Computing the translational hull of an arbitrary semigroup

Finn Smith

27th July 2016

We can compute the translational hull of an arbitrary finite semigroup S by backtrack search. Let $R = \{r_i : 1 \le i \le n\}$ be a minimal set of representatives of the \mathcal{L} - and \mathcal{R} -classes of S. We write left [right] translations on the left [right]. Let λ and ρ be the linked left and right translations to be constructed, respectively. Then all pairs λ and ρ are determined by the values $\lambda(r_i)$, $(r_i) \rho$ for $1 \le i \le n$.

To determine allowed values for λ and ρ we can backtrack search:

Al	lgorit	$hm \ 1$	Bac	ktrack	search	for	linked	pairs
----	--------	----------	-----	--------	--------	-----	--------	-------

Compute the multiplication table of S for faster checks while there are more possibilities to check do for i = 1 to n do Choose $\lambda(r_i)$ from the available values for $s \in S^1$ do Set $\lambda(r_i s) = \lambda(r_i) s$ if a value has been overwritten then Backtrack end if for $i < j \leq n$ do if $r_i s = r_i t$ for some $t \in S^1$ then Restrict possible values for $\lambda(r_i)$ using the translation condition $\lambda(r_i) t = \lambda(r_i) s$ if there are no possible values for $\lambda(r_i)$ then Backtrack end if end if Restrict possible values for $(r_j) \rho$ using the linked pairs condition $r_j \lambda (r_i s) = (r_j) \rho r_i s$ if there are no possible values for $(r_i) \rho$ then Backtrack end if end for end for Choose $(r_i) \rho$ such that $r_i \lambda (r_i) = (r_i) \rho r_i$ Propagate ρ and restrict, dually to λ . end for Store λ and ρ , backtrack. end while

To see that the produced λ , ρ are linked translations, let $a, b \in S$. Then $a = r_i x$ for some $1 \leq i \leq n, x \in S$. Since we backtracked if we found $r_k y = r_i x$ with $\lambda(r_k) y \neq \lambda(r_i) x$, we can choose

 r_i freely. Then

$$\lambda(a) b = \lambda(r_i x) b$$
$$= \lambda(r_i) xb$$
$$= \lambda(r_i xb)$$
$$= \lambda(ab)$$

Similarly, $a(b) \rho = (ab) \rho$.

Now $a = ur_i$, and $b = r_j x$ for some $1 \le i, j \le n$ and $u, s \in S^1$. By construction, $r_i \lambda(r_j) = (r_i) \rho r_j$ and hence

$$a\lambda (b) = ur_i\lambda (r_j) x$$
$$= u (r_i) \rho r_j x$$
$$= (a) \rho b$$

Note: instead of R, we could modify the algorithm to work with a set A which is minimal such that AS = S, SA = S, and then would have that $|A| \le n$.