
widely used and well tested libraries that can provide researchers interested in extending it with the
support of a large user community. Specifically, we use the deal.II library [BHK07, BHK12] for
meshes, finite elements and everything discretization related; the Trilinos library [HBH+05, H+11]
for scalable and parallel linear algebra; and p4est [BWG11] for distributed, adaptive meshes. As
a consequence, our code is freed of the mundane tasks of defining finite element shape functions or
dealing with the data structures of linear algebra, can focus on the high-level description of what is
supposed to happen, and remains relatively compact. The code will also automatically benefit from
improvements to the underlying libraries with their much larger development communities. ASPECT

is extensively documented to enable other researchers to understand, test, use, and extend it.

Rather than detailing the various techniques upon which ASPECT is built, we refer to the paper by
Kronbichler, Heister and Bangerth [KHB12] that gives a detailed description and rationale for the various
building blocks.

2.10 Simplifications of the basic equations

There are a number of common variations to equations (1)–(3) that are frequently used in the geosciences.
For example, one frequently finds references to the anelastic liquid approximation (ALA), truncated anelastic
liquid approximation (TALA), and the Boussinesq approximation (BA). These can all be derived from the
basic equations (1)–(3) via various approximation, though there are a number of pitfalls if one wanted to use
them in ASPECT. We will discuss these in the following. Since they are typically only provided considering
velocity, pressure and temperature, we will in the following omit the dependence on the compositional fields
used in previous sections, though this dependence can easily be added back into the equations stated below.
A detailed discussion of the approximations introduced below can also be found in [KLv+10].

The three approximations mentioned all start by writing the pressure and temperature as the sum of a
(possibly depth dependent) reference value plus a perturbation, i.e., we will write

p(x, t) = p̄(z) + p′(x, t),

T (x, t) = T̄ (z) + T ′(x, t).

Here, barred quantities are reference states and may depend on the depth z (not necessarily the third
component of x) whereas primed quantities are the spatially and temporally variable deviations of the
temperature and pressure fields from this reference state. In particular, the reference pressure is given by
solving the hydrostatic equation,

∇p̄ = ρ̄g,

where ρ̄ = ρ(p̄, T̄ ) is a reference density that depends on depth. T̄ is chosen as an adiabatic profile accounting
for the fact that the temperature increases as the pressure increases, but also taking into account thermal Scott: I don’t

see this dis-
cussed in
[KLv+10], but
one needs to
make T̄ also
take into ac-
count diffusion
so that it dis-
appears from
the tempera-
ture equation
in the ALA.

diffusion effects. It also depends on depth. With these definitions, equations (1)–(2) can equivalently be
written as follows:

−∇ ·

[

2η

(

ε(u)−
1

3
(∇ · u)1

)]

+∇p′ = (ρ− ρ̄)g in Ω, (17)

∇ · (ρu) = 0 in Ω. (18)

Likewise, when omitting entropic effects, the temperature equation reads as

ρCp

(

∂T

∂t
+ u · ∇T

)

−∇ · k∇T

= ρH + 2η

(

ε(u)−
1

3
(∇ · u)1

)

:

(

ε(u)−
1

3
(∇ · u)1

)

+ αT (u · ∇p) in Ω. (19)
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Starting from these equations, the approximations discussed in the next few subsections make use of the
fact that for the flows for which these approximations are valid, the perturbations p′, T ′ are much smaller
than typical values of the reference quantities p̄, T̄ . The equations for these approximations are almost always
given in terms of non-dimensionalalized quantities. We will for now stick with the dimensional form because
it expresses in a clearer way the approximations that are made. The non-dimensionalization can then be
done on each of the forms below separately.

2.10.1 The anelastic liquid approximation (ALA)

The Anelastic Liquid Approximation (ALA) is based on two assumptions. First, that the density variations
ρ(p, T )− ρ̄ are small and in particular can be accurately described by a Taylor expansion:

ρ(p, T ) ≈ ρ̄+
∂ρ(p̄, T̄ )

∂p
p′ +

∂ρ(p̄, T̄ )

∂T
T ′.

Here, ∂ρ(p̄,T̄ )
∂T

is related to the thermal expansion coefficient, and ∂ρ(p̄,T̄ )
∂p

to the compressibility.
The second assumotion is that the variation of the density from the reference density can be neglected in

the mass balance and temperature equations. This yields the following system of equations for the velocity
and pressure equations, using the definition of the adiabatic hydrostatic pressure field p̄:

−∇ ·

[

2η

(

ε(u)−
1

3
(∇ · u)1

)]

+∇p′ =

(

∂ρ(p̄, T̄ )

∂p
p′ +

∂ρ(p̄, T̄ )

∂T
T ′

)

g in Ω, (20)

∇ · (ρ̄u) = 0 in Ω. (21)

Timo: need to
figure out how
to solve (21),
need ∇ρ!

For the temperature equation we arrive at the following:

Scott: This
does not
match (18) in
[KLv+10]

ρ̄Cp

(

∂T ′

∂t
+ u · ∇T ′

)

−∇ · k∇T ′

= ρH + 2η

(

ε(u)−
1

3
(∇ · u)1

)

:

(

ε(u)−
1

3
(∇ · u)1

)

+ αT ′ (u · ∇p) in Ω. (22)

Timo: this is not quite correct, you need reference density and simplified adiabatic heating to get:

ρ̄Cp

(

∂T ′

∂t
+ u · ∇T ′

)

−∇ · k∇T ′

= ρ̄H + 2η

(

ε(u)−
1

3
(∇ · u)1

)

:

(

ε(u)−
1

3
(∇ · u)1

)

+ αρ̄T ′(u · g) in Ω. (23)

2.10.2 The truncated anelastic liquid approximation (TALA)

The Truncated Anelastic Liquid Approximation (TALA) further simplifies the ALA by assuming that the
variation of the density due to pressure variations is small, i.e., that

ρ(p, T ) ≈ ρ̄+
∂ρ(p̄, T̄ )

∂T
T ′.

This does not mean that the density is not pressure dependent – it will, for example, continue to be depth
dependent because the hydrostatic pressure grows with depth. It simply means that the deviations from the
reference pressure are assumed to be so small that they do not matter in describing the density. Because
the pressure variation is induced by the flow field (the static component pressure is already taken care of by
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the hydrostatic pressure), this assumption in essence means that we assume the flow to be very slow, even
beyond the earlier assumption that we can neglect inertial terms when deriving (1)–(2).

This further assumption then transforms (20)–(21) into the following equations:

−∇ ·

[

2η

(

ε(u)−
1

3
(∇ · u)1

)]

+∇p′ =
∂ρ(p̄, T̄ )

∂T
T ′g in Ω, (24)

∇ · (ρ̄u) = 0 in Ω. (25)

2.10.3 The extended Boussinesq approximation (EBA) and Boussinesq approximation (BA)

If we further assume that the reference density is constant, ρ̄(p̄, T̄ ) = ρ0, – in other words, the density does
not only not depend on the pressure variations p′ as assumed in the TALA, but also does not depend on the
much larger hydrostatic pressure p̄ nor on the reference temperature T̄ – then we can further simplify the
mass conservation equations of the TALA to ∇ · u = 0. We then obtain the following set of equations that
also uses the incompressibility in the definition of the viscous strain:

−∇ · [2ηε(u)] +∇p′ =
∂ρ(p̄, T̄ )

∂T
T ′g in Ω, (26)

∇ · u = 0 in Ω. (27)

These equations are identical in form for the Boussinesq approximation (BA) which only differs from the
EBA in neglecting compressibility effects in the temperature equation (shear heating and simplified adiabatic
heating).

2.10.4 The Boussinesq approximation: Incompressibility

The original Boussinesq approximation assumes that the density can be considered constant in all occurrences
in the equations with the exception of the buoyancy term on the right hand side of (1). The primary result
of this assumption is that the continuity equation (2) will now read

∇ · u = 0.

This makes the equations much simpler to solve: First, because the divergence operation in this equation
is the transpose of the gradient of the pressure in the momentum equation (1), making the system of these
two equations symmetric. And secondly, because the two equations are now linear in pressure and velocity
(assuming that the viscosity η and the density ρ are considered fixed). In addition, one can drop all terms
involving ∇·u from the left hand side of the momentum equation (1) as well as from the shear heating term
on the right hand side of (3); while dropping these terms does not affect the solution of the equations, it
makes assembly of linear systems faster. In addition, in the incompressible case, one needs to neglect the
adiabatic heating term ∂ρ

∂T
Tu · g on the right hand side of (3).

From a physical perspective, the assumption that the density is constant in the continuity equation but
variable in the momentum equation is of course inconsistent. However, it is justified if the variation is small
since the momentum equation can be rewritten to read

−∇ · 2ηε(u) +∇pd = (ρ− ρ0)g,

where pd is the dynamic pressure and ρ0 is the constant reference density. This makes it clear that the true
driver of motion is in fact the deviation of the density from its background value, however small this value
is: the resulting velocities are simply proportional to the density variation, not to the absolute magnitude
of the density.

As such, the Boussinesq approximation can be justified. On the other hand, given the real pressures and
temperatures at the bottom of the earth mantle, it is arguable whether the density can be considered to be
almost constant. Most realistic models predict that the density of mantle rocks increases from somewhere
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around 3300 at the surface to over 5000 kilogram per cubic meters at the core mantle boundary, due to the
increasing lithostatic pressure. While this appears to be a large variability, if the density changes slowly
with depth, this is not in itself an indication that the Boussinesq approximation will be wrong. To this end,
consider that the continuity equation can be rewritten as 1

ρ
∇· (ρu) = 0, which we can multiply out to obtain

∇ · u+
1

ρ
u · ∇ρ = 0.

The question whether the Boussinesq approximation is valid is then whether the second term (the one
omitted in the Boussinesq model) is small compared to the first. To this end, consider that the velocity can
change completely over length scales of maybe 10 km, so that ∇ · u ≈ ‖u‖/10km. On the other hand, given
a smooth dependence of density on pressure, the length scale for variation of the density is the entire earth
mantle, i.e., 1

ρ
u ·∇ρ ≈ ‖u‖0.5/3000km (given a variation between minimal and maximal density of 0.5 times

the density itself). In other words, for a smooth variation, the contribution of the compressibility to the
continuity equation is very small. This may be different, however, for models in which the density changes
rather abruptly, for example due to phase changes at mantle discontinuities.

In summary, models that use the approximation of incompressibility solve the following set of equations
instead of (1)–(3):

−∇ · [2ηε(u)] +∇p = ρg in Ω, (28)

∇ · u = 0 in Ω, (29)

ρCp

(

∂T

∂t
+ u · ∇T

)

−∇ · k∇T = ρH + 2ηε(u) : ε(u) in Ω, (30)

where the coefficients η, ρ,g, Cp may possible depend on the solution variables.

Note: As we will see in Section 7, it is easy to add new material models to ASPECT. Each model
can decide whether it wants to use the Boussinesq approximation or not. The description of the
models in Section 5.66 also gives an answer which of the models already implemented uses the
approximation or considers the material sufficiently compressible to go with the fully compressible
continuity equation.

2.10.5 Almost linear models

A further simplification can be obtained if one assumes that all coefficients with the exception of the density
do not depend on the solution variables but are, in fact, constant. In such models, one typically assumes that
the density satisfies a relationship of the form ρ = ρ(T ) = ρ0(1− β(T −T0)) with a small thermal expansion
coefficient β and a reference density ρ0 that is attained at temperature T0. Since the thermal expansion is
considered small, this naturally leads to the following variant of the Boussinesq model discussed above:

−∇ · [2ηε(u)] +∇p = ρ0(1− β(T − T0))g in Ω,

∇ · u = 0 in Ω,

ρCp

(

∂T

∂t
+ u · ∇T

)

−∇ · k∇T = ρH + 2ηε(u) : ε(u) in Ω,
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If the gravitational acceleration g results from a gravity potential ϕ via g = −∇ϕ, then one can rewrite the
equations above in the following, commonly used form:5

−∇ · [2ηε(u)] +∇pd = −βρ0Tg in Ω, (31)

∇ · u = 0 in Ω, (32)

ρCp

(

∂T

∂t
+ u · ∇T

)

−∇ · k∇T = ρH + 2ηε(u) : ε(u) in Ω, (33)

where pd = p + ρ0(1 + βT0)ϕ is the dynamic pressure, as opposed to the total pressure p = pd + ps that
also includes the hydrostatic pressure ps = −ρ0(1 + βT0)ϕ. Note that the right hand side forcing term in
(31) is now only the deviation of the gravitational force from the force that would act if the material were
at temperature T0.

Under the assumption that all other coefficients are constant, one then arrives at equations in which the
only nonlinear terms are the advection term, u ·∇T , and the shear friction, 2ηε(u) : ε(u), in the temperature
equation (33). This facilitates the use of a particular class of time stepping scheme in which one does not
solve the whole set of equations at once, iterating out nonlinearities as necessary, but instead in each time
step solves first the Stokes system with the previous time step’s temperature, and then uses the so-computed
velocity to solve the temperature equation. These kind of time stepping schemes are often referred to as
operator splitting methods. A particular operator splitting method, used in earlier ASPECT versions,
solves first the Stokes equations and then uses a semi-explicit time stepping method for the temperature
equation where diffusion is handled implicitly and advection explicitly; this algorithm is often called IMPES
(it originated in the porous media flow community, where the acronym stands for Implicit Pressure, Explicit
Saturation) and is explained in more detail in [KHB12]. However, since then the algorithm in ASPECT

has been rewritten to use an implicit time stepping algorithm also for the temperature equation because this
allows to use larger time steps.

2.10.6 Compressible models

In the compressible case, the conservation of mass equation in equation (2) becomes ∇ · (ρu) = 0 instead
of ∇ · u = 0, which is nonlinear and no longer symmetric to the ∇p term in the force balance equation (1),
making solving and preconditioning the resulting linear and nonlinear systems difficult. To make this work
in ASPECT, we consequently reformulate this equation. Dividing by ρ and applying the product rule of
differentiation gives

1

ρ
∇ · (ρu) = ∇ · u+

1

ρ
∇ρ · u.

We will now make two basic assumptions: First, the variation of the density ρ(p, T,x, c) is dominated by
the dependence on the (total) pressure; in other words, ∇ρ ≈ ∂ρ

∂p
∇p. This assumption is primarily justified

by the fact that, in the Earth mantle, the density increases by at least 50% between Earth crust and the
core-mantle boundary due to larger pressure there. Secondly, we assume that the pressure is dominated by
the static pressure, which can be written as ∇p ≈ ∇ps ≈ ρg. This is essentially motivated by the slowness
of the movement in the Earth or, alternatively, based on the fact that the viscosity is so large. This finally
allows us to write

1

ρ
∇ρ · u ≈

1

ρ

∂ρ

∂p
∇p · u ≈

1

ρ

∂ρ

∂p
∇ps · u ≈

1

ρ

∂ρ

∂p
ρg · u

so we get

∇ · u = −
1

ρ

∂ρ

∂p
ρg · u (34)

where 1
ρ
∂ρ
∂p

is often referred to as the compressibility.

5Note, however, that ASPECT does not solve the equations in the form given in (31)–(33). Rather, it takes the original
form with the real density, not the variation of the density. That said, you can use the formulation (31)–(33) by implementing
a material model (see Section 7.3.1) in which the density in fact has the form ρ(T ) = βρ0T even though this is not physical.
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In the implementation used in ASPECT, this equation replaces (2). It has the advantage that it retains
the symmetry of the Stokes equations if we can treat the right hand side of (34) as known. We do so by
evaluating ρ and u using the solution from the last time step (or values extrapolated from previous time
steps).
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2.11 Approximations

1. Define adiabat as constant for BA models.
2. given the density:

ρ(depth, p, T, . . . ) = A(depth) +B(p− pref ) + C(T − Tref ) + . . .

with an adiabat pref and Tref as a function of depth, introduce a density approximation ρ̂ = ρ(depth, pref , Tref )
by default computed using adiabatic temperature and pressure (or one of them adiabatic) but can be over-
written.

Formulation:

• ALA: ρ̂ = ρ(z), Tref = T (z), adiabatic heating (simplified), shear heating; mass density = implicit
adiabatic, buoyancy = full, temperature = adiabatic

• “TALA”: like ALA, except buoyancy approximation = adiabatic pressure

• “EBA”: ρ = 1, Tref = 0, still with adiabatic heating (simplified), shear heating; mass density =
incompressible, temperature = adiabatic, buoyancy = adiabatic pressure;

Assert: material.compressible=false

• “BA”: EBA, but turn off shear heating and adiabatic heating.

• “current”: full/full/full

• “better?”

2.11.1 Stress tensor approximation

The stress tensor in the conservation of momentum (diffusion) is either

∇ · τ = ∇ ·

[

2η

(

ε(u)−
1

3
(∇ · u)1

)]

or
∇ · τ = ∇ · [2ηε(u)]

Currently controlled by material model.is compressible.

2.11.2 Mass density approximation

simplify ∇ · (ρu) = 0 in one of the following ways:

• “ask material model”: use “full” if is compressible and “incompressible” otherwise

• “fuller?”:

∇ · u = −
1

ρ

∂ρ

∂p
ρg · u− αρg · u

• “full”:

∇ · u = −
1

ρ

∂ρ

∂p
ρg · u

• “adiabatic“:

∇ · u = −
1

ρ

∂ρ

∂p
ρ̂g · u
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• “implicit adiabatic“:

∇ · u+
1

ρ

∂ρ

∂p
ρ̂g · u = 0

• “incompressible“:
∇ · u = 0

question: what if ρ is a function of depth and we could give the exact ∇ρ?
”full“ is probably inconsistent because it doesn’t use the reference density

2.11.3 Buoyancy density approximation

we write the RHS of conservation of momentum ρg as

• ”full“: ρg

• ”adiabatic pressure“: ρ(depth, pref , T )g

2.11.4 Temperature density approximation

temperature equation:

ρCp

(

∂T

∂t
+ u · ∇T

)

−∇ · k∇T = ρH

+ 2η

(

ε(u)−
1

3
(∇ · u)1

)

:

(

ε(u)−
1

3
(∇ · u)1

)

+ αT (u · ∇p)

• “full“: use full density

• “adiabatic“: use density approximation in all terms

Note: simplified adiabatic heating allows different way of handling gravity

2.12 Questions

• how do people solve ∇ · (ρu) = 0 with ρ = ρ(z)?

• Should we allow very simple setups (pick all constants as 1)? Then we would need things like prefactors
for shear heating. Otherwise picking constants like viscosity are somewhat more complicated...

• The current material.is compressbile setting is needed for BA/EBA to get the simplified diffusion
operator. Should this be a separate setting?

• Should we model ρ(z) using a linear adiabatic pressure and setting compressibilty to ∇ρ or should we
introduce the depth derivative explicitly?

• Can we improve ”full” further and include additional terms?

• for WB: eqn (22) needs reference density and simplified adiabatic heating
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