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We discuss somesimple conceptsfor vectorizingscientific codes,then apply theseconceptsto ConMan, a finite
elementcodefor simulationsof mantleconvection.We demonstratethat largespeed-ups,closeto the theoreticallimit
of themachine,arepossiblefor entirecodes,notjust speciallyconstructedroutines.Although our specificcodeusesthe
finite elementmethod, the vectorizingconceptsdiscussedarewidely applicable.

1 Introduction speedsof 50—200 MFLOPS are attainable for
manycodes(DongarraandEisenstat,1984).

Many large computational projects in geo- It is often mistakenlybelievedthat for a gen-
physics are now being run on vector supercom- eralcode, specialtricks are neededto obtain vec-
puterssuchas the CrayX-MP, yet aftermorethan tor performance.However, although vectorizing
a decadesince the introduction of the Cray-i, compilersare becomingmoresophisticated,a code
most geophysicistssimply compile their original that does not have data structuressuitable for
codes,makinguseof thefast clock, without taking vector operationswill not perform well on a vec-
full advantageof the vectorhardwareor achieving tor computer. We show that ConMan (Convec-
anywherenearsupercomputerspeed. tion, Mantle), a finite elementcode for two-di-

To illustrate, let us considerthe Cray X-MP mensional, incompressible, thermal convection,
with a 9.5 ns clock. It takessix clock cycles to which usesthe simpleconceptswepresentandno
computea floating point addition (7 clock cycles special tricks, runs up to 65 MFLOPS for the
for a floating pointmultiplication).This leadsto a entirecode on a Cray X-MP (including i/o and
theoreticalpeakscalarrateof 9.5 MFLOPS (mil- subroutineoverhead).
lion floating point operationsper second).This is Understandingvectorization is becomingeven
about 25 times faster than a Sun 3/260 work- moreimportantbecauseof the recentintroduction
station (Dongarra, 1987). The theoretical maxi- of high-performancepipelined workstations.The
mum for vector code on the Cray X-MP is 210 pipeline architectureis similar to a vectorregister.
MFLOPS, over 20 times faster than the scalar and many of the sameconceptsfrom vector pro-
codeand500 times fasterthan the Sun. In reality, gramming apply to obtaining the maximum per-
the theoreticalspeedsare neverreached;however. formancefrom a pipelined computer.

In the next sectionwe discussthe basiccon-
ceptsof vectorization, including the conceptsof
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Cambridge,MA 02139, U.S.A. vectorization with the finite elementcode Con-
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Man, theconceptswepresentare general.Because In FORTRAN (or C), vectorizationis imple-
we usea generalformulationof the finite element mented in the innermost do ioop. Within the
method,it would be especiallyeasyto generalize innermost do loop there must be no subroutine
ConManto solve otherequationsor othergeome- calls or i/o statementsbecausethese inhibit vec-
tries. We then review the equations for incom- torization of the loop (as compilersbecomemore
pressiblethermal convectionand briefly describe sophisticatedthis statementwill no longerbe true).
the techniquesused to solve them using the finite Because it is the innermost ioops which are
elementmethod.Wepresentbenchmarksandtim- vectorized, theseshould be in generalthe longest
ings for several computersand we include an loops(the loop whose index runsover the largest
examplesubroutinefrom ConMan in the Appen- range)and they shouldnot have any dependent
dix for illustration. statements,wherea newly computedresultis used

in the right-hand side of the same assignment

during a futurepassof the loop. A simpleexample

2. Vectorization is
DO 10 I = 1, N

Considerthe simpleaddition A(I) = A(I) + A(I — 1)
10 CONTINUE

c,=a1+b1 fori=l,
2,...,Ncomp (1)

This causesa problem becausethe result A(I) is
on a genericscalararchitecture.A new result c

1 is dependenton the previousvalueA(I — 1). In real
available after N~dd,the total number of cycles codesthis problem is often hiddenin a statement
neededfor oneaddition(on the CrayX-MP this is which usesindirectreferencing,as in the following
six cycles).On a vector computer,after the sum- finite elementexample.This loop assemblesthe
mandsa1 and b1 move to the secondstep in the elementcontribution for the IELth elementinto
addition unit, the next summandsa2 and b2 can the global equations,LM(IEL, 1 — 4), for the four
enter the addition unit. The first result c1 is local nodes.
availableafter Nadd cycles. Then, unlike a scalar
operation,after (Nadd+ 1) cycles c2 is available, DO 10 IEL = 1, NEL
and so on. After the start-upcost, a new result is A(LM(IEL, 1)) = A(LM(IEL, 1)) +

availableevery cycle. On the scalarmachine, the EL_LOCAL(IEL, 1)
secondresult would not be available until after A(LM(IEL, 2)) = A(LM(IEL, 2)) +2Nadd cycles. For long vectors (i.e, Neomp large), EL_LOCAL(IEL, 2)
the vector time is asymptotically reduced by A(LM(IEL, 3)) = A(LM(IEL, 3)) +
I /Nadd relativeto scalarprocessing. EL ... LOCAL(IEL, 3)

In addition to increasing speedby vectoriza- A(LM(IEL, 4)) = A(LM(IEL, 4)) +
tion, a vectorcomputercanchain operations.The EL_LOCAL(IEL, 4)
classic example is the linear algebra operation 10 CONTINUE
SAXPY (SingleprecisionA timesX Plus Y) where LM(IEL, 1) is an integerarray of indices

= a~x
1 +yi for i = 1, 2 Ncomp (2) with IEL the elementnumberandLM(IEL, 1) the

global equationnumber of the first node of the

Chainingallows the result from a x~to be added IELth element.Here, the compilercannotassume
to Yi while a x2 is being computed,and so on. that LM(IEL, 1) is not equal to LM(IEL — J, 1)
As the CrayX-MP haseightvector registers,up to for some arbitraryJ.
sevenvectorscould appearon the right-handside Many of the operationsin a finite elementcode
and be chained (one register is needed for the (or finite differencecode) havethis kind of struc-
result vector c). In this way, an addition and a ture and the LM arrays usually have the unfor-
multiplication can be computedeachclock cycle, tunateproperty that LM(IEL, 1) is not a unique
leadingto the 210 MFLOP theoreticalrate. value (see Fig. 1 for an example).This is not a
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Fig. 1. The four bilinear quadrilateralelements(1—4) all contributeto theglobal nodalequationatnodeN, which theyall share.The
elementnumbersarecircledand theglobal nodenumbersare not. TheLM array for element4 is listed at theright.

serious problem becausewe can rearrangethe elements in each group, which are independent
elements(by shuffling the LM array) such that andwill safelyvectorize.
thereis a small numberof groupsof elementsthat The final point illustrated here is that as we
do not share global nodes(Fig. 2). We can then want our innermostloop to be the loop over the
loop over the total numberof groupsandover the elements, we do not want small loops over the

I I local node numbers(i.e., 1= 1, 4). We unroll the
innermostioop by writing out the expressionfour

__________ __________________________________ times, explicitly putting in the valueof the local

- nodein each line (seeAppendix for an example)
~ II

- ~ 3 Equations and implementation

We now turn to the specific exampleprogram,
ConMan, and discussin brief the equationsand

III W III themethod usedto implementtheir solutionson a

vectorcomputer.We give only a brief description
of the methodandrefer to otherwork for conver-
- ii: genceproofs stability proofsanddetailedanalyses

I II U The equations for tncompressibleconvection
- - -- (in dimensionless form) are the equations of

momentum

Fig. 2. The ‘four-color’ ordering schemeusedin ConMan. It V = — Vp + Ra 8~ (3)
should be noted that the shadedelements(group I) do not continuity
sharenodeswith anyothergroup I element.This group canbe
operatedon safelywith a vectoroperation. V u = 0 (4)
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andenergy where F is theboundaryof the domain ~2.Fg and

2 Fh are the partsof the boundarywherevelocities
= U~V&+ V 0 (5) andtractionsare specified.‘1 is the empty set.

Find u: —s R’
1 and p: ~2— R

where u is the dimensionlessvelocity, 0 is the
dimensionlesstemperature,p is the dimensionless t

11,1 +f, = 0 on (7)
pressure,k is the unit vectorin the verticaldirec- u,, = 0 on (8)
tion and t is the dimensionlesstime. In this form u = g on F (9)
all the materialpropertiesare combinedinto one — h 10
dimensionlessparameter, the Rayleigh number, t,1n1 — on
given by with the constitutive equation for a Newtonian

A .,3 fluidgcsi.iTa / .,

Ra = ~6 ~ = —p
6,J+ 2p.u~

11~ (11)

whereg is the accelerationdue to gravity, a is the where t,1 denotesthe Cauchystress tensor, p is
coefficient of thermal expansion, LXT is the tem- the pressure,~ is the Kroneckerdelta and U(, J)

peraturedrop acrossthe box, d is the depthof the = (u,,1 + u11)/2.

box, K is the thermal diffusivity, and p. is the In the penaltyformulation, (11) is replacedby
dynamic viscosity. t~ = + 2p.u~> (12)

The momentumand energy equationsform a h
simple coupled systemof differential equations. w ere
We treat the incompressibilityequationas a con- ~( = — ~ (13)
straint on the momentumequationand enforce and X is the penalty parameter(repeatedsub-
incompressibilityin the solution of the momentum scriptsmeanssummationover all indices).
equationusinga penaltyformulation.As the tem- This formulation automaticallyenforcesincom-
peraturesprovide the buoyancy(body force) to pressibility (8) as the solution to (7), (12) and(13)
drive the momentumequationand as thereis no convergesto the incompressibleStokesequation
time dependencein the momentumequation,the as A approachesinfinity (Temam,1977).Also, the
algorithm to solve the systemis a simple one: unknown pressurefield is eliminated.This is use-
given an initial temperaturefield, calculate the ful not only becausethe amountof computational
resultingvelocity field. Usethe velocitiesto advect work is decreasedbecauseno pressureequationis
the temperaturesfor the next time step and solve solved,but also becauseit eliminatesthe needto
for a new temperaturefield. If the time stepping createartificial boundaryconditionsfor the pres-
for the temperatureequationis stable, then this sure equation.There are no pressureboundary
method is stableandconvergesas I~t—~ 0. conditionsin the formal specificationof the prob-

lem. By examiningthe equationwe see that the
3.1. Momentumequation role of pressureis to balancethe system,sophysi-

cally the penaltyformulation makessense.
The momentumequation is solved using the The equationis castin the weak form and the

penaltymethod to enforceincompressibility.The Galerkinformulation (i.e, the weighting functions
formal statementof the problemis as follows: are the sameas the basis functions) is used to
Given: solve the weak form of the equation.

R’~ body force vector Let

g: Fg~5R~imposedvelocityvector v= fwEH
1Iw=oon Fg} (14)

h: F~—~ R” imposedtractionvector where V is the set of all weighting functions w

F UFh = F which vanish on the boundary.Similarly Vh is a
subsetof V parameterizedby h, the meshparame-

FSflFh = ter. Let gh denotean approximationof g which



INCOMPRESSIBLE TWO-DIMENSIONAL CONVECTION IN THE EARTH~SMANTLE 199

= 1 2 3 4 j = ~ = ~NAuIA (16)
1 2 4 7 11 16 22 29 / \ /

1 UAUI,XA) ~17
3 5 8 12 17 23 30

-— ~ i~ii~~T where NA is the shapefunction for nodeA for the

1, 10 14 19 25 32 2 element.[Kj = f~i7 26 33 Theelementstiffnessmatrix (Fig. 3) is madeup

— 21 2734 of the two terms from the left-hand side of the
28 35 integral equation.The integration is done using

36 2 X 2 Gaussquadrature,which is exact when the

elementsare rectangularand bilinear shapefunc-
[1K]’ = [K]~e + [JK]~’ tions are used. The A term is under-integrated

(one point rule) to keepthe large penalty value
from effectively locking the element(Malkus and

2N~(i)N~(i)+ N~(i)N~(i) N~(i)N~(i) Hughes,1978). Theright-handside is madeup of

[t] = u threeknown parts,the body force term (ft), the
N~(i)N~(J) N~(i)N~(i)+ 2N~(i)N~(i) applied tractions (h

1) and the applied velocities
(g1). The momentumequation is equivalent to an
incompressibleelastic problem, and the resulting

N~,(i)N~(i) N~(i)N~(j) stiffness matrix will always be positive definite
= X (Hughes,1987, pp. 84—89). This allows us to as-

N~(j)N~(i) N~(I)N~(J) sembleonly the uppertriangularpart of the stiff-

Fig. 3. (a) The location and numberingof the 8 x8 element nessmatrix andsavebothstorageand operations
stiffnessmatrix for the velocity equationusedin ConMan. It using Choleskyfactorization. More details of the
shouldbenotedthat thematrixis madeup of 16 2 x2 matrices method anda formal error analysisweregiven by
with i~j indicesasshown.The i and I referto thelocal node Hugheset al. (1979).
numberingof theelementand canbe thought of as the effect
of node i as felt at node j. (b) The 8 x8 element stiffness 3.2. Energyequation
matrix is madeup of two terms: a viscositycontribution [K]~,
and thepenaltycontribution [K ]~.(c) The 2 x2 submatrix for . . .

theviscouscontribution to the elementstiffnessmatrix. N (i) The energyequation is an advection—diffusion
is thex derivativeof theshapefunction evaluatedatnodei (i, equation.The formal statementis
j hererefer to the location of the 2 x2 matrix in the 8 x 8 Find T: ~ —‘ R suchthat
element stiffness matrix). (d) The 2 x2 submatrix for the
penaltycontribution to the elementstiffnessmatrix (i, J here T+ u1T1= KT,~ + H on (18)
refer to the location of the 2x2 matrix in the 8x8 element T= b on F (19)
stiffnessmatrix). b

T~n~=q on Fq (20)

where T is the temperature,u, is the velocity, ic is

the thermaldiffusivity and H is the internal heat
source.The weak form of (18) is given by

convergesto g as h —s 0. Find uh = + gh wh E f (w + p)f d~= — f (w + p)(u1T~)d~2
V’~,such that for all w

5 E Vh 13 17

J(xw~ji~,+ 2ftw~
1~i3~1)d~ _icfw1Te d~+ J wT1n1 dFq

= ff~d~+ J h,w~d~ (21)
12 where I’ is the time derivativeof temperature,T,

— I (Xg’~ i~”
1~+ 2p.gh .w—h ) d~ (15) is the gradient of temperature, w is the standard

-‘1_i ~ “ “~ “~ weighting function and (w + p) is the
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Petrov—Galerkinweighting function with, p, the plemented in matrix form. The added cost of
discontinuousstreamlineupwind part of the Pet- calculating the Petrov—Galerkinweighting func-
rov—Galerkinweightingfunction given by tions is much less than the cost of usinga refined

— — - w
1 grid with the Galerkin method. The Galerkin

P — ~u VT—ku~H u 2 (22) method requires a finer grid than the

Petrov—Galerkinmethod to achieve stable solu-
The energy equation is solved using . .

tions (Travis et al., in preparation).
Petrov—Galerkinweighting functionson the inter-
nal heatsourceand advectivetermsto correctfor 3.2.1. Time stepping
the under-diffusion and remove the oscillations Time steppingin the energy equationis done
which would result from the standardGalerkin using an explicit predictor—correctoralgorithm.
method for an advection-dommatedproblem The form of the predictor—correctoralgorithmis
(Hughesand Brooks, 1979). The Petrov—Galerkin PredictS
function canbe thoughtof asa standardGalerkin

(0)... / \~
methodin which we counterbalancethe numerical ,~ — ,~ + ti, —

underdiffusionby adding an artificial diffusivity ~° = 0 (27

oftheform fl±I

~ (23) Solve:

with M i~2~= R~. (28)

(24) R~1=-[1~i+u•(7~21)~](w+p)

= 1 — ~ (25) + (boundaryconditionterms) (29)

where h~and hn are the element lengthsand u1 Correct:
and un are the velocities in the local element U = J~I + t~stai~1 (30)

coordinate system(~system) evaluatedat the .11+1) — + 31
elementcenter.This form of discretizationhas no n + I — n+ I n + I

crosswinddiffusion because(23) acts only in the where i is the iterationnumber(for the corrector),
directionof theflow (i.e., it follows the streamline), n is the time-stepnumber,T is the temperature,T
hence the name Streamline Upwind Petrov— is the derivativeof temperaturewith time, LS~Tis
Galerkin (SUPG). This makes it a better ap- the correction to the temperaturederivative for
proximation than straight upwinding, and it has the iteration, M * is the lumped mass matrix,
been demonstratedto be more accurate than R~1is theresidualterm, .~t is the time step and
Galerkin or straight upwinding in advection- a is a convergenceparameter.It shouldbe noted
dominatedproblems(Hughesand Brooks, 1979; that in the explicit formulation M * is diagonal.
Brooks,1981).It hasrecentlybeenshownthat the The time stepis dynamicallychosen,andcorre-
SUPGmethod is oneof a broaderclassof meth- spondsto the Courant time step (the largeststep
ods for advection—diffusionequationsreferredto thatcanbe takenexplicitly andmaintainstability).
asGalerkin/least-squaresmethods(Hugheset al., With the appropriatechoice of variables, a = 0.5
1988). and two iterations, the method is second-order

The resultingmatrix equationis not symmetric, accurate(Hughes,1987,pp. 562—566).
but as the energyequationonly hasonedegreeof
freedomper node, whereasthe momentumequa-
tion has two or three, the storagefor the energy 4. Numerical benchmarks

equation is small compared with that for the
momentumequation.As we use an explicit time- Two examplesare given,basedon benchmarks
steppingmethod,the energy equationis not im- for two-dimensional Cartesianconvectioncodes
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Table I Table2
The parametersusedin thetwo benchmarks Executionspeedsnormalizedto the Cray X-MP scalarexecu-

tion speed for the two benchmark problems(CVBM and
Parameters Benchmark TDBM) on variouscomputers

CVBM TDBM
Computer Benchmark

Rayleighnumber 77927 100000 CVBM TDBM
Time steps 5000 1000 _____________________________________________________
Tempdepviscosity no yes CrayY-MP V 31.18 26.07
Velocity b.c. fs fs CrayX-MP V 18.73 15.29
Tempb.c.—top T= 0 T= 0 Cray 2 V 15.92 10.62
Tempb.c.—bottom T=1 T=1 ConvexC210V 4.27 3.10

ConvexC120V 1.40 1.42Tempdepviscosity meansthe global matrix hadto be factored CrayX-MP S 1.00 1.00
at every step.fs meansfree slip boundaryconditionappliedat Sun4-330 0.42 0.79
theboundaries(flow allowedalongthesidewalls aswell astop ConvexC1205 0.31 0.42
and bottom). TDBM was not run to steady state,but for a _____________________________________________________
fixed numberof time stepsfor timing purposes Where available, both scalar(S) and vector (V) speeds are

shown.The speed-up(the ratio of scalar to vector times) is
greateron theCrays thanon the Convexbecausetheslower

given by Traviset al. (in preparation).Theparam- memoryaccesson theConvexlimits vectorperformance

eters for thesebenchmarksare given in Table 1.
Thereare two purposesfor thesebenchmarks:(1)
to verify the codeagainststandardexistingcodes; trix is factoredat every time step.This allows us
and (2) to demonstratethe speedof the vector to observethe differencebetweenthe speed-upin
code on representative problems. Benchmark the finite element forms and assembliesand the
CVBM has a constantviscosity, and the velocity matrix factorization and back-substitution.
stiffness matrix is factored only once, whereas Vectorizing sparse matrix solvers is an area of
TDBM (not from Travis et al.) has temperature- activeresearch(e.g., Ashcraft et al., 1987; Lucas,
dependentviscosity andthe velocity stiffnessma- 1988), and our implementationhas used a stan-

Table3
Executiontimes (in seconds)for individual routines for benchmarksCVBM and TDBM in scalarand vectormode on various
computers

Subroutine ConvexC120 CrayX-MP CrayY-MP Cray2

Scalar Vector Scalar Vector Scalar Vector Scalar Vector

Times(s) for subroutinesfrom CVBM
Factor 10.4 3.6 4.8 0.3 — 0.2 — 0.5
Backsolve 3132.2 830.2 1341.5 80.0 — 52.8 — 100.1
fvStf 1.6 0.4 0.6 0.1 — 0.0 — 0.1
fvRes 531.0 92.9 154.4 6.6 — 3.8 9.5
f.tRes 5272.3 948.7 1212.4 50.9 — 28.2 — 53.8
Total 9383.2 2021.2 2869.3 153.2 — 92.0 -. 180.2

Times(s)for subroutinesfrom TDBM
Factor 10883.4 3564.9 4870.0 297.1 — 199.4 — 507.7
Backsolve 646.9 167.3 270.2 16.4 — 10.6 — 20.0
f...vStf 1690.0 417.1 649.5 71.3 — 15.9 — 30.0
fvRes 112.9 19.5 30.6 1.4 — 0.8 — 1.8
ftRes 1088.5 188.0 242.4 9.8 — 5.5 — 10.6
Total 14513.8 4383.2 6094.7 398.6 — 233.7 — 573.4

The assemblingroutines(f_vStf, fvRes, LtRes) showbettervectorperformancethando the factorandback-substitutionroutines.
The performanceof thefactorizationandback-substitutionimprovesas thebandwidthof the matrix approachesthevectorregister
length
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dard and poorly vectorized solver. Thereforewe The routine times do not add up to the total
presentthe times in individual units of the pro- timesbecausethereare unlisted routines(for grid
gram as well as the total times. Resultsare given generationand i/o) that take a small amount of
for a Convex-C120running Unix compiled with time. The MFLOP ratesandrelativespeeds,how-
fc4.1, a Convex-C210running Unix compiledwith ever, do include time spent in theseroutines.We
fc5.0, a Cray X-MP 4/8 running CTSS,compiled notethat the speed-up,the ratio of scalarto vector
with CFT77, a Cray 2 (one processor)running speed,on the Convex is not as good as on the
Unicos and a Cray Y-MP (one processor),also Crays. This is becausein double precision the
running Unicos. (We list compilersand operating Convex memory access time, especiallyin the
systemsas we found a factor of up to 1.5 dif- indirect referencing,is slowing the vectorcalcula-
ferencein speedbetweencodecompiledwith dif- tions. The Convex is simply not able to deliver
ferent compilerson the samemachine!)We pre- numbersfast enoughto the vectorregisters.As the
sent executionspeedrelative to the Cray X-MP Cray X-MP and Y-MP havethreepathsto mem-
scalarspeed(Table 2), as that is comparablewith ory, as well as a fastermemory accesstime, they
the vector speedof the original codeupon which are not limited by memory access.Also, because
ConMan was based. It should be noted that a of the Cray’s larger word size we can use single
well-vectorized code runs better on mini-super-
computerssuch as the Convex C120 and C210
than a scalarcodeon a Cray. Hardwaremonitor- (~) t~~=~-.~--- —~

ing for CVBM givesan overall rateof 65 MFLOPS -.~

on the X-MP (95 MFLOPSon the faster Y-MP). I1~ ~

TDBM, with an overall rate of 45 MFLOPS on / ‘I

the Y-MP, is slower becausemore time is spent /
factoring,a routine which is notwell vectorized.A ( I!

breakdownof the executiontime spentin eachof
the major routinesis givenin Table3.

We note that an old version of the SUPG
(Streamline Upwind Petrov—Galerktn) code on - I

which ConMan is basedranslowerin vectormode
than ConMan does in scalar.This indicatesthat
even though the compiler indicated it was
vectorizingmany loopsin the old code, eitherthe (b)

time-consuming calculations were not being
vectorizedor the loopsweretoo short to give any
appreciablespeed-up.We also note that ConMan
runs faster on a Sun 4-330, which is a scalar
machine, than the old SUPG code (a common
finding of people who vectorize and optimize
codes).

From the benchmarktimings it is clear that the
element assembly routines (fvStf, f_vRes,
f_tRes) have been improved significantly more ±.~.

than the factorization and back-substitution Fig. 4. (a) Final temperaturefield for CVBM. The contour

routines.We note that faster fully vectorizedma- interval is 0.1 dimensionlesstemperatureunits. The heavy

trix solversare beingdevelopedespeciallyfor finite contouris the0.5 contour line. (b) Differenceof final tempera-
ture field above and the high-resolution129x 129 gnd from

elementprograms(e.g., Lucas, 1988).We designed Travis et al. (in preparation). The contour interval is 0.002
ConManso that it canbe easilyadaptedto a new dimensionlesstemperatureunits. Theheavycontour is the0.0

matrix solverwhenonebecomesavailable, contour line.
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precisionon the Cray with the same accuracyas the improvementof data structures.Theseideas
doubleprecisionon the Convex, work not only on small linearalgebraroutinesbut

Plots of the final temperaturefield and the can also be extendedto full-scale scientific pro-
differencefrom a finite-differencecalculationon a gramsand still retain order of magnitudespeed-
129 x 129 grid from Travis et al. (in preparation) ups. We have implementedtheseideasin a new
are shownin Fig. 4. The solution for benchmark finite-element code, ConMan, designedto study
CVBM agreesreasonablywell with the Travis et problemsin mantle convection,which takesad-
al. benchmark. The error from this method is Vantageof the speedavailableon current vector
second order O((~x)2),where L~x is the grid supercomputers.An unsupportedversion of this
spacing.The error associatedwith the highresolu- codeis availablefrom the authors.
tion grid is more thanan order of magnitudeless
than the 33 x 33 grid used for CVBM. Taking the
129x 129 result as the exact solution, the dif-
ferenceplot (Fig. 4b) showstheerror in the SUPG Acknowledgements
method.The SUPG method has localized the er-
ror in the corner regions where the flow is most Solutions for CVBM were provided by Brian
advective,and comparesexactlywith the sequen- Travis and were calculatedas part of the IGPP
tial SUPG method codeused in the benchmark Mantle ConvectionWorkshopat Los AlamosNa-
paper (see Travis et al. (in preparation)for more tional Laboratory. Helpful videotapelectureson
details of the error associatedwith the method). vectorizingcode and Cray architecturewere ob-

tained at the Los Alamos National Laboratory.
This researchwassupportedby NSF grant EAR-

5. Summary 86-18744,and is Caltechcontribution no. 4751.
Cray X-MP calculationswere performed at the

In addition to the traditional modificationsfor San Diego SupercomputerCenter. Cray 2 and
vectorization(removing subroutinecalls and i/o CrayY-MP calculationswereperformedat NASA
statementsfrom the inner loops, etc.), we believe Ames with the help of EugeneMiya. ConvexC210
that datastructureis an importantconsideration calculationswereperformedby Ron Grayat Con-
for codes used on vector computers. We have vex Computer Corporation.Sun 330 calculations
presentedsome simple ideasfor improving code wereperformedby Keith Biermanat Sun Micro-
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Appendix

subroutineLvRes(shl , det , tl , lcblk
& t ,vrhs ,mat ,ra
& tq ,lmv ,lmt )

c

include ‘common.h’
c

dimension shl(4,5) , det(numel,5) , tl(lvec,4)
& lcblk(2, nEG) , t(numnp) , vrhs(nEGdf),
& mat(numel) , ra(numat) , tq(lvec,5)
& lmv(numel,8) , lmt(numel,4)

c

common/tempi/el rhs(lvec,8),blkra(lvec)
c
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c

c
c This routinecalculatesthe Right HandSidevelocity Residual
c
c Input:
c lvec: max lengthof elementgroups(64 for Cray)
c numnp: total numberof nodes
c numel: total numberof elements
c nEGdf: numberof degreesof freedomfor velocity
c equation(2* numnp)
c
c shl(4,5): shapefunctions (for mappingelement)
c det(numel,5): determinantof element(for transformation)
c lcblk(2,nEG): elementgroup info
c t(numnp): arrayof nodal temperatures
c mat(numel): materialnumberof element
c ra(numat): rayleighnumberof materialgroups
c lmv(numel,8) arraylinking elementandlocal node number
c to global equationnumberfor velocity
c lmt(numel,8) arraylinking elementandlocal node number
c to global equationnumberfor temperature
c

c Temporary:
c tl(lvec,4): temporaryspacefor temperaturearray
c tq(lvec,4): temporaryarrayfor temperaturesat integration
c points
c el — rhs(lvec,8) temporaryspacefor elementcontribution
c

c Output:
c vrhs(nEGdf): right handside of velocity equation
c

c
include ‘common.h’

c

c... loop over the elementblocks
c

do 1000 iblk = 1, nelblk
c

c... set up the parameters
c
c iel: startingelementnumberof the group
c nenl: numberof elementnodes(4 for bilinear elements)
c nvec: numberof elementsin ibik th group
c

iel = lcblk(1,iblk)
nenl = lcblk(2,iblk)
nvec = lcblk(1,iblk + 1) — iel
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c
c... localize (gather)the temperaturefor the whole elementgroup
c

do 150 iv = 1, nvec
ivel=iv+iel—1
tl(iv,1) = t( lmt(ivel,1) )
tl(iv,2) = t( lmt(ivel,2) )
tl(iv,3) = t( lmt(ivel,3) )
tl(iv,4) = t( lmt(ivel,4) )

150 continue
c
c... form the temperatureat integrationpoints
c the temperature at each integration point (tq(iv,1 — 4)) is formedby
c adding contributions from all four nodes (tl(iv,1 — 4))
c

do 200 iv = 1, nvec
tq(iv,1) = shl(1,1)* tl(iv,1) + shl(2,1) * tl(iv,2)

& + shl(3,1) * tl(iv,3) + shl(4,1)* tl(iv,4)
tq(iv,2) = shl(1,2)* tl(iv,1) + shl(2,2) * tl(iv,2)

& + shl(3,2)* tl(iv,3) + shl(4,2) * tl(iv,4)
tq(iv,3) = shl(1,3)* tl(iv,1) + shl(2,3) * tl(iv,2)

& + shl(3,3) * tl(iv,3) + shl(4,3)* tl(iv,4)
tq(iv,4) = shl(1,4)* tl(iv,1) + shl(2,4)* tl(iv,2)

& + shl(3,4) * tl(iv,3) + shl(4,4)* tl(iv,4)
200 continue
c
c... load the valueof the rayleighnumberinto temp arrayblkra
c for each element
c
c$dir no — recurrence

do 300 iv = 1, nvec
ivel = iv + iel — 1
blkra(iv) = ra(mat(ivel))

300 continue
c
c... calculate the contribution to each local element right hand side
c due to the buoyancy (i.e. t * Ra)
c

do 400 iv = I ,nvec
ivel = iv + iel — 1

el..rhs(iv,1)= zero
el_rhs(iv,3) = zero
el..rhs(iv,5)= zero
el — rhs(iv,7)= zero
el — rhs(iv,2)= blkra(iv)* (tq(iv,1) * det(ivel,1)* shl(1,1)

& + tq(iv,2) * det(ivel,2)* shl(1,2)
& + tq(iv,3)*det(ivel,3)*shl(1,3)
& + tq(iv,4)* det(ivel,4)* shl(1,4))
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c
el — rhs(iv,4)= blkra(iv) * (tq(iv,1) * det(ivel,1)* shl(2,1)

& + tq(iv,2) * det(ivel,2)* shl(2,2)
& + tq(iv,3) * det(ivel,3)* shl(2,3)
& + tq(iv,4)* det(ivel,4)* shl(2,4))

C

el — rhs(iv,6)= blkra(iv)* (tq(iv,1) * det(ivel,1)* shl(3,1)
& + tq(iv,2) * det(ivel,2) * shl(3,2)
& + tq(iv,3) * det(ivel,3)* shl(3,3)
& + tq(iv,4) * det(ivel,4)* shl(3,4))

c
el — rhs(iv,8) = blkra(iv)* (tq(iv,1) * det(ivel,1)* shl(4,1)

& + tq(iv,2) * det(ivel,2)* shl(4,2)
& + tq(iv,3) * det(ivel,3)* shl(4,3)
& + tq(iv,4) * det(ivel,4)* shl(4,4))

400 continue
c
c. . . assemble(scatter)the local elementright handsidesinto the
c global right hand side
C

c$dirno— recurrence
do 500 iv = 1 , nvec

ivel = iv + iel — I

vrhs(lmv(ivel, 1)) = vrhs(lmv(ivel,1)) + el — rhs(iv, 1)
vrhs(lmv(ivel,2))= vrhs(lmv(ivel,2)) + elrhs(iv,2)
vrhs(lmv(ivel,3)) = vrhs(lmv(ivel,3)) + el— rhs(iv,3)
vrhs(lmv(ivel,4))= vrhs(lmv(ivel,4)) + el_rhs(iv,4)
vrhs(lmv(ivel,5)) = vrhs(lmv(ivel,5)) + el_rhs(iv,5)
vrhs(lmv(ivel,6))= vrhs(lmv(ivel,6)) + el_rhs(iv,6)
vrhs(lmv(ivel,7)) = vrhs(lmv(ivel,7)) + el_rhs(iv,7)
vrhs(lmv(ivel,8)) = vrhs(lmv(ivel,8)) + el..rhs(iv,8)

500 continue
c
c... end loop over element blocks
c
1000 continue
C

C... return
c

return
end

References Brooks, A., 1981. A Petrov—GalerkinFinite-elementFormula-

tion for ConvectionDominatedFlows. Ph.D. Thesis,Cah-
Ashcraft,C.C., Grimes,R.G., Peyton,B.W. and Simon,H.D., fornia Instituteof Technology,Pasadena,CA.

1987. Progressin sparsematrix methods for large linear Dongarra,J.J., 1987. Performanceof various computersusing
systems on vector supercomputers.mt. J. Supercomput. standardlinear equationsoftwarein a FORTRAN environ-
AppI., 1: 10—30. ment.ArgonneNational LaboratoryTech.Memo, 23.



INCOMPRESSIBLE TWO-DIMENSIONAL CONVECTION IN THE EARTH’S MANTLE 207

Dongarra, J.J. and Eisenstat,S.C., 1984. Squeezingthe most Lucas, R.F., 1988. Solving Planar Systemsof Equations on
out of an algorithm in Cray FORTRAN. ACM Trans. Distributed Memory Multi-processors.Ph.D. Thesis,Stan-
Math. Software,10: 219—230. ford University, Palo Alto, CA.

Hughes, T.J.R., 1987. The Finite Element Method. Malkus, D.S. andHughes,T.J.R., 1978. Mixed finite element
Prentice—Hall,EnglewoodCliffs, NJ, 631 pp. methods—reducedand selective integration teclmiques: a

Hughes, T.J.R., and Brooks, A., 1979. A multi-dimensional unificationof concepts.Comput.Meth. Appl. Mech, Eng.,
upwind schemewith no crosswind diffusion. In: Finite 15: 63—81.
ElementMethodsfor ConvectionDominatedFlows.ASME, Temam, R., 1977. Navier—Stokes Equations: Theory and
New York, Vol. 34 pp. 19—35. Numerical Analysis. North-Holland, Amsterdam, pp.

Hughes,T.J.R., Liu, W.K. and Brooks, A., 1979. Finite ele- 148—156.
mentanalysisof incompressibleviscousflows by thepenalty Travis, B.J., Olson, P., Hager, B.H., Raefsky, A., O’Connell,
function formulation, J. Comput.Phys.,30: 19—35. R.J., Gable, C., Anderson, C., Schubert, G. and Baum-

Hughes,T.J.R., Franca,L.P., Hulbert, G.M., Johan,Z. and gardner,J., in preparation.Comparisonof codes for in-
Shakib, F., 1988. The Galerkin/ least-squaresmethodfor finite Prandtl numberconvection:2-D Cartesiancases,Los
advective—diffusionequations.In: T.E. Tezduyar(Editor), AlamosNational LaboratoryTech.Rep.
Recent Developmentsin ComputationalFluid Dynamics.
ASME, New York, Vol. 95, pp. 75—99.


