Permalink
Fetching contributors…
Cannot retrieve contributors at this time
1403 lines (1167 sloc) 39.2 KB
;;;============================================================================
;;; File: "_utils.scm"
;;; Copyright (c) 1994-2016 by Marc Feeley, All Rights Reserved.
(include "fixnum.scm")
(include-adt "_envadt.scm")
(include-adt "_gvmadt.scm")
(include-adt "_ptreeadt.scm")
(include-adt "_sourceadt.scm")
'(begin ; old code
;;;----------------------------------------------------------------------------
;;
;; Utilities:
;; ---------
(define (make-counter next)
(lambda ()
(let ((result next))
(set! next (+ next 1))
result)))
(define (for-each-index proc lst)
(let loop ((lst lst) (i 0))
(if (pair? lst)
(begin
(proc (car lst) i)
(loop (cdr lst) (+ i 1))))))
(define (map-index proc lst)
(let loop ((lst lst) (i 0) (rev-result '()))
(if (pair? lst)
(loop (cdr lst) (+ i 1) (cons (proc (car lst) i) rev-result))
(reverse rev-result))))
(define (pos-in-list x l)
(let loop ((l l) (i 0))
(cond ((not (pair? l)) #f)
((eq? (car l) x) i)
(else (loop (cdr l) (+ i 1))))))
(define (object-pos-in-list x l)
(let loop ((l l) (i 0))
(cond ((not (pair? l)) #f)
((equal? (car l) x) i)
(else (loop (cdr l) (+ i 1))))))
(define (string-pos-in-list x l)
(let loop ((l l) (i 0))
(cond ((not (pair? l)) #f)
((string=? (car l) x) i)
(else (loop (cdr l) (+ i 1))))))
(define (take l n)
(let loop ((l l) (n n))
(if (> n 0)
(cons (car l) (loop (cdr l) (- n 1)))
'())))
(define (drop l n)
(let loop ((l l) (n n))
(if (> n 0)
(loop (cdr l) (- n 1))
l)))
(define (pair-up l1 l2)
(define (pair l1 l2)
(if (pair? l1)
(cons (cons (car l1) (car l2)) (pair (cdr l1) (cdr l2)))
'()))
(pair l1 l2))
(define (last-pair l)
(let loop ((l l))
(if (pair? (cdr l))
(loop (cdr l))
l)))
(define (keep keep? lst)
(cond ((null? lst) '())
((keep? (car lst)) (cons (car lst) (keep keep? (cdr lst))))
(else (keep keep? (cdr lst)))))
(define (every? pred? lst)
(or (null? lst)
(and (pred? (car lst))
(every? pred? (cdr lst)))))
(define (remq x lst)
(cond ((null? lst) '())
((eq? (car lst) x) (cdr lst))
(else (cons (car lst) (remq x (cdr lst))))))
(define (sort-list l <?)
(define (mergesort l)
(define (merge l1 l2)
(cond ((null? l1) l2)
((null? l2) l1)
(else
(let ((e1 (car l1)) (e2 (car l2)))
(if (<? e1 e2)
(cons e1 (merge (cdr l1) l2))
(cons e2 (merge l1 (cdr l2))))))))
(define (split l)
(if (or (null? l) (null? (cdr l)))
l
(cons (car l) (split (cddr l)))))
(if (or (null? l) (null? (cdr l)))
l
(let* ((l1 (mergesort (split l)))
(l2 (mergesort (split (cdr l)))))
(merge l1 l2))))
(mergesort l))
(define (list->vect l)
(let* ((n (list-length l))
(v (make-vector n)))
(let loop ((l l) (i 0))
(if (pair? l)
(begin
(vector-set! v i (car l))
(loop (cdr l) (+ i 1)))
v))))
(define (vect->list v)
(let loop ((l '()) (i (- (vector-length v) 1)))
(if (< i 0)
l
(loop (cons (vector-ref v i) l) (- i 1)))))
(define (list->str l)
(let* ((n (list-length l))
(s (make-string n)))
(let loop ((l l) (i 0))
(if (pair? l)
(begin
(string-set! s i (car l))
(loop (cdr l) (+ i 1)))
s))))
(define (str->list s)
(let loop ((l '()) (i (- (string-length s) 1)))
(if (< i 0)
l
(loop (cons (string-ref s i) l) (- i 1)))))
(define (make-stretchable-vector init)
(vector '#() init))
(define (stretchable-vector-length sv)
(vector-length (vector-ref sv 0)))
(define (stretchable-vector-ref sv i)
(let* ((v (vector-ref sv 0))
(len (vector-length v)))
(if (< i len)
(vector-ref v i)
(vector-ref sv 1))))
(define (stretchable-vector-set! sv i x)
(let* ((v (vector-ref sv 0))
(len (vector-length v)))
(if (< i len)
(vector-set! v i x)
(let ((new-v
(stretch-vector
v
(+ (max i (quotient (* len 3) 2)) 1) ; make 50% bigger at least
(vector-ref sv 1))))
(vector-set! sv 0 new-v)
(vector-set! new-v i x)))))
(define (stretch-vector v n init)
(let ((len (vector-length v))
(new-v (make-vector n)))
(let loop1 ((i 0))
(if (< i len)
(begin
(vector-set! new-v i (vector-ref v i))
(loop1 (+ i 1)))))
(let loop2 ((i len))
(if (< i n)
(begin
(vector-set! new-v i init)
(loop2 (+ i 1)))))
new-v))
(define (stretchable-vector-copy sv)
(let* ((v1 (vector-ref sv 0))
(n (vector-length v1))
(v2 (make-vector n)))
(let loop ((i (- n 1)))
(if (>= i 0)
(begin
(vector-set! v2 i (vector-ref v1 i))
(loop (- i 1)))
(vector v2 (vector-ref sv 1))))))
(define (stretchable-vector-for-each proc sv)
(let* ((v (vector-ref sv 0))
(n (vector-length v)))
(let loop ((i 0))
(if (< i n)
(begin
(proc (vector-ref v i) i)
(loop (+ i 1)))))))
(define (bits-and x y) ; bitwise and of x and y, assumes x and y >= 0
(define (band x y)
(cond ((= x 0) 0)
((= y 0) 0)
(else
(let ((z (* (band (quotient x 2) (quotient y 2)) 2)))
(if (and (odd? x) (odd? y))
(+ z 1)
z)))))
(band x y))
(define (bits-or x y) ; bitwise or of x and y, assumes x and y >= 0
(define (bor x y)
(cond ((= x 0) y)
((= y 0) x)
(else
(let ((z (* (bor (quotient x 2) (quotient y 2)) 2)))
(if (or (odd? x) (odd? y))
(+ z 1)
z)))))
(bor x y))
(define (bits-shl x y) ; shift x left by y bits, assumes x>=0 and y>=0
(define (shl x y)
(if (> y 0)
(shl (* x 2) (- y 1))
x))
(shl x y))
(define (bits-shr x y) ; shift x right by y bits, assumes x>=0 and y>=0
(define (shr x y)
(if (> y 0)
(shr (quotient x 2) (- y 1))
x))
(shr x y))
;;;----------------------------------------------------------------------------
;;
;; Exception processing
;; --------------------
(define (with-exception-handling proc)
(let ((old-exception-handler throw-to-exception-handler))
(let ((val
(call-with-current-continuation
(lambda (cont)
(set! throw-to-exception-handler cont)
(proc)))))
(set! throw-to-exception-handler old-exception-handler)
val)))
(define (throw-to-exception-handler val)
(fatal-err "Internal error, no exception handler at this point" val))
;;;----------------------------------------------------------------------------
;;
;; Compiler error processing
;; -------------------------
(define (compiler-error msg . args)
(display "*** ERROR -- ")
(display msg)
(for-each (lambda (x) (display " ") (write x)) args)
(newline)
(compiler-abort))
(define (compiler-user-error loc msg . args)
(display "*** ERROR") (locat-show " IN " loc) (display " -- ")
(display msg)
(for-each (lambda (x) (display " ") (write x)) args)
(newline)
(compiler-abort))
(define (compiler-user-warning loc msg . args)
(if warnings-requested?
(begin
(display "*** WARNING") (locat-show " IN " loc) (display " -- ")
(display msg)
(for-each (lambda (x) (display " ") (write x)) args)
(newline))))
(define (compiler-internal-error msg . args)
(display "*** ERROR -- Compiler internal error detected") (newline)
(display "*** in procedure ") (display msg)
(for-each (lambda (x) (display " ") (write x)) args)
(newline)
(compiler-abort))
(define (compiler-limitation-error msg . args)
(display "*** ERROR -- Compiler limit reached") (newline)
(display "*** ") (display msg)
(for-each (lambda (x) (display " ") (write x)) args)
(newline)
(compiler-abort))
(define (compiler-abort)
(throw-to-exception-handler #f))
(define warnings-requested? #f)
(set! warnings-requested? #t)
;;;----------------------------------------------------------------------------
;;
;; Transitive closure and topological sorting.
(define (make-gnode var depvars) (vector var depvars)) ; graph node
(define (gnode-var x) (vector-ref x 0))
(define (gnode-depvars x) (vector-ref x 1))
(define (transitive-closure graph)
(define changed? #f)
(define (closure depvars)
(varset-union-multi
(cons depvars
(map (lambda (var) (gnode-find-depvars var graph))
(varset->list depvars)))))
(let ((new-graph
(map (lambda (x)
(let ((new-depvars (closure (gnode-depvars x))))
(if (not (= (varset-size new-depvars)
(varset-size (gnode-depvars x))))
(set! changed? #t))
(make-gnode (gnode-var x) new-depvars)))
graph)))
(if changed?
(transitive-closure new-graph)
new-graph)))
(define (gnode-find-depvars var graph)
(if (null? graph)
(varset-empty)
(let ((node (car graph)))
(if (eq? (gnode-var node) var)
(gnode-depvars node)
(gnode-find-depvars var (cdr graph))))))
(define (gnodes-remove graph gnodes)
(if (null? graph)
'()
(let ((node (car graph)))
(if (memq node gnodes)
(gnodes-remove (cdr graph) gnodes)
(cons node (gnodes-remove (cdr graph) gnodes))))))
(define (topological-sort graph) ; topological sort fixed to handle cycles
(if (null? graph)
'()
(let ((to-remove (or (remove-no-depvars graph) (remove-cycle graph))))
(let ((vars (list->varset (map gnode-var to-remove))))
(cons vars
(topological-sort
(map (lambda (x)
(make-gnode
(gnode-var x)
(varset-difference (gnode-depvars x) vars)))
(gnodes-remove graph to-remove))))))))
(define (remove-no-depvars graph)
(let ((nodes-with-no-depvars
(keep (lambda (x) (varset-empty? (gnode-depvars x))) graph)))
(if (null? nodes-with-no-depvars)
#f
nodes-with-no-depvars)))
(define (remove-cycle graph)
(define (remove l)
(let* ((node (car l))
(depvars (gnode-depvars node)))
(define (equal-depvars? x) (varset-equal? (gnode-depvars x) depvars))
(define (member-depvars? x) (varset-member? (gnode-var x) depvars))
(if (member-depvars? node)
(let ((depvar-graph (keep member-depvars? graph)))
(if (every? equal-depvars? depvar-graph)
depvar-graph
(remove (cdr l))))
(remove (cdr l)))))
(remove graph))
;;;----------------------------------------------------------------------------
;;
;; SET manipulation stuff
;; ----------------------
;; Parse tree sets
(define (ptset-empty) ; return the empty set
'())
(define (list->ptset lst) ; convert list to set
lst)
(define (ptset->list set) ; convert set to list
set)
(define (ptset-size set) ; return cardinality of set
(list-length set))
(define (ptset-empty? set) ; is 'x' the empty set?
(null? set))
(define (ptset-member? x set) ; is 'x' a member of the 'set'?
(and (not (null? set))
(or (eq? x (car set))
(ptset-member? x (cdr set)))))
(define (ptset-adjoin set x) ; add the element 'x' to the 'set'
(if (ptset-member? x set) set (cons x set)))
(define (ptset-every? pred? set) ; is 'pred?' true of every element
(or (null? set)
(and (pred? (car set))
(ptset-every? pred? (cdr set)))))
(define (ptset-remove set x) ; remove the element 'x' from 'set'
(cond ((null? set)
'())
((eq? (car set) x)
(cdr set))
(else
(cons (car set) (ptset-remove (cdr set) x)))))
;; Variable sets
(define (varset-empty) ; return the empty set
'())
(define (varset-singleton x) ; create a set containing only 'x'
(list x))
(define (list->varset lst) ; convert list to set
lst)
(define (varset->list set) ; convert set to list
set)
(define (varset-size set) ; return cardinality of set
(list-length set))
(define (varset-empty? set) ; is 'x' the empty set?
(null? set))
(define (varset-member? x set) ; is 'x' a member of the 'set'?
(and (not (null? set))
(or (eq? x (car set))
(varset-member? x (cdr set)))))
(define (varset-adjoin set x) ; add the element 'x' to the 'set'
(if (varset-member? x set) set (cons x set)))
(define (varset-remove set x) ; remove the element 'x' from 'set'
(cond ((null? set)
'())
((eq? (car set) x)
(cdr set))
(else
(cons (car set) (varset-remove (cdr set) x)))))
(define (varset-equal? s1 s2) ; are 's1' and 's2' equal sets?
(and (varset-subset? s1 s2)
(varset-subset? s2 s1)))
(define (varset-subset? s1 s2) ; is 's1' a subset of 's2'?
(cond ((null? s1)
#t)
((varset-member? (car s1) s2)
(varset-subset? (cdr s1) s2))
(else
#f)))
(define (varset-difference set1 set2) ; return difference of sets
(cond ((null? set1)
'())
((varset-member? (car set1) set2)
(varset-difference (cdr set1) set2))
(else
(cons (car set1) (varset-difference (cdr set1) set2)))))
(define (varset-union set1 set2) ; return union of sets
(define (union s1 s2)
(cond ((null? s1)
s2)
((varset-member? (car s1) s2)
(union (cdr s1) s2))
(else
(cons (car s1) (union (cdr s1) s2)))))
(if (varset-smaller? set1 set2)
(union set1 set2)
(union set2 set1)))
(define (varset-intersection set1 set2) ; return intersection of sets
(define (intersection s1 s2)
(cond ((null? s1)
'())
((varset-member? (car s1) s2)
(cons (car s1) (intersection (cdr s1) s2)))
(else
(intersection (cdr s1) s2))))
(if (varset-smaller? set1 set2)
(intersection set1 set2)
(intersection set2 set1)))
(define (varset-intersects? set1 set2) ; do sets 'set1' and 'set2' intersect?
(not (varset-empty? (varset-intersection set1 set2))))
(define (varset-smaller? set1 set2)
(if (null? set1)
(not (null? set2))
(if (null? set2)
#f
(varset-smaller? (cdr set1) (cdr set2)))))
(define (varset-union-multi sets)
(if (null? sets)
(varset-empty)
(n-ary varset-union (car sets) (cdr sets))))
(define (n-ary function first rest)
(if (null? rest)
first
(n-ary function (function first (car rest)) (cdr rest))))
;;;----------------------------------------------------------------------------
;;
;; QUEUE manipulation stuff
;; ------------------------
(define (list->queue list) ; convert list to queue
(cons list (if (pair? list) (last-pair list) '())))
(define (queue->list queue) ; convert queue to list
(car queue))
(define (queue-empty) ; the empty queue
(cons '() '()))
(define (queue-empty? queue) ; is the queue empty?
(null? (car queue)))
(define (queue-get! queue) ; remove the first element of the queue
(if (null? (car queue))
(compiler-internal-error "queue-get!, queue is empty")
(let ((x (caar queue)))
(set-car! queue (cdar queue))
(if (null? (car queue)) (set-cdr! queue '()))
x)))
(define (queue-put! queue x) ; add an element to the end of the queue
(let ((entry (cons x '())))
(if (null? (car queue))
(set-car! queue entry)
(set-cdr! (cdr queue) entry))
(set-cdr! queue entry)
x))
;;;============================================================================
)
(define (append-lists lst)
(define (append1 lst)
(if (pair? (cdr lst))
(append2 (car lst) (append1 (cdr lst)))
(car lst)))
(define (append2 lst1 lst2)
(if (pair? lst1)
(let ((result (cons (car lst1) '())))
(set-cdr!
(let loop ((end result) (lst1 (cdr lst1)))
(if (pair? lst1)
(let ((tail (cons (car lst1) '())))
(set-cdr! end tail)
(loop tail (cdr lst1)))
end))
lst2)
result)
lst2))
(if (pair? lst)
(append1 lst)
'()))
(begin;**************brad
;(##include "../gsc/_ptree1adt.scm")
;(##include "../gsc/_envadt.scm")
;;;----------------------------------------------------------------------------
;;
;; Utilities:
;; ---------
(define (reverse-append! xrev y)
(if (null? xrev)
y
(let ((temp (cdr xrev)))
(set-cdr! xrev y)
(reverse-append! temp xrev))))
(define (list-length lst)
(let loop ((n 0) (lst lst))
(if (pair? lst)
(loop (+ n 1) (cdr lst))
n)))
(define (make-counter next)
(lambda ()
(let ((result next))
(set! next (+ next 1))
result)))
(define (for-each-index proc lst)
(let loop ((lst lst) (i 0))
(if (pair? lst)
(begin
(proc (car lst) i)
(loop (cdr lst) (+ i 1))))))
(define (map-index proc lst)
(let loop ((lst lst) (i 0) (rev-result '()))
(if (pair? lst)
(loop (cdr lst) (+ i 1) (cons (proc (car lst) i) rev-result))
(reverse rev-result))))
(define (pos-in-list x l)
(let loop ((l l) (i 0))
(cond ((not (pair? l)) #f)
((eq? (car l) x) i)
(else (loop (cdr l) (+ i 1))))))
(define (object-pos-in-list x l)
(let loop ((l l) (i 0))
(cond ((not (pair? l)) #f)
((equal? (car l) x) i)
(else (loop (cdr l) (+ i 1))))))
(define (string-pos-in-list x l)
(let loop ((l l) (i 0))
(cond ((not (pair? l)) #f)
((string=? (car l) x) i)
(else (loop (cdr l) (+ i 1))))))
(define (take l n)
(let loop ((l l) (n n))
(if (> n 0)
(cons (car l) (loop (cdr l) (- n 1)))
'())))
(define (drop l n)
(let loop ((l l) (n n))
(if (> n 0)
(loop (cdr l) (- n 1))
l)))
(define (pair-up l1 l2)
(define (pair l1 l2)
(if (pair? l1)
(cons (cons (car l1) (car l2)) (pair (cdr l1) (cdr l2)))
'()))
(pair l1 l2))
(define (last-pair l)
(let loop ((l l))
(if (pair? (cdr l))
(loop (cdr l))
l)))
(define (keep keep? lst)
(let loop ((lst lst) (head '()))
(cond ((null? lst)
(reverse-append! head lst))
((keep? (car lst))
(loop (cdr lst) (cons (car lst) head)))
(else
(loop (cdr lst) head)))))
(define (every? pred? lst)
(or (null? lst)
(and (pred? (car lst))
(every? pred? (cdr lst)))))
(define (remq x lst)
(let loop ((l lst) (head '()))
(cond ((null? l) ; didn't find x, so just return lst
lst)
((eq? (car l) x)
(reverse-append! head (cdr l)))
(else
(loop (cdr l) (cons (car l) head))))))
(define (sort-list l <?)
(define (mergesort l)
(define (merge l1 l2)
(cond ((null? l1) l2)
((null? l2) l1)
(else
(let ((e1 (car l1)) (e2 (car l2)))
(if (<? e1 e2)
(cons e1 (merge (cdr l1) l2))
(cons e2 (merge l1 (cdr l2))))))))
(define (split l)
(if (or (null? l) (null? (cdr l)))
l
(cons (car l) (split (cddr l)))))
(if (or (null? l) (null? (cdr l)))
l
(let* ((l1 (mergesort (split l)))
(l2 (mergesort (split (cdr l)))))
(merge l1 l2))))
(mergesort l))
(define (list->vect l)
(let* ((n (list-length l))
(v (make-vector n)))
(let loop ((l l) (i 0))
(if (pair? l)
(begin
(vector-set! v i (car l))
(loop (cdr l) (+ i 1)))
v))))
(define (vect->list v)
(let loop ((l '()) (i (- (vector-length v) 1)))
(if (< i 0)
l
(loop (cons (vector-ref v i) l) (- i 1)))))
(define (list->str l)
(let* ((n (list-length l))
(s (make-string n)))
(let loop ((l l) (i 0))
(if (pair? l)
(begin
(string-set! s i (car l))
(loop (cdr l) (+ i 1)))
s))))
(define (str->list s)
(let loop ((l '()) (i (- (string-length s) 1)))
(if (< i 0)
l
(loop (cons (string-ref s i) l) (- i 1)))))
(define (read-line* in)
(let loop ((lst '()))
(let ((c (read-char in)))
(if (or (eof-object? c)
(char=? c #\return)
(char=? c #\newline))
(list->str (reverse lst))
(loop (cons c lst))))))
;;;----------------------------------------------------------------------------
;; Strechable vectors
;; ------------------
(define (make-stretchable-vector init)
(vector '#() init 0))
(define (stretchable-vector-length sv)
(vector-ref sv 2))
(define (stretchable-vector-ref sv i)
(let* ((v (vector-ref sv 0))
(len (vector-length v)))
(if (< i len)
(vector-ref v i)
(vector-ref sv 1))))
(define (stretchable-vector-set! sv i x)
(let* ((v (vector-ref sv 0))
(len (vector-length v)))
(if (not (< i (vector-ref sv 2)))
(vector-set! sv 2 (+ i 1)))
(if (< i len)
(vector-set! v i x)
(let ((new-v
(stretch-vector
v
(+ (max i (quotient (* len 3) 2)) 1) ; make 50% bigger at least
(vector-ref sv 1))))
(vector-set! sv 0 new-v)
(vector-set! new-v i x)))))
(define (stretch-vector v n init)
(let ((len (vector-length v))
(new-v (make-vector n)))
(let loop1 ((i 0))
(if (< i len)
(begin
(vector-set! new-v i (vector-ref v i))
(loop1 (+ i 1)))))
(let loop2 ((i len))
(if (< i n)
(begin
(vector-set! new-v i init)
(loop2 (+ i 1)))))
new-v))
(define (stretchable-vector-copy sv)
(let* ((v1 (vector-ref sv 0))
(n (vector-ref sv 2))
(v2 (make-vector n)))
(let loop ((i (- n 1)))
(if (>= i 0)
(begin
(vector-set! v2 i (vector-ref v1 i))
(loop (- i 1)))
(vector v2 (vector-ref sv 1) n)))))
(define (stretchable-vector-for-each proc sv)
(let ((v (vector-ref sv 0))
(n (vector-ref sv 2)))
(let loop ((i 0))
(if (< i n)
(begin
(proc (vector-ref v i) i)
(loop (+ i 1)))))))
(define (stretchable-vector->list sv)
(let ((v (vector-ref sv 0))
(n (vector-ref sv 2)))
(let loop ((i (- n 1)) (lst '()))
(if (< i 0)
lst
(loop (- i 1)
(cons (vector-ref v i) lst))))))
;;;----------------------------------------------------------------------------
;; Ordered table
;; -------------
(define (make-ordered-table test)
(vector (make-table 'test: test)
(make-stretchable-vector #f)
0))
(define (ordered-table-length ot)
(vector-ref ot 2))
(define (ordered-table-index ot key)
(table-ref (vector-ref ot 0) key #f))
(define (ordered-table-lookup ot key)
(let ((i (table-ref (vector-ref ot 0) key #f)))
(if i
(cdr (stretchable-vector-ref (vector-ref ot 1) i))
#f)))
(define (ordered-table-enter ot key proc)
(let ((i (vector-ref ot 2)))
(vector-set! ot 2 (+ i 1))
(table-set! (vector-ref ot 0) key i)
(let ((result (proc key i)))
(stretchable-vector-set! (vector-ref ot 1) i (cons key result))
result)))
(define (ordered-table->list ot)
(let loop ((i (- (vector-ref ot 2) 1)) (lst '()))
(if (< i 0)
lst
(loop (- i 1)
(cons (stretchable-vector-ref (vector-ref ot 1) i) lst)))))
;;;----------------------------------------------------------------------------
;; Bitwise operations
;; ------------------
(define (bits-and x y) ; bitwise and of x and y, assumes x and y >= 0
(define (band x y)
(cond ((= x 0) 0)
((= y 0) 0)
(else
(let ((z (* (band (quotient x 2) (quotient y 2)) 2)))
(if (and (odd? x) (odd? y))
(+ z 1)
z)))))
(band x y))
(define (bits-or x y) ; bitwise or of x and y, assumes x and y >= 0
(define (bor x y)
(cond ((= x 0) y)
((= y 0) x)
(else
(let ((z (* (bor (quotient x 2) (quotient y 2)) 2)))
(if (or (odd? x) (odd? y))
(+ z 1)
z)))))
(bor x y))
(define (bits-shl x y) ; shift x left by y bits, assumes x>=0 and y>=0
(define (shl x y)
(if (> y 0)
(shl (* x 2) (- y 1))
x))
(shl x y))
(define (bits-shr x y) ; shift x right by y bits, assumes x>=0 and y>=0
(define (shr x y)
(if (> y 0)
(shr (quotient x 2) (- y 1))
x))
(shr x y))
;;;----------------------------------------------------------------------------
;;
;; Exception processing
;; --------------------
(define (with-exception-handling proc)
(let ((old-exception-handler throw-to-exception-handler))
(let ((val
(call-with-current-continuation
(lambda (cont)
(set! throw-to-exception-handler cont)
(proc)))))
(set! throw-to-exception-handler old-exception-handler)
val)))
(define (throw-to-exception-handler val)
(fatal-err "Internal error, no exception handler at this point" val))
;;;----------------------------------------------------------------------------
;;
;; Compiler error processing
;; -------------------------
(define (compiler-error msg . args)
(display "*** ERROR -- ")
(display msg)
(for-each (lambda (x) (display " ") (write x)) args)
(newline)
(compiler-abort))
(define (compiler-user-error loc msg . args)
(display "*** ERROR") (locat-show " IN " loc) (display " -- ")
(display msg)
(for-each (lambda (x) (display " ") (write x)) args)
(newline)
(compiler-abort))
(define (compiler-user-warning loc msg . args)
(if warnings-requested?
(begin
(display "*** WARNING") (locat-show " IN " loc) (display " -- ")
(display msg)
(for-each (lambda (x) (display " ") (write x)) args)
(newline))))
(define (compiler-internal-error msg . args)
(display "*** ERROR -- Compiler internal error detected") (newline)
(display "*** in procedure ") (display msg)
(for-each (lambda (x) (display " ") (write x)) args)
(newline)
(compiler-abort))
(define (compiler-limitation-error msg . args)
(display "*** ERROR -- Compiler limit reached") (newline)
(display "*** ") (display msg)
(for-each (lambda (x) (display " ") (write x)) args)
(newline)
(compiler-abort))
(define (compiler-abort)
(throw-to-exception-handler #f))
(define warnings-requested? #f)
(set! warnings-requested? #t)
;;;----------------------------------------------------------------------------
;;
;; Transitive closure and topological sorting.
(define (make-gnode var depvars) (vector var depvars)) ; graph node
(define (gnode-var x) (vector-ref x 0))
(define (gnode-depvars x) (vector-ref x 1))
(define (transitive-closure graph)
(let* ((graph-vector
(list->vect
(sort-list graph
(lambda (x y) (varset-< (gnode-var x) (gnode-var y))))))
(graph-size
(vector-length graph-vector)))
(let loop ((graph-vector graph-vector))
(let ((changed? #f))
(define (closure depvars)
(varset-union-multi
(cons depvars
(map (lambda (var) (gnode-find-depvars var graph-vector))
(varset->list depvars)))))
(let ((new-graph-vector
(let ((result (make-vector graph-size)))
(do ((i 0 (+ i 1)))
((= i graph-size) result)
(let ((x (vector-ref graph-vector i)))
(let ((new-depvars (closure (gnode-depvars x))))
(if (not (= (varset-size new-depvars)
(varset-size (gnode-depvars x))))
(set! changed? #t))
(vector-set!
result
i
(make-gnode (gnode-var x) new-depvars))))))))
(if changed?
(loop new-graph-vector)
(vect->list new-graph-vector)))))))
(define (gnode-find-depvars var graph-vector)
(let loop ((f 0) (l (- (vector-length graph-vector) 1)))
(if (< l f)
(varset-empty)
(let* ((i (quotient (+ l f) 2))
(node (vector-ref graph-vector i)))
(cond ((eq? (gnode-var node) var)
(gnode-depvars node))
((varset-< var (gnode-var node))
(loop f (- i 1)))
(else
(loop (+ i 1) l)))))))
'(begin ; old code
(define (transitive-closure graph)
(define changed? #f)
(define (closure depvars)
(varset-union-multi
(cons depvars
(map (lambda (var) (gnode-find-depvars var graph))
(varset->list depvars)))))
(let ((new-graph
(map (lambda (x)
(let ((new-depvars (closure (gnode-depvars x))))
(if (not (= (varset-size new-depvars)
(varset-size (gnode-depvars x))))
(set! changed? #t))
(make-gnode (gnode-var x) new-depvars)))
graph)))
(if changed?
(transitive-closure new-graph)
new-graph)))
(define (gnode-find-depvars var graph)
(if (null? graph)
(varset-empty)
(let ((node (car graph)))
(if (eq? (gnode-var node) var)
(gnode-depvars node)
(gnode-find-depvars var (cdr graph))))))
)
(define (gnodes-remove graph gnodes)
(if (null? graph)
'()
(let ((node (car graph)))
(if (memq node gnodes)
(gnodes-remove (cdr graph) gnodes)
(cons node (gnodes-remove (cdr graph) gnodes))))))
(define (topological-sort graph) ; topological sort fixed to handle cycles
(if (null? graph)
'()
(let ((to-remove (or (remove-no-depvars graph) (remove-cycle graph))))
(let ((vars (list->varset (map gnode-var to-remove))))
(cons vars
(topological-sort
(map (lambda (x)
(make-gnode
(gnode-var x)
(varset-difference (gnode-depvars x) vars)))
(gnodes-remove graph to-remove))))))))
(define (remove-no-depvars graph)
(let ((nodes-with-no-depvars
(keep (lambda (x) (varset-empty? (gnode-depvars x))) graph)))
(if (null? nodes-with-no-depvars)
#f
nodes-with-no-depvars)))
(define (remove-cycle graph)
(define (remove l)
(let* ((node (car l))
(depvars (gnode-depvars node)))
(define (equal-depvars? x) (varset-equal? (gnode-depvars x) depvars))
(define (member-depvars? x) (varset-member? (gnode-var x) depvars))
(if (member-depvars? node)
(let ((depvar-graph (keep member-depvars? graph)))
(if (every? equal-depvars? depvar-graph)
depvar-graph
(remove (cdr l))))
(remove (cdr l)))))
(remove graph))
;;;----------------------------------------------------------------------------
;;
;; SET manipulation stuff
;; ----------------------
;; Parse tree sets
(define (ptset-empty) ; return the empty set
(vector '() '() '() '() '() '() '() '() '() '() '()))
(define ptset-empty-set
(ptset-empty))
(define (list->ptset lst) ; convert list to set
(let ((set (ptset-empty)))
(let loop ((lst lst))
(if (pair? lst)
(begin
(ptset-adjoin set (car lst))
(loop (cdr lst)))
set))))
(define (ptset->list set) ; convert set to list
(append-lists (vect->list set)))
(define (ptset-size set) ; return cardinality of set
(apply + (map list-length (vect->list set))))
(define (ptset-empty? set) ; is 'x' the empty set?
(equal? set ptset-empty-set))
(define (ptset-member? x set) ; is 'x' a member of the 'set'?
(let* ((hash-entry (modulo (node-stamp x) 11))
(lst (vector-ref set hash-entry)))
(memq x lst)))
(define (ptset-adjoin set x) ; add the element 'x' to the 'set'
(let* ((hash-entry (modulo (node-stamp x) 11))
(lst (vector-ref set hash-entry)))
(if (not (memq x lst))
(vector-set! set hash-entry (cons x lst)))
set))
(define (ptset-every? pred? set) ; is 'pred?' true of every element
(define (every? pred? lst)
(or (null? lst)
(and (pred? (car lst))
(every? pred? (cdr lst)))))
(every? (lambda (lst) (every? pred? lst)) (vect->list set)))
(define (ptset-remove set x) ; remove the element 'x' from 'set'
(let* ((hash-entry (modulo (node-stamp x) 11))
(lst (vector-ref set hash-entry)))
(cond ((null? lst) set)
((eq? x (car lst))
(vector-set! set hash-entry (cdr lst))
set)
(else
(let loop ((lst lst) (rest (cdr lst)))
(cond ((null? rest)
set)
((eq? (car rest) x)
(set-cdr! lst (cdr rest))
set)
(else
(loop rest (cdr rest)))))))))
;; Variable sets
(define (varset-reverse-append! xrev y)
(if (null? xrev)
(varset-wrap y)
(let ((temp (cdr xrev)))
(set-cdr! xrev y)
(varset-reverse-append! temp xrev))))
(define (varset-wrap lst) ; when we know it is a sorted list
(cons #f lst))
(define (varset-unwrap set)
(cdr set))
(define (varset-empty) ; return the empty set
(varset-wrap '()))
(define (varset-singleton x) ; create a set containing only 'x'
(varset-wrap (list x)))
(define (list->varset lst) ; convert list to set
(if (null? lst)
(varset-empty)
(let loop ((last (car lst)) (next (cdr lst)))
(cond ((null? next)
(varset-wrap lst)) ; sorted
((varset-< last (car next))
(loop (car next) (cdr next))) ; OK so far
(else
(do ((lst lst (cdr lst))
(result '() (cons (varset-singleton (car lst)) result)))
((null? lst) (varset-union-multi result)))))))) ; crude but effective sort
(define (varset->list set) ; convert set to list
(varset-unwrap set))
(define (varset-size set) ; return cardinality of set
(let ((v (car set)))
(if v
(vector-length v)
(list-length (varset-unwrap set)))))
(define (varset-empty? set) ; is 'x' the empty set?
(null? (varset-unwrap set)))
(define (varset-< x y)
(< (var-stamp x) (var-stamp y)))
(define (varset-member? x set) ; is 'x' a member of the 'set'?
(if (not (car set))
(set-car! set (list->vect (cdr set))))
(let ((v (car set)))
(let loop ((f 0) (l (- (vector-length v) 1)))
(and (<= f l)
(let* ((index (quotient (+ f l) 2))
(y (vector-ref v index)))
(or (eq? x y)
(if (varset-< x y)
(loop f (- index 1))
(loop (+ index 1) l))))))))
(define (varset-adjoin set x) ; add the element 'x' to the 'set'
(let loop ((s (varset-unwrap set)) (rev '()))
(cond ((or (null? s)
(varset-< x (car s)))
(varset-reverse-append! rev (cons x s)))
((eq? (car s) x)
set)
(else
(loop (cdr s) (cons (car s) rev))))))
(define (varset-remove set x) ; remove the element 'x' from 'set'
(let loop ((s (varset-unwrap set)) (rev '()))
(cond ((or (null? s)
(varset-< x (car s)))
set)
((eq? (car s) x)
(varset-reverse-append! rev (cdr s)))
(else
(loop (cdr s) (cons (car s) rev))))))
(define (varset-equal? s1 s2) ; are 's1' and 's2' equal sets?
(let loop ((s1 (varset-unwrap s1)) (s2 (varset-unwrap s2)))
(cond ((null? s1)
(null? s2))
((null? s2)
#f)
(else
(and (eq? (car s1) (car s2))
(loop (cdr s1) (cdr s2)))))))
(define (varset-difference s1 s2)
(let loop ((s1 (varset-unwrap s1)) (s2 (varset-unwrap s2)) (revresult '()))
(if (or (null? s1) (null? s2))
(varset-reverse-append! revresult s1)
(let ((x (car s1))
(y (car s2)))
(cond ((varset-< x y)
(loop (cdr s1) s2 (cons x revresult)))
((eq? x y)
(loop (cdr s1) (cdr s2) revresult))
(else
(loop s1 (cdr s2) revresult)))))))
(define (varset-union s1 s2) ; return union of sets
(let loop ((s1 (varset-unwrap s1)) (s2 (varset-unwrap s2)) (revresult '()))
(cond ((null? s1)
(varset-reverse-append! revresult s2))
((null? s2)
(varset-reverse-append! revresult s1))
(else
(let ((x (car s1))
(y (car s2)))
(cond ((eq? x y)
(loop (cdr s1) (cdr s2) (cons x revresult)))
((varset-< x y)
(loop (cdr s1) s2 (cons x revresult)))
(else
(loop s1 (cdr s2) (cons y revresult)))))))))
(define (varset-intersection s1 s2) ; return intersection of sets
(let loop ((s1 (varset-unwrap s1)) (s2 (varset-unwrap s2)) (revresult '()))
(if (or (null? s1) (null? s2))
(varset-reverse-append! revresult '())
(let ((x (car s1))
(y (car s2)))
(cond ((eq? x y)
(loop (cdr s1) (cdr s2) (cons x revresult)))
((varset-< x y)
(loop (cdr s1) s2 revresult))
(else
(loop s1 (cdr s2) revresult)))))))
(define (varset-intersects? s1 s2) ; do sets 's1' and 's2' intersect?
(let loop ((s1 (varset-unwrap s1)) (s2 (varset-unwrap s2)))
(if (or (null? s1) (null? s2))
#f
(let ((x (car s1)) (y (car s2)))
(cond ((eq? x y)
#t)
((varset-< x y)
(loop (cdr s1) s2))
(else
(loop s1 (cdr s2))))))))
(define (varset-union-multi sets)
(cond ((null? sets)
(varset-empty))
((null? (cdr sets))
(car sets))
(else
(let loop ((sets sets) (newsets '()))
(cond ((null? sets)
(varset-union-multi newsets))
((null? (cdr sets))
(varset-union-multi (cons (car sets) newsets)))
(else
(loop (cddr sets) (cons (varset-union (car sets) (cadr sets)) newsets))))))))
(define (n-ary function first rest)
(if (null? rest)
first
(n-ary function (function first (car rest)) (cdr rest))))
;;;----------------------------------------------------------------------------
;;
;; QUEUE manipulation stuff
;; ------------------------
(define (list->queue list) ; convert list to queue
(cons list (if (pair? list) (last-pair list) '())))
(define (queue->list queue) ; convert queue to list
(car queue))
(define (queue-empty) ; the empty queue
(cons '() '()))
(define (queue-empty? queue) ; is the queue empty?
(null? (car queue)))
(define (queue-get! queue) ; remove the first element of the queue
(if (null? (car queue))
(compiler-internal-error "queue-get!, queue is empty")
(let ((x (caar queue)))
(set-car! queue (cdar queue))
(if (null? (car queue)) (set-cdr! queue '()))
x)))
(define (queue-put! queue x) ; add an element to the end of the queue
(let ((entry (cons x '())))
(if (null? (car queue))
(set-car! queue entry)
(set-cdr! (cdr queue) entry))
(set-cdr! queue entry)
x))
;;;============================================================================
)