Unscented Kalman Filter Project for Self-Driving Car ND
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
src
.gitignore
CMakeLists.txt
NIS_Lidar_.txt
NIS_Radar_.txt
README.md
cmakepatch.txt
install-mac.sh
install-ubuntu.sh
nis_lidar_graph.png
nis_radar_graph.png
plot_nis.py
readme.txt

README.md

CarND-Unscented-Kalman-Filter-Project

Unscented Kalman Filter Project for Self-Driving Car ND

Udacity - Self-Driving Car NanoDegree

UKF results

The goal of this project is to use an Unscented Kalman Filter to estimate the state of a moving object of interest with noisy lidar and radar measurements. The system will output the estimated x, y position from the Kalman filter's state vector, along with the RMSE, to the simulator provided by Udacity. Passing the project requires obtaining RMSE values that are lower than the tolerance outlined in the project rubric.

Overview

Starting to work on this project consists of the following steps:

  1. Install uWebSocketIO and all the required dependencies
  2. Clone this repository
  3. Build the main program
    • mkdir build
    • cd build
    • cmake ..
    • make
  4. Launch ./UnscentedKF
  5. Launch the Udacity Term 2 simulator
  6. Enjoy!

Installation and Dependencies

This project involves the Udacity Term 2 Simulator which can be downloaded here

This repository includes two files that can be used to set up and install uWebSocketIO for either Linux or Mac systems. For windows you can use either Docker, VMware, or even Windows 10 Bash on Ubuntu to install uWebSocketIO. Please see this concept in the classroom for the required version and installation scripts.

Other Important Dependencies

Once all the dependencies have been installed clone the project:

git clone https://github.com/gdangelo/CarND-Unscented-Kalman-Filter-Project/

and follow the steps 3 to 6 of the Overview section in order to build and run the main program.


Questions or Feedback

Contact me anytime for anything about my projects or machine learning in general. I'd be happy to help you 😉