
NUT
Introduction to Network UPS Tools

Configuration Examples

based on

Network UPS Tools Project 2.7.4
Russell Kroll, Arnaud Quette, Arjen de Korte, Charles Lepple and many others

with additional text and editing

Roger Price

Version 2020-11-27, with corrections up to 2020-11-27

i

This introduction is based on the Network UPS Tools (NUT) User Manual, the man pages and
the file config-notes.txt which do not carry explicit copyright notices, but which are part of the
NUT package which is GPL licensed.

Copyright c© Russell Kroll, Arnaud Quette, Arjen de Korte, Charles Lepple and others

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

http://www.fsf.org/licenses/old-licenses/gpl-2.0.html

The User Manual provides the following notice:
B. Acknowledgments / Contributions
This project is the result of years of work by many individuals and companies.
Many people have written or tweaked the software; the drivers, clients, server and documen-
tation have all received valuable attention from numerous sources.
Many of them are listed within the source code, AUTHORS file, release notes, and mailing
list archives, but some prefer to be anonymous. This software would not be possible without
their help.

Additional material:
Copyright c© Roger Price 2017, 2018, 2020
Distributed under the GPLv3. http://www.fsf.org/licenses/gpl.html

The source file for this document has been marked up by the editor in LATEX2ε and rendered as
PDF file ConfigExamples.A5.pdf in a portrait A5 format, 134 pages with one page per sheet. Your
PDF viewer may be able to place two pages side by side on your big monitor.

The document is not only linear reading, but also hypertext. All chapters in the table of
contents, all chapter references, all line number references throughout the document, all man page
names and URL’s are clickable. External links may be outlined in cyan, for example man ups.conf.
If your mouse hovers over a clickable surface, your browser/PDF reader may tell you where the link
leads.

ii

http://www.fsf.org/licenses/old-licenses/gpl-2.0.html
http://www.fsf.org/licenses/gpl.html
http://rogerprice.org/NUT/ConfigExamples.A5.pdf
http://networkupstools.org/docs/man/ups.conf.html

Page dimensions
Dimension Design (A5) Actual pt Actual mm
\hoffset -29.4mm -83.65106pt -29.39963mm
\voffset -29.4mm -83.65106pt -29.39963mm
\pdfpageheight 240mm 682.86613pt 239.99718mm
\pdfpagewidth 197.5mm 561.94193pt 197.49768mm
\textheight 210mm 597.50787pt 209.99753mm
\textwidth 177.5mm 505.03642pt 177.49791mm
\linewidth 505.03642pt 177.49791mm
\columnsep 15mm 42.67912pt 14.99982mm
\LinePrinterwidth 145.5mm 413.9876pt 145.49829mm

Changes:

• 2017-06-27 First edition

• 2017-07-02 Added subsection “Configuration file formats”. Added lowbatt to ups.conf.
Added subsection “Driver daemon” to introduction. Added Ubuntu specific addresses.

• 2017-07-24 Added discussion of selective UPS shutdown to chapter 9.

• 2017-08-10 Added appendix 23, “Using notify-send”.

• 2018-01-10 Rewrote appendix 23, “Using notify-send”. Rewrote appendix 20 “Starting NUT”.
Added chapter 6.6 “For paranoïd sysadmins”.

• 2018-08-22 In chapter 3.1 added reference to issue #597 for multiple UPS units.

• 2019-07-21 Added chapter 9 “Encrypted connections”.

• 2020-08-20 File heartbeat.dev becomes heartbeat.conf

• 2020-09-30 Added Part 2 covering the Python3 scripts. Deprecated 9 “Encrypted connections”.

• 2020-11-27

iii

Contents

1 UPS monitoring using NUT 1

1 Introduction, and Welcome to NUT 1
1.1 What is NUT? . 2
1.2 Why this introduction? . 2
1.3 Basic components of NUT . 2

1.3.1 Driver daemon . 2
1.3.2 Daemon upsd . 3
1.3.3 Daemon upsmon . 4
1.3.4 Utility program upsc . 4

1.4 Configuration file formats . 6
1.4.1 Line spanning . 7

1.5 Mailing list: nut-users . 7

2 Simple server with no local users 9
2.1 Configuration file ups.conf, first attempt . 9
2.2 Configuration file upsd.conf . 10
2.3 Configuration file upsd.users . 10
2.4 Configuration file upsmon.conf for a simple server 10
2.5 The delayed UPS shutdown . 13
2.6 The shutdown story for a simple server . 14
2.7 Configuration file ups.conf for a simple server, improved 15
2.8 The shutdown story with quick power return . 16
2.9 Utility program upscmd . 16
2.10 Utility program upsrw . 17

3 Server with multiple power supplies 18
3.1 Configuration file ups.conf for multiple power supplies 18
3.2 Configuration file upsmon.conf for multiple power supplies 19
3.3 Shutdown conditions for multiple power supplies 20

4 Workstation with local users 23
4.1 Configuration file upsmon.conf for a workstation 24
4.2 Configuration file upssched.conf for a workstation 26
4.3 Configuration script upssched-cmd for a workstation 27
4.4 The shutdown story for a workstation . 29

iv

5 Workstations share a UPS 30
5.1 Configuration file upsmon.conf for a slave . 31
5.2 Configuration file upssched.conf for a slave . 33
5.3 Configuration script upssched-cmd for a slave . 34
5.4 Magic: How does the master shut down the slaves? 35

6 Workstation with heartbeat 36
6.1 Configuration file ups.conf for workstation with heartbeat 37
6.2 Configuration file heartbeat.conf for workstation 38
6.3 Configuration file upsmon.conf for workstation with heartbeat 38
6.4 Configuration file upssched.conf for workstation with heartbeat 39
6.5 Script upssched-cmd for workstation with heartbeat 39
6.6 For paranoïd sysadmins . 41

7 Workstation with timed shutdown 42
7.1 Configuration file ups.conf for workstation with timed shutdown 43
7.2 Configuration file heartbeat.conf for workstation with timed shutdown 44
7.3 Configuration file upsd.conf with timed shutdown 44
7.4 Configuration file upsd.users with timed shutdown 45
7.5 Configuration file upsmon.conf with timed shutdown 45
7.6 Configuration file upssched.conf with timed shutdown 48
7.7 Script upssched-cmd for workstation with timed shutdown 50

7.7.1 The timed shutdown . 51
7.8 The timed shutdown story . 52

8 Workstation with additional equipment 54
8.1 Configuration files nut.conf . 55
8.2 Configuration files ups.conf and heartbeat.conf 56
8.3 Configuration files upsd.conf . 57
8.4 Configuration files upsd.users . 57
8.5 Configuration file upsmon.conf . 58
8.6 Configuration file upssched.conf for mgmt . 61

8.6.1 UPS-3 on gold . 61
8.6.2 UPS-2 on gold . 62
8.6.3 UPS-1 on mgmt . 63
8.6.4 heartbeat on mgmt . 63

8.7 User script upssched-cmd . 63
8.8 The shutdown story . 66

v

9 Encrypted connections – Deprecated – to be removed 67
9.1 Waiting for NUT release 2.7.5 . 67
9.2 Warning for Debian users . 67
9.3 Introduction . 68

9.3.1 Additional configuration files . 69
9.4 Sniffing port 3493 . 70
9.5 Creating the SSL keys with OpenSSL . 71

9.5.1 Create unique name for certificate using OpenSSL 72
9.6 Install NUT server keys on gold . 72
9.7 Install NUT management client keys on mgmt . 74
9.8 Testing the TLS setup . 75
9.9 What can Debian users do? . 77

9.9.1 Debian: Create NSS database on gold . 77
9.9.2 Debian: Add OpenSSL keys and certificates to NSS database on gold . . . 78
9.9.3 Debian: Check and display NSS database on gold 79
9.9.4 Debian: Create NSS database on mgmt 79
9.9.5 Debian: Testing the NSS setup . 79

2 UPS monitoring using Python3 script and openSSL 81

10 mkNUTcert.py builds TLS certificates for NUT 81
10.1 Very Short Introduction to TLS Certificates . 81
10.2 Overview of mkNUTcert.py . 83
10.3 Running mkNUTcert.py . 85

11 Daemon upsdTLS.py 87
11.1 Overview of upsdTLS.py . 87
11.2 Running upsdTLS.py . 89

12 Python3 script UPSmon.py 91
12.1 What is UPSmon.py ? . 91

12.1.1 Principal differences between upsmon and UPSmon.py 91
12.2 Compatibility with upsmon. 93
12.3 Overview of UPSmon.py . 93
12.4 Running UPSmon.py . 95
12.5 UPSmon.py’s status changes . 97
12.6 Configuration file . 98

12.6.1 Initial declarations . 99
12.6.2 Group declarations . 99

vi

12.6.3 Action declarations . 100

13 UPSmon.py configuration 104
13.1 Configuration tool mkUPSmonconf.py . 104
13.2 Using configuration tool mkUPSmonconf.py . 105
13.3 UPSmon.conf configuration examples . 106

13.3.1 Timed shutdown plan, part 1 of 4, the introduction 106
13.3.2 Timed shutdown plan, part 2 of 4, the shutdown 107
13.3.3 Timed shutdown plan, part 3 of 4, warnings 108
13.3.4 Timed shutdown plan, part 4 of 4, heartbeat 110
13.3.5 Standard shutdown plan . 111

14 UPSmon.py installation checklist 112

3 Appendices 113

20 Starting NUT 113

21 Stopping NUT 115
21.1 Delayed UPS shutdown with NUT script . 115
21.2 Delayed UPS shutdown with a systemd service unit 116

22 Users and Directories for NUT 117

23 Using notify-send 119
23.1 What’s wrong with notify-send? . 119
23.2 Give user “upsd” (“nut”) the right to act as any user 120
23.3 Search for and notify logged in users . 121
23.4 Testing the notify-send-all setup . 121
23.5 References for notify-send . 122

24 Building OpenSSL and Python 123
24.1 Building OpenSSL . 123
24.2 Building Python . 124

24.2.1 Python Lex Yacc (PLY) . 126

25 Typing alternative text bracketing characters 127

vii

26 Grammar for UPSmon.conf 128
26.1 Lexical structure . 128
26.2 Yacc Grammar . 130
26.3 Log rotation for upsdTLS.py and UPSmon.py . 133

27 Acknowledgments 134

28 Errors, omissions, obscurities, confusions, typpos... 134

List of Figures
1 Overview of NUT. 2
2 Symbols used in ups.status maintained by upsd. 3
3 Wall power has failed. 4
4 Symbols used to represent NOTIFY events maintained by upsmon. 5
5 Server with no local users. 9
6 Configuration file ups.conf, first attempt. 9
7 Configuration file upsd.conf. 10
8 Configuration file upsd.users for a simple server. 10
9 Configuration file upsmon.conf for a simple server, part 1 of 5. 11
10 Configuration file upsmon.conf for a simple server, part 2 of 5. 11
11 Configuration file upsmon.conf for a simple server, part 3 of 5. 11
12 Configuration file upsmon.conf for a simple server, part 4 of 5. 12
13 Flags declaring what upsmon is to do for NOTIFY events. 12
14 Configuration file upsmon.conf for a simple server, part 5 of 5. 12
15 Delayed UPS shutdown. 13
16 NUT provided script for delayed UPS shutdown. 13
17 Configuration file ups.conf, improved. 15
18 Server with multiple power supplies. 18
19 File ups.conf for multiple power supplies. 19
20 Configuration file upsmon.conf for multiple power supplies, part 1 of 5. 19
21 Experiment to show effect of lost UPS. Part 1, . 20
22 Experiment to show effect of lost UPS. Part 2, . 21
23 Workstation with local users. 23
24 Configuration file upsmon.conf for a workstation, part 1 of 5. 24
25 Configuration file upsmon.conf for a workstation, part 2 of 5. 24
26 Configuration file upsmon.conf for a workstation, part 3 of 5. 25
27 Configuration file upsmon.conf for a workstation, part 4 of 5. 25
28 Configuration file upsmon.conf for a workstation, part 5 of 5. 25
29 Configuration file upssched.conf for a workstation. 26
30 Configuration script upssched-cmd for a workstation. 27

viii

31 “Slave” workstations take power from same UPS as “master”. 30
32 Configuration file upsmon.conf for a slave, part 1 of 5. 31
33 Configuration file upsmon.conf for a slave, part 2 of 5. 31
34 Configuration file upsmon.conf for a slave, part 3 of 5. 32
35 Configuration file upsmon.conf for a slave, part 4 of 5. 32
36 Configuration file upsmon.conf for a slave, part 5 of 5. 33
37 Configuration file upssched.conf for a slave. 33
38 Configuration script upssched-cmd for a slave. 34
39 Workstation with heartbeat. 36
40 Configuration file ups.conf for workstation with heartbeat. 37
41 Configuration file heartbeat.conf for workstation. 38
42 Configuration file upsmon.conf for a workstation with heartbeat. 38
43 Configuration file upssched.conf for a workstation with heartbeat. 39
44 Configuration script upssched-cmd including heartbeat. 40
45 Heartbeat watcher. 41
46 Workstation with timed shutdown. 42
47 Configuration file ups.conf for workstation with timed shutdown. 43
48 Configuration file heartbeat.conf for workstation with timed shutdown. 44
49 Configuration file upsd.conf or workstation with timed shutdown. 44
50 Configuration file upsd.users for a simple server. 45
51 Configuration file upsmon.conf with timed shutdown, part 1 of 5. 45
52 Configuration file upsmon.conf with timed shutdown, part 2 of 5. 46
53 Configuration file upsmon.conf with timed shutdown, part 3 of 5. 47
54 Configuration file upsmon.conf with timed shutdown, part 4 of 5. 47
55 Configuration file upsmon.conf with timed shutdown, part 5 of 5. 48
56 Configuration file upssched.conf with timed shutdown. 48
57 Configuration script upssched-cmd for timed shutdown, 1 of 2. 50
58 Configuration script upssched-cmd for timed shutdown, 2 of 2. 51
59 Workstation with additional equipment. 54
60 File nut.conf for gold . 55
61 Files nut.conf for mgmt . 55
62 File ups.conf for gold . 56
63 File ups.conf for mgmt . 56
64 heartbeat.conf for mgmt . 56
65 File upsd.conf for gold . 57
66 File upsd.conf for mgmt . 57
67 File upsd.users for gold . 57
68 File upsd.users for mgmt . 57
69 Configuration file upsmon.conf for mgmt , part 1 of 5. 58

ix

70 Configuration file upsmon.conf for mgmt , part 2 of 5. 59
71 Configuration file upsmon.conf for mgmt , part 3 of 5. 60
72 Configuration file upsmon.conf for mgmt , part 4 of 5. 60
73 Configuration file upsmon.conf for mgmt , part 5 of 5. 61
74 Configuration file upssched.conf for mgmt . 62
75 User script upssched-cmd on mgmt , 1 of 5. 63
76 User script upssched-cmd on mgmt , 2 of 5. 64
77 User script upssched-cmd on mgmt , 3 of 5. 64
78 User script upssched-cmd on mgmt , 4 of 5. 65
79 User script upssched-cmd on mgmt , 5 of 5. 65
80 Encrypted connection to remote server using OpenSSL. 67
81 tcpdump of systemctl start nut-monitor.service without encryption. 71
82 Call openssl req to create the self-signed certificate. 72
83 The contents of the two files produced by openssl req. 73
84 Create unique name for certificate file. 73
85 The combined file required by upsd on gold . 73
86 CERTFILE declaration to be added to upsd.conf on gold 73
87 Copy certificate to mgmt and rename file. 74
88 Configuration file upsmon.conf for mgmt , with CERTFILE. 74
89 Restarting upsd on gold with SSL/TLS enabled. 75
90 Restarting upsmon on mgmt with SSL/TLS enabled. 76
91 Encrypted connection to remote server using NSS. 77
92 Creating the NSS databases on gold . 78
93 Import private key to NSS database on gold . 78
94 Import certificate (public key) to NSS database on gold 79
95 NSS CERTPATH declaration for upsd.conf on gold 79
96 Check and display certificate and private key on gold 80
97 NSS CERTHOST declaration for upsmon.conf on mgmt 80
98 Command mkNETcert.py --help. 83
99 The server’s PEM encoded private key. 84
100 The self-signed certificate. 85
101 UPSmon.py with NUT 2.7.4 requires a TLS helper upsdTLS.py. 87
102 Command upsdTLS.py --help . 87
103 systemd service unit nut-py-server.service for upsdTLS.py. 89
104 UPSmon.py requires TLS. 91
105 Actions provided by UPSmon.py. 92
106 % substitutions available in messages. 93
107 Command UPSmon.py --help . 93

x

108 systemd service unit nut-py-monitor.service for UPSmon.py. 95
109 Symbols used to represent events monitored by UPSmon.py. 97
110 System log urgency levels. 102
111 Command mkUPSmonconf.py --help . 104
112 Calling mkUPSmonconf.py . 105
113 Timed shutdown plan, part 1 of 4, the introduction. 106
114 Timed shutdown plan, part 2 of 4, the shutdown. 107
115 Timed shutdown plan, part 3 of 4, warnings, . 109
116 Configuration file heartbeat.conf . 110
117 Addition to the file ups.conf for heartbeat.conf 110
118 Timed shutdown plan, part 4 of 4, heartbeat. 111
119 Standard shutdown plan differences . 111
120 upsd and UPSmon.py runtime processes . 112
121 Configuration file nut.conf. 113
122 Daemons used by NUT. 113
123 UPS shutdown script nutshutdown. 115
124 UPS shutdown script nutshutdown for 2 of 3 UPS’s. 115
125 UPS shutdown service unit nut-delayed-ups-shutdown.service. 116
126 Users and directories for NUT. 117
127 Example of a notification. 119
128 Modifications to file /etc/sudoersfig:notify.sudoer 120
129 Bash script notify-send-all . 121
130 Alternative text bracketing characters. 127
131 UPSmon.conf lexer tokens. 129
132 Representation of grammar production . 130
133 UPSmon.conf grammar. 130
134 UPSmon.conf grammar, continued. 131
135 UPSmon.conf grammar, final part. 132
136 Log rotation for upsdTLS.py and UPSmon.py . 133

xi

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Part 1

UPS monitoring using NUT

The first part of this documentation discusses UPS activity monitoring using the facilities pro-
vided by NUT 2.7.4. Part 2 will discuss the use of the UPSmon.py software to manage the UPS
activity. Part 3 provides technical appendices.

1 Introduction, and Welcome to NUT
You are of course free to read as much or as little as you wish of this document, but the suggested
reading order is:

1. Introduction

2. Simple server with no local users

3. Multiple power supplies

4. Workstation with local users

5. Workstations share a UPS

6. Workstation with heartbeat

timed shutdown

7. Workstation with

8. Workstation with additional equipment

9. Encrypted connections

i
n
t
r
o
.
f
i
g

Page 1 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

port

3493

upsd

upsc
UPS−1

upsmon
[ONLINE]

ups.status: [OL]

Driver
upsdrvctl

o
v
e
r
v
i
e
w
−
O
L
.
f
i
g

Figure 1: Overview of NUT.

1.1 What is NUT?

The acronym NUT stands for “Network UPS Tools”. It is a collection of GPL licensed software
written in K&R style C for managing power devices, mainly UPS units. It supports a wide range
of UPS units and can handle one or multiple UPS’s of different models and manufacturers simul-
taneously in home, small business and large professional installations. NUT replaces the software
which came with your UPS.

The NUT software is included as a package in most major distributions of Linux, and the source
code is available in a tarball for the others.

The NUT software includes complete technical documentation in the form of PDF manuals,
configuration notes such as file config-notes.txt, man pages, a web site http://networkupstools
.org and detailed comments in the sample configuration files supplied with the project. There is
also a FAQ on the project web site, and a “ups-user” mailing list in which users may ask questions.

1.2 Why this introduction?

To make full use of your UPS you will need to configure the NUT software used to manage UPS
units. The technically complete documentation does not provide many examples; this introduction
is intended to fill the gap by providing fully worked examples for some frequently met configurations.
It is aimed at experienced Unix/Linux system administrators who are new to NUT. Pick the
configuration which corresponds most closely to your installation, get it working, and then adapt
it to your needs. If you have questions for the mailing list it is much easier to explain what you are
trying to do by referring to a well known example.

1.3 Basic components of NUT

Figure 1 shows the basic components of the NUT software.

1.3.1 Driver daemon

The driver is a daemon which talks to the UPS hardware and is aware of the state of the UPS. One
of the strengths of the NUT project is that it provides drivers for a wide range of UPS units from a

Page 2 of 134

https://github.com/networkupstools/nut/blob/master/docs/config-notes.txt
http://networkupstools.org
http://networkupstools.org
http://networkupstools.org/docs/FAQ.html
https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

range of manufacturers. NUT groups the UPS’s into families with similar interfaces, and supports
the families with drivers which match the manufacturer’s interface. See the hardware compatibility
list for a looong list of the available drivers.

The drivers share a command interface, upsdrvctl, which makes it possible to send a command
to the UPS without having to know the details of the UPS protocol. We will see this command in
action in chapter 2.5 when we need to shut down the UPS after a system shutdown.

1.3.2 Daemon upsd

upsd is a daemon which runs permanently in the box to which one or more UPS’s are attached. It
scans the UPS’s through the UPS-specific driver1 and maintains an abstracted image of the UPS
in memory2.

[ol] UPS unit is receiving power from the wall.
[ob] UPS unit is not receiving power from the wall and is using

its own battery to power the protected device.
[lb] The battery charge is below a critical level specified by

the value battery.charge.low.
[rb] UPS battery needs replacing.
[chrg] The UPS battery is currently being charged.
[dischrg] The UPS battery is not being charged and is discharging.
[alarm] An alarm situation has been detected in the UPS unit.
[over] The UPS unit is overloaded.
[trim] The UPS voltage trimming is in operation.
[boost] The UPS voltage boosting is in operation.
[bypass] The UPS unit is in bypass mode.
[off] The UPS unit is off.
[cal] The UPS unit is being calibrated.
[test] UPS test in progress.
[fsd] Tell slave upsmon instances that final shutdown is under-

way.

Figure 2: Symbols used in ups.status maintained by upsd.

The various parts of the abstracted image have standardized names, and a key part is ups
.status which gives the current status of the UPS unit. The current status is a string of symbols.
The principal symbols are shown in figure 2, but if you write software which processes upsd symbols,
expect to find other values in exceptional UPS specific cases.

1See the Hardware Compatibility list and required drivers at http://www.networkupstools.org/stable-hcl.html
2This image may be viewed at any time with the command upsc name-of-UPS

Page 3 of 134

http://www.networkupstools.org/stable-hcl.html
http://www.networkupstools.org/stable-hcl.html
http://www.networkupstools.org/stable-hcl.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Some typical status values are [ol] which means that the UPS unit is taking power from the
wall, and [ob lb] which means that wall power has failed, the UPS is supplying power from it’s
battery, and that battery is almost exhausted.

Daemon upsd listens on port 3493 for requests from its clients, which may be local or remote.
It is amusing to test this using a tool such as nc or netcat and a UPS called UPS-1.

1 rprice@maria:~> REQUEST="GET VAR UPS-1 battery.charge"
2 rprice@maria:~> echo $REQUEST | nc localhost 3493
3 VAR UPS-1 battery.charge "100"

Chapter 1.3.4 will show that this is best done with NUT utility program upsc.
Later chapters will discuss the configuration files ups.conf, upsd.conf and upsd.users with

the specific examples. For gory details, read man upsd, man upsd.conf, man upsd.users and man
ups.conf.

1.3.3 Daemon upsmon

upsd
3493beep

beep

beep

UPS−1

upsmon

[ONBATT]

NOTIFY event:

ups.status: [OB]

upsdrvctl
+ driver

overview−OB.fig

Figure 3: Wall power has failed.

upsmon is an example of a client of upsd. It runs permanently as a daemon in a local or remote
box, polling the status changes of the UPS unit. It is able to react to changes in the UPS state for
example by emitting warning messages, or shutting down the box. The actions are specified in the
configuration file upsmon.conf which will be discussed in specific examples.

As the state of a UPS evolves, the key status changes, called “NOTIFY events”, are identified
with the symbols shown in figure 4. The NOTIFY event symbol is also known as a “notifytype” in
NUT.

Figure 3 shows what happens when wall power fails. Daemon upsd has polled the UPS, and has
discovered that the UPS is supplying power from it’s battery. The ups.status changes to [ob].
Daemon upsmon has polled upsd, has discovered the status change and has generated the NOTIFY
event [onbatt].

For the gory details, read man upsmon and man upsmon.conf.

1.3.4 Utility program upsc

The NUT project provides this simple utility program to talk to upsd and retrieve details of the
UPS’s. For example, “What UPS’s are attached to the local host?”

Page 4 of 134

http://networkupstools.org/docs/man/upsd.html
http://networkupstools.org/docs/man/upsd.conf.html
http://networkupstools.org/docs/man/upsd.users.html
http://networkupstools.org/docs/man/ups.conf.html
http://networkupstools.org/docs/man/ups.conf.html
http://networkupstools.org/docs/man/upsmon.html
http://networkupstools.org/docs/man/upsmon.conf.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

NOTIFY events based on status changes
[online] Status change [ob]→[ol]. The UPS is back on line.
[onbatt] Status change [ol]→[ob]. The UPS is now on battery.
[lowbatt] Status [lb] has appeared. The driver says the UPS battery

is low.
[replbatt] The UPS needs to have its battery replaced. Not all UPS’s

can indicate this.
NOTIFY events based on upsmon activity

[fsd] No status change. The master has commanded the UPS into
the “forced shutdown” mode.

[shutdown] The local system is being shut down.
[commok] Communication with the UPS has been established.
[commbad] Communication with the UPS was just lost.
[nocomm] The UPS can’t be contacted for monitoring.

NOTIFY event based on NUT process error
[noparent] upsmon parent died - shutdown impossible.

Figure 4: Symbols used to represent NOTIFY events maintained by upsmon.

4 rprice@maria:~> upsc -L
5 UPS-1: Eaton Ellipse ASR 1500 USBS
6 heartbeat: Heart beat validation of NUT

Let’s ask for the upsd abstracted image of a UPS:

7 rprice@maria:~> upsc UPS-1
8 battery.charge: 100
9 battery.charge.low: 50
10 ...
11 driver.name: usbhid-ups
12 driver.parameter.offdelay: 30
13 driver.parameter.ondelay: 40
14 ...
15 ups.status: OL CHRG

Let’s ask, using Bash syntax, for a list of the drivers used by upsd:

16 rprice@maria:~> for u in $(upsc -l)
17 > do upsc $u driver.name
18 > done
19 usbhid-ups
20 dummy-ups

Man page man upsc provides further examples.

Page 5 of 134

http://networkupstools.org/docs/man/upsc.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

1.4 Configuration file formats

The components of NUT get their configuration from the following configuration files. The simpler
configurations do not use all these files.

• nut.conf Nut daemons to be started.

• ups.conf Declare the UPS’s managed by upsd.

• heartbeat.conf Used only for heartbeat configurations.

• upsd.conf Access control to the upsd daemon.

• upsd.users Who has access to the upsd daemon.

• upsmon.conf upsmon daemon configuration.

• upssched.conf Only used for customised and timer-based setups.

• upssched-cmd A script used only for customised and timer-based setups.

• delayed UPS shutdown Choice of scripts for delayed UPS shutdown.

NUT parses all the configuration files with a common state machine, which means they all have
the following characteristics.

First, most of the programs use an uppercase word to declare a configuration directive. This
may be something like MONITOR, NOTIFYCMD, or ACCESS. Case matters here. “monitor” won’t be
recognized.

Next, the parser does not care about whitespace between words. If you like to indent things
with tabs or spaces, feel free to do so.

The keywords are often followed by values. If you need to set a value to something containing
spaces, it has to be contained within “quotes” to keep the parser from splitting the line, e.g.

21 SHUTDOWNCMD "/sbin/shutdown -h +0"

Without the quotes, the parser would only see the first word on the line. Let’s say you really
need to embed a quote within your directive for some reason. You can do that too.

22 NOTIFYCMD "/bin/notifyme -foo -bar \"hi there\" -baz"

In other words, \ can be used to escape the ".
When you need to put the \ character into your string, you just escape it.

23 NOTIFYCMD "/bin/notifyme c:\\dos\\style\\path"

The \ can be used to escape any character, but you only really need it for \, ", and # as they
have special meanings to the parser.

When using file names with space characters, you may end up having tricky things since you
need to write them inside "" which must be escaped:

Page 6 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

24 NOTIFYCMD "\"c:\\path with space\\notifyme\""

is the comment character. Anything after an unescaped # is ignored, e.g.

25 identity = my#1ups

will turn into identity = my, since the # stops the parsing. If you really need to have a # in
your configuration, then escape it.

26 identity = my\#1ups

Much better.
The = character should be used with care too. There should be only one “simple” = character in

a line: between the parameter name and its value. All other = characters should be either escaped
or within “quotes”. Remember that the # character in a password must be escaped:

27 password = 12=34#56 Incorrect
28 password = 12\=34\#56 Good
29 password = NUT=Awesome Incorrect
30 password = "NUT=Awesome" Good

1.4.1 Line spanning

You can put a backslash at the end of the line to join it to the next one. This creates one virtual
line that is composed of more than one physical line.

Also, if you leave the "" quote container open before a newline, it will keep scanning until it
reaches another one. If you see bizarre behavior in your configuration files, check for an unintentional
instance of quotes spanning multiple lines.

1.5 Mailing list: nut-users

The NUT project offers a mailing list to assist the users. The web page for list administration is
https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser.

As always in mailing lists, you get better results if you remember Eric Raymond’s good advice
which you will find in “How To Ask Questions The Smart Way” at http://www.catb.org/esr/faqs/
smart-questions.html.

The NUT mailing lists accept HTML formatted e-mails, but it’s better to get into the habit of
sending only plain text, since you will meet mailing lists that send HTML to /dev/null.

If you want to quote configuration files, please remove comments and blank lines. A command
such as grep ^[^#] upsmon.conf will do the job. To save you some work, there is ready-made
script to prepare a report on a NUT configuration. See nut-report script available at http://
rogerprice.org/NUT/nut-report.

Page 7 of 134

https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser
http://www.catb.org/esr/faqs/smart-questions.html
http://www.catb.org/esr/faqs/smart-questions.html
http://rogerprice.org/NUT/nut-report
http://rogerprice.org/NUT/nut-report

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Now that we have the basic ideas of NUT, we are ready to look at the first simple configuration.

Page 8 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

2 Simple server with no local users
This chapter extends the general ideas of chapter 1 to provide a fully worked example of a simple
configuration. This will in turn form the basis of future chapters.

port

3493

upsd

upsc

upsrw

upscom

UPS−1

upsmon
[ONLINE]

ups.status: [OL]

upsdrvctl
+ driver

s
e
r
v
e
r
.
f
i
g

Figure 5: Server with no local users.

Six configuration files specify the operation of NUT in the simple server.

1. The NUT startup configuration: nut.conf. Since this file is not strictly a part of NUT, and
is common to all configurations, it is discussed separately in appendix 20.

2. The upsd UPS declarations: ups.conf, see chapter 2.1.

3. The upsd daemon access control; upsd.conf, see chapter 2.2.

4. The upsd daemon user declarations: upsd.users, see chapter 2.3.

5. The upsmon daemon configuration: upsmon.conf, see chapter 2.4.

6. The delayed UPS shutdown script. Since this file is common to all configurations, it is
discussed separately in appendix 21.

2.1 Configuration file ups.conf, first attempt

31 # ups.conf, first attempt
32 [UPS-1]
33 driver = usbhid-ups
34 port = auto
35 desc = "Eaton ECO 1600"

Figure 6: Configuration file ups.conf,
first attempt.

This configuration file declares your UPS units.
The file described here will do the job, but we will
see after we have discussed the shutdown process,
that useful improvements are possible.

Line 32 begins a UPS-specific section, and
names the UPS unit that upsd will manage. The
following lines provide details for this UPS. There
will as many sections as there are UPS units. Make
sure this name matches the name in upsmon.conf

and in upssched-cmd, which we will meet in later chapters.
Line 33 specifies the driver that upsd will use. For the full list of drivers, see the Hardware

Compatibility list and the required drivers at http://www.networkupstools.org/stable-hcl.html.

Page 9 of 134

http://www.networkupstools.org/stable-hcl.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Line 34 depends on the driver. For the usbhid-ups driver the value is always auto. For other
drivers, see the man page for that driver.

Line 35 provides a descriptive text for the UPS.

2.2 Configuration file upsd.conf

36 # upsd.conf
37 LISTEN 127.0.0.1 3493
38 LISTEN ::1 3493

Figure 7: Configuration file upsd.conf.

This configuration file declares on which ports the
upsd daemon will listen, and provides a basic ac-
cess control mechanism.

Line 37 declares that upsd is to listen on it’s
prefered port for traffic from the localhost. The IP
address specifies the interface on which the upsd

daemon will listen. The default 127.0.0.1 specifies the loopback interface. It is possible to replace
127.0.0.1 by 0.0.0.0 which says “listen for traffic from all sources” and use your firewall to filter
traffic to port 3493. For good security, this file should be accessible to the upsd process only.

If you do not have IPv6, remove or comment out line 38.

2.3 Configuration file upsd.users

39 # upsd.users
40 [upsmaster]
41 password = sekret
42 upsmon master

Figure 8: Configuration file upsd.users
for a simple server.

This configuration file declares who has write ac-
cess to the UPS. For good security, ensure that
only users upsd/nut and root can read and write
this file.

Line 40 declares the “user name” of the sys-
tem administrator who has write access to the
UPS’s managed by upsd. It is independent of
/etc/passwd. The upsmon client daemon will use

this name to poll and command the UPS’s. There may be several names with different levels of
access. For this example we only need one.

Line 41 provides the password. You may prefer something better than “sekret”.
Line 42 declares that this user is the upsmon daemon, and the required set of actions will be

set automatically. In this simple configuration daemon upsmon is a master and has authority to
shutdown the server. The alternative, “upsmon slave", allows monitoring only, with no shutdown
authority.

The configuration file for upsmon must match these declarations for upsmon to operate correctly.
For lots of details, see man upsd.users.

2.4 Configuration file upsmon.conf for a simple server

This configuration file declares how upsmon is to handle NOTIFY events. For good security, ensure
that only users upsd/nut and root can read and write this file.

Page 10 of 134

http://networkupstools.org/docs/man/upsd.users.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

43 # upsmon.conf
44 MONITOR UPS-1@localhost 1 upsmaster sekret master

Figure 9: Configuration file upsmon.conf for a simple server, part 1 of 5.

On line 44

• The UPS name UPS-1 must correspond to that declared in ups.conf line 32.

• The “power value” 1 is the number of power supplies that this UPS feeds on this system.

• upsmaster is the “user” declared in upsd.users line 40.

• sekret is the password declared in upsd.users line 41.

• master means this system will shutdown last, allowing any slaves time to shutdown first.
Slave systems will be discussed in chapter 5. There are no slaves in this simple configuration.

45 SHUTDOWNCMD "/sbin/shutdown -h +0"
46 POWERDOWNFLAG /etc/killpower

Figure 10: Configuration file upsmon.conf for a simple server, part 2 of 5.

Line 45 declares the command that is to be used to shut down the server. A second instance of
the upsmon daemon running as root will execute this command. Multiple commands are possible,
for example SHUTDOWNCMD "logger -t upsmon.conf \"SHUTDOWNCMD calling /sbin/shutdown
to shut down system\" ; /sbin/shutdown -h +0" will also log the action of SHUTDOWNCMD. Note
that internal " have to be escaped.

Line 46 declares a file created by upsmon when running in master mode when the UPS needs to
be powered off. It will be used in more complex configurations. See man upsmon.conf for details.

47 NOTIFYMSG ONLINE "UPS %s: On line power."
48 NOTIFYMSG ONBATT "UPS %s: On battery."
49 NOTIFYMSG LOWBATT "UPS %s: Battery is low."
50 NOTIFYMSG REPLBATT "UPS %s: Battery needs to be replaced."
51 NOTIFYMSG FSD "UPS %s: Forced shutdown in progress."
52 NOTIFYMSG SHUTDOWN "Auto logout and shutdown proceeding."
53 NOTIFYMSG COMMOK "UPS %s: Communications (re-)established."
54 NOTIFYMSG COMMBAD "UPS %s: Communications lost."
55 NOTIFYMSG NOCOMM "UPS %s: Not available."
56 NOTIFYMSG NOPARENT "upsmon parent dead, shutdown impossible."

Figure 11: Configuration file upsmon.conf for a simple server, part 3 of 5.

Lines 47-56 assign a text message to each NOTIFY event. Within each message, the marker %s
is replaced by the name of the UPS which has produced this event. upsmon passes this message
to program wall to notify the system administrator of the event. You can change the default

Page 11 of 134

http://networkupstools.org/docs/man/upsmon.conf.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

57 NOTIFYFLAG ONLINE SYSLOG+WALL
58 NOTIFYFLAG ONBATT SYSLOG+WALL
59 NOTIFYFLAG LOWBATT SYSLOG+WALL
60 NOTIFYFLAG REPLBATT SYSLOG+WALL
61 NOTIFYFLAG FSD SYSLOG+WALL
62 NOTIFYFLAG SHUTDOWN SYSLOG+WALL
63 NOTIFYFLAG COMMOK SYSLOG+WALL
64 NOTIFYFLAG COMMBAD SYSLOG+WALL
65 NOTIFYFLAG NOCOMM SYSLOG+WALL
66 NOTIFYFLAG NOPARENT SYSLOG+WALL

Figure 12: Configuration file upsmon.conf for a simple server, part 4 of 5.

messages to something else if you like. The format is NOTIFYMSG event "message" where %s is
replaced with the identifier of the UPS in question.

Lines 57-66 declare what is to be done at each NOTIFY event. The declarations, known as
“flags” are shown in table 13. You may specify one, two or three flags for each event, in the form
FLAG[+FLAG]*, however IGNORE must always be alone.

IGNORE Don’t do anything. Must be the only flag on the line.
SYSLOG Write the message in the system log.
WALL Use program wall to send message to terminal users. Note

that wall does not support accented letters or non-latin char-
acters.

EXEC (Not used for this simple server example).

Figure 13: Flags declaring what upsmon is to do for NOTIFY events.

Note that if you have multiple UPS’s, the same actions are to be performed for a given NOTIFY
event for all the UPS’s. We will see later that this is not good news.

67 RBWARNTIME 43200
68 NOCOMMWARNTIME 300
69 FINALDELAY 5

Figure 14: Configuration file upsmon.conf for a simple server, part 5 of 5.

When a UPS says that it needs to have its battery replaced, upsmon will generate a [replbatt]
NOTIFY event. Line 67 say that this happens every RBWARNTIME = 43200 seconds (12 hours).

Line 68: Daemon upsmon will trigger a [nocomm] NOTIFY event after NOCOMMWARNTIME sec-
onds if it can’t reach any of the UPS entries in configuration file upsmon.conf. It keeps warning
you until the situation is fixed.

Page 12 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Line 69: When running in master mode, upsmon waits this long after sending the [shutdown]
NOTIFY event to warn the users. After the timer elapses, it then runs your SHUTDOWNCMD as
specified on line 45. If you need to let your users do something in between those events, increase
this number. Remember, at this point your UPS battery is almost depleted, so don’t make this too
big. Alternatively, you can set this very low so you don’t wait around when it’s time to shut down.
Some UPS’s don’t give much warning for low battery and will require a value of 0 here for a safe
shutdown.

For lots and lots of details, see man upsmon.conf. See also the file config-notes.txt in the
distribution.

2.5 The delayed UPS shutdown

upsdbeep
beep

beep

System shuts down

x seconds

seconds

offdelay = 20

UPS shuts down

upsdrvctl shutdown

UPS−1

UPS−1

upsdrvctl

+ driver

d
e
l
a
y
e
d
U
P
S
s
h
u
t
d
o
w
n
.
f
i
g

[OB LB]

ups.status:

Figure 15: Delayed UPS shutdown.

Somewhere in your distribution, as part of
the system shutdown process, there needs
to be an action to send a message to the
UPS to tell it that some time later, it too
will shut down. Note that the UPS does
not shutdown at the same time as the sys-
tem it protects. The UPS shutdown is
delayed. By default the delay is 20 sec-
onds. We will see in a later chapter how
to change this. (Line 77 if you’re curious.)

The delayed UPS shutdown command
may be from a shell script or a sys-
temd service unit but in all cases the
key element is the command upsdrvctl
shutdown.

Figure 16 shows the openSUSE adap-
tion of a shell script supplied by NUT to
be placed in a systemd “drop-in” directory
for scripts which should be executed as

late as possible during a system shutdown. systemd detects automatically that a script in one
of these “drop-in” directories needs to be executed. There is no need to enable the script.

Gentoo users: see Denny Page’s post at https://alioth-lists.debian.net/pipermail/nut-upsuser
/2018-July/011172.html .

70 #!/bin/sh
71 #/usr/sbin/upsmon -K >/dev/null 2>&1 && /usr/sbin/upsdrvctl shutdown

Figure 16: NUT provided script for delayed UPS shutdown.

The openSUSE distribution places the delayed shutdown script provided by NUT and shown

Page 13 of 134

http://networkupstools.org/docs/man/upsmon.conf.html
https://github.com/networkupstools/nut/blob/master/docs/config-notes.txt
https://alioth-lists.debian.net/pipermail/nut-upsuser/2018-July/011172.html
https://alioth-lists.debian.net/pipermail/nut-upsuser/2018-July/011172.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

in figure 16 in file /usr/lib/systemd/system-shutdown/nutshutdown . The Debian distribution
places the script in file /lib/systemd/system-shutdown/nutshutdown . In both cases, the file
name “nutshutdown” seems to me to be a misnomer, since it is not NUT which is being shut down,
but such naming sloppiness is common.

This script is executed late in the system shutdown process, and there is no trace in the system
log of it’s action. If, like the editor, you believe that shutting off power to a system is a major
event, and should be logged, then you are invited to replace the script provided by NUT with a
systemd service unit as shown in appendix 21 which will log the delayed shutdown command.

2.6 The shutdown story for a simple server

We are now ready to tell the detailed story of how the server gets shut down when wall power fails,
and how it restarts when wall power returns.

1. Wall power on The system runs normally. upsd status is [ol]. No NOTIFY event.

Days, weeks, months go by...

2. Wall power fails The server remains operational running on the UPS battery. upsd polls
the UPS, and detects status change [ol]→[ob].

3. upsmon polls upsd and issues NOTIFY event [onbatt]. As instructed by line 58, an [onbatt]
message goes to syslog and to program wall. The server is still operational running on the
UPS battery.

Minutes go by...

4. Battery discharges below battery.charge.low The server remains operational, but
the UPS battery will not last much longer. upsd polls the UPS, and detects status change
[ob]→[ob lb].

5. upsmon polls upsd and issues new NOTIFY event [lowbatt]. As instructed by line 59
upsmon sends a [lowbatt] message to syslog and to program wall.

6. upsmon decides to command a system shutdown and generates NOTIFY event [shutdown].

7. upsmon waits FINALDELAY seconds as specified on line 69.

8. upsmon creates POWERDOWN flag specified on line 46.

9. upsmon calls the SHUTDOWNCMD specified on line 45.

10. We now enter the scenario described in figure 15. The operating system’s shutdown process
takes over. During the system shutdown, the Bash script shown in figure 16 or equivalent
systemd service unit or some other equivalent runs the command upsdrvctl shutdown . This
tells the UPS that it is to shut down 20 seconds later.

11. The system powers down, hopefully before the 20 seconds have passed.

Page 14 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

12. UPS shuts down 20 seconds have passed. With some UPS units, there is an audible
“clunk”. The UPS outlets are no longer powered. The absence of AC power to the protected
system for a sufficient time has the effect of resetting the BIOS options, and in particular the
option “Restore power on AC return”. This BIOS option will be needed to restart the box.
How long is a sufficient time for the BIOS to reset? This depends very much on the box.
Some need more than 10 seconds. What if wall power returns before the “sufficient time”
has elapsed? The UPS unit will wait until the time specified by the ondelay option in file
ups.conf. This timer, like the offdelay timer, starts from the moment the UPS receives the
upsdrvctl shutdown command. See line 78 in figure 17.

Minutes, hours, days go by...

13. Wall power returns Some time later, maybe much later, wall power returns. The UPS
reconnects it’s outlets to send power to the protected system.

14. The system BIOS option “Restore power on AC return” has hopefully been selected and the
system powers up. The bootstrap process of the operating system begins.

15. The operating system starts the NUT daemons upsd and upsmon. Daemon upsd starts the
driver(s) and scans the UPS. The UPS status becomes [ol lb].

16. After some time, the battery charges above the battery.charge.low threshold and upsd
declares the status change [ol lb]→[ol]. We are now back in the same situation as state 1
above.

As we saw in figure 15, there is a danger that the system will take longer
than 20 seconds to shut down. If that were to happen, the UPS shutdown
would provoke a brutal system crash. To alleviate this problem, the next
chapter proposes an improved configuration file ups.conf.

2.7 Configuration file ups.conf for a simple server, improved

Let’s revisit this configuration file which declares your UPS units.

72 # ups.conf, improved
73 [UPS-1]
74 driver = usbhid-ups
75 port = auto
76 desc = "Eaton ECO 1600"
77 offdelay = 60
78 ondelay = 70
79 lowbatt = 33

Figure 17: Configuration file ups.conf, im-
proved.

New line 77 increases from the default 20
secs to 60 secs the time that passes between
the upsdrvctl shutdown command and the
moment the UPS shuts itself down.

Line 78 increases the time that must pass
between the upsdrvctl shutdown command
and the moment when the UPS will react to
the return of wall power and turn on the power
to the system. Even if wall power returns ear-
lier, the UPS will wait ondelay = 70 seconds
before powering itself on. The default is 30
seconds.

Page 15 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

The ondelay must be greater than the offdelay. See man ups.conf for more news about this
configuration file.

Additional line 79 sets the default value for battery.charge.low. Even if you use command
upsrw to set a value for battery.charge.low, usbhid-ups and some other drivers3 will restore the
default, so if you want a permanent change you must change the default. See also chapter 2.10.

2.8 The shutdown story with quick power return

What happens if power returns after the system shuts down but before the UPS delayed shutdown?
We pick up the story from state 6.

6. upsmon decides to command a system shutdown and generates NOTIFY event [shutdown].

7. upsmon waits FINALDELAY seconds as specified on line 69.

8. upsmon creates POWERDOWN flag specified on line 46.

9. upsmon calls the SHUTDOWNCMD specified on line 45.

10. We now enter the scenario described in figure 15. The operating system’s shutdown process
takes over. During the system shutdown, the Bash script shown in figure 16 or equivalent
systemd service unit or some other equivalent runs the command upsdrvctl shutdown . This
tells the UPS that it is to shut down offdelay seconds later .

11. The system powers down before offdelay seconds have passed.

12. Wall power returns before the UPS shuts down Less than offdelay seconds have
passed. The UPS continues it’s shutdown process.

13. After offdelay seconds the UPS shuts down, disconnecting it’s outlets. The beeping stops.
With some UPS units, there is an audible “clunk”.

An interval of ondelay-offdelay seconds later

14. After ondelay seconds the UPS turns itself on, and repowers it’s outlets

15. The system BIOS option “restore power on AC return” has hopefully been selected and the
system powers up. The bootstrap process of the operating system begins.

The story continues at state 15 in chapter 2.6.

2.9 Utility program upscmd

Utility program upscmd is a command line program for sending commands directly to the UPS.
To see what commands your UPS will accept, type upscmd -l ups-name where ups-name is the
name of the UPS as declared in file ups.conf, line 32.
For example, to turn on the beeper, use command

3List needed

Page 16 of 134

http://networkupstools.org/docs/man/ups.conf.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

upscmd -u upsmaster -p sekret UPS-1@localhost beeper.enable
where upsmaster is the user declared on line 40 and sekret is the l33t password declared on line 41
in file upsd.users.

Command upscmd can be dangerous. Make sure that file upsd.users can be read and written
by root only. See man upscmd for more detail.

2.10 Utility program upsrw

Utility program upsrw is a command line program for changing the values of UPS variables. To see
which variables may be changed, type upsrw ups-name where ups-name is the name of the UPS
as declared in file ups.conf, line 32.
For example, at line 9 we saw that the battery.charge.low has been set to 50. We will change
this to something less conservative with command

upsrw -s battery.charge.low=33 -u upsmaster -p sekret UPS-1@localhost
where upsmaster is the user declared on line 40 and sekret is the password declared on line 41 in
file upsd.users. Now check that the value has been set with command

upsc UPS-1 battery.charge.low
which returns the value 33.

Once again, command upsrw can be dangerous. Make sure that file upsd.users can be read
and written by root only. See man upsrw for more detail.

Some drivers, for example usbhid-ups, reset battery.charge.low to the default value when
they start. To overcome this resistance, add the line lowbatt = 33 to the UPS definition in file
ups.conf as shown on line 79.

This chapter has described a basic configuration which is deficient in several ways:

• NUT messages are only available to those users who are constantly in front of text consoles
which display the output of the program wall. Systems with users of graphical interfaces
which do not display wall output will need stronger techniques.
• Program wall has not been internationalised. It cannot display letters with accents or any

non-latin character.

Chapter 4 will show how to overcome these difficulties.

Page 17 of 134

http://networkupstools.org/docs/man/upscmd.html
http://networkupstools.org/docs/man/upsrw.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

3 Server with multiple power supplies
This chapter extends the ideas of chapter 2 to cover a larger server which has multiple, hopefully
independent power supplies. The server is capable of running on two or more power supplies,
but must be shut down if there are less than two operational. The flexibility of NUT makes this
configuration easy: we will describe only the modifications to the configuration in chapter 2.

port

3493

upsdUPS−1

47014

UPS−2

47015

UPS−4

47025
upscom

upsrw

upsc

UPS−3

47024

upsdrvctl
+ driver

upsdrvctl
+ driver

upsdrvctl
+ driver

upsdrvctl
+ driver

upsmon

d
u
a
l
.
f
i
g

UPS−1: [ONLINE]

UPS−2: [LOWBATT]

UPS−3: [NOCOMM]

UPS−4: [ONLINE]

ups.status: [OL]

ups.status: [OB LB]

ups.status: [OL]

ups.status: []

Figure 18: Server with multiple power supplies.

Six configuration files specify the operation of NUT in the server with multiple power supplies.

1. The NUT startup configuration: nut.conf. Since this file is not strictly a part of NUT, and
is common to all configurations, it is discussed separately in appendix 20.

2. The upsd UPS declarations: ups.conf, see chapter 3.1.
3. The upsd daemon access control; upsd.conf does not change, see chapter 2.2.
4. The upsd daemon user declarations: upsd.users do not change, see chapter 2.3.
5. The upsmon daemon configuration: upsmon.conf, see chapter 3.2.
6. The delayed UPS shutdown script. Since this file is common to all configurations, it is

discussed separately in appendix 21.

3.1 Configuration file ups.conf for multiple power supplies

We add additional sections to ups.conf to declare the additional UPS units but we need some way
of distinguishing them. Assuming the usbhid-ups driver, man usbhid-ups describes how this can
be done.

Page 18 of 134

http://networkupstools.org/docs/man/usbhid-ups.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

80 # ups.conf, 4 power supplies
81 [UPS-1]
82 driver = usbhid-ups
83 port = auto
84 desc = "Power supply 1"
85 lowbatt = 33
86 serial = 47014
87 [UPS-2]
88 driver = usbhid-ups
89 port = auto
90 desc = "Power supply 2"
91 lowbatt = 33
92 serial = 47015

93 [UPS-3]
94 driver = usbhid-ups
95 port = auto
96 desc = "Power supply 3"
97 lowbatt = 33
98 serial = 47024
99 [UPS-4]
100 driver = usbhid-ups
101 port = auto
102 desc = "Power supply 4"
103 lowbatt = 33
104 serial = 47025

Figure 19: File ups.conf for multiple power supplies.

Driver usbhid-ups distinguishes multiple UPS units with some combination of the vendor,
product, serial and vendorid options that it provides. For oher drivers, which do not provide the
ability to distinguish UPS units, or for UPS units which have no serial number, see the comment
by Charles Lepple in NUT issue #597 at https://github.com/networkupstools/nut/issues/597.

Let’s assume that the UPS units used in this configuration are sophisticated products and
are capable of reporting their serial numbers. You can check this with command upsc UPS-1
@localhost ups.serial . In lines 86, 92, 98 and 104 we use this information to distinguish UPS-1
with serial = 47014, UPS-2 with serial = 47015, etc.

See man ups.conf and man usbhid-ups.

3.2 Configuration file upsmon.conf for multiple power supplies

This configuration file declares how upsmon is to handle NOTIFY events from the UPS units. For
good security, ensure that only users upsd/nut and root can read and write this file.

105 # upsmon.conf, multiple power supplies
106 MONITOR UPS-1@localhost 1 upsmaster sekret master
107 MONITOR UPS-2@localhost 1 upsmaster sekret master
108 MONITOR UPS-3@localhost 1 upsmaster sekret master
109 MONITOR UPS-4@localhost 1 upsmaster sekret master
110 MINSUPPLIES 2

Figure 20: Configuration file upsmon.conf for multiple power supplies, part 1 of 5.

On lines 106-109

• The UPS names UPS-1, UPS-2, etc. must correspond to those declared in ups.conf lines 81,
87. 93 and 99.

Page 19 of 134

https://github.com/networkupstools/nut/issues/597
https://github.com/networkupstools/nut/issues/597
https://github.com/{\penalty \z@ }networkupstools/{\penalty \z@ }nut/issues/{\penalty \z@ }597
http://networkupstools.org/docs/man/ups.conf.html
http://networkupstools.org/docs/man/usbhid-ups.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

• The “power value” 1 is the number of power supplies that each UPS feeds on this system.

• upsmaster is the “user” declared in upsd.users line 40.

• sekret is the password declared in upsd.users line 41.

• master means this system will shutdown last, allowing any slaves time to shutdown first.
Slave systems will be discussed in chapter 5. There are no slaves in this configuration.

Line 110, MINSUPPLIES, declares that at least two power supplies must be operational, and that
if fewer are available, NUT must shut down the server. Figure 18 shows that currently two of
the four power supplies are operational. The [ob lb] of UPS-2, which would have caused a system
shutdown in the case of the simple server in chapter 2 is not sufficient to provoke a system shutdown
in this case. UPS-3 has been disconnected, maybe even removed in order to paint the wall behind
it. (Have you ever worked for Big Business IT, or for Big Government IT?).

The remainder of upsmon.conf is the same as that for the simple server of chapter 2, figures
10-14.

3.3 Shutdown conditions for multiple power supplies

111 rprice@maria:~> for i in {1..100}
112 > do upsc UPS-1 ups.status 2>&1
113 > sleep 5s
114 > done
115 OL CHRG
116 OL CHRG

Action: disconnect UPS-1 USB cable
117 Broadcast Message from upsd@maria
118 UPS UPS-1@localhost: Communications lost
119 Error: Data stale
120 Error: Data stale

Action: reconnect UPS-1 USB cable
121 Broadcast Message from upsd@maria
122 UPS UPS-1@localhost: Communications (re-)established
123 OL CHRG
124 OL CHRG

Figure 21: Experiment to show effect of lost UPS. Part 1,

The value of MINSUPPLIES is the key element in determining if a server with multiple power
supplies should shut down. When all the UPS units can be contacted, and when their ups.status
values are known, then it is the count A of those that are active, that is without [lb], which is
determinant.

Page 20 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

If A ≥ MINSUPPLIES then OK else shutdown.

UPS-3: What is the value of A? The situation for those UPS units such as UPS-3 is
more delicate. If a UPS unit had been reporting the status [ol], then if communication is lost,
NUT assumes that the UPS is still operational. Command upsc UPS-3@localhost ups.status
will return the error message “Error: Data stale”, upsmon will raise the NOTIFY event [commbad]
and the sysadmin will receive the “Communications lost” message shown on line 54. However this
does not count as an [lb].

You can verify this yourself on a simple working configuration such as that of chapter 2 using
the Bash command shown on lines 111-114 in figure 21. Disconnecting the USB cable on a healthy
UPS does not cause a system shutdown.

125 rprice@maria:~> for i in {1..100}
126 > do upsc UPS-1 ups.status 2>&1
127 > sleep 5s
128 > done
129 OL CHRG
130 OL CHRG

Action: disconnect wall power
131 OB
132 OB

Action: disconnect UPS-1 USB cable
133 Broadcast Message from upsd@maria
134 UPS UPS-1@localhost: Communications lost
135 Error: Data stale
136 Error: Data stale

Result: system shutdown

Figure 22: Experiment to show effect of lost UPS. Part 2,

However, as shown in figure 22, disconnecting the USB lead on a sick UPS causes a rapid system
shutdown. If a UPS unit had been reporting the status [ob], then if communication is lost, NUT
assumes that the UPS is about to reach status [ob lb] and calls for a immediate system shutdown.

So the value of A depends not only on the current situation, but also on how the system got
into that state.

The moral of our story is that NUT will play safe, but you must be very careful who has access
to your server room. We will see in later chapters that there are ways of reinforcing the feedback
to the sysadmin.

Page 21 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

This chapter has described a complex UPS configuration in isolation, but in practice such a
configuration would be just a part of a complete server room, and the use of NUT would have to be
integrated with the rest of the server room power management. The layered design of NUT makes
this integration possible.

A recent book4 for managers on disaster recovery discusses UPS units. On page 559 it says “We
chose to have just one UPS do the paging ... We do it on low battery for one of the UPSes that
has a 15-minute run-time.” Clearly they wanted a timed action, but the only way they could get it
was by running down a UPS until it reached [lb]. NUT is capable of doing a lot better, as we will
show in later chapters.

4“The Backup Book: Disaster Recovery from Desktop to Data Center” by Dorian J. Cougias, E. L. Heiberger,
Karsten Koop, Schaser-Vartan Books, 2003, ISBN 0-9729039-0-9, 755 pages.

Page 22 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

4 Workstation with local users
This chapter extends the ideas of chapter 2 to provide a fully worked example of a configuration
which includes a simple user provided script. This will in turn form the basis for future chapters.

There are two approaches possible for supporting user scripts:

1. Directly from upsmon using NOTIFYCMD.

2. Indirectly via upssched and CMDSCRIPT.

We choose the latter since this introduces upssched, which will be needed later.

port

3493

upsd CMDSCRIPT

upssched−cmd

...
notify−send

...

upsc

upsrw

upscom

upsschedupsmon

UPS−1
ups.status: [OL]

+ driver

upsdrvctl

workstation.fig

NOTIFYCMD

Figure 23: Workstation with local users.

Eight configuration files specify the operation of NUT in the workstation.

1. The NUT startup configuration: nut.conf. Since this file is not strictly a part of NUT, and
is common to all configurations, it is discussed seperately in appendix 20.

2. The upsd UPS declarations: The improved file ups.conf as given in chapter 2.7 does not
change.

3. The upsd daemon access control: File upsd.conf as given in chapter 2.2 does not change.

4. The upsd user declarations: File upsd.users as given in chapter 2.3 does not change.

5. The upsmon daemon configuration: upsmon.conf. See chapter 4.1.

6. The upssched configuration: upssched.conf. See chapter 4.2.

7. The upssched-cmd script: see chapter 4.3.

8. The delayed UPS shutdown script. Since this file is common to all configurations, it is
discussed seperately in appendix 21.

Page 23 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

4.1 Configuration file upsmon.conf for a workstation

137 # upsmon.conf
138 MONITOR UPS-1@localhost 1 upsmaster sekret master
139 MINSUPPLIES 1

Figure 24: Configuration file upsmon.conf for a workstation, part 1 of 5.

This configuration file declares how upsmon is to handle NOTIFY events. For good security,
ensure that only users upsd/nut and root can read and write this file.

Line 138 is the same as line 44 in the previous chapter.
On line 139, MINSUPPLIES sets the number of power supplies that must be receiving power to

keep this system running. Normal computers have just one power supply, so the default value of
1 is acceptable. See man upsmon.conf and file big-servers.txt in the NUT documentation for
more details.

140 SHUTDOWNCMD "/sbin/shutdown -h +0"
141 NOTIFYCMD /usr/sbin/upssched
142 POLLFREQ 5
143 POLLFREQALERT 5
144 HOSTSYNC 15
145 DEADTIME 15
146 POWERDOWNFLAG /etc/killpower

Figure 25: Configuration file upsmon.conf for a workstation, part 2 of 5.

Line 140, identical to line 45 declares the command to be used to shut down the server.
Line 141 says which program is to be invoked when upsmon detects a NOTIFY event flagged

as EXEC. Ubuntu sysadmins might see /sbin/upssched.
Line 142, POLLFREQ, declares that the upsmon daemon will poll upsd every 5 seconds.
Line 143, POLLFREQALERT, declares that the upsmon daemon will poll upsd every 5 seconds while

the UPS in on battery.
Line 144, HOSTSYNC will be used in master-slave5 cooperation, to be discussed in chapter 5.4.

The default value is 15 seconds.
Line 145 specifies how long upsmon will allow a UPS to go missing before declaring it “dead”.

The default is 15 seconds.
Daemon upsmon requires a UPS to provide status information every few seconds as defined by

POLLFREQ and POLLFREQALERT. If the status fetch fails, the UPS is marked stale. If it stays stale
for more than DEADTIME seconds, the UPS is marked dead.

A dead UPS that was last known to be on battery [ob] is assumed to have changed to a low
battery condition [ob]→[ob lb]. This may force a shutdown. Disruptive, but the alternative is

5A slave is a second, third, ... PC or workstation sharing the same UPS,

Page 24 of 134

http://networkupstools.org/docs/man/upsmon.conf.html
http://www.susaaland.dk/sharedoc/nut-2.0.3/docs/big-servers.txt

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

barreling ahead into oblivion and crashing when you run out of power. See chapter 3.3 for more
discussion.

147 NOTIFYMSG ONLINE "UPS %s: On line power."
148 NOTIFYMSG ONBATT "UPS %s: On battery."
149 NOTIFYMSG LOWBATT "UPS %s: Battery is low."
150 NOTIFYMSG REPLBATT "UPS %s: Battery needs to be replaced."
151 NOTIFYMSG FSD "UPS %s: Forced shutdown in progress."
152 NOTIFYMSG SHUTDOWN "Auto logout and shutdown proceeding."
153 NOTIFYMSG COMMOK "UPS %s: Communications (re-)established."
154 NOTIFYMSG COMMBAD "UPS %s: Communications lost."
155 NOTIFYMSG NOCOMM "UPS %s: Not available."
156 NOTIFYMSG NOPARENT "upsmon parent dead, shutdown impossible."

Figure 26: Configuration file upsmon.conf for a workstation, part 3 of 5.

The message texts on lines 147-156 in figure 26 do not change.

157 NOTIFYFLAG ONLINE SYSLOG+WALL+EXEC
158 NOTIFYFLAG ONBATT SYSLOG+WALL+EXEC
159 NOTIFYFLAG LOWBATT SYSLOG+WALL+EXEC
160 NOTIFYFLAG REPLBATT SYSLOG+WALL
161 NOTIFYFLAG FSD SYSLOG+WALL
162 NOTIFYFLAG SHUTDOWN SYSLOG+WALL
163 NOTIFYFLAG COMMOK SYSLOG+WALL
164 NOTIFYFLAG COMMBAD SYSLOG+WALL
165 NOTIFYFLAG NOCOMM SYSLOG+WALL
166 NOTIFYFLAG NOPARENT SYSLOG+WALL

Figure 27: Configuration file upsmon.conf for a workstation, part 4 of 5.

Lines 157-159 now carry the EXEC flag: this flag means that when the NOTIFY event occurs,
upsmon calls the program identified by the NOTIFYCMD on line 141.

Lines 160-166 do not change.

167 RBWARNTIME 43200
168 NOCOMMWARNTIME 300
169 FINALDELAY 5

Figure 28: Configuration file upsmon.conf for a workstation, part 5 of 5.

Lines 167-169 are the same as lines 67-69.

Page 25 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

4.2 Configuration file upssched.conf for a workstation

The NOTIFY events detected by upsmon and flagged as EXEC in upsmon.conf become events for
upssched when NOTIFYCMD points to upssched. The program upssched provides a richer set of
actions than upsmon.

The configuration file upssched.conf described here shows only a simple subset of what can be
done. We will see more later.

170 # upssched.conf
171 CMDSCRIPT /usr/sbin/upssched-cmd
172 PIPEFN /var/lib/ups/upssched.pipe
173 LOCKFN /var/lib/ups/upssched.lock
174
175 AT ONLINE UPS-1@localhost EXECUTE online
176 AT ONBATT UPS-1@localhost EXECUTE onbatt
177 AT LOWBATT UPS-1@localhost EXECUTE lowbatt

Figure 29: Configuration file upssched.conf for a workstation.

On line 171 CMDSCRIPT points to a user script to be called for designated NOTIFY events. This
script will receive as argument a user chosen value. Ubuntu sysadmins might see /usr/local/bin/
upssched-script.

Line 172 defines PIPEFN which is the file name of a socket used for communication between
upsmon and upssched. It is important that the directory be accessible to NUT software and
nothing else. For line 172 the Debian distribution uses /var/run/nut/upssched.pipe.

Here is an example of directory /var/lib/ups taken from distribution openSUSE:

178 maria:/ # ls -alF /var/lib/ups
179 drwx------ 2 upsd daemon 4096 2 avril 22:53 ./
180 drwxr-xr-x 53 root root 4096 16 mai 01:15 ../
181 -rw-r--r-- 1 upsd daemon 6 2 avril 22:48 upsd.pid
182 srw-rw---- 1 upsd daemon 0 2 avril 22:53 upssched.pipe=
183 srw-rw---- 1 upsd daemon 0 2 avril 22:48 usbhid-ups-UPS-1=
184 -rw-r--r-- 1 upsd daemon 6 2 avril 22:48 usbhid-ups-UPS-1.pid

Daemon upsmon requires the LOCKFN declaration on line 173 to avoid race conditions. The
directory should be the same as PIPEFN.

Line 175 introduces the very useful AT declaration provided by upssched.conf. This has the
form

AT notifytype UPS-name command

where

• notifytype is a symbol representing a NOTIFY event.

Page 26 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

• UPS-name can be the special value “*” to apply this handler to every possible value of UPS-
name. We strongly recommend that you do not use this wildcard, since in later chapters we
need distinct actions for distinct UPS’s.

• The command in this case is EXECUTE. In later chapters we will see other very useful com-
mands.

Line 175 says what is to be done by upssched for event [online]. The field “UPS-1@localhost”
says that it applies to the UPS we are using, and the EXECUTE says that the user script specified by
CMDSCRIPT is to be called with argument “online”.

Lines 176 and 177 make similar declarations for NOTIFY events [onbatt] and [lowbatt].

4.3 Configuration script upssched-cmd for a workstation

When upssched was added to the NUT project, the user defined script was called “upssched-cmd”.
This is not the most elegant of names but if you use it, people in the NUT community will know
immediately what you mean. Ubuntu sysadmins sometimes use upssched-script which is better.

185 #!/bin/bash -u
186 # upssched-cmd
187 logger -i -t upssched-cmd Calling upssched-cmd $1

188 UPS="UPS-1"
189 STATUS=$(upsc $UPS ups.status)
190 CHARGE=$(upsc $UPS battery.charge)
191 CHMSG="[$STATUS]:$CHARGE%"

192 case $1 in
193 online) MSG="$UPS, $CHMSG - power supply has been restored." ;;
194 onbatt) MSG="$UPS, $CHMSG - power failure - save your work!" ;;
195 lowbatt) MSG="$UPS, $CHMSG - shutdown now!" ;;
196 *) logger -i -t upssched-cmd "Bad arg: \"$1\", $CHMSG"
197 exit 1 ;;
198 esac
199 logger -i -t upssched-cmd $MSG
200 notify-send-all "$MSG"

Figure 30: Configuration script upssched-cmd for a workstation.

Since NUT runs on a wide range of operating systems and distributions, with different default
scripting languages, it is wise to declare as on line 185 which scripting language is used.

Logging all calls to this script helps sysadmins to discover what went wrong after the catastrophic
failures which in theory should never occur, but which in practice do. Line 187 logs all calls to this
script.

Page 27 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Lines 189-191 prepare a Bash variable CHMSG which gives the current UPS status and battery
charge. This is to be included in messages, so we get a clearer idea of what is happening.

On line 192 the value of the Bash variable $1 is one of the EXECUTE tags defined on lines 175-177.
Lines 193-195 define, for each possible NOTIFY event that upsmon passes on to upssched, a

message to be logged and put in front of users. Accented letters and non latin characters are
allowed.

Line 199 logs the upssched action, and line 200 calls program notify-send-all to put the message
in front of the users. For details of notify-send-all, see appendix 23, “Using notify-send”. See also
notify-send --help. There is no man page.

It is important that script upssched-cmd be accessible to NUT software and nothing else. For
example the following restrictive ownership and permissions:

201 maria:/ # ls -alF /usr/sbin/upssched-cmd
202 -rwxr--r-- 1 upsd daemon 7324 2 avril 16:46 /usr/sbin/upssched-cmd*

Page 28 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

4.4 The shutdown story for a workstation

We are now ready to tell the detailed story of how the workstation gets shut down when wall power
fails, and how it restarts when wall power returns.

1. Wall power on The system runs normally. upsd status is [ol]. No NOTIFY event.

Days, weeks, months go by...

2. Wall power fails The server remains operational running on the UPS battery. upsd polls
the UPS, and detects status change [ol]→[ob].

3. upsmon polls upsd and issues NOTIFY event [onbatt]. As instructed by line 158 an [on-
batt] message goes to syslog, to program wall and to upssched. The server is still operational,
running on the UPS battery.

4. upssched ignores the message it receives and follows the instruction on line 176 to call the
user script upssched-cmd with parameter onbatt.

5. User script upssched-cmd sees that $1 = onbatt and on line 194 sets Bash variable $MSG to
UPS-1, [OB DISCHRG]:99% - power failure - save your work!

6. On line 199, the message is logged, and on line 200 program notify-send-all notifies the users.

Minutes go by...

7. Battery discharges below battery.charge.low The server remains operational, but
the UPS battery will not last much longer. upsd polls the UPS, and detects status change
[ob]→[ob lb].

8. upsmon polls upsd and issues new NOTIFY event [lowbatt]. As instructed by line 159
upsmon sends a [lowbatt] message to syslog, to program wall and to upssched.

The following upssched actions may not occur if the system shutdown is rapid.

9. upssched ignores the message it receives and follows the instruction on line 177 to call the
user script upssched-cmd with parameter lowbatt.

10. User script upssched-cmd sees that $1 = lowbatt and on line 195 sets Bash variable $MSG to
UPS-1, [OB DISCHRG LB]:12% - shutdown now!

11. On line 199, the message is logged, and on line 200 program notify-send notifies the users.

The shutdown story now continues as for the simple server in state 6.

Page 29 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

5 Workstations share a UPS
This chapter discusses a variant of the workstation configuration of chapter 4: multiple workstations
on the same UPS unit.

port

3493

workstations

take power from

the same UPS as

the "master"

The "slave"

upsd

hic sunt dragones

CMDSCRIPT

CMDSCRIPT

upsc

upsrw

upscom

upssched

upssched−cmd

...
notify−send

...

upssched

upsc

upsrw

upscom

upssched−cmd

...
notify−send

...

upsmon
master

upsmon
slave

UPS−1

ups.status: [OL]

upsdrvctl
+ driver

slave.fig

NOTIFYCMD

NOTIFYCMD

Figure 31: “Slave” workstations take power from same UPS as “master”.

In this configuration two or more workstations are powered by the same UPS unit. Only one,
the “master”, has a control lead to the UPS. The other(s) do not have control leads to the UPS and
are known as “slaves”.

Figure 31 shows the arrangement. The NUT configuration for the master workstation is identical
to that of chapter 4.

Five configuration files specify the operation of NUT in the slave workstation.

1. The NUT startup configuration: nut.conf. Since there is no control lead to the UPS, there
is no need for upsd or a driver in the slave. In nut.conf declare MODE=netclient since only
upsmon needs to be started. You will probably need to review your distribution’s start-up
scripts to achieve this. If upsd is started but without any UPS specified, it usually does no
harm. See also appendix 20.

2. The upsmon daemon configuration: upsmon.conf. See chapter 5.1.
3. The upssched configuration: upssched.conf. See chapter 5.2.
4. The upssched-cmd script: see chapter 5.3.
5. The delayed UPS shutdown script. Since this file is common to all configurations, it is

discussed separately in appendix 21.

Page 30 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

5.1 Configuration file upsmon.conf for a slave

203 # upsmon.conf -- slave --
204 MONITOR UPS-1@master 1 upsmaster sekret slave
205 MINSUPPLIES 1

Figure 32: Configuration file upsmon.conf for a slave, part 1 of 5.

This configuration file declares how upsmon in the slave is to handle NOTIFY events coming
from the master. For good security, ensure that only users upsd/nut and root can read and write
this file.

On line 204

• The UPS name UPS-1 must correspond to that declared in the master ups.conf, line 32. The
fully qualified name UPS@host includes the network name of the master workstation, in this
case master.

• The “power value” 1 is the number of power supplies that this UPS feeds on this system.

• upsmaster is the “user” declared in master upsd.users line 40.

• sekret is the password declared in master upsd.users line 41.

• slave means this system will shutdown first, before the master.

On line 205, MINSUPPLIES sets the number of power supplies that must be receiving power to
keep this system running. Normal computers have just one power supply, so the default value of 1 is
acceptable. See chapter 3, man upsmon.conf and file big-servers.txt in the NUT documentation
for more details.

206 SHUTDOWNCMD "/sbin/shutdown -h +0"
207 NOTIFYCMD /usr/sbin/upssched
208 POLLFREQ 5
209 POLLFREQALERT 5
210 HOSTSYNC 15
211 DEADTIME 15
212 POWERDOWNFLAG /etc/killpower

Figure 33: Configuration file upsmon.conf for a slave, part 2 of 5.

Line 206, identical to line 45, declares the command to be used to shut down the slave.
Line 207 says which program is to be invoked when upsmon detects a NOTIFY event flagged

as EXEC. Debian administrators would probably specify /sbin/upssched .
Line 208, POLLFREQ, declares that the upsmon daemon will poll upsd in the master every 5

seconds.

Page 31 of 134

http://networkupstools.org/docs/man/upsmon.conf.html
http://www.susaaland.dk/sharedoc/nut-2.0.3/docs/big-servers.txt

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Line 209, POLLFREQALERT, declares that the upsmon daemon will poll upsd in the master every
5 seconds while the UPS in on battery.

Line 210, HOSTSYNC will be used for managing the master-slave shutdown sequence, to be dis-
cussed in chapter 5.4. The default value is 15 seconds.

Line 211 specifies how long the slave upsmon will allow a UPS to go missing before declaring it
“dead”. The default is 15 seconds.

Daemon upsmon requires a UPS to provide status information every few seconds as defined by
POLLFREQ and POLLFREQALERT. If the status fetch fails, the UPS is marked stale. If it stays stale
for more than DEADTIME seconds, the UPS is marked dead.

A dead UPS that was last known to be on battery [ob] is assumed to have changed to a low
battery condition [ob]→[ob lb]. This may force a shutdown. Disruptive, but the alternative is
barreling ahead into oblivion and crashing when you run out of power. See chapter 3.3 for more
discussion.

213 NOTIFYMSG ONLINE "UPS %s: On line power."
214 NOTIFYMSG ONBATT "UPS %s: On battery."
215 NOTIFYMSG LOWBATT "UPS %s: Battery is low."
216 NOTIFYMSG REPLBATT "UPS %s: Battery needs to be replaced."
217 NOTIFYMSG FSD "UPS %s: Forced shutdown in progress."
218 NOTIFYMSG SHUTDOWN "Auto logout and shutdown proceeding."
219 NOTIFYMSG COMMOK "UPS %s: Communications (re-)established."
220 NOTIFYMSG COMMBAD "UPS %s: Communications lost."
221 NOTIFYMSG NOCOMM "UPS %s: Not available."
222 NOTIFYMSG NOPARENT "upsmon parent dead, shutdown impossible."

Figure 34: Configuration file upsmon.conf for a slave, part 3 of 5.

The message texts on lines 213-222 in figure 34 do not change from those in the master.

223 NOTIFYFLAG ONLINE SYSLOG+WALL+EXEC
224 NOTIFYFLAG ONBATT SYSLOG+WALL+EXEC
225 NOTIFYFLAG LOWBATT SYSLOG+WALL+EXEC
226 NOTIFYFLAG REPLBATT SYSLOG+WALL
227 NOTIFYFLAG FSD SYSLOG+WALL
228 NOTIFYFLAG SHUTDOWN SYSLOG+WALL
229 NOTIFYFLAG COMMOK SYSLOG+WALL
230 NOTIFYFLAG COMMBAD SYSLOG+WALL
231 NOTIFYFLAG NOCOMM SYSLOG+WALL
232 NOTIFYFLAG NOPARENT SYSLOG+WALL

Figure 35: Configuration file upsmon.conf for a slave, part 4 of 5.

Lines 223-225, which do not change from those in the master, carry the EXEC flag: when the
NOTIFY event occurs, slave upsmon calls the program identified by the NOTIFYCMD on line 207.

Page 32 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

233 RBWARNTIME 43200
234 NOCOMMWARNTIME 300
235 FINALDELAY 5

Figure 36: Configuration file upsmon.conf for a slave, part 5 of 5.

Lines 226-232 do not change from those in the master.
Lines 233-235 are the same as lines 67-69 in the master.

5.2 Configuration file upssched.conf for a slave

The NOTIFY events detected by slave upsmon and flagged as EXEC in upsmon.conf become events
for upssched when NOTIFYCMD points to upssched. The program upssched provides a richer set of
actions than upsmon.

As with the master in chapter 4, the configuration file upssched.conf described here shows
only a simple subset of what can be done. We will see more later.

236 # upssched.conf -- slave --
237 CMDSCRIPT /usr/sbin/upssched-cmd
238 PIPEFN /var/lib/ups/upssched.pipe
239 LOCKFN /var/lib/ups/upssched.lock
240
241 AT ONLINE UPS-1@master EXECUTE online
242 AT ONBATT UPS-1@master EXECUTE onbatt
243 AT LOWBATT UPS-1@master EXECUTE lowbatt

Figure 37: Configuration file upssched.conf for a slave.

On line 237, CMDSCRIPT points to a user script to be called for designated NOTIFY events. This
script will receive as argument a user chosen value.

Line 238 defines PIPEFN which is the file name of a socket used for communication between
upsmon and upssched. As in the master, it is important that the directory be accessible to NUT
software and nothing else. The value shown in figure 37 is for the openSUSE distribution. Debian
uses /var/run/nut/upssched.pipe.

Daemon upsmon requires the LOCKFN declaration on line 239 to avoid race conditions. The
directory should be the same as PIPEFN.

Line 241 says what is to be done by upssched for NOTIFY event [online]. The “UPS-1@master”
says that it applies to the UPS controlled by the master, and the EXECUTE says that the user script
specified by CMDSCRIPT is to be called with argument “online”.

Lines 242 and 243 make similar declarations for NOTIFY events [onbatt] and [lowbatt].

Page 33 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

5.3 Configuration script upssched-cmd for a slave

When upssched was added to the NUT project, the user defined script was called “upssched-cmd”.
This is not the most elegant of names but if you use it, people in the NUT community will know
immediately what you mean.

It is important that script upssched-cmd be accessible to NUT software and nothing else.

244 #!/bin/bash -u
245 # upssched-cmd --slave --
246 logger -i -t upssched-cmd Calling upssched-cmd $1

247 case $1 in
248 online) MSG="UPS-1 - power supply had been restored." ;;
249 onbatt) MSG="UPS-1 - power failure - save your work!" ;;
250 lowbatt) MSG="UPS-1 - shutdown now!" ;;
251 *) logger -i -t upssched-cmd "Bad arg: \"$1\""
252 exit 1 ;;
253 esac
254 logger -i -t upssched-cmd $MSG
255 notify-send-all "$MSG"

Figure 38: Configuration script upssched-cmd for a slave.

Since NUT runs on a wide rage of operating systems and distributions, with different default
scripting languages, it is wise to declare as on line 244 which scripting language is used.

Logging all calls to this script helps sysadmins to discover what went wrong after the catastrophic
failures which in theory should never occur, but which in practice sometimes do. Line 246 logs all
calls to this script.

On line 247 the value of the Bash variable $1 is one of the EXECUTE tags defined on lines 241-243.
Lines 248-250 define, for each possible NOTIFY event that upsmon passes on to upssched, a

message to be logged and put in front of users of the slave. Accented letters and non latin characters
are allowed.

Line 254 logs the upssched action, and line 255 calls program notify-send-all to put the message
in front of the slave users. For details of notify-send-all, see appendix 23, “Using notify-send”. See
also notify-send --help. There is no man page.

Page 34 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

5.4 Magic: How does the master shut down the slaves?

The master commands the system shutdowns which may be due to an [lb], a timeout (chapter 7),
or a sysadmin command. When there are slaves to be shutdown as well, then the master expects
them to shut down first. But how do the slaves know that they are to shut down?

When the master makes the shutdown decision, it places a status symbol [fsd] in the abstract
image of the UPS maintained by it’s upsd. The slave upsmon daemons poll the master upsd every
POLLFREQ seconds as delared on line 142, and when they see the [fsd] symbol, knowing that they
are a slave, they shut down immediately. The master waits for the slaves to react and shutdown.
The waiting period is specified by HOSTSYNC on line 144. After this time has elapsed, the master
will shut down, even if there is a slave which has not yet completed it’s shutdown. If you meet this
problem, you may have to increase the value of HOSTSYNC.

This HOSTSYNC value is also used to keep slave systems from getting stuck if the master fails to
respond in time. After a UPS becomes critical, the slave will wait up to HOSTSYNC seconds for the
master to set the [fsd] flag. If that timer expires, the slave will assume that the master is broken
and will shut down anyway. See also man upsmon.conf.

Page 35 of 134

http://networkupstools.org/docs/man/upsmon.conf.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

6 Workstation with heartbeat
The NUT software runs in the background for weeks, months without difficulty and with no mes-
sages going the system administrator. “All is well!”, but is it? NUT is a collection of pieces and
interconnecting protocols. What if one of these pieces has stopped or the protocol blocked? We
need something that will check regularly that all is indeed well. The proposed heartbeat does this
job.

This chapter supposes that you already have a working configuration for a workstation.

port

3493

upsd

10m

heartbeat.conf

CMDSCRIPT

upsc

upsrw

upscom

upsschedupsmon

11m

upssched−cmd

...

...

UPS−1

upsdrvctl
+ driver

upsdrvctl
+ driver

[OL] / [OB] / [OL] ...

ups.status:

ups.status: [OL]

heartbeat.fig

NOTIFYCMD

Figure 39: Workstation with heartbeat.

How does it work? NUT program upssched runs permanently as a daemon managing an
11 minute timer. If this timer expires, NUT is broken and upssched calls user script upssched-cmd
which issues wall messages, e-mails, notifications, etc. Meanwhile a dummy (software) UPS is
programmed to generate a status change every 10 minutes. This works it’s way through the NUT
daemons and protocols to reach user script upssched-cmd which then restarts the 11 minute timer.
As long as the 10 minute status changes are fully and correctly handled by NUT, the warning
message does not go out, but if something breaks, the 11 minute timer elapses.

Nine configuration files specify the operation of NUT in the workstation.

1. The NUT startup configuration: nut.conf. See appendix 20.

2. The upsd UPS declarations: ups.conf will be extended to include the heartbeat. See chapter
6.1.

3. New configuration file heartbeat.conf defines the dummy UPS which provides the heartbeat.
See chapter 6.2.

4. The upsd daemon access control: File upsd.conf as given in chapter 2.2 stays the same.

5. The upsd user declarations: File upsd.users as given in chapter 2.3 does not change.

6. The upsmon daemon configuration: upsmon.conf. See chapter 6.3.

7. The upssched configuration: upssched.conf. See chapter 6.4.

8. The upssched-cmd script: see chapter 6.5.

Page 36 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

9. The delayed UPS shutdown script. Since this file is common to all configurations, it is
discussed separately in appendix 21.

6.1 Configuration file ups.conf for workstation with heartbeat

We extend this configuration file with an additional section to declare a new UPS unit.

256 # ups.conf, heartbeat
257 [UPS-1]
258 driver = usbhid-ups
259 port = auto
260 desc = "Eaton ECO 1600"
261 offdelay = 60
262 ondelay = 70
263 lowbatt = 33

264 [heartbeat]
265 driver = dummy-ups
266 port = heartbeat.conf
267 desc = "Watch over NUT"

Figure 40: Configuration file ups.conf for workstation with heartbeat.

Lines 257-263 are unchanged.
New line 264 declares the new dummy UPS heartbeat. This will be a software creation which

looks to NUT like a UPS, but which can be programmed with a script, and given arbitrary states.
Line 265 says that this UPS is of type dummy-ups, i.e. a software UPS, for which the behaviour

will be in a file specified by the port declaration.
Line 266 says that the behaviour is in file heartbeat.conf in the same directory as ups.conf.

It is traditional in NUT that such files have file type .dev .
See man dummy-ups for lots of details.

Page 37 of 134

http://networkupstools.org/docs/man/dummy-ups.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

6.2 Configuration file heartbeat.conf for workstation

268 # heartbeat.conf -- 10 minute heartbeat
269 ups.status: OL
270 TIMER 300
271 ups.status: OB
272 TIMER 300

Figure 41: Configuration file heartbeat.conf for workstation.

Heartbeat definitions are not provided by NUT, you have to create them yourself. Create the
new file heartbeat.conf in the same directory as ups.conf. For security, only users upsd/nut and
root should have write access to this file.

The dummy UPS will cycle continuously through this script.
Lines 269 and 271 flip the ups.status value between [ol] and [ob].
Lines 270 and 272 place a 5 minute time interval between each status change. 2 × 300sec =

10min, the heartbeat period.

6.3 Configuration file upsmon.conf for workstation with heartbeat

The configuration file upsmon.conf is the same as for the workstation in chapter 4, except for an
additional MONITOR declaration and a simpler NOTIFYFLAG to avoid flooding the logs.

273 # upsmon.conf
274 MONITOR UPS-1@localhost 1 upsmaster sekret master
275 MONITOR heartbeat@localhost 0 upsmaster sekret master
276 MINSUPPLIES 1

Figure 42: Configuration file upsmon.conf for a workstation with heartbeat.

The change is the addition of line 275 which declares that upsmon is to monitor the heartbeat.
Note that the power value is “0” because the heartbeat does not supply power to the workstation.

To avoid flooding your logs, remove the flags SYSLOG and WALL for the [online] and [onbatt]
NOTIFY events:

277 NOTIFYFLAG ONLINE EXEC
278 NOTIFYFLAG ONBATT EXEC

All the other declarations remain unchanged. This inability of upsmon to provide different
behaviours for different UPS’s is a weakness, and is why we prefer to make use of upssched which
supports precise selection of the UPS in it’s AT specification.

Page 38 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

6.4 Configuration file upssched.conf for workstation with heartbeat

We use upssched as a daemon to maintain an 11 minute timer which we call heartbeat-failure
-timer. The timer is kept in memory, and manipulated with the commands START-TIMER and
CANCEL-TIMER. If this timer completes, upssched calls the user script upssched-cmd with the pa-
rameter heartbeat-failure-timer, and upssched-cmd will complain that NUT is broken.

The configuration file upssched.conf is the same as for the workstation in chapter 4, except
for two additional declarations.

279 # Restart timer which completes only if the dummy-ups heart beat
280 # has stopped. See timer values in heartbeat.conf
281 AT ONBATT heartbeat@localhost CANCEL-TIMER heartbeat-failure-timer
282 AT ONBATT heartbeat@localhost START-TIMER heartbeat-failure-timer 660

Figure 43: Configuration file upssched.conf for a workstation with heartbeat.

Remember that the very useful AT declaration provided by upssched.conf has the form

AT notifytype UPS-name command

On line 281, when upssched receives an [onbatt] it executes the command which is CANCEL
-TIMER heartbeat-failure-timer. This kills the timer. upssched does not call the user script.

Immediately afterwards, on line 282, and for the same [onbatt] event, upssched executes the
command START-TIMER heartbeat-failure-timer 660 which restarts the heartbeat-failure
-timer which will run for 660 sec, i.e. 11 minutes. If the timer completes, upssched will call the
user script upssched-cmd with parameter heartbeat-failure-timer.

Make sure that there are no entries such as

283 AT ONLINE * ...
284 AT ONBATT * ...

which would be activated by an [online] or [onbatt] from the heartbeat UPS. Replace the "*"
with the full address of the UPS unit, e.g. UPS-1@localhost.

6.5 Script upssched-cmd for workstation with heartbeat

In upssched-cmd, we add additional code to test for completion of the heartbeat-failure-timer,
and when it completes send a warning to the sysadmin by e-mail, SMS, pigeon, ...

Here is an example of what can be done. Note the e-mail address declarations in the head of
the script, and the additional case after “case $1 in” beginning on line 302.

On lines 290 and 291, change the e-mail addresses to something that works for you.
Lines 302-309 introduce the heartbeat-failure-timer case into the case statement. Line 303

specifies a message to be logged with the current UPS status as defined on lines 293-296.
Lines 305-307 compose a message to the sysadmin which is sent on line 308. The message

includes the current state of those NUT kernel processes which are operational.

Page 39 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

285 #!/bin/bash -u
286 # upssched-cmd for workstation with heartbeat
287 logger -i -t upssched-cmd Calling upssched-cmd $1
288
289 # Send emails to/from these addresses
290 EMAIL_TO="sysadmin@example.com"
291 EMAIL_FROM="upssched-cmd@${HOSTNAME:-nut}.example.com"
292
293 UPS="UPS-1"
294 STATUS=$(upsc $UPS ups.status)
295 CHARGE=$(upsc $UPS battery.charge)
296 CHMSG="[$STATUS]:$CHARGE%"
297
298 case $1 in
299 (online) MSG="$UPS, $CHMSG - power supply had been restored." ;;
300 (onbatt) MSG="$UPS, $CHMSG - power failure - save your work!" ;;
301 (lowbatt) MSG="$UPS, $CHMSG - shutdown now!" ;;
302 (heartbeat-failure-timer)
303 MSG="NUT heart beat fails. $CHMSG" ;;
304 # Email to sysadmin
305 MSG1="Hello, upssched-cmd reports NUT heartbeat has failed."
306 MSG2="Current status: $CHMSG \n\n$0 $1"
307 MSG3="\n\n$(ps -elf | grep -E ’ups[dms]|nut’)"
308 echo -e "$MSG1 $MSG2 $MSG3" | /bin/mail -r "$EMAIL_FROM" \
309 -s "NUT heart beat fails. Currently $CHMSG" "$EMAIL_TO"
310 (*) logger -i -t upssched-cmd "Bad arg: \"$1\", $CHMSG"
311 exit 1 ;;
312 esac
313 logger -i -t upssched-cmd $MSG
314 notify-send-all "$MSG"

Figure 44: Configuration script upssched-cmd including heartbeat.

A true sysadmin should not be satisfied with just the heartbeat. “What if the heartbeat dies
silently?” We need a further independent check that the normally silent heartbeat is doing it’s job.

Page 40 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

6.6 For paranoïd sysadmins

We want to check that the heartbeat is in progress. To do so we make use of the permanent presence
of a upssched process. Consider the following Bash script:

315 #!/bin/bash -u
316 NUT=upsd # openSUSE: "upsd", Debian: "nut"
317 MSGERR="${HOSTNAME:-mybox}: NUT heartbeat fails"
318 MSGOK="${HOSTNAME:-mybox}: NUT heartbeat OK"
319 # Are the heartbeat timers keeping upssched busy?
320 ps -elf | grep "upssched UPS heartbeat" | grep $NUT > /dev/null
321 if [[$? -ne 0]]
322 then wall $MSGERR # Tell sysadmin the bad news
323 echo -e "$MSGERR" | /bin/mail\
324 -r heartbeat-watcher@example.com\
325 -s "$MSGERR" sysadmin@example.com
326 notify-send-all "$MSGERR"
327 sleep 1s
328 else # Tell sysadmin that all is well
329 echo -e "$MSGOK" | /bin/mail\
330 -r heartbeat-watcher@example.com\
331 -s "$MSGOK" sysadmin@example.com
332 notify-send-all "$MSGOK"
333 fi

Figure 45: Heartbeat watcher.

Line 316 specifies who is the owner of the upssched process. See table 126 for a list of possible
owners.

Line 320 will succeed if there is a process managing the heartbeat.
Lines 322, 323 and 326 show three different ways of telling the sysadmin that all is well with the

heartbeat process. Pick which one(s) suit you. See appendix 23 for a discussion of notify-send-all.
The Bash script requires something like line 334 in /etc/crontab:

334 1 8 * * * upsd /usr/local/bin/heartbeat-watcher.sh > /dev/null 2>&1

In this example, line 334 declares that the Bash script is to be run at 08:01 hrs every day as user
“upsd”. Debian would use “nut”. See man crontab(5). See table 126 for a list of possible users.

This chapter has introduced the timers provided by upssched. We will see in the next chapter
that much more can be done with them.

Page 41 of 134

https://man7.org/linux/man-pages/man5/crontab.5.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

7 Workstation with timed shutdown
All the configurations we have looked at so far have one thing in common. The system shutdown
is provoked by UPS status [lb]. This means that when the system finally shuts down, the battery
is depleted. It will still be depleted when wall power returns and the system restarts. This is not a
problem if the power supply is inherently reliable, and the power supply will continue long enough
to recharge the batteries, but this is not always the case. The maintenance people do not always fix
the problem completely on their first visit. In neighbourhoods where lightning strikes frequently,
where local industrial activity plays havoc with the voltage, and in neighbourhoods with training
schools for backhoe operators, we expect the wall power to fail again, and again.

In this chapter the criteria for a system shutdown will not be based on the status [lb], but on
the status [ob] and an elapsed time.

It is sometimes said in NUT circles “get the most out of your UPS by hanging on as long as
possible”. In this chapter we say “get the most out of your UPS by being able to shut down cleanly
as often as possible”.

port

3493

upsd

10m

heartbeat.conf

CMDSCRIPT

upsc

upsrw

upscom

upsschedupsmon

upssched−cmd

2, 1, 0, shutdown
shutdown−timer:

UPS−1 upsdrvctl
+ driver

upsdrvctl
+ driver

ups.status: [OL CHRG]

ups.status:

[OL] / [OB] / [OL] ...

bad.fig

NOTIFYCMD

Figure 46: Workstation with timed shutdown.

Nine configuration files specify the operation of NUT in a workstation with timed shutdown. In
this chapter we will give these configuration files in full to avoid excessive page turning.

1. The NUT startup configuration: nut.conf. Since this file is not strictly a part of NUT, and
is common to all configurations, it is discussed separately in appendix 20.

2. The upsd UPS declarations ups.conf: See chapter 7.1.

3. Configuration file heartbeat.conf which defines the dummy UPS providing the heartbeat.
See chapter 7.2.

4. The upsd daemon access control upsd.conf: See chapter 7.3.

5. The upsd user declarations upsd.users: See chapter 7.4.

6. The upsmon daemon configuration: upsmon.conf. See chapter 7.5.

7. The upssched configuration: upssched.conf. See chapter 7.6.

8. The upssched-cmd script: see chapter 7.7.

Page 42 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

9. The delayed UPS shutdown script. Since this file is common to all configurations, it is
discussed separately in appendix 21.

7.1 Configuration file ups.conf for workstation with timed shutdown

335 # ups.conf, timed shutdown
336 [UPS-1]
337 driver = usbhid-ups
338 port = auto
339 desc = "Eaton ECO 1600"
340 offdelay = 60
341 ondelay = 70
342 lowbatt = 33
343
344 [heartbeat]
345 driver = dummy-ups
346 port = heartbeat.conf
347 desc = "Watch over NUT"

Figure 47: Configuration file ups.conf for workstation with timed shutdown.

This configuration file includes support for the heartbeat, and is unchanged from that discussed
in the previous chapter. See 6.1

Lines 336 and 344 begin a UPS-specific section, and name the UPS unit that upsd will manage.
The following lines provides details for each UPS. There will as many sections as there are UPS
units. Make sure this name matches the name in upsmon.conf and in upssched-cmd, which we will
meet later.

Lines 337 and 345 specify the driver that upsd will use. For the full list of drivers, see the
Hardware Compatibility list and the required drivers at http://www.networkupstools.org/stable-
hcl.html.

Lines 338 and 346 depend on the driver. For the usbhid-ups driver the value is always auto.
For the dummy-ups driver, the value is the address of the file which specifies the dummy UPS
behaviour. This file should be in the same directory as ups.conf.

For other drivers, see the man page for that driver.
Lines 339 and 347 provide descriptive texts for the UPS.
For a detailed discussion of offdelay and ondelay on lines 340-341, see chapter 2.7.
Additional line 342 sets the default value for battery.charge.low. Even if you use command

upsrw to set a value for battery.charge.low, usbhid-ups and some other drivers6 will restore the
default, so if you want a permanent change you must change the default. See also chapter 2.10.

6List needed

Page 43 of 134

http://www.networkupstools.org/stable-hcl.html
http://www.networkupstools.org/stable-hcl.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

7.2 Configuration file heartbeat.conf for workstation with timed shut-
down

Create the new file heartbeat.conf in the same directory as ups.conf.

348 # heartbeat.conf -- 10 minute heartbeat
349 ups.status: OL
350 TIMER 300
351 ups.status: OB
352 TIMER 300

Figure 48: Configuration file heartbeat.conf for workstation with timed shutdown.

This configuration file provides the definition of the heartbeat, and is unchanged from that
discussed in chapter 6.2.

Heartbeat definitions are not provided by NUT, you have to create them yourself. Create the
new file heartbeat.conf in the same directory as ups.conf. For security, only users upsd/nut and
root should have write access to this file.

The dummy UPS will cycle continuously through this script.
Lines 349 and 351 flip the ups.status value between [ol] and [ob].
Lines 350 and 352 place a 5 minute time interval between each status change. 2 × 300sec =

10min, the heartbeat period.

7.3 Configuration file upsd.conf with timed shutdown

353 # upsd.conf
354 LISTEN 127.0.0.1 3493
355 LISTEN ::1 3493

Figure 49: Configuration file upsd.conf or workstation with timed shutdown.

This configuration file declares on which ports the upsd daemon will listen, and provides a basic
access control mechanism. It does not change from the version shown on lines 37-38.

Line 354 declares that upsd is to listen on it’s prefered port for traffic from the localhost. It is
possible to replace 127.0.0.1 by 0.0.0.0 which says “listen for traffic from all sources” and use your
firewall to filter traffic to port 3493.

If you do not have IPv6, remove or comment out line 355.

Page 44 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

7.4 Configuration file upsd.users with timed shutdown

356 # upsd.users
357 [upsmaster]
358 password = sekret
359 upsmon master

Figure 50: Configuration file upsd.users for
a simple server.

This configuration file declares who has write
access to the UPS. It does not change from
the version shown in lines 40-42. For good
security, ensure that only users upsd/nut and
root can read and write this file.

Line 357 declares the “user name” of the
system administrator who has write access to
the UPS’s managed by upsd. It is independent

of /etc/passwd. The upsmon client daemon will use this name to poll and command the UPS’s.
There may be several names with different levels of access. For this example we only need one.

Line 358 provides the password. You may prefer something better than “sekret”.
Line 359 declares that this user is the upsmon daemon, and the required set of actions will be

set automatically. In this simple configuration daemon upsmon is a master.
The configuration file for upsmon must match these declaration for upsmon to operate correctly.
For lots of details, see man upsd.users.

7.5 Configuration file upsmon.conf with timed shutdown

The previous chapters have repeatedly modified upsmon.conf so we provide here a complete de-
scription of the file, including all previous modifications.

360 # upsmon.conf
361 MONITOR UPS-1@localhost 1 upsmaster sekret master
362 MONITOR heartbeat@localhost 0 upsmaster sekret master
363 MINSUPPLIES 1

Figure 51: Configuration file upsmon.conf with timed shutdown, part 1 of 5.

This configuration file declares how upsmon is to handle NOTIFY events. For good security,
ensure that only users upsd/nut and root can read and write this file.

On line 361

• The UPS name UPS-1 must correspond to that declared in ups.conf line 336.

• The “power value” 1 is the number of power supplies that this UPS feeds on this system.

• upsmaster is the “user” declared in upsd.users line 40.

• sekret is the password declared in upsd.users line 41.

• master means this system will shutdown last, allowing any slaves time to shutdown first.
There are no slaves in this simple configuration.

Page 45 of 134

http://networkupstools.org/docs/man/upsd.users.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Line 362 declares that upsmon is also to monitor the heartbeat.
On line 363, MINSUPPLIES sets the number of power supplies that must be receiving power to

keep this system running. Normal computers have just one power supply, so the default value of
1 is acceptable. See man upsmon.conf and file big-servers.txt in the NUT documentation for
more details.

364 SHUTDOWNCMD "/sbin/shutdown -h +0"
365 NOTIFYCMD /usr/sbin/upssched
366 POLLFREQ 5
367 POLLFREQALERT 5
368 DEADTIME 15
369 POWERDOWNFLAG /etc/killpower

Figure 52: Configuration file upsmon.conf with timed shutdown, part 2 of 5.

Line 364 declares the command to be used to shut down the server. A second instance of the
upsmon daemon running as root will execute this command. Multiple commands are possible,
for example SHUTDOWNCMD "logger -t upsmon.conf \"SHUTDOWNCMD calling /sbin/shutdown
to shut down system\" ; /sbin/shutdown -h +0" will also log the action of SHUTDOWNCMD. Note
that internal " have to be escaped.

Line 365 says which program is to be invoked when upsmon detects a NOTIFY event flagged
as EXEC. Debian and Ubuntu sysadmins might see /sbin/upssched.

Line 366, POLLFREQ, declares that the upsmon daemon will poll upsd every 5 seconds.
Line 367, POLLFREQALERT, declares that the upsmon daemon will poll upsd every 5 seconds while

the UPS in on battery.
Line 368, DEADTIME specifies how long upsmon will allow a UPS to go missing before declaring

it “dead”. The default is 15 seconds.
Daemon upsmon requires a UPS to provide status information every few seconds as defined by

POLLFREQ and POLLFREQALERT. If the status fetch fails, the UPS is marked stale. If it stays stale
for more than DEADTIME seconds, the UPS is marked dead.

A dead UPS that was last known to be on battery [ob] is assumed to have changed to a low
battery condition [ob]→[ob lb]. This may force a shutdown. Disruptive, but the alternative is
barreling ahead into oblivion and crashing when you run out of power. See chapter 3.3 for more
discussion.

Line 369, POWERDOWNFLAG declares a file created by upsmon when running in master mode
when the UPS needs to be powered off. It will be used in more complex configurations. See man
upsmon.conf for details.

Lines 370-379 assign a text message to each NOTIFY event. Within each message, the marker %s
is replaced by the name of the UPS which has produced this event. upsmon passes this message to
program wall to notify the system administrator of the event. You can change the default messages
to something else if you like. The format is NOTIFYMSG event "message" where %s is replaced with
the identifier of the UPS in question. Note that program wall has not been internationalized and

Page 46 of 134

http://networkupstools.org/docs/man/upsmon.conf.html
http://www.susaaland.dk/sharedoc/nut-2.0.3/docs/big-servers.txt
http://networkupstools.org/docs/man/upsmon.conf.html
http://networkupstools.org/docs/man/upsmon.conf.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

370 NOTIFYMSG ONLINE "UPS %s: On line power."
371 NOTIFYMSG ONBATT "UPS %s: On battery."
372 NOTIFYMSG LOWBATT "UPS %s: Battery is low."
373 NOTIFYMSG REPLBATT "UPS %s: Battery needs to be replaced."
374 NOTIFYMSG FSD "UPS %s: Forced shutdown in progress."
375 NOTIFYMSG SHUTDOWN "Auto logout and shutdown proceeding."
376 NOTIFYMSG COMMOK "UPS %s: Communications (re-)established."
377 NOTIFYMSG COMMBAD "UPS %s: Communications lost."
378 NOTIFYMSG NOCOMM "UPS %s: Not available."
379 NOTIFYMSG NOPARENT "upsmon parent dead, shutdown impossible."

Figure 53: Configuration file upsmon.conf with timed shutdown, part 3 of 5.

does not support accented letters or non latin characters. When the corresponding NOTIFYFLAG
contains the symbol EXEC, upsmon also passes the message to the program specified by NOTIFYCMD
on line 365.

380 NOTIFYFLAG ONLINE EXEC
381 NOTIFYFLAG ONBATT EXEC
382 NOTIFYFLAG LOWBATT SYSLOG+WALL
383 NOTIFYFLAG REPLBATT SYSLOG+WALL
384 NOTIFYFLAG FSD SYSLOG+WALL
385 NOTIFYFLAG SHUTDOWN SYSLOG+WALL
386 NOTIFYFLAG COMMOK SYSLOG+WALL
387 NOTIFYFLAG COMMBAD SYSLOG+WALL
388 NOTIFYFLAG NOCOMM SYSLOG+WALL
389 NOTIFYFLAG NOPARENT SYSLOG+WALL

Figure 54: Configuration file upsmon.conf with timed shutdown, part 4 of 5.

Lines 380-389 declare what is to be done at each NOTIFY event. The declarations, known as
“flags” are shown in table 13. You may specify one, two or three flags for each event, in the form
FLAG[+FLAG]*, however IGNORE must always be alone.

Lines 380-381 carry only the EXEC flag: Since the heartbeat induces a lot of [online] and
[onbatt] traffic, the SYSLOG option would flood the log and WALL would put far too many useless
messages in xterm windows. When the NOTIFY event occurs, EXEC declares that upsmon should
call the program identified by the NOTIFYCMD on line 365.

Note that if you have multiple UPS’s, the same actions are to be performed for a given NOTIFY
event for all the UPS’s. Clearly this is not good news.

When a UPS says that it needs to have its battery replaced, upsmon will generate a [replbatt]
NOTIFY event. Line 390 say that this happens every RBWARNTIME = 43200 seconds (12 hours).

Line 391: Daemon upsmon will trigger a [nocomm] NOTIFY event after NOCOMMWARNTIME
seconds if it can’t reach any of the UPS entries in configuration file upsmon.conf. It keeps warning
you until the situation is fixed.

Page 47 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

390 RBWARNTIME 43200
391 NOCOMMWARNTIME 300
392 FINALDELAY 5

Figure 55: Configuration file upsmon.conf with timed shutdown, part 5 of 5.

Line 392: When running in master mode, upsmon waits this long after sending the [shutdown]
NOTIFY event to warn the users. After the timer elapses, it then runs your SHUTDOWNCMD as
specified on line 364. If you need to let your users do something in between those events, increase
this number. Remember, at this point your UPS battery is almost depleted, so don’t make this too
big. Alternatively, you can set this very low so you don’t wait around when it’s time to shut down.
Some UPS’s don’t give much warning for low battery and will require a value of 0 here for a safe
shutdown.

For lots and lots of details, see man upsmon.conf. See also the file config-notes.txt in the
distribution.

7.6 Configuration file upssched.conf with timed shutdown

The NOTIFY events detected by upsmon and flagged as EXEC in upsmon.conf become events for
upssched when NOTIFYCMD points to upssched. The program upssched provides a richer set of
actions than upsmon, especially the management of timers.

393 # upssched.conf
394 CMDSCRIPT /usr/sbin/upssched-cmd
395 PIPEFN /var/lib/ups/upssched.pipe
396 LOCKFN /var/lib/ups/upssched.lock
397
398 AT ONBATT UPS-1@localhost START-TIMER two-minute-warning-timer 5
399 AT ONBATT UPS-1@localhost START-TIMER one-minute-warning-timer 65
400 AT ONBATT UPS-1@localhost START-TIMER shutdown-timer 125
401
402 AT ONLINE UPS-1@localhost CANCEL-TIMER two-minute-warning-timer
403 AT ONLINE UPS-1@localhost CANCEL-TIMER one-minute-warning-timer
404 AT ONLINE UPS-1@localhost CANCEL-TIMER shutdown-timer
405 AT ONLINE UPS-1@localhost EXECUTE ups-back-on-line
406
407 AT ONBATT heartbeat@localhost CANCEL-TIMER heartbeat-failure-timer
408 AT ONBATT heartbeat@localhost START-TIMER heartbeat-failure-timer 660

Figure 56: Configuration file upssched.conf with timed shutdown.

On line 394 CMDSCRIPT points to a user script to be called for designated NOTIFY events. This
script will receive as argument a user chosen timer name. Ubuntu sysadmins might see /usr/
local/bin/upssched-script.

Page 48 of 134

http://networkupstools.org/docs/man/upsmon.conf.html
https://github.com/networkupstools/nut/blob/master/docs/config-notes.txt

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Line 395 defines PIPEFN which is the file name of a socket used for communication between
upsmon and upssched. It is important that the directory be accessible to NUT software and
nothing else. For line 395 the Debian distribution uses /var/run/nut/upssched.pipe.

Here is an example of directory /var/lib/ups taken from distribution openSUSE:

409 drwx------ 2 upsd daemon 4096 24 mai 11:04 ./
410 drwxr-xr-x 53 root root 4096 24 mai 01:15 ../
411 srw-rw---- 1 upsd daemon 0 20 mai 23:13 dummy-ups-heartbeat=
412 -rw-r--r-- 1 upsd daemon 5 20 mai 23:13 dummy-ups-heartbeat.pid
413 -rw-r--r-- 1 upsd daemon 5 20 mai 23:13 upsd.pid
414 srw-rw---- 1 upsd daemon 0 24 mai 11:04 upssched.pipe=
415 srw-rw---- 1 upsd daemon 0 20 mai 23:13 usbhid-ups-UPS-1=
416 -rw-r--r-- 1 upsd daemon 5 20 mai 23:13 usbhid-ups-UPS-1.pid

Daemon upsmon requires the LOCKFN declaration on line 396 to avoid race conditions. The
directory should be the same as PIPEFN.

Line 398 introduces the very useful AT declaration provided by upssched.conf. This has the
form

AT notifytype UPS-name command

where

• notifytype is a symbol representing a NOTIFY event.

• UPS-name can be the special value “*” to apply this handler to every possible value of UPS-
name. We strongly recommend that you do not use this wildcard, since we need distinct
actions for distinct UPS’s.

• The command values are START-TIMER, CANCEL-TIMER and EXECUTE.

Line 398 says what is to be done by upssched for event [onbatt]. The field “UPS-1@localhost”
says that it applies to the UPS we are using, and the START-TIMER says that upssched is to create
and manage a timer called “two-minute-warning-timer” which runs for 5 seconds. When this
timer completes, upssched calls the user script specified by CMDSCRIPT with argument “two-minute
-warning-timer”.

Lines 399 and 400 do the same thing for the 65 second timer one-minute-warning-timer and
the 125 second timer shutdown-timer.

Line 402 says what is to be done by upssched for event [online]. The field “UPS-1@localhost”
says that it applies to the UPS we are using, and the CANCEL-TIMER says that upssched must cancel
the timer “two-minute-warning-timer”. The user script is not called.

Lines 403 and 404 do the same thing for the 65 second timer “one-minute-warning-timer”
and the 125 second timer “shutdown-timer”.

Page 49 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Line 405 command EXECUTE says that upssched is to call the user script immediately with the
argument “ups-back-on-line”.

On line 407, when upssched receives an [onbatt] it executes the command which is CANCEL
-TIMER heartbeat-failure-timer. This kills the timer. upssched does not call the user script.

Immediately afterwards, on line 408, and for the same [onbatt] event, upssched executes the
command START-TIMER heartbeat-failure-timer 660 which restarts the heartbeat-failure
-timer which will run for 660 sec, i.e. 11 minutes. If the timer completes, upssched will call the
user script upssched-cmd with parameter heartbeat-failure-timer.

7.7 Script upssched-cmd for workstation with timed shutdown

417 #!/bin/bash -u
418 # upssched-cmd Workstation with heartbeat and timed shutdown
419 logger -i -t upssched-cmd Calling upssched-cmd $1

420 # Send emails to/from these addresses
421 EMAIL_TO="sysadmin@example.com"
422 EMAIL_FROM="upssched-cmd@${HOSTNAME:-nut}.example.com"

423 UPS="UPS-1"
424 STATUS=$(upsc $UPS ups.status)
425 CHARGE=$(upsc $UPS battery.charge)
426 CHMSG="[$STATUS]:$CHARGE%"

Figure 57: Configuration script upssched-cmd for timed shutdown, 1 of 2.

The user script upssched-cmd, the example is in Bash, manages the completion of the timers
two-minute-warning-timer, one-minute-warning-timer, shutdown-timer, ups-back-on-line
and heartbeat-failure-timer. Here is an complete example of what can be done. You will
probably need to modify this for your own use. Note that this script could be written in the
language of your choice, as long as the resulting program is able to receive the timer names as a
parameter, send e-mails and log and notify the users of messages. Bash has the advantage of being
widely available and is understood by many sysadmins.

On lines 421 and 422, change the e-mail addresses to something that works for you.
Lines 423-426 prepare a Bash variable CHMSG which gives the current UPS status and battery

charge. This is to be included in messages, so we get a clearer idea of what is happening.
Lines 428-434 introduce the heartbeat-failure-timer case into the case statement. Line 429

specifies a message to be logged with the current UPS status as defined on lines 423-426.
Lines 430-432 compose a message to the sysadmin which is sent on line 433. The message

includes the current state of those NUT kernel processes which are operational.

Page 50 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

427 case $1 in
428 (heartbeat-failure-timer)
429 MSG="NUT heart beat fails. $CHMSG" ;;
430 MSG1="Hello, upssched-cmd reports NUT heartbeat has failed."
431 MSG2="Current status: $CHMSG \n\n$0 $1"
432 MSG3="\n\n$(ps -elf | grep -E ’ups[dms]|nut’)"
433 echo -e "$MSG1 $MSG2 $MSG3" | /bin/mail -r "$EMAIL_FROM" \
434 -s "NUT heart beat fails. Currently $CHMSG" "$EMAIL_TO" ;;

435 (two-minute-warning-timer)
436 MSG="Possible shutdown in 2 minutes. Save your work! $CHMSG" ;;
437 (one-minute-warning-timer)
438 MSG="Probable shutdown in 1 minute. Save your work! $CHMSG" ;;
439 (shutdown-timer)
440 MSG="Power failure shutdown: Calling upsmon -c fsd, $CHMSG" ;;
441 /usr/sbin/upsmon -c fsd ;;
442 (ups-back-on-line)
443 MSG="Power back, shutdown cancelled. $CHMSG" ;;
444 (*) logger -i -t upssched-cmd "Bad arg: \"$1\", $CHMSG"
445 exit 1 ;;
446 esac
447 logger -i -t upssched-cmd $MSG
448 notify-send-all "$MSG"

Figure 58: Configuration script upssched-cmd for timed shutdown, 2 of 2.

7.7.1 The timed shutdown

The cases at lines 435 and 437 specify warnings to be notified to the users when the two-minute
-warning-timer and one-minute-warning-timer complete.

Beginning at line 439 we prepare a message which the user may not see, since we call for an
immediate shutdown. The UPS may well be almost fully charged, but the shutdown is now, leaving
enough charge for further shutdowns in the near future.

Note on line 441 that we use upsmon to shut down the system. This automatically takes into
account any slave systems which need to be shut down as well.

Line 442 prepares a message that notify-send-all will put in front of the users to tell them to
get back to work since wall power has returned. See appendix 23 for a discussion of notify-send-all.

Page 51 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

7.8 The timed shutdown story

We now tell the detailed story of how the workstation gets shut down when wall power fails, and
how it restarts when wall power returns.

1. Wall power on The system runs normally. upsd status is [ol]. No NOTIFY event.

Days, weeks, months go by...

2. Wall power fails The workstation remains operational running on the UPS battery. upsd
polls the UPS, and detects status change [ol]→[ob].

3. upsmon polls upsd and issues NOTIFY event [onbatt]. As instructed by line 381 upsmon
calls upssched, specified by NOTIFYCMD on line 365. Note that there is no wall message and
no logging by upsmon.

4. upssched matches the NOTIFY event [ONBATT] and the UPS name UPS-1@localhost with
the three AT specifications on lines 398-400. Three timers start: two-minute-warning-timer,
one-minute-warning-timer and shutdown-timer, managed in memory by upssched.

5 seconds go by...

5. two-minute-warning-timer completes, and upssched calls the user script upssched-cmd spec-
ified by CMDSCRIPT on line 394 with the timer name as argument. In the script, this matches
the case on line 435 which defines a suitable warning message in Bash variable MSG. Line 447
logs this message and line 448 puts it in front of the users. The workstation continues to
operate on battery power.

60 seconds go by...

6. one-minute-warning-timer completes, and upssched calls the user script upssched-cmd with
the timer name as argument. In the script, this matches the case on line 437 which defines a
stronger warning message in Bash variable MSG. Line 447 logs this message and line 448 puts
it in front of the users. The workstation continues to operate on battery power.

60 seconds go by...

7. shutdown-timer completes, and upssched calls the user script upssched-cmd with the timer
name as argument. In the script, this matches the case on line 439 which defines an ultimate
warning message in Bash variable MSG, and then calls upsmon for a system shutdown. Line
447 logs message MSG and line 448 puts it in front of the users. The workstation continues to
operate on battery power during the shutdown. If wall power returns, it is now too late to
call off the shutdown procedure.

8. upsmon commands a system shutdown and generates NOTIFY event [shutdown].

9. upsmon waits FINALDELAY seconds as specified on line 392.

10. upsmon creates POWERDOWN flag specified on line 369.

11. upsmon calls the SHUTDOWNCMD specified on line 364.

Page 52 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

12. We now enter the scenario described in figure 15. The operating system’s shutdown process
takes over. During the system shutdown, the Bash script shown in figure 16 or equivalent
systemd service unit or some other equivalent runs the command upsdrvctl shutdown . This
tells the UPS that it is to shut down offdelay seconds later as specified on line 340.

13. The system powers down, hopefully before the offdelay seconds have passed.

14. UPS shuts down offdelay seconds have passed. With some UPS units, there is an
audible “clunk”. The UPS outlets are no longer powered.

Minutes, hours, days go by...

15. Wall power returns Some time later, maybe much later, wall power returns. The UPS
reconnects it’s outlets to send power to the protected system.

16. The system BIOS option “restore power on AC return” has hopefully been selected and the
system powers up. The bootstrap process of the operating system begins.

17. The operating system starts the NUT daemons upsd and upsmon. Daemon upsd scans the
UPS and the status becomes [ol]. We are now back in the same situation as state 1 above.

18. We hope that the battery has retained sufficient charge to complete further timed shutdown
cycles, but if it hasn’t, then at the next power failure, upsd will detect the status [ob lb],
upsmon will issue a [lowbatt] and will begin the system shutdown process used by the
simple server of chapter 2. This system shutdown will override any upssched timed process.

Page 53 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

8 Workstation with additional equipment
The time has come to look at a more ambitious configuration, with multiple UPS’s and multiple
computer systems. NUT has been designed as an assembly of components each performing a
distinct part of the operation. We now see that this design allows NUT to adapt and perform well
in complex configurations.

3
undisclosed device

UPS−3 protects

computer "gold" which

drives undisclosed device

UPS−2 protects remote

management workstation "mgmt"

UPS−1 protects NUT

port

3493

mgmtupsd

10m

heartbeat.conf

3493

port
gold

upsd

hic sunt dragones

CMDSCRIPT

upsschedupsmon

upsc

upsrw

upscom 2, 1, 0, shutdown

upssched−cmd

shutdown−timer:

UPS−1

UPS−3
00328

UPS−2
XT766

upsdrvctl

+ driver

upsdrvctl

+ driver

ups.status: [OL]

ups.status: [OL CHRG]

upsdrvctl

+ driver

upsdrvctl

+ driver ups.status:

[OL] / [OB] / [OL] ...

ups.status: [OL]

big.fig

NOTIFYCMD

Figure 59: Workstation with additional equipment.

The configuration is for an industrial application in which some unspecified industrial equipment
is protected by a UPS, and is also driven by a computer system having it’s own UPS. This equipment
with the driving computer is at a remote site, code name gold . Overall management is from a
computer at a different site. We will call the management system mgmt .

Computer mgmt is represented here as if it were a single machine, but it could well be duplicated
at different sites for reliability. Two (or more) mgmt systems may monitor a single gold production
machine.

Fourteen configuration files specify the operation of NUT in the production and management
machines.

1. gold : The NUT startup configuration: nut.conf. This file is not strictly a part of NUT,

Page 54 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

and is common to all configurations. See chapter 8.1 and appendix 20.

2. gold : The upsd UPS declarations ups.conf: See chapter 8.2.

3. gold : The upsd daemon access control upsd.conf: See chapter 8.3.

4. gold : The upsd user declarations upsd.users: See chapter 8.4.

5. gold : The delayed UPS shutdown script. Since this file is common to all configurations,
it is discussed separately in appendix 21. The shutdown script for the undisclosed device is
beyond the scope of this text.

6. mgmt : The NUT startup configuration: nut.conf. This file is not strictly a part of NUT,
and is common to all configurations. See chapter 8.1 also appendix 20.

7. mgmt : The upsd UPS declarations ups.conf: See chapter 8.2.

8. mgmt : The upsd heartbeat declaration heartbeat.conf: See chapter 8.2.

9. mgmt : The upsd daemon access control upsd.conf: See chapter 8.3.

10. mgmt : The upsd user declarations upsd.users: See chapter 8.4.

11. mgmt : The upsmon daemon configuration upsmon.conf: See chapter 8.5.

12. mgmt : The upssched configuration upssched.conf: See chapter 8.6.

13. mgmt : The upssched-cmd script: See chapter 8.7.

14. mgmt : The delayed UPS shutdown script. Since this file is common to all configurations, it
is discussed separately in appendix 21.

8.1 Configuration files nut.conf

The first configuration files say which parts of the NUT are to be started.
gold mgmt

449 # nut.conf -- gold --
450 MODE=netserver

Figure 60: File nut.conf for gold .
fig:nutconf.gold

451 # nut.conf -- mgmt --
452 MODE=standalone

Figure 61: Files nut.conf for mgmt .

Strictly speaking, this file is not for NUT, but for the process which starts NUT. The initial-
ization process is expected to source this file to know which parts of nut are to be started. Some
distributions, e.g. openSUSE, ignore this file and start the three NUT layers driver, upsd and
upsmon. They assume that MODE=standalone.

This is probably satisfactory for mgmt , but for gold you should review line 450 and the
init/systemd startup of the NUT software to ensure that only the upsd and driver daemons get
started. See appendix 20. See also man nut.conf.

Page 55 of 134

http://networkupstools.org/docs/man/nut.conf.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

8.2 Configuration files ups.conf and heartbeat.conf

These configuration files declare which UPS’s are to be managed by the instances of NUT.
gold mgmt

453 # ups.conf -- gold --
454 [UPS-3]
455 driver = usbhid-ups
456 port = auto
457 desc = "Huge 3 phase"
458 offdelay = 20
459 ondelay = 30
460 lowbatt = 33
461 serial = 00328
462
463 [UPS-2]
464 driver = usbhid-ups
465 port = auto
466 desc = "Small monophase"
467 offdelay = 20
468 ondelay = 30
469 lowbatt = 33
470 serial = XT766

Figure 62: File ups.conf for gold .
fig:upsconf.gold

471 # ups.conf -- mgmt --
472 [UPS-1]
473 driver = usbhid-ups
474 port = auto
475 desc = "Eaton ECO 1600"
476 offdelay = 60
477 ondelay = 70
478 lowbatt = 33
479
480 [heartbeat]
481 driver = dummy-ups
482 port = heartbeat.conf
483 desc = "Watch over NUT"

Figure 63: File ups.conf for mgmt .
fig:upsconf.mgmt

484 # heartbeat.conf -- 10 min
485 ups.status: OL
486 TIMER 300
487 ups.status: OB
488 TIMER 300

Figure 64: heartbeat.conf for mgmt .
fig:heartbeatconf.mgmt

gold : On lines 454-463 we offer specimen definitions for UPS-3 and UPS-2. You will need to
review these to take into account the UPS’s you are using. Lines 464 and 455 specify the drivers
that upsd will use. For the full list of drivers, see the Hardware Compatibility list and the required
drivers at http://www.networkupstools.org/stable-hcl.html.

The offdelay and ondelay on lines 458-459 and 467-468 are given their default values. You
may need something different. See the discussion in chapter 2.5 of the delayed UPS shutdown.

In order to distinguish the two USB attached UPS units on gold , we specify their serial numbers
on lines 461 and 470. See man usbhid-ups.

mgmt : On lines 472-477 we offer a specimen definition for UPS-1 and on lines 485-488 we
propose the dummy UPS “heartbeat” discussed in chapter 6. The heartbeat requires the definition
file heartbeat.conf, lines 485-488, to be placed in the same directory as ups.conf.

Page 56 of 134

http://www.networkupstools.org/stable-hcl.html
http://networkupstools.org/docs/man/usbhid-ups.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

8.3 Configuration files upsd.conf

gold mgmt
489 # upsd.conf -- gold --
490 LISTEN 10.8.0.5 3493
491 LISTEN X::Y::Z 3493

Figure 65: File upsd.conf for gold .
fig:upsdconf.gold

492 # upsd.conf -- mgmt --
493 LISTEN 127.0.0.1 3493
494 LISTEN ::1 3493

Figure 66: File upsd.conf for mgmt .
fig:upsdconf.mgmt

This configuration file declares on which ports the upsd daemon will listen, and provides a basic
access control mechanism. You will need a secure means of accessing gold from mgmt . This could
be for example through an SSH tunnel or over a VPN. The limited access defined by the LISTEN
directive is part of a defense in depth.

gold : Line 490 declares that upsd is to listen on a prefered port for traffic from mgmt . The
example is for the tun0 interface of an OpenVPN secure network. See https://openvpn.net/ . It
is possible to specify 0.0.0.0 which says “listen for traffic from all sources” and use your firewall to
filter traffic to port 3493. You must modify lines 490 and 491 for your own needs.

mgmt : Line 493 declares that upsd is to listen on it’s prefered port for traffic from the localhost.
It is possible to replace 127.0.0.1 by 0.0.0.0 which says “listen for traffic from all sources” and use
your firewall to filter traffic to port 3493.

If you do not have IPv6, remove or comment out lines 491 and 494.
See man upsd.conf for more detail, and a description of the OpenSSL support.

8.4 Configuration files upsd.users

gold mgmt
495 # upsd.users -- gold --
496 [upsmaster]
497 password = sekret
498 upsmon master

Figure 67: File upsd.users for gold .

499 # upsd.users -- mgmt --
500 [upsmaster]
501 password = sekret
502 upsmon master

Figure 68: File upsd.users for mgmt .

This configuration file declares who has write access to the UPS. The “user name” used in these
files is independent of /etc/passwd. For good security, ensure that only users upsd/nut and root
can read and write this file. The configuration files for upsmon must match these declarations for
upsmon to operate correctly.

For lots of details, see man upsd.users.
gold : Line 496 declares the “user name” of the system administrator who has write access to

UPS-2 and UPS-3 managed by upsd. The upsmon client daemon in mgmt will use this name to
poll and command the UPS’s.

Line 497 provides the password. You may prefer something better than “sekret”.

Page 57 of 134

https://openvpn.net/
http://networkupstools.org/docs/man/upsd.conf.html
http://networkupstools.org/docs/man/upsd.users.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Line 498 declares the type of relationship between the upsd daemon on gold and the upsmon
in mgmt which has the authority to shutdown gold . The declaration “upsmon slave” would
allow monitoring but not shutdown. See man upsd.users. See also man upsmon section UPS
DEFINITIONS, but our configuration is not exactly what that man page refers to.

mgmt : Line 500 declares the “user name” of the system administrator who has write access to
UPS-1 and to the heartbeat managed by upsd.

Line 501 provides another uberl33t password.
Line 502 declares the type of relationship between the upsd daemon and upsmon which has the

authority to shutdown mgmt .

8.5 Configuration file upsmon.conf

The previous chapters have repeatedly modified upsmon.conf so we provide here a complete de-
scription of the file.

503 # upsmon.conf -- mgmt --
504 MONITOR UPS-3@gold 0 upsmaster sekret master
505 MONITOR UPS-2@gold 0 upsmaster sekret master
506 MONITOR UPS-1@localhost 1 upsmaster sekret master
507 MONITOR heartbeat@localhost 0 upsmaster sekret master
508 MINSUPPLIES 1

Figure 69: Configuration file upsmon.conf for mgmt , part 1 of 5.

This configuration file declares how upsmon in mgmt is to handle NOTIFY events from gold
and from mgmt itself. For good security, ensure that only users upsd/nut and root can read and
write this file.

Line 504 specifies that upsmon on mgmt will monitor UPS-3 which supplies power to the
undisclosed device.

• The UPS name UPS-3 must correspond to that declared in ups.conf line 468.

• The “power value” 1 is the number of power supplies that this UPS feeds on the local system.
A “power value” of 0 means that the UPS-3 does not supply power to mgmt .

• upsmaster is the “user” declared in upsd.users line 496.

• sekret is the l33t password declared in upsd.users line 497.

• master means this system will shutdown last, allowing any slaves time to shutdown first.
There are no slaves on gold .

Line 505 specifies that upsmon on mgmt will also monitor UPS-2 which supplies the gold
computer.

Page 58 of 134

http://networkupstools.org/docs/man/upsd.users.html
http://networkupstools.org/docs/man/upsmon.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Line 506 specifies that upsmon on mgmt will monitor UPS-1 which supplies power to mgmt
itself. Note the “power value” of 1.

Line 507 declares that upsmon is also to monitor the heartbeat.
On line 508, MINSUPPLIES sets the number of power supplies that must be receiving power to

keep the mgmt system running. Normal computers have just one power supply, so the default value
of 1 is acceptable. See man upsmon.conf and file big-servers.txt in the NUT documentation for
more details.

509 SHUTDOWNCMD "/sbin/shutdown -h +0"
510 NOTIFYCMD /usr/sbin/upssched
511 POLLFREQ 5
512 POLLFREQALERT 5
513 DEADTIME 15
514 POWERDOWNFLAG /etc/killpower

Figure 70: Configuration file upsmon.conf for mgmt , part 2 of 5.

Line 509 declares the command to be used to shut down mgmt . A second instance of the upsmon
daemon running as root on mgmt will execute this command. Multiple commands are possible,
for example SHUTDOWNCMD "logger -t upsmon.conf \"SHUTDOWNCMD calling /sbin/shutdown
to shut down system\" ; /sbin/shutdown -h +0" will also log the action of SHUTDOWNCMD. Note
that internal " have to be escaped.

The shutdown command for gold is not specified in upsmon.conf. It appears in the user script
upssched-cmd in chapter 8.7.

Line 510 says which program is to be invoked when upsmon detects a NOTIFY event flagged
as EXEC.

Line 511, POLLFREQ, declares that the upsmon daemon will poll upsd in gold and in mgmt
every 5 seconds.

Line 512, POLLFREQALERT, declares that the upsmon daemon will poll the upsd daemons every
5 seconds while any UPS in on battery.

Line 513, DEADTIME specifies how long upsmon will allow a UPS to go missing before declaring
it “dead”. The default is 15 seconds.

Daemon upsmon requires a UPS to provide status information every few seconds as defined by
POLLFREQ and POLLFREQALERT. If the status fetch fails, the UPS is marked stale. If it stays stale
for more than DEADTIME seconds, the UPS is marked dead.

A dead UPS-1 that was last known to be on battery [ob] is assumed to have changed to a
low battery condition [ob]→[ob lb]. This may force a shutdown of mgmt . Disruptive, but the
alternative is barreling ahead into oblivion and crashing when you run out of power. See chapter
3.3 for more discussion.

Line 514, POWERDOWNFLAG declares a file created by upsmon when running in master mode when
UPS-1 needs to be powered off. See man upsmon.conf for details.

Page 59 of 134

http://networkupstools.org/docs/man/upsmon.conf.html
http://www.susaaland.dk/sharedoc/nut-2.0.3/docs/big-servers.txt
http://networkupstools.org/docs/man/upsmon.conf.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

515 NOTIFYMSG ONLINE "UPS %s: On line power."
516 NOTIFYMSG ONBATT "UPS %s: On battery."
517 NOTIFYMSG LOWBATT "UPS %s: Battery is low."
518 NOTIFYMSG REPLBATT "UPS %s: Battery needs to be replaced."
519 NOTIFYMSG FSD "UPS %s: Forced shutdown in progress."
520 NOTIFYMSG SHUTDOWN "Auto logout and shutdown proceeding."
521 NOTIFYMSG COMMOK "UPS %s: Communications (re-)established."
522 NOTIFYMSG COMMBAD "UPS %s: Communications lost."
523 NOTIFYMSG NOCOMM "UPS %s: Not available."
524 NOTIFYMSG NOPARENT "upsmon parent dead, shutdown impossible."

Figure 71: Configuration file upsmon.conf for mgmt , part 3 of 5.

Lines 515-524 assign a text message to each NOTIFY event. Within each message, the marker
%s is replaced by the name of the UPS which has produced this event. On mgmt upsmon passes
this message to program wall to notify the system administrator of the event. You can change
the default messages to something else if you like. The format is NOTIFYMSG event "message"
where %s is replaced with the identifier of the UPS in question. Note that program wall has
not been internationalized and does not support accented letters or non latin characters. When
the corresponding NOTIFYFLAG contains the symbol EXEC, upsmon also passes the message to the
program specified by NOTIFYCMD on line 510.

525 NOTIFYFLAG ONLINE EXEC
526 NOTIFYFLAG ONBATT EXEC
527 NOTIFYFLAG LOWBATT SYSLOG+WALL
528 NOTIFYFLAG REPLBATT SYSLOG+WALL
529 NOTIFYFLAG FSD SYSLOG+WALL
530 NOTIFYFLAG SHUTDOWN SYSLOG+WALL
531 NOTIFYFLAG COMMOK SYSLOG+WALL
532 NOTIFYFLAG COMMBAD SYSLOG+WALL
533 NOTIFYFLAG NOCOMM SYSLOG+WALL
534 NOTIFYFLAG NOPARENT SYSLOG+WALL

Figure 72: Configuration file upsmon.conf for mgmt , part 4 of 5.

Lines 525-534 declare what is to be done at each NOTIFY event. The declarations, known as
“flags” are shown in table 13. You may specify one, two or three flags for each event, in the form
FLAG[+FLAG]*, however IGNORE must always be alone.

Lines 525-526 carry only the EXEC flag: Since the heartbeat induces a lot of [online] and
[onbatt] traffic, the SYSLOG option would flood the log and WALL would put far too many useless
messages in xterm windows. When the NOTIFY event occurs, EXEC declares that upsmon should
call the program identified by the NOTIFYCMD on line 510.

Note that if you have multiple UPS’s, the same actions are to be performed for a given NOTIFY

Page 60 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

event for all the UPS’s. Once again, we see that this is not good news.

535 RBWARNTIME 43200
536 NOCOMMWARNTIME 300
537 FINALDELAY 5

Figure 73: Configuration file upsmon.conf for mgmt , part 5 of 5.

When a UPS says that it needs to have its battery replaced, upsmon will generate a [replbatt]
NOTIFY event. Line 535 say that this happens every RBWARNTIME = 43200 seconds (12 hours).

Line 536: Daemon upsmon will trigger a [nocomm] NOTIFY event after NOCOMMWARNTIME
seconds if it can’t reach any of the UPS entries in configuration file upsmon.conf. It keeps warning
you until the situation is fixed.

Line 537: When running in master mode, upsmon waits this long after sending the [shutdown]
NOTIFY event to warn the users. After the timer elapses, it then runs your SHUTDOWNCMD as
specified on line 364. If you need to let your users do something in between those events, increase
this number. Remember, at this point your UPS battery is almost depleted, so don’t make this too
big. Alternatively, you can set this very low so you don’t wait around when it’s time to shut down.
Some UPS’s don’t give much warning for low battery and will require a value of 0 here for a safe
shutdown.

For lots and lots of details, see man upsmon.conf. See also the file config-notes.txt in the
distribution.

8.6 Configuration file upssched.conf for mgmt

Daemon upsmon in mgmt detects the NOTIFY events due to status changes in gold and mgmt
and for those flagged as EXEC in upsmon.conf calls upssched as indicated by the NOTIFYCMD directive.
The program upssched provides a richer set of actions than upsmon, especially the management of
timers.

On line 539 CMDSCRIPT points to a user script to be called for designated NOTIFY events. This
script will receive as argument the user chosen timer name.

Line 540 defines PIPEFN which is the file name of a socket used for communication between
upsmon and upssched. It is important that the directory be accessible to NUT software and
nothing else. For line 540 the Debian distribution uses /var/run/nut/upssched.pipe.

Daemon upsmon requires the LOCKFN declaration on line 541 to avoid race conditions. The
directory should be the same as PIPEFN.

8.6.1 UPS-3 on gold

Lines 543 and 544 say what is to be done by upssched for a NOTIFY event [onbatt] due to
UPS-3 on gold . On line 543 the START-TIMER says that upssched is to create and manage a timer
called “UPS-3-two-minute-warning-timer” which runs for 5 seconds. When this timer completes,

Page 61 of 134

http://networkupstools.org/docs/man/upsmon.conf.html
https://github.com/networkupstools/nut/blob/master/docs/config-notes.txt

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

538 # upssched.conf -- mgmt --
539 CMDSCRIPT /usr/sbin/upssched-cmd
540 PIPEFN /var/lib/ups/upssched.pipe
541 LOCKFN /var/lib/ups/upssched.lock
542
543 AT ONBATT UPS-3@gold START-TIMER UPS-3-two-minute-warning-timer 5
544 AT ONBATT UPS-3@gold START-TIMER UPS-3-shutdown-timer 125
545 AT ONLINE UPS-3@gold CANCEL-TIMER UPS-3-two-minute-warning-timer
546 AT ONLINE UPS-3@gold CANCEL-TIMER UPS-3-shutdown-timer
547 AT ONLINE UPS-3@gold EXECUTE UPS-3-back-on-line
548
549 AT ONBATT UPS-2@gold START-TIMER UPS-2-two-minute-warning-timer 5
550 AT ONBATT UPS-2@gold START-TIMER UPS-2-shutdown-timer 125
551 AT ONLINE UPS-2@gold CANCEL-TIMER UPS-2-two-minute-warning-timer
552 AT ONLINE UPS-2@gold CANCEL-TIMER UPS-2-shutdown-timer
553 AT ONLINE UPS-2@gold EXECUTE UPS-2-back-on-line
554
555 AT ONBATT UPS-1@localhost START-TIMER UPS-1-two-minute-warning-timer 5
556 AT ONBATT UPS-1@localhost START-TIMER UPS-1-shutdown-timer 125
557 AT ONLINE UPS-1@localhost CANCEL-TIMER UPS-1-two-minute-warning-timer
558 AT ONLINE UPS-1@localhost CANCEL-TIMER UPS-1-shutdown-timer
559 AT ONLINE UPS-1@localhost EXECUTE UPS-1-back-on-line
560
561 AT ONBATT heartbeat@localhost CANCEL-TIMER heartbeat-failure-timer
562 AT ONBATT heartbeat@localhost START-TIMER heartbeat-failure-timer 660

Figure 74: Configuration file upssched.conf for mgmt .

upssched calls the user script specified by CMDSCRIPT with argument “UPS-3-two-minute-warning
-timer”. Line 544 does a similar thing for the 125 second timer “UPS-3-shutdown-timer”.

Hopefully the back-up generator starts, and power returns before 2 minutes have gone by. Lines
545-547 say what is to be done by upssched for NOTIFY event [online]. The CANCEL-TIMER
declarations say that upssched must cancel the timers “UPS-3-two-minute-warning-timer” and
“UPS-3-shutdown-timer”. The user script is not called.

Line 547 command EXECUTE says that upssched is to call the user script immediately with the
argument “UPS-3-back-on-line”.

8.6.2 UPS-2 on gold

UPS-2 on gold is handled in exactly the same way as UPS-3. Lines 549 and 550 define the timers
which start when upssched receives a NOTIFY event [onbatt], and lines 551 and 552 cancel those
timers when hopefully upssched receives NOTIFY event [online].

Line 553 command EXECUTE says that upssched is to call the user script immediately with the

Page 62 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

argument “UPS-2-back-on-line”.

8.6.3 UPS-1 on mgmt

UPS-1 on mgmt is also handled in exactly the same way as UPS-3. Lines 555 and 556 define the
timers which start when upssched receives a NOTIFY event [onbatt], and lines 557 and 558 cancel
those timers when hopefully upssched receives NOTIFY event [online], however if power does not
return before two minutes have gone by, the timer “UPS-1-shutdown-timer” will complete and
upssched will call the user script with the parameter “UPS-1-shutdown-timer” .

Line 559 command EXECUTE says that upssched is to call the user script immediately with the
argument “UPS-1-back-on-line”.

8.6.4 heartbeat on mgmt

On line 561, when daemon upssched receives an [onbatt] it executes the command CANCEL-TIMER
heartbeat-failure-timer. This kills the timer. upssched does not call the user script.

Immediately afterwards, on line 562, and for the same [onbatt] event, upssched executes
command START-TIMER heartbeat-failure-timer 660 which restarts the heartbeat-failure
-timer which will run for another 660 sec, i.e. 11 minutes. If the timer completes, upssched will
call the user script upssched-cmd with parameter “heartbeat-failure-timer”.

8.7 User script upssched-cmd

563 #!/bin/bash -u
564 # upssched-cmd -- mgmt --
565 logger -i -t upssched-cmd Calling upssched-cmd $1
566
567 # Send emails to/from these addresses
568 EMAIL_TO="sysadmin@example.com"
569 EMAIL_FROM="upssched-cmd@${HOSTNAME:-nut}.example.com"
570
571 function make-STCH {
572 STCH="[$(upsc $1 ups.status)]:$(upsc $1 battery.charge)%"}
573 case $1 in

Figure 75: User script upssched-cmd on mgmt , 1 of 5.

The user script upssched-cmd, the example we show is in Bash, manages the completion of UPS-3
-two-minute-warning-timer, UPS-2-two-minute-warning-timer, UPS-1-two-minute-warning
-timer, UPS-3-shutdown-timer, UPS-2-shutdown-timer, UPS-1-shutdown-timer, UPS-3-back
-on-line, UPS-2-back-on-line, UPS-1-back-on-line and heartbeat-failure-timer.

Page 63 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

There is no such thing as a single script which fits all industrial situations, but here is an example
of what can be done. You will probably need to modify this for your own use. Note that this script
could be written in the language of your choice, as long as the resulting program is able to receive
the timer names as a parameter, send e-mails and log and notify the users of messages. Bash has
the advantage of being widely available and is understood by many sysadmins.

In figure 75, on lines 568 and 569, change the e-mail addresses to something that works for you.
Lines 571-572 declare a function which prepares a Bash variable STCH which gives the current

UPS status and battery charge. This is to be included in messages, so we get a clearer idea of what
is happening.

The bulk of the user script is a case statement beginning at line 573 covering all the possible
parameter values (timer names) that the user script may expect.

574 (UPS-3-two-minute-warning-timer) make-STCH UPS-3@gold
575 MSG="UPS-3: gold power failure. $STCH" ;;
576 (UPS-3-shutdown-timer) make-STCH UPS-3@gold
577 MSG="UPS-3: gold shutdown. $STCH" ;;
578 Commands for undisclosed device shutdown, e.g. saltstack
579 (UPS-3-back-on-line) make-STCH UPS-3@gold
580 MSG="UPS-3: power returns. $STCH" ;;

581 Case “UPS-2” is very similar

Figure 76: User script upssched-cmd on mgmt , 2 of 5.

In figure 76, lines 574-580 cover the events associated with UPS-3 on gold . When an [onbatt]
occurs the sysadmin receives wall and notify warnings that power to the undisclosed device has
failed, and that unless alternative power becomes available in two minutes, the undisclosed device
will be shut down. These warnings contain the text assembled in Bash variable MSG. Additionally,
when the [onbatt] occurs upssched begins a two minute timer UPS-3-shutdown-timer. If no
alternative power appears, and this timer expires, the installation specific code on line 578 will
shut down the undisclosed device attached to gold . This code might for example be based on the
saltstack remote management tools.

582 (UPS-1-two-minute-warning-timer) make-STCH UPS-1
583 MSG="UPS-1: gold power failure. $STCH" ;;
584 (UPS-1-shutdown-timer) make-STCH UPS-1
585 MSG="UPS-1: gold shutdown. $STCH" ;;
586 /usr/sbin/upsmon -c fsd ;;
587 (UPS-1-back-on-line) make-STCH UPS-1
588 MSG="UPS-1: power returns. $STCH" ;;

Figure 77: User script upssched-cmd on mgmt , 3 of 5.

In figure 77, lines 582-588 cover the events associated with UPS-1 on mgmt . When an [onbatt]

Page 64 of 134

https://docs.saltstack.com/en/latest/topics/index.html
https://docs.saltstack.com/en/latest/topics/index.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

occurs the sysadmin receives wall and notify warnings that power to the management workstation
has failed, and that unless alternative power becomes available in two minutes, the workstation will
be shut down. These warnings contain the text assembled in Bash variable MSG. Additionally, when
the [onbatt] occurs upssched begins a two minute timer UPS-1-shutdown-timer. If no alternative
power appears, and this timer expires, the code on line 586 will shut down the workstation.

589 (heartbeat-failure-timer) make-STCH heartbeat
590 MSG="NUT heart beat fails. $STCH" ;;
591 MSG1="Hello, upssched-cmd reports NUT heartbeat has failed."
592 MSG2="Current status: $STCH \n\n$0 $1"
593 MSG3="\n\n$(ps -elf | grep -E ’ups[dms]|nut’)"
594 echo -e "$MSG1 $MSG2 $MSG3" | /bin/mail -r "$EMAIL_FROM" \
595 -s "NUT heart beat fails. Currently $CHMSG" "$EMAIL_TO" ;;

Figure 78: User script upssched-cmd on mgmt , 4 of 5.

In figure 78, lines 589-595 cover the event associated with heartbeat on mgmt . The “heartbeat”
technique is discussed in detail in chapter 6. If the heartbeat-failure-timer completes then
something is wrong with NUT, and lines 591, 592 and 593 prepare a message for the sysadmin
in Bash variables MSG1, MSG2 and MSG3. Lines 594-595 e-mail the message to the sysadmin. The
message includes the current state of those NUT kernel processes which are operational.

596 (*) logger -i -t upssched-cmd "Bad arg: \"$1\", $CHMSG"
597 exit 1 ;;
598 esac
599 logger -i -t upssched-cmd $MSG
600 notify-send-all "$MSG"

Figure 79: User script upssched-cmd on mgmt , 5 of 5.

In figure 79, lines 596-597 cover any unexpected parameter values, and lines 599-600 log the
message and pass it to the system notification.

Page 65 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

8.8 The shutdown story

UPS-3 on gold : If UPS-3 detects that power has failed, and takes over the supply to the undisclosed
device, then the NUT setup will advise the system administrator on the mgmt workstation. If the
backup generator comes on automatically before two minutes, then the sysadmin on mgmt will
be informed, but if power does not re-appear, then script upssched-cmd in mgmt will remotely
command the “shutdown” of the undisclosed device. A complete shutdown may be impossible, and
all that can be done for some equipment is to put it into a quiescent state. The management
workstation mgmt is not shut down.

UPS-2 on gold : If UPS-2 detects that its own power supply has failed, and that it is now
powering gold , then the NUT setup of this chapter will advise the system administrator on the
mgmt workstation. With the example configuration, if power is not restored in two minutes
then an action in the script upssched-cmd will shut down both gold and the undisclosed device.
Workstation mgmt is not shut down.

UPS-1 on mgmt : If UPS-1 detects that its own power supply has failed, and the workstation
management is now on battery power, then we enter the scenario described in detail in chapter 7.
There is no need to shutdown the undisclosed device or gold . A backup workstation on a different
site could take over the management of UPS-3 and UPS-2.

Page 66 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

9 Encrypted connections – Deprecated – to be removed
The configurations we have seen so far assume that the connection between the NUT client and
the NUT server is either in the same machine or over a local, well protected network. The client’s
password is transmitted in clear text to the server. This may be a reasonable risk locally, but is
not acceptable if client and server are connected by a public network or by a network deemed to
be at risk. This chapter looks at the technique for encrypting the traffic between client and server.

Management
"mgmt"client

...

...

−−−−−BEGIN CERTIFICATE−−−−−

−−−−−END CERTIFICATE−−−−−

−−−−−BEGIN PRIVATE KEY−−−−−

−−−−−END PRIVATE KEY−−−−−

MIID3DCCAsSgAwIBAwIJAP1YdT7...

MIIEvQIBADANBgkghkiG9w0BAQE...

−−−−−BEGIN CERTIFICATE−−−−−

MIID3DCCAsSgAwIBAwIJAP1YdT7...
...
−−−−−END CERTIFICATE−−−−−

connection
Internet
Encrypted

f41c6413.0 −> gold.crt.pem

../

./

gold.crt.pem

Remote server "gold"

port
3493

/etc/ups/keys/gold.CA+key.pem

upsd

CERTFILE

hic sunt dragones

UPS−2
XT766

upsdrvctl

+ driver

upsc

upsrw

upscom

upsmon

CERTPATH

FORCESSL 1

CERTVERIFY 1

remote.fig

/etc/ups/certs

Figure 80: Encrypted connection to remote server using OpenSSL.

9.1 Waiting for NUT release 2.7.5

See NUT development Issues openssl 1.1 support #429, Add support for openssl-1.1.0 #504. and
./configure --with-openssl fails with OpenSSL 1.1, SSL_library_init now a macro #571 which are
still outstanding and will not be fixed until NUT version 2.7.5 at the earliest.

Meanwhile this chapter contains my raw notes on the subject: they were obtained using a custom
version of NUT rebuilt with OpenSSL 1.1. Rebuilding NUT is beyond the scope of this tutorial.
They have not been tested.

9.2 Warning for Debian users

This chapter uses the OpenSSL libraries for SSL/TLS support. The function is provided by NUT
but the Debian distribution has chosen to exclude OpenSSL saying “The OpenSSL licence taints
the GNU GPL”. This chapter has been developed using OpenSUSE 42.3 which includes OpenSSL
support.

Page 67 of 134

https://github.com/networkupstools/nut/issues/429
https://github.com/networkupstools/nut/issues/504
https://github.com/networkupstools/nut/issues/571

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

9.3 Introduction

SSL and the TLS that has replaced SSL are a quagmire of technical terms many of which are out-
of-date, confusing or incorrectly used. The OpenSSL project has produced a Swiss Army Knife7 of
utilities which are the best known tools for work in this area. Anyone venturing into this mess has
to do a lot of reading. Here is a very short list.

• The Network UPS Tools User Manual, chapter 9, Notes on securing NUT.

• The NUT man pages man upsd.conf and man upsmon.conf.

• The command openssl help followed by openssl command -help for details of the options
offered by the command tool.

• The openssl man page and it’s copious “See Also”.

• Ivan Ristić’s “A Short Guide to the Most Frequently Used OpenSSL Features and Commands”
available at web site feistyduck.com OpenSSL Cookbook.

• Web site digitalocean.com, OpenSSL Essentials: Working with SSL Certificates, Private Keys
and CSRs.

• Web site zytrax.com, Survival guides - TLS/SSL and SSL (X.509) Certificates.

• Website how2ssl.com, OpenSSL tips and common commands.

Here is a short summary of technical terms used in this chapter, see also this post.

Certificate The public key used by clients to communicate with the server, possibly with additional
information.

Certificate Authority (CA) Commercial businesses and others who want their customers to
feel safe using their sites have their SSL certificates verified by a Certificate Authority (CA).
You apply with a CSR, pay and receive a copy of your certificate linked to a trusted root
certificate, for some meaning of “trust”. Where does NUT stand? We are our own Certificate
Authority and the certificate we create is itself the root certificate. We trust ourselves. In
a closed industrial context where few people have access to the systems, this provides better
security than the commercial offerings used on the web.

PEM PEM is an encoding 8 format for a certificate which is already ASN1 encoded and which
allows it to be included in “ascii” base 64 files. If you are curious, the three letters PEM stand
for Privacy-enhanced Electronic Mail. We use file type .crt.pem for these certificate files,
but you will also find such certificates with just the pem extension. In our case the certificate
is self-signed. It looks like this:

7I counted 48 tools in version 1.1.0f.
8Historically, this encoding was used for early networks which only guaranteed to transmit 7 of the 8 bits in a

byte.

Page 68 of 134

https://networkupstools.org/docs/user-manual.chunked/ar01s09.html
http://networkupstools.org/docs/man/upsd.conf.html
http://networkupstools.org/docs/man/upsmon.conf.html
https://linux.die.net/man/1/openssl
https://www.feistyduck.com/library/openssl-cookbook/online/
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs
http://www.zytrax.com/tech/survival/ssl.html
http://how2ssl.com/articles/openssl_commands_and_tips/
https://serverfault.com/questions/9708/what-is-a-pem-file-and-how-does-it-differ-from-other-openssl-generated-key-file

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

-----BEGIN CERTIFICATE-----
MIID3DCCAsSgAwIBAgIJAP1YdT7NA27mMA0GCSqGSIb3DQEBCwUAMIGCMQswCQYD
...
-----END CERTIFICATE-----

CSR A Certificate Signing Request contains the private key and the additional information needed to
build the public key certificate. A CSR is needed for public sites for which an expensive external
service will sign the certificate as authentic and valid (for some value of authentic and valid). Since
UPS units are not a public matter, we sign our own certifiates. NUT does not use CSR’s.

KEY The private key. We use file extension .key.pem for PEM-encoded keys which look like this:

-----BEGIN PRIVATE KEY-----
MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCw3bkc3NlA+2JH
...
-----END PRIVATE KEY-----

If the file also contains the Certificate Authority certificate (public key), we use the file extension
.CA+key.pem .

9.3.1 Additional configuration files

The following configuration files are needed for encrypted communication between a remote NUT
server and management client.

• In the remote server, code name gold :

1. gold : The upsd daemon access control upsd.conf needs the private key generated by
OpenSSL. The CERTFILE9 declaration declares the file containing this private key in
PEM format. Normally it is public keys that are refered to as “certificates”. See chapter
9.6.

2. gold : New directory /etc/ups/keys will hold the private key file. Debian users might
use directory /etc/nut/keys.

• In each management client, code name mgmt :

1. mgmt : The upsmon daemon configuration upsmon.conf needs the additional CERTPATH,
CERTVERIFY and FORCESSL declarations: See chapter 9.7. CERTPATH points to a directory
rather than a single file. This directory contains CA certificates in PEM format, used
to verify the server certificate presented by the upsd server. The files each contain one
CA certificate. The files are looked up by the CA subject name hash value, which must
hence be available. See man upsmon.conf.

9The name “CERTFILE” is a poor choice since it is a private key not a public key. A name such as “KEYFILE”
would have been better.

Page 69 of 134

http://networkupstools.org/docs/man/upsmon.conf.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

2. mgmt : New directory /etc/ups/certs will hold the certificate (public key) files. De-
bian users might use directory /etc/nut/certs.

9.4 Sniffing port 3493

Testing is essential to achieve the required level of security, and a key part of this testing is sniffing
the network to ensure that the connections to port 3493 on the NUT server gold are indeed
encrypted.

We use tcpdump on Debian for this testing. Other network sniffing software is available. The
first test is to see the clear text nature of the non-encrypted communication.

1. In the server, gold , or in the management client mgmt , run the command tcpdump -A port
nut as root.

2. In the management client mgmt , stop upsmon, and then restart it with the command
systemctl start nut-monitor.service.

3. tcpdump will display the trace shown in figure 81 which has been edited to make it easier to
read. Line 605 shows the client mgmt attempting to begin an encrypted session which is
refused by server gold on line 607. Line 611 shows the password transmitted in clear text.
Let this be a warning to you.

Lines 617-620: Client mgmt then makes a plain text request every 5 seconds for the status
of UPS-3 which the server gold then answers in plain text.

Page 70 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

601 listening on wlan0, link-type EN10MB (Ethernet), capture size 262144 bytes
602 IP mgmt.33656 > gold.nut:
603 IP gold.nut > mgmt.33656:
604 IP mgmt.33656 > gold.nut:
605 IP mgmt.33656 > gold.nut: STARTTLS
606 IP gold.nut > mgmt.33656:
607 IP gold.nut > mgmt.33656: ERR FEATURE-NOT-CONFIGURED
608 IP mgmt.33656 > gold.nut:
609 IP mgmt.33656 > gold.nut: USERNAME upsmaster
610 IP gold.nut > mgmt.33656: OK
611 IP mgmt.33656 > gold.nut: PASSWORD sekret
612 IP gold.nut > mgmt.33656: OK
613 IP mgmt.33656 > gold.nut: LOGIN UPS-3
614 IP gold.nut > mgmt.33656: OK
615 IP mgmt.33656 > gold.nut: MASTER UPS-3
616 IP gold.nut > mgmt.33656: OK MASTER-GRANTED
617 IP mgmt.33656 > gold.nut: GET VAR UPS-3 ups.status
618 IP gold.nut > mgmt.33656: VAR UPS-3 ups.status "OL"
619 IP mgmt.33658 > gold.nut:
620 IP mgmt.33656 > gold.nut: GET VAR UPS-3 ups.status
621 IP gold.nut > mgmt.33656: VAR UPS-3 ups.status "OL"

Figure 81: tcpdump of systemctl start nut-monitor.service without encryption.

9.5 Creating the SSL keys with OpenSSL

1. On gold , create a directory associated with NUT in which to build the keys. Since we use
openSUSE, we will create a keys subdirectory of the server configuration directory /etc/ups.
Debian sysadmins use /etc/nut. See table 126 for a list of possible directories. See lines
623-624. Note the ownership of directory keys.

2. On line 625, we cd into the keys subdirectory of the server configuration, and proceed to
build a self-signed certificate. We are our own Certificate Authority (CA). On line 626,
the command openssl req instructs the OpenSSL tool req to manage Certificate Signing
Requests (CSR). The remaining options are specific to CSR management.

On line 627, option -newkey rsa:2048 calls for a new private key of length 2048 bits. Option
-nodes says that there is no pass-phrase to encrypt the output key. The absence of a pass-
phrase makes it possible to start the service automatically without having to type the pass-
phrase. Option -keyout NUT.key.pem says where the private key is to be stored.

On line 628, option -x509 calls for openssl req to output an X509 structure instead of a
certificate signing request (CSR). This is equivalent to saying “output a self-signed certifi-
cate”. Option -days 3660 says that the certificate is to be valid for 10 years. Option -out
NUT.CAcrt.pem says into which file the certificate goes. The letters “CA” are a reminder that

Page 71 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

622 root@gold ~ # cd /etc/ups
623 root@gold /etc/ups # mkdir keys
624 root@gold /etc/ups # chown root:nut keys
625 root@gold /etc/ups # cd keys
626 root@gold /etc/ups/keys # openssl req \
627 > -newkey rsa:2048 -nodes -keyout NUT.key.pem \
628 > -x509 -days 3660 -out NUT.CAcrt.pem
629 Generating a 2048 bit RSA private key
630+++
631+++
632 writing new private key to ’NUT.key.pem’
633 -----
634 You are about to be asked to enter information that will be incorporated
635 into your certificate request.
636 What you are about to enter is what is called a Distinguished Name or a DN.
637 There are quite a few fields but you can leave some blank
638 For some fields there will be a default value,
639 If you enter ’.’, the field will be left blank.
640 -----
641 Country Name (2 letter code) [AU]:FR
642 State or Province Name (full name) [Some-State]:.
643 Locality Name (eg, city) []:.
644 Organization Name (eg, company) [Internet Widgits Pty Ltd]:Roger Price
645 Organizational Unit Name (eg, section) []:Network UPS Tools (NUT)
646 Common Name (e.g. server FQDN or YOUR name) []:gold.example.com
647 Email Address []:sysadmin@example.com

Figure 82: Call openssl req to create the self-signed certificate.

this is the Certifying Authority public key.

3. The openssl command on line 626 produces the two files in directory /etc/ups/keys shown
on lines 649 and 650. Let’s look at the contents of these two files:

9.5.1 Create unique name for certificate using OpenSSL

Later, when installing the certificate (public key) on mgmt , we will need a unique name for this
file. We create this name now on gold using the openssl x509 tool.

The file name will be f41c6413.0 which will be used on line 683.

9.6 Install NUT server keys on gold

The upsd server on gold requires that the certificate and the private key generated by openssl be
in one single file. This file must have ownership and permissions which prevent public access, but

Page 72 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

648 root@gold /etc/ups/keys # ls -alF
649 -rw-r--r-- 1 root root 1399 Jun 30 16:35 NUT.CAcrt.pem
650 -rw------- 1 root root 1704 Jun 30 16:29 NUT.key.pem
651 root@gold /etc/ups/keys # grep -A1 "\-" NUT.CAcrt.pem
652 -----BEGIN CERTIFICATE-----
653 MIID6TCCAtGgAwIBAgIUDWeXm6QFobVRzpb+1E2sSnBQDhEwDQYJKoZIhvcNAQEL
654 --
655 -----END CERTIFICATE-----
656 root@gold /etc/ups/keys # grep -A1 "\-" NUT.key.pem
657 -----BEGIN PRIVATE KEY-----
658 MIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQC5Bn7udfNGVS0N
659 --
660 -----END PRIVATE KEY-----

Figure 83: The contents of the two files produced by openssl req.

661 root@gold /etc/ups/keys # openssl x509 -hash -noout -in NUT.CAcrt.pem
662 f41c6413

Figure 84: Create unique name for certificate file.

just allow upsd to read the file. We proceed as follows:

663 root@gold /etc/ups/keys # cat NUT.CAcrt.pem NUT.key.pem > gold.CA+key.pem
664 root@gold /etc/ups/keys # chown root:upsd gold.CA+key.pem
665 root@gold /etc/ups/keys # chmod 0640 gold.CA+key.pem
666 root@gold /etc/ups/keys # ls -alF gold.CA+key.pem
667 -rw-r----- 1 root upsd 3103 Jul 1 08:56 gold.CA+key.pem

Figure 85: The combined file required by upsd on gold .

On line 663 NUT.CAcrt.pem must come before NUT.key.pem. On line 664, Debian sysadmins
would prefer chown root:nut... Line 671 extends the file upsd.conf on gold to include a CERTFILE
declaration which points to gold.CA+key.pem created on line 663.

668 # upsd.conf
669 LISTEN 127.0.0.1 3493
670 LISTEN ::1 3493
671 CERTFILE /etc/ups/keys/gold.CA+key.pem OpenSUSE
672 # CERTFILE /etc/nut/keys/gold.CA+key.pem Debian

Figure 86: CERTFILE declaration to be added to upsd.conf on gold .

Page 73 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

9.7 Install NUT management client keys on mgmt

1. On mgmt , create a directory associated with NUT in which to store the certificate (public
key). Since we use openSUSE, we will create a certs subdirectory of the configuration
directory /etc/ups. Debian sysadmins use /etc/nut. See table 126 for a list of possible
directories. See lines 674-675. Note the ownership of directory certs. On line 675 Debian
sysadmins would prefer chown root:nut...

673 root@mgmt ~ # cd /etc/ups
674 root@mgmt /etc/ups # mkdir certs
675 root@mgmt /etc/ups # chown upsd:root certs
676 root@mgmt /etc/ups # cd certs
677 root@mgmt /etc/ups/certs # sftp gold:/etc/ups/keys/NUT.CAcrt.pem gold.crt.pem
678 root@gold’s password:
679 Connected to gold.
680 Fetching /etc/ups/keys/NUT.CAcrt.pem to gold.crt.pem
681 /etc/ups/keys/NUT.CAcrt.pem 100% 1399 183.6KB/s 00:00
682 root@mgmt /etc/ups/certs # chown upsd:root gold.crt.pem
683 root@mgmt /etc/ups/certs # ln -s gold.crt.pem f41c6413.0
684 root@mgmt /etc/ups/certs # ls -alF
685 lrwxrwxrwx 1 root root 9 Jul 3 16:56 f41c6413.0 -> gold.crt.pem
686 -rw-r--r-- 1 upsd root 1399 Jul 3 15:17 gold.crt.pem

Figure 87: Copy certificate to mgmt and rename file.

2. Line 677: copy the certificate (public key) from gold to mgmt . Line 682 corrects the
ownership for OpenSUSE. A Debian sysadmin would prefer chown nut:root...

3. Line 683 links the unique name f41c6413.0 generated on line 661 to the file gold.cert.pem.

4. Add a CERTPATH declaration to upsmon.conf. Here is figure 69 modified with additional
CERTPATH, CERTVERIFY and FORCESSL declarations on lines 692-694.

687 # upsmon.conf -- mgmt --
688 MONITOR UPS-3@gold 0 upsmaster sekret master
689 MONITOR UPS-2@gold 0 upsmaster sekret master
690 MONITOR UPS-1@localhost 1 upsmaster sekret master
691 MONITOR heartbeat@localhost 0 upsmaster sekret master
692 CERTPATH /etc/ups/certs
693 CERTVERIFY 1
694 FORCESSL 1
695 MINSUPPLIES 1

Figure 88: Configuration file upsmon.conf for mgmt , with CERTFILE.

Page 74 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

9.8 Testing the TLS setup

On gold restart upsd with command systemctl restart nut-server.service and then com-
mand systemctl status nut-server.service . The report should show

696 nut-server.service - Network UPS Tools - power devices information server
697 Loaded: loaded (/usr/lib/systemd/system/nut-server.service; enabled;..)
698 Active: active (running) since Sat 2018-07-07 11:01:40 CEST; 51min ago
699 Process: 2923 ExecStart=/usr/sbin/upsd (code=exited, status=0/SUCCESS)
700 Main PID: 2926 (upsd)
701 Tasks: 1 (limit: 512)
702 CGroup: /system.slice/nut-server.service
703 _2926 /usr/sbin/upsd
704
705 ... upsd[2923]: listening on 0.0.0.0 port 3493
706 ... upsd[2923]: Connected to UPS [UPS-2]: usbhid-ups-UPS-2
707 ... upsd[2923]: Connected to UPS [UPS-3]: usbhid-ups-UPS-3
708 ... upsd[2926]: Startup successful
709 ... systemd[1]: Started Network UPS Tools - power device information server
710 ... upsd[2926]: User upsmaster@gold logged into UPS [UPS-2] (SSL)
711 ... upsd[2926]: User upsmaster@gold logged into UPS [UPS-3] (SSL)

Figure 89: Restarting upsd on gold with SSL/TLS enabled.

On mgmt restart NUT with command systemctl restart nut-monitor.service and then
command systemctl status nut-monitor.service . The report should show

Lines 723-726 show that the upsmon connections are SSL/TLS encrypted. Line 729 shows the
heartbeat in action.

Page 75 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

712 nut-monitor.service - Network UPS Tools - power device monitor and shutdown
713 Loaded: loaded (/usr/lib/systemd/system/nut-monitor.service; enabled;..)
714 Active: active (running) since Sat 2018-07-07 11:01:40 CEST; 51min ago
715 Process: 2927 ExecStart=/usr/sbin/upsmon (code=exited, status=0/SUCCESS)
716 Main PID: 2931 (upsmon)
717 Tasks: 3 (limit: 512)
718 CGroup: /system.slice/nut-monitor.service
719 |-2930 /usr/sbin/upsmon
720 |-2931 /usr/sbin/upsmon
721 _3591 /usr/sbin/upssched UPS heartbeat@localhost: On battery
722
723 ... upsmon[2931]: Connected to gold in SSL
724 ... upsmon[2931]: Connected to gold in SSL
725 ... upsmon[2931]: Connected to localhost in SSL
726 ... upsmon[2931]: Connected to localhost in SSL
727 ... upssched[3591]: Timer daemon started
728 ... upssched[3591]: New timer: heartbeat-failure-timer (1320 seconds)
729 ... upssched[3591]: Cancelling timer: heartbeat-failure-timer
730 ... upssched[3591]: New timer: heartbeat-failure-timer (1320 seconds)

Figure 90: Restarting upsmon on mgmt with SSL/TLS enabled.

Page 76 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

9.9 What can Debian users do?

Debian users have a choice:

1. Rebuild NUT with the ./configure option --with-openssl Rebuilding NUT is beyond the
scope of this tutorial. See NUT issue 571.

2. Use the NSS support which _is_ included in the Debian NUT package. See Mozilla Network
Security Services (NSS). See also NUT issue 572.

9.9.1 Debian: Create NSS database on gold

The NSS instructions given in the Network UPS Tools User Manual, chapter 9, Notes on securing
NUT correspond to earlier versions of NSS. We choose to use the current version and to base the
setup on key creation done with OpenSSL, so the instructions here differ from those in the NUT
User Manual.

connection
Internet
Encrypted

Management
"mgmt"client

Remote system "gold"

port
3493

/etc/nut/NSS_db

dragones

hic

sunt

upsd

CERTPATH
CERTIDENT

gold sekret

UPS−2
XT766

upsdrvctl

+ driver

upsc

upsrw

upscom

upsmon

CERTHOST gold gold 1 1remote.fig

Figure 91: Encrypted connection to remote server using NSS.

There are two different forms for the NSS database: the legacy databases (cert8.db, key3.db,
and secmod.db) and new SQLite databases (cert9.db, key4.db, and pkcs11.txt). These are
identified by the prefixes sql: for the newer database and dbm: for the legacy database. NUT
2.7.4 does not provide a means of specifying the sql: prefix and does not support use of the newer
sql: database.

We refer to these three databases collectively as the NSS database, which must be created on
those Debian boxes which act as gold and mgmt , before certificates or keys can be imported and
managed.

gold : Line 732: You will need package libnss3-tools for program certutil which creates
the (initially empty) databases. Note the dbm: prefix which must be placed before all database
references, and the weak approach to security shown by the --empty-password option.

Line 735 shows the ownership and permissions of the databases.

Page 77 of 134

https://github.com/networkupstools/nut/issues/571
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://github.com/networkupstools/nut/issues/572
https://networkupstools.org/docs/user-manual.chunked/ar01s09.html
https://networkupstools.org/docs/user-manual.chunked/ar01s09.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

731 root@gold /etc/nut # mkdir NSS_db
732 root@gold /etc/nut # certutil -N -d dbm:NSS_db --empty-password
733 root@gold /etc/nut # chown -R root:nut NSS_db/
734 root@gold /etc/nut # chmod -R 640 NSS_db/
735 root@gold /etc/nut # ls -alF NSS_db/
736 drw-r----- 2 root nut 4096 Jul 8 12:40 .
737 drwxr-xr-x 5 root nut 4096 Jul 8 12:40 ../
738 -rw-r----- 1 root nut 65536 Jul 8 12:40 cert8.db
739 -rw-r----- 1 root nut 16384 Jul 8 12:40 key3.db
740 -rw-r----- 1 root nut 16384 Jul 8 12:40 secmod.txt

Figure 92: Creating the NSS databases on gold .

9.9.2 Debian: Add OpenSSL keys and certificates to NSS database on gold

The certutil tool is capable of many operations needed to create and manage certificates and
keys, but we choose to use OpenSSL to build ours which we then import into the NSS database.

gold : Line 741: Use tool openssl pkcs12 to export the private key gold.key to a PKCS#12
file gold.p12 for NSS to import. Note the option -name gold which specifies the private key’s
nickname. On line line 744 tool pk12util imports the private key from file gold.p12 into the NSS
database.

741 root@gold /etc/nut # openssl pkcs12 -export -inkey ./keys/gold.key \
-in ./keys/gold.crt -out ./keys/gold.p12 -name gold

742 Enter Export Password: sekret
743 Verifying - Enter Export Password: sekret
744 root@gold /etc/nut # pk12util -i ./keys/gold.p12 -d dbm:NSS_db
745 Enter password for PKCS12 file: sekret
746 pk12util: PKCS12 IMPORT SUCCESSFUL

Figure 93: Import private key to NSS database on gold .

Now we have the private key in the NSS database, we also need the public key, i.e. the certificate.
Line 747: Use tool openssl x509 to export the certificate (public key) in gold.pem to a DER

format file gold.der for NSS to import. On line 748 tool certutil -A adds the certificate in file
gold.der to the NSS database with option -t "C„" declaring that the certicate is trusted for client
authentification on an SSL server, option -v 120 declaring that the certificate is valid for 10 years,
and option -n "gold" specifying a nickname for the certificate.

Line 752 extends the file upsd.conf on gold to include a CERTPATH declaration which points to
the NSS database. Line 753 identifies the certificate to be sent to clients and the password needed
to decrypt the private key associated with the certificate, see line 745.

Page 78 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

747 root@gold /etc/nut # openssl x509 -outform der \
-in ./keys/gold.pem -out ./keys/gold.der

748 root@gold /etc/nut # certutil -A -d dbm:NSS_db -t "C,," \
-v 120 -n "gold" -i ./keys/gold.der

Figure 94: Import certificate (public key) to NSS database on gold .

749 # upsd.conf -- gold -- for Debian
750 LISTEN 127.0.0.1 3493
751 LISTEN ::1 3493
752 CERTPATH /etc/nut/NSS_db
753 CERTIDENT "gold.example.com" sekret

Figure 95: NSS CERTPATH declaration for upsd.conf on gold .

9.9.3 Debian: Check and display NSS database on gold

We check the private key and certificate (public key) in the NSS database. See figure 96.
gold : Line 754: certutil -V checks the validity of a certificate, with the option -n gold

giving the nickname of the key as defined on line 741, and option -u V declaring that the certificate
is for use as an SSL server.

Line 756: certutil -K lists the contents of the key database. The key ID is df7b... with
nickname gold as defined on line 741.

Line 759: certutil -L lists the certificates in the database. Specify nickname gold to get full
detail for that certificate.

9.9.4 Debian: Create NSS database on mgmt

The process of creating the NSS database on mgmt is the same as on gold .
However file upsmon.conf requires specific attention.

9.9.5 Debian: Testing the NSS setup

On gold restart upsd with command systemctl restart nut-server.service and then com-
mand systemctl status nut-server.service . The report should show

On mgmt restart NUT with command systemctl restart nut-monitor.service and then
command systemctl status nut-monitor.service . The report should show

Page 79 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

754 root@gold /etc/nut # certutil -V -d dbm:NSS_db -n gold -u V
755 certutil: certificate is valid
756 root@gold /etc/nut # certutil -K -d dbm:NSS_db
757 certutil: Checking token "NSS Certificate DB" in slot

"NSS User Private Key and Certificate Services"
758 < 0> rsa df7b376946c8cfe59d74095dfc4b882d081b981b gold
759 root@gold /etc/nut # certutil -L -d dbm:NSS_db -n gold
760 Certificate:
761 Data:
762 Version: 3 (0x2)
763 Serial Number:
764 00:fd:58:75:3e:cd:03:6e:e6
765 Signature Algorithm: PKCS #1 SHA-256 With RSA Encryption
766 Issuer: "E=sysadmin@rogerprice.org,CN=maria.rogerprice.org,
767 OU=IT operations,O=Roger Price,C=FR"
768 Validity:
769 Not Before: Sat Jun 30 14:35:24 2018
770 Not After : Tue Jun 27 14:35:24 2028
771 ...

Figure 96: Check and display certificate and private key on gold .

772 # upsmon.conf -- mgmt -- for Debian
773 MONITOR UPS-3@gold 0 upsmaster sekret master
774 MONITOR UPS-2@gold 0 upsmaster sekret master
775 MONITOR UPS-1@localhost 1 upsmaster sekret master
776 MONITOR heartbeat@localhost 0 upsmaster sekret master
777 CERTHOST gold gold.example.com 1 1
778 CERTVERIFY 1
779 FORCESSL 1
780 MINSUPPLIES 1

Figure 97: NSS CERTHOST declaration for upsmon.conf on mgmt .

Page 80 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Part 2

UPS monitoring using Python3 script and openSSL

Part 1 of this documentation discussed the way in which UPS activity reported by upsd can
be monitored using the monitoring software provided with NUT 2.7.4. This part covers the use
of Python3 scripts and openSSL to monitor the same UPS activity. Part 3 provides technical
appendices.

The description of the Python3 scripts in this Part supposes that you have some experience as
a system administrator and that you are already familiar with NUT, it’s component daemons and
configuration files as described in Part 1.

This Part provides descriptions of Python3 scripts mkNUTcert.py, upsdTLS.py, UPSmon.py
and mkUPSmonconf.py.

The scripts and their SHA1 check sums may be downloaded from http://rogerprice.org/NUT

10 mkNUTcert.py builds TLS certificates for NUT
A secure network connection between upsd and the monitor UPSmon.py requires use of TLS (Trans-
port Layer Security) public and private keys. TLS replaces its now-deprecated predecessor, Secure
Sockets Layer (SSL) used by upsmon. Building keys which meet the increasingly complex re-
quirements of the Internet is not obvious. A Python3 utility script mkNUTcert.py builds a TLS
private key for a upsd server, a self-signed CA certificate and a certificate for the monitors such as
UPSmon.py that will access upsd. The status is “experimental”. The script is optimised for use with
NUT and is expected to be run on the same machine as upsd. It is intended for demonstration and
experiment. The license is GPL v3 or later at your choice, with support in the “ups-user” mailing
list.

10.1 Very Short Introduction to TLS Certificates

SSL and the TLS that has replaced SSL are a quagmire of technical terms many of which are out-
of-date, confusing or incorrectly used. The OpenSSL project has produced a Swiss Army Knife10

of utilities which are the best known tools for work in this area. Anyone venturing into this mess
has to do a lot of reading. Here is a very short list.

10I counted 48 tools in version 1.1.0f.

Page 81 of 134

https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser
https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

• The Network UPS Tools User Manual, chapter 9, Notes on securing NUT.

• The NUT man pages man upsd.conf and man upsmon.conf.

• The command openssl help followed by openssl command -help for details of the options
offered by the command tool.

• The openssl man page and it’s copious “See Also”.

• Ivan Ristić’s “A Short Guide to the Most Frequently Used OpenSSL Features and Commands”
available at web site feistyduck.com OpenSSL Cookbook.

• Web site digitalocean.com, OpenSSL Essentials: Working with SSL Certificates, Private Keys
and CSRs.

• Web site zytrax.com, Survival guides - TLS/SSL and SSL (X.509) Certificates.

• Website how2ssl.com, OpenSSL tips and common commands.

Here is a short summary of technical terms used in this chapter, see also this post.

Certificate A file containing the public key used by clients to communicate with the server, pos-
sibly with additional information. For public keys we use file names of the form
mybox -monitor.cert.pem where mybox is the name of the upsd server.

Certificate Authority (CA) Commercial businesses and others who want their customers to
feel safe using their sites have their TLS certificates verified by a Certificate Authority (CA).
You apply with a CSR, pay and receive a copy of your certificate linked to a trusted root
certificate, for some meaning of “trust”. Where does NUT stand? We are our own Certificate
Authority and the certificate we create is itself the root certificate. We trust ourselves. In
a closed industrial context where few people have access to the systems, this provides better
security than the commercial offerings used on the web.

Root certificate A Certifying Authority takes the private key and provides a certificate of authen-
ticity known as a “root certificate”. However in the commercial world intermediaries appear
and get paid to add their certificates, thus forming a “chain of trust”. NUT does not have
such a chain. The root certificate is the only one. In NUT’s self-signed world, the upsd server
uses as private key a file which contains the private key and then the root certificate11. For
the private key we use a file name of the form mybox.cert.pem where mybox is the name of
the upsd server. The clients will use just the root certificate which contains the public key.

PEM PEM is an encoding 12 format for a certificate which is already ASN1 encoded and which
allows it to be included in “ascii” base 64 files. If you are curious, the three letters PEM stand
for Privacy-enhanced Electronic Mail. We use file type .cert.pem for these certificate files,
but you will also find such certificates with just the pem extension.

11In that order
12Historically, this encoding was used for early networks which only guaranteed to transmit 7 of the 8 bits in a

byte.

Page 82 of 134

https://networkupstools.org/docs/user-manual.chunked/ar01s09.html
http://networkupstools.org/docs/man/upsd.conf.html
http://networkupstools.org/docs/man/upsmon.conf.html
https://linux.die.net/man/1/openssl
https://www.feistyduck.com/library/openssl-cookbook/online/
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs
http://www.zytrax.com/tech/survival/ssl.html
http://how2ssl.com/articles/openssl_commands_and_tips/
https://serverfault.com/questions/9708/what-is-a-pem-file-and-how-does-it-differ-from-other-openssl-generated-key-file

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

CSR A Certificate Signing Request contains the private key and the additional information needed
to build the public key certificate. A CSR is needed for public sites for which an expensive
external service will sign the certificate as authentic and valid (for some value of authentic
and valid). Since UPS units are not a public matter, we sign our own certificates. NUT does
not use CSR’s.

10.2 Overview of mkNUTcert.py

The script has many options, but in general few and in some simple cases none at all are needed.
To see the options and their default values enter command mkNUTcert.py --help

781 $ mkNUTcert.py --help
782 usage: mkNUTcert.py [-h] [-SAN <list of server names>]
783 [-C <ISO 3166 two letters>] [-O <name>] [-OU <unit name>]
784 [--serialNumber <integer>] [--notBefore <integer>]
785 [--notAfter <integer>] [-s <filename>] [-m <filename>] [-v]

Figure 98: Command mkNETcert.py --help.

Let’s look at these optional arguments in more detail.

-h, --help show this help message and exit

-SAN <list of server names> See --subjectAltName

--subjectAltName <list of server names> This is probably the option that you are most likely
to want to change. It defines a space separated list of names of the upsd server. The default
is “mybox localhost 10.218.0.19 mybox.example.com” where mybox is the name of the
machine on which you have run mkNUTcert.py. In earlier releases of SSL/TLS the option
CN (Common Name) was used to specify the server name. This is now deprecated in favour
of SAN (subjectAltName).

-C <ISO 3166 two letters> See --countryName

--countryName <ISO 3166 two letters> Feel free to specify your 2 digit country code. The
default is “FR”.

-O <name>, --organisationName <name> The proud default for Organisation name is “Network
UPS Tools”. You probably don’t have to change this.

-OU <unit name>, --organisationUnitName <unit name> The default value for the Organisa-
tion Unit name is “mkNUTcert.py version 1.0”. Again, you probably don’t have to change
this.

--serialNumber <integer> The default for the serial number is 1.

Page 83 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

--notBefore <integer> The validity start time is seconds from the moment you run the program.
The default is 0, i.e. now. You probably don’t have to change this.

--notAfter <integer> The validity end time in seconds from now. The default is 0, i.e. indefinite
validity. Note that the value specified in the certificate is Dec 31 23:59:59 9999 GMT as
required by RFC 5280 para 4.1.2.5.

-s <filename>, --servercertfile <filename> File path and name for the server’s certificate.
mkNUTcert.py tries to guess where to put things. Lucky users of Debian might see /etc/nut/
mkNUTcert/mybox.cert.pem See table 126 for a list of possible directories.

-m <filename>, --monitorcertfile <filename> File path and name for the monitor’s certifi-
cate. mkNUTcert.py tries to guess where to put things. Debian users might see /etc/nut/
mkNUTcert/mybox -monitor.cert.pem All the monitors for the upsd server use this certifi-
cate.

-v, --version Show mkNUTcert.py, Python and SSL/TLS versions, then exit.

The private key and public keys provided by mkNUTcert.py are in the form of PEM encoded
certificates. The server’s private key PEM encoding can be seen with command shown in figure 99:

786 $ grep -A1 -E "^---" /etc/ups/mkNUTcert/mybox.cert.pem
787 -----BEGIN PRIVATE KEY-----
788 MIIJQwIBADANBgkqhkiG9w0BAQEFAASCCS0wggkpAgEAAoICAQC2sJigLVujiJ0/
789 --
790 -----END PRIVATE KEY-----
791 -----BEGIN CERTIFICATE-----
792 MIIFhDCCA2ygAwIBAgIBATANBgkqhkiG9w0BAQ0FADBMMQswCQYDVQQGEwJGUjEa
793 --
794 -----END CERTIFICATE-----

Figure 99: The server’s PEM encoded private key.

The monitor’s public key contains only the CERTIFICATE part, not the PRIVATE KEY part.
Details of the certificate can be seen with the command shown in figure 100:

Notes:

1. The certificate is a root certificate and there are no intermediate certificates. NUT acts as
it’s own certifying authority. For tightly controlled situations such as UPS management, this
provides better security.

2. The certificate is self-signed. The issuer on line 801 is also the subject on line 805 as required
by RFC 5280 para 4.1.2.4 last sentence.

3. The value “Dec 31 23:59:59 9999 GMT” on line 804 is defined by RFC 5280 para 4.1.2.5.

Page 84 of 134

https://tools.ietf.org/html/rfc5280#section-4.1.2.5
https://tools.ietf.org/html/rfc5280#section-4.1.2.4
https://tools.ietf.org/html/rfc5280#section-4.1.2.5

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

795 $ openssl x509 -text -noout -in /etc/nut/mkNUTcert/mybox.cert.pem
796 Certificate:
797 Data:
798 Version: 3 (0x2)
799 Serial Number: 1 (0x1)
800 Signature Algorithm: sha512WithRSAEncryption
801 Issuer: C = FR, O = Network UPS Tools, OU = mkNUTcert.py version 1.0
802 Validity
803 Not Before: Sep 27 14:19:02 2020 GMT
804 Not After : Dec 31 23:59:59 9999 GMT
805 Subject: C = FR, O = Network UPS Tools, OU = mkNUTcert.py version 1.0
806 Subject Public Key Info:
807 Public Key Algorithm: rsaEncryption
808 RSA Public-Key: (4096 bit)
809 Modulus:
810 00:b1:aa:dc:87:3c:ec:11:42:59:92:1d:5c:58:17:
811 ...
812 Exponent: 65537 (0x10001)
813 X509v3 extensions:
814 X509v3 Basic Constraints: critical
815 CA:TRUE
816 X509v3 Subject Alternative Name:
817 DNS:mybox, DNS:localhost, DNS:10.218.0.19, DNS:mybox.example.com
818 X509v3 Subject Key Identifier:
819 DA:39:A3:EE:5E:6B:4B:0D:32:55:BF:EF:95:60:18:90:AF:D8:07:09
820 Signature Algorithm: sha512WithRSAEncryption
821 3a:fb:9c:f9:a0:ea:a7:cf:85:af:fd:20:fb:62:5d:e5:07:3b:
822 ...

Figure 100: The self-signed certificate.

4. The public key begins on line 810.

5. There is no Authority Key Identifier which is obligatory for Web certificates. This omission
is specific to self-signed certificates, see RFC 5280 para 4.2.1.1.

10.3 Running mkNUTcert.py

1. Before running the script, check the shebang #! in the first line. The default value is
#!/usr/bin/python3 -u . Check that you have a sufficiently recent version of Python3
at that address. If your version is not sufficiently recent, you will receive an error message
from mkNUTcert.py. How do I know if I have a sufficiently recent version of Python3? Try
running the script. If it runs, you’re ok. Otherwise you will need to upgrade your Python
installation. See Annex 24.

Page 85 of 134

https://tools.ietf.org/html/rfc5280#section-4.2.1.1

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

2. Run command mkNUTcert.py --help to see the default values, particularly for options
--subjectAltName , --servercertfile and --monitorcertfile .

3. When you run the command mkNUTcert.py you will be reminded of the proposed file paths and
file names for the certificates. Enter “yes” to confirm and anything else to exit immediately.

4. Ensure that the private key is properly protected. Only root and the user designated to run
upsd should have access to the key. No-one else.

Page 86 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

11 Daemon upsdTLS.py

upsdTLS
.py

hi
c

su
nt

 d
ra

go
ne

s

upsd

34
93

40
1

beep
beep

beep

UPS−1

UPSmon.py
EVENT

OL−>OB

upsdrvctl
+ driver

ups.status: [OB]

2.7.4

UPSmon−274.fig

TLS TLS

Figure 101: UPSmon.py with NUT 2.7.4 requires a TLS helper upsdTLS.py.

NUT 2.7.4 does not support the latest versions of TLS. This prevents NUT 2.7.4 from using
TLS since TLS strongly deprecates use of earlier versions which are no longer considered secure. To
overcome this difficulty, Python script upsdTLS.py helps upsd to work with the latest, and most
secure, versions of TLS. upsdTLS.py runs as a daemon alongside upsd receiving TLS encrypted
traffic from UPSmon.py and passing on that traffic to local upsd using an unencrypted socket. The
script’s status is "experimental", and is intended for demonstration and experiment. It must run
on the same machine as upsd. The license is GPL v3 or later at your choice, with support in the
“ups-user” mailing list.

11.1 Overview of upsdTLS.py

The script has no configuration file, but has many options. In general few and in some simple
cases none at all are needed. To see the options and their default values you can enter command
upsdTLS.py --help

823 $ upsdTLS.py --help
824 usage: upsdTLS.py [-h] [--backlog <integer>] [-D] [--noTLS]
825 [--servercertfile <file>] [--listen <IPv4_address> <port_number>]
826 [--logfile <file>] [--maxconn <integer>] [--period <float>]
827 [--upsdport <integer>] [--upsdtimeout <float>]
828 [--montimeout <float>] [-u <user>] [-v]

Figure 102: Command upsdTLS.py --help
.

Let’s look at these optional arguments in more detail.

-h, --help Show this help message and exit

-D, --debug Increase the debugging level, may be repeated but then you get more than any human
can read. Debugging output is written into a NUT log file.

Page 87 of 134

https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

-l <file>, --logfile <file> The log file, with default /var/log/NUT.log . Progress and error
messages and the stuff generated by option -D go into this file. See chapter 26.3 for an
extension to logrotate to cover this file.

--PIDFile <file> The child PID is written into this file, for the greater pleasure of systemd. The
default is /var/run/upsdTLS.pid Do not change this unless you know what you are doing.
You should also review the systemd service unit.

-s <file>, --servercertfile <file> The file path and file name of the server’s private key.
upsdTLS.py tries to guess where to put things. The default on Debian systems is /etc/nut/
mkNUTcert/mybox.cert.pem . OpenSUSE sysadmins would probably use /etc/ups/... See
table 126 for a list of possible directories.

--listen <IPv4_address>, <port_number> Listen to UPSmon.py on this interface and port,
the default is ’127.0.0.1’, 401. We squat IANA ups/401. Setting a port number < 1024
requires starting the daemon as root.

--backlog <integer> Maximum incoming call backlog, default value 5. You should not usually
need to change this.

--maxconn <integer> Maximum number of incoming connections from UPSmon.py, the default
is 10. Strictly speaking, the maximum number of sockets the daemon process may have open,
where getconf OPEN_MAX gives system file maximum. You should not usually need to change
this.

--upsdport <integer> Relay incoming traffic from UPSmon to this upsd port, the default is
3493, the well known NUT port.

--upsdtimeout <float> Socket timeout for exchanges with upsd. The default is 0.8 seconds.
Note that since upsdTLS.py is not protocol aware, it sometimes has to rely on timeouts to
determine that a message exchange has completed.

--montimeout <float> Socket timeout for exchanges with UPSmon.py. The default is 1.8 sec-
onds. As with upsd, upsdTLS.py sometimes has to rely on timeouts to determine that a
message exchange has completed.

-u <user>, --user <user> After launch as root, run as this user. upsdTLS.py tries to guess the
user. OpenSUSE admins would probably see upsd, whereas Debian admins would see nut.
See table 126 for a list of possible users.

-v, --version Show program, Python and SSL/TLS versions, then exit.

Page 88 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

11.2 Running upsdTLS.py

The daemon upsdTLS.py usually starts with user root and forks to run as the same user as upsd.
If you use systemd to manage your box, then you will need to create a new service unit, since

systemd is unable to start two forking services from the same unit. See man systemd.service(5).
There can only be one Type=forking per unit.

Copy the service unit file /usr/lib/systemd/system/nut-server.service to /etc/systemd/
system/nut-py-server.service and modify the new file shown in figure 103. Lines 831, 832 and
834-835 have been changed. The PIDFile declaration is there to help systemd find the daemon
since upsdTLS.py does not keep the parent process running when it forks. Note that systemd
service units in /etc take precedence over those in /usr/lib. See man systemd.unit(5).

829 [Unit]
830 Description=Network UPS Tools - nut-server TLS support daemon
831 After=local-fs.target network.target nut-server.service
832 Before=nut-py-monitor.service

833 [Service]
834 ExecStart=/usr/sbin/upsdTLS.py
835 PIDFile=/var/run/upsdTLS.pid
836 Type=forking

837 [Install]
838 WantedBy=multi-user.target

Figure 103: systemd service unit nut-py-server.service for upsdTLS.py.

You may choose to place the upsdTLS.py script in directory /usr/sbin or make /usr/sbin/
upsdTLS.py a link to wherever you put the Python script. After you have made the changes,
you should run the command systemctl daemon-reload See man systemctl(1). Before running
upsdTLS.py the first time, you will need to run the command

systemctl enable nut-py-server.service

The following systemctl commands will be of use to you:

systemctl daemon-reload to make any changes to the service unit available to systemd.

systemctl enable nut-py-server.service to make the daemon upsdTLS.py operational and
“startable”.

systemctl start nut-py-server.service to start upsdTLS.py. Note that this will not erase
the log file. If you want to clear the log file then you need to do that yourself. See also
chapter 26.3 for a discussion of log rotation.

Page 89 of 134

https://man7.org/linux/man-pages/man5/systemd.service.5.html
https://man7.org/linux/man-pages/man5/systemd.unit.5.html
https://man7.org/linux/man-pages/man1/systemctl.1.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

systemctl status nut-py-server.service to see the current status of daemon upsdTLS.py.

systemctl stop nut-py-server.service to stop upsdTLS.py.

upsdTLS.py should start automatically when the system starts, but it can also be stopped and
started manually with the systemctl commands.

Serious errors will prevent upsdTLS.py from starting and you can read about them in the NUT
log and in the system log. After starting upsdTLS.py, check the NUT log for warnings and other
error messages.

Page 90 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

12 Python3 script UPSmon.py

upsd

34
93

hi
c

su
nt

 d
ra

go
ne

s

beep
beep

beep

UPS−1

UPSmon.py

EVENT OL−>OB

UPSmon−OB.fig

ups.status: [OB]

upsdrvctl
+ driver

(future)

TLS
TLS

Figure 104: UPSmon.py requires TLS.

12.1 What is UPSmon.py ?

UPSmon.py is a Python3 script which replaces upsmon, upssched and upssched-cmd. The configura-
tion files upsmon.conf and upssched.conf are replaced by a single configuration file UPSmon.conf.
The current version of UPSmon.py is “experimental”, intended for experiment and demonstration.

12.1.1 Principal differences between upsmon and UPSmon.py

The principal differences between NUT’s upsmon and UPSmon.py are:

1. UPSmon.py is written in Python3 rather than K&R C. It is hoped that this use of a well
known higher level language will encourage further experimentation. The script is in one
single file rather than the many separate files used in NUT C code. Like the NUT C code,
the script is not object oriented. To assist further development, the script provides 116 error
and warning messages, and the -D and -Y debug options provide a detailed “walk-through” of
the script’s operations.

2. Unlike upsmon, UPSmon.py does not retain the parent process when forking to a non-
privileged user. This improves security, but imples that the non-privileged user such as nut
has sudo rights for programs wall, notify-send and shutdown.

3. UPSmon.py assumes that it will be managing a large number of physical and virtual UPS
and other power supply units. The management may be of the type “master” or “slave” or
simply as an observer with the master/slave shutdown decisions taken elsewhere.

4. The UPS units, real and virtual, are collected into groups. All UPS’s must be in exactly one
group.

5. All UPS’s must be individually identified. Unlike NUT, there are no “wildcard” UPS’s. Each
UPS has a formal “fully qualified” name which is of the form group:ups@host:port , for
example HB:heartbeat@bigbox:3493 , although shortened forms are used where there is no
ambiguity.

Page 91 of 134

https://www.python.org

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

6. The configuration file UPSmon.conf is read by PLY, Python Lex and Yacc. This implies a
slightly slower start-up than NUT but allows freer formats and many possibilities for future
expansion.

7. The upsmon.conf declarations DEADTIME, FINALDELAY, HOSTSYNC, NOCOMMWARNTIME and
RBWARNTIME are not needed in UPSmon.conf since they are timers which can be expressed
directly if needed.

8. All communication between UPSmon.py and upsd is TLS encrypted. The version of OpenSSL
used is too recent to be compatible with nut 2.7.4, so a front end for upsd called upsdTLS.py
is provided to accept TLS encrypted messages from UPSmon.py and then relay that traffic
to the local upsd. The options chosen for TLS call for the latest version with full checking of
the certificates. Use of the earlier and now deprecated SSL is excluded.

9. UPSmon.py supports two loggers: the system log and a text based NUT-specific log.

10. UPSmon.py does not require a supplementary program such as upssched or a script such as
upssched-cmd. The functions of those programs are available in UPSmon.py. NUT’s upsmon
provides three NOTIFYFLAG options: SYSLOG, WALL and EXEC, UPSmon.py replaces these with
the more complete set of actions shown in figure 105.

Action Effect
STARTTIMER name value Start timer with the given name and value in seconds.
CANCELTIMER name Cancel timer with the given name.
EMAIL FROM text

TO text
SUBJECT text
MESSAGE text

Send email.

WALL text Send text to local wall.
NOTIFY text Place text on screens of all logged-in local accounts.
PRINT text Send text to STDOUT.
EPRINT text Send text to STDERR.
NUTLOG text Send text to NUT-specific logger.
SYSLOG text Send text to system logger.
SETFSD name Send fsd to upsd for UPS name.
SHUTDOWN option when Shutdown the system, e.g. with /sbin/shutdown -h

now.
DEBUG level Turn on/off the debugging output to the NUT log.

Figure 105: Actions provided by UPSmon.py.

11. Texts to be included in messages may be given names, and may incorporate other named
messages. The upsmon NOTIFYMSG % substitution is extended to provide the substitutions

Page 92 of 134

https://www.dabeaz.com/ply/

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

shown in table 106.

%(u)s Fully qualified name of the UPS unit
%(c)s Current charge of the UPS unit
%(e)s The event which has produced this message
%(b)s A banner of the form “2020-08-15 upsd@bigbox”
%(h)s The hostname, the name of the local machine

Figure 106: % substitutions available in messages.

12. The low battery status lb provided by upsd is supplemented by three further low battery
statuses lb1, lb2 and lb3 for which the trip levels may be set in UPSmon.conf.

12.2 Compatibility with upsmon.

UPSmon.py can be run at the same time and in the same machine as upsmon. UPSmon.py does
not interfere with direct access to upsd port 3493. Command line utility programs such as upsc
still function notmally.

12.3 Overview of UPSmon.py

The script has a configuration file, and many options. In general few options and in some simple
cases none at all need be changed. To see the options and their default values you can enter
command UPSmon.py --help

839 $ UPSmon.py --help
840 usage: UPSmon.py [-h] [-c <file>] [-l <file>]
841 [-n <executable>] [-w <executable>] [-u <user>]
842 [--upsdtimeout <float>] [--command fsd|reload|stop]
843 [--sudo <executable>] [--shell <shell>]
844 [-D] [-Y] [-K] [-v]

Figure 107: Command UPSmon.py --help
.

Let’s look at these optional arguments in more detail.

-h, --help Show this help message and exit

-D, --debug Increase the debugging level, may be repeated but then you get more than any human
can read. Debugging output is written into a NUT log file. This option does not cover Lex
and Yacc.

Page 93 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

-Y, --debugYacc Increase the debugging level for Lex and Yacc. No human being should ever be
required to read this stuff. Debugging output is written into a NUT log file.

-c <file>, --config <file> The configuration file. UPSmon.py tries to guess where you put
this. Debian sysadmins might see /etc/nut/UPSmon.conf . OpenSUSE admins might see
/etc/ups/... See table 126 for a list of possible directories.

-l <file>, --logfile <file> The log file, with default /var/log/NUT.log Progress and er-
ror messages and the stuff generated by options -D and -Y go into this file. Note that if
upsdTLS.py and UPSmon.py are running in the same machine they will write into the same
log. See chapter 26.3 for an extension to logrotate to cover this file.

--PIDFile <file> The child PID is written into this file, for the greater pleasure of systemd. The
default is /var/run/UPSmon.pid Do not change this unless you know what you are doing.
You should also review the systemd service unit.

-n <executable>, --notify <executable> The notification executable. The default is /usr/
bin/notify-send -t 0 -u critical

-w <executable>, --wall <executable> The wall executable. The default is /usr/bin/wall

-u <user>, --user <user> After launch as root, run as this user. UPSmon.py tries to guess the
user. OpenSUSE admins would probably see upsd, whereas Debian admins would see nut.
See table 126 for a list of possible users.

--upsdtimeout <float> Socket timeout for exchanges with upsd. The default is 1.8 seconds.
Note that UPSmon.py sometimes relies on timeouts to determine that a message exchange
has completed.

--sudo <executable> Authorise user to execute code as another user. The default is /usr/bin/
sudo Use of sudo assumes that file /etc/sudoers allows the caller to sudo as the required
user. For example
nut LAN = (ALL) NOPASSWD:SETENV: /usr/bin/notify-send, /usr/bin/wall
nut LAN = (ALL) NOPASSWD:SETENV: /sbin/shutdown
where LAN is defined by a declaration such as
Host_Alias LAN = 10.218.0/255.255.255.0, 127.0.0.1, localhost
To update /etc/sudoers use visudo , for example VISUAL=/usr/bin/emacs visudo -f
/etc/sudoers

--shell <file> The shell that will process the SHELLCMD actions. The default is /bin/bash -c

-v, --version Show program, Python and SSL/TLS versions, then exit.

Page 94 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

12.4 Running UPSmon.py

It is possible, in a simple installation, to run the daemon UPSmon.py in the same machine as upsd.
However the design is for remote monitoring of one or more upsd servers across an un unreliable
network. UPSmon.py assumes that the server(s) is/are already running13 and ready to receive the
STARTTLS message.

If you use systemd to manage your box, then you will need to create a new service unit, since
systemd is unable to start two forking services from the same unit. See man systemd.service(5).
There can only be one Type=forking per unit.

Copy the file /usr/lib/systemd/system/nut-monitor.service to /etc/systemd/system/
nut-py-monitor.service and modify the new file shown in figure 108. Lines 847, 849 and 850
have been changed.

845 [Unit]
846 Description=Network UPS Tools - Python - power device monitor
847 After=local-fs.target network.target

848 [Service]
849 ExecStart=/usr/sbin/UPSmon.py
850 PIDFile=/var/run/UPSmon.pid
851 Type=forking

852 [Install]
853 WantedBy=multi-user.target

Figure 108: systemd service unit nut-py-monitor.service for UPSmon.py.

You may choose to place the UPSmon.py script in directory /usr/sbin or make /usr/sbin/
UPSmon.py a link to wherever you put the Python script. Note that systemd service units in
/etc take precedence over those in /usr/lib. See man systemd.unit(5). After you have made
the changes, you should run the command systemctl daemon-reload . See man systemctl(1).
Before running upsdTLS.py the first time, you will need to run the command

systemctl enable nut-py-monitor.service

The following systemctl commands will be of use to you:

systemctl daemon-reload to make any changes to the service unit available to systemd.

systemctl enable nut-py-monitor.service to make the daemon UPSmon.py operational and
“startable”.

13The general case is for further work.

Page 95 of 134

https://man7.org/linux/man-pages/man5/systemd.service.5.html
https://man7.org/linux/man-pages/man5/systemd.unit.5.html
https://man7.org/linux/man-pages/man1/systemctl.1.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

systemctl start nut-py-monitor.service to start UPSmon.py. Note that this will not erase
the log file. If you want to clear the log file then you need to do that yourself. See also chapter
26.3 for a discussion of log rotation.

systemctl status nut-py-monitor.service to see the current status of daemon UPSmon.py.

systemctl stop nut-py-monitor.service to stop UPSmon.py.

UPSmon.py should start automatically when the system starts, but it can also be stopped and
started manually with the systemctl commands.

Serious errors will prevent UPSmon.py from starting and you can read about them in the NUT
log and in the system log. After starting UPSmon.py, check the NUT log for warnings and other
error messages. Look for the reports beginning “Sanity checks for this configuration ...”.

Page 96 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

12.5 UPSmon.py’s status changes

EVENTS based on upsd status changes
None->alarm alarm->None The UPS has raised/dropped the alarm signal.
None->boost boost->None The UPS is now boosting/not boosting the output

voltage.
None->bypass bypass->None The UPS is/is not now bypassing its own batteries.

None->cal cal->None The UPS is/is not now in calibration mode.
None->chrg chrg->None The UPS is/is not now recharging its batteries.

None->dischrg dischrg->None The UPS is/is not now discharging its batteries.
None->lb lb->None The driver says the UPS battery charge is now low/no

longer low with respect to level defined by upsrw. See
chapter 2.10.

None->off off->None The driver says the UPS is/is not now OFF.
ol->ob ob->ol The UPS is now on battery/no longer on battery.

None->over over->None The UPS is/is not now in status [over].
None->rb rb->None The UPS needs/no longer needs to have its battery

replaced.
None->test test->None The UPS is/is not now performing a test.
None->trim trim->None The UPS is now trimming/not trimming the output

voltage.
Other EVENTS monitored by UPSmon.py

comm->nocomm nocomm->comm Communication with the UPS in now lost/restored.
None->lb1 lb1->None The UPS battery charge is now low/no longer low

with respect to level L defined by declaration LET
battery.charge.low.1 = ’L’.

None->lb2 lb2->None The UPS battery charge is now low/no longer low
with respect to level L defined by declaration LET
battery.charge.low.2 = ’L’.

None->lb3 lb3->None The UPS battery charge is now low/no longer low
with respect to level L defined by declaration LET
battery.charge.low.3 = ’L’.

None->fsd fsd->None The UPS is/is not now in Forced ShutDown mode.
None->tick tick->None A heartbeat UPS has/has not generated a [tick].
None->tock tock->None A heartbeat UPS has/has not generated a [tock].

to->my-timer Timer “my-timer” has completed.

Figure 109: Symbols used to represent events monitored by UPSmon.py.

Page 97 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

UPSmon.py, like NUT’s upsmon is an example of a client of upsd14. Just as upsmon does, it
runs permanently as a daemon in a local or remote box, polling the status changes of the UPS
unit. It is able to react to changes in the UPS state for example by emitting warning messages, or
shutting down the box. The actions are specified in the configuration file UPSmon.conf which will
be discussed in specific examples.

As the state of a UPS evolves, each status change, called an “EVENT”, is identified with the
symbols shown in figure 109. (These correspond to the NOTIFY events, also known as a “notifytype”
in NUT.)

Figure 104 shows what happens when wall power fails. Daemon upsd has polled the UPS, and
has discovered that the UPS is supplying power from it’s battery. The ups.status changes to [ob].
Daemon UPSmon.py has polled upsd, has discovered the status change and has generated the ol
->ob event.

12.6 Configuration file

There is just one configuration file for UPSmon.py which replaces upsmon.conf, upssched.conf
and upssched-cmd. The formal grammar for this configuration file is in chapter 26. The file contains:

1. Comments and blank lines. A comment begins with a # character found outside a quoted
text, and continues up the the end-of-line.

2. Initial declarations. See section 12.6.1

3. One or more group declarations. See section 12.6.2

The following technical terms are used in the descriptions of the configuration file:

quotation mark One of the following five styles15 of text marker. See chapter 25 for help in
typing the characters which may not be on your keyboard.

1. double quotation marks: "bla..bla..." which are probably on your keyboard,
2. single quotation marks: ’bla..bla...’ which are also on your keyboard,
3. french guillemets: «bla..bla...»,
4. mathematical left ceiling/right floor dbla..bla...c and
5. corner brackets used for quotations in asian lanuages: bla...bla... .

quotetext A text in quotation marks. E.g. «Hello World»

quotetexts A sequence of one or more quotetext declarations. E.g. «Today is » «Friday.»
This results in a single text “Today is Friday.”

14See chapter 1.3.2 for details of upsd.
15I couldn’t decide which ones to use so I kept them all. Ed.

Page 98 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

number An integer or floating point number such as 15 or 2.8.

name Names for groups, timers, UPS’s, messages. The name begins with [a-zA-Z_] and
continues with as many of [a-zA-Z0-9._%+-:@] as you like. E.g. UPS31.a@BIG_BOX.

ups-name All UPS’s must be individually identified. Unlike NUT, there are no “wildcard”
UPS’s. Each UPS has a formal “fully qualified” name which is of the form group:ups@host:port
, for example HB:heartbeat@bigbox:3493 , although shortened forms are used where there
is no ambiguity.

12.6.1 Initial declarations

The initial declarations are

SMTPSERVER quotetext PORT number USER quotetext PASSWORD quotetext If you want
to send e-mails, you must provide details of your e-mail service provider. For example
SMTPSERVER ’mail.gandi.net’ PORT 465 USER ’mbox@example.com’ PASSWORD «1234» .
Connections with the SMTP server are always TLS encrypted.

LET name = quotetexts Provide a name for one or more quotetext. This saves a lot a typ-
ing. For example LET banner = [%(b)s] UPS=%(u)s charge=%(c)s event=%(e)s . The
named message LET hostname = hostname is built in.

MAXNOTIFY number This limits the number of on-screen notifications, and was needed during
early debugging when things often exploded. It will probably be removed in the future. The
default is 20.

POLLFREQ number This is the polling period for all UPS units managed by this UPSmon.py in-
stance. The default, which is the recommended value is 5 seconds. See also man upsmon.conf

POLLFREQALERT number This is the polling period for all UPS units managed by this UPSmon.py
instance when any one of them is in status [OB]. The default is 5 seconds.

12.6.2 Group declarations

The group declarations are a sequence of one or more GROUP which are structured as follows:

GROUP name HOST name PORT number CERTFILE name/quotetext One or more UPS units
share the same HOST, PORT and TLS CERTFILE. E.g. GROUP LOCAL HOST localhost PORT
401 CERTFILE monitor.cert.pem . The UPS units attached to this host are grouped to-
gether and each is specified by a MONITOR declaration in this group.

Page 99 of 134

http://networkupstools.org/docs/man/upsmon.conf.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

LET name = quotetexts Further named texts. Note that there is only one name space shared
by all LET declarations. It’s up to you to avoid clashes. The name battery.charge.low.i
for i = 1..3 is a special case in which the quotetexts must be quoted integer. The effect is
to assign the integer value as the battery charge level at which the events None->LBi and
LBi->None will occur. For example LET battery.charge.low.2 = ’33’ The level is set for
the most recently defined UPS, i.e. the previous MONITOR declaration. The default levels are
lb1=50, lb2=25 and lb3=12.

MONITOR ups-name POWERVAL number UPSDUSER name PASSWORD quotetext TYPE name
Each UPS unit to be managed must be declared. The ups-name must match the name in the
ups.conf declaration. See for example line 32. The POWERVAL is the number of power supplies
that this UPS feeds. The UPSDUSER is the “user” declared in upsd.users. See line 40. The
PASSWORD is the value declared in upsd.users. See line 41. The TYPE value must be master
or slave. In NUT’s upsmon.conf master means this system will shutdown last, allowing any
slaves time to shutdown first. The declaration is included here to facilitate interworking with
upsmon but in UPSmon.py, it is merely a declaration of intention, since the logic is decided
by the declared actions.

E.g. MONITOR ups1 POWERVAL 1 UPSDUSER leboss PASSWORD ’sekret’ TYPE master

MINSUPPLIES number

Declare for each GROUP the number of power supplies which must be operational, and that if
fewer are available, NUT must shut down the server. The default value is 1 if this declaration
is omitted. See chapter 3.2

More work needed here to create a MINSUPPLIES event.

12.6.3 Action declarations

WHEN ups-name REPORTS old-status -> new-status : actions
Declare what, if anything, is to be done when an event, i.e. a status change occurs. The
ups-name may be abbreviated when there is no ambiguity, but the fully qualified UPS name
is always used internally.

Both old-status and new-status are one of ALARM, BOOST, BYPASS, CAL, CHRG, COMM, DISCHRG,
FSD, LB, NOCOMM, OFF, OB, OL, OVER, RB, TEST, TICK, TOCK, TRIM and None.

The sequence old-status -> new-status defines a status change, i.e. an event. The valid events
are listed in chapter 12.5.

When the event specified for this UPS is detected, the actions will be executed. For example
WHEN ups1 REPORTS None->LB : actions Let’s hope those actions do something useful.

WHEN ups-name TIMEOUT timer-name : actions
Declare what, if anything, is to be done when a timeout occurs. The timer-name will have

Page 100 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

been declared by a previous STARTTIMER action. TIMEOUT may be written as TO. For example
WHEN ups1 TO final-delay : SHUTDOWNCMD «/sbin/shutdown -h now»

actions A sequence of one or more of the following:

condition CANCELTIMER timer-name The timer-name must have been declared by a
previous STARTTIMER action. It is not an error to cancel a timer after it has run out.

condition DEBUG 0/1/2 Initiate or terminate debugging output. Note that since a set
of actions is executed in random order, you should not rely on a DEBUG in the same set
of actions as the action you wish to trace.

condition EMAIL FROM quotetext TO quotetext SUBJECT quotetext MESSAGE quotetexts
Send an email via the mail server declared in the introduction by SMTPSERVER. E.g.

EMAIL FROM «UPSmon.py@example.com»
TO «sysadmin@bigbox.com»
SUBJECT «Msg-1-min»
MESSAGE «Msg-1-min»

Where Msg-1-min has been previously declared in a LET. Note that the message must
be in 7-bit ascii. Any character more exotic will be converted to a “˜”.

condition STARTTIMER timer-name number Declare and start a timer with the given
name, and the given value in seconds. It is up to you to avoid name conflicts between
timers and with other names. E.g. STARTTIMER final-delay 5

condition EPRINT quotetexts Send the quotetexts to STDERR. When UPSmon is dae-
monized, EPRINT is ignored. Use NUTLOG instead.

condition NOTIFY quotetexts Place the quotetexts in an on-screen notification for all
logged-in users. If UPSmon.py is run as a non-privileged user, which is usually the case,
than that user, for example nut, must be given access to program notify-send in file
/etc/sudoers . See chapter 23.2 for details of how to do this. See also man sudo(8) for
lots and lots of brain-damaging detail.

condition NUTLOG quotetexts Write the quotetexts into the NUT log file specified by
option --logfile. The quotetexts will be prepended with a timestamp and a reminder
of the source program and line number. For example action NUTLOG «Hello World»
might add the following line to the log file:

18:32:25.164 UPSmon.py[3498] Hello World

See chapter 26.3 for an extension to logrotate to cover this file.

condition PRINT quotetexts Send the quotetexts to STDOUT. When UPSmon is dae-
monized, PRINT is ignored. Use NUTLOG instead.

Page 101 of 134

https://man7.org/linux/man-pages/man8/sudo.8.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

condition SETFSD ups-name This action sets the “forced shutdown” flag on each slave
UPS when the master plans to power it off. This is done so that slave systems will know
about the power loss and shut down before the UPS power disappears. UPSmon.py, like
upsmon, in master mode is the primary user of this function.
Setting this flag makes [FSD] appear for this UPS. This [FSD] should be treated just
like a [OB LB]. To use this action, you need upsmon master in upsd.users, or “FSD”
action granted in upsd.users. See man upsd.users.
Note that [FSD] in upsd is currently a latch - once set, there is no way to clear it short
of restarting upsd. This may cause issues when upsd is running on a system that is not
shut down due to the UPS event.
See the Network UPS Tools Developer Guide, Network protocol information

condition SHELLCMD quotetexts Call on the shell defined by the option --shell to
execute the command given by the quotetexts. For example

SHELLCMD «echo "Today is $(date)" >> /var/log/NUT.log»

might write “Today is Tue Oct 13 10:09:02 CEST 2020” into the log file.

condition SHUTDOWNCMD quotetexts Call for a system shutdown using the command
specified by the quotetexts. For example, SHUTDOWNCMD «/sbin/shutdown -h 0». If
UPSmon.py is run as a non-privileged user, which is usually the case, than that user,
for example nut, must be given access to program shutdown in file /etc/sudoers . See
chapter 23.2 for details of how to do this. See also man sudo(8) for lots of detail.

condition SYSLOG quotetexts Write the quotetexts into the system log. The system log
provides 8 levels of urgency. They are shown, in order of decreasing importance, in table
110. If your quotetexts are prefixed with one of these urgency indicators, your message

[emerg] System is unusable
[alert] Action must be taken immediately
[crit] Critical conditions
[err] Error conditions

[warning] Warning conditions
[notice] Normal, but significant, condition
[info] Informational message (default)

[debug] Debug-level message

Figure 110: System log urgency levels.

will be logged at the required level e.g. SYSLOG «[debug]» « UPS %(u)s burning» .
The default level is [info].

Page 102 of 134

http://networkupstools.org/docs/man/upsd.users.html
https://networkupstools.org/docs/developer-guide.chunked/ar01s09.html
https://man7.org/linux/man-pages/man8/sudo.8.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

condition WALL quotetexts Place the quotetexts in a console message for all logged-in
users. If UPSmon.py is run as a non-privileged user, which is usually the case, than that
user, for example nut, must be given access to program wall in file /etc/sudoers . See
chapter 23.2 for details of how to do this. See also man sudo(8) for details. Note that
wall does not support UTF-8.

condition This is either empty or has the form IF old-status -> new-status . The con-
dition has the value True if in the sequence of events from the given UPS, that UPS now has
status new-status. For example the expression IF OB -> OL is True if the UPS currently has
status [OL] and False if the UPS has status [OB]. Note that old-status -> new-status must
be a valid event as listed in chapter 12.5.

Page 103 of 134

https://man7.org/linux/man-pages/man8/sudo.8.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

13 UPSmon.py configuration
A configuration file UPSmon.conf must be created to tell UPSmon.py how to handle the status
changes coming from upsd. As with upsmon.conf, this can be done manually, but for simple
cases, probably the majority, in which upsd and UPSmon.py run in the same machine, UPSmon.py
provides a Python3 tool mkUPSmonconf.py, to create a complete fully functioning configuration
file. You can either use the output of this tool or take it as the starting point for a customised
configuration.

13.1 Configuration tool mkUPSmonconf.py

mkUPSmonconf.py is a Python3 script which will build a simple configuration file UPSmon.conf for
UPSmon.py. The output is to STDOUT. The status is “experimental”. The script is intended for
demonstration and experiment. The license is GPL v3 or later at your choice, with support in the
“ups-user” mailing list. There is documentation

The script has options which you select to introduce site-specific data. You have to specify all
the options. To see the options to be specified you can enter command mkUPSmonconf.py --help

854 $ mkUPSmonconf.py --help
855 usage: mkUPSmonconf.py [-h] [--plan standard|timed]
856 [--ups <name>] [--upsdname <name>] [--upsdport <integer>]
857 [--certfile <filename>] [--upsduser <name>]
858 [--upsdpass <string>] [--smtpserver <domain>]
859 [--smtpport <integer>] [--smtpuser <name>]
860 [--smtppass <string>] [--emailfrom <string>]
861 [--emailto <string>] [-v]

Figure 111: Command mkUPSmonconf.py --help
.

Let’s look at these arguments in more detail.

-h, --help Show this help message and exit.

--plan standard|timed Specify standard or timed shutdown plan. Valid options are standard
or timed.

--ups <name> The name of your UPS, for example UPS_123. If you have more than one
UPS unit then create a configuration file for the first, and then extend it using copy/paste of
the actions for the second.

--upsdname <name> The name of the system on which upsd runs. E.g. localhost if
UPSmon.py and upsd run on the same machine.

--upsdport <integer> The TLS port used by upsd/upsdTLS.py. E.g. 401

Page 104 of 134

https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser
http://rogerprice.org/NUT/ConfigExamples.A5.pdf

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

--certfile <filename> The file which holds the public TLS certificate for upsd/upsdTLS.py.
E.g. /etc/nut/bigbox-monitor.cert.pem

--upsduser <name> User for this UPS, as given in upsd.users. E.g. upsmaster on line
40

--upsdpass <string> The password for this upsd user, as given in upsd.users.
E.g. password = sekret on line 41

--smtpserver <domain> Your e-mail server.
E.g. mailbox.mailserver.com

--smtpport <integer> Your e-mail server’s TLS port. E.g. 465 . Communication with the
mail server is always TLS encrypted.

--smtpuser <name> Your sign-in account name on the e-mail server.
E.g. mailbox@mydomain.com

--smtppass <string> The password for your account on the e-mail server. E.g. qwertyuiop

--emailfrom <string> The email address from which messages will be sent.
E.g. "<bigserver@bigU.edu>" Note the email convention of placing the address in angle
brackets, and the double quotes needed to prevent Bash from interpreting the angle brackets.

--emailto <string> The email address of the person to whom messages will be sent.
E.g. "Big Joe <jschmoe@bigU.edu>" Note the email convention of placing the address in
angle brackets, and the double quotes needed to prevent Bash from interpreting the angle
brackets.

-v, --version Show program and Python versions, then exit.

13.2 Using configuration tool mkUPSmonconf.py

Call the program from the command line. If you forget an option you will get a message such as
“You have forgotten to specify option --smtppass”. A typical call is

862 mkUPSmonconf.py\
863 --plan timed --ups Eaton --upsdname localhost --upsdport 401\
864 --certfile /etc/ups/mkNUTcert/titan-monitor.cert.pem\
865 --upsduser upsmaster --upsdpass sekret --smtpserver mail.gandi.net\
866 --smtpport 465 --smtpuser mailbox@rogerprice.org\
867 --smtppass qwertyuiop --emailfrom "<UPSmon@rogerprice.org>"\
868 --emailto "Roger Price <roger@rogerprice.org>" > /etc/nut/UPSmon.conf

Figure 112: Calling mkUPSmonconf.py

Page 105 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

If you will be typing this several times, you might want to put the command in a shell script.
Note on line 868 that the output is directed to file /etc/nut/UPSmon.conf. Note also on lines 867
and 868 that the values for options --emailfrom and --emailto have to be quoted to prevent Bash
from interpreting what it would consider to be < and > redirections.

13.3 UPSmon.conf configuration examples

Let’s look at a shutdown plan generated by mkUPSmonconf.py.

13.3.1 Timed shutdown plan, part 1 of 4, the introduction

869 # UPSmon.conf timed shutdown plan generated by mkUPSmonconf.py version 1.0
on 2020-10-14T14:36:42.344212

870 # Python version 3.4.6 (default, Mar 22 2017, 12:26:13) [GCC] running on titan
871 # Calling command:

./mkUPSmonconf.py --plan timed --ups Eaton --upsdname localhost
--upsdport 401 --certfile /etc/ups/mkNUTcert/titan-monitor.cert.pem
--upsduser upsmaster --upsdpass sekret --smtpserver mail.gandi.net
--smtpport 465 --smtpuser mailbox@rogerprice.org --smtppass qwertyuiop
--emailfrom <UPSmon@rogerprice.org> --emailto Price <roger@rogerprice.org>

872 # Support: nut-upsuser mailing list.
873 # Documentation: http://rogerprice.org/NUT/ConfigExamples.A5.pdf

874 # All groups share the same POLLFREQ and POLLFREQALERT and e-mail relay
875 POLLFREQ 5.0 POLLFREQALERT 5.0
876 SMTPSERVER «mail.gandi.net» PORT 465
877 USER «mailbox@rogerprice.org» PASSWORD «qwertyuiop»

878 # Named messages Let hostname = hostname is built in.
879 LET banner = [%(b)s] UPS=%(u)s charge=%(c)s event=%(e)s
880 LET Msg-COMM = banner "
881 " I have re-established communication with this UPS."
882 LET Msg-NOCOMM = banner " "I have lost communication with this UPS."
883 LET Msg-OL = banner " Power restored, shutdown cancelled."
884 LET Msg-RB = banner " Battery needs replacement."
885 LET Msg-shutdown = banner " On battery, shutting down now ..."
886 LET Certfile = «/etc/ups/mkNUTcert/titan-monitor.cert.pem»

Figure 113: Timed shutdown plan, part 1 of 4, the introduction.

Notes on figure 113

Page 106 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

1. The command used to generate the file is repeated on line 871 but the quoting needed by
Bash does not appear since the Python3 program does not see the quotes. If you repeat the
command, you will have to re-introduce the quoting.

2. The POLLFREQ and POLLFREQALERT on line 875 are the same as upsmon. See chapter 4.1.

3. On line 876 the PORT number corresponds to a TLS port. Communication with the email
service provider is always TLS encrypted.

4. On lines 876-877 the «...» is added automatically by the mkUPSmonconf.py script. You do
not have to do this.

5. Line 886 corresponds to an OpenSUSE installation. A Debian sysadmin would probably prefer
address /etc/nut/... See table 126 for a list of possible directories.

13.3.2 Timed shutdown plan, part 2 of 4, the shutdown

887 # The local UPS units
888 GROUP LOCAL HOST localhost PORT 401 CERTFILE Certfile
889 MONITOR Eaton POWERVAL 1 UPSDUSER upsmaster PASSWORD «sekret» TYPE master

890 # Timed plan specific actions
891 LET Msg-2-min = banner " On battery, shutdown in 2 mins, save your work ..."
892 LET Msg-1-min = banner " On battery, shutdown in 1 min, save your work ..."
893 WHEN Eaton REPORTS OL->OB : NOTIFY Msg-2-min NUTLOG Msg-2-min
894 STARTTIMER two-min 120 STARTTIMER one-min 60
895 WHEN Eaton TIMEOUT one-min : NOTIFY Msg-1-min NUTLOG Msg-1-min WALL Msg-1-min
896 EMAIL FROM « <UPSmon@rogerprice.org> »
897 TO « Roger Price <roger@rogerprice.org> »
898 SUBJECT «Msg-1-min»
899 MESSAGE «Msg-1-min»
900 WHEN Eaton TIMEOUT two-min : NOTIFY Msg-shutdown NUTLOG Msg-shutdown
901 WALL Msg-shutdown STARTTIMER final-delay 5
902 WHEN Eaton REPORTS OB->OL : NOTIFY Msg-OL NUTLOG Msg-OL WALL Msg-OL
903 CANCELTIMER two-min CANCELTIMER one-min

CANCELTIMER final-delay
904 # End of timed plan specific actions

905 # Shutdown on low battery
906 WHEN Eaton REPORTS None->LB : NOTIFY Msg-shutdown NUTLOG Msg-shutdown
907 WALL MSG-shutdown STARTTIMER final-delay 5
908 WHEN Eaton TIMEOUT final-delay : SHUTDOWNCMD "/sbin/shutdown -h 0"

Figure 114: Timed shutdown plan, part 2 of 4, the shutdown.

Notes on figure 114

Page 107 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

1. Line 888 introduces the notion of “GROUP”. In general a group is a set of UPS units which are
attached to the same upsd server. In NUT’s upsmon.conf the MONITOR system declaration
identifies the upsd host system and the port. See man upsmon.conf. UPSmon.conf transfers
the host system and port identification to a named group, and adds the CERTFILE declaration.

2. Line 889 resembles the upsmon.conf declaration, but with the inclusion of additional keywords
for clarification. “Eaton” declares the UPS name, the HOST and PORT have already been
declared. The UPS name should correspond to the name specified in ups.conf. See line 32.

3. Since this is the timed plan rather than the standard plan, we need additional messages which
are declared on lines 891-892.

4. When event ol->ob arrives, lines 893-894 call for the “on battery” message to be put on-
screen and in the NUT log file. The actions also declare the timers two-min and one-min and
start them.

5. When timer one-min runs out, lines 895-899 place warnings on screen, in the NUT log file
and on all logged in terminals. The actions also send an email to the administrator.

6. When timer two-min runs out, lines 900-901 place warnings on-screen, in terminals and in
the NUT log file. A short final-delay timer is declared and started. This timer corresponds
to FINALDELAY in upsmon.conf.

7. What happens if power returns before the shutdown? If event ob->ol arrives, lines 902-903
notify the user, place a message in the NUT log file and turn off all the timers.

8. Whether the plan is “standard” or “timed” the local system must be shutdown on event None
->lb. This happens on lines 906-907. Users receive a final on-screen warning, a message goes
into the NUT log file and the action declares and starts a short final-delay timer.

9. When the final-delay timer runs out, line 908 calls for a system shutdown.

13.3.3 Timed shutdown plan, part 3 of 4, warnings

Notes on figure 115

1. Some UPS units are capable of reporting that the battery needs replacement. On line 910,
when event None->rb arrives messages are placed on-screen and in the NUT log file. Line
912 sends an email to the sysadmin. The upsmon RBWARNTIME behaviour is reproduced by
defining and starting an rbwarntime timer.

2. Line 916 specifies that when the rbwarntime timer runs out, an on-screen message appears16

and also goes into the NUT log file. The action also restarts the timer. It will continue to
loop until the status [rb] disappears with event rb->None on line 917

16Do the users have to be told about this?

Page 108 of 134

http://networkupstools.org/docs/man/upsmon.conf.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

909 # Warning for battery replacement
910 WHEN Eaton REPORTS None->RB : STARTTIMER rbwarntime 43200
911 NUTLOG Msg-RB NOTIFY Msg-RB
912 EMAIL FROM « <UPSmon@rogerprice.org> »
913 TO « Roger Price <roger@rogerprice.org> »
914 SUBJECT «Msg-RB»
915 MESSAGE «Msg-RB»
916 WHEN Eaton TIMEOUT rbwarntime : STARTTIMER rbwarntime 43200

NUTLOG Msg-RB NOTIFY Msg-RB
917 WHEN Eaton REPORTS RB->None : CANCELTIMER rbwarntime

918 # Warning that UPSmon has lost UPS Eaton. Shut down on NOCOMM when OB.
919 WHEN Eaton REPORTS COMM->NOCOMM : STARTTIMER nocommwarntime 300
920 IF OL->OB NOTIFY Msg-shutdown
921 IF OL->OB NUTLOG Msg-shutdown
922 IF OL->OB WALL Msg-shutdown
923 IF OL->OB STARTTIMER final-delay 5
924 WHEN Eaton TIMEOUT nocommwarntime : NUTLOG Msg-NOCOMM NOTIFY Msg-NOCOMM
925 WHEN Eaton REPORTS NOCOMM->COMM : CANCELTIMER nocommwarntime

NUTLOG Msg-COMM NOTIFY Msg-COMM

Figure 115: Timed shutdown plan, part 3 of 4, warnings,

3. The statuses [comm] and [nocomm] are not due to upsd. They are generated internally by
UPSmon.py when it has problems talking to upsd. The standard and timed configurations
discussed here assume that upsd and UPSmon.py are running in the same machine, but in
general this is not the case, and network problems become more apparent when upsd and
UPSmon.py are separated.

The event comm->nocomm starts a timer which will later place a warning message in front
of users and in the NUT log file. This follows the upsmon logic. Additionally, and again
following upsmon logic, a shutdown procedure will begin if the system is currently running on
battery. See lines 920-923. Note that the condition must be attached to each of the actions.

Note the subtle difference between upsmon and UPSmon.py. See figure 14. On line 68
daemon upsmon will trigger a [nocomm] NOTIFY event after NOCOMMWARNTIME seconds if it
can’t reach any of the UPS entries in configuration file upsmon.conf. UPSmon.py does this
for each UPS individually. The difference is slight if there is only one UPS :-)

4. On line 925 the timer nocommwarntime is cancelled and suitable messages send to the users17

and the NUT log file.

17Is it really necessary to notify the users of this technical matter?

Page 109 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

13.3.4 Timed shutdown plan, part 4 of 4, heartbeat

926 # heartbeat.conf
927 # 20 minute heartbeat
928 ups.status: TICK
929 TIMER 600
930 ups.status: TOCK
931 TIMER 600

Figure 116: Configuration file
heartbeat.conf

The NUT software runs in the background for weeks,
months without difficulty and with no messages going the
system administrator. “All is well!”, but is it?

NUT is a collection of pieces and interconnecting proto-
cols. What if one of these pieces has stopped or the protocol
blocked? We need something that will check regularly that
all is indeed well. The proposed heartbeat does this job.

Heartbeat definitions are not provided by NUT, you
have to create them for yourself. Create the new file
heartbeat.conf as shown in figure 116 in the same di-

rectory as ups.conf. For security, only users upsd/nut and root should have write access to this
file.

The heartbeat will cycle continuously through this script.
Lines 928 and 930 flip the ups.status value between [tick] and [tock].
Lines 929 and 931 place a 10 minute time interval between each status change. 2 × 600sec =

20min, the heartbeat period.
932 [heartbeat]
933 driver = dummy-ups
934 port = heartbeat.conf
935 desc = "Watch over NUT"

Figure 117: Addition to the file
ups.conf for heartbeat.conf

You must also declare to upsd that it is to generate
the heartbeat. Add the declaration shown in figure 117
to file ups.conf. In line 933 we see the driver used to
generate the heartbeat. This driver is also used for
debugging. You can amuse yourself by adding further
status changes and observing their effect.

Notes on figure 118:

1. On line 939 a group “HB” is declared to contain the heartbeat UPS. The HOST, PORT and
CERTFILE are the same as for the physical UPS.

2. Lines 940-941 declare messages specific to the heartbeat.

3. Other than the POWERVAL of 0, the MONITOR declaration on line 942 is the same as for the
physical UPS.

4. Line 943 says that the heartbeat does not require electrical energy. This zero declaration also
circumvents certain sanity checks that real UPS’s must pass.

5. Lines 944 and 947 manage the timers which watch over the [tick] and [tock] comming from
upsd. The timer is longer than the expected interval between status arrivals. If this timer
expires we assume that the heartbeat has failed.

6. Logging the None->tick on linbe 946 produces a log message every 20 minutes.

7. Line 949 is a form of “goto” so all the heartbeart error logging is in one place.

Page 110 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

8. Lines 950-954 send heartbeat failure messages to the system administrator and to the NUT
log file.

936 # Heartbeat operation, requires file heartbeat.conf in the upsd server,
937 # and definition of UPS [heartbeat] in ups.conf. Note that the timer
938 # specified here must be longer than the timer in heartbeat.conf.
939 GROUP HB HOST localhost PORT 401 CERTFILE Certfile
940 LET Msg-HB-start = banner " Event %(e)s Start HB-timer"
941 LET MSG-HB-fails = banner " %(u)s FAILURE."

"I have not received expected TIC/TOC status change."
942 MONITOR heartbeat POWERVAL 0 UPSDUSER upsmaster PASSWORD «sekret» TYPE master
943 MINSUPPLIES 0
944 WHEN heartbeat REPORTS None->TICK : CANCELTIMER tock-timer
945 STARTTIMER tick-timer 660
946 NUTLOG Msg-HB-start
947 WHEN heartbeat REPORTS None->TOCK : CANCELTIMER tick-timer

STARTTIMER tock-timer 660

948 # What to do if the heartbeat fails
949 WHEN heartbeat TIMEOUT tick-timer : STARTTIMER tock-timer 0.5
950 WHEN heartbeat TIMEOUT tock-timer : NUTLOG MSG-HB-fails NOTIFY MSG-HB-fails
951 EMAIL FROM « <UPSmon@rogerprice.org> »
952 TO « Price <roger@rogerprice.org> »
953 SUBJECT «Msg-HB-fails»
954 MESSAGE «Msg-HB-fails»
955 # End of file

Figure 118: Timed shutdown plan, part 4 of 4, heartbeat.

13.3.5 Standard shutdown plan

The only differences between the standard plan and the timed shutdown plan are that the standard
plan removes lines 890-904 and replaces then with lines 957-958. These actions send a warning
message to the users and to the NUT log file.

956 # Standard plan specific actions
957 LET Msg-OB = banner " Power failure, possible shutdown, save your work ..."
958 WHEN [UPS] REPORTS OL->OB : NOTIFY Msg-OB NUTLOG Msg-OB WALL Msg-OB
959 # End of standard plan specific actions

Figure 119: Standard shutdown plan differences

Page 111 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

14 UPSmon.py installation checklist
Here is the editor’s checklist of the things to do to install and run UPSmon.py.

1. Check that you have Python 3.6 running. No? You will need to install it.

2. Check that you have OpenSSL 1.1.1d or better.

3. Download UPSmon.py, upsdTLS.py, mkNUTcert.py and mkUPSmonconf.py from rogerprice.
org/NUT to wherever you put Python3 scripts.

4. Review the shebangs at the top of the Python3 scripts. Modify if needed to meet the local
situation. The shebangs that come with the scripts are those used by the editor. Yours may
well be different.

5. Create symlink from /sbin/UPSmon.py to wherever you put the Python3 scripts. Create
similar links for upsdTLS.py, mkNUTcert.py and mkUPSmonconf.py.

6. Install systemd service units /etc/systemd/system/nut-py-server.service and
/etc/systemd/system/nut-py-server.service

7. Run systemctl daemon-reload and then enable the nut-py-server and nut-py-monitor
service units.

8. Add programs shutdown, wall and notify-send to /etc/sudoers for users nut/upsd.

9. Run mkNUTcert.py to make TLS certificates

10. Run mkUPSmonconf.py to create the UPSmon.py configuration file.

11. Install /etc/logrotate.d/NUT .

12. Check that heartbeat.conf is installed in the upsd machine and that ups.conf contains a
[heartbeat] declaration.

13. Disable and stop the nut-monitor service unit.

14. Enable and start the nut-py-server and then the nut-py-monitor service units.

15. Check output of command ps -elf | grep -E "nut|upsd" which on an openSUSE machine
gives the output shown in figure 120.

960 1 S upsd 2873 1 9447 - /usr/lib/ups/driver/usbhid-ups -a Eaton
961 1 S upsd 2878 1 5019 - /usr/lib/ups/driver/dummy-ups -a heartbeat
962 1 S upsd 2882 1 5017 - /usr/sbin/upsd
963 5 S upsd 2887 1 17189 core_s /usr/local/bin/python3.8 -u /usr/sbin/upsdTLS.py
964 5 S upsd 2892 1 58813 - /usr/local/bin/python3.8 -u /usr/sbin/UPSmon.py

Figure 120: upsd and UPSmon.py runtime processes

Questions? Try the “ups-user” mailing list.

Page 112 of 134

http://rogerprice.org/NUT
http://rogerprice.org/NUT
https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Part 3

Appendices

20 Starting NUT

965 # nut.conf
966 # No spaces around the "="
967 MODE=standalone

Figure 121: Configuration file nut.conf.

This chapter discusses the techniques used to start
the NUT software. Each distribution has it’s own
view of how this is to be done, so you should review
the systemd service units involved and the scripts
that they call.

The NUT software contains several daemons
which need to be started to offer the promised NUT service. These daemons are

Daemon systemd service unit Notes
driver nut-driver.service One or more driver daemons as specified in file

ups.conf. This service unit is started by sys-
temd whenever nut-server.service starts.

upsd nut-server.service The central daemon which maintains the ab-
stracted view of the UPS units.

upsmon nut-monitor.service The monitor daemon specifies what is to be done
for NOTIFY events.

upssched none For activity such as the heartbeat, the timed
action daemon is called by the upssched-cmd
script specified by the NOTIFYCMD command in
upsmon.conf.

Figure 122: Daemons used by NUT.

Configuration file nut.conf specifies which of these daemons the operating system should start,
but distributions often ignore the file. The distribution choice is normally correct for a standalone
workstation protected by a single UPS, but for more complex situations, you need to review what
your distribution does. See chapter 8.1 and man nut.conf.

Page 113 of 134

http://networkupstools.org/docs/man/nut.conf.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Strictly speaking, this file is not for NUT, but for the process which starts NUT. The initial-
ization process is expected to source this file to know which parts of nut are to be started. Some
distributions, e.g. openSUSE, ignore nut.conf and start the three NUT layers driver, upsd and
upsmon. They assume that MODE=standalone. Note that there is no space around the “=” since it
is assumed that shell scripts such as Debian’s /sbin/upsd source this file.

The possible MODE values are:

• MODE=none Indicates that NUT should not get started automatically, possibly because it is
not configured or that an Integrated Power Management or some external system, is used to
start up the NUT components. If you enable nut-server.service Debian 18 will display the
message:

upsd disabled, please adjust the configuration to your needs. Then set MODE to
a suitable value in /etc/nut/nut.conf to enable it.

Enabling nut-monitor.service will produce a similar message19.

• MODE=standalone This is the most common situation in which line 967 in figure 121 declares
that NUT should be started in the “standalone” mode suitable for a local only configuration,
with 1 UPS protecting the local system. This implies starting the 3 NUT layers, driver, upsd
and upsmon and reading their configuration files.

• MODE=netserver Like the standalone configuration, but may possibly need one or more
specific LISTEN directive(s) in upsd.conf. Since this MODE is open to the network, a special
care should be applied to security concerns. Debian accepts starting upsmon in this mode.

• MODE=netclient When only upsmon is required, possibly because there are other hosts
that are more closely attached to the UPS, the MODE should be set to netclient. If you enable
Debian’s systemd service unit nut-server.service with this mode, then you will get the
same message as for MODE=none.

However these alternate modes are merely wishful thinking if your distribution ignores file
nut.conf. There are other options, see man nut.conf.

18See script /sbin/upsd.
19See script /sbin/upsmon.

Page 114 of 134

http://networkupstools.org/docs/man/nut.conf.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

21 Stopping NUT

21.1 Delayed UPS shutdown with NUT script

We saw in chapter 2, line 45, that the upsmon.conf SHUTDOWNCMD directive specifies the command
to be used to shut down the system, but what about the UPS which must keep supplying power
while the system shuts down? Does the UPS also shut down?, and if so, how?

Chapter 2.5 explains that somewhere in your distribution, as part of the system shutdown
process, there needs to be an action to send a message to the UPS to tell it that some time later,
it too will shut down. The notion of “shutdown” for a UPS unit is subtle. What shuts down is the
supply of power to the power outlets. The UPS unit cuts off the equipment for which it provides
battery backup. When this happens you may hear the audible “clunk” of the relays. The unit may
also act as a power strip with surge protection, but those outlets are not covered by the protection
afforded by the battery.

Note that the UPS does not shutdown at the same time as the system it protects. The UPS
shutdown is delayed. By default the delay is 20 seconds. See line 77 if you want to change this.

The delayed UPS shutdown command may be from a shell script or a systemd service unit, but
in all cases the key element is the command upsdrvctl shutdown.

The NUT project provides a sample script, which is to be placed in a directory of things to be
done at the end of the system shutdown. This depends on the distribution.

The openSUSE distribution places the delayed shutdown script provided by NUT and shown
in figure 123 in file /usr/lib/systemd/system-shutdown/nutshutdown . The Debian distribution
places the script in file /lib/systemd/system-shutdown/nutshutdown .

968 #!/bin/sh
969 /usr/sbin/upsmon -K >/dev/null 2>&1 && /usr/sbin/upsdrvctl shutdown

Figure 123: UPS shutdown script nutshutdown.

On line 969 the call to upsmon with option -K checks the POWERDOWNFLAG defined by line 46.
The upsmon daemon creates this file when running in master mode whenever the UPS needs to be
powered off. See man upsmon.conf for details. If the check succeeds, we are free to call upsdrvctl to
shut down the UPS’s. Note that if you have multiple UPS’s, the command upsdrvctl shutdown
will shut them all down. If you have say three UPS’s, UPS-1, UPS-2 and UPS-3, and you want to
shut down just UPS-2 and UPS-3, then you should specify those UPS’s as shown in line 971.

970 #!/bin/sh
971 /usr/sbin/upsmon -K >/dev/null 2>&1\

&& /usr/sbin/upsdrvctl shutdown UPS-2\
&& /usr/sbin/upsdrvctl shutdown UPS-3 # openSUSE

Figure 124: UPS shutdown script nutshutdown for 2 of 3 UPS’s.

See also man upsdrvctl

Page 115 of 134

http://networkupstools.org/docs/man/upsmon.conf.html
http://networkupstools.org/docs/man/upsdrvctl.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

21.2 Delayed UPS shutdown with a systemd service unit

The script provided by the NUT project in chapter 21.1 is executed very late in the shutdown
sequence, when it is no longer possible to log the action. If you think that power management is
a critical operation and that all critical operations should be logged, then you will need to call for
the delayed UPS shutdown earlier in the system shutdown sequence when logging is still possible.
This can be done using the systemd service unit shown in figure 125.

972 # nut-delayed-ups-shutdown.service
973 [Unit]
974 Description=Initiate delayed UPS shutdown
975 Before=umount.target
976 DefaultDependencies=no
977 [Service]
978 Type=oneshot
979 ExecStart=/usr/bin/logger -t nut-delayed-ups-shutdown\

"upsdrvctl shutting down UPS"
980 ExecStart=/sbin/upsdrvctl shutdown # Debian
981 [Install]
982 WantedBy=final.target

Figure 125: UPS shutdown service unit nut-delayed-ups-shutdown.service.

The ExecStart directive on line 980 will shutdown 20 all the UPS units managed by this system.
The code given is for Debian: other distributions put upsdrvctl elsewhere. If you have say three
UPS’s, UPS-1, UPS-2 and UPS-3, and you want to shut down just UPS-2 and UPS-3, then instead
of line 980 you should specify the required UPS’s as shown in lines 983-984.

983 ExecStart=/sbin/upsdrvctl shutdown UPS-2 # Debian
984 ExecStart=/sbin/upsdrvctl shutdown UPS-3

Note that this service unit does not perform the upsmon -K test for the POWERDOWNFLAG.
The position of this service unit may vary from one distribution to another, see section “unit file

load path” in man systemd.unit(5). For example in the openSUSE and Debian distributions, /etc
/systemd/system is for a user’s scripts, and /usr/lib/systemd/system-shutdown is for system
scripts. You might use the /etc/systemd/system directory if your script is not part of an officially
distributed product.

If you install or change this service unit, run command systemctl --system reenable /etc/
systemd/system/nut-delayed-ups-shutdown.service . Maybe your distribution offers a graph-
ical manager to do this.

For gory details see the systemd documentation. There are over 200 man pages starting with
an index. For details of the directories used, see section “unit file load path” in man systemd.unit.

20The upsdrvctl program is normally a frontend to the drivers, but in the case of the shutdown option upsdrvctl
does not use the existing driver; it creates a new driver for itself.

Page 116 of 134

https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://man7.org/linux/man-pages/man5/systemd.unit.5.html
https://www.freedesktop.org/software/systemd/man/
https://www.freedesktop.org/software/systemd/man/systemd.unit.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

22 Users and Directories for NUT
NUT normally runs as a non-root user, however the user varies from one distribution to another.
Table 126 shows a list of users for a range of distributions.

Similarly, the configuration files used by NUT such as upsd.conf are placed in a directory which
depends on the distribution. Table 126 also shows the directories used by different distributions.

Distribution ID User Directory ID source
Aix aix nut ? /etc/nut/ ? uname -a
Amazon amzn nut /etc/ups/ ? /etc/os-release
Arch arch nut /etc/nut/ /etc/os-release
CentOS centos nut /etc/ups/ /etc/os-release
Apple darwin nut /etc/nut/ uname -a
Debian debian nut /etc/nut/ /etc/os-release
Fedora fedora nut /etc/ups/ /etc/os-release
FreeBSD freebsd uucp /usr/local/etc/nut/ uname -a
Gentoo gentoo nut /etc/nut/ /etc/gentoo-release
HP-UX hpux nut ? /etc/nut/ ? uname -a
IPFire ipfire nutmon /etc/nut/ uname -a
Kali kali nut /etc/nut/ /etc/os-release
Mint linuxmint nut /etc/nut/ /etc/os-release
Apple mac nut ? /etc/nut/ ? uname -a
Mageia mageia nut /etc/nut/ /etc/os-release
Manjaro manjaro nut /etc/nut/ /etc/os-release
NetBSD netbsd nut ? /etc/nut/ ? uname -a
Oracle ol nut /etc/ups/ /etc/os-release
OpenBSD openbsd ups /etc/nut/ uname -a
OpenIndiana openindiana nut /etc/nut/ uname -a
OpenSUSE opensuse upsd /etc/ups/ /etc/os-release
Raspbian raspbian nut /etc/nut/ /etc/os-release
Red Hat rhel nut /etc/ups/ /etc/os-release
Slackware slackware nut /etc/nut/ /etc/os-release
SUSE sles upsd /etc/ups/ /etc/os-release
SUSE+SAP sles_sap upsd /etc/ups/ /etc/os-release
Synology synology root ? /usr/syno/etc/nut/ uname -a
Ubuntu ubuntu nut /etc/nut/ /etc/os-release

The editor will be very pleased to hear of errors or omissions in this table.

Figure 126: Users and directories for NUT.

Page 117 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Notes:

1. If NUT is built without specifying the user, then the user is nobody:nobody.

2. FreeNAS identifies itself in /etc/os-release as FreeBSD.

3. The IPFire wiki suggests user nutmon for upsmon but makes no mention of upsd.

4. OpenIndiana: historically, NUT was not included as a package in OpenIndiana, and an
OpenIndiana Wiki entry dated 2013 recommended user ups and directory /opt/nut/etc/.
The values in the table are taken from OpenIndiana’s current Github data for NUT.

Page 118 of 134

https://wiki.ipfire.org/addons/nut
https://wiki.openindiana.org/oi/Network+UPS+Tools+(NUT)+and+NUT+Monitor
https://wiki.openindiana.org/oi/Network+UPS+Tools+(NUT)+and+NUT+Monitor
https://github.com/OpenIndiana/oi-userland/blob/oi/hipster/components/sysutils/nut/files

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

23 Using notify-send
The program “wall” used by NUT to put notifications in front of the users is now well past it’s
best-before date and hardly fit for purpose. It has not been internationalized, does not support
accented letters or non-latin characters, and is ignored by popular desktop environments such as
Xfce, Gnome and KDE. It’s apparent replacement notify-send gives the impression that it has never
been tested in any other than the simplest cases, and that it is not ready for industrial strength
use. Getting notify-send to work with NUT is not immediately evident, so although notify-send is
not a part of NUT, we discuss this problem here.

Figure 127: Example of a notification.

23.1 What’s wrong with notify-send?

The program notify-send is part of a set of programs which implement the Gnome “Desktop Noti-
fications Specification”. The introduction says:

� This is a draft standard for a desktop notifications service, through which appli-
cations can generate passive popups to notify the user in an asynchronous manner of
events. ... Example use cases include:

• Scheduled alarm
• Low disk space/battery warnings ... �

From this introduction it would seem that desktop notifications are exactly what is needed to
present [ol]→[ob] and [ob]→[ob lb] warnings to the users, but unfortunately, things are not that
simple.

Program notify-send is a utility which feeds message objects to a message server, such as
notifyd. Taking the Xfce desktop environment as an example, Xfce provides it’s message server
called xfce4-notifyd. None of these programs has a man page and the editor has not been able
to find a mailing list specific to desktop notifications.

Experience shows that just calling notify-send in the script upssched-cmd does not work. The
message simply disappears. Closer examination on the openSUSE distribution with command ps
-elf | grep ups shows that if daemon upsmon running as user “upsd” calls notify-send to present
a message, the notify daemon is launched with the same userid “upsd” as the caller. In Debian
NUT runs as user “nut” and the notify daemon is launched with the name userid “nut”. Users such
as “upsd” and “nut” do not have access to the desktop environment.

Page 119 of 134

https://developer.gnome.org/notification-spec/
https://developer.gnome.org/notification-spec/

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

If a caller is the upsmon daemon which has no access to the desktop environment, then neither
will the corresponding notification daemon. This is surprising. One would expect a design closer to
that of the printer daemon cupsd which runs permanently in the background receiving files to be
printed. There is only one daemon cupsd and that daemon isolates the user from needing to know
how to drive printers.

To get the message to show on the user’s screen appears to require two actions:

1. Give user “upsd” (“nut” on Debian) the right to act as any user,
2. Search for logged in users, and for each user construct the user’s environment variable DISPLAY,

and call utility notify-send as that user to notify the user.

23.2 Give user “upsd” (“nut”) the right to act as any user

To improve security in NUT, the upsd and upsmon daemons is not executed as root, but rather as
a non-root userid. This userid is typically called “upsd” or “nut”. See table 126 for a list of possible
users. We will use the name “upsd”. “upsd” is not a regular user and does not have the access to
the X-server needed to display data. This is a problem for the notification service, which we now
fix.

Add the following lines to the file /etc/sudoers

985 # Host alias specification
986 Host_Alias LAN = 10.218.0/255.255.255.0,127.0.0.1,localhost,gold
987
988 upsd LAN = (ALL) NOPASSWD:SETENV: /usr/bin/notify-send

Figure 128: Modifications to file /etc/sudoersfig:notify.sudoer

Line 986 corresponds to the editor’s system and should be adapted to your setup.
On line 988 the directive SETENV: is needed for openSUSE but optional for Debian.
The file /etc/sudoers contains the following warning:

This file MUST be edited with the ’visudo’ command as root. Failure to use ’visudo’
may result in syntax or file permission errors that prevent sudo from running.

See man sudoers and man visudo. The un-l33t do not have to use vi. Luckily, the command
VISUAL=/usr/bin/emacs visudo -f /etc/sudoers also does the job.

Page 120 of 134

https://www.sudo.ws/man/1.8.13/sudoers.man.html
https://www.sudo.ws/man/1.8.13/visudo.man.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

23.3 Search for and notify logged in users

Figure 129 shows a Bash script notify-send-all which can be used in place of notify-send to send
messages from upssched-cmd to all the X display users currently logged in. Script notify-send-all
accepts as argument the message to be displayed. The message will be displayed indefinitely as
“critical”. The editor places the script in file /usr/local/bin/notify-send-all.

989 #! /bin/bash -u
990 # notify-send-all sends notifications to all X displays
991 # Assumes /etc/sudoers allows caller to sudo as any user.
992 # E.g. nut LAN = (ALL) NOPASSWD:SETENV: /usr/bin/notify-send
993 # Call with text to be displayed as argument.
994 XUSERS=($(who | grep -E "\(:[0-9](\.[0-9])*\)" \
995 | awk ’{print 1NF}’ | sort -u))
996 for XUSER in $XUSERS # E.g. jschmo(:0)
997 do NAME=(${XUSER/\(/ }) # Insert space, make NAME an array
998 DISPLAY=${NAME[1]/)/} # E.g. :0
999 sudo -u ${NAME[0]} DISPLAY=${DISPLAY} \
1000 /usr/bin/notify-send -t 0 -u critical "$@"; RC=$?
1001 if [[$RC -ne 0]]; then exit $RC; fi
1002 done

Figure 129: Bash script notify-send-all

Line 994 produces a Bash array of all the users identified by who who have X displays. Each
item in the array corresponds to a logged in user with an X display and is of the form jschmo(:0).

For each user logged in with an X display, line 997 creates a Bash array containing the user
name and the X display number in the form jschmo :0).

Line 998 extracts the X display number :0 and on line 999 calls notify-send to notify the user as
if user “upsd” (“nut” on Debian) was that logged in user. Note that environment variable DISPLAY
is set for that user.

See the discussion “Show a notification across all running X displays” on the stackexchange site.

23.4 Testing the notify-send-all setup

A simple way of testing the use of notify-send if you are using the chapter 4 configuration is to
simply disconnect the wall power for 10 seconds. This is sufficient to provoke upsmon into calling
upssched-cmd which in turn calls notify-send-all as shown at line 200.

While wall power is disconnected, use a command such as ps -elf | grep -E "ups[dms]|nut"
to find the programs running as user “upsd” (“nut” on Debian):

Page 121 of 134

https://unix.stackexchange.com/questions/2881/show-a-notification-across-all-running-x-displays

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

1003 upsd 2635 1 ... /usr/bin/usbhid-ups -a Eaton
1004 upsd 2637 1 ... /usr/bin/dummy-ups -a heartbeat
1005 upsd 2641 1 ... /usr/sbin/upsd
1006 root 2645 1 ... /usr/sbin/upsmon
1007 upsd 2646 2645 ... /usr/sbin/upsmon
1008 upsd 3217 1 ... /usr/sbin/upssched UPS Eaton@localhost: On battery
1009 upsd 3236 1 ... dbus-launch --autolaunch=d1cd...ca5d2 ...
1010 upsd 3237 1 ... /bin/dbus-daemon --fork --print-pid 5 ...
1011 upsd 3241 1 ... /usr/lib/xfce4/notifyd/xfce4-notifyd
1012 upsd 3243 1 ... /usr/lib/xfce4/xfconf/xfconfd

Lines 1003-1008 are due to NUT activity, and lines 1009-1012 are due to the use of notify-send.
Note on line 1011 that the xfce4-notifyd daemon is running as user “upsd”!

23.5 References for notify-send

1. For a suggestion of how to send notifications on an Apple Mac, see the posting by Robbie
van der Walle, Sun Jun 11 11:27:55 UTC 2017, in the nut-upsuser mailing list.

2. For a discussion of how to send notifications to all running X-server users, see https://
unix.stackexchange.com/questions/2881/show-a-notification-across-all-running-x-displays

3. The Gnome “Desktop Notifications Specification” is still a very long way from being RFC
quality.

These techniques have been tested with the Xfce desktop environment on openSUSE and Debian.
The editor would be pleased to hear of any successful adoption of the techniques on Fedora, Arch
or Ubuntu based systems, using other desktop environments such as Cinnamon, KDE or Gnome.

Page 122 of 134

https://lists.alioth.debian.org/pipermail/nut-upsuser/2017-June/010729.html
https://lists.alioth.debian.org/pipermail/nut-upsuser/2017-June/010729.html
https://unix.stackexchange.com/questions/2881/show-a-notification-across-all-running-x-displays
https://unix.stackexchange.com/questions/2881/show-a-notification-across-all-running-x-displays
https://developer.gnome.org/notification-spec/

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

24 Building OpenSSL and Python
The UPSmon.py program is written in Python and uses OpenSSL to make encrypted connections
from the monitoring system to the system running upsd. The TLS functions of OpenSSL are
updated frequently and if you want up-to-date encrypted connections, you will need recent versions
of OpenSSL and Python. If you can get these using the packages of your distribution, so much the
better. Otherwise you will have to build for yourself. This is not straightforward, especially for
Debian.

24.1 Building OpenSSL

For the latest instructions on downloading and building OpenSSL, see “Compilation and Installa-
tion” in the Wiki. Th current version of OpenSSL installed, if any, may be seen with the command
openssl version . For an up to date installation, the editor followed the path of least resistance:
download the source, unpack it and run

1013 ./config
1014 make clean
1015 make
1016 make test
1017 make install

A careful sysadmin may well want to replace each of commands shown in lines 1013-1017 with
commands such as script -c "./config" config.log to gather a record of what happened.
If you test this as shown in line 1018

1018 # openssl version
1019 openssl: error while loading shared libraries:

libssl.so.1.1: cannot open shared object file:
No such file or directory

you will get the error message shown in line 1019. For Debian (stretch), you will need to add the
symbolic links shown in lines 1020-1021 to reveal where you have put the OpenSSL libraries.

1020 ln -s /usr/local/lib/libssl.so.1.1
/usr/lib/x86_64-linux-gnu/libssl.so.1.1

1021 ln -s /usr/local/lib/libcrypto.so.1.1
/usr/lib/x86_64-linux-gnu/libcrypto.so.1.1

For openSUSE, you will need to add symbolic links shown in lines 1022-1023 to declare to the
operating system where you have put the OpenSSL libraries.

1022 ln -s /usr/local/lib64/libssl.so
/lib64/libssl.so.1.1

1023 ln -s /usr/local/lib64/libcrypto.so
/lib64/libcrypto.so.1.1

Page 123 of 134

https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

To check that the link is correct, use the command:

1024 # openssl version
1025 OpenSSL 1.1.1d 10 Sep 2019

Well done!

24.2 Building Python

For the latest on downloading and building Python, see the Python instructions. As an example,
the editor downloaded Python 3.8.1, built it and tried to install it using commands

1026 ./configure
1027 make clean
1028 make
1029 make altinstall

Line 1029 specifies altinstall in order to protect existing Python installations of earlier ver-
sions. A careful sysadmin may well want to replace each of commands shown in lines 1026-1029
with commands such as script -c "./configure" configure.log to gather a record of what
happened.

Check that the configure program has successfully detected your new OpenSSL. You should
see something like:

1030 checking for openssl/ssl.h in /usr/local/ssl... no
1031 checking for openssl/ssl.h in /usr/lib/ssl... no
1032 checking for openssl/ssl.h in /usr/ssl... no
1033 checking for openssl/ssl.h in /usr/pkg... no
1034 checking for openssl/ssl.h in /usr/local... yes
1035 checking whether compiling and linking against OpenSSL works... yes
1036 checking for X509_VERIFY_PARAM_set1_host in libssl... yes
1037 checking for --with-ssl-default-suites... python

where lines 1035-1036 are essential for a successful build. If X509_VERIFY_PARAM_set1_host is not
found in libssl then configure needs help. This is a well known problem, see Python issue 34038.
I followed the advice of joahking and tried the command

1038 script -c "./configure
CFLAGS=’-I/tmp/OpenSSL/openssl-1.1.1d/include/openssl/’
LDFLAGS=’-L/tmp/OpenSSL/openssl-1.1.1d/’"
configure.log

in which /tmp/OpenSSL is the directory into which I downloaded OpenSSL. You will have to specify
the directory you used. With this, I got the success shown in lines 1035-1036.

After make on Debian, you may find the following lines at the end of the make output:

Page 124 of 134

https://docs.python.org/3/using/unix.html
https://bugs.python.org/issue34028

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

1039 Could not build the ssl module!
1040 Python requires an OpenSSL 1.0.2 or 1.1 compatible

libssl with X509_VERIFY_PARAM_set1_host().
1041 LibreSSL 2.6.4 and earlier do not provide the necessary APIs,

https://github.com/libressl-portable/portable/issues/381

even though the command openssl version reports OpenSSL 1.1.0l 10 Sep 2019 . You need
to go back to ./configure and check your log file.

The editor’s make install failed with message

1042 zipimport.ZipImportError: can’t decompress data; zlib not available
1043 Makefile:1186: recipe for target ’install’ failed
1044 make: *** [install] Error 1

but strangely this didn’t seem to affect the use of the installation for UPSmon.py.
The first attempt to run Python produces

1045 Could not find platform dependent libraries <exec_prefix>
1046 Consider setting $PYTHONHOME to <prefix>[:<exec_prefix>]
1047 Python 3.8.1 (default, Feb 11 2020, 22:08:59)

Executing command PYTHONHOME="/usr/local" python3.8 produces

1048 Python 3.8.1 (default, Feb 11 2020, 22:08:59)
1049 [GCC 4.8.5] on linux
1050 Type "help", "copyright", "credits" or "license" for more information.
1051 Traceback (most recent call last):
1052 File "/etc/pythonstart", line 7, in <module>
1053 import readline
1054 ModuleNotFoundError: No module named ’readline’

For openSUSE, this can be fixed with a symbolic link shown at line 1055. See openSUSE 42.3
bug report 34058 https://bugs.python.org/issue34058

1055 ln -s /usr/local/lib64/python3.8/lib-dynload/ \
/usr/local/lib/python3.8/lib-dynload

and now command python3.8 (without setting $PYTHONHOME) gives

1056 Python 3.8.1 (default, Feb 11 2020, 22:08:59)
1057 [GCC 4.8.5] on linux
1058 Type "help", "copyright", "credits" or "license" for more information.
1059 >>>

Page 125 of 134

https://bugs.python.org/issue34058
https://bugs.python.org/issue34058

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

There may be options for Python’s ./configure which avoid having to manually enter the
symbolic link.

To check that the Python-OpenSSL setup is correct:

1060 # python3.8
1061 Python 3.8.1 (default, Feb 11 2020, 22:08:59)
1062 [GCC 4.8.5] on linux
1063 Type "help", "copyright", "credits" or "license" for more information.
1064 >>> import ssl
1065 >>> ssl.OPENSSL_VERSION
1066 ’OpenSSL 1.1.1d 10 Sep 2019’

24.2.1 Python Lex Yacc (PLY)

You will also need to install David M. Beazly’s PLY (Python Lex-Yacc).

Page 126 of 134

https://www.dabeaz.com/ply/

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

25 Typing alternative text bracketing characters
Text in UPSmon.conf must be in brackets. You are free to choose which style; the following table
may help you to type styles which are not on your keyboard.

Unicode Emacs Vim Full name
" U+0022 Keyboard " Keyboard " quotation mark (Used left and right)
’ U+0027 Keyboard ’ Keyboard ’ apostrophe (Used left and right)
« U+00AB AltGr{ or AltGr{ or left-pointing double angle quotation

Ctl-q 00ab Ctl-v u00ab mark
» U+00BB AltGr} or AltGr} or right-pointing double angle quotation

Ctl-q 00bb Ctl-v u00bb mark
d U+23A1 Ctl-q 23a1 Ctl-v u23a1 left square bracket upper corner
c U+23A6 Ctl-q 23a6 Ctl-v u23a6 right square bracket lower corner

U+2E22 Ctl-q 2e22 Ctl-v u2e22 top left half bracket
U+2E25 Ctl-q 2e25 Ctl-v u2e25 bottom right half bracket

Figure 130: Alternative text bracketing characters.

Page 127 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

26 Grammar for UPSmon.conf

The UPSmon.conf file is parsed using David Beazley’s PLY21. This is a pure Python approach to Lex
and Yacc. There are no separate Lex and Yacc files. For background reading see “ lex & yacc” by
John R. Irvine, Tony Mason and Doug Brown, O’Reilly, first published 1990, ISBN: 1-56592-000-7.

The PLY’s Lex and Yacc produce an abstract syntax tree known as AST. This is then interpreted
as instructions to create a new configuration. If there are no errors, the new configuration is passed
to UPSmon.py, otherwise UPSmon.py continues with the previous configuration. You can see AST
in the log file if you run UPSmon.py with option -D.

26.1 Lexical structure

The configuration file is assumed to be encoded in UTF-8, and contains comments, tokens (keywords
and symbols), numbers and quoted text interspersed with white space.

Whitespace Whitespace is any combination of the characters space and tab. Whitespace serves
only to separate the other components of a configuration file.

Comments The character # outside a quoted text begins a comment which continues up to the
end of the line. The comment is ignored by the parser. A # inside a quoted text does not begin
a comment. This is the same comment style as upsmon.conf and many other configuration
files.

Names Names are labels which identify UPS units, timers, named messages, ... They are not
quoted and are made up of the 69 characters a-zA-Z0-9._%+-:@ . The leading character
must be one of the 53 characters a-zA-z_ .

Numbers Numbers are non-negative and may be floating point. They are not quoted. E.g. 5.5 .

Tokens The tokens are names given to every piece of input that is recognisable by the lexer. They
are shown in figure 131. The tokens are presented in the order in which they are tested by
the lexer.

Quoted text Text is always quoted. The possible quotation marks are shown in figure 130. E.g.
"text", ’text’, «text», dtextc and text . A quoted text may not contain a newline or
it’s terminating quote character. E.g. «te»xt» is an error as is «te
xt».

Statuses The lexer recognises the following UPS statuses: None ALARM BOOST BYPASS CAL CHRG
DEAD DISCHRG FSD LB COMM OB OFF OL OVER RB TEST TICK TOCK TRIM

Events An event is a transition from one status to another, and is seen by the lexer as STATUS
RARR STATUS, e.g. None->LB .

21See David Beazley’s PLC (Python Lex-Yacc) page at https://www.dabeaz.com/ply/

Page 128 of 134

https://www.dabeaz.com/ply/

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

Token Use Token Use
1 ignore Ignore spaces

and tabs
2 newline Line counter

3 ignore_COMMENT Ignore #... 4 WHEN Keyword
5 WALL Keyword 6 USER Keyword
7 UPSDUSER Keyword 8 TYPE Keyword
9 TIMEOUT Keyword 10 SYSLOG Keyword
11 SUBJECT Keyword 12 STARTTIMER Keyword
13 SMTPSERVER Keyword 14 SHUTDOWNCMD Keyword
15 SHELLCMD Keyword Not used
16 SETFSD Keyword Not used
18 REPORTS Keyword Not used
20 RARR Symbol -> 21 QUOTETEXT5 text
22 QUOTETEXT4 dtextc 23 QUOTETEXT3 «text»
24 QUOTETEXT2 "text" 25 QUOTETEXT1 ’text’
26 PRINT Keyword 27 POWERVAL Keyword
28 PORT Keyword 29 POLLFREQALERT Keyword
30 POLLFREQ Keyword 31 PASSWORD Keyword
32 NUTLOG Keyword 33 NUMBER 0 through 9 plus .
34 NOTIFY Keyword Not used
36 MONITOR Keyword 37 MINSUPPLIES Keyword
38 MESSAGE Keyword 39 MAXNOTIFY Keyword
40 LET Keyword 41 IF Keyword

Not used 43 HOST Keyword
Not used 44 GROUP Keyword

45 FROM Keyword 46 EQ Symbol =
47 EPRINT Keyword 48 EMAIL Keyword
49 DEBUG Keyword Not used
51 COLON Symbol : 52 CERTFILE Keyword

Not used 53 CANCELTIMER Keyword
54 APCUPSDUSER Keyword 55 STATUS See status list
56 TO Keyword 57 NAME Starts with a-zA-z_ then

a-zA-Z0-9._%+-:@

Figure 131: UPSmon.conf lexer tokens.

Page 129 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

26.2 Yacc Grammar

The grammar shows the logical structure of the configuration file. There is no separate “yacc”
grammar file. The productions are represented by functions such as the one shown in figure 132.

1067 def p_configuration (p) :
1068 ’configuration : intros groups’
1069 tag = (’configuration’, p.lineno(len(p)-1)//LN, p.lineno(len(p)-1)%LN)
1070 AST = (tag, p[1], p[2])

Figure 132: Representation of grammar production

Line 1067 declares the function providing the grammar production seen in line 1068 for the
configuration production. The result is tagged with a 3-tuple seen in line 1069 giving the identity,
line number and column number, and forms the basis for the abstract syntax tree AST. The values
for p[1] and p[2] in line 1070 are provided by functions p_intros and p_groups.

Production Notes
configuration : intros groups Start here

intros : intro Start of introduction
| intros intro

intro : smtp
| let
| pollfreqalert
| pollfreq

smtp : SMTPSERVER quotetext PORT number
USER quotetext PASSWORD quotetext

let : LET name EQ quotetexts battery.charge.low.i
for i = 1..3 the name is
a special value.

number : NUMBER
pollfreqalert : POLLFREQALERT number

pollfreq : POLLFREQ number End of the introduction
continued ...

Figure 133: UPSmon.conf grammar.

Page 130 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

... continued
groups : group Start of

| groups group_element group specs
group_element : group_name

| group_host
| group_port
| certfile
| let
| monitors
| minsupplies
| action_declarations

group_name : GROUP name
name : NAME

group_host : HOST name
group_port : PORT number
certfile : CERTFILE quotetext

| CERTFILE name
monitors : monitor

| monitors monitor
monitor : MONITOR name POWERVAL number user

PASSWORD quotetext TYPE name
user : UPSDUSER name

| APCUPSDUSER name
minsupplies : MINSUPPLIES number

action_declarations : action_declaration
| action_declarations action_declaration

action_declaration : event_key actions
event_key : WHEN name TO name COLON TO ≡

| WHEN name TIMEOUT name COLON TIMEOUT
| WHEN name REPORTS STATUS RARR STATUS COLON

actions : action_element
| actions action_element

continued ...

Figure 134: UPSmon.conf grammar, continued.

Page 131 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

... continued
action_element : condition cancel_timer

| condition debug_level
| condition email
| condition start_timer
| condition EPRINT quotetexts
| condition NOTIFY quotetexts
| condition NUTLOG quotetexts
| condition PRINT quotetexts
| condition SETFSD name
| condition SHELLCMD quotetexts
| condition SHUTDOWNCMD quotetexts
| condition SYSLOG quotetexts
| condition WALL quotetexts

condition : IF STATUS RARR STATUS
| empty

quotetexts : quotetext
| name
| quotetexts quotetext
| quotetexts name

quotetext : QUOTETEXT1
| QUOTETEXT2
| QUOTETEXT3
| QUOTETEXT4
| QUOTETEXT5

cancel_timer : CANCELTIMER name
debug_level : DEBUG number 0, 1 or 2
start_timer : STARTTIMER name number

email : EMAIL from to subject content
from : FROM quotetext
to : TO quotetext

subject : SUBJECT quotetext
content : MESSAGE quotetexts
empty :

Figure 135: UPSmon.conf grammar, final part.

Page 132 of 134

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

26.3 Log rotation for upsdTLS.py and UPSmon.py

The well known Unix/GNU Linux utility program logrotate provides a convenient way of man-
aging log files. See man logrotate(8). NUT 2.7.4 already provides a declaration for it’s log files.
The following declaration provides separate management for the log files created by upsdTLS.py
and UPSmon.py.

The file should be created as /etc/logrotate.d/NUT with ownership root:root and permis-
sions 644.

1071 # Log rotation configuration for upsdTLS.py, UPSmon.py
1072 # Rotate NUT log file either monthly or when exceeding 5 Mb
1073 #
1074 # For more information, refer to logrotate(8) manual page:
1075 # http://linuxcommand.org/man_pages/logrotate8.html
1076 #
1077 /var/log/NUT.log {
1078 missingok
1079 notifempty
1080 size=5M
1081 rotate 12
1082 monthly
1083 create 0600 upsd root
1084 }

Figure 136: Log rotation for upsdTLS.py and UPSmon.py

Lie 1082 calls for a log rotation every month, and line 1081 requires keeping 12 previous months’
logs, so in all there will be one year’s records.

Page 133 of 134

https://man7.org/linux/man-pages/man8/logrotate.8.html

NUT 2.7.4, UPSmon 1.1, upsdTLS 1.1, ConfigExamples.A5.pdf version 2020-11-27

27 Acknowledgments
Editor: As one of the many who have used the work of the NUT project as part of their system
setup, I would like to express my gratitude and my appreciation for the software that the NUT
project has made available to system administrators through contributions by Charles Lepple, Arjen
de Korte, Arnaud Quette, Jim Klimov, Russell Kroll, and many others in the nut-upsuser mailing
list.

I would also like to thank those who commented on earlier versions of this text: M.B.M.

28 Errors, omissions, obscurities, confusions, typpos...

Joe’s server will still be allright
if power drops off in the night.

That 8 year old pack
of battery back-

up will easily handle th connection lost

Please signal errors, omissions, typso and all the
other problems you find in this document in the
“ups-user” mailing list. Thank you.

Page 134 of 134

https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser

	1 UPS monitoring using NUT
	 Introduction, and Welcome to NUT
	 What is NUT?
	 Why this introduction?
	 Basic components of NUT
	 Driver daemon
	 Daemon upsd
	 Daemon upsmon
	 Utility program upsc

	 Configuration file formats
	 Line spanning

	 Mailing list: nut-users

	 Simple server with no local users
	 Configuration file ups.conf, first attempt
	 Configuration file upsd.conf
	 Configuration file upsd.users
	 Configuration file upsmon.conf for a simple server
	 The delayed UPS shutdown
	 The shutdown story for a simple server
	 Configuration file ups.conf for a simple server, improved
	 The shutdown story with quick power return
	 Utility program upscmd
	 Utility program upsrw

	 Server with multiple power supplies
	 Configuration file ups.conf for multiple power supplies
	 Configuration file upsmon.conf for multiple power supplies
	 Shutdown conditions for multiple power supplies

	 Workstation with local users
	 Configuration file upsmon.conf for a workstation
	 Configuration file upssched.conf for a workstation
	 Configuration script upssched-cmd for a workstation
	 The shutdown story for a workstation

	 Workstations share a UPS
	 Configuration file upsmon.conf for a slave
	 Configuration file upssched.conf for a slave
	 Configuration script upssched-cmd for a slave
	 Magic: How does the master shut down the slaves?

	 Workstation with heartbeat
	 Configuration file ups.conf for workstation with heartbeat
	 Configuration file heartbeat.conf for workstation
	 Configuration file upsmon.conf for workstation with heartbeat
	 Configuration file upssched.conf for workstation with heartbeat
	 Script upssched-cmd for workstation with heartbeat
	 For paranoïd sysadmins

	 Workstation with timed shutdown
	 Configuration file ups.conf for workstation with timed shutdown
	 Configuration file heartbeat.conf for workstation with timed shutdown
	 Configuration file upsd.conf with timed shutdown
	 Configuration file upsd.users with timed shutdown
	 Configuration file upsmon.conf with timed shutdown
	 Configuration file upssched.conf with timed shutdown
	 Script upssched-cmd for workstation with timed shutdown
	 The timed shutdown

	 The timed shutdown story

	 Workstation with additional equipment
	 Configuration files nut.conf
	 Configuration files ups.conf and heartbeat.conf
	 Configuration files upsd.conf
	 Configuration files upsd.users
	 Configuration file upsmon.conf
	 Configuration file upssched.conf for mgmt
	 UPS-3 on gold
	 UPS-2 on gold
	 UPS-1 on mgmt
	 heartbeat on mgmt

	 User script upssched-cmd
	 The shutdown story

	 Encrypted connections – Deprecated – to be removed
	 Waiting for NUT release 2.7.5
	 Warning for Debian users
	 Introduction
	 Additional configuration files

	 Sniffing port 3493
	 Creating the SSL keys with OpenSSL
	 Create unique name for certificate using OpenSSL

	 Install NUT server keys on gold
	 Install NUT management client keys on mgmt
	 Testing the TLS setup
	 What can Debian users do?
	 Debian: Create NSS database on gold
	 Debian: Add OpenSSL keys and certificates to NSS database on gold
	 Debian: Check and display NSS database on gold
	 Debian: Create NSS database on mgmt
	 Debian: Testing the NSS setup

	2 UPS monitoring using Python3 script and openSSL
	 mkNUTcert.py builds TLS certificates for NUT
	 Very Short Introduction to TLS Certificates
	 Overview of mkNUTcert.py
	 Running mkNUTcert.py

	 Daemon upsdTLS.py
	 Overview of upsdTLS.py
	 Running upsdTLS.py

	 Python3 script UPSmon.py
	 What is UPSmon.py ?
	 Principal differences between upsmon and UPSmon.py

	 Compatibility with upsmon.
	 Overview of UPSmon.py
	 Running UPSmon.py
	 UPSmon.py's status changes
	 Configuration file
	 Initial declarations
	 Group declarations
	 Action declarations

	 UPSmon.py configuration
	 Configuration tool mkUPSmonconf.py
	 Using configuration tool mkUPSmonconf.py
	 UPSmon.conf configuration examples
	 Timed shutdown plan, part 1 of 4, the introduction
	 Timed shutdown plan, part 2 of 4, the shutdown
	 Timed shutdown plan, part 3 of 4, warnings
	 Timed shutdown plan, part 4 of 4, heartbeat
	 Standard shutdown plan

	 UPSmon.py installation checklist

	3 Appendices
	 Starting NUT
	 Stopping NUT
	 Delayed UPS shutdown with NUT script
	 Delayed UPS shutdown with a systemd service unit

	 Users and Directories for NUT
	 Using notify-send
	 What's wrong with notify-send?
	 Give user ``upsd'' (``nut'') the right to act as any user
	 Search for and notify logged in users
	 Testing the notify-send-all setup
	 References for notify-send

	 Building OpenSSL and Python
	 Building OpenSSL
	 Building Python
	 Python Lex Yacc (PLY)

	 Typing alternative text bracketing characters
	 Grammar for UPSmon.conf
	 Lexical structure
	 Yacc Grammar
	 Log rotation for upsdTLS.py and UPSmon.py

	 Acknowledgments
	 Errors, omissions, obscurities, confusions, typpos...

