
Time

Astronomers have always been concerned with time and its
measurements. If you read any astronomical text on the subject you are
sure to be bewildered by the seemingly endless range of times and their
definitions. There's universal time and Greenwich mean time, apparent
sidereal time and mean sidereal time, ephemeris time, local time and
mean solar time, to name but a few. Then there's the sidereal year, the
tropical year, the Besselian year and the anomalistic year. And be quite
clear about the distinction between the Julian and Gregorian calendars!
(See the Glossary for the definitions of these terms.)

All these terms are necessary and have precise definitions. Happily,
however, we need concern ourselves with but a few of them as the
distinctions between them become apparent only when very high
precision is required.

1 Calendars

A calendar helps us to keep track of time by dividing the year into
months, weeks and days. Very roughly speaking, one month is the time
taken by the Moon to complete one circuit of its orbit around the Earth,
during which time it displays four phases, or quarters, of one week each,
and a year is the time taken for the Earth to complete one circuit of its
orbit around the Sun. By common consent we adopt the convention that
there are seven days in each week, between 28 and 31 days in each month
(see Table 1) and 12 months in each year. By knowing the day number
and name of the month we are able to refer precisely to any day of the
year.

Table 1

January
February
March
April
May
June

31
28 (or 29 in a leap year)
31
30
31
30

July
August
September
October
November
December

31
31
30
31
30
31
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The date of Easter 2

The problem with this method of accounting the days in the year lies
in the fact that, whereas there is always a whole number of days in the
civil year, the Earth takes 365.2422 days to complete one circuit of its
orbit around the Sun. (This is the tropical year; see the Glossary for its
definition.) If we were to take no notice of this fact and adopt 365 days
for every year, then the Earth would get progressively more out of step
with our system at a rate of 0.2422 days per year. After 100 years the
discrepancy would be 24 days; after 1500 years the seasons would have
been reversed so that summer in the northern hemisphere would be in
December. Clearly, this system would have great disadvantages.

Julius Caesar made an attempt to put matters right by adopting the
convention that three consecutive years have 365 days followed by a leap
year of 366 days, the extra day being added to February whenever the
year number is divisible by 4. On average, his civil year has 365.25 days
in it, a fair approximation to the tropical year of 365.2422 days. Indeed,
after 100 years the error is less than one day. This is the Julian calendar
and it worked very well for many centuries until, by 1582, there was
again an appreciable discrepancy between the seasons and the date.
Pope Gregory then improved on the system by abolishing the days
October 5th to October 14th 1582 inclusive so as to bring the civil and
tropical years back into line, and by missing out three days every four
centuries. In his reformed calendar the years ending in two noughts (e.g.
1700, 1800, etc.) are only leap years if they are divisible by 400.

This system, called the Gregorian calendar, is the one in general use
today. According to it 400 civil years contain (400 x 365) + 100 — 3 =
146 097 days, so that the average length of the civil year is
146 097/400 = 365.2425 days, a very good approximation indeed to the
length of the tropical year.

2 The date of Easter

Easter day, the date to which such moveable feasts as Whitsun and
Trinity Sunday are fixed, is usually the first Sunday after the fourteenth
day after the first new Moon after March 21st. (For a more precise
definition see The Explanatory Supplement to the Astronomical
Ephemeris and American Ephemeris and Nautical Almanac.) You can find
the date of Easter Sunday by the method and tables given, for example, in
the Book of Common Prayer, 1662, or by one of several methods devised
by various mathematicians over the centuries. Here I shall describe a
method devised in 1876 which first appeared in Butcher's Ecclesiastical
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The date of Easter 3

Calendar, and which is valid for all years in the Gregorian calendar, that
is from 1583 and onwards. It makes repeated use of the result of dividing
one number by another number, the integer part being treated
separately from the remainder. A calculator displays the result of such a
division as a string of numbers before and after a decimal point. The
numbers appearing before the decimal point constitute the integer part;
the numbers after the decimal point constitute the fractional part. The
remainder may be found from the latter by multiplying it by the divisor
(i.e. the number you have just divided by) and rounding the result to the
nearest integer value. For example, 2000/19=105.263 157 9. The
integer part is 105 and the fractional part is 0.263 157 9. Multiplying this
by 19 gives 5.000000 100 so that the remainder is 5.

I shall illustrate the method by calculating the date of Easter Sunday
in the year 2000.

Method

1.

2.

3.

4.
5.
6.

7.

8.

9.

10.

11.

Divide the year by 19.

Divide the year by 100.

Divide b by 4.

Divide (6 + 8) by 25.
Divide ( 6 - / + 1 ) by 3.
Divide*
(19a + b-d-g+l5) by 30.
Divide c by 4.

Divide
(32 + 2e + 2j — h— k) by 7.
Divide^+l l / i+ 22/)
by 451.
Divide

by 31.
Day of the month on which
falls is p + 1.
Month number is n ( = 3 for
for April).

.'. Easter Sunday

Integer part

—

b

d

f
9
—

i

—

m

n

Easter Sunday

March and = 4

2000 is

Remainder

a

c

e

—
—
h

k

I

—

P

[

Example

— =105.263 157 9

— ">O OOO 0 0 0
— Z,\f .VJKJVJ U W

100
b = 20
c = 0
d=5
e = 0
/ = 1
0 = 6

(19a + b-d-g+\5)=\\9
h = 29
i = 0
k = 0

(32 + 2e + 2i-/i-/c) = 3
/ = 3

(a+11/1 + 22/) = 390
m = 0

(/i + /-7m+114)=146

p = 22

p + l = 23

23rd April

* 19a means 19 multiplied by a (19 x 5 = 95 in this example).
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Converting the date to the day number 4

3 Converting the date to the day number

In many astronomical calculations, we need to know the number of days
in the year up to a particular date. We shall choose our starting point as
0 hours on January Oth, equivalent to the midnight between December
30th and 31st of the previous year; this may seem rather peculiar at first
but as it simplifies the calculations we shall adopt it for our purposes.
Midday on January 3rd is expressed as January 3.5 because three and a
half days have elapsed since January 0.0. This is illustrated in Figure 1.

Finding the day number from the date is then a simple matter.
Proceed as follows:
1. For every month up to, but not including, the month in question add

the appropriate number of days according to Table 1. These totals are
listed in Table 2b.

2. Add the day of the month.
For example, calculate the day number of February 17th.

Day number = 31 + 17 = 48.

If you own a programmable calculator, you may be able to use the
routine Rl to write a program enabling you to carry out the calculation
automatically.

Later on in this book we adopt the date 1990 January 0.0 as the
starting point, or epoch, from which to calculate orbital positions. Days
elapsed since this epoch at the beginning of each year up to 1999 are
tabulated in Table 2a. To find the total number of days elapsed since the
epoch simply add the appropriate number to the day number calculated
in the previous paragraph.

Table 2a. Days to the beginning of the year since
epoch 1990 January 0.0

*1980:
1981:
1982:
1983:

*1984:
1985:
1986:
1987:

*1988:
1989:

* Denotes

-3653
-3287
-2922
-2557
-2192
-1826
-1461
-1096
-731
-365

a leap year.

1990:
1991:

*1992:
1993:
1994:
1995:

*1996:
1997:
1998:
1999:

0
365
730
1096
1461
1826
2191
2557
2922
.3287
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Converting the date to the day number

Table 2b. Days to the beginning of the month

January:
February :
March:
April:
May:
June:
July:
August:
September:
October:
November:
December:

Ordinary year

0
31
59
90

120
151
181
212
243
273
304
334

Leap year

0
31
60
91

121
152
182
213
244
274
305
335

For example, the number of days elapsed since the epoch on February
17th 1985 is 48 - 1826 = - 1778.

This calculation may also be done via the Julian day number; see
section 4.

Routine Rl. Converting the date to the day number.
1. Key in the month number (e.g. 11 for November).
2. Is it greater than 2?

- If yes, go to step 8.
- If no, proceed with step 3.

3. Subtract 1 from month number.
4. Multiply by 63 (or 62 in a leap year).
5. Divide by 2.
6. Take the integer part.
7. Go to step 12.
8. Add 1 to month number.
9. Multiply by 30.6.

10. Take the integer part.
11. Subtract 63 (or 62 in a leap year).
12. Add the day of the month. The result is the day number.
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Julian day numbers

Figure 1. Defining the epoch.

-1989- -1990-
i

M M M M M M M

Dec. 29 Dec. 30 Dec. 31 Jan. 1 Jan. 2 Jan. 3n
Start here Noon on January 3rd

M = midnight

-3.5 days-

4 Julian day numbers

It is sometimes necessary to express an instant of observation as so many
days and a fraction of a day after a given fundamental epoch.
Astronomers have chosen this fundamental epoch as the Greenwich
mean noon of January 1st 4713 B.C., that is midday as measured on the
Greenwich meridian on January 1st of that year. The number of days
which have elapsed since that time is referred to as the Julian day
number, or Julian date* It is important to note that each new Julian day
begins at 12h 00m UT, half a day out of step with the civil day in time
zone 0.

The term 'before Christ', or B.C. for short, usually refers to the
chronological system of reckoning negative years. In this system, there is
no year zero. The Christian era begins with the year 1 A.D. ('anno
domini'); the year immediately preceding it is designated 1B.C. For
astronomical purposes, the year immediately preceding 1A.D. is
designated 0; the other years B.C. are denoted by negative numbers,
each of which has an absolute value which is one less than the B.C. value.
Thus 10 B.C. corresponds to the (astronomical) year —9, and 4713 B.C.
corresponds to —4712. We shall adopt this convention throughout the
book. Where you see a B.C. year, subtract one from it and change its
sign before using it in any of the calculations. Similarly, if the result of a
calculation is a negative year, remove the minus sign, add one to the year
number, and append the letters 'B.C.' after it.

The Julian date of any day in the Julian or Gregorian calendars may
be found by the method given below. Here, and throughout the book,
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Julian day numbers 7

the expression INT refers to the integer part of the number within the
bracket following it. Thus INT(22.456) is 22, and INT(-3.914) is - 3 .
Note that many computers, and some calculators, use INT to refer to
the least-integer function, that is the largest integer whose value is less
than or equal to the number. Such machines would return —4 for
INT( —3.914). Beware! You can avoid this worry by taking INT of the
absolute value (positive) and inserting a negative sign before the result
for negative numbers.

As an example, we shall calculate the Julian date corresponding to
1985 February 17.25 (i.e. 6 a.m. on February 17th).

Method Example

1. Set y = year, m = month and d = day. y = 1985
m = 2
d= 17.25

2. If m = 1 or 2 subtract 1 from y and add / = 1984
12 to m. Otherwise y' = y and m' = m. m' = 14

3. If the date is later than or equal to 1582 A = INT( 1984/100)
October 15 (i.e. Gregorian calendar) calculate:
(i) A = integer part of (//100); = 19
(ii) B = 2 - A + integer part of (A/4). B = 2 - 19 + INT( 19/4)
Otherwise B = 0. = - 13

4. If / is negative calculate C = INT(365.25 x 1984)
C = INT((365.25 x / ) - 0.75). = 724 656
Otherwise, C = INT(365.25 x / ) .

5. Calculate D = integer part of D = INT(30.6001 x 15)
(30.6001 x (m'+ 1)).. =459

6. Find JD = B + C + D + d+ 1720994.5.
This is the Julian date. JD = 2 446 113.75

The Julian date of the epoch 1990 January 0.0 is 2 447 891.5. We can
easily find the number of days which have elapsed since the epoch by
subtracting this number from the Julian date.

For example, the number of days elapsed since the epoch to 1985
February 17.0 is 2 446 113.5-2 447 891.5= -1778, as found in the
previous section.

Sometimes the modified Julian date, MJD, is quoted. This is equal to JD — 2 400 000.5;
MJD zero therefore began at Oh on November 17th 1858.
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Converting the Julian day number to the calendar date 8

5 Converting the Julian day number to the calendar date

It is sometimes necessary to convert a given Julian date into its
counterpart in the Gregorian calendar. The method shown here works
for all dates since January 1st 4713 B.C.* For example, let us find the
Gregorian date corresponding to JD = 2 446 113.75.

Method Example

1. Add 0.5 to JD. Set / = integer part and
F — fractional part.

If / is larger than 2 299 160, calculate:
/ / - I 867 216.25

(i) A = integer part of
36 524.25

(ii) B = I + 1 + A - integer part of (A/A).
Otherwise, set B = / .
Calculate C = B + 1524.

(C- 122.1
Calculate D = integer part of

365.25
Calculate E = integer part of (365.25 x D).

( C-E \
Calculate G = integer part of I 1.

Calculate d = C — E + F — integer part of
(30.6001 x G). This is the day of the month
(including the decimal fraction of the day).
Calculate m = G - 1 if G is less than 13.5,

or m = G — 13 if G is more than 13.5.
This is the month number.
Calculate y = D - 4716 if m is more than 2.5,

or y = D — 4715 if m is less than 2.5.
This is the year.

JD = 2 446 113.75
+ 0.5 = 2 446 114.25

7 = 2446 114
F = 0.25

A= 15.0

5 = 2446 127.0

C = 2447 651.0

D= 6 700.0

£ = 2 447 175.0

G = 15.0

d = 17.25

m = 2

y = 1985

Hence the Gregorian date is 1985 February 17.25.

See section 4 about the meaning of B.C.
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Finding the day of the week 9

6 Finding the day of the week

It is sometimes useful to know on what day of the week a particular date
will fall. This can be found very easily once the Julian date has been
calculated. Here, we shall find the day of the week corresponding to
February 17th 1985.

Method Example

Find the Julian day number corresponding to
OhUT on the day in question (§4).

/JD+1.5>
Calculate A = I

Take the fractional part of A, multiply by 7, and
round to the nearest integer.* This is the
weekday number, n. The day of the week is then
as follows: Sunday, n = 0; Monday, n = 1;
Tuesday, n = 2; Wednesday, n = 3; Thursday,
n = 4; Friday, n = 5; Saturday, n = 6.

1985 February 17.0
JD = 2 446 113.5

A = 349 445.0000

Fractional part = 0.0

Sunday

This may be done by taking the integer part of (fractional part + 0.5).
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Converting hours, minutes and seconds to decimal hours 10

7 Converting hours, minutes and seconds to decimal hours

Most times are expressed as hours and minutes, or hours, minutes and
seconds. For example, twenty to four in the afternoon may be written as
3.40 p.m., or 3h 40m p.m., or on a 24-hour clock as 15h40m. In
calculations, however, the time needs to be expressed in decimal hours
on a 24-hour clock. The method of converting a time expressed in the
format hours, minutes and seconds into decimal hours is given below.
Some calculators have special keys to do this for your automatically.

Method Example

6h 31m 27s p.m.
1. Take the number of seconds and divide 27/60 = 0.45000

by 60.
2. Add this to the number of minutes and 31.45/60 = 0.524 17

divide by 60. + 6.0
3. Add the result to the number of the = 6.524 17

hours.
4. If the time has been given on a 12-hour + 12.0

clock, and it is p.m., add 12. = 18.524 17 hours
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Converting decimal hours to hours, minutes and seconds 11

Converting decimal hours to hours, minutes and seconds

When the result of a calculation is a time, it is normally expressed as
decimal hours, and we need to convert it to hours, minutes and seconds.
The method of doing so is given below. Again, some calculators have
special keys to carry out this function automatically.

Method Example

18.524 17 hours
1. Take the fractional part and multiply by 60. 0.524 17 x 60 = 31.4502

The integer part of the result is the number
of minutes.

2. Take the fractional part of the result and 0.4502 x 60 = 27.012
multiply by 60.
This gives the number of seconds. 18h 31m 27s
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Converting the local time to UT 12

9 Converting the local time to UT

The basis of civilian time-keeping is the rotation of the Earth. Universal
time (UT) is related to the motion of the Sun as observed on the
Greenwich meridian, longitude 0°. The Earth is not a perfect time
keeper, however, and today a more uniform flow of time is available
from atomic clocks. International atomic time (TAI) is the scale
resulting from analyses by the Bureau International de l'Heure in Paris
of atomic standards in many countries. A version of universal time,
called coordinated universal time (UTC), is derived from TAI in such a
manner as to be within 0.9 seconds of UT and a whole number of
seconds different from TAI. (On July 1st 1985 TAI-UTC = 23 s). This is
achieved by including occasional leap seconds in UTC, usually at the
ends of June and December. UTC is the time broadcast by some
national radio stations (the 'time pips') and by standard time
transmission services such as MSF and WWV. It is now the basis of legal
time keeping on the Earth. UTC is thus an atomic time standard (and
hence as uniform as we know how to measure) but with discontinuities
to keep it in line with the irregular rotation of our planet.

The amateur astronomer need not be too concerned by all this
complexity. For our purposes, we can take UT = UTC = GMT without
noticing the difference. Where we need greater accuracy, we will use
terrestrial dynamic time (TDT) for events after 1984 January 0.0, and
Ephemeris time (ET) before then. TDT is equal to TAI + 32.184 seconds
and took over from ET at the beginning of 1984 (see section 16).

UT is used as the local civil time in Britain during the winter months,
but one hour is added during the summer to form British summer time
(BST) so that the working day fits more conveniently into daylight
hours. Many other countries adopt a similar arrangement; sometimes
the converted time is known as daylight saving time.

Countries lying on meridians east or west of Greenwich do not use UT
as their local civil time. It would be impractical to do so as the local
noon, the time at which the Sun reaches its maximum altitude, gets
earlier or later with respect to the local noon on the Greenwich meridian
as one moves east or west respectively. The world is therefore divided
into time zones, each zone usually corresponding to a whole number of
hours before or after UT, and small countries, or parts of large countries
lying withing a zone, adopt the zone time as their local civil time (see
Figure 2). It is often convenient in making astronomical calculations to
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Converting the local time to UT 13

use UT, and the local civil time may be converted into UT in the

following manner. For an example we convert daylight saving time

3h 37m on longitude 64° E (zone +4 hours) to UT.

Method Example

1. Convert local civil time to zone time
if necessary to correct for daylight
saving. Convert to decimal hours
(§7).

2. Subtract the zone correction.
3. If the answer is greater than 24,

subtract 24.
If the answer is negative, add 24.
Convert back to hours, minutes and
seconds (§8).

O3h37m
-OlhOOm
= 02h 37m

Zone time = 2.616 667 hours
- 4.00
= -1.383 333 hours
+ 24.00
= 22.616 667

U T = 22h37m
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Figure 2. International time zones. This small-scale map can show only the general distribution of time zones
around the world. If you are unsure of your own zone correction, you can check it by tuning your short-wave
radio to the BBC World Service and comparing your watch with the time pips broadcast every hour from
London.
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Converting UT to local civil time

10 Converting UT to local civil time

15

Given the time as UT, what is the corresponding local civil time? For

example, what is the local civil time on longitude 64° E (zone +4 hours)

during daylight saving when the UT is 22h 37m?

Method Example

1. Convert UT to decimal hours (§7).

2. Add the zone correction.
If the answer is greater than 24, subtract 24.
If the answer is negative, add 24.

3. Convert to hours, minutes and seconds (§8) and
correct for daylight saving (if necessary).
This is the local civil time.

22h 37m
= 22.616 667 hours
+ 4.00
= 26.616 667 hours
- 24.00
= 2.616 667
= 2h 37m
+ lh 00m
= 3h 37m
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Sidereal time (ST) 16

11 Sidereal time (ST)

Universal time (UT), and therefore the local civil time in any part of the
world, is related to the motion of the Sun. Roughly speaking, we may
take one solar day as the time between two successive passages of the
Sun across the meridian as observed at a particular place. Astronomers
are interested, however, in the motion of the stars; in particular they
need to use a clock whose rate is such that any star is observed to return
to the same position in the sky after exactly 24 hours have elapsed
according to the clock. Such a clock is called a sidereal clock and its
time, being regulated by the stars, is called sidereal time (ST). Solar time,
of which UT is an example, is not the same as sidereal time because
during the course of one solar day the Earth moves nearly one degree
along its orbit round the Sun. Hence, the Sun appears progressively
displaced against the background of stars when viewed from the Earth;
turning that around, the stars appear to move with respect to the Sun.
Any clock, therefore, which keeps time by the Sun does not do so by the
stars.

There are about 365^ solar days in the year,* the time taken by the
Sun to return to the same position with respect to the background of
stars. During this period, the Earth makes about 366^ revolutions
abouts its own axis; there are therefore this many sidereal days in the
year. Each sidereal day is thus slightly shorter than the solar day, 24
hours of sidereal time corresponding to 23h 56m of solar time. Universal
time and Greenwich sidereal time agree at one instant every year at the
autumnal equinox (around September 22nd). Thereafter, the difference
between them grows in the sense that ST runs faster than UT, until
exactly half a year later it is 12 hours. After one year, the times again
agree.

The formal definition of sidereal time is that it is the hour-angle of the
vernal equinox (see section 18).

See the definition of year in the Glossary.
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12 Conversion of UT to GST

17

This section describes a simple procedure by which the universal time
may be converted into Greenwich mean sidereal time (GST). It is
accurate to better than one tenth of a second. It is slightly different from
the method given in previous editions of this book; in particular, the
calculation of 'constant B' is now incorporated into the procedure.

For example, what was the GST at 14h 36m 51.67s UT on April 22nd
1980? '

Method

1. Find the Julian date corresponding to
Oh on this calendar date (§4).

2. Calculate S = J D - 2 451545.0
3. Calculate T = 5/36 525.0
4. Find TO = 6.697 374 558

+ (2 400.051 336 x T)
+ (0.000 025 862 x T2).
Reduce the result to the range 0-24 by
adding or subtracting multiples of 24.

5. Convert UT to decimal hours (§7).
6. Multiply UT by 1.002 737 909.

7. Add this to TO and reduce to the range
0-24 if necessary by subtracting or
adding 24.
This is the GST.

8. Convert the result to hours, minutes
and seconds (§ 8).

Example

JD = 2 444 351.5

S= - 7 193.5
7 = - 0.196 947

T 0 = - 465.986 246

+ 24 x 20
T 0 = 14.013 754

U T = 14.614 353
x 1.002 737 909

14.654 366
+ 14.013 754

GST= 4.668 119
GST = 4h 40m 5.23s
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13 Conversion of GST to UT

18

Here we deal with the reverse problem of the previous section, namely
that of converting a given Greenwich mean sidereal time into the
corresponding universal time. The problem is complicated, however, by
the fact that the sidereal day is slightly shorter than the solar day so that
on any given date a small range of sidereal times occurs twice. This range
is about 4 minutes long, the sidereal times corresponding to UT Oh to
Oh 4m occurring again from UT 23h 56m to midnight (see Figure 3). The
method given here correctly converts sidereal times in the former
interval, but not in the latter.

The accuracy of this method is the same as that of section 12, namely
better than one tenth of a second. It replaces the slightly longer
procedure given in previous editions of this book.

For example, at GST = 4h 40m 5.23s on April 22nd 1980, what was
the UT?

Method

1. Find the Julian date corresponding to
Oh on this calendar date (§4).

2. Calculate 5 = J D - 2 451545.0
3. Calculate 7 = 5/36 525.0
4. Find TO = 6.697 374 558

+ (2 400.051 336 x T)
+ (0.000025 862 x T2).
Reduce the result to the range 0-24 by
adding or subtracting multiples of 24.

5. Convert GST to decimal hours (§ 7).
6. Subtract TO and reduce to the range

0-24 if necessary by subtracting or
adding 24.

7. Multiply by 0.997 269 566 3.
The result is the UT.

8. Convert the result to hours, minutes
and seconds (§ 8).

Example

JD = 2

S =
7 =

T0 =

T0 =

GST =

=

UT =

444 351.5

- 7 193.5
0.196 947

- 465.986 246

+ 24 x 20
14.013 754

4.668 119
- 14.013 754

14.654 366

x 0.997 269 566 3
14.614 353

UT = 14h 36m 51.67s
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Conversion of GST to UT 19

Figure 3. UT and GST for April 22nd 1980. The shaded intervals of GST
occur twice on the same day.

21st

I Oh Oh 03m 56s

-April 22nd- i—23rd-

23h 56m 04s i Oh

UT

14h 00m 49s

14h 04m 45s

GST

14h 00m 49s

14h 04m 45s
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14 Local sidereal time (LST)

The Greenwich sidereal time discussed in the previous sections is the
sidereal time correct for observations made on the Greenwich meridian,
longitude 0°. It is the local sidereal time for the Greenwich meridian. As
you move west or east from longitude 0°, however, the local sidereal
time gets earlier or later respectively because the hour-angle of the
vernal equinox, which defines the local sidereal time, changes. You can
calculate your local sidereal time, given the Greenwich sidereal time,
very easily as the difference between the two times in hours is simply the
geographical longitude in degrees divided by 15. Longitudes west give
local sidereal times earlier than GST and longitudes east later. Take the
example: what is the local sidereal time on the longitude 64° W when the
Greenwich sidereal time is 4h 40m 5.23s.

Method Example

1. Convert GST to decimal hours (§ 7). GST = 4.668 119 hours
2. Convert longitude difference in degrees to 64° = 4.266 667 hours

difference in time by dividing by 15.
3. If the longitude is W, subtract.

If the longitude is E, add.
If the result is greater than 24, subtract 24.
If the result is negative, add 24.
This is the LST in hours. LST = 0.401453 hours

4. Convert LST to hours, minutes and seconds LST = Oh 24m 5.23s
(§8).
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15 Converting LST to GST

This problem is the reverse of that treated in section 14, namely given the

local sidereal time at a particular place what is the corresponding

Greenwich sidereal time. As an example, we shall calculate the GST

when the LST on longitude 64° W is Oh 24m 5.23s.

Method Example

1. Convert the LST to decimal hours (§7).
2. Convert the longitude difference in degrees to

difference in time by dividing by 15.
3. If the longitude is W, add.

If the longitude is E, subtract.
If the result is greater than 24, subtract 24.
If the result is negative, add 24.
This is the GST in hours.

4. Convert GST to hours, minutes and seconds
(§8).

LST = 0.401453 hours
64° = 4.266 667 hours

GST = 4.668 119 hours
GST = 4h 40m 5.23s
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16 Ephemeris time (ET) and terrestrial dynamic time (TDT)

Universal and sidereal time are both tied directly to the period of the
rotation of the Earth about its polar axis. The Earth is being used in
effect as the balance-wheel of a cosmic clock whose tick defines the
length of the day. With the advent of extremely accurate atomic clocks,
however, it has become apparent that the Earth's rotation is not strictly
uniform but shows small erratic fluctuations which are not well
understood. UT and ST, being reckoned by this irregular cosmic clock,
are therefore not strictly uniform either. Astronomers need a system of
time which is uniform since the theories of celestial mechanics assume
that such a quantity exists. For example, two solid bodies in orbit about
one another far away from any external influences should have an
unchanging orbital period when measured on a regular clock. Before
1984, astronomers adopted ephemeris time (ET) for this purpose. It was
calculated from the motion of the Moon and assumed to be uniform.
Nowadays, atomic clocks provide the most uniform measure of time,
and since 1984 terrestrial dynamic time (TDT) has been used instead.
TDT is tied to the atomic time scale, TAI (see section 9), by the equation:

TDT = TAI + 32.184 s.

The constant offset of 32.184 seconds was chosen to make TDT equal to
ET at the beginning of 1984. ET itself was chosen to agree as nearly as
possible with the measure of universal time during the nineteenth
century, and it is unlikely that TDT will differ by more than a few
minutes in the twentieth.

The primary unit of ET was the length of the tropical year at 1900
January 0.5 ET which contained 31 556 925.974 7 ephemeris seconds.
The primary unit of TAI, and hence TDT, is the SI second, defined to be
the duration of 9 192 631 770 periods of the radiation corresponding to
the transition between two hyperfine levels of the ground state of the
caesium 133 atom. We need not be too concerned by all this since very
high accuracy is not the aim of the book. In almost every case we can
take ET = TDT = UT without noticing the difference. Only when
calculating the motion of the Moon, and predicting eclipses, will it pay
us to take account of the difference between ET/TDT and UT. In
January 1986 this was 54.87 seconds, UT being behind TDT; that is
TDT - UT = AT = 54.87 seconds.

Figure 4 shows how AT has varied since 1620; we can predict that its
value in the year 2000 might be between 60 and 70 seconds, but only
direct observations at that time will confirm this. Recently, pulsars with
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Ephemeris time and terrestrial dynamic time 23

very stable rates of spin have been discovered which appear to be even
more precise than our best atomic clocks. TAI may well lose its place as
the fundamental measure of time during the next century, and be
replaced by another scale based on the pulsars - GBT perhaps (galactic
barycentric time).

Figure 4. The variation of AT since 1620.
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