Positive-definiteness of the Jacobian matrix of the Stokes system for homogeneous media

Yimin Jin

January 30, 2024

The Stokes equation for incompressible fluid is stated as

$$
\begin{align*}
& \tau_{i j, j}-p_{, i}=f_{i} \tag{1}\\
& v_{i, i}=0 \tag{2}
\end{align*}
$$

where $\tau_{i j}$ is the deviatoric stress tensor, p is pressure, v_{i} is velocity, and f_{i} stands for a body force. The weak form of the momentum conservative equation can be calculated by integrating the inner product of Eq. (1) and a virtual velocity δv_{i} across the computational domain Ω, which yields after integrating by part

$$
\begin{equation*}
\int_{\Omega} \delta \dot{\varepsilon}_{i j} \tau_{i j} \mathrm{~d} \Omega-\int_{\Omega} \delta v_{i, i} p \mathrm{~d} \Omega=\int_{\Omega} \delta v_{i} f_{i} \mathrm{~d} \Omega \tag{3}
\end{equation*}
$$

where $\dot{\varepsilon}_{i j} \equiv\left(v_{i, j}+v_{j, i}\right) / 2$ denotes the strain rate tensor. Similarly, the weak form of mass conservative equation is obtained by multiplying Eq. (2) with a virtual pressure δp and integrating across Ω, which gives

$$
\begin{equation*}
\int_{\Omega} \delta p v_{i, i} \mathrm{~d} \Omega=0 \tag{4}
\end{equation*}
$$

With proper finite element approximation

$$
\begin{equation*}
v_{i} \approx \sum_{I} V^{I} \varphi_{i}^{I}, \quad p \approx \sum_{I} P^{I} \vartheta^{I} \tag{5}
\end{equation*}
$$

Eqs. (3) and (4) can be discretized into the algebraic form

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \tag{6}\\
\mathbf{B} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{V} \\
\boldsymbol{P}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{f} \\
\mathbf{0}
\end{array}\right],
$$

where the matrix and right-hand side blocks are defined by

$$
A^{I J}=\int_{\Omega} \varepsilon_{i j}^{I} \tau_{i j}^{J} \mathrm{~d} \Omega, \quad B^{I J}=-\int_{\Omega} \varphi_{i, i}^{I} \vartheta^{J} \mathrm{~d} \Omega, \quad f^{I}=\int_{\Omega} \varphi_{i}^{I} f_{i} \mathrm{~d} \Omega
$$

In the above expressions, $\varphi_{i j}^{I} \equiv\left(\varphi_{i, j}^{I}+\varphi_{j, i}^{I}\right) / 2$, and $\tau_{i j}^{I}$ is a function of $\varphi_{k l}^{I}$ and ϑ^{I} satisfying $\sum_{I} \tau_{i j}^{I} V^{I}=\tau_{i j}$. For instance, if the fluid is Newtonian, then we have $\tau_{i j}^{I}=2 \eta \varphi_{i j}^{I}$, hence $\sum_{I} \tau_{i j}^{I} V^{I}=$ $2 \eta \dot{\varepsilon}_{i j}=\tau_{i j}$. However, in geodynamic problems the relationship between $\tau_{i j}$ and $\dot{\varepsilon}_{k l}$ is generally nonlinear.

We employ the Newton-Raphson method to resolve the nonlinearity in Eq. (6). In each Newton iteration, we need to solve the linearized system

$$
\left[\begin{array}{cc}
\mathbf{J}_{v v} & \mathbf{J}_{v p} \tag{7}\\
\mathbf{J}_{p v} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathrm{d} \boldsymbol{V} \\
\mathrm{~d} \boldsymbol{P}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{f} \\
\mathbf{0}
\end{array}\right]-\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{V} \\
\boldsymbol{P}
\end{array}\right] .
$$

The blocks of the Jacobian matrix have the following form:

$$
J_{v v}^{I J}=\int_{\Omega} \varphi_{i j}^{I} \frac{\partial \tau_{i j}}{\partial \dot{\varepsilon}_{k l}} \varphi_{k l}^{J} \mathrm{~d} \Omega, \quad J_{v p}^{I J}=\int_{\Omega} \varphi_{i j}^{I} \frac{\partial \tau}{\partial p} \vartheta^{J} \mathrm{~d} \Omega+B^{J I}, \quad J_{p v}^{I J}=B^{I J}
$$

More specifically, we assume that the material is homogeneous, i.e. $\tau_{i j}$ is parallel with $\dot{\varepsilon}_{i j}$. In such cases, $\tau_{i j}$ can be expressed as

$$
\begin{equation*}
\tau_{i j}=2 \eta(\dot{\varepsilon}, p) \dot{\varepsilon}_{i j} \tag{8}
\end{equation*}
$$

where $\dot{\varepsilon} \equiv \sqrt{\dot{\varepsilon}_{i j} \dot{\varepsilon}_{i j}}$ is the norm of $\dot{\varepsilon}_{i j}$. Substitution of Eq. (8) in the expression of $J_{v v}^{I J}$ gives

$$
\begin{equation*}
J_{v v}^{I J}=\int_{\Omega} 2 \varphi_{i j}^{I}\left(\eta I_{i j k l}^{s}+\dot{\varepsilon}_{i j} \frac{\partial \eta}{\partial \dot{\varepsilon}_{k l}}\right) \varphi_{k l}^{J} \mathrm{~d} \Omega \tag{9}
\end{equation*}
$$

where $I_{i j k l}^{s} \equiv\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) / 2$ is the symmetric projection tensor. Eq. (9) is equivalent to Eq. (14) in Fraters et al. [2019].

As illustrated by Fraters et al. [2019], to employ the Schur complement preconditioner to solve Eq. (7), we must guarantee that $\mathbf{J}_{v v}$ is symmetric and positive-definite, otherwise the top-left block of the preconditioner cannot be implicitly inversed with the CG solver. To analyze the properties of $\mathbf{J}_{v v}$, we shall expand $\dot{\varepsilon}_{i j} \frac{\partial \eta}{\partial \dot{\varepsilon}_{k l}}$ straightforwardly:

$$
\begin{equation*}
\dot{\varepsilon}_{i j} \frac{\partial \eta}{\partial \dot{\varepsilon}_{k l}}=\varepsilon_{i j} \frac{\partial \eta}{\partial \dot{\varepsilon}} \frac{\partial \dot{\varepsilon}}{\partial \dot{\varepsilon}_{k l}}=\dot{\varepsilon}_{i j} \frac{\partial \eta}{\partial \dot{\varepsilon}} \frac{\dot{\varepsilon}_{k l}}{\dot{\varepsilon}}=\dot{\varepsilon} \frac{\partial \eta}{\partial \dot{\varepsilon}} \frac{\dot{\varepsilon}_{i j}}{\dot{\varepsilon}} \frac{\dot{\varepsilon}_{k l}}{\dot{\varepsilon}} . \tag{10}
\end{equation*}
$$

Eq. (10) implies that $J_{v v}^{I J}$ is always symmetric. The positive-definiteness of $J_{v v}^{I J}$, on the other hand, is not guaranteed since it depends on $\partial \eta / \partial \dot{\varepsilon}$. For simplicity, we define

$$
E \equiv \dot{\varepsilon} \frac{\partial \eta}{\partial \dot{\varepsilon}} \quad \text { and } \quad n_{i j} \equiv \frac{\dot{\varepsilon}_{i j}}{\dot{\varepsilon}}
$$

As seen, E is a scalar quantity in units of $\mathrm{Pa} \cdot \mathrm{s}$, and $n_{i j}$ is the unit tensor parallel to $\dot{\varepsilon}_{i j}$. Then Eq. (10) can be rewritten as

$$
\begin{equation*}
\dot{\varepsilon}_{i j} \frac{\partial \eta}{\partial \dot{\varepsilon}_{k l}}=E n_{i j} n_{k l} \tag{11}
\end{equation*}
$$

It is easy to see from Eq. (11) that $\dot{\varepsilon}_{i j} \frac{\partial \eta}{\partial \dot{\varepsilon}_{k l}}$ has only one non-trivial eigenvalue E. In fact, we may consider $n_{i j}$ as a 2-D unit vector on the π-plane of the principal strain rate space (the 3 -D space with principal strain rate $\dot{\varepsilon}_{1}, \dot{\varepsilon}_{2}$ and $\dot{\varepsilon}_{3}$ as coordinate axes), which is equivalent to applying a rotational transformation to $n_{i j}$. Denote the unit vector by $\boldsymbol{n} \equiv[\cos \phi \sin \phi]^{T}$, then Eq. (11) can be explicitly expressed as

$$
E \boldsymbol{n} \boldsymbol{n}^{T}=E\left[\begin{array}{cc}
\cos ^{2} \phi & \cos \phi \sin \phi \tag{12}\\
\cos \phi \sin \phi & \sin ^{2} \phi
\end{array}\right]
$$

It is clear that the eigenvalues of $\boldsymbol{E n n}^{T}$ are 0 and E. Consequently, the Jacobian matrix $\boldsymbol{J}_{v v}$ is positive-definite as long as $E>-\eta$.

1 Power-law creep

The power-law creep is generally stated as

$$
\begin{equation*}
\eta=\eta_{0} \dot{\varepsilon}^{\frac{1}{n}-1} \tag{13}
\end{equation*}
$$

where η_{0} is the prefactor, and n is a dimensionless parameter satisfying $n \geq 1$. Straightforward derivation gives

$$
\begin{equation*}
E=\eta_{0}\left(\frac{1}{n}-1\right) \dot{\varepsilon}^{\frac{1}{n}-1}=\left(\frac{1}{n}-1\right) \eta . \tag{14}
\end{equation*}
$$

Since $n \geq 1$, we always have $E>-\eta$, which implies that $\boldsymbol{J}_{v v}$ for the power-law rheology is always positive-definite.

2 The Drucker-Prager model

The yield function of the Drucker-Prager model is defined as

$$
\begin{equation*}
F=\frac{\tau}{\sqrt{2}}-\xi p-\zeta \tag{15}
\end{equation*}
$$

where $\tau \equiv \sqrt{\tau_{i j} \tau_{i j}}, \xi$ and ζ are material parameters determined by the friction angle and the cohesion. When plastic yielding occurs, we have $F=0$, which indicates that

$$
\begin{equation*}
\frac{\tau}{\sqrt{2}}=\xi p+\zeta \tag{16}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\eta=\frac{\tau}{2 \dot{\varepsilon}}=\frac{\xi p+\zeta}{\sqrt{2} \dot{\varepsilon}} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
E=-\frac{\xi p+\zeta}{\sqrt{2} \dot{\varepsilon}}=-\eta \tag{18}
\end{equation*}
$$

The equation above implies that $\boldsymbol{J}_{v v}$ for the Drucker-Prager model is non-negative-definite (as plastic yielding does not occur everywhere). To restore the positive-definiteness of the top-left block, we should scale the Newton step with a factor $\alpha \in(0,1)$.

3 Maxwell viscoplastic model

Simulations of lithosphere dynamics often employ a Maxwell-type viscoplastic model with an additive decomposition

$$
\begin{equation*}
\dot{\varepsilon}=\dot{\varepsilon}_{v}+\dot{\varepsilon}_{p} \tag{19}
\end{equation*}
$$

where the subscripts v and p stand for viscous and plastic contributions, respectively. Thus, the comprehensive viscosity can be expressed as

$$
\begin{equation*}
\eta=\left(\frac{1}{\eta_{v}}+\frac{1}{\eta_{p}}\right)^{-1} \tag{20}
\end{equation*}
$$

where η_{v} and η_{p} are defined by Eq. (13) and Eq. (17), respectively. Then we have

$$
\begin{equation*}
E=-\dot{\varepsilon} \eta^{2}\left(-\frac{1}{\eta_{v}^{2}} \frac{\partial \eta_{v}}{\partial \dot{\varepsilon}}-\frac{1}{\eta_{p}^{2}} \frac{\partial \eta_{p}}{\partial \dot{\varepsilon}}\right)=\eta^{2}\left(\frac{E_{v}}{\eta_{v}^{2}}+\frac{E_{p}}{\eta_{p}^{2}}\right)=\eta^{2}\left(\frac{\frac{1}{n}-1}{\eta_{v}}-\frac{1}{\eta_{p}}\right)=\left(\frac{\eta}{n \eta_{v}}-1\right) \eta \tag{21}
\end{equation*}
$$

As seen, $\boldsymbol{J}_{v v}$ for Maxwell viscoplastic model is also positive-definite. In practice, however, we often run into situations with $\eta_{p} \ll \eta_{v}$, which makes $\frac{\eta}{n \eta_{v}}$ close to 0 . Therefore, to guarantee the convergence of the CG solver, we had better scale the Newton step for Maxwell viscoplastic models as well.

References

M R T Fraters, W Bangerth, C Thieulot, A C Glerum, and W Spakman. Efficient and practical Newton solvers for non-linear Stokes systems in geodynamic problems. Geophysical Journal International, 218(2):873-894, August 2019. ISSN 0956-540X. doi: 10.1093/gji/ggz183.

