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We discuss some simple concepts for vectorizing scientific codes, then apply these concepts to ConMan, a finite
element code for simulations of mantle convection. We demonstrate that large speed-ups, close to the theoretical limit
of the machine, are possible for entire codes, not just specially constructed routines. Although our specific code uses the
finite element method, the vectorizing concepts discussed are widely applicable.

1 Introduction

Many large computational projects in geo-
physics are now being run on vector supercom-
puters such as the Cray X-MP, yet after more than
a decade since the introduction of the Cray-1,
most geophysicists simply compile their original
codes, making use of the fast clock, without taking
full advantage of the vector hardware or achieving
anywhere near supercomputer speed.

To illustrate, let us consider the Cray X-MP
with a 9.5 ns clock. It takes six clock cycles to
compute a floating point addition (7 clock cycles
for a floating point multiplication). This leads to a
theoretical peak scalar rate of 9.5 MFLOPS (mil-
lion floating point operations per second). This is
about 25 times faster than a Sun 3/260 work-
station (Dongarra, 1987). The theoretical maxi-
mum for vector code on the Cray X-MP is 210
MFLOPS, over 20 times faster than the scalar
code and 500 times faster than the Sun. In reality,
the theoretical speeds are never reached; however,
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speeds of 50-200 MFLOPS are attainable for
many codes (Dongarra and Eisenstat, 1984).

It is often mistakenly believed that for a gen-
eral code, special tricks are needed to obtain vec-
tor performance. However, although vectorizing
compilers are becoming more sophisticated, a code
that does not have data structures suitable for
vector operations will not perform well on a vec-
tor computer. We show that ConMan (Convec-
tion, Mantle), a finite element code for two-di-
mensional, incompressible, thermal convection,
which uses the simple concepts we present and no
special tricks, runs up to 65 MFLOPS for the
entire code on a Cray X-MP (including i/0 and
subroutine overhead).

Understanding vectorization is becoming even
more important because of the recent introduction
of high-performance pipelined workstations. The
pipeline architecture is similar to a vector register,
and many of the same concepts from vector pro-
gramming apply to obtaining the maximum per-
formance from a pipelined computer.

In the next section we discuss the basic con-
cepts of vectorization, including the concepts of
chaining and unrolling. Although we illustrate
vectorization with the finite element code Con-
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Man, the concepts we present are general. Because
we use a general formulation of the finite element
method, it would be especially easy to generalize
ConMan to solve other equations or other geome-
tries. We then review the equations for incom-
pressible thermal convection and briefly describe
the techniques used to solve them using the finite
element method. We present benchmarks and tim-
ings for several computers and we include an
example subroutine from ConMan in the Appen-
dix for illustration.

2. Vectorization

Consider the simple addition
c;=a;+b; fori=1,2,..., Nomp (1)

on a generic scalar architecture. A new result ¢, is
available after N,,, the total number of cycles
needed for one addition (on the Cray X-MP this is
six cycles). On a vector computer, after the sum-
mands a; and b, move to the second step in the
addition unit, the next summands 4, and b, can
enter the addition unit. The first result ¢, 1is
available after N,y cycles. Then, unlike a scalar
operation, after (N, + 1) cycles ¢, is available,
and so on. After the start-up cost, a new result is
available every cycle. On the scalar machine, the
second result would not be available until after
2N,q4 cycles. For long vectors (i.e, Ny, large),
the vector time is asymptotically reduced by
1/N,,4 relative to scalar processing.

In addition to increasing speed by vectoriza-
tion, a vector computer can chain operations. The
classic example is the linear algebra operation
SAXPY (Single precision A times X Plus Y)

Cl=a~xl—+-y1 fori=1, 27~--7Nc0mp (2)

Chaining allows the result from a - x; to be added
to y, while a-x, is being computed, and so on.
As the Cray X-MP has eight vector registers, up to
seven vectors could appear on the right-hand side
and be chained (one register is needed for the
result vector ¢;). In this way, an addition and a
multiplication can be computed each clock cycle,
leading to the 210 MFLOP theoretical rate.
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In FORTRAN (or C), vectorization is imple-
mented in the innermost do loop. Within the
innermost do loop there must be no subroutine
calls or i/0 statements because these inhibit vec-
torization of the loop (as compilers become more
sophisticated this statement will no longer be true).
Because it is the innermost loops which are
vectorized, these should be in general the longest
loops (the loop whose index runs over the largest
range) and they should not have any dependent
statements, where a newly computed result is used
in the right-hand side of the same assignment
during a future pass of the loop. A simple example
is

DO101=1,N
A =AD) +AI-1)
10 CONTINUE

This causes a problem because the result A(I) is
dependent on the previous value A(I — 1). In real
codes this problem is often hidden in a statement
which uses indirect referencing, as in the following
finite element example. This loop assembles the
element contribution for the IELth element into
the global equations, LM(IEL, 1 — 4), for the four
local nodes.

DO 10 IEL = 1, NEL

A(LM(EL, 1)) = A(LM(EL, 1)) +
EL_LOCAL(IEL, 1)

A(LM(IEL, 2)) = A(LM({EL, 2)) +
EL_LOCAL(IEL, 2)

A(LM(IEL, 3)) = A(LM({EL, 3)) +
EL_LOCAL(IEL, 3)

A(LM(IEL, 4)) = A(LM(IEL, 4)) +
EL_LOCAL(IEL, 4)

10 CONTINUE

where LM(IEL, 1) is an integer array of indices
with IEL the element number and LM(IEL, 1) the
global equation number of the first node of the
IELth element. Here, the compiler cannot assume
that LM(IEL, 1) is not equal to LM(IEL ~J, 1)
for some arbitrary J.

Many of the operations in a finite element code
(or finite difference code) have this kind of struc-
ture and the LM arrays usually have the unfor-
tunate property that LM(IEL, 1) is not a unique
value (see Fig. 1 for an example). This is not a
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Fig. 1. The four bilinear quadrilateral elements (1-4) all contribute to the global nodal equation at node N, which they all share. The
element numbers are circled and the global node numbers are not. The LM array for element 4 is listed at the right.

serious problem because we can rearrange the
elements (by shuffling the LM array) such that
there is a small number of groups of elements that
do not share global nodes (Fig. 2). We can then
loop over the total number of groups and over the

it v 11T

==

Fig. 2. The ‘four-color’ ordering scheme used in ConMan. It
should be noted that the shaded elements (group I) do not
share nodes with any other group I element. This group can be
operated on safely with a vector operation.

elements in each group, which are independent
and will safely vectorize.

The final point illustrated here is that as we
want our innermost loop to be the loop over the
elements, we do not want small loops over the
local node numbers (i.e., [ =1, 4). We unroll the
innermost loop by writing out the expression four
times, explicitly putting in the value of the local
node in each line (see Appendix for an example).

3. Equations and implementation

We now turn to the specific example program,
ConMan, and discuss in brief the equations and
the method used to implement their solutions on a
vector computer. We give only a brief description
of the method and refer to other work for conver-
gence proofs, stability proofs and detailed analyses.

The equations for incompressible convection
(in dimensionless form) are the equations of
momentum

viu= ~vp+ Ra 0k (3)
continuity
vV -u=0 (4)
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and energy
2—?=u-v0+V20 (5)

where u is the dimensionless velocity, § is the
dimensionless temperature, p is the dimensionless
pressure, k is the unit vector in the vertical direc-
tion and ¢ is the dimensionless time. In this form
all the material properties are combined into one
dimensionless parameter, the Rayleigh number,
given by

Ra = gaATd? 6)
Kt

where g is the acceleration due to gravity, « is the

coefficient of thermal expansion, AT is the tem-

perature drop across the box, d is the depth of the

box, « is the thermal diffusivity, and p is the

dynamic viscosity.

The momentum and energy equations form a
simple coupled system of differential equations.
We treat the incompressibility equation as a con-
straint on the momentum equation and enforce
incompressibility in the solution of the momentum
equation using a penalty formulation. As the tem-
peratures provide the buoyancy (body force) to
drive the momentum equation and as there is no
time dependence in the momentum equation, the
algorithm to solve the system is a simple one:
given an initial temperature field, calculate the
resulting velocity field. Use the velocities to advect
the temperatures for the next time step and solve
for a new temperature field. If the time stepping
for the temperature equation is stable, then this
method is stable and converges as At — 0.

3.1. Momentum equation

The momentum equation is solved using the
penalty method to enforce incompressibility. The
formal statement of the problem is as follows:
Given:

f: € —R" body force vector

g: I, > R" imposed velocity vector
h: T, > R™ imposed traction vector
rgUI‘h =T

rL,Nr,=ao
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where [ is the boundary of the domain £. T, and
I',, are the parts of the boundary where velocities
and tractions are specified. @ is the empty set.
Find u: > R" and p: 2 >R

t,,;+fi=0 onQ (7)
u,,; =0 on { (8)
u,=g; on rg (9)
t,n;=h; on T, (10)

with the constitutive equation for a Newtonian
fluid

t.,,=—p8,;+2pu, (11)
where ¢,; denotes the Cauchy stress tensor, p is
the pressure, §,; is the Kronecker delta and «;

= (u,‘j + uJ‘,-)/2.

In the penalty formulation, (11) is replaced by
1) = —p™8;; + 2pull), (12)
where

PV =—Aul) (13)

and A is the penalty parameter (repeated sub-
scripts means summation over all indices).

This formulation automatically enforces incom-
pressibility (8) as the solution to (7), (12) and (13)
converges to the incompressible Stokes equation
as A approaches infinity (Temam, 1977). Also, the
unknown pressure field is eliminated. This is use-
ful not only because the amount of computational
work is decreased because no pressure equation is
solved, but also because it eliminates the need to
create artificial boundary conditions for the pres-
sure equation. There are no pressure boundary
conditions in the formal specification of the prob-
lem. By examining the equation we see that the
role of pressure is to balance the system, so physi-
cally the penalty formulation makes sense.

The equation is cast in the weak form and the
Galerkin formulation (i.e, the weighting functions
are the same as the basis functions) is used to
solve the weak form of the equation.

Let

V={w€H1]w=OonI‘g} (14)

where V' is the set of all weighting functions w
which vanish on the boundary. Similarly V" is a
subset of V' parameterized by 4, the mesh parame-
ter. Let g” denote an approximation of g which
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Fig. 3. (a) The location and numbering of the 8 X8 element
stiffness matrix for the velocity equation used in ConMan. It
should be noted that the matrix is made up of 16 2 X 2 matrices
with i, j indices as shown. The / and j refer to the local node
numbering of the element and can be thought of as the effect
of node i as felt at node j. (b) The 8 X8 element stiffness
matrix is made up of two terms: a viscosity contribution [K']{,
and the penalty contribution [ X ]5. (c) The 2 X2 submatrix for
the viscous contribution to the element stiffness matrix. N, (#)
is the x derivative of the shape function evaluated at node 7 (i,
j here refer to the location of the 2X2 matrix in the 8 x8
element stiffness matrix). (d) The 2X2 submatrix for the
penalty contribution to the element stiffness matrix (i, j here
refer to the location of the 2X2 matrix in the 8 X8 element
stiffness matrix).

converges to g as A —> 0. Find u" = w” + g" w' e
V* such that for all w” € V*

f(ij}"./wl"',i+2pw?'jWﬁj) a
[(Aw.
- [ dsz+frhh,-‘7f' g

_'[Q(Agjl".j‘;:'.r +2pg! Wl ;) A9 (15)

w™ =Y Nu,, (16)
U= ui(xA) (17)

where N, is the shape function for node A for the
element.

The element stiffness matrix (Fig. 3) is made up
of the two terms from the left-hand side of the
integral equation. The integration is done using
2 X 2 Gauss quadrature, which is exact when the
elements are rectangular and bilinear shape func-
tions are used. The A term is under-integrated
(one point rule) to keep the large penalty value
from effectively locking the element (Malkus and
Hughes, 1978). The right-hand side is made up of
three known parts, the body force term (f;), the
applied tractions (4,) and the applied velocities
(g;)- The momentum equation is equivalent to an
incompressible elastic problem, and the resulting
stiffness matrix will always be positive definite
(Hughes, 1987, pp. 84-89). This allows us to as-
semble only the upper triangular part of the stiff-
ness matrix and save both storage and operations
using Cholesky factorization. More details of the
method and a formal error analysis were given by
Hughes et al. (1979).

3.2. Energy equation
The energy equation is an advection—diffusion

equation. The formal statement is
Find T: Q@ — R such that

T+uT,=«T,+H ong (18)
T=b on I, (19)
T ,n,=gq onT, (20)

where T is the temperature, u; is the velocity, « is
the thermal diffusivity and H is the internal heat
source. The weak form of (18) is given by

fﬂ(w +p)TdQ = —fg(w +p)(u,T;) dQ

—K-/;Zw'iT'i dQ +~/;‘WT'jnj dr,
4

(21)

where T is the time derivative of temperature, T,
is the gradient of temperature, w is the standard
weighting function and (w + p) is the
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Petrov—Galerkin weighting function with, p, the
discontinuous streamline upwind part of the Pet-
rov—Galerkin weighting function given by

. W
p=r1u-vT=ku—"— (22)
llull

The energy equation is solved using
Petrov-Galerkin weighting functions on the inter-
nal heat source and advective terms to correct for
the under-diffusion and remove the oscillations
which would result from the standard Galerkin
method for an advection-dominated problem
(Hughes and Brooks, 1979). The Petrov-Galerkin
function can be thought of as a standard Galerkin
method in which we counterbalance the numerical
underdiffusion by adding an artificial diffusivity
of the form

with
K

g_l—zughg (24)
K

n——l—2u"hn (25)

where s, and h, are the element lengths and u,
and u, are the velocities in the local element
coordinate system (£n system) evaluated at the
element center. This form of discretization has no
crosswind diffusion because (23) acts only in the
direction of the flow (i.e., it follows the streamline),
hence the name Streamline Upwind Petrov—
Galerkin (SUPG). This makes it a better ap-
proximation than straight upwinding, and it has
been demonstrated to be more accurate than
Galerkin or straight upwinding in advection-
dominated problems (Hughes and Brooks, 1979;
Brooks, 1981). It has recently been shown that the
SUPG method is one of a broader class of meth-
ods for advection—-diffusion equations referred to
as Galerkin /least-squares methods (Hughes et al.,
1988).

The resulting matrix equation is not symmetric,
but as the energy equation only has one degree of
freedom per node, whereas the momentum equa-
tion has two or three, the storage for the energy
equation is small compared with that for the
momentum equation. As we use an explicit time-
stepping method, the energy equation is not im-

S.D. KING ET AL.

plemented in matrix form. The added cost of
calculating the Petrov-Galerkin weighting func-
tions is much less than the cost of using a refined
grid with the Galerkin method. The Galerkin
method requires a finer grid than the
Petrov—-Galerkin method to achieve stable solu-
tions (Travis et al., in preparation).

3.2.1. Time stepping

Time stepping in the energy equation is done
using an explicit predictor—-corrector algorithm.
The form of the predictor—corrector algorithm is
Predict:

T =T, + A(1 - o)T, (26)
T;r(g)l =0 (27)
Solve:
M*AT), = R, (28)
R(ni-)kl == [Tn(i)l tu- (T;r(‘+)1)_x](w +p)
_I;W,x(n(i)l )‘X
+ (boundary condition terms) (29)
Correct:
T = T + AraTy (30)
TN = T, + AT, (1)

where i is the iteration number (for the corrector),
n is the time-step number, 7T is the temperature, T
is the derivative of temperature with time, AT is
the correction to the temperature derivative for
the iteration, M* is the lumped mass matrix,
RY) | is the residual term, Az is the time step and
a is a convergence parameter. It should be noted
that in the explicit formulation M * is diagonal.

The time step is dynamically chosen, and corre-
sponds to the Courant time step (the largest step
that can be taken explicitly and maintain stability).
With the appropriate choice of variables, a = 0.5
and two iterations, the method is second-order
accurate (Hughes, 1987, pp. 562-566).

4, Numerical benchmarks

Two examples are given, based on benchmarks
for two-dimensional Cartesian convection codes
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Table 1
The parameters used in the two benchmarks
Parameters Benchmark

CVBM TDBM
Rayleigh number 77927 100000
Time steps 5000 1000
Tempdep viscosity no yes
Velocity b.c. fs fs
Temp b.c.—top T=0 T=0
Temp b.c.—bottom T=1 T=1

Tempdep viscosity means the global matrix had to be factored
at every step. fs means free slip boundary condition applied at
the boundaries (flow allowed along the side walls as well as top
and bottom). TDBM was not run to steady state, but for a
fixed number of time steps for timing purposes

given by Travis et al. (in preparation). The param-
eters for these benchmarks are given in Table 1.
There are two purposes for these benchmarks: (1)
to verify the code against standard existing codes;
and (2) to demonstrate the speed of the vector
code on representative problems. Benchmark
CVBM has a constant viscosity, and the velocity
stiffness matrix is factored only once, whereas
TDBM (not from Travis et al.) has temperature-
dependent viscosity and the velocity stiffness ma-

Table 2

Execution speeds normalized to the Cray X-MP scalar execu-
tion speed for the two benchmark problems (CVBM and
TDBM) on various computers

Computer Benchmark
CVBM TDBM

Cray Y-MP V 31.18 26.07
Cray X-MP V 18.73 15.29
Cray 2V 15.92 10.62
Convex C210 V 427 3.10
Convex C120 V 1.40 1.42
Cray X-MP S 1.00 1.00
Sun 4-330 0.42 0.79
Convex C120 S 0.31 0.42

Where available, both scalar (S) and vector (V) speeds are
shown. The speed-up (the ratio of scalar to vector times) is
greater on the Crays than on the Convex because the slower
memory access on the Convex limits vector performance

trix is factored at every time step. This allows us
to observe the difference between the speed-up in
the finite element forms and assemblies and the
matrix factorization and back-substitution.
Vectorizing sparse matrix solvers is an area of
active research (e.g., Ashcraft et al., 1987; Lucas,
1988), and our implementation has used a stan-

Table 3
Execution times (in seconds) for individual routines for benchmarks CVBM and TDBM in scalar and vector mode on various
computers
Subroutine Convex C120 Cray X-MP Cray Y-MP Cray 2

Scalar Vector Scalar Vector Scalar Vector Scalar Vector
Times (s) for subroutines from CVBM
Factor 10.4 3.6 4.8 - 0.2 - 0.5
Backsolve 31322 830.2 1341.5 - 52.8 - 100.1
f_vStf 1.6 0.4 0.6 - 0.0 ~ 0.1
f_vRes 531.0 929 154.4 - 38 - 9.5
f_tRes 52723 948.7 12124 - 28.2 - 53.8
Total 9383.2 2021.2 2869.3 153.2 - 92.0 - 180.2
Times (s) for subroutines from TDBM
Factor 10883.4 3564.9 4870.0 297.1 - 199.4 - 507.7
Backsolve 646.9 167.3 270.2 - 10.6 - 200
f_vStf 1690.0 417.1 649.5 - 15.9 - 30.0
f_vRes 112.9 19.5 30.6 - 0.8 - 1.8
f_tRes 1088.5 188.0 242.4 - 5.5 - 10.6
Total 14513.8 4383.2 6094.7 398.6 - 233.7 - 573.4

The assembling routines (f _vStf, f _vRes, f_tRes) show better vector performance than do the factor and back-substitution routines.
The performance of the factorization and back-substitution improves as the bandwidth of the matrix approaches the vector register

length
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dard and poorly vectorized solver. Therefore we
present the times in individual units of the pro-
gram as well as the total times. Results are given
for a Convex-C120 running Unix compiled with
fcd.1, a Convex-C210 running Unix compiled with
fc5.0, a Cray X-MP 4/8 running CTSS, compiled
with CFT77, a Cray 2 (one processor) running
Unicos and a Cray Y-MP (one processor), also
running Unicos. (We list compilers and operating
systems as we found a factor of up to 1.5 dif-
ference in speed between code compiled with dif-
ferent compilers on the same machine!) We pre-
sent execution speed relative to the Cray X-MP
scalar speed (Table 2), as that is comparable with
the vector speed of the original code upon which
ConMan was based. It should be noted that a
well-vectorized code runs better on mini-super-
computers such as the Convex C120 and C210
than a scalar code on a Cray. Hardware monitor-
ing for CVBM gives an overall rate of 65 MFLOPS
on the X-MP (95 MFLOPS on the faster Y-MP).
TDBM, with an overall rate of 45 MFLOPS on
the Y-MP, is slower because more time is spent
factoring, a routine which is not well vectorized. A
breakdown of the execution time spent in each of
the major routines is given in Table 3.

We note that an old version of the SUPG
(Streamline Upwind Petrov—Galerkin) code on
which ConMan is based ran slower in vector mode
than ConMan does in scalar. This indicates that
even though the compiler indicated it was
vectorizing many loops in the old code, either the
time-consuming calculations were not being
vectorized or the loops were too short to give any
appreciable speed-up. We also note that ConMan
runs faster on a Sun 4-330, which is a scalar
machine, than the old SUPG code (a common
finding of people who vectorize and optimize
codes).

From the benchmark timings it is clear that the
element assembly routines (f_vStf, f_vRes,
f_tRes) have been improved significantly more
than the factorization and back-substitution
routines. We note that faster fully vectorized ma-
trix solvers are being developed especially for finite
element programs (e.g., Lucas, 1988). We designed
ConMan so that it can be easily adapted to a new
matrix solver when one becomes available.

S.D. KING ET AL.

The routine times do not add up to the total
times because there are unlisted routines (for grid
generation and 1/0) that take a small amount of
time. The MFLOP rates and relative speeds, how-
ever, do include time spent in these routines. We
note that the speed-up, the ratio of scalar to vector
speed, on the Convex is not as good as on the
Crays. This is because in double precision the
Convex memory access time, especially in the
indirect referencing, is slowing the vector calcula-
tions. The Convex is simply not able to deliver
numbers fast enough to the vector registers. As the
Cray X-MP and Y-MP have three paths to mem-
ory, as well as a faster memory access time, they
are not limited by memory access. Also, because
of the Cray’s larger word size we can use single

(a)

®) @K/'r”\\
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e R .
Fig. 4. (a) Final temperature field for CYBM. The contour
interval is 0.1 dimensionless temperature units. The heavy
contour is the 0.5 contour line. (b) Difference of final tempera-
ture field above and the high-resolution 129X 129 grid from
Travis et al. (in preparation). The contour interval is 0.002
dimensionless temperature units. The heavy contour is the 0.0
contour line.
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precision on the Cray with the same accuracy as
double precision on the Convex.

Plots of the final temperature field and the
difference from a finite-difference calculation on a
129 x 129 grid from Travis et al. (in preparation)
are shown in Fig. 4. The solution for benchmark
CVBM agrees reasonably well with the Travis et
al. benchmark. The error from this method is
second order O((Ax)?*), where Ax is the grid
spacing. The error associated with the high resolu-
tion grid is more than an order of magnitude less
than the 33 X 33 grid used for CVBM. Taking the
129 X 129 result as the exact solution, the dif-
ference plot (Fig. 4b) shows the error in the SUPG
method. The SUPG method has localized the er-
ror in the corner regions where the flow is most
advective, and compares exactly with the sequen-
tial SUPG method code used in the benchmark
paper (see Travis et al. (in preparation) for more
details of the error associated with the method).

5. Summary

In addition to the traditional modifications for
vectorization (removing subroutine calls and i/0
statements from the inner loops, etc.), we believe
that data structure is an important consideration
for codes used on vector computers. We have
presented some simple ideas for improving code
performance on vector computers, specifically in

the improvement of data structures. These ideas
work not only on small linear algebra routines but
can also be extended to full-scale scientific pro-
grams and still retain order of magnitude speed-
ups. We have implemented these ideas in a new
finite-element code, ConMan, designed to study
problems in mantle convection, which takes ad-
vantage of the speed available on current vector
supercomputers. An unsupported version of this
code is available from the authors.
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Appendix
subroutine f_vRes(shl , det , tl , leblk
& t ,vths | mat ,ra ,
& tq ,dmv [ Imt )
C
include ‘common.h’
c
dimension shl(4,5) , det(numel,5) , ti(lvec,4) ,
& Icblk(2, nEG) , t(numnp) , vrhs(nEGdf),
& mat(numel) , ra(numat) , tqlvec,5)
& Imv(numel,8) , Imt(numel,4)
C

common /templ /el _rhs(lvec,8),blkra(lvec)
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c
c

c This routine calculates the Right Hand Side velocity Residual

c

c Input:

c lvec: max length of element groups (64 for Cray)
c numnp: total number of nodes

c numel: total number of elements

c nEGdf: number of degrees of freedom for velocity

c equation (2* numnp)

c

c shl(4,5): shape functions (for mapping element)

c det(numel,5):  determinant of element (for transformation)
c leblk(2,nEG):  element group info

c t(numnp): array of nodal temperatures

c mat(numel): material number of element

c ra(numat): rayleigh number of material groups

c Imv(numel,8)  array linking element and local node number
c to global equation number for velocity

c Imt(numel,)  array linking element and local node number
c to global equation number for temperature
c

c Temporary:

c tl(lvec,4): temporary space for temperature array

c tq(lvec,4): temporary array for temperatures at integration
c points

C el_rhs(lvec,8) temporary space for element contribution

c

c Output:

c vrhs(nEGdf):  right hand side of velocity equation

c

c
include ‘common.h’

c

c... loop over the element blocks

c
do 1000 iblk = 1, nelblk

c

c...set up the parameters

c

¢ iel: starting element number of the group

¢ nenl: number of element nodes (4 for bilinear elements)

¢ nvec: number of elements in iblk th group

c

iel = lcblk(1,1blk)
nenl = leblk(2,iblk)
nvec = lcblk(1,iblk + 1) — iel
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c... localize (gather) the temperature for the whole element group

do 150 iv=1, nvec
ivel=1v +1el — 1
tl(iv,1) = t( Imt(ivel,1) )
tl(iv,2) = t( Imt(ivel,2) )
tl(iv,3) = t( lmt(ivel,3) )
tl(iv,4) = t( Imt(ivel 4) )
150 continue

c

c... form the temperature at integration points

¢ the temperature at each integration point (tq(iv,1 — 4)) is formed by
¢ adding contributions from all four nodes (tl(iv,1 — 4))

c

do 200 iv =1, nvec
tq(iv,1) = shl(1,1) > tl(iv,1) + shl(2,1) * tl(iv,2)
& + shl(3,1) > tl(iv,3) + shl(4,1) * ti(iv,4)
tq(iv,2) = shl(1,2) * tl(iv,1) + shl(2,2) * tl(iv,2)
& + shl(3,2) * tl(iv,3) + shl(4,2) * tl(iv,4)
tq(iv,3) = shl(1,3) * tl(iv,1) + shl(2,3) * tl(iv,2)
& + shl(3,3) » tl(iv,3) + shl(4,3) * tl(iv,4)
tq(iv,4) = shl(1,4) * tl(iv,1) + shi(2,4) * tl(iv,2)
& + shl(3,4) » tl(iv,3) + shl(4,4) * ti(iv,4)
200 continue
c
c...load the value of the rayleigh number into temp array blkra
¢ for each element
c
c$dir no_recurrence
do 300 iv=1 , nvec
ivel =1v +1el — 1
blkra(iv) = ra(mat(ivel))
300 continue
c
... calculate the contribution to each local element right hand side
¢ due to the buoyancy (i.e. t*Ra)
c

do 400 iv=1, nvec

ivel =iv +1iel — 1

el _rhs(iv,1) = zero

el_rhs(iv,3) = zero

el _rhs(iv,5) = zero

el _rhs(iv,7) = zero

el _rhs(iv,2) = blkra(iv) * (tq(iv,1) * det(ivel, 1) * shl(1,1)
+ tq(iv,2) * det(ivel,2) * shl(1,2)
+ tq(iv,3) * det(ivel,3) * shi(1,3)
+ tq(iv,4) * det(ivel 4) * shl(1,4))

R
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el _rhs(iv,4) = blkra(iv) * (tq(iv,1) * det(ivel,1) * shl(2,1)
& + tq(iv,2) * det(ivel,2) * shi(2,2)
& + tq(iv,3) * det(ivel,3) * shl(2,3)
& + tq(iv,4) * det(ivel,4) * shl(2,4))

c
el _rhs(iv,6) = blkra(iv) * (tq(iv,1) * det(ivel,1) * shl(3,1)
& + tq(iv,2) * det(ivel,2) * shl(3,2)
& + tq(iv,3) * det(ivel,3) * shl(3,3)
& + tq(iv,4) * det(ivel,4) * shl(3,4))
c
el_rhs(iv,8) = blkra(iv) * (1q(iv,1) * det(ivel,1) * shl(4,1)
& + tq(iv,2) * det(ivel,2) * shl(4,2)
& + tq(iv,3) * det(ivel,3) * shl(4,3)
& + tq(iv,4) * det(ivel,4) * shl(4,4))

400 continue
c

c...assemble (scatter) the local element right hand sides into the

¢ global right hand side
c
c¢$dir no_recurrence
do 500 iv =1, nvec
ivel =1v+iel — 1

vrhs(Imv(ivel, 1)) = vrhs(Imv(ivel, 1)) + el _rhs(iv,1)
vrhs(lmv(ivel,2)) = vrhs(lmv(ivel,2)) + el _rhs(iv,2)
vrhs(lmv(ivel,3)) = vrhs(lmv(ivel,3)) + el _rhs(iv,3)
vrhs(Imv(ivel,4)) = vrhs(Imv(ivel,4)) + el _rhs(iv,4)
vrhs(Imv(ivel,5)) = vrhs(Imv(ivel,5)) + el _rhs(iv,5)
vrhs(Imv(ivel,6)) = vrhs(Imv(ivel,6)) + el _rhs(iv,6)
vrhs(lmv(ivel,7)) = vrhs(lmv(ivel,7)) + el _rhs(iv,7)
vrhs(Imv(ivel,8)) = vrhs(Imv(ivel,8)) + el _rhs(iv,8)

500 continue

c
¢... end loop over element blocks
c
1000 continue
c
c... return
c
return
end
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