

Felipe S. S. Schneider 28th March 2022

Advisor: Prof. Giovanni F. Caramori Molecular Electronic Structure Group (Chemistry Dept./UFSC) schneider.felipe@posgrad.ufsc.br

The problem in a nutshell

pubs.acs.org/OrgLett

Letter

The Challenge of Reproducing with Calculations Raw Experimental Kinetic Data for an Organic Reaction

Raúl Pérez-Soto, Maria Besora,* and Feliu Maseras*

 B3LYP-D3/cc-pVTZ (Gaussian09)

- B3LYP-D3/cc-pVTZ (Gaussian09)
- Rigid-Rotor Harmonic Approximation (RRHO)

Pérez-Soto, R. et al. Organic Letters 2020, 22, 2873–2877

- B3LYP-D3/cc-pVTZ (Gaussian09)
- Rigid-Rotor Harmonic Approximation (RRHO)
- SMD (dichloromethane)

Pérez-Soto, R. et al. Organic Letters 2020, 22, 2873–2877

- B3LYP-D3/cc-pVTZ (Gaussian09)
- Rigid-Rotor Harmonic Approximation (RRHO)
- SMD (dichloromethane)
- 1 atm \rightarrow 1 M correction

Pérez-Soto, R. et al. Organic Letters 2020, 22, 2873-2877

Their results

Two hypotheses:

• H1: adjusting transition state energies only

Plus: water impurities (1 mM) should be considered! Pérez-Soto, R. et al. Organic Letters 2020, 22, 2873–2877

Their results

Two hypotheses:

- H1: adjusting transition state energies only
- H2: adjusting all structures

Plus: water impurities (1 mM) should be considered! Pérez-Soto, R. et al. Organic Letters 2020, 22, 2873–2877

Their results

Two hypotheses:

- H1: adjusting transition state energies only
- H2: adjusting all structures

• 3.2 kcal/mol

Plus: water impurities (1 mM) should be considered! Pérez-Soto, R. et al. Organic Letters 2020, 22, 2873–2877

Going forward

• Quantum tunneling?

Going forward

- Quantum tunneling?
- Quasi-RRHO?

Going forward

- Quantum tunneling?
- Quasi-RRHO?
- Automation?

#Cor	nst	ants
k00	-	1.1520016141e+08
k01	-	2.1243982518e+11
k02	=	4.6522262685e+09
k03	=	2.1243982518e+11
k04	-	2.1243982518e+11
k05	-	1.0627425113e+11
k06	=	2.3472075016e+08
k07	-	2.1243982518e+11
k08	-	2.8944452758e+10
k09	-	2.1243982518e+11
k10	-	1.2474135377e+06
k11	=	2.1243982518e+11
k12	-	1.2524507574e+09
k13	-	2.1243982518e+11
k14	=	1.6652981977e+09
k15	=	2.1243982518e+11
k16	-	2.5518729986e+09

...

The idea

Meet overreact, the tool

\$scheme 1 // Reactions 2 S -> #E -> S 3 \$end 4 5 \$compounds // Species: logfile S: staggered.out[‡] 8 E: eclipsed.out 9 \$end 10

Ethane internal rotation

(B97-3c @ ORCA 4.2.1)

Schneider, F. S. S. and Caramori, G. F. overreact, an *in silico* lab: automated quantum chemical microkinetic simulations. *In preparation* **2021**.

Meet overreact, the tool: user-friendly

	schneider@apollo14:~/Dropbox/overreact/data/ethane/B97-3c	Q ≡		8
	lm) ≯overreact model.k -c			
	overreact 1.0			
Construct precise Licensed under th	chemical microkinetic models from first principles. e terms of the MIT License. If you publish work using this soft 0.51546061	ware, pleas	e cite	
<pre>@misc[overreact title textbf[ove built from }, author year publisher doi url copyright howpublished }</pre>	2021, resolution of for creating and analyzing microkinetic models compositional chemistry data, vi.alpha a (Schmeider, Felipe S. S. and Caramori, Glovanni F.), e 2020, (Zemodo), (Physis//Econo.Srifectod); (Open Access), (Uni(Stifs://Schub.com/gene-lab/overreact); (Uni(Stifs://Schub.com/gene-lab/overreact);			
ead the document xamples. nputs: - Path - Concentrations - Verbose level - Compile - Compile - Ocompile - Ocompile - Ocompile - Ocompile - Plot? - Ocompile - Ocompi	ation at https://geenlab.github.is/overreact.docs for more inf = model.k = U1 = True = True = True = True = True = Status = Stat	prmation and	d usag	

Meet overreact, the tool: detailed output

		(parsea) reactions						
	reactances) Vta	produce(s)	naci equici					
9		E‡		No					
	logfi								
•	conpound	path							
				compounds					
	compound	elec. [E	energy :	pin mult.	snallest [cm	vibfreqs -1]	point group		
2		-79.788	170457691		+307.6, +8	25.4, +826.1	D3d		
		-79.785	894100233		-298.9, -9	. +902.5			
			estinated to	ernochenistr	y (compounds				
	conpound	mass [anu]	[kcal/mol	U ^{co} [kcal	/mol]	[kcal/mol]	S [cal/mol·K]		
Ð	s	30.07	33	01	48.63	49.22	54.40		
		30.07			48.15	48.74	52.96		
			estimated (reaction") th	ernochenistr				
	reaction	ānass* [anu]	۵G° [kcal/mol]	ΔE* [kcal/mol]	۵U* [kcal/mol]	ΔH° [kcal/mol]	∆S* [cal/mol·K]		
		0.00		0.00	0.00	0.00	0.00		
			estimated (a		hermochemist				
	reaction	ánass‡ [anu]	AG‡ [kcal/mol]	∆E‡ [kcal/mol]	ΔU‡ [kcal/mol]	AH‡ [kcal/mol]	∆S‡ [cal/mol·K]		
,	s -> s	0.00	2.63	2.68	2.20	2.20	-1.44		
	reaction	half equ	(116.7 [N ⁻¹	k **.s-*] [(k cm³/particle) ⁿ⁻¹ ·s ⁻¹] [a	k tn ⁻ⁿ⁺¹ ·s ⁻¹]		
,	s 🕞 s	No	8.:	7e+18	8.17e+1)	8.17e+10	1.11	
Γ.	in the table	above a	11 other free	eperates we	re blased by	0.0 1/mol.			

Experimental: $\frac{1}{12 \times 10^{-12}}$ s⁻¹ = 8.333 × 10¹⁰s⁻¹ (ΔG[‡]: 2.88 kcal/mol)

Zheng, J. Science **2006**, 313, 1951–1955 Hirota, E. et al. *The Journal of Chemical Physics* **1979**, *71*, 1183–1187

Meet overreact, the tool: indicating solvent

```
$scheme
   NH3(w_{P})+OH·(w) -> NH3·OH#(w) -> NH2·(w) + H2O(w)
3
   $compounds
4
   NH3(w): NH3.out
5
   OH \cdot (w): OH \cdot .out
6
   NH2·(w): NH2·.out
7
   H2O(w): H2O.out
8
   NH3·OH#(w): NH3·OH.out
9
  // symmetry=3 // extra symmetries
10
```

$$NH_{3(w)} + OH \cdot _{(w)} \longrightarrow NH_2 \cdot _{(w)} + H_2O_{(w)}$$

(M062X-D3(0)/6-311++G(d,p)/SMD(water) @ ORCA 4.2.1)

Meet overreact, the tool: results in solvent

NI	$H_{3(w)}$	+	OH	• (w)	\longrightarrow	NH_2	• (w)	+	H ₂ C) (w))
----	------------	---	----	-------	-------------------	--------	-------	---	------------------	----------	---

	k (M ^{−1} s ^{−1})
Hickel and Sehested ¹ (exp.)	9.7×10^{7}
Men'kin et al.² (exp.)	7.0×10^{7}
Neta et al. ³ (exp.)	9.0×10^{7}
Ours (ORCA 4.2.1)	$1.1 imes 10^{8}$
Dzib et al.4 (Gaussian09)	2.3×10^{7}

m	schneider@apollo1&-/Dropbox/overreact/data/hicke11992/UM06-2X/6-311++G(d,p) 🔍 \Xi _ 🗆 😣							
		estimated react	ion rate const	ants				
no	reaction	half equilib.?	k [M ⁻ⁿ⁺¹ ·s ⁻¹]	k [(cm³/particle) ⁿ⁻¹ ·s ⁻¹]	k [atn ^{-n+s} ·s ^{-s}]	к		
0	$NH3(w) + OH \cdot (w) \rightarrow NH2 \cdot (w) + H2O(w)$	No	1.13e+08	1.88e-13	4.62e+86	2.45		
Only For h → 6-	nly in the table above, all Gibbs free energies were blased by 0.0 J/mol. For half-equilibria, only ratics make sense. = = slit=ed(ap) strictment > d							

 ¹Hickel, B.; Sehested, K. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 1992, 39, 355–357.
 ²Men'kin, V. et al. High Energy Chemistry (English Translation) 1989, 22, 333–336.
 ³Neta, P. et al. The Journal of Physical Chemistry 1978, 82, 1875–1878.
 ⁴Dzib, E. et al. International Journal of Quantum Chemistry 2018, 119, e25686.

Meet overreact, the tool: equilibria

```
$scheme
      NH3(w \mathbb{R}) + OH \cdot (w) \rightarrow NH3 \cdot OH \# (w) \rightarrow NH2 \cdot (w) + H2O(w)
 2
      NH4+(\bar{w}) \iff NH3(w) + H+(w) // pK = 9.25
 4
     $compounds
      NH3(w): NH3.out
 6
 7
      OH·(w): OH·.out
8
      NH2 · (w): NH2 · .out
9
      H2O(w): H2O.out
10
      NH3.0H#(w): NH3.0H.out
     // symmetry=3 // extra symmetries
11
      NH4+(w): NH4+.out
12
      H+(w):
13
      // energy=0.0
14
15
       // energy=-1112525.6 // J == -265.9 kcal/mol (proton solvation from doi:10.1021/ip810292n)
16
       energy=-1094746.6 // J == -261.7 kcal/mol (the value that adjusts the pK)
       mult=1
17
       atomnos=[1]
18
       atommasses=[1.008]
19
       atomcoords=[[0.0, 0.0, 0.0]]
20
```

л	schneider@apollo14:-/Dropbox/overreact/data/hickel1992/UM06-2X/6-311++G(d,p) Q = _							
		estimated react	lon rate const	ants				
no	reaction	half equilib.?	k [M ^{-m+1} ·s ⁻¹]	k [(cm³/particle)"-1·s-1]	k [atn ⁻ⁿ⁺¹ ·s ⁻¹]			
0 1 2	$\begin{array}{l} NH3(w) + OH \cdot (w) & \rightarrow NH2 \cdot (w) + H2O(w) \\ NH4+(w) & \rightarrow NH3(w) + H+(w) \\ NH3(w) + H+(w) & \rightarrow NH4+(w) \end{array}$	No Yes Yes	1.13e+08 1 1.79e+09	1.88e-13 1 2.97e-12	4.62e+06 1 7.3e+07	2.45		
Only i For ha	only in the table above, all Gibbs free energies were blassed by 0.0 J/mol. or half-equilibria, only ration make sense. = -listrad_op jui(=mo) /i							

• Parsing of multiple reactions

 $\mathsf{B} \longrightarrow \mathsf{C} \longrightarrow \ldots$

¹Brown, R. JOURNAL OF RESEARCH of the National Bureau of Standards **1981**, 86, 357 ²Bell, R. P. Transactions of the Faraday Society **1959**, 55, 1

• Parsing of multiple reactions

• Rigid rotor-harmonic oscillator approximation (**RRHO**)

¹Brown, R. JOURNAL OF RESEARCH of the National Bureau of Standards **1981**, 86, 357 ²Bell, R. P. Transactions of the Faraday Society **1959**, 55, 1

• Parsing of **multiple reactions**

- Rigid rotor-harmonic oscillator approximation (**RRHO**)
- Automatic 1 atm \rightarrow 1 M correction

¹Brown, R. JOURNAL OF RESEARCH of the National Bureau of Standards **1981**, 86, 357 ²Bell, R. P. Transactions of the Faraday Society **1959**, 55, 1

overreact

 $\cdot\,$ Parsing of multiple reactions

$$A \rightleftharpoons B \longrightarrow \dots$$

- Rigid rotor-harmonic oscillator approximation (**RRHO**)
- Automatic 1 atm \rightarrow 1 M correction
- Eyring-Evans-Polanyi equation

¹Brown, R. JOURNAL OF RESEARCH of the National Bureau of Standards **1981**, 86, 357 ²Bell, R. P. Transactions of the Faraday Society **1959**, 55, 1

overreact

 $\cdot\,$ Parsing of multiple reactions

$$A \rightleftharpoons B \longrightarrow \dots$$

- Rigid rotor-harmonic oscillator approximation (**RRHO**)
- Automatic 1 atm \rightarrow 1 M correction
- Eyring-Evans-Polanyi equation
- Eckart¹transmission coefficients (Wigner²also implemented)

¹Brown, R. JOURNAL OF RESEARCH of the National Bureau of Standards **1981**, 86, 357 ²Bell, R. P. Transactions of the Faraday Society **1959**, 55, 1

Meet overreact, the library: quasi-RRHO

• Quasi-RRHO for both vibrational entropies¹ and enthalpies²

¹Grimme, S. Chemistry - A European Journal **2012**, 18, 9955–9964. ²Li, Y.-P. et al. The Journal of Physical Chemistry C **2015**, 119, 1840–1850.

Meet overreact, the library: symmetries

• Robust code for the determination of point groups and rotational symmetry numbers

Meet overreact, the library: symmetries

- Robust code for the determination of point groups and rotational symmetry numbers
- (The above implies an error of RT In $\left(\frac{12}{1}\right) \approx 1.5$ kcal/mol @ 25°C)

• Automatic generation of the required differential equations

$$\frac{dy}{dt} = f(t, y)$$

¹Virtanen, P. et al. *Nature Methods* **2020**, 17, 261–272 ²O'boyle, N. M. et al. *Journal of Computational Chemistry* **2008**, 29, 839–845

• Automatic generation of the required differential equations

$$\frac{dy}{dt} = f(t, y)$$

• Solution via standard methods (via scipy¹)

¹Virtanen, P. et al. *Nature Methods* **2020**, 17, 261–272 ²O'boyle, N. M. et al. *Journal of Computational Chemistry* **2008**, 29, 839–845

• Automatic generation of the required differential equations

$$\frac{dy}{dt} = f(t, y)$$

- Solution via standard methods (via scipy¹)
- · Compatible with **many** packages (via $cclib^2$)
 - ADF (versions 2007 and 2013)
 - DALTON (versions 2013 and 2015)
 - · Firefly, formerly known as PC GAMESS (version 8.0)
 - GAMESS (US) (versions 2014 and 2017)
 - GAMESS-UK (versions 7.0 and 8.0)
 - Gaussian (versions 09 and 16)
 - Jaguar (versions 7.0 and 8.3)
 - Molcas (version 18.0)
 - Molpro (versions 2006 and 2012)
 - MOPAC (version 2016)
 - NWChem (versions 6.0, 6.1, 6.5 and 6.6)
 - ORCA (versions 4.0 and 4.1)
 - Psi4 (versions 1.0 and 1.2.1)
 - Q-Chem (versions 4.2 and 5.1)
 Turbomole (versions 5.9 and 7.2)

¹Virtanen, P. et al. *Nature Methods* **2020**, *17*, 261–272 ²O'boyle, N. M. et al. *Journal of Computational Chemistry* **2008**, *29*, 839–845

• Automatic generation of the required differential equations

$$\frac{dy}{dt} = f(t, y)$$

- Solution via standard methods (via scipy¹)
- · Compatible with **many** packages (via $cclib^2$)
 - ADF (versions 2007 and 2013)
 - DALTON (versions 2013 and 2015)
 - · Firefly, formerly known as PC GAMESS (version 8.0)
 - GAMESS (US) (versions 2014 and 2017)
 - GAMESS-UK (versions 7.0 and 8.0)
 - Gaussian (versions 09 and 16)
 - Jaguar (versions 7.0 and 8.3)
 - Molcas (version 18.0)
 - Molpro (versions 2006 and 2012)
 - MOPAC (version 2016)
 - NWChem (versions 6.0, 6.1, 6.5 and 6.6)
 - ORCA (versions 4.0 and 4.1)
 - Psi4 (versions 1.0 and 1.2.1)
 - Q-Chem (versions 4.2 and 5.1)
 - Turbomole (versions 5.9 and 7.2)

Microkinetic modelling

¹Virtanen, P. et al. Nature Methods 2020, 17, 261–272
 ²O'boyle, N. M. et al. Journal of Computational Chemistry 2008, 29, 839–845

Two solved problems

$CH_4 + Cl \cdot \longrightarrow CH_3 \cdot + HCl$

Burkholder, J. et al. Chemical kinetics and photochemical data for use in atmospheric studies; evaluation number 19, tech. rep.; Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Agency, 2020 Tanaka, N. et al. Journal of Atmospheric Chemistry 1996, 23, 37–49 Jupyter notebook: https://git.io/JBjLB

$\mathsf{CH}_4 + \mathsf{Cl} \cdot \longrightarrow \mathsf{CH}_3 \cdot + \mathsf{HCl}$

$$\log_{10} k^{exp} = 0.9633 \times \log_{10} k^{\text{UMP2/cc-pVTZ}} - 0.4256 \qquad (r^2 = 0.9984)$$

Burkholder, J. et al. Chemical kinetics and photochemical data for use in atmospheric studies; evaluation number 19, tech. rep.; Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Agency, 2020 Tanaka, N. et al. Journal of Atmospheric Chemistry 1996, 23, 37–49 Jupyter notebook: https://git.io/JBjLB

$\mathsf{CH}_4 + \mathsf{Cl} \cdot \longrightarrow \mathsf{CH}_3 \cdot + \mathsf{HCl}$

(Arbitrarily) starting from:

$$y_0^{Cl.} = 1 \times 10^{-7} M, \quad y_0^{CH_4} = 2.5 y_0^{Cl.}, \quad y_0^{HCl} = 0.25 y_0^{Cl.}$$

Jupyter notebook: https://git.io/JBjLQ

Reproducing the work of Pérez-Soto et al.

Reproducing the work of Pérez-Soto et al.

\$ overreact model.k "Benzaldehyde(dcm): 0.06" "NButylamine(dcm) : 0.06" 'Water(dcm): 0.001' \

--bias=3.2 --plot=active --max-time 5000

я			schneid
	initial and fina [M	l concentro I	ations
no	compound	t = 0 s	t = 5e+03 s
	Benzaldehyde(dcm)	0.060	0.007
	NButylamine(dcm)	0.060	0.006
	A_N(dcm)	0.000	0.000
	A_N_N(dcm)	0.000	0.000
	Water(dcm)	0.001	0.011
	A_N_W(dcm)	0.000	0.000
	A_N_N_W(dcm)	0.000	0.000
	A_N_W_W(dcm)	0.000	0.000
	TS1_#(dcm)	0.000	0.000
	Hemiaminal(dcm)	0.000	0.000
10	TS2_#(dcm)	0.000	0.000
11	I_W(dcm)	0.000	0.031
	TS1N_#(dcm)	0.000	0.000
	Int_N(dcm)	0.000	0.001
	TS2N_#(dcm)	0.000	0.000
	I_N_W(dcm)	0.000	0.000
	TS1W_#(dcm)	0.000	0.000
	Int_W(dcm)	0.000	0.000
	TS2W_#(dcm)	0.000	0.000
	I_W_W(dcm)	0.000	0.005
	TS1NW_#(dcm)	0.000	0.000
	Int_N_W(dcm)	0.000	0.000
	TS2NW_#(dcm)	0.000	0.000
	I_N_W_W(dcm)	0.000	0.000
	TS1WW_#(dcm)	0.000	0.000
	Int_W_W(dcm)	0.000	0.000
	TS2WW_#(dcm)	0.000	0.000
	I_W_W_W(dcm)	0.000	0.000
	Imine(dcm)	0.000	
Simula → cc	ation data was saved -pVTZ git:(nain) X	to model.	sv

Perspectives

Improved tunneling corrections

¹Tanaka, N. et al. *Journal of Atmospheric Chemistry* **1996**, *23*, 37–49. ²Garza, A. J. *Journal of Chemical Theory and Computation* **2019**, *15*, 3204–3214.

- Improved tunneling corrections
- Kinetic isotope effects (KIE)¹

¹Tanaka, N. et al. *Journal of Atmospheric Chemistry* **1996**, *23*, 37–49. ²Garza, A. J. *Journal of Chemical Theory and Computation* **2019**, *15*, 3204–3214.

- Improved tunneling corrections
- Kinetic isotope effects (KIE)¹
- Translational entropy in solution²

¹Tanaka, N. et al. *Journal of Atmospheric Chemistry* **1996**, *23*, 37–49. ²Garza, A. J. *Journal of Chemical Theory and Computation* **2019**, *15*, 3204–3214.

- Improved tunneling corrections
- Kinetic isotope effects (KIE)¹
- Translational entropy in solution²
- Internal symmetries (free rotors, supramolecular complexes, etc.)

 ¹Tanaka, N. et al. Journal of Atmospheric Chemistry **1996**, 23, 37–49.
 ²Garza, A. J. Journal of Chemical Theory and Computation **2019**, 15, 3204–3214.

- Improved tunneling corrections
- Kinetic isotope effects (KIE)¹
- Translational entropy in solution²
- Internal symmetries (free rotors, supramolecular complexes, etc.)
- Faster models: machine learned models for

 ¹Tanaka, N. et al. Journal of Atmospheric Chemistry **1996**, 23, 37–49.
 ²Garza, A. J. Journal of Chemical Theory and Computation **2019**, 15, 3204–3214.

- Improved tunneling corrections
- Kinetic isotope effects (KIE)¹
- Translational entropy in solution²
- Internal symmetries (free rotors, supramolecular complexes, etc.)
- Faster models: machine learned models for
 - Potential energies

 ¹Tanaka, N. et al. Journal of Atmospheric Chemistry **1996**, 23, 37–49.
 ²Garza, A. J. Journal of Chemical Theory and Computation **2019**, 15, 3204–3214.

- Improved tunneling corrections
- Kinetic isotope effects (KIE)¹
- Translational entropy in solution²
- Internal symmetries (free rotors, supramolecular complexes, etc.)
- Faster models: machine learned models for
 - Potential energies
 - Geometries

 ¹Tanaka, N. et al. Journal of Atmospheric Chemistry **1996**, 23, 37–49.
 ²Garza, A. J. Journal of Chemical Theory and Computation **2019**, 15, 3204–3214.

- Improved tunneling corrections
- Kinetic isotope effects (KIE)¹
- Translational entropy in solution²
- Internal symmetries (free rotors, supramolecular complexes, etc.)
- Faster models: machine learned models for
 - Potential energies
 - Geometries
 - Vibrational frequencies

 ¹Tanaka, N. et al. Journal of Atmospheric Chemistry **1996**, 23, 37–49.
 ²Garza, A. J. Journal of Chemical Theory and Computation **2019**, 15, 3204–3214.

- Improved tunneling corrections
- Kinetic isotope effects (KIE)¹
- Translational entropy in solution²
- Internal symmetries (free rotors, supramolecular complexes, etc.)
- Faster models: machine learned models for
 - Potential energies
 - Geometries
 - Vibrational frequencies
- Time-resolved spectroscopy

 ¹Tanaka, N. et al. Journal of Atmospheric Chemistry **1996**, 23, 37–49.
 ²Garza, A. J. Journal of Chemical Theory and Computation **2019**, 15, 3204–3214.

Questions?

https://geem-lab.github.io/overreact-docs/