
Clarifying Lambdas in Java 8
Simon Ritter discusses the syntax and use of Lambda expressions, focusing on using
Streams to greatly simplify the way bulk and aggregate operations are handled in Java.

Java 8

PAGE 11

eMag Issue 15 - July 2014

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN ENTERPRISE SOFTWARE DEVELOPMENT

JAVA 7 FEATURES THAT ENABLE JAVA 8 P. 4

HOW FUNCTIONAL IS JAVA 8? P. 7

INTUITIVE, ROBUST DATE AND TIME HANDLING FINALLY COMES TO JAVA P. 18

TYPE ANNOTATIONS IN JAVA 8: TOOLS AND OPPORTUNITIES P. 25

WHERE HAS THE JAVA PERMGEN GONE? P. 31

NASHORN: THE COMBINED POWER OF JAVA AND JAVASCRIPT IN JDK 8 P. 37

GREAT JAVA 8 FEATURES NO ONE’S TALKING ABOUT P. 43

Contents

Java 7 Features That Enable Java 8 Page 4
In this article, Ben Evans explores some features in Java 7 which lay the groundwork for the new features in
Java 8.

How Functional Is Java 8? Page 7
By looking at the evolution of Java - particularly its type system, we can see how the new features of Java
8, especially lambda expressions, change the landscape, and provide some key benefits of the functional
programming style.

Clarifying Lambdas in Java 8 Page 11
Simon Ritter discusses the syntax and use of Lambda expressions, focusing on using Streams to greatly
simplify the way bulk and aggregate operations are handled in Java.

Intuitive, Robust Date and Time Handling Finally Comes to Java Page 18
Date and time are fundamental concepts to many applications, yet Java SE had no good API to handle them;
until now!

Type Annotations in Java 8: Tools and Opportunities Page 25
This article introduces the new type annotation syntax and practical tools to boost productivity and build
higher-quality software.

Where Has the Java PermGen Gone? Page 31
Prior to JDK8 class metadata and constants would live in an area called the “permanent generation”. In JDK8
PermGen has now moved to native memory, to an area known as the “Metaspace”.

Nashorn: The Combined Power of Java and JavaScript in JDK 8 Page 37
With JDK 8, Nashorn replaces Rhino as Java’s standard JavaScript engine for the benefit of improved
performance and compatibility.

Great Java 8 Features No One’s Talking about Page 43
In this article Tal Weiss focuses on some lesser known API’s in the new Java 8.

Page 3

Java 8 / eMag Issue 14 - July 2014

CONTENTS

A Letter from the Editor

After all the well deserved fanfare, Java 8 was
released this year and is now planting deep roots in
the development mainstream.

The syntax, API’s and plumbing have changed
substantially, perhaps more than in any version of
Java since 1.0, topping even Java 5 in impact.

In this eMag, InfoQ takes practitioners on a visit with
Java 8, exploring how we got here and how we should
be moving forward with it.

Java 8 was not just a quantum release. There was
some evolution in prior versions, especially Java 7.
So our eMag begins with a piece on “Java 7 Features
that Enable Java 8” by Ben Evans.

With the introduction of lambda expressions and the
new Collection and Stream APIs, Java steps into the
functional arena. Ben Evans explores this in a feature
entitled “How Functional is Java 8”.

Oracle evangelist Simon Ritter did a presentation at
QCon San Francisco 2014 clarifying Lambdas and
Streams. InfoQ distills the lessons learned into a
visceral enlightenment on how to think in terms of
these important new APIs.

Time and date handling in Java has until now been
somewhat of a sore spot for Java developers. “Joda”
Stephen Colebourn, who introduced the ever
popular Joda Time framework and led the spec

on the new Java Date Time APIs, does a deep dive
into this revolutionary addition to the core Java 8
distribution.

With the advent of annotations in Java, and their
fortification in Java 8, developers can annotate their
code with intent, creating an opportunity for tooling
to help eliminate bugs by verfiying usage against
intent. Financial technology consultant Todd Schiller
explores the usage patterns and existing tooling.

Next up, performance guru Monica Beckwith does
a deep dive into the removal of Perm Gen from
the Java runtime, and how to make sense of what
replaces it.

Project Rhino brought first class JavaScript support
to the Java language, compiling JavaScript into
bytecode, and allowing teams to leverage their client
side developers to build server side code. In his piece
entitled “Nashorn: The Combined Power of Java and
JavaScript in JDK 8” consultant Oliver Zeigermann
explores ways to work with JavaScript in Java 8.

Finally Takipi’s Tal Weiss has some fun exploring “8
Great Java 8 Features No One’s Talking About.

This is an important eMag about one of the most
important language releases in history. I hope you
enjoy it.

Victor Grazi is the Java queue lead at InfoQ. Inducted as an Oracle Java
Champion in 2012, Victor works at Nomura Securities on platform
architecture, and as a technical consultant and Java evangelist. He is
also a frequent presenter at technical conferences. Victor hosts the
“Java Concurrent Animated” open source project on SourceForge.

Page 4

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Java 7 Features That Enable Java 8

It’s a truism of the tech industry that developers are never happier than when
there’s free beer or an opportunity to complain about something on offer.

So despite the efforts of Mark Reinhold and the Java
team to involve the community in the roadmap after
the Oracle acquisition (the Plan A/Plan B decision),
many Java developers feel that Java 7 was not much
of a release.

In this article, I’ll try to refute this thesis, by exploring
the features in Java 7 that lay the groundwork for the
new features in Java 8.

Diamond operator
Java has often been criticised for being overly
verbose. One of the most common areas where this
complaint is expressed is in assignment. In Java 6, we
are forced to write assignment statements like this:

Map<String, String> m = new
HashMap<String, String>();

This statement contains a lot of redundant
information. We should be able to somehow have
the compiler figure out more of this by itself, and not
require the programmer to be quite so explicit.

In fact, languages like Scala do a large amount of type
inference from expressions, and in fact assignment
statements can be written as simply as this:

val m = Map(“x” -> 24, “y” -> 25, “z” ->
26);

The keyword val indicates that this variable may
not be reassigned to (like the keyword final for Java
variables). No type information is specified about the
variable at all - instead the Scala compiler examines
the right side of the assignment and determines the
correct type for the variable by looking at which
value is being assigned.

Java 7 introduced some limited type-inference
capabilities, and assignment statements can now be
written like this:

Map<String, String> m = new HashMap<>();

The key differences between this and the Scala form
is that in Scala, values have explicit types, and it is the
type of variables that is inferred. In Java 7, the type
of variables is explicit, and type information about
values is what is inferred.

Some developers have complained that they would
have preferred the Scala solution, but it turns out to
be less convenient in the context of a major feature
for Java 8: lambda expressions.

In Java 8, we can write a function which adds 2 to an
integer like this:

Function<Integer, Integer> fn = x -> x
+ 2;

by Ben Evans

http://www.infoq.com/news/2010/09/jdk7-slip
http://www.infoq.com/author/Ben-Evans

Page 5

Java 8 / eMag Issue 14 - July 2014

CONTENTS

The Function interface is new with Java 8. It
resides in the java.util.function package along with
specialized forms for primitive types. We’ve chosen
this syntax as it resembles the Scala equivalent and
allows the developer to see the similarities more
easily.

By explicitly specifying the type of fn as a Function
which takes one Integer argument and returns
another Integer, the Java compiler is able to infer the
type of the parameter x, which is Integer. This is the
same pattern that we saw in Java 7 diamond syntax:
we specify the types of variables and infer the types
of values.

Let’s look at the corresponding Scala lambda
expression:

val fn = (x : Int) => x + 2;

Here, we have to explicitly specify the type of the
parameter x, as we don’t have the precise type of
fn, and so we have nothing to infer from. The Scala
form is not difficult to read, but the Java 8 form has
a certain cleanliness of syntax which can be directly
traced back to the diamond syntax of Java 7.

Method handles
Method handles are simultaneously the most
important new feature of Java 7 and the feature that
is least likely to appear in the day-to-day life of most
Java developers.

A method handle is a typed reference to a method for
execution. It can be thought of as a typesafe function
pointer (for developers familiar with C/C++) or as
Core Reflection reimagined for the modern Java
developer.

Method handles play a huge part in the
implementation of lambda expressions. Early
prototypes of Java 8 converted each lambda
expression to an anonymous inner class at compile
time.

More recent betas are more sophisticated. Let’s
start by recalling that a lambda expression (at least
in Java) comprises a function signature (which in
the method handles API will be represented by a
MethodType object) and a body, but not necessarily a
function name.

This suggests that we could convert the lambda
expression into a synthetic method that has the
correct signature and contains the body of the
lambda. Look at our example:

Function<Integer, Integer> fn = x -> x
+ 2;

The Java 8 compiler turns that into a private method
with this bytecode:

private static java.lang.Integer
lambda$0(java.lang.Integer);
 descriptor: (Ljava/lang/Integer;)
Ljava/lang/Integer;
 flags: ACC_PRIVATE, ACC_STATIC, ACC_
SYNTHETIC
 Code:
 stack=2, locals=1, args_size=1
 0: aload_0
 1: invokevirtual #13 // Method
java/lang/Integer.intValue:()I
 4: iconst_2
 5: iadd
 6: invokestatic #8 // Method java/
lang/Integer.valueOf:(I)Ljava/lang/
Integer;
 9: areturn

This has the correct signature (takes in an Integer
and returns another one) and semantics. To use
this lambda expression, we take a method handle
that refers to it and use it to build an object of the
appropriate type, as we’ll see in the next feature we
discuss.

invokedynamic
The final feature of Java 7 that opens the door for
Java 8 is even more esoteric than method handles.
This is the new bytecode invokedynamic, the first
new bytecode to be added to the platform since
Java 1.0. This feature is almost impossible for Java
developers to make use of in version 7, because
version 7 javac will not under any circumstances emit
a classfile that contains it.

Instead, the bytecode was designed for use by
developers of non-Java languages such as JRuby,
which require much more dynamic dispatch than
Java. To see how invokedynamic works, let’s discuss
how Java’s method calls are compiled into bytecode.

Page 6

Java 8 / eMag Issue 14 - July 2014

CONTENTS

A standard Java method call will be turned into a
piece of JVM bytecode that is often referred to as
a call site. It comprises a dispatch opcode (such as
invokevirtual for regular instance method calls) and
a constant (an offset into the Constant Pool of the
class) that indicates which method is to be called.

The different dispatch opcodes have different rules
that govern how method lookup is done, but until
Java 7, the constant was always a straightforward
indication of which method was to be called.

invokedynamic is different. Instead of providing a
constant that directly indicates which method is to
be called, invokedynamic provides an indirection
mechanism that allows user code to decide which
method to call at run time.

When an invokedynamic site is first encountered, it
does not yet have a known target. Instead, a method
handle (called a bootstrap method) is invoked. This
bootstrap method returns a CallSite object, which
contains another method handle that is the actual
target of the invokedynamic call:

1) invokedynamic site encountered in the execution
stream (initially unlinked).

2) Call bootstrap method and return a CallSite object.

3) CallSite object contains a method handle (the
target).

4) Invoke the target method handle.

The bootstrap method is the way in which user
code chooses which method to call. For lambda
expressions, the platform uses a library-supplied
bootstrap method called a lambda meta-factory. This
has static arguments that contain a method handle
to the synthesized method (see last section) and the
correct signature for the lambda.

The meta-factory returns a CallSite that contains a
method handle, which will in turn return an instance
of the correct type that the lambda expression has
been converted to. So, a statement like:

Function<Integer, Integer> fn = x -> x
+ 2;

is converted to an invokedynamic call like this:

Code:
 stack=4, locals=2, args_size=1
 0: invokedynamic #2, 0 //
InvokeDynamic #0:apply:()Ljava/util/
function/Function;
 5: astore_1

The invokedynamic bootstrap method is the static
method LambdaMetafactory.metafactory(), which
returns a CallSite object that is linked to a target
method handle, which will return an object that
implements the Function interface.

When the invokedynamic instruction is complete,
an object that implements Function and that has
the lambda expression as the contents of its apply()
method is seated on top of the stack, and the rest of
the code can proceed normally.

Conclusion
Getting lambda expressions into the Java platform
was always going to be challenging, but Java 7 eased
that effort considerably by ensuring that the proper
groundwork was in place,. Plan B not only provided
developers with the early release of Java 7 but also
allowed core technologies to be fully road-tested
before their use in Java 8 and especially in lambda
expressions.

ABOUT THE AUTHOR
Ben Evans is co-founder of jClarity, a

startup which delivers performance

tools & services to help development

& ops teams. He is an organizer for

the LJC (London’s JUG) and a member

of the JCP Executive Committee,

helping define standards for the Java

ecosystem. He is a Java Champion;

JavaOne Rockstar; co-author of “The

Well-Grounded Java Developer” & the

new edition “Java in a Nutshell” and a

regular speaker on the Java platform,

performance, concurrency, and

related topics.

READ THIS ARTICLE
ONLINE ON InfoQ

http://www.infoq.com/articles/Java-7-Features-Which-Enable-Java-8/

Page 7

Java 8 / eMag Issue 14 - July 2014

CONTENTS

How Functional Is Java 8?

There’s been a lot of talk about how Java 8 is bringing
functional programming (FP) to Java, but what does
that really mean?

In this article, I’ll discuss what it means for a
language, or a programming style, to be functional.
By looking at the evolution of Java, particularly its
type system, we can see how the new features of
Java 8, especially lambda expressions, change the
landscape and provide some key benefits of the
functional style - before tackling the question “How
functional is Java 8?”

What is a functional programming
language?
At its heart, a functional programming language is
one that deals with code in the same way as data.
This means that a function should be a first-class
value and able to be assigned to variables, passed to
functions, and so forth.

In fact, many functional languages go even further
than this, and see computation and algorithms
as more fundamental than the data they operate
on. Some of these languages want to disentangle
program state from functions (in a way that seems
at odds with the desire of object-oriented languages
that usually want to bring them closer together).

An example would be the Clojure programming
language. Despite running on top of the class-based
Java virtual machine, Clojure is fundamentally a

functional language, and doesn’t directly expose
classes and objects in the high-level source language
(although good interoperability with Java is
provided).

A Clojure function, such as the log-processing
function shown below, is a first-class citizen, and
doesn’t need to be bundled up in a class to exist.

(defn build-map-http-entries [log-file]
 (group-by :uri (scan-log-for-http-
entries log-file)))

Functional programming is most useful when
programs are written in terms of functions that
always return the same output for a given input
(regardless of any other state present in the running
program) and that do not cause any other effects
or change any program state. Functions that obey
this are sometimes called “pure” functions, and they
behave in the same way that mathematical functions
do.

The great advantage that pure functions have is
that they are much easier to reason about because
their operation does not depend on external state.
Functions can easily be combined together - and this
can be seen in developer workflow styles such as
the REPL (read, execute, print, loop) style common
to Lisp dialects and other languages with strong
functional heritage.

by Ben Evans

https://www.google.com/search?q=define:repl
http://www.infoq.com/author/Ben-Evans

Page 8

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Functional programming in non-FP
languages
Whether a language is functional or not is not a
binary condition - instead, languages exist on a
spectrum. At the extreme end are languages that
basically enforce functional programming, often by
prohibiting mutable data structures. Clojure is one
example of a language that does not permit mutable
data in the accepted sense.

However, there are other languages in which it is
common to write programs in a functional style,
despite the language not enforcing this. An example
would be Scala, which is a blend of object-oriented
and functional languages. It permits functions as
values, such as:

val sqFn = (x: Int) => x * x

while retaining class and object syntax that is very
close to that of Java.

At the other extreme, it is of course possible to
write functional programs in completely non-
functional languages, such as C, provided that
suitable programmer discipline and conventions are
maintained.

With this in mind, functional programming should
be seen as a function of two factors - one of which
is relevant to programming languages and one to
programs written in that language:

1. To what extent does the underlying programming
language support or enforce functional
programming?

2. How does this particular program make use of
the functional features provided by the language?
Does it avoid non-functional features such as
mutable state?

Some Java history
Java is an opinionated language. it has been
optimized for readability, for accessibility to junior
programmers, and for long-term stability and
supportability. These design decisions have come at
a cost - in verbosity, and in a type system that can
sometimes seem inflexible when compared to other
languages.

However, Java’s type system has evolved, albeit
relatively slowly, over the history of the language.

Let’s take a look at some of the forms that it has
assumed over the years.

Java’s original type system
Java’s original type system is now well over 15 years
old. It is simple and clear: types are either reference
types or primitive types. Reference types are classes,
interfaces, or arrays.

Classes are the heart of the Java platform. A class is
the basic unit of functionality that the Java platform
will load or link, and all code that is intended for
execution must live inside a class.

Interfaces can’t be instantiated directly and a class
instead must be defined that implements the API
defined by the interface.

Arrays hold either primitive types, instances of
classes, or other arrays.

The primitive types are all defined by the platform,
and the programmer can’t define new ones.

From the very earliest days, Java’s type system has
been insistent on a very important point: every type
must have a name by which it can be referred. This is
known as “nominative typing” - and Java is a strongly
nominatively typed language.

Even the so-called “anonymous inner classes” still
have a type by which the programmer must refer
to them, being the type of the interface that they
implement:

Runnable r = new Runnable() { public
void run() { System.out.println(“Hello
World!”); } };

Another way of saying this is that every value in Java
is either a primitive or an instance of some class.

Alternatives to named types
Other languages do not have this fascination with
named types. For example, Java has no equivalent to
Scala’s concept of a type that implements a specific
method (of a specific signature). In Scala, this would
be written:

x : {def bar : String}

Remember that Scala indicates the type of a variable
on the right (after the :) so this is read as something

Page 9

Java 8 / eMag Issue 14 - July 2014

CONTENTS

like “x is of a type that has a method called bar that
returns String”. We could use this to define a Scala
method like this:

def showRefine(x : {def bar : String}) =
{ print(x.bar) }

Then, we can define a suitable Scala object like this:

object barBell { def bar = “Bell” }

and calling showRefine(barBell) does the expected
thing:

showRefine(barBell) Bell

This is an example of refinement typing.
Programmers coming from dynamic languages may
be familiar with “duck typing”. Structural refinement
typing is similar, except that duck typing (“if it walks
like a duck, and quacks like a duck, it’s a duck”) is
about the runtime types, whereas these structural
refinement types work at compile time.

In languages that fully support structural refinement
typing, these refined types can be used anywhere
the programmer might expect (such as the type of a
parameter to a method). Java, by contrast, does not
support this sort of typing (apart from a couple of
slightly bizarre edge cases).

The Java 5 type system
The release of Java 5 brought three major new
features to the type system: enums, annotations, and
generic types.

Enumerated types (enums) are similar to classes in
some respects, but they have the property that only
a specified number of instances may exist, and each
instance is specified in the class description and
distinct. Intended primarily as a typesafe constant
rather than the then-common practice of using small
integers for constants, the enum construction also
permits additional patterns that are sometimes
extremely useful.

Annotations are related to interfaces - the keyword
to declare one is @interface - with the initial @
indicating that this is an annotation type. As the
name suggests, they’re used to annotate elements of
Java code with additional information that doesn’t
affect behavior. Previously, Java had made use of so-
called “marker interfaces” to provide a limited form

of this metadata but annotations are considerably
more flexible.

Java’s generics provide parameterized types: the
idea that one type can act as a container for objects
of another type, without regard for the specifics
of exactly which type is being contained. The type
that fits into the container is often called the type
parameter.

Of the features introduced by Java 5, enums and
annotations provided new forms of reference type
which require special treatment by the compiler and
which are effectively disjoint from the existing type
hierarchies.

Generics provide significant additional complexity
to Java’s type system - not least because they are
purely a compile-time feature. This requires the Java
developer to be mindful of both a compile-time and a
run-time type system that are slightly different from
each other.

Despite these changes, Java’s insistence on
nominative typing remained. Type names now
include List<String> (read as: “List-of-String”) and
Map<Class<?>, CachedObject> (“Map-of-Class-of-
Unknown-Type-to-CachedObject”), but these are still
named types, and every non-primitive value is still an
instance of a class.

Features introduced in Java 6 and 7
Java 6 was essentially a performance and library-
enhancement release. The only change to the type
system was an expansion of the role of annotations,
and the release of a capability for pluggable
annotation processing. This did not impact most Java
developers, and did not really provide for pluggable
type systems in Java 6.

Java 7 did not materially change the type system. The
only new features, all of them very minor, are:

Small improvements in type inference in the javac
compiler.

Signature polymorphic dispatch, used as an
implementation detail for method handles - which
are in turn used to implement lambda expressions in
Java 8.

Multi-catch provides some small traces of algebraic
data types, but these are purely internal to javac

Page 10

Java 8 / eMag Issue 14 - July 2014

CONTENTS

and are not of any real consequence to the end-user
programmer.

The Java 8 type system
Throughout its history, Java has been essentially
defined by its type system. It is central to the
language and has maintained a strict adherence to
nominative typing. From a practical point of view, the
Java type system did not change much between Java
5 and Java 7.

At first sight, we might expect Java 8 to change that.
After all, a simple lambda expression appears to
remove us from nominative typing:

() -> { System.out.println(“Hello
World!”); }

This is a method, without a name, that takes no
parameters and returns void. It’s still perfectly
statically typed, but is now anonymous.

Have we escaped the Kingdom of the Nouns? Is this
actually a new form of type for Java?

The answer is, perhaps unfortunately, no. The
JVM, on which Java and other languages run, is
very strictly tied to the concept of classes. Class
loading is central to the Java platform’s security and
verification modes. Simply put, it would be very, very
difficult to conceive of a type that was not in some
way represented through a class.

Instead of creating a new kind of type, Java 8 lambda
expressions are auto-converted by the compiler to
be an instance of a class. The class of which they are
an instance is determined by type inference. For
example:

Runnable r = () -> { System.out.
println(“Hello World!”); };

The lambda expression on the right side is a perfectly
good Java 8 value - but its type is inferred from
the value on the left, so it is actually a value of type
Runnable. Note, however, that a lambda expression
used in an incorrect way will result in a compiler
error. Nominative typing is still the Java way, and
even the introduction of lambdas has not changed
that.

How functional is Java 8?
Finally, let’s turn to the question we posed at the
start of the article: how functional is Java 8?

Before Java 8, a developer who wanted to write in
a functional style would have to use nested types
(usually anonymous inner classes) as a stand-in for
function literals. The default collections libraries
would not do the code any favors, and the curse of
mutability would be ever-present.

Java 8’s lambda expressions do not magically
transform it into a functional language. Instead, their
effect is to create a still imperative, still strongly
nominative type language that has better syntax
support for lambda expressions as function literals.
Simultaneously, the enhancements to the collections
libraries have allowed Java developers to start
adopting simple functional idioms (such as filter and
map) to tidy up otherwise unwieldy code.

Java 8 required the introduction of some new types
to represent the basic building blocks of functional
pipelines - interfaces such as Predicate, Function, and
Consumer in java.util.function. These additions make
Java 8 capable of slightly functional programming
but Java’s need to represent them as types (and their
location in a utility package rather than the language
core) speaks to the stranglehold that nominative
typing has on the Java language, and how far the
language is from the purity of Lisp dialects or other
functional languages.

Despite all the above, this small subset of the
power of functional languages may well be all that
most developers actually need for their day-to-day
development. For power users, other languages (on
the JVM and elsewhere) still exist, and will doubtless
continue to thrive.

ABOUT THE AUTHOR
Ben Evans is co-founder of

jClarity, a startup which delivers

performance tools & services to

help development & ops teams.

He is an organizer for the LJC

(London’s JUG) and a member of

the JCP Executive Committee,

helping define standards for the

Java ecosystem. He is a regular

speaker on the Java platform,

performance, concurrency, and

related topics.

READ THIS ARTICLE
ONLINE ON InfoQ

http://www.infoq.com/articles/How-Functional-is-Java-8

Page 11

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Clarifying Lambdas in Java 8

If you ask average Java developers about Java 8, you
will hear ebullient joy in their voices, especially on
the prospect of using lambda expressions.

But after honest introspection, we might find the
fervor tempered by some fear of the tangled web
of new and mysterious APIs. Simon Ritter has
unravelled some of the mystery in his talk on lambdas
at the 2014 QCon London conference

 Ritter begins with the question “Why do we want
lambdas in Java?” Java as a language is Turing-
complete, which means that any problem that can be
solved with a computer program, can be expressed in
Java. So, why do we need to invest in implementing
and learning new features? Ritter answers that
“lambdas can make life easier in terms of how you
code and the way that we can take advantage of the
platform underneath – multi-core, multi-processor
systems.”

Let’s look at a sample piece of code that illustrates a
common coding pattern in Java:

List<Student> students = ...
 double highestScore = 0.0;
 for (Student s : students) {
 if (s.gradYear == 2011) {
 if (s.score > highestScore) {
 highestScore = s.score;
 }
 }
 }

(The red parts represent the parts we are interested
in; blue represents the boilerplate code.)

In this problem, we want to find the highest score
in a Collection of students. We are using a common
external-iteration idiom to scan and compare.

But there are some drawbacks to this. First, external
iteration means that we, the developers, are
responsible for the implementation, and because we
are using a single loop, we are making it inherently
serial. If we wanted to optimize this, we couldn’t
easily segment it into a parallel set of execution
instructions.

Secondly, the highestScore variable is mutable and
not thread-safe. So, even if we did want to break it
up into multiple threads, we would have to introduce
additional locking to prevent race conditions, which
in turn can introduce performance issues.

Now, if we’re clever, we can change the
implementation a bit more towards the functional
style by using an anonymous inner class.

 List<Student> students = ...
 double highestScore =
 students.filter(new
Predicate<Student>() {
 public boolean op(Student s) {
 return s.getGradYear() == 2011;
 }
 }).map(new Mapper<Student, Double>()

presentation summary writen by Victor Grazi

http://www.infoq.com/presentations/lambda-streams-java-8

Page 12

Java 8 / eMag Issue 14 - July 2014

CONTENTS

{
 public Double extract(Student s) {
 return s.getScore();
 }
 }).max();

In this implementation, we eliminate the mutable
state, and hand the job of iteration to the library. We
are chaining together a sequence of method calls
in order to apply that operation in an expression of
“Look at all of my students and filter out just the ones
who graduated in 2011”.

The anonymous inner class implements a Predicate
interface (it contains one method, accepts one
parameter, returns a boolean) with the method called
“op”, which simply compares the graduation year of
that student to 2011 and returns the result.

We pass the result (all students who graduated in
2011) to a map method, which is going to use another
anonymous inner class to call the map interface-
method with its single extract method, to extract the
data we want (by calling getScore). We then pass that
result, which is a set of scores of all the students who
graduated in 2011, to a max method, delivering the
largest number from that set of results.

Using this approach, we have handed all the iteration,
filtering, and accumulation to the library code,
freeing us from having to do that explicitly. Not
only does that simplify our implementation, it also
eliminates the shared state, making it easy to ask the
library code to decompose it into a number of sub-
tasks and allocate them to different threads to have
them execute in parallel. In many cases, we could also
perform a lazy evaluation, saving even more time.

So, an approach that uses the anonymous inner class
is fast and thread-safe, but look at the color-coding.
The ratio of blue to red is pretty high, indicating
boilerplate bloat.

Enter lambda expressions!

You can think of a lambda expression as a method in
the sense that it accepts parameters, has a body, and
returns a static type.

This example uses lambda expressions to accomplish
the same high-score determination algorithm as
above. Let’s take a closer look.

First, we create a Stream from our Collection. The
stream method is new in the COLLECTION interface,
and works somewhat like a built-in Iterator (more on
that later). The stream prepares the results from the
collection, which we then pass to our filter method,
describing the “how” part of the filter using a lambda
expression that compares the graduation year of that
student against 2011.

Notice that there is no explicit return statement. We
simply say “Compare graduation year against 2011,”
and the compiler infers that the Predicate interface
(which has a single method that needs a signature
with a return type of boolean) is intended. The
map method is processed similarly, using a lambda
expression, by passing a parameter of Student S and
mapping (a.k.a. translating) it to the return value,
which is the score of that student. (The map method
should not be confused with the very different java.
util.Map of key-value pairs. Rather, the Stream class’s
map method returns a new Stream instance that
consists of the results of the operation applied to all
elements of the incoming Stream, producing, in this
case, a Stream of all of the scores.)

Using lambdas, we have implemented the same
algorithm with a lot less code. It is clearer, and
therefore less error-prone, and, as we said, it can be
swapped for a parallel algorithm since there is no
shared state.

As Ritter says in his talk,

Lambda expressions represent an anonymous
function. So, I said they are like a method,
but they are not really a method. They are an
anonymous function in the sense that they do

the same thing as
a method, but they
are not a method
because they are
not associated with
a class. If you think
about Java as you
program now, you

Page 13

Java 8 / eMag Issue 14 - July 2014

CONTENTS

create a class and the class has methods. So,
the method has a class associated with it. In
the case of the lambda expression, there is no
class associated with it!...

It is like a method in its structure: it has a
typed argument list; it has a return type
that can be inferred; but you can also use an
explicit return, if you want. It has potentially
a set of thrown exceptions so you can throw
exceptions from within lambda expression if
you want to and it has a body, which defines
what you are actually doing. You can do the
same thing as with a method: you can group
statements together; you can use braces
and have multiple statements without any
problem. The important thing about this
is that it now enables us in a simple way
to have parameterized behavior, not just
parameterized values.

Ritter extends this concept by pointing out that since a
lambda is a function without a class, the keyword “this”
refers not to the lambda itself, but to the surrounding
class. This is distinguished from an anonymous inner
class, where “this” refers to the inner class itself.

It is helpful to look at the implementation choices
made by the language designers to accomplish
lambdas.

Looking at Java as a whole, there are many interfaces
that have just one method.

Let’s define a functional interface as an interface with
exactly one abstract method, for example:

interface Comparator<T> { boolean
compare(T x, T y); }
interface FileFilter { boolean
accept(File x); }
interface Runnable { void run(); }
interface ActionListener { void
actionPerformed(…); }
interface Callable<T> { T call(); }

A lambda expression lets us define a functional
interface (again, one abstract method), which the
compiler identifies by structure. The compiler can
determine the represented functional interface from
its position. The type of a lambda expression is that of
the associated functional interface.

Because the compiler understands where you are
using a lambda expression, it can determine a lot about
that expression. It knows the type of the functional
interface, so it can infer other types for you.

But, Ritter observes:

The thing to be very aware of here is that
even though we are not explicitly putting the
type information in there, this is not sneaking
dynamic typing into Java. We would never
do that. That is nasty, it is bad. So, what we
are doing is to say that this is still very much
statically typed, but it is more typing with less
typing.

By the way, one thing that differentiates lambda
expressions from closures, says Ritter, is that unlike
closures, lambdas cannot access a variable from
outside the lambda expression unless that variable
is effectively final, meaning that although it does
not require the final keyword (unlike an inner class),
nonetheless the variable must not be reassigned. This
convention renders it “effectively final.

Method references
The method-reference syntax is another by-product
of the new lambda-expression capability. This is a
shortcut that allows you to reuse a method basically
as a Lambda expression. You might have something
like this:

FileFilter x = f -> f.canRead();

Such syntax tells the program to create a FileFilter
that filters files based on a common property – in this
case, if it can be read. Note in this example, we never
mentioned that f is a file; the compiler inferred that
from the signature of the lone method in FileFilter:

 boolean accept(File pathname);

That can be simplified further using the new Java 8 “::”
notation.

FileFilter x = File::canRead;

That is completely equivalent.

To call a constructor in a similar fashion, you can use
the “::new” syntax. For example, if we have a functional
interface:

Page 14

Java 8 / eMag Issue 14 - July 2014

CONTENTS

interface Factory<T> {
 T make();
}

Then we can say:

Factory<List<String>> f =
ArrayList<String>::new;

This is equivalent to:

Factory<List<String>> f = () -> return
new ArrayList<String>();

And now, when f.make() is called, it will return a new
ArrayList<String>.

By leveraging functional interfaces, the compiler can
infer a lot about typing and intent, as we see from
these examples.

Library evolution
One advantage of lambdas and expressing code as
data is that, as we have seen, existing libraries have
been updated to accept lambdas as parameters. This
introduced some complexity: how do you introduce
new interface methods without breaking existing
interface implementations?

To address this, Java introduced the concept of
extension methods, a.k.a. defender methods.

Let’s explain by way of example. The stream method
was added to the Collection interface to provide
basic lambda support. In order to add the stream
method to that interface without breaking existing
Collection implementations all over the globe,
Java added stream as an extension method to the
interface, providing a default implementation:

interface Collection<E> {
 default Stream<E> stream() {
 return StreamSupport.
stream(spliterator());
 }
}

So now you have the ability to implement the
stream method, if you want to. And if you don’t, Java
provides a default implementation for you.

Aggregate operations

Business operations frequently involve aggregation:
find the sum, max, or average of a set of data, or
group by something. Until now, such operations were
typically performed by loops in an external iteration,
which, as we said, restricts us from optimizing and
introduces code bloat.

Java SE 8 Streams aim to solve that. In Ritter’s words:

A stream is a way of abstracting and specifying
how we do aggregate computations. It is not
a data structure. It is really a way of handling
data, but it is not a data structure on its own
and, interestingly, it can be finite but it can
also be infinite. So, you can create a stream
of, let’s say, random numbers and there is
not necessarily an end to that. This is where,
sometimes, things get a little bit confusing.
You think to yourself, “Well, if I got an infinite
stream, I might just keep processing that data
forever and ever. How do I stop what I am
doing with that data?”

The answer is that potentially you will not. You can
actually quite easily write a piece of code using
streams that will continue forever, in the same way
that “while(true);” loop will continue forever. It’s the
same with a Stream: if you use an infinite Stream, it
could never end. But you can also allow that Stream
to stop – say, to provide an infinite stream of random
numbers but with some particular point at which to
finish, That Stream will stop and you can carry on with
your code.

Streams provide a pipeline of data with three
important components:

1. A source of backing data

2. Zero or more intermediate operations,
producing a pipeline of filtered streams

3. A terminal operation. That does one of two
things: it either creates a result or it creates
a side effect. (A side effect means you might
not actually return a result but instead, for
example, get a printout.)

Page 15

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Let’s look at an example, in which we start with a
Collection of “transactions” and want to determine
the total price of all transactions that take place with
buyers from London.

In this example, we apply a stream to our Collection of
transactions.

Then, we apply the filter operation to produce a new
Stream of London buyers.

Next, we apply the intermediate operation mapToInt
to extract the prices.

Finally, we apply the terminal sum operation to
compute the result.

From the point of view of the execution, what
happens here is that the filter and the map methods
(our intermediate operations) do not really do any
computational work. They are just responsible for
setting up the pipeline of operations, and the actual
computation is performed lazily, deferred until you call
the terminal operation – the sum in this case – which is
when all the work happens.

Stream sources
There are a number of ways to obtain a Stream. Many
methods have been added to the Collection API (using
the extension methods in interfaces mechanism we
discussed.)

If you have, say, a List, Set, or Map.Entry, you can call
a Stream method on that and get a Stream of the
contents of that collection.

An example is the stream() method, or parallelStream(),
which tells the underlying library to use the fork/join
framework to decompose the actions into a number of
subtasks.

There are other ways of getting a stream:

• Pass an array to the stream() method in the
Arrays class.

• Pass in something to Stream.of(), a static
method on the Stream class.

• Call one of the new static methods to return
particular streams, for example:

 y IntStream.range(), supplying a start and
end index. For example, IntStream.range(1,
10) would generate a stream from 1 to 9
with an incremental step of 1. (IntRange.
rangeClosed(1,10) will generate a stream
from 1 to 10).

 y Files.walk() passing in a path and some
optional control parameters returns
a stream of individual files and sub-
directories.

 y Implement the java.util.Spliterator
interface to define your own way of
creating a Stream. For more information
on Spliterator, see Oracle’s SE 8 Javadocs.

Stream terminal operations

After we have piped together all of these streams,
we must specify a terminal operation to execute the
pipeline and all operations (either sequentially or in
parallel) and produce the final results (or side effects).

Iterable interface
This is an old friend we’ve known since Java 1.5
days, except that it now has a forEach() method that
accepts a Consumer, the prototype class that accepts
a single argument, returns no value, and produces a
side effect. But this is still an external iteration, and
the better approach is to supply a lambda to the map()
method.

http://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html
http://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

Page 16

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Examples
Ritter concluded his presentation with a number
of useful examples, which we list here, with
explanations in the comments. (Lines in blue indicate
the special usage demonstrated by each example.)

Example 1. Convert words to upper case:

List<String> output = wordList.
 stream().
 map(String::toUpperCase). // Map the
entire list to an upper-case stream.
 collect(Collectors.toList()); //
Convert the stream to a list.

Example 2. Find even-length words in a list:

List<String> output = wordList.
 stream().
 filter(w -> (w.length() & 1 == 0). //
Select only words of even-numbered
length.
 collect(Collectors.toList());

Example 3. Count lines in a file:

long count = bufferedReader.
lines(). // Get a stream of individual
lines. This is a new method on

// bufferedReader that returns a
stream<string>.

count(); // Our terminal operator
counts the elements of the incoming
stream.

Example 4. Join lines 3 and 4 into a single string:

String output = bufferedReader.
lines().

skip(2).
// Skip the first two lines.
limit(2).
// Get a stream consisting of the
next two lines only.
collect(Collectors.joining());
// Join the lines.

Example 5. Find the length of the longest line in a file:

int longest = reader.
lines().

 mapToInt(String::length).
// Create a new Stream with the
String lengths replacing

// the actual Strings with their
corresponding lengths.

max().
// Get the max element of the stream
of
// lengths (as an OptionalInt).

getAsInt();
// Replace the OptionalInt with an
int.

Example 6. Collect all words in a file into a list:

List<String> output = reader.
lines().
flatMap(line -> Stream.of(line.
split(REGEXP))). // Get a stream of
the words from

// all of the lines.

filter(word -> word.length() > 0).
// Filter out the empty strings.

collect(Collectors.toList());
// Create the return list.

Example 7. Return the list of lower-case words in
alphabetical order:

List<String> output = reader.
lines().
flatMap(line -> Stream.of(line.
split(REGEXP))).
filter(word -> word.length() > 0).

map(String::toLowerCase).
// Replace the source Stream with a
Stream of
// lower-case words.

sorted(). //
Replace the stream with the sorted
version.
collect(Collectors.toList());
// Create the return List.

http://docs.oracle.com/javase/8/docs/api/java/util/OptionalInt.html

Page 17

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Conclusion
Simon Ritter concludes the presentation by
declaring:

Java needs lambda expressions to make
life easier. It needs lambda expressions so
that we can implement Streams, we can
implement the idea of passing behavior as
well as passing values. We also need to be
able to extend existing interfaces, which
is why Java SE 8 has extension methods,
and that solves the problem of backward
compatibility. What this allows us to do is
to provide this idea of bulk operations on
Collections and be able to do things that are
far more simple, (in a) far more readable kind
of way. Java SE 8 is basically evolving the
language; it is evolving the class libraries and
also the virtual machines at the same time.

Java 8 is available for download, and there is good
lambda support in all of the major IDE’s. I encourage
all Java developers to download it and give Project
Lambda a spin.

ABOUT THE SPEAKER
Simon Ritter is Head of Java Technology

Evangelism at Oracle Corporation. Simon has

been in the IT business since 1984 and holds a

Bachelor of Science degree in Physics from Brunel

University in the U.K.

WATCH THE FULL
PRESENTATION ON InfoQ

http://www.infoq.com/presentations/lambda-streams-java-8

Page 18

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Intuitive, Robust Date and Time
Handling Finally Comes to Java

The concepts of date and time are fundamental to
many applications. Things as diverse as birth dates,
rental periods, event timestamps, and shop opening
hours are all based on date and time, yet Java SE had
no good API to handle them. With Java SE 8, a new
set of packages called java.time provides a well-
structured API to cover date and time.

History
When Java was first launched, in version 1.0, the
only support for dates and times was the java.util.
Date class. The first thing most developers noted
about the class was that it didn’t represent a date.
What it did represent was actually quite simple: an
instantaneous point in time based on millisecond
precision, measured from the epoch of 1970-01-
01Z. However, because the standard toString() form
printed the date and time in the JVM’s default time
zone, some developers wrongly assumed that the
class was time-zone aware.

The Date class was deemed impossible to fix when
the time came for improvements in version 1.1. As a
result a new java.util.Calendar API was added. Sadly,
the Calendar class isn’t really much better than java.
util.Date. Some of the issues of these classes are:

Mutability. Classes like dates and time simply should
be immutable.

Offset. Years in Date start from 1900. Months in
both classes start from zero.

Naming. Date is not a “date”. Calendar is not a
“calendar”.

Formatting. The formatter only works with Date,
not Calendar, and is not thread-safe

Around 2001, the Joda-Time project started. Its
purpose was simple: to provide a quality date and
time library for Java. It took a while, but eventually
version 1.0 of Joda-Time was launched and it became
a popular, widely used library. Over time, demand
grew to provide a library like Joda-Time in JDK. With
the help of Michael Nascimento Santos from Brazil,
the official process to create and integrate a new
date and time API for the JDK, JSR-310, started.

Overview
The new java.time API consists of five packages:

java.time - the base package containing the value
objects

java.time.chrono - provides access to different
calendar systems

java.time.format - allows date and time to be
formatted and parsed

java.time.temporal - the low-level framework and
extended features

java.time.zone - support classes for time zones

by Stephen Colebourne

http://www.joda.org/joda-time/
http://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html
http://docs.oracle.com/javase/8/docs/api/java/time/chrono/package-summary.html
http://docs.oracle.com/javase/8/docs/api/java/time/format/package-summary.html
http://docs.oracle.com/javase/8/docs/api/java/time/temporal/package-summary.html
http://docs.oracle.com/javase/8/docs/api/java/time/zone/package-summary.html
http://www.infoq.com/author/Stephen-Colebourne

Page 19

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Most developers will primarily use the base and
format packages, and perhaps the temporal package.
Thus, although there are 68 new public types, most
developers will only actively use around a third of
them.

Dates
The LocalDate class is one of the most important
in the new API. It is an immutable value type that
represents a date. There is no representation of time
of day or time zone.

The “local” terminology is familiar from Joda-Time
and comes originally from the ISO-8601 date and
time standard. It relates specifically to the absence
of a time zone. In effect, a local date is a description
of a date, such as “5 April 2014”. That particular local
date will start at different points on the timeline
depending on your location on Earth. Thus, the
local date will start in Australia 10 hours before it
starts in London and 18 hours before it starts in San
Francisco.

The LocalDate class is designed to have all the
methods that are commonly needed:

LocalDate date = LocalDate.of(2014,
Month.JUNE, 10);
int year = date.getYear(); // 2014
Month month = date.getMonth(); // JUNE
int dom = date.getDayOfMonth(); // 10
DayOfWeek dow = date.getDayOfWeek(); //
Tuesday
int len = date.lengthOfMonth(); // 30
(days in June)
boolean leap = date.isLeapYear(); //
false (not a leap year)

In the example, we see a date being created using
a factory method (all constructors are private). It is
then queried for some essential information. Note
the Month and DayOfWeek enums designed to
make code more readable and reliable.

In the next example, we see how an instance is
manipulated. As the class is immutable, each
manipulation results in a new instance, with the
original unaffected.

LocalDate date = LocalDate.of(2014,
Month.JUNE, 10);
date = date.withYear(2015); // 2015-06-
10

date = date.plusMonths(2); // 2015-08-10
date = date.minusDays(1); // 2015-08-09

These changes are relatively simple, but often there
is a need to make more complex alterations to a date.
The java.time API includes the TemporalAdjuster
mechanism to handle this. TemporalAdjuster is a pre-
packaged utility capable of manipulating a date, such
as obtaining the instance corresponding to the last
day of the month. Common ones are supplied in the
API but you can add your own. Using an adjuster is
easy but does benefit from static imports:

import static java.time.DayOfWeek.*

import static java.time.temporal.
TemporalAdjusters.*

LocalDate date = LocalDate.of(2014,
Month.JUNE, 10);
date = date.with(lastDayOfMonth());
date = date.with(nextOrSame(WEDNESDAY));

The immediate reaction to seeing an adjuster in use
is typically an appreciation of how close the code
is to the intended business logic. Achieving that is
important with date and time business logic. The
last thing that we want to see is large numbers of
manual manipulation of dates. If you have a common
manipulation that you are going to perform many
times in your codebase, consider writing your own
adjuster once and getting your team to pull it in as a
pre-written, pre-tested component.

Dates and times as values
It is worth spending a brief moment considering what
turns the LocalDate class into a value. Values are
simple data types where two instances that are equal
are entirely substitutable – in other words, object
identity has no real meaning. The String class is the
canonical example of a value: we care whether two
strings are true by equals(); we don’t care if they are
identical by ==.

Most date and time classes should also be values, and
the java.time API fulfills this expectation. Thus, there
is never a good reason to compare two LocalDate
instances using ==, and in fact the Javadoc warns
against it.

For those wanting to know more, see my recent
definition of VALJOs, which defines a strict set of
rules for value objects in Java, including immutability,

http://en.wikipedia.org/wiki/ISO_8601
http://blog.joda.org/2014/03/valjos-value-java-objects.html

Page 20

Java 8 / eMag Issue 14 - July 2014

CONTENTS

factory methods, and good definitions of equals,
hashCode, toString, and compareTo.

Alternate calendar systems
The LocalDate class, like all main date and time
classes in java.time, is fixed to a single calendar
system: the calendar system defined in the ISO-8601
standard.

The ISO-8601 calendar system is the world’s de facto
civil calendar, also called the proleptic Gregorian
calendar. Standard years are 365 days long, and leap
years are 366 days long. Leap years occur every four
years, but not every 100, unless divisible by 400. The
year before the year 1 is considered to be year 0 for
consistent calculations.

The first impact of using this calendar system as the
default is that dates are not necessarily compatible
with the results from GregorianCalendar.
In GregorianCalendar, there is a switch from
the Julian calendar system to the Gregorian one that
occurs by default on 15 October, 1582. Before that
date, it uses the Julian calendar, which has a leap
year every four years without fail. After that date,
it switches to the Gregorian calendar and the more
complicated leap-year system we use today.

Given that this change in calendar system is a
historical fact, why does the new java.time API not
model it? The reason is that most Java applications
that make use of such historic dates are incorrect
today, and it would be a mistake to continue that.
While the Vatican City in Rome changed calendar
systems on 15 October, 1582, most of the world did
not. In particular, the British Empire, including the
American colonies, did not change until nearly 200
years later on 14 September, 1752. Russia didn’t
change until 14 February, 1918, and Sweden’s
change was particularly messy. Thus, the meaning
of a date prior to 1918 is in fact quite open to
interpretation, and faith in the single cutover found
in GregorianCalendar is misplaced. The choice
to have no cutover in LocalDate is a rational one.
An application requires additional contextual
information to accurately interpret a specific
historical date that may differ between the Julian
and Gregorian calendars.

The second impact of using the ISO-8601 calendar
system in all the main classes is a need for an
additional set of classes to handle other calendar
systems. The Chronology interface is the main entry

point to alternate calendar systems, allowing them to
be looked up by locale. Four other calendar systems
are provided in Java SE 8: the Thai Buddhist, the
Minguo, the Japanese, and the Hirah. Other calendar
systems can be supplied by applications.

Each calendar system has a dedicated date class,
thus there is a ThaiBuddhistDate, MinguoDate,
JapaneseDate, and HijrahDate. These are used
if building a highly localized application, such as
one for the Japanese government. An additional
interface, ChronoLocalDate, is used as the base
abstraction of these four, which, with LocalDate,
allows the writing of code without knowing what
calendar system it is operating on. Despite the
existence of this abstraction, the intention is that it is
rarely used.

Understanding why the abstraction is to be rarely
used is critical to correct use of the wholejava.
time API. The truth is that the code of applications
that tries to operate in a calendar-system-neutral
manner is broken. For example, you cannot assume
that there are 12 months in a year, yet developers
do and add 12 months in the assumption that they
have added a whole year. You cannot assume that all
months are roughly the same length; for example,
the Coptic calendar has 12 months of 30 days and
one month of five or six days. Nor can you assume
that the next year has a number one larger than the
current year, as calendars like the Japanese restart
year numbering with every new Emperor, and that
change typically happens somewhere other than the
start of a year – meaning that you can’t even assume
that two days in the same month have the same year!

The only way to write code across a large application
in a calendar-system-neutral way is to have a heavy
regime of code review where every line of date and
time code is double-checked for bias towards the
ISO calendar system. That’s why the recommended
use of java.time is to use LocalDate throughout
your application, including all storage, manipulation,
and interpretation of business rules. The only time
that ChronoLocalDate should be used is when
localizing for input or output, typically achieved by
storing the user’s preferred calendar system in their
user profile, and even then most applications do not
really need that level of localization.

For the full rationale in this area, see
the Javadoc of ChronoLocalDate.

http://en.wikipedia.org/wiki/Julian_calendar
http://en.wikipedia.org/wiki/Gregorian_calendar
http://www.rundetaarn.dk/engelsk/observatorium/gregorian.html
http://www.rundetaarn.dk/engelsk/observatorium/gregorian.html
http://docs.oracle.com/javase/8/docs/api/java/time/chrono/ChronoLocalDate.html

Page 21

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Time of day
Moving beyond dates, the next concept to consider is
local time of day, represented by LocalTime. Classic
examples of this might be to represent the time that
a convenience store opens, say from 07:00 to 23:00
(7 a.m. to 11p.m.). Such stores might open at those
hours across the whole of the USA, but the times are
local to each time zone.

LocalTime is a value type with no associated date or
time zone. When adding or subtracting an amount of
time, it will wrap around midnight. Thus, 20:00 plus 6
hours results in 02:00.

Using a LocalTime is similar to using LocalDate:

LocalTime time = LocalTime.of(20, 30);
int hour = date.getHour(); // 20
int minute = date.getMinute(); // 30
time = time.withSecond(6); // 20:30:06
time = time.plusMinutes(3); // 20:33:06

The adjuster mechanism also works with LocalTime,
however there are fewer complicated manipulations
of times that call for it.

Combined date and time
The next class to consider is LocalDateTime. This
value type is a simple combination of LocalDate
and LocalTime. It represents both a date and a time
without a time zone.

A LocalDateTime is created either directly or by
combining a date and time:

LocalDateTime dt1 = LocalDateTime.
of(2014, Month.JUNE, 10, 20, 30);
LocalDateTime dt2 = LocalDateTime.
of(date, time);
LocalDateTime dt3 = date.atTime(20, 30);
LocalDateTime dt4 = date.atTime(time);

The third and fourth options use atTime(), which
provides a fluent way to build up a date-time. Most of
the supplied date and time classes have “at” methods
that can be used in this way to combine the object
you have with another object to form a more complex
one.

The other methods on LocalDateTime are similar
to those of LocalDate and LocalTime. This familiar
pattern of methods is very useful to help learn the
API. This table summarises the method prefixes used:

Prefix Description

of Static factory methods that create an
instance from constituent parts.

from
Static factory methods that try to extract
an instance from a similar object. A from()
method is less type-safe than an of()
method.

now Static factory method that obtains an
instance at the current time.

parse
Static factory method that allows a string
to be parsed into an instance of the
object.

get Gets part of the state of the date-time
object.

is Checks if something is true or false about
the date-time object.

with Returns a copy of the date-time object
with part of the state changed.

plus Returns a copy of the date-time object
with an amount of time added.

minus Returns a copy of the date-time object
with an amount of time subtracted.

to
Converts this date-time object to
another, which may represent part or all
of the state of the original object.

at
Combines this date-time object with
additional data to create a larger or more
complex date-time object.

format Provides the ability to format this date-
time object.

Instant
When dealing with dates and times, we usually think
in terms of years, months, days, hours, minutes, and
seconds. However, this is only one model of time,
one I refer to as “human”. The second common model
is “machine” or “continuous” time. In this model, a
single large number represents any point in time.
This approach is easy for computers to deal with,
and is seen in the UNIX count of seconds from 1970,
matched in Java by the millisecond count from 1970.

Page 22

Java 8 / eMag Issue 14 - July 2014

CONTENTS

The java.time API provides a machine view of time
via the Instant value type. It provides the ability
to represent a point on the timeline without any
other contextual information, such as a time zone.
Conceptually, it simply represents the number of
seconds since the epoch of 1970 (midnight at the
start of the 1 January, 1970 UTC). Since the API is
based on nanoseconds, the Instant class provides the
ability to store the instant to nanosecond precision.

Instant start = Instant.now();
// perform some calculation
Instant end = Instant.now();
assert end.isAfter(start);

The Instant class will typically be used for storing
and comparing timestamps, where you need to
record when an event occurred but do not need any
information about the time zone it occurred in.

In many ways, the interesting aspect of Instant is
what you cannot do with it, rather than what you
can. For example, these lines of code will throw
exceptions:

instant.get(ChronoField.MONTH_OF_YEAR);
instant.plus(6, ChronoUnit.YEARS);

They throw exceptions because Instant only consists
of a number of seconds and nanoseconds and
provides no ability to handle units meaningful to
humans. If you need that ability, you need to provide
time-zone information.

Time zones
The concept of time zones was introduced by the
UK, where the invention of the railway and other
improvements in communication suddenly meant
that people could cover distances where the change
in solar time was important. Up to that point, every
village and town had its own definition of time based
on the sun and typically reckoned by sundial.

An example of the confusion this brought initially
is shown in this photo of the clock on the old
Exchange building in Bristol, UK. The red hands show
Greenwich Mean Time while the black hand shows
Bristol Time, 10 minutes different.

A standard system of time zones evolved, driven by
technology, to replace the older local solar time. But
the key fact is that time zones are political creations.
They are often used to demonstrate political control
over an area, such as the recent change in Crimea
to Moscow time. As with anything political, the
associated rules frequently defy logic. The rules can
and do change with very little notice.

The rules of time zones are collected and gathered by
an international group who publish the IANA Time
Zone Database. This set of data contains an identifier
for each region on the Earth and a history of time
zone changes in each. The identifiers are of the form
Europe/London or America/New_York.

Before the java.time API, you used
the TimeZone class to represent time zones.
Now you use the ZoneId class. There are two key
differences. Firstly, ZoneId is immutable, which
provides that ability to store instances in static
variables amongst other things. Secondly, the
actual rules themselves are held in ZoneRules, not
in ZoneId itself; simply call getRules() on ZoneId to
obtain the rules.

One common case of time zone is a fixed offset
from UTC/Greenwich. You commonly encounter
this when you talk about time differences, such
as New York being five hours behind London. The
class ZoneOffset, a subclass of ZoneId, represents
the offset of a time from the zero meridian of
Greenwich in London.

As a developer, it would be nice to not have to
deal with time zones and their complexities. The
java.time API allows you to do that so far as it is
possible. Wherever you can, use the LocalDate,
LocalTime, LocalDateTime, and Instant classes.
When you cannot avoid time zones, the
ZonedDateTime class handles the requirement.

The ZonedDateTime class manages the conversion
from the human timeline, seen on desktop calendars
and wall clocks, to the machine timeline measured
with the ever-incrementing count of seconds. As

http://en.wikipedia.org/wiki/Time_zone
https://www.flickr.com/photos/jodastephen/11025659585/sizes/l
http://www.iana.org/time-zones
http://www.iana.org/time-zones

Page 23

Java 8 / eMag Issue 14 - July 2014

CONTENTS

such, you can create a ZonedDateTime from either a
local class or an instant:

ZoneId zone = ZoneId.of(“Europe/Paris”);

LocalDate date = LocalDate.of(2014,
Month.JUNE, 10);
ZonedDateTime zdt1 = date.
atStartOfDay(zone);

Instant instant = Instant.now();
ZonedDateTime zdt2 = instant.
atZone(zone);

One of the most annoying issues of time zones is
Daylight Saving Time (DST) or Summer Time. With
DST, the offset from Greenwich is changed two
(or more) times a year, typically moving forward in
spring and back in autumn. When these adjustments
happen, we all have to change the wall clocks dotted
around the house. These changes are referred to
by java.time as offset transitions. In spring, there is
a “gap” in the local timeline when some local times
do not occur. By contrast, in autumn, there is an
“overlap” when some local times occur twice.

The ZonedDateTime class handles this in its factory
methods and manipulation methods. For example,
adding one day will add a logical day, which may be
more or less than 24 hours if the DST boundary is
crossed. Similarly, the method atStartOfDay() is so
named because you cannot assume that the resulting
time will be midnight - there might be a DST gap from
midnight to 1 a.m.

Here’s one final tip on DST. If you want to
demonstrate that you have thought about what
should happen in a DST overlap (where the same
local time occurs twice), you can use one of the two
special methods dedicated to handling overlaps:

zdt = zdt.withEarlierOffsetAtOverlap();
zdt = zdt.withLaterOffsetAtOverlap();

Use of one of these two methods will select the
earlier or later time if the object is in a DST overlap.
In all other circumstances, the methods will have no
effect.

Amounts of time
The date and time classes discussed so far represent
points in time in various ways. Two additional value
types are provided for amounts of time.

The Duration class represents an amount of time
measured in seconds and nanoseconds – for example,
23.6 seconds.

The Period class represents an amount of time
measured in years, months, and days – for example,
three years, two months, and six days.

These can be added to, and subtracted from, the
main date and time classes:

Period sixMonths = Period.ofMonths(6);
LocalDate date = LocalDate.now();
LocalDate future = date.plus(sixMonths);

Formatting and parsing
An entire package is devoted to formatting and
printing dates and times: java.time.format. The
package revolves around DateTimeFormatter and its
associated builder DateTimeFormatterBuilder.

The most common ways to create a formatter
are static methods and constants on
DateTimeFormatter. These include:

Constants for commons ISO formats, such as ISO_
LOCAL_DATE.

Pattern letters, such as ofPattern(“dd/MM/uuuu”).

Localized styles, such
as ofLocalizedDate(FormatStyle.MEDIUM).

Once you have a formatter, you typically use it by
passing it to the relevant method on the main date
and time classes:

DateTimeFormatter f = DateTimeFormatter.
ofPattern(“dd/MM/uuuu”);
LocalDate date = LocalDate.
parse(“24/06/2014”, f);
String str = date.format(f);

In this way, you are insulated from the format and
parse methods on the formatter itself.

If you need to control the locale of formatting, use
the withLocale(Locale) method on the formatter.
Similar methods allow control of the calendar
system, time zone, decimal numbering system, and
resolution of parsing.

http://docs.oracle.com/javase/8/docs/api/java/time/zone/ZoneOffsetTransition.html
http://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Page 24

Java 8 / eMag Issue 14 - July 2014

CONTENTS

If you need even more control, see
the DateTimeFormatterBuilder class, which allows
complex formats to be built up step by step. It also
provides abilities such as case-insensitive parsing,
lenient parsing, padding, and optional sections of the
formatter.

Summary
The java.time API is a new, comprehensive model
for date and time in Java SE 8. It takes the ideas and
implementation started in Joda-Time to the next
level and finally allows developers to leave java.util.
Date and Calendar behind. It’s definitely time to
enjoy date and time programming again!

Official tutorial at Oracle

Unofficial project home page

ThreeTen-Extra project, with additional classes that
supplement core Java SE

ABOUT THE AUTHOR
Stephen Colebourne is a Java
Champion and JavaOne Rock Star
speaker. He has been working
with Java since version 1.0 and
contributing to open-source
software since 2000. He has made
major contributions to Apache
Commons and created the Joda
open-source projects including
Joda-Time. He blogs on Java and
is a frequent conference speaker
and contributor to discussions on
language change such as Project
Lambda. He was co-spec lead on
JSR-310, which created the new
java.time API in Java SE 8.

READ THIS ARTICLE
ONLINE ON InfoQ

http://docs.oracle.com/javase/tutorial/datetime/TOC.html
http://www.threeten.org/
http://www.threeten.org/threeten-extra/
http://www.infoq.com/articles/java.time

Page 25

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Type Annotations in Java 8:
Tools and Opportunities

In previous versions of Java, developers could write
annotations only on declarations. With Java 8, you
can now write annotations on any use of a type such
as types in declarations, generics, and casts:

@Encrypted String data;
List<@NonNull String> strings;
myGraph = (@Immutable Graph) tmpGraph;

At first glance, type annotations aren’t the sexiest
feature of the new Java release. Indeed, annotations
are just syntax! Tools are what give annotations their
semantics (i.e. their meaning and behavior). This
article introduces the new type-annotation syntax
and practical tools to boost productivity and build
higher-quality software.

In the financial industry, our fluctuating market and
regulatory environments mean that time to market
is more important than ever. Sacrificing security or
quality, however, is not an option: simply confusing
percentage points and basis points can have serious
consequences. The same story is playing out in every
other industry.

As a Java programmer, you’re probably already
using annotations to improve the quality of your
software. Consider the @Override annotation,
which was introduced back in Java 1.5. In large
projects with non-trivial inheritance hierarchies,
it’s hard to keep track of which implementation
of a method will execute at run time. If you’re not
careful, when modifying a method declaration

you might cause a subclass method to not be
called. Eliminating a method call in this manner
can introduce a defect or security vulnerability. In
response, the @Override annotation was introduced
so that developers could document methods as
overriding a superclass method. The Java compiler
then uses the annotations to warn the developer if
the program doesn’t match their intentions. Used
this way, annotations act as a form of machine-
checked documentation.

Annotations have also played a central role in making
developers more productive through techniques
such as metaprogramming. The idea is that
annotations can tell tools how to generate new code,
transform code, or behave at run time. For example,
the Java Persistence API (JPA), also introduced in
Java 1.5, allows developers to declaratively specify
the correspondence between Java objects and
database entities using annotations on declarations
such as @Entity. Tools such as Hibernate use these
annotations to generate mapping files and SQL
queries at run time.

In the case of JPA and Hibernate, annotations are
used to support the DRY (don’t repeat yourself)
principle. Interestingly, wherever you look for
tools for supporting development best practices,
annotations are not hard to find! Some notable
examples are reducing coupling with dependency
injection and separating concerns with aspect-
oriented programming.

by Todd Schiller

http://www.infoq.com/author/Todd-Schiller

Page 26

Java 8 / eMag Issue 14 - July 2014

CONTENTS

This raises the question: if annotations are already
being used to improve quality and boost productivity,
why do we need type annotations?

The short answer is that type annotations
enable more: they allow more kinds of defects to be
detected automatically and give you more control of
your productivity tools.

Type-annotation syntax
In Java 8, type annotations can be written on any use
of a type, such as the following:

@Encrypted String data
List<@NonNull String> strings
MyGraph = (@Immutable Graph) tmpGraph;

Introducing a new type annotation is as simple as
defining an annotation with the ElementType.TYPE_
PARAMETER target, ElementType.TYPE_USE target,
or both targets:

@Target({ElementType.TYPE_PARAMETER,
ElementType.TYPE_USE})
public @interface Encrypted { }

The ElementType.TYPE_PARAMETER target
indicates that the annotation can be written on the
declaration of a type variable (e.g. class MyClass<T>
{...}). The ElementType.TYPE_USE target indicates
that the annotation can be written on any use of a
type (e.g. types appearing in declarations, generics,
and casts).

Once annotations on types are in the source code,
like annotations on declarations, they can both
be persisted in the class file and made available at
run time via reflection (using the RetentionPolicy.
CLASS or RetentionPolicy.RUNTIME policy on
the annotation definition). There are two primary
differences between type annotations and their
predecessors. First, unlike declaration annotations,
type annotations on the types of local variable
declarations can also be retained in class files.
Second, the full generic type is retained and is
accessible at run time.

Although the annotations can be stored in the class
file, annotations don’t affect the regular execution of
the program. For example, a developer might declare
two File variables and a Connection variable in the
body of a method:

File file = ...;
@Encrypted File encryptedFile = ...;
@Open Connection connection = ...;

When executing the program, passing either of these
files to the connection’s send(...) method will result in
same method implementation being called:

// These lines call the same method
connection.send(file);
connection.send(encryptedFile);

As you’d expect, the lack of run-time effect implies
that while the types of parameters can be annotated,
methods cannot be overloaded based on the
annotated types:

public class Connection{
 void send(@Encrypted File file) {
... }
 // Impossible:
 // void send(File file) { ... }
 . . .
}

The intuition behind this limitation is that the
compiler doesn’t have any way of knowing the
relationship between annotated and un-annotated
types, or between types with different annotations.

But wait! There’s an @Encrypted annotation on
the variable encryptedFile that corresponds to
the parameter file in the method signature – but
where is the annotation in the method signature
corresponding to the @Open annotation on
the connection variable? In the call connection.
send(...), the connection variable is referred to as the
method›s «receiver». (The «receiver» terminology is
from the classic object-oriented analogy of passing
messages between objects). Java 8 introduces a
new syntax for method declarations so that type
annotations can be written on a method’s receiver:

void send(@Open Connection this, @
Encrypted File file)

Again, since annotations don’t affect execution, a
method declared with the new receiver-parameter
syntax has the same behavior as one using the
traditional syntax. In fact, currently the only use of
the new syntax is so that a type annotation can be
written on the type of the receiver.

Page 27

Java 8 / eMag Issue 14 - July 2014

CONTENTS

A full explanation of the type-annotation syntax,
including syntax for multidimensional arrays, can be
found on the JSR (Java Specification Request) 308
website.

Detecting defects with annotations
Writing annotations in the code serves to emphasize
the errors in buggy code:

@Closed Connection connection = ...;
File file = ...;
…
connection.send(file); // Bad!: closed
and unencrypted!

However, the above code will still compile, run, and
crash – Java’s compiler does not check user-defined
annotations. Instead, the Java platform exposes
two APIs, the Java Compiler plugin and Pluggable
Annotations Processing APIs, so that third parties
can develop their own analyses.

In the previous examples, the annotations were,
in effect, qualifying what values variables could
contain. We could imagine other ways of qualifying
the File type: @Open File, @Localized File, @
NonNull File. We could imagine these annotations
qualifying other types, too, such as @Encrypted
String. Because type annotations are independent
of the Java type system, concepts expressed as
annotations can be reused for many types.

But how might these annotations be checked
automatically? Intuitively, some annotations are
subtypes of other annotations, and their usage can
be type checked. Consider the problem of preventing
SQL-injection attacks caused by the database
executing user-provided (tainted) input. We might
think of data as being either @Untainted or @
MaybeTainted, corresponding to whether the data is
guaranteed to be free from user input:

@MaybeTainted String userInput;
@Untainted String dbQuery;

The @MaybeTainted annotation can be thought of as
a supertype of the @Untainted annotation. There are
a couple ways of thinking about this relation. First, the
set of values that might be tainted must be a superset
of the values that we know aren’t tainted (a value
that is certainly untainted can be an element of the
set of values that may be tainted). Conversely, the @
Untainted annotation provides a strictly stronger
guarantee than the @MaybeTainted annotation. Let’s
see if our subtyping intuition works in practice:

userInput = dbQuery; // OK
dbQuery = “SELECT FROM * WHERE “ +
userInput; // Type error!

The first line checks out – we can’t get in trouble if
we make the assumption that an untainted value is
actually tainted. Our subtyping rule reveals a bug in
the second line: we’re trying to assign the supertype
to the more restrictive subtype.

The Checker Framework
The Checker Framework is a framework for
checking Java annotations. First released in 2007,
the framework is an active open-source project led
by the co-lead of the JSR 308 specification, Michael
Ernst. The Checker Framework comes prepackaged
with a broad array of annotations and checkers for
detecting defects such as null-pointer dereferences,
unit-of-measure mismatches, security vulnerabilities,
and threading/concurrency errors. Because the
checkers use type checking under the hood, their
results are sound – a checker won’t miss any
potential errors, whereas a tool using just heuristics
might. The framework uses the compiler API to run
these checks during compilation. As a framework,
you can also quickly create your own annotation
checkers to detect application-specific defects.

The goal of the framework is to detect defects
without forcing you to write a lot of annotations.
It does this primarily through two features: smart
defaults and control-flow sensitivity. For example,
when detecting null-pointer defects, the checker
assumes that parameters are non-null by default.
The checker can also make use of conditionals to
determine that dereferencing an expression is safe.

void nullSafe(Object nonNullByDefault, @
Nullable Object mightBeNull){
 nonNullByDefault.hashCode(); // OK
due to default
 mightBeNull.hashCode(); // Warning!

http://types.cs.washington.edu/jsr308/
http://types.cs.washington.edu/jsr308/
http://checkerframework.org/

Page 28

Java 8 / eMag Issue 14 - July 2014

CONTENTS

 if (mightBeNull != null){
 mightBeBull.hashCode(); // OK
due to check
 }
}

In practice, defaults and control-flow sensitivity
mean that you rarely have to write annotations
in the body of methods; the checker can infer and
check the annotations automatically. By keeping the
semantics for annotations out of the official Java
compiler, the Java team has ensured that third-party
tool designers and users can make their own design
decisions. This allows customized error checking to
meet a project’s individual needs.

The ability to define your own annotations also
enables what you might consider domain-specific
type checking. For example, in finance, interest
rates are often quoted using percentages while the
difference between rates is often described using
basis points (1/100th of 1%). Using the Checker
Framework’s Units Checker, you could define the two
annotations @Percent and @BasisPoints to make
sure you don’t mix them up:

BigDecimal pct = returnsPct(...); //
annotated to return @Percent
requiresBps(pct); // error: @BasisPoints
is required

Here, because the Checker Framework is
control-flow sensitive, it knows that pct is
a @Percent BigDecimal at the time of the
call to requiresBps(pct) based on two facts:
first, returnsPct(...) is annotated to return a @
Percent BigDecimal; second, pct hasn’t been
reassigned before the call to requiresBps(...). Often
developers use naming conventions to try to prevent
these kinds of defects. What the Checker Framework
gives you is a guarantee that these defects don’t
exist, even as the code changes and grows.

The Checker Framework has already been run
on millions of lines of code, exposing hundreds of
defects in even well-tested software. Perhaps my
favorite example is when the framework was run on
the popular Google Collections library (now Google
Guava). It revealed null-pointer defects that even
extensive testing and heuristic-based static analysis
tools had not.

These kinds of results are achievable without
cluttering the code. In practice, verifying a property
with the Checker Framework requires only two or
three annotations per thousand lines of code!

Those of you using Java 6 or Java 7 can still use the
Checker Framework to improve the quality of your
code. The framework supports type annotations
written as comments (e.g. /*@NonNull*/ String).
Historically, the reason for this is that the Checker
Framework was co-developed with JSR 308 (the
type-annotation specification) beginning back in
2006.

While the Checker Framework is the best framework
for taking advantage of the new syntax for error
checking, it’s not the only one right now. Both Eclipse
and IntelliJ are type-annotation-aware:

Support

Checker Framework Full support, including
annotations in comments

Eclipse Null error analysis support

IntelliJ IDEA Can write custom
inspectors, no null error
analysis support

No Support

PMD

Coverity

Find Bugs

Check Style No support for Java 8

Boosting productivity with type
annotations
The main driver behind the new type-annotation
feature was error checking. Perhaps not surprisingly,
error-checking tools have the best current and
planned support for annotations. However, there
are compelling applications for type annotations in
productivity tools as well. To get a feeling for why,
consider these examples of how annotations are
used:

https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011-abstract.html

Page 29

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Aspect-oriented
programming

@Aspect, @Pointcut, etc.

Dependency injection @Autowired, @Inject, etc.

Persistence @Entity, @Id, etc.

The annotations are declarative specifications of (1)
how tools should generate code or auxiliary files,
and (2) how the tools should impact the run-time
behavior of the program. Using annotations in these
ways can be considered metaprogramming. Some
frameworks, such as Lombok, take metaprogramming
with annotations to the extreme, resulting in code
that barely looks like Java anymore.

Let’s first consider aspect-oriented programming
(AOP). AOP aims to separate concerns such as
logging and authentication from the main business
logic of the program. With AOP, you run a tool at
compile time that adds additional code to your
program based on a set of rules. For example,
we could define a rule that automatically adds
authentication based on type annotations:

void showSecrets(@Authenticated User
user){
 // Automatically inserted using
AOP:
 if (!AuthHelper.ensureAuth(user))
throw . . .;
}

As before, the annotation is qualifying the type.
Instead of checking the annotations at compile
time, however, the AOP framework is being used
to automatically perform verification at run time.
This example shows type annotations being used to
give you more control over how and when the AOP
framework modifies the program.

Java 8 also supports type annotations on local
declarations that are persisted in the class file. This
opens up new opportunities for performing fine-
grained AOP. For example, adding tracing code in a
disciplined way:

// Trace all calls made to the ar object
@Trace AuthorizationRequest ar = . . .;

Again, type annotations give more control when
metaprogramming with AOP. Dependency injection

is a similar story. With Spring 4, you could finally use
generics as a form of qualifier:

@Autowired private Store<Product> s1;
@Autowired private Store<Service> s2;

Using generics eliminated the need to introduce
classes such as ProductStore and ServiceStore or to
use fragile name-based injection rules.

With type annotations, it’s not hard to imagine
(read: this is not implemented in Spring yet) using
annotations to further control injection:

@Autowired private Store<@Grocery
Product> s3;

This example demonstrates type annotations
serving as a tool for separating concerns, keeping
the project’s type hierarchy clean. This separation is
possible because type annotations are independent
of the Java type system.

The road ahead
We’ve seen how the new type annotations can be
used to both detect and prevent program errors
and boost productivity. However, the real potential
for type annotations is in combining error checking
and metaprogramming to enable new development
paradigms.

The basic idea is to build run times and libraries
that leverage annotations to automatically make
programs more efficient, parallel, or secure, and to
automatically enforce that developers use those
annotations correctly.

A great example of this approach is Adrian
Sampson’s EnerJ framework for energy-efficient
computing via approximate computing. EnerJ is
based on the observation that sometimes, such
as when processing images on mobile devices, it
makes sense to trade accuracy for energy savings. A
developer using EnerJ annotates data that is non-
critical using the @Approx type annotation. Based
on these annotations, the EnerJ run time takes
various short cuts when working with that data. For
example, it might store and perform calculations on
the data using low-energy approximate hardware.
However, having approximate data moving through
the program is dangerous; as a developer, you don’t
want control flow to be affected by approximate
data. Therefore, EnerJ uses the Checker Framework

http://projectlombok.org/
http://spectrum.ieee.org/computing/software/enerj-the-language-of-goodenough-computing

Page 30

Java 8 / eMag Issue 14 - July 2014

CONTENTS

to make sure that no approximate data can flow into
data used in control flow (e.g. in an if-statement).

The applications of this approach aren’t limited to
mobile devices. In finance, we often face a trade-off
between accuracy and speed. In these cases, the
run time can be left to control the number of Monte
Carlo paths or convergence criteria, or even run
computation on specialized hardware, based on the
current demands and available resources.

The beauty of this approach is that the
concern of how the execution is performed
is kept separate from the core business logic
describing what computation to perform.

Conclusion
In Java 8, you can write annotations on any use of a
type in addition to being able to write annotations
on declarations. By themselves, annotations don’t
affect program behavior. However, by using tools
such as the Checker Framework, you can use type
annotations to automatically check and verify
the absence of software defects and boost your
productivity with metaprogramming. While it
will take some time for existing tools to take full
advantage of type annotations, the time is now to
start exploring how type annotations can improve
both your software quality and your productivity.

Acknowledgements
I thank Michael Ernst, Werner Dietl, and the New
York City Java Meetup Group for providing feedback
on the presentation on which this article is based. I
thank Scott Bressler, Yaroslav Dvinov, and Will Leslie
for reviewing a draft of this article.

ABOUT THE AUTHOR
Todd Schiller is the head of
FinLingua, a financial-software-
development and consulting
company. FinLingua’s consulting
practice helps development teams
adopt domain-specific language,
metaprogramming, and program-
analysis techniques. Todd is an
active member of the software-
engineering research community;
his research on specification and
verification has been presented
at premier international
conferences including ICSE and
OOPSLA.

READ THIS ARTICLE
ONLINE ON InfoQ

http://www.infoq.com/articles/Type-Annotations-in-Java-8

Page 31

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Where Has the Java PermGen Gone?

The Java Virtual Machine (JVM) uses an internal representation of its classes
containing per-class metadata such as class hierarchy information, method data
and information (such as bytecodes, stack and variable sizes), the runtime constant
pool and resolved symbolic reference and Vtables.

In the past (when custom class loaders weren’t that
common), the classes were mostly “static” and were
infrequently unloaded or collected, and hence were
labeled “permanent”. Also, since the classes are a part
of the JVM implementation and not created by the
application they are considered “non-heap” memory.

For HotSpot JVM prior to JDK8, these “permanent”
representations would live in an area called the
“permanent generation”. This permanent generation
was contiguous with the Java heap and was limited to
-XX:MaxPermSize that had to be set on the command
line before starting the JVM or would default to
64M (85M for 64bit scaled pointers). The collection
of the permanent generation would be tied to the
collection of the old generation, so whenever either
gets full, both the permanent generation and the old
generation would be collected. One of the obvious
problems that you may be able to call out right
away is the dependency on the XX:MaxPermSize.
If the classes metadata size is beyond the bounds
of XX:MaxPermSize, your application will run out
of memory and you will encounter an OOM (Out of
Memory) error.

Bye, Bye PermGen, Hello Metaspace!
With the advent of JDK8, we no longer have the
PermGen. No, the metadata information is not gone,
just that the space where it was held is no longer
contiguous to the Java heap. The metadata has now
moved to native memory to an area known as the
“Metaspace”.

The move to Metaspace was necessary since the
PermGen was really hard to tune. There was a
possibility that the metadata could move with every
full garbage collection. Also, it was difficult to size the
PermGen since the size depended on a lot of factors
such as the total number of classes, the size of the
constant pools, size of methods, etc.

Additionally, each garbage collector in HotSpot
needed specialized code for dealing with metadata
in the PermGen. Detaching metadata from PermGen
not only allows the seamless management of
Metaspace, but also allows for improvements such as
simplification of full garbage collections and future
concurrent de-allocation of class metadata.

by Monica Beckwith

http://www.infoq.com/author/Monica-Beckwith

Page 32

Java 8 / eMag Issue 14 - July 2014

CONTENTS

What Does The Removal Of
Permanent Space Mean To The End
Users?
Since the class metadata is allocated out of native
memory, the max available space is the total available
system memory. Thus, you will no longer encounter
OOM errors and could end up spilling into the swap
space. The end user can either choose to cap the max
available native space for class metadata, or the user
can let the JVM grow the native memory in-order to
accommodate the class metadata.

Note: The removal of PermGen doesn’t mean that
your class loader leak issues are gone. So, yes, you
will still have to monitor your consumption and plan
accordingly, since a leak would end up consuming
your entire native memory causing swapping that
would only get worse.

Moving On To Metaspace And Its
Allocation:
The Metaspace VM now employs memory
management techniques to manage Metaspace.
Thus moving the work from the different garbage
collectors to just the one Metaspace VM that
performs all of its work in C++ in the Metaspace.
A theme behind the Metaspace is simply that the
lifetime of classes and their metadata matches the
lifetime of the class loaders’. That is, as long as the
classloader is alive, the metadata remains alive in the
Metaspace and can’t be freed.

We have been using the term “Metaspace” loosely.
More formally, per classloader storage area is
called “a metaspace”. And these metaspaces are
collectively called “the Metaspace”. The reclamation
of metaspace per classloader can happen only after
its classloader is no longer alive and is reported dead

Page 33

Java 8 / eMag Issue 14 - July 2014

CONTENTS

by the garbage collector. There is no relocation or compaction in these metaspaces. But metadata is scanned
for Java references.

The Metaspace VM manages the Metaspace allocation by employing a chunking allocator. The chunking size
depends on the type of the classloader. There is a global free list of chunks. Whenever a classloader needs a
chunk, it gets it out of this global list and maintains its own chunk list. When any classloader dies, its chunks are
freed, and returned back to the global free list. The chunks are further divided into blocks and each block holds
a unit of metadata. The allocation of blocks from chunks is linear (pointer bump). The chunks are allocated
out of memory mapped (mmapped) spaces. There is a linked list of such global virtual mmapped spaces and
whenever any virtual space is emptied, its returned back to the operating system.

The figure above shows Metaspace allocation with metachunks in mmapped virtual spaces. Classloaders 1 and
3 depict reflection or anonymous classloaders and they employ “specialized” chunk size. Classloaders 2 and 4
can employ small or medium chunk size based on the number of item in those loaders.

Tuning And Tools For Metaspace
As previously mentioned, a Metaspace VM will manage the growth of the Metaspace. But there may be
scenarios where you may want to limit the growth by explicitly setting the -XX:MaxMetaspaceSize on the
command line. By default, the –XX:MaxMetaspaceSize doesn’t have a limit, so technically the Metaspace size
could grow into swap space and you would start getting native allocation failures.

For a 64-bit server class JVM, the default/initial value of –XX:MetaspaceSize is 21MB. This is the initial high
watermark. Once this watermark is hit, a full garbage collection is triggered to unload classes (when their
classloaders are no longer alive) and the high watermark is reset. The new value of the high watermark
depends on the amount of freed Metaspace. If insufficient space is freed up, the high watermark goes up;
if too much space is freed, the high watermark goes down. This will be repeated multiple times if the initial
watermark is too low. And you will be able to visualize the repeated full garbage collections in your garbage
collector logs. In such a scenario, you are advised to set the –XX:MetaspaceSize to a higher value on the
command line in order to avoid the initial garbage collections.

Page 34

Java 8 / eMag Issue 14 - July 2014

CONTENTS

After subsequent collections, the Metaspace VM will automatically adjust your high watermark, so as to push
the next Metaspace garbage collection further out.

There are also two options: XX:MinMetaspaceFreeRatio and XX:MaxMetaspaceFreeRatio. These are
analogous to GC FreeRatio parameters and they can be set on the command line as well.

A few tools have been modified to help get more information regarding the Metaspace and they are listed
here:

jmap –clstats <PID>: prints class loader statistics. (This now supersedes –permstat that used to print class
loader stats for JVMs prior to JDK8). An example output while running DaCapo’s Avrora benchmark:

$ jmap -clstats <PID>
Attaching to process ID 6476, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 25.5-b02
finding class loader instances ..done.
computing per loader stat ..done.
please wait.. computing liveness.liveness analysis may be inaccurate ...
class_loader classes bytes parent_loader alive? type

<bootstrap> 655 1222734 null live <internal>
0x000000074004a6c0 0 0 0x000000074004a708 dead java/util/
ResourceBundle$RBClassLoader@0x00000007c0053e20
0x000000074004a760 0 0 null dead sun/misc/
Launcher$ExtClassLoader@0x00000007c002d248
0x00000007401189c8 1 1471 0x00000007400752f8 dead sun/reflect/
DelegatingClassLoader@0x00000007c0009870
0x000000074004a708 116 316053 0x000000074004a760 dead sun/misc/
Launcher$AppClassLoader@0x00000007c0038190
0x00000007400752f8 538 773854 0x000000074004a708 dead org/dacapo/
harness/DacapoClassLoader@0x00000007c00638b0
total = 6 1310 2314112 N/A alive=1, dead=5 N/A

jstat –gc <LVMID>: now prints Metaspace information as shown in the following example:

jcmd <PID> GC.class_stats: This is a new diagnostic command that enables the end user to connect to a live
JVM and dump a detailed histogram of Java class metadata.

Note: With JDK8 build 13, you have to start Java with XX:+UnlockDiagnosticVMOptions.

$ jcmd <PID> help GC.class_stats
9522:
GC.class_stats
Provide statistics about Java class meta data. Requires
-XX:+UnlockDiagnosticVMOptions.

Page 35

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Impact: High: Depends on Java heap size and content.

Syntax : GC.class_stats [options] [<columns>]

Arguments:
 columns : [optional] Comma-separated list of all the columns
to show. If not specified, the following columns are shown:
InstBytes,KlassBytes,CpAll,annotations,MethodCount,Bytecodes,MethodAll,ROAll,RWAll,Total
(STRING, no default value)

Options: (options must be specified using the <key> or <key>=<value> syntax)
 -all : [optional] Show all columns (BOOLEAN, false)
 -csv : [optional] Print in CSV (comma-separated values) format for spreadsheets
(BOOLEAN, false)
 -help : [optional] Show meaning of all the columns (BOOLEAN, false)

Note: For more information on the columns, please see here.

An example output:

 $ jcmd <PID> GC.class_stats

7140:

Index Super InstBytes KlassBytes annotations CpAll MethodCount Bytecodes MethodAll ROAll RWAll Total ClassName

 1 -1 426416 480 0 0 0 0 0 24 576 600 [C

 2 -1 290136 480 0 0 0 0 0 40 576 616 [Lavrora.arch.legacy.LegacyInstr;

 3 -1 269840 480 0 0 0 0 0 24 576 600 [B

 4 43 137856 648 0 19248 129 4886 25288 16368 30568 46936 java.lang.Class

 5 43 136968 624 0 8760 94 4570 33616 12072 32000 44072 java.lang.String

 6 43 75872 560 0 1296 7 149 1400 880 2680 3560 java.util.HashMap$Node

 7 836 57408 608 0 720 3 69 1480 528 2488 3016 avrora.sim.util.MulticastFSMProbe

 8 43 55488 504 0 680 1 31 440 280 1536 1816 avrora.sim.FiniteStateMachine$State

 9 -1 53712 480 0 0 0 0 0 24 576 600 [Ljava.lang.Object;

 10 -1 49424 480 0 0 0 0 0 24 576 600 [I

 11 -1 49248 480 0 0 0 0 0 24 576 600 [Lavrora.sim.platform.ExternalFlash$Page;

 12 -1 24400 480 0 0 0 0 0 32 576 608 [Ljava.util.HashMap$Node;

 13 394 21408 520 0 600 3 33 1216 432 2080 2512 avrora.sim.AtmelInterpreter$IORegBehavior

 14 727 19800 672 0 968 4 71 1240 664 2472 3136 avrora.arch.legacy.LegacyInstr$MOVW

…<snipped>

…<snipped>

1299 1300 0 608 0 256 1 5 152 104 1024 1128 sun.util.resources.LocaleNamesBundle

 1300 1098 0 608 0 1744 10 290 1808 1176 3208 4384 sun.util.resources.OpenListResourceBundle

 1301 1098 0 616 0 2184 12 395 2200 1480 3800 5280 sun.util.resources.ParallelListResourceBundle

 2244312 794288 2024 2260976 12801 561882 3135144 1906688 4684704 6591392 Total

 34.0% 12.1% 0.0% 34.3% - 8.5% 47.6% 28.9% 71.1% 100.0%

Index Super InstBytes KlassBytes annotations CpAll MethodCount Bytecodes MethodAll ROAll RWAll Total ClassName

https://bugs.openjdk.java.net/secure/attachment/11600/ver_010_help.txt

Page 36

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Current Issues
As mentioned earlier, the Metaspace VM employs a chunking allocator. There are multiple chunk sizes
depending on the type of classloader. Also, the class items themselves are not of a fixed size, thus there are
chances that free chunks may not be of the same size as the chunk needed for a class item. All this could
lead to fragmentation. The Metaspace VM doesn’t (yet) employ compaction hence fragmentation is a major
concern at this moment.

ABOUT THE AUTHOR
Monica Beckwith is a
performance engineer working
in the hardware industry for well
over a decade. Her most current
title is Performance Architect at
Servergy - a startup that offers
a new class of hyper-efficient
Cleantech Servers ®. Prior to
Servergy, Monica has worked at
Oracle/Sun and AMD optimizing
the JVM for server class systems.
Monica was voted a Rock Star
speaker @JavaOne 2013. You can
follow Monica on twitter
@mon_beck.

READ THIS ARTICLE
ONLINE ON InfoQ

http://www.infoq.com/articles/Java-PERMGEN-Removed

Page 37

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Nashorn: The Combined Power of
Java and JavaScript in JDK 8

Ever since JDK 6, Java has shipped with a bundled
JavaScript engine based on Mozilla’s Rhino.
This feature allowed you to embed JavaScript
code into Java and even call into Java from the
embedded JavaScript. Additionally, it provided the
capability to run JavaScript from the command line
using jrunscript. That was pretty good provided you
didn’t require great performance and you could live
with the limited ECMAScript 3 feature set.

Starting with the JDK 8, Nashorn replaces Rhino
as Java’s embedded JavaScript engine. Nashorn
supports the full ECMAScript 5.1 specification plus
some extensions. It compiles JavaScript to Java
bytecode using new language features based on JSR
292, including invokedynamic, that were introduced
in JDK 7.

This brings a two to 10-times performance boost
over the former Rhino implementation, although it is
still somewhat short of V8, the engine inside Chrome
and Node.js. If you are interested in details of the
implementation, you can have a look at these slides
from the 2013 JVM Language Summit.

As Nashorn comes with JDK 8, it also adds very neat
support for functional interfaces, as we shall see in
more detail shortly.

Let’s kick it off with a very small example. First, you
might want to install JDK 8 and NetBeans, IntelliJ
IDEA, or Eclipse. All of them provide at least basic
support for integrated JavaScript development.

Let’s create a simple Java project consisting of the
following two example files and let the program run:

In line 12, we use the engine’s eval method to
evaluate any JavaScript code. In this case, we just
load the top JavaScript file and evaluate it. You
might find “print” to be unfamiliar. It is not a built-in
function for JavaScript, but Nashorn provides this
and other convenience functions that come in handy
in a scripting environment. You could have also
embedded the printing of “Hello, World!” directly
into the string passed into the eval method, but
having your JavaScript in a file of its own opens up a
whole world of tooling for it.

by Oliver Zeigermann

http://docs.oracle.com/javase/6/docs/technotes/guides/scripting/programmer_guide/
http://docs.oracle.com/javase/6/docs/technotes/guides/scripting/programmer_guide/
https://developer.mozilla.org/docs/Rhino
http://docs.oracle.com/javase/6/docs/technotes/tools/share/jrunscript.html
http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
http://www.ecma-international.org/ecma-262/5.1/
https://wiki.openjdk.java.net/display/Nashorn/Nashorn+extensions
https://jcp.org/en/jsr/detail?id=292
https://jcp.org/en/jsr/detail?id=292
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html
http://ariya.ofilabs.com/2014/03/nashorn-the-new-rhino-on-the-block.html
http://wiki.jvmlangsummit.com/images/c/ce/Nashorn.pdf
http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/shell.html
http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/shell.html
http://www.infoq.com/author/Oliver-Zeigermann

Page 38

Java 8 / eMag Issue 14 - July 2014

CONTENTS

Eclipse currently has no dedicated Nashorn support
via its JavaScript Development Tools (JSDT) project
but it does support basic tooling and editing for
JavaScript.

IntelliJ IDEA 13.1 (Community and Ultimate
Editions) provides outstanding JavaScript and
Nashorn support. It has a fully featured debugger
and it even allows refactoring to be synchronized
between Java and JavaScript; if, for example,
you rename a Java class that is referenced from
JavaScript or if you rename a JavaScript file sourced
in from Java, the IDE will modify the corresponding
references across languages.

Here is an example of how you can debug the
JavaScript called from Java (note that NetBeans
also provides JavaScript debugging as shown in the
screenshot below):

You may say the tooling looks nice and the new
implementation fixes the performance as well as
the compliance problems, but ask why you should it.
One reason would be general scripting. Sometimes
it comes in handy to be able to throw in any kind of
string and just let it be interpreted. Sometimes it
might just be nice to not have a compiler in the way,
or not to worry about static typing. Or maybe you
are interested in the Node.js programming model,
which can be used with Java, as we will see at the end
of this article. There is also a case to be made that
developing JavaFX will be much faster using
JavaScript as opposed to Java.

Shell scripts
The Nashorn engine can be called from the command
line using the jjs command. You can call it without any
argument, which will bring you into an interactive
mode, you can pass the name of a JavaScript file you
want executed, or you can use it as a replacement for
a shell script, like this:

#!/usr/bin/env jjs

var name = $ARG[0];
print(name ? “Hello, ${name}!” : “Hello,
world!”);

To pass in program arguments to jjs, prefix them with
“--”. So for example you might call:

./hello-script.js -- Joe

Without the “--” prefix, the parameter would be
interpreted as a file name.

Passing data to and from Java
As indicated above, you can call JavaScript directly
from your Java code; just obtain an engine and call its
eval method. You can pass in data explicitly as strings:

ScriptEngineManager scriptEngineManager
= new ScriptEngineManager();
ScriptEngine nashorn =
 scriptEngineManager.
getEngineByName(“nashorn”);
String name = “Olli”;
nashorn.eval(“print(‘” + name + “’)”);

You can also pass bindings from Java that can
be accessed as global variables from inside the
JavaScript engine:

int valueIn = 10;
SimpleBindings simpleBindings = new
SimpleBindings();
simpleBindings.put(“globalValue”,
valueIn);
nashorn.eval(“print (globalValue)”,
simpleBindings);

The results of a JavaScript eval computation will be
returned from the engine’s eval method:

Integer result = (Integer) nashorn.
eval(“1 + 2”);
assert(result == 3);

Using Java classes in Nashorn
As mentioned before, one of the most powerful
features of Nashorn comes from calling Java classes
from inside JavaScript. You can not only access
classes and create instances, you can also subclass
them, call their static members, and do virtually
anything you could do from Java.

http://www.eclipse.org/webtools/jsdt/
http://www.jetbrains.com/idea/
http://blog.jetbrains.com/idea/2014/03/debugger-for-jdk8s-nashorn-javascript-in-intellij-idea-13-1/
http://www.infoq.com/resource/articles/nashorn/en/resources/Fig3.png
http://blog.credera.com/technology-insights/java/java-8-part-2-nashorn/
http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/shell.html

Page 39

Java 8 / eMag Issue 14 - July 2014

CONTENTS

As an example, let’s take a look at threads. JavaScript
does not have any language features for concurrency
and all common runtimes are single-threaded or at
least without any shared state. It is interesting to see
that in the Nashorn environment, JavaScript could in
fact run concurrently and with shared state, just like
in Java:

// this is how we get access to Java
class Thread
var Thread = Java.type(“java.lang.
Thread”);

// subclass with our run method
var MyThread = Java.extend(Thread, {
 run: function() {
 print(“Run in separate thread”);
 }
});
var th = new MyThread();
th.start();
th.join();

Note that the canonical way to access a class from
Nashorn is to use Java.type and you can extend a
class using Java.extend.

Functional delight
By all counts, with the release of JDK 8, Java
has, at least to a certain extent, become a
functional language. You can now use higher-order
functions on collections, for example to iterate over
their elements. A higher-order function is a function
that takes another function as a parameter and does
something meaningful with it. Have a look at this
example in Java:

List<Integer> list = Arrays.asList(3, 4,
1, 2);
list.forEach(new Consumer() {

 @Override
 public void accept(Object o) {
 System.out.println(o);
 }
});

In this example, instead of iterating over the
elements using an external loop as we would
traditionally have done, we now pass a Consumer
function to the forEach operation, a higher-order
internal-looping operation that executes the

consumer’s accept method by passing in each
element of the collection one by one.

As already mentioned, the functional-language
approach for such a higher-order function would
rather accept a function parameter than an object.
While passing around references to functions per se
is not traditionally Java’s province, JDK 8 now has
some syntactic sugar for expressing just that using
lambda expressions (a.k.a. “closures”). For example:

List<Integer> list = Arrays.asList(3, 4,
1, 2);
list.forEach(el -> System.out.
println(el));

In this case, the parameter to forEach has the form
of such a function reference. This is possible because
Consumer is a functional interface, sometimes called
a single abstract method (SAM) type.

So why are we talking about lambdas in a discussion
of Nashorn? Because in JavaScript you can write
code like this as well and Nashorn is especially
well-prepared to bridge the gap between Java
and JavaScript in this case. In particular, it allows
you to even pass plain JavaScript functions as
implementations of functional interfaces (SAM
types).

Let us have a look at some plain JavaScript code that
does the same thing as our Java code above. Note
that there is no built-in list type in JavaScript, only
arrays – but those arrays are dynamically sized and
have methods comparable to the ones of a Java list.
So, in this example we are calling the forEach method
of a JavaScript array:

var jsArray = [4,1,3,2];
jsArray.forEach(function(el) { print(el)
});

The similarity is obvious, but that isn’t all. You can
also convert such a JavaScript array to a Java list:

var list = java.util.Arrays.
asList(jsArray);

See? And yes, this is JavaScript running inside
Nashorn. As this is now a Java list, you can call its
forEach method. Note that this is not the same
forEach method that we called on the JavaScript
array, but rather Java’s forEach method defined on

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html

Page 40

Java 8 / eMag Issue 14 - July 2014

CONTENTS

collections. Still, we are passing in a plain JavaScript
function here:

list.forEach(function(el) { print(el) }
);

Nashorn allows us to provide plain JavaScript
function references where a functional interface
(SAM type) is expected. This is thus not only possible
from Java, but also from JavaScript.

The next version of ECMAScript (which is expected
to become final in 2014) will include a short syntax
for functions that will allow them to be written nearly
as Java lambdas, except that it uses a fat arrow, “=>”.
This will drive the alignment even further.

Special Nashorn JavaScript dialect
As I mentioned in the introduction, Nashorn supports
JavaScript in the ECMAScript 5.1 version plus some
extensions. I do not necessarily recommend using
those extensions because, being neither Java nor
JavaScript, they can feel unnatural to developers.
On the other hand, Oracle uses two extensions
throughout its documentation, so we should become
familiar with them.

First, let us set the stage for the first extension. As
you have seen before, you can extend a Java class
from JavaScript using Java.extend. If you want to
subclass an abstract Java class or implement an
interface, you can use a more convenient syntax.
In this case, you can virtually call the constructor
of the abstract class or the interface and pass
in a JavaScript object literal that describes the
implemented methods. JavaScript object literals are
just name/value pairs, similar to what you may know
from the JSON format. This allows us to implement
the Runnable interface like this:

var r = new java.lang.Runnable({
 run: function() {
 print(“running...\n”);
 }
});

In this example, we virtually call the constructor of
Runnable with an object literal that specifies the
implementation of the run method. Note that this is
something the Nashorn implementation is giving us;
it would otherwise not be possible in JavaScript.

The code of this example already looks similar to how
we would implement an interface as an anonymous
inner class in Java, but it’s not quite the same. This
brings us to the first extension, which lets you pass
the last parameter after the closing “)” when you
make a constructor call. Doing this, our code looks
like this:

var r = new java.lang.Runnable() {
 run: function() {
 print(“running...\n”);
 }
};

That does exactly the same thing, but has an even
greater resemblance to Java.

The second frequently used extension is a shortcut
for functions that allows you to omit both the
curly braces as well as the return statement for
the method body in a single line function. Take our
example from the previous section:

list.forEach(function(el) { print(el) }
);

That could be expressed as the slightly more terse:

list.forEach(function(el) print(el));

Avatar.js
We have seen that with Nashorn we have a premium
JavaScript engine embedded into Java. We have
also seen that from Nashorn we can access any Java
class. Avatar.js goes one step further and brings, as
the web site says, “the Node programming model,
APIs, and module ecosystem to the Java platform”. To
understand what this means and why it is exciting, we
first have to understand what Node is. Node basically
extracts Chrome’s V8 JavaScript engine to make it
work from the command line without the need for
a browser. It thus makes JavaScript executable not
only in the browser but also on the server side. To
execute JavaScript on a server in any meaningful way,
you will at least need to access the file system and
the network. To achieve this, Node embeds a library
called libuv that does this in an asynchronous way.
Practically, this means that your calls to the operating
system never block even if they take a while to
return. Instead of blocking, you provide a callback
function that will be triggered once the call is done,
delivering the results if there are any.

https://wiki.openjdk.java.net/display/Nashorn/Nashorn+extensions
https://wiki.openjdk.java.net/display/Nashorn/Nashorn+extensions
https://avatar-js.java.net/
http://nodejs.org/
https://github.com/joyent/libuv

Page 41

Java 8 / eMag Issue 14 - July 2014

CONTENTS

There are several companies using Node for serious
applications, among them Walmart and PayPal.

Let’s take a look at a small JavaScript example that I
have adapted from Node’s web site:

// load module ‘http’ (this is blocking)
to handle http requests
var http = require(‘http’);

// when there is a request we return
‘Hello, World\n’
function handleRequest(req, res) {
 res.writeHead(200, {‘Content-Type’:
‘text/plain’});
 res.end(‘Hello, World\n’);
}

// we listen on localhost, port 1337
// and give handleRequest as call back
// you see the non-blocking /
asynchronous nature here
http.createServer(handleRequest).
listen(1337, ‘127.0.0.1’);
// logs to the console to reassure that
we are on our way
console.log(‘Get your hello at
http://127.0.0.1:1337/’);

To run this code, you would need to install Node, save
the above JavaScript code into a file, and, finally, call
Node with this file as a parameter.

The goal of Avatar.js is to provide the same core API
as Node by binding libuv to Java classes and then
making them accessible to JavaScript. Even though
this may sound cumbersome, it works surprisingly
well. Avatar.js supports a large number of Node
modules and its support of Express, the mainstream
web framework for Node, indicates that this could
indeed work with a large number of existing projects.

Unfortunately, at the time of this writing, there
is no binary distribution for Avatar.js. There is a
readme that explains how to build it from source,
but if you are not so much into building from scratch,
you can get the binaries without building them. Both
approaches work, but I recommend the second one
for quicker results.

Once you have set up your binaries and put them
into a lib folder, you would then call the Avatar.js
framework using something like:

java -Djava.library.path=lib -jar lib/
avatar-js.jar helloWorld.js

We assume that the demo server (the code above) is
saved in a file called “helloWorld.js”.

Again, let us ask, why is this useful? The good people
at Oracle (see slide 10 of this JavaOne San Francisco
2013 presentation) see a couple of use cases for such
a library. I mainly concur with two of them, namely:

You have a Node application and want to use certain
Java libraries to complement the Node API.

You want to switch to JavaScript and the Node API,
but need to embed legacy Java code either partially
or completely.

Both use cases work by using Avatar.js and calling
any required Java classes from the JavaScript code,
which is supported by Nashorn, as we have seen.

Let me give you an example of the first use case.
JavaScript currently has just a single type for
expressing numbers called “number”. This would
be equivalent to the Java “double”, with the same
limitations: JavaScript’s number, like Java’s double, is
not able to express arbitrary range and precision, for
example when dealing with money.

In Java, you could use BigDecimal, which supports
exactly that. But JavaScript has no built-in
equivalent, so you could just access the BigDecimal
class from your JavaScript code to safely handle
monetary values.

Let us look at an example web service that calculates
the percentage of some amount. First, we need a
function that does the actual calculation:

var BigDecimal = Java.type(‘java.math.
BigDecimal’);

function calculatePercentage(amount,
percentage) {
 var result = new BigDecimal(amount).
multiply(
 new BigDecimal(percentage)).divide(
 new BigDecimal(“100”), 2,
BigDecimal.ROUND_HALF_EVEN);
 return result.toPlainString();
}

http://venturebeat.com/2012/01/24/why-walmart-is-using-node-js/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
http://nodejs.org/
http://127.0.0.1:1337/
http://expressjs.com/
https://java.net/projects/avatar-js/sources/src/content/README.md
http://blog.jonasbandi.net/2014/03/running-nodejs-applications-on-jvm-with.html
https://avatar-js.java.net/doc/presentations/javaone-sfo-2013.pdf

Page 42

Java 8 / eMag Issue 14 - July 2014

CONTENTS

In JavaScript, there are no declared types, but apart
from that the code looks pretty similar to the Java
code I have written for this task:

public static String calculate(String
amount, String percentage) {
 BigDecimal result = new
BigDecimal(amount).multiply(
 new BigDecimal(percentage)).divide(
 new BigDecimal(“100”), 2,
BigDecimal.ROUND_HALF_EVEN);
 return result.toPlainString();
}

We just need to replace the handleRequest function
of the Node example above to complete our code. It
goes like this:

// load utility module ‘url’ to parse
url
var url = require(‘url’);

function handleRequest(req, res) {
 // ‘/calculate’ is the path of our
web service
 if (url.parse(req.url).pathname ===
‘/calculate’) {
 var query = url.parse(req.url,
true).query;
 // amount and percentage are
passed in as query parameters
 var result =
calculatePercentage(query.amount,

query.percentage);
 res.writeHead(200, {‘Content-
Type’: ‘text/plain’});
 res.end(result + ‘\n’);
 }
}

We use a second core module of Node to process
the URL of the request to parse out the query
parameters for amount and percentage.

I start the server (as shown above) and issue a
request like this using the web browser:

http://localhost:1337/calculate?
amount=99700000000000000086958613&
percentage=7.59

I get the correct answer of
“7567230000000000006600158.73”, which
would have been impossible using JavaScript’s plain
“number” type.

The second use case would make sense when you
decide to migrate your existing JEE application
to JavaScript and Node. In this case, you can
easily access all your existing services from within
JavaScript. Another related use case would be to
have a new piece of server functionality built using
JavaScript and Node that still can benefit from
existing JEE services.

In the same direction, there is also Project
Avatar, which is based on Avatar.js. Details are
beyond the scope of this article but have a look at this
Oracle announcement for a quick overview. The
basic idea is to write your application in JavaScript
and access JEE services. Project Avatar comes with
a combined binary distribution for Avatar.js, but
requires GlassFish for installation and development.

Wrap-up
Project Nashorn has enhanced the original JDK
6 Rhino implementation by greatly improving
performance for longer running applications, for
example when used inside a web server. Nashorn
integrates Java with JavaScript and even takes the
new lambdas of JDK 8 into account. A real innovation
comes with Avatar.js, which builds on those features
and provides for integration of enterprise Java and
JavaScript code while being largely compatible
with the de facto standard for JavaScript server
programming.

Complete examples including Avatar.js binaries for
Mac OS X can be found on GitHub.

ABOUT THE AUTHOR
Oliver Zeigermann is a self-
employed software architect/
developer, consultant, and
coach from Hamburg, Germany.
He is currently focused on
using JavaScript in enterprise
applications.

READ THIS ARTICLE
ONLINE ON InfoQ

https://avatar.java.net/
https://avatar.java.net/
https://blogs.oracle.com/theaquarium/entry/project_avatar_is_open_source
https://blogs.oracle.com/theaquarium/entry/project_avatar_is_open_source
https://github.com/DJCordhose/NashornSandbox
http://www.infoq.com/articles/nashorn

Page 43

Java 8 / eMag Issue 14 - July 2014

CONTENTS

8 Great Java 8 Features No One’s
Talking About

If you haven’t seen some of the videos or tutorials around Java 8, you’ve probably
been super-busy or have a more interesting social life than I do (which isn’t saying
much). With new features like lambda expressions and Project Nashorn taking so
much of the spotlight, I wanted to focus on some new APIs that have been a bit
under the radar, but make Java 8 better in so many ways.

1. Stamped Locks
Multi-threaded code has long been the bane of
server developers (just ask Oracle Java Language
Architect and concurrency guru Brian Goetz).
Over time complex idioms were added to the core
Java libraries to help minimize thread waits when
accessing shared resources. One of these is the
classic ReadWriteLock that lets you divide code into
sections that need to be mutually exclusive (writers),
and sections that don’t (readers).

On paper this sounds great. The problem is that the
ReadWriteLock can be super slow(up to 10x), which
kind of defeats its purpose. Java 8 introduces a new
ReadWrite lock – called StampedLock. The good
news here is that this guy is seriously fast. The bad
news is that it’s more complicated to use and lugs
around more state. It’s also not reentrant, which
means a thread can have the dubious pleasure of
deadlocking against itself.

StampedLock has an “optimistic” mode that issues
a stamp that is returned by each locking operation
to serve as a sort of admission ticket; each unlock
operation needs to be passed its correlating stamp.
Any thread that happens to acquire a write lock while

a reader was holding an optimistic lock, will cause
the optimistic unlock to be invalidated (the stamp
is no longer valid). At that point the application can
start all over, perhaps with a pessimistic lock (also
implemented in StampedLock.) Managing that is
up to you, and one stamp cannot be used to unlock
another – so be super careful.

Let’s see this lock in action-

long stamp = lock.tryOptimisticRead();
// non blocking path - super fast
work(); // we’re hoping no writing will
go on in the meanwhile
if (lock.validate(stamp)){
 //success! no contention with a
writer thread
}
else {
 //another thread must have acquired
a write lock in the meanwhile, changing
the stamp.
 //bummer - let’s downgrade to a
heavier read lock

 stamp = lock.readLock(); //this is a

by Tal Weiss

https://www.goodreads.com/author/quotes/73409.Brian_Goetz
http://www.takipiblog.com/2014/04/16/java-8-longadders-the-fastest-way-to-add-numbers-concurrently/
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html
http://www.infoq.com/author/Tal-Weiss

Page 44

Java 8 / eMag Issue 14 - July 2014

CONTENTS

traditional blocking read lock
 try {
 //no writing happening now
 work();
 }
 finally {
 lock.unlock(stamp); //
release using the correlating stamp
 }
}

2. Concurrent Adders
Another beautiful addition to Java 8, meant
specifically for code running at scale, is the
concurrent “Adders”. One of the most basic
concurrency patterns is reading and writing the value
of a numeric counter. As such, there are many ways in
which you can do this today, but none so efficient or
elegant as what Java 8 has to offer.

Up until now this was done using Atomics, which
used a direct CPU compare and swap (CAS)
instruction (via the sun.misc.Unsafe class) to try
and set the value of a counter. The problem was
that when a CAS failed due to contention, the
AtomicInteger would spin, continually retrying the
CAS in an infinite loop until it succeeded. At high
levels of contention this could prove to be pretty
slow.

Enter Java 8’s LongAdders. This set of classes
provides a convenient way to concurrently read
and write numeric values at scale. Usage is super
simple. Just instantiate a new LongAdder and use
itsadd() and intValue() methods to increase and
sample the counter.

The difference between this and the old Atomics is
that here, when a CAS fails due to contention, instead
of spinning the CPU, the Adder will store the delta
in an internal cell object allocated for that thread. It
will then add this value along with any other pending
cells to the result of intValue(). This reduces the need
to go back and CAS or block other threads.

If you’re asking yourself when should I prefer to
use concurrent Adders over Atomics to manage
counters? The simple answer is – always.

3. Parallel Sorting
Just as concurrent Adders speed up counting, Java 8
delivers a concise way to speed up sorting. The recipe
is pretty simple. Instead of -

Array.sort(myArray);

You can now use –

Arrays.parallelSort(myArray);

This will automatically break up the target collection
into several parts, which will be sorted independently
across a number of cores and then grouped back
together. The only caveat here is that when called in
highly multi-threaded environments, such as a busy
web container, the benefits of this approach will
begin to diminish (by more than 90%) due to the cost
of increased CPU context switches.

4. Switching to the new Date API
Java 8 introduces a complete new date-time API.
You kind of know it’s about time when most of
the methods of the current one are marked as
deprecated... The new API brings ease-of-use and
accuracy long provided by the popular Joda time API
into the core Java library.

As with any new API the good news is that it’s more
elegant and functional. Unfortunately there are still
vast amounts of code out there using the old API, and
that won’t change any time soon.

To help bridge the gap between the old and new
API’s, the venerable Date class now has a new
method called toInstant() which converts the Date
into the new representation. This can be especially
effective in those cases where you’re working on an
API that expects the classic form, but would like to
enjoy everything the new API has to offer.

5. Controlling OS Processes
Launching an OS process from within your code is
right there with JNI calls – it’s something you do
half-knowing there’s a good chance you’re going to
get some unexpected results and some really bad
exceptions down the line.

Even so, it’s a necessary evil. But processes have
another nasty angle to them - they have a tendency
to dangle. The problem with launching process from
within Java code so far has been that is was hard to
control a process once it was launched.

To help us with this Java 8 introduces three new
methods in the Process class -

http://www.docjar.com/html/api/sun/misc/Unsafe.java.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/LongAdder.html
http://www.takipiblog.com/2014/04/03/new-parallelism-apis-in-java-8-behind-the-glitz-and-glamour/
http://www.oracle.com/technetwork/articles/java/jf14-date-time-2125367.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Process.html

Page 45

Java 8 / eMag Issue 14 - July 2014

CONTENTS

destroyForcibly - terminates a process with a much
higher degree of success than before.

isAlive tells if a process launched by your code is still
alive.

A new overload for waitFor() lets you specify the
amount of time you want to wait for the process
to finish. This returns whether the process exited
successfully or timed-out in which case you might
terminate it.

Two good use-cases for these new methods are -

If the process did not finish in time, terminate and
move forward:

if (process.wait(MY_TIMEOUT, TimeUnit.
MILLISECONDS)){
 //success! }
else {
 process.destroyForcibly();
}

Make sure that before your code is done, you’re not
leaving any processes behind. Dangling processes
can slowly but surely deplete your OS.

for (Process p : processes) {
 if (p.isAlive()) {
 p.destroyForcibly();
 }
}

6. Exact Numeric Operations
Numeric overflows can cause some of the nastiest
bugs due to their implicit nature. This is especially
true in systems where int values (such as counters)
grow over time. In those cases things that work
well in staging, and even during long periods in
production, can start breaking in the weirdest
of ways, when operations begin to overflow and
produce completely unexpected values.

To help with this Java 8 has added several new
“exact” methods to the Math class geared towards
protecting sensitive code from implicit overflows, by
throwing an unchecked ArithmeticException when
the value of an operation overflows its precision.

int safeC = Math.multiplyExact(bigA,
bigB); // will throw ArithmeticException
if result exceeds +-2^31

The only downside is that it’s up to you to find those
places in your code where overflows can happen. Not
an automagical solution by any stretch, but I guess
it’s better than nothing.

7. Secure Random Generation
Java has been under fire for several years for having
security holes. Justified or not, a lot of work has
been done to fortify the JVM and frameworks from
possible attacks. Random numbers with a low-level
of entropy make systems that use random number
generators to create encryption keys or hash
sensitive information more susceptible to hacking.

So far selection of the Random Number Generation
algorithms has been left to the developer. The
problem is that where implementations depend on
specific hardware / OS / JVM, the desired algorithm
may not be available. In such cases applications have
a tendency to default to weaker generators, which
can put them at greater risk of attack.

Java 8 has added a new method
called SecureRandom.getInstanceStrong() whose
aim is to have the JVM choose a secure provider for
you. If you’re writing code without complete control
of the OS / hardware / JVM on which it would run
(which is very common when deploying to the cloud
or PaaS), my suggestion is to give this approach some
serious consideration.

8. Optional References
NulPointers are like stubbing your toes - you’ve been
doing it since you could stand up, and no matter how
smart you are today - chances are you still do. To help
with this age-old problem Java 8 is introducing a new
template called Optional<T>.

Borrowing from Scala and Haskell, this template is
meant to explicitly state when a reference passed to
or returned by a function can be null. This is meant
to reduce the guessing game of whether a reference
can be null, through over-reliance on documentation
which may be out-of-date, or reading code which
may change over time.

Optional<User> tryFindUser(int userID) {

or -

void processUser(User user,
Optional<Cart> shoppingCart) {

http://docs.oracle.com/javase/8/docs/technotes/guides/security/enhancements-8.html
https://i.chzbgr.com/maxW500/6044325376/hCEF652C1/
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

Page 46

Java 8 / eMag Issue 14 - July 2014

CONTENTS

The Optional template has a set of functions
that make sampling it more convenient, such
asisPresent() to check if an non-null value is available,
or ifPresent() to which you can pass a Lambda
function that will be executed if isPresent is true. The
downside is that much like with Java 8’s new date-
time APIs, it will take time and work till this pattern
takes hold and is absorbed into the libraries we use
and design everyday.

New Lambda syntax for printing an optional value -

value.ifPresent(System.out::print);

ABOUT THE AUTHOR
Tal Weiss is the CEO of Takipi. Tal
has been designing scalable, real-
time Java and C++ applications
for the past 15 years. He still
enjoys analyzing a good bug
though, and instrumenting Java
code. In his free time Tal plays
Jazz drums.

READ THIS ARTICLE
ONLINE ON InfoQ

http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
https://plus.google.com/+TalWeissGx?rel=author
http://www.takipi.com/
http://www.infoq.com/articles/Java-8-Quiet-Features

	_GoBack
	h.d90y5etkcj8f
	h.wdh5lsvn1s0t
	h.sq3x3kaph00h
	h.qfb4stggld7e
	h.tq9fjp1k3hz0
	h.afi32ajztr6x
	h.acw9b0eiw1w4
	h.3ceflblm6i52
	_GoBack

