Switch branches/tags
Clone or download
Latest commit 53c6caa Jul 6, 2018
Failed to load latest commit information.
docs update docs Jul 5, 2018
examples update notebooks Jul 5, 2018
pynamical version bump Jul 5, 2018
tests add tests Jun 15, 2018
.gitignore update gitignore May 15, 2018
.travis.yml travis pip install coveralls Mar 2, 2017 update change log Jul 5, 2018 add community guidelines Jun 15, 2018
LICENSE.txt updates May 15, 2018 version bump and changelog Mar 2, 2017 update docs Jul 5, 2018 version bump Jul 5, 2018

PyPI version Anaconda-Server Badge Build Status Coverage Status


Python package for modeling, simulating, visualizing, and animating discrete nonlinear dynamical systems and chaos

pynamical uses pandas, numpy, and numba for fast simulation, and matplotlib for visualizations and animations to explore system behavior. Compatible with Python 2 and 3.

Pynamical comes packaged with the logistic map, the Singer map, and the cubic map predefined. The models may be run with a range of parameter values over a set of time steps, and the resulting numerical output is returned as a pandas DataFrame. Pynamical can then visualize this output in various ways, including with bifurcation diagrams, two-dimensional phase diagrams, three-dimensional phase diagrams, and cobweb plots.

You can read/cite the journal article about pynamical: Boeing, G. 2016. "Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction." Systems, 4 (4), 37. doi:10.3390/systems4040037.


You can install pynamical with conda:

conda install -c conda-forge pynamical

Or with pip:

pip install pynamical


Available on readthedocs.


  1. Pynamical: quick overview
  2. Pynamical: the logistic model and bifurcation diagrams
  3. Pynamical: 2D and 3D phase diagrams
  4. Pynamical: static and animated cobweb plots
  5. Pynamical: animated 3D phase diagrams
  6. Pynamical: demonstrating other models

Quick walkthrough:

First load pynamical. Then simulate some model and visualize its bifurcation diagram in just 2 lines of code:

from pynamical import logistic_map, simulate, bifurcation_plot
pops = simulate(model=logistic_map, num_gens=100, rate_min=0, rate_max=4, num_rates=1000, num_discard=100)

Zoom into a slice of this bifurcation diagram to see its fractal structure:

pops = simulate(model=logistic_map, num_gens=100, rate_min=3.7, rate_max=3.9, num_rates=1000, num_discard=100)
bifurcation_plot(pops, xmin=3.7, xmax=3.9)

Plot a two-dimensional phase diagram of the logistic map:

from pynamical import phase_diagram
pops = simulate(model=logistic_map, num_gens=4000, rate_min=3.6, rate_max=4.0, num_rates=50, num_discard=100)
phase_diagram(pops, xmin=0.25, xmax=0.75, ymin=0.8, ymax=1.01, size=7, color='viridis')

Or a three-dimensional phase diagram of the cubic map:

from pynamical import cubic_map, phase_diagram_3d
pops = simulate(model=cubic_map, num_gens=3000, rate_min=3.5, num_rates=30, num_discard=100)
phase_diagram_3d(pops, xmin=-1, xmax=1, ymin=-1, ymax=1, zmin=-1, zmax=1, alpha=0.2, color='viridis', azim=330)

Animate the 3D phase diagram of the logistic map to reveal the strange attractor's structure:

Animate a cobweb plot of the logistic map's parameter space to explore sensitivity and behavior:

Or define your own model and simulate it with pynamical.