT <- new_folder("incl/");   // dirNewT represents the repository "../incl/" 



See also: folder, file, folder_exists,

new_mental_state

Possible uses:

new_mental_state  ( string ) ---> mental_state

string  new_mental_state  mental_state  ---> mental_state

new_mental_state  ( string  , mental_state ) ---> mental_state

string  new_mental_state  predicate  ---> mental_state

new_mental_state  ( string  , predicate ) ---> mental_state

string  new_mental_state  emotion  ---> mental_state

new_mental_state  ( string  , emotion ) ---> mental_state

new_mental_state  ( string , emotion , agent ) ---> mental_state

new_mental_state  ( string , mental_state , int ) ---> mental_state

new_mental_state  ( string , mental_state , agent ) ---> mental_state

new_mental_state  ( string , predicate , float ) ---> mental_state

new_mental_state  ( string , predicate , int ) ---> mental_state

new_mental_state  ( string , emotion , float ) ---> mental_state

new_mental_state  ( string , mental_state , float ) ---> mental_state

new_mental_state  ( string , predicate , agent ) ---> mental_state

new_mental_state  ( string , emotion , int ) ---> mental_state

new_mental_state  ( string , mental_state , int , agent ) ---> mental_state

new_mental_state  ( string , mental_state , float , agent ) ---> mental_state

new_mental_state  ( string , predicate , int , agent ) ---> mental_state

new_mental_state  ( string , emotion , float , int ) ---> mental_state

new_mental_state  ( string , emotion , int , agent ) ---> mental_state

new_mental_state  ( string , predicate , float , agent ) ---> mental_state

new_mental_state  ( string , mental_state , float , int ) ---> mental_state

new_mental_state  ( string , emotion , float , agent ) ---> mental_state

new_mental_state  ( string , predicate , float , int ) ---> mental_state

new_mental_state  ( string , emotion , float , int , agent ) ---> mental_state

// eventually creates the directory ../incl

http://localhost:3000/wiki/OperatorsDH#folder
http://localhost:3000/wiki/OperatorsDH#file
http://localhost:3000/wiki/OperatorsDH#folder_exists


new_mental_state  ( string , mental_state , float , int , agent ) ---> mental_state

new_mental_state  ( string , predicate , float , int , agent ) ---> mental_state

Result:

creates a new mental state with a given modality (e.g. belief or desire) and various properties (a
predicate it is about, a strength, a lifetime, an ower agent and an emotion it is about

Examples:

new_predicate

Possible uses:

new_predicate  ( string ) ---> predicate

string  new_predicate  bool  ---> predicate

new_predicate  ( string  , bool ) ---> predicate

new_mental_state("belief", mental_state1, 10, agent1) 
new_mental_state("belief", my_joy, agent1) 
new_mental_state("belief", mental_state1, 10) 
new_mental_state("belief", mental_state1, 12.2, agent1) 
new_mental_state("belief", mental_state1, agent1) 
new_mental_state("belief", raining, 0.5) 
new_mental_state("belief", raining, 10) 
new_mental_state("belief", raining, 10, agent1) 
new_mental_state("belief", mental_state1) 
new_mental_state("belief", raining) 
new_mental_state("belief", my_joy, 12.3, 10) 
new_mental_state("belief", my_joy, 12.3) 
new_mental_state("belief", mental_state1, 12.3) 
new_mental_state("belief", raining, agent1) 
new_mental_state("belief", my_joy, 10, agent1) 
new_mental_state("belief", my_joy, 12.3, 10, agent1) 
new_mental_state("belief", my_joy) 
new_mental_state("belief",  my_joy, 10) 
new_mental_state("belief", raining, 12.3, agent1) 
new_mental_state("belief") 
new_mental_state("belief", mental_state1, 12.3, 10) 
new_mental_state("belief", mental_state1, 12.3, 10, agent1) 
new_mental_state("belief",raining, 12.3, 10, agent1) 
new_mental_state("belief", my_joy, 12.3, agent1) 
new_mental_state("belief", raining, 12.4, 10)



string  new_predicate  map  ---> predicate

new_predicate  ( string  , map ) ---> predicate

string  new_predicate  agent  ---> predicate

new_predicate  ( string  , agent ) ---> predicate

new_predicate  ( string , map , agent ) ---> predicate

new_predicate  ( string , map , bool ) ---> predicate

new_predicate  ( string , map , bool , agent ) ---> predicate

Result:

creates a new predicate with a given name and adidtional properties (values, agent causing the
predicate, whether it is true...)

Examples:

new_social_link

Possible uses:

new_social_link  ( agent ) ---> social_link

new_social_link  ( agent , float , float , float , float ) ---> social_link

Result:

creates a new social link with another agent (eventually given additional parameters such as the
appreciation, dominance, solidarity, and familiarity values).

Examples:

new_predicate("hasWater", true) 
new_predicate("people to meet", ["time"::10], agentA) 
new_predicate("people to meet", map(["val1"::23]) ) 
new_predicate("people to meet", agent1) 
new_predicate("people to meet", ["time"::10], true) 
new_predicate("people to meet", ["time"::10], true, agentA) 
new_predicate("people to meet")

new_social_link(agentA) 



node

Possible uses:

node  ( unknown ) ---> unknown

unknown  node  float  ---> unknown

node  ( unknown  , float ) ---> unknown

Result:

Allows to create a wrapper (of type unknown) that wraps an actual object and indicates it should be
considered as a node of a graph. The second (optional) parameter indicates which weight the node
should have in the graph

Comment:

Useful only in graph-related operations (addition, removal of nodes, creation of graphs)

nodes

Possible uses:

nodes  ( container ) ---> container

Result:

Allows to create a wrapper (of type list) that wraps a list of objects and indicates they should be
considered as nodes of a graph

none_matches

Possible uses:

container  none_matches  any expression  ---> bool

none_matches  ( container  , any expression ) ---> bool

new_social_link(agentA,0.0,-0.1,0.2,0.1)



Result:

Returns true if none of the elements of the left-hand operand make the right-hand operand evaluate to
true. 'c none_matches each.property' is strictly equivalent to '(c count each.property) = 0'

Comment:

In the right-hand operand, the keyword each can be used to represent, in turn, each of the elements.

Special cases:

If the left-hand operand is nil, none_matches throws an error.

If the left-hand operand is empty, none_matches returns true.

Examples:

See also: one_matches, all_match, count,

none_verifies

Same signification as none_matches

norm

Possible uses:

norm  ( point ) ---> float

Result:

the norm of the vector with the coordinates of the point operand.

Examples:

bool var0 <- [1,2,3,4,5,6,7,8] none_matches (each > 3); // var0 equals false 
bool var1 <- [1::2, 3::4, 5::6] none_matches (each > 4); // var1 equals false

float var0 <- norm({3,4}); // var0 equals 5.0

http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsNR#none_matches


Norm

Possible uses:

Norm  ( any ) ---> Norm

Result:

casts the operand in a Norm object.

normal_area

Possible uses:

normal_area  ( float , float , float ) ---> float

Result:

Returns the area to the left of x in the normal distribution with the given mean and standard deviation.

Examples:

normal_density

Possible uses:

normal_density  ( float , float , float ) ---> float

Result:

Returns the probability of x in the normal distribution with the given mean and standard deviation.

Examples:

float var0 <- normal_area(0.9,0,1) with_precision(3); // var0 equals 0.816

float var0 <- (normal_density(2,1,1)*100) with_precision 2; // var0 equals 24.2



normal_inverse

Possible uses:

normal_inverse  ( float , float , float ) ---> float

Result:

Returns the x in the normal distribution with the given mean and standard deviation, to the left of which
lies the given area. normal.

Examples:

normalized_rotation

Possible uses:

normalized_rotation  ( pair ) ---> pair<float,point>

Result:

The rotation normalized according to Euler formalism with a positive angle, such that each rotation has
a unique set of parameters (positive angle, normalize axis rotation).

Examples:

See also: [rotation_composition, inverse_rotation](OperatorsSZ#rotation_composition, inverse_rotation),

not

Same signification as !

float var0 <- normal_inverse(0.98,0,1) with_precision(2); // var0 equals 2.05

pair<float,point> var0 <- normalized_rotation(-38.0::{1,1,1}); // var0 equals 38.0::
{-0.5773502691896258,-0.5773502691896258,-0.5773502691896258}

http://localhost:3000/wiki/OperatorsAA#!


not

Possible uses:

not  ( predicate ) ---> predicate

Result:

create a new predicate with the inverse truth value

Examples:

obj_file

Possible uses:

obj_file  ( string ) ---> file

string  obj_file  pair<float,point>  ---> file

obj_file  ( string  , pair<float,point> ) ---> file

string  obj_file  string  ---> file

obj_file  ( string  , string ) ---> file

obj_file  ( string , string , pair<float,point> ) ---> file

Result:

Constructs a file of type obj. Allowed extensions are limited to obj, OBJ

Special cases:

obj_file(string): This file constructor allows to read an obj file. The associated mlt file have to have
the same name as the file to be read.

obj_file(string,pair<float,point>): This file constructor allows to read an obj file and apply an init
rotation to it. The rotationis a pair angle::rotation vector. The associated mlt file have to have the

not predicate1

file f <- obj_file("file.obj");



same name as the file to be read.

obj_file(string,string): This file constructor allows to read an obj file, using a specific mlt file

obj_file(string,string,pair<float,point>): This file constructor allows to read an obj file, using a specific
mlt file, and apply an init rotation to it. The rotationis a pair angle::rotation vector

See also: is_obj,

of

Same signification as .

of_generic_species

Possible uses:

container  of_generic_species  species  ---> list

of_generic_species  ( container  , species ) ---> list

Result:

a list, containing the agents of the left-hand operand whose species is that denoted by the right-hand
operand and whose species extends the right-hand operand species

Examples:

file f <- obj_file("file.obj", 90.0::{-1,0,0});

file f <- obj_file("file.obj","file.mlt");

file f <- obj_file("file.obj","file.mlt", 90.0::{-1,0,0});

// species speciesA {} 
// species sub_speciesA parent: speciesA {} 
list var2 <- [sub_speciesA(0),sub_speciesA(1),speciesA(2),speciesA(3)] 
of_generic_species speciesA; // var2 equals 

http://localhost:3000/wiki/OperatorsIM#is_obj
http://localhost:3000/wiki/OperatorsAA#.


See also: of_species,

of_species

Possible uses:

container  of_species  species  ---> list

of_species  ( container  , species ) ---> list

Result:

a list, containing the agents of the left-hand operand whose species is the one denoted by the right-
hand operand.The expression agents of_species (species self) is equivalent to agents where (species
each = species self); however, the advantage of using the first syntax is that the resulting list is correctly
typed with the right species, whereas, in the second syntax, the parser cannot determine the species of
the agents within the list (resulting in the need to cast it explicitly if it is to be used in an ask statement,
for instance).

Special cases:

if the right operand is nil, of_species returns the right operand

Examples:

See also: of_generic_species,

[sub_speciesA0,sub_speciesA1,speciesA0,speciesA1] 
list var3 <- [sub_speciesA(0),sub_speciesA(1),speciesA(2),speciesA(3)] 
of_generic_species sous_test; // var3 equals [sub_speciesA0,sub_speciesA1] 
list var4 <- [sub_speciesA(0),sub_speciesA(1),speciesA(2),speciesA(3)] of_species 
speciesA; // var4 equals [speciesA0,speciesA1] 
list var5 <- [sub_speciesA(0),sub_speciesA(1),speciesA(2),speciesA(3)] of_species 
sous_test; // var5 equals [sub_speciesA0,sub_speciesA1]

list var0 <- (self neighbors_at 10) of_species (species (self)); // var0 equals all the 
neighboring agents of the same species. 
list var1 <- [test(0),test(1),node(1),node(2)] of_species test; // var1 equals 
[test0,test1]

http://localhost:3000/wiki/OperatorsNR#of_species
http://localhost:3000/wiki/OperatorsNR#of_generic_species


one_matches

Possible uses:

container  one_matches  any expression  ---> bool

one_matches  ( container  , any expression ) ---> bool

Result:

Returns true if at least one of the elements of the left-hand operand make the right-hand operand
evaluate to true. Returns false if the left-hand operand is empty. 'c one_matches each.property' is strictly
equivalent to '(c count each.property) > 0' but faster in most cases (as it is a shortcircuited operator)

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the elements.

Special cases:

if the left-hand operand is nil, one_matches throws an error

Examples:

See also: none_matches, all_match, count,

one_of

Possible uses:

one_of  ( container<KeyType,ValueType> ) ---> ValueType

Result:

one of the values stored in this container at a random key

Comment:

the one_of operator behavior depends on the nature of the operand

bool var0 <- [1,2,3,4,5,6,7,8] one_matches (each > 3); // var0 equals true 
bool var1 <- [1::2, 3::4, 5::6] one_matches (each > 4); // var1 equals true

http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsBC#count


Special cases:

if the operand is empty, one_of returns nil

if it is a graph, one_of returns one of the lists of edges

if it is a file, one_of returns one of the elements of the content of the file (that is also a container)

if it is a list or a matrix, one_of returns one of the values of the list or of the matrix

if it is a map, one_of returns one the value of a random pair of the map

if it is a population, one_of returns one of the agents of the population

See also: contains,

one_verifies

Same signification as one_matches

or

Possible uses:

bool  or  any expression  ---> bool

or  ( bool  , any expression ) ---> bool

Result:

a bool value, equal to the logical or between the left-hand operand and the right-hand operand.

inti <- any ([1,2,3]);  // i equals 1, 2 or 3 
string sMat <- one_of(matrix([["c11","c12","c13"],["c21","c22","c23"]])); // sMat 
equals "c11","c12","c13", "c21","c22" or "c23"

int im <- one_of ([2::3, 4::5, 6::7]); // im equals 3, 5 or 7 
bool var3 <- [2::3, 4::5, 6::7].values contains im; // var3 equals true

bug b <- one_of(bug);  // Given a previously defined species bug, b is one of the 
created bugs, e.g. bug3

http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsNR#one_matches


Comment:

both operands are always casted to bool before applying the operator. Thus, an expression like 1 or 0 is
accepted and returns true.

Examples:

See also: bool, and, !,

or

Possible uses:

predicate  or  predicate  ---> predicate

or  ( predicate  , predicate ) ---> predicate

Result:

create a new predicate from two others by including them as subintentions. It's an exclusive "or"

Examples:

osm_file

Possible uses:

osm_file  ( string ) ---> file

string  osm_file  map<string,list>  ---> file

osm_file  ( string  , map<string,list> ) ---> file

Result:

bool var0 <- true or false; // var0 equals true 
 int a <-3 ; int b <- 4; int c <- 7; 
bool var2 <- ((a+b) = c ) or ((a+b) > c ); // var2 equals true

predicate1 or predicate2

http://localhost:3000/wiki/OperatorsBC#bool
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsAA#!


Constructs a file of type osm. Allowed extensions are limited to osm, pbf, bz2, gz

Special cases:

osm_file(string): This file constructor allows to read a osm (.osm, .pbf, .bz2, .gz) file (using WGS84
coordinate system for the data)

osm_file(string,map<string,list>): This file constructor allows to read an osm (.osm, .pbf, .bz2, .gz) file
(using WGS84 coordinate system for the data)The map is used to filter the objects in the file
according their attributes: for each key (string) of the map, only the objects that have a value for the
attribute contained in the value set are kept. For an exhaustive list of the attibute of OSM data, see:
http://wiki.openstreetmap.org/wiki/Map_Features

See also: is_osm,

out_degree_of

Possible uses:

graph  out_degree_of  unknown  ---> int

out_degree_of  ( graph  , unknown ) ---> int

Result:

returns the out degree of a vertex (right-hand operand) in the graph given as left-hand operand.

Examples:

file f <- osm_file("file");

void var1 <- file f <- osm_file("file", map(["highway"::["primary", "secondary"], 
"building"::["yes"], "amenity"::[]]));; // var1 equals f will contain all the objects 
of file that have the attibute 'highway' with the value 'primary' or 'secondary', and 
the objects that have the attribute 'building' with the value 'yes', and all the 
objects that have the attribute 'aminity' (whatever the value).

int var1 <- graphFromMap out_degree_of (node(3)); // var1 equals 4

http://wiki.openstreetmap.org/wiki/Map_Features
http://localhost:3000/wiki/OperatorsIM#is_osm


See also: in_degree_of, degree_of,

out_edges_of

Possible uses:

graph  out_edges_of  unknown  ---> list

out_edges_of  ( graph  , unknown ) ---> list

Result:

returns the list of the out-edges of a vertex (right-hand operand) in the graph given as left-hand
operand.

Examples:

See also: in_edges_of,

overlapping

Possible uses:

container<unknown,geometry>  overlapping  geometry  ---> list<geometry>

overlapping  ( container<unknown,geometry>  , geometry ) ---> list<geometry>

Result:

A list of agents or geometries among the left-operand list, species or meta-population (addition of
species), overlapping the operand (casted as a geometry).

Examples:

list var1 <- graphFromMap out_edges_of (node(3)); // var1 equals 3

list<geometry> var0 <- [ag1, ag2, ag3] overlapping(self); // var0 equals return the 
agents among ag1, ag2 and ag3 that overlap the shape of the agent applying the 
operator. 
(species1 + species2) overlapping self

http://localhost:3000/wiki/OperatorsIM#in_degree_of
http://localhost:3000/wiki/OperatorsDH#degree_of
http://localhost:3000/wiki/OperatorsIM#in_edges_of


See also: neighbors_at, neighbors_of, agent_closest_to, agents_inside, closest_to, inside,
agents_overlapping,

overlaps

Possible uses:

geometry  overlaps  geometry  ---> bool

overlaps  ( geometry  , geometry ) ---> bool

Result:

A boolean, equal to true if the left-geometry (or agent/point) overlaps the right-geometry (or
agent/point).

Special cases:

if one of the operand is null, returns false.

if one operand is a point, returns true if the point is included in the geometry

Examples:

See also: disjoint_from, crosses, intersects, partially_overlaps, touches,

pair

Same signification as ::

pair

bool var0 <- polyline([{10,10},{20,20}]) overlaps polyline([{15,15},{25,25}]); // var0 
equals true 
bool var1 <- polygon([{10,10},{10,20},{20,20},{20,10}]) overlaps polygon([{15,15},
{15,25},{25,25},{25,15}]); // var1 equals true 
bool var2 <- polygon([{10,10},{10,20},{20,20},{20,10}]) overlaps polyline([{10,10},
{20,20}]); // var2 equals true 
bool var3 <- polygon([{10,10},{10,20},{20,20},{20,10}]) overlaps {15,15}; // var3 
equals true

http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsAA#::


Possible uses:

pair  ( any ) ---> pair

Result:

casts the operand in a pair object.

palette

Possible uses:

palette  ( list<rgb> ) ---> list<rgb>

Result:

transforms a list of n colors into a palette (necessary for some layers)

partially_overlapping

Possible uses:

container<unknown,geometry>  partially_overlapping  geometry  ---> list<geometry>

partially_overlapping  ( container<unknown,geometry>  , geometry ) ---> list<geometry>

Result:

A list of agents or geometries among the left-operand list, species or meta-population (addition of
species), partially_overlapping the operand (casted as a geometry).

Examples:

list<geometry> var0 <- [ag1, ag2, ag3] partially_overlapping(self); // var0 equals the 
agents among ag1, ag2 and ag3 that partially_overlap the shape of the right-hand 
argument. 
list<geometry> var1 <- (species1 + species2) partially_overlapping (self); // var1 
equals the agents among species species1 and species2 that partially_overlap the shape 
of the right-hand argument.



See also: neighbors_at, neighbors_of, closest_to, overlapping, agents_overlapping, inside,
agents_inside, agent_closest_to,

partially_overlaps

Possible uses:

geometry  partially_overlaps  geometry  ---> bool

partially_overlaps  ( geometry  , geometry ) ---> bool

Result:

A boolean, equal to true if the left-geometry (or agent/point) partially overlaps the right-geometry (or
agent/point).

Comment:

if one geometry operand fully covers the other geometry operand, returns false (contrarily to the
overlaps operator).

Special cases:

if one of the operand is null, returns false.

Examples:

See also: disjoint_from, crosses, overlaps, intersects, touches,

path

Possible uses:

bool var0 <- polyline([{10,10},{20,20}]) partially_overlaps polyline([{15,15},
{25,25}]); // var0 equals true 
bool var1 <- polygon([{10,10},{10,20},{20,20},{20,10}]) partially_overlaps 
polygon([{15,15},{15,25},{25,25},{25,15}]); // var1 equals true 
bool var2 <- polygon([{10,10},{10,20},{20,20},{20,10}]) partially_overlaps {25,25}; // 
var2 equals false 
bool var3 <- polygon([{10,10},{10,20},{20,20},{20,10}]) partially_overlaps 
polyline([{10,10},{20,20}]); // var3 equals false

http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsSZ#touches


path  ( any ) ---> path

Result:

casts the operand in a path object.

Special cases:

if the operand is a path, returns this path

if the operand is a geometry of an agent, returns a path from the list of points of the geometry

if the operand is a list, cast each element of the list as a point and create a path from these points

path_between

Possible uses:

topology  path_between  container<unknown,geometry>  ---> path

path_between  ( topology  , container<unknown,geometry> ) ---> path

map<agent,unknown>  path_between  container<unknown,geometry>  ---> path

path_between  ( map<agent,unknown>  , container<unknown,geometry> ) ---> path

list<agent>  path_between  container<unknown,geometry>  ---> path

path_between  ( list<agent>  , container<unknown,geometry> ) ---> path

path_between  ( map<agent,unknown> , geometry , geometry ) ---> path

path_between  ( graph , unknown , unknown ) ---> path

path_between  ( topology , geometry , geometry ) ---> path

path_between  ( list<agent> , geometry , geometry ) ---> path

Result:

The shortest path between two objects according to set of cells with corresponding weights The
shortest path between a list of two objects in a graph The shortest path between several objects
according to set of cells with corresponding weights The shortest path between two objects according
to set of cells The shortest path between several objects according to set of cells

Examples:

path p <- path([{12,12},{30,30},{50,50}]);



See also: towards, direction_to, distance_between, direction_between, path_to, distance_to,

path_to

Possible uses:

point  path_to  point  ---> path

path_to  ( point  , point ) ---> path

geometry  path_to  geometry  ---> path

path_to  ( geometry  , geometry ) ---> path

Result:

A path between two geometries (geometries, agents or points) considering the topology of the agent
applying the operator.

Examples:

See also: towards, direction_to, distance_between, direction_between, path_between, distance_to,

path var0 <- my_topology path_between [ag1, ag2]; // var0 equals A path between ag1 and 
ag2 
path var1 <- path_between (cell_grid as_map (each::each.is_obstacle ? 9999.0 : 1.0), 
ag1, ag2); // var1 equals A path between ag1 and ag2 passing through the given 
cell_grid agents with a minimal cost 
path var2 <- path_between (my_graph, ag1, ag2); // var2 equals A path between ag1 and 
ag2 
path var3 <- path_between (cell_grid as_map (each::each.is_obstacle ? 9999.0 : 1.0), 
[ag1, ag2, ag3]); // var3 equals A path between ag1 and ag2 and ag3 passing through the 
given cell_grid agents with minimal cost 
path var4 <- my_topology path_between (ag1, ag2); // var4 equals A path between ag1 and 
ag2 
path var5 <- path_between (cell_grid where each.is_free, ag1, ag2); // var5 equals A 
path between ag1 and ag2 passing through the given cell_grid agents 
path var6 <- path_between (cell_grid where each.is_free, [ag1, ag2, ag3]); // var6 
equals A path between ag1 and ag2 and ag3 passing through the given cell_grid agents

path var0 <- ag1 path_to ag2; // var0 equals the path between ag1 and ag2 considering 
the topology of the agent applying the operator

http://localhost:3000/wiki/OperatorsSZ#towards
http://localhost:3000/wiki/OperatorsDH#direction_to
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsSZ#towards
http://localhost:3000/wiki/OperatorsDH#direction_to
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsDH#distance_to


paths_between

Possible uses:

paths_between  ( graph , pair , int ) ---> list<path>

Result:

The K shortest paths between a list of two objects in a graph

Examples:

pbinom

Same signification as binomial_sum

pchisq

Same signification as chi_square

percent_absolute_deviation

Possible uses:

list<float>  percent_absolute_deviation  list<float>  ---> float

percent_absolute_deviation  ( list<float>  , list<float> ) ---> float

Result:

percent absolute deviation indicator for 2 series of values:
percent_absolute_deviation(list_vals_observe,list_vals_sim)

Examples:

list<path> var0 <- paths_between(my_graph, ag1:: ag2, 2); // var0 equals the 2 shortest 
paths (ordered by length) between ag1 and ag2

http://localhost:3000/wiki/OperatorsBC#binomial_sum
http://localhost:3000/wiki/OperatorsBC#chi_square


percentile

Same signification as quantile_inverse

pgamma

Same signification as gamma_distribution

pgm_file

Possible uses:

pgm_file  ( string ) ---> file

Result:

Constructs a file of type pgm. Allowed extensions are limited to pgm

Special cases:

pgm_file(string): This file constructor allows to read a pgm file

See also: is_pgm,

plan

Possible uses:

container<unknown,geometry>  plan  float  ---> geometry

plan  ( container<unknown,geometry>  , float ) ---> geometry

float var0 <- percent_absolute_deviation([200,300,150,150,200],[250,250,100,200,200]); 
// var0 equals 20.0

file f <-pgm_file("file.pgm");

http://localhost:3000/wiki/OperatorsNR#quantile_inverse
http://localhost:3000/wiki/OperatorsDH#gamma_distribution
http://localhost:3000/wiki/OperatorsIM#is_pgm


Result:

A polyline geometry from the given list of points.

Special cases:

if the operand is nil, returns the point geometry {0,0}

if the operand is composed of a single point, returns a point geometry.

Examples:

See also: around, circle, cone, link, norm, point, polygone, rectangle, square, triangle,

play_sound

Possible uses:

play_sound  ( string ) ---> bool

Result:

Play a wave file

Examples:

plus_days

Possible uses:

date  plus_days  int  ---> date

plus_days  ( date  , int ) ---> date

Result:

geometry var0 <- polyplan([{0,0}, {0,10}, {10,10}, {10,0}],10); // var0 equals a 
polyline geometry composed of the 4 points with a depth of 10.

bool sound_ok <- play_sound('beep.wav');

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsSZ#polygone
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle


Add a given number of days to a date

Examples:

plus_hours

Possible uses:

date  plus_hours  int  ---> date

plus_hours  ( date  , int ) ---> date

Result:

Add a given number of hours to a date

Examples:

plus_minutes

Possible uses:

date  plus_minutes  int  ---> date

plus_minutes  ( date  , int ) ---> date

Result:

Add a given number of minutes to a date

Examples:

date var0 <- date('2000-01-01') plus_days 12; // var0 equals date('2000-01-13')

// equivalent to date1 + 15 #h 
date var1 <- date('2000-01-01') plus_hours 24; // var1 equals date('2000-01-02')

// equivalent to date1 + 5 #mn 
date var1 <- date('2000-01-01') plus_minutes 5 ; // var1 equals date('2000-01-01 



plus_months

Possible uses:

date  plus_months  int  ---> date

plus_months  ( date  , int ) ---> date

Result:

Add a given number of months to a date

Examples:

plus_ms

Possible uses:

date  plus_ms  int  ---> date

plus_ms  ( date  , int ) ---> date

Result:

Add a given number of milliseconds to a date

Examples:

plus_seconds

00:05:00')

date var0 <- date('2000-01-01') plus_months 5; // var0 equals date('2000-06-01')

// equivalent to date('2000-01-01') + 15 #ms 
date var1 <- date('2000-01-01') plus_ms 1000 ; // var1 equals date('2000-01-01 
00:00:01')



Same signification as +

plus_weeks

Possible uses:

date  plus_weeks  int  ---> date

plus_weeks  ( date  , int ) ---> date

Result:

Add a given number of weeks to a date

Examples:

plus_years

Possible uses:

date  plus_years  int  ---> date

plus_years  ( date  , int ) ---> date

Result:

Add a given number of years to a date

Examples:

pnorm

Same signification as normal_area

date var0 <- date('2000-01-01') plus_weeks 15; // var0 equals date('2000-04-15')

date var0 <- date('2000-01-01') plus_years 15; // var0 equals date('2015-01-01')

http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsNR#normal_area


point

Possible uses:

point  ( any ) ---> point

Result:

casts the operand in a point object.

points_along

Possible uses:

geometry  points_along  list<float>  ---> list

points_along  ( geometry  , list<float> ) ---> list

Result:

A list of points along the operand-geometry given its location in terms of rate of distance from the
starting points of the geometry.

Examples:

See also: closest_points_with, farthest_point_to, points_at, points_on,

points_at

Possible uses:

int  points_at  float  ---> list<point>

points_at  ( int  , float ) ---> list<point>

Result:

A list of left-operand number of points located at a the right-operand distance to the agent location.

list var0 <-  line([{10,10},{80,80}]) points_along ([0.3, 0.5, 0.9]); // var0 equals 
the list of following points: [{31.0,31.0,0.0},{45.0,45.0,0.0},{73.0,73.0,0.0}]

http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on


Examples:

See also: any_location_in, any_point_in, closest_points_with, farthest_point_to,

points_in

Possible uses:

field  points_in  geometry  ---> list<point>

points_in  ( field  , geometry ) ---> list<point>

points_on

Possible uses:

geometry  points_on  float  ---> list

points_on  ( geometry  , float ) ---> list

Result:

A list of points of the operand-geometry distant from each other to the float right-operand .

Examples:

See also: closest_points_with, farthest_point_to, points_at,

poisson

Possible uses:

poisson  ( float ) ---> int

list<point> var0 <- 3 points_at(20.0); // var0 equals returns [pt1, pt2, pt3] with pt1, 
pt2 and pt3 located at a distance of 20.0 to the agent location

list var0 <-  square(5) points_on(2); // var0 equals a list of points belonging to the 
exterior ring of the square distant from each other of 2.

http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsAA#any_point_in
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsNR#points_at


Result:

A value from a random variable following a Poisson distribution (with the positive expected number of
occurence lambda as operand).

Comment:

The Poisson distribution is a discrete probability distribution that expresses the probability of a given
number of events occurring in a fixed interval of time and/or space if these events occur with a known
average rate and independently of the time since the last event, cf. Poisson distribution on Wikipedia.

Examples:

See also: binomial, gamma_rnd, gauss_rnd, lognormal_rnd, rnd, skew_gauss, truncated_gauss,
weibull_rnd,

polygon

Possible uses:

polygon  ( container<unknown,geometry> ) ---> geometry

Result:

A polygon geometry from the given list of points.

Special cases:

if the operand is nil, returns the point geometry {0,0}

if the operand is composed of a single point, returns a point geometry

if the operand is composed of 2 points, returns a polyline geometry.

Examples:

int var0 <- poisson(3.5); // var0 equals a random positive integer

geometry var0 <- polygon([{0,0}, {0,10}, {10,10}, {10,0}]); // var0 equals a polygon 
geometry composed of the 4 points. 
float var1 <- polygon([{0,0}, {0,10}, {10,10}, {10,0}]).area; // var1 equals 100.0 

http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd


See also: around, circle, cone, line, link, norm, point, polyline, rectangle, square, triangle,

polyhedron

Possible uses:

container<unknown,geometry>  polyhedron  float  ---> geometry

polyhedron  ( container<unknown,geometry>  , float ) ---> geometry

Result:

A polyhedron geometry from the given list of points.

Special cases:

if the operand is nil, returns the point geometry {0,0}

if the operand is composed of a single point, returns a point geometry

if the operand is composed of 2 points, returns a polyline geometry.

Examples:

See also: around, circle, cone, line, link, norm, point, polyline, rectangle, square, triangle,

polyline

Same signification as line

polyplan

Same signification as plan

point var2 <- polygon([{0,0}, {0,10}, {10,10}, {10,0}]).location; // var2 equals 
point(5.0,5.0,0.0)

geometry var0 <- polyhedron([{0,0}, {0,10}, {10,10}, {10,0}],10); // var0 equals a 
polygon geometry composed of the 4 points and of depth 10.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsNR#plan


predecessors_of

Possible uses:

graph  predecessors_of  unknown  ---> list

predecessors_of  ( graph  , unknown ) ---> list

Result:

returns the list of predecessors (i.e. sources of in edges) of the given vertex (right-hand operand) in the
given graph (left-hand operand)

Examples:

See also: neighbors_of, successors_of,

predicate

Possible uses:

predicate  ( any ) ---> predicate

Result:

casts the operand in a predicate object.

predict

Possible uses:

regression  predict  list  ---> float

predict  ( regression  , list ) ---> float

Result:

list var1 <- graphEpidemio predecessors_of ({1,5}); // var1 equals [] 
list var2 <- graphEpidemio predecessors_of node({34,56}); // var2 equals [{12;45}]

http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsSZ#successors_of


returns the value predicted by the regression parameters for a given instance. Usage:
predict(regression, instance)

Examples:

product

Same signification as mul

product_of

Possible uses:

container  product_of  any expression  ---> unknown

product_of  ( container  , any expression ) ---> unknown

Result:

the product of the right-hand expression evaluated on each of the elements of the left-hand operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand
operand elements.

Special cases:

if the left-operand is a map, the keyword each will contain each value

Examples:

predict(my_regression, [1,2,3])

unknown var1 <- [1::2, 3::4, 5::6] product_of (each); // var1 equals 48

unknown var0 <- [1,2] product_of (each * 10 ); // var0 equals 200

http://localhost:3000/wiki/OperatorsIM#mul


See also: min_of, max_of, sum_of, mean_of,

promethee_DM

Possible uses:

list<list>  promethee_DM  list<map<string,unknown>>  ---> int

promethee_DM  ( list<list>  , list<map<string,unknown>> ) ---> int

Result:

The index of the best candidate according to the Promethee II method. This method is based on a
comparison per pair of possible candidates along each criterion: all candidates are compared to each
other by pair and ranked. More information about this method can be found in Behzadian, M.,
Kazemzadeh, R., Albadvi, A., M., A.: PROMETHEE: A comprehensive literature review on methodologies
and applications. European Journal of Operational Research(2010). The first operand is the list of
candidates (a candidate is a list of criterion values); the second operand the list of criterion: A criterion is
a map that contains fours elements: a name, a weight, a preference value (p) and an indifference value
(q). The preference value represents the threshold from which the difference between two criterion
values allows to prefer one vector of values over another. The indifference value represents the
threshold from which the difference between two criterion values is considered significant.

Special cases:

returns -1 if the list of candidates is nil or empty

Examples:

See also: weighted_means_DM, electre_DM, evidence_theory_DM,

property_file

Possible uses:

int var0 <- promethee_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], [["name"::"utility", 
"weight" :: 2.0,"p"::0.5, "q"::0.0, "s"::1.0, "maximize" :: true],["name"::"price", 
"weight" :: 1.0,"p"::0.5, "q"::0.0, "s"::1.0, "maximize" :: false]]); // var0 equals 1

http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsIM#mean_of
https://www.sciencedirect.com/science/article/abs/pii/S0377221709000071
https://www.sciencedirect.com/science/article/abs/pii/S0377221709000071
https://www.sciencedirect.com/science/article/abs/pii/S0377221709000071
http://localhost:3000/wiki/OperatorsSZ#weighted_means_dm
http://localhost:3000/wiki/OperatorsDH#electre_dm
http://localhost:3000/wiki/OperatorsDH#evidence_theory_dm


property_file  ( string ) ---> file

string  property_file  map<string,string>  ---> file

property_file  ( string  , map<string,string> ) ---> file

Result:

Constructs a file of type property. Allowed extensions are limited to properties

Special cases:

property_file(string): This file constructor allows to read a property file (.properties)

property_file(string,map<string,string>): This file constructor allows to store a map in a property file
(it does not save it - just store it in memory)

See also: is_property,

pValue_for_fStat

Possible uses:

pValue_for_fStat  ( float , int , int ) ---> float

Result:

Returns the P value of F statistic fstat with numerator degrees of freedom dfn and denominator degress
of freedom dfd. Uses the incomplete Beta function.

Examples:

file f <-property_file("file.properties");

file f <-property_file("file.properties", map(["param1"::1.0,"param3"::10.0 ]));

float var0 <- pValue_for_fStat(1.9,10,12) with_precision(3); // var0 equals 0.145

http://localhost:3000/wiki/OperatorsIM#is_property


pValue_for_tStat

Possible uses:

float  pValue_for_tStat  int  ---> float

pValue_for_tStat  ( float  , int ) ---> float

Result:

Returns the P value of the T statistic tstat with df degrees of freedom. This is a two-tailed test so we just
double the right tail which is given by studentT of -|tstat|.

Examples:

pyramid

Possible uses:

pyramid  ( float ) ---> geometry

Result:

A square geometry which side size is given by the operand.

Comment:

the center of the pyramid is by default the location of the current agent in which has been called this
operator.

Special cases:

returns nil if the operand is nil.

Examples:

See also: around, circle, cone, line, link, norm, point, polygon, polyline, rectangle, square,

float var0 <- pValue_for_tStat(0.9,10) with_precision(3); // var0 equals 0.389

geometry var0 <- pyramid(5); // var0 equals a geometry as a square with side_size = 5.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square


quantile

Possible uses:

container  quantile  float  ---> float

quantile  ( container  , float ) ---> float

Result:

Returns the phi-quantile; that is, an element elem for which holds that phi percent of data elements are
less than elem. The quantile does not need necessarily to be contained in the data sequence, it can be a
linear interpolation. Note that the container holding the values must be sorted first

Examples:

quantile_inverse

Possible uses:

container  quantile_inverse  float  ---> float

quantile_inverse  ( container  , float ) ---> float

Result:

Returns how many percent of the elements contained in the receiver are <= element. Does linear
interpolation if the element is not contained but lies in between two contained elements. Note that the
container holding the values must be sorted first

Examples:

float var0 <- 
quantile([1,3,5,6,9,11,12,13,19,21,22,32,35,36,45,44,55,68,79,80,81,88,90,91,92,100], 
0.5); // var0 equals 35.5

float var0 <- 
quantile_inverse([1,3,5,6,9,11,12,13,19,21,22,32,35,36,45,44,55,68,79,80,81,88,90,91,92,1
35.5) with_precision(2); // var0 equals 0.52



range

Possible uses:

range  ( int ) ---> list

int  range  int  ---> list

range  ( int  , int ) ---> list

range  ( int , int , int ) ---> list

Result:

builds a list of int representing all contiguous values from zero to the argument. The range can be
increasing or decreasing.

Special cases:

Passing 0 will return a singleton list with 0.

When used with 3 operands, it returns a list of int representing all contiguous values from the first
to the second argument, using the step represented by the third argument. The range can be
increasing or decreasing. Passing the same value for both will return a singleton list with this value.
Passing a step of 0 will result in an exception. Attempting to build infinite ranges (e.g. end > start
with a negative step) will similarly not be accepted and yield an exception

When used with 2 operands, it returns the list of int representing all contiguous values from the first
to the second argument. Passing the same value for both will return a singleton list with this value

rank_interpolated

Possible uses:

container  rank_interpolated  float  ---> float

rank_interpolated  ( container  , float ) ---> float

Result:

list var0 <- range(0,6,2); // var0 equals [0,2,4,6]

list var1 <- range(0,2); // var1 equals [0,1,2]



Returns the linearly interpolated number of elements in a list less or equal to a given element. The rank
is the number of elements <= element. Ranks are of the form {0, 1, 2,..., sortedList.size()}. If no element
is <= element, then the rank is zero. If the element lies in between two contained elements, then linear
interpolation is used and a non integer value is returned. Note that the container holding the values
must be sorted first

Examples:

read

Possible uses:

read  ( string ) ---> unknown

Result:

Reads an attribute of the agent. The attribute's name is specified by the operand.

Examples:

rectangle

Possible uses:

rectangle  ( point ) ---> geometry

point  rectangle  point  ---> geometry

rectangle  ( point  , point ) ---> geometry

float  rectangle  float  ---> geometry

rectangle  ( float  , float ) ---> geometry

float var0 <- 
rank_interpolated([1,3,5,6,9,11,12,13,19,21,22,32,35,36,45,44,55,68,79,80,81,88,90,91,92,
35); // var0 equals 13.0

unknownagent_name <- read ('name');  // agent_name equals reads the 'name' variable of 
agent then assigns the returned value to the 'agent_name' variable. 



Result:

A rectangle geometry, computed from the operands values (e.g. the 2 side sizes).

Comment:

the center of the rectangle is by default the location of the current agent in which has been called this
operator.the center of the rectangle is by default the location of the current agent in which has been
called this operator.

Special cases:

returns nil if the operand is nil.

Examples:

See also: around, circle, cone, line, link, norm, point, polygon, polyline, square, triangle,

reduced_by

Same signification as -

regex_matches

Possible uses:

string  regex_matches  string  ---> list<string>

regex_matches  ( string  , string ) ---> list<string>

Result:

geometry var0 <- rectangle({0.0,0.0}, {10.0,10.0}); // var0 equals a geometry as a 
rectangle with {1.0,1.0} as the upper-left corner, {10.0,10.0} as the lower-right 
corner. 
geometry var1 <- rectangle(10, 5); // var1 equals a geometry as a rectangle with width 
= 10 and height = 5. 
geometry var2 <- rectangle({10, 5}); // var2 equals a geometry as a rectangle with 
width = 10 and height = 5.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsAA#-


Returns the list of sub-strings of the first operand that match the regular expression provided in the
second operand

Examples:

See also: replace_regex,

regression

Possible uses:

regression  ( any ) ---> regression

Result:

casts the operand in a regression object.

remove_duplicates

Possible uses:

remove_duplicates  ( container ) ---> list

Result:

produces a set from the elements of the operand (i.e. a list without duplicated elements)

Special cases:

if the operand is a graph, remove_duplicates returns the set of nodes

if the operand is empty, remove_duplicates returns an empty list

if the operand is a map, remove_duplicates returns the set of values without duplicate

list<string> var0 <- regex_matches("colour, color", "colou?r"); // var0 equals 
['colour','color']

list var1 <- remove_duplicates([]); // var1 equals []

http://localhost:3000/wiki/OperatorsNR#replace_regex


if the operand is a matrix, remove_duplicates returns a list containing all the elments with
duplicated.

Examples:

remove_node_from

Possible uses:

geometry  remove_node_from  graph  ---> graph

remove_node_from  ( geometry  , graph ) ---> graph

Result:

removes a node from a graph.

Comment:

WARNING / side effect: this operator modifies the operand and does not create a new graph. All the
edges containing this node are also removed.

Examples:

rename_file

Possible uses:

list var2 <- remove_duplicates([1::3,2::4,3::3,5::7]); // var2 equals [3,4,7]

list var3 <- remove_duplicates([["c11","c12","c13","c13"],["c21","c22","c23","c23"]]); 
// var3 equals [["c11","c12","c13","c21","c22","c23"]]

list var0 <- remove_duplicates([3,2,5,1,2,3,5,5,5]); // var0 equals [3,2,5,1]

graph var0 <- node(0) remove_node_from graphEpidemio; // var0 equals the graph without 
node(0)



string  rename_file  string  ---> bool

rename_file  ( string  , string ) ---> bool

Result:

rename/move a file or a folder

Examples:

replace

Possible uses:

replace  ( string , string , string ) ---> string

Result:

Returns the string obtained by replacing by the third operand, in the first operand, all the sub-strings
equal to the second operand

Examples:

See also: replace_regex,

replace_regex

Possible uses:

replace_regex  ( string , string , string ) ---> string

Result:

bool rename_file_ok <- 
rename_file("../includes/my_folder","../includes/my_new_folder");

string var0 <- replace('to be or not to be,that is the question','to', 'do'); // var0 
equals 'do be or not do be,that is the question'

http://localhost:3000/wiki/OperatorsNR#replace_regex


Returns the string obtained by replacing by the third operand, in the first operand, all the sub-strings
that match the regular expression of the second operand

Examples:

See also: replace,

residuals

Possible uses:

residuals  ( regression ) ---> list<float>

Result:

Return the list of residuals for a given regression model

Examples:

reverse

Possible uses:

reverse  ( container<KeyType,ValueType> ) ---> container<unknown,unknown>

reverse  ( map<K,V> ) ---> map

reverse  ( string ) ---> string

Result:

the operand elements in the reversed order in a copy of the operand.

Comment:

string var0 <- replace_regex("colour, color", "colou?r", "col"); // var0 equals 'col, 
col'

residuals(my_regression)

http://localhost:3000/wiki/OperatorsNR#replace


the reverse operator behavior depends on the nature of the operand

Special cases:

if it is a file, reverse returns a copy of the file with a reversed content

if it is a population, reverse returns a copy of the population with elements in the reversed order

if it is a graph, reverse returns a copy of the graph (with all edges and vertexes), with all of the edges
reversed

if it is a list, reverse returns a copy of the operand list with elements in the reversed order

if it is a map, reverse returns a copy of the operand map with each pair in the reversed order (i.e. all
keys become values and values become keys)

if it is a matrix, reverse returns a new matrix containing the transpose of the operand.

if it is a string, reverse returns a new string with characters in the reversed order

Examples:

rewire_n

Possible uses:

list<int> var2 <- reverse ([10,12,14]); // var2 equals [14, 12, 10]

map<int,string> var3 <- reverse (['k1'::44, 'k2'::32, 'k3'::12]); // var3 equals 
[44::'k1', 32::'k2', 12::'k3']

matrix<string> var4 <- reverse(matrix([["c11","c12","c13"],["c21","c22","c23"]])); // 
var4 equals matrix([["c11","c21"],["c12","c22"],["c13","c23"]])

string var5 <- reverse ('abcd'); // var5 equals 'dcba'

map<int,int> m <- [1::111,2::222, 3::333, 4::444]; 
map var1 <- reverse(m); // var1 equals map([111::1,222::2,333::3,444::4])



graph  rewire_n  int  ---> graph

rewire_n  ( graph  , int ) ---> graph

Result:

rewires the given count of edges.

Comment:

WARNING / side effect: this operator modifies the operand and does not create a new graph. If there are
too many edges, all the edges will be rewired.

Examples:

rgb

Possible uses:

rgb  rgb  float  ---> rgb

rgb  ( rgb  , float ) ---> rgb

string  rgb  int  ---> rgb

rgb  ( string  , int ) ---> rgb

rgb  rgb  int  ---> rgb

rgb  ( rgb  , int ) ---> rgb

rgb  ( int , int , int ) ---> rgb

rgb  ( int , int , int , float ) ---> rgb

rgb  ( int , int , int , int ) ---> rgb

Result:

Returns a color defined by red, green, blue components and an alpha blending value.

Special cases:

It can be used with r=red, g=green, b=blue (each between 0 and 255), a=alpha (between 0.0 and 1.0)

It can be used with a color and an alpha between 0 and 1

graph var1 <- graphEpidemio rewire_n 10; // var1 equals the graph with 3 edges rewired



It can be used with a name of color and alpha (between 0 and 255)

It can be used with a color and an alpha between 0 and 255

It can be used with r=red, g=green, b=blue (each between 0 and 255), a=alpha (between 0 and 255)

It can be used with r=red, g=green, b=blue, each between 0 and 255

Examples:

See also: hsb,

rgb

Possible uses:

rgb  ( any ) ---> rgb

Result:

casts the operand in a rgb object.

rms

Possible uses:

int  rms  float  ---> float

rms  ( int  , float ) ---> float

Result:

Returns the RMS (Root-Mean-Square) of a data sequence. The RMS of data sequence is the square-root
of the mean of the squares of the elements in the data sequence. It is a measure of the average size of
the elements of a data sequence.

rgb var0 <- rgb (255,0,0,0.5); // var0 equals a light red color 
rgb var1 <- rgb(rgb(255,0,0),0.5); // var1 equals a light red color 
rgb var2 <- rgb ("red"); // var2 equals rgb(255,0,0) 
rgb var3 <- rgb(rgb(255,0,0),125); // var3 equals a light red color 
rgb var4 <- rgb (255,0,0,125); // var4 equals a light red color 
rgb var5 <- rgb (255,0,0); // var5 equals #red

http://localhost:3000/wiki/OperatorsDH#hsb


Examples:

rnd

Possible uses:

rnd  ( int ) ---> int

rnd  ( float ) ---> float

rnd  ( point ) ---> point

float  rnd  float  ---> float

rnd  ( float  , float ) ---> float

int  rnd  int  ---> int

rnd  ( int  , int ) ---> int

point  rnd  point  ---> point

rnd  ( point  , point ) ---> point

rnd  ( int , int , int ) ---> int

rnd  ( float , float , float ) ---> float

rnd  ( point , point , float ) ---> point

Result:

returns a random value in a range (the type value depends on the operand type): when called with an
integer, it returns a random integer in the interval [0, operand]

Comment:

to obtain a probability between 0 and 1, use the expression (rnd n) / n, where n is used to indicate the
precision

Special cases:

if the operand is a float, returns an uniformly distributed float random number in [0.0, to]

 list<float> data_sequence <- [6.0, 7.0, 8.0, 9.0];  
 list<float> squares <- data_sequence collect (each*each);  
float var2 <-  rms(length(data_sequence),sum(squares)) with_precision(4) ; // var2 
equals 7.5829



if the operand is a point, returns a point with three random float ordinates, each in the interval [0,
ordinate of argument]

Examples:

See also: binomial, gamma_rnd, gauss_rnd, lognormal_rnd, poisson, skew_gauss, truncated_gauss,
weibull_rnd,

rnd_choice

Possible uses:

rnd_choice  ( list ) ---> int

rnd_choice  ( map<unknown,unknown> ) ---> unknown

Result:

returns an index of the given list with a probability following the (normalized) distribution described in
the list (a form of lottery) returns a key from the map with a probability following the (normalized)
distribution described in map values (a form of lottery)

Examples:

int var0 <- rnd (2, 12, 4); // var0 equals 2, 6 or 10 
int var1 <- rnd (2); // var1 equals 0, 1 or 2 
float var2 <- rnd (2.0, 4.0); // var2 equals a float number between 2.0 and 4.0 
float var3 <- rnd (2.0, 4.0, 0.5); // var3 equals a float number between 2.0 and 4.0 
every 0.5 
int var4 <- rnd (2, 4); // var4 equals 2, 3 or 4 
point var5 <- rnd ({2.0, 4.0}, {2.0, 5.0, 10.0}); // var5 equals a point with x = 2.0, 
y between 2.0 and 4.0 and z between 0.0 and 10.0 
point var6 <- rnd ({2.0, 4.0}, {2.0, 5.0, 10.0}, 1); // var6 equals a point with x = 
2.0, y equal to 2.0, 3.0 or 4.0 and z between 0.0 and 10.0 every 1.0 
float var7 <- rnd(3.4); // var7 equals a random float between 0.0 and 3.4 
point var8 <- rnd ({2.5,3, 0.0}); // var8 equals {x,y} with x in [0.0,2.0], y in 
[0.0,3.0], z = 0.0

int var0 <- rnd_choice([0.2,0.5,0.3]); // var0 equals 2/10 chances to return 0, 5/10 
chances to return 1, 3/10 chances to return 2 
unknown var1 <- rnd_choice(["toto"::0.2,"tata"::0.5,"tonton"::0.3]); // var1 equals 

http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd


See also: rnd,

rnd_color

Possible uses:

rnd_color  ( int ) ---> rgb

int  rnd_color  int  ---> rgb

rnd_color  ( int  , int ) ---> rgb

Result:

rgb color Return a random color equivalent to rgb(rnd(first_op, last_op),rnd(first_op,
last_op),rnd(first_op, last_op))

Comment:

Return a random color equivalent to rgb(rnd(operand),rnd(operand),rnd(operand))

Examples:

See also: rgb, hsb,

rotated_by

Possible uses:

geometry  rotated_by  pair  ---> geometry

rotated_by  ( geometry  , pair ) ---> geometry

geometry  rotated_by  int  ---> geometry

2/10 chances to return "toto", 5/10 chances to return "tata", 3/10 chances to return 
"tonton"

rgb var0 <- rnd_color(255); // var0 equals a random color, equivalent to 
rgb(rnd(255),rnd(255),rnd(255)) 
rgb var1 <- rnd_color(100, 200); // var1 equals a random color, equivalent to 
rgb(rnd(100, 200),rnd(100, 200),rnd(100, 200))

http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsDH#hsb


rotated_by  ( geometry  , int ) ---> geometry

point  rotated_by  pair  ---> point

rotated_by  ( point  , pair ) ---> point

geometry  rotated_by  float  ---> geometry

rotated_by  ( geometry  , float ) ---> geometry

rotated_by  ( geometry , float , point ) ---> geometry

Result:

A geometry resulting from the application of a rotation by the operand angles (degree) along the
operand axis (last operand) to the left-hand operand (geometry, agent, point) A geometry resulting from
the application of a rotation by the right-hand operand angle (degree) to the left-hand operand
(geometry, agent, point)

Special cases:

the right-hand operand representing the angle can be a float or an integer

When used with a point and a pair angle::point, it returns a point resulting from the application of
the right-hand rotation operand (angles in degree) to the left-hand operand point

Examples:

See also: transformed_by, translated_by,

rotated_by

Possible uses:

image  rotated_by  float  ---> image

rotated_by  ( image  , float ) ---> image

geometry var0 <- rotated_by(pyramid(10),45.0::{1,0,0}); // var0 equals the geometry 
resulting from a 45 degrees rotation along the {1,0,0} vector to the geometry of the 
agent applying the operator. 
geometry var1 <- rotated_by(pyramid(10),45.0, {1,0,0}); // var1 equals the geometry 
resulting from a 45 degrees rotation along the {1,0,0} vector to the geometry of the 
agent applying the operator. 
geometry var2 <- self rotated_by 45; // var2 equals the geometry resulting from a 45 
degrees rotation to the geometry of the agent applying the operator.

http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by


Result:

Returns the image rotated using the angle in degrees passed in parameter. A positive angle means a
clockwise rotation, and a negative one a counter-clockwise. The original image is left untouched

rotation_composition

Possible uses:

rotation_composition  ( list<pair> ) ---> pair<float,point>

Result:

The rotation resulting from the composition of the rotations in the list, from left to right. Angles are in
degrees.

Examples:

See also: inverse_rotation,

round

Possible uses:

round  ( point ) ---> point

round  ( int ) ---> int

round  ( float ) ---> int

Result:

Returns the rounded value of the operand.

Special cases:

if the operand is an int, round returns it

pair<float,point> var0 <- rotation_composition([38.0::{1,1,1},90.0::{1,0,0}]); // var0 
equals 115.22128507898108::{0.9491582126366207,0.31479943993669307,-0.0}

http://localhost:3000/wiki/OperatorsIM#inverse_rotation


Examples:

See also: round, int, with_precision,

row_at

Possible uses:

matrix<unknown>  row_at  int  ---> list<unknown>

row_at  ( matrix<unknown>  , int ) ---> list<unknown>

Result:

returns the row at a num_line (right-hand operand)

Examples:

See also: column_at, columns_list,

rows_list

Possible uses:

rows_list  ( matrix<unknown> ) ---> list<list<unknown>>

Result:

returns a list of the rows of the matrix, with each row as a list of elements

Examples:

point var0 <- {12345.78943,  12345.78943, 12345.78943} with_precision 2; // var0 equals 
{12345.79,12345.79,12345.79} 
int var1 <- round (0.51); // var1 equals 1 
int var2 <- round (100.2); // var2 equals 100 
int var3 <- round(-0.51); // var3 equals -1

list<unknown> var0 <- matrix([["el11","el12","el13"],["el21","el22","el23"],
["el31","el32","el33"]]) row_at 2; // var0 equals ["el13","el23","el33"]

http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsIM#int
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsBC#column_at
http://localhost:3000/wiki/OperatorsBC#columns_list


See also: columns_list,

rSquare

Possible uses:

rSquare  ( regression ) ---> float

Result:

Return the value of the adjusted R square for a given regression model

Examples:

list<list<unknown>> var0 <- rows_list(matrix([["el11","el12","el13"],
["el21","el22","el23"],["el31","el32","el33"]])); // var0 equals 
[["el11","el21","el31"],["el12","el22","el32"],["el13","el23","el33"]]

rSquare(my_regression)

http://localhost:3000/wiki/OperatorsBC#columns_list


Version: 1.9.3

Operators (S to Z)
This file is automatically generated from java files. Do Not Edit It.

Definition
Operators in the GAML language are used to compose complex expressions. An operator performs a
function on one, two, or n operands (which are other expressions and thus may be themselves
composed of operators) and returns the result of this function.

Most of them use a classical prefixed functional syntax (i.e. operator_name(operand1, operand2,
operand3) , see below), with the exception of arithmetic (e.g. + , / ), logical ( and , or ), comparison (e.g.
> , < ), access ( . , [..] ) and pair ( :: ) operators, which require an infixed notation (i.e. operand1
operator_symbol operand1 ).

The ternary functional if-else operator, ? : , uses a special infixed syntax composed with two symbols
(e.g. operand1 ? operand2 : operand3 ). Two unary operators ( -  and ! ) use a traditional prefixed
syntax that does not require parentheses unless the operand is itself a complex expression (e.g. - 10 , !
(operand1 or operand2) ).

Finally, special constructor operators ( {...}  for constructing points, [...]  for constructing lists and
maps) will require their operands to be placed between their two symbols (e.g. {1,2,3} , [operand1,
operand2, ..., operandn]  or [key1::value1, key2::value2... keyn::valuen] ).

With the exception of these special cases above, the following rules apply to the syntax of operators:

if they only have one operand, the functional prefixed syntax is mandatory (e.g.
operator_name(operand1) )

if they have two arguments, either the functional prefixed syntax (e.g. operator_name(operand1,
operand2) ) or the infixed syntax (e.g. operand1 operator_name operand2 ) can be used.

if they have more than two arguments, either the functional prefixed syntax (e.g.
operator_name(operand1, operand2, ..., operand) ) or a special infixed syntax with the first
operand on the left-hand side of the operator name (e.g. operand1 operator_name(operand2, ...,
operand) ) can be used.



All of these alternative syntaxes are completely equivalent.

Operators in GAML are purely functional, i.e. they are guaranteed to not have any side effects on their
operands. For instance, the shuffle  operator, which randomizes the positions of elements in a list, does
not modify its list operand but returns a new shuffled list.

Priority between operators
The priority of operators determines, in the case of complex expressions composed of several operators,
which one(s) will be evaluated first.

GAML follows in general the traditional priorities attributed to arithmetic, boolean, comparison
operators, with some twists. Namely:

the constructor operators, like :: , used to compose pairs of operands, have the lowest priority of
all operators (e.g. a > b :: b > c  will return a pair of boolean values, which means that the two
comparisons are evaluated before the operator applies. Similarly, [a > 10, b > 5]  will return a list
of boolean values.

it is followed by the ?:  operator, the functional if-else (e.g. a > b ? a + 10 : a - 10  will return
the result of the if-else).

next are the logical operators, and  and or  (e.g. a > b or b > c  will return the value of the test)

next are the comparison operators (i.e. > , < , <= , >= , = , != )

next the arithmetic operators in their logical order (multiplicative operators have a higher priority
than additive operators)

next the unary operators -  and !

next the access operators .  and []  (e.g. {1,2,3}.x > 20 + {4,5,6}.y  will return the result of the
comparison between the x and y ordinates of the two points)

and finally the functional operators, which have the highest priority of all.

Using actions as operators
Actions defined in species can be used as operators, provided they are called on the correct agent. The
syntax is that of normal functional operators, but the agent that will perform the action must be added
as the first operand.



For instance, if the following species is defined:

Any agent instance of spec1 can use min  as an operator (if the action conflicts with an existing operator,
a warning will be emitted). For instance, in the same model, the following line is perfectly acceptable:

If the action doesn't have any operands, the syntax to use is my_agent the_action() . Finally, if it does
not return a value, it might still be used but is considering as returning a value of type unknown  (e.g.
unknown result <- my_agent the_action(op1, op2); ).

Note that due to the fact that actions are written by modelers, the general functional contract is not
respected in that case: actions might perfectly have side effects on their operands (including the agent).

Table of Contents

Operators by categories

3D

box, cone3D, cube, cylinder, hexagon, pyramid, set_z, sphere, teapot,

species spec1 {
        int min(int x, int y) {
                return x > y ? x : y;
        }
}

global {
        init {
                create spec1;
                spec1 my_agent <- spec1[0];
                int the_min <- my_agent min(10,20); // or min(my_agent, 10, 20);
        }
}

http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#teapot


Arithmetic operators

-, /, ^, *, +, abs, acos, asin, atan, atan2, ceil, cos, cos_rad, div, even, exp, fact, floor, hypot, is_finite,
is_number, ln, log, mod, round, signum, sin, sin_rad, sqrt, tan, tan_rad, tanh, with_precision,

BDI

add_values, and, eval_when, get_about, get_agent, get_agent_cause, get_belief_op,
get_belief_with_name_op, get_beliefs_op, get_beliefs_with_name_op, get_current_intention_op,
get_decay, get_desire_op, get_desire_with_name_op, get_desires_op, get_desires_with_name_op,
get_dominance, get_familiarity, get_ideal_op, get_ideal_with_name_op, get_ideals_op,
get_ideals_with_name_op, get_intensity, get_intention_op, get_intention_with_name_op,
get_intentions_op, get_intentions_with_name_op, get_lifetime, get_liking, get_modality,
get_obligation_op, get_obligation_with_name_op, get_obligations_op, get_obligations_with_name_op,
get_plan_name, get_predicate, get_solidarity, get_strength, get_super_intention, get_trust, get_truth,
get_uncertainties_op, get_uncertainties_with_name_op, get_uncertainty_op,
get_uncertainty_with_name_op, get_values, has_belief_op, has_belief_with_name_op, has_desire_op,
has_desire_with_name_op, has_ideal_op, has_ideal_with_name_op, has_intention_op,
has_intention_with_name_op, has_obligation_op, has_obligation_with_name_op, has_uncertainty_op,
has_uncertainty_with_name_op, new_emotion, new_mental_state, new_predicate, new_social_link, not,
or, set_about, set_agent, set_agent_cause, set_decay, set_dominance, set_familiarity, set_intensity,
set_lifetime, set_liking, set_modality, set_predicate, set_solidarity, set_strength, set_trust, set_truth,
with_values,

Casting operators

as, as_int, as_matrix, deserialize, field_with, font, from_gaml, from_json, is, is_skill, list_with, matrix_with,
serialize, species_of, to_gaml, to_geojson, to_json, to_list, with_size, with_style,

Color-related operators

-, /, *, +, blend, brewer_colors, brewer_palettes, gradient, grayscale, hsb, mean, median, palette, rgb,
rnd_color, scale, sum, to_hsb,

Comparison operators

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#%5E
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#abs
http://localhost:3000/wiki/OperatorsAA#acos
http://localhost:3000/wiki/OperatorsAA#asin
http://localhost:3000/wiki/OperatorsAA#atan
http://localhost:3000/wiki/OperatorsAA#atan2
http://localhost:3000/wiki/OperatorsBC#ceil
http://localhost:3000/wiki/OperatorsBC#cos
http://localhost:3000/wiki/OperatorsBC#cos_rad
http://localhost:3000/wiki/OperatorsDH#div
http://localhost:3000/wiki/OperatorsDH#even
http://localhost:3000/wiki/OperatorsDH#exp
http://localhost:3000/wiki/OperatorsDH#fact
http://localhost:3000/wiki/OperatorsDH#floor
http://localhost:3000/wiki/OperatorsDH#hypot
http://localhost:3000/wiki/OperatorsIM#is_finite
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#ln
http://localhost:3000/wiki/OperatorsIM#log
http://localhost:3000/wiki/OperatorsIM#mod
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsSZ#signum
http://localhost:3000/wiki/OperatorsSZ#sin
http://localhost:3000/wiki/OperatorsSZ#sin_rad
http://localhost:3000/wiki/OperatorsSZ#sqrt
http://localhost:3000/wiki/OperatorsSZ#tan
http://localhost:3000/wiki/OperatorsSZ#tan_rad
http://localhost:3000/wiki/OperatorsSZ#tanh
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsAA#add_values
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsDH#eval_when
http://localhost:3000/wiki/OperatorsDH#get_about
http://localhost:3000/wiki/OperatorsDH#get_agent
http://localhost:3000/wiki/OperatorsDH#get_agent_cause
http://localhost:3000/wiki/OperatorsDH#get_belief_op
http://localhost:3000/wiki/OperatorsDH#get_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_current_intention_op
http://localhost:3000/wiki/OperatorsDH#get_decay
http://localhost:3000/wiki/OperatorsDH#get_desire_op
http://localhost:3000/wiki/OperatorsDH#get_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_desires_op
http://localhost:3000/wiki/OperatorsDH#get_desires_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_dominance
http://localhost:3000/wiki/OperatorsDH#get_familiarity
http://localhost:3000/wiki/OperatorsDH#get_ideal_op
http://localhost:3000/wiki/OperatorsDH#get_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intensity
http://localhost:3000/wiki/OperatorsDH#get_intention_op
http://localhost:3000/wiki/OperatorsDH#get_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_lifetime
http://localhost:3000/wiki/OperatorsDH#get_liking
http://localhost:3000/wiki/OperatorsDH#get_modality
http://localhost:3000/wiki/OperatorsDH#get_obligation_op
http://localhost:3000/wiki/OperatorsDH#get_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_plan_name
http://localhost:3000/wiki/OperatorsDH#get_predicate
http://localhost:3000/wiki/OperatorsDH#get_solidarity
http://localhost:3000/wiki/OperatorsDH#get_strength
http://localhost:3000/wiki/OperatorsDH#get_super_intention
http://localhost:3000/wiki/OperatorsDH#get_trust
http://localhost:3000/wiki/OperatorsDH#get_truth
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_values
http://localhost:3000/wiki/OperatorsDH#has_belief_op
http://localhost:3000/wiki/OperatorsDH#has_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_desire_op
http://localhost:3000/wiki/OperatorsDH#has_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_intention_op
http://localhost:3000/wiki/OperatorsDH#has_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsNR#new_emotion
http://localhost:3000/wiki/OperatorsNR#new_mental_state
http://localhost:3000/wiki/OperatorsNR#new_predicate
http://localhost:3000/wiki/OperatorsNR#new_social_link
http://localhost:3000/wiki/OperatorsNR#not
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsSZ#set_about
http://localhost:3000/wiki/OperatorsSZ#set_agent
http://localhost:3000/wiki/OperatorsSZ#set_agent_cause
http://localhost:3000/wiki/OperatorsSZ#set_decay
http://localhost:3000/wiki/OperatorsSZ#set_dominance
http://localhost:3000/wiki/OperatorsSZ#set_familiarity
http://localhost:3000/wiki/OperatorsSZ#set_intensity
http://localhost:3000/wiki/OperatorsSZ#set_lifetime
http://localhost:3000/wiki/OperatorsSZ#set_liking
http://localhost:3000/wiki/OperatorsSZ#set_modality
http://localhost:3000/wiki/OperatorsSZ#set_predicate
http://localhost:3000/wiki/OperatorsSZ#set_solidarity
http://localhost:3000/wiki/OperatorsSZ#set_strength
http://localhost:3000/wiki/OperatorsSZ#set_trust
http://localhost:3000/wiki/OperatorsSZ#set_truth
http://localhost:3000/wiki/OperatorsSZ#with_values
http://localhost:3000/wiki/OperatorsAA#as
http://localhost:3000/wiki/OperatorsAA#as_int
http://localhost:3000/wiki/OperatorsAA#as_matrix
http://localhost:3000/wiki/OperatorsDH#deserialize
http://localhost:3000/wiki/OperatorsDH#field_with
http://localhost:3000/wiki/OperatorsDH#font
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsDH#from_json
http://localhost:3000/wiki/OperatorsIM#is
http://localhost:3000/wiki/OperatorsIM#is_skill
http://localhost:3000/wiki/OperatorsIM#list_with
http://localhost:3000/wiki/OperatorsIM#matrix_with
http://localhost:3000/wiki/OperatorsSZ#serialize
http://localhost:3000/wiki/OperatorsSZ#species_of
http://localhost:3000/wiki/OperatorsSZ#to_gaml
http://localhost:3000/wiki/OperatorsSZ#to_geojson
http://localhost:3000/wiki/OperatorsSZ#to_json
http://localhost:3000/wiki/OperatorsSZ#to_list
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_style
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#brewer_colors
http://localhost:3000/wiki/OperatorsBC#brewer_palettes
http://localhost:3000/wiki/OperatorsDH#gradient
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#hsb
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsNR#palette
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsNR#rnd_color
http://localhost:3000/wiki/OperatorsSZ#scale
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#to_hsb


!=, <, <=, =, >, >=, between,

Containers-related operators

-, ::, +, accumulate, all_match, among, at, cartesian_product, collect, contains, contains_all, contains_any,
contains_key, count, empty, every, first, first_with, get, group_by, in, index_by, inter, interleave,
internal_integrated_value, last, last_with, length, max, max_of, mean, mean_of, median, min, min_of,
mul, none_matches, one_matches, one_of, product_of, range, remove_duplicates, reverse, shuffle,
sort_by, split, split_in, split_using, sum, sum_of, union, variance_of, where, with_max_of, with_min_of,

Date-related operators

-, !=, +, <, <=, =, >, >=, after, before, between, every, milliseconds_between, minus_days, minus_hours,
minus_minutes, minus_months, minus_ms, minus_weeks, minus_years, months_between, plus_days,
plus_hours, plus_minutes, plus_months, plus_ms, plus_weeks, plus_years, since, to, until,
years_between,

Dates

Displays

horizontal, stack, vertical,

edge

edge_between, strahler,

EDP-related operators

diff, diff2,

http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#::
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#among
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsBC#cartesian_product
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#contains_key
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#interleave
http://localhost:3000/wiki/OperatorsIM#internal_integrated_value
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#one_of
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsNR#range
http://localhost:3000/wiki/OperatorsNR#remove_duplicates
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#after
http://localhost:3000/wiki/OperatorsBC#before
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsIM#milliseconds_between
http://localhost:3000/wiki/OperatorsIM#minus_days
http://localhost:3000/wiki/OperatorsIM#minus_hours
http://localhost:3000/wiki/OperatorsIM#minus_minutes
http://localhost:3000/wiki/OperatorsIM#minus_months
http://localhost:3000/wiki/OperatorsIM#minus_ms
http://localhost:3000/wiki/OperatorsIM#minus_weeks
http://localhost:3000/wiki/OperatorsIM#minus_years
http://localhost:3000/wiki/OperatorsIM#months_between
http://localhost:3000/wiki/OperatorsNR#plus_days
http://localhost:3000/wiki/OperatorsNR#plus_hours
http://localhost:3000/wiki/OperatorsNR#plus_minutes
http://localhost:3000/wiki/OperatorsNR#plus_months
http://localhost:3000/wiki/OperatorsNR#plus_ms
http://localhost:3000/wiki/OperatorsNR#plus_weeks
http://localhost:3000/wiki/OperatorsNR#plus_years
http://localhost:3000/wiki/OperatorsSZ#since
http://localhost:3000/wiki/OperatorsSZ#to
http://localhost:3000/wiki/OperatorsSZ#until
http://localhost:3000/wiki/OperatorsSZ#years_between
http://localhost:3000/wiki/OperatorsDH#horizontal
http://localhost:3000/wiki/OperatorsSZ#stack
http://localhost:3000/wiki/OperatorsSZ#vertical
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsDH#diff
http://localhost:3000/wiki/OperatorsDH#diff2


Files-related operators

agent_file, copy_file, crs, csv_file, delete_file, dxf_file, evaluate_sub_model, file_exists, folder,
folder_exists, gaml_file, geojson_file, get, gif_file, gml_file, graph6_file, graphdimacs_file, graphdot_file,
graphgexf_file, graphgml_file, graphml_file, graphtsplib_file, grid_file, image_file, is_agent, is_csv, is_dxf,
is_gaml, is_geojson, is_gif, is_gml, is_graph6, is_graphdimacs, is_graphdot, is_graphgexf, is_graphgml,
is_graphml, is_graphtsplib, is_grid, is_image, is_json, is_obj, is_osm, is_pgm, is_property, is_shape,
is_simulation, is_svg, is_text, is_threeds, is_xml, json_file, new_folder, obj_file, osm_file, pgm_file,
property_file, read, rename_file, shape_file, simulation_file, step_sub_model, svg_file, text_file,
threeds_file, unzip, writable, xml_file, zip,

GamaMetaType

type_of,

GamaSVGFile

image,

Graphs-related operators

add_edge, add_node, adjacency, agent_from_geometry, all_pairs_shortest_path, alpha_index,
as_distance_graph, as_edge_graph, as_intersection_graph, as_path, as_spatial_graph, beta_index,
betweenness_centrality, biggest_cliques_of, connected_components_of, connectivity_index,
contains_edge, contains_vertex, degree_of, directed, edge, edge_between, edge_betweenness, edges,
gamma_index, generate_barabasi_albert, generate_complete_graph, generate_random_graph,
generate_watts_strogatz, girvan_newman_clustering, grid_cells_to_graph, in_degree_of, in_edges_of,
k_spanning_tree_clustering, label_propagation_clustering, layout_circle, layout_force, layout_force_FR,
layout_force_FR_indexed, layout_grid, load_shortest_paths, main_connected_component,
max_flow_between, maximal_cliques_of, nb_cycles, neighbors_of, node, nodes, out_degree_of,
out_edges_of, path_between, paths_between, predecessors_of, remove_node_from, rewire_n, source_of,
spatial_graph, strahler, successors_of, sum, target_of, undirected, use_cache, weight_of,
with_k_shortest_path_algorithm, with_shortest_path_algorithm, with_weights,

Grid-related operators

http://localhost:3000/wiki/OperatorsAA#agent_file
http://localhost:3000/wiki/OperatorsBC#copy_file
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#csv_file
http://localhost:3000/wiki/OperatorsDH#delete_file
http://localhost:3000/wiki/OperatorsDH#dxf_file
http://localhost:3000/wiki/OperatorsDH#evaluate_sub_model
http://localhost:3000/wiki/OperatorsDH#file_exists
http://localhost:3000/wiki/OperatorsDH#folder
http://localhost:3000/wiki/OperatorsDH#folder_exists
http://localhost:3000/wiki/OperatorsDH#gaml_file
http://localhost:3000/wiki/OperatorsDH#geojson_file
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#gif_file
http://localhost:3000/wiki/OperatorsDH#gml_file
http://localhost:3000/wiki/OperatorsDH#graph6_file
http://localhost:3000/wiki/OperatorsDH#graphdimacs_file
http://localhost:3000/wiki/OperatorsDH#graphdot_file
http://localhost:3000/wiki/OperatorsDH#graphgexf_file
http://localhost:3000/wiki/OperatorsDH#graphgml_file
http://localhost:3000/wiki/OperatorsDH#graphml_file
http://localhost:3000/wiki/OperatorsDH#graphtsplib_file
http://localhost:3000/wiki/OperatorsDH#grid_file
http://localhost:3000/wiki/OperatorsIM#image_file
http://localhost:3000/wiki/OperatorsIM#is_agent
http://localhost:3000/wiki/OperatorsIM#is_csv
http://localhost:3000/wiki/OperatorsIM#is_dxf
http://localhost:3000/wiki/OperatorsIM#is_gaml
http://localhost:3000/wiki/OperatorsIM#is_geojson
http://localhost:3000/wiki/OperatorsIM#is_gif
http://localhost:3000/wiki/OperatorsIM#is_gml
http://localhost:3000/wiki/OperatorsIM#is_graph6
http://localhost:3000/wiki/OperatorsIM#is_graphdimacs
http://localhost:3000/wiki/OperatorsIM#is_graphdot
http://localhost:3000/wiki/OperatorsIM#is_graphgexf
http://localhost:3000/wiki/OperatorsIM#is_graphgml
http://localhost:3000/wiki/OperatorsIM#is_graphml
http://localhost:3000/wiki/OperatorsIM#is_graphtsplib
http://localhost:3000/wiki/OperatorsIM#is_grid
http://localhost:3000/wiki/OperatorsIM#is_image
http://localhost:3000/wiki/OperatorsIM#is_json
http://localhost:3000/wiki/OperatorsIM#is_obj
http://localhost:3000/wiki/OperatorsIM#is_osm
http://localhost:3000/wiki/OperatorsIM#is_pgm
http://localhost:3000/wiki/OperatorsIM#is_property
http://localhost:3000/wiki/OperatorsIM#is_shape
http://localhost:3000/wiki/OperatorsIM#is_simulation
http://localhost:3000/wiki/OperatorsIM#is_svg
http://localhost:3000/wiki/OperatorsIM#is_text
http://localhost:3000/wiki/OperatorsIM#is_threeds
http://localhost:3000/wiki/OperatorsIM#is_xml
http://localhost:3000/wiki/OperatorsIM#json_file
http://localhost:3000/wiki/OperatorsNR#new_folder
http://localhost:3000/wiki/OperatorsNR#obj_file
http://localhost:3000/wiki/OperatorsNR#osm_file
http://localhost:3000/wiki/OperatorsNR#pgm_file
http://localhost:3000/wiki/OperatorsNR#property_file
http://localhost:3000/wiki/OperatorsNR#read
http://localhost:3000/wiki/OperatorsNR#rename_file
http://localhost:3000/wiki/OperatorsSZ#shape_file
http://localhost:3000/wiki/OperatorsSZ#simulation_file
http://localhost:3000/wiki/OperatorsSZ#step_sub_model
http://localhost:3000/wiki/OperatorsSZ#svg_file
http://localhost:3000/wiki/OperatorsSZ#text_file
http://localhost:3000/wiki/OperatorsSZ#threeds_file
http://localhost:3000/wiki/OperatorsSZ#unzip
http://localhost:3000/wiki/OperatorsSZ#writable
http://localhost:3000/wiki/OperatorsSZ#xml_file
http://localhost:3000/wiki/OperatorsSZ#zip
http://localhost:3000/wiki/OperatorsSZ#type_of
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsAA#add_edge
http://localhost:3000/wiki/OperatorsAA#add_node
http://localhost:3000/wiki/OperatorsAA#adjacency
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#alpha_index
http://localhost:3000/wiki/OperatorsAA#as_distance_graph
http://localhost:3000/wiki/OperatorsAA#as_edge_graph
http://localhost:3000/wiki/OperatorsAA#as_intersection_graph
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsAA#as_spatial_graph
http://localhost:3000/wiki/OperatorsBC#beta_index
http://localhost:3000/wiki/OperatorsBC#betweenness_centrality
http://localhost:3000/wiki/OperatorsBC#biggest_cliques_of
http://localhost:3000/wiki/OperatorsBC#connected_components_of
http://localhost:3000/wiki/OperatorsBC#connectivity_index
http://localhost:3000/wiki/OperatorsBC#contains_edge
http://localhost:3000/wiki/OperatorsBC#contains_vertex
http://localhost:3000/wiki/OperatorsDH#degree_of
http://localhost:3000/wiki/OperatorsDH#directed
http://localhost:3000/wiki/OperatorsDH#edge
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsDH#edge_betweenness
http://localhost:3000/wiki/OperatorsDH#edges
http://localhost:3000/wiki/OperatorsDH#gamma_index
http://localhost:3000/wiki/OperatorsDH#generate_barabasi_albert
http://localhost:3000/wiki/OperatorsDH#generate_complete_graph
http://localhost:3000/wiki/OperatorsDH#generate_random_graph
http://localhost:3000/wiki/OperatorsDH#generate_watts_strogatz
http://localhost:3000/wiki/OperatorsDH#girvan_newman_clustering
http://localhost:3000/wiki/OperatorsDH#grid_cells_to_graph
http://localhost:3000/wiki/OperatorsIM#in_degree_of
http://localhost:3000/wiki/OperatorsIM#in_edges_of
http://localhost:3000/wiki/OperatorsIM#k_spanning_tree_clustering
http://localhost:3000/wiki/OperatorsIM#label_propagation_clustering
http://localhost:3000/wiki/OperatorsIM#layout_circle
http://localhost:3000/wiki/OperatorsIM#layout_force
http://localhost:3000/wiki/OperatorsIM#layout_force_fr
http://localhost:3000/wiki/OperatorsIM#layout_force_fr_indexed
http://localhost:3000/wiki/OperatorsIM#layout_grid
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#main_connected_component
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsIM#maximal_cliques_of
http://localhost:3000/wiki/OperatorsNR#nb_cycles
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#node
http://localhost:3000/wiki/OperatorsNR#nodes
http://localhost:3000/wiki/OperatorsNR#out_degree_of
http://localhost:3000/wiki/OperatorsNR#out_edges_of
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsNR#predecessors_of
http://localhost:3000/wiki/OperatorsNR#remove_node_from
http://localhost:3000/wiki/OperatorsNR#rewire_n
http://localhost:3000/wiki/OperatorsSZ#source_of
http://localhost:3000/wiki/OperatorsSZ#spatial_graph
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsSZ#successors_of
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#target_of
http://localhost:3000/wiki/OperatorsSZ#undirected
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsSZ#weight_of
http://localhost:3000/wiki/OperatorsSZ#with_k_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_weights


as_4_grid, as_grid, as_hexagonal_grid, cell_at, cells_in, cells_overlapping, field, grid_at, neighbors_of,
path_between, points_in, values_in,

ImageOperators

*, antialiased, blend, blurred, brighter, clipped_with, darker, grayscale, horizontal_flip, image, matrix,
rotated_by, sharpened, snapshot, tinted_with, vertical_flip, with_height, with_size, with_width,

Iterator operators

accumulate, all_match, as_map, collect, count, create_map, first_with, frequency_of, group_by, index_by,
last_with, max_of, mean_of, min_of, none_matches, one_matches, product_of, sort_by, sum_of,
variance_of, where, where, where, with_max_of, with_min_of,

List-related operators

all_indexes_of, copy_between, index_of, last_index_of,

Logical operators

:, !, ?, add_3Dmodel, add_geometry, add_icon, and, or, xor,

Map comparaison operators

fuzzy_kappa, fuzzy_kappa_sim, kappa, kappa_sim, percent_absolute_deviation,

Map-related operators

as_map, create_map, index_of, last_index_of,

Matrix-related operators

http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsBC#cell_at
http://localhost:3000/wiki/OperatorsBC#cells_in
http://localhost:3000/wiki/OperatorsBC#cells_overlapping
http://localhost:3000/wiki/OperatorsDH#field
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#points_in
http://localhost:3000/wiki/OperatorsSZ#values_in
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#antialiased
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#blurred
http://localhost:3000/wiki/OperatorsBC#brighter
http://localhost:3000/wiki/OperatorsBC#clipped_with
http://localhost:3000/wiki/OperatorsDH#darker
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#horizontal_flip
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsSZ#sharpened
http://localhost:3000/wiki/OperatorsSZ#snapshot
http://localhost:3000/wiki/OperatorsSZ#tinted_with
http://localhost:3000/wiki/OperatorsSZ#vertical_flip
http://localhost:3000/wiki/OperatorsSZ#with_height
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_width
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsAA#all_indexes_of
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsAA#:
http://localhost:3000/wiki/OperatorsAA#!
http://localhost:3000/wiki/OperatorsAA#?
http://localhost:3000/wiki/OperatorsAA#add_3dmodel
http://localhost:3000/wiki/OperatorsAA#add_geometry
http://localhost:3000/wiki/OperatorsAA#add_icon
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsSZ#xor
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa_sim
http://localhost:3000/wiki/OperatorsIM#kappa
http://localhost:3000/wiki/OperatorsIM#kappa_sim
http://localhost:3000/wiki/OperatorsNR#percent_absolute_deviation
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of


-, /, ., *, +, append_horizontally, append_vertically, column_at, columns_list, determinant, eigenvalues,
flatten, index_of, inverse, last_index_of, row_at, rows_list, shuffle, trace, transpose,

multicriteria operators

electre_DM, evidence_theory_DM, fuzzy_choquet_DM, promethee_DM, weighted_means_DM,

Path-related operators

agent_from_geometry, all_pairs_shortest_path, as_path, load_shortest_paths, max_flow_between,
path_between, path_to, paths_between, use_cache,

Pedestrian

generate_pedestrian_network,

Points-related operators

-, /, *, +, <, <=, >, >=, add_point, angle_between, any_location_in, centroid, closest_points_with,
farthest_point_to, grid_at, norm, points_along, points_at, points_on,

Random operators

binomial, exp_density, exp_rnd, flip, gamma_density, gamma_rnd, gamma_trunc_rnd, gauss,
generate_terrain, lognormal_density, lognormal_rnd, lognormal_trunc_rnd, poisson, rnd, rnd_choice,
sample, shuffle, skew_gauss, truncated_gauss, weibull_density, weibull_rnd, weibull_trunc_rnd,

Shape

arc, box, circle, cone, cone3D, cross, cube, curve, cylinder, ellipse, elliptical_arc, envelope,
geometry_collection, hexagon, line, link, plan, polygon, polyhedron, pyramid, rectangle, sphere, square,
squircle, teapot, triangle,

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#append_horizontally
http://localhost:3000/wiki/OperatorsAA#append_vertically
http://localhost:3000/wiki/OperatorsBC#column_at
http://localhost:3000/wiki/OperatorsBC#columns_list
http://localhost:3000/wiki/OperatorsDH#determinant
http://localhost:3000/wiki/OperatorsDH#eigenvalues
http://localhost:3000/wiki/OperatorsDH#flatten
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#inverse
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#row_at
http://localhost:3000/wiki/OperatorsNR#rows_list
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#trace
http://localhost:3000/wiki/OperatorsSZ#transpose
http://localhost:3000/wiki/OperatorsDH#electre_dm
http://localhost:3000/wiki/OperatorsDH#evidence_theory_dm
http://localhost:3000/wiki/OperatorsDH#fuzzy_choquet_dm
http://localhost:3000/wiki/OperatorsNR#promethee_dm
http://localhost:3000/wiki/OperatorsSZ#weighted_means_dm
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsDH#generate_pedestrian_network
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#exp_density
http://localhost:3000/wiki/OperatorsDH#exp_rnd
http://localhost:3000/wiki/OperatorsDH#flip
http://localhost:3000/wiki/OperatorsDH#gamma_density
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gamma_trunc_rnd
http://localhost:3000/wiki/OperatorsDH#gauss
http://localhost:3000/wiki/OperatorsDH#generate_terrain
http://localhost:3000/wiki/OperatorsIM#lognormal_density
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_trunc_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsNR#rnd_choice
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_density
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsSZ#weibull_trunc_rnd
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#triangle


Spatial operators

-, *, +, add_point, agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering,
agents_crossing, agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching,
angle_between, any_location_in, arc, around, as_4_grid, as_driving_graph, as_grid, as_hexagonal_grid,
at_distance, at_location, box, centroid, circle, clean, clean_network, closest_points_with, closest_to, cone,
cone3D, convex_hull, covering, covers, cross, crosses, crossing, crs, CRS_transform, cube, curve, cylinder,
direction_between, disjoint_from, distance_between, distance_to, ellipse, elliptical_arc, envelope,
farthest_point_to, farthest_to, geometry_collection, gini, hexagon, hierarchical_clustering, IDW, inside,
inter, intersects, inverse_rotation, k_nearest_neighbors, line, link, masked_by, moran, neighbors_at,
neighbors_of, normalized_rotation, overlapping, overlaps, partially_overlapping, partially_overlaps,
path_between, path_to, plan, points_along, points_at, points_on, polygon, polyhedron, pyramid,
rectangle, rotated_by, rotation_composition, round, scaled_to, set_z, simple_clustering_by_distance,
simplification, skeletonize, smooth, sphere, split_at, split_geometry, split_lines, square, squircle, teapot,
to_GAMA_CRS, to_rectangles, to_segments, to_squares, to_sub_geometries, touches, touching, towards,
transformed_by, translated_by, triangle, triangulate, union, using, voronoi, with_precision,
without_holes,

Spatial properties operators

covers, crosses, intersects, partially_overlaps, touches,

Spatial queries operators

agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering, agents_crossing,
agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching, at_distance,
closest_to, covering, crossing, farthest_to, inside, neighbors_at, neighbors_of, overlapping,
partially_overlapping, touching,

Spatial relations operators

direction_between, distance_between, distance_to, path_between, path_to, towards,

Spatial statistical operators

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_driving_graph
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3d
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#crs_transform
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#idw
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsIM#masked_by
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#split_at
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#to_gama_crs
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsSZ#towards
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#using
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsSZ#towards


hierarchical_clustering, k_nearest_neighbors, simple_clustering_by_distance,

Spatial transformations operators

-, *, +, as_4_grid, as_grid, as_hexagonal_grid, at_location, clean, clean_network, convex_hull,
CRS_transform, inverse_rotation, normalized_rotation, rotated_by, rotation_composition, scaled_to,
simplification, skeletonize, smooth, split_geometry, split_lines, to_GAMA_CRS, to_rectangles,
to_segments, to_squares, to_sub_geometries, transformed_by, translated_by, triangulate, voronoi,
with_precision, without_holes,

Species-related operators

index_of, last_index_of, of_generic_species, of_species,

Statistical operators

auto_correlation, beta, binomial_coeff, binomial_complemented, binomial_sum, build, chi_square,
chi_square_complemented, correlation, covariance, dbscan, distribution_of, distribution2d_of, dtw,
durbin_watson, frequency_of, gamma, gamma_distribution, gamma_distribution_complemented,
geometric_mean, gini, harmonic_mean, hierarchical_clustering, incomplete_beta, incomplete_gamma,
incomplete_gamma_complement, k_nearest_neighbors, kmeans, kurtosis, log_gamma, max, mean,
mean_deviation, median, min, moment, moran, morrisAnalysis, mul, normal_area, normal_density,
normal_inverse, predict, pValue_for_fStat, pValue_for_tStat, quantile, quantile_inverse,
rank_interpolated, residuals, rms, rSquare, simple_clustering_by_distance, skewness, sobolAnalysis,
split, split_in, split_using, standard_deviation, student_area, student_t_inverse, sum, t_test, variance,

Strings-related operators

+, <, <=, >, >=, at, capitalize, char, compress, contains, contains_all, contains_any, copy_between, date,
empty, first, in, indented_by, index_of, is_number, last, last_index_of, length, lower_case, regex_matches,
replace, replace_regex, reverse, sample, shuffle, split_with, string, uncompress, upper_case,

SubModel

http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#crs_transform
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#to_gama_crs
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsNR#of_generic_species
http://localhost:3000/wiki/OperatorsNR#of_species
http://localhost:3000/wiki/OperatorsAA#auto_correlation
http://localhost:3000/wiki/OperatorsBC#beta
http://localhost:3000/wiki/OperatorsBC#binomial_coeff
http://localhost:3000/wiki/OperatorsBC#binomial_complemented
http://localhost:3000/wiki/OperatorsBC#binomial_sum
http://localhost:3000/wiki/OperatorsBC#build
http://localhost:3000/wiki/OperatorsBC#chi_square
http://localhost:3000/wiki/OperatorsBC#chi_square_complemented
http://localhost:3000/wiki/OperatorsBC#correlation
http://localhost:3000/wiki/OperatorsBC#covariance
http://localhost:3000/wiki/OperatorsDH#dbscan
http://localhost:3000/wiki/OperatorsDH#distribution_of
http://localhost:3000/wiki/OperatorsDH#distribution2d_of
http://localhost:3000/wiki/OperatorsDH#dtw
http://localhost:3000/wiki/OperatorsDH#durbin_watson
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#gamma
http://localhost:3000/wiki/OperatorsDH#gamma_distribution
http://localhost:3000/wiki/OperatorsDH#gamma_distribution_complemented
http://localhost:3000/wiki/OperatorsDH#geometric_mean
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#harmonic_mean
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsIM#incomplete_beta
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma_complement
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#kmeans
http://localhost:3000/wiki/OperatorsIM#kurtosis
http://localhost:3000/wiki/OperatorsIM#log_gamma
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_deviation
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#moment
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsIM#morrisanalysis
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#normal_area
http://localhost:3000/wiki/OperatorsNR#normal_density
http://localhost:3000/wiki/OperatorsNR#normal_inverse
http://localhost:3000/wiki/OperatorsNR#predict
http://localhost:3000/wiki/OperatorsNR#pvalue_for_fstat
http://localhost:3000/wiki/OperatorsNR#pvalue_for_tstat
http://localhost:3000/wiki/OperatorsNR#quantile
http://localhost:3000/wiki/OperatorsNR#quantile_inverse
http://localhost:3000/wiki/OperatorsNR#rank_interpolated
http://localhost:3000/wiki/OperatorsNR#residuals
http://localhost:3000/wiki/OperatorsNR#rms
http://localhost:3000/wiki/OperatorsNR#rsquare
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#skewness
http://localhost:3000/wiki/OperatorsSZ#sobolanalysis
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#standard_deviation
http://localhost:3000/wiki/OperatorsSZ#student_area
http://localhost:3000/wiki/OperatorsSZ#student_t_inverse
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#t_test
http://localhost:3000/wiki/OperatorsSZ#variance
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsBC#capitalize
http://localhost:3000/wiki/OperatorsBC#char
http://localhost:3000/wiki/OperatorsBC#compress
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#indented_by
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#lower_case
http://localhost:3000/wiki/OperatorsNR#regex_matches
http://localhost:3000/wiki/OperatorsNR#replace
http://localhost:3000/wiki/OperatorsNR#replace_regex
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#split_with
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsSZ#uncompress
http://localhost:3000/wiki/OperatorsSZ#upper_case


load_sub_model,

System

., choose, command, copy, copy_from_clipboard, copy_to_clipboard, copy_to_clipboard, dead, enter,
every, from_gaml, is_error, is_reachable, is_warning, play_sound, user_confirm, user_input_dialog,
wizard, wizard_page,

Time-related operators

date, string,

Types-related operators

action, agent, BDIPlan, bool, container, conversation, directory, emotion, file, float, gaml_type, geometry,
graph, int, kml, list, map, matrix, mental_state, message, Norm, pair, path, point, predicate, regression,
rgb, Sanction, skill, social_link, species, topology, unknown,

User control operators

choose, enter, user_confirm, user_input_dialog, wizard, wizard_page,

Operators

sample

Possible uses:

sample  ( any expression ) ---> string

string  sample  any expression  ---> string

sample  ( string  , any expression ) ---> string

sample  ( list , int , bool ) ---> list

http://localhost:3000/wiki/OperatorsIM#load_sub_model
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsBC#command
http://localhost:3000/wiki/OperatorsBC#copy
http://localhost:3000/wiki/OperatorsBC#copy_from_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsDH#dead
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsIM#is_error
http://localhost:3000/wiki/OperatorsIM#is_reachable
http://localhost:3000/wiki/OperatorsIM#is_warning
http://localhost:3000/wiki/OperatorsNR#play_sound
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsAA#action
http://localhost:3000/wiki/OperatorsAA#agent
http://localhost:3000/wiki/OperatorsBC#bdiplan
http://localhost:3000/wiki/OperatorsBC#bool
http://localhost:3000/wiki/OperatorsBC#container
http://localhost:3000/wiki/OperatorsBC#conversation
http://localhost:3000/wiki/OperatorsDH#directory
http://localhost:3000/wiki/OperatorsDH#emotion
http://localhost:3000/wiki/OperatorsDH#file
http://localhost:3000/wiki/OperatorsDH#float
http://localhost:3000/wiki/OperatorsDH#gaml_type
http://localhost:3000/wiki/OperatorsDH#geometry
http://localhost:3000/wiki/OperatorsDH#graph
http://localhost:3000/wiki/OperatorsIM#int
http://localhost:3000/wiki/OperatorsIM#kml
http://localhost:3000/wiki/OperatorsIM#list
http://localhost:3000/wiki/OperatorsIM#map
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsIM#mental_state
http://localhost:3000/wiki/OperatorsIM#message
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#pair
http://localhost:3000/wiki/OperatorsNR#path
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#predicate
http://localhost:3000/wiki/OperatorsNR#regression
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsSZ#sanction
http://localhost:3000/wiki/OperatorsSZ#skill
http://localhost:3000/wiki/OperatorsSZ#social_link
http://localhost:3000/wiki/OperatorsSZ#species
http://localhost:3000/wiki/OperatorsSZ#topology
http://localhost:3000/wiki/OperatorsSZ#unknown
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page


sample  ( list , int , bool , list ) ---> list

Result:

takes a sample of the specified size from the elements of x using either with or without replacement
takes a sample of the specified size from the elements of x using either with or without replacement
with given weights

Examples:

Sanction

Possible uses:

Sanction  ( any ) ---> Sanction

Result:

casts the operand in a Sanction object.

scale

Possible uses:

scale  ( map<rgb,unknown> ) ---> map<float,rgb>

scale  ( map<rgb,unknown> , float , float ) ---> map<float,rgb>

Result:

Similar to gradient(map<rgb, float>) but reorders the colors based on their weight and does not
normalize them, so as to effectively represent a color scale (i.e. a correspondance between a range of
value and a color that implicitly begins with the lowest value). For instance scale([#red::10, #green::0,
#blue::30]) would produce the reverse map and associate #green to the interval 0-10, #red to 10-30, and
#blue above 30. The main difference in usages is that, for instance in the definition of a mesh to display,
a gradient will produce interpolated colors to accomodate for the intermediary values, while a scale will

list var0 <- sample([2,10,1],2,false); // var0 equals [10,1] 
list var1 <- sample([2,10,1],2,false,[0.1,0.7,0.2]); // var1 equals [10,2]



stick to the colors defined. Expects a gradient, i.e. a map<rgb,float>, where values represent the
different stops of the colors. First normalizes the passed gradient, and then applies the resulting
weights to the interval represented by min and max, so as to return a scale (i.e. absolute values instead
of the stops)

See also: gradient,

scaled_by

Same signification as *

scaled_to

Possible uses:

geometry  scaled_to  point  ---> geometry

scaled_to  ( geometry  , point ) ---> geometry

Result:

allows to restrict the size of a geometry so that it fits in the envelope {width, height, depth} defined by
the second operand

Examples:

select

Same signification as where

serialize

Possible uses:

geometry var0 <- shape scaled_to {10,10}; // var0 equals a geometry corresponding to 
the geometry of the agent applying the operator scaled so that it fits a square of 
10x10

http://localhost:3000/wiki/OperatorsDH#gradient
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsSZ#where


serialize  ( unknown ) ---> string

Result:

Serializes any object/agent/simulation into a string, using the 'binary' formatThe result of this operator
can be then used in the from:  facet of restore  or create  statements in case of agents, or using
deserialize  for other items

See also: to_json, to_gaml,

set_about

Possible uses:

emotion  set_about  predicate  ---> emotion

set_about  ( emotion  , predicate ) ---> emotion

Result:

change the about value of the given emotion

Examples:

set_agent

Possible uses:

social_link  set_agent  agent  ---> social_link

set_agent  ( social_link  , agent ) ---> social_link

Result:

change the agent value of the given social link

Examples:

emotion set_about predicate1

http://localhost:3000/wiki/OperatorsSZ#to_json
http://localhost:3000/wiki/OperatorsSZ#to_gaml


set_agent_cause

Possible uses:

emotion  set_agent_cause  agent  ---> emotion

set_agent_cause  ( emotion  , agent ) ---> emotion

predicate  set_agent_cause  agent  ---> predicate

set_agent_cause  ( predicate  , agent ) ---> predicate

Result:

change the agentCause value of the given emotion change the agentCause value of the given predicate

Examples:

set_decay

Possible uses:

emotion  set_decay  float  ---> emotion

set_decay  ( emotion  , float ) ---> emotion

Result:

change the decay value of the given emotion

Examples:

social_link set_agent agentA

new_emotion set_agent_cause agentA 
predicate set_agent_cause agentA

emotion set_decay 12



set_dominance

Possible uses:

social_link  set_dominance  float  ---> social_link

set_dominance  ( social_link  , float ) ---> social_link

Result:

change the dominance value of the given social link

Examples:

set_familiarity

Possible uses:

social_link  set_familiarity  float  ---> social_link

set_familiarity  ( social_link  , float ) ---> social_link

Result:

change the familiarity value of the given social link

Examples:

set_intensity

Possible uses:

emotion  set_intensity  float  ---> emotion

set_intensity  ( emotion  , float ) ---> emotion

Result:

social_link set_dominance 0.4

social_link set_familiarity 0.4



change the intensity value of the given emotion

Examples:

set_lifetime

Possible uses:

mental_state  set_lifetime  int  ---> mental_state

set_lifetime  ( mental_state  , int ) ---> mental_state

Result:

change the lifetime value of the given mental state

Examples:

set_liking

Possible uses:

social_link  set_liking  float  ---> social_link

set_liking  ( social_link  , float ) ---> social_link

Result:

change the liking value of the given social link

Examples:

emotion set_intensity 12

mental state set_lifetime 1

social_link set_liking 0.4



set_modality

Possible uses:

mental_state  set_modality  string  ---> mental_state

set_modality  ( mental_state  , string ) ---> mental_state

Result:

change the modality value of the given mental state

Examples:

set_predicate

Possible uses:

mental_state  set_predicate  predicate  ---> mental_state

set_predicate  ( mental_state  , predicate ) ---> mental_state

Result:

change the predicate value of the given mental state

Examples:

set_solidarity

Possible uses:

social_link  set_solidarity  float  ---> social_link

set_solidarity  ( social_link  , float ) ---> social_link

Result:

mental state set_modality belief

mental state set_predicate pred1



change the solidarity value of the given social link

Examples:

set_strength

Possible uses:

mental_state  set_strength  float  ---> mental_state

set_strength  ( mental_state  , float ) ---> mental_state

Result:

change the strength value of the given mental state

Examples:

set_trust

Possible uses:

social_link  set_trust  float  ---> social_link

set_trust  ( social_link  , float ) ---> social_link

Result:

change the trust value of the given social link

Examples:

social_link set_solidarity 0.4

mental state set_strength 1.0

social_link set_familiarity 0.4



set_truth

Possible uses:

predicate  set_truth  bool  ---> predicate

set_truth  ( predicate  , bool ) ---> predicate

Result:

change the is_true value of the given predicate

Examples:

set_z

Possible uses:

geometry  set_z  container<unknown,float>  ---> geometry

set_z  ( geometry  , container<unknown,float> ) ---> geometry

set_z  ( geometry , int , float ) ---> geometry

Result:

Sets the z ordinate of the n-th point of a geometry to the value provided by the third argument

Examples:

shape_file

Possible uses:

shape_file  ( string ) ---> file

predicate set_truth false

triangle(3) set_z [5,10,14] 
set_z (triangle(3), 1, 3.0)



string  shape_file  int  ---> file

shape_file  ( string  , int ) ---> file

string  shape_file  string  ---> file

shape_file  ( string  , string ) ---> file

string  shape_file  bool  ---> file

shape_file  ( string  , bool ) ---> file

shape_file  ( string , int , bool ) ---> file

shape_file  ( string , string , bool ) ---> file

Result:

Constructs a file of type shape. Allowed extensions are limited to shp, SHP

Special cases:

shape_file(string): This file constructor allows to read a shapefile (.shp) file

shape_file(string,int): This file constructor allows to read a shapefile (.shp) file and specifying the
coordinates system code, as an int (epsg code)

shape_file(string,string): This file constructor allows to read a shapefile (.shp) file and specifying the
coordinates system code (epg,...,), as a string

shape_file(string,bool): This file constructor allows to read a shapefile (.shp) file and take a potential
z value (not taken in account by default)

shape_file(string,int,bool): This file constructor allows to read a shapefile (.shp) file and specifying
the coordinates system code, as an int (epsg code) and take a potential z value (not taken in account
by default)

file f <- shape_file("file.shp");

file f <- shape_file("file.shp", "32648");

file f <- shape_file("file.shp", "EPSG:32648");

file f <- shape_file("file.shp", true);



shape_file(string,string,bool): This file constructor allows to read a shapefile (.shp) file and specifying
the coordinates system code (epg,...,), as a string and take a potential z value (not taken in account
by default)

See also: is_shape,

sharpened

Possible uses:

sharpened  ( image ) ---> image

image  sharpened  int  ---> image

sharpened  ( image  , int ) ---> image

Result:

Application of a sharpening filter to the image passed in parameter. This operation can be applied
multiple times. The original image is left untouched Application of a sharpening filter to the image
passed in parameter. This operation is applied multiple times if the last argument is > 0. The original
image is left untouched

shuffle

Possible uses:

shuffle  ( container ) ---> list

shuffle  ( string ) ---> string

shuffle  ( matrix ) ---> matrix

Result:

file f <- shape_file("file.shp", "32648", true);

file f <- shape_file("file.shp", "EPSG:32648",true);

http://localhost:3000/wiki/OperatorsIM#is_shape


Returns a new list containing the randomly shuffled elements of the container. Returns a new string with
randomly shuffled letters Returns a new matrix of the same size as the operand, with randomly shuffled
elements

Special cases:

if the operand is empty, returns an empty list (or string, matrix)

Examples:

See also: reverse,

signum

Possible uses:

signum  ( int ) ---> int

signum  ( float ) ---> int

Result:

Returns -1 if the argument is negative, +1 if it is positive, 0 if it is equal to zero or not a number Returns
-1 if the argument is negative, +1 if it is positive, 0 if it is equal to zero or not a number

Examples:

simple_clustering_by_distance

list var0 <- shuffle ([12, 13, 14]); // var0 equals [14,12,13] (for example) 
string var1 <- shuffle ('abc'); // var1 equals 'bac' (for example) 
matrix var2 <- shuffle (matrix([["c11","c12","c13"],["c21","c22","c23"]])); // var2 
equals matrix([["c12","c21","c11"],["c13","c22","c23"]]) (for example)

int var0 <- signum(-12); // var0 equals -1 
int var1 <- signum(14); // var1 equals 1 
int var2 <- signum(0); // var2 equals 0 
int var3 <- signum(-12.8); // var3 equals -1 
int var4 <- signum(14.5); // var4 equals 1 
int var5 <- signum(0.0); // var5 equals 0

http://localhost:3000/wiki/OperatorsNR#reverse


Possible uses:

container<unknown,agent>  simple_clustering_by_distance  float  ---> list<list<agent>>

simple_clustering_by_distance  ( container<unknown,agent>  , float ) ---> list<list<agent>>

Result:

A list of agent groups clustered by distance considering a distance min between two groups.

Examples:

See also: hierarchical_clustering,

simple_clustering_by_envelope_distance

Same signification as simple_clustering_by_distance

simplification

Possible uses:

geometry  simplification  float  ---> geometry

simplification  ( geometry  , float ) ---> geometry

Result:

A geometry corresponding to the simplification of the operand (geometry, agent, point) considering a
tolerance distance.

Comment:

The algorithm used for the simplification is Douglas-Peucker

Examples:

list<list<agent>> var0 <- [ag1, ag2, ag3, ag4, ag5] simpleClusteringByDistance 20.0; // 
var0 equals for example, can return [[ag1, ag3], [ag2], [ag4, ag5]]

http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance


simulation_file

Possible uses:

simulation_file  ( string ) ---> file

Result:

Constructs a file of type simulation. Allowed extensions are limited to gsim, simulation

Special cases:

simulation_file(string): File containing a saved simulation in the java binary serialisation protocol

See also: is_simulation,

sin

Possible uses:

sin  ( float ) ---> float

sin  ( int ) ---> float

Result:

Returns the value (in [-1,1]) of the sinus of the operand (in decimal degrees). The argument is casted to
an int before being evaluated.

Special cases:

Operand values out of the range [0-359] are normalized.

Examples:

geometry var0 <- self simplification 0.1; // var0 equals the geometry resulting from 
the application of the Douglas-Peuker algorithm on the geometry of the agent applying 
the operator with a tolerance distance of 0.1.

http://localhost:3000/wiki/OperatorsIM#is_simulation


See also: cos, tan,

sin_rad

Possible uses:

sin_rad  ( float ) ---> float

Result:

Returns the value (in [-1,1]) of the sinus of the operand (in radians).

Examples:

See also: cos_rad, tan_rad,

since

Possible uses:

since  ( date ) ---> bool

any expression  since  date  ---> bool

since  ( any expression  , date ) ---> bool

Result:

Returns true if the current_date of the model is after (or equal to) the date passed in argument.
Synonym of 'current_date >= argument'. Can be used, like 'after', in its composed form with 2 arguments
to express the lowest boundary of the computation of a frequency. However, contrary to 'after', there is a
subtle difference: the lowest boundary will be tested against the frequency as well

Examples:

float var0 <- sin(360) with_precision 10 with_precision 10; // var0 equals 0.0 
float var1 <- sin (0); // var1 equals 0.0

float var0 <- sin_rad(0); // var0 equals 0.0 
float var1 <- sin_rad(#pi/2); // var1 equals 1.0

http://localhost:3000/wiki/OperatorsBC#cos
http://localhost:3000/wiki/OperatorsSZ#tan
http://localhost:3000/wiki/OperatorsBC#cos_rad
http://localhost:3000/wiki/OperatorsSZ#tan_rad


skeletonize

Possible uses:

skeletonize  ( geometry ) ---> list<geometry>

geometry  skeletonize  float  ---> list<geometry>

skeletonize  ( geometry  , float ) ---> list<geometry>

skeletonize  ( geometry , float , float ) ---> list<geometry>

skeletonize  ( geometry , float , float , bool ) ---> list<geometry>

Result:

A list of geometries (polylines) corresponding to the skeleton of the operand geometry (geometry,
agent)

Special cases:

It can be used with 1 additional float operand: the tolerance for the clipping.

It can be used with 2 additional float operands: the tolerances for the clipping and for the
triangulation

It can be used with 3 additional float operands: the tolerance for the clipping, the tolerance for the
triangulation, and the approximation for the clipping.

Examples:

skew

Same signification as skewness

reflex when: since(starting_date) {}  // this reflex will always be run 
every(2#days) since (starting_date + 1#day) // the computation will return true 1 day 
after the starting date and every two days after this reference date

list<geometry> var0 <- skeletonize(self); // var0 equals the list of geometries 
corresponding to the skeleton of the geometry of the agent applying the operator.

http://localhost:3000/wiki/OperatorsSZ#skewness


skew_gauss

Possible uses:

skew_gauss  ( float , float , float , float ) ---> float

Result:

A value from a skew normally distributed random variable with min value (the minimum skewed value
possible), max value (the maximum skewed value possible), skew (the degree to which the values cluster
around the mode of the distribution; higher values mean tighter clustering) and bias (the tendency of
the mode to approach the min, max or midpoint value; positive values bias toward max, negative values
toward min).The algorithm was taken from http://stackoverflow.com/questions/5853187/skewing-java-
random-number-generation-toward-a-certain-number

Examples:

See also: binomial, gamma_rnd, gauss_rnd, lognormal_rnd, poisson, rnd, truncated_gauss, weibull_rnd,

skewness

Possible uses:

skewness  ( list ) ---> float

Result:

returns skewness value computed from the operand list of values

Special cases:

if the length of the list is lower than 3, returns NaN

Examples:

float var0 <- skew_gauss(0.0, 1.0, 0.7,0.1); // var0 equals 0.1729218460343077

float var0 <- skewness ([1,2,3,4,5]); // var0 equals 0.0

http://stackoverflow.com/questions/5853187/skewing-java-random-number-generation-toward-a-certain-number
http://stackoverflow.com/questions/5853187/skewing-java-random-number-generation-toward-a-certain-number
http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd


skill

Possible uses:

skill  ( any ) ---> skill

Result:

casts the operand in a skill object.

smooth

Possible uses:

geometry  smooth  float  ---> geometry

smooth  ( geometry  , float ) ---> geometry

Result:

Returns a 'smoothed' geometry, where straight lines are replaces by polynomial (bicubic) curves. The
first parameter is the original geometry, the second is the 'fit' parameter which can be in the range 0
(loose fit) to 1 (tightest fit).

Examples:

snapshot

Possible uses:

snapshot  ( string ) ---> image

agent  snapshot  string  ---> image

snapshot  ( agent  , string ) ---> image

snapshot  ( agent , string , point ) ---> image

Result:

geometry var0 <- smooth(square(10), 0.0); // var0 equals a 'rounded' square



Takes a snapshot of the display whose name is passed in parameter and returns the image. The search
for the display begins in the agent passed in parameter and, if not found, its experiment. The size of the
snapshot will be that of the viewReturns nil if no display can be found or the snapshot cannot be taken.
Takes a snapshot of the display whose name is passed in parameter and returns the image. The search
for the display begins in the agent passed in parameter and, if not found, its experiment. A custom size
(a point representing width x height) can be given Returns nil if no display can be found or the snapshot
cannot be taken. Takes a snapshot of the display whose name is passed in parameter and returns the
image. The search for the display begins in the current agent's simulation and, if not found, its
experiment. Returns nil if no display can be found or the snapshot cannot be taken.

sobolAnalysis

Possible uses:

sobolAnalysis  ( string , string , int ) ---> string

Result:

Return a string containing the Report of the sobol analysis for the corresponding .csv file and save this
report in a txt/csv file.

social_link

Possible uses:

social_link  ( any ) ---> social_link

Result:

casts the operand in a social_link object.

solid

Same signification as without_holes

sort

http://localhost:3000/wiki/OperatorsSZ#without_holes


Same signification as sort_by

sort_by

Possible uses:

container  sort_by  any expression  ---> list

sort_by  ( container  , any expression ) ---> list

Result:

Returns a list, containing the elements of the left-hand operand sorted in ascending order by the value
of the right-hand operand when it is evaluated on them.

Comment:

the left-hand operand is casted to a list before applying the operator. In the right-hand operand, the
keyword each can be used to represent, in turn, each of the elements.

Special cases:

if the left-hand operand is nil, sort_by throws an error. If the sorting function returns values that
cannot be compared, an error will be thrown as well

Examples:

See also: group_by,

source_of

Possible uses:

list var0 <- [1,2,4,3,5,7,6,8] sort_by (each); // var0 equals [1,2,3,4,5,6,7,8] 
list var2 <- g2 sort_by (length(g2 out_edges_of each) ); // var2 equals [node9, node7, 
node10, node8, node11, node6, node5, node4] 
list var3 <- (list(node) sort_by (round(node(each).location.x)); // var3 equals [node5, 
node1, node0, node2, node3] 
list var4 <- [1::2, 5::6, 3::4] sort_by (each); // var4 equals [2, 4, 6]

http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsDH#group_by


graph  source_of  unknown  ---> unknown

source_of  ( graph  , unknown ) ---> unknown

Result:

returns the source of the edge (right-hand operand) contained in the graph given in left-hand operand.

Special cases:

if the lef-hand operand (the graph) is nil, throws an Exception

Examples:

See also: target_of,

spatial_graph

Possible uses:

spatial_graph  ( container ) ---> graph

Result:

allows to create a spatial graph from a container of vertices, without trying to wire them. The container
can be empty. Emits an error if the contents of the container are not geometries, points or agents

See also: graph,

species

Possible uses:

species  ( any ) ---> species

graph graphEpidemio <- generate_barabasi_albert( 
["edges_species"::edge,"vertices_specy"::node,"size"::3,"m"::5] ); 
unknown var1 <- graphEpidemio source_of(edge(3)); // var1 equals node1 
graph graphFromMap <-  as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]); 
point var3 <- graphFromMap source_of(link({1,5},{12,45})); // var3 equals {1,5}

http://localhost:3000/wiki/OperatorsSZ#target_of
http://localhost:3000/wiki/OperatorsDH#graph


Result:

casts the operand in a species object.

Special cases:

if the operand is nil, returns nil;

if the operand is an agent, returns its species;

if the operand is a string, returns the species with this name (nil if not found);

otherwise, returns nil

Examples:

species_of

Possible uses:

species_of  ( unknown ) ---> species

Result:

casting of the operand to a species.

Special cases:

if the operand is nil, returns nil;

if the operand is an agent, returns its species;

if the operand is a string, returns the species with this name (nil if not found);

otherwise, returns nil

Examples:

species var0 <- species(self); // var0 equals the species of the current agent 
species var1 <- species('node'); // var1 equals node 
species var2 <- species([1,5,9,3]); // var2 equals nil 
species var3 <- species(node1); // var3 equals node

species var0 <- species(self); // var0 equals the species of the current agent 
species var1 <- species('node'); // var1 equals node 



sphere

Possible uses:

sphere  ( float ) ---> geometry

Result:

A sphere geometry which radius is equal to the operand.

Comment:

the centre of the sphere is by default the location of the current agent in which has been called this
operator.

Special cases:

returns a point if the operand is lower or equal to 0.

Examples:

See also: around, cone, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

split

Possible uses:

split  ( list<unknown> ) ---> list<list<unknown>>

Result:

Splits a list of numbers into n=(1+3.3*log10(elements)) bins. The splitting is strict (i.e. elements are in the
ith bin if they are strictly smaller than the ith bound)

species var2 <- species([1,5,9,3]); // var2 equals nil 
species var3 <- species(node1); // var3 equals node

geometry var0 <- sphere(10); // var0 equals a geometry as a circle of radius 10 but 
displays a sphere.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle


Examples:

See also: split_in, split_using,

split_at

Possible uses:

geometry  split_at  point  ---> list<geometry>

split_at  ( geometry  , point ) ---> list<geometry>

Result:

The two part of the left-operand lines split at the given right-operand point

Special cases:

if the left-operand is a point or a polygon, returns an empty list

Examples:

split_geometry

Possible uses:

geometry  split_geometry  float  ---> list<geometry>

split_geometry  ( geometry  , float ) ---> list<geometry>

geometry  split_geometry  point  ---> list<geometry>

split_geometry  ( geometry  , point ) ---> list<geometry>

split_geometry  ( geometry , int , int ) ---> list<geometry>

list<list<unknown>> var0 <- split([1.0,2.0,1.0,3.0,1.0,2.0]); // var0 equals 
[[1.0,1.0,1.0],[2.0,2.0],[3.0]]

list<geometry> var0 <- polyline([{1,2},{4,6}]) split_at {7,6}; // var0 equals 
[polyline([{1.0,2.0},{7.0,6.0}]), polyline([{7.0,6.0},{4.0,6.0}])]

http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_using


Result:

A list of geometries that result from the decomposition of the geometry by square cells of the given side
size (geometry, size). It can be used to split in rectangles by giving a point or 2 integer values as
operand.

Examples:

split_in

Possible uses:

list<unknown>  split_in  int  ---> list<list<unknown>>

split_in  ( list<unknown>  , int ) ---> list<list<unknown>>

split_in  ( list<unknown> , int , bool ) ---> list<list<unknown>>

Result:

Splits a list of numbers into n bins defined by n-1 bounds between the minimum and maximum values
found in the first argument. The boolean argument controls whether or not the splitting is strict (if true,
elements are in the ith bin if they are strictly smaller than the ith bound) Splits a list of numbers into n
bins defined by n-1 bounds between the minimum and maximum values found in the first argument.
The splitting is strict (i.e. elements are in the ith bin if they are strictly smaller than the ith bound)

Examples:

list<geometry> var0 <- to_squares(self, 10.0); // var0 equals the list of the 
geometries corresponding to the decomposition of the geometry by squares of side size 
10.0 
list<geometry> var1 <- to_rectangles(self, {10.0, 15.0}); // var1 equals the list of 
the geometries corresponding to the decomposition of the geometry by rectangles of size 
10.0, 15.0 
list<geometry> var2 <- to_rectangles(self, 10,20); // var2 equals the list of the 
geometries corresponding to the decomposition of the geometry of the agent applying the 
operator

list<float> l <- [1.0,3.1,5.2,6.0,9.2,11.1,12.0,13.0,19.9,35.9,40.0]; 
list<list<unknown>> var1 <- split_in(l,3, true); // var1 equals 
[[1.0,3.1,5.2,6.0,9.2,11.1,12.0,13.0],[19.9],[35.9,40.0]] 
list<float> li <- [1.0,3.1,5.2,6.0,9.2,11.1,12.0,13.0,19.9,35.9,40.0]; 



See also: split, split_using,

split_lines

Possible uses:

split_lines  ( container<unknown,geometry> ) ---> list<geometry>

container<unknown,geometry>  split_lines  bool  ---> list<geometry>

split_lines  ( container<unknown,geometry>  , bool ) ---> list<geometry>

Result:

A list of geometries resulting after cutting the lines at their intersections. if the last boolean operand is
set to true, the split lines will import the attributes of the initial lines A list of geometries resulting after
cutting the lines at their intersections.

Examples:

split_using

Possible uses:

list<unknown>  split_using  list<unknown>  ---> list<list<unknown>>

split_using  ( list<unknown>  , list<unknown> ) ---> list<list<unknown>>

split_using  ( list<unknown> , list<unknown> , bool ) ---> list<list<unknown>>

Result:

list<list<unknown>> var3 <- split_in(li,3); // var3 equals 
[[1.0,3.1,5.2,6.0,9.2,11.1,12.0,13.0],[19.9],[35.9,40.0]]

list<geometry> var0 <- split_lines([line([{0,10}, {20,10}]), line([{0,10}, {20,10}])]); 
// var0 equals a list of four polylines: line([{0,10}, {10,10}]), line([{10,10}, 
{20,10}]), line([{10,0}, {10,10}]) and line([{10,10}, {10,20}]) 
list<geometry> var1 <- split_lines([line([{0,10}, {20,10}]), line([{0,10}, {20,10}])]); 
// var1 equals a list of four polylines: line([{0,10}, {10,10}]), line([{10,10}, 
{20,10}]), line([{10,0}, {10,10}]) and line([{10,10}, {10,20}])

http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_using


Splits a list of numbers into n+1 bins using a set of n bounds passed as the second argument. The
splitting is strict (i.e. elements are in the ith bin if they are strictly smaller than the ith bound), when no
boolean attribute is specified.

Examples:

See also: split, split_in,

split_with

Possible uses:

string  split_with  string  ---> list

split_with  ( string  , string ) ---> list

split_with  ( string , string , bool ) ---> list

Result:

Returns a list containing the sub-strings (tokens) of the left-hand operand delimited by each of the
characters of the right-hand operand.

Comment:

Delimiters themselves are excluded from the resulting list.

Special cases:

when used with an additional boolean operand, it returns a list containing the sub-strings (tokens)
of the left-hand operand delimited either by each of the characters of the right-hand operand (false)
or by the whole right-hand operand (true).

Examples:

list<float> l <- [1.0,3.1,5.2,6.0,9.2,11.1,12.0,13.0,19.9,35.9,40.0]; 
list<list<unknown>> var1 <- split_using(l,[1.0,3.0,4.2], true); // var1 equals [[],
[1.0],[3.1],[5.2,6.0,9.2,11.1,12.0,13.0,19.9,35.9,40.0]] 
list<float> li <- [1.0,3.1,5.2,6.0,9.2,11.1,12.0,13.0,19.9,35.9,40.0]; 
list<list<unknown>> var3 <- split_using(li,[1.0,3.0,4.2]); // var3 equals [[],[1.0],
[3.1],[5.2,6.0,9.2,11.1,12.0,13.0,19.9,35.9,40.0]]

http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_in


sqrt

Possible uses:

sqrt  ( float ) ---> float

sqrt  ( int ) ---> float

Result:

Returns the square root of the operand.

Special cases:

if the operand is negative, an exception is raised

Examples:

square

Possible uses:

square  ( float ) ---> geometry

Result:

A square geometry which side size is equal to the operand.

Comment:

the centre of the square is by default the location of the current agent in which has been called this
operator.

list var0 <- 'aa::bb:cc' split_with ('::', true); // var0 equals ['aa','bb:cc'] 
list var1 <- 'aa::bb:cc' split_with ('::', false); // var1 equals ['aa','bb','cc'] 
list var2 <- 'to be or not to be,that is the question' split_with ' ,'; // var2 equals 
['to','be','or','not','to','be','that','is','the','question']

float var0 <- sqrt(4); // var0 equals 2.0 
float var1 <- sqrt(4); // var1 equals 2.0



Special cases:

returns nil if the operand is nil.

Examples:

See also: around, circle, cone, line, link, norm, point, polygon, polyline, rectangle, triangle,

squircle

Possible uses:

float  squircle  float  ---> geometry

squircle  ( float  , float ) ---> geometry

Result:

A mix of square and circle geometry (see : http://en.wikipedia.org/wiki/Squircle), which side size is equal
to the first operand and power is equal to the second operand

Comment:

the center of the ellipse is by default the location of the current agent in which has been called this
operator.

Special cases:

returns a point if the side operand is lower or equal to 0.

Examples:

See also: around, cone, line, link, norm, point, polygon, polyline, super_ellipse, rectangle, square, circle,
ellipse, triangle,

geometry var0 <- square(10); // var0 equals a geometry as a square of side size 10. 
float var1 <- var0.area; // var1 equals 100.0

geometry var0 <- squircle(4,4); // var0 equals a geometry as a squircle of side 4 with 
a power of 4.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#triangle
http://en.wikipedia.org/wiki/Squircle
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsSZ#super_ellipse
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsSZ#triangle


stack

Possible uses:

stack  ( map<unknown,int> ) ---> unknown<string>

stack  ( list<int> ) ---> unknown<string>

Result:

Creates a stack layout node. Accepts the same argument as horizontal  or vertical  (a map of display
indices and weights) but the weights are not taken into account Creates a stack layout node. Stacks can
only contain one or several indices of displays (without weight)

standard_deviation

Possible uses:

standard_deviation  ( container ) ---> float

Result:

the standard deviation on the elements of the operand. See Standard_deviation for more details.

Comment:

The operator casts all the numerical element of the list into float. The elements that are not numerical
are discarded.

Examples:

See also: mean, mean_deviation,

step_sub_model

Possible uses:

float var0 <- standard_deviation ([4.5, 3.5, 5.5, 7.0]); // var0 equals 
1.2930100540985752

http://en.wikipedia.org/wiki/Standard_deviation
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_deviation


step_sub_model  ( agent ) ---> int

Result:

Load a submodel

Comment:

loaded submodel

strahler

Possible uses:

strahler  ( graph ) ---> map

Result:

retur for each edge, its strahler number

string

Possible uses:

date  string  string  ---> string

string  ( date  , string ) ---> string

string  ( date , string , string ) ---> string

Result:

converts a date to astring following a custom pattern. The pattern can use "%Y %M %N %D %E %h %m
%s %z" for outputting years, months, name of month, days, name of days, hours, minutes, seconds and
the time-zone. A null or empty pattern will return the complete date as defined by the ISO date & time
format. The pattern can also follow the pattern definition found here, which gives much more control
over the format of the date:
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#patterns.
Different patterns are available by default as constants: #iso_local, #iso_simple, #iso_offset, #iso_zoned
and #custom, which can be changed in the preferences

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#patterns


Examples:

student_area

Possible uses:

float  student_area  int  ---> float

student_area  ( float  , int ) ---> float

Result:

Returns the area to the left of x in the Student T distribution with the given degrees of freedom.

Examples:

student_t_inverse

Possible uses:

float  student_t_inverse  int  ---> float

student_t_inverse  ( float  , int ) ---> float

Result:

Returns the value, t, for which the area under the Student-t probability density function (integrated from
minus infinity to t) is equal to x.

Examples:

string(#now, 'yyyy-MM-dd') 
string(#now, 'yyyy-MM-dd', 'en')

float var0 <- student_area(1.64,3) with_precision(2); // var0 equals 0.9

float var0 <- student_t_inverse(0.9,3) with_precision(2); // var0 equals 1.64



subtract_days

Same signification as minus_days

subtract_hours

Same signification as minus_hours

subtract_minutes

Same signification as minus_minutes

subtract_months

Same signification as minus_months

subtract_ms

Same signification as minus_ms

subtract_seconds

Same signification as -

subtract_weeks

Same signification as minus_weeks

subtract_years

Same signification as minus_years

http://localhost:3000/wiki/OperatorsIM#minus_days
http://localhost:3000/wiki/OperatorsIM#minus_hours
http://localhost:3000/wiki/OperatorsIM#minus_minutes
http://localhost:3000/wiki/OperatorsIM#minus_months
http://localhost:3000/wiki/OperatorsIM#minus_ms
http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsIM#minus_weeks
http://localhost:3000/wiki/OperatorsIM#minus_years


successors_of

Possible uses:

graph  successors_of  unknown  ---> list

successors_of  ( graph  , unknown ) ---> list

Result:

returns the list of successors (i.e. targets of out edges) of the given vertex (right-hand operand) in the
given graph (left-hand operand)

Examples:

See also: predecessors_of, neighbors_of,

sum

Possible uses:

sum  ( container ) ---> unknown

sum  ( graph ) ---> float

Result:

the sum of all the elements of the operand

Comment:

the behavior depends on the nature of the operand

Special cases:

if it is a population or a list of other types: sum transforms all elements into float and sums them

if it is a map, sum returns the sum of the value of all elements

if it is a file, sum returns the sum of the content of the file (that is also a container)

if it is a graph, sum returns the total weight of the graph

list var1 <- graphEpidemio successors_of ({1,5}); // var1 equals [{12,45}] 
list var2 <- graphEpidemio successors_of node({34,56}); // var2 equals []

http://localhost:3000/wiki/OperatorsNR#predecessors_of
http://localhost:3000/wiki/OperatorsNR#neighbors_of


if it is a matrix of int, float or object, sum returns the sum of all the numerical elements (i.e. all
elements for integer and float matrices)

if it is a matrix of other types: sum transforms all elements into float and sums them

if it is a list of colors: sum will sum them and return the blended resulting color

if it is a list of int or float: sum returns the sum of all the elements

if it is a list of points: sum returns the sum of all points as a point (each coordinate is the sum of the
corresponding coordinate of each element)

See also: mul,

sum_of

Possible uses:

container  sum_of  any expression  ---> unknown

sum_of  ( container  , any expression ) ---> unknown

Result:

the sum of the right-hand expression evaluated on each of the elements of the left-hand operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand
operand elements.

Special cases:

if the left-operand is a map, the keyword each will contain each value

int var0 <- sum ([12,10,3]); // var0 equals 25

unknown var1 <- sum([{1.0,3.0},{3.0,5.0},{9.0,1.0},{7.0,8.0}]); // var1 equals 
{20.0,17.0}

unknown var1 <- [1::2, 3::4, 5::6] sum_of (each + 3); // var1 equals 21

http://localhost:3000/wiki/OperatorsIM#mul


Examples:

See also: min_of, max_of, product_of, mean_of,

svg_file

Possible uses:

svg_file  ( string ) ---> file

Result:

Constructs a file of type svg. Allowed extensions are limited to svg

Special cases:

svg_file(string): This file constructor allows to read a svg file

See also: is_svg,

t_test

Possible uses:

list  t_test  list  ---> float

t_test  ( list  , list ) ---> float

Result:

Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test
comparing the means of the two input lists.The number returned is the smallest significance level at
which one can reject the null hypothesis

Examples:

unknown var0 <- [1,2] sum_of (each * 100 ); // var0 equals 300

file f <-svg_file("file.svg");

http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#is_svg


tan

Possible uses:

tan  ( int ) ---> float

tan  ( float ) ---> float

Result:

Returns the value (in [-1,1]) of the trigonometric tangent of the operand (in decimal degrees).

Special cases:

Operand values out of the range [0-359] are normalized. Notice that tan(360) does not return 0.0
but -2.4492935982947064E-16

The tangent is only defined for any real number except 90 + k *  180 (k an positive or negative
integer). Nevertheless notice that tan(90) returns 1.633123935319537E16 (whereas we could except
infinity).

Examples:

See also: cos, sin,

tan_rad

Possible uses:

tan_rad  ( float ) ---> float

Result:

Returns the value (in [-1,1]) of the trigonometric tangent of the operand (in radians).

float var0 <- t_test([10.0,5.0,1.0, 3.0],[1.0,10.0,5.0,1.0]); // var0 equals 0.01

float var0 <- tan (0); // var0 equals 0.0 
float var1 <- tan(90); // var1 equals 1.633123935319537E16

http://localhost:3000/wiki/OperatorsBC#cos
http://localhost:3000/wiki/OperatorsSZ#sin


Examples:

See also: cos_rad, sin_rad,

tanh

Possible uses:

tanh  ( int ) ---> float

tanh  ( float ) ---> float

Result:

Returns the value (in the interval [-1,1]) of the hyperbolic tangent of the operand (which can be any real
number, expressed in decimal degrees).

Examples:

target_of

Possible uses:

graph  target_of  unknown  ---> unknown

target_of  ( graph  , unknown ) ---> unknown

Result:

returns the target of the edge (right-hand operand) contained in the graph given in left-hand operand.

Special cases:

if the lef-hand operand (the graph) is nil, returns nil

float var0 <- tan_rad(0); // var0 equals 0.0

float var0 <- tanh(0); // var0 equals 0.0 
float var1 <- tanh(100); // var1 equals 1.0

http://localhost:3000/wiki/OperatorsBC#cos_rad
http://localhost:3000/wiki/OperatorsSZ#sin_rad


Examples:

See also: source_of,

teapot

Possible uses:

teapot  ( float ) ---> geometry

Result:

A teapot geometry which radius is equal to the operand.

Comment:

the centre of the teapot is by default the location of the current agent in which has been called this
operator.

Special cases:

returns a point if the operand is lower or equal to 0.

Examples:

See also: around, cone, line, link, norm, point, polygon, polyline, rectangle, square, triangle,

text_file

Possible uses:

graph graphEpidemio <- generate_barabasi_albert( 
["edges_species"::edge,"vertices_specy"::node,"size"::3,"m"::5] ); 
unknown var1 <- graphEpidemio source_of(edge(3)); // var1 equals node1 
graph graphFromMap <-  as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]); 
unknown var3 <- graphFromMap target_of(link({1,5},{12,45})); // var3 equals {12,45}

geometry var0 <- teapot(10); // var0 equals a geometry as a circle of radius 10 but 
displays a teapot.

http://localhost:3000/wiki/OperatorsSZ#source_of
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#triangle


text_file  ( string ) ---> file

string  text_file  list<string>  ---> file

text_file  ( string  , list<string> ) ---> file

Result:

Constructs a file of type text. Allowed extensions are limited to txt, data, text

Special cases:

text_file(string): This file constructor allows to read a text file (.txt, .data, .text)

text_file(string,list<string>): This file constructor allows to store a list of string in a text file (it does
not save it - just store it in memory)

See also: is_text,

TGauss

Same signification as truncated_gauss

threeds_file

Possible uses:

threeds_file  ( string ) ---> file

Result:

Constructs a file of type threeds. Allowed extensions are limited to 3ds, max

Special cases:

threeds_file(string): This file constructor allows to read a 3DS Max file. Only loads vertices and faces

file f <-text_file("file.txt");

file f <-text_file("file.txt", ["item1","item2","item3"]);

http://localhost:3000/wiki/OperatorsIM#is_text
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss


See also: is_threeds,

tinted_with

Possible uses:

image  tinted_with  rgb  ---> image

tinted_with  ( image  , rgb ) ---> image

tinted_with  ( image , rgb , float ) ---> image

Result:

Returns the image tinted using the color passed in parameter. This effectively multiplies the colors of the
image by it. The original image is left untouched Returns the image tinted using the color passed in
parameter and a factor between 0 and 1, determining the transparency of the dyeing to apply. The
original image is left untouched

to

Same signification as until

Possible uses:

date  to  date  ---> list<date>

to  ( date  , date ) ---> list<date>

Result:

builds an interval between two dates (the first inclusive and the second exclusive, which behaves like a
read-only list of dates. The default step between two dates is the step of the model

Comment:

The default step can be overruled by using the every operator applied to this interval

Examples:

threeds_file f <- threeds_file("file");

http://localhost:3000/wiki/OperatorsIM#is_threeds
http://localhost:3000/wiki/OperatorsSZ#until


See also: every,

to_binary

Same signification as serialize

to_GAMA_CRS

Possible uses:

to_GAMA_CRS  ( geometry ) ---> geometry

geometry  to_GAMA_CRS  string  ---> geometry

to_GAMA_CRS  ( geometry  , string ) ---> geometry

Special cases:

returns the geometry corresponding to the transformation of the given geometry to the GAMA CRS
(Coordinate Reference System) assuming the given geometry is referenced by the current CRS, the
one corresponding to the world's agent one

returns the geometry corresponding to the transformation of the given geometry to the GAMA CRS
(Coordinate Reference System) assuming the given geometry is referenced by given CRS

date('2000-01-01') to date('2010-01-01') // builds an interval between these two dates 
(date('2000-01-01') to date('2010-01-01')) every (#day) // builds an interval between 
these two dates which contains all the days starting from the beginning of the 
interval. Beware that using every with #month or #year will produce odd results, as 
these pseudo-constants are not constant; only the first value will be used to compute 
the intervals (if current_date is set to a month of February, #month will only 
represent 28 or 29 days depending on whether it is a leap year or not !). If such 
intervals need to be built, it is recommended to usea generative way, for instance a 
loop using the 'plus_years' or 'plus_months' operators to build a list of dates

geometry var0 <- to_GAMA_CRS({121,14}); // var0 equals a geometry corresponding to the 
agent geometry transformed into the GAMA CRS

geometry var1 <- to_GAMA_CRS({121,14}, "EPSG:4326"); // var1 equals a geometry 

http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsSZ#serialize


to_gaml

Possible uses:

to_gaml  ( unknown ) ---> string

Result:

Returns the literal description of an expression in gaml, in a format suitable to be reinterpreted and
return a similar object

Examples:

to_geojson

Possible uses:

to_geojson  ( any expression , string , any expression ) ---> string

Result:

Returns a geojson representation of a population, a list of agents/geometries or an agent/geometry,
provided with a CRS and a list of attributes to save

Examples:

corresponding to the agent geometry transformed into the GAMA CRS

string var0 <- to_gaml(0); // var0 equals '0' 
string var1 <- to_gaml(3.78); // var1 equals '3.78' 
string var2 <- to_gaml({23, 4.0}); // var2 equals '{23.0,4.0,0.0}' 
string var3 <- to_gaml(rgb(255,0,125)); // var3 equals 'rgb (255, 0, 125,255)' 
string var4 <- to_gaml('hello'); // var4 equals "'hello'" 
string var5 <- to_gaml(a_graph); // var5 equals ([((1 as node)::(3 as node))::(5 as 
edge),((0 as node)::(3 as node))::(3 as edge),((1 as node)::(2 as node))::(1 as edge),
((0 as node)::(2 as node))::(2 as edge),((0 as node)::(1 as node))::(0 as edge),((2 as 
node)::(3 as node))::(4 as edge)] as map ) as graph 
string var6 <- to_gaml(node1); // var6 equals  1 as node



to_hsb

Possible uses:

to_hsb  ( rgb ) ---> list<float>

Result:

Converts a Gama color to hsb (h=hue, s=saturation, b=brightness) value

Examples:

to_json

Possible uses:

to_json  ( unknown ) ---> string

unknown  to_json  bool  ---> string

to_json  ( unknown  , bool ) ---> string

Result:

Serializes any object/agent/simulation into a string, using the json format and no pretty printing.The
format used by GAMA follows simple rules. int, float, bool, string values are outputted as they are. nil is
outputted as 'null'. A list is outputted as a json array. Any other object or agent is outputted as a json
object. If this object possesses the "gaml_type" attribute, it is an instance of the corresponding type, and
the members that follow contain the attributes and the values necessary to reconstruct it. If it has the
"agent_reference" attribute, its value represent the reference to an agent. If any reference to an agent is
found, the json string returned will be an object with two attributes: "gama_object", the object
containing the references, and "reference_table" a dictionary mapping the references to the json

string var0 <- to_geojson(boat,"EPSG:4326",["color"]); // var0 equals 
{"type":"FeatureCollection","features":[{"type":"Feature","geometry":
{"type":"Point","coordinates":[100.51155642068785,3.514781609095577E-
4,0.0]},"properties":{},"id":"0"}]}

list<float> var0 <- to_hsb (#cyan); // var0 equals [0.5,1.0,1.0]



description of the agents (their species, name, index, and list of attributes). This choice allows to
manage cross references between agents Serializes any object/agent/simulation into a string, using the
json format. A flag can be passed to enable/disable pretty printing (false by default).The format used by
GAMA follows simple rules. int, float, bool, string values are outputted as they are. nil is outputted as
'null'. A list is outputted as a json array. Any other object or agent is outputted as a json object. If this
object possesses the "gaml_type" attribute, it is an instance of the corresponding type, and the
members that follow contain the attributes and the values necessary to reconstruct it. If it has the
"agent_reference" attribute, its value represent the reference to an agent. If any reference to an agent is
found, the json string returned will be an object with two attributes: "gama_object", the object
containing the references, and "reference_table" a dictionary mapping the references to the json
description of the agents (their species, name, index, and list of attributes). This choice allows to
manage cross references between agents

See also: serialize, to_gaml,

to_list

Possible uses:

to_list  ( unknown ) ---> list

Result:

casts the operand to a list, making an explicit copy if it is already a list or a subtype of list (interval,
population, etc.)

See also: list,

to_rectangles

Possible uses:

to_rectangles  ( geometry , point , bool ) ---> list<geometry>

to_rectangles  ( geometry , int , int , bool ) ---> list<geometry>

Result:

A list of rectangles of the size corresponding to the given dimension that result from the decomposition
of the geometry into rectangles (geometry, dimension, overlaps), if overlaps = true, add the rectangles

http://localhost:3000/wiki/OperatorsSZ#serialize
http://localhost:3000/wiki/OperatorsSZ#to_gaml
http://localhost:3000/wiki/OperatorsIM#list


that overlap the border of the geometry

Examples:

to_segments

Possible uses:

to_segments  ( geometry ) ---> list<geometry>

Result:

A list of a segments resulting from the decomposition of the geometry (or its contours for polygons) into
sgements

Examples:

to_squares

Same signification as split_geometry

Possible uses:

to_squares  ( geometry , int , bool ) ---> list<geometry>

to_squares  ( geometry , float , bool ) ---> list<geometry>

to_squares  ( geometry , int , bool , float ) ---> list<geometry>

list<geometry> var0 <- to_rectangles(self, 5, 20, true); // var0 equals the list of 
rectangles corresponding to the discretization by a grid of 5 columns and 20 rows into 
rectangles of the geometry of the agent applying the operator. The rectangles 
overlapping the border of the geometry are kept 
list<geometry> var1 <- to_rectangles(self, {10.0, 15.0}, true); // var1 equals the list 
of rectangles of size {10.0, 15.0} corresponding to the discretization into rectangles 
of the geometry of the agent applying the operator. The rectangles overlapping the 
border of the geometry are kept

list<geometry> var0 <- to_segments(line([{10,10},{80,10},{80,80}])); // var0 equals 
[line([{10,10},{80,10}]), line([{80,10},{80,80}])]

http://localhost:3000/wiki/OperatorsSZ#split_geometry


Result:

A list of a given number of squares from the decomposition of the geometry into squares (geometry,
nb_square, overlaps, precision_coefficient), if overlaps = true, add the squares that overlap the border of
the geometry, coefficient_precision should be close to 1.0 A list of a given number of squares from the
decomposition of the geometry into squares (geometry, nb_square, overlaps), if overlaps = true, add the
squares that overlap the border of the geometry A list of squares of the size corresponding to the given
size that result from the decomposition of the geometry into squares (geometry, size, overlaps), if
overlaps = true, add the squares that overlap the border of the geometry

Examples:

to_sub_geometries

Possible uses:

geometry  to_sub_geometries  list<float>  ---> list<geometry>

to_sub_geometries  ( geometry  , list<float> ) ---> list<geometry>

to_sub_geometries  ( geometry , list<float> , float ) ---> list<geometry>

Result:

A list of geometries resulting after spliting the geometry into sub-geometries.

Examples:

list<geometry> var0 <- to_squares(self, 10, true, 0.99); // var0 equals the list of 10 
squares corresponding to the discretization into squares of the geometry of the agent 
applying the operator. The squares overlapping the border of the geometry are kept 
list<geometry> var1 <- to_squares(self, 10, true); // var1 equals the list of 10 
squares corresponding to the discretization into squares of the geometry of the agent 
applying the operator. The squares overlapping the border of the geometry are kept 
list<geometry> var2 <- to_squares(self, 10.0, true); // var2 equals the list of squares 
of side size 10.0 corresponding to the discretization into squares of the geometry of 
the agent applying the operator. The squares overlapping the border of the geometry are 
kept

list<geometry> var0 <- to_sub_geometries(rectangle(10, 50), [0.1, 0.5, 0.4], 1.0); // 
var0 equals a list of three geometries corresponding to 3 sub-geometries using cubes of 
1m size 



to_triangles

Same signification as triangulate

tokenize

Same signification as split_with

topology

Possible uses:

topology  ( any ) ---> topology

Result:

casts the operand in a topology object.

Special cases:

if the operand is a topology, returns the topology itself;

if the operand is a spatial graph, returns the graph topology associated;

if the operand is a population, returns the topology of the population;

if the operand is a shape or a geometry, returns the continuous topology bounded by the geometry;

if the operand is a matrix, returns the grid topology associated

if the operand is another kind of container, returns the multiple topology associated to the
container

otherwise, casts the operand to a geometry and build a topology from it.

Examples:

list<geometry> var1 <- to_sub_geometries(rectangle(10, 50), [0.1, 0.5, 0.4]); // var1 
equals a list of three geometries corresponding to 3 sub-geometries

topology var0 <- topology(0); // var0 equals nil 
topology(a_graph) --: Multiple topology in POLYGON ((24.712119771887785 

http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#split_with


See also: geometry,

touches

Possible uses:

geometry  touches  geometry  ---> bool

touches  ( geometry  , geometry ) ---> bool

Result:

A boolean, equal to true if the left-geometry (or agent/point) touches the right-geometry (or
agent/point).

Comment:

returns true when the left-operand only touches the right-operand. When one geometry covers partially
(or fully) the other one, it returns false.

Special cases:

if one of the operand is null, returns false.

Examples:

See also: disjoint_from, crosses, overlaps, partially_overlaps, intersects,

7.867357373616512, 24.712119771887785 61.283226839310565, 82.4013676510046  
7.867357373616512)) at location[53.556743711446195;34.57529210646354]

bool var0 <- {15,15} touches {15,15}; // var0 equals false 
bool var1 <- polyline([{10,10},{20,20}]) touches {10,10}; // var1 equals true 
bool var2 <- polyline([{10,10},{20,20}]) touches polyline([{10,10},{5,5}]); // var2 
equals true 
bool var3 <- polygon([{10,10},{10,20},{20,20},{20,10}]) touches polygon([{15,15},
{15,25},{25,25},{25,15}]); // var3 equals false 
bool var4 <- polygon([{10,10},{10,20},{20,20},{20,10}]) touches {10,15}; // var4 equals 
true

http://localhost:3000/wiki/OperatorsDH#geometry
http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsIM#intersects


touching

Possible uses:

container<unknown,geometry>  touching  geometry  ---> list<geometry>

touching  ( container<unknown,geometry>  , geometry ) ---> list<geometry>

Result:

A list of agents or geometries among the left-operand list, species or meta-population (addition of
species), touching the operand (casted as a geometry).

Examples:

See also: neighbors_at, neighbors_of, closest_to, overlapping, agents_overlapping, inside,
agents_inside, agent_closest_to,

towards

Possible uses:

geometry  towards  geometry  ---> float

towards  ( geometry  , geometry ) ---> float

Result:

The direction (in degree) between the two geometries (geometries, agents, points) considering the
topology of the agent applying the operator.

Examples:

list<geometry> var0 <- [ag1, ag2, ag3] toucing(self); // var0 equals the agents among 
ag1, ag2 and ag3 that touch the shape of the right-hand argument. 
list<geometry> var1 <- (species1 + species2) touching (self); // var1 equals the agents 
among species species1 and species2 that touch the shape of the right-hand argument.

float var0 <- ag1 towards ag2; // var0 equals the direction between ag1 and ag2 and ag3 
considering the topology of the agent applying the operator

http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agent_closest_to


See also: distance_between, distance_to, direction_between, path_between, path_to,

trace

Possible uses:

trace  ( matrix ) ---> float

Result:

The trace of the given matrix (the sum of the elements on the main diagonal).

Examples:

transformed_by

Possible uses:

geometry  transformed_by  point  ---> geometry

transformed_by  ( geometry  , point ) ---> geometry

Result:

A geometry resulting from the application of a rotation and a scaling (right-operand : point
{angle(degree), scale factor} of the left-hand operand (geometry, agent, point)

Examples:

See also: rotated_by, translated_by,

translated_by

float var0 <- trace(matrix([[1,2],[3,4]])); // var0 equals 5

geometry var0 <- self transformed_by {45, 0.5}; // var0 equals the geometry resulting 
from 45 degrees rotation and 50% scaling of the geometry of the agent applying the 
operator.

http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsSZ#translated_by


Possible uses:

geometry  translated_by  point  ---> geometry

translated_by  ( geometry  , point ) ---> geometry

Result:

A geometry resulting from the application of a translation by the right-hand operand distance to the
left-hand operand (geometry, agent, point)

Examples:

See also: rotated_by, transformed_by,

translated_to

Same signification as at_location

transpose

Possible uses:

transpose  ( matrix ) ---> matrix

Result:

The transposition of the given matrix

Examples:

triangle

geometry var0 <- self translated_by {10,10,10}; // var0 equals the geometry resulting 
from applying the translation to the left-hand geometry (or agent).

matrix var0 <- transpose(matrix([[5,-3],[6,-4]])); // var0 equals matrix([[5,6],
[-3,-4]])

http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsAA#at_location


Possible uses:

triangle  ( float ) ---> geometry

float  triangle  float  ---> geometry

triangle  ( float  , float ) ---> geometry

Result:

A triangle geometry which the base and height size are given by the operand. A triangle geometry which
side size is given by the operand.

Comment:

the center of the triangle is by default the location of the current agent in which has been called this
operator.the center of the triangle is by default the location of the current agent in which has been
called this operator.

Special cases:

returns nil if one of the operand is nil.

returns nil if the operand is nil.

Examples:

See also: around, circle, cone, line, link, norm, point, polygon, polyline, rectangle, square,

triangulate

Possible uses:

triangulate  ( geometry ) ---> list<geometry>

triangulate  ( list<geometry> ) ---> list<geometry>

geometry  triangulate  float  ---> list<geometry>

triangulate  ( geometry  , float ) ---> list<geometry>

geometry var0 <- triangle(5, 10); // var0 equals a geometry as a triangle with a base 
of 5m and a height of 10m. 
geometry var1 <- triangle(5); // var1 equals a geometry as a triangle with side_size = 
5.

http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsSZ#square


triangulate  ( geometry , float , float ) ---> list<geometry>

triangulate  ( geometry , float , float , bool ) ---> list<geometry>

Result:

A list of geometries (triangles) corresponding to the Delaunay triangulation of the operand geometry
(geometry, agent, point, use_approx_clipping) with the given tolerance for the clipping and for the
triangulation with using an approximate clipping is the last operand is true A list of geometries
(triangles) corresponding to the Delaunay triangulation of the operand geometry (geometry, agent,
point) A list of geometries (triangles) corresponding to the Delaunay triangulation of the operand
geometry (geometry, agent, point) with the given tolerance for the clipping A list of geometries
(triangles) corresponding to the Delaunay triangulation computed from the list of polylines A list of
geometries (triangles) corresponding to the Delaunay triangulation of the operand geometry (geometry,
agent, point) with the given tolerance for the clipping and for the triangulation

Examples:

truncated_gauss

Possible uses:

truncated_gauss  ( list ) ---> float

truncated_gauss  ( point ) ---> float

Result:

list<geometry> var0 <- triangulate(self,0.1, 1.0, true); // var0 equals the list of 
geometries (triangles) corresponding to the Delaunay triangulation of the geometry of 
the agent applying the operator. 
list<geometry> var1 <- triangulate(self); // var1 equals the list of geometries 
(triangles) corresponding to the Delaunay triangulation of the geometry of the agent 
applying the operator. 
list<geometry> var2 <- triangulate(self, 0.1); // var2 equals the list of geometries 
(triangles) corresponding to the Delaunay triangulation of the geometry of the agent 
applying the operator. 
list<geometry> var3 <- triangulate([line([{0,50},{100,50}]), line([{50,0},{50,100}])); 
// var3 equals the list of geometries (triangles) corresponding to the Delaunay 
triangulation of the geometry of the agent applying the operator. 
list<geometry> var4 <- triangulate(self,0.1, 1.0); // var4 equals the list of 
geometries (triangles) corresponding to the Delaunay triangulation of the geometry of 
the agent applying the operator.



A random value from a normally distributed random variable in the interval ]mean - standardDeviation;
mean + standardDeviation[.

Special cases:

if the operand is a list, only the two first elements are taken into account as [mean,
standardDeviation]

when truncated_gauss is called with a list of only one element mean, it will always return 0.0

when the operand is a point, it is read as {mean, standardDeviation}

Examples:

See also: binomial, gamma_rnd, gauss_rnd, lognormal_rnd, poisson, rnd, skew_gauss, weibull_rnd,
gamma_trunc_rnd, weibull_trunc_rnd, lognormal_trunc_rnd,

type_of

Possible uses:

type_of  ( unknown ) ---> any GAML type<unknown>

Result:

Returns the GAML type of the operand

Examples:

uncompress

Possible uses:

float var0 <- truncated_gauss ([0.5, 0.0]); // var0 equals 0.5 
float var1 <- truncated_gauss ({0, 0.3}); // var1 equals a float between -0.3 and 0.3

string var0 <- string(type_of("a string")); // var0 equals "string" 
string var1 <- string(type_of([1,2,3,4,5])); // var1 equals "list<int>" 
geometry g0 <- to_GAMA_CRS({121,14}, "EPSG:4326");  
string var3 <- string(type_of(g0)); // var3 equals "point"

http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsDH#gamma_trunc_rnd
http://localhost:3000/wiki/OperatorsSZ#weibull_trunc_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_trunc_rnd


uncompress  ( string ) ---> string

Result:

Returns a string that represents the uncompressed form (using gzip) of the argument

See also: compress,

undirected

Possible uses:

undirected  ( graph ) ---> graph

Result:

the operand graph becomes an undirected graph.

Comment:

WARNING / side effect: this operator modifies the operand and does not create a new graph.

See also: directed,

union

Possible uses:

union  ( container<unknown,geometry> ) ---> geometry

container  union  container  ---> list

union  ( container  , container ) ---> list

Result:

returns a new list containing all the elements of both containers without duplicated elements.

Special cases:

if the left or right operand is nil, union throws an error

http://localhost:3000/wiki/OperatorsBC#compress
http://localhost:3000/wiki/OperatorsDH#directed


if the right-operand is a container of points, geometries or agents, returns the geometry resulting
from the union all the geometries

Examples:

See also: inter, +,

unknown

Possible uses:

unknown  ( any ) ---> unknown

Result:

casts the operand in a unknown object.

until

Possible uses:

until  ( date ) ---> bool

any expression  until  date  ---> bool

until  ( any expression  , date ) ---> bool

Result:

Returns true if the current_date of the model is before (or equel to) the date passed in argument.
Synonym of 'current_date <= argument'

Examples:

list var0 <- [1,2,3,4,5,6] union [2,4,9]; // var0 equals [1,2,3,4,5,6,9] 
list var1 <- [1,2,3,4,5,6] union [0,8]; // var1 equals [1,2,3,4,5,6,0,8] 
list var2 <- [1,3,2,4,5,6,8,5,6] union [0,8]; // var2 equals [1,3,2,4,5,6,8,0] 
geometry var3 <- union([geom1, geom2, geom3]); // var3 equals a geometry corresponding 
to union between geom1, geom2 and geom3

http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsAA#+


unzip

Possible uses:

string  unzip  string  ---> bool

unzip  ( string  , string ) ---> bool

Result:

Unzip a given zip file into a given folder. Returns true if the file is well unzipped

Examples:

upper_case

Possible uses:

upper_case  ( string ) ---> string

Result:

Converts all of the characters in the string operand to upper case

Examples:

See also: lower_case,

use_cache

reflex when: until(starting_date) {} // This reflex will be run only once at the 
beginning of the simulation

bool unzip_ok <- unzip(["../includes/my_folder"], "folder.zip";

string var0 <- upper_case("Abc"); // var0 equals 'ABC'

http://localhost:3000/wiki/OperatorsIM#lower_case


Possible uses:

graph  use_cache  bool  ---> graph

use_cache  ( graph  , bool ) ---> graph

Result:

if the second operand is true, the operand graph will store in a cache all the previously computed
shortest path (the cache be cleared if the graph is modified).

Comment:

WARNING / side effect: this operator modifies the operand and does not create a new graph.

See also: path_between,

user_confirm

Possible uses:

string  user_confirm  string  ---> bool

user_confirm  ( string  , string ) ---> bool

Result:

Asks the user to confirm a choice. The two string are used to specify the title and the message of the
dialog box.

Examples:

user_input_dialog

Possible uses:

user_input_dialog  ( list ) ---> map<string,unknown>

string  user_input_dialog  list  ---> map<string,unknown>

bool confirm <- user_confirm("Confirm","Please confirm");

http://localhost:3000/wiki/OperatorsNR#path_between


user_input_dialog  ( string  , list ) ---> map<string,unknown>

user_input_dialog  ( string , list , font ) ---> map<string,unknown>

user_input_dialog  ( string , list , font , rgb ) ---> map<string,unknown>

user_input_dialog  ( string , list , font , rgb , bool ) ---> map<string,unknown>

Result:

Asks the user for some values and returns a map containing these values. Takes a string and a list of
calls to the enter()  or choose()  operators as arguments. The string is used to specify the message of
the dialog box. The list is used to specify the parameters the user can enter. Finally, the font of the title
can be specified, as well as the background color and whether the title and close button of the dialog
should be displayed or not

Examples:

using

Possible uses:

map<string,unknown> values2 <- user_input_dialog('Enter number of agents and 
locations',[enter('Number',100), enter('Location',point, {10, 10})], font('Helvetica', 
18), #blue, true); 
create bug number: int(values2 at "Number") with: [location:: (point(values2 at 
"Location"))]; 
map<string,unknown> values_no_title <- user_input_dialog([enter('Number',100), 
enter('Location',point, {10, 10})]); 
create bug number: int(values2 at "Number") with: [location:: (point(values2 at 
"Location"))]; 
map<string,unknown> values2 <- user_input_dialog('Enter number of agents and 
locations',[enter('Number',100), enter('Location',point, {10, 10})], font('Helvetica', 
18)); 
create bug number: int(values2 at "Number") with: [location:: (point(values2 at 
"Location"))]; 
map<string,unknown> values2 <- user_input_dialog('Enter number of agents and 
locations',[enter('Number',100), enter('Location',point, {10, 10})], font('Helvetica', 
18)); 
create bug number: int(values2 at "Number") with: [location:: (point(values2 at 
"Location"))]; 
map<string,unknown> values2 <- user_input_dialog('Enter number of agents and 
locations',[enter('Number',100), enter('Location',point, {10, 10})]); 
create bug number: int(values2 at "Number") with: [location:: (point(values2 at 
"Location"))];



any expression  using  topology  ---> unknown

using  ( any expression  , topology ) ---> unknown

Result:

Allows to specify in which topology a spatial computation should take place.

Special cases:

has no effect if the topology passed as a parameter is nil

Examples:

values_in

Possible uses:

field  values_in  geometry  ---> list<float>

values_in  ( field  , geometry ) ---> list<float>

variance

Possible uses:

variance  ( container ) ---> float

variance  ( float ) ---> float

variance  ( int , float , float ) ---> float

Result:

the variance of the elements of the operand. See Variance for more details. Returns the variance of a
data sequence. That is (sumOfSquares - mean*sum) / size with mean = sum/size. Returns the variance
from a standard deviation.

Comment:

unknown var0 <- (agents closest_to self) using topology(world); // var0 equals the 
closest agent to self (the caller) in the continuous topology of the world

http://en.wikipedia.org/wiki/Variance


The operator casts all the numerical element of the list into float. The elements that are not numerical
are discarded. In the example we consider variance of [1,3,5,7]. The size is 4, the sum is 1+3+5+7=16 and
the sum of squares is 84.The variance is (84- 16^2/4)/4. CQFD.

Examples:

See also: mean, median,

variance_of

Possible uses:

container  variance_of  any expression  ---> unknown

variance_of  ( container  , any expression ) ---> unknown

Result:

the variance of the right-hand expression evaluated on each of the elements of the left-hand operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand
operand elements.

Examples:

See also: min_of, max_of, sum_of, product_of,

vertical

Possible uses:

float var0 <- variance ([4.5, 3.5, 5.5, 7.0]); // var0 equals 1.671875 
int var1 <- int(variance(4,16,84)); // var1 equals 5 
int var2 <- int(variance([1,3,5,6,9,11,12,13])); // var2 equals 17

float var0 <- [1,2,3,4,5,6] variance_of each with_precision 2; // var0 equals 2.92

http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsNR#product_of


vertical  ( map<unknown,int> ) ---> unknown<string>

Result:

Creates a vertical layout node (a sash). Sashes can contain any number (> 1) of other elements: stacks,
horizontal or vertical sashes, or display indices. Each element is represented by a pair in the map, where
the key is the element and the value its weight within the sash

vertical_flip

Possible uses:

vertical_flip  ( image ) ---> image

Result:

Returns an image flipped vertically by reflecting the original image around the x axis. The original image
is left untouched

voronoi

Possible uses:

voronoi  ( list<point> ) ---> list<geometry>

list<point>  voronoi  geometry  ---> list<geometry>

voronoi  ( list<point>  , geometry ) ---> list<geometry>

Result:

A list of geometries corresponding to the Voronoi diagram built from the list of points (with eventually a
given clip).

Examples:

list<geometry> var0 <- voronoi([{10,10},{50,50},{90,90},{10,90},{90,10}]); // var0 
equals the list of geometries corresponding to the Voronoi Diagram built from the list 
of points. 
list<geometry> var1 <- voronoi([{10,10},{50,50},{90,90},{10,90},{90,10}], square(300)); 



weibull_density

Possible uses:

weibull_density  ( float , float , float ) ---> float

Result:

weibull_density(x,shape,scale) returns the probability density function (PDF) at the specified point x of
the Weibull distribution with the given shape and scale.

Examples:

See also: binomial, gamma_rnd, gauss_rnd, lognormal_rnd, poisson, rnd, skew_gauss,
lognormal_density, gamma_density,

weibull_rnd

Possible uses:

float  weibull_rnd  float  ---> float

weibull_rnd  ( float  , float ) ---> float

Result:

returns a random value from a Weibull distribution with specified values of the shape (alpha) and scale
(beta) parameters. See https://mathworld.wolfram.com/WeibullDistribution.html for more details
(equations 1 and 2).

Examples:

// var1 equals the list of geometries corresponding to the Voronoi Diagram built from 
the list of points with a square of 300m side size as clip.

float var0 <- weibull_rnd(1,2,3) ; // var0 equals 0.731

float var0 <- weibull_rnd(2,3) ; // var0 equals 0.731

http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsIM#lognormal_density
http://localhost:3000/wiki/OperatorsDH#gamma_density
https://mathworld.wolfram.com/WeibullDistribution.html


See also: binomial, gamma_rnd, gauss_rnd, lognormal_rnd, poisson, rnd, skew_gauss, truncated_gauss,
weibull_trunc_rnd,

weibull_trunc_rnd

Possible uses:

weibull_trunc_rnd  ( float , float , float , float ) ---> float

weibull_trunc_rnd  ( float , float , float , bool ) ---> float

Result:

returns a random value from a truncated Weibull distribution (in a range or given only one boundary)
with specified values of the shape (alpha) and scale (beta) parameters. See
https://mathworld.wolfram.com/WeibullDistribution.html for more details (equations 1 and 2).

Special cases:

when 2 float operands are specified, they are taken as mininimum and maximum values for the
result

when 1 float and a boolean (isMax) operands are specified, the float value represents the single
boundary (max if the boolean is true, min otherwise),

See also: weibull_rnd, gamma_trunc_rnd, lognormal_trunc_rnd, truncated_gauss,

weight_of

Possible uses:

graph  weight_of  unknown  ---> float

weight_of  ( graph  , unknown ) ---> float

weibull_trunc_rnd(2,3,0.0,5.0)

weibull_trunc_rnd(2,3,5,true)

http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#weibull_trunc_rnd
https://mathworld.wolfram.com/WeibullDistribution.html
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsDH#gamma_trunc_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_trunc_rnd
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss


Result:

returns the weight of the given edge (right-hand operand) contained in the graph given in right-hand
operand.

Comment:

In a localized graph, an edge has a weight by default (the distance between both vertices).

Special cases:

if the left-operand (the graph) is nil, returns nil

if the right-hand operand is not an edge of the given graph, weight_of checks whether it is a node of
the graph and tries to return its weight

if the right-hand operand is neither a node, nor an edge, returns 1.

Examples:

weighted_means_DM

Possible uses:

list<list>  weighted_means_DM  list<map<string,unknown>>  ---> int

weighted_means_DM  ( list<list>  , list<map<string,unknown>> ) ---> int

Result:

The index of the candidate that maximizes the weighted mean of its criterion values. The first operand is
the list of candidates (a candidate is a list of criterion values); the second operand the list of criterion (list
of map)

Special cases:

returns -1 is the list of candidates is nil or empty

Examples:

graph graphFromMap <-  as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]); 
float var1 <- graphFromMap weight_of(link({1,5},{12,45})); // var1 equals 1.0



See also: promethee_DM, electre_DM, evidence_theory_DM,

where

Possible uses:

container  where  any expression  ---> list

where  ( container  , any expression ) ---> list

species  where  any expression  ---> list

where  ( species  , any expression ) ---> list

list  where  any expression  ---> list

where  ( list  , any expression ) ---> list

Result:

a list containing all the elements of the left-hand operand that make the right-hand operand evaluate to
true.

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand
operand elements.

Special cases:

if the left-hand operand is nil, where throws an error

if the left-operand is a map, the keyword each will contain each value

Examples:

int var0 <- weighted_means_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], [["name"::"utility", 
"weight" :: 2.0],["name"::"price", "weight" :: 1.0]]); // var0 equals 1

list var4 <- [1::2, 3::4, 5::6] where (each >= 4); // var4 equals [4, 6]

list var0 <- [1,2,3,4,5,6,7,8] where (each > 3); // var0 equals [4, 5, 6, 7, 8]  
list var2 <- g2 where (length(g2 out_edges_of each) = 0 ); // var2 equals [node9, 
node7, node10, node8, node11] 

http://localhost:3000/wiki/OperatorsNR#promethee_dm
http://localhost:3000/wiki/OperatorsDH#electre_dm
http://localhost:3000/wiki/OperatorsDH#evidence_theory_dm


See also: first_with, last_with,

with_alpha

Same signification as rgb

with_height

Possible uses:

image  with_height  int  ---> image

with_height  ( image  , int ) ---> image

Result:

Applies a proportional scaling to the image passed in parameter to return a new scaled image with the
corresponding height. A height of 0 will return nil, a height equal to the height of the image will return
the original image. Automatic scaling and resizing methods are used. The original image is left
untouched

with_k_shortest_path_algorithm

Possible uses:

graph  with_k_shortest_path_algorithm  string  ---> graph

with_k_shortest_path_algorithm  ( graph  , string ) ---> graph

Result:

changes the K shortest paths computation algorithm of the given graph

Comment:

the right-hand operand can be #Yen and #Bhandari to use the associated algorithm.

list var3 <- (list(node) where (round(node(each).location.x) > 32); // var3 equals 
[node2, node3]

http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsNR#rgb


Examples:

with_max_of

Possible uses:

container  with_max_of  any expression  ---> unknown

with_max_of  ( container  , any expression ) ---> unknown

Result:

one of elements of the left-hand operand that maximizes the value of the right-hand operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand
operand elements.

Special cases:

if the left-hand operand is nil, with_max_of returns the default value of the right-hand operand

Examples:

See also: where, with_min_of,

with_min_of

Possible uses:

container  with_min_of  any expression  ---> unknown

the_graph <- the_graph with_k_shortest_path_algorithm #Yen;

unknown var0 <- [1,2,3,4,5,6,7,8] with_max_of (each ); // var0 equals 8 
unknown var2 <- g2 with_max_of (length(g2 out_edges_of each)  ) ; // var2 equals node4 
unknown var3 <- (list(node) with_max_of (round(node(each).location.x)); // var3 equals 
node3 
unknown var4 <- [1::2, 3::4, 5::6] with_max_of (each); // var4 equals 6

http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_min_of


with_min_of  ( container  , any expression ) ---> unknown

Result:

one of elements of the left-hand operand that minimizes the value of the right-hand operand

Comment:

in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand
operand elements.

Special cases:

if the left-hand operand is nil, with_max_of returns the default value of the right-hand operand

Examples:

See also: where, with_max_of,

with_precision

Possible uses:

float  with_precision  int  ---> float

with_precision  ( float  , int ) ---> float

point  with_precision  int  ---> point

with_precision  ( point  , int ) ---> point

geometry  with_precision  int  ---> geometry

with_precision  ( geometry  , int ) ---> geometry

Result:

Rounds off the value of left-hand operand to the precision given by the value of right-hand operand
Rounds off the ordinates of the left-hand point to the precision given by the value of right-hand operand

unknown var0 <- [1,2,3,4,5,6,7,8] with_min_of (each ); // var0 equals 1 
unknown var2 <- g2 with_min_of (length(g2 out_edges_of each)  ); // var2 equals node11 
unknown var3 <- (list(node) with_min_of (round(node(each).location.x)); // var3 equals 
node0 
unknown var4 <- [1::2, 3::4, 5::6] with_min_of (each); // var4 equals 2

http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_max_of


A geometry corresponding to the rounding of points of the operand considering a given precison.

Examples:

See also: round,

with_shortest_path_algorithm

Possible uses:

graph  with_shortest_path_algorithm  string  ---> graph

with_shortest_path_algorithm  ( graph  , string ) ---> graph

Result:

changes the shortest path computation algorithm of the given graph

Comment:

the right-hand operand can be #Djikstra, #BidirectionalDijkstra, #BellmannFord, #FloydWarshall, #Astar,
#NBAStar, #NBAStarApprox, #DeltaStepping, #CHBidirectionalDijkstra, #TransitNodeRouting to use the
associated algorithm.

Examples:

with_size

Possible uses:

float var0 <- 12345.78943 with_precision 2; // var0 equals 12345.79 
float var1 <- 123 with_precision 2; // var1 equals 123.00 
point var2 <- {12345.78943, 12345.78943, 12345.78943} with_precision 2 ; // var2 equals 
{12345.79, 12345.79, 12345.79} 
geometry var3 <- self with_precision 2; // var3 equals the geometry resulting from the 
rounding of points of the geometry with a precision of 0.1.

road_network <- road_network with_shortestpath_algorithm #TransitNodeRouting;

http://localhost:3000/wiki/OperatorsNR#round


font  with_size  int  ---> font

with_size  ( font  , int ) ---> font

Result:

Creates a new font from an existing font, with a new size in points

Examples:

with_size

Possible uses:

with_size  ( image , int , int ) ---> image

Result:

Applies a non-proportional scaling to the image passed in parameter to return a new scaled image with
the corresponding width and height. A height of 0 or a width of 0 will return nil. If the width and height
parameters are repectively equal to the width and height of the original image, it is returned. Automatic
scaling and resizing methods are used. The original image is left untouched

with_style

Possible uses:

font  with_style  int  ---> font

with_style  ( font  , int ) ---> font

Result:

Creates a new font from an existing font, with a new style: either #bold, #italic or #plain or a
combination (addition) of them.

Examples:

font var0 <- font ('Helvetica Neue',12, #bold + #italic) with_size 24; // var0 equals a 
bold and italic face of the Helvetica Neue family with a size of 24 points



with_values

Possible uses:

predicate  with_values  map  ---> predicate

with_values  ( predicate  , map ) ---> predicate

Result:

change the parameters of the given predicate

Examples:

with_weights

Possible uses:

graph  with_weights  list  ---> graph

with_weights  ( graph  , list ) ---> graph

graph  with_weights  map  ---> graph

with_weights  ( graph  , map ) ---> graph

Result:

returns the graph (left-hand operand) with weight given in the map (right-hand operand).

Comment:

WARNING / side effect: this operator modifies the operand and does not create a new graph. It also re-
initializes the path finder

Special cases:

font var0 <- font ('Helvetica Neue',12, #bold + #italic) with_style #plain; // var0 
equals a plain face of the Helvetica Neue family with a size of 12 points

predicate with_values ["time"::10]



if the right-hand operand is a list, assigns the n elements of the list to the n first edges. Note that
the ordering of edges may change overtime, which can create some problems...

if the left-hand operand is a map, the map should contains pairs such as: vertex/edge::double

with_width

Possible uses:

image  with_width  int  ---> image

with_width  ( image  , int ) ---> image

Result:

Applies a proportional scaling to the image passed in parameter to return a new scaled image with the
corresponding width. A width of 0 will return nil, a width equal to the width of the image will return the
original image. Automatic scaling and resizing methods are used. The original image is left untouched

without_holes

Possible uses:

without_holes  ( geometry ) ---> geometry

Result:

A geometry corresponding to the operand geometry (geometry, agent, point) without its holes

Examples:

graph_from_edges (list(ant) as_map each::one_of (list(ant))) with_weights (list(ant) 
as_map each::each.food)

geometry var0 <- solid(self); // var0 equals the geometry corresponding to the geometry 
of the agent applying the operator without its holes. 
float var1 <- without_holes(polygon([{0,50}, {0,0}, {50,0}, {50,50}, {0,50}]) - 
square(10) at_location {10,10}).area; // var1 equals 2500.0



wizard

Possible uses:

string  wizard  list<map<string,unknown>>  ---> map<string,map<string,unknown>>

wizard  ( string  , list<map<string,unknown>> ) ---> map<string,map<string,unknown>>

wizard  ( string , action , list<map<string,unknown>> ) ---> map<string,map<string,unknown>>

Result:

Build a wizard and return the values enter by the user as a map of map ["title page 1"::
["var1"::1,"var2"::2]]. Takes a string, a list of calls to the wizard_page()  operator. The first string is used
to specify the title. The list is to specify the wizard pages. Build a wizard and return the values enter by
the user as a map of map ["title page 1"::["var1"::1,"var2"::2]]. Takes a string, an action and a list of calls
to the wizard_page()  operator. The first string is used to specify the title. The action to describe when
the wizard is supposed to be finished. A classic way of defining the action is bool
eval_finish(map<string,map> input_map) {return input_map["page1"]["file"] != nil;}. The list is to specify
the wizard pages.

Examples:

wizard_page

Possible uses:

wizard_page  ( string , string , list ) ---> map<string,unknown>

wizard_page  ( string , string , list , font ) ---> map<string,unknown>

Result:

Build a wizard page. Takes two strings, a list of calls to the enter()  or choose()  operators and a font as
arguments. The first string is used to specify the title, the second the description of the dialog box. The
list is to specify the parameters the user can enter. The font is used to specify the font Build a wizard
page. Takes two strings and a list of calls to the enter()  or choose()  operators. The first string is used

map results <-  wizard("My wizard",[wizard_page("page1","enter info" ,
[enter("var1",string)], font("Arial", 10))]); 
map results <-  wizard("My wizard",eval_finish, [wizard_page("page1","enter info" ,
[enter("var1",string)], font("Arial", 10))]);



to specify the title, the second the description of the dialog box. The list is to specify the parameters the
user can enter

Examples:

writable

Possible uses:

file  writable  bool  ---> file

writable  ( file  , bool ) ---> file

Result:

Marks the file as read-only or not, depending on the second boolean argument, and returns the first
argument

Comment:

A file is created using its native flags. This operator can change them. Beware that this change is system-
wide (and not only restrained to GAMA): changing a file to read-only mode (e.g. "writable(f, false)")

Examples:

See also: file,

xml_file

Possible uses:

map results <-  wizard("My wizard",[wizard_page("page1","enter info" ,
[enter("var1",string)], font("Arial", 10))]); 
map results <-  wizard("My wizard",[wizard_page("page1","enter info" ,
[enter("var1",string)])]);

file var0 <- shape_file("../images/point_eau.shp") writable false; // var0 equals 
returns a file in read-only mode

http://localhost:3000/wiki/OperatorsDH#file


xml_file  ( string ) ---> file

Result:

Constructs a file of type xml. Allowed extensions are limited to xml

Special cases:

xml_file(string): This file constructor allows to read a xml file

See also: is_xml,

xor

Possible uses:

bool  xor  bool  ---> bool

xor  ( bool  , bool ) ---> bool

Result:

a bool value, equal to the logical xor between the left-hand operand and the right-hand operand. False
when they are equal

Comment:

both operands are always casted to bool before applying the operator. Thus, an expression like 1 xor 0 is
accepted and returns true.

Examples:

See also: or, and, !,

file f <-xml_file("file.xml");

bool var0 <- xor(true,false); // var0 equals true 
bool var1 <- xor(false,false); // var1 equals false 
bool var2 <- xor(false,true); // var2 equals true 
bool var3 <- xor(true,true); // var3 equals false 
bool var4 <- true xor true; // var4 equals false

http://localhost:3000/wiki/OperatorsIM#is_xml
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsAA#!


years_between

Possible uses:

date  years_between  date  ---> int

years_between  ( date  , date ) ---> int

Result:

Provide the exact number of years between two dates. This number can be positive or negative (if the
second operand is smaller than the first one)

Examples:

zip

Same signification as compress

Possible uses:

list<string>  zip  string  ---> bool

zip  ( list<string>  , string ) ---> bool

Result:

Zip a given list of files or folders. Returns true if the files are well zipped

Examples:

int var0 <- years_between(date('2000-01-01'), date('2010-01-01')); // var0 equals 10

bool zip_ok <- zip(["../includes/my_folder"], "folder.zip";

http://localhost:3000/wiki/OperatorsBC#compress


Version: 1.9.3

Exhaustive list of GAMA
Keywords
This file is automatically generated from java files. Do Not Edit It.

Operators
-, :, ::, !, !=, ?, /, ., ., ^, @, *, *, +, <, <=, =, >, >=, abs, accumulate, acos, action, add_3Dmodel, add_days,
add_edge, add_geometry, add_hours, add_icon, add_minutes, add_months, add_ms, add_node,
add_point, add_seconds, add_values, add_weeks, add_years, adjacency, after, agent, agent_closest_to,
agent_farthest_to, agent_file, agent_from_geometry, agent_intersecting, agents_at_distance,
agents_covering, agents_crossing, agents_inside, agents_overlapping, agents_partially_overlapping,
agents_touching, all_indexes_of, all_match, all_pairs_shortest_path, all_verify, alpha_index, among, and,
and, angle_between, antialiased, any, any_location_in, any_point_in, append_horizontally,
append_vertically, arc, around, as, as_4_grid, as_distance_graph, as_driving_graph, as_edge_graph,
as_grid, as_hexagonal_grid, as_int, as_intersection_graph, as_map, as_matrix, as_path, as_spatial_graph,
asin, at, at_distance, at_location, atan, atan2, auto_correlation, BDIPlan, before, beta, beta_index,
between, betweenness_centrality, biggest_cliques_of, binomial, binomial_coeff,
binomial_complemented, binomial_sum, blend, blend, blurred, bool, box, brewer_colors,
brewer_palettes, brighter, buffer, build, capitalize, cartesian_product, ceil, cell_at, cells_in,
cells_overlapping, centroid, char, chi_square, chi_square_complemented, choose, circle, clean,
clean_network, clipped_with, closest_points_with, closest_to, collect, column_at, columns_list, command,
compress, cone, cone3D, connected_components_of, connectivity_index, container, contains,
contains_all, contains_any, contains_edge, contains_key, contains_node, contains_value, contains_vertex,
conversation, convex_hull, copy, copy_between, copy_file, copy_from_clipboard, copy_to_clipboard,
copy_to_clipboard, correlation, cos, cos_rad, count, covariance, covering, covers, create_map,
cropped_to, cross, crosses, crossing, crs, CRS_transform, csv_file, cube, curve, cylinder, darker, date,
dbscan, dead, decompress, degree_of, delete_file, deserialize, det, determinant, diff, diff2, directed,
direction_between, direction_to, directory, disjoint_from, distance_between, distance_to, distinct,
distribution_of, distribution2d_of, div, dnorm, dtw, durbin_watson, dxf_file, edge, edge_between,
edge_betweenness, edges, eigenvalues, electre_DM, ellipse, elliptical_arc, emotion, empty, enlarged_by,
enter, envelope, eval_gaml, eval_when, evaluate_sub_model, even, every, every_cycle,

http://localhost:3000/wiki/OperatorsAA#-
http://localhost:3000/wiki/OperatorsAA#:
http://localhost:3000/wiki/OperatorsAA#::
http://localhost:3000/wiki/OperatorsAA#!
http://localhost:3000/wiki/OperatorsAA#!=
http://localhost:3000/wiki/OperatorsAA#?
http://localhost:3000/wiki/OperatorsAA#/
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsAA#.
http://localhost:3000/wiki/OperatorsAA#%5E
http://localhost:3000/wiki/OperatorsAA#@
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#*
http://localhost:3000/wiki/OperatorsAA#+
http://localhost:3000/wiki/OperatorsAA#%3C
http://localhost:3000/wiki/OperatorsAA#%3C=
http://localhost:3000/wiki/OperatorsAA#=
http://localhost:3000/wiki/OperatorsAA#%3E
http://localhost:3000/wiki/OperatorsAA#%3E=
http://localhost:3000/wiki/OperatorsAA#abs
http://localhost:3000/wiki/OperatorsAA#accumulate
http://localhost:3000/wiki/OperatorsAA#acos
http://localhost:3000/wiki/OperatorsAA#action
http://localhost:3000/wiki/OperatorsAA#add_3Dmodel
http://localhost:3000/wiki/OperatorsAA#add_days
http://localhost:3000/wiki/OperatorsAA#add_edge
http://localhost:3000/wiki/OperatorsAA#add_geometry
http://localhost:3000/wiki/OperatorsAA#add_hours
http://localhost:3000/wiki/OperatorsAA#add_icon
http://localhost:3000/wiki/OperatorsAA#add_minutes
http://localhost:3000/wiki/OperatorsAA#add_months
http://localhost:3000/wiki/OperatorsAA#add_ms
http://localhost:3000/wiki/OperatorsAA#add_node
http://localhost:3000/wiki/OperatorsAA#add_point
http://localhost:3000/wiki/OperatorsAA#add_seconds
http://localhost:3000/wiki/OperatorsAA#add_values
http://localhost:3000/wiki/OperatorsAA#add_weeks
http://localhost:3000/wiki/OperatorsAA#add_years
http://localhost:3000/wiki/OperatorsAA#adjacency
http://localhost:3000/wiki/OperatorsAA#after
http://localhost:3000/wiki/OperatorsAA#agent
http://localhost:3000/wiki/OperatorsAA#agent_closest_to
http://localhost:3000/wiki/OperatorsAA#agent_farthest_to
http://localhost:3000/wiki/OperatorsAA#agent_file
http://localhost:3000/wiki/OperatorsAA#agent_from_geometry
http://localhost:3000/wiki/OperatorsAA#agent_intersecting
http://localhost:3000/wiki/OperatorsAA#agents_at_distance
http://localhost:3000/wiki/OperatorsAA#agents_covering
http://localhost:3000/wiki/OperatorsAA#agents_crossing
http://localhost:3000/wiki/OperatorsAA#agents_inside
http://localhost:3000/wiki/OperatorsAA#agents_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_partially_overlapping
http://localhost:3000/wiki/OperatorsAA#agents_touching
http://localhost:3000/wiki/OperatorsAA#all_indexes_of
http://localhost:3000/wiki/OperatorsAA#all_match
http://localhost:3000/wiki/OperatorsAA#all_pairs_shortest_path
http://localhost:3000/wiki/OperatorsAA#all_verify
http://localhost:3000/wiki/OperatorsAA#alpha_index
http://localhost:3000/wiki/OperatorsAA#among
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsAA#and
http://localhost:3000/wiki/OperatorsAA#angle_between
http://localhost:3000/wiki/OperatorsAA#antialiased
http://localhost:3000/wiki/OperatorsAA#any
http://localhost:3000/wiki/OperatorsAA#any_location_in
http://localhost:3000/wiki/OperatorsAA#any_point_in
http://localhost:3000/wiki/OperatorsAA#append_horizontally
http://localhost:3000/wiki/OperatorsAA#append_vertically
http://localhost:3000/wiki/OperatorsAA#arc
http://localhost:3000/wiki/OperatorsAA#around
http://localhost:3000/wiki/OperatorsAA#as
http://localhost:3000/wiki/OperatorsAA#as_4_grid
http://localhost:3000/wiki/OperatorsAA#as_distance_graph
http://localhost:3000/wiki/OperatorsAA#as_driving_graph
http://localhost:3000/wiki/OperatorsAA#as_edge_graph
http://localhost:3000/wiki/OperatorsAA#as_grid
http://localhost:3000/wiki/OperatorsAA#as_hexagonal_grid
http://localhost:3000/wiki/OperatorsAA#as_int
http://localhost:3000/wiki/OperatorsAA#as_intersection_graph
http://localhost:3000/wiki/OperatorsAA#as_map
http://localhost:3000/wiki/OperatorsAA#as_matrix
http://localhost:3000/wiki/OperatorsAA#as_path
http://localhost:3000/wiki/OperatorsAA#as_spatial_graph
http://localhost:3000/wiki/OperatorsAA#asin
http://localhost:3000/wiki/OperatorsAA#at
http://localhost:3000/wiki/OperatorsAA#at_distance
http://localhost:3000/wiki/OperatorsAA#at_location
http://localhost:3000/wiki/OperatorsAA#atan
http://localhost:3000/wiki/OperatorsAA#atan2
http://localhost:3000/wiki/OperatorsAA#auto_correlation
http://localhost:3000/wiki/OperatorsBC#BDIPlan
http://localhost:3000/wiki/OperatorsBC#before
http://localhost:3000/wiki/OperatorsBC#beta
http://localhost:3000/wiki/OperatorsBC#beta_index
http://localhost:3000/wiki/OperatorsBC#between
http://localhost:3000/wiki/OperatorsBC#betweenness_centrality
http://localhost:3000/wiki/OperatorsBC#biggest_cliques_of
http://localhost:3000/wiki/OperatorsBC#binomial
http://localhost:3000/wiki/OperatorsBC#binomial_coeff
http://localhost:3000/wiki/OperatorsBC#binomial_complemented
http://localhost:3000/wiki/OperatorsBC#binomial_sum
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#blend
http://localhost:3000/wiki/OperatorsBC#blurred
http://localhost:3000/wiki/OperatorsBC#bool
http://localhost:3000/wiki/OperatorsBC#box
http://localhost:3000/wiki/OperatorsBC#brewer_colors
http://localhost:3000/wiki/OperatorsBC#brewer_palettes
http://localhost:3000/wiki/OperatorsBC#brighter
http://localhost:3000/wiki/OperatorsBC#buffer
http://localhost:3000/wiki/OperatorsBC#build
http://localhost:3000/wiki/OperatorsBC#capitalize
http://localhost:3000/wiki/OperatorsBC#cartesian_product
http://localhost:3000/wiki/OperatorsBC#ceil
http://localhost:3000/wiki/OperatorsBC#cell_at
http://localhost:3000/wiki/OperatorsBC#cells_in
http://localhost:3000/wiki/OperatorsBC#cells_overlapping
http://localhost:3000/wiki/OperatorsBC#centroid
http://localhost:3000/wiki/OperatorsBC#char
http://localhost:3000/wiki/OperatorsBC#chi_square
http://localhost:3000/wiki/OperatorsBC#chi_square_complemented
http://localhost:3000/wiki/OperatorsBC#choose
http://localhost:3000/wiki/OperatorsBC#circle
http://localhost:3000/wiki/OperatorsBC#clean
http://localhost:3000/wiki/OperatorsBC#clean_network
http://localhost:3000/wiki/OperatorsBC#clipped_with
http://localhost:3000/wiki/OperatorsBC#closest_points_with
http://localhost:3000/wiki/OperatorsBC#closest_to
http://localhost:3000/wiki/OperatorsBC#collect
http://localhost:3000/wiki/OperatorsBC#column_at
http://localhost:3000/wiki/OperatorsBC#columns_list
http://localhost:3000/wiki/OperatorsBC#command
http://localhost:3000/wiki/OperatorsBC#compress
http://localhost:3000/wiki/OperatorsBC#cone
http://localhost:3000/wiki/OperatorsBC#cone3D
http://localhost:3000/wiki/OperatorsBC#connected_components_of
http://localhost:3000/wiki/OperatorsBC#connectivity_index
http://localhost:3000/wiki/OperatorsBC#container
http://localhost:3000/wiki/OperatorsBC#contains
http://localhost:3000/wiki/OperatorsBC#contains_all
http://localhost:3000/wiki/OperatorsBC#contains_any
http://localhost:3000/wiki/OperatorsBC#contains_edge
http://localhost:3000/wiki/OperatorsBC#contains_key
http://localhost:3000/wiki/OperatorsBC#contains_node
http://localhost:3000/wiki/OperatorsBC#contains_value
http://localhost:3000/wiki/OperatorsBC#contains_vertex
http://localhost:3000/wiki/OperatorsBC#conversation
http://localhost:3000/wiki/OperatorsBC#convex_hull
http://localhost:3000/wiki/OperatorsBC#copy
http://localhost:3000/wiki/OperatorsBC#copy_between
http://localhost:3000/wiki/OperatorsBC#copy_file
http://localhost:3000/wiki/OperatorsBC#copy_from_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsBC#copy_to_clipboard
http://localhost:3000/wiki/OperatorsBC#correlation
http://localhost:3000/wiki/OperatorsBC#cos
http://localhost:3000/wiki/OperatorsBC#cos_rad
http://localhost:3000/wiki/OperatorsBC#count
http://localhost:3000/wiki/OperatorsBC#covariance
http://localhost:3000/wiki/OperatorsBC#covering
http://localhost:3000/wiki/OperatorsBC#covers
http://localhost:3000/wiki/OperatorsBC#create_map
http://localhost:3000/wiki/OperatorsBC#cropped_to
http://localhost:3000/wiki/OperatorsBC#cross
http://localhost:3000/wiki/OperatorsBC#crosses
http://localhost:3000/wiki/OperatorsBC#crossing
http://localhost:3000/wiki/OperatorsBC#crs
http://localhost:3000/wiki/OperatorsBC#CRS_transform
http://localhost:3000/wiki/OperatorsBC#csv_file
http://localhost:3000/wiki/OperatorsBC#cube
http://localhost:3000/wiki/OperatorsBC#curve
http://localhost:3000/wiki/OperatorsBC#cylinder
http://localhost:3000/wiki/OperatorsDH#darker
http://localhost:3000/wiki/OperatorsDH#date
http://localhost:3000/wiki/OperatorsDH#dbscan
http://localhost:3000/wiki/OperatorsDH#dead
http://localhost:3000/wiki/OperatorsDH#decompress
http://localhost:3000/wiki/OperatorsDH#degree_of
http://localhost:3000/wiki/OperatorsDH#delete_file
http://localhost:3000/wiki/OperatorsDH#deserialize
http://localhost:3000/wiki/OperatorsDH#det
http://localhost:3000/wiki/OperatorsDH#determinant
http://localhost:3000/wiki/OperatorsDH#diff
http://localhost:3000/wiki/OperatorsDH#diff2
http://localhost:3000/wiki/OperatorsDH#directed
http://localhost:3000/wiki/OperatorsDH#direction_between
http://localhost:3000/wiki/OperatorsDH#direction_to
http://localhost:3000/wiki/OperatorsDH#directory
http://localhost:3000/wiki/OperatorsDH#disjoint_from
http://localhost:3000/wiki/OperatorsDH#distance_between
http://localhost:3000/wiki/OperatorsDH#distance_to
http://localhost:3000/wiki/OperatorsDH#distinct
http://localhost:3000/wiki/OperatorsDH#distribution_of
http://localhost:3000/wiki/OperatorsDH#distribution2d_of
http://localhost:3000/wiki/OperatorsDH#div
http://localhost:3000/wiki/OperatorsDH#dnorm
http://localhost:3000/wiki/OperatorsDH#dtw
http://localhost:3000/wiki/OperatorsDH#durbin_watson
http://localhost:3000/wiki/OperatorsDH#dxf_file
http://localhost:3000/wiki/OperatorsDH#edge
http://localhost:3000/wiki/OperatorsDH#edge_between
http://localhost:3000/wiki/OperatorsDH#edge_betweenness
http://localhost:3000/wiki/OperatorsDH#edges
http://localhost:3000/wiki/OperatorsDH#eigenvalues
http://localhost:3000/wiki/OperatorsDH#electre_DM
http://localhost:3000/wiki/OperatorsDH#ellipse
http://localhost:3000/wiki/OperatorsDH#elliptical_arc
http://localhost:3000/wiki/OperatorsDH#emotion
http://localhost:3000/wiki/OperatorsDH#empty
http://localhost:3000/wiki/OperatorsDH#enlarged_by
http://localhost:3000/wiki/OperatorsDH#enter
http://localhost:3000/wiki/OperatorsDH#envelope
http://localhost:3000/wiki/OperatorsDH#eval_gaml
http://localhost:3000/wiki/OperatorsDH#eval_when
http://localhost:3000/wiki/OperatorsDH#evaluate_sub_model
http://localhost:3000/wiki/OperatorsDH#even
http://localhost:3000/wiki/OperatorsDH#every
http://localhost:3000/wiki/OperatorsDH#every_cycle


evidence_theory_DM, exp, exp_density, exp_rnd, fact, farthest_point_to, farthest_to, field, field_with, file,
file_exists, first, first_of, first_with, flatten, flip, float, floor, folder, folder_exists, font, frequency_of, from,
from_binary, from_gaml, from_json, fuzzy_choquet_DM, fuzzy_kappa, fuzzy_kappa_sim, gaml_file,
gaml_type, gamma, gamma_density, gamma_distribution, gamma_distribution_complemented,
gamma_index, gamma_rnd, gamma_trunc_rnd, gauss, gauss_rnd, generate_barabasi_albert,
generate_complete_graph, generate_pedestrian_network, generate_random_graph, generate_terrain,
generate_watts_strogatz, geojson_file, geometric_mean, geometry, geometry_collection, get, get_about,
get_agent, get_agent_cause, get_belief_op, get_belief_with_name_op, get_beliefs_op,
get_beliefs_with_name_op, get_current_intention_op, get_decay, get_desire_op,
get_desire_with_name_op, get_desires_op, get_desires_with_name_op, get_dominance, get_familiarity,
get_ideal_op, get_ideal_with_name_op, get_ideals_op, get_ideals_with_name_op, get_intensity,
get_intention_op, get_intention_with_name_op, get_intentions_op, get_intentions_with_name_op,
get_lifetime, get_liking, get_modality, get_obligation_op, get_obligation_with_name_op,
get_obligations_op, get_obligations_with_name_op, get_plan_name, get_predicate, get_solidarity,
get_strength, get_super_intention, get_trust, get_truth, get_uncertainties_op,
get_uncertainties_with_name_op, get_uncertainty_op, get_uncertainty_with_name_op, get_values,
gif_file, gini, girvan_newman_clustering, gml_file, gradient, graph, graph6_file, graphdimacs_file,
graphdot_file, graphgexf_file, graphgml_file, graphml_file, graphtsplib_file, grayscale, grayscale, grid_at,
grid_cells_to_graph, grid_file, group_by, harmonic_mean, has_belief_op, has_belief_with_name_op,
has_desire_op, has_desire_with_name_op, has_ideal_op, has_ideal_with_name_op, has_intention_op,
has_intention_with_name_op, has_obligation_op, has_obligation_with_name_op, has_uncertainty_op,
has_uncertainty_with_name_op, hexagon, hierarchical_clustering, horizontal, horizontal_flip, hsb, hypot,
IDW, image, image_file, in, in_degree_of, in_edges_of, incomplete_beta, incomplete_gamma,
incomplete_gamma_complement, indented_by, index_by, index_of, inside, int, inter, interleave,
internal_integrated_value, intersecting, intersection, intersects, inverse, inverse_distance_weighting,
inverse_rotation, is, is_agent, is_csv, is_dxf, is_error, is_finite, is_gaml, is_geojson, is_gif, is_gml, is_graph6,
is_graphdimacs, is_graphdot, is_graphgexf, is_graphgml, is_graphml, is_graphtsplib, is_grid, is_image,
is_json, is_number, is_obj, is_osm, is_pgm, is_property, is_reachable, is_shape, is_simulation, is_skill,
is_svg, is_text, is_threeds, is_warning, is_xml, json_file, k_nearest_neighbors, k_spanning_tree_clustering,
kappa, kappa_sim, kmeans, kml, kurtosis, label_propagation_clustering, last, last_index_of, last_of,
last_with, layout_circle, layout_force, layout_force_FR, layout_force_FR_indexed, layout_grid, length,
lgamma, line, link, list, list_with, ln, load_shortest_paths, load_sub_model, log, log_gamma,
lognormal_density, lognormal_rnd, lognormal_trunc_rnd, lower_case, main_connected_component,
map, masked_by, matrix, matrix, matrix_with, max, max_flow_between, max_of, maximal_cliques_of,
mean, mean_deviation, mean_of, median, mental_state, message, milliseconds_between, min, min_of,
minus_days, minus_hours, minus_minutes, minus_months, minus_ms, minus_seconds, minus_weeks,
minus_years, mod, moment, months_between, moran, morrisAnalysis, mul, nb_cycles, neighbors_at,
neighbors_of, new_emotion, new_folder, new_mental_state, new_predicate, new_social_link, node,
nodes, none_matches, none_verifies, norm, Norm, normal_area, normal_density, normal_inverse,

http://localhost:3000/wiki/OperatorsDH#evidence_theory_DM
http://localhost:3000/wiki/OperatorsDH#exp
http://localhost:3000/wiki/OperatorsDH#exp_density
http://localhost:3000/wiki/OperatorsDH#exp_rnd
http://localhost:3000/wiki/OperatorsDH#fact
http://localhost:3000/wiki/OperatorsDH#farthest_point_to
http://localhost:3000/wiki/OperatorsDH#farthest_to
http://localhost:3000/wiki/OperatorsDH#field
http://localhost:3000/wiki/OperatorsDH#field_with
http://localhost:3000/wiki/OperatorsDH#file
http://localhost:3000/wiki/OperatorsDH#file_exists
http://localhost:3000/wiki/OperatorsDH#first
http://localhost:3000/wiki/OperatorsDH#first_of
http://localhost:3000/wiki/OperatorsDH#first_with
http://localhost:3000/wiki/OperatorsDH#flatten
http://localhost:3000/wiki/OperatorsDH#flip
http://localhost:3000/wiki/OperatorsDH#float
http://localhost:3000/wiki/OperatorsDH#floor
http://localhost:3000/wiki/OperatorsDH#folder
http://localhost:3000/wiki/OperatorsDH#folder_exists
http://localhost:3000/wiki/OperatorsDH#font
http://localhost:3000/wiki/OperatorsDH#frequency_of
http://localhost:3000/wiki/OperatorsDH#from
http://localhost:3000/wiki/OperatorsDH#from_binary
http://localhost:3000/wiki/OperatorsDH#from_gaml
http://localhost:3000/wiki/OperatorsDH#from_json
http://localhost:3000/wiki/OperatorsDH#fuzzy_choquet_DM
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa
http://localhost:3000/wiki/OperatorsDH#fuzzy_kappa_sim
http://localhost:3000/wiki/OperatorsDH#gaml_file
http://localhost:3000/wiki/OperatorsDH#gaml_type
http://localhost:3000/wiki/OperatorsDH#gamma
http://localhost:3000/wiki/OperatorsDH#gamma_density
http://localhost:3000/wiki/OperatorsDH#gamma_distribution
http://localhost:3000/wiki/OperatorsDH#gamma_distribution_complemented
http://localhost:3000/wiki/OperatorsDH#gamma_index
http://localhost:3000/wiki/OperatorsDH#gamma_rnd
http://localhost:3000/wiki/OperatorsDH#gamma_trunc_rnd
http://localhost:3000/wiki/OperatorsDH#gauss
http://localhost:3000/wiki/OperatorsDH#gauss_rnd
http://localhost:3000/wiki/OperatorsDH#generate_barabasi_albert
http://localhost:3000/wiki/OperatorsDH#generate_complete_graph
http://localhost:3000/wiki/OperatorsDH#generate_pedestrian_network
http://localhost:3000/wiki/OperatorsDH#generate_random_graph
http://localhost:3000/wiki/OperatorsDH#generate_terrain
http://localhost:3000/wiki/OperatorsDH#generate_watts_strogatz
http://localhost:3000/wiki/OperatorsDH#geojson_file
http://localhost:3000/wiki/OperatorsDH#geometric_mean
http://localhost:3000/wiki/OperatorsDH#geometry
http://localhost:3000/wiki/OperatorsDH#geometry_collection
http://localhost:3000/wiki/OperatorsDH#get
http://localhost:3000/wiki/OperatorsDH#get_about
http://localhost:3000/wiki/OperatorsDH#get_agent
http://localhost:3000/wiki/OperatorsDH#get_agent_cause
http://localhost:3000/wiki/OperatorsDH#get_belief_op
http://localhost:3000/wiki/OperatorsDH#get_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_op
http://localhost:3000/wiki/OperatorsDH#get_beliefs_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_current_intention_op
http://localhost:3000/wiki/OperatorsDH#get_decay
http://localhost:3000/wiki/OperatorsDH#get_desire_op
http://localhost:3000/wiki/OperatorsDH#get_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_desires_op
http://localhost:3000/wiki/OperatorsDH#get_desires_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_dominance
http://localhost:3000/wiki/OperatorsDH#get_familiarity
http://localhost:3000/wiki/OperatorsDH#get_ideal_op
http://localhost:3000/wiki/OperatorsDH#get_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_op
http://localhost:3000/wiki/OperatorsDH#get_ideals_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intensity
http://localhost:3000/wiki/OperatorsDH#get_intention_op
http://localhost:3000/wiki/OperatorsDH#get_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_op
http://localhost:3000/wiki/OperatorsDH#get_intentions_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_lifetime
http://localhost:3000/wiki/OperatorsDH#get_liking
http://localhost:3000/wiki/OperatorsDH#get_modality
http://localhost:3000/wiki/OperatorsDH#get_obligation_op
http://localhost:3000/wiki/OperatorsDH#get_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_op
http://localhost:3000/wiki/OperatorsDH#get_obligations_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_plan_name
http://localhost:3000/wiki/OperatorsDH#get_predicate
http://localhost:3000/wiki/OperatorsDH#get_solidarity
http://localhost:3000/wiki/OperatorsDH#get_strength
http://localhost:3000/wiki/OperatorsDH#get_super_intention
http://localhost:3000/wiki/OperatorsDH#get_trust
http://localhost:3000/wiki/OperatorsDH#get_truth
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainties_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#get_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsDH#get_values
http://localhost:3000/wiki/OperatorsDH#gif_file
http://localhost:3000/wiki/OperatorsDH#gini
http://localhost:3000/wiki/OperatorsDH#girvan_newman_clustering
http://localhost:3000/wiki/OperatorsDH#gml_file
http://localhost:3000/wiki/OperatorsDH#gradient
http://localhost:3000/wiki/OperatorsDH#graph
http://localhost:3000/wiki/OperatorsDH#graph6_file
http://localhost:3000/wiki/OperatorsDH#graphdimacs_file
http://localhost:3000/wiki/OperatorsDH#graphdot_file
http://localhost:3000/wiki/OperatorsDH#graphgexf_file
http://localhost:3000/wiki/OperatorsDH#graphgml_file
http://localhost:3000/wiki/OperatorsDH#graphml_file
http://localhost:3000/wiki/OperatorsDH#graphtsplib_file
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#grayscale
http://localhost:3000/wiki/OperatorsDH#grid_at
http://localhost:3000/wiki/OperatorsDH#grid_cells_to_graph
http://localhost:3000/wiki/OperatorsDH#grid_file
http://localhost:3000/wiki/OperatorsDH#group_by
http://localhost:3000/wiki/OperatorsDH#harmonic_mean
http://localhost:3000/wiki/OperatorsDH#has_belief_op
http://localhost:3000/wiki/OperatorsDH#has_belief_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_desire_op
http://localhost:3000/wiki/OperatorsDH#has_desire_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_op
http://localhost:3000/wiki/OperatorsDH#has_ideal_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_intention_op
http://localhost:3000/wiki/OperatorsDH#has_intention_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_op
http://localhost:3000/wiki/OperatorsDH#has_obligation_with_name_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_op
http://localhost:3000/wiki/OperatorsDH#has_uncertainty_with_name_op
http://localhost:3000/wiki/OperatorsDH#hexagon
http://localhost:3000/wiki/OperatorsDH#hierarchical_clustering
http://localhost:3000/wiki/OperatorsDH#horizontal
http://localhost:3000/wiki/OperatorsDH#horizontal_flip
http://localhost:3000/wiki/OperatorsDH#hsb
http://localhost:3000/wiki/OperatorsDH#hypot
http://localhost:3000/wiki/OperatorsIM#IDW
http://localhost:3000/wiki/OperatorsIM#image
http://localhost:3000/wiki/OperatorsIM#image_file
http://localhost:3000/wiki/OperatorsIM#in
http://localhost:3000/wiki/OperatorsIM#in_degree_of
http://localhost:3000/wiki/OperatorsIM#in_edges_of
http://localhost:3000/wiki/OperatorsIM#incomplete_beta
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma
http://localhost:3000/wiki/OperatorsIM#incomplete_gamma_complement
http://localhost:3000/wiki/OperatorsIM#indented_by
http://localhost:3000/wiki/OperatorsIM#index_by
http://localhost:3000/wiki/OperatorsIM#index_of
http://localhost:3000/wiki/OperatorsIM#inside
http://localhost:3000/wiki/OperatorsIM#int
http://localhost:3000/wiki/OperatorsIM#inter
http://localhost:3000/wiki/OperatorsIM#interleave
http://localhost:3000/wiki/OperatorsIM#internal_integrated_value
http://localhost:3000/wiki/OperatorsIM#intersecting
http://localhost:3000/wiki/OperatorsIM#intersection
http://localhost:3000/wiki/OperatorsIM#intersects
http://localhost:3000/wiki/OperatorsIM#inverse
http://localhost:3000/wiki/OperatorsIM#inverse_distance_weighting
http://localhost:3000/wiki/OperatorsIM#inverse_rotation
http://localhost:3000/wiki/OperatorsIM#is
http://localhost:3000/wiki/OperatorsIM#is_agent
http://localhost:3000/wiki/OperatorsIM#is_csv
http://localhost:3000/wiki/OperatorsIM#is_dxf
http://localhost:3000/wiki/OperatorsIM#is_error
http://localhost:3000/wiki/OperatorsIM#is_finite
http://localhost:3000/wiki/OperatorsIM#is_gaml
http://localhost:3000/wiki/OperatorsIM#is_geojson
http://localhost:3000/wiki/OperatorsIM#is_gif
http://localhost:3000/wiki/OperatorsIM#is_gml
http://localhost:3000/wiki/OperatorsIM#is_graph6
http://localhost:3000/wiki/OperatorsIM#is_graphdimacs
http://localhost:3000/wiki/OperatorsIM#is_graphdot
http://localhost:3000/wiki/OperatorsIM#is_graphgexf
http://localhost:3000/wiki/OperatorsIM#is_graphgml
http://localhost:3000/wiki/OperatorsIM#is_graphml
http://localhost:3000/wiki/OperatorsIM#is_graphtsplib
http://localhost:3000/wiki/OperatorsIM#is_grid
http://localhost:3000/wiki/OperatorsIM#is_image
http://localhost:3000/wiki/OperatorsIM#is_json
http://localhost:3000/wiki/OperatorsIM#is_number
http://localhost:3000/wiki/OperatorsIM#is_obj
http://localhost:3000/wiki/OperatorsIM#is_osm
http://localhost:3000/wiki/OperatorsIM#is_pgm
http://localhost:3000/wiki/OperatorsIM#is_property
http://localhost:3000/wiki/OperatorsIM#is_reachable
http://localhost:3000/wiki/OperatorsIM#is_shape
http://localhost:3000/wiki/OperatorsIM#is_simulation
http://localhost:3000/wiki/OperatorsIM#is_skill
http://localhost:3000/wiki/OperatorsIM#is_svg
http://localhost:3000/wiki/OperatorsIM#is_text
http://localhost:3000/wiki/OperatorsIM#is_threeds
http://localhost:3000/wiki/OperatorsIM#is_warning
http://localhost:3000/wiki/OperatorsIM#is_xml
http://localhost:3000/wiki/OperatorsIM#json_file
http://localhost:3000/wiki/OperatorsIM#k_nearest_neighbors
http://localhost:3000/wiki/OperatorsIM#k_spanning_tree_clustering
http://localhost:3000/wiki/OperatorsIM#kappa
http://localhost:3000/wiki/OperatorsIM#kappa_sim
http://localhost:3000/wiki/OperatorsIM#kmeans
http://localhost:3000/wiki/OperatorsIM#kml
http://localhost:3000/wiki/OperatorsIM#kurtosis
http://localhost:3000/wiki/OperatorsIM#label_propagation_clustering
http://localhost:3000/wiki/OperatorsIM#last
http://localhost:3000/wiki/OperatorsIM#last_index_of
http://localhost:3000/wiki/OperatorsIM#last_of
http://localhost:3000/wiki/OperatorsIM#last_with
http://localhost:3000/wiki/OperatorsIM#layout_circle
http://localhost:3000/wiki/OperatorsIM#layout_force
http://localhost:3000/wiki/OperatorsIM#layout_force_FR
http://localhost:3000/wiki/OperatorsIM#layout_force_FR_indexed
http://localhost:3000/wiki/OperatorsIM#layout_grid
http://localhost:3000/wiki/OperatorsIM#length
http://localhost:3000/wiki/OperatorsIM#lgamma
http://localhost:3000/wiki/OperatorsIM#line
http://localhost:3000/wiki/OperatorsIM#link
http://localhost:3000/wiki/OperatorsIM#list
http://localhost:3000/wiki/OperatorsIM#list_with
http://localhost:3000/wiki/OperatorsIM#ln
http://localhost:3000/wiki/OperatorsIM#load_shortest_paths
http://localhost:3000/wiki/OperatorsIM#load_sub_model
http://localhost:3000/wiki/OperatorsIM#log
http://localhost:3000/wiki/OperatorsIM#log_gamma
http://localhost:3000/wiki/OperatorsIM#lognormal_density
http://localhost:3000/wiki/OperatorsIM#lognormal_rnd
http://localhost:3000/wiki/OperatorsIM#lognormal_trunc_rnd
http://localhost:3000/wiki/OperatorsIM#lower_case
http://localhost:3000/wiki/OperatorsIM#main_connected_component
http://localhost:3000/wiki/OperatorsIM#map
http://localhost:3000/wiki/OperatorsIM#masked_by
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsIM#matrix
http://localhost:3000/wiki/OperatorsIM#matrix_with
http://localhost:3000/wiki/OperatorsIM#max
http://localhost:3000/wiki/OperatorsIM#max_flow_between
http://localhost:3000/wiki/OperatorsIM#max_of
http://localhost:3000/wiki/OperatorsIM#maximal_cliques_of
http://localhost:3000/wiki/OperatorsIM#mean
http://localhost:3000/wiki/OperatorsIM#mean_deviation
http://localhost:3000/wiki/OperatorsIM#mean_of
http://localhost:3000/wiki/OperatorsIM#median
http://localhost:3000/wiki/OperatorsIM#mental_state
http://localhost:3000/wiki/OperatorsIM#message
http://localhost:3000/wiki/OperatorsIM#milliseconds_between
http://localhost:3000/wiki/OperatorsIM#min
http://localhost:3000/wiki/OperatorsIM#min_of
http://localhost:3000/wiki/OperatorsIM#minus_days
http://localhost:3000/wiki/OperatorsIM#minus_hours
http://localhost:3000/wiki/OperatorsIM#minus_minutes
http://localhost:3000/wiki/OperatorsIM#minus_months
http://localhost:3000/wiki/OperatorsIM#minus_ms
http://localhost:3000/wiki/OperatorsIM#minus_seconds
http://localhost:3000/wiki/OperatorsIM#minus_weeks
http://localhost:3000/wiki/OperatorsIM#minus_years
http://localhost:3000/wiki/OperatorsIM#mod
http://localhost:3000/wiki/OperatorsIM#moment
http://localhost:3000/wiki/OperatorsIM#months_between
http://localhost:3000/wiki/OperatorsIM#moran
http://localhost:3000/wiki/OperatorsIM#morrisAnalysis
http://localhost:3000/wiki/OperatorsIM#mul
http://localhost:3000/wiki/OperatorsNR#nb_cycles
http://localhost:3000/wiki/OperatorsNR#neighbors_at
http://localhost:3000/wiki/OperatorsNR#neighbors_of
http://localhost:3000/wiki/OperatorsNR#new_emotion
http://localhost:3000/wiki/OperatorsNR#new_folder
http://localhost:3000/wiki/OperatorsNR#new_mental_state
http://localhost:3000/wiki/OperatorsNR#new_predicate
http://localhost:3000/wiki/OperatorsNR#new_social_link
http://localhost:3000/wiki/OperatorsNR#node
http://localhost:3000/wiki/OperatorsNR#nodes
http://localhost:3000/wiki/OperatorsNR#none_matches
http://localhost:3000/wiki/OperatorsNR#none_verifies
http://localhost:3000/wiki/OperatorsNR#norm
http://localhost:3000/wiki/OperatorsNR#Norm
http://localhost:3000/wiki/OperatorsNR#normal_area
http://localhost:3000/wiki/OperatorsNR#normal_density
http://localhost:3000/wiki/OperatorsNR#normal_inverse


normalized_rotation, not, not, obj_file, of, of_generic_species, of_species, one_matches, one_of,
one_verifies, or, or, osm_file, out_degree_of, out_edges_of, overlapping, overlaps, pair, pair, palette,
partially_overlapping, partially_overlaps, path, path_between, path_to, paths_between, pbinom, pchisq,
percent_absolute_deviation, percentile, pgamma, pgm_file, plan, play_sound, plus_days, plus_hours,
plus_minutes, plus_months, plus_ms, plus_seconds, plus_weeks, plus_years, pnorm, point, points_along,
points_at, points_in, points_on, poisson, polygon, polyhedron, polyline, polyplan, predecessors_of,
predicate, predict, product, product_of, promethee_DM, property_file, pValue_for_fStat, pValue_for_tStat,
pyramid, quantile, quantile_inverse, range, rank_interpolated, read, rectangle, reduced_by,
regex_matches, regression, remove_duplicates, remove_node_from, rename_file, replace, replace_regex,
residuals, reverse, rewire_n, rgb, rgb, rms, rnd, rnd_choice, rnd_color, rotated_by, rotated_by,
rotation_composition, round, row_at, rows_list, rSquare, sample, Sanction, scale, scaled_by, scaled_to,
select, serialize, set_about, set_agent, set_agent_cause, set_decay, set_dominance, set_familiarity,
set_intensity, set_lifetime, set_liking, set_modality, set_predicate, set_solidarity, set_strength, set_trust,
set_truth, set_z, shape_file, sharpened, shuffle, signum, simple_clustering_by_distance,
simple_clustering_by_envelope_distance, simplification, simulation_file, sin, sin_rad, since, skeletonize,
skew, skew_gauss, skewness, skill, smooth, snapshot, sobolAnalysis, social_link, solid, sort, sort_by,
source_of, spatial_graph, species, species_of, sphere, split, split_at, split_geometry, split_in, split_lines,
split_using, split_with, sqrt, square, squircle, stack, standard_deviation, step_sub_model, strahler, string,
student_area, student_t_inverse, subtract_days, subtract_hours, subtract_minutes, subtract_months,
subtract_ms, subtract_seconds, subtract_weeks, subtract_years, successors_of, sum, sum_of, svg_file,
t_test, tan, tan_rad, tanh, target_of, teapot, text_file, TGauss, threeds_file, tinted_with, to, to_binary,
to_GAMA_CRS, to_gaml, to_geojson, to_hsb, to_json, to_list, to_rectangles, to_segments, to_squares,
to_sub_geometries, to_triangles, tokenize, topology, touches, touching, towards, trace, transformed_by,
translated_by, translated_to, transpose, triangle, triangulate, truncated_gauss, type_of, uncompress,
undirected, union, unknown, until, unzip, upper_case, use_cache, user_confirm, user_input_dialog,
using, values_in, variance, variance_of, vertical, vertical_flip, voronoi, weibull_density, weibull_rnd,
weibull_trunc_rnd, weight_of, weighted_means_DM, where, with_alpha, with_height,
with_k_shortest_path_algorithm, with_max_of, with_min_of, with_precision,
with_shortest_path_algorithm, with_size, with_size, with_style, with_values, with_weights, with_width,
without_holes, wizard, wizard_page, writable, xml_file, xor, years_between, zip,

Statements
=, abort, action, add, agents, annealing, ask, aspect, assert, benchmark, betad, break, browse, camera,
capture, catch, category, chart, conscious_contagion, continue, coping, create, data, datalist, default,
diffuse, diffusion, display, display_grid, do, do_rule, draw, else, emotional_contagion, enforcement,
enter, equation, error, event, exit, experiment, exploration, focus, focus_on, genetic, global, graphics,

http://localhost:3000/wiki/OperatorsNR#normalized_rotation
http://localhost:3000/wiki/OperatorsNR#not
http://localhost:3000/wiki/OperatorsNR#not
http://localhost:3000/wiki/OperatorsNR#obj_file
http://localhost:3000/wiki/OperatorsNR#of
http://localhost:3000/wiki/OperatorsNR#of_generic_species
http://localhost:3000/wiki/OperatorsNR#of_species
http://localhost:3000/wiki/OperatorsNR#one_matches
http://localhost:3000/wiki/OperatorsNR#one_of
http://localhost:3000/wiki/OperatorsNR#one_verifies
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsNR#or
http://localhost:3000/wiki/OperatorsNR#osm_file
http://localhost:3000/wiki/OperatorsNR#out_degree_of
http://localhost:3000/wiki/OperatorsNR#out_edges_of
http://localhost:3000/wiki/OperatorsNR#overlapping
http://localhost:3000/wiki/OperatorsNR#overlaps
http://localhost:3000/wiki/OperatorsNR#pair
http://localhost:3000/wiki/OperatorsNR#pair
http://localhost:3000/wiki/OperatorsNR#palette
http://localhost:3000/wiki/OperatorsNR#partially_overlapping
http://localhost:3000/wiki/OperatorsNR#partially_overlaps
http://localhost:3000/wiki/OperatorsNR#path
http://localhost:3000/wiki/OperatorsNR#path_between
http://localhost:3000/wiki/OperatorsNR#path_to
http://localhost:3000/wiki/OperatorsNR#paths_between
http://localhost:3000/wiki/OperatorsNR#pbinom
http://localhost:3000/wiki/OperatorsNR#pchisq
http://localhost:3000/wiki/OperatorsNR#percent_absolute_deviation
http://localhost:3000/wiki/OperatorsNR#percentile
http://localhost:3000/wiki/OperatorsNR#pgamma
http://localhost:3000/wiki/OperatorsNR#pgm_file
http://localhost:3000/wiki/OperatorsNR#plan
http://localhost:3000/wiki/OperatorsNR#play_sound
http://localhost:3000/wiki/OperatorsNR#plus_days
http://localhost:3000/wiki/OperatorsNR#plus_hours
http://localhost:3000/wiki/OperatorsNR#plus_minutes
http://localhost:3000/wiki/OperatorsNR#plus_months
http://localhost:3000/wiki/OperatorsNR#plus_ms
http://localhost:3000/wiki/OperatorsNR#plus_seconds
http://localhost:3000/wiki/OperatorsNR#plus_weeks
http://localhost:3000/wiki/OperatorsNR#plus_years
http://localhost:3000/wiki/OperatorsNR#pnorm
http://localhost:3000/wiki/OperatorsNR#point
http://localhost:3000/wiki/OperatorsNR#points_along
http://localhost:3000/wiki/OperatorsNR#points_at
http://localhost:3000/wiki/OperatorsNR#points_in
http://localhost:3000/wiki/OperatorsNR#points_on
http://localhost:3000/wiki/OperatorsNR#poisson
http://localhost:3000/wiki/OperatorsNR#polygon
http://localhost:3000/wiki/OperatorsNR#polyhedron
http://localhost:3000/wiki/OperatorsNR#polyline
http://localhost:3000/wiki/OperatorsNR#polyplan
http://localhost:3000/wiki/OperatorsNR#predecessors_of
http://localhost:3000/wiki/OperatorsNR#predicate
http://localhost:3000/wiki/OperatorsNR#predict
http://localhost:3000/wiki/OperatorsNR#product
http://localhost:3000/wiki/OperatorsNR#product_of
http://localhost:3000/wiki/OperatorsNR#promethee_DM
http://localhost:3000/wiki/OperatorsNR#property_file
http://localhost:3000/wiki/OperatorsNR#pValue_for_fStat
http://localhost:3000/wiki/OperatorsNR#pValue_for_tStat
http://localhost:3000/wiki/OperatorsNR#pyramid
http://localhost:3000/wiki/OperatorsNR#quantile
http://localhost:3000/wiki/OperatorsNR#quantile_inverse
http://localhost:3000/wiki/OperatorsNR#range
http://localhost:3000/wiki/OperatorsNR#rank_interpolated
http://localhost:3000/wiki/OperatorsNR#read
http://localhost:3000/wiki/OperatorsNR#rectangle
http://localhost:3000/wiki/OperatorsNR#reduced_by
http://localhost:3000/wiki/OperatorsNR#regex_matches
http://localhost:3000/wiki/OperatorsNR#regression
http://localhost:3000/wiki/OperatorsNR#remove_duplicates
http://localhost:3000/wiki/OperatorsNR#remove_node_from
http://localhost:3000/wiki/OperatorsNR#rename_file
http://localhost:3000/wiki/OperatorsNR#replace
http://localhost:3000/wiki/OperatorsNR#replace_regex
http://localhost:3000/wiki/OperatorsNR#residuals
http://localhost:3000/wiki/OperatorsNR#reverse
http://localhost:3000/wiki/OperatorsNR#rewire_n
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsNR#rgb
http://localhost:3000/wiki/OperatorsNR#rms
http://localhost:3000/wiki/OperatorsNR#rnd
http://localhost:3000/wiki/OperatorsNR#rnd_choice
http://localhost:3000/wiki/OperatorsNR#rnd_color
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotated_by
http://localhost:3000/wiki/OperatorsNR#rotation_composition
http://localhost:3000/wiki/OperatorsNR#round
http://localhost:3000/wiki/OperatorsNR#row_at
http://localhost:3000/wiki/OperatorsNR#rows_list
http://localhost:3000/wiki/OperatorsNR#rSquare
http://localhost:3000/wiki/OperatorsSZ#sample
http://localhost:3000/wiki/OperatorsSZ#Sanction
http://localhost:3000/wiki/OperatorsSZ#scale
http://localhost:3000/wiki/OperatorsSZ#scaled_by
http://localhost:3000/wiki/OperatorsSZ#scaled_to
http://localhost:3000/wiki/OperatorsSZ#select
http://localhost:3000/wiki/OperatorsSZ#serialize
http://localhost:3000/wiki/OperatorsSZ#set_about
http://localhost:3000/wiki/OperatorsSZ#set_agent
http://localhost:3000/wiki/OperatorsSZ#set_agent_cause
http://localhost:3000/wiki/OperatorsSZ#set_decay
http://localhost:3000/wiki/OperatorsSZ#set_dominance
http://localhost:3000/wiki/OperatorsSZ#set_familiarity
http://localhost:3000/wiki/OperatorsSZ#set_intensity
http://localhost:3000/wiki/OperatorsSZ#set_lifetime
http://localhost:3000/wiki/OperatorsSZ#set_liking
http://localhost:3000/wiki/OperatorsSZ#set_modality
http://localhost:3000/wiki/OperatorsSZ#set_predicate
http://localhost:3000/wiki/OperatorsSZ#set_solidarity
http://localhost:3000/wiki/OperatorsSZ#set_strength
http://localhost:3000/wiki/OperatorsSZ#set_trust
http://localhost:3000/wiki/OperatorsSZ#set_truth
http://localhost:3000/wiki/OperatorsSZ#set_z
http://localhost:3000/wiki/OperatorsSZ#shape_file
http://localhost:3000/wiki/OperatorsSZ#sharpened
http://localhost:3000/wiki/OperatorsSZ#shuffle
http://localhost:3000/wiki/OperatorsSZ#signum
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_distance
http://localhost:3000/wiki/OperatorsSZ#simple_clustering_by_envelope_distance
http://localhost:3000/wiki/OperatorsSZ#simplification
http://localhost:3000/wiki/OperatorsSZ#simulation_file
http://localhost:3000/wiki/OperatorsSZ#sin
http://localhost:3000/wiki/OperatorsSZ#sin_rad
http://localhost:3000/wiki/OperatorsSZ#since
http://localhost:3000/wiki/OperatorsSZ#skeletonize
http://localhost:3000/wiki/OperatorsSZ#skew
http://localhost:3000/wiki/OperatorsSZ#skew_gauss
http://localhost:3000/wiki/OperatorsSZ#skewness
http://localhost:3000/wiki/OperatorsSZ#skill
http://localhost:3000/wiki/OperatorsSZ#smooth
http://localhost:3000/wiki/OperatorsSZ#snapshot
http://localhost:3000/wiki/OperatorsSZ#sobolAnalysis
http://localhost:3000/wiki/OperatorsSZ#social_link
http://localhost:3000/wiki/OperatorsSZ#solid
http://localhost:3000/wiki/OperatorsSZ#sort
http://localhost:3000/wiki/OperatorsSZ#sort_by
http://localhost:3000/wiki/OperatorsSZ#source_of
http://localhost:3000/wiki/OperatorsSZ#spatial_graph
http://localhost:3000/wiki/OperatorsSZ#species
http://localhost:3000/wiki/OperatorsSZ#species_of
http://localhost:3000/wiki/OperatorsSZ#sphere
http://localhost:3000/wiki/OperatorsSZ#split
http://localhost:3000/wiki/OperatorsSZ#split_at
http://localhost:3000/wiki/OperatorsSZ#split_geometry
http://localhost:3000/wiki/OperatorsSZ#split_in
http://localhost:3000/wiki/OperatorsSZ#split_lines
http://localhost:3000/wiki/OperatorsSZ#split_using
http://localhost:3000/wiki/OperatorsSZ#split_with
http://localhost:3000/wiki/OperatorsSZ#sqrt
http://localhost:3000/wiki/OperatorsSZ#square
http://localhost:3000/wiki/OperatorsSZ#squircle
http://localhost:3000/wiki/OperatorsSZ#stack
http://localhost:3000/wiki/OperatorsSZ#standard_deviation
http://localhost:3000/wiki/OperatorsSZ#step_sub_model
http://localhost:3000/wiki/OperatorsSZ#strahler
http://localhost:3000/wiki/OperatorsSZ#string
http://localhost:3000/wiki/OperatorsSZ#student_area
http://localhost:3000/wiki/OperatorsSZ#student_t_inverse
http://localhost:3000/wiki/OperatorsSZ#subtract_days
http://localhost:3000/wiki/OperatorsSZ#subtract_hours
http://localhost:3000/wiki/OperatorsSZ#subtract_minutes
http://localhost:3000/wiki/OperatorsSZ#subtract_months
http://localhost:3000/wiki/OperatorsSZ#subtract_ms
http://localhost:3000/wiki/OperatorsSZ#subtract_seconds
http://localhost:3000/wiki/OperatorsSZ#subtract_weeks
http://localhost:3000/wiki/OperatorsSZ#subtract_years
http://localhost:3000/wiki/OperatorsSZ#successors_of
http://localhost:3000/wiki/OperatorsSZ#sum
http://localhost:3000/wiki/OperatorsSZ#sum_of
http://localhost:3000/wiki/OperatorsSZ#svg_file
http://localhost:3000/wiki/OperatorsSZ#t_test
http://localhost:3000/wiki/OperatorsSZ#tan
http://localhost:3000/wiki/OperatorsSZ#tan_rad
http://localhost:3000/wiki/OperatorsSZ#tanh
http://localhost:3000/wiki/OperatorsSZ#target_of
http://localhost:3000/wiki/OperatorsSZ#teapot
http://localhost:3000/wiki/OperatorsSZ#text_file
http://localhost:3000/wiki/OperatorsSZ#TGauss
http://localhost:3000/wiki/OperatorsSZ#threeds_file
http://localhost:3000/wiki/OperatorsSZ#tinted_with
http://localhost:3000/wiki/OperatorsSZ#to
http://localhost:3000/wiki/OperatorsSZ#to_binary
http://localhost:3000/wiki/OperatorsSZ#to_GAMA_CRS
http://localhost:3000/wiki/OperatorsSZ#to_gaml
http://localhost:3000/wiki/OperatorsSZ#to_geojson
http://localhost:3000/wiki/OperatorsSZ#to_hsb
http://localhost:3000/wiki/OperatorsSZ#to_json
http://localhost:3000/wiki/OperatorsSZ#to_list
http://localhost:3000/wiki/OperatorsSZ#to_rectangles
http://localhost:3000/wiki/OperatorsSZ#to_segments
http://localhost:3000/wiki/OperatorsSZ#to_squares
http://localhost:3000/wiki/OperatorsSZ#to_sub_geometries
http://localhost:3000/wiki/OperatorsSZ#to_triangles
http://localhost:3000/wiki/OperatorsSZ#tokenize
http://localhost:3000/wiki/OperatorsSZ#topology
http://localhost:3000/wiki/OperatorsSZ#touches
http://localhost:3000/wiki/OperatorsSZ#touching
http://localhost:3000/wiki/OperatorsSZ#towards
http://localhost:3000/wiki/OperatorsSZ#trace
http://localhost:3000/wiki/OperatorsSZ#transformed_by
http://localhost:3000/wiki/OperatorsSZ#translated_by
http://localhost:3000/wiki/OperatorsSZ#translated_to
http://localhost:3000/wiki/OperatorsSZ#transpose
http://localhost:3000/wiki/OperatorsSZ#triangle
http://localhost:3000/wiki/OperatorsSZ#triangulate
http://localhost:3000/wiki/OperatorsSZ#truncated_gauss
http://localhost:3000/wiki/OperatorsSZ#type_of
http://localhost:3000/wiki/OperatorsSZ#uncompress
http://localhost:3000/wiki/OperatorsSZ#undirected
http://localhost:3000/wiki/OperatorsSZ#union
http://localhost:3000/wiki/OperatorsSZ#unknown
http://localhost:3000/wiki/OperatorsSZ#until
http://localhost:3000/wiki/OperatorsSZ#unzip
http://localhost:3000/wiki/OperatorsSZ#upper_case
http://localhost:3000/wiki/OperatorsSZ#use_cache
http://localhost:3000/wiki/OperatorsSZ#user_confirm
http://localhost:3000/wiki/OperatorsSZ#user_input_dialog
http://localhost:3000/wiki/OperatorsSZ#using
http://localhost:3000/wiki/OperatorsSZ#values_in
http://localhost:3000/wiki/OperatorsSZ#variance
http://localhost:3000/wiki/OperatorsSZ#variance_of
http://localhost:3000/wiki/OperatorsSZ#vertical
http://localhost:3000/wiki/OperatorsSZ#vertical_flip
http://localhost:3000/wiki/OperatorsSZ#voronoi
http://localhost:3000/wiki/OperatorsSZ#weibull_density
http://localhost:3000/wiki/OperatorsSZ#weibull_rnd
http://localhost:3000/wiki/OperatorsSZ#weibull_trunc_rnd
http://localhost:3000/wiki/OperatorsSZ#weight_of
http://localhost:3000/wiki/OperatorsSZ#weighted_means_DM
http://localhost:3000/wiki/OperatorsSZ#where
http://localhost:3000/wiki/OperatorsSZ#with_alpha
http://localhost:3000/wiki/OperatorsSZ#with_height
http://localhost:3000/wiki/OperatorsSZ#with_k_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_max_of
http://localhost:3000/wiki/OperatorsSZ#with_min_of
http://localhost:3000/wiki/OperatorsSZ#with_precision
http://localhost:3000/wiki/OperatorsSZ#with_shortest_path_algorithm
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_size
http://localhost:3000/wiki/OperatorsSZ#with_style
http://localhost:3000/wiki/OperatorsSZ#with_values
http://localhost:3000/wiki/OperatorsSZ#with_weights
http://localhost:3000/wiki/OperatorsSZ#with_width
http://localhost:3000/wiki/OperatorsSZ#without_holes
http://localhost:3000/wiki/OperatorsSZ#wizard
http://localhost:3000/wiki/OperatorsSZ#wizard_page
http://localhost:3000/wiki/OperatorsSZ#writable
http://localhost:3000/wiki/OperatorsSZ#xml_file
http://localhost:3000/wiki/OperatorsSZ#xor
http://localhost:3000/wiki/OperatorsSZ#years_between
http://localhost:3000/wiki/OperatorsSZ#zip
http://localhost:3000/wiki/Statements#=
http://localhost:3000/wiki/Statements#abort
http://localhost:3000/wiki/Statements#action
http://localhost:3000/wiki/Statements#add
http://localhost:3000/wiki/Statements#agents
http://localhost:3000/wiki/Statements#annealing
http://localhost:3000/wiki/Statements#ask
http://localhost:3000/wiki/Statements#aspect
http://localhost:3000/wiki/Statements#assert
http://localhost:3000/wiki/Statements#benchmark
http://localhost:3000/wiki/Statements#betad
http://localhost:3000/wiki/Statements#break
http://localhost:3000/wiki/Statements#browse
http://localhost:3000/wiki/Statements#camera
http://localhost:3000/wiki/Statements#capture
http://localhost:3000/wiki/Statements#catch
http://localhost:3000/wiki/Statements#category
http://localhost:3000/wiki/Statements#chart
http://localhost:3000/wiki/Statements#conscious_contagion
http://localhost:3000/wiki/Statements#continue
http://localhost:3000/wiki/Statements#coping
http://localhost:3000/wiki/Statements#create
http://localhost:3000/wiki/Statements#data
http://localhost:3000/wiki/Statements#datalist
http://localhost:3000/wiki/Statements#default
http://localhost:3000/wiki/Statements#diffuse
http://localhost:3000/wiki/Statements#diffusion
http://localhost:3000/wiki/Statements#display
http://localhost:3000/wiki/Statements#display_grid
http://localhost:3000/wiki/Statements#do
http://localhost:3000/wiki/Statements#do_rule
http://localhost:3000/wiki/Statements#draw
http://localhost:3000/wiki/Statements#else
http://localhost:3000/wiki/Statements#emotional_contagion
http://localhost:3000/wiki/Statements#enforcement
http://localhost:3000/wiki/Statements#enter
http://localhost:3000/wiki/Statements#equation
http://localhost:3000/wiki/Statements#error
http://localhost:3000/wiki/Statements#event
http://localhost:3000/wiki/Statements#exit
http://localhost:3000/wiki/Statements#experiment
http://localhost:3000/wiki/Statements#exploration
http://localhost:3000/wiki/Statements#focus
http://localhost:3000/wiki/Statements#focus_on
http://localhost:3000/wiki/Statements#genetic
http://localhost:3000/wiki/Statements#global
http://localhost:3000/wiki/Statements#graphics


grid, highlight, hill_climbing, if, image_layer, init, inspect, invoke, law, layout, let, light, loop, match,
match_between, match_one, match_regex, mesh, migrate, monitor, morris, norm, output, output_file,
overlay, parameter, perceive, permanent, plan, pso, put, reactive_tabu, reflex, release, remove, restore,
return, rotation, rule, run, sanction, save, set, setup, sobol, socialize, solve, species, species_layer,
start_simulation, state, status, stochanalyse, switch, tabu, task, test, text, trace, transition, try,
unconscious_contagion, user_command, user_init, user_input, user_panel, using, Variable_container,
Variable_number, Variable_regular, warn, write,

Architectures
fsm, parallel_bdi, probabilistic_tasks, reflex, rules, simple_bdi, sorted_tasks, user_first, user_last,
user_only, weighted_tasks,

Constants and colors
#µm (#micrometer,#micrometers), #AdamsBashforth, #AdamsMoulton, #ambient, #AStar,
#BellmannFord, #Bhandari, #BidirectionalDijkstra, #bold, #bottom_center, #bottom_left, #bottom_right,
#camera_location, #camera_orientation, #camera_target, #center, #CHBidirectionalDijkstra, #cl
(#centiliter,#centiliters), #cm (#centimeter,#centimeters), #current_error, #custom, #cycle (#cycles), #day
(#d,#days), #DeltaStepping, #Dijkstra, #direction, #display_height, #display_width, #dl
(#deciliter,#deciliters), #dm (#decimeter,#decimeters), #DormandPrince54, #dp853, #e, #epoch,
#Eppstein, #Euler, #flat, #FloydWarshall, #foot (#feet,#ft), #from_above, #from_front, #from_left,
#from_right, #from_up_front, #from_up_left, #from_up_right, #fullscreen, #Gill, #GraggBulirschStoer,
#gram (#grams), #h (#hour,#hours), #hidpi, #HighamHall54, #hl (#hectoliter,#hectoliters), #horizontal,
#inch (#inches), #infinity, #iso_local, #iso_offset, #iso_zoned, #isometric, #italic, #kg
(#kilo,#kilogram,#kilos), #km (#kilometer,#kilometers), #l (#liter,#liters,#dm3), #left_center, #longton
(#lton), #Luther, #m (#meter,#meters), #m2, #m3, #max_float, #max_int, #Midpoint, #mile (#miles),
#min_float, #min_int, #minute (#minutes,#mn), #mm (#milimeter,#milimeters), #month (#months),
#msec (#millisecond,#milliseconds,#ms), #nan, #NBAStar, #NBAStarApprox, #nm
(#nanometer,#nanometers), #none, #now, #ounce (#oz,#ounces), #pi, #pixels (#px), #plain, #point,
#pound (#lb,#pounds,#lbm), #right_center, #rk4, #round, #sec (#second,#seconds,#s), #shortton
(#ston), #split, #spot, #sqft (#square_foot,#square_feet), #sqin (#square_inch,#square_inches), #sqmi
(#square_mile,#square_miles), #square, #stack, #stone (#st), #Suurballe, #ThreeEighthes, #to_deg,
#to_rad, #ton (#tons), #top_center, #top_left, #top_right, #TransitNodeRouting, #user_location

http://localhost:3000/wiki/Statements#grid
http://localhost:3000/wiki/Statements#highlight
http://localhost:3000/wiki/Statements#hill_climbing
http://localhost:3000/wiki/Statements#if
http://localhost:3000/wiki/Statements#image_layer
http://localhost:3000/wiki/Statements#init
http://localhost:3000/wiki/Statements#inspect
http://localhost:3000/wiki/Statements#invoke
http://localhost:3000/wiki/Statements#law
http://localhost:3000/wiki/Statements#layout
http://localhost:3000/wiki/Statements#let
http://localhost:3000/wiki/Statements#light
http://localhost:3000/wiki/Statements#loop
http://localhost:3000/wiki/Statements#match
http://localhost:3000/wiki/Statements#match_between
http://localhost:3000/wiki/Statements#match_one
http://localhost:3000/wiki/Statements#match_regex
http://localhost:3000/wiki/Statements#mesh
http://localhost:3000/wiki/Statements#migrate
http://localhost:3000/wiki/Statements#monitor
http://localhost:3000/wiki/Statements#morris
http://localhost:3000/wiki/Statements#norm
http://localhost:3000/wiki/Statements#output
http://localhost:3000/wiki/Statements#output_file
http://localhost:3000/wiki/Statements#overlay
http://localhost:3000/wiki/Statements#parameter
http://localhost:3000/wiki/Statements#perceive
http://localhost:3000/wiki/Statements#permanent
http://localhost:3000/wiki/Statements#plan
http://localhost:3000/wiki/Statements#pso
http://localhost:3000/wiki/Statements#put
http://localhost:3000/wiki/Statements#reactive_tabu
http://localhost:3000/wiki/Statements#reflex
http://localhost:3000/wiki/Statements#release
http://localhost:3000/wiki/Statements#remove
http://localhost:3000/wiki/Statements#restore
http://localhost:3000/wiki/Statements#return
http://localhost:3000/wiki/Statements#rotation
http://localhost:3000/wiki/Statements#rule
http://localhost:3000/wiki/Statements#run
http://localhost:3000/wiki/Statements#sanction
http://localhost:3000/wiki/Statements#save
http://localhost:3000/wiki/Statements#set
http://localhost:3000/wiki/Statements#setup
http://localhost:3000/wiki/Statements#sobol
http://localhost:3000/wiki/Statements#socialize
http://localhost:3000/wiki/Statements#solve
http://localhost:3000/wiki/Statements#species
http://localhost:3000/wiki/Statements#species_layer
http://localhost:3000/wiki/Statements#start_simulation
http://localhost:3000/wiki/Statements#state
http://localhost:3000/wiki/Statements#status
http://localhost:3000/wiki/Statements#stochanalyse
http://localhost:3000/wiki/Statements#switch
http://localhost:3000/wiki/Statements#tabu
http://localhost:3000/wiki/Statements#task
http://localhost:3000/wiki/Statements#test
http://localhost:3000/wiki/Statements#text
http://localhost:3000/wiki/Statements#trace
http://localhost:3000/wiki/Statements#transition
http://localhost:3000/wiki/Statements#try
http://localhost:3000/wiki/Statements#unconscious_contagion
http://localhost:3000/wiki/Statements#user_command
http://localhost:3000/wiki/Statements#user_init
http://localhost:3000/wiki/Statements#user_input
http://localhost:3000/wiki/Statements#user_panel
http://localhost:3000/wiki/Statements#using
http://localhost:3000/wiki/Statements#Variable_container
http://localhost:3000/wiki/Statements#Variable_number
http://localhost:3000/wiki/Statements#Variable_regular
http://localhost:3000/wiki/Statements#warn
http://localhost:3000/wiki/Statements#write
http://localhost:3000/wiki/BuiltInControlArchitectures#fsm
http://localhost:3000/wiki/BuiltInControlArchitectures#parallel_bdi
http://localhost:3000/wiki/BuiltInControlArchitectures#probabilistic_tasks
http://localhost:3000/wiki/BuiltInControlArchitectures#reflex
http://localhost:3000/wiki/BuiltInControlArchitectures#rules
http://localhost:3000/wiki/BuiltInControlArchitectures#simple_bdi
http://localhost:3000/wiki/BuiltInControlArchitectures#sorted_tasks
http://localhost:3000/wiki/BuiltInControlArchitectures#user_first
http://localhost:3000/wiki/BuiltInControlArchitectures#user_last
http://localhost:3000/wiki/BuiltInControlArchitectures#user_only
http://localhost:3000/wiki/BuiltInControlArchitectures#weighted_tasks
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants


(#user_location_in_world), #user_location_in_display, #vertical, #week (#weeks), #yard (#yards), #year
(#years,#y), #Yen, #zoom,

Skills
advanced_driving, dynamic_body, fipa, messaging, moving, moving3D, network, pedestrian,
pedestrian_road, skill_road, skill_road_node, SQLSKILL, static_body, thread,

Species
agent, AgentDB, base_edge, experiment, graph_edge, graph_node, physical_world, world

Actions
init, step, isConnected, close, timeStamp, connect, testConnection, select, executeUpdate, getParameter,
setParameter, insert, update_outputs, compact_memory, related_to, register, advanced_follow_driving,
ready_to_cross, test_next_road, compute_path, path_from_nodes, drive_random, drive,
on_entering_new_road, external_factor_impact, unregister, speed_choice, lane_choice, choose_lane,
force_move, goto_drive, apply, start_conversation, send, reply, accept_proposal, agree, cancel, cfp,
end_conversation, failure, inform, propose, query, refuse, reject_proposal, request, subscribe, send,
wander, move, follow, goto, move, execute, connect, fetch_message, has_more_message, join_group,
leave_group, fetch_message_from_network, walk_to, compute_virtual_path, release_path, walk, initialize,
build_intersection_areas, build_exit_hub, register, unregister, testConnection, executeUpdate, insert,
select, list2Matrix, update_body, contact_added_with, contact_removed_with, run_thread, end_thread,
thread_action,

Variables
speed, real_speed, acceleration, current_path, final_target, current_target, current_index, targets,
security_distance_coeff, safety_distance_coeff, min_security_distance, min_safety_distance, current_lane,
lowest_lane, num_lanes_occupied, vehicle_length, speed_coeff, max_speed, time_headway,
max_acceleration, max_deceleration, delta_idm, politeness_factor, max_safe_deceleration,

http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/UnitsAndConstants
http://localhost:3000/wiki/BuiltInSkills#advanced_driving
http://localhost:3000/wiki/BuiltInSkills#dynamic_body
http://localhost:3000/wiki/BuiltInSkills#fipa
http://localhost:3000/wiki/BuiltInSkills#messaging
http://localhost:3000/wiki/BuiltInSkills#moving
http://localhost:3000/wiki/BuiltInSkills#moving3D
http://localhost:3000/wiki/BuiltInSkills#network
http://localhost:3000/wiki/BuiltInSkills#pedestrian
http://localhost:3000/wiki/BuiltInSkills#pedestrian_road
http://localhost:3000/wiki/BuiltInSkills#skill_road
http://localhost:3000/wiki/BuiltInSkills#skill_road_node
http://localhost:3000/wiki/BuiltInSkills#SQLSKILL
http://localhost:3000/wiki/BuiltInSkills#static_body
http://localhost:3000/wiki/BuiltInSkills#thread
http://localhost:3000/wiki/BuiltInSpecies#agent
http://localhost:3000/wiki/BuiltInSpecies#AgentDB
http://localhost:3000/wiki/BuiltInSpecies#base_edge
http://localhost:3000/wiki/BuiltInSpecies#experiment
http://localhost:3000/wiki/BuiltInSpecies#graph_edge
http://localhost:3000/wiki/BuiltInSpecies#graph_node
http://localhost:3000/wiki/BuiltInSpecies#physical_world
http://localhost:3000/wiki/BuiltInSpecies#model
http://localhost:3000/wiki/BuiltInSpecies#_init_
http://localhost:3000/wiki/BuiltInSpecies#_step_
http://localhost:3000/wiki/BuiltInSpecies#isConnected
http://localhost:3000/wiki/BuiltInSpecies#close
http://localhost:3000/wiki/BuiltInSpecies#timeStamp
http://localhost:3000/wiki/BuiltInSpecies#connect
http://localhost:3000/wiki/BuiltInSpecies#testConnection
http://localhost:3000/wiki/BuiltInSpecies#select
http://localhost:3000/wiki/BuiltInSpecies#executeUpdate
http://localhost:3000/wiki/BuiltInSpecies#getParameter
http://localhost:3000/wiki/BuiltInSpecies#setParameter
http://localhost:3000/wiki/BuiltInSpecies#insert
http://localhost:3000/wiki/BuiltInSpecies#update_outputs
http://localhost:3000/wiki/BuiltInSpecies#compact_memory
http://localhost:3000/wiki/BuiltInSpecies#related_to
http://localhost:3000/wiki/BuiltInSpecies#register
http://localhost:3000/wiki/BuiltInSkills#advanced_follow_driving
http://localhost:3000/wiki/BuiltInSkills#ready_to_cross
http://localhost:3000/wiki/BuiltInSkills#test_next_road
http://localhost:3000/wiki/BuiltInSkills#compute_path
http://localhost:3000/wiki/BuiltInSkills#path_from_nodes
http://localhost:3000/wiki/BuiltInSkills#drive_random
http://localhost:3000/wiki/BuiltInSkills#drive
http://localhost:3000/wiki/BuiltInSkills#on_entering_new_road
http://localhost:3000/wiki/BuiltInSkills#external_factor_impact
http://localhost:3000/wiki/BuiltInSkills#unregister
http://localhost:3000/wiki/BuiltInSkills#speed_choice
http://localhost:3000/wiki/BuiltInSkills#lane_choice
http://localhost:3000/wiki/BuiltInSkills#choose_lane
http://localhost:3000/wiki/BuiltInSkills#force_move
http://localhost:3000/wiki/BuiltInSkills#goto_drive
http://localhost:3000/wiki/BuiltInSkills#apply
http://localhost:3000/wiki/BuiltInSkills#start_conversation
http://localhost:3000/wiki/BuiltInSkills#send
http://localhost:3000/wiki/BuiltInSkills#reply
http://localhost:3000/wiki/BuiltInSkills#accept_proposal
http://localhost:3000/wiki/BuiltInSkills#agree
http://localhost:3000/wiki/BuiltInSkills#cancel
http://localhost:3000/wiki/BuiltInSkills#cfp
http://localhost:3000/wiki/BuiltInSkills#end_conversation
http://localhost:3000/wiki/BuiltInSkills#failure
http://localhost:3000/wiki/BuiltInSkills#inform
http://localhost:3000/wiki/BuiltInSkills#propose
http://localhost:3000/wiki/BuiltInSkills#query
http://localhost:3000/wiki/BuiltInSkills#refuse
http://localhost:3000/wiki/BuiltInSkills#reject_proposal
http://localhost:3000/wiki/BuiltInSkills#request
http://localhost:3000/wiki/BuiltInSkills#subscribe
http://localhost:3000/wiki/BuiltInSkills#send
http://localhost:3000/wiki/BuiltInSkills#wander
http://localhost:3000/wiki/BuiltInSkills#move
http://localhost:3000/wiki/BuiltInSkills#follow
http://localhost:3000/wiki/BuiltInSkills#goto
http://localhost:3000/wiki/BuiltInSkills#move
http://localhost:3000/wiki/BuiltInSkills#execute
http://localhost:3000/wiki/BuiltInSkills#connect
http://localhost:3000/wiki/BuiltInSkills#fetch_message
http://localhost:3000/wiki/BuiltInSkills#has_more_message
http://localhost:3000/wiki/BuiltInSkills#join_group
http://localhost:3000/wiki/BuiltInSkills#leave_group
http://localhost:3000/wiki/BuiltInSkills#fetch_message_from_network
http://localhost:3000/wiki/BuiltInSkills#walk_to
http://localhost:3000/wiki/BuiltInSkills#compute_virtual_path
http://localhost:3000/wiki/BuiltInSkills#release_path
http://localhost:3000/wiki/BuiltInSkills#walk
http://localhost:3000/wiki/BuiltInSkills#initialize
http://localhost:3000/wiki/BuiltInSkills#build_intersection_areas
http://localhost:3000/wiki/BuiltInSkills#build_exit_hub
http://localhost:3000/wiki/BuiltInSkills#register
http://localhost:3000/wiki/BuiltInSkills#unregister
http://localhost:3000/wiki/BuiltInSkills#testConnection
http://localhost:3000/wiki/BuiltInSkills#executeUpdate
http://localhost:3000/wiki/BuiltInSkills#insert
http://localhost:3000/wiki/BuiltInSkills#select
http://localhost:3000/wiki/BuiltInSkills#list2Matrix
http://localhost:3000/wiki/BuiltInSkills#update_body
http://localhost:3000/wiki/BuiltInSkills#contact_added_with
http://localhost:3000/wiki/BuiltInSkills#contact_removed_with
http://localhost:3000/wiki/BuiltInSkills#run_thread
http://localhost:3000/wiki/BuiltInSkills#end_thread
http://localhost:3000/wiki/BuiltInSkills#thread_action
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills


acc_gain_threshold, acc_bias, lane_change_cooldown, time_since_lane_change, ignore_oneway,
violating_oneway, current_road, next_road, on_linked_road, using_linked_road, allowed_lanes,
linked_lane_limit, lane_change_limit, proba_lane_change_up, proba_lane_change_down,
proba_use_linked_road, proba_respect_priorities, proba_respect_stops, proba_block_node,
right_side_driving, distance_to_goal, distance_to_current_target, segment_index_on_road,
leading_vehicle, leading_distance, leading_speed, follower, damping, angular_damping,
contact_damping, angular_velocity, velocity, conversations, accept_proposals, agrees, cancels, cfps,
failures, informs, proposes, queries, refuses, reject_proposals, requests, requestWhens, subscribes,
mailbox, location, speed, heading, current_path, current_edge, real_speed, destination, speed, heading,
pitch, roll, destination, network_name, network_groups, network_server, shoulder_length,
minimal_distance, pedestrian_consideration_distance, obstacle_consideration_distance, avoid_other,
obstacle_species, pedestrian_species, proba_detour, A_pedestrians_SFM, A_obstacles_SFM,
B_pedestrians_SFM, B_obstacles_SFM, k_SFM, kappa_SFM, relaxion_SFM, gama_SFM, lambda_SFM,
n_SFM, n_prime_SFM, pedestrian_model, velocity, forces, final_waypoint, current_waypoint,
current_index, waypoints, roads_waypoints, use_geometry_waypoint, tolerance_waypoint, agents_on,
free_space, road_status, intersection_areas, linked_pedestrian_roads, exit_nodes, agents_on, all_agents,
source_node, target_node, num_lanes, num_segments, linked_road, maxspeed, segment_lengths,
vehicle_ordering, roads_in, priority_roads, roads_out, stop, block, mass, rotation, friction, restitution,
aabb,

Pseudo-Variables
self, myself, each

Types
action, agent, BDIPlan, bool, container, conversation, date, directory, emotion, field, file, float, font,
gaml_type, geometry, graph, image, int, kml, list, map, matrix, mental_state, message, Norm, pair, path,
point, predicate, regression, rgb, Sanction, skill, social_link, species, string, topology, unknown,

the world

http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/BuiltInSkills
http://localhost:3000/wiki/PseudoVariables#self
http://localhost:3000/wiki/PseudoVariables#myself
http://localhost:3000/wiki/PseudoVariables#each
http://localhost:3000/wiki/DataTypes#action
http://localhost:3000/wiki/DataTypes#agent
http://localhost:3000/wiki/DataTypes#BDIPlan
http://localhost:3000/wiki/DataTypes#bool
http://localhost:3000/wiki/DataTypes#container
http://localhost:3000/wiki/DataTypes#conversation
http://localhost:3000/wiki/DataTypes#date
http://localhost:3000/wiki/DataTypes#directory
http://localhost:3000/wiki/DataTypes#emotion
http://localhost:3000/wiki/DataTypes#field
http://localhost:3000/wiki/DataTypes#file
http://localhost:3000/wiki/DataTypes#float
http://localhost:3000/wiki/DataTypes#font
http://localhost:3000/wiki/DataTypes#gaml_type
http://localhost:3000/wiki/DataTypes#geometry
http://localhost:3000/wiki/DataTypes#graph
http://localhost:3000/wiki/DataTypes#image
http://localhost:3000/wiki/DataTypes#int
http://localhost:3000/wiki/DataTypes#kml
http://localhost:3000/wiki/DataTypes#list
http://localhost:3000/wiki/DataTypes#map
http://localhost:3000/wiki/DataTypes#matrix
http://localhost:3000/wiki/DataTypes#mental_state
http://localhost:3000/wiki/DataTypes#message
http://localhost:3000/wiki/DataTypes#Norm
http://localhost:3000/wiki/DataTypes#pair
http://localhost:3000/wiki/DataTypes#path
http://localhost:3000/wiki/DataTypes#point
http://localhost:3000/wiki/DataTypes#predicate
http://localhost:3000/wiki/DataTypes#regression
http://localhost:3000/wiki/DataTypes#rgb
http://localhost:3000/wiki/DataTypes#Sanction
http://localhost:3000/wiki/DataTypes#skill
http://localhost:3000/wiki/DataTypes#social_link
http://localhost:3000/wiki/DataTypes#species
http://localhost:3000/wiki/DataTypes#string
http://localhost:3000/wiki/DataTypes#topology
http://localhost:3000/wiki/DataTypes#unknown
http://localhost:3000/wiki/GlobalSpecies


torus, Environment Size, world, time cycle, step, time, duration, total_duration average_duration,
machine_time, agents, stop, halt, pause, scheduling

Grid
grid_x, grid_y, agents, color, grid_value

Other concepts
scheduling, step, Key concepts, Object-oriented paradigm to GAML, Correspondence GAML and Netlogo

http://localhost:3000/wiki/GlobalSpecies
http://localhost:3000/wiki/GlobalSpecies#Environment_Size
http://localhost:3000/wiki/GlobalSpecies#world
http://localhost:3000/wiki/GlobalSpecies#time
http://localhost:3000/wiki/GlobalSpecies#cycle
http://localhost:3000/wiki/GlobalSpecies#step
http://localhost:3000/wiki/GlobalSpecies#time
http://localhost:3000/wiki/GlobalSpecies#duration
http://localhost:3000/wiki/GlobalSpecies#total_duration
http://localhost:3000/wiki/GlobalSpecies#average_duration
http://localhost:3000/wiki/GlobalSpecies#machine_time
http://localhost:3000/wiki/GlobalSpecies#agents
http://localhost:3000/wiki/GlobalSpecies#halt
http://localhost:3000/wiki/GlobalSpecies#halt
http://localhost:3000/wiki/GlobalSpecies#pause
http://localhost:3000/wiki/GlobalSpecies#scheduling
http://localhost:3000/wiki/GridSpecies#grid_x
http://localhost:3000/wiki/GridSpecies#grid_y
http://localhost:3000/wiki/GridSpecies#agents
http://localhost:3000/wiki/GridSpecies#color
http://localhost:3000/wiki/GridSpecies#grid_value
http://localhost:3000/wiki/RuntimeConcepts#Scheduling_of_Agents
http://localhost:3000/wiki/RuntimeConcepts#agents-step
http://localhost:3000/wiki/BasicProgrammingConceptsInGAML
http://localhost:3000/wiki/Introduction#vocabulary-correspondence-with-the-object-oriented-paradigm-as-in-java
http://localhost:3000/Introduction#vocabulary-correspondence-with-the-agent-based-paradigm-as-in-netlogo


Version: 1.9.3

Get into the GAMA Java API
GAMA is written in Java and made of tens of Eclipse plugins and projects, thousand of classes, methods
and annotations. This section of the wiki should help you have a general idea on how to manipulate
GAMA Java API and where to find the proper classes and methods. A general introduction to the GAMA
architecture gives a general overview of the organization of Java packages and Eclipse plugins, and
should be read first. In the following sub-sections we give a more practical introduction.

1. Introduction to GAMA Java API
i. Installing the GIT version

ii. Architecture of GAMA

iii. IScope

2. Developing Extensions
i. Developing Plugins

ii. Developing Skills

iii. Developing Statements

iv. Developing Operators

v. Developing Types

vi. Developing Species

vii. Developing Control Architectures

viii. Index of annotations

3. Create a release of Gama

4. Generation of the documentation

http://localhost:3000/wiki/GamaArchitecture
http://localhost:3000/wiki/GamaArchitecture
http://localhost:3000/wiki/Introduction-To-Gama-Java-API
http://localhost:3000/wiki/InstallingGitVersion
http://localhost:3000/wiki/GamaArchitecture
http://localhost:3000/wiki/DevelopingIScope
http://localhost:3000/wiki/DevelopingExtensions
http://localhost:3000/wiki/DevelopingPlugins
http://localhost:3000/wiki/DevelopingSkills
http://localhost:3000/wiki/DevelopingStatements
http://localhost:3000/wiki/DevelopingOperators
http://localhost:3000/wiki/DevelopingTypes
http://localhost:3000/wiki/DevelopingSpecies
http://localhost:3000/wiki/DevelopingControlArchitectures
http://localhost:3000/wiki/DevelopingIndexAnnotations
http://localhost:3000/wiki/CreatingAReleaseOfGama
http://localhost:3000/wiki/Documentation


Version: 1.9.3

Installing the GIT version
Important note: the current Git version contains 1 main branch:

GAMA_1.9.3 : that contains the code of the GAMA alpha(GAMA 1.9.3) (it works with JDK 17 LTS and
Eclipse 2023-09).

Changes made to other branches won't be added to the next gama release

The following tutorial describes the installation for this version.

Install Eclipse 2023-09
Download the "Installer of 2023-09" and choose to install the Eclipse IDE for Java and DSL Developers
version. This is the latest version under which GAMA is certified to work.

Note: Regarding Java, Eclipse embeds the Adoptium (ex Adopt-OpenJDK) 17 LTS (HotSpot), which is the
recommanded version for GAMA, you may be able to use another one, but we won't fix any related
issue.

Install GAMA source code
The source is to be downloaded from GitHub in two steps: by creating a local clone of the GitHub
repository and then importing the different projects that constitute GAMA into the Eclipse workspace.

1. Open the Git perspective:

Windows > Perspective > Open Perspective > Other...

https://www.eclipse.org/downloads/packages/release/2023-09/r/eclipse-ide-java-and-dsl-developers
https://adoptium.net/releases.html?variant=openjdk17&jvmVariant=hotspot
https://adoptium.net/releases.html?variant=openjdk17&jvmVariant=hotspot
https://adoptium.net/releases.html?variant=openjdk17&jvmVariant=hotspot


Choose Git  

2. Click on "Clone a Git repository"

In Source Git repository window:
Fill in the URI label with: https://github.com/gama-platform/gama.git



Other fields will be automatically filled in.

In Branch Selection windows,
check the GAMA_1.9.3  branch

Next



In Local Destination windows,
Choose a Directory (where the source files will be downloaded).

Everything else should be unchecked

Finish



This can take a while...

Import projects into workspace

You have now to import projects into the workspace (notice that the folders downloaded during the
clone will neither be copied nor moved).

Note: contrarily to previous Eclipse versions, import project from the Git perspective does not work properly
for GAMA.

1. In the Java perspective, choose:

File  / Import... ,



In the install window, select Git  / Projects from Git ,

Click on Next,

In the Project from Git  window, select Existing local repository. ,



Click on Next,

In the new window, select your Git repository,

Click on Next,

In the Select a wizard to used to import projects, check that
Import existing Eclipse projects is selected

Working Tree is selected



Click on Next,

In the Import project window,

Uncheck Search for nested projects



Select all the projects

Finish

3. Clean project (Project menu > Clean ...)

If you have errors...

If errors continue to show on in the different projects, be sure to correctly set the JDK used in the Eclipse
preferences. GAMA (version 1.9.2) is targeting JDK 17, and Eclipse could produce errors if it did not find
in your environment. So, either you set the compatibility to 17 by default (in Preferences > Java >
Compiler > Compiler Compliance Level) or you change the error produced by Eclipse to a warning only
(in Preferences > Java > Compiler > Building > "No strictly compatible JRE for execution environment
available).

On Windows : if the project still don't compile, try to add the vm argument in eclipse.ini files (inside the
directory where your eclipse is installed) before the -startup line Example :

-vm

C:\Program Files\Java\JDK17\bin



Run GAMA

0. Be sure to be in the Java Perspective (top right button)

1. In the ummisco.gama.product  plugin, open the gama.product  file ( gama.headless.product  is used
to produce the headless).

2. Go to "Overview" tab and click on Synchronize

3. Click on "Launch an Eclipse Application"

GIT Tutorials

For those who want to learn more about Git and Egit, please consult the following tutorials/papers

1. EGIT/User Guide http://wiki.eclipse.org/EGit/User_Guide

2. Git version control with Eclipse (EGIT) - Tutorial
http://www.vogella.com/tutorials/EclipseGit/article.html

3. 10 things I hate about Git http://stevebennett.me/2012/02/24/10-things-i-hate-about-git/

4. Learn Git and GitHub Tutorial https://www.youtube.com/playlist?list=PL1F56EA413018EEE1

-startup 

.....

http://wiki.eclipse.org/EGit/User_Guide
http://www.vogella.com/tutorials/EclipseGit/article.html
http://stevebennett.me/2012/02/24/10-things-i-hate-about-git/
https://www.youtube.com/playlist?list=PL1F56EA413018EEE1


Version: 1.9.3

Developing Extensions
GAMA accepts extensions to the GAML language, defined by external programmers and dynamically
loaded by the platform each time it is run. Extensions can represent new built-in species, types, file-
types, skills, operators, statements, new control architectures or even types of displays. Other internal
structures of GAML will be progressively "opened" to this mechanism in the future: display layers
(hardwired for the moment), new types of outputs (hardwired for the moment), scheduling policies
(hardwired for the moment), random number generators (hardwired for the moment). The extension
mechanism relies on two complementary techniques:

the first one consists in defining the GAML extensions in a plug-in (in the OSGI sense, see here) that
will be loaded by GAMA at runtime and must "declare" that it is contributing to the platform.

the second one is to indicate to GAMA where to look for extensions, using Java annotations that are
gathered at compile time (some being also used at runtime) and directly compiled into GAML
structures.

The following sections describe this extension process.

i. Developing Plugins

ii. Developing Skills

iii. Developing Statements

iv. Developing Operators

v. Developing Types

vi. Developing Species

vii. Developing Control Architectures

viii. IScope

ix. Index of annotations

http://localhost:3000/wiki/DevelopingPlugins
http://www.eclipse.org/equinox/
http://localhost:3000/wiki/DevelopingPlugins
http://localhost:3000/wiki/DevelopingSkills
http://localhost:3000/wiki/DevelopingStatements
http://localhost:3000/wiki/DevelopingOperators
http://localhost:3000/wiki/DevelopingTypes
http://localhost:3000/wiki/DevelopingSpecies
http://localhost:3000/wiki/DevelopingControlArchitectures
http://localhost:3000/wiki/DevelopingIScope
http://localhost:3000/wiki/DevelopingIndexAnnotations


Version: 1.9.3

Developing Plugins
This page details how to create a new plug-in in order to extend the GAML language with new skills,
species, displays or operators. It also details how to create a plug-in that can be uploaded on an update
site and can be installed into the GAMA release. We consider here that the developer version of GAMA
has been installed (as detailled in this page).

I. Creation of a plug-in
Here are detailed steps to create and configure a new GAMA plug-in.

http://localhost:3000/wiki/InstallingGitVersion


1. From the Eclipse main menu tab, click on File, then New, then Project, then finally select plug-in

project. 

2. In the "New plug-in Project" / "Plug-in project" window:

i. Choose as name « name_of_the_plugin » (or anything else)*

ii. Check "Use defaut location"

iii. Check "Create a Java Project"

iv. The project should be targeted to run with Eclipse

v. working set is unchecked

vi. Click on "Next"



3. In the "New plug-in Project" / "Content" window:

i. Id : could contain the name of your institution and/or your project, e.g. «
irit.maelia.gaml.additions »

ii. version 1.0.0.qualifier (this latter mention is important if you plan on distributing the plugin on
GAMA update site)



iii. Name «This is my First Plugin.»

iv. Uncheck "Generate an activator, a Java class that controls the plug-in's life cycle" ,

v. Uncheck "This plug-in will make contributions to the UI"

vi. Check "No" when it asks "Would you like to create a rich client application ?"

vii. Click on "Next"

4. In the "New plug-in Project" / "Templates" window:

i. Uncheck "Create a plug-in using one of the templates"



ii. Click on "Finish"

iii. Your plug-in has been created.

5. Edit the file "Manifest.MF":

i. From the Project Explorer pane, expand your plugin folder.

ii. Click on the META-INF folder.

iii. Click on the MANIFEST.MF file.



iv. Click on the Overview tab to open the Overview pane:

v. On the Overview pane, check as shown « This plug-in is a singleton »

vi. Dependencies pane:

a. Click on the Dependencies tab to open the Dependencies Pane.



b. add (at least minimum) the two plug-ins "msi.gama.core" and "msi.gama.ext" in the
"Required Plug-ins". When you click on "Add", a new window will appear without any plug-
in. Just write the beginning of the plug-in name in the text field under "Select a plug-in"

vii. Click on the Runtime tab to open the Runtime pane:



a. In exported Packages: nothing (but when you will have implemented new packages in the
plug-in you should add them there)

b. Add in the classpath all the additional libraries (.jar files) used in the project.

viii. Click on the Extension tab to open the Extensions pane:

Click the Add button and add "gaml.extension"

6. On the main menu, click on File, then select, Save, to save the file. This should create a "plugin.xml"
file.



7. In the Project Explorer pane, Select the plugin, right_click, and in the dropdown menu select
Properties:



i. The Properties for myFIrstPlugin dialog opens as shown.



ii. In the Properties dialog .. Go to Java Compiler, then Annotation Processing: check "Enable
project specific settings", then in "Generated Source Directory", change ".apt_generated" to
"gaml",

iii. Go again to Java Compiler, then Annotation Processing, then Factory path: check "Enable project
specific settings", then "Add Jars" and choose



"msi.gama.processor/processor/plugins/msi.gama.processor.1.4.0.jar"

iv. Close the menu. Click on Yes in the succeeding dialogs (Annotation settings changed ..). After,
this should compile the project and create the gaml  directory.

8. Return to the Properties dialog of your plugin by clicking from the main menu bar, Project, then click
on Properties. Go to Java Build Path, click on the Source Tab, and check that the gaml directory has
been added. 

9. If the gaml folder is not present, click on Add Folder and select the gaml directory. Right click on the
project, then refresh it (F5 or from the File menu -> Refresh)

10. Now, there should be a gaml directory. This gaml directory will later contain the package containing
GamlAdditions.java, and other related files created after creating classes. If there is no package in
the folder, try creating a class, then try to refresh or close the project and reopen it, or clean the
projects by going into Project tabs, and clicking on clean.

The plug-in is ready to accept any addition to the GAML language, e.g. skills, actions, operators. To
proceed to creating a skill click on this link.

https://github.com/gama-platform/gama/wiki/DevelopingSkills


Do not forget to export the created packages that could be used by "clients", especially the packages
containing the code of the additions (in the plugin.xml of the new project, tab "Runtime").

To test the plug-in and use it into GAMA, developers have to define a new feature project containing
your plugin and its dependencies, and adds this feature to the existing product (or a new .product file of
your own).

The use of feature is also mandatory to define a plug-in that can be uploaded on the update site and can
be installed in the release of GAMA.

Creation of a feature
A feature is an Eclipse project dedicated to gather one or several plug-ins to integrate them into a
product or to deploy them on the update site and install them from the GAMA release (a feature is
mandatory in this case).

Here are detailled steps to create and configure a new feature.

File > New > Feature project (or File > New > Project... then Plug-in Development > Feature Project)

In Feature properties
Choose a project name (e.g. "institution.gama.feature.pluginsName")

Click on "Next"

In Referenced Plug-ins and fragments
Check "Initialize from the plug-ins list:"

Choose the plug-ins that have to be gathered in the feature

Click on "Finish"

A new project has been created. The "feature.xml" file will configure the feature.
In "Information pane":

You can add description of the various plug-ins of the feature, define the copyright notice
and the licence.

In "Plug-ins and Fragments"
In the Plug-ins and Fragments, additional plug-ins can be added.

Addition of a feature to the product
To load the plugin into GAMA, go into the project ummisco.gama.product and open gama.product and
go into the overview tab, under the section Testing, click Synchronize, go into the contents tab, click on



Add, and add the features related to your plugin. Click the Run tab in the main menu bar, click on Run
Configuration, then you should have the gama runtime product window open, click on the plugins tab,
and check your plugin in the list. Click on Apply. Now your plugin is accessible in GAMA, now we can run
the application. Click on Run.

Remark: To check whether the new plug-in has been taken into account by GAMA, after GAMA launch, it
should appear in the Eclipse console in a line beginning by ">> GAMA bundle loaded in ".

If you plan to deploy your plugin to be used by other users from the GAMA community, proceed with the
succeeding steps. If not, we can proceed with the creation of skills and types.

In the product, e.g. gama.product  in the ummisco.gama.product  project:

Contents pane
Click on Add button

In the window select the feature

Click on OK.

Create examples model
In order to make your plugin usable by everyone, it is very important to bring potential users model
examples to introduce new gaml primitives, statements and operators. This way, modelers can easily
get into the plugin you developed in a practical way.

The process is twofold:

Mount your plugin into your GAMA (see below or use the Git version)

Create a new project in the user model folder. Put your GAMA model examples there.

Move your project into a folder called "models" at the root of the plugin

Hence this is done, you can update your Plugin models library folder and have access to the plugin
models

How to make a plug-in available at GAMA update
site for the GAMA release
Considering a working GAMA plugin named institution.gama.pluginsName



Configure plugin to be available for Maven

a/ Add pom.xml  for plugin institution.gama.pluginsName :

Right click -> Configure -> Convert to maven project to add pom.xml:

Set:
Group id: institution.gama.pluginsName

Artifact id: institution.gama.pluginsName

Version: 1.0.0-SNAPSHOT // must have -SNAPSHOT if the plugin version is x.x.x.qualifier

Packaging: eclipse-plugin // this element is not in the list (jar/pom/war) because of the
incompatible of tycho, maven and eclipse, so just type it in although it will be a warning

Finish

b/ Configure pom.xml to recognize the parent pom.xml for Maven builds

Open pom.xml in institution.gama.pluginsName

Tab overview, Parent section, type in:
Group id: msi.gama

Artifact id: msi.gama.experimental.parent

Version: 1.7.0-SNAPSHOT

Relative path: ../msi.gama.experimental.parent

Save

c/ Update maven cache in eclipse (optional) It will fix this compilation error "Project configuration is not
up-to-date with pom.xml. Select: Maven->Update Project... from the project context menu or use Quick
Fix."

Right click -> Maven -> Update project

Create a feature for the plugin

a/ Create new feature

New -> Project -> type in : feature -> Select "Feature Project"

Set:
Project name: institution.gama.feature.pluginsName

Uncheck use default location, type in: {current git repository}\aaa.bbb.feature.ccc

Feature Version: 1.0.0.qualifier



Update Site URL: http://updates.gama-platform.org/experimental

Update Site Name: GAMA 1.7.x Experimental Plugins Update Site

Click Next
Initialize from the plugin list -> check all plugins needed: institution.gama.pluginsName
(1.0.0.qualifier)

Finish

b/ Add pom.xml  for feature institution.gama.feature.pluginsName :

Right click -> Configure -> Convert to maven project (to add pom.xml)

Set:
Group id: institution.gama.feature.pluginsName

Artifact id: institution.gama.feature.pluginsName

Version: 1.0.0-SNAPSHOT

Packaging: eclipse-feature

Finish

c/ Configure pom.xml  to recognize the parent pom.xml  for Maven builds

Open pom.xml in institution.gama.pluginsName

Tab overview, Parent section, type in:
Group id: msi.gama

Artifact id: msi.gama.experimental.parent

Version: 1.7.0-SNAPSHOT

Relative path: ../msi.gama.experimental.parent

Save

d/ Update maven cache in eclipse (optional) It will fix this compilation error "Project configuration is not
up-to-date with pom.xml. Select: Maven->Update Project... from the project context menu or use Quick
Fix."

Right click -> Maven -> Update project

Update p2updatesite category.xml (this step will be done
automatically by travis, soon)

Open msi.gama.experimental.p2updatesite

http://updates.gama-platform.org/experimental


Tab Managing the Categories -> Add feature -> institution.gama.feature.pluginsName

How to make a plug-in available as an extension
for the GAMA release (obsolete)
Once the plug-in has been tested in the GAMA SVN version, it can be made available for GAMA release
users.

First, the update_site  should be checked out from the SVN repository:

File > New > Other... > SVN > Project from SVN

In Checkout Project from SVN repository
Use existing repository location (it is the same location as for the GAMA code)

Next

In Select resource:
Browse

choose svn > update_site

Finish

Finish

Now the update_site project is available in the project list (in Package Explorer). The sequel describes
how to add a new feature to the update site.

Open the site.xml  file

In update site Map:
Click on Extensions

click on the Add Feature... button
Choose the feature to be added

It should appear in Extensions

Select the added feature and click on the Synchronize... button
Check Synchronize selected features only

Finish

Select the added feature and click on the Build button

All the files and folder of the update_site project have been modified.

Commit all the modifications on the SVN repository
Richt-click on the project, Team > Update



Richt-click on the project, Team > Commit...

The plug-in is now available as an extension from the GAMA release. More details about the update of
the GAMA release are available on the dedicated page.

http://localhost:3000/wiki/Updating


Version: 1.9.3

Developing Skills
Defining the class as a skill
In this section we will be creating a class "FirstClass", that is included in a package named "skill".

1. Create Package

i. From the Project Explorer pane, go to your plugin's folder, and then go to the src folder.



ii. Right click on the src folder. Click on New > Package.

iii. In the New Java Package dialog, set the Name to "skills".



iv. Click on Finish. This will create the package "skills".

2. Create class in the Package

i. In the Project Explorer, go to the folder of the Plugin. We create the Java class in this package. To
do this, right click on the package, then click on New, select Class.



ii. On the New Java class dialog, set the Name to 'FirstSkill'. Click on Finish.

iii. Now we have an empty Java class named FirstSkill. Note as well that the GamlAdditions.java file
was also automatically added into the gaml/gaml.additions.myFirstPlugin folder.



Using Annotations to define class as a skill
Annotations are used to link Java methods and classes to GAML language. Note that GAMA annotations
are classes defined into the msi.gama.precompiler.GamlAnnotations  class.

We need to tell GAMA that our class "FirstSkill" will be used as skill. To do that we will use Annotation in
writing the code of the class. The annotations for skill is described as follows:

@skill

This annotations Allows to define a new skill (class grouping variables and actions that can be used by
agents).

This annotation contains:

name (String): a String representing the skill name in GAML (must be unique throughout GAML).

attach_to (set of strings): an array of species names to which the skill will be automatically added
(complements the "skills" parameter of species).

internal (boolean, false by default): return whether this skill is for internal use only.

doc (set of @doc, empty by default): the documentation associated to the skill.



i. Just before the class declaration, add this line to indicate that this class is a skill named
"FirstSkill"

@skill(name = "FirstSkill")

In line 3, a red broken line under the skill word can be seen. This is an error since at this point in the
code. Hover your mouse over the error, and the message box would indicate that the skill cannot be
resolved to a type.



To correct this error, we take the suggestion of importing 'skill'
(msi.gama.precompiler.GamaAnnotations). Click on this option.



It is a good practice to define all the names of plugins/actions/variables in the IKeyword class, which is
located in the plugin msi.gama.common.interfaces.IKeyword.java.

In this class you can define a string variable which contain the name of your plugin.

String FIRST_SKILL = "FirstSkill";

Now that we have defined a global string containing the name of the plugin, we can use it in the
annotation and in the code of the class.

@skill(name = IKeyword.FIRST_SKILL)

We have now defined that our current class is a skill that can be used in GAMA.

To use our plugin in gaml model, we have to create a species using the skill:

Defining new attributes for the skill
Now we have a skill that is empty. So we need to add some variable for the plugin to have a purpose.

To add new attributes to the species that declares this skill, we have to define them before the class
using annotation like we did before.

@variable

This annotations is used to describe a single variable or field.

This annotation contains:

name (String): the name of the variable as it can be used in GAML.

type (int): The textual representation of the type of the variable (see IType).

of (int, 0 by default): The textual representation of the content type of the variable (see
IType#defaultContentType()).

index (int, 0 by default): The textual representation of the index type of the variable (see
IType#defaultKeyType()).

species tutorialSpecies skills:[FirstSkill]
{
}



constant (int, false by default): returns whether or not this variable should be considered as non
modifiable.

init (String, "" by default): the initial value of this variable as a String that will be interpreted by GAML.

depend_on (set of Strings, empty by default): an array of String representing the names of the
variables on which this variable depends (so that they are computed before).

internal (boolean, false by default): return whether this var is for internal use only.

doc (set of @doc, empty by default): the documentation associated to the variable.

The @vars  annotation contains a set of @variable  elements.

Just like we did before with the declaration of the name of our skill, we can declare globally the name of
our incomming new variables, in the IKeyword class.

String FIRST_VARIABLE = "FirstVariable";  String SECOND_VARIABLE = "SecondVariable";

Now that we have defined the names of our variables, we need to declare them in our skill class.

Here is how to declare the variables:

In order to access these new attributes, in the GAMA application, you need to define @getter  and
@setter  methods:

@getter

This annotations is used to indicate that a method is to be used as a getter for a variable defined in the
class. The variable must be defined on its own (in vars).

This annotation contains:

value (String): the name of the variable for which the annotated method is to be considered as a
getter.

initializer (boolean, false by default): returns whether or not this getter should also be used as an
initializer

@vars({
  @variable(name = IKeyword.FIRST_VARIABLE, type = IType.INT, init = "1"),
  @variable(name = IKeyword.SECOND_VARIABLE, type = IType.FLOAT, init = "1.0")
})



@setter

This annotations is used to indicate that a method is to be used as a setter for a variable defined in the
class. The variable must be defined on its own (in vars).

This annotation contains:

value (String): the name of the variable for which the annotated method is to be considered as a
setter.

At this point we can use the variable defined directly in our agent :

@getter(IKeyword.FIRST_VARIABLE)
public int getFirstVariable(final IAgent agent) {
    return (int) agent.getAttribute(IKeyword.FIRST_VARIABLE);
}

@setter(IKeyword.FIRST_VARIABLE)
public void setFirstVariable(final IAgent agent, final int value) {
    agent.setAttribute(IKeyword.FIRST_VARIABLE, value);
}

@getter(IKeyword.SECOND_VARIABLE)
public double getFirstVariable(final IAgent agent) {
    return (double) agent.getAttribute(IKeyword.SECOND_VARIABLE);
}

@setter(IKeyword.SECOND_VARIABLE)
public void setFirstVariable(final IAgent agent, final double value) {
    agent.setAttribute(IKeyword.SECOND_VARIABLE, value);
}

species tutorialSpecies skills:[FirstSkill]
{

init
{

write(firstVariable);
write(SecondVariable);

}
}



Defining new actions
An action (also called primitive ) is basically a Java method that can be called from the GAML language
using the same syntax as the one used for calling actions defined in a model. The method should be
annotated with @action , supplying the name of the action as it will be available in GAML.

@action

This annotations is used to tag a method that will be considered as an action (or primitive) in GAML. The
method must have the following signature: Object methodName(IScope) throws
GamaRuntimeException  and be contained in a class annotated with @species or @skill (or a related class,
like a subclass or an interface).

This annotation contains:

name (String): the name of the variable as it can be used in GAML.

virtual (boolean, false by default): if true the action is virtual, i.e. equivalent to abstract method in java.

args (set of arg, empty by default): the list of arguments passed to this action. Each argument is an
instance of arg.

doc (set of @doc, empty by default): the documentation associated to the action.

We can also define parameters for this action using the annotation @arg  will a set of parameters names.

@arg

This annotations describes an argument passed to an action.

This annotation contains:

name (String, "" by default): the name of the argument as it can be used in GAML.

type (set of ints, empty by default): An array containing the textual representation of the types that can
be taken by the argument (see IType).

optional (boolean, true by default): whether this argument is optional or not.

doc (set of @doc, empty by default): the documentation associated to the argument.

Here is an example of an empty action for our skill (dont forget to define every keywords like
IKeyword.NUMBER_TO_ADD  in the IKeyword class):



Now that we have defined the action we can access the parameter IKeyword.NUMBER_TO_ADD  and use it
as we want.

Access to parameters in actions

To get the value of the arguments passed in GAML to the Java code, two methods can be useful:

scope.hasArg("name_of_argument")  returns a boolean value testing whether the argument
"name_of_argument" has been defined by the modeler, since all the arguments to actions should be
considered as optional.

getArg(name_arg,IType) , getFloatArg(name_param_of_float) , getIntArg(name_param_of_int)
and their variants return the value of the given parameter using a given (or predefined) type to cast
it.

Warnings

Developers should notice that:

the method should have only one parameter: the scope (type IScope).

the method can only throw GamaRuntimeExceptions . Other exceptions should be caught in the
method and wrapped in a GamaRuntimeException  before being thrown.

Here is the complete action code :

@action(name = "add", 
args = {

@arg(name = IKeyword.NUMBER_TO_ADD, type = IType.INT, optional 
= false)})
@doc("Function to add a number to FirstVariable")
public int add(final IScope scope){

return 0;
}

@action(name = "add", 
args = {

@arg(name = IKeyword.NUMBER_TO_ADD, type = IType.INT, optional 
= false)})
@doc("Function to add a number to FirstVariable")
public int add(final IScope scope)
{



It is called in GAMA models with:

For our action we used the annotation @doc  to give a description of what the purpose of the action.

@doc

It provides a unified way of attaching documentation to the various GAML elements tagged by the other
annotations. The documentation is automatically assembled at compile time and also used at runtime in
GAML editors.

value (String, "" by default): a String representing the documentation of a GAML element.

deprecated (String, "" by default): a String indicating (if it is not empty) that the element is deprecated
and defining, if possible, what to use instead.

returns (String, "" by default): the documentation concerning the value(s) returned by this element (if
any)..

comment (String, "" by default): an optional comment that will appear differently from the
documentation itself.

special_cases (set of Strings, empty by default): an array of String representing the documentation of
the "special cases" in which the documented element takes part.

examples (set of Strings, empty by default): an array of String representing some examples or use-
cases about how to use this element.

int firstVariable = getVariable(scope.getAgent());
int numberToAdd = (Integer) scope.getArg(IKeyword.NUMBER_TO_ADD);

setVariable(scope.getAgent(), firstVariable + numberToAdd);

return firstVariable + numberToAdd;
}

species tutorialSpecies skills:[FirstSkill]
{

init
{

do add(5);
int result <- add(10);

write(firstVariable);
write(secondVariable);

}
}



see (set of Strings, empty by default): an array of String representing cross-references to other elements
in GAML.

All these annotations are defined in the GamlAnnotations.java  file of the msi.gama.processor  plug-in.

Complete java class

package skills;

import msi.gama.common.interfaces.IKeyword;
import msi.gama.metamodel.agent.IAgent;
import msi.gama.precompiler.GamlAnnotations.action;
import msi.gama.precompiler.GamlAnnotations.arg;
import msi.gama.precompiler.GamlAnnotations.doc;
import msi.gama.precompiler.GamlAnnotations.getter;
import msi.gama.precompiler.GamlAnnotations.setter;
import msi.gama.precompiler.GamlAnnotations.skill;
import msi.gama.precompiler.GamlAnnotations.variable;
import msi.gama.precompiler.GamlAnnotations.vars;
import msi.gama.runtime.IScope;
import msi.gaml.skills.Skill;
import msi.gaml.types.IType;

@vars({
  @variable(name = IKeyword.FIRST_VARIABLE, type = IType.INT, init = "1"),
  @variable(name = IKeyword.SECOND_VARIABLE, type = IType.FLOAT, init = "1.0")
})

@skill(name = "FirstSkill")
public class FirstSkill extends Skill
{

@getter(IKeyword.FIRST_VARIABLE)
public int getFirstVariable(final IAgent agent) {
    return (Integer) agent.getAttribute(IKeyword.FIRST_VARIABLE);
}

@setter(IKeyword.FIRST_VARIABLE)
public void setFirstVariable(final IAgent agent, final int value) {

agent.setAttribute(IKeyword.FIRST_VARIABLE, value);
}

@getter(IKeyword.SECOND_VARIABLE)
public double getSecondVariable(final IAgent agent) {
    return (double) agent.getAttribute(IKeyword.SECOND_VARIABLE);
}



Complete gaml model

@setter(IKeyword.SECOND_VARIABLE)
public void setSecondVariable(final IAgent agent, final double value) {
    agent.setAttribute(IKeyword.SECOND_VARIABLE, value);
}

@action(name = "add", 
args = {

@arg(name = IKeyword.NUMBER_TO_ADD, type = 
IType.INT, optional = false)})

@doc("Function to add a number to FirstVariable")
public int add(final IScope scope)
{

int firstVariable = getFirstVariable(scope.getAgent());
int numberToAdd = (Integer) scope.getArg(IKeyword.NUMBER_TO_ADD);

setFirstVariable(scope.getAgent(), firstVariable + numberToAdd);

return firstVariable + numberToAdd;
}

}

/**
* Name: FirstSkill
* First skill tutorial. 
* Author: Lucas Grosjean, Julius Bangate
* Tags: tutorial, skill
*/

model FirstSkill

global{
init {

create tutorial;
}

}

species tutorial skills:[FirstSkill] {
init {

do add(5);
int result <- add(10);

write(firstVariable);
write(secondVariable);

}



}

experiment main{}



Version: 1.9.3

Developing Statements
Statements are a fundamental part of GAML, as they represent both commands (imperative
programming style) or declarations (declarative programming style). Developing a new statement
allows, then, to add a new instruction to GAML.

Statements can be used in any context unlike action that need to be used from an agent context.

Defining the class
A new statement must be a Java class that:

either implements the interface IStatement  or extends an existing implementation of this interface
(like AbstractStatement  or AbstractSequenceStatement ).

begins by the 2 following mandatory annotations:
@symbol: @symbol(name = "name_of_the_statement_gaml", kind = "kind_of_statement",
with_sequence = true/false) ,

@inside: @symbol(kinds = {"kind_of_statement_1","kind_of_statement_2","..."}

In addition the 4 following optional annotations can be added:

@facets: to describe the set of @facet annotations,

@doc: to document the statement.

@serializer: in addition, statements can benefit from a custom serializer, by declaring
@serializer(CustomSerializer.class) , with a class extending SymbolSerializer .

@validator: in addition, statements can benefit from a custom validation during the validation
process, by declaring @validator(CustomValidator.class)  with a class implementing
IDescriptionValidator  as value. This class will receive the IDescription  of the statement and be
able to execute further validations on the type of expressions, etc. or even to change the
IDescription  (by adding new information, changing the value of facets, etc.).

Note: GAMA annotations are classes defined into the msi.gama.precompiler.GamlAnnotations  class.

Examples

http://localhost:3000/wiki/DevelopingIndexAnnotations#@symbol
http://localhost:3000/wiki/DevelopingIndexAnnotations#@inside
http://localhost:3000/wiki/DevelopingIndexAnnotations#@facets
http://localhost:3000/wiki/DevelopingIndexAnnotations#@facet
http://localhost:3000/wiki/DevelopingIndexAnnotations#@doc
http://localhost:3000/wiki/DevelopingIndexAnnotations#@serializer
http://localhost:3000/wiki/DevelopingIndexAnnotations#@validator


The write  statement

The write  statement is an example of a SINGLE_STATEMENT (i.e. statement that does not embed a
sequence of statements). It can used inside a BEHAVIOR statement (i.e. reflex , init ...), a
SEQUENCE_STATEMENT (e.g. loop , ask , if ...) or a LAYER statement. It defines a single facet
("message") mandatory and omissible.

The aspect  statement

The aspect  statement defines an example of BEHAVIOR statement (i.e. a statement that can written at
the same level as init , reflex ...), containing a sequence of embedded statements. It can only be used
inside a species  statement (i.e. the definition of a new species) and the global  block. It defines a single
facet name  mandatory and omissible.

The action  statement

The action  statement defines an example of ACTION statement containing a sequence of embedded
statements and that can have arguments. It can be used (to define an action) in any species, experiment
or global statement. It defines several facets and uses a custom validator and a custom serializer.

@symbol(name = IKeyword.WRITE, kind = ISymbolKind.SINGLE_STATEMENT, with_sequence = 
false)
@inside(kinds = { ISymbolKind.BEHAVIOR, ISymbolKind.SEQUENCE_STATEMENT, 
ISymbolKind.LAYER })
@facets(value = { 
        @facet(name = IKeyword.MESSAGE, type = IType.NONE, optional = false) 
   }, omissible = IKeyword.MESSAGE)
public class WriteStatement extends AbstractStatement {

@symbol(name = { IKeyword.ASPECT }, kind = ISymbolKind.BEHAVIOR, with_sequence = true, 
unique_name = true)
@inside(kinds = { ISymbolKind.SPECIES, ISymbolKind.MODEL })
@facets(value = { @facet(name = IKeyword.NAME, type = IType.ID, optional = true) 
   }, omissible = IKeyword.NAME)
public class AspectStatement extends AbstractStatementSequence {

@symbol(name = IKeyword.ACTION, kind = ISymbolKind.ACTION, with_sequence = true, 
with_args = true, unique_name = true)
@inside(kinds = { ISymbolKind.SPECIES, ISymbolKind.EXPERIMENT, ISymbolKind.MODEL })
@facets(value = {



Implementation
All the statements inherit from the abstract class AbstractStatement . Statements with a sequence of
embedded statements inherit from the class AbstractStatementSequence  (which extends
AbstractStatement ).

The main methods of a statement class are:

its constructor, that is executed at the compilation of the model.

executeOn(final IScope scope) , it executes the statement on a given scope. This method is
executed at each call of the statement in the model,

privateExecuteIn(IScope scope) : the executeOn(final IScope scope)  method implemented in
AbstractStatement  does some verification and call the privateExecuteIn(IScope scope)  method
to perform the statement. The execution of any statement should be redefined in this method.

Define a SINGLE_STATEMENT statement

To define a SINGLE_STATEMENT statement that can be executed in any behavior and sequence of
statements and with 2 facets, we first define a new Java class that extends AbstractStatement  such as:

@facet(name = IKeyword.NAME, type = IType.ID, optional = false),
@facet(name = IKeyword.TYPE, type = IType.TYPE_ID, optional = true, internal = 

true),
@facet(name = IKeyword.OF, type = IType.TYPE_ID, optional = true, internal = 

true),
@facet(name = IKeyword.INDEX, type = IType.TYPE_ID, optional = true, internal = 

true),
@facet(name = IKeyword.VIRTUAL, type = IType.BOOL, optional = true) 

    }, omissible = IKeyword.NAME)
@validator(ActionValidator.class)
@serializer(ActionSerializer.class)
public class ActionStatement extends AbstractStatementSequenceWithArgs {

@symbol(name = "testStatement", kind = ISymbolKind.SINGLE_STATEMENT, with_sequence = 
false)
@inside(kinds = { ISymbolKind.BEHAVIOR, ISymbolKind.SEQUENCE_STATEMENT})
@facets(value = { 
        @facet(name = IKeyword.NAME, type = IType.NONE, optional = false),
        @facet(name = "test_facet", type = IType.NONE, optional = true)     
   }, omissible = IKeyword.NAME)
public class SingleStatementExample extends AbstractStatement {



The class should at least implement:

a constructor: the constructor is called at the compilation. It is usually used to get the expressions
given to the facets (using the getFacet(String)  method) and to store it into an attribute of the
class.

the method privateExecuteIn: this method is executed each time the statement is called in the
model.

The variable scope  of type IScope  can be used to:

get the current agent with: scope.getAgent()

evaluate an expression in the current scope: Cast.asString(scope, message.value(scope))

Define a statement with sequence

This kind of statements includes SEQUENCE_STATEMENT (e.g. if , loop ,...), BEHAVIOR (e.g. reflex ,...)...

Such a statement is defined in a class extending the AbstractStatementSequence  class, e.g.:

final IExpression name;

public SingleStatementExample(final IDescription desc) {
super(desc);
name = getFacet(IKeyword.NAME);

}

protected Object privateExecuteIn(IScope scope) throws GamaRuntimeException { 
IAgent agent = scope.getAgent();
String nameStr = null;
if (agent != null && !agent.dead()) {

nameStr = Cast.asString(scope, name.value(scope));
if (nameStr == null) {

nameStr = "nil";
}
scope.getGui().getConsole().informConsole(nameStr, scope.getRoot());

}
return nameStr;

}  

@symbol(name = { IKeyword.REFLEX, IKeyword.INIT }, kind = ISymbolKind.BEHAVIOR, 
with_sequence = true, unique_name = true)



This class should only implement a constructor. The class AbstractStatementSequence  provides a
generic implementation for:

privateExecuteIn(IScope scope) : it executes each embedded statement with the scope.

executeOn(final IScope scope) : it executes the statement with a given scope.

Additional methods that can be implemented

The following methods have a default implementation, but can be overridden if necessary:

the String getTrace(final IScope scope)  method is called to trace the execution of statements
using trace statement.

the setChildren(final List<? extends ISymbol> commands)  is used to define which are the
statement children to the sequence statement. By default, all the embedded statements are taken
as children

Annotations

@symbol

This annotation represents a "statement" in GAML, and is used to define its name(s) as well as some
meta-data that will be used during the validation process.

This annotation contains:

name (set of string, empty by default): names of the statement.

@inside(kinds = { ISymbolKind.SPECIES, ISymbolKind.EXPERIMENT, ISymbolKind.MODEL })
@facets(value = { @facet(name = IKeyword.WHEN, type = IType.BOOL, optional = true),

@facet(name = IKeyword.NAME, type = IType.ID, optional = true) }, omissible = 
IKeyword.NAME)
@validator(ValidNameValidator.class)

public class ReflexStatement extends AbstractStatementSequence {

public String getTrace(final IScope scope) {
// We dont trace write statements
return "";

} 

http://localhost:3000/wiki/Statements#trace


kind (int): the kind of the annotated symbol (see ISymbolKind.java for more details).

with_scope (boolean, true by default): indicates if the statement (usually a sequence) defines its own
scope. Otherwise, all the temporary variables defined in it are actually defined in the super-scope.

with_sequence (boolean): indicates wether or not a sequence can or should follow the symbol denoted
by this class.

with_args (boolean, false by default): indicates wether or not the symbol denoted by this class will
accept arguments.

remote_context (boolean, false by default): indicates that the context of this statement is actually an
hybrid context: although it will be executed in a remote context, any temporary variables declared in the
enclosing scopes should be passed on as if the statement was executed in the current context.

doc (set of @doc, empty by default): the documentation attached to this symbol.

@inside

This annotation is used in conjunction with symbol. Provides a way to tell where this symbol should be
located in a model (i.e. what its parents should be). Either direct symbol names (in symbols) or generic
symbol kinds can be used.

This annotation contains:

symbols (set of Strings, empty by default): symbol names of the parents.

kinds (set of int, empty by default): generic symbol kinds of the parents (see ISymbolKind.java for more
details).

@facets

This annotation describes a list of facets used by a statement in GAML.

This annotation contains:

value (set of @facet): array of @facet, each representing a facet name, type..

ommissible (string): the facet that can be safely omitted by the modeler (provided its value is the first
following the keyword of the statement).

@facet

This facet describes a facet in a list of facets.

This annotation contains:

https://github.com/gama-platform/gama/blob/GAMA_1.9.2/ummisco.gama.annotations/src/msi/gama/precompiler/ISymbolKind.java
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/ummisco.gama.annotations/src/msi/gama/precompiler/ISymbolKind.java


name (String): the name of the facet. Must be unique within a symbol.

type (set of Strings): the string values of the different types that can be taken by this facet.

values (set of Strings): the values that can be taken by this facet. The value of the facet expression will be
chosen among the values described here.

optional (boolean, false by default): whether or not this facet is optional or mandatory.

doc (set of @doc, empty by default): the documentation associated to the facet.

@doc

It provides a unified way of attaching documentation to the various GAML elements tagged by the other
annotations. The documentation is automatically assembled at compile time and also used at runtime in
GAML editors.

value (String, "" by default): a String representing the documentation of a GAML element.

deprecated (String, "" by default): a String indicating (if it is not empty) that the element is deprecated
and defining, if possible, what to use instead.

returns (String, "" by default): the documentation concerning the value(s) returned by this element (if
any)..

comment (String, "" by default): an optional comment that will appear differently from the
documentation itself.

special_cases (set of Strings, empty by default): an array of String representing the documentation of
the "special cases" in which the documented element takes part.

examples (set of Strings, empty by default): an array of String representing some examples or use-
cases about how to use this element.

see (set of Strings, empty by default): an array of String representing cross-references to other elements
in GAML.

@serializer

It allows to declare a custom serializer for Symbols (statements, var declarations, species, experiments,
etc.). This serializer will be called instead of the standard serializer, superseding this last one. Serializers
must be subclasses of the SymbolSerializer class.

value (Class): the serializer class.

@validator



It allows to declare a custom validator for Symbols (statements, var declarations, species, experiments,
etc.). This validator, if declared on subclasses of Symbol, will be called after the standard validation is
done. The validator must be a subclass of IDescriptionValidator.

value (Class): the validator class.

All these annotations are defined in the GamlAnnotations.java  file of the msi.gama.processor  plug-in.



Version: 1.9.3

Developing Operators
Operators in the GAML language are used to compose complex expressions. An operator performs a
function on one, two, or n operands (which are other expressions and thus may be themselves
composed of operators) and returns the result of this function. Developing a new operator allows, then,
to add a new function to GAML.

Implementation
A new operator can be any Java method that:

begins by the @operator (other fields can be added to the annotation): @operator(value =
"name_of_the_operator_gaml") ,

The method:

must return a value (that has to be one of the GAMA Type: Integer, Double, Boolean, String, IShape,
IList, IGraph, IAgent...),

can define any number of parameters, defined using Java type,

can be either static or non-static:
in the case it is static, the number of parameters (except an IScope attribute) of the method is
equal to the number of operands of the GAML operator.

in the case it is not static, a first operand is added to the operator with the type of the current
class.

can have a IScope parameter, that will be taken into account as operand of the operator.

Annotations

@operator

@operator(value = "rgb")
public static GamaColor rgb(final int r, final int g, final int b, final double alpha) 
{

http://localhost:3000/wiki/Operators
http://localhost:3000/wiki/DevelopingIndexAnnotations#@operator


This annotation represents an "operator" in GAML, and is used to define its name(s) as well as some
meta-data that will be used during the validation process.

This annotation contains:

value (set of string, empty by default): names of the operator.

content_type (integer) : if the operator returns a container, type of elements contained in the container

can_be_const (boolean, false by default): if true: if the operands are constant, returns a constant value.

category (set of string, empty by default): categories to which the operator belong (for documentation
purpose).

doc (set of @doc, empty by default): the documentation attached to this operator.

@doc

It provides a unified way of attaching documentation to the various GAML elements tagged by the other
annotations. The documentation is automatically assembled at compile time and also used at runtime in
GAML editors.

value (String, "" by default): a String representing the documentation of a GAML element.

deprecated (String, "" by default): a String indicating (if it is not empty) that the element is deprecated
and defining, if possible, what to use instead.

returns (String, "" by default): the documentation concerning the value(s) returned by this element (if
any)..

comment (String, "" by default): an optional comment that will appear differently from the
documentation itself.

special_cases (set of Strings, empty by default): an array of String representing the documentation of
the "special cases" in which the documented element takes part.

examples (set of Strings, empty by default): an array of String representing some examples or use-
cases about how to use this element.

see (set of Strings, empty by default): an array of String representing cross-references to other elements
in GAML.

All these annotations are defined in the GamlAnnotations.java  file of the msi.gama.processor  plug-in.



Version: 1.9.3

Developing Types
GAML provides a given number of built-in simple types (int, bool...) and more complex ones (path,
graph...). Developing a new type allows, then, to add a new data structure to GAML.

Implementation
Developing a new type requires the implementation of 2 Java files:

the first one that describes the data structure (e.g.: GamaColor.java  to define a type color)

the second one that implements the type itself, wrapping the data structure file (e.g.:
GamaColorType.java ), and providing accessors to data structure attributes.

The data structure file
The class representing the data structure is a Java class annotated by:

a @vars annotation to describe the attributes of a complex type. The @vars  annotation contains a
set of @variable  elements.

@vars ({ 
    @variable (

name = "red",
type = IType.INT,
doc = { @doc ("Returns the red component of the color (between 0 and 

255)") }),
@variable (

name = "green",
type = IType.INT,
doc = { @doc ("Returns the green component of the color (between 0 and 

255)") }),
@variable (

name = "blue",
type = IType.INT,
doc = { @doc ("Returns the blue component of the color (between 0 and 

255)") }),
})

http://localhost:3000/wiki/DevelopingIndexAnnotations#@vars


It is recommended that this class implements the IValue  interface. It provides a clean way to give a
string representation of the type and thus eases good serialization of the object. You will need to
implement the stringValue  method:

You should also have some class attributes that correspond to your custom data type's attributes

and then you can create setters and/or getters for each of the attributes. Setters and getters are
methods annotated by the @getter or @setter annotations.

The type file
The class representing the type is a Java class such that:

the class should be annotated by the @type annotation,

the class should extend the class GamaType<DataStructureFile>  (and thus implement its 3
methods),

public class GamaColor implements IValue {
@Override
public String stringValue(IScope scope) throws GamaRuntimeException {

...
}

}

public class GamaColor implements IValue {
private int red;

    private int green;
    private int blue;
    ...
}

@getter("red")
public Integer getRed() {

return this.red;
}

@setter("red")
public void setRed(int red) {

this.red = red;
}

http://localhost:3000/wiki/DevelopingIndexAnnotations#@getter
http://localhost:3000/wiki/DevelopingIndexAnnotations#@setter
http://localhost:3000/wiki/DevelopingIndexAnnotations#@type


Example (from GamaFloatType.java):

Inheritance from the GamaType<T>  class

Each java class aiming at implementing a type should inherit from the GamaType abstract class.
Example (from GamaColorType.java):

This class imposes to implement the three following methods (with the example of the GamaColorType):

public boolean canCastToConst()

public GamaColor cast(IScope scope, Object obj, Object param) : the way to cast any object
in the type,

public GamaColor getDefault() : to define the default value of a variable of the current type.

Remark: for each type, a unary operator is created with the exact name of the type. It can be used to
cast any expression in the given type. This operator calls the previous cast  method.

Annotations

@type

It provides information necessary to the processor to identify a type.

This annotation contains:

name (String, "" by default): a String representing the type name in GAML.

@type(
name = IKeyword.FLOAT, 
id = IType.FLOAT, wraps = { Double.class,double.class }, 
kind = ISymbolKind.Variable.NUMBER, 
doc = {

@doc("Represents floating point numbers (equivalent to Double in 
Java)") }, 

concept = { IConcept.TYPE })
public class GamaFloatType extends GamaType<Double> {

public class GamaColorType extends GamaType<GamaColor>

https://github.com/gama-platform/gama/tree/GAMA_1.9.2/msi.gama.core/src/msi/gaml/types/GamaFloatType.java
https://github.com/gama-platform/gama/tree/GAMA_1.9.2/msi.gama.core/src/msi/gaml/types/GamaColorType.java


id (int, 0 by default): the unique identifier for this type. User-added types can be chosen between
IType.AVAILABLE_TYPE and IType.SPECIES_TYPE (exclusive) (cf. IType.java).

wraps (tab of Class, null by default): the list of Java Classes this type is "wrapping" (i.e. representing).
The first one is the one that will be used preferentially throughout GAMA. The other ones are to ensure
compatibility, in operators, with compatible Java classes (for instance, List and GamaList).

kind (int, ISymbolKind.Variable.REGULAR by default): the kind of Variable used to store this type. See
ISymbolKind.Variable.

internal (boolean, false by default): whether this type is for internal use only.

doc (set of @doc, empty by default): the documentation associated to the facet.

All these annotations are defined in the file GamlAnnotations.java.

https://github.com/gama-platform/gama/tree/GAMA_1.9.2/msi.gama.core/src/msi/gaml/types/IType.java
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/ummisco.gama.annotations/src/msi/gama/precompiler/ISymbolKind.java
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/ummisco.gama.annotations/src/msi/gama/precompiler/GamlAnnotations.java


Version: 1.9.3

Developing Species
Additional built-in species can be defined in Java in order to be used in GAML models. Additional
attributes and actions can be defined. It could be very useful in order to define its behavior thanks to
external libraries (e.g. database connection...).

A new built-in species extends the GamlAgent  class, which defines the basic GAML agents. As a
consequence, new built-in species have all the attributes ( name , shape , ...) and actions ( die ...) of regular
species.

Implementation
A new species can be any Java class that:

extends the GamlAgent  class,

begins by the @species: @species(name = "name_of_the_species_gaml") ,

Similarly to skills, a species can define additional attributes and actions.

Additional attributes

Defining new attributes needs:

to add @vars (and one embedded @variable per additional attribute) annotation on top of the class,

to define @setter and @getter annotations to the accessors methods.

For example, regular species are defined with the following annotation:

@species(name = "multicriteria_analyzer")
public class MulticriteriaAnalyzer extends GamlAgent {

@vars({ @variable(name = IKeyword.NAME, type = IType.STRING), @variable(name = 
IKeyword.PEERS, type = IType.LIST),

@variable(name = IKeyword.HOST, type = IType.AGENT),
@variable(name = IKeyword.LOCATION, type = IType.POINT, depends_on = 

http://localhost:3000/wiki/BuiltInSpecies
https://github.com/gama-platform/gama/wiki/UsingDatabase
https://github.com/gama-platform/gama/wiki/RegularSpecies
https://github.com/gama-platform/gama/wiki/RegularSpecies
http://localhost:3000/wiki/DevelopingIndexAnnotations#@species
http://localhost:3000/wiki/DevelopingSkills
http://localhost:3000/wiki/DevelopingIndexAnnotations#@vars
http://localhost:3000/wiki/DevelopingIndexAnnotations#@variable
http://localhost:3000/wiki/DevelopingIndexAnnotations#@setter
http://localhost:3000/wiki/DevelopingIndexAnnotations#@getter


And accessors are defined using:

Additional actions

An additional action is a method annotated by the @action annotation.

Annotations

@species

This annotation represents a "species" in GAML. The class annotated with this annotation will be the
support of a species of agents.

This annotation contains:

name (string): the name of the species that will be created with this class as base. Must be unique
throughout GAML.

skills (set of strings, empty by default): An array of skill names that will be automatically attached to
this species. Example: @species(value="animal" skills={"moving"})

internal (boolean, false by default): whether this species is for internal use only.

doc (set of @doc, empty by default): the documentation attached to this operator.

All these annotations are defined in the GamlAnnotations.java  file of the msi.gama.processor  plug-in.

IKeyword.SHAPE),
@variable(name = IKeyword.SHAPE, type = IType.GEOMETRY) })

@getter(IKeyword.NAME)
public abstract String getName();

@setter(IKeyword.NAME)
public abstract void setName(String name);

@action(name = ISpecies.stepActionName)
public Object _step_(final IScope scope) {

http://localhost:3000/wiki/DevelopingIndexAnnotations#@action


Version: 1.9.3

Developing architecture
In addition to existing control architectures, developers can add new ones.

Defining a new control architecture needs to create new statements of type behavior and included in
species statements and to define how to manage their execution.

Implementation
A control architecture is a Java class, that:

is annotated by the @skill annotation,

extends the AbstractArchitecture  class (to get benefits of everything from the reflex -based
control architecture, the ReflexArchitecture  class can be extended instead).

The AbstractArchitecture  extends the ISkill  and IStatement  interfaces and add the 2 following
methods:

public abstract boolean init(IScope scope) throws GamaRuntimeException;

public abstract void verifyBehaviors(ISpecies context);

The three main methods to implement are thus:

public void setChildren(final List<? extends ISymbol> children) : this method will be called
at the compilation of the model. It allows to manage all the embeded statements (in children ) and
for example separate the statements that should be executed at the initialization only from the ones
that should be executed at each simulation step. Following example allows to test the name of the
all the embedded statements:

public abstract boolean init(IScope scope) throws GamaRuntimeException : this method is
called only once, at the initialization of the agent.

public Object executeOn(final IScope scope) throws GamaRuntimeException : this method is
executed at each simulation step. It should manage the execution of the various embedded

for ( final ISymbol c : children ) {
   if( IKeyword.INIT.equals(c.getFacet(IKeyword.KEYWORD).literalValue()) ) {

http://localhost:3000/wiki/BuiltInArchitectures
http://localhost:3000/wiki/DevelopingStatements
http://localhost:3000/wiki/DevelopingIndexAnnotations#@skill


behaviors (e.g. their order or choose which one will be executed...).



Version: 1.9.3

Index of annotations
Annotations are used to link Java methods and classes to GAML language.

@action
This annotation is used to tag a method that will be considered as an action (or primitive) in GAML. The
method must have the following signature: Object methodName(IScope) throws
GamaRuntimeException  and be contained in a class annotated with @species or @skill (or a related class,
like a subclass or an interface).

This annotation contains:

name (String): the name of the variable as it can be used in GAML.

virtual (boolean, false by default): if true the action is virtual, i.e. equivalent to abstract method in java.

args (set of @arg, empty by default): the list of arguments passed to this action. Each argument is an
instance of arg.

doc (set of @doc, empty by default): the documentation associated to the action.

@arg
This annotation describes an argument passed to an action.

This annotation contains:

name (String, "" by default): the name of the argument as it can be used in GAML.

type (set of ints, empty by default): An array containing the textual representation of the types that can
be taken by the argument (see IType ).

optional (boolean, true by default): whether this argument is optional or not.

doc (set of @doc, empty by default): the documentation associated to the argument.

@constant
This annotation is used to annotate fields that are used as constants in GAML.



This annotation contains:

category (set of Strings, empty by default): an array of strings, each representing a category in which
this constant can be classified (for documentation indexes).

value (String): a string representing the basic keyword for the constant. Does not need to be unique
throughout GAML.

altNames (set of Strings, empty by default): an Array of strings, each representing a possible
alternative name for the constant. Does not need to be unique throughout GAML.

doc (set of @doc, empty by default): the documentation attached to this constant.

@doc
It provides a unified way of attaching documentation to the various GAML elements tagged by the other
annotations. The documentation is automatically assembled at compile time and also used at runtime in
GAML editors.

This annotation contains:

value (String, "" by default): a String representing the documentation of a GAML element.

masterDoc (boolean, false by default): a boolean representing the fact that this instance of the
operator is the master one, that is whether its value will subsume the value of all other instances of it.

deprecated (String, "" by default): a String indicating (if it is not empty) that the element is deprecated
and defining, if possible, what to use instead.

returns (String, "" by default): the documentation concerning the value(s) returned by this element (if
any)..

comment (String, "" by default): an optional comment that will appear differently from the
documentation itself.

special_cases (set of Strings, empty by default): an array of String representing the documentation of
the "special cases" in which the documented element takes part.

examples (set of @example, empty by default): an array of String representing some examples or use-
cases about how to use this element.

usages (set of @usage, empty by default): An array of usages representing possible usage of the
element in GAML.

see (set of Strings, empty by default): an array of String representing cross-references to other elements
in GAML.



@example
This facet describes an example, that can be used either in the documentation, as unit test or as pattern.

This annotation contains:

value (String, "" by default): a String representing the expression as example.

var (String, "" by default): The variable that will be tested in the equals, if it is omitted a default variable
will be used.

equals (String, "" by default): The value to which the value will be compared.

returnType (String, "" by default): The type of the value that should be tested.

isNot (String, "" by default): The value to which the value will be compared.

raises (String, "" by default): The exception or warning that the expression could raise.

isTestOnly (boolean, false by default): specifies that the example should not be included in the
documentation.

isExecutable (boolean, true by default): specifies that the example is correct GAML code that can be
executed.

test (boolean, true by default): specifies that the example is will be tested with the equals.

isPattern (boolean, false by default): whether or not this example should be treated as part of a pattern
(see @usage). If true, the developers might want to consider writing the example line (and its associated
lines) using template variables (e.g. ${my_agent}).

@facet
This facet describes a facet in a list of facets.

This annotation contains:

name (String): the name of the facet. Must be unique within a symbol.

type (set of int): the string values of the different types that can be taken by this facet.

values (set of Strings, empty by default): the values that can be taken by this facet. The value of the
facet expression will be chosen among the values described here.

optional (boolean, false by default): whether or not this facet is optional or mandatory.

doc (set of @doc, empty by default): the documentation associated to the facet.

@facets



This annotation describes a list of facets used by a statement in GAML.

This annotation contains:

value (set of @facet): array of @facet, each representing a facet name, type..

ommissible (string): the facet that can be safely omitted by the modeler (provided its value is the first
following the keyword of the statement).

@file
This annotation is used to define a type of file.

This annotation contains:

name (String): a (human-understandable) string describing this type of files, suitable for use in
composed operator names (e.g. "shape", "image"...). This name will be used to generate two operators:
name+"file" and "is"+name. The first operator may have variants taking one or several arguments,
depending on the @builder annotations present on the class.

extensions (set of Strings): an array of extensions (without the '.' delimiter) or an empty array if no
specific extensions are associated to this type of files (e.g. ["png","jpg","jpeg"...]). The list of file extensions
allowed for this type of file. These extensions will be used to check the validity of the file path, but also to
generate the correct type of file when a path is passed to the generic "file" operator.

buffer_content (int, ITypeProvider.NONE by default): the type of the content of the buffer. Can be
directly a type in IType or one of the constants declared in ITypeProvider (in which case, the content type is
searched using this provider).

buffer_index (int, ITypeProvider.NONE by default): the type of the index of the buffer. Can be directly a
type in IType or one of the constants declared in ITypeProvider (in which case, the index type is searched
using this provider).

buffer_type (int, ITypeProvider.NONE by default): the type of the buffer. Can be directly a type in IType
or one of the constants declared in ITypeProvider (in which case, the type is searched using this provider).

doc (set of @doc, empty by default): the documentation attached to this operator.

@getter
This annotation is used to indicate that a method is to be used as a getter for a variable defined in the
class. The variable must be defined on its own (in vars).



This annotation contains:

value (String): the name of the variable for which the annotated method is to be considered as a
getter.

initializer (boolean, false by default): returns whether or not this getter should also be used as an
initializer

@inside
This annotation is used in conjunction with @symbol . It provides a way to tell where this symbol should
be located in a model (i.e. what its parents should be). Either direct symbol names (in symbols) or
generic symbol kinds can be used.

This annotation contains:

symbols (set of Strings, empty by default): symbol names of the parents.

kinds (set of int, empty by default): generic symbol kinds of the parents (see ISymbolKind.java for more
details).

@operator
This annotation represents an "operator" in GAML and is used to define its name(s) as well as some
meta-data that will be used during the validation process.

This annotation contains:

value (set of Strings, empty by default): names of the operator.

category (set of string, empty by default): categories to which the operator belongs (for documentation
purpose).

iterator (boolean, false by default): true if this operator should be treated as an iterator (i.e.requires
initializing the special variable "each" of WorldSkill within the method).

can_be_const (boolean, false by default): if true: if the operands are constant, returns a constant value.

content_type (int, ITypeProvider.NONE by default): the type of the content if the returned value is a
container. Can be directly a type in IType or one of the constants declared in ITypeProvider (in which case,
the content type is searched using this provider).

index_type (int, ITypeProvider.NONE by default): the type of the index if the returned value is a
container. Can be directly a type in IType or one of the constants declared in ITypeProvider (in which case,

https://github.com/gama-platform/gama/blob/GAMA_1.9.2/ummisco.gama.annotations/src/msi/gama/precompiler/ISymbolKind.java


the index type is searched using this provider).

expected_content_type (set of int, empty by default): if the argument is a container, returns the types
expected for its contents. Should be an array of IType.XXX.

type (int, ITypeProvider.NONE by default): the type of the expression if it cannot be determined at
compile time (i.e. when the return type is "Object"). Can be directly a type in IType or one of the constants
declared in ITypeProvider (in which case, the type is searched using this provider)..

internal (boolean, false by default): returns whether this operator is for internal use only.

doc (set of @doc, empty by default): the documentation attached to this operator.

@serializer
It allows to declare a custom serializer for Symbols (statements, var declarations, species, experiments,
etc.). This serializer will be called instead of the standard serializer, superseding this last one. Serializers
must be subclasses of the SymbolSerializer class.

value (Class): the serializer class.

@setter
This annotation is used to indicate that a method is to be used as a setter for a variable defined in the
class. The variable must be defined on its own (in vars).

This annotation contains:

value (String): the name of the variable for which the annotated method is to be considered as a
setter.

@skill
This annotation allows to define a new skill (class grouping variables and actions that can be used by
agents).

This annotation contains:

name (String): a String representing the skill name in GAML (must be unique throughout GAML).

attach_to (set of strings): an array of species names to which the skill will be automatically added
(complements the "skills" parameter of species).



internal (boolean, false by default): return whether this skill is for internal use only.

doc (set of @doc, empty by default): the documentation associated to the skill.

@species
This annotation represents a "species" in GAML. The class annotated with this annotation will be the
support of a species of agents.

This annotation contains:

name (string): the name of the species that will be created with this class as base. Must be unique
throughout GAML.

skills (set of strings, empty by default): An array of skill names that will be automatically attached to
this species. Example: @species(value="animal" skills={"moving"})

internal (boolean, false by default): whether this species is for internal use only.

doc (set of @doc, empty by default): the documentation attached to this operator.

@symbol
This annotation represents a "statement" in GAML and is used to define its name(s) as well as some
meta-data that will be used during the validation process.

This annotation contains:

name (set of string, empty by default): names of the statement.

kind (int): the kind of the annotated symbol (see ISymbolKind.java for more details).

with_scope (boolean, true by default): indicates if the statement (usually a sequence) defines its own
scope. Otherwise, all the temporary variables defined in it are actually defined in the super-scope.

with_sequence (boolean): indicates whether or not a sequence can or should follow the symbol denoted
by this class.

with_args (boolean, false by default): indicates whether or not the symbol denoted by this class will
accept arguments.

remote_context (boolean, false by default): indicates that the context of this statement is actually a
hybrid context: although it will be executed in a remote context, any temporary variables declared in the
enclosing scopes should be passed on as if the statement was executed in the current context.

doc (set of @doc, empty by default): the documentation attached to this symbol.

https://github.com/gama-platform/gama/blob/GAMA_1.9.2/ummisco.gama.annotations/src/msi/gama/precompiler/ISymbolKind.java


internal (boolean, false by default): returns whether this symbol is for internal use only.

unique_in_context (boolean, false by default): Indicates that this statement must be unique in its super
context (for example, only one return is allowed in the body of an action)..

unique_name (boolean, false by default): Indicates that only one statement with the same name should
be allowed in the same super context.

@type
It provides information necessary to the processor to identify a type.

This annotation contains:

name (String, "" by default): a String representing the type name in GAML.

id (int, 0 by default): the unique identifier for this type. User-added types can be chosen between
IType.AVAILABLE_TYPES and IType.SPECIES_TYPES (exclusive) (cf. IType.java).

wraps (tab of Class, null by default): the list of Java Classes this type is "wrapping" (i.e. representing).
The first one is the one that will be used preferentially throughout GAMA. The other ones are to ensure
compatibility, in operators, with compatible Java classes (for instance, List and GamaList).

kind (int, ISymbolKind.Variable.REGULAR by default): the kind of Variable used to store this type. See
ISymbolKind.Variable.

internal (boolean, false by default): whether this type is for internal use only.

doc (set of @doc, empty by default): the documentation associated to the facet.

@usage
This replaces @special_cases and @examples , and unifies the doc for operators, statements, and others.
An @usage can also be used for defining a template for a GAML structure, and in that case, requires the
following to be defined:

A name (attribute "name"), optional, but better

A description (attribute "value"), optional

A menu name (attribute "menu"), optional

A hierarchical path within this menu (attribute "path"), optional

A pattern (attribute "pattern" or concatenation of the @example present in "examples" that define
"isPattern" as true)

https://github.com/gama-platform/gama/tree/GAMA_1.9.2/msi.gama.core/src/msi/gaml/types/IType.java
https://github.com/gama-platform/gama/blob/GAMA_1.9.2/ummisco.gama.annotations/src/msi/gama/precompiler/ISymbolKind.java


This annotation contains:

value (String): a String representing one usage of the keyword. Note that for usages aiming at defining
templates, the description is displayed on a tooltip in the editor. The use of the path allows to remove
unnecessary explanations. For instance, instead of writing: description="This template illustrates the use
of a complex form of the "create" statement, which reads agents from a shape file and uses the tabular
data of the file to initialize their attributes", choose: name="Create agents from shapefile"
menu=STATEMENT; path={"Create", "Complex forms"} description="Read agents from a shape file and
initialize their attributes". If no description is provided, GAMA will try to grab it from the context where the
template is defined (in the documentation, for example).

menu (String, "" by default): Define the top-level menu where this template should appear. Users are free
to use other names than the provided constants if necessary (i.e. "My templates"). When no menu is
defined, GAMA tries to guess it from the context where the template is defined.

path (set of Strings, empty by default): The path indicates where to put this template in the menu.
For instance, the following annotation: " menu = STATEMENT; path = {"Control", "If"} will put the
template in a menu called "If", within "Control", within the top menu "Statement". When no path is
defined, GAMA will try to guess it from the context where the template is defined (i.e. keyword of
the statement, etc.)

name (String, "" by default): The name of the template should be both concise (as it will appear in a
menu) and precise (to remove ambiguities between templates).

examples (set of @example, empty by default): An array of String representing some examples or use-
cases about how to use this element, related to the particular usage above.

pattern (String, "" by default): Alternatively, the contents of the usage can be described using a
@pattern (rather than an array of @example). The formatting of this string depends entirely on the user
(e.g. including \n  and \t  for indentation, for instance).

@validator
It allows to declare a custom validator for Symbols (statements, var declarations, species, experiments,
etc.). This validator, if declared on subclasses of Symbol, will be called after the standard validation is
done. The validator must be a subclass of IDescriptionValidator.

value (Class): the validator class.

@variable
This annotation is used to describe a single variable or field.



This annotation contains:

name (String): the name of the variable as it can be used in GAML.

type (int): The textual representation of the type of the variable (see IType).

of (int, 0 by default): The textual representation of the content type of the variable (see
IType#defaultContentType()).

index (int, 0 by default): The textual representation of the index type of the variable (see
IType#defaultKeyType()).

constant (boolean, false by default): returns whether or not this variable should be considered as non
modifiable.

init (String, "" by default): the initial value of this variable as a String that will be interpreted by GAML.

depend_on (set of Strings, empty by default): an array of String representing the names of the
variables on which this variable depends (so that they are computed before).

internal (boolean, false by default): return whether this var is for internal use only.

doc (set of @doc, empty by default): the documentation associated to the variable.

@vars
This annotation is used to describe a set of variables or fields.

This annotation contains:

value (set of @var): an Array of var instances, each representing a variable.



Version: 1.9.3

Introduction to GAMA Java API
This introduction to the Java API is dedicated to programmers that want to participate in the java code of
GAMA. The main purpose is to describe the main packages and classes of the API to makes it simple to
find such crucial information such as: how GAMA create containers, agent and geometries, how
exceptions and log are managed, how java code maintain Type safety, etc.

Table of content
Concepts

1. Factories

2. Spatial

3. Type

4. IScope

5. Exception

6. Debug

7. Test

Packages

1.Core

Factories

Container factories

GAMA provides 2 factories for containers: GamaListFactory  and GamaMapFactory . Each of them has
create  methods to create objects of type IList  and IMap . The types of elements in the container can
be specified at creation using one of the elements defined in Types .

https://github.com/gama-platform/gama/blob/master/msi.gama.core/src/msi/gaml/types/Types.java


Warning: the create  method is used to create the container, with elements of a given type, but it also
converts elements added in this type. To avoid conversion (not recommended), use the method
createWithoutCasting .

1. GamaListFactory : factory to create list of different type (see Java class)

As an example:

To create List  object without specifying the type, use Types.NO_TYPE :

or only:

2. GamaMapFactory : factory to create map of different type (see Java class)

As an example:

To create Map  object without specifying the type, use Types.NO_TYPE :

or only:

If you want to use map or set, try to the best to rely on collection that ensure order, so to avoid
unconsistency in container access. Try the most to avoid returning high order hash based collection, e.g.
Set or Map; in this case, rely on standard definition in Gama:

3. TOrderedHashMap : see trove api.

IList<Double> distribution = GamaListFactory.create(Types.FLOAT);

IList<Object> result = GamaListFactory.create(Types.NO_TYPE);

IList<Object> result = GamaListFactory.create();

final IMap<String, IList<?>> ncdata = GamaMapFactory.create(Types.STRING, Types.LIST);

IMap<Object, Object> result = GamaMapFactory.create(Types.NO_TYPE, Types.NO_TYPE);

IMap<Object, Object> result = GamaMapFactory.create();

https://github.com/gama-platform/gama/blob/master/msi.gama.core/src/msi/gama/util/GamaListFactory.java
https://github.com/gama-platform/gama/blob/master/msi.gama.core/src/msi/gama/util/GamaMapFactory.java
https://bitbucket.org/trove4j/trove/src/master/core/src/main/java/gnu/trove/map/


4. TLinkedHashSet : see trove api

5. Stream : you can use java build-in streams but there is a special version in Gama taken from
StreamEx that should be preferred.

If you want to get a stream back to a Gama container, you can use the collector in Factories:

Geometry factory

Gama geometry is based on the well established Jstor geometric library, while geographic aspect are
handle using GeoTools library

1. Spatial.Creation : provide several static method to initialize geometries

2. 

Spatial
The Spatial class provide several static access to the main methods to create, query, manipulate and
transform geometries

Operators

Use as Spatial.Operators  follow by the operator, usually one of Gaml language:

union, intersection, minus, and other cross geometry operations

Queries

closest, distance, overlapping, and other relative spatial relationship

Transpositions

my_container.stream(my_scope)

my_container.stream(my_scope).collect(GamaListFactory.toGamaList())

https://bitbucket.org/trove4j/trove/src/master/core/src/main/java/gnu/trove/set/hash/
https://github.com/amaembo/streamex
http://localhost:3000/wiki/OperatorsSZ#union


enlarge, transpose, rotate, reduce and other specific transposition (like triangulation, squarification,
etc.)

Punctal

operations relative to points

Type
IType : The main class to manipulate GamaType (main implementation of IType) is Types, that provides
access to most common type manipulated in Gama

Opérateur de cast:

IScope interface
An object of type IScope represents the context of execution of an agent (including experiments,
simulations, and "regular" agents). Everywhere it is accessible (either passed as a parameter or available
as an instance variable in some objects), it provides an easy access to a number of features: the current
active agent, the shared random number generator, the global clock, the current simulation and
experiment agents, the local variables declared in the current block, etc.

It also allows modifying this context, like changing values of local variables, adding new variables,
although these functions should be reserved to very specific usages. Ordinarily, the scope is simply
passed to core methods that allow to evaluate expressions, cast values, and so on.

Use of an IScope

A variable scope  of type IScope  can be used to:

get the current agent with: scope.getAgentScope()

Types.get(IType.class)

IAgent agent = scope.getAgentScope();

https://github.com/gama-platform/gama/blob/master/msi.gama.core/src/msi/gaml/types/Types.java


evaluate an expression in the current scope:

know whether the scope has been interrupted:

Exception
Exceptions in GAMA

An exception that can appear in the GAMA platform can be run using the GamaRuntimeException  class.
This class allows throwing an error (using error(String,IScope)  method) or a warning (using
warning(String,IScope)  method).

In particular, it can be useful to catch the Java Exception and to throw a GAMA exception.

Debug
Main class for debug is in ummisco.gama.dev.utils : DEBUG

To turn GAMA Git version to debug mode change variable of the Debug class like: GLOBAL_OFF =
false

Turn on or off the debug for one class: DEBUG.ON()  or DEBUG.OFF()

You can benchmark a method call using : DEBUG.TIME("Title to log", () ->
methodToBenchmark(...))

String mes = Cast.asString(scope, message.value(scope));

boolean b = scope.interrupted();

try {
        ...
} catch(Exception e) {

throw GamaRuntimeException.error("informative message", scope);
}

https://github.com/gama-platform/gama/tree/GAMA_1.9.2/msi.gama.core/src/msi/gama/runtime/exceptions
https://github.com/gama-platform/gama/tree/GAMA_1.9.2/ummisco.gama.annotations/src/ummisco/gama/dev/utils


You can use different built-in level to print: DEBUG.ERR(string s)  DEBUG.LOG(string s)
DEBUG.OUT(Object message)

Test
There are Gaml primitives and statement to define test:

Everything can be made using Java Annotation (translated to Gaml test) :

Core
The main plugin of the GAMA Platform that defines the core functionalities: most Gaml operators,
statements, skills, types, etc.

Metamodel

IAgent , IPopulation , IShape , ITopology ,

Ouputs

Util

test "Operator + (1)" {
assert (circle(5) + 5).height with_precision 1 = 20.0;
assert (circle(5) + 5).location with_precision 9 = (circle(10)).location 

with_precision 9;
}

examples = { @example (value="...",equals="..." )  }
test = { "..." } // don't forget to turn test arg of examples to false



1. Randomness in Gama: msi.gama.util.random

GamaRND is the main class that implements Random java class. It has several implementations and is
mainly used with RandomUtils that define all the Gaml random operators

2. Graph in Gama:

3. File in Gama:

Operators

The packages where you can find all the operators defined in the core of Gama

https://github.com/gama-platform/gama/tree/GAMA_1.9.2/msi.gama.core/src/msi/gama/util/random


Version: 1.9.3

Architecture of GAMA
GAMA is made of a number of Eclipse Java projects, some representing the core projects without which
the platform cannot be run, others additional plugins adding functionalities or concepts to the platform.

Vocabulary: Each project is either designed as a plugin (containing an xml file "plugin.xml") or as a
feature (containing an xml file "feature.xml").

A plugin can be seen as a module (or bundle in the OSGI architecture), which can be necessary (the
GAMA platform can't run without it) or optional (providing new functionalities to the platform). This
decomposition between several plugins ensure the cohesion between functional blocks, each plugin
has to be as independent as he can.

A feature is a group of one or several modules (or plugin), which can be loaded. NB : Unlike a
plugin, a feature does not include source code, but only two files : a build.properties and a
feature.xml.

To see how to create a plugin and a feature, please read this page.

Table of contents
Architecture of GAMA

The minimal configuration

Optional Plugins
Plugins present in the release version

Plugins not present by default in the release version

Plugins not designated to be in the release version

Unmaintained projects

Features

Models

Plugins overview

The minimal configuration

http://localhost:3000/wiki/InstallingGitVersion


Here is the list of projects which have to be imported in order to run the GAMA platform, and to execute
a simple model in gaml language:

msi.gama.core  : Encapsulates the core of the modeling and simulation facilities offered by the
platform : runtime, simulation, meta-model, data structures, simulation kernel, scheduling, etc. It
contains 2 main packages :

msi.gama

msi.gaml , wich defines the GAML modeling language: keywords, operators, statements,
species, skills

msi.gama.application  : Describes the graphical user interface ( msi.gama.gui  package). This
project also contains the file gama1.7.Eclipse3_8_2.product, when you can configure the application
(and also launch the application). It contains the following sub-packages :

msi.gama.gui.displays

msi.gama.gui.navigator

msi.gama.gui.parameters

msi.gama.gui.swt

msi.gama.gui.views

msi.gama.gui.wizards

msi.gama.gui.viewers

msi.gama.ext  : Gathers all the external libraries upon which GAMA relies upon
msi.gama.lang.gaml  : Contains the gaml.xtext file which defines the GAML grammar

msi.gama.lang.gaml.ui  : Contains the GAML Editor (syntax highlighting, code completion)

msi.gama.processor  : Is responsible for processing the annotations made in the Java source code
and producing additions to GAML (Java, properties and documentation files), which are added into a
source package called "gaml.additions" (containing two main generated files: GamlAdditions.java
and GamlDocumentation.java). These additions are loaded automatically when GAMA launches,
allowing extensions made by developers in other plugins to be recognized when their plugin is
added to the platform.

ummisco.gaml.editbox  : Project used to define the edit boxes in the gaml ui.

Minimal configuration projects dependencies:



Optional Plugins

Plugins present in the release version

From this minimal configuration, it is possible to add some features. Here is the list of the features
installed by default in the release version:

idees.gama.mapcomparison  : Contains some useful tools to do map comparaison

msi.gaml.extensions.fipa  : Provides some operators for communication between agents, using
the FIPA standards

msi.gama.headless  : Enables to run simulations in console mode

simtools.gaml.extensions.traffic  : Provides operators and skills for traffic simulation

simtools.gaml.extensions.physics  : Physics engine, collision modelling, using the library JBullet

ummisco.gaml.extensions.maths  : Solving differential equation, using Euler methods and Runge
Kutta.

irit.gaml.extensions.database  : Provides database manipulation tools, using SQL requests

irit.gaml.extensions.test  : Add unitary test statements

ummisco.gama.opengl  : Provide a 3D visualization using OpenGL.

simtools.gamanalyzer.fr  : Adding tools for the analysis of several execution result of a simulation
(in order to find some correlations).

dream.gama.opengis  : Used to load some geographic information datas from online GIS server.

simtools.graphanalysis.fr  : Advanced graph operators



Plugins not present by default in the release version

Some other plugins are not present by default in the release version (because their use is very specific),
but it's possible to install them through features. Here is the list of those plugins:

idees.gama.weka  : Data-mining operators, using the library Weka.

msi.gaml.architecture.simplebdi  : Architecture for using the Belief-Desire-Intention software
model.

ummisco.gaml.extensions.sound  : Use of sound in simulations

ummisco.gaml.extensions.stats  : Advanced statistics operators

ummisco.gama.communicator  : Communication between several instances of GAMA

ummisco.gaml.extensions.rjava  : Adding the R language into GAMA for data mining

Plugins not designated to be in the release version

Other plugins will never be on the released version, and will never be loaded during the gama
execution. They are just used in the "developer" version:

msi.gama.documentation  : Generate automatically the documentation in the wiki form (and also a
pdf file)

Unmaintained projects
Some other projects are still in the git repository in case we need to work on it one day, but they are
either unfinished, obsolete, or used in very rare situations (They are not delivered in release versions, of
course). Here is the list:

cenres.gaml.extensions.hydro  : Provide some tools in order to create hydrology models

msi.gaml.extensions.traffic2d  : Provide some tools for traffic in 2 dimensions (depreciated, now
replace by msi.gaml.extensions.traffic)

msi.gaml.extensions.humainmoving  : Provide a skill to represent human movement

ummisco.gama.gpu  : Computation directly on the GPU for more efficiency. Results or not concluant,
slower than using CPU.

msi.gama.hpc  : "High Power Computing" to execute gama simulation in several computers.

msi.gaml.extensions.cplex  : Originaly designed to be able to run CPLEX function in GAMA. The
CPLEX is a proprietary library, we can't deliver it in the project. Instead, we use a stub, "cplex.jar",
that you can replace by the real cplex.jar file.



irit.maelia.gaml.additions  : Used for the project "Maelia". Provide the possibility to represent
the computing time in a simulation.

msi.gama.display.web  : Originaly designed to run some GAMA simulation in a browser, inside
gama application, using WebGL. Does not work for the moment

ummisco.miro.extension  : Once used for the "miro" project, no longer used.

ummisco.miro.extension.traffic  : Once used for the "miro" project, no longer used.

Features
ummisco.gama.feature.audio  : sound plugin

ummisco.feature.stats  : stats plugin

ummisco.gama.feature.opengl.jogl2  : gathers physics and opengl plugins

simtools.graphlayout.feature  : gathers core, ext, processor and graphanalysis plugins

ummisco.gama.feature.core  : gathers mapcomparison, database, test, application, core, ext,
headless, gaml, gaml.ui, processor, fipa, traffic and maths plugins

ummisco.gama.feature.dependencies  : a bunch of libraries and plugins

other.gama.feature.plugins  gathers hydro, opengis, addition, web, hpc, cplex, traffic2d,
communicator, gpu, stats, extensions and traffic plugins

ummisco.gama.feature.models  : model plugin

idees.gama.features.weka  : weka plugin

ummisco.gama.feature.jogl2.product  : gathering of the following features : core, dependencies,
models, jogl2

ummisco.gama.feature.product  : gathering of the following features : core, dependencies, models,
jogl1

Models
Beside those plugins and features, a project dedicated to gather a bunch of examples is also in the git
repository. It contains gaml code:

msi.gama.models

Plugins overview



Global architecture of GAMA (nb: the features graphlayout, core, dependencies, plugins, jogl2.product
and product are not represented here)



Version: 1.9.3

IScope interface
An object of type IScope represents the context of execution of an agent (including experiments,
simulations, and "regular" agents). Everywhere it is accessible (either passed as a parameter or available
as an instance variable in some objects), it provides an easy access to a number of features: the current
active agent, the shared random number generator, the global clock, the current simulation and
experiment agents, the local variables declared in the current block, etc.

It also allows modifying this context, like changing values of local variables, adding new variables,
although these functions should be reserved to very specific usages. Ordinarily, the scope is simply
passed to core methods that allow to evaluate expressions, cast values, and so on.

Use of an IScope
A variable scope  of type IScope  can be used to:

get the current agent with: scope.getAgentScope()

evaluate an expression in the current scope:

know whether the scope has been interrupted:

IAgent agent = scope.getAgentScope();

String mes = Cast.asString(scope, message.value(scope));

boolean b = scope.interrupted();



Version: 1.9.3

Using GAMA flags
What are flags
GAMA and some of its components (software libraries) make it possible to change some of the software
behaviors by setting up "flags". Those are mainly for advanced users and should not be much of a
concern for most users.

Gama flags
GAMA flags are flags that are build directly by GAMA developers, they have to be set in the Gama.ini  file
as a new line item (or as a VM argument) like this -D<FLAGNAME>=true/false . For example :

Available flags

enable_debug : Set to true  by default, it enable  logging the debug messages (DEBUG.OUT(...),
DEBUG.ERR(...) which will follow the declaration of DEBUG.ON() on the classes). Set to false to
suppress all debug logging (but regular logging using DEBUG.LOG(...) or DEBUG.TIMER(...) will still
operate).

enable_logging : Set to true  by default, it enables simple logging activities using DEBUG.LOG(...),
DEBUG.TIMER(...). Set to false  to prevent all logging activities (incl. debug ones)

use_global_preference_store : set to true  by default, it saves the preferences in the global
(managed by the JRE) preference store. Set to false  to save them in each GAMA instance
preference store.
read_only : set to false  by default, set to true  if you want the files in the gaml editor to be read-
only (impossible to modify them)

Using Eclipse and SWT flags
GAMA 1.9.2 uses Eclipse 2022-12 as the based component for the IDE.

-Denable_logging=false



More precisely, GAMA uses the Eclipse Runtime which provides the foundational support for plug-ins,
extension points and extensions (among other facilities), it's the application structure and is built on top
of the OSGi framework.

GAMA also uses the Standard Widget Toolkit (or SWT for short). SWT is designed to provide efficient,
portable access to the user-interface facilities of the operating systems on which it is implemented.

Available flags

Both components can be tweaked thanks to the eclipse's Rich Client Platform interface using some flags
and parameters documented in the official documentation for Eclipse 2022-12.

Here are some links to more detailed explanations about both components and their respective flags:

Eclipse Runtime

SWT

Using JOGL flags
JOGL in addition with Glugen (both from JOGAMP) are the two libraries used in GAMA for 3D Graphics,
Multimedia and Processing.

Available flags

Most of them are documented on the official documentation website.

http://osgi.org/osgi_technology
https://www.eclipse.org/swt/
https://wiki.eclipse.org/Rich_Client_Platform
http://help.eclipse.org/2022-12/index.jsp
https://help.eclipse.org/2022-12/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fmisc%2Fruntime-options.html
https://www.eclipse.org/swt/faq.php
https://jogamp.org/jogl/www/
https://jogamp.org/gluegen/www/
https://jogamp.org/
https://jogamp.org/jogl/doc/userguide/


Version: 1.9.3

Product your own release of
GAMA
Install Maven if not already installed
Download the latest version of Maven here: <https://maven.apache.org/download.cgi>. Proceed to
install it as explained on this page: <https://maven.apache.org/install.html>

Locate the build.sh  shell script
It is located at the root of the gama  Git repository on your computer. The easiest way to proceed is to
select one of the GAMA projects in the Eclipse explorer and choose, in the contextual menu, Show in >
System Explorer . Then open a shell with this path and cd .. . Alternatively, you can open a shell and
cd  to your Git repository and then inside gama .

Launch the script
Simply type ../build.sh  in your terminal and the build should begin and log its activity.

Locate the applications built by the script
They are in ummisco.gama.product/target/products/ummisco.gama.application.product  in their
binary form or alternatively in ummisco.gama.product/target/products  in their zipped form.

Instruction for Travis build (Continuous
Integration)
GAMA is built by Travis-ci.org. There are some triggers for developers to control travis:

"ci skip": skip the build for a commit

https://maven.apache.org/download.cgi%3E
https://maven.apache.org/install.html%3E


"ci deploy": deploy the artifacts/features to p2 server (currently to the ovh server of gama,
www.gama-platform.org/updates)

"ci clean": used with ci deploy, this trigger remove all old artifacts/features in server's p2 repository

"ci docs": tell travis to regenerate the documentation of operators on wiki page, and update the
website githubio

"ci release": travis release zip package for OSs and place it on https://github.com/gama-
platform/gama/releases/tag/latest

"ci ext": The msi.gama.ext has big size, so it is not rebuilt every time, it will be compiled
automatically only when it was changed, Or use this command to force travis to deploy
msi.gama.ext

"ci fullbuild": Full deploy all features/plugins

These instructions above can be used in 2 ways:

Place them anywhere in the commit message, i.e: " fix bug #1111 ci deploy ci clean ci docs", "
update readme ci skip "

In Travis-ci, go to More Options -> Settings, add an environment variable named MSG, add the value
as string, i.e.: "ci fullbuild ci deploy ci clean ci docs"

http://www.gama-platform.org/updates
https://github.com/gama-platform/gama/releases/tag/latest
https://github.com/gama-platform/gama/releases/tag/latest


Version: 1.9.3

Generation of the
documentation
Table of contents

Requirements
Configuration

Generated files location

Workflow to generate wiki files

Workflow to generate PDF files

Workflow to generate unit tests

Main internal steps
Generate wiki files

Generate pdf files

Generate unit test files

How to document
The @doc annotation

the @example annotation

How to document operators

How to document statements

How to document skills

How to change the processor

General workflow of file generation

The GAMA documentation comes in 2 formats: a set of wiki files availaible from the wiki section of the
GitHub website and a PDF file. The PDF file is produced from the wiki files.

In the wiki files, some are hand-written by the GAMA community and some others are generated
automatically from the Java code and the associated java annotations.

The section summarizes:

how to generate this wiki files,



how to generate the PDF documentation,

how to generate the unit tests from the java annotations,

how to add documentation in the java code.

Requirements
To generate automatically the documentation, the GAMA Git version is required. See Install Git version
for more details.

Among all the GAMA plugins, the following ones are related to documentation generation:

msi.gama.processor : the java preprocessor is called during java compilation of the various plugins
and extract information from the java code and the java annotations. For each plugin it produces
the docGAMA.xml  file in the gaml  directory.

msi.gama.documentation : it contains all the java classes needed to gather all the docGAMA.xml  files
and generate wiki, pdf or unit test files.

In addition, the folder containing the wiki files is required. In the GitHub architecture, the wiki
documentation is stored in a separate Git repository https://github.com/gama-
platform/gama.wiki.git . A local clone of this repository should thus be created:

1. Open the Git perspective:

Windows > Open Perspective > Other...

Choose Git

2. Click on "Clone a Git repository"

In Source Git repository window:
Fill in the URI label with: https://github.com/gama-platform/gama.wiki.git

Other fields will be automatically filled in.

In Branch Selection windows,
check the master branch

Next

In Local Destination windows,
Choose the directory in which the gama Git repository has been cloned

Everything else should be unchecked

Finish

http://localhost:3000/wiki/InstallingGitVersion


3. In the Git perspective and the Git Repositories view, Right-Click on "Working Directory" inside the
gama.wiki  repository, and choose "Import projects"

In the Select a wizard to use for importing projects window:
"Import existing projects" should be checked

"Working Directory" should be selected

In Import Projects window:
**Uncheck "Search for nested project" **

Check the project gama.wiki

Finish

2. Go back to the Java perspective: a gama.wiki  plugin should have been added.

In order to generate the PDF file from the wiki files, we use an external application named Pandoc.
Follow the Pandoc installation instructions to install it. Specify the path to the pandoc folder in the file
"Constants.java", in the static constant CMD_PANDOC  : "yourAbsolutePathToPandoc/pandoc".

Note that Latex should be installed in order to be able to generate PDF files. Make sure you have already
installed Miktex (for OS Windows and Mac). Specify the path to the miktex folder in the file
"Constants.java", in the static constant CMD_PDFLATEX  : "yourAbsolutePathToMiktex/pdflatex".

Configuration

The location where the files are generated (and other constants used by the generator) are defined in
the file msi.gama.documentation/src/msi/gama/doc/util/Constants.java .

The use of Pandoc (path to the application and so on) is defined in the file
msi.gama.documentation/src/msi/gama/doc/util/ConvertToPDF.java . This should be changed in the
future...

Generated files location

The generated files are (by default) generated in various locations depending on their type:

wiki files: they are generated in the plugin gama.wiki .

pdf file: they are generated in the plugin msi.gama.documentation , in the folder files/gen/pdf .

unit test files: they are generated in the plugin msi.gama.models , in the folder models/Tests .

http://pandoc.org/
http://pandoc.org/installing.html
http://miktex.org/download


Workflow to generate wiki files
The typical workflow to generate the wiki files is as follow:

Clean and Build all the GAMA projects,

Run the MainGenerateWiki.java  file in the msi.gama.documentation ,

The wiki files are generated in the gama.wiki  plugin.

Workflow to generate PDF files
The typical workflow to generate the wiki files is as follow:

Clean and Build all the GAMA projects,

In the file mytemplate.tex, specify the absolute path to your "gama_style.tex" (it should be just next
to this file)

Run the MainGeneratePDF.java  file in the msi.gama.documentation , accepting all the packages
install of latex,

The wiki files are generated in the msi.gama.documentation  plugin.

Note that generating the PDF takes a lot of time. Please be patient!

If you want to update the file "gama_style.sty" (for syntax coloration), you have to turn the flag
"generateGamaStyle" to "true" (and make sure the file "keywords.xml" is already generated).

Workflow to generate unit tests
The typical workflow to generate the wiki files is as follow:

Clean and Build all the GAMA projects,

Run the MainGenerateUnitTest.java  file in the msi.gama.documentation ,

The wiki files are generated in the msi.gama.models  plugin.

Main internal steps
Clean and Build all the GAMA projects will create a docGAMA.xml  file in the gaml  directory of each
plugin,



The MainGenerateXXX.java  files then perform the following preparatory tasks:
they prepare the gen folder by deleting the existing folders and create all the folders that may
contain intermediary generated folders

they merge all the docGAMA.xml  files in a docGAMAglobal.xml  file, created in the
files/gen/java2xml  folder. Only the plugins that are referred in the product files are
merged.

After these common main first steps, each generator (wiki, pdf or unit test) performs specific tasks.

Generate wiki files

The docGamaglobal.xml  is parsed in order to generate 1 wiki file per kind of keyword:
operators,

statements,

skills,

architectures,

built-in species,

constants and units.

in addition an index wiki file containing all the GAML keywords is generated.

One wiki file is generated for each extension plugin, i.e. plugin existing in the Eclipse workspace but
not referred in the product.

Generate pdf files

The pdf generator uses the table of content (toc) file located in the files/input/toc  folder
( msi.gama.documetation  plugin) to organize the wiki files in a pdf file.

MainGeneratePDF.java  file parsers the toc file and create the associated PDF file using the wiki files
associated to each element of the toc. The generation is tuned using files located in the
files/input/pandocPDF  folder.

Generate unit test files

MainGenerateUnitTest.java  creates GAMA model files for each kind of keyword from the
docGAMAglobal.xml  file.

How to document



The documentation is generated from the Java code thanks to the Java additional processor, using
mainly information from Java classes or methods and from the Java annotations. (see the list of all
annotations for more details about annotations).

The @doc  annotation

Most of the annotations can contain a @doc  annotation, that can contain the main part of the
documentation.

For example, the inter  (inter) operator is commented using:

This @docannotation contains 5 parts:

value: describes the documented element,

comment: a general comment about the documented element,

usages: a set of ways to use the documented element, each of them being in a @usage  annotation.
The usage contains mainly a description and set of examples,

examples: a set of examples that are not related to a particular usage,

see: other related keywords.

the @example  annotation

@doc(
  value = "the intersection of the two operands",
  comment = "both containers are transformed into sets (so without duplicated element, 
cf. remove_deplicates operator) before the set intersection is computed.",
  usages = {
    @usage(value = "if an operand is a graph, it will be transformed into the set of 
its nodes"),
    @usage(value = "if an operand is a map, it will be transformed into the set of its 
values", examples = {
      @example(value = "[1::2, 3::4, 5::6] inter [2,4]", equals = "[2,4]"),
      @example(value = "[1::2, 3::4, 5::6] inter [1,3]", equals = "[]") }),
    @usage(value = "if an operand is a matrix, it will be transformed into the set of 
the lines", examples =
      @example(value = "matrix([[1,2,3],[4,5,4]]) inter [3,4]", equals = "[3,4]")) },
  examples = { 
    @example(value = "[1,2,3,4,5,6] inter [2,4]", equals = "[2,4]"),
    @example(value = "[1,2,3,4,5,6] inter [0,8]", equals = "[]") },
  see = { "remove_duplicates" })

http://localhost:3000/wiki/DevelopingIndexAnnotations
http://localhost:3000/wiki/DevelopingIndexAnnotations
http://localhost:3000/wiki/DevelopingIndexAnnotations#doc
http://localhost:3000/wiki/Operators#inter


This annotation contains a particular use example of the documented element. It is also used to
generate unit test and patterns.

The simplest way to use it:

In this example:

value  contains an example of use of the operator,

equals  contains the expected results of expression in value.

This will become in the documentation:

When no variable is given in the annotation, an automatic name is generated. The type of the variable is
determined thanks to the return type of the operator with these parameters.

This example can also generate a unit test model. In this case, the value in the variable will be compared
to the equals  part.

By default, the @example  annotation has the following default values:

isTestOnly  = false , meaning that the example will be added to the documentation too,

isExecutable  = true , meaning that content of value  can be added in a model and can be
compiled (it can be useful to switch it to false, in a documentation example containing name of
species that have not been defined),

test  = true , meaning that the content of value will be tested to the content of equals,

isPattern  = false .

How to document operators

A GAML operator is defined by a Java method annoted by the @operator  annotation (see the list of all
annotations for more details about annotations). In the core of GAMA, most of the operators are defined
in the plugin msi.gama.core  and in the package msi.gaml.operators .

The documentation generator will use information from:

@example(value = "[1::2, 3::4, 5::6] inter [2,4]", equals = "[2,4]")

list var3 <- [1::2, 3::4, 5::6] inter [2,4];    // var3 equals [2,4]

http://localhost:3000/wiki/DevelopingIndexAnnotations
http://localhost:3000/wiki/DevelopingIndexAnnotations


the @operator  annotation:
value : it provides the name(s) of the operator (if an operator has several names, the other
names will be considered as alternative names)

category : it is used to classified the operators in categories

the @doc  annotation,

the method definition:
the return value type

parameters and their type (if the method is static, the IScope attribute is not taken into account)

How to document statements

A GAML statement is defined by a Java class annoted by the @symbol  annotation (see the list of all
annotations for more details about annotations). In the core of GAMA, most of the statements are
defined in the plugin msi.gama.core  and in the package msi.gaml.statements .

The documentation generator will use information from:

@symbol  annotation,

@facets  annotation (each facet can contain a documentation in a @doc  annotation),
@inside  annotation (where the statement can be used),

@doc  annotation

How to document skills

A GAML skill is defined by a Java class annoted by the @skill  annotation (see the list of all annotations
for more details about annotations). In the core of GAMA, most of the skills are defined in the plugin
msi.gama.core  and in the package msi.gaml.skills .

The documentation generator will use information from:

@skill  annotation,

@vars  annotation (each var can contain a documentation in a @doc  annotation),

@doc  annotation

How to change the processor

http://localhost:3000/wiki/DevelopingIndexAnnotations
http://localhost:3000/wiki/DevelopingIndexAnnotations
http://localhost:3000/wiki/DevelopingIndexAnnotations


If you make some modifications in the plugin processor, you have to rebuild the .jar file associated to
the processor to take into account the changes. Here are the several steps you have to do:

In the msi.gama.processor  plugin, click on Generate Processor.jardesc  (in processor )

Click on Finish (you can check that msi.gama.processor  and ummisco.gama.annotations  are
checked). Accept the warning popup.

It should have changed the processor / plugins / msi.gama.processor_1.4.0.jar  file.

Right-click on the folder processor  to refresh.

In case some projects have errors after the update of the processor:

Clean and build the projects

Close Eclipse and reopen it and clean and build the projects

Check that Eclipse has been launched with the same JVM as GAMA. To this purpose, have a look at
Eclipse / About Eclipse , Installation details  and check the java version (i.e. after the -vm
option). If it does not fit with the one used for eclipse plugin, change it (in the eclipse.ini  file.

This following diagram explains roughly the workflow for the generation of the different files:


