HeatShield

A low-cost didactic device for control education simulating 3D printer heater blocks

Gergely Takács^{*}, Martin Gulan, Juraj Bavlna, Richard Köplinger, Michal Kováč, Erik Mikuláš, Sohaibullah Zarghoon and Richard Salíni

E S T U

Institute of Automation, Measurement and Applied Informatics

Institute of Automation, Measurement and Applied Informatics

- Feedback control engineering needs lab tools
- Tools are expensive, large, complicated and cannot be taken home
- Many require closed source tools (e.g. MATLAB, LabView)
- Implementation on microcontroller units (MCU) is under-represented

- Cheap
- Open source
- Standardized
- Free integrated development environment (IDE)
- Great community and abundance of materials
- Hardware expansion through "Shields"

Create novel tools for control engineering education, implementing a lab experiment on a single Arduino expansion Shield — a "live" control laboratory in the palm of your hand.

- Cheap
- Open source
- Standardized
- Free software library compatible with the Arduino IDE

Control Systems Engineering Education

www.automationshield.com

EDUCON 2019, paper ID: 1183

Teach thermal feedback control concepts by controlling the temperature of the so-called "hotend" of a 3D printer.

"Hotend"

Meet the "HeatShield"

Safety cage: 3D printing and Plexiglas

EDUCON 2019, paper ID: 1183

Top view of the HeatShield

Electrical schematics of the HeatShield

Cheap!

Hardware cost is less than \$5 per unit, incl. PCB fabrication.

Description	Designator	Value	Quantity	Unit Price ^a	Price
Transistor	Q1	BUZ11, N-channel power MOSFET, 50V, TO-220 THT	1	\$0.262	\$0.262
Voltage regulator	U2	LM317T, Adjustable positive linear voltage regulator, 1.2-37 V, TO-220, THT	1	\$0.116	\$0.116
Heat sink	-	Heatsink for the voltage regulator, TO-220 package	1	\$0.053	\$0.053
Thermistor	R1	NTC 3950, 100 k $\Omega \pm 1\%$, rated 300 °C with wiring	1	\$0.445	\$0.445
Resistor	R2	100 kΩ, 1/4 W, THT	1	\$0.016	\$0.016
Resistor	R3, R5	1 kΩ, 1/4 W, THT	2	\$0.016	\$0.032
Resistor	R4	240 kΩ, 1/4 W, THT	1	\$0.016	\$0.016
Heating cartridge	-	24V, 30W, 20×6 mm	1	\$0.98	\$0.98
Heater block	—	Aluminum, 20×16×12 mm	1	\$0.99	\$0.99
Bolt		M6×20 mm, headless, block to insulator	1	0.0526	0.0526
Thermal insulator	—	Hexagonal glass-filled polyester insulator M6 IS20HH625, 25×20 mm	1	\$0.89	\$0.89
Bolt	-	M6×10 mm, rounded 3.3 mm flat head, insulator to PCB	1	\$0.10	\$0.10
Header	—	6x1, female, 2.54 mm pitch	1	\$0.070	\$0.070
Header	-	8x1, female, 2.54 mm pitch	2	\$0.099	\$0.198
Header	-	8x1, female, 2.54 mm pitch	1	\$0.099	\$0.099
PCB	-	FR4, 2 layer, 1.6 mm thick	1	\$0.50	\$0.50
Total:					\$4.83 ^b

^a For low quantity orders.

^b Excluding labor and postage.

The HeatShield is Open Source. Editable schematic plans and the PCB layout available:

An open-source library for the Arduino IDE handles I/O

Initialize:

1 HeatShield.begin();

Temperature y_k in degrees Celsius:

y = HeatShield.sensorRead();

Power u_k to heater in percents:

```
1 HeatShield.actuatorWrite(u);
```

Many more functions in the AutomationShield library e.g. for hard real-time sampling, PID control, etc.

... but the same works in the MATLAB scripting environment:

Initialize:

1 HeatShield.begin();

Temperature y_k in degrees Celsius:

y = HeatShield.sensorRead();

Power u_k to heater in percents:

1 HeatShield.actuatorWrite(u);

...and in Simulink as well:

EDUCON 2019, paper ID: 1183

- Experiments to gather input-output data for post-processing, system identification and model validation.
- Available in C/C++, MATLAB and Simulink.

Step: Live system identification experiment by an open-loop step response implemented through the MATLAB API.

PR(B)S: System identification experiment by a sequence of open-loop step responses implemented through the C/C++ API.

$$\dot{Q}_{\mathrm{C}}(t)=\dot{Q}_{\mathrm{J}}(t)-\dot{Q}_{\mathrm{R}}(t),$$

where

$$\begin{split} \dot{Q}_{\mathrm{C}}(t) &= mc \, \dot{T}(t), \\ \dot{Q}_{\mathrm{J}}(t) &= \frac{V^2}{R} \left(\frac{1}{100} u(t) \right), \\ \dot{Q}_{\mathrm{R}}(t) &= h \mathcal{A}(T(t) - T_{\mathrm{a}}(t)), \end{split}$$

and thus

$$\dot{T}(t) = -rac{hA}{mc}T(t) + +rac{V^2}{mcR}\left(rac{1}{100}u(t)
ight) + rac{hA}{mc}T_{
m a}(t)$$

Measured vs. simulated response for the HeatShield device

PID control experiments with simplified built-in sampling and PID functionality

Closed-loop response of the printer head temperature in the C/C++ API implementation of the PID example, logged in the MATLAB API.

:::: STU Faculty of Mechanical Engineering EDUCON 2019, paper ID: 118

9.4.2019 14 / 17

Example: PID Control (Simulink)

STU Faculty of Mechanical Engineeri

EDUCON 2019, paper |D: 1183

9.4.2019 15 / 17

- AutomationShield: a non-commercial project for control engineering education
- Full feedback control experiments can be fitted to Arduino expansion modules (lab-on-a-shield)
- HeatShield: thermal feedback control experiment for 3D printer hotends
- Manufacturing cost is <\$5
- Students can take the "laboratory" home
- Open-source hardware
- Open-source software and examples for Arduino IDE (C/C++), MATLAB and Simulink

More open-source Arduino Shields for control to come:

Upcoming: "MagnetoShield" A magnetic levitation experiment

Upcoming: "MotoShield" A motor control experiment

Thank you for your attention!

Make sure to visit www.automationshield.com for more information.

Please feel free to contact me any time at gergelytakacs@gergelytakacs.com