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The Stokes equation for incompressible fluid is stated as

τij,j − p,i = fi, (1)

vi,i = 0, (2)

where τij is the deviatoric stress tensor, p is pressure, vi is velocity, and fi stands for a body force.
The weak form of the momentum conservative equation can be calculated by integrating the inner
product of Eq. (1) and a virtual velocity δvi across the computational domain Ω, which yields after
integrating by part ∫

Ω

δε̇ijτijdΩ−
∫
Ω

vi,idΩ =

∫
Ω

vifidΩ, (3)

where ε̇ij ≡ (vi,j+vj,i)/2 denotes the strain rate tensor. Similarly, the weak form of mass conservative
equation is obtained by multiplying Eq. (2) with a virtual pressure δp and integrating across Ω, which
gives ∫

Ω

δpvi,idΩ = 0. (4)

With proper finite element approximation

vi ≈
∑
I

V IφI
i , p ≈

∑
I

P IϑI , (5)

Eqs. (3) and (4) can be discretized into the algebraic form[
A BT

B 0

] [
V
P

]
=

[
f
0

]
, (6)

where the matrix and right-hand side blocks are defined by

AIJ =

∫
Ω

εIijτ
J
ijdΩ, BIJ = −

∫
Ω

φI
i,iϑ

JdΩ, f I =

∫
Ω

φI
i fidΩ.

In the above expressions, φI
ij ≡ (φI

i,j + φI
j,i)/2, and τ Iij is a function of φI

kl and ϑI satisfying∑
I τ

I
ijV

I = τij . For instance, if the fluid is Newtonian, then we have τ Iij = 2ηφI
ij , hence

∑
I τ

I
ijV

I =
2ηε̇ij = τij . However, in geodynamic problems the relationship between τij and ε̇kl is generally
nonlinear.
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We employ the Newton-Raphson method to resolve the nonlinearity in Eq. (6). In each Newton
iteration, we need to solve the linearized system[

Jvv Jvp

Jpv 0

] [
dV
dP

]
=

[
f
0

]
−

[
A BT

B 0

] [
V
P

]
. (7)

The blocks of the Jacobian matrix have the following form:

JIJ
vv =

∫
Ω

φI
ij

∂τij
∂ε̇kl

φJ
kldΩ, JIJ

vp =

∫
Ω

φI
ij

∂τ

∂p
ϑJdΩ +BJI , JIJ

pv = BIJ .

More specifically, we assume that the material is homogeneous, i.e. τij is parallel with ε̇ij . In such
cases, τij can be expressed as

τij = 2η(ε̇, p)ε̇ij , (8)

where ε̇ ≡
√
ε̇ij ε̇ij is the norm of ε̇ij . Substitution of Eq. (8) in the expression of JIJ

vv gives

JIJ
vv =

∫
Ω

2φI
ij

(
ηIsijkl + ε̇ij

∂η

∂ε̇kl

)
φJ
kldΩ, (9)

where Isijkl ≡ (δikδjl+ δilδjk)/2 is the symmetric projection tensor. Eq. (9) is equivalent to Eq. (14)
in Fraters et al. [2019].

As illustrated by Fraters et al. [2019], to employ the Schur complement preconditioner to solve
Eq. (7), we must guarantee that Jvv is symmetric and positive-definite, otherwise the top-left block
of the preconditioner cannot be implicitly inversed with the CG solver. To analyze the properties of
Jvv, we shall expand ε̇ij

∂η
∂ε̇kl

straightforwardly:

ε̇ij
∂η

∂ε̇kl
= ˙εij

∂η

∂ε̇

∂ε̇

∂ε̇kl
= ε̇ij

∂η

∂ε̇

ε̇kl
ε̇

= ε̇
∂η

∂ε̇

ε̇ij
ε̇

ε̇kl
ε̇
. (10)

Eq. (10) implies that JIJ
vv is always symmetric. The positive-definiteness of JIJ

vv , on the other hand,
is not guaranteed since it depends on ∂η/∂ε̇. For simplicity, we define

E ≡ ε̇
∂η

∂ε̇
and nij ≡

ε̇ij
ε̇
.

As seen, E is a scalar quantity in units of Pa·s, and nij is the unit tensor parallel to ε̇ij . Then
Eq. (10) can be rewritten as

ε̇ij
∂η

∂ε̇kl
= Enijnkl. (11)

It is easy to see from Eq. (11) that ε̇ij
∂η
∂ε̇kl

has only one non-trivial eigenvalue E. In fact, we may

consider nij as a 2-D unit vector on the π-plane of the principal strain rate space (the 3-D space with
principal strain rate ε̇1, ε̇2 and ε̇3 as coordinate axes), which is equivalent to applying a rotational
transformation to nij . Denote the unit vector by n ≡ [cosϕ sinϕ]T , then Eq. (11) can be explicitly
expressed as

EnnT = E

[
cos2 ϕ cosϕ sinϕ

cosϕ sinϕ sin2 ϕ

]
. (12)

It is clear that the eigenvalues of EnnT are 0 and E. Consequently, the Jacobian matrix Jvv is
positive-definite as long as E > −η.
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1 Power-law creep

The power-law creep is generally stated as

η = η0ε̇
1
n−1, (13)

where η0 is the prefactor, and n is a dimensionless parameter satisfying n ≥ 1. Straightforward
derivation gives

E = η0

(
1

n
− 1

)
ε̇

1
n−1 =

(
1

n
− 1

)
η. (14)

Since n ≥ 1, we always have E > −η, which implies that Jvv for the power-law rheology is always
positive-definite.

2 The Drucker-Prager model

The yield function of the Drucker-Prager model is defined as

F =
τ√
2
− ξp− ζ, (15)

where τ ≡ √
τijτij , ξ and ζ are material parameters determined by the friction angle and the

cohesion. When plastic yielding occurs, we have F = 0, which indicates that

τ√
2
= ξp+ ζ. (16)

Thus, we have

η =
τ

2ε̇
=

ξp+ ζ√
2ε̇

, (17)

and

E = −ξp+ ζ√
2ε̇

= −η. (18)

The equation above implies that Jvv for the Drucker-Prager model is non-negative-definite (as plastic
yielding does not occur everywhere). To restore the positive-definiteness of the top-left block, we
should scale the Newton step with a factor α ∈ (0, 1).

3 Maxwell viscoplastic model

Simulations of lithosphere dynamics often employ a Maxwell-type viscoplastic model with an additive
decomposition

ε̇ = ε̇v + ε̇p, (19)

where the subscripts v and p stand for viscous and plastic contributions, respectively. Thus, the
comprehensive viscosity can be expressed as

η =

(
1

ηv
+

1

ηp

)−1

, (20)
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where ηv and ηp are defined by Eq. (13) and Eq. (17), respectively. Then we have

E = −ε̇η2
(
− 1

η2v

∂ηv
∂ε̇

− 1

η2p

∂ηp
∂ε̇

)
= η2

(
Ev

η2v
+

Ep

η2p

)
= η2

( 1
n − 1

ηv
− 1

ηp

)
=

(
η

nηv
− 1

)
η. (21)

As seen, Jvv for Maxwell viscoplastic model is also positive-definite. In practice, however, we often
run into situations with ηp ≪ ηv, which makes η

nηv
close to 0. Therefore, to guarantee the con-

vergence of the CG solver, we had better scale the Newton step for Maxwell viscoplastic models as
well.
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