Join GitHub today
GitHub is home to over 50 million developers working together to host and review code, manage projects, and build software together.
Sign up| /* | |
| Genome-wide Efficient Mixed Model Association (GEMMA) | |
| Copyright (C) 2011-2017, Xiang Zhou | |
| This program is free software: you can redistribute it and/or modify | |
| it under the terms of the GNU General Public License as published by | |
| the Free Software Foundation, either version 3 of the License, or | |
| (at your option) any later version. | |
| This program is distributed in the hope that it will be useful, | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| GNU General Public License for more details. | |
| You should have received a copy of the GNU General Public License | |
| along with this program. If not, see <http://www.gnu.org/licenses/>. | |
| */ | |
| #include <fstream> | |
| #include <iostream> | |
| #include <sstream> | |
| #include <assert.h> | |
| #include <bitset> | |
| #include <cmath> | |
| #include <cstring> | |
| #include <iomanip> | |
| #include <iostream> | |
| #include <stdio.h> | |
| #include <stdlib.h> | |
| #include "gsl/gsl_blas.h" | |
| #include "gsl/gsl_cdf.h" | |
| #include "gsl/gsl_linalg.h" | |
| #include "gsl/gsl_matrix.h" | |
| #include "gsl/gsl_min.h" | |
| #include "gsl/gsl_roots.h" | |
| #include "gsl/gsl_vector.h" | |
| #include "fastblas.h" | |
| #include "gzstream.h" | |
| #include "gemma_io.h" | |
| #include "lapack.h" | |
| #include "mathfunc.h" | |
| #include "lmm.h" | |
| #include "mvlmm.h" | |
| using namespace std; | |
| // In this file, X, Y are already transformed (i.e. UtX and UtY). | |
| void MVLMM::CopyFromParam(PARAM &cPar) { | |
| a_mode = cPar.a_mode; | |
| d_pace = cPar.d_pace; | |
| file_bfile = cPar.file_bfile; | |
| file_geno = cPar.file_geno; | |
| file_out = cPar.file_out; | |
| path_out = cPar.path_out; | |
| l_min = cPar.l_min; | |
| l_max = cPar.l_max; | |
| n_region = cPar.n_region; | |
| p_nr = cPar.p_nr; | |
| em_iter = cPar.em_iter; | |
| nr_iter = cPar.nr_iter; | |
| em_prec = cPar.em_prec; | |
| nr_prec = cPar.nr_prec; | |
| crt = cPar.crt; | |
| Vg_remle_null = cPar.Vg_remle_null; | |
| Ve_remle_null = cPar.Ve_remle_null; | |
| Vg_mle_null = cPar.Vg_mle_null; | |
| Ve_mle_null = cPar.Ve_mle_null; | |
| time_UtX = 0.0; | |
| time_opt = 0.0; | |
| ni_total = cPar.ni_total; | |
| ns_total = cPar.ns_total; | |
| ni_test = cPar.ni_test; | |
| ns_test = cPar.ns_test; | |
| n_cvt = cPar.n_cvt; | |
| n_ph = cPar.n_ph; | |
| indicator_idv = cPar.indicator_idv; | |
| indicator_snp = cPar.indicator_snp; | |
| snpInfo = cPar.snpInfo; | |
| return; | |
| } | |
| void MVLMM::CopyToParam(PARAM &cPar) { | |
| cPar.time_UtX = time_UtX; | |
| cPar.time_opt = time_opt; | |
| cPar.Vg_remle_null = Vg_remle_null; | |
| cPar.Ve_remle_null = Ve_remle_null; | |
| cPar.Vg_mle_null = Vg_mle_null; | |
| cPar.Ve_mle_null = Ve_mle_null; | |
| cPar.VVg_remle_null = VVg_remle_null; | |
| cPar.VVe_remle_null = VVe_remle_null; | |
| cPar.VVg_mle_null = VVg_mle_null; | |
| cPar.VVe_mle_null = VVe_mle_null; | |
| cPar.beta_remle_null = beta_remle_null; | |
| cPar.se_beta_remle_null = se_beta_remle_null; | |
| cPar.beta_mle_null = beta_mle_null; | |
| cPar.se_beta_mle_null = se_beta_mle_null; | |
| cPar.logl_remle_H0 = logl_remle_H0; | |
| cPar.logl_mle_H0 = logl_mle_H0; | |
| return; | |
| } | |
| void MVLMM::WriteFiles() { | |
| string file_str; | |
| file_str = path_out + "/" + file_out; | |
| file_str += ".assoc.txt"; | |
| ofstream outfile(file_str.c_str(), ofstream::out); | |
| if (!outfile) { | |
| cout << "error writing file: " << file_str.c_str() << endl; | |
| return; | |
| } | |
| outfile << "chr" | |
| << "\t" | |
| << "rs" | |
| << "\t" | |
| << "ps" | |
| << "\t" | |
| << "n_miss" | |
| << "\t" | |
| << "allele1" | |
| << "\t" | |
| << "allele0" | |
| << "\t" | |
| << "af" | |
| << "\t"; | |
| for (size_t i = 0; i < n_ph; i++) { | |
| outfile << "beta_" << i + 1 << "\t"; | |
| } | |
| for (size_t i = 0; i < n_ph; i++) { | |
| for (size_t j = i; j < n_ph; j++) { | |
| outfile << "Vbeta_" << i + 1 << "_" << j + 1 << "\t"; | |
| } | |
| } | |
| if (a_mode == 1) { | |
| outfile << "p_wald" << endl; | |
| } else if (a_mode == 2) { | |
| outfile << "p_lrt" << endl; | |
| } else if (a_mode == 3) { | |
| outfile << "p_score" << endl; | |
| } else if (a_mode == 4) { | |
| outfile << "p_wald" | |
| << "\t" | |
| << "p_lrt" | |
| << "\t" | |
| << "p_score" << endl; | |
| } else { | |
| } | |
| size_t t = 0, c = 0; | |
| for (size_t i = 0; i < snpInfo.size(); ++i) { | |
| if (indicator_snp[i] == 0) { | |
| continue; | |
| } | |
| outfile << snpInfo[i].chr << "\t" << snpInfo[i].rs_number << "\t" | |
| << snpInfo[i].base_position << "\t" << snpInfo[i].n_miss << "\t" | |
| << snpInfo[i].a_minor << "\t" << snpInfo[i].a_major << "\t" << fixed | |
| << setprecision(3) << snpInfo[i].maf << "\t"; | |
| outfile << scientific << setprecision(6); | |
| for (size_t i = 0; i < n_ph; i++) { | |
| outfile << sumStat[t].v_beta[i] << "\t"; | |
| } | |
| c = 0; | |
| for (size_t i = 0; i < n_ph; i++) { | |
| for (size_t j = i; j < n_ph; j++) { | |
| outfile << sumStat[t].v_Vbeta[c] << "\t"; | |
| c++; | |
| } | |
| } | |
| if (a_mode == 1) { | |
| outfile << sumStat[t].p_wald << endl; | |
| } else if (a_mode == 2) { | |
| outfile << sumStat[t].p_lrt << endl; | |
| } else if (a_mode == 3) { | |
| outfile << sumStat[t].p_score << endl; | |
| } else if (a_mode == 4) { | |
| outfile << sumStat[t].p_wald << "\t" << sumStat[t].p_lrt << "\t" | |
| << sumStat[t].p_score << endl; | |
| } else { | |
| } | |
| t++; | |
| } | |
| outfile.close(); | |
| outfile.clear(); | |
| return; | |
| } | |
| // Below are functions for EM algorithm. | |
| double EigenProc(const gsl_matrix *V_g, const gsl_matrix *V_e, gsl_vector *D_l, | |
| gsl_matrix *UltVeh, gsl_matrix *UltVehi) { | |
| size_t d_size = V_g->size1; | |
| double d, logdet_Ve = 0.0; | |
| // Eigen decomposition of V_e. | |
| gsl_matrix *Lambda = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *V_e_temp = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *V_e_h = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *V_e_hi = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *VgVehi = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *U_l = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix_memcpy(V_e_temp, V_e); | |
| EigenDecomp(V_e_temp, U_l, D_l, 0); | |
| // Calculate V_e_h and V_e_hi. | |
| gsl_matrix_set_zero(V_e_h); | |
| gsl_matrix_set_zero(V_e_hi); | |
| for (size_t i = 0; i < d_size; i++) { | |
| d = gsl_vector_get(D_l, i); | |
| if (d <= 0) { | |
| continue; | |
| } | |
| logdet_Ve += safe_log(d); | |
| gsl_vector_view U_col = gsl_matrix_column(U_l, i); | |
| d = safe_sqrt(d); | |
| gsl_blas_dsyr(CblasUpper, d, &U_col.vector, V_e_h); | |
| d = 1.0 / d; | |
| gsl_blas_dsyr(CblasUpper, d, &U_col.vector, V_e_hi); | |
| } | |
| // Copy the upper part to lower part. | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j < i; j++) { | |
| gsl_matrix_set(V_e_h, i, j, gsl_matrix_get(V_e_h, j, i)); | |
| gsl_matrix_set(V_e_hi, i, j, gsl_matrix_get(V_e_hi, j, i)); | |
| } | |
| } | |
| // Calculate Lambda=V_ehi V_g V_ehi. | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, V_g, V_e_hi, 0.0, VgVehi); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, V_e_hi, VgVehi, 0.0, Lambda); | |
| // Eigen decomposition of Lambda. | |
| EigenDecomp(Lambda, U_l, D_l, 0); | |
| for (size_t i = 0; i < d_size; i++) { | |
| d = gsl_vector_get(D_l, i); | |
| if (d < 0) { | |
| gsl_vector_set(D_l, i, 0); | |
| } | |
| } | |
| // Calculate UltVeh and UltVehi. | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, U_l, V_e_h, 0.0, UltVeh); | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, U_l, V_e_hi, 0.0, UltVehi); | |
| // free memory | |
| gsl_matrix_free(Lambda); | |
| gsl_matrix_free(V_e_temp); | |
| gsl_matrix_free(V_e_h); | |
| gsl_matrix_free(V_e_hi); | |
| gsl_matrix_free(VgVehi); | |
| gsl_matrix_free(U_l); | |
| return logdet_Ve; | |
| } | |
| // Qi=(\sum_{k=1}^n x_kx_k^T\otimes(delta_k*Dl+I)^{-1} )^{-1}. | |
| double CalcQi(const gsl_vector *eval, const gsl_vector *D_l, | |
| const gsl_matrix *X, gsl_matrix *Qi) { | |
| size_t n_size = eval->size, d_size = D_l->size, dc_size = Qi->size1; | |
| size_t c_size = dc_size / d_size; | |
| double delta, dl, d1, d2, d, logdet_Q; | |
| gsl_matrix *Q = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix_set_zero(Q); | |
| for (size_t i = 0; i < c_size; i++) { | |
| for (size_t j = 0; j < c_size; j++) { | |
| for (size_t l = 0; l < d_size; l++) { | |
| dl = gsl_vector_get(D_l, l); | |
| if (j < i) { | |
| d = gsl_matrix_get(Q, j * d_size + l, i * d_size + l); | |
| } else { | |
| d = 0.0; | |
| for (size_t k = 0; k < n_size; k++) { | |
| d1 = gsl_matrix_get(X, i, k); | |
| d2 = gsl_matrix_get(X, j, k); | |
| delta = gsl_vector_get(eval, k); | |
| d += d1 * d2 / (dl * delta + 1.0); // @@ | |
| } | |
| } | |
| gsl_matrix_set(Q, i * d_size + l, j * d_size + l, d); | |
| } | |
| } | |
| } | |
| // Calculate LU decomposition of Q, and invert Q and calculate |Q|. | |
| int sig; | |
| gsl_permutation *pmt = gsl_permutation_alloc(dc_size); | |
| LUDecomp(Q, pmt, &sig); | |
| LUInvert(Q, pmt, Qi); | |
| logdet_Q = LULndet(Q); | |
| gsl_matrix_free(Q); | |
| gsl_permutation_free(pmt); | |
| return logdet_Q; | |
| } | |
| // xHiy=\sum_{k=1}^n x_k\otimes ((delta_k*Dl+I)^{-1}Ul^TVe^{-1/2}y. | |
| // | |
| // FIXME: mvlmm spends a massive amount of time here | |
| void CalcXHiY(const gsl_vector *eval, const gsl_vector *D_l, | |
| const gsl_matrix *X, const gsl_matrix *UltVehiY, | |
| gsl_vector *xHiy) { | |
| // debug_msg("enter"); | |
| size_t n_size = eval->size, c_size = X->size1, d_size = D_l->size; | |
| // gsl_vector_set_zero(xHiy); | |
| double x, delta, dl, y, d; | |
| for (size_t i = 0; i < d_size; i++) { | |
| dl = gsl_vector_get(D_l, i); | |
| for (size_t j = 0; j < c_size; j++) { | |
| d = 0.0; | |
| for (size_t k = 0; k < n_size; k++) { | |
| x = gsl_matrix_get(X, j, k); | |
| y = gsl_matrix_get(UltVehiY, i, k); | |
| delta = gsl_vector_get(eval, k); | |
| d += x * y / (delta * dl + 1.0); | |
| } | |
| gsl_vector_set(xHiy, j * d_size + i, d); | |
| } | |
| } | |
| // debug_msg("exit"); | |
| return; | |
| } | |
| // OmegaU=D_l/(delta Dl+I)^{-1} | |
| // OmegaE=delta D_l/(delta Dl+I)^{-1} | |
| void CalcOmega(const gsl_vector *eval, const gsl_vector *D_l, | |
| gsl_matrix *OmegaU, gsl_matrix *OmegaE) { | |
| size_t n_size = eval->size, d_size = D_l->size; | |
| double delta, dl, d_u, d_e; | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| for (size_t i = 0; i < d_size; i++) { | |
| dl = gsl_vector_get(D_l, i); | |
| d_u = dl / (delta * dl + 1.0); // @@ | |
| d_e = delta * d_u; | |
| gsl_matrix_set(OmegaU, i, k, d_u); | |
| gsl_matrix_set(OmegaE, i, k, d_e); | |
| } | |
| } | |
| return; | |
| } | |
| void UpdateU(const gsl_matrix *OmegaE, const gsl_matrix *UltVehiY, | |
| const gsl_matrix *UltVehiBX, gsl_matrix *UltVehiU) { | |
| gsl_matrix_memcpy(UltVehiU, UltVehiY); | |
| gsl_matrix_sub(UltVehiU, UltVehiBX); | |
| gsl_matrix_mul_elements(UltVehiU, OmegaE); | |
| return; | |
| } | |
| void UpdateE(const gsl_matrix *UltVehiY, const gsl_matrix *UltVehiBX, | |
| const gsl_matrix *UltVehiU, gsl_matrix *UltVehiE) { | |
| gsl_matrix_memcpy(UltVehiE, UltVehiY); | |
| gsl_matrix_sub(UltVehiE, UltVehiBX); | |
| gsl_matrix_sub(UltVehiE, UltVehiU); | |
| return; | |
| } | |
| void UpdateL_B(const gsl_matrix *X, const gsl_matrix *XXti, | |
| const gsl_matrix *UltVehiY, const gsl_matrix *UltVehiU, | |
| gsl_matrix *UltVehiBX, gsl_matrix *UltVehiB) { | |
| size_t c_size = X->size1, d_size = UltVehiY->size1; | |
| gsl_matrix *YUX = gsl_matrix_alloc(d_size, c_size); | |
| gsl_matrix_memcpy(UltVehiBX, UltVehiY); | |
| gsl_matrix_sub(UltVehiBX, UltVehiU); | |
| gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, UltVehiBX, X, 0.0, YUX); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, YUX, XXti, 0.0, UltVehiB); | |
| gsl_matrix_free(YUX); | |
| return; | |
| } | |
| void UpdateRL_B(const gsl_vector *xHiy, const gsl_matrix *Qi, | |
| gsl_matrix *UltVehiB) { | |
| size_t d_size = UltVehiB->size1, c_size = UltVehiB->size2, | |
| dc_size = Qi->size1; | |
| gsl_vector *b = gsl_vector_alloc(dc_size); | |
| // Calculate b=Qiv. | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, xHiy, 0.0, b); | |
| // Copy b to UltVehiB. | |
| for (size_t i = 0; i < c_size; i++) { | |
| gsl_vector_view UltVehiB_col = gsl_matrix_column(UltVehiB, i); | |
| gsl_vector_const_view b_subcol = | |
| gsl_vector_const_subvector(b, i * d_size, d_size); | |
| gsl_vector_memcpy(&UltVehiB_col.vector, &b_subcol.vector); | |
| } | |
| gsl_vector_free(b); | |
| return; | |
| } | |
| void UpdateV(const gsl_vector *eval, const gsl_matrix *U, const gsl_matrix *E, | |
| const gsl_matrix *Sigma_uu, const gsl_matrix *Sigma_ee, | |
| gsl_matrix *V_g, gsl_matrix *V_e) { | |
| size_t n_size = eval->size, d_size = U->size1; | |
| gsl_matrix_set_zero(V_g); | |
| gsl_matrix_set_zero(V_e); | |
| double delta; | |
| // Calculate the first part: UD^{-1}U^T and EE^T. | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| if (delta == 0) { | |
| continue; | |
| } | |
| gsl_vector_const_view U_col = gsl_matrix_const_column(U, k); | |
| gsl_blas_dsyr(CblasUpper, 1.0 / delta, &U_col.vector, V_g); | |
| } | |
| gsl_blas_dsyrk(CblasUpper, CblasNoTrans, 1.0, E, 0.0, V_e); | |
| // Copy the upper part to lower part. | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j < i; j++) { | |
| gsl_matrix_set(V_g, i, j, gsl_matrix_get(V_g, j, i)); | |
| gsl_matrix_set(V_e, i, j, gsl_matrix_get(V_e, j, i)); | |
| } | |
| } | |
| // Add Sigma. | |
| gsl_matrix_add(V_g, Sigma_uu); | |
| gsl_matrix_add(V_e, Sigma_ee); | |
| // Scale by 1/n. | |
| gsl_matrix_scale(V_g, 1.0 / (double)n_size); | |
| gsl_matrix_scale(V_e, 1.0 / (double)n_size); | |
| return; | |
| } | |
| void CalcSigma(const char func_name, const gsl_vector *eval, | |
| const gsl_vector *D_l, const gsl_matrix *X, | |
| const gsl_matrix *OmegaU, const gsl_matrix *OmegaE, | |
| const gsl_matrix *UltVeh, const gsl_matrix *Qi, | |
| gsl_matrix *Sigma_uu, gsl_matrix *Sigma_ee) { | |
| if (func_name != 'R' && func_name != 'L' && func_name != 'r' && | |
| func_name != 'l') { | |
| cout << "func_name only takes 'R' or 'L': 'R' for log-restricted " | |
| << "likelihood, 'L' for log-likelihood." << endl; | |
| return; | |
| } | |
| size_t n_size = eval->size, c_size = X->size1; | |
| size_t d_size = D_l->size, dc_size = Qi->size1; | |
| gsl_matrix_set_zero(Sigma_uu); | |
| gsl_matrix_set_zero(Sigma_ee); | |
| double delta, dl, x, d; | |
| // Calculate the first diagonal term. | |
| gsl_vector_view Suu_diag = gsl_matrix_diagonal(Sigma_uu); | |
| gsl_vector_view See_diag = gsl_matrix_diagonal(Sigma_ee); | |
| for (size_t k = 0; k < n_size; k++) { | |
| gsl_vector_const_view OmegaU_col = gsl_matrix_const_column(OmegaU, k); | |
| gsl_vector_const_view OmegaE_col = gsl_matrix_const_column(OmegaE, k); | |
| gsl_vector_add(&Suu_diag.vector, &OmegaU_col.vector); | |
| gsl_vector_add(&See_diag.vector, &OmegaE_col.vector); | |
| } | |
| // Calculate the second term for REML. | |
| if (func_name == 'R' || func_name == 'r') { | |
| gsl_matrix *M_u = gsl_matrix_alloc(dc_size, d_size); | |
| gsl_matrix *M_e = gsl_matrix_alloc(dc_size, d_size); | |
| gsl_matrix *QiM = gsl_matrix_alloc(dc_size, d_size); | |
| gsl_matrix_set_zero(M_u); | |
| gsl_matrix_set_zero(M_e); | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| for (size_t i = 0; i < d_size; i++) { | |
| dl = gsl_vector_get(D_l, i); | |
| for (size_t j = 0; j < c_size; j++) { | |
| x = gsl_matrix_get(X, j, k); | |
| d = x / (delta * dl + 1.0); | |
| gsl_matrix_set(M_e, j * d_size + i, i, d); | |
| gsl_matrix_set(M_u, j * d_size + i, i, d * dl); | |
| } | |
| } | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, M_u, 0.0, QiM); | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, delta, M_u, QiM, 1.0, Sigma_uu); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, M_e, 0.0, QiM); | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, M_e, QiM, 1.0, Sigma_ee); | |
| } | |
| gsl_matrix_free(M_u); | |
| gsl_matrix_free(M_e); | |
| gsl_matrix_free(QiM); | |
| } | |
| // Multiply both sides by VehUl. | |
| gsl_matrix *M = gsl_matrix_alloc(d_size, d_size); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Sigma_uu, UltVeh, 0.0, M); | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, M, 0.0, Sigma_uu); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Sigma_ee, UltVeh, 0.0, M); | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, M, 0.0, Sigma_ee); | |
| gsl_matrix_free(M); | |
| return; | |
| } | |
| // 'R' for restricted likelihood and 'L' for likelihood. | |
| // 'R' update B and 'L' don't. | |
| // only calculate -0.5*\sum_{k=1}^n|H_k|-0.5yPxy. | |
| double MphCalcLogL(const gsl_vector *eval, const gsl_vector *xHiy, | |
| const gsl_vector *D_l, const gsl_matrix *UltVehiY, | |
| const gsl_matrix *Qi) { | |
| size_t n_size = eval->size, d_size = D_l->size, dc_size = Qi->size1; | |
| double logl = 0.0, delta, dl, y, d; | |
| // Calculate yHiy+log|H_k|. | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| for (size_t i = 0; i < d_size; i++) { | |
| y = gsl_matrix_get(UltVehiY, i, k); | |
| dl = gsl_vector_get(D_l, i); | |
| d = delta * dl + 1.0; | |
| logl += y * y / d + safe_log(d); | |
| } | |
| } | |
| // Calculate the rest of yPxy. | |
| gsl_vector *Qiv = gsl_vector_alloc(dc_size); | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, xHiy, 0.0, Qiv); | |
| gsl_blas_ddot(xHiy, Qiv, &d); | |
| logl -= d; | |
| gsl_vector_free(Qiv); | |
| return -0.5 * logl; | |
| } | |
| // Y is a dxn matrix, X is a cxn matrix, B is a dxc matrix, V_g is a | |
| // dxd matrix, V_e is a dxd matrix, eval is a size n vector | |
| //'R' for restricted likelihood and 'L' for likelihood. | |
| double MphEM(const char func_name, const size_t max_iter, const double max_prec, | |
| const gsl_vector *eval, const gsl_matrix *X, const gsl_matrix *Y, | |
| gsl_matrix *U_hat, gsl_matrix *E_hat, gsl_matrix *OmegaU, | |
| gsl_matrix *OmegaE, gsl_matrix *UltVehiY, gsl_matrix *UltVehiBX, | |
| gsl_matrix *UltVehiU, gsl_matrix *UltVehiE, gsl_matrix *V_g, | |
| gsl_matrix *V_e, gsl_matrix *B) { | |
| if (func_name != 'R' && func_name != 'L' && func_name != 'r' && | |
| func_name != 'l') { | |
| cout << "func_name only takes 'R' or 'L': 'R' for log-restricted " | |
| << "likelihood, 'L' for log-likelihood." << endl; | |
| return 0.0; | |
| } | |
| size_t n_size = eval->size, c_size = X->size1, d_size = Y->size1; | |
| size_t dc_size = d_size * c_size; | |
| gsl_matrix *XXt = gsl_matrix_alloc(c_size, c_size); | |
| gsl_matrix *XXti = gsl_matrix_alloc(c_size, c_size); | |
| gsl_vector *D_l = gsl_vector_alloc(d_size); | |
| gsl_matrix *UltVeh = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *UltVehi = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *UltVehiB = gsl_matrix_alloc(d_size, c_size); | |
| gsl_matrix *Qi = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *Sigma_uu = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *Sigma_ee = gsl_matrix_alloc(d_size, d_size); | |
| gsl_vector *xHiy = gsl_vector_alloc(dc_size); | |
| gsl_permutation *pmt = gsl_permutation_alloc(c_size); | |
| double logl_const = 0.0, logl_old = 0.0, logl_new = 0.0; | |
| double logdet_Q, logdet_Ve; | |
| int sig; | |
| // Calculate |XXt| and (XXt)^{-1}. | |
| gsl_blas_dsyrk(CblasUpper, CblasNoTrans, 1.0, X, 0.0, XXt); | |
| for (size_t i = 0; i < c_size; ++i) { | |
| for (size_t j = 0; j < i; ++j) { | |
| gsl_matrix_set(XXt, i, j, gsl_matrix_get(XXt, j, i)); | |
| } | |
| } | |
| LUDecomp(XXt, pmt, &sig); | |
| LUInvert(XXt, pmt, XXti); | |
| // Calculate the constant for logl. | |
| if (func_name == 'R' || func_name == 'r') { | |
| logl_const = | |
| -0.5 * (double)(n_size - c_size) * (double)d_size * safe_log(2.0 * M_PI) + | |
| 0.5 * (double)d_size * LULndet(XXt); | |
| } else { | |
| logl_const = -0.5 * (double)n_size * (double)d_size * safe_log(2.0 * M_PI); | |
| } | |
| // Start EM. | |
| for (size_t t = 0; t < max_iter; t++) { | |
| logdet_Ve = EigenProc(V_g, V_e, D_l, UltVeh, UltVehi); | |
| logdet_Q = CalcQi(eval, D_l, X, Qi); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, Y, 0.0, UltVehiY); | |
| CalcXHiY(eval, D_l, X, UltVehiY, xHiy); | |
| // Calculate log likelihood/restricted likelihood value, and | |
| // terminate if change is small. | |
| logl_new = logl_const + MphCalcLogL(eval, xHiy, D_l, UltVehiY, Qi) - | |
| 0.5 * (double)n_size * logdet_Ve; | |
| if (func_name == 'R' || func_name == 'r') { | |
| logl_new += -0.5 * (logdet_Q - (double)c_size * logdet_Ve); | |
| } | |
| if (t != 0 && abs(logl_new - logl_old) < max_prec) { | |
| break; | |
| } | |
| logl_old = logl_new; | |
| CalcOmega(eval, D_l, OmegaU, OmegaE); | |
| // Update UltVehiB, UltVehiU. | |
| if (func_name == 'R' || func_name == 'r') { | |
| UpdateRL_B(xHiy, Qi, UltVehiB); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehiB, X, 0.0, | |
| UltVehiBX); | |
| } else if (t == 0) { | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, B, 0.0, | |
| UltVehiB); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehiB, X, 0.0, | |
| UltVehiBX); | |
| } | |
| UpdateU(OmegaE, UltVehiY, UltVehiBX, UltVehiU); | |
| if (func_name == 'L' || func_name == 'l') { | |
| // UltVehiBX is destroyed here. | |
| UpdateL_B(X, XXti, UltVehiY, UltVehiU, UltVehiBX, UltVehiB); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehiB, X, 0.0, | |
| UltVehiBX); | |
| } | |
| UpdateE(UltVehiY, UltVehiBX, UltVehiU, UltVehiE); | |
| // Calculate U_hat, E_hat and B. | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, UltVehiU, 0.0, U_hat); | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, UltVehiE, 0.0, E_hat); | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, UltVehiB, 0.0, B); | |
| // Calculate Sigma_uu and Sigma_ee. | |
| CalcSigma(func_name, eval, D_l, X, OmegaU, OmegaE, UltVeh, Qi, Sigma_uu, | |
| Sigma_ee); | |
| // Update V_g and V_e. | |
| UpdateV(eval, U_hat, E_hat, Sigma_uu, Sigma_ee, V_g, V_e); | |
| } | |
| gsl_matrix_free(XXt); | |
| gsl_matrix_free(XXti); | |
| gsl_vector_free(D_l); | |
| gsl_matrix_free(UltVeh); | |
| gsl_matrix_free(UltVehi); | |
| gsl_matrix_free(UltVehiB); | |
| gsl_matrix_free(Qi); | |
| gsl_matrix_free(Sigma_uu); | |
| gsl_matrix_free(Sigma_ee); | |
| gsl_vector_free(xHiy); | |
| gsl_permutation_free(pmt); | |
| return logl_new; | |
| } | |
| // Calculate p-value, beta (d by 1 vector) and V(beta). | |
| double MphCalcP(const gsl_vector *eval, const gsl_vector *x_vec, | |
| const gsl_matrix *W, const gsl_matrix *Y, const gsl_matrix *V_g, | |
| const gsl_matrix *V_e, gsl_matrix *UltVehiY, gsl_vector *beta, | |
| gsl_matrix *Vbeta) { | |
| size_t n_size = eval->size, c_size = W->size1, d_size = V_g->size1; | |
| size_t dc_size = d_size * c_size; | |
| double delta, dl, d, d1, d2, dy, dx, dw; // logdet_Ve, logdet_Q, p_value; | |
| gsl_vector *D_l = gsl_vector_alloc(d_size); | |
| gsl_matrix *UltVeh = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *UltVehi = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *Qi = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *WHix = gsl_matrix_alloc(dc_size, d_size); | |
| gsl_matrix *QiWHix = gsl_matrix_alloc(dc_size, d_size); | |
| gsl_matrix *xPx = gsl_matrix_alloc(d_size, d_size); | |
| gsl_vector *xPy = gsl_vector_alloc(d_size); | |
| gsl_vector *WHiy = gsl_vector_alloc(dc_size); | |
| gsl_matrix_set_zero(xPx); | |
| gsl_matrix_set_zero(WHix); | |
| gsl_vector_set_zero(xPy); | |
| gsl_vector_set_zero(WHiy); | |
| // Eigen decomposition and calculate log|Ve|. | |
| // double logdet_Ve = EigenProc(V_g, V_e, D_l, UltVeh, UltVehi); | |
| EigenProc(V_g, V_e, D_l, UltVeh, UltVehi); | |
| // Calculate Qi and log|Q|. | |
| // double logdet_Q = CalcQi(eval, D_l, W, Qi); | |
| CalcQi(eval, D_l, W, Qi); | |
| // Calculate UltVehiY. | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, Y, 0.0, UltVehiY); | |
| // Calculate WHix, WHiy, xHiy, xHix. | |
| for (size_t i = 0; i < d_size; i++) { | |
| dl = gsl_vector_get(D_l, i); | |
| d1 = 0.0; | |
| d2 = 0.0; | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| dx = gsl_vector_get(x_vec, k); | |
| dy = gsl_matrix_get(UltVehiY, i, k); | |
| d1 += dx * dy / (delta * dl + 1.0); | |
| d2 += dx * dx / (delta * dl + 1.0); | |
| } | |
| gsl_vector_set(xPy, i, d1); | |
| gsl_matrix_set(xPx, i, i, d2); | |
| for (size_t j = 0; j < c_size; j++) { | |
| d1 = 0.0; | |
| d2 = 0.0; | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| dx = gsl_vector_get(x_vec, k); | |
| dw = gsl_matrix_get(W, j, k); | |
| dy = gsl_matrix_get(UltVehiY, i, k); | |
| d1 += dx * dw / (delta * dl + 1.0); | |
| d2 += dy * dw / (delta * dl + 1.0); | |
| } | |
| gsl_matrix_set(WHix, j * d_size + i, i, d1); | |
| gsl_vector_set(WHiy, j * d_size + i, d2); | |
| } | |
| } | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, WHix, 0.0, QiWHix); | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, -1.0, WHix, QiWHix, 1.0, xPx); | |
| gsl_blas_dgemv(CblasTrans, -1.0, QiWHix, WHiy, 1.0, xPy); | |
| // Calculate V(beta) and beta. | |
| int sig; | |
| gsl_permutation *pmt = gsl_permutation_alloc(d_size); | |
| LUDecomp(xPx, pmt, &sig); | |
| LUSolve(xPx, pmt, xPy, D_l); | |
| LUInvert(xPx, pmt, Vbeta); | |
| // Need to multiply UltVehi on both sides or one side. | |
| gsl_blas_dgemv(CblasTrans, 1.0, UltVeh, D_l, 0.0, beta); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Vbeta, UltVeh, 0.0, xPx); | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, xPx, 0.0, Vbeta); | |
| // Calculate test statistic and p value. | |
| gsl_blas_ddot(D_l, xPy, &d); | |
| double p_value = gsl_cdf_chisq_Q(d, (double)d_size); | |
| gsl_vector_free(D_l); | |
| gsl_matrix_free(UltVeh); | |
| gsl_matrix_free(UltVehi); | |
| gsl_matrix_free(Qi); | |
| gsl_matrix_free(WHix); | |
| gsl_matrix_free(QiWHix); | |
| gsl_matrix_free(xPx); | |
| gsl_vector_free(xPy); | |
| gsl_vector_free(WHiy); | |
| gsl_permutation_free(pmt); | |
| return p_value; | |
| } | |
| // Calculate B and its standard error (which is a matrix of the same | |
| // dimension as B). | |
| void MphCalcBeta(const gsl_vector *eval, const gsl_matrix *W, | |
| const gsl_matrix *Y, const gsl_matrix *V_g, | |
| const gsl_matrix *V_e, gsl_matrix *UltVehiY, gsl_matrix *B, | |
| gsl_matrix *se_B) { | |
| size_t n_size = eval->size, c_size = W->size1, d_size = V_g->size1; | |
| size_t dc_size = d_size * c_size; | |
| double delta, dl, d, dy, dw; // , logdet_Ve, logdet_Q; | |
| gsl_vector *D_l = gsl_vector_alloc(d_size); | |
| gsl_matrix *UltVeh = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *UltVehi = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *Qi = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *Qi_temp = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_vector *WHiy = gsl_vector_alloc(dc_size); | |
| gsl_vector *QiWHiy = gsl_vector_alloc(dc_size); | |
| gsl_vector *beta = gsl_vector_alloc(dc_size); | |
| gsl_matrix *Vbeta = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_vector_set_zero(WHiy); | |
| // Eigen decomposition and calculate log|Ve|. | |
| // double logdet_Ve = EigenProc(V_g, V_e, D_l, UltVeh, UltVehi); | |
| EigenProc(V_g, V_e, D_l, UltVeh, UltVehi); | |
| // Calculate Qi and log|Q|. | |
| // double logdet_Q = CalcQi(eval, D_l, W, Qi); | |
| CalcQi(eval, D_l, W, Qi); | |
| // Calculate UltVehiY. | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, Y, 0.0, UltVehiY); | |
| // Calculate WHiy. | |
| for (size_t i = 0; i < d_size; i++) { | |
| dl = gsl_vector_get(D_l, i); | |
| for (size_t j = 0; j < c_size; j++) { | |
| d = 0.0; | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| dw = gsl_matrix_get(W, j, k); | |
| dy = gsl_matrix_get(UltVehiY, i, k); | |
| d += dy * dw / (delta * dl + 1.0); | |
| } | |
| gsl_vector_set(WHiy, j * d_size + i, d); | |
| } | |
| } | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, WHiy, 0.0, QiWHiy); | |
| // Need to multiply I_c\otimes UltVehi on both sides or one side. | |
| for (size_t i = 0; i < c_size; i++) { | |
| gsl_vector_view QiWHiy_sub = | |
| gsl_vector_subvector(QiWHiy, i * d_size, d_size); | |
| gsl_vector_view beta_sub = gsl_vector_subvector(beta, i * d_size, d_size); | |
| gsl_blas_dgemv(CblasTrans, 1.0, UltVeh, &QiWHiy_sub.vector, 0.0, | |
| &beta_sub.vector); | |
| for (size_t j = 0; j < c_size; j++) { | |
| gsl_matrix_view Qi_sub = | |
| gsl_matrix_submatrix(Qi, i * d_size, j * d_size, d_size, d_size); | |
| gsl_matrix_view Qitemp_sub = | |
| gsl_matrix_submatrix(Qi_temp, i * d_size, j * d_size, d_size, d_size); | |
| gsl_matrix_view Vbeta_sub = | |
| gsl_matrix_submatrix(Vbeta, i * d_size, j * d_size, d_size, d_size); | |
| if (j < i) { | |
| gsl_matrix_view Vbeta_sym = | |
| gsl_matrix_submatrix(Vbeta, j * d_size, i * d_size, d_size, d_size); | |
| gsl_matrix_transpose_memcpy(&Vbeta_sub.matrix, &Vbeta_sym.matrix); | |
| } else { | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &Qi_sub.matrix, UltVeh, | |
| 0.0, &Qitemp_sub.matrix); | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, | |
| &Qitemp_sub.matrix, 0.0, &Vbeta_sub.matrix); | |
| } | |
| } | |
| } | |
| // Copy beta to B, and Vbeta to se_B. | |
| for (size_t j = 0; j < B->size2; j++) { | |
| for (size_t i = 0; i < B->size1; i++) { | |
| gsl_matrix_set(B, i, j, gsl_vector_get(beta, j * d_size + i)); | |
| gsl_matrix_set(se_B, i, j, safe_sqrt(gsl_matrix_get(Vbeta, j * d_size + i, | |
| j * d_size + i))); | |
| } | |
| } | |
| // Free matrices. | |
| gsl_vector_free(D_l); | |
| gsl_matrix_free(UltVeh); | |
| gsl_matrix_free(UltVehi); | |
| gsl_matrix_free(Qi); | |
| gsl_matrix_free(Qi_temp); | |
| gsl_vector_free(WHiy); | |
| gsl_vector_free(QiWHiy); | |
| gsl_vector_free(beta); | |
| gsl_matrix_free(Vbeta); | |
| return; | |
| } | |
| // Below are functions for Newton-Raphson's algorithm. | |
| // Calculate all Hi and return logdet_H=\sum_{k=1}^{n}log|H_k| | |
| // and calculate Qi and return logdet_Q | |
| // and calculate yPy. | |
| void CalcHiQi(const gsl_vector *eval, const gsl_matrix *X, | |
| const gsl_matrix *V_g, const gsl_matrix *V_e, gsl_matrix *Hi_all, | |
| gsl_matrix *Qi, double &logdet_H, double &logdet_Q) { | |
| gsl_matrix_set_zero(Hi_all); | |
| gsl_matrix_set_zero(Qi); | |
| logdet_H = 0.0; | |
| logdet_Q = 0.0; | |
| size_t n_size = eval->size, c_size = X->size1, d_size = V_g->size1; | |
| double logdet_Ve = 0.0, delta, dl, d; | |
| gsl_matrix *mat_dd = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *UltVeh = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *UltVehi = gsl_matrix_alloc(d_size, d_size); | |
| gsl_vector *D_l = gsl_vector_alloc(d_size); | |
| // Calculate D_l, UltVeh and UltVehi. | |
| logdet_Ve = EigenProc(V_g, V_e, D_l, UltVeh, UltVehi); | |
| // Calculate each Hi and log|H_k|. | |
| logdet_H = (double)n_size * logdet_Ve; | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| gsl_matrix_memcpy(mat_dd, UltVehi); | |
| for (size_t i = 0; i < d_size; i++) { | |
| dl = gsl_vector_get(D_l, i); | |
| d = delta * dl + 1.0; | |
| gsl_vector_view mat_row = gsl_matrix_row(mat_dd, i); | |
| gsl_vector_scale(&mat_row.vector, 1.0 / d); // @@ | |
| logdet_H += safe_log(d); | |
| } | |
| gsl_matrix_view Hi_k = | |
| gsl_matrix_submatrix(Hi_all, 0, k * d_size, d_size, d_size); | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVehi, mat_dd, 0.0, | |
| &Hi_k.matrix); | |
| } | |
| // Calculate Qi, and multiply I\o times UtVeh on both side and | |
| // calculate logdet_Q, don't forget to substract | |
| // c_size*logdet_Ve. | |
| logdet_Q = CalcQi(eval, D_l, X, Qi) - (double)c_size * logdet_Ve; | |
| for (size_t i = 0; i < c_size; i++) { | |
| for (size_t j = 0; j < c_size; j++) { | |
| gsl_matrix_view Qi_sub = | |
| gsl_matrix_submatrix(Qi, i * d_size, j * d_size, d_size, d_size); | |
| if (j < i) { | |
| gsl_matrix_view Qi_sym = | |
| gsl_matrix_submatrix(Qi, j * d_size, i * d_size, d_size, d_size); | |
| gsl_matrix_transpose_memcpy(&Qi_sub.matrix, &Qi_sym.matrix); | |
| } else { | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &Qi_sub.matrix, UltVeh, | |
| 0.0, mat_dd); | |
| gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, UltVeh, mat_dd, 0.0, | |
| &Qi_sub.matrix); | |
| } | |
| } | |
| } | |
| // Free memory. | |
| gsl_matrix_free(mat_dd); | |
| gsl_matrix_free(UltVeh); | |
| gsl_matrix_free(UltVehi); | |
| gsl_vector_free(D_l); | |
| return; | |
| } | |
| // Calculate all Hiy. | |
| void Calc_Hiy_all(const gsl_matrix *Y, const gsl_matrix *Hi_all, | |
| gsl_matrix *Hiy_all) { | |
| gsl_matrix_set_zero(Hiy_all); | |
| size_t n_size = Y->size2, d_size = Y->size1; | |
| for (size_t k = 0; k < n_size; k++) { | |
| gsl_matrix_const_view Hi_k = | |
| gsl_matrix_const_submatrix(Hi_all, 0, k * d_size, d_size, d_size); | |
| gsl_vector_const_view y_k = gsl_matrix_const_column(Y, k); | |
| gsl_vector_view Hiy_k = gsl_matrix_column(Hiy_all, k); | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, &Hi_k.matrix, &y_k.vector, 0.0, | |
| &Hiy_k.vector); | |
| } | |
| return; | |
| } | |
| // Calculate all xHi. | |
| void Calc_xHi_all(const gsl_matrix *X, const gsl_matrix *Hi_all, | |
| gsl_matrix *xHi_all) { | |
| gsl_matrix_set_zero(xHi_all); | |
| size_t n_size = X->size2, c_size = X->size1, d_size = Hi_all->size1; | |
| double d; | |
| for (size_t k = 0; k < n_size; k++) { | |
| gsl_matrix_const_view Hi_k = | |
| gsl_matrix_const_submatrix(Hi_all, 0, k * d_size, d_size, d_size); | |
| for (size_t i = 0; i < c_size; i++) { | |
| d = gsl_matrix_get(X, i, k); | |
| gsl_matrix_view xHi_sub = | |
| gsl_matrix_submatrix(xHi_all, i * d_size, k * d_size, d_size, d_size); | |
| gsl_matrix_memcpy(&xHi_sub.matrix, &Hi_k.matrix); | |
| gsl_matrix_scale(&xHi_sub.matrix, d); | |
| } | |
| } | |
| return; | |
| } | |
| // Calculate scalar yHiy. | |
| double Calc_yHiy(const gsl_matrix *Y, const gsl_matrix *Hiy_all) { | |
| double yHiy = 0.0, d; | |
| size_t n_size = Y->size2; | |
| for (size_t k = 0; k < n_size; k++) { | |
| gsl_vector_const_view y_k = gsl_matrix_const_column(Y, k); | |
| gsl_vector_const_view Hiy_k = gsl_matrix_const_column(Hiy_all, k); | |
| gsl_blas_ddot(&Hiy_k.vector, &y_k.vector, &d); | |
| yHiy += d; | |
| } | |
| return yHiy; | |
| } | |
| // Calculate the vector xHiy. | |
| void Calc_xHiy(const gsl_matrix *Y, const gsl_matrix *xHi, gsl_vector *xHiy) { | |
| gsl_vector_set_zero(xHiy); | |
| size_t n_size = Y->size2, d_size = Y->size1, dc_size = xHi->size1; | |
| for (size_t k = 0; k < n_size; k++) { | |
| gsl_matrix_const_view xHi_k = | |
| gsl_matrix_const_submatrix(xHi, 0, k * d_size, dc_size, d_size); | |
| gsl_vector_const_view y_k = gsl_matrix_const_column(Y, k); | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, &xHi_k.matrix, &y_k.vector, 1.0, xHiy); | |
| } | |
| return; | |
| } | |
| // 0<=i,j<d_size | |
| size_t GetIndex(const size_t i, const size_t j, const size_t d_size) { | |
| if (i >= d_size || j >= d_size) { | |
| cout << "error in GetIndex." << endl; | |
| return 0; | |
| } | |
| size_t s, l; | |
| if (j < i) { | |
| s = j; | |
| l = i; | |
| } else { | |
| s = i; | |
| l = j; | |
| } | |
| return (2 * d_size - s + 1) * s / 2 + l - s; | |
| } | |
| void Calc_yHiDHiy(const gsl_vector *eval, const gsl_matrix *Hiy, const size_t i, | |
| const size_t j, double &yHiDHiy_g, double &yHiDHiy_e) { | |
| yHiDHiy_g = 0.0; | |
| yHiDHiy_e = 0.0; | |
| size_t n_size = eval->size; | |
| double delta, d1, d2; | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| d1 = gsl_matrix_get(Hiy, i, k); | |
| d2 = gsl_matrix_get(Hiy, j, k); | |
| if (i == j) { | |
| yHiDHiy_g += delta * d1 * d2; | |
| yHiDHiy_e += d1 * d2; | |
| } else { | |
| yHiDHiy_g += delta * d1 * d2 * 2.0; | |
| yHiDHiy_e += d1 * d2 * 2.0; | |
| } | |
| } | |
| return; | |
| } | |
| void Calc_xHiDHiy(const gsl_vector *eval, const gsl_matrix *xHi, | |
| const gsl_matrix *Hiy, const size_t i, const size_t j, | |
| gsl_vector *xHiDHiy_g, gsl_vector *xHiDHiy_e) { | |
| gsl_vector_set_zero(xHiDHiy_g); | |
| gsl_vector_set_zero(xHiDHiy_e); | |
| size_t n_size = eval->size, d_size = Hiy->size1; | |
| double delta, d; | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| gsl_vector_const_view xHi_col_i = | |
| gsl_matrix_const_column(xHi, k * d_size + i); | |
| d = gsl_matrix_get(Hiy, j, k); | |
| gsl_blas_daxpy(d * delta, &xHi_col_i.vector, xHiDHiy_g); | |
| gsl_blas_daxpy(d, &xHi_col_i.vector, xHiDHiy_e); | |
| if (i != j) { | |
| gsl_vector_const_view xHi_col_j = | |
| gsl_matrix_const_column(xHi, k * d_size + j); | |
| d = gsl_matrix_get(Hiy, i, k); | |
| gsl_blas_daxpy(d * delta, &xHi_col_j.vector, xHiDHiy_g); | |
| gsl_blas_daxpy(d, &xHi_col_j.vector, xHiDHiy_e); | |
| } | |
| } | |
| return; | |
| } | |
| void Calc_xHiDHix(const gsl_vector *eval, const gsl_matrix *xHi, const size_t i, | |
| const size_t j, gsl_matrix *xHiDHix_g, | |
| gsl_matrix *xHiDHix_e) { | |
| gsl_matrix_set_zero(xHiDHix_g); | |
| gsl_matrix_set_zero(xHiDHix_e); | |
| size_t n_size = eval->size, dc_size = xHi->size1; | |
| size_t d_size = xHi->size2 / n_size; | |
| double delta; | |
| gsl_matrix *mat_dcdc = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *mat_dcdc_t = gsl_matrix_alloc(dc_size, dc_size); | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| gsl_vector_const_view xHi_col_i = | |
| gsl_matrix_const_column(xHi, k * d_size + i); | |
| gsl_vector_const_view xHi_col_j = | |
| gsl_matrix_const_column(xHi, k * d_size + j); | |
| gsl_matrix_set_zero(mat_dcdc); | |
| gsl_blas_dger(1.0, &xHi_col_i.vector, &xHi_col_j.vector, mat_dcdc); | |
| gsl_matrix_transpose_memcpy(mat_dcdc_t, mat_dcdc); | |
| gsl_matrix_add(xHiDHix_e, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHix_g, mat_dcdc); | |
| if (i != j) { | |
| gsl_matrix_add(xHiDHix_e, mat_dcdc_t); | |
| gsl_matrix_scale(mat_dcdc_t, delta); | |
| gsl_matrix_add(xHiDHix_g, mat_dcdc_t); | |
| } | |
| } | |
| gsl_matrix_free(mat_dcdc); | |
| gsl_matrix_free(mat_dcdc_t); | |
| return; | |
| } | |
| void Calc_yHiDHiDHiy(const gsl_vector *eval, const gsl_matrix *Hi, | |
| const gsl_matrix *Hiy, const size_t i1, const size_t j1, | |
| const size_t i2, const size_t j2, double &yHiDHiDHiy_gg, | |
| double &yHiDHiDHiy_ee, double &yHiDHiDHiy_ge) { | |
| yHiDHiDHiy_gg = 0.0; | |
| yHiDHiDHiy_ee = 0.0; | |
| yHiDHiDHiy_ge = 0.0; | |
| size_t n_size = eval->size, d_size = Hiy->size1; | |
| double delta, d_Hiy_i1, d_Hiy_j1, d_Hiy_i2, d_Hiy_j2; | |
| double d_Hi_i1i2, d_Hi_i1j2, d_Hi_j1i2, d_Hi_j1j2; | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| d_Hiy_i1 = gsl_matrix_get(Hiy, i1, k); | |
| d_Hiy_j1 = gsl_matrix_get(Hiy, j1, k); | |
| d_Hiy_i2 = gsl_matrix_get(Hiy, i2, k); | |
| d_Hiy_j2 = gsl_matrix_get(Hiy, j2, k); | |
| d_Hi_i1i2 = gsl_matrix_get(Hi, i1, k * d_size + i2); | |
| d_Hi_i1j2 = gsl_matrix_get(Hi, i1, k * d_size + j2); | |
| d_Hi_j1i2 = gsl_matrix_get(Hi, j1, k * d_size + i2); | |
| d_Hi_j1j2 = gsl_matrix_get(Hi, j1, k * d_size + j2); | |
| if (i1 == j1) { | |
| yHiDHiDHiy_gg += delta * delta * (d_Hiy_i1 * d_Hi_j1i2 * d_Hiy_j2); | |
| yHiDHiDHiy_ee += (d_Hiy_i1 * d_Hi_j1i2 * d_Hiy_j2); | |
| yHiDHiDHiy_ge += delta * (d_Hiy_i1 * d_Hi_j1i2 * d_Hiy_j2); | |
| if (i2 != j2) { | |
| yHiDHiDHiy_gg += delta * delta * (d_Hiy_i1 * d_Hi_j1j2 * d_Hiy_i2); | |
| yHiDHiDHiy_ee += (d_Hiy_i1 * d_Hi_j1j2 * d_Hiy_i2); | |
| yHiDHiDHiy_ge += delta * (d_Hiy_i1 * d_Hi_j1j2 * d_Hiy_i2); | |
| } | |
| } else { | |
| yHiDHiDHiy_gg += delta * delta * (d_Hiy_i1 * d_Hi_j1i2 * d_Hiy_j2 + | |
| d_Hiy_j1 * d_Hi_i1i2 * d_Hiy_j2); | |
| yHiDHiDHiy_ee += | |
| (d_Hiy_i1 * d_Hi_j1i2 * d_Hiy_j2 + d_Hiy_j1 * d_Hi_i1i2 * d_Hiy_j2); | |
| yHiDHiDHiy_ge += delta * (d_Hiy_i1 * d_Hi_j1i2 * d_Hiy_j2 + | |
| d_Hiy_j1 * d_Hi_i1i2 * d_Hiy_j2); | |
| if (i2 != j2) { | |
| yHiDHiDHiy_gg += delta * delta * (d_Hiy_i1 * d_Hi_j1j2 * d_Hiy_i2 + | |
| d_Hiy_j1 * d_Hi_i1j2 * d_Hiy_i2); | |
| yHiDHiDHiy_ee += | |
| (d_Hiy_i1 * d_Hi_j1j2 * d_Hiy_i2 + d_Hiy_j1 * d_Hi_i1j2 * d_Hiy_i2); | |
| yHiDHiDHiy_ge += delta * (d_Hiy_i1 * d_Hi_j1j2 * d_Hiy_i2 + | |
| d_Hiy_j1 * d_Hi_i1j2 * d_Hiy_i2); | |
| } | |
| } | |
| } | |
| return; | |
| } | |
| void Calc_xHiDHiDHiy(const gsl_vector *eval, const gsl_matrix *Hi, | |
| const gsl_matrix *xHi, const gsl_matrix *Hiy, | |
| const size_t i1, const size_t j1, const size_t i2, | |
| const size_t j2, gsl_vector *xHiDHiDHiy_gg, | |
| gsl_vector *xHiDHiDHiy_ee, gsl_vector *xHiDHiDHiy_ge) { | |
| gsl_vector_set_zero(xHiDHiDHiy_gg); | |
| gsl_vector_set_zero(xHiDHiDHiy_ee); | |
| gsl_vector_set_zero(xHiDHiDHiy_ge); | |
| size_t n_size = eval->size, d_size = Hiy->size1; | |
| double delta, d_Hiy_i, d_Hiy_j, d_Hi_i1i2, d_Hi_i1j2; | |
| double d_Hi_j1i2, d_Hi_j1j2; | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| gsl_vector_const_view xHi_col_i = | |
| gsl_matrix_const_column(xHi, k * d_size + i1); | |
| gsl_vector_const_view xHi_col_j = | |
| gsl_matrix_const_column(xHi, k * d_size + j1); | |
| d_Hiy_i = gsl_matrix_get(Hiy, i2, k); | |
| d_Hiy_j = gsl_matrix_get(Hiy, j2, k); | |
| d_Hi_i1i2 = gsl_matrix_get(Hi, i1, k * d_size + i2); | |
| d_Hi_i1j2 = gsl_matrix_get(Hi, i1, k * d_size + j2); | |
| d_Hi_j1i2 = gsl_matrix_get(Hi, j1, k * d_size + i2); | |
| d_Hi_j1j2 = gsl_matrix_get(Hi, j1, k * d_size + j2); | |
| if (i1 == j1) { | |
| gsl_blas_daxpy(delta * delta * d_Hi_j1i2 * d_Hiy_j, &xHi_col_i.vector, | |
| xHiDHiDHiy_gg); | |
| gsl_blas_daxpy(d_Hi_j1i2 * d_Hiy_j, &xHi_col_i.vector, xHiDHiDHiy_ee); | |
| gsl_blas_daxpy(delta * d_Hi_j1i2 * d_Hiy_j, &xHi_col_i.vector, | |
| xHiDHiDHiy_ge); | |
| if (i2 != j2) { | |
| gsl_blas_daxpy(delta * delta * d_Hi_j1j2 * d_Hiy_i, &xHi_col_i.vector, | |
| xHiDHiDHiy_gg); | |
| gsl_blas_daxpy(d_Hi_j1j2 * d_Hiy_i, &xHi_col_i.vector, xHiDHiDHiy_ee); | |
| gsl_blas_daxpy(delta * d_Hi_j1j2 * d_Hiy_i, &xHi_col_i.vector, | |
| xHiDHiDHiy_ge); | |
| } | |
| } else { | |
| gsl_blas_daxpy(delta * delta * d_Hi_j1i2 * d_Hiy_j, &xHi_col_i.vector, | |
| xHiDHiDHiy_gg); | |
| gsl_blas_daxpy(d_Hi_j1i2 * d_Hiy_j, &xHi_col_i.vector, xHiDHiDHiy_ee); | |
| gsl_blas_daxpy(delta * d_Hi_j1i2 * d_Hiy_j, &xHi_col_i.vector, | |
| xHiDHiDHiy_ge); | |
| gsl_blas_daxpy(delta * delta * d_Hi_i1i2 * d_Hiy_j, &xHi_col_j.vector, | |
| xHiDHiDHiy_gg); | |
| gsl_blas_daxpy(d_Hi_i1i2 * d_Hiy_j, &xHi_col_j.vector, xHiDHiDHiy_ee); | |
| gsl_blas_daxpy(delta * d_Hi_i1i2 * d_Hiy_j, &xHi_col_j.vector, | |
| xHiDHiDHiy_ge); | |
| if (i2 != j2) { | |
| gsl_blas_daxpy(delta * delta * d_Hi_j1j2 * d_Hiy_i, &xHi_col_i.vector, | |
| xHiDHiDHiy_gg); | |
| gsl_blas_daxpy(d_Hi_j1j2 * d_Hiy_i, &xHi_col_i.vector, xHiDHiDHiy_ee); | |
| gsl_blas_daxpy(delta * d_Hi_j1j2 * d_Hiy_i, &xHi_col_i.vector, | |
| xHiDHiDHiy_ge); | |
| gsl_blas_daxpy(delta * delta * d_Hi_i1j2 * d_Hiy_i, &xHi_col_j.vector, | |
| xHiDHiDHiy_gg); | |
| gsl_blas_daxpy(d_Hi_i1j2 * d_Hiy_i, &xHi_col_j.vector, xHiDHiDHiy_ee); | |
| gsl_blas_daxpy(delta * d_Hi_i1j2 * d_Hiy_i, &xHi_col_j.vector, | |
| xHiDHiDHiy_ge); | |
| } | |
| } | |
| } | |
| return; | |
| } | |
| void Calc_xHiDHiDHix(const gsl_vector *eval, const gsl_matrix *Hi, | |
| const gsl_matrix *xHi, const size_t i1, const size_t j1, | |
| const size_t i2, const size_t j2, | |
| gsl_matrix *xHiDHiDHix_gg, gsl_matrix *xHiDHiDHix_ee, | |
| gsl_matrix *xHiDHiDHix_ge) { | |
| gsl_matrix_set_zero(xHiDHiDHix_gg); | |
| gsl_matrix_set_zero(xHiDHiDHix_ee); | |
| gsl_matrix_set_zero(xHiDHiDHix_ge); | |
| size_t n_size = eval->size, d_size = Hi->size1, dc_size = xHi->size1; | |
| double delta, d_Hi_i1i2, d_Hi_i1j2, d_Hi_j1i2, d_Hi_j1j2; | |
| gsl_matrix *mat_dcdc = gsl_matrix_alloc(dc_size, dc_size); | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| gsl_vector_const_view xHi_col_i1 = | |
| gsl_matrix_const_column(xHi, k * d_size + i1); | |
| gsl_vector_const_view xHi_col_j1 = | |
| gsl_matrix_const_column(xHi, k * d_size + j1); | |
| gsl_vector_const_view xHi_col_i2 = | |
| gsl_matrix_const_column(xHi, k * d_size + i2); | |
| gsl_vector_const_view xHi_col_j2 = | |
| gsl_matrix_const_column(xHi, k * d_size + j2); | |
| d_Hi_i1i2 = gsl_matrix_get(Hi, i1, k * d_size + i2); | |
| d_Hi_i1j2 = gsl_matrix_get(Hi, i1, k * d_size + j2); | |
| d_Hi_j1i2 = gsl_matrix_get(Hi, j1, k * d_size + i2); | |
| d_Hi_j1j2 = gsl_matrix_get(Hi, j1, k * d_size + j2); | |
| if (i1 == j1) { | |
| gsl_matrix_set_zero(mat_dcdc); | |
| gsl_blas_dger(d_Hi_j1i2, &xHi_col_i1.vector, &xHi_col_j2.vector, | |
| mat_dcdc); | |
| gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc); | |
| if (i2 != j2) { | |
| gsl_matrix_set_zero(mat_dcdc); | |
| gsl_blas_dger(d_Hi_j1j2, &xHi_col_i1.vector, &xHi_col_i2.vector, | |
| mat_dcdc); | |
| gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc); | |
| } | |
| } else { | |
| gsl_matrix_set_zero(mat_dcdc); | |
| gsl_blas_dger(d_Hi_j1i2, &xHi_col_i1.vector, &xHi_col_j2.vector, | |
| mat_dcdc); | |
| gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc); | |
| gsl_matrix_set_zero(mat_dcdc); | |
| gsl_blas_dger(d_Hi_i1i2, &xHi_col_j1.vector, &xHi_col_j2.vector, | |
| mat_dcdc); | |
| gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc); | |
| if (i2 != j2) { | |
| gsl_matrix_set_zero(mat_dcdc); | |
| gsl_blas_dger(d_Hi_j1j2, &xHi_col_i1.vector, &xHi_col_i2.vector, | |
| mat_dcdc); | |
| gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc); | |
| gsl_matrix_set_zero(mat_dcdc); | |
| gsl_blas_dger(d_Hi_i1j2, &xHi_col_j1.vector, &xHi_col_i2.vector, | |
| mat_dcdc); | |
| gsl_matrix_add(xHiDHiDHix_ee, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHiDHix_ge, mat_dcdc); | |
| gsl_matrix_scale(mat_dcdc, delta); | |
| gsl_matrix_add(xHiDHiDHix_gg, mat_dcdc); | |
| } | |
| } | |
| } | |
| gsl_matrix_free(mat_dcdc); | |
| return; | |
| } | |
| void Calc_traceHiD(const gsl_vector *eval, const gsl_matrix *Hi, const size_t i, | |
| const size_t j, double &tHiD_g, double &tHiD_e) { | |
| tHiD_g = 0.0; | |
| tHiD_e = 0.0; | |
| size_t n_size = eval->size, d_size = Hi->size1; | |
| double delta, d; | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| d = gsl_matrix_get(Hi, j, k * d_size + i); | |
| if (i == j) { | |
| tHiD_g += delta * d; | |
| tHiD_e += d; | |
| } else { | |
| tHiD_g += delta * d * 2.0; | |
| tHiD_e += d * 2.0; | |
| } | |
| } | |
| return; | |
| } | |
| void Calc_traceHiDHiD(const gsl_vector *eval, const gsl_matrix *Hi, | |
| const size_t i1, const size_t j1, const size_t i2, | |
| const size_t j2, double &tHiDHiD_gg, double &tHiDHiD_ee, | |
| double &tHiDHiD_ge) { | |
| tHiDHiD_gg = 0.0; | |
| tHiDHiD_ee = 0.0; | |
| tHiDHiD_ge = 0.0; | |
| size_t n_size = eval->size, d_size = Hi->size1; | |
| double delta, d_Hi_i1i2, d_Hi_i1j2, d_Hi_j1i2, d_Hi_j1j2; | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| d_Hi_i1i2 = gsl_matrix_get(Hi, i1, k * d_size + i2); | |
| d_Hi_i1j2 = gsl_matrix_get(Hi, i1, k * d_size + j2); | |
| d_Hi_j1i2 = gsl_matrix_get(Hi, j1, k * d_size + i2); | |
| d_Hi_j1j2 = gsl_matrix_get(Hi, j1, k * d_size + j2); | |
| if (i1 == j1) { | |
| tHiDHiD_gg += delta * delta * d_Hi_i1j2 * d_Hi_j1i2; | |
| tHiDHiD_ee += d_Hi_i1j2 * d_Hi_j1i2; | |
| tHiDHiD_ge += delta * d_Hi_i1j2 * d_Hi_j1i2; | |
| if (i2 != j2) { | |
| tHiDHiD_gg += delta * delta * d_Hi_i1i2 * d_Hi_j1j2; | |
| tHiDHiD_ee += d_Hi_i1i2 * d_Hi_j1j2; | |
| tHiDHiD_ge += delta * d_Hi_i1i2 * d_Hi_j1j2; | |
| } | |
| } else { | |
| tHiDHiD_gg += | |
| delta * delta * (d_Hi_i1j2 * d_Hi_j1i2 + d_Hi_j1j2 * d_Hi_i1i2); | |
| tHiDHiD_ee += (d_Hi_i1j2 * d_Hi_j1i2 + d_Hi_j1j2 * d_Hi_i1i2); | |
| tHiDHiD_ge += delta * (d_Hi_i1j2 * d_Hi_j1i2 + d_Hi_j1j2 * d_Hi_i1i2); | |
| if (i2 != j2) { | |
| tHiDHiD_gg += | |
| delta * delta * (d_Hi_i1i2 * d_Hi_j1j2 + d_Hi_j1i2 * d_Hi_i1j2); | |
| tHiDHiD_ee += (d_Hi_i1i2 * d_Hi_j1j2 + d_Hi_j1i2 * d_Hi_i1j2); | |
| tHiDHiD_ge += delta * (d_Hi_i1i2 * d_Hi_j1j2 + d_Hi_j1i2 * d_Hi_i1j2); | |
| } | |
| } | |
| } | |
| return; | |
| } | |
| // trace(PD) = trace((Hi-HixQixHi)D)=trace(HiD) - trace(HixQixHiD) | |
| void Calc_tracePD(const gsl_vector *eval, const gsl_matrix *Qi, | |
| const gsl_matrix *Hi, const gsl_matrix *xHiDHix_all_g, | |
| const gsl_matrix *xHiDHix_all_e, const size_t i, | |
| const size_t j, double &tPD_g, double &tPD_e) { | |
| size_t dc_size = Qi->size1, d_size = Hi->size1; | |
| size_t v = GetIndex(i, j, d_size); | |
| double d; | |
| // Calculate the first part: trace(HiD). | |
| Calc_traceHiD(eval, Hi, i, j, tPD_g, tPD_e); | |
| // Calculate the second part: -trace(HixQixHiD). | |
| for (size_t k = 0; k < dc_size; k++) { | |
| gsl_vector_const_view Qi_row = gsl_matrix_const_row(Qi, k); | |
| gsl_vector_const_view xHiDHix_g_col = | |
| gsl_matrix_const_column(xHiDHix_all_g, v * dc_size + k); | |
| gsl_vector_const_view xHiDHix_e_col = | |
| gsl_matrix_const_column(xHiDHix_all_e, v * dc_size + k); | |
| gsl_blas_ddot(&Qi_row.vector, &xHiDHix_g_col.vector, &d); | |
| tPD_g -= d; | |
| gsl_blas_ddot(&Qi_row.vector, &xHiDHix_e_col.vector, &d); | |
| tPD_e -= d; | |
| } | |
| return; | |
| } | |
| // trace(PDPD) = trace((Hi-HixQixHi)D(Hi-HixQixHi)D) | |
| // = trace(HiDHiD) - trace(HixQixHiDHiD) | |
| // - trace(HiDHixQixHiD) + trace(HixQixHiDHixQixHiD) | |
| void Calc_tracePDPD(const gsl_vector *eval, const gsl_matrix *Qi, | |
| const gsl_matrix *Hi, const gsl_matrix *xHi, | |
| const gsl_matrix *QixHiDHix_all_g, | |
| const gsl_matrix *QixHiDHix_all_e, | |
| const gsl_matrix *xHiDHiDHix_all_gg, | |
| const gsl_matrix *xHiDHiDHix_all_ee, | |
| const gsl_matrix *xHiDHiDHix_all_ge, const size_t i1, | |
| const size_t j1, const size_t i2, const size_t j2, | |
| double &tPDPD_gg, double &tPDPD_ee, double &tPDPD_ge) { | |
| size_t dc_size = Qi->size1, d_size = Hi->size1; | |
| size_t v_size = d_size * (d_size + 1) / 2; | |
| size_t v1 = GetIndex(i1, j1, d_size), v2 = GetIndex(i2, j2, d_size); | |
| double d; | |
| // Calculate the first part: trace(HiDHiD). | |
| Calc_traceHiDHiD(eval, Hi, i1, j1, i2, j2, tPDPD_gg, tPDPD_ee, tPDPD_ge); | |
| // Calculate the second and third parts: | |
| // -trace(HixQixHiDHiD) - trace(HiDHixQixHiD) | |
| for (size_t i = 0; i < dc_size; i++) { | |
| gsl_vector_const_view Qi_row = gsl_matrix_const_row(Qi, i); | |
| gsl_vector_const_view xHiDHiDHix_gg_col = gsl_matrix_const_column( | |
| xHiDHiDHix_all_gg, (v1 * v_size + v2) * dc_size + i); | |
| gsl_vector_const_view xHiDHiDHix_ee_col = gsl_matrix_const_column( | |
| xHiDHiDHix_all_ee, (v1 * v_size + v2) * dc_size + i); | |
| gsl_vector_const_view xHiDHiDHix_ge_col = gsl_matrix_const_column( | |
| xHiDHiDHix_all_ge, (v1 * v_size + v2) * dc_size + i); | |
| gsl_blas_ddot(&Qi_row.vector, &xHiDHiDHix_gg_col.vector, &d); | |
| tPDPD_gg -= d * 2.0; | |
| gsl_blas_ddot(&Qi_row.vector, &xHiDHiDHix_ee_col.vector, &d); | |
| tPDPD_ee -= d * 2.0; | |
| gsl_blas_ddot(&Qi_row.vector, &xHiDHiDHix_ge_col.vector, &d); | |
| tPDPD_ge -= d * 2.0; | |
| } | |
| // Calculate the fourth part: trace(HixQixHiDHixQixHiD). | |
| for (size_t i = 0; i < dc_size; i++) { | |
| gsl_vector_const_view QixHiDHix_g_fullrow1 = | |
| gsl_matrix_const_row(QixHiDHix_all_g, i); | |
| gsl_vector_const_view QixHiDHix_e_fullrow1 = | |
| gsl_matrix_const_row(QixHiDHix_all_e, i); | |
| gsl_vector_const_view QixHiDHix_g_row1 = gsl_vector_const_subvector( | |
| &QixHiDHix_g_fullrow1.vector, v1 * dc_size, dc_size); | |
| gsl_vector_const_view QixHiDHix_e_row1 = gsl_vector_const_subvector( | |
| &QixHiDHix_e_fullrow1.vector, v1 * dc_size, dc_size); | |
| gsl_vector_const_view QixHiDHix_g_col2 = | |
| gsl_matrix_const_column(QixHiDHix_all_g, v2 * dc_size + i); | |
| gsl_vector_const_view QixHiDHix_e_col2 = | |
| gsl_matrix_const_column(QixHiDHix_all_e, v2 * dc_size + i); | |
| gsl_blas_ddot(&QixHiDHix_g_row1.vector, &QixHiDHix_g_col2.vector, &d); | |
| tPDPD_gg += d; | |
| gsl_blas_ddot(&QixHiDHix_e_row1.vector, &QixHiDHix_e_col2.vector, &d); | |
| tPDPD_ee += d; | |
| gsl_blas_ddot(&QixHiDHix_g_row1.vector, &QixHiDHix_e_col2.vector, &d); | |
| tPDPD_ge += d; | |
| } | |
| return; | |
| } | |
| // Calculate (xHiDHiy) for every pair (i,j). | |
| void Calc_xHiDHiy_all(const gsl_vector *eval, const gsl_matrix *xHi, | |
| const gsl_matrix *Hiy, gsl_matrix *xHiDHiy_all_g, | |
| gsl_matrix *xHiDHiy_all_e) { | |
| gsl_matrix_set_zero(xHiDHiy_all_g); | |
| gsl_matrix_set_zero(xHiDHiy_all_e); | |
| size_t d_size = Hiy->size1; | |
| size_t v; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j < d_size; j++) { | |
| if (j < i) { | |
| continue; | |
| } | |
| v = GetIndex(i, j, d_size); | |
| gsl_vector_view xHiDHiy_g = gsl_matrix_column(xHiDHiy_all_g, v); | |
| gsl_vector_view xHiDHiy_e = gsl_matrix_column(xHiDHiy_all_e, v); | |
| Calc_xHiDHiy(eval, xHi, Hiy, i, j, &xHiDHiy_g.vector, &xHiDHiy_e.vector); | |
| } | |
| } | |
| return; | |
| } | |
| // Calculate (xHiDHix) for every pair (i,j). | |
| void Calc_xHiDHix_all(const gsl_vector *eval, const gsl_matrix *xHi, | |
| gsl_matrix *xHiDHix_all_g, gsl_matrix *xHiDHix_all_e) { | |
| gsl_matrix_set_zero(xHiDHix_all_g); | |
| gsl_matrix_set_zero(xHiDHix_all_e); | |
| size_t d_size = xHi->size2 / eval->size, dc_size = xHi->size1; | |
| size_t v; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j < d_size; j++) { | |
| if (j < i) { | |
| continue; | |
| } | |
| v = GetIndex(i, j, d_size); | |
| gsl_matrix_view xHiDHix_g = | |
| gsl_matrix_submatrix(xHiDHix_all_g, 0, v * dc_size, dc_size, dc_size); | |
| gsl_matrix_view xHiDHix_e = | |
| gsl_matrix_submatrix(xHiDHix_all_e, 0, v * dc_size, dc_size, dc_size); | |
| Calc_xHiDHix(eval, xHi, i, j, &xHiDHix_g.matrix, &xHiDHix_e.matrix); | |
| } | |
| } | |
| return; | |
| } | |
| // Calculate (xHiDHiy) for every pair (i,j). | |
| void Calc_xHiDHiDHiy_all(const size_t v_size, const gsl_vector *eval, | |
| const gsl_matrix *Hi, const gsl_matrix *xHi, | |
| const gsl_matrix *Hiy, gsl_matrix *xHiDHiDHiy_all_gg, | |
| gsl_matrix *xHiDHiDHiy_all_ee, | |
| gsl_matrix *xHiDHiDHiy_all_ge) { | |
| gsl_matrix_set_zero(xHiDHiDHiy_all_gg); | |
| gsl_matrix_set_zero(xHiDHiDHiy_all_ee); | |
| gsl_matrix_set_zero(xHiDHiDHiy_all_ge); | |
| size_t d_size = Hiy->size1; | |
| size_t v1, v2; | |
| for (size_t i1 = 0; i1 < d_size; i1++) { | |
| for (size_t j1 = 0; j1 < d_size; j1++) { | |
| if (j1 < i1) { | |
| continue; | |
| } | |
| v1 = GetIndex(i1, j1, d_size); | |
| for (size_t i2 = 0; i2 < d_size; i2++) { | |
| for (size_t j2 = 0; j2 < d_size; j2++) { | |
| if (j2 < i2) { | |
| continue; | |
| } | |
| v2 = GetIndex(i2, j2, d_size); | |
| gsl_vector_view xHiDHiDHiy_gg = | |
| gsl_matrix_column(xHiDHiDHiy_all_gg, v1 * v_size + v2); | |
| gsl_vector_view xHiDHiDHiy_ee = | |
| gsl_matrix_column(xHiDHiDHiy_all_ee, v1 * v_size + v2); | |
| gsl_vector_view xHiDHiDHiy_ge = | |
| gsl_matrix_column(xHiDHiDHiy_all_ge, v1 * v_size + v2); | |
| Calc_xHiDHiDHiy(eval, Hi, xHi, Hiy, i1, j1, i2, j2, | |
| &xHiDHiDHiy_gg.vector, &xHiDHiDHiy_ee.vector, | |
| &xHiDHiDHiy_ge.vector); | |
| } | |
| } | |
| } | |
| } | |
| return; | |
| } | |
| // Calculate (xHiDHix) for every pair (i,j). | |
| void Calc_xHiDHiDHix_all(const size_t v_size, const gsl_vector *eval, | |
| const gsl_matrix *Hi, const gsl_matrix *xHi, | |
| gsl_matrix *xHiDHiDHix_all_gg, | |
| gsl_matrix *xHiDHiDHix_all_ee, | |
| gsl_matrix *xHiDHiDHix_all_ge) { | |
| gsl_matrix_set_zero(xHiDHiDHix_all_gg); | |
| gsl_matrix_set_zero(xHiDHiDHix_all_ee); | |
| gsl_matrix_set_zero(xHiDHiDHix_all_ge); | |
| size_t d_size = xHi->size2 / eval->size, dc_size = xHi->size1; | |
| size_t v1, v2; | |
| for (size_t i1 = 0; i1 < d_size; i1++) { | |
| for (size_t j1 = 0; j1 < d_size; j1++) { | |
| if (j1 < i1) { | |
| continue; | |
| } | |
| v1 = GetIndex(i1, j1, d_size); | |
| for (size_t i2 = 0; i2 < d_size; i2++) { | |
| for (size_t j2 = 0; j2 < d_size; j2++) { | |
| if (j2 < i2) { | |
| continue; | |
| } | |
| v2 = GetIndex(i2, j2, d_size); | |
| if (v2 < v1) { | |
| continue; | |
| } | |
| gsl_matrix_view xHiDHiDHix_gg1 = gsl_matrix_submatrix( | |
| xHiDHiDHix_all_gg, 0, (v1 * v_size + v2) * dc_size, dc_size, | |
| dc_size); | |
| gsl_matrix_view xHiDHiDHix_ee1 = gsl_matrix_submatrix( | |
| xHiDHiDHix_all_ee, 0, (v1 * v_size + v2) * dc_size, dc_size, | |
| dc_size); | |
| gsl_matrix_view xHiDHiDHix_ge1 = gsl_matrix_submatrix( | |
| xHiDHiDHix_all_ge, 0, (v1 * v_size + v2) * dc_size, dc_size, | |
| dc_size); | |
| Calc_xHiDHiDHix(eval, Hi, xHi, i1, j1, i2, j2, &xHiDHiDHix_gg1.matrix, | |
| &xHiDHiDHix_ee1.matrix, &xHiDHiDHix_ge1.matrix); | |
| if (v2 != v1) { | |
| gsl_matrix_view xHiDHiDHix_gg2 = gsl_matrix_submatrix( | |
| xHiDHiDHix_all_gg, 0, (v2 * v_size + v1) * dc_size, dc_size, | |
| dc_size); | |
| gsl_matrix_view xHiDHiDHix_ee2 = gsl_matrix_submatrix( | |
| xHiDHiDHix_all_ee, 0, (v2 * v_size + v1) * dc_size, dc_size, | |
| dc_size); | |
| gsl_matrix_view xHiDHiDHix_ge2 = gsl_matrix_submatrix( | |
| xHiDHiDHix_all_ge, 0, (v2 * v_size + v1) * dc_size, dc_size, | |
| dc_size); | |
| gsl_matrix_memcpy(&xHiDHiDHix_gg2.matrix, &xHiDHiDHix_gg1.matrix); | |
| gsl_matrix_memcpy(&xHiDHiDHix_ee2.matrix, &xHiDHiDHix_ee1.matrix); | |
| gsl_matrix_memcpy(&xHiDHiDHix_ge2.matrix, &xHiDHiDHix_ge1.matrix); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| return; | |
| } | |
| // Calculate (xHiDHix)Qi(xHiy) for every pair (i,j). | |
| void Calc_xHiDHixQixHiy_all(const gsl_matrix *xHiDHix_all_g, | |
| const gsl_matrix *xHiDHix_all_e, | |
| const gsl_vector *QixHiy, | |
| gsl_matrix *xHiDHixQixHiy_all_g, | |
| gsl_matrix *xHiDHixQixHiy_all_e) { | |
| size_t dc_size = xHiDHix_all_g->size1; | |
| size_t v_size = xHiDHix_all_g->size2 / dc_size; | |
| for (size_t i = 0; i < v_size; i++) { | |
| gsl_matrix_const_view xHiDHix_g = gsl_matrix_const_submatrix( | |
| xHiDHix_all_g, 0, i * dc_size, dc_size, dc_size); | |
| gsl_matrix_const_view xHiDHix_e = gsl_matrix_const_submatrix( | |
| xHiDHix_all_e, 0, i * dc_size, dc_size, dc_size); | |
| gsl_vector_view xHiDHixQixHiy_g = gsl_matrix_column(xHiDHixQixHiy_all_g, i); | |
| gsl_vector_view xHiDHixQixHiy_e = gsl_matrix_column(xHiDHixQixHiy_all_e, i); | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, &xHiDHix_g.matrix, QixHiy, 0.0, | |
| &xHiDHixQixHiy_g.vector); | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, &xHiDHix_e.matrix, QixHiy, 0.0, | |
| &xHiDHixQixHiy_e.vector); | |
| } | |
| return; | |
| } | |
| // Calculate Qi(xHiDHiy) and Qi(xHiDHix)Qi(xHiy) for each pair of i,j (i<=j). | |
| void Calc_QiVec_all(const gsl_matrix *Qi, const gsl_matrix *vec_all_g, | |
| const gsl_matrix *vec_all_e, gsl_matrix *Qivec_all_g, | |
| gsl_matrix *Qivec_all_e) { | |
| for (size_t i = 0; i < vec_all_g->size2; i++) { | |
| gsl_vector_const_view vec_g = gsl_matrix_const_column(vec_all_g, i); | |
| gsl_vector_const_view vec_e = gsl_matrix_const_column(vec_all_e, i); | |
| gsl_vector_view Qivec_g = gsl_matrix_column(Qivec_all_g, i); | |
| gsl_vector_view Qivec_e = gsl_matrix_column(Qivec_all_e, i); | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, &vec_g.vector, 0.0, &Qivec_g.vector); | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, &vec_e.vector, 0.0, &Qivec_e.vector); | |
| } | |
| return; | |
| } | |
| // Calculate Qi(xHiDHix) for each pair of i,j (i<=j). | |
| void Calc_QiMat_all(const gsl_matrix *Qi, const gsl_matrix *mat_all_g, | |
| const gsl_matrix *mat_all_e, gsl_matrix *Qimat_all_g, | |
| gsl_matrix *Qimat_all_e) { | |
| size_t dc_size = Qi->size1; | |
| size_t v_size = mat_all_g->size2 / mat_all_g->size1; | |
| for (size_t i = 0; i < v_size; i++) { | |
| gsl_matrix_const_view mat_g = | |
| gsl_matrix_const_submatrix(mat_all_g, 0, i * dc_size, dc_size, dc_size); | |
| gsl_matrix_const_view mat_e = | |
| gsl_matrix_const_submatrix(mat_all_e, 0, i * dc_size, dc_size, dc_size); | |
| gsl_matrix_view Qimat_g = | |
| gsl_matrix_submatrix(Qimat_all_g, 0, i * dc_size, dc_size, dc_size); | |
| gsl_matrix_view Qimat_e = | |
| gsl_matrix_submatrix(Qimat_all_e, 0, i * dc_size, dc_size, dc_size); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, &mat_g.matrix, 0.0, | |
| &Qimat_g.matrix); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, &mat_e.matrix, 0.0, | |
| &Qimat_e.matrix); | |
| } | |
| return; | |
| } | |
| // Calculate yPDPy | |
| // yPDPy = y(Hi-HixQixHi)D(Hi-HixQixHi)y | |
| // = ytHiDHiy - (yHix)Qi(xHiDHiy) - (yHiDHix)Qi(xHiy) | |
| // + (yHix)Qi(xHiDHix)Qi(xtHiy) | |
| void Calc_yPDPy(const gsl_vector *eval, const gsl_matrix *Hiy, | |
| const gsl_vector *QixHiy, const gsl_matrix *xHiDHiy_all_g, | |
| const gsl_matrix *xHiDHiy_all_e, | |
| const gsl_matrix *xHiDHixQixHiy_all_g, | |
| const gsl_matrix *xHiDHixQixHiy_all_e, const size_t i, | |
| const size_t j, double &yPDPy_g, double &yPDPy_e) { | |
| size_t d_size = Hiy->size1; | |
| size_t v = GetIndex(i, j, d_size); | |
| double d; | |
| // First part: ytHiDHiy. | |
| Calc_yHiDHiy(eval, Hiy, i, j, yPDPy_g, yPDPy_e); | |
| // Second and third parts: -(yHix)Qi(xHiDHiy)-(yHiDHix)Qi(xHiy) | |
| gsl_vector_const_view xHiDHiy_g = gsl_matrix_const_column(xHiDHiy_all_g, v); | |
| gsl_vector_const_view xHiDHiy_e = gsl_matrix_const_column(xHiDHiy_all_e, v); | |
| gsl_blas_ddot(QixHiy, &xHiDHiy_g.vector, &d); | |
| yPDPy_g -= d * 2.0; | |
| gsl_blas_ddot(QixHiy, &xHiDHiy_e.vector, &d); | |
| yPDPy_e -= d * 2.0; | |
| // Fourth part: +(yHix)Qi(xHiDHix)Qi(xHiy). | |
| gsl_vector_const_view xHiDHixQixHiy_g = | |
| gsl_matrix_const_column(xHiDHixQixHiy_all_g, v); | |
| gsl_vector_const_view xHiDHixQixHiy_e = | |
| gsl_matrix_const_column(xHiDHixQixHiy_all_e, v); | |
| gsl_blas_ddot(QixHiy, &xHiDHixQixHiy_g.vector, &d); | |
| yPDPy_g += d; | |
| gsl_blas_ddot(QixHiy, &xHiDHixQixHiy_e.vector, &d); | |
| yPDPy_e += d; | |
| return; | |
| } | |
| // calculate yPDPDPy = y(Hi-HixQixHi)D(Hi-HixQixHi)D(Hi-HixQixHi)y | |
| // yPDPDPy = yHiDHiDHiy | |
| // - (yHix)Qi(xHiDHiDHiy)-(yHiDHiDHix)Qi(xHiy) | |
| // - (yHiDHix)Qi(xHiDHiy) | |
| // + (yHix)Qi(xHiDHix)Qi(xHiDHiy) | |
| // + (yHiDHix)Qi(xHiDHix)Qi(xHiy) | |
| // + (yHix)Qi(xHiDHiDHix)Qi(xHiy) | |
| // - (yHix)Qi(xHiDHix)Qi(xHiDHix)Qi(xHiy) | |
| void Calc_yPDPDPy( | |
| const gsl_vector *eval, const gsl_matrix *Hi, const gsl_matrix *xHi, | |
| const gsl_matrix *Hiy, const gsl_vector *QixHiy, | |
| const gsl_matrix *xHiDHiy_all_g, const gsl_matrix *xHiDHiy_all_e, | |
| const gsl_matrix *QixHiDHiy_all_g, const gsl_matrix *QixHiDHiy_all_e, | |
| const gsl_matrix *xHiDHixQixHiy_all_g, | |
| const gsl_matrix *xHiDHixQixHiy_all_e, | |
| const gsl_matrix *QixHiDHixQixHiy_all_g, | |
| const gsl_matrix *QixHiDHixQixHiy_all_e, | |
| const gsl_matrix *xHiDHiDHiy_all_gg, const gsl_matrix *xHiDHiDHiy_all_ee, | |
| const gsl_matrix *xHiDHiDHiy_all_ge, const gsl_matrix *xHiDHiDHix_all_gg, | |
| const gsl_matrix *xHiDHiDHix_all_ee, const gsl_matrix *xHiDHiDHix_all_ge, | |
| const size_t i1, const size_t j1, const size_t i2, const size_t j2, | |
| double &yPDPDPy_gg, double &yPDPDPy_ee, double &yPDPDPy_ge) { | |
| size_t d_size = Hi->size1, dc_size = xHi->size1; | |
| size_t v1 = GetIndex(i1, j1, d_size), v2 = GetIndex(i2, j2, d_size); | |
| size_t v_size = d_size * (d_size + 1) / 2; | |
| double d; | |
| gsl_vector *xHiDHiDHixQixHiy = gsl_vector_alloc(dc_size); | |
| // First part: yHiDHiDHiy. | |
| Calc_yHiDHiDHiy(eval, Hi, Hiy, i1, j1, i2, j2, yPDPDPy_gg, yPDPDPy_ee, | |
| yPDPDPy_ge); | |
| // Second and third parts: | |
| // -(yHix)Qi(xHiDHiDHiy) - (yHiDHiDHix)Qi(xHiy). | |
| gsl_vector_const_view xHiDHiDHiy_gg1 = | |
| gsl_matrix_const_column(xHiDHiDHiy_all_gg, v1 * v_size + v2); | |
| gsl_vector_const_view xHiDHiDHiy_ee1 = | |
| gsl_matrix_const_column(xHiDHiDHiy_all_ee, v1 * v_size + v2); | |
| gsl_vector_const_view xHiDHiDHiy_ge1 = | |
| gsl_matrix_const_column(xHiDHiDHiy_all_ge, v1 * v_size + v2); | |
| gsl_vector_const_view xHiDHiDHiy_gg2 = | |
| gsl_matrix_const_column(xHiDHiDHiy_all_gg, v2 * v_size + v1); | |
| gsl_vector_const_view xHiDHiDHiy_ee2 = | |
| gsl_matrix_const_column(xHiDHiDHiy_all_ee, v2 * v_size + v1); | |
| gsl_vector_const_view xHiDHiDHiy_ge2 = | |
| gsl_matrix_const_column(xHiDHiDHiy_all_ge, v2 * v_size + v1); | |
| gsl_blas_ddot(QixHiy, &xHiDHiDHiy_gg1.vector, &d); | |
| yPDPDPy_gg -= d; | |
| gsl_blas_ddot(QixHiy, &xHiDHiDHiy_ee1.vector, &d); | |
| yPDPDPy_ee -= d; | |
| gsl_blas_ddot(QixHiy, &xHiDHiDHiy_ge1.vector, &d); | |
| yPDPDPy_ge -= d; | |
| gsl_blas_ddot(QixHiy, &xHiDHiDHiy_gg2.vector, &d); | |
| yPDPDPy_gg -= d; | |
| gsl_blas_ddot(QixHiy, &xHiDHiDHiy_ee2.vector, &d); | |
| yPDPDPy_ee -= d; | |
| gsl_blas_ddot(QixHiy, &xHiDHiDHiy_ge2.vector, &d); | |
| yPDPDPy_ge -= d; | |
| // Fourth part: - (yHiDHix)Qi(xHiDHiy). | |
| gsl_vector_const_view xHiDHiy_g1 = gsl_matrix_const_column(xHiDHiy_all_g, v1); | |
| gsl_vector_const_view xHiDHiy_e1 = gsl_matrix_const_column(xHiDHiy_all_e, v1); | |
| gsl_vector_const_view QixHiDHiy_g2 = | |
| gsl_matrix_const_column(QixHiDHiy_all_g, v2); | |
| gsl_vector_const_view QixHiDHiy_e2 = | |
| gsl_matrix_const_column(QixHiDHiy_all_e, v2); | |
| gsl_blas_ddot(&xHiDHiy_g1.vector, &QixHiDHiy_g2.vector, &d); | |
| yPDPDPy_gg -= d; | |
| gsl_blas_ddot(&xHiDHiy_e1.vector, &QixHiDHiy_e2.vector, &d); | |
| yPDPDPy_ee -= d; | |
| gsl_blas_ddot(&xHiDHiy_g1.vector, &QixHiDHiy_e2.vector, &d); | |
| yPDPDPy_ge -= d; | |
| // Fifth and sixth parts: | |
| // + (yHix)Qi(xHiDHix)Qi(xHiDHiy) + | |
| // (yHiDHix)Qi(xHiDHix)Qi(xHiy) | |
| gsl_vector_const_view QixHiDHiy_g1 = | |
| gsl_matrix_const_column(QixHiDHiy_all_g, v1); | |
| gsl_vector_const_view QixHiDHiy_e1 = | |
| gsl_matrix_const_column(QixHiDHiy_all_e, v1); | |
| gsl_vector_const_view xHiDHixQixHiy_g1 = | |
| gsl_matrix_const_column(xHiDHixQixHiy_all_g, v1); | |
| gsl_vector_const_view xHiDHixQixHiy_e1 = | |
| gsl_matrix_const_column(xHiDHixQixHiy_all_e, v1); | |
| gsl_vector_const_view xHiDHixQixHiy_g2 = | |
| gsl_matrix_const_column(xHiDHixQixHiy_all_g, v2); | |
| gsl_vector_const_view xHiDHixQixHiy_e2 = | |
| gsl_matrix_const_column(xHiDHixQixHiy_all_e, v2); | |
| gsl_blas_ddot(&xHiDHixQixHiy_g1.vector, &QixHiDHiy_g2.vector, &d); | |
| yPDPDPy_gg += d; | |
| gsl_blas_ddot(&xHiDHixQixHiy_g2.vector, &QixHiDHiy_g1.vector, &d); | |
| yPDPDPy_gg += d; | |
| gsl_blas_ddot(&xHiDHixQixHiy_e1.vector, &QixHiDHiy_e2.vector, &d); | |
| yPDPDPy_ee += d; | |
| gsl_blas_ddot(&xHiDHixQixHiy_e2.vector, &QixHiDHiy_e1.vector, &d); | |
| yPDPDPy_ee += d; | |
| gsl_blas_ddot(&xHiDHixQixHiy_g1.vector, &QixHiDHiy_e2.vector, &d); | |
| yPDPDPy_ge += d; | |
| gsl_blas_ddot(&xHiDHixQixHiy_e2.vector, &QixHiDHiy_g1.vector, &d); | |
| yPDPDPy_ge += d; | |
| // Seventh part: + (yHix)Qi(xHiDHiDHix)Qi(xHiy) | |
| gsl_matrix_const_view xHiDHiDHix_gg = gsl_matrix_const_submatrix( | |
| xHiDHiDHix_all_gg, 0, (v1 * v_size + v2) * dc_size, dc_size, dc_size); | |
| gsl_matrix_const_view xHiDHiDHix_ee = gsl_matrix_const_submatrix( | |
| xHiDHiDHix_all_ee, 0, (v1 * v_size + v2) * dc_size, dc_size, dc_size); | |
| gsl_matrix_const_view xHiDHiDHix_ge = gsl_matrix_const_submatrix( | |
| xHiDHiDHix_all_ge, 0, (v1 * v_size + v2) * dc_size, dc_size, dc_size); | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, &xHiDHiDHix_gg.matrix, QixHiy, 0.0, | |
| xHiDHiDHixQixHiy); | |
| gsl_blas_ddot(xHiDHiDHixQixHiy, QixHiy, &d); | |
| yPDPDPy_gg += d; | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, &xHiDHiDHix_ee.matrix, QixHiy, 0.0, | |
| xHiDHiDHixQixHiy); | |
| gsl_blas_ddot(xHiDHiDHixQixHiy, QixHiy, &d); | |
| yPDPDPy_ee += d; | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, &xHiDHiDHix_ge.matrix, QixHiy, 0.0, | |
| xHiDHiDHixQixHiy); | |
| gsl_blas_ddot(xHiDHiDHixQixHiy, QixHiy, &d); | |
| yPDPDPy_ge += d; | |
| // Eighth part: - (yHix)Qi(xHiDHix)Qi(xHiDHix)Qi(xHiy). | |
| gsl_vector_const_view QixHiDHixQixHiy_g1 = | |
| gsl_matrix_const_column(QixHiDHixQixHiy_all_g, v1); | |
| gsl_vector_const_view QixHiDHixQixHiy_e1 = | |
| gsl_matrix_const_column(QixHiDHixQixHiy_all_e, v1); | |
| gsl_blas_ddot(&QixHiDHixQixHiy_g1.vector, &xHiDHixQixHiy_g2.vector, &d); | |
| yPDPDPy_gg -= d; | |
| gsl_blas_ddot(&QixHiDHixQixHiy_e1.vector, &xHiDHixQixHiy_e2.vector, &d); | |
| yPDPDPy_ee -= d; | |
| gsl_blas_ddot(&QixHiDHixQixHiy_g1.vector, &xHiDHixQixHiy_e2.vector, &d); | |
| yPDPDPy_ge -= d; | |
| // Free memory. | |
| gsl_vector_free(xHiDHiDHixQixHiy); | |
| return; | |
| } | |
| // Calculate Edgeworth correctation factors for small samples notation | |
| // and method follows Thomas J. Rothenberg, Econometirca 1984; 52 (4) | |
| // M=xHiDHix | |
| void CalcCRT(const gsl_matrix *Hessian_inv, const gsl_matrix *Qi, | |
| const gsl_matrix *QixHiDHix_all_g, | |
| const gsl_matrix *QixHiDHix_all_e, | |
| const gsl_matrix *xHiDHiDHix_all_gg, | |
| const gsl_matrix *xHiDHiDHix_all_ee, | |
| const gsl_matrix *xHiDHiDHix_all_ge, const size_t d_size, | |
| double &crt_a, double &crt_b, double &crt_c) { | |
| crt_a = 0.0; | |
| crt_b = 0.0; | |
| crt_c = 0.0; | |
| size_t dc_size = Qi->size1, v_size = Hessian_inv->size1 / 2; | |
| size_t c_size = dc_size / d_size; | |
| double h_gg, h_ge, h_ee, d, B = 0.0, C = 0.0, D = 0.0; | |
| double trCg1, trCe1, trCg2, trCe2, trB_gg, trB_ge, trB_ee; | |
| double trCC_gg, trCC_ge, trCC_ee, trD_gg = 0.0, trD_ge = 0.0, trD_ee = 0.0; | |
| gsl_matrix *QiMQi_g1 = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *QiMQi_e1 = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *QiMQi_g2 = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *QiMQi_e2 = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *QiMQisQisi_g1 = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *QiMQisQisi_e1 = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *QiMQisQisi_g2 = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *QiMQisQisi_e2 = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *QiMQiMQi_gg = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *QiMQiMQi_ge = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *QiMQiMQi_ee = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *QiMMQi_gg = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *QiMMQi_ge = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *QiMMQi_ee = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *Qi_si = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *M_dd = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *M_dcdc = gsl_matrix_alloc(dc_size, dc_size); | |
| // Invert Qi_sub to Qi_si. | |
| gsl_matrix *Qi_sub = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix_const_view Qi_s = gsl_matrix_const_submatrix( | |
| Qi, (c_size - 1) * d_size, (c_size - 1) * d_size, d_size, d_size); | |
| int sig; | |
| gsl_permutation *pmt = gsl_permutation_alloc(d_size); | |
| gsl_matrix_memcpy(Qi_sub, &Qi_s.matrix); | |
| LUDecomp(Qi_sub, pmt, &sig); | |
| LUInvert(Qi_sub, pmt, Qi_si); | |
| gsl_permutation_free(pmt); | |
| gsl_matrix_free(Qi_sub); | |
| // Calculate correction factors. | |
| for (size_t v1 = 0; v1 < v_size; v1++) { | |
| // Calculate Qi(xHiDHix)Qi, and subpart of it. | |
| gsl_matrix_const_view QiM_g1 = gsl_matrix_const_submatrix( | |
| QixHiDHix_all_g, 0, v1 * dc_size, dc_size, dc_size); | |
| gsl_matrix_const_view QiM_e1 = gsl_matrix_const_submatrix( | |
| QixHiDHix_all_e, 0, v1 * dc_size, dc_size, dc_size); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_g1.matrix, Qi, 0.0, | |
| QiMQi_g1); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_e1.matrix, Qi, 0.0, | |
| QiMQi_e1); | |
| gsl_matrix_view QiMQi_g1_s = gsl_matrix_submatrix( | |
| QiMQi_g1, (c_size - 1) * d_size, (c_size - 1) * d_size, d_size, d_size); | |
| gsl_matrix_view QiMQi_e1_s = gsl_matrix_submatrix( | |
| QiMQi_e1, (c_size - 1) * d_size, (c_size - 1) * d_size, d_size, d_size); | |
| // Calculate trCg1 and trCe1. | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQi_g1_s.matrix, Qi_si, | |
| 0.0, QiMQisQisi_g1); | |
| trCg1 = 0.0; | |
| for (size_t k = 0; k < d_size; k++) { | |
| trCg1 -= gsl_matrix_get(QiMQisQisi_g1, k, k); | |
| } | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQi_e1_s.matrix, Qi_si, | |
| 0.0, QiMQisQisi_e1); | |
| trCe1 = 0.0; | |
| for (size_t k = 0; k < d_size; k++) { | |
| trCe1 -= gsl_matrix_get(QiMQisQisi_e1, k, k); | |
| } | |
| for (size_t v2 = 0; v2 < v_size; v2++) { | |
| if (v2 < v1) { | |
| continue; | |
| } | |
| // Calculate Qi(xHiDHix)Qi, and subpart of it. | |
| gsl_matrix_const_view QiM_g2 = gsl_matrix_const_submatrix( | |
| QixHiDHix_all_g, 0, v2 * dc_size, dc_size, dc_size); | |
| gsl_matrix_const_view QiM_e2 = gsl_matrix_const_submatrix( | |
| QixHiDHix_all_e, 0, v2 * dc_size, dc_size, dc_size); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_g2.matrix, Qi, 0.0, | |
| QiMQi_g2); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_e2.matrix, Qi, 0.0, | |
| QiMQi_e2); | |
| gsl_matrix_view QiMQi_g2_s = | |
| gsl_matrix_submatrix(QiMQi_g2, (c_size - 1) * d_size, | |
| (c_size - 1) * d_size, d_size, d_size); | |
| gsl_matrix_view QiMQi_e2_s = | |
| gsl_matrix_submatrix(QiMQi_e2, (c_size - 1) * d_size, | |
| (c_size - 1) * d_size, d_size, d_size); | |
| // Calculate trCg2 and trCe2. | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQi_g2_s.matrix, Qi_si, | |
| 0.0, QiMQisQisi_g2); | |
| trCg2 = 0.0; | |
| for (size_t k = 0; k < d_size; k++) { | |
| trCg2 -= gsl_matrix_get(QiMQisQisi_g2, k, k); | |
| } | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQi_e2_s.matrix, Qi_si, | |
| 0.0, QiMQisQisi_e2); | |
| trCe2 = 0.0; | |
| for (size_t k = 0; k < d_size; k++) { | |
| trCe2 -= gsl_matrix_get(QiMQisQisi_e2, k, k); | |
| } | |
| // Calculate trCC_gg, trCC_ge, trCC_ee. | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, QiMQisQisi_g1, | |
| QiMQisQisi_g2, 0.0, M_dd); | |
| trCC_gg = 0.0; | |
| for (size_t k = 0; k < d_size; k++) { | |
| trCC_gg += gsl_matrix_get(M_dd, k, k); | |
| } | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, QiMQisQisi_g1, | |
| QiMQisQisi_e2, 0.0, M_dd); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, QiMQisQisi_e1, | |
| QiMQisQisi_g2, 1.0, M_dd); | |
| trCC_ge = 0.0; | |
| for (size_t k = 0; k < d_size; k++) { | |
| trCC_ge += gsl_matrix_get(M_dd, k, k); | |
| } | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, QiMQisQisi_e1, | |
| QiMQisQisi_e2, 0.0, M_dd); | |
| trCC_ee = 0.0; | |
| for (size_t k = 0; k < d_size; k++) { | |
| trCC_ee += gsl_matrix_get(M_dd, k, k); | |
| } | |
| // Calculate Qi(xHiDHix)Qi(xHiDHix)Qi, and subpart of it. | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_g1.matrix, QiMQi_g2, | |
| 0.0, QiMQiMQi_gg); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_g1.matrix, QiMQi_e2, | |
| 0.0, QiMQiMQi_ge); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_e1.matrix, QiMQi_g2, | |
| 1.0, QiMQiMQi_ge); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiM_e1.matrix, QiMQi_e2, | |
| 0.0, QiMQiMQi_ee); | |
| gsl_matrix_view QiMQiMQi_gg_s = | |
| gsl_matrix_submatrix(QiMQiMQi_gg, (c_size - 1) * d_size, | |
| (c_size - 1) * d_size, d_size, d_size); | |
| gsl_matrix_view QiMQiMQi_ge_s = | |
| gsl_matrix_submatrix(QiMQiMQi_ge, (c_size - 1) * d_size, | |
| (c_size - 1) * d_size, d_size, d_size); | |
| gsl_matrix_view QiMQiMQi_ee_s = | |
| gsl_matrix_submatrix(QiMQiMQi_ee, (c_size - 1) * d_size, | |
| (c_size - 1) * d_size, d_size, d_size); | |
| // and part of trB_gg, trB_ge, trB_ee. | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQiMQi_gg_s.matrix, | |
| Qi_si, 0.0, M_dd); | |
| trB_gg = 0.0; | |
| for (size_t k = 0; k < d_size; k++) { | |
| d = gsl_matrix_get(M_dd, k, k); | |
| trB_gg -= d; | |
| } | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQiMQi_ge_s.matrix, | |
| Qi_si, 0.0, M_dd); | |
| trB_ge = 0.0; | |
| for (size_t k = 0; k < d_size; k++) { | |
| d = gsl_matrix_get(M_dd, k, k); | |
| trB_ge -= d; | |
| } | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMQiMQi_ee_s.matrix, | |
| Qi_si, 0.0, M_dd); | |
| trB_ee = 0.0; | |
| for (size_t k = 0; k < d_size; k++) { | |
| d = gsl_matrix_get(M_dd, k, k); | |
| trB_ee -= d; | |
| } | |
| // Calculate Qi(xHiDHiDHix)Qi, and subpart of it. | |
| gsl_matrix_const_view MM_gg = gsl_matrix_const_submatrix( | |
| xHiDHiDHix_all_gg, 0, (v1 * v_size + v2) * dc_size, dc_size, dc_size); | |
| gsl_matrix_const_view MM_ge = gsl_matrix_const_submatrix( | |
| xHiDHiDHix_all_ge, 0, (v1 * v_size + v2) * dc_size, dc_size, dc_size); | |
| gsl_matrix_const_view MM_ee = gsl_matrix_const_submatrix( | |
| xHiDHiDHix_all_ee, 0, (v1 * v_size + v2) * dc_size, dc_size, dc_size); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, &MM_gg.matrix, 0.0, | |
| M_dcdc); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, M_dcdc, Qi, 0.0, | |
| QiMMQi_gg); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, &MM_ge.matrix, 0.0, | |
| M_dcdc); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, M_dcdc, Qi, 0.0, | |
| QiMMQi_ge); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Qi, &MM_ee.matrix, 0.0, | |
| M_dcdc); | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, M_dcdc, Qi, 0.0, | |
| QiMMQi_ee); | |
| gsl_matrix_view QiMMQi_gg_s = | |
| gsl_matrix_submatrix(QiMMQi_gg, (c_size - 1) * d_size, | |
| (c_size - 1) * d_size, d_size, d_size); | |
| gsl_matrix_view QiMMQi_ge_s = | |
| gsl_matrix_submatrix(QiMMQi_ge, (c_size - 1) * d_size, | |
| (c_size - 1) * d_size, d_size, d_size); | |
| gsl_matrix_view QiMMQi_ee_s = | |
| gsl_matrix_submatrix(QiMMQi_ee, (c_size - 1) * d_size, | |
| (c_size - 1) * d_size, d_size, d_size); | |
| // Calculate the other part of trB_gg, trB_ge, trB_ee. | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMMQi_gg_s.matrix, | |
| Qi_si, 0.0, M_dd); | |
| for (size_t k = 0; k < d_size; k++) { | |
| trB_gg += gsl_matrix_get(M_dd, k, k); | |
| } | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMMQi_ge_s.matrix, | |
| Qi_si, 0.0, M_dd); | |
| for (size_t k = 0; k < d_size; k++) { | |
| trB_ge += 2.0 * gsl_matrix_get(M_dd, k, k); | |
| } | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &QiMMQi_ee_s.matrix, | |
| Qi_si, 0.0, M_dd); | |
| for (size_t k = 0; k < d_size; k++) { | |
| trB_ee += gsl_matrix_get(M_dd, k, k); | |
| } | |
| // Calculate trD_gg, trD_ge, trD_ee. | |
| trD_gg = 2.0 * trB_gg; | |
| trD_ge = 2.0 * trB_ge; | |
| trD_ee = 2.0 * trB_ee; | |
| // calculate B, C and D | |
| h_gg = -1.0 * gsl_matrix_get(Hessian_inv, v1, v2); | |
| h_ge = -1.0 * gsl_matrix_get(Hessian_inv, v1, v2 + v_size); | |
| h_ee = -1.0 * gsl_matrix_get(Hessian_inv, v1 + v_size, v2 + v_size); | |
| B += h_gg * trB_gg + h_ge * trB_ge + h_ee * trB_ee; | |
| C += h_gg * (trCC_gg + 0.5 * trCg1 * trCg2) + | |
| h_ge * (trCC_ge + 0.5 * trCg1 * trCe2 + 0.5 * trCe1 * trCg2) + | |
| h_ee * (trCC_ee + 0.5 * trCe1 * trCe2); | |
| D += h_gg * (trCC_gg + 0.5 * trD_gg) + h_ge * (trCC_ge + 0.5 * trD_ge) + | |
| h_ee * (trCC_ee + 0.5 * trD_ee); | |
| if (v1 != v2) { | |
| B += h_gg * trB_gg + h_ge * trB_ge + h_ee * trB_ee; | |
| C += h_gg * (trCC_gg + 0.5 * trCg1 * trCg2) + | |
| h_ge * (trCC_ge + 0.5 * trCg1 * trCe2 + 0.5 * trCe1 * trCg2) + | |
| h_ee * (trCC_ee + 0.5 * trCe1 * trCe2); | |
| D += h_gg * (trCC_gg + 0.5 * trD_gg) + h_ge * (trCC_ge + 0.5 * trD_ge) + | |
| h_ee * (trCC_ee + 0.5 * trD_ee); | |
| } | |
| } | |
| } | |
| // Calculate a, b, c from B C D. | |
| crt_a = 2.0 * D - C; | |
| crt_b = 2.0 * B; | |
| crt_c = C; | |
| // Free matrix memory. | |
| gsl_matrix_free(QiMQi_g1); | |
| gsl_matrix_free(QiMQi_e1); | |
| gsl_matrix_free(QiMQi_g2); | |
| gsl_matrix_free(QiMQi_e2); | |
| gsl_matrix_free(QiMQisQisi_g1); | |
| gsl_matrix_free(QiMQisQisi_e1); | |
| gsl_matrix_free(QiMQisQisi_g2); | |
| gsl_matrix_free(QiMQisQisi_e2); | |
| gsl_matrix_free(QiMQiMQi_gg); | |
| gsl_matrix_free(QiMQiMQi_ge); | |
| gsl_matrix_free(QiMQiMQi_ee); | |
| gsl_matrix_free(QiMMQi_gg); | |
| gsl_matrix_free(QiMMQi_ge); | |
| gsl_matrix_free(QiMMQi_ee); | |
| gsl_matrix_free(Qi_si); | |
| gsl_matrix_free(M_dd); | |
| gsl_matrix_free(M_dcdc); | |
| return; | |
| } | |
| // Calculate first-order and second-order derivatives. | |
| void CalcDev(const char func_name, const gsl_vector *eval, const gsl_matrix *Qi, | |
| const gsl_matrix *Hi, const gsl_matrix *xHi, const gsl_matrix *Hiy, | |
| const gsl_vector *QixHiy, gsl_vector *gradient, | |
| gsl_matrix *Hessian_inv, double &crt_a, double &crt_b, | |
| double &crt_c) { | |
| if (func_name != 'R' && func_name != 'L' && func_name != 'r' && | |
| func_name != 'l') { | |
| cout << "func_name only takes 'R' or 'L': 'R' for " | |
| << "log-restricted likelihood, 'L' for log-likelihood." << endl; | |
| return; | |
| } | |
| size_t dc_size = Qi->size1, d_size = Hi->size1; | |
| size_t c_size = dc_size / d_size; | |
| size_t v_size = d_size * (d_size + 1) / 2; | |
| size_t v1, v2; | |
| double dev1_g, dev1_e, dev2_gg, dev2_ee, dev2_ge; | |
| gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2); | |
| gsl_matrix *xHiDHiy_all_g = gsl_matrix_alloc(dc_size, v_size); | |
| gsl_matrix *xHiDHiy_all_e = gsl_matrix_alloc(dc_size, v_size); | |
| gsl_matrix *xHiDHix_all_g = gsl_matrix_alloc(dc_size, v_size * dc_size); | |
| gsl_matrix *xHiDHix_all_e = gsl_matrix_alloc(dc_size, v_size * dc_size); | |
| gsl_matrix *xHiDHixQixHiy_all_g = gsl_matrix_alloc(dc_size, v_size); | |
| gsl_matrix *xHiDHixQixHiy_all_e = gsl_matrix_alloc(dc_size, v_size); | |
| gsl_matrix *QixHiDHiy_all_g = gsl_matrix_alloc(dc_size, v_size); | |
| gsl_matrix *QixHiDHiy_all_e = gsl_matrix_alloc(dc_size, v_size); | |
| gsl_matrix *QixHiDHix_all_g = gsl_matrix_alloc(dc_size, v_size * dc_size); | |
| gsl_matrix *QixHiDHix_all_e = gsl_matrix_alloc(dc_size, v_size * dc_size); | |
| gsl_matrix *QixHiDHixQixHiy_all_g = gsl_matrix_alloc(dc_size, v_size); | |
| gsl_matrix *QixHiDHixQixHiy_all_e = gsl_matrix_alloc(dc_size, v_size); | |
| gsl_matrix *xHiDHiDHiy_all_gg = gsl_matrix_alloc(dc_size, v_size * v_size); | |
| gsl_matrix *xHiDHiDHiy_all_ee = gsl_matrix_alloc(dc_size, v_size * v_size); | |
| gsl_matrix *xHiDHiDHiy_all_ge = gsl_matrix_alloc(dc_size, v_size * v_size); | |
| gsl_matrix *xHiDHiDHix_all_gg = | |
| gsl_matrix_alloc(dc_size, v_size * v_size * dc_size); | |
| gsl_matrix *xHiDHiDHix_all_ee = | |
| gsl_matrix_alloc(dc_size, v_size * v_size * dc_size); | |
| gsl_matrix *xHiDHiDHix_all_ge = | |
| gsl_matrix_alloc(dc_size, v_size * v_size * dc_size); | |
| // Calculate xHiDHiy_all, xHiDHix_all and xHiDHixQixHiy_all. | |
| Calc_xHiDHiy_all(eval, xHi, Hiy, xHiDHiy_all_g, xHiDHiy_all_e); | |
| Calc_xHiDHix_all(eval, xHi, xHiDHix_all_g, xHiDHix_all_e); | |
| Calc_xHiDHixQixHiy_all(xHiDHix_all_g, xHiDHix_all_e, QixHiy, | |
| xHiDHixQixHiy_all_g, xHiDHixQixHiy_all_e); | |
| Calc_xHiDHiDHiy_all(v_size, eval, Hi, xHi, Hiy, xHiDHiDHiy_all_gg, | |
| xHiDHiDHiy_all_ee, xHiDHiDHiy_all_ge); | |
| Calc_xHiDHiDHix_all(v_size, eval, Hi, xHi, xHiDHiDHix_all_gg, | |
| xHiDHiDHix_all_ee, xHiDHiDHix_all_ge); | |
| // Calculate QixHiDHiy_all, QixHiDHix_all and QixHiDHixQixHiy_all. | |
| Calc_QiVec_all(Qi, xHiDHiy_all_g, xHiDHiy_all_e, QixHiDHiy_all_g, | |
| QixHiDHiy_all_e); | |
| Calc_QiVec_all(Qi, xHiDHixQixHiy_all_g, xHiDHixQixHiy_all_e, | |
| QixHiDHixQixHiy_all_g, QixHiDHixQixHiy_all_e); | |
| Calc_QiMat_all(Qi, xHiDHix_all_g, xHiDHix_all_e, QixHiDHix_all_g, | |
| QixHiDHix_all_e); | |
| double tHiD_g, tHiD_e, tPD_g, tPD_e, tHiDHiD_gg, tHiDHiD_ee; | |
| double tHiDHiD_ge, tPDPD_gg, tPDPD_ee, tPDPD_ge; | |
| double yPDPy_g, yPDPy_e, yPDPDPy_gg, yPDPDPy_ee, yPDPDPy_ge; | |
| // Calculate gradient and Hessian for Vg. | |
| for (size_t i1 = 0; i1 < d_size; i1++) { | |
| for (size_t j1 = 0; j1 < d_size; j1++) { | |
| if (j1 < i1) { | |
| continue; | |
| } | |
| v1 = GetIndex(i1, j1, d_size); | |
| Calc_yPDPy(eval, Hiy, QixHiy, xHiDHiy_all_g, xHiDHiy_all_e, | |
| xHiDHixQixHiy_all_g, xHiDHixQixHiy_all_e, i1, j1, yPDPy_g, | |
| yPDPy_e); | |
| if (func_name == 'R' || func_name == 'r') { | |
| Calc_tracePD(eval, Qi, Hi, xHiDHix_all_g, xHiDHix_all_e, i1, j1, tPD_g, | |
| tPD_e); | |
| dev1_g = -0.5 * tPD_g + 0.5 * yPDPy_g; | |
| dev1_e = -0.5 * tPD_e + 0.5 * yPDPy_e; | |
| } else { | |
| Calc_traceHiD(eval, Hi, i1, j1, tHiD_g, tHiD_e); | |
| dev1_g = -0.5 * tHiD_g + 0.5 * yPDPy_g; | |
| dev1_e = -0.5 * tHiD_e + 0.5 * yPDPy_e; | |
| } | |
| gsl_vector_set(gradient, v1, dev1_g); | |
| gsl_vector_set(gradient, v1 + v_size, dev1_e); | |
| for (size_t i2 = 0; i2 < d_size; i2++) { | |
| for (size_t j2 = 0; j2 < d_size; j2++) { | |
| if (j2 < i2) { | |
| continue; | |
| } | |
| v2 = GetIndex(i2, j2, d_size); | |
| if (v2 < v1) { | |
| continue; | |
| } | |
| Calc_yPDPDPy(eval, Hi, xHi, Hiy, QixHiy, xHiDHiy_all_g, xHiDHiy_all_e, | |
| QixHiDHiy_all_g, QixHiDHiy_all_e, xHiDHixQixHiy_all_g, | |
| xHiDHixQixHiy_all_e, QixHiDHixQixHiy_all_g, | |
| QixHiDHixQixHiy_all_e, xHiDHiDHiy_all_gg, | |
| xHiDHiDHiy_all_ee, xHiDHiDHiy_all_ge, xHiDHiDHix_all_gg, | |
| xHiDHiDHix_all_ee, xHiDHiDHix_all_ge, i1, j1, i2, j2, | |
| yPDPDPy_gg, yPDPDPy_ee, yPDPDPy_ge); | |
| // AI for REML. | |
| if (func_name == 'R' || func_name == 'r') { | |
| Calc_tracePDPD(eval, Qi, Hi, xHi, QixHiDHix_all_g, QixHiDHix_all_e, | |
| xHiDHiDHix_all_gg, xHiDHiDHix_all_ee, | |
| xHiDHiDHix_all_ge, i1, j1, i2, j2, tPDPD_gg, | |
| tPDPD_ee, tPDPD_ge); | |
| dev2_gg = 0.5 * tPDPD_gg - yPDPDPy_gg; | |
| dev2_ee = 0.5 * tPDPD_ee - yPDPDPy_ee; | |
| dev2_ge = 0.5 * tPDPD_ge - yPDPDPy_ge; | |
| } else { | |
| Calc_traceHiDHiD(eval, Hi, i1, j1, i2, j2, tHiDHiD_gg, tHiDHiD_ee, | |
| tHiDHiD_ge); | |
| dev2_gg = 0.5 * tHiDHiD_gg - yPDPDPy_gg; | |
| dev2_ee = 0.5 * tHiDHiD_ee - yPDPDPy_ee; | |
| dev2_ge = 0.5 * tHiDHiD_ge - yPDPDPy_ge; | |
| } | |
| // Set up Hessian. | |
| gsl_matrix_set(Hessian, v1, v2, dev2_gg); | |
| gsl_matrix_set(Hessian, v1 + v_size, v2 + v_size, dev2_ee); | |
| gsl_matrix_set(Hessian, v1, v2 + v_size, dev2_ge); | |
| gsl_matrix_set(Hessian, v2 + v_size, v1, dev2_ge); | |
| if (v1 != v2) { | |
| gsl_matrix_set(Hessian, v2, v1, dev2_gg); | |
| gsl_matrix_set(Hessian, v2 + v_size, v1 + v_size, dev2_ee); | |
| gsl_matrix_set(Hessian, v2, v1 + v_size, dev2_ge); | |
| gsl_matrix_set(Hessian, v1 + v_size, v2, dev2_ge); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| // Invert Hessian. | |
| int sig; | |
| gsl_permutation *pmt = gsl_permutation_alloc(v_size * 2); | |
| LUDecomp(Hessian, pmt, &sig); | |
| LUInvert(Hessian, pmt, Hessian_inv); | |
| gsl_permutation_free(pmt); | |
| gsl_matrix_free(Hessian); | |
| // Calculate Edgeworth correction factors after inverting | |
| // Hessian. | |
| if (c_size > 1) { | |
| CalcCRT(Hessian_inv, Qi, QixHiDHix_all_g, QixHiDHix_all_e, | |
| xHiDHiDHix_all_gg, xHiDHiDHix_all_ee, xHiDHiDHix_all_ge, d_size, | |
| crt_a, crt_b, crt_c); | |
| } else { | |
| crt_a = 0.0; | |
| crt_b = 0.0; | |
| crt_c = 0.0; | |
| } | |
| gsl_matrix_free(xHiDHiy_all_g); | |
| gsl_matrix_free(xHiDHiy_all_e); | |
| gsl_matrix_free(xHiDHix_all_g); | |
| gsl_matrix_free(xHiDHix_all_e); | |
| gsl_matrix_free(xHiDHixQixHiy_all_g); | |
| gsl_matrix_free(xHiDHixQixHiy_all_e); | |
| gsl_matrix_free(QixHiDHiy_all_g); | |
| gsl_matrix_free(QixHiDHiy_all_e); | |
| gsl_matrix_free(QixHiDHix_all_g); | |
| gsl_matrix_free(QixHiDHix_all_e); | |
| gsl_matrix_free(QixHiDHixQixHiy_all_g); | |
| gsl_matrix_free(QixHiDHixQixHiy_all_e); | |
| gsl_matrix_free(xHiDHiDHiy_all_gg); | |
| gsl_matrix_free(xHiDHiDHiy_all_ee); | |
| gsl_matrix_free(xHiDHiDHiy_all_ge); | |
| gsl_matrix_free(xHiDHiDHix_all_gg); | |
| gsl_matrix_free(xHiDHiDHix_all_ee); | |
| gsl_matrix_free(xHiDHiDHix_all_ge); | |
| return; | |
| } | |
| // Update Vg, Ve. | |
| void UpdateVgVe(const gsl_matrix *Hessian_inv, const gsl_vector *gradient, | |
| const double step_scale, gsl_matrix *V_g, gsl_matrix *V_e) { | |
| size_t v_size = gradient->size / 2, d_size = V_g->size1; | |
| size_t v; | |
| gsl_vector *vec_v = gsl_vector_alloc(v_size * 2); | |
| double d; | |
| // Vectorize Vg and Ve. | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j < d_size; j++) { | |
| if (j < i) { | |
| continue; | |
| } | |
| v = GetIndex(i, j, d_size); | |
| d = gsl_matrix_get(V_g, i, j); | |
| gsl_vector_set(vec_v, v, d); | |
| d = gsl_matrix_get(V_e, i, j); | |
| gsl_vector_set(vec_v, v + v_size, d); | |
| } | |
| } | |
| gsl_blas_dgemv(CblasNoTrans, -1.0 * step_scale, Hessian_inv, gradient, 1.0, | |
| vec_v); | |
| // Save Vg and Ve. | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j < d_size; j++) { | |
| if (j < i) { | |
| continue; | |
| } | |
| v = GetIndex(i, j, d_size); | |
| d = gsl_vector_get(vec_v, v); | |
| gsl_matrix_set(V_g, i, j, d); | |
| gsl_matrix_set(V_g, j, i, d); | |
| d = gsl_vector_get(vec_v, v + v_size); | |
| gsl_matrix_set(V_e, i, j, d); | |
| gsl_matrix_set(V_e, j, i, d); | |
| } | |
| } | |
| gsl_vector_free(vec_v); | |
| return; | |
| } | |
| double MphNR(const char func_name, const size_t max_iter, const double max_prec, | |
| const gsl_vector *eval, const gsl_matrix *X, const gsl_matrix *Y, | |
| gsl_matrix *Hi_all, gsl_matrix *xHi_all, gsl_matrix *Hiy_all, | |
| gsl_matrix *V_g, gsl_matrix *V_e, gsl_matrix *Hessian_inv, | |
| double &crt_a, double &crt_b, double &crt_c) { | |
| if (func_name != 'R' && func_name != 'L' && func_name != 'r' && | |
| func_name != 'l') { | |
| cout << "func_name only takes 'R' or 'L': 'R' for log-restricted " | |
| << "likelihood, 'L' for log-likelihood." << endl; | |
| return 0.0; | |
| } | |
| size_t n_size = eval->size, c_size = X->size1, d_size = Y->size1; | |
| size_t dc_size = d_size * c_size; | |
| size_t v_size = d_size * (d_size + 1) / 2; | |
| double logdet_H, logdet_Q, yPy, logl_const; | |
| double logl_old = 0.0, logl_new = 0.0, step_scale; | |
| int sig; | |
| size_t step_iter, flag_pd; | |
| gsl_matrix *Vg_save = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *Ve_save = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *V_temp = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *U_temp = gsl_matrix_alloc(d_size, d_size); | |
| gsl_vector *D_temp = gsl_vector_alloc(d_size); | |
| gsl_vector *xHiy = gsl_vector_alloc(dc_size); | |
| gsl_vector *QixHiy = gsl_vector_alloc(dc_size); | |
| gsl_matrix *Qi = gsl_matrix_alloc(dc_size, dc_size); | |
| gsl_matrix *XXt = gsl_matrix_alloc(c_size, c_size); | |
| gsl_vector *gradient = gsl_vector_alloc(v_size * 2); | |
| // Calculate |XXt| and (XXt)^{-1}. | |
| gsl_blas_dsyrk(CblasUpper, CblasNoTrans, 1.0, X, 0.0, XXt); | |
| for (size_t i = 0; i < c_size; ++i) { | |
| for (size_t j = 0; j < i; ++j) { | |
| gsl_matrix_set(XXt, i, j, gsl_matrix_get(XXt, j, i)); | |
| } | |
| } | |
| gsl_permutation *pmt = gsl_permutation_alloc(c_size); | |
| LUDecomp(XXt, pmt, &sig); | |
| gsl_permutation_free(pmt); | |
| // Calculate the constant for logl. | |
| if (func_name == 'R' || func_name == 'r') { | |
| logl_const = | |
| -0.5 * (double)(n_size - c_size) * (double)d_size * safe_log(2.0 * M_PI) + | |
| 0.5 * (double)d_size * LULndet(XXt); | |
| } else { | |
| logl_const = -0.5 * (double)n_size * (double)d_size * safe_log(2.0 * M_PI); | |
| } | |
| // Optimization iterations. | |
| for (size_t t = 0; t < max_iter; t++) { | |
| gsl_matrix_memcpy(Vg_save, V_g); | |
| gsl_matrix_memcpy(Ve_save, V_e); | |
| step_scale = 1.0; | |
| step_iter = 0; | |
| do { | |
| gsl_matrix_memcpy(V_g, Vg_save); | |
| gsl_matrix_memcpy(V_e, Ve_save); | |
| // Update Vg, Ve, and invert Hessian. | |
| if (t != 0) { | |
| UpdateVgVe(Hessian_inv, gradient, step_scale, V_g, V_e); | |
| } | |
| // Check if both Vg and Ve are positive definite. | |
| flag_pd = 1; | |
| gsl_matrix_memcpy(V_temp, V_e); | |
| EigenDecomp(V_temp, U_temp, D_temp, 0); | |
| for (size_t i = 0; i < d_size; i++) { | |
| if (gsl_vector_get(D_temp, i) <= 0) { | |
| flag_pd = 0; | |
| } | |
| } | |
| gsl_matrix_memcpy(V_temp, V_g); | |
| EigenDecomp(V_temp, U_temp, D_temp, 0); | |
| for (size_t i = 0; i < d_size; i++) { | |
| if (gsl_vector_get(D_temp, i) <= 0) { | |
| flag_pd = 0; | |
| } | |
| } | |
| // If flag_pd==1, continue to calculate quantities | |
| // and logl. | |
| if (flag_pd == 1) { | |
| CalcHiQi(eval, X, V_g, V_e, Hi_all, Qi, logdet_H, logdet_Q); | |
| Calc_Hiy_all(Y, Hi_all, Hiy_all); | |
| Calc_xHi_all(X, Hi_all, xHi_all); | |
| // Calculate QixHiy and yPy. | |
| Calc_xHiy(Y, xHi_all, xHiy); | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, xHiy, 0.0, QixHiy); | |
| gsl_blas_ddot(QixHiy, xHiy, &yPy); | |
| yPy = Calc_yHiy(Y, Hiy_all) - yPy; | |
| // Calculate log likelihood/restricted likelihood value. | |
| if (func_name == 'R' || func_name == 'r') { | |
| logl_new = logl_const - 0.5 * logdet_H - 0.5 * logdet_Q - 0.5 * yPy; | |
| } else { | |
| logl_new = logl_const - 0.5 * logdet_H - 0.5 * yPy; | |
| } | |
| } | |
| step_scale /= 2.0; | |
| step_iter++; | |
| } while ( | |
| (flag_pd == 0 || logl_new < logl_old || logl_new - logl_old > 10) && | |
| step_iter < 10 && t != 0); | |
| // Terminate if change is small. | |
| if (t != 0) { | |
| if (logl_new < logl_old || flag_pd == 0) { | |
| gsl_matrix_memcpy(V_g, Vg_save); | |
| gsl_matrix_memcpy(V_e, Ve_save); | |
| break; | |
| } | |
| if (logl_new - logl_old < max_prec) { | |
| break; | |
| } | |
| } | |
| logl_old = logl_new; | |
| CalcDev(func_name, eval, Qi, Hi_all, xHi_all, Hiy_all, QixHiy, gradient, | |
| Hessian_inv, crt_a, crt_b, crt_c); | |
| } | |
| // Mutiply Hessian_inv with -1.0. | |
| // Now Hessian_inv is the variance matrix. | |
| gsl_matrix_scale(Hessian_inv, -1.0); | |
| gsl_matrix_free(Vg_save); | |
| gsl_matrix_free(Ve_save); | |
| gsl_matrix_free(V_temp); | |
| gsl_matrix_free(U_temp); | |
| gsl_vector_free(D_temp); | |
| gsl_vector_free(xHiy); | |
| gsl_vector_free(QixHiy); | |
| gsl_matrix_free(Qi); | |
| gsl_matrix_free(XXt); | |
| gsl_vector_free(gradient); | |
| return logl_new; | |
| } | |
| // Initialize Vg, Ve and B. | |
| void MphInitial(const size_t em_iter, const double em_prec, | |
| const size_t nr_iter, const double nr_prec, | |
| const gsl_vector *eval, const gsl_matrix *X, | |
| const gsl_matrix *Y, const double l_min, const double l_max, | |
| const size_t n_region, gsl_matrix *V_g, gsl_matrix *V_e, | |
| gsl_matrix *B) { | |
| debug_msg("MphInitial"); | |
| gsl_matrix_set_zero(V_g); | |
| gsl_matrix_set_zero(V_e); | |
| gsl_matrix_set_zero(B); | |
| size_t n_size = eval->size, c_size = X->size1, d_size = Y->size1; | |
| double a, b, c; | |
| double lambda, logl, vg, ve; | |
| // Initialize the diagonal elements of Vg and Ve using univariate | |
| // LMM and REML estimates. | |
| gsl_matrix *Xt = gsl_matrix_alloc(n_size, c_size); | |
| gsl_vector *beta_temp = gsl_vector_alloc(c_size); | |
| gsl_vector *se_beta_temp = gsl_vector_alloc(c_size); | |
| gsl_matrix_transpose_memcpy(Xt, X); | |
| for (size_t i = 0; i < d_size; i++) { | |
| gsl_vector_const_view Y_row = gsl_matrix_const_row(Y, i); | |
| CalcLambda('R', eval, Xt, &Y_row.vector, l_min, l_max, n_region, lambda, | |
| logl); | |
| CalcLmmVgVeBeta(eval, Xt, &Y_row.vector, lambda, vg, ve, beta_temp, | |
| se_beta_temp); | |
| gsl_matrix_set(V_g, i, i, vg); | |
| gsl_matrix_set(V_e, i, i, ve); | |
| } | |
| gsl_matrix_free(Xt); | |
| gsl_vector_free(beta_temp); | |
| gsl_vector_free(se_beta_temp); | |
| // If number of phenotypes is above four, then obtain the off | |
| // diagonal elements with two trait models. | |
| if (d_size > 4) { | |
| // First obtain good initial values. | |
| // Large matrices for EM. | |
| gsl_matrix *U_hat = gsl_matrix_alloc(2, n_size); | |
| gsl_matrix *E_hat = gsl_matrix_alloc(2, n_size); | |
| gsl_matrix *OmegaU = gsl_matrix_alloc(2, n_size); | |
| gsl_matrix *OmegaE = gsl_matrix_alloc(2, n_size); | |
| gsl_matrix *UltVehiY = gsl_matrix_alloc(2, n_size); | |
| gsl_matrix *UltVehiBX = gsl_matrix_alloc(2, n_size); | |
| gsl_matrix *UltVehiU = gsl_matrix_alloc(2, n_size); | |
| gsl_matrix *UltVehiE = gsl_matrix_alloc(2, n_size); | |
| // Large matrices for NR. Each dxd block is H_k^{-1}. | |
| gsl_matrix *Hi_all = gsl_matrix_alloc(2, 2 * n_size); | |
| // Each column is H_k^{-1}y_k. | |
| gsl_matrix *Hiy_all = gsl_matrix_alloc(2, n_size); | |
| // Each dcxdc block is x_k\otimes H_k^{-1}. | |
| gsl_matrix *xHi_all = gsl_matrix_alloc(2 * c_size, 2 * n_size); | |
| gsl_matrix *Hessian = gsl_matrix_alloc(6, 6); | |
| // 2 by n matrix of Y. | |
| gsl_matrix *Y_sub = gsl_matrix_alloc(2, n_size); | |
| gsl_matrix *Vg_sub = gsl_matrix_alloc(2, 2); | |
| gsl_matrix *Ve_sub = gsl_matrix_alloc(2, 2); | |
| gsl_matrix *B_sub = gsl_matrix_alloc(2, c_size); | |
| for (size_t i = 0; i < d_size; i++) { | |
| gsl_vector_view Y_sub1 = gsl_matrix_row(Y_sub, 0); | |
| gsl_vector_const_view Y_1 = gsl_matrix_const_row(Y, i); | |
| gsl_vector_memcpy(&Y_sub1.vector, &Y_1.vector); | |
| for (size_t j = i + 1; j < d_size; j++) { | |
| gsl_vector_view Y_sub2 = gsl_matrix_row(Y_sub, 1); | |
| gsl_vector_const_view Y_2 = gsl_matrix_const_row(Y, j); | |
| gsl_vector_memcpy(&Y_sub2.vector, &Y_2.vector); | |
| gsl_matrix_set_zero(Vg_sub); | |
| gsl_matrix_set_zero(Ve_sub); | |
| gsl_matrix_set(Vg_sub, 0, 0, gsl_matrix_get(V_g, i, i)); | |
| gsl_matrix_set(Ve_sub, 0, 0, gsl_matrix_get(V_e, i, i)); | |
| gsl_matrix_set(Vg_sub, 1, 1, gsl_matrix_get(V_g, j, j)); | |
| gsl_matrix_set(Ve_sub, 1, 1, gsl_matrix_get(V_e, j, j)); | |
| logl = MphEM('R', em_iter, em_prec, eval, X, Y_sub, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, | |
| Vg_sub, Ve_sub, B_sub); | |
| logl = MphNR('R', nr_iter, nr_prec, eval, X, Y_sub, Hi_all, xHi_all, | |
| Hiy_all, Vg_sub, Ve_sub, Hessian, a, b, c); | |
| gsl_matrix_set(V_g, i, j, gsl_matrix_get(Vg_sub, 0, 1)); | |
| gsl_matrix_set(V_g, j, i, gsl_matrix_get(Vg_sub, 0, 1)); | |
| gsl_matrix_set(V_e, i, j, ve = gsl_matrix_get(Ve_sub, 0, 1)); | |
| gsl_matrix_set(V_e, j, i, ve = gsl_matrix_get(Ve_sub, 0, 1)); | |
| } | |
| } | |
| // Free matrices. | |
| gsl_matrix_free(U_hat); | |
| gsl_matrix_free(E_hat); | |
| gsl_matrix_free(OmegaU); | |
| gsl_matrix_free(OmegaE); | |
| gsl_matrix_free(UltVehiY); | |
| gsl_matrix_free(UltVehiBX); | |
| gsl_matrix_free(UltVehiU); | |
| gsl_matrix_free(UltVehiE); | |
| gsl_matrix_free(Hi_all); | |
| gsl_matrix_free(Hiy_all); | |
| gsl_matrix_free(xHi_all); | |
| gsl_matrix_free(Hessian); | |
| gsl_matrix_free(Y_sub); | |
| gsl_matrix_free(Vg_sub); | |
| gsl_matrix_free(Ve_sub); | |
| gsl_matrix_free(B_sub); | |
| } | |
| // Calculate B hat using GSL estimate. | |
| gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size); | |
| gsl_vector *D_l = gsl_vector_alloc(d_size); | |
| gsl_matrix *UltVeh = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *UltVehi = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *Qi = gsl_matrix_alloc(d_size * c_size, d_size * c_size); | |
| gsl_vector *XHiy = gsl_vector_alloc(d_size * c_size); | |
| gsl_vector *beta = gsl_vector_alloc(d_size * c_size); | |
| gsl_vector_set_zero(XHiy); | |
| double dl, d, delta, dx, dy; | |
| // Eigen decomposition and calculate log|Ve|. | |
| // double logdet_Ve = EigenProc(V_g, V_e, D_l, UltVeh, UltVehi); | |
| EigenProc(V_g, V_e, D_l, UltVeh, UltVehi); | |
| // Calculate Qi and log|Q|. | |
| // double logdet_Q = CalcQi(eval, D_l, X, Qi); | |
| CalcQi(eval, D_l, X, Qi); | |
| // Calculate UltVehiY. | |
| gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, UltVehi, Y, 0.0, UltVehiY); | |
| // calculate XHiy | |
| for (size_t i = 0; i < d_size; i++) { | |
| dl = gsl_vector_get(D_l, i); | |
| for (size_t j = 0; j < c_size; j++) { | |
| d = 0.0; | |
| for (size_t k = 0; k < n_size; k++) { | |
| delta = gsl_vector_get(eval, k); | |
| dx = gsl_matrix_get(X, j, k); | |
| dy = gsl_matrix_get(UltVehiY, i, k); | |
| d += dy * dx / (delta * dl + 1.0); | |
| } | |
| gsl_vector_set(XHiy, j * d_size + i, d); | |
| } | |
| } | |
| gsl_blas_dgemv(CblasNoTrans, 1.0, Qi, XHiy, 0.0, beta); | |
| // Multiply beta by UltVeh and save to B. | |
| for (size_t i = 0; i < c_size; i++) { | |
| gsl_vector_view B_col = gsl_matrix_column(B, i); | |
| gsl_vector_view beta_sub = gsl_vector_subvector(beta, i * d_size, d_size); | |
| gsl_blas_dgemv(CblasTrans, 1.0, UltVeh, &beta_sub.vector, 0.0, | |
| &B_col.vector); | |
| } | |
| // Free memory. | |
| gsl_matrix_free(UltVehiY); | |
| gsl_vector_free(D_l); | |
| gsl_matrix_free(UltVeh); | |
| gsl_matrix_free(UltVehi); | |
| gsl_matrix_free(Qi); | |
| gsl_vector_free(XHiy); | |
| gsl_vector_free(beta); | |
| return; | |
| } | |
| // p-value correction | |
| // mode=1 Wald; mode=2 LRT; mode=3 SCORE; | |
| double PCRT(const size_t mode, const size_t d_size, const double p_value, | |
| const double crt_a, const double crt_b, const double crt_c) { | |
| double p_crt = 0.0, chisq_crt = 0.0, q = (double)d_size; | |
| double chisq = gsl_cdf_chisq_Qinv(p_value, (double)d_size); | |
| if (mode == 1) { | |
| double a = crt_c / (2.0 * q * (q + 2.0)); | |
| double b = 1.0 + (crt_a + crt_b) / (2.0 * q); | |
| chisq_crt = (-1.0 * b + safe_sqrt(b * b + 4.0 * a * chisq)) / (2.0 * a); | |
| } else if (mode == 2) { | |
| chisq_crt = chisq / (1.0 + crt_a / (2.0 * q)); | |
| } else { | |
| chisq_crt = chisq; | |
| } | |
| p_crt = gsl_cdf_chisq_Q(chisq_crt, (double)d_size); | |
| return p_crt; | |
| } | |
| void MVLMM::AnalyzeBimbam(const gsl_matrix *U, const gsl_vector *eval, | |
| const gsl_matrix *UtW, const gsl_matrix *UtY) { | |
| debug_msg("entering"); | |
| igzstream infile(file_geno.c_str(), igzstream::in); | |
| if (!infile) { | |
| cout << "error reading genotype file:" << file_geno << endl; | |
| return; | |
| } | |
| clock_t time_start = clock(); | |
| time_UtX = 0; | |
| time_opt = 0; | |
| string line; | |
| char *ch_ptr; | |
| double logl_H0 = 0.0, logl_H1 = 0.0, p_wald = 0, p_lrt = 0, p_score = 0; | |
| double crt_a, crt_b, crt_c; | |
| int n_miss, c_phen; | |
| double geno, x_mean; | |
| size_t c = 0; | |
| size_t n_size = UtY->size1, d_size = UtY->size2, c_size = UtW->size2; | |
| size_t dc_size = d_size * (c_size + 1), v_size = d_size * (d_size + 1) / 2; | |
| // Create a large matrix. | |
| size_t msize = LMM_BATCH_SIZE; | |
| gsl_matrix *Xlarge = gsl_matrix_alloc(U->size1, msize); | |
| gsl_matrix *UtXlarge = gsl_matrix_alloc(U->size1, msize); | |
| gsl_matrix_set_zero(Xlarge); | |
| // Large matrices for EM. | |
| gsl_matrix *U_hat = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *E_hat = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *OmegaU = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *OmegaE = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiBX = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiU = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiE = gsl_matrix_alloc(d_size, n_size); | |
| // Large matrices for NR. | |
| // Each dxd block is H_k^{-1}. | |
| gsl_matrix *Hi_all = gsl_matrix_alloc(d_size, d_size * n_size); | |
| // Each column is H_k^{-1}y_k. | |
| gsl_matrix *Hiy_all = gsl_matrix_alloc(d_size, n_size); | |
| // Each dcxdc block is x_k \otimes H_k^{-1}. | |
| gsl_matrix *xHi_all = gsl_matrix_alloc(dc_size, d_size * n_size); | |
| gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2); | |
| gsl_vector *x = gsl_vector_alloc(n_size); | |
| gsl_vector *x_miss = gsl_vector_alloc(n_size); | |
| gsl_matrix *Y = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *X = gsl_matrix_alloc(c_size + 1, n_size); | |
| gsl_matrix *V_g = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *V_e = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *B = gsl_matrix_alloc(d_size, c_size + 1); | |
| gsl_vector *beta = gsl_vector_alloc(d_size); | |
| gsl_matrix *Vbeta = gsl_matrix_alloc(d_size, d_size); | |
| // Null estimates for initial values. | |
| gsl_matrix *V_g_null = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *V_e_null = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *B_null = gsl_matrix_alloc(d_size, c_size + 1); | |
| gsl_matrix *se_B_null = gsl_matrix_alloc(d_size, c_size); | |
| gsl_matrix_view X_sub = gsl_matrix_submatrix(X, 0, 0, c_size, n_size); | |
| gsl_matrix_view B_sub = gsl_matrix_submatrix(B, 0, 0, d_size, c_size); | |
| gsl_matrix_view xHi_all_sub = | |
| gsl_matrix_submatrix(xHi_all, 0, 0, d_size * c_size, d_size * n_size); | |
| gsl_matrix_transpose_memcpy(Y, UtY); | |
| gsl_matrix_transpose_memcpy(&X_sub.matrix, UtW); | |
| gsl_vector_view X_row = gsl_matrix_row(X, c_size); | |
| gsl_vector_set_zero(&X_row.vector); | |
| gsl_vector_view B_col = gsl_matrix_column(B, c_size); | |
| gsl_vector_set_zero(&B_col.vector); | |
| MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub.matrix, Y, l_min, | |
| l_max, n_region, V_g, V_e, &B_sub.matrix); | |
| logl_H0 = MphEM('R', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g, | |
| V_e, &B_sub.matrix); | |
| logl_H0 = MphNR('R', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all, | |
| &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, | |
| crt_c); | |
| MphCalcBeta(eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY, &B_sub.matrix, | |
| se_B_null); | |
| c = 0; | |
| Vg_remle_null.clear(); | |
| Ve_remle_null.clear(); | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| Vg_remle_null.push_back(gsl_matrix_get(V_g, i, j)); | |
| Ve_remle_null.push_back(gsl_matrix_get(V_e, i, j)); | |
| VVg_remle_null.push_back(gsl_matrix_get(Hessian, c, c)); | |
| VVe_remle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size)); | |
| c++; | |
| } | |
| } | |
| beta_remle_null.clear(); | |
| se_beta_remle_null.clear(); | |
| for (size_t i = 0; i < se_B_null->size1; i++) { | |
| for (size_t j = 0; j < se_B_null->size2; j++) { | |
| beta_remle_null.push_back(gsl_matrix_get(B, i, j)); | |
| se_beta_remle_null.push_back(gsl_matrix_get(se_B_null, i, j)); | |
| } | |
| } | |
| logl_remle_H0 = logl_H0; | |
| cout.setf(std::ios_base::fixed, std::ios_base::floatfield); | |
| cout.precision(4); | |
| cout << "REMLE estimate for Vg in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_g, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Vg): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c, c)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "REMLE estimate for Ve in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_e, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Ve): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "REMLE likelihood = " << logl_H0 << endl; | |
| logl_H0 = MphEM('L', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g, | |
| V_e, &B_sub.matrix); | |
| logl_H0 = MphNR('L', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all, | |
| &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, | |
| crt_c); | |
| MphCalcBeta(eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY, &B_sub.matrix, | |
| se_B_null); | |
| c = 0; | |
| Vg_mle_null.clear(); | |
| Ve_mle_null.clear(); | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| Vg_mle_null.push_back(gsl_matrix_get(V_g, i, j)); | |
| Ve_mle_null.push_back(gsl_matrix_get(V_e, i, j)); | |
| VVg_mle_null.push_back(gsl_matrix_get(Hessian, c, c)); | |
| VVe_mle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size)); | |
| c++; | |
| } | |
| } | |
| beta_mle_null.clear(); | |
| se_beta_mle_null.clear(); | |
| for (size_t i = 0; i < se_B_null->size1; i++) { | |
| for (size_t j = 0; j < se_B_null->size2; j++) { | |
| beta_mle_null.push_back(gsl_matrix_get(B, i, j)); | |
| se_beta_mle_null.push_back(gsl_matrix_get(se_B_null, i, j)); | |
| } | |
| } | |
| logl_mle_H0 = logl_H0; | |
| cout << "MLE estimate for Vg in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_g, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Vg): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c, c)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "MLE estimate for Ve in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_e, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Ve): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "MLE likelihood = " << logl_H0 << endl; | |
| vector<double> v_beta, v_Vg, v_Ve, v_Vbeta; | |
| for (size_t i = 0; i < d_size; i++) { | |
| v_beta.push_back(0.0); | |
| } | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| v_Vg.push_back(0.0); | |
| v_Ve.push_back(0.0); | |
| v_Vbeta.push_back(0.0); | |
| } | |
| } | |
| gsl_matrix_memcpy(V_g_null, V_g); | |
| gsl_matrix_memcpy(V_e_null, V_e); | |
| gsl_matrix_memcpy(B_null, B); | |
| // Start reading genotypes and analyze. | |
| size_t csnp = 0, t_last = 0; | |
| for (size_t t = 0; t < indicator_snp.size(); ++t) { | |
| if (indicator_snp[t] == 0) { | |
| continue; | |
| } | |
| t_last++; | |
| } | |
| for (size_t t = 0; t < indicator_snp.size(); ++t) { | |
| safeGetline(infile, line).eof(); | |
| if (t % d_pace == 0 || t == (ns_total - 1)) { | |
| ProgressBar("Reading SNPs", t, ns_total - 1); | |
| } | |
| if (indicator_snp[t] == 0) { | |
| continue; | |
| } | |
| ch_ptr = strtok_safe((char *)line.c_str(), " , \t"); | |
| ch_ptr = strtok_safe(NULL, " , \t"); | |
| ch_ptr = strtok_safe(NULL, " , \t"); | |
| x_mean = 0.0; | |
| c_phen = 0; | |
| n_miss = 0; | |
| gsl_vector_set_zero(x_miss); | |
| for (size_t i = 0; i < ni_total; ++i) { | |
| ch_ptr = strtok_safe(NULL, " , \t"); | |
| if (indicator_idv[i] == 0) { | |
| continue; | |
| } | |
| if (strcmp(ch_ptr, "NA") == 0) { | |
| gsl_vector_set(x_miss, c_phen, 0.0); | |
| n_miss++; | |
| } else { | |
| geno = atof(ch_ptr); | |
| gsl_vector_set(x, c_phen, geno); | |
| gsl_vector_set(x_miss, c_phen, 1.0); | |
| x_mean += geno; | |
| } | |
| c_phen++; | |
| } | |
| x_mean /= (double)(ni_test - n_miss); | |
| for (size_t i = 0; i < ni_test; ++i) { | |
| if (gsl_vector_get(x_miss, i) == 0) { | |
| gsl_vector_set(x, i, x_mean); | |
| } | |
| geno = gsl_vector_get(x, i); | |
| } | |
| gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, csnp % msize); | |
| gsl_vector_memcpy(&Xlarge_col.vector, x); | |
| csnp++; | |
| if (csnp % msize == 0 || csnp == t_last) { | |
| size_t l = 0; | |
| if (csnp % msize == 0) { | |
| l = msize; | |
| } else { | |
| l = csnp % msize; | |
| } | |
| gsl_matrix_view Xlarge_sub = | |
| gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l); | |
| gsl_matrix_view UtXlarge_sub = | |
| gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l); | |
| time_start = clock(); | |
| fast_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0, | |
| &UtXlarge_sub.matrix); | |
| time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0); | |
| gsl_matrix_set_zero(Xlarge); | |
| for (size_t i = 0; i < l; i++) { | |
| gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i); | |
| gsl_vector_memcpy(&X_row.vector, &UtXlarge_col.vector); | |
| // Initial values. | |
| gsl_matrix_memcpy(V_g, V_g_null); | |
| gsl_matrix_memcpy(V_e, V_e_null); | |
| gsl_matrix_memcpy(B, B_null); | |
| time_start = clock(); | |
| // 3 is before 1. | |
| if (a_mode == 3 || a_mode == 4) { | |
| p_score = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g_null, | |
| V_e_null, UltVehiY, beta, Vbeta); | |
| if (p_score < p_nr && crt == 1) { | |
| logl_H1 = MphNR('R', 1, nr_prec * 10, eval, X, Y, Hi_all, xHi_all, | |
| Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c); | |
| p_score = PCRT(3, d_size, p_score, crt_a, crt_b, crt_c); | |
| } | |
| } | |
| if (a_mode == 2 || a_mode == 4) { | |
| logl_H1 = MphEM('L', em_iter / 10, em_prec * 10, eval, X, Y, U_hat, | |
| E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, | |
| UltVehiE, V_g, V_e, B); | |
| // Calculate beta and Vbeta. | |
| p_lrt = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size); | |
| if (p_lrt < p_nr) { | |
| logl_H1 = | |
| MphNR('L', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all, | |
| xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c); | |
| // Calculate beta and Vbeta. | |
| p_lrt = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size); | |
| if (crt == 1) { | |
| p_lrt = PCRT(2, d_size, p_lrt, crt_a, crt_b, crt_c); | |
| } | |
| } | |
| } | |
| if (a_mode == 1 || a_mode == 4) { | |
| logl_H1 = MphEM('R', em_iter / 10, em_prec * 10, eval, X, Y, U_hat, | |
| E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, | |
| UltVehiE, V_g, V_e, B); | |
| p_wald = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| if (p_wald < p_nr) { | |
| logl_H1 = | |
| MphNR('R', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all, | |
| xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c); | |
| p_wald = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| if (crt == 1) { | |
| p_wald = PCRT(1, d_size, p_wald, crt_a, crt_b, crt_c); | |
| } | |
| } | |
| } | |
| time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0); | |
| // Store summary data. | |
| for (size_t i = 0; i < d_size; i++) { | |
| v_beta[i] = gsl_vector_get(beta, i); | |
| } | |
| c = 0; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| v_Vg[c] = gsl_matrix_get(V_g, i, j); | |
| v_Ve[c] = gsl_matrix_get(V_e, i, j); | |
| v_Vbeta[c] = gsl_matrix_get(Vbeta, i, j); | |
| c++; | |
| } | |
| } | |
| MPHSUMSTAT SNPs = {v_beta, p_wald, p_lrt, p_score, v_Vg, v_Ve, v_Vbeta}; | |
| sumStat.push_back(SNPs); | |
| } | |
| } | |
| } | |
| cout << endl; | |
| infile.close(); | |
| infile.clear(); | |
| gsl_matrix_free(U_hat); | |
| gsl_matrix_free(E_hat); | |
| gsl_matrix_free(OmegaU); | |
| gsl_matrix_free(OmegaE); | |
| gsl_matrix_free(UltVehiY); | |
| gsl_matrix_free(UltVehiBX); | |
| gsl_matrix_free(UltVehiU); | |
| gsl_matrix_free(UltVehiE); | |
| gsl_matrix_free(Hi_all); | |
| gsl_matrix_free(Hiy_all); | |
| gsl_matrix_free(xHi_all); | |
| gsl_matrix_free(Hessian); | |
| gsl_vector_free(x); | |
| gsl_vector_free(x_miss); | |
| gsl_matrix_free(Y); | |
| gsl_matrix_free(X); | |
| gsl_matrix_free(V_g); | |
| gsl_matrix_free(V_e); | |
| gsl_matrix_free(B); | |
| gsl_vector_free(beta); | |
| gsl_matrix_free(Vbeta); | |
| gsl_matrix_free(V_g_null); | |
| gsl_matrix_free(V_e_null); | |
| gsl_matrix_free(B_null); | |
| gsl_matrix_free(se_B_null); | |
| gsl_matrix_free(Xlarge); | |
| gsl_matrix_free(UtXlarge); | |
| return; | |
| } | |
| void MVLMM::AnalyzePlink(const gsl_matrix *U, const gsl_vector *eval, | |
| const gsl_matrix *UtW, const gsl_matrix *UtY) { | |
| debug_msg("entering"); | |
| string file_bed = file_bfile + ".bed"; | |
| ifstream infile(file_bed.c_str(), ios::binary); | |
| if (!infile) { | |
| cout << "error reading bed file:" << file_bed << endl; | |
| return; | |
| } | |
| clock_t time_start = clock(); | |
| time_UtX = 0; | |
| time_opt = 0; | |
| char ch[1]; | |
| bitset<8> b; | |
| double logl_H0 = 0.0, logl_H1 = 0.0, p_wald = 0, p_lrt = 0, p_score = 0; | |
| double crt_a, crt_b, crt_c; | |
| int n_bit, n_miss, ci_total, ci_test; | |
| double geno, x_mean; | |
| size_t c = 0; | |
| size_t n_size = UtY->size1, d_size = UtY->size2, c_size = UtW->size2; | |
| size_t dc_size = d_size * (c_size + 1), v_size = d_size * (d_size + 1) / 2; | |
| // Create a large matrix. | |
| size_t msize = LMM_BATCH_SIZE; | |
| gsl_matrix *Xlarge = gsl_matrix_alloc(U->size1, msize); | |
| gsl_matrix *UtXlarge = gsl_matrix_alloc(U->size1, msize); | |
| gsl_matrix_set_zero(Xlarge); | |
| // Large matrices for EM. | |
| gsl_matrix *U_hat = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *E_hat = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *OmegaU = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *OmegaE = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiBX = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiU = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiE = gsl_matrix_alloc(d_size, n_size); | |
| // Large matrices for NR. | |
| // Each dxd block is H_k^{-1}. | |
| gsl_matrix *Hi_all = gsl_matrix_alloc(d_size, d_size * n_size); | |
| // Each column is H_k^{-1}y_k. | |
| gsl_matrix *Hiy_all = gsl_matrix_alloc(d_size, n_size); | |
| // Each dcxdc block is x_k\otimes H_k^{-1}. | |
| gsl_matrix *xHi_all = gsl_matrix_alloc(dc_size, d_size * n_size); | |
| gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2); | |
| gsl_vector *x = gsl_vector_alloc(n_size); | |
| gsl_matrix *Y = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *X = gsl_matrix_alloc(c_size + 1, n_size); | |
| gsl_matrix *V_g = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *V_e = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *B = gsl_matrix_alloc(d_size, c_size + 1); | |
| gsl_vector *beta = gsl_vector_alloc(d_size); | |
| gsl_matrix *Vbeta = gsl_matrix_alloc(d_size, d_size); | |
| // Null estimates for initial values. | |
| gsl_matrix *V_g_null = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *V_e_null = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *B_null = gsl_matrix_alloc(d_size, c_size + 1); | |
| gsl_matrix *se_B_null = gsl_matrix_alloc(d_size, c_size); | |
| gsl_matrix_view X_sub = gsl_matrix_submatrix(X, 0, 0, c_size, n_size); | |
| gsl_matrix_view B_sub = gsl_matrix_submatrix(B, 0, 0, d_size, c_size); | |
| gsl_matrix_view xHi_all_sub = | |
| gsl_matrix_submatrix(xHi_all, 0, 0, d_size * c_size, d_size * n_size); | |
| gsl_matrix_transpose_memcpy(Y, UtY); | |
| gsl_matrix_transpose_memcpy(&X_sub.matrix, UtW); | |
| gsl_vector_view X_row = gsl_matrix_row(X, c_size); | |
| gsl_vector_set_zero(&X_row.vector); | |
| gsl_vector_view B_col = gsl_matrix_column(B, c_size); | |
| gsl_vector_set_zero(&B_col.vector); | |
| MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub.matrix, Y, l_min, | |
| l_max, n_region, V_g, V_e, &B_sub.matrix); | |
| write(eval,"eval4"); | |
| logl_H0 = MphEM('R', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g, | |
| V_e, &B_sub.matrix); | |
| logl_H0 = MphNR('R', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all, | |
| &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, | |
| crt_c); | |
| MphCalcBeta(eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY, &B_sub.matrix, | |
| se_B_null); | |
| c = 0; | |
| Vg_remle_null.clear(); | |
| Ve_remle_null.clear(); | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| Vg_remle_null.push_back(gsl_matrix_get(V_g, i, j)); | |
| Ve_remle_null.push_back(gsl_matrix_get(V_e, i, j)); | |
| VVg_remle_null.push_back(gsl_matrix_get(Hessian, c, c)); | |
| VVe_remle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size)); | |
| c++; | |
| } | |
| } | |
| beta_remle_null.clear(); | |
| se_beta_remle_null.clear(); | |
| for (size_t i = 0; i < se_B_null->size1; i++) { | |
| for (size_t j = 0; j < se_B_null->size2; j++) { | |
| beta_remle_null.push_back(gsl_matrix_get(B, i, j)); | |
| se_beta_remle_null.push_back(gsl_matrix_get(se_B_null, i, j)); | |
| } | |
| } | |
| logl_remle_H0 = logl_H0; | |
| cout.setf(std::ios_base::fixed, std::ios_base::floatfield); | |
| cout.precision(4); | |
| cout << "REMLE estimate for Vg in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_g, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Vg): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c, c)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "REMLE estimate for Ve in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_e, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Ve): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| auto v = gsl_matrix_get(Hessian, c + v_size, c + v_size); | |
| if (is_strict_mode()) | |
| enforce_msg(v >= 0,"se(Ve) is not valid"); | |
| cout << safe_sqrt(v) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "REMLE likelihood = " << logl_H0 << endl; | |
| logl_H0 = MphEM('L', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g, | |
| V_e, &B_sub.matrix); | |
| logl_H0 = MphNR('L', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all, | |
| &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, | |
| crt_c); | |
| MphCalcBeta(eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY, &B_sub.matrix, | |
| se_B_null); | |
| c = 0; | |
| Vg_mle_null.clear(); | |
| Ve_mle_null.clear(); | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| Vg_mle_null.push_back(gsl_matrix_get(V_g, i, j)); | |
| Ve_mle_null.push_back(gsl_matrix_get(V_e, i, j)); | |
| VVg_mle_null.push_back(gsl_matrix_get(Hessian, c, c)); | |
| VVe_mle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size)); | |
| c++; | |
| } | |
| } | |
| beta_mle_null.clear(); | |
| se_beta_mle_null.clear(); | |
| for (size_t i = 0; i < se_B_null->size1; i++) { | |
| for (size_t j = 0; j < se_B_null->size2; j++) { | |
| beta_mle_null.push_back(gsl_matrix_get(B, i, j)); | |
| se_beta_mle_null.push_back(gsl_matrix_get(se_B_null, i, j)); | |
| } | |
| } | |
| logl_mle_H0 = logl_H0; | |
| cout << "MLE estimate for Vg in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_g, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Vg): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c, c)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "MLE estimate for Ve in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_e, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Ve): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| auto v = gsl_matrix_get(Hessian, c + v_size, c + v_size); | |
| if (is_strict_mode()) | |
| enforce_msg(v >= 0,"se(Ve) is not valid"); | |
| cout << safe_sqrt(v) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "MLE likelihood = " << logl_H0 << endl; | |
| vector<double> v_beta, v_Vg, v_Ve, v_Vbeta; | |
| for (size_t i = 0; i < d_size; i++) { | |
| v_beta.push_back(0.0); | |
| } | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| v_Vg.push_back(0.0); | |
| v_Ve.push_back(0.0); | |
| v_Vbeta.push_back(0.0); | |
| } | |
| } | |
| gsl_matrix_memcpy(V_g_null, V_g); | |
| gsl_matrix_memcpy(V_e_null, V_e); | |
| gsl_matrix_memcpy(B_null, B); | |
| // Start reading genotypes and analyze. | |
| // Calculate n_bit and c, the number of bit for each snp. | |
| if (ni_total % 4 == 0) { | |
| n_bit = ni_total / 4; | |
| } else { | |
| n_bit = ni_total / 4 + 1; | |
| } | |
| // Print the first three magic numbers. | |
| for (int i = 0; i < 3; ++i) { | |
| infile.read(ch, 1); | |
| b = ch[0]; | |
| } | |
| size_t csnp = 0, t_last = 0; | |
| for (size_t t = 0; t < indicator_snp.size(); ++t) { | |
| if (indicator_snp[t] == 0) { | |
| continue; | |
| } | |
| t_last++; | |
| } | |
| for (vector<SNPINFO>::size_type t = 0; t < snpInfo.size(); ++t) { | |
| if (t % d_pace == 0 || t == snpInfo.size() - 1) { | |
| ProgressBar("Reading SNPs", t, snpInfo.size() - 1); | |
| } | |
| if (indicator_snp[t] == 0) { | |
| continue; | |
| } | |
| // n_bit, and 3 is the number of magic numbers. | |
| infile.seekg(t * n_bit + 3); | |
| // read genotypes | |
| x_mean = 0.0; | |
| n_miss = 0; | |
| ci_total = 0; | |
| ci_test = 0; | |
| for (int i = 0; i < n_bit; ++i) { | |
| infile.read(ch, 1); | |
| b = ch[0]; | |
| // Minor allele homozygous: 2.0; major: 0.0; | |
| for (size_t j = 0; j < 4; ++j) { | |
| if ((i == (n_bit - 1)) && ci_total == (int)ni_total) { | |
| break; | |
| } | |
| if (indicator_idv[ci_total] == 0) { | |
| ci_total++; | |
| continue; | |
| } | |
| if (b[2 * j] == 0) { | |
| if (b[2 * j + 1] == 0) { | |
| gsl_vector_set(x, ci_test, 2); | |
| x_mean += 2.0; | |
| } else { | |
| gsl_vector_set(x, ci_test, 1); | |
| x_mean += 1.0; | |
| } | |
| } else { | |
| if (b[2 * j + 1] == 1) { | |
| gsl_vector_set(x, ci_test, 0); | |
| } else { | |
| gsl_vector_set(x, ci_test, -9); | |
| n_miss++; | |
| } | |
| } | |
| ci_total++; | |
| ci_test++; | |
| } | |
| } | |
| x_mean /= (double)(ni_test - n_miss); | |
| for (size_t i = 0; i < ni_test; ++i) { | |
| geno = gsl_vector_get(x, i); | |
| if (geno == -9) { | |
| gsl_vector_set(x, i, x_mean); | |
| geno = x_mean; | |
| } | |
| } | |
| gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, csnp % msize); | |
| gsl_vector_memcpy(&Xlarge_col.vector, x); | |
| csnp++; | |
| if (csnp % msize == 0 || csnp == t_last) { | |
| size_t l = 0; | |
| if (csnp % msize == 0) { | |
| l = msize; | |
| } else { | |
| l = csnp % msize; | |
| } | |
| gsl_matrix_view Xlarge_sub = | |
| gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l); | |
| gsl_matrix_view UtXlarge_sub = | |
| gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l); | |
| time_start = clock(); | |
| fast_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0, | |
| &UtXlarge_sub.matrix); | |
| time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0); | |
| gsl_matrix_set_zero(Xlarge); | |
| for (size_t i = 0; i < l; i++) { | |
| gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i); | |
| gsl_vector_memcpy(&X_row.vector, &UtXlarge_col.vector); | |
| // Initial values. | |
| gsl_matrix_memcpy(V_g, V_g_null); | |
| gsl_matrix_memcpy(V_e, V_e_null); | |
| gsl_matrix_memcpy(B, B_null); | |
| time_start = clock(); | |
| // 3 is before 1. | |
| if (a_mode == 3 || a_mode == 4) { | |
| p_score = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g_null, | |
| V_e_null, UltVehiY, beta, Vbeta); | |
| if (p_score < p_nr && crt == 1) { | |
| logl_H1 = MphNR('R', 1, nr_prec * 10, eval, X, Y, Hi_all, xHi_all, | |
| Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c); | |
| p_score = PCRT(3, d_size, p_score, crt_a, crt_b, crt_c); | |
| } | |
| } | |
| if (a_mode == 2 || a_mode == 4) { | |
| logl_H1 = MphEM('L', em_iter / 10, em_prec * 10, eval, X, Y, U_hat, | |
| E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, | |
| UltVehiE, V_g, V_e, B); | |
| // Calculate beta and Vbeta. | |
| p_lrt = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size); | |
| if (p_lrt < p_nr) { | |
| logl_H1 = | |
| MphNR('L', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all, | |
| xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c); | |
| // Calculate beta and Vbeta. | |
| p_lrt = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size); | |
| if (crt == 1) { | |
| p_lrt = PCRT(2, d_size, p_lrt, crt_a, crt_b, crt_c); | |
| } | |
| } | |
| } | |
| if (a_mode == 1 || a_mode == 4) { | |
| logl_H1 = MphEM('R', em_iter / 10, em_prec * 10, eval, X, Y, U_hat, | |
| E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, | |
| UltVehiE, V_g, V_e, B); | |
| p_wald = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| if (p_wald < p_nr) { | |
| logl_H1 = | |
| MphNR('R', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all, | |
| xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c); | |
| p_wald = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| if (crt == 1) { | |
| p_wald = PCRT(1, d_size, p_wald, crt_a, crt_b, crt_c); | |
| } | |
| } | |
| } | |
| time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0); | |
| // Store summary data. | |
| for (size_t i = 0; i < d_size; i++) { | |
| v_beta[i] = gsl_vector_get(beta, i); | |
| } | |
| c = 0; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| v_Vg[c] = gsl_matrix_get(V_g, i, j); | |
| v_Ve[c] = gsl_matrix_get(V_e, i, j); | |
| v_Vbeta[c] = gsl_matrix_get(Vbeta, i, j); | |
| c++; | |
| } | |
| } | |
| MPHSUMSTAT SNPs = {v_beta, p_wald, p_lrt, p_score, v_Vg, v_Ve, v_Vbeta}; | |
| sumStat.push_back(SNPs); | |
| } | |
| } | |
| } | |
| cout << endl; | |
| infile.close(); | |
| infile.clear(); | |
| gsl_matrix_free(U_hat); | |
| gsl_matrix_free(E_hat); | |
| gsl_matrix_free(OmegaU); | |
| gsl_matrix_free(OmegaE); | |
| gsl_matrix_free(UltVehiY); | |
| gsl_matrix_free(UltVehiBX); | |
| gsl_matrix_free(UltVehiU); | |
| gsl_matrix_free(UltVehiE); | |
| gsl_matrix_free(Hi_all); | |
| gsl_matrix_free(Hiy_all); | |
| gsl_matrix_free(xHi_all); | |
| gsl_matrix_free(Hessian); | |
| gsl_vector_free(x); | |
| gsl_matrix_free(Y); | |
| gsl_matrix_free(X); | |
| gsl_matrix_free(V_g); | |
| gsl_matrix_free(V_e); | |
| gsl_matrix_free(B); | |
| gsl_vector_free(beta); | |
| gsl_matrix_free(Vbeta); | |
| gsl_matrix_free(V_g_null); | |
| gsl_matrix_free(V_e_null); | |
| gsl_matrix_free(B_null); | |
| gsl_matrix_free(se_B_null); | |
| gsl_matrix_free(Xlarge); | |
| gsl_matrix_free(UtXlarge); | |
| return; | |
| } | |
| // Calculate Vg, Ve, B, se(B) in the null mvLMM model. | |
| // Both B and se_B are d by c matrices. | |
| void CalcMvLmmVgVeBeta(const gsl_vector *eval, const gsl_matrix *UtW, | |
| const gsl_matrix *UtY, const size_t em_iter, | |
| const size_t nr_iter, const double em_prec, | |
| const double nr_prec, const double l_min, | |
| const double l_max, const size_t n_region, | |
| gsl_matrix *V_g, gsl_matrix *V_e, gsl_matrix *B, | |
| gsl_matrix *se_B) { | |
| size_t n_size = UtY->size1, d_size = UtY->size2, c_size = UtW->size2; | |
| size_t dc_size = d_size * c_size, v_size = d_size * (d_size + 1) / 2; | |
| double crt_a, crt_b, crt_c; | |
| // Large matrices for EM. | |
| gsl_matrix *U_hat = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *E_hat = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *OmegaU = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *OmegaE = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiBX = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiU = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiE = gsl_matrix_alloc(d_size, n_size); | |
| // Large matrices for NR. | |
| // Each dxd block is H_k^{-1}. | |
| gsl_matrix *Hi_all = gsl_matrix_alloc(d_size, d_size * n_size); | |
| // Each column is H_k^{-1}y_k. | |
| gsl_matrix *Hiy_all = gsl_matrix_alloc(d_size, n_size); | |
| // Each dcxdc block is x_k\otimes H_k^{-1}. | |
| gsl_matrix *xHi_all = gsl_matrix_alloc(dc_size, d_size * n_size); | |
| gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2); | |
| // Transpose matrices. | |
| gsl_matrix *Y = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *W = gsl_matrix_alloc(c_size, n_size); | |
| gsl_matrix_transpose_memcpy(Y, UtY); | |
| gsl_matrix_transpose_memcpy(W, UtW); | |
| // Initial, EM, NR, and calculate B. | |
| MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, W, Y, l_min, l_max, | |
| n_region, V_g, V_e, B); | |
| MphEM('R', em_iter, em_prec, eval, W, Y, U_hat, E_hat, OmegaU, OmegaE, | |
| UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g, V_e, B); | |
| MphNR('R', nr_iter, nr_prec, eval, W, Y, Hi_all, xHi_all, Hiy_all, V_g, | |
| V_e, Hessian, crt_a, crt_b, crt_c); | |
| MphCalcBeta(eval, W, Y, V_g, V_e, UltVehiY, B, se_B); | |
| // Free matrices. | |
| gsl_matrix_free(U_hat); | |
| gsl_matrix_free(E_hat); | |
| gsl_matrix_free(OmegaU); | |
| gsl_matrix_free(OmegaE); | |
| gsl_matrix_free(UltVehiY); | |
| gsl_matrix_free(UltVehiBX); | |
| gsl_matrix_free(UltVehiU); | |
| gsl_matrix_free(UltVehiE); | |
| gsl_matrix_free(Hi_all); | |
| gsl_matrix_free(Hiy_all); | |
| gsl_matrix_free(xHi_all); | |
| gsl_matrix_free(Hessian); | |
| gsl_matrix_free(Y); | |
| gsl_matrix_free(W); | |
| return; | |
| } | |
| void MVLMM::AnalyzeBimbamGXE(const gsl_matrix *U, const gsl_vector *eval, | |
| const gsl_matrix *UtW, const gsl_matrix *UtY, | |
| const gsl_vector *env) { | |
| debug_msg("entering"); | |
| igzstream infile(file_geno.c_str(), igzstream::in); | |
| if (!infile) { | |
| cout << "error reading genotype file:" << file_geno << endl; | |
| return; | |
| } | |
| clock_t time_start = clock(); | |
| time_UtX = 0; | |
| time_opt = 0; | |
| string line; | |
| char *ch_ptr; | |
| double logl_H0 = 0.0, logl_H1 = 0.0, p_wald = 0, p_lrt = 0, p_score = 0; | |
| double crt_a, crt_b, crt_c; | |
| int n_miss, c_phen; | |
| double geno, x_mean; | |
| size_t c = 0; | |
| size_t n_size = UtY->size1, d_size = UtY->size2, c_size = UtW->size2 + 2; | |
| size_t dc_size = d_size * (c_size + 1), v_size = d_size * (d_size + 1) / 2; | |
| // Large matrices for EM. | |
| gsl_matrix *U_hat = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *E_hat = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *OmegaU = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *OmegaE = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiBX = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiU = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiE = gsl_matrix_alloc(d_size, n_size); | |
| // Large matrices for NR. | |
| // Each dxd block is H_k^{-1}. | |
| gsl_matrix *Hi_all = gsl_matrix_alloc(d_size, d_size * n_size); | |
| // Each column is H_k^{-1}y_k. | |
| gsl_matrix *Hiy_all = gsl_matrix_alloc(d_size, n_size); | |
| // Each dcxdc block is x_k\otimes H_k^{-1}. | |
| gsl_matrix *xHi_all = gsl_matrix_alloc(dc_size, d_size * n_size); | |
| gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2); | |
| gsl_vector *x = gsl_vector_alloc(n_size); | |
| gsl_vector *x_miss = gsl_vector_alloc(n_size); | |
| gsl_matrix *Y = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *X = gsl_matrix_alloc(c_size + 1, n_size); | |
| gsl_matrix *V_g = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *V_e = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *B = gsl_matrix_alloc(d_size, c_size + 1); | |
| gsl_vector *beta = gsl_vector_alloc(d_size); | |
| gsl_matrix *Vbeta = gsl_matrix_alloc(d_size, d_size); | |
| // Null estimates for initial values; including env but not | |
| // including x. | |
| gsl_matrix *V_g_null = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *V_e_null = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *B_null = gsl_matrix_alloc(d_size, c_size + 1); | |
| gsl_matrix *se_B_null1 = gsl_matrix_alloc(d_size, c_size - 1); | |
| gsl_matrix *se_B_null2 = gsl_matrix_alloc(d_size, c_size); | |
| gsl_matrix_view X_sub1 = gsl_matrix_submatrix(X, 0, 0, c_size - 1, n_size); | |
| gsl_matrix_view B_sub1 = gsl_matrix_submatrix(B, 0, 0, d_size, c_size - 1); | |
| gsl_matrix_view xHi_all_sub1 = gsl_matrix_submatrix( | |
| xHi_all, 0, 0, d_size * (c_size - 1), d_size * n_size); | |
| gsl_matrix_view X_sub2 = gsl_matrix_submatrix(X, 0, 0, c_size, n_size); | |
| gsl_matrix_view B_sub2 = gsl_matrix_submatrix(B, 0, 0, d_size, c_size); | |
| gsl_matrix_view xHi_all_sub2 = | |
| gsl_matrix_submatrix(xHi_all, 0, 0, d_size * c_size, d_size * n_size); | |
| gsl_matrix_transpose_memcpy(Y, UtY); | |
| gsl_matrix_view X_sub0 = gsl_matrix_submatrix(X, 0, 0, c_size - 2, n_size); | |
| gsl_matrix_transpose_memcpy(&X_sub0.matrix, UtW); | |
| gsl_vector_view X_row0 = gsl_matrix_row(X, c_size - 2); | |
| gsl_blas_dgemv(CblasTrans, 1.0, U, env, 0.0, &X_row0.vector); | |
| gsl_vector_view X_row1 = gsl_matrix_row(X, c_size - 1); | |
| gsl_vector_set_zero(&X_row1.vector); | |
| gsl_vector_view X_row2 = gsl_matrix_row(X, c_size); | |
| gsl_vector_set_zero(&X_row2.vector); | |
| gsl_vector_view B_col1 = gsl_matrix_column(B, c_size - 1); | |
| gsl_vector_set_zero(&B_col1.vector); | |
| gsl_vector_view B_col2 = gsl_matrix_column(B, c_size); | |
| gsl_vector_set_zero(&B_col2.vector); | |
| MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub1.matrix, Y, l_min, | |
| l_max, n_region, V_g, V_e, &B_sub1.matrix); | |
| logl_H0 = MphEM('R', em_iter, em_prec, eval, &X_sub1.matrix, Y, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g, | |
| V_e, &B_sub1.matrix); | |
| logl_H0 = MphNR('R', nr_iter, nr_prec, eval, &X_sub1.matrix, Y, Hi_all, | |
| &xHi_all_sub1.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, | |
| crt_b, crt_c); | |
| MphCalcBeta(eval, &X_sub1.matrix, Y, V_g, V_e, UltVehiY, &B_sub1.matrix, | |
| se_B_null1); | |
| c = 0; | |
| Vg_remle_null.clear(); | |
| Ve_remle_null.clear(); | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| Vg_remle_null.push_back(gsl_matrix_get(V_g, i, j)); | |
| Ve_remle_null.push_back(gsl_matrix_get(V_e, i, j)); | |
| VVg_remle_null.push_back(gsl_matrix_get(Hessian, c, c)); | |
| VVe_remle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size)); | |
| c++; | |
| } | |
| } | |
| beta_remle_null.clear(); | |
| se_beta_remle_null.clear(); | |
| for (size_t i = 0; i < se_B_null1->size1; i++) { | |
| for (size_t j = 0; j < se_B_null1->size2; j++) { | |
| beta_remle_null.push_back(gsl_matrix_get(B, i, j)); | |
| se_beta_remle_null.push_back(gsl_matrix_get(se_B_null1, i, j)); | |
| } | |
| } | |
| logl_remle_H0 = logl_H0; | |
| cout.setf(std::ios_base::fixed, std::ios_base::floatfield); | |
| cout.precision(4); | |
| cout << "REMLE estimate for Vg in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_g, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Vg): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c, c)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "REMLE estimate for Ve in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_e, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Ve): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "REMLE likelihood = " << logl_H0 << endl; | |
| logl_H0 = MphEM('L', em_iter, em_prec, eval, &X_sub1.matrix, Y, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g, | |
| V_e, &B_sub1.matrix); | |
| logl_H0 = MphNR('L', nr_iter, nr_prec, eval, &X_sub1.matrix, Y, Hi_all, | |
| &xHi_all_sub1.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, | |
| crt_b, crt_c); | |
| MphCalcBeta(eval, &X_sub1.matrix, Y, V_g, V_e, UltVehiY, &B_sub1.matrix, | |
| se_B_null1); | |
| c = 0; | |
| Vg_mle_null.clear(); | |
| Ve_mle_null.clear(); | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| Vg_mle_null.push_back(gsl_matrix_get(V_g, i, j)); | |
| Ve_mle_null.push_back(gsl_matrix_get(V_e, i, j)); | |
| VVg_mle_null.push_back(gsl_matrix_get(Hessian, c, c)); | |
| VVe_mle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size)); | |
| c++; | |
| } | |
| } | |
| beta_mle_null.clear(); | |
| se_beta_mle_null.clear(); | |
| for (size_t i = 0; i < se_B_null1->size1; i++) { | |
| for (size_t j = 0; j < se_B_null1->size2; j++) { | |
| beta_mle_null.push_back(gsl_matrix_get(B, i, j)); | |
| se_beta_mle_null.push_back(gsl_matrix_get(se_B_null1, i, j)); | |
| } | |
| } | |
| logl_mle_H0 = logl_H0; | |
| cout << "MLE estimate for Vg in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_g, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Vg): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c, c)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "MLE estimate for Ve in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_e, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Ve): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "MLE likelihood = " << logl_H0 << endl; | |
| vector<double> v_beta, v_Vg, v_Ve, v_Vbeta; | |
| for (size_t i = 0; i < d_size; i++) { | |
| v_beta.push_back(0.0); | |
| } | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| v_Vg.push_back(0.0); | |
| v_Ve.push_back(0.0); | |
| v_Vbeta.push_back(0.0); | |
| } | |
| } | |
| gsl_matrix_memcpy(V_g_null, V_g); | |
| gsl_matrix_memcpy(V_e_null, V_e); | |
| gsl_matrix_memcpy(B_null, B); | |
| // Start reading genotypes and analyze. | |
| for (size_t t = 0; t < indicator_snp.size(); ++t) { | |
| safeGetline(infile, line).eof(); | |
| if (t % d_pace == 0 || t == (ns_total - 1)) { | |
| ProgressBar("Reading SNPs", t, ns_total - 1); | |
| } | |
| if (indicator_snp[t] == 0) { | |
| continue; | |
| } | |
| ch_ptr = strtok_safe((char *)line.c_str(), " , \t"); | |
| ch_ptr = strtok_safe(NULL, " , \t"); | |
| ch_ptr = strtok_safe(NULL, " , \t"); | |
| x_mean = 0.0; | |
| c_phen = 0; | |
| n_miss = 0; | |
| gsl_vector_set_zero(x_miss); | |
| for (size_t i = 0; i < ni_total; ++i) { | |
| ch_ptr = strtok_safe(NULL, " , \t"); | |
| if (indicator_idv[i] == 0) { | |
| continue; | |
| } | |
| if (strcmp(ch_ptr, "NA") == 0) { | |
| gsl_vector_set(x_miss, c_phen, 0.0); | |
| n_miss++; | |
| } else { | |
| geno = atof(ch_ptr); | |
| gsl_vector_set(x, c_phen, geno); | |
| gsl_vector_set(x_miss, c_phen, 1.0); | |
| x_mean += geno; | |
| } | |
| c_phen++; | |
| } | |
| x_mean /= (double)(ni_test - n_miss); | |
| for (size_t i = 0; i < ni_test; ++i) { | |
| if (gsl_vector_get(x_miss, i) == 0) { | |
| gsl_vector_set(x, i, x_mean); | |
| } | |
| geno = gsl_vector_get(x, i); | |
| if (x_mean > 1) { | |
| gsl_vector_set(x, i, 2 - geno); | |
| } | |
| } | |
| // Calculate statistics. | |
| time_start = clock(); | |
| gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, &X_row1.vector); | |
| gsl_vector_mul(x, env); | |
| gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, &X_row2.vector); | |
| time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0); | |
| // initial values | |
| gsl_matrix_memcpy(V_g, V_g_null); | |
| gsl_matrix_memcpy(V_e, V_e_null); | |
| gsl_matrix_memcpy(B, B_null); | |
| if (a_mode == 2 || a_mode == 3 || a_mode == 4) { | |
| if (a_mode == 3 || a_mode == 4) { | |
| logl_H0 = MphEM('R', em_iter / 10, em_prec * 10, eval, &X_sub2.matrix, | |
| Y, U_hat, E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, | |
| UltVehiU, UltVehiE, V_g, V_e, &B_sub2.matrix); | |
| logl_H0 = MphNR('R', nr_iter / 10, nr_prec * 10, eval, &X_sub2.matrix, | |
| Y, Hi_all, &xHi_all_sub2.matrix, Hiy_all, V_g, V_e, | |
| Hessian, crt_a, crt_b, crt_c); | |
| MphCalcBeta(eval, &X_sub2.matrix, Y, V_g, V_e, UltVehiY, &B_sub2.matrix, | |
| se_B_null2); | |
| } | |
| if (a_mode == 2 || a_mode == 4) { | |
| logl_H0 = MphEM('L', em_iter / 10, em_prec * 10, eval, &X_sub2.matrix, | |
| Y, U_hat, E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, | |
| UltVehiU, UltVehiE, V_g, V_e, &B_sub2.matrix); | |
| logl_H0 = MphNR('L', nr_iter / 10, nr_prec * 10, eval, &X_sub2.matrix, | |
| Y, Hi_all, &xHi_all_sub2.matrix, Hiy_all, V_g, V_e, | |
| Hessian, crt_a, crt_b, crt_c); | |
| MphCalcBeta(eval, &X_sub2.matrix, Y, V_g, V_e, UltVehiY, &B_sub2.matrix, | |
| se_B_null2); | |
| } | |
| } | |
| time_start = clock(); | |
| // 3 is before 1. | |
| if (a_mode == 3 || a_mode == 4) { | |
| p_score = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g_null, | |
| V_e_null, UltVehiY, beta, Vbeta); | |
| if (p_score < p_nr && crt == 1) { | |
| logl_H1 = MphNR('R', 1, nr_prec * 10, eval, X, Y, Hi_all, xHi_all, | |
| Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c); | |
| p_score = PCRT(3, d_size, p_score, crt_a, crt_b, crt_c); | |
| } | |
| } | |
| if (a_mode == 2 || a_mode == 4) { | |
| logl_H1 = MphEM('L', em_iter / 10, em_prec * 10, eval, X, Y, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, | |
| V_g, V_e, B); | |
| // Calculate beta and Vbeta. | |
| p_lrt = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size); | |
| if (p_lrt < p_nr) { | |
| logl_H1 = | |
| MphNR('L', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all, xHi_all, | |
| Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c); | |
| // Calculate beta and Vbeta. | |
| p_lrt = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size); | |
| if (crt == 1) { | |
| p_lrt = PCRT(2, d_size, p_lrt, crt_a, crt_b, crt_c); | |
| } | |
| } | |
| } | |
| if (a_mode == 1 || a_mode == 4) { | |
| logl_H1 = MphEM('R', em_iter / 10, em_prec * 10, eval, X, Y, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, | |
| V_g, V_e, B); | |
| p_wald = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| if (p_wald < p_nr) { | |
| logl_H1 = | |
| MphNR('R', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all, xHi_all, | |
| Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c); | |
| p_wald = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| if (crt == 1) { | |
| p_wald = PCRT(1, d_size, p_wald, crt_a, crt_b, crt_c); | |
| } | |
| } | |
| } | |
| if (x_mean > 1) { | |
| gsl_vector_scale(beta, -1.0); | |
| } | |
| time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0); | |
| // Store summary data. | |
| for (size_t i = 0; i < d_size; i++) { | |
| v_beta[i] = gsl_vector_get(beta, i); | |
| } | |
| c = 0; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| v_Vg[c] = gsl_matrix_get(V_g, i, j); | |
| v_Ve[c] = gsl_matrix_get(V_e, i, j); | |
| v_Vbeta[c] = gsl_matrix_get(Vbeta, i, j); | |
| c++; | |
| } | |
| } | |
| MPHSUMSTAT SNPs = {v_beta, p_wald, p_lrt, p_score, v_Vg, v_Ve, v_Vbeta}; | |
| sumStat.push_back(SNPs); | |
| } | |
| cout << endl; | |
| infile.close(); | |
| infile.clear(); | |
| gsl_matrix_free(U_hat); | |
| gsl_matrix_free(E_hat); | |
| gsl_matrix_free(OmegaU); | |
| gsl_matrix_free(OmegaE); | |
| gsl_matrix_free(UltVehiY); | |
| gsl_matrix_free(UltVehiBX); | |
| gsl_matrix_free(UltVehiU); | |
| gsl_matrix_free(UltVehiE); | |
| gsl_matrix_free(Hi_all); | |
| gsl_matrix_free(Hiy_all); | |
| gsl_matrix_free(xHi_all); | |
| gsl_matrix_free(Hessian); | |
| gsl_vector_free(x); | |
| gsl_vector_free(x_miss); | |
| gsl_matrix_free(Y); | |
| gsl_matrix_free(X); | |
| gsl_matrix_free(V_g); | |
| gsl_matrix_free(V_e); | |
| gsl_matrix_free(B); | |
| gsl_vector_free(beta); | |
| gsl_matrix_free(Vbeta); | |
| gsl_matrix_free(V_g_null); | |
| gsl_matrix_free(V_e_null); | |
| gsl_matrix_free(B_null); | |
| gsl_matrix_free(se_B_null1); | |
| gsl_matrix_free(se_B_null2); | |
| return; | |
| } | |
| void MVLMM::AnalyzePlinkGXE(const gsl_matrix *U, const gsl_vector *eval, | |
| const gsl_matrix *UtW, const gsl_matrix *UtY, | |
| const gsl_vector *env) { | |
| debug_msg("entering"); | |
| string file_bed = file_bfile + ".bed"; | |
| ifstream infile(file_bed.c_str(), ios::binary); | |
| if (!infile) { | |
| cout << "error reading bed file:" << file_bed << endl; | |
| return; | |
| } | |
| clock_t time_start = clock(); | |
| time_UtX = 0; | |
| time_opt = 0; | |
| char ch[1]; | |
| bitset<8> b; | |
| double logl_H0 = 0.0, logl_H1 = 0.0, p_wald = 0, p_lrt = 0, p_score = 0; | |
| double crt_a, crt_b, crt_c; | |
| int n_bit, n_miss, ci_total, ci_test; | |
| double geno, x_mean; | |
| size_t c = 0; | |
| size_t n_size = UtY->size1, d_size = UtY->size2, c_size = UtW->size2 + 2; | |
| size_t dc_size = d_size * (c_size + 1), v_size = d_size * (d_size + 1) / 2; | |
| // Large matrices for EM. | |
| gsl_matrix *U_hat = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *E_hat = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *OmegaU = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *OmegaE = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiBX = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiU = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *UltVehiE = gsl_matrix_alloc(d_size, n_size); | |
| // Large matrices for NR. | |
| // Each dxd block is H_k^{-1}. | |
| gsl_matrix *Hi_all = gsl_matrix_alloc(d_size, d_size * n_size); | |
| // Each column is H_k^{-1}y_k | |
| gsl_matrix *Hiy_all = gsl_matrix_alloc(d_size, n_size); | |
| // Each dcxdc block is x_k\otimes H_k^{-1}. | |
| gsl_matrix *xHi_all = gsl_matrix_alloc(dc_size, d_size * n_size); | |
| gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2); | |
| gsl_vector *x = gsl_vector_alloc(n_size); | |
| gsl_matrix *Y = gsl_matrix_alloc(d_size, n_size); | |
| gsl_matrix *X = gsl_matrix_alloc(c_size + 1, n_size); | |
| gsl_matrix *V_g = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *V_e = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *B = gsl_matrix_alloc(d_size, c_size + 1); | |
| gsl_vector *beta = gsl_vector_alloc(d_size); | |
| gsl_matrix *Vbeta = gsl_matrix_alloc(d_size, d_size); | |
| // Null estimates for initial values. | |
| gsl_matrix *V_g_null = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *V_e_null = gsl_matrix_alloc(d_size, d_size); | |
| gsl_matrix *B_null = gsl_matrix_alloc(d_size, c_size + 1); | |
| gsl_matrix *se_B_null1 = gsl_matrix_alloc(d_size, c_size - 1); | |
| gsl_matrix *se_B_null2 = gsl_matrix_alloc(d_size, c_size); | |
| gsl_matrix_view X_sub1 = gsl_matrix_submatrix(X, 0, 0, c_size - 1, n_size); | |
| gsl_matrix_view B_sub1 = gsl_matrix_submatrix(B, 0, 0, d_size, c_size - 1); | |
| gsl_matrix_view xHi_all_sub1 = gsl_matrix_submatrix( | |
| xHi_all, 0, 0, d_size * (c_size - 1), d_size * n_size); | |
| gsl_matrix_view X_sub2 = gsl_matrix_submatrix(X, 0, 0, c_size, n_size); | |
| gsl_matrix_view B_sub2 = gsl_matrix_submatrix(B, 0, 0, d_size, c_size); | |
| gsl_matrix_view xHi_all_sub2 = | |
| gsl_matrix_submatrix(xHi_all, 0, 0, d_size * c_size, d_size * n_size); | |
| gsl_matrix_transpose_memcpy(Y, UtY); | |
| gsl_matrix_view X_sub0 = gsl_matrix_submatrix(X, 0, 0, c_size - 2, n_size); | |
| gsl_matrix_transpose_memcpy(&X_sub0.matrix, UtW); | |
| gsl_vector_view X_row0 = gsl_matrix_row(X, c_size - 2); | |
| gsl_blas_dgemv(CblasTrans, 1.0, U, env, 0.0, &X_row0.vector); | |
| gsl_vector_view X_row1 = gsl_matrix_row(X, c_size - 1); | |
| gsl_vector_set_zero(&X_row1.vector); | |
| gsl_vector_view X_row2 = gsl_matrix_row(X, c_size); | |
| gsl_vector_set_zero(&X_row2.vector); | |
| gsl_vector_view B_col1 = gsl_matrix_column(B, c_size - 1); | |
| gsl_vector_set_zero(&B_col1.vector); | |
| gsl_vector_view B_col2 = gsl_matrix_column(B, c_size); | |
| gsl_vector_set_zero(&B_col2.vector); | |
| MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub1.matrix, Y, l_min, | |
| l_max, n_region, V_g, V_e, &B_sub1.matrix); | |
| logl_H0 = MphEM('R', em_iter, em_prec, eval, &X_sub1.matrix, Y, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g, | |
| V_e, &B_sub1.matrix); | |
| logl_H0 = MphNR('R', nr_iter, nr_prec, eval, &X_sub1.matrix, Y, Hi_all, | |
| &xHi_all_sub1.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, | |
| crt_b, crt_c); | |
| MphCalcBeta(eval, &X_sub1.matrix, Y, V_g, V_e, UltVehiY, &B_sub1.matrix, | |
| se_B_null1); | |
| c = 0; | |
| Vg_remle_null.clear(); | |
| Ve_remle_null.clear(); | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| Vg_remle_null.push_back(gsl_matrix_get(V_g, i, j)); | |
| Ve_remle_null.push_back(gsl_matrix_get(V_e, i, j)); | |
| VVg_remle_null.push_back(gsl_matrix_get(Hessian, c, c)); | |
| VVe_remle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size)); | |
| c++; | |
| } | |
| } | |
| beta_remle_null.clear(); | |
| se_beta_remle_null.clear(); | |
| for (size_t i = 0; i < se_B_null1->size1; i++) { | |
| for (size_t j = 0; j < se_B_null1->size2; j++) { | |
| beta_remle_null.push_back(gsl_matrix_get(B, i, j)); | |
| se_beta_remle_null.push_back(gsl_matrix_get(se_B_null1, i, j)); | |
| } | |
| } | |
| logl_remle_H0 = logl_H0; | |
| cout.setf(std::ios_base::fixed, std::ios_base::floatfield); | |
| cout.precision(4); | |
| cout << "REMLE estimate for Vg in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_g, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Vg): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c, c)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "REMLE estimate for Ve in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_e, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Ve): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "REMLE likelihood = " << logl_H0 << endl; | |
| logl_H0 = MphEM('L', em_iter, em_prec, eval, &X_sub1.matrix, Y, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g, | |
| V_e, &B_sub1.matrix); | |
| logl_H0 = MphNR('L', nr_iter, nr_prec, eval, &X_sub1.matrix, Y, Hi_all, | |
| &xHi_all_sub1.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, | |
| crt_b, crt_c); | |
| MphCalcBeta(eval, &X_sub1.matrix, Y, V_g, V_e, UltVehiY, &B_sub1.matrix, | |
| se_B_null1); | |
| c = 0; | |
| Vg_mle_null.clear(); | |
| Ve_mle_null.clear(); | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| Vg_mle_null.push_back(gsl_matrix_get(V_g, i, j)); | |
| Ve_mle_null.push_back(gsl_matrix_get(V_e, i, j)); | |
| VVg_mle_null.push_back(gsl_matrix_get(Hessian, c, c)); | |
| VVe_mle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size)); | |
| c++; | |
| } | |
| } | |
| beta_mle_null.clear(); | |
| se_beta_mle_null.clear(); | |
| for (size_t i = 0; i < se_B_null1->size1; i++) { | |
| for (size_t j = 0; j < se_B_null1->size2; j++) { | |
| beta_mle_null.push_back(gsl_matrix_get(B, i, j)); | |
| se_beta_mle_null.push_back(gsl_matrix_get(se_B_null1, i, j)); | |
| } | |
| } | |
| logl_mle_H0 = logl_H0; | |
| cout << "MLE estimate for Vg in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_g, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Vg): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c, c)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "MLE estimate for Ve in the null model: " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| cout << gsl_matrix_get(V_e, i, j) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "se(Ve): " << endl; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = 0; j <= i; j++) { | |
| c = GetIndex(i, j, d_size); | |
| cout << safe_sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t"; | |
| } | |
| cout << endl; | |
| } | |
| cout << "MLE likelihood = " << logl_H0 << endl; | |
| vector<double> v_beta, v_Vg, v_Ve, v_Vbeta; | |
| for (size_t i = 0; i < d_size; i++) { | |
| v_beta.push_back(0.0); | |
| } | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| v_Vg.push_back(0.0); | |
| v_Ve.push_back(0.0); | |
| v_Vbeta.push_back(0.0); | |
| } | |
| } | |
| gsl_matrix_memcpy(V_g_null, V_g); | |
| gsl_matrix_memcpy(V_e_null, V_e); | |
| gsl_matrix_memcpy(B_null, B); | |
| // Start reading genotypes and analyze. | |
| // Calculate n_bit and c, the number of bit for each SNP. | |
| if (ni_total % 4 == 0) { | |
| n_bit = ni_total / 4; | |
| } else { | |
| n_bit = ni_total / 4 + 1; | |
| } | |
| // Print the first three magic numbers. | |
| for (int i = 0; i < 3; ++i) { | |
| infile.read(ch, 1); | |
| b = ch[0]; | |
| } | |
| for (vector<SNPINFO>::size_type t = 0; t < snpInfo.size(); ++t) { | |
| if (t % d_pace == 0 || t == snpInfo.size() - 1) { | |
| ProgressBar("Reading SNPs", t, snpInfo.size() - 1); | |
| } | |
| if (indicator_snp[t] == 0) { | |
| continue; | |
| } | |
| // n_bit, and 3 is the number of magic numbers. | |
| infile.seekg(t * n_bit + 3); | |
| // Read genotypes. | |
| x_mean = 0.0; | |
| n_miss = 0; | |
| ci_total = 0; | |
| ci_test = 0; | |
| for (int i = 0; i < n_bit; ++i) { | |
| infile.read(ch, 1); | |
| b = ch[0]; | |
| // Minor allele homozygous: 2.0; major: 0.0. | |
| for (size_t j = 0; j < 4; ++j) { | |
| if ((i == (n_bit - 1)) && ci_total == (int)ni_total) { | |
| break; | |
| } | |
| if (indicator_idv[ci_total] == 0) { | |
| ci_total++; | |
| continue; | |
| } | |
| if (b[2 * j] == 0) { | |
| if (b[2 * j + 1] == 0) { | |
| gsl_vector_set(x, ci_test, 2); | |
| x_mean += 2.0; | |
| } else { | |
| gsl_vector_set(x, ci_test, 1); | |
| x_mean += 1.0; | |
| } | |
| } else { | |
| if (b[2 * j + 1] == 1) { | |
| gsl_vector_set(x, ci_test, 0); | |
| } else { | |
| gsl_vector_set(x, ci_test, -9); | |
| n_miss++; | |
| } | |
| } | |
| ci_total++; | |
| ci_test++; | |
| } | |
| } | |
| x_mean /= (double)(ni_test - n_miss); | |
| for (size_t i = 0; i < ni_test; ++i) { | |
| geno = gsl_vector_get(x, i); | |
| if (geno == -9) { | |
| gsl_vector_set(x, i, x_mean); | |
| geno = x_mean; | |
| } | |
| if (x_mean > 1) { | |
| gsl_vector_set(x, i, 2 - geno); | |
| } | |
| } | |
| // Calculate statistics. | |
| time_start = clock(); | |
| gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, &X_row1.vector); | |
| gsl_vector_mul(x, env); | |
| gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, &X_row2.vector); | |
| time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0); | |
| // Initial values. | |
| gsl_matrix_memcpy(V_g, V_g_null); | |
| gsl_matrix_memcpy(V_e, V_e_null); | |
| gsl_matrix_memcpy(B, B_null); | |
| if (a_mode == 2 || a_mode == 3 || a_mode == 4) { | |
| if (a_mode == 3 || a_mode == 4) { | |
| logl_H0 = MphEM('R', em_iter / 10, em_prec * 10, eval, &X_sub2.matrix, | |
| Y, U_hat, E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, | |
| UltVehiU, UltVehiE, V_g, V_e, &B_sub2.matrix); | |
| logl_H0 = MphNR('R', nr_iter / 10, nr_prec * 10, eval, &X_sub2.matrix, | |
| Y, Hi_all, &xHi_all_sub2.matrix, Hiy_all, V_g, V_e, | |
| Hessian, crt_a, crt_b, crt_c); | |
| MphCalcBeta(eval, &X_sub2.matrix, Y, V_g, V_e, UltVehiY, &B_sub2.matrix, | |
| se_B_null2); | |
| } | |
| if (a_mode == 2 || a_mode == 4) { | |
| logl_H0 = MphEM('L', em_iter / 10, em_prec * 10, eval, &X_sub2.matrix, | |
| Y, U_hat, E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, | |
| UltVehiU, UltVehiE, V_g, V_e, &B_sub2.matrix); | |
| logl_H0 = MphNR('L', nr_iter / 10, nr_prec * 10, eval, &X_sub2.matrix, | |
| Y, Hi_all, &xHi_all_sub2.matrix, Hiy_all, V_g, V_e, | |
| Hessian, crt_a, crt_b, crt_c); | |
| MphCalcBeta(eval, &X_sub2.matrix, Y, V_g, V_e, UltVehiY, &B_sub2.matrix, | |
| se_B_null2); | |
| } | |
| } | |
| time_start = clock(); | |
| // 3 is before 1. | |
| if (a_mode == 3 || a_mode == 4) { | |
| p_score = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g_null, | |
| V_e_null, UltVehiY, beta, Vbeta); | |
| if (p_score < p_nr && crt == 1) { | |
| logl_H1 = MphNR('R', 1, nr_prec * 10, eval, X, Y, Hi_all, xHi_all, | |
| Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c); | |
| p_score = PCRT(3, d_size, p_score, crt_a, crt_b, crt_c); | |
| } | |
| } | |
| if (a_mode == 2 || a_mode == 4) { | |
| logl_H1 = MphEM('L', em_iter / 10, em_prec * 10, eval, X, Y, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, | |
| V_g, V_e, B); | |
| // Calculate beta and Vbeta. | |
| p_lrt = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size); | |
| if (p_lrt < p_nr) { | |
| logl_H1 = | |
| MphNR('L', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all, xHi_all, | |
| Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c); | |
| // Calculate beta and Vbeta. | |
| p_lrt = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size); | |
| if (crt == 1) { | |
| p_lrt = PCRT(2, d_size, p_lrt, crt_a, crt_b, crt_c); | |
| } | |
| } | |
| } | |
| if (a_mode == 1 || a_mode == 4) { | |
| logl_H1 = MphEM('R', em_iter / 10, em_prec * 10, eval, X, Y, U_hat, E_hat, | |
| OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, | |
| V_g, V_e, B); | |
| p_wald = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| if (p_wald < p_nr) { | |
| logl_H1 = | |
| MphNR('R', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all, xHi_all, | |
| Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c); | |
| p_wald = MphCalcP(eval, &X_row2.vector, &X_sub2.matrix, Y, V_g, V_e, | |
| UltVehiY, beta, Vbeta); | |
| if (crt == 1) { | |
| p_wald = PCRT(1, d_size, p_wald, crt_a, crt_b, crt_c); | |
| } | |
| } | |
| } | |
| if (x_mean > 1) { | |
| gsl_vector_scale(beta, -1.0); | |
| } | |
| time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0); | |
| // Store summary data. | |
| for (size_t i = 0; i < d_size; i++) { | |
| v_beta[i] = gsl_vector_get(beta, i); | |
| } | |
| c = 0; | |
| for (size_t i = 0; i < d_size; i++) { | |
| for (size_t j = i; j < d_size; j++) { | |
| v_Vg[c] = gsl_matrix_get(V_g, i, j); | |
| v_Ve[c] = gsl_matrix_get(V_e, i, j); | |
| v_Vbeta[c] = gsl_matrix_get(Vbeta, i, j); | |
| c++; | |
| } | |
| } | |
| MPHSUMSTAT SNPs = {v_beta, p_wald, p_lrt, p_score, v_Vg, v_Ve, v_Vbeta}; | |
| sumStat.push_back(SNPs); | |
| } | |
| cout << endl; | |
| infile.close(); | |
| infile.clear(); | |
| gsl_matrix_free(U_hat); | |
| gsl_matrix_free(E_hat); | |
| gsl_matrix_free(OmegaU); | |
| gsl_matrix_free(OmegaE); | |
| gsl_matrix_free(UltVehiY); | |
| gsl_matrix_free(UltVehiBX); | |
| gsl_matrix_free(UltVehiU); | |
| gsl_matrix_free(UltVehiE); | |
| gsl_matrix_free(Hi_all); | |
| gsl_matrix_free(Hiy_all); | |
| gsl_matrix_free(xHi_all); | |
| gsl_matrix_free(Hessian); | |
| gsl_vector_free(x); | |
| gsl_matrix_free(Y); | |
| gsl_matrix_free(X); | |
| gsl_matrix_free(V_g); | |
| gsl_matrix_free(V_e); | |
| gsl_matrix_free(B); | |
| gsl_vector_free(beta); | |
| gsl_matrix_free(Vbeta); | |
| gsl_matrix_free(V_g_null); | |
| gsl_matrix_free(V_e_null); | |
| gsl_matrix_free(B_null); | |
| gsl_matrix_free(se_B_null1); | |
| gsl_matrix_free(se_B_null2); | |
| return; | |
| } |