Float 16 Conversion Example:

1. Read data in hex format: $2 A 7 F_{16}$
2. Break up the hex value and convert each to binary:

2	A	7	F
0010	1010	0111	1111

3. All 16 binary bits will be broken into 3 groups:

	01010	$\underset{\Delta}{100111} 1111$	Sign: determines if your value is positive or negative Exponent: convert your 5 bit binary value to decimal form and subtract by 15
Sign	Exponent	Mantissa	Mantissa: convert these 10 bits to hex
$0=+$	10-15-5	$10=2$	
1 = -	-	$0111=7$	
		$1111=F$	
	Always	$27 \mathrm{~F}_{16}$	
	subtract by 15		

4. The mantissa value must now be converted from hex to decimal:

$$
27 \mathrm{~F}_{16} \longrightarrow 639_{10}
$$

5. Now you must divided your decimal value by 1024 :

$$
\frac{639}{1024}=0.62402
$$

6. You always add 1 to your fraction value and put in your sign from step 3:

$$
0.62402+1=1.62402 \longrightarrow+1.62402
$$

7. Finally you multiply your value from step 6 by $2^{x}, x$ being your exponent value from step 3:

$$
+1.62402 * 2^{-5}=+0.05075
$$

