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Abstract—Commercial educational tools for teaching
feedback concepts in control systems engineering and
mechatronics are generally expensive, large, complex
and sensitive instruments; therefore cannot be used
for homework assignments outside the classroom. This
paper presents a novel open-source teaching aid that
can be readily manufactured under AC3 and as such,
is financially accessible to students and universities
operating on a tight budget. The device proposed in
this paper implements a simple optical experiment,
allowing students to follow a prescribed brightness level
using feedback control concepts. In addition to real-
time control, the apparatus is also suitable for teaching
signal processing and system identification principles.
The educational aid presented here is attached to the
popular Arduino microcontroller prototyping platform
in a form of a miniature extension shield, thereby using
a standardized physical layout and software ecosystem.
We describe the hardware, the application program-
ming interface (API) and library written in C/C++
for the Arduino integrated development environment
(IDE) and the accompanying Simulink toolbox; more-
over present sample exercises for system identification
and proportional-integral-derivative (PID) control.

Index Terms—control engineering education, optical
control, student experiments, feedback circuits, micro-
controllers, Arduino, low-cost

I. Introduction

The education of professionals working in the field of
control engineering and mechatronics must include two key
components: solid fundamentals in the theoretical aspects
of their future trade and practical hands-on experience
with real hardware implementation. The latter requires
laboratory experiments that are traditionally carried out
on purpose-built commercial engineering education tools.
Numerous vendors offer their products to academic

institutions; unfortunately most of these devices come
at a steep price. These products, such as linear and ro-
tary inverted pendulums, ball-on-plate systems, magnetic
levitation or simplified helicopters provide an excellent
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Fig. 1. The OptoShield control systems engineering educational aid
mounted to an Arduino Uno.

introduction to real control problems. However, for most
universities thousands or even tens of thousands of Euros
invested in one workstation is financially prohibitive, in
particular when in reality 5–10 of them are needed for
a single class. This is not the only issue with currently
available laboratory hardware, as these devices are usually
paired with a closed-source software bundle that is yet
again linked to commercial software such as MATLAB
or LabView. Furthermore, students can only experiment
in the laboratory and under close supervision; they may
not take equipment home to continue working on their
assignments. This, of course, is because of the high price,
large size and delicate nature of these devices.

In the past couple years we have been witnessing a revo-
lution in teaching microcontroller and embedded software
engineering thanks to the microcontroller unit (MCU)
prototyping boards known collectively under the ‘Arduino’
name. The secret to the success of the Arduino boards is
standardization. The Arduino Uno in particular became
the gold-standard for education, since the hardware layout
and functionality is unified, the software is free and well
maintained and the support and community of helpful
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Fig. 2. Top view of the device showing its essential components.

enthusiasts is especially active. The functionality of basic
boards can be readily extended since the physical and
electrical layout of the Uno board known as ‘R3’ is retained
across numerous other products. As detailed by Garrigós
et al. [1], extra hardware known as ’Shields’ can be simply
pushed onto the board through the header pins extending
the base board functionality for classroom use. The Ar-
duino has made a lasting appearance in the education of
feedback control, system identification and signal proces-
sing concepts as well. The effect of Arduino-based control
projects on student performance and satisfaction has been
also quantified, demonstrating positive learning outcome
and student satisfaction [2].
While there are numerous engineering projects based

on the Arduino for digital signal processing [3], electric
engineering [1] and robotics [4]; there are fewer exam-
ples incorporating feedback-control concepts. Uyanik and
Catalbas propose a motor-control experiment where the
power electronics are implemented by the Arduino Motor
Shield [5]. The well-known inverted pendulum on a cart
is re-imagined as an open-source Arduino-based device
in [6], whereas the familiar ball-on-plate experiment has
also been transformed into a relatively affordable Arduino
variant [7]. The total price of these devices usually ranges
from a hundred to few hundred Euros and require custom-
manufactured or improvised mechanical parts, base units
or support enclosures. Thus, most of Arduino-based cont-
rol education tools introduced in the literature are one-off
purpose-built devices.
A beam-balancing system actuated by a fan was presen-

ted in [8]. A similar concept has been recently introduced
by Kalúz et al. as well [9], albeit in a more refined form
that is suitable for mass-production to a greater extent.
Their open-source Arduino-based experimental device im-
plements a combination of a fan and a moving flap with
indirect position feedback called ‘Flexy’. The authors of
this paper employed this device for an entire semester
with two groups of 14 students in a subject aimed at
teaching control engineering concepts applied on practical
microcontroller technology. While the visual feedback of

TABLE I
Bill of materials and price estimates for a single device,
excluding labor. All prices shown for minimum orders in

Euros.

Part Designator Pcs. Price Sum

LDR, 5 mm, 5–10 kΩ LDR1,LDR2 2 0.65 1.3
Resistor, 2.4 kΩ R1, R2 2 0.0074 0.0148
Resistor, 4.7 kΩ R3, R4 2 0.0074 0.0148
LED 5 mm, clear D1, D2 2 0.116 0.232
Potentiometer, 10 kΩ POT1 1 0.2760 0.2760
Potentiometer knob — 1 0.0920 0.0920
Header 6 pin, F — 1 0.085 0.085
Header 8 pin, F — 2 0.096 0.192
Header 10 pin, F — 1 0.096 0.096
Tube, Φ=5 mm — 20 mm 0.10 0.10
PCB — 1 0.50 0.50

Total AC2.9

the device proves to be a valuable teaching asset, the
construction of the device requires access to a computer-
numerical controlled (CNC) laser-cutting machine to pre-
pare its enclosure and mechanical parts, encompasses the
Arduino itself, contains a non-standardised improvised
prototype board for its power its electronics [10] and
its acquisition price was AC120 a piece. Even though the
participating students expressed keen interest in buying
or constructing their own Flexy devices, the hardware
construction and projected price proved to be prohibitive
in practice.

This paper presents a novel open-source didactic tool to
teach basic concepts in control engineering and mechatro-
nics. Unlike in the case of other didactic devices described
in the literature; our proposal is founded on the idea that
the hardware should be integrated on a Shield that fits
on a single printed circuit board (PCB) copying the now
standardized R3 header pinout of the Arduino ecosystem.
This way, the device can be freely attached and removed
to and from different Arduino models, thus dramatically
reducing unit cost.

Here we introduce a single input, single output experi-
mental device that is compatible with most Arduino pro-
totyping boards and can be manufactured under AC3. The
hardware is open-source, with CAD and manufacturing
files ready for production. The proposed device shall be
referred to as ‘OptoShield’ (see Fig. 1) in the upcoming
discussion. It implements an optical feedback loop that can
be utilized in teaching various design concepts in control
theory, system identification or digital signal processing.

II. Hardware description
The feedback path consists of a light emitting diode

(LED) in the role of the actuator and a light dependent
resistor (LDR) as a sensor. The components are encased in
an opaque tube to prevent the much brighter daylight to
interfere with the experiments. As the device is aimed at
beginners, there is an external LED and LDR included as
well. Because neither of these components are accessible
or visible, students may use the external counterparts for
experimentation and testing. Finally, there is a poten-
tiometer that can be programmed to perform any role,
albeit its main function is to provide the user-adjustable
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Fig. 3. Electrical schematic of the OptoShield excluding the power indicator LED.

reference brightness to the feedback loop. Since the built-
in power indicator LED of the Arduino board is covered
by the OptoShield, an additional LED signals that the
device is powered on. All of these components are shown
on a fully assembled board in Fig. 2.
The electric schematic of the OptoShield is shown in Fig.

3. The current to both the main LED (D1) and its external
duplicate (D2) is limited by series resistors R3 and R4. The
value of these resistors has been chosen so as to create a
maximum brightness that is within the sensing range of
the LDR. Both LED are connected to digital output D3
of the Arduino, therefore the brightness of the external
LED copies that of the main one.
The main LDR acting as a sensor (LDR1) is connected

to the A1 analog input of the Arduino through a voltage
divider configuration using resistor R1. Its value has been
chosen to increase the resolution at the output measu-
rement when combined with the brightness of the LED.
This is repeated for the external sensor with LDR2 and R2
connected to the input A2. Finally, the potentiometer is
connected to the A0 input of the Arduino, while the power
LED with its series resistor is omitted from the scheme.
Table I lists the parts and the components of Op-

toShield, their quantity required to manufacture a single
board and estimated price. The price estimates are given in
Euros for small quantity production, minimum orders and
exclude labor price. As it is clear from the table, the total
comes to less than AC3 a piece, which in high production
volumes makes the OptoShield especially affordable. Com-
ponents have been purposefully selected in through-hole
packages, making the final assembly possible for even those
less experienced with a soldering iron.
The double-layer printed circuit board (PCB) copies the

shape of the Arduino Uno, while the pins conform to the
R3 standardized layout. The use of stackable headers ena-
bles the combination of the shield with other components
or devices, e.g. for data logging or Ethernet. The circuit
board illustrated in Fig. 4 was designed in the free version
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Fig. 4. The PCB of the OptoShield showing all layers (1:1 scale).

of the DipTrace schematic and PCB design software, with
all layered files including the layouts ready for production
are accessible in [11]. The silkscreen of the PCB designates
the actuator as input (u(t)), the sensor as output (y(t))
and the potentiometer as reference (r(t)).

III. APPLICATION PROGRAMMERS’
INTERFACE

Although creating the essential software functionality
to initialize and calibrate the device, read the sensor and
operate the actuator may be the inherent part of the
learning process, an application programming interface
(API) is also available in [11].

A. C/C++ API for Arduino IDE
An all encompassing learning curriculum should contain

the microcontroller realization of feedback control, the-
refore the API has been written in the Arduino dialect
of the C/C++ language. The API for the OptoShield is
contained in the so-called AutomationShield library for the
Arduino IDE. This library is an open-source hardware and

1003



Fig. 5. Blocks available from the Simulink API.

software project, which in addition to the OptoShield, will
implement other hardware similar to the present one.
The OptoShield API is located in the OptoShield .h

header and a corresponding source file; these implement
the OptoClass class which is then declared as default
OptoShield instance. The direction of the inputs and
outputs is initialized by calling

OptoShield .begin ();
which must be followed by

OptoShield . calibrate ();
to re-scale the input and output values. Because the LDR
cannot measure physically valid units, the signal to the
LED and from the LDR will be given in percents of the full
scale. The method calibrated () thus finds the mini-
mal and maximal analog-to-digital converter (ADC) levels
measured at the sensor. The returnCalibrated ()
method returns a flag informing on the calibration state,
while the returnMinVal () and returnMaxVal ()
method return the sensor calibration levels.
The sensor can be read by calling

y= OptoShield . sensorRead ();
which returns a floating-point number in the calibra-
ted range of 0–100% representing process output y(k).
The voltage at the main sensor is accessible through
the sensorReadVoltage () method as well, while the
auxiliary sensor can be accessed via sensorAuxRead ().
Both LED are activated at the same time through the

OptoShield . actuatorWrite (u);
method. This accepts input u(k) as a floating-point num-
ber in the range of 0-100%, which is then sent to the pulse-
width modulation (PWM) enabled port.

The onboard potentiometer can be used in any role, but
the most straightforward one is to read a desired setpoint
r(k) using

r= OptoShield . referenceRead ();
returning a floating-point number between 0-100%.

B. Simulink API
The capabilities of the Simulink Support Package for

Arduino Hardware have lately vastly improved, allowing
code generation and two-way communication between mi-
crocontroller and computer even for the Arduino Uno.

Fig. 6. Process input and output in the Serial Plotter.

This means that reference setpoints can be sent to the bo-
ard directly from the Simulink scheme, while experiment
results may be viewed and logged online.

The API for the OptoShield has been created and
tested in the 2018b release of MATLAB and Simulink.
The resulting library toolbox is illustrated in Fig. 5.
The onboard LEDs have a dedicated block to which the
user supplies a signal from the range of 0–100 (%). The
LDR and its auxiliary twin are serviced by individual
algorithmic blocks; in these the user may select the desired
type of outputs such as voltage, ADC levels or a manually
calibrated signal in percentages. The user may access the
onboard potentiometer in a similar fashion.

The most important block in the Simulink API repre-
sents the inputs and outputs of the physical system in
a single package. The block automatically calibrates the
sensor to the available range, then accepts a saturated
input signal in the range of 0–100 (%) and reads the
calibrated brightness signal from the main LDR. The
process dynamics is also represented by a continuous linear
transfer function for simulation-only exercises.

IV. Demonstration experiments

The limited scope of this article does not enable us to
present the full spectrum of didactic experiments possible
with the proposed hardware. Here we will merely intro-
duce the typical dynamic nature of the process and the
possibilities offered by the proposed device.

A. System identification
The AutomationShield library for OptoShield incorpo-

rates several worked examples, one of these1 illustrates
the input-output step response of the onboard optical
system. A more detailed example2 runs through a pre-
set array of open-loop inputs, incorporates an interrupt-
based sampling system and lists the results to the serial
communication line. The dynamic response of the system
can be followed through the built-in Serial Plotter of the
Arduino IDE. This enables one to display the process
dynamics within the development environment itself, see
Fig. 6.

1See OptoShield_StepResponse .ino .
2See OptoShield_Identification .ino .
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Fig. 7. Identification and modeling of the underlying process.

Apart from this simple graphical representation, the
library includes a function to read the results to the MAT-
LAB workspace. This way students can perform system
identification procedures on the collected data. Figure
7 shows the input and output data gathered through
the latter example. Students may, for example, identify
a continuous-time first-order process model using the
MATLAB System Identification Toolbox and compare the
model to the measurement results. As a result, the first-
order transfer function

G(s) = 3.35
1 + 0.0041s

(1)

with a K=3.35 (-) D.C. gain and T=0.0024 s time constant
produces a 96.46% match with measurement data, as long
as we compare a unit step from zero level up to the
expected working range of the optical tunnel.
However, as it is clear from Fig. 7 students can also

learn that this simplified dynamic representation is far
from perfect, as the real process demonstrates hysteresis
and significant nonlinearity. More advanced curriculum
can then create models compensating for these effects as
well. The scope of the current paper does not allow to
explore the exact source of these nonlinearities in detail.
Although most manufacturers regard the response of their
LDR to lightning conditions fairly linear [12], [13], one
possible source of the hysteresis under dynamic changes is
the discrepancy between the rise and fall time, that can
be an order of magnitude different for certain models [12],
[13].
B. PID control
The gamut of feedback control algorithms that can

be implemented using the proposed device are only li-
mited by the performance of the microcontroller itself.
Since all engineering curricula in feedback control explain
proportional-integral-derivative (PID) control, we will de-
monstrate the closed loop behavior of our device using this
particular approach.
C. Arduino IDE
The examples included within the library contain a PID

control example with manual reference levels set through

0 200 400 600 800

Samples (-)

0

20

40

60

80

In
p

u
t,

 o
u

tp
u

t,
 r

ef
er

en
ce

 (
%

)

Reference

Output

Input

Fig. 8. Closed-loop PID control of the LED brightness.

the potentiometer and an experiment with pre-determined
setpoints. The example code initializes the board and
by calling the generic AutomationShield .h header
also makes use of the sampling and PID functionality
of the library. Discrete sampling is realized by launching
an interrupt-enabled callback routine at each sampling
period. Students may be required to program their own
PID routines, or alternatively, the library contains PID
algorithms in both absolute and incremental forms with
integral wind-up and saturation limits.

A PID controlled closed-loop experiment is shown in
Fig. 8, where the algorithm was tuned to KP = 0.1, TI =
0.015 and TD to a rather symbolic TD = 0.015 . Despite
the true hysteretic an nonlinear nature of the process the
PID algorithm handles feedback control quite well. Note
that the output oscillates around the setpoint—especially
at lower reference levels—because the LED is powered by
a PWM signal instead of a stable true analog input from
a digital-to-analog converter (DAC).

D. Simulink
The Simulink API introduced in Sect. III-B allows

students to implement system identification and feedback
control experiments quickly and intuitively. One can cre-
ate controllers from scratch or use the great variety of
algorithmic blocks that come with Simulink. The schemes
are compiled to AVR-compatible machine code, while two-
way communication is preserved between the block scheme
and computer. This way students may use switches or
interactive tuning parameters in their design.

Here we will illustrate the possibilities of the hardware
and the API by a simple PID controller that is shown in
Fig. 9. The feedback loop uses a tracking reference given
by a slider on the computer screen, while the control moves
are computed by the built-in discrete PID block. Results
are transferred back to the computer and can be viewed
and logged in a Scope block (see Fig. 10).

V. Conclusion
A novel hardware device that implements an optical

feedback control experiment for an extremely low price
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Fig. 9. PID control feedback loop of the proposed device in Simulink.

Fig. 10. Screenshot of the Simulink scope for PID control with
interactive manual reference directly from the computer.

has been introduced here. As it was demonstrated by the
sample experiments, the dynamic character of the closed-
loop system allows students to learn about simple linear
system modeling but also enables the curriculum to incor-
porate experiments aimed at exploring its nonlinear and
hysteretic properties. The range of controller algorithms
that can be tested using this device is practically endless
and limited only by the underlying MCU hardware.
There are several aspects of the proposed hardware

that may be improved in the future. For example, the
optical tunnel may be equipped by another—preferably
less powerful—LED that acts as a repeatable source of
disturbance. A slightly more expensive but further refined
variant of the same concept may replace the LDR to a
calibrated device returning physical units of brightness in
lux and also power the LEDs by an external DAC chip to
reduce steady state oscillations caused by the PWM input.
The software accompanying the device may be aug-

mented by functions implementing standard control algo-
rithms or even system identification and modeling.
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