Positive-definiteness of the Jacobian matrix of the Stokes
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The Stokes equation for incompressible fluid is stated as
Tijg — Pi = fis (1)
Ui,i = 0, (2)

where 7;; is the deviatoric stress tensor, p is pressure, v; is velocity, and f; stands for a body force.
The weak form of the momentum conservative equation can be calculated by integrating the inner
product of Eq. (1) and a virtual velocity dv; across the computational domain €2, which yields after

integrating by part
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where €;; = (v; j+v;,:)/2 denotes the strain rate tensor. Similarly, the weak form of mass conservative
equation is obtained by multiplying Eq. (2) with a virtual pressure ép and integrating across €2, which
gives

/ (5p7)i7¢dQ =0. (4)
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With proper finite element approximation
vim Yy Vil pa> P, (5)
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Egs. (3) and (4) can be discretized into the algebraic form
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where the matrix and right-hand side blocks are defined by
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In the above expressions, gpilj = (cpl{j + cpJI»’i)/2, and Tin is a function of gaél and ¥ satisfying
> Tin VI = 7;;. For instance, if the fluid is Newtonian, then we have Tin = 277(,0{]-, hence >, Tin V=
2né;; = 1;5. However, in geodynamic problems the relationship between 7;; and €j; is generally
nonlinear.



We employ the Newton-Raphson method to resolve the nonlinearity in Eq. (6). In each Newton
iteration, we need to solve the linearized system
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The blocks of the Jacobian matrix have the following form:
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More specifically, we assume that the material is homogeneous, i.e. 7;; is parallel with €;;. In such
cases, T;; can be expressed as

7ij = 21(€, p)ij, (8)
where € = /€;;€;; is the norm of €;;. Substitution of Eq. (8) in the expression of JIJ gives

on
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where I = (0;101 +6419,,)/2 is the symmetric projection tensor. Eq. (9) is equivalent to Eq. (14)
in Fraters et al. [2019].

As illustrated by Fraters et al. [2019], to employ the Schur complement preconditioner to solve
Eq. (7), we must guarantee that J,, is symmetric and positive-definite, otherwise the top-left block
of the preconditioner cannot be implicitly inversed with the CG solver. To analyze the properties of
Jyu, we shall expand €;; 57— 85 straightforwardly:
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Eq. (10) implies that JI/ is always symmetric. The positive-definiteness of J/, on the other hand,
is not guaranteed since it depends on 9n/9¢. For simplicity, we define
877 éi j
E=¢é—- and n; =-2.
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As seen, E is a scalar quantity in units of Pa-s, and n;; is the unit tensor parallel to €;;. Then
Eq. (10) can be rewritten as
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It is easy to see from Eq. (11) that éij% has only one non-trivial eigenvalue E. In fact, we may
consider n;; as a 2-D unit vector on the 7-plane of the principal strain rate space (the 3-D space with
principal strain rate €1, €2 and €3 as coordinate axes), which is equivalent to applying a rotational
transformation to n;;. Denote the unit vector by n = [cos ¢ sin@]”, then Eq. (11) can be explicitly
expressed as

= Enijnkl. (11)
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It is clear that the eigenvalues of Enn” are 0 and E. Consequently, the Jacobian matric J,, is
positive-definite as long as E > —n.



1 Power-law creep
The power-law creep is generally stated as
n= 7706:%717 (13)

where 79 is the prefactor, and n is a dimensionless parameter satisfying n > 1. Straightforward

derivation gives
1 1
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Since n > 1, we always have E > —n, which implies that J,, for the power-law rheology is always
positive-definite.

2 The Drucker-Prager model

The yield function of the Drucker-Prager model is defined as
T
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where 7 = |/7;7i;, € and ¢ are material parameters determined by the friction angle and the
cohesion. When plastic yielding occurs, we have F' = 0, which indicates that

F=—7-¢—C( (15)

ﬁ =&p+C. (16)
Thus, we have
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p=-2t__, (18)
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The equation above implies that J,,, for the Drucker-Prager model is non-negative-definite (as plastic
yielding does not occur everywhere). To restore the positive-definiteness of the top-left block, we
should scale the Newton step with a factor o € (0,1).

3 Maxwell viscoplastic model

Simulations of lithosphere dynamics often employ a Maxwell-type viscoplastic model with an additive
decomposition
E= év + épa (19)

where the subscripts v and p stand for viscous and plastic contributions, respectively. Thus, the
comprehensive viscosity can be expressed as

n<1+1): (20)



where 1, and 7, are defined by Eq. (13) and Eq. (17), respectively. Then we have
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As seen, Jy, for Mazwell viscoplastic model is also positive-definite. In practice, however, we often
run into situations with 7, < 7,, which makes - close to 0. Therefore, to guarantee the con-
vergence of the CG solver, we had better scale the Newton step for Maxwell viscoplastic models as
well.

References

M R T Fraters, W Bangerth, C Thieulot, A C Glerum, and W Spakman. Efficient and practi-
cal Newton solvers for non-linear Stokes systems in geodynamic problems. Geophysical Journal
International, 218(2):873-894, August 2019. ISSN 0956-540X. doi: 10.1093/gji/ggz183.



	Power-law creep
	The Drucker-Prager model
	Maxwell viscoplastic model

