Skip to content

Commit 0442694

Browse files
committed
towards maximum likelihood
1 parent 2ce02a5 commit 0442694

File tree

1 file changed

+33
-0
lines changed

1 file changed

+33
-0
lines changed
Lines changed: 33 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,33 @@
1+
---
2+
title: 'Maximum Likelihood Estimation'
3+
description: 'Maximum Likelihood Estimation'
4+
pubDate: '2025-09-11'
5+
heroImage: '../../assets/blog-placeholder-3.jpg'
6+
---
7+
8+
import T from '../../components/TypstMath.astro'
9+
import TypicalGallery from '../../components/TypicalGallery.astro'
10+
11+
12+
### Reminder
13+
14+
One has access to $n$ samples $x_1, \dots, x_n$ drawn from an unknown data distribution $p_{\mathrm{data}}$:
15+
16+
<T block v=' x_1,dots, x_n ~ p_"data" .' />
17+
18+
The goal is to generate new samples drawn from $p_{\mathrm{data}}$.
19+
20+
#### Maximum Log-Likelihood Estimation (MLE)
21+
22+
The main idea of maximum likelihood is the following:
23+
- one restricts the search for a model to a family of distributions $p(\cdot | \theta)$ parameterized by $\theta$.
24+
- for each parameter $\theta$, one evaluates the density $p( \cdot | \theta)$ on the data points $x_1, \dots, x_n$: $p(x_1, \dots, x_n | \theta)$
25+
- then one chose the parameter $\theta$ that maximizes the likelihood of the observed data $p(x_1, \dots, x_n | \theta)$.
26+
27+
<T block v='cal(L)^"ML" (theta) := log p(x_1, dots, x_n | theta)'/>
28+
29+
<T block v=' := log p(x_1 | theta) times dots times p(x_n | theta) '/>
30+
31+
<T block v=' := sum_(i=1)^n log p(x_i | theta) '/>
32+
33+
#### Examples

0 commit comments

Comments
 (0)