
Chapter 1

3D space rigid body
movement

main goal

1. understands the description of rigid body motion in three-dimensional
space: rotation matrix, transformation matrix, quaternion and Euler
angle.

2. grasps the matrix and geometry module usage of the Eigen library.

In the last lecture, we explained the framework and content of visual SLAM.
This lecture will introduce one of the basic problems of visual SLAM: How to
describe the motion of a rigid body in three-dimensional space? Intu-
itively, we certainly know that this consists of one rotation plus one translation.
Translation does not really have much problem, but the processing of rotation
is a hassle. We will introduce the meaning of rotation matrices, quaternions,
Euler angles, and how they are computed and transformed. In the practice
section, we will introduce the linear algebra library Eigen. It provides a C++
matrix calculation, and its Geometry module also provides the structure de-
scribed quaternion like rigid body motion. Eigen’s optimization is perfect, but
there are some special places to use it, we will leave it to the program.
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1.1 rotation matrix

1.1.1 point and vector, coordinate system

The space in our daily life is three-dimensional, so we are born to be used to
the movement of three-dimensional space. The three-dimensional space consists
of three axes, so the position of one spatial point can be specified by three
coordinates. However, we should now consider rigid body , which has not
only its position, but also its own posture. The camera can also be viewed as a
rigid body in three dimensions, so the position is where the camera is in space,
and the attitude is the orientation of the camera. Combined, we can say, ”The
camera is in the space (0, 0, 0) point, facing the front”. But this natural language
is cumbersome, and we prefer to describe it in a mathematical language.

We start with the most basic content: dots and vector. Points are the
basic elements in space, no length, no volume. Connect the two points to form
a vector. A vector can be thought of as an arrow pointing from one point to
another. Need to remind the reader, please do not confuse the vector with its
coordinate concept. A vector is one of the things in space, such as a . Here a
does not need to be associated with several real numbers. Only when we specify
a coordinate system in this three-dimensional space can we talk about the
coordinates of the vector in this coordinate system, that is, find several real
numbers corresponding to this vector.

With the knowledge of linear algebra, the coordinates of a point in 3D space
can also be described by R3 . How to describe it? Suppose that in this linear
space, we find a set of base 1 (e1, e2, e3) , then, the arbitrary vector a has a
coordinate under this set of bases:

a = [e1, e2, e3]

 a1

a2

a3

 = a1e1 + a2e2 + a3e3. (1.1)

Here (a1, a2, a3)T is called a under this base coordinates 2. The specific
value of the coordinates, one is related to the vector itself, and the other is
related to the selection of the coordinate system (base). The coordinate system
usually consists of 3 orthogonal coordinate axes (although it can also be non-
orthogonal, it is rare in practice). For example, given x and y axis, the z
axis can pass the right-hand (or left-hand) rule by x × yDefined. According
to different definitions, the coordinate system is divided into left-handed and
right-handed. The third axis of the left hand system is opposite to the right
hand system. Most 3D libraries use right-handed (such as OpenGL, 3D Max,
etc.), and some libraries use left-handed (such as Unity, Direct3D, etc.).

Based on basic linear algebra knowledge, we can talk about vectors and
vectors, and operations between vectors and numbers, such as number multipli-
cation, addition, subtraction, inner product, outer product, and so on. Multi-

1of the space in case the reader forgets that the base is a set of linearly independent vectors
of Zhang Cheng’s space, and some books are also called Base.

2book vector is column vector, this and general mathematics Books are similar.
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plication and addition and subtraction are both fairly basic and intuitive. For
example, the result of adding two vectors is to add their respective coordinates,
subtraction, and so on. I won’t go into details here. Internal and external prod-
ucts may be somewhat unfamiliar to the reader, and their calculations are given
here. For a, b ∈ R3 , in the usual sense 3 can be written as:

a · b = aTb =

3∑
i=1

aibi = |a| |b| cos 〈a, b〉 . (1.2)

Where 〈a, b〉 refers to the angle between the vector a, b . The inner product
can also describe the projection relationship between vectors. The outer product
is like this:

a× b =

∥∥∥∥∥∥
e1 e2 e3

a1 a2 a3

b1 b2 b3

∥∥∥∥∥∥ =

 a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 b
∆
= a∧b.

(1.3)
The result of the outer product is a vector whose direction is perpendicular

to the two vectors, and the size is |a| |b| 〈a, b〉 , is the directed area of the
quadrilateral of the two vectors. For outer product operations, we introduce
the ∧ symbol and write a as a matrix. In fact, it is a antisymmetric matrix
(skew-symmetric matrix) 4, you can record ∧ as an antisymmetric symbol. This
writes the outer product a×b as the multiplication of the matrix and the vector
a∧b , which turns it into a linear Operation. This symbol will be used frequently
in the following, please remember it, and this symbol is a one-to-one mapping,
meaning that any vector corresponds to a unique anti-symmetric matrix, and
vice versa:

a∧ =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (1.4)

At the same time, the reader needs to be reminded that the vector and
addition and subtraction, internal and external products can be calculated even
when they do not talk about their coordinates. For example, although the inner
product can be expressed by the sum of the product products of the two vectors
when there are coordinates, the inner product of the two can be calculated by
the length and the angle even if their coordinates are not known. Therefore,
the inner product result of the two vectors is independent of the selection of the
coordinate system.

3the inner product also has formal rules, but this book only discusses the usual inner
product. The inner product of

4antisymmetric matrix A meets AT = −A .
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1.1.2 Euclidean transformation between coordinate sys-
tems

We often define a variety of coordinate systems in the actual scene. In robotics,
you define each coordinate system for each link and joint; in 3D mapping, we
also define the coordinate system for each cuboid and cylinder. If you con-
sider a moving robot, it is common practice to set an inertial coordinate sys-
tem (or world coordinate system) that can be considered stationary, such as
TODO(Hussein) defined coordinate system. At the same time, the camera
or robot is a moving coordinate system, such as the coordinate system defined
by xC , yC , zC . We might ask: a vector p in the camera’s field of view, with
coordinates in the camera coordinate system of pc, and in the world coordinate
system, its coordinates are pw, then how is the conversion between these two
coordinates? At this time, it is necessary to first obtain the coordinate value of
the point for the robot coordinate system, and then according to the robot pose
transform into the world coordinate system. We need a mathematical means
to describe this transformation. As we will see later, we can describe it with a
matrix T .

T

Wx

Wy

Wz

Cx
Cy

Cz

p

Figure 1.1: Coordinate transformation. For the same vector thep− , it coor-
dinates in the world coordinate system wthep− and coordinate in the camera
coordinate system cthep− is different. This transformation relationship is de-
scribed by the transformation matrix T .

Intuitively, the motion between two coordinate systems consists of a rotation
plus a translation called rigid body motion. Camera movement is a rigid
body movement. During the rigid body motion, the length and angle of the
same vector in each coordinate system will not change. Imagine you throw your
phone into the air and 5, there may only be differences in spatial position and
posture, and its own length, angle of each face, etc. will not change. The phone
will not be squashed like an eraser for a while, and will be stretched for a while.
At this point, we say that the phone coordinate system is between the world
coordinates, which is a difference of Euclidean Transform.

5Please don’t put it into practice before it falls to the ground .
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The Euclidean transformation consists of rotation and translation. We first
consider rotation. Let a unit of orthogonal base (e1, e2, e3) after a rotation
becomes (e′1, e

′
2, e
′
3) . Then, for the same vector a (the vector does not move

with the rotation of the coordinate system), its coordinates in two coordinate
systems are [a1, a2, a3]T and [a′1, a

′
2, a
′
3]T . Because the vector itself has not

changed, according to the definition of coordinates, there are:

[e1, e2, e3]

 a1

a2

a3

 = [e′1, e
′
2, e
′
3]

 a′1
a′2
a′3

 . (1.5)

To describe the relationship between the two coordinates, we multiply the

left and right sides of the above equation by

 eT
1

eT
2

eT
3

 , then the coefficient on

the left becomes the identity matrix, so: a1

a2

a3

 =

 eT
1 e
′
1 eT

1 e
′
2 eT

1 e
′
3

eT
2 e
′
1 eT

2 e
′
2 eT

2 e
′
3

eT
3 e
′
1 eT

3 e
′
2 eT

3 e
′
3

 a′1
a′2
a′3

 ∆
= Ra′. (1.6)

We take the intermediate matrix out and define it as a matrix R . This matrix
consists of the inner product between the two sets of bases, characterizing the
coordinate transformation relationship of the same vector before and after the
rotation. As long as the rotation is the same, then this matrix is the same. It
can be said that the matrix R describes the rotation itself. So called rotation
matrix (Rotation matrix). At the same time, the components of the matrix
are the inner product of the two coordinate system bases. Since the length
of the base vector is 1, it is actually the cosine of the angle between the base
vectors. So this matrix is also called Direction Cosine Matrix. We will call
it a rotation matrix in the following.

The rotation matrix has some special properties. In fact, it is an orthogonal
matrix with a determinant of 1 6 7. Conversely, an orthogonal matrix with a
determinant of 1 is also a rotation matrix. So, you can define a collection of n
dimensional rotation matrices as follows:

SO(n) = {R ∈ Rn×n|RRT = I,det(R) = 1}. (1.7)

SO(n) isthe meaningof Special Orthogonal Group. We leave the contents
of the ”group” to the next lecture. This collection consists ofa rotation matrix
of n dimensional space, in particular, SO(3) refers to the rotation of the three-
dimensional space. By rotating the matrix, we can talk directly about the
rotation transformation between the two coordinate systems without having to
start from the base.

6orthogonal matrix that is inversely transposed by itself. The orthogonality of the rotation
matrix can be derived directly from the definition.

7The determinant is 1 is artificially defined. In fact, only its determinant is ±1 , but the
determinant is −1 is called R rotation, that is, one rotation plus one reflection.
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Since the rotation matrix is an orthogonal matrix, its inverse (ie, transpose)
describes an opposite rotation. According to the above definition, there are:

a′ = R−1a = RTa. (1.8)

Obviously RT portrays an opposite rotation.
In the Euclidean transformation, there is translation in addition to rotation.

Consider the vector a in the world coordinate system , after a rotation ( depicted
by R ) and a translation of t , you get a′ , then put the rotation and translation
together, there are:

bma′ = bmR bma+ bmt. (1.9)

Where t is called a translation vector. Compared to rotation, the translation
part simply adds the translation vector to the coordinates after the rotation,
which is very simple. By the above formula, we completely describe the coordi-
nate transformation relationship of an Euclidean space using a rotation matrix
R and a translation vector t . In practice, we will define the coordinate system
1, coordinate system 2, then the vector a under the two coordinates is a1,a2

, they are The relationship between the two, in accordance with the complete
writing, should be:

bma1 = R12a2 + t12. (1.10)

Here R12 means ”transform the vector of coordinate system 2 into coordinate
system 1”. Since the vector is multiplied to the right of this matrix, its subscript
is read from right to left. This is also the customary way of writing this book.
Coordinate transformations are easy to confuse, especially if multiple coordinate
systems exist. Similarly, if we want to express ”rotation matrix from 1 to 2”,
we write it as R21 . The reader must be clear about the notation here, because
different books have different writing methods, some will be recorded as the top
left/subscript, and the text will be written on the right side.

About panning t12 , it actually corresponds to the coordinate system 1 origin
pointing to the coordinate system 2 origin vector, coordinates taken under
coordinate system, so I suggest readers to put it It is written as ”a vector
from 1 to 2.” But the reverse t21 , which is a vector from 2 to 1 coordinates
in coordinate system 2, is not equal to −t12 , but related to the rotation of
the two systems 8. Therefore, when beginners ask the question ”Where is my
coordinates?”, we need to clearly explain the meaning of this sentence. Here
”my coordinates” actually refers to the vector from the world coordinate system
pointing to the origin of the coordinate system of the world, and the coordinates
obtained in the world coordinate system. Corresponding to the mathematical
symbol, it should be the value of tWC . For the same reason, it is not −tCW .

1.1.3 transform matrix and homogeneous coordinates

The formula (??) fully expresses the rotation and translation of Euclidean space,
but there is still a small problem: the transformation relationship here is not a

8although from the vector level, they are indeed inverse relations, but the coordinates of
the two vectors are not opposite. Can you think about why this is?
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linear relationship. Suppose we made two transformations: R1, t1 and R2, t2 :

b = R1a + t1, c = R2b + t2.

So, the transformation from a to c is:

c = R2 (R1a + t1) + t2.

This form will look awkward after multiple transformations. Therefore, we
introduce homogeneous coordinates and transformation matrices, rewriting the
form (??): [

bma′

1

]
=

[
R t
0T 1

] [
bma

1

]
∆
= T

[
bma

1

]
. (1.11)

This is a mathematical trick: we add 1 at the end of a 3D vector and turn it
into a 4D vector called homogeneous coordinates. For this four-dimensional
vector, we can write the rotation and translation in a matrix, making the whole
relationship a linear relationship. In this formula, the matrix T is called Trans-
form Matrix.

We temporarily use ã to represent the homogeneous coordinates of a . Then,
relying on homogeneous coordinates and transformation matrices, the superpo-
sition of the two transformations can have a good form:

b̃ = T1ã, c̃ = T2b̃ ⇒ c̃ = T2T1ã. (1.12)

But the symbols that distinguish between homogeneous and non-homogeneous
coordinates make us annoyed, because here we only need to add 1 at the end of
the vector or remove 1 to be 9. So, without ambiguity, we will write it directly
as b = Ta , and by default we have a homogeneous coordinate conversion 10.

Regarding the transformation matrix T , it has a special structure: the
upper left corner is the rotation matrix, the right side is the translation vector,
the lower left corner is 0 vector, and the lower right corner is 1. This matrix is
also known as the Special Euclidean Group:

SE(3) =

{
T =

[
R t
0T 1

]
∈ R4×4|R ∈ SO(3), t ∈ R3

}
. (1.13)

Like SO(3) , solving the inverse of the matrix represents an inverse transfor-
mation:

T−1 =

[
RT −RTt
0T 1

]
. (1.14)

Again, we use the notation of T12 to represent a transformation from 2 to
1. Moreover, in order to keep the symbol concise, in the case of no ambiguity,

9but the purpose of the homogeneous coordinates is not limited to this, we also in Chapter
7 Will introduce again.

10Note that when homogeneous coordinate transformation is not performed, the multipli-
cation here is not true in the matrix dimension.
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the symbols of the homogeneous coordinates and the ordinary coordinates are
not deliberately distinguished later, and the default is to use the one that
conforms to the algorithm. For example, when we write Ta , we use homo-
geneous coordinates (otherwise we can’t calculate). When you write Ra , you
use non-homogeneous coordinates. If written in an equation, it is assumed that
the conversion from homogeneous coordinates to normal coordinates is already
done - because the conversion between homogeneous and non-homogeneous co-
ordinates is actually very easy, but in C++ programs. You can do this with
operator overload to ensure that the operations you see in the program are
uniform.

To review: First, we introduce the vector and its coordinate representation,
and introduce the operation between the vectors; then, the motion between the
coordinate systems is described by the Euclidean transformation, which consists
of translation and rotation. The rotation can be described by the rotation matrix
SO(3) , while the translation is directly described by a R3 vector. Finally, if
the translation and rotation are placed in a matrix, the transformation matrix
SE(3) is formed .
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1.2 Practice: Eigen

The practical part of this lecture has two sections. In the first part, we will
explain how to use Eigen to represent matrices and vectors, and then extend to
the calculation of rotation matrix and transformation matrix. The code for this
section is in slambook2/ch3/useEigen.

Eigen 11 is a C++ open source linear algebra library. It provides fast linear
algebra operations on matrices, as well as functions such as solving equations.
Many upper-level software libraries also use Eigen for matrix operations, includ-
ing g2o, Sophus, and others. In the theoretical part of this lecture, let’s learn
about Eigen’s programming.

Eigen may not be installed on your PC. Please enter the following command
to install:

Listing 1.1: terminal input:

sudo apt−get i n s t a l l l i b e i g e n 3−dev

Most commonly used libraries are available in the Ubuntu software source.
Later, if you want to install a library, you may want to search for the Ubuntu
software source. With the apt command, we can easily install Eigen. Look-
ing back at the previous lesson, we know that a library consists of header files
and library files. The default location of the Eigen header file is in ”/usr/in-
clude/eigen3/”. If you are not sure, you can find it by entering the following
command:

Listing 1.2: terminal input:

sudo l o c a t e e igen3

Compared to other libraries, Eigen is special in that it is a library built with
pure header files (this is amazing!). This means you can only find its header
files, not binary files like .so or .a. When you use it, you only need to import
Eigen’s header file, you don’t need to link the library file (because it doesn’t
have a library file). Write a piece of code below to actually practice the use of
Eigen:

Listing 1.3: slambook2/ch3/useEigen/eigenMatrix.cpp

#include <iostream>
using namespace std ;

#include <ctime>
// Eigen core
#include <Eigen /Core>
// A l g e b r a i c o p e r a t i o n s o f dense matr ices ( inverse , e i g e n v a l u e s , e t c . )
#include <Eigen /Dense>
using namespace Eigen ;

11official home page: http://eigen.tuxfamily.org/index.php?title=Main Page.
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#define MATRIX SIZE 50

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ This program demonstrates the use o f the b a s i c Eigen type
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

int main ( int argc , char ∗∗ argv ) {
// A l l v e c t o r s and matr ices in Eigen are Eigen : : Matrix , which i s a temp la te
// c l a s s . I t s f i r s t t h r e e parameters are : data type , row , column Declare a 2∗3
// f l o a t matrix
Matrix<f loat , 2 , 3> matr ix 23 ;

// At the same time , Eigen p r o v i d e s many b u i l t−in t y p e s v i a typede f , but the
// bottom l a y e r i s s t i l l Eigen : : Matrix For example , Vector3d i s e s s e n t i a l l y
// Eigen : : Matrix<double , 3 , 1>, which i s a three−dimensiona l v e c t o r .
Vector3d v 3d ;
// This i s the same
Matrix<f loat , 3 , 1> vd 3d ;

// Matrix3d i s e s s e n t i a l l y Eigen : : Matrix<double , 3 , 3>
Matrix3d matr ix 33 = Matrix3d : : Zero ( ) ; // i n i t i a l i z e d to zero
// I f you are not sure about the s i z e o f the matrix , you can use a matrix o f
// dynamic s i z e
Matrix<double , Dynamic , Dynamic> matrix dynamic ;
// s im p le r
MatrixXd matr ix x ;
// There are s t i l l many t y p e s o f t h i s , we doesn ’ t l i s t them one by one .

// Here i s the op era t ion o f the Eigen array
// input data ( i n i t i a l i z a t i o n )
matr ix 23 << 1 , 2 , 3 , 4 , 5 , 6 ;
// output
cout << ” matrix 2x3 from 1 to 6 : \n” << matr ix 23 << endl ;

// Use () to acc es s e lements in the matrix
cout << ” p r i n t matrix 2x3 : ” << endl ;
for ( int i = 0 ; i < 2 ; i++) {

for ( int j = 0 ; j < 3 ; j++)
cout << matr ix 23 ( i , j ) << ”\ t ” ;

cout << endl ;
}

// The matrix and v e c t o r are m u l t i p l i e d ( a c t u a l l y s t i l l matr ices and matr ices )
v 3d << 3 , 2 , 1 ;
vd 3d << 4 , 5 , 6 ;
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// But in Eigen you can ’ t mix two d i f f e r e n t t y p e s o f matrices , l i k e t h i s i s
// wrong Matrix<double , 2 , 1> r e s u l t w r o n g t y p e = matr ix 23 ∗ v 3d ; shou ld be
// e x p l i c i t l y conver ted
Matrix<double , 2 , 1> r e s u l t = matr ix 23 . cast<double>() ∗ v 3d ;
cout << ” [ 1 , 2 , 3 ; 4 , 5 , 6 ] ∗ [ 3 , 2 , 1 ] = ” << r e s u l t . t ranspose ( ) << endl ;

Matrix<f loat , 2 , 1> r e s u l t 2 = matr ix 23 ∗ vd 3d ;
cout << ” [ 1 , 2 , 3 ; 4 , 5 , 6 ] ∗ [ 4 , 5 , 6 ] : ” << r e s u l t 2 . t ranspose ( ) << endl ;

// Also you can ’ t misjudge the dimensions o f the matrix
// Try c a n c e l i n g the comments be low to see what Eigen w i l l r e p o r t .
// Eigen : : Matrix<double , 2 , 3> r e s u l t w r o n g d i m e n s i o n =
// matr ix 23 . cast<double >() ∗ v 3d ;

// some matrix o p e r a t i o n s
// Four o p e r a t i o n s are not demonstrated , j u s t use +−∗/.
Matrix 33 = Matrix3d : : Random ( ) ; // Random Number Matrix
cout << ”random matrix : \n” << matr ix 33 << endl ;
cout << ” t ranspose : \n” << matr ix 33 . t ranspose ( ) << endl ;
cout << ”sum : ” << matr ix 33 . sum ( ) << endl ;
cout << ” t r a c e : ” << matr ix 33 . t r a c e ( ) << endl ;
cout << ” t imes 10 : \n” << 10 ∗ matr ix 33 << endl ;
cout << ” i n v e r s e : \n” << matr ix 33 . i n v e r s e ( ) << endl ;
cout << ” det : ” << matr ix 33 . determinant ( ) << endl ;

// Eigenva lues
// Real symmetric matrix can guarantee s u c c e s s f u l d i a g o n a l i z a t i o n
Se l fAd jo in tE igenSo lve r<Matrix3d> e i g e n s o l v e r ( matr ix 33 . t ranspose ( ) ∗

matr ix 33 ) ;
cout << ” Eigen va lue s = \n” << e i g e n s o l v e r . e i g e n v a l u e s ( ) << endl ;
cout << ” Eigen ve c to r s = \n” << e i g e n s o l v e r . e i g e n v e c t o r s ( ) << endl ;

// S o l v i n g e q u a t i o n s
// We s o l v e the equat ion o f matrix NN ∗ x = v Nd
// The s i z e o f N i s d e f i n e d in the p r e v i o u s macro , which i s generated by a
// random number Direc t i n v e r s i o n i s the most d i r e c t , but the amount o f
// i n v e r s e o p e r a t i o n s i s l a r g e .

Matrix<double , MATRIX SIZE, MATRIX SIZE> matrix NN =
MatrixXd : : Random(MATRIX SIZE, MATRIX SIZE ) ;

matrix NN =
matrix NN ∗ matrix NN . t ranspose ( ) ; // Guarantee semi−p o s i t i v e d e f i n i t e

Matrix<double , MATRIX SIZE, 1> v Nd = MatrixXd : : Random(MATRIX SIZE, 1 ) ;

Clock t t i m e s t t = c lock ( ) ; // t iming
// Direc t i n v e r s i o n
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Matrix<double , MATRIX SIZE, 1> x = matrix NN . i n v e r s e ( ) ∗ v Nd ;
cout << ” time o f normal i n v e r s e i s ”

<< 1000 ∗ ( c l o ck ( ) − t i m e s t t ) / (double )CLOCKS PER SEC << ”ms” << endl ;
cout << ”x = ” << x . t ranspose ( ) << endl ;

// Usua l l y s o l v e d by matrix decomposit ion , such as QR decomposit ion , the speed
// w i l l be much f a s t e r
t i m e s t t = c lock ( ) ;
x = matrix NN . colPivHouseholderQr ( ) . s o l v e ( v Nd ) ;
cout << ” time o f Qr decompos it ion i s ”

<< 1000 ∗ ( c l o ck ( ) − t i m e s t t ) / (double )CLOCKS PER SEC << ”ms” << endl ;
cout << ”x = ” << x . t ranspose ( ) << endl ;

// For p o s i t i v e d e f i n i t e matrices , you can a l s o use c h o l e s k y decomposi t ion to
// s o l v e e q u a t i o n s .
t i m e s t t = c lock ( ) ;
x = matrix NN . l d l t ( ) . s o l v e ( v Nd ) ;
cout << ” time o f l d l t decompos it ion i s ”

<< 1000 ∗ ( c l o ck ( ) − t i m e s t t ) / (double )CLOCKS PER SEC << ”ms” << endl ;
cout << ”x = ” << x . t ranspose ( ) << endl ;

return 0 ;
}

This example demonstrates the basic operations and operations of the Eigen
matrix. To compile it, you need to specify the header file directory of Eigen in
CMakeLists.txt:

Listing 1.4: slambook2/ch3/useEigen/CMakeLists.txt

# Add header f i l e
i n c l u d e d i r e c t o r i e s ( ”/ usr / inc lude / e igen3 ” )

Repeat, because the Eigen library only has header files, so you don’t need
to link the program to the library with the target link libraries statement.
However, for most other libraries, most of the time you need to use the link
command. The approach here is not necessarily the best, because others may
have Eigen installed in different locations, then you must manually modify the
header file directory here. In the rest of the work, we will use the find package
command to search the library, but for the time being in this lecture. After
compiling this program, run it and you can see the output of each matrix.

Listing 1.5: Terminal input:

% bu i ld / e igenMatr ix
matrix 2x3 from 1 to 6 :
1 2 3
4 5 6
p r in t matrix 2x3 :
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1 2 3
4 5 6
[ 1 , 2 , 3 ; 4 , 5 , 6 ]∗ [ 3 , 2 , 1 ] = 1 0 28
[ 1 , 2 , 3 ; 4 , 5 , 6 ] ∗ [ 4 , 5 , 6 ] : 32 77
random matrix :
0 .680375 0.59688 −0.329554
−0.211234 0.823295 0.536459
0.566198 −0.604897 −0.444451
t ranspose :
0 .680375 −0.211234 0.566198
0.59688 0.823295 −0.604897
−0.329554 0.536459 −0.444451
sum : 1 .61307
t r a c e : 1 .05922
t imes 10 :
6 .80375 5 .9688 −3.29554
−2.11234 8.23295 5.36459
5.66198 −6.04897 −4.44451
i n v e r s e :
−0.198521 2.22739 2 .8357
1.00605 −0.555135 −1.41603
−1.62213 3.59308 3.28973
i t : 0 .208598

Since the detailed comments are given in the code, each line of the statement
is not explained here. In this book, we will only give a description of several
important places (the latter part will also maintain this style).

1. readers are best to enter the above code (not including comments). At
least compile and run the above program.

2. Kdevelop may not prompt C++ member operations, which is caused by
its incompleteness. Please follow the above to enter, do not care if it
prompts an error. Clion will give you a complete hint.

The matrix provided by

3. Eigen is very similar to MATLAB, and almost all data is treated as a
matrix. However, in order to achieve better efficiency, you need to specify
the size and type of the matrix in Eigen. For matrices that know the
size at compile time, they are processed faster than dynamically changing
matrices. Therefore, data such as rotation matrices and transformation
matrices can be determined at compile times by their size and data type.

The matrix implementation inside

4. Eigen is more complicated. I won’t introduce it here. We hope that you
can use Eigen’s matrix like the built-in data types like float and double.
This should be in line with the original intention of its design.
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The

5. Eigen matrix does not support automatic type promotion, which is quite
different from C++’s built-in data types. In a C++ program, we can
add and multiply a float data and double data, and the compiler will
automatically convert the data type to the most appropriate
one. In Eigen, for performance reasons, you must explicitly convert the
matrix type. And if you forget to do this, Eigen will (not very friendly)
prompt you with a ”YOU MIXED DIFFERENT NUMERIC TYPES ...”
compilation error. You can try to find out which part of the error message
this message appears in. If the error message is too long, it is best to save
it to a file and find it.

6. is the same, in the calculation process also need to ensure the correctness of
the matrix dimension, otherwise there will be ”YOU MIXED MATRICES
OF DIFFERENT SIZES” error. Please don’t complain about this kind of
error prompting. For C++ template meta-programming, it is very lucky
to be able to prompt the information that can be read. Later, if you find
that Eigen is wrong, you can directly look for the uppercase part and
figure out what the problem is.

7. Our routines only cover basic matrix operations. You can read more about
Eigen by reading the Eigen official website tutorial:
http://eigen.tuxfamily.org/dox-devel/modules.html . Only the simplest
part is demonstrated here. It is not equal to the fact that you can under-
stand Eigen.

In the last piece of code, the efficiency of inversion and QR decomposition is
compared. You can look at the time difference on your own machine. Is there
a significant difference between the two methods?
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1.3 Rotation vector and Euler angle

1.3.1 rotation vector

We return to the theoretical part. With a rotation matrix to describe the
rotation, is there enough a transformation matrix to describe a 6-degree-of-
freedom three-dimensional rigid body motion? Matrix representation has at
least the following disadvantages:

1. SO(3) has a rotation matrix of 9 quantities, but only 3 degrees of free-
dom in one rotation. Therefore this expression is redundant. Similarly,
the transformation matrix expresses a 6-degree-of-freedom transformation
with 16 quantities. So, is there a more compact representation? The

2. rotation matrix itself has constraints: it must be an orthogonal matrix
with a determinant of 1. The same is true for the transformation ma-
trix. These constraints make the solution more difficult when you want to
estimate or optimize a rotation matrix/transform matrix.

Therefore, we hope that there is a way to describe rotation and translation in
a compact manner. For example, is it feasible to express rotation with a three-
dimensional vector and express transformation with a six-dimensional vector?
In fact, any rotation can be characterized by a rotation axis and a rotation
angle. Thus, we can use a vector whose direction is consistent with the axis of
rotation and the length is equal to the angle of rotation. This vector is called
rotation vector (or axis/angle axis, Axis-Angle), and only a three-dimensional
vector is needed to describe the rotation. Similarly, for a transformation matrix,
we use a rotation vector and a translation vector to express a transformation.
The variable dimension at this time is exactly six dimensions.

Consider a rotation represented by R. If described by a rotation vector,
assuming that the rotation axis is a unit length vector n and the angle is θ,
then the vector θn can also describe this rotation. So, we have to ask, what
is the connection between the two expressions? In fact, it is not difficult to
derive their conversion relationship. The conversion process from the rotation
vector to the rotation matrix is shown by Rodrigues’s Formula. Since the
derivation process is more complicated, it is not described here. Only the result
of the conversion is given. 12:

bmR = cos θI + (1− cos θ)nnT + sin θn∧. (1.15)

The symbol ∧ is a vector to anti-symmetric conversion, see the formula
(??). Conversely, we can also calculate the conversion from a rotation matrix
to a rotation vector. For the corner θ, take the track 13,Have:

12For interested readers, please refer to https://en.wikipedia.org/wiki/Rodrigues%27
rotation formula, in fact the next chapter will give a proof from the Lie algebra level.

13see trace on both sides to find the sum of the diagonal elements of the matrix.
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tr (R) = cos θ tr (I) + (1− cos θ) tr
(
nnT

)
+ sin θ tr(n∧)

= 3 cos θ + (1− cos θ)

= 1 + 2 cos θ.

(1.16)

therefore:

θ = arccos(
tr(R)− 1

2
). (1.17)

Regarding the recursive axis n , since the vector on the rotation axis does
not change after the rotation, it means:

Rn = n. (1.18)

Therefore, the recursive n is the eigen vector corresponding to the matrix R
eigenvalue 1. Solving this equation and normalizing it gives the axis of rotation.
The reader can also look at this equation from the geometrical point of ”the
axis of rotation is unchanged after rotation”. By the way, the two conversion
formulas here will still appear in the next lecture, and you will find that they
are exactly the correspondence between Lie group and Lie algebra on SO(3) .
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1.4 Quadra

1.4.1 definition of quaternion

The rotation matrix describes the rotation of 3 degrees of freedom with 9 quanti-
ties, with redundancy; the Euler angles and the rotation vectors are compact but
singular. In fact, we cannot find a three-dimensional vector description
without singularity [?]. This is somewhat similar to using two coordinates
to represent the Earth’s surface (such as longitude and latitude), and there will
be singularity (latitude is meaningless when latitude is ±90◦ ).

Recall the plurals that I have studied before. We use the complex set C
to represent the vector on the complex plane, and the complex multiplication
represents the rotation on the complex plane: for example, multiplying the
complex i is equivalent to rotating a complex vector counterclockwise by 90◦

. Similarly, when expressing a three-dimensional space rotation, there is also
an algebra similar to a complex number: quaternary. The quaternion is an
extended complex number found by Hamilton. It is both compact and
singular. If you say the shortcomings, the quaternion is not intuitive enough,
and its operation is a bit more complicated.

Comparing quaternions to complex numbers can help you understand quater-
nions faster. For example, when we want to rotate the vector of a complex plane
by θ , we can multiply this complex vector by eiθ . This is a complex number
represented by polar coordinates. It can also be written in the usual form, as
long as the Euler formula is used:

eiθ = cos θ + i sin θ. (1.19)

This is a plural of unit length. Therefore, in the case of two dimensions, the
rotation can be described by unit plural. Similarly, we will see that 3D rotation
can be described by unit quaternion.

A quaternion q has a real part and three imaginary parts. The book writes
the real part in front (and there are places where the real part is written later),
like this:

q = q0 + q1i+ q2j + q3k, (1.20)

Where i, j, k are the three imaginary parts of the quaternion. These three
imaginary parts satisfy the following relationship:

i2 = j2 = k2 = −1
ij = k, ji = −k
jk = i, kj = −i
ki = j, i = −j

. (1.21)

If we look at i, j, k as three axes, they are the same as their own multiplications
and complex numbers, and the multiplication and outer product are the same.
Sometimes people also use a scalar and a vector to express quaternions:

q = [s,v]
T
, s = q0 ∈ R, v = [q1, q2, q3]T ∈ R3,
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Here, s is called the real part of the quaternion, and v is called its imaginary
part. If the imaginary part of a quaternion is 0 , it is called real quaternion.
Conversely, if its real part is 0 , it is called imaginary quaternion.

Considering that 3D space requires 3 axes and Quaternion also has 3 imag-
inary parts, can a virtual quaternion correspond to a space point? In fact, we
are doing this.

You can use unit quaternion to represent any rotation in 3D space, but
this expression is subtly different from the plural. In the plural, multiplying by
i means rotating 90◦ . Does this mean that the quaternion, multiplied by i is
rotated around the i axis by 90◦ ? So, ij = k does that mean, first around the
i transfer 90◦ , then around J transfer 90◦ , equivalent to around k turn 90◦ ?
Readers can find a cell phone to plan - then you will find that this is not the
case. The correct situation should be that multiplying i corresponds to rotating
180◦ , in order to guarantee the nature of ij = k . And i2 = −1 means that
after rotating 360◦ around the i axis, I get an opposite thing. This thing has to
be rotated for two weeks to be equal to its original appearance.

This seems a bit mysterious, the complete explanation needs to introduce
too much extra things, we still calm down and come back to the eyes. At least,
we know that a unit quaternion can express the rotation of a three-dimensional
space. So what are the nature of the quaternions themselves, and what can they
do with each other? Let us first examine the algorithm between quaternions.

1.4.2 Quad operation

A quaternion is the same as a normal complex, and a series of operations can
be performed. Commonly there are four arithmetic operations, multiplication,
inversion, conjugate, and so on. The following are introduced separately.

There are two quaternions qa, qb , whose vectors are represented as [sa,va]T, [sb, Bmvb]
T

, or the original quaternion is expressed as:

bmqa = sa + xai+ ya + zak, quad bmqb = execution+ xbi+ ybj + zbk.

Then, its operation can be expressed as follows.

1. addition and subtraction

The addition and subtraction of the quaternion qa, qb is:

qa ± qb = [sa ± sb,va ± vb]
T
. (1.22)

2. multiplication

Multiplication is the multiplication of each item of qa with each item of
qb , and finally, the imaginary part is done according to the formula (??).
Finishing is available:

qaqb = sasb − xaxb − yayb − zazb
+ (saxb + xasb + yazb − zayb) i
+ (sayb − xazb + yasb + zaxb) j

+ (sazb + xayb − yaxb + zasb) k.

(1.23)
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Although a little complicated, the form is neat and orderly. If written
in vector form and using internal and external product operations, the
expression will be more concise:

qaqb =
[
sasb − vT

a vb, savb + sbva + va × vb
]T
. (1.24)

Under this multiplication definition, the two real quaternion products are
still real, which is also consistent with the complex number. However,
note that due to the existence of the last outer product, quaternion multi-
plication is usually not commutative unless va and vb at R3 collinear line,
at which point the outer product term is zero.

3. module

The modulus of a quaternion is defined as

‖qa‖ =
√
s2
a + x2

a + y2
a + z2

a. (1.25)

It can be verified that the modulus of the product of two quaternions is
the product of the modulo. This makes the unit quaternion still multiplied
by the unit quaternion.

‖qaqb‖ = ‖qa‖‖qb‖. (1.26)

4. conjugate

The conjugate of a quaternion is to take the imaginary part as the opposite:

rmq∗a = sa − xai− yaj − zak = [sa,−thea]
T
. (1.27)

The quaternion conjugate is multiplied by itself, and a real quaternion is
obtained. The actual part is the square of the modulo length:

q∗q = qq∗ = [s2
a + vTv,0]T. (1.28)

5. reverse

The inverse of a quaternion is

bmq−1 = q∗/ |q |2. (1.29)

According to this definition, the product of the quaternion and its own
inverse is the real quaternion 1 :

qq−1 = q−1q = 1. (1.30)

If q is a unit quaternion, its inverse and conjugate are the same amount.
At the same time, the inverse of the product has properties similar to
matrices:

(qaqb)
−1

= q−1
b q−1

a . (1.31)

6. multiplication

Similar to vectors, quaternions can be multiplied by numbers:

kq = [ks, kv]
T
. (1.32)
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1.4.3 Use quaternion to represent rotation

We can use a quaternion to express the rotation of a point. Suppose a spatial
3D point p = [x, y, z] ∈ R3 , and a rotation specified by the unit quaternion q .
The 3D point p is rotated to become p′ . If you use a matrix description, then
there is p′ = Rp . And if you use quaternions to describe rotation, how do they
relate to their relationship?

First, describe the 3D space point with a virtual quaternion:

p = [0, x, y, z]T = [0,v]T.

This is equivalent to matching the three imaginary parts of the quaternion with
the three axes in the space. Then, the rotated point p′ can be expressed as such
a product:

p′ = qpq−1. (1.33)

The multiplication here is quaternion multiplication, and the result is also a
quaternion. Finally, take the imaginary part of p′ and get the coordinates of the
point after the rotation. Moreover, it can be verified (reserved as an exercise),
and the real part of the calculation result is 0, so it is a pure virtual quaternion.

1.4.4 conversion of quaternions to other rotation repre-
sentations

An arbitrary unit quaternion describes a rotation, which can also be described
by a rotation matrix or a rotation vector. Now let’s examine the conversion
relationship between quaternions and rotation vectors and rotation matrices.
Before that, we have to say that quaternion multiplication can also be written
as a matrix multiplication. Let q = [s,v]T , then define the following symbols
+ and ⊕ for auf cite Barfoot2011:

q+ =

[
s −vT

v sI + v∧

]
, q⊕ =

[
s −vT

v sI − v∧

]
, (1.34)

These two symbols map the quaternion to a matrix of 4 × 4 . Then quater-
nion multiplication can be written in the form of a matrix:

q+
1 q2 =

[
s1 −vT1
v1 s1I + v∧1

] [
s2

v2

]
=

[
−vT1 v2 + s1s2

s1v2 + s2v1 + v∧1 v2

]
= q1q2 (1.35)

The same can also be proved:

q1q2 = q+
1 q2 = q⊕2 q1. (1.36)

Then, consider the problem of using a quaternion to rotate a spatial point.
According to the previous statement, there are:
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p′ = qpq−1 = q+p+q−1

= q+q−1⊕
p.

(1.37)

Substituting the matrix corresponding to two symbols, you get:

q+
(
q−1

)⊕
=

[
s −vT
v sI + v∧

] [
s vT

−v sI + v∧

]
=

[
1 0

0T vvT + s2I + 2sv∧ + (v∧)
2

]
.

(1.38)
Since p′ and p are both virtual quaternions, the fact that the bottom right

corner of the matrix gives the transformation of from quaternion to rotation
matrix:

R = vvT + s2I + 2sv∧ + (v∧)
2
. (1.39)

In order to obtain the conversion formula of the quaternion to the rotation
vector, the two sides of the above formula are traced to obtain:

tr(R) = tr(vvT + 3s2 + 2s · 0 + tr((v∧)2)

= v2
1 + v2

2 + v3s
2 + 3s2 − 2(v2

1 + v2
2 + v2

3)

= (1− s2) + 3s2 − 2(1− s2)

= 4s2 − 1.

(1.40)

Also obtained by the formula (??):

θ = arccos(
tr(R− 1)

2
)

= arccos(2s2 − 1).

(1.41)

which is

cos θ = 2s2 − 1 = 2 cos2 θ

2
− 1, (1.42)

and so:

θ = 2 arccos s. (1.43)

As the rotary shaft, if the formula (??) by Q imaginary portion instead
of P , easy to know QThevectoroftheimaginarypartof is not moving when
it is rotated, that is, it constitutes the rotation axis. So just remove it from
its modulus, you get it. In summary, the conversion formula for quaternion to
rotation vector can be written as follows:{

θ = 2 arccos q0

[nx, ny, nz]
T

= [q1, q2, q3]
T
/sin θ

2

. (1.44)
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As for how to switch from other methods to quaternions, you only need to
reverse the above steps. In actual programming, the library usually prepares
for the conversion between various forms for us. Whether it’s a quaternion,
a rotation matrix, or a shaft angle, they can all be used to describe the same
rotation. We should choose the most convenient form in practice without having
to stick to a particular form. In the subsequent practices and exercises, we will
demonstrate the transition between various expressions to deepen the reader’s
impression.

The conversion of What is the relationship between The TODO(Hussein)
In addition to the Euclidean transformation, there are several other transfor-

mations in the 3D space, but the Euclidean transformation is the simplest. Some
of them are related to the measurement geometry, as they may be mentioned
in the following explanations, so list them first. The Euclidean transformation
maintains the length and angle of the vector, which is equivalent to moving
or rotating a rigid body intact without changing its appearance. Several other
transformations will change its shape. They all have similar matrix representa-
tions.

1. similar transformation

The similarity transformation has one more degree of freedom than the
Euclidean transformation, which allows the object to be uniformly scaled,
and its matrix is expressed as

TS =

[
sR t
0T 1

]
. (1.45)

Notice that the rotation part has a scaling factor of s , which means
that we can evenly scale the three coordinates of x, y, z after the vector
is rotated . Due to the inclusion of scaling, the similar transformation no
longer keeps the area of the graphic unchanged. You can imagine a cube
with a side length of 1 transforming into a side with a length of 10 (but
still a cube). The set of three-dimensional similar transforms is also called
similar transform group, which is denoted as Sim(3) .

2. affine transformation

The matrix form of the affine transformation is as follows:

TA =

[
A t
0T 1

]
. (1.46)

Unlike the Euclidean transformation, the affine transformation only re-
quires A to be an invertible matrix, not necessarily an orthogonal matrix.
An affine transformation is also called an orthogonal projection. After the
affine transformation, the cube is no longer square, but the faces are still
parallelograms.
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3. projection transformation

Projective transformation is the most general transformation, its matrix
form is

TP =

[
A t
aT v

]
. (1.47)

Its upper left corner is the reversible matrix A , the upper right corner
is the translation t , and the lower left corner is the scale aT . Since the
homogeneous coordinates are used, when v 6= 0 , we can divide the entire
matrix by v to get a matrix with a bottom right corner of 1; otherwise we
get a matrix with a lower right corner of 0 . Therefore, the 2D projective
transformation has a total of 8 degrees of freedom, and 3D has a total of 15
degrees of freedom. Projective transformation is the most common form
of transformation that has been said so far. The transformation from the
real world to the camera photo can be seen as a projective transformation.
The reader can imagine what a square tile would look like in a photo: first,
it is no longer square. Due to the near-large and small relationship, it is
not even a parallelogram, but an irregular quadrilateral.

?? summarizes the nature of several transformations currently covered. Note
that in the ”invariant nature”, there is an inclusion relationship from top to
bottom. For example, in addition to maintaining volume, the Euclidean trans-
formation also has the properties of parallelism, intersection, and the like.

TODO(Hussein)
We will later say that the transformation from the real world to the camera

photo is a projective transformation. If the focal length of the camera is infinity,
then this transformation is an affine transformation. However, before we go into
the details of the camera model, we just have a rough impression of them.
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1.5 Practice: Eigen Geometry Module

1.5.1 Data demonstration of the Eigen geometry module

Now, let’s actually practice the various rotation expressions mentioned earlier.
We will use quaternions, Euler angles, and rotation matrices in Eigen to demon-
strate how they are transformed. We will also give a visualization program to
help the reader understand the relationship of these transformations.

Listing 1.6: slambook2/ch3/useGeometry/useGeometry.cpp

#include <iostream>
#include <cmath>
using namespace std ;

#include <Eigen /Core>
#include <Eigen /Geometry>

using namespace Eigen ;
// This program demonstrates how to use the Eigen geometry module

int main ( int argc , char ∗∗ argv ) {
// The Eigen /Geometry module p r o v i d e s a v a r i e t y o f r o t a t i o n and t r a n s l a t i o n r e p r e s e n t a t i o n s
// 3D r o t a t i o n matrix d i r e c t l y us ing Matrix3d or Matr ix3 f
Matrix3d ro t a t i o n m at r i x = Matrix3d : : I d e n t i t y ( ) ;
// The r o t a t i o n v e c t o r uses AngleAxis , the u n d e r l y i n g l a y e r i s not d i r e c t l y Matrix , but the o pera t ion can be t r e a t e d as a matrix ( because the opera tor i s over loaded )
AngleAxisd r o t a t i o n v e c t o r (M PI / 4 , Vector3d (0 , 0 , 1 ) ) ; // Rotate 45 deg ree s a long the Z a x i s
cout . p r e c i s i o n ( 3 ) ;
cout << ” r o t a t i o n matrix = \n ” << r o t a t i o n v e c t o r . matrix ( ) << endl ; // conver t to matrix wi th matrix ( )
// can a l s o be a s s i g n e d d i r e c t l y
r o t a t i on m at r i x = r o t a t i o n v e c t o r . toRotat ionMatr ix ( ) ;
// c o o r d i n a t e t rans format ion wi th AngleAxis
Vector3d v (1 , 0 , 0 ) ;
Vector3d v ro ta t ed = r o t a t i o n v e c t o r ∗ v ;
cout << ” (1 , 0 , 0 ) a f t e r r o t a t i o n ( by ang le a x i s ) = ” << v ro ta t ed . t ranspose ( ) << endl ;
// Or use a r o t a t i o n matrix
v ro ta t ed = ro t a t i o n m at r i x ∗ v ;
cout << ” (1 , 0 , 0 ) a f t e r r o t a t i o n ( by matrix ) = ” << v ro ta t ed . t ranspose ( ) << endl ;

// Euler ang l e : You can conver t the r o t a t i o n matrix d i r e c t l y i n t o Euler a n g l e s
Vector3d e u l e r a n g l e s = ro t a t i o n m at r i x . eu l e rAng l e s (2 , 1 , 0 ) ; // ZYX order , i e r o l l p i t c h yaw order
cout << ”yaw p i t ch r o l l = ” << e u l e r a n g l e s . t ranspose ( ) << endl ;

// Eucl idean trans format ion matrix us ing Eigen : : Isometry
Isometry3d T = Isometry3d : : I d e n t i t y ( ) ; // Although c a l l e d 3d , i t i s e s s e n t i a l l y a 4∗4 matrix
T. r o t a t e ( r o t a t i o n v e c t o r ) ; // Rotate accord ing to r o t a t i o n v e c t o r
T. p r e t r a n s l a t e ( Vector3d (1 , 3 , 4 ) ) ; // Set the t r a n s l a t i o n v e c t o r to (1 ,3 ,4)
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cout << ”Transform matrix = \n” << T. matrix ( ) << endl ;

/ / Use the t rans fo rmat ion matrix for coord inate t rans fo rmat ion
Vector3d v trans formed = T ∗ v ; // E q u i v a l e n t to R∗v+t
cout << ”v tranformed = ” << v trans formed . t ranspose ( ) << endl ;

// For a f f i n e and p r o j e c t i v e t rans format ions , use Eigen : : Af f ine3d and Eigen : : P r o j e c t i v e 3 d .

// Quaternion
// You can a s s i g n AngleAxis d i r e c t l y to quaternions , and v i c e versa
Quaterniond q = Quaterniond ( r o t a t i o n v e c t o r ) ;
cout << ” quatern ion from r o t a t i o n vec to r = ” << q . c o e f f s ( ) . t ranspose ( )
<< endl ; // Note t h a t the order o f c o e f f s i s ( x , y , z , w) , w i s the r e a l part , the f i r s t t h r e e are the imaginary par t
// can a l s o a s s i g n a r o t a t i o n matrix to i t
q = Quaterniond ( r o t a t i on m at r i x ) ;
cout << ” quatern ion from r o t a t i o n matrix = ” << q . c o e f f s ( ) . t ranspose ( ) << endl ;
// Rotate a v e c t o r wi th a quatern ion and use over loaded m u l t i p l i c a t i o n
V rotated = q ∗ v ; // Note t h a t the math i s qvq ˆ{−1}
cout << ” (1 , 0 , 0 ) a f t e r r o t a t i o n = ” << v ro ta t ed . t ranspose ( ) << endl ;
// e x p r e s s e d by r e g u l a r v e c t o r m u l t i p l i c a t i o n , i t shou ld be c a l c u l a t e d as f o l l o w s
cout << ” should be equal to ” << ( q ∗ Quaterniond (0 , 1 , 0 , 0) ∗ q . i n v e r s e ( ) ) . c o e f f s ( ) . t ranspose ( ) << endl ;

return 0 ;
}

The various forms of expression in Eigen are summarized below. Note that
each type has both single and double data types and, as before, cannot be au-
tomatically converted by the compiler. Taking double precision as an example,
you can change the last d to f, which is a single-precision data structure.

• rotation matrix ( 3× 3 ): Eigen::Matrix3d.

• rotation vector ( 3× 1 ): Eigen::AngleAxisd.

• Euler angle ( 3× 1 ): Eigen::Vector3d.

• quaternion ( 4× 1 ): Eigen::Quaterniond.

• Euclidean transformation matrix ( 4× 4 ): Eigen::Isometry3d.

• affine transform ( 4× 4 ): Eigen::Affine3d.

• projective transformation ( 4× 4 ): Eigen::Projective3d.

This program can be compiled by referring to the corresponding CMakeLists
in the code. In this program, I demonstrate how to use the rotation matrix,
rotation vectors (AngleAxis), Euler angles, and quaternions in Eigen. We use
these rotations to rotate a vector v and find that the result is the same (dif-
ferent is really a hell of it). At the same time, it also demonstrates how to
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convert these expressions in the program. Readers who want to learn more
about Eigen’s geometry modules can refer to it ( http://eigen.tuxfamily.org/
dox/group TutorialGeometry.html).

The reader is cautioned that the program code has some subtle differ-
ences from the mathematical representation. For example, by operator
overloading, quaternions and three-dimensional vectors can directly calculate
multiplication, but mathematically, the vector needs to be converted into a
virtual quaternion, and then quaternion multiplication is used for calculation.
The same applies to the transformation matrix. Multiply the case of a three-
dimensional vector. In general, the usage in the program is more flexible than
the mathematical formula.

1.5.2 actual coordinate transformation example

Let’s take a small example to demonstrate the coordinate transformation.
example The radish No. 1 and the radish No. 2 are located in the world
coordinate system. Hutchison world coordinate system for the W , radishes’s
coordinate system R1 and R2 . The position of the radish No. 1 is q1 =
[0.35, 0.2, 0.3, 0.1]T, t1 = [0.3, 0.1, 0.1]T . The position of the radish No. 2
is q2 = [−0.5, 0.4,−0.1, 0.2]T, t2 = [−0.1, 0.5, 0.3]T . Here q and t express
TRk,W , k = 1, 2 , which is the world coordinate system to the camera coordinate
system. Transform the relationship. Now, Little Radish No. 1 sees a point
in its own coordinate system with coordinates of pR1 = [0.5.0, 0.2]T , find the
coordinates of the vector in the radish No. 2 coordinate system.

This is a very simple but representative example. In actual scenarios you
often need to convert coordinates between different parts of the same robot
or between different robots. Below we write a program to demonstrate this
calculation.

Listing 1.7: slambook2/ch3/examples/coordinateTransform.cpp

#include<iostream>
#include<vector>
#include<algor ithm>
#include<Eigen /Core>
#include<Eigen /Geometry>

using namespace std ;
using namespace Eigen ;

int main ( int argc , char∗∗ argv ) {
Quaterniond q1 ( 0 . 3 5 , 0 . 2 , 0 . 3 , 0 . 1 ) , q2 (−0.5 , 0 . 4 , −0.1 , 0 . 2 ) ;
q1 . normal ize ( ) ;
q2 . normal ize ( ) ;
Vector3d t1 ( 0 . 3 , 0 . 1 , 0 . 1 ) , t2 (−0.1 , 0 . 5 , 0 . 3 ) ;
Vector3d p1 ( 0 . 5 , 0 , 0 . 2 ) ;
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Isometry3d T1w( q1 ) , T2w( q2 ) ;
T1w. p r e t r a n s l a t e ( t1 ) ;
T2w. p r e t r a n s l a t e ( t2 ) ;

Vector3d p2 = T2w ∗ T1w. i n v e r s e ( ) ∗ p1 ;
cout << endl << p2 . t ranspose ( ) << endl ;
return 0 ;

}

The answer to the program output is [−0.0309731, 0.73499, 0.296108]T , and
the calculation process is very simple, just calculate

pR2
= TR2,WTW,R1

pR1

. Note that the quaternion needs to be normalized before use.
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1.6 Visualization demo

1.6.1 Show motion track

If you are new to the concepts of rotation and translation, you may find that
their form looks complicated, because after all, each expression can be converted
to other ways, and the conversion formula is sometimes longer. However, al-
though the values of the rotation matrix and transformation matrix may not be
intuitive enough, we can easily draw them in the window.

In this section we demonstrate two visual examples. First, let’s say that we
recorded the trajectory of a robot in some way, and now I want to draw it into
a window. Suppose the track file is stored in trajectory.txt, and each line is
stored in the following format:

time, tx, ty, tz, qx, qy, qz, qw,

where time refers The recording time of this pose, t is translation, q is the
rotation quaternion, all recorded in the world coordinate system to the robot
coordinate system. Below we read these tracks from the file and display them
in a window. In principle, if you just talk about ”robot pose”, then you can use
TWR or TRW , in fact they are only one inverse. It means that knowing one of
them makes it easy to get another. If you want to store robot’s track, then
you can store TWR at all timesOr TRW , which doesn’t make much difference.

When drawing the trajectory, we can draw the ”trajectory” into a sequence
of points, which is similar to the ”trajectory” we imagined. Strictly speaking,
this is actually the the coordinates of the origin of the robot (camera)
coordinate system in the world coordinate system. Consider the origin of
the robot coordinate system, ie OR , then the OW at this time is the coordinates
of the origin in the world coordinate system:

bmOW = bmTWR bmOR = bmtWR. (1.48)

This is the translation part of TWR . So, you can see where the camera is
directly from TWR , which is why we say TWR is more intuitive. Therefore, in
the visualization program, the track file stores TWR instead of TRW .

Finally, we need a library that supports 3D drawing. There are many li-
braries that support 3D drawing, such as the familiar matlab, python matplotlib,
OpenGL and so on. In linux, a common library is OpenGL-based Pangolin li-
brary 14, which provides some GUI based on the support of OpenGL drawing
operations. Features. In the second edition of the book, we used git’s submod-
ule feature to manage the third-party libraries that this book relies on. Readers
can go directly to the 3rdparty folder to install the required libraries, and git
guarantees that I am consistent with the version you are using.

Listing 1.8: slambook2/ch3/examples/plotTrajectory.cpp

#include <pango l in / pango l in . h>

14https://github.com/stevenlovegrove/Pangolin
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#include <Eigen /Core>
#include <uni s td . h>

using namespace std ;
using namespace Eigen ;

// path to t r a j e c t o r y f i l e
s t r i n g t r a j e c t o r y f i l e = ” . / examples / t r a j e c t o r y . txt ” ;

void DrawTrajectory ( vector<Isometry3d , Eigen : : a l i g n e d a l l o c a t o r<Isometry3d>>);

int main ( int argc , char ∗∗ argv ) {
vector<Isometry3d , Eigen : : a l i g n e d a l l o c a t o r<Isometry3d>> poses ;
i f s t r e a m f i n ( t r a j e c t o r y f i l e ) ;
i f ( ! f i n ) {

cout << ” cannot f i n d t r a j e c t o r y f i l e at ” << t r a j e c t o r y f i l e << endl ;
return 1 ;

}

while ( ! f i n . e o f ( ) ) {
double time , tx , ty , tz , qx , qy , qz , qw ;
f i n >> time >> tx >> ty >> tz >> qx >> qy >> qz >> qw ;
Isometry3d Twr( Quaterniond (qw , qx , qy , qz ) ) ;
Twr . p r e t r a n s l a t e ( Vector3d ( tx , ty , tz ) ) ;
poses . push back (Twr ) ;

}
cout << ” read t o t a l ” << poses . s i z e ( ) << ” pose e n t r i e s ” << endl ;

// draw t r a j e c t o r y in pango l in
DrawTrajectory ( poses ) ;
return 0 ;

}

void DrawTrajectory ( vector<Isometry3d , Eigen : : a l i g n e d a l l o c a t o r<Isometry3d>> poses ) {
// c r e a t e pango l in window and p l o t the t r a j e c t o r y
pango l in : : CreateWindowAndBind ( ” Tra jec tory Viewer” , 1024 , 76 8 ) ;
g lEnable (GL DEPTH TEST) ;
g lEnable (GL BLEND) ;
glBlendFunc (GL SRC ALPHA, GL ONE MINUS SRC ALPHA ) ;

pango l in : : OpenGlRenderState s cam (
pango l in : : Pro jec t ionMatr ix (1024 , 768 , 500 , 500 , 512 , 389 , 0 . 1 , 1000) ,
pango l in : : ModelViewLookAt (0 , −0.1 , −1.8 , 0 , 0 , 0 , 0 . 0 , −1.0 , 0 . 0 )
) ;

pango l in : : View &d cam = pango l in : : CreateDisp lay ( )
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. SetBounds ( 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , −1024.0 f / 768 .0 f )

. SetHandler (new pango l in : : Handler3D ( s cam ) ) ;

while ( pango l in : : ShouldQuit ( ) == fa l se ) {
g lC l ea r (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT ) ;
d cam . Act ivate ( s cam ) ;
g lC l ea rCo lo r ( 1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f ) ;
glLineWidth ( 2 ) ;
for ( s i z e t i = 0 ; i < poses . s i z e ( ) ; i++) {

// draw t h r e e axes o f each pose
Vector3d Ow = poses [ i ] . t r a n s l a t i o n ( ) ;
Vector3d Xw = poses [ i ] ∗ ( 0 . 1 ∗ Vector3d (1 , 0 , 0 ) ) ;
Vector3d Yw = poses [ i ] ∗ ( 0 . 1 ∗ Vector3d (0 , 1 , 0 ) ) ;
Vector3d Zw = poses [ i ] ∗ ( 0 . 1 ∗ Vector3d (0 , 0 , 1 ) ) ;
g lBeg in (GL LINES ) ;
g l C o l o r 3 f ( 1 . 0 , 0 . 0 , 0 . 0 ) ;
g lVertex3d (Ow [ 0 ] , Ow [ 1 ] , Ow [ 2 ] ) ;
g lVertex3d (Xw [ 0 ] , Xw [ 1 ] , Xw [ 2 ] ) ;
g l C o l o r 3 f ( 0 . 0 , 1 . 0 , 0 . 0 ) ;
g lVertex3d (Ow [ 0 ] , Ow [ 1 ] , Ow [ 2 ] ) ;
g lVertex3d ( I s [ 0 ] , I s [ 1 ] , I s [ 2 ] ) ;
g l C o l o r 3 f ( 0 . 0 , 0 . 0 , 1 . 0 ) ;
g lVertex3d (Ow [ 0 ] , Ow [ 1 ] , Ow [ 2 ] ) ;
g lVertex3d (Zw [ 0 ] , Zw [ 1 ] , Zw [ 2 ] ) ;
glEnd ( ) ;

}
// draw a connect ion
for ( s i z e t i = 0 ; i < poses . s i z e ( ) ; i++) {

g l C o l o r 3 f ( 0 . 0 , 0 . 0 , 0 . 0 ) ;
g lBeg in (GL LINES ) ;
auto p1 = poses [ i ] , p2 = poses [ i + 1 ] ;
g lVertex3d ( p1 . t r a n s l a t i o n ( ) [ 0 ] , p1 . t r a n s l a t i o n ( ) [ 1 ] , p1 . t r a n s l a t i o n ( ) [ 2 ] ) ;
g lVertex3d ( p2 . t r a n s l a t i o n ( ) [ 0 ] , p2 . t r a n s l a t i o n ( ) [ 1 ] , p2 . t r a n s l a t i o n ( ) [ 2 ] ) ;
glEnd ( ) ;

}
pango l in : : FinishFrame ( ) ;
u s l e ep ( 5 0 0 0 ) ; // s l e e p 5 ms

}
}

This program demonstrates how to draw a 3D pose in Panglin. We draw
the three axes of each pose in red, green, and blue (actually we calculate the
world coordinates of each axis), and then connect the traces with black lines.
The program runs as shown in ??.
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Figure 1.2: Results of pose visualization

1.6.2 Show camera pose

caption
Visualization program for rotation matrix, Euler angle, quaternion.

In addition to displaying the trajectory, we can also display the pose of the
camera in the 3D window. In slambook2/ch3/visualizeGeometry, we visualize
various expressions of camera poses (see ??). When the reader uses the mouse
to operate the camera, the box on the left side will display the rotation matrix,
translation, Euler angle and quaternion of the camera pose in real time. You
can see how the data changes. According to our experience, you should not
see their intuitive meaning except for the Euler angle. However, although the
rotation matrix or transformation matrix is not intuitive, it is not difficult to
visually display them. This program uses the Pangolin library as a 3D display
library. Please refer to Readme.txt to compile the program.
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Exercises

1. verifies that the rotation matrix is an orthogonal matrix.

2. (optional) find the derivation process of Rodrigues formula and understand
it.

3. verifies that after the quaternion rotates a point, the result is a vir-
tual quaternion (the real part is zero), so it still corresponds to a three-
dimensional space point, see (??). The

4. drawing table summarizes the conversion relationship of the rotation ma-
trix, the axis angle, the Euler angle, and the quaternion.

5. Suppose there is a large Eigen matrix, its top left corner wants 3 × 3
blocks taken out, and then assigned to I3×3 . Please programmatically
implement.

6. (optional) General linear equation Ax = b What are the practices? Can
you implement it in Eigen?
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