

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA FACULTY OF MECHANICAL ENGINEERING

FloatShield: An Open Source Air Levitation Device for Control Engineering Education

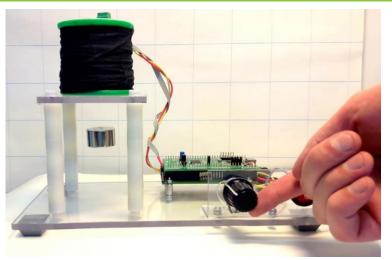
Gergely Takács*, Peter Chmurčiak, Martin Gulan, Erik Mikuláš, Jakub Kulhánek, Gábor Penzinger, Marcel Vdoleček, Miloš Podbielančík, Martin Lučan, Peter Šálka and Dávid Šroba

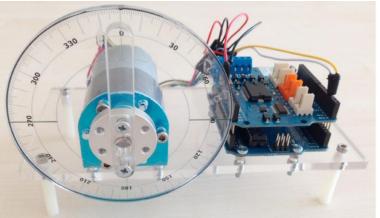
Institute of Automation,
Measurement and Applied Informatics

Motivation: Commercial laboratory devices

- Teaching control engineering and mechatronics requires laboratory tools –
 "trainers" for hands-on experience.
- Commercial tools are expensive, large, complicated and cannot be taken home by students.
- Many require closed-source software (e.g. MATLAB, LabView), and accessories (amplifiers, control PC, etc.)
- Implementation on microcontroller units (MCU) is under-represented

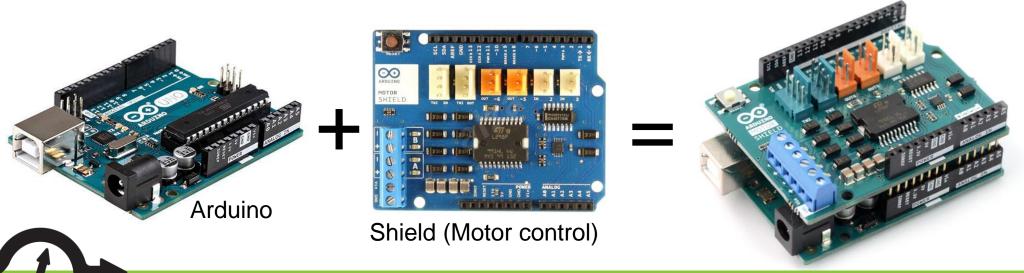
Motivation: Improvised laboratory devices


One of a kind improvised designs that are local to a laboratory or a small research team.


Pro:

Cheap!

Contra:


- Fragile, sensitive setups
- Not very well documented
- Cannot create teaching materials across several universities as an open course

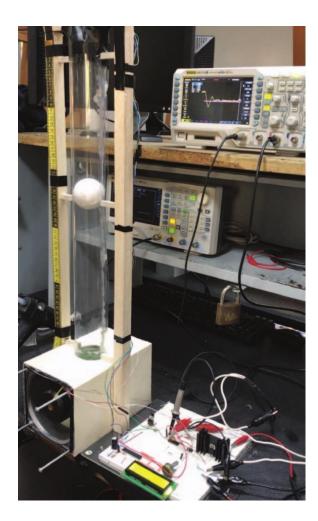


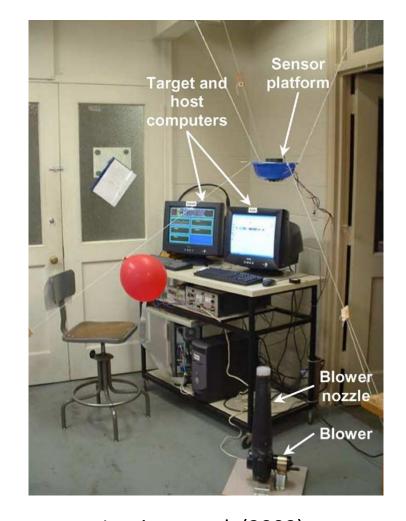
Motivation: Arduino, a universal platform to build on

- Cheap
- Open source
- Easy to buy
- Standardized
- Free integrated development environment (IDE)
- Great community and abundance of learning materials
- Easy hardware expansion through so- called Shields

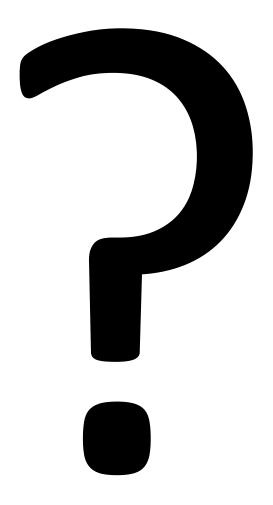
Motivation: New tools for control engineering and mechatronics education

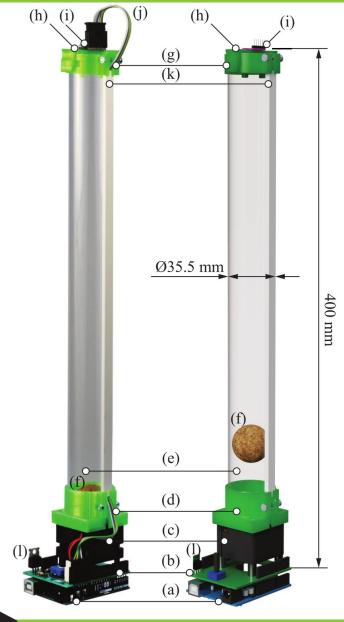
Create novel tools for control engineering and mechatronics education, implementing a lab experiment on a single Arduino expansion Shield, essentially a tiny control / mechatronics laboratory in the palm of your hand that is

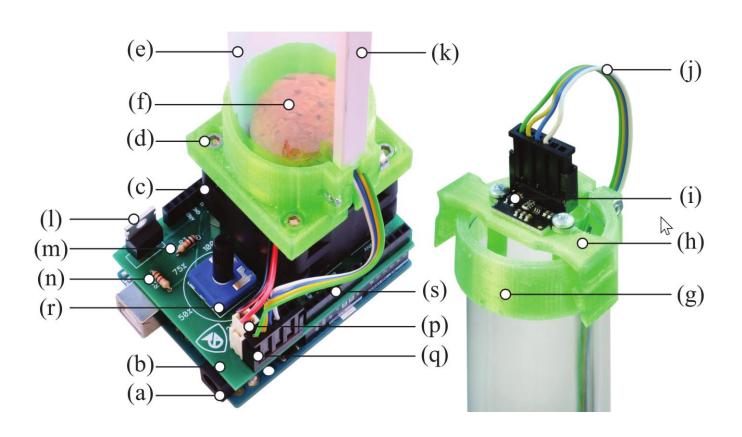

- Cheap
- Open source
- Possible to build at home even by beginners (DIY)
- Standardized
- Free software library compatible with the Arduino IDE (and MATLAB/Simulink)


Motivation: Improvised air flotation devices

Chołodowicz and Orłowski (2017)

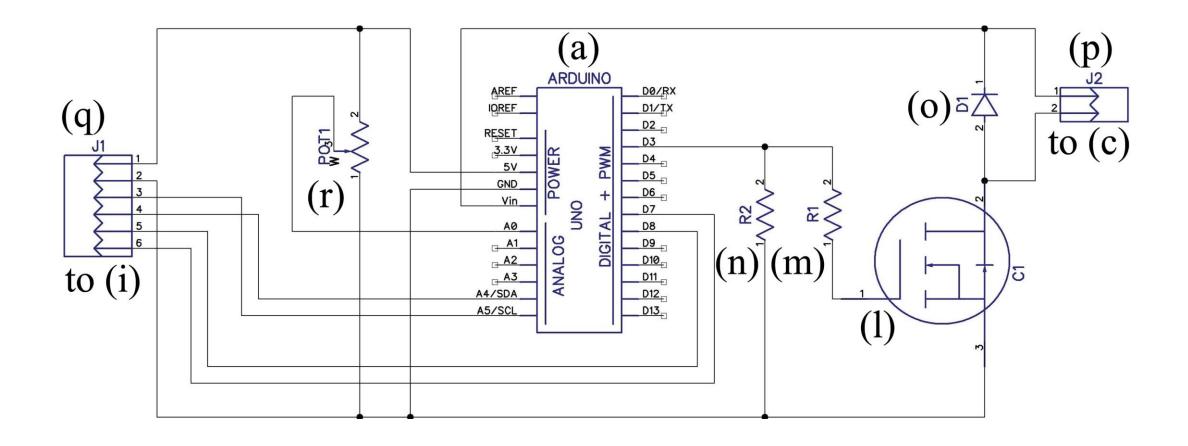

Ovalle and Combita (2019)


Jernigan et al. (2009)

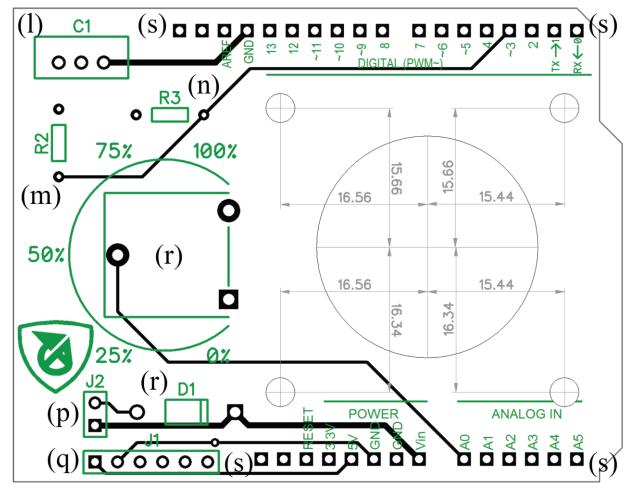


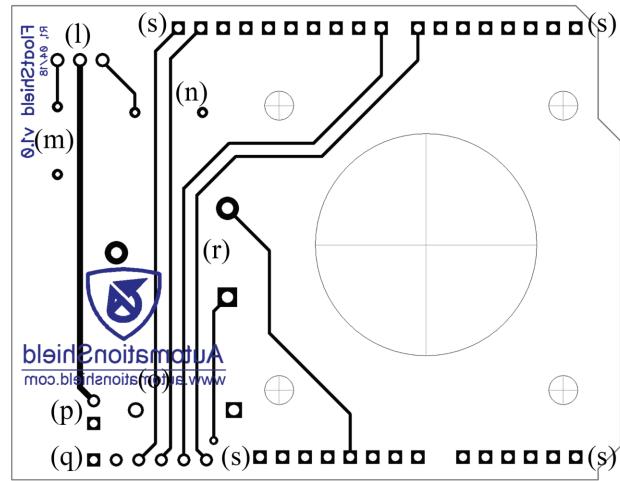
Motivation: Commercial air flotation devices

FloatShield: Hardware



Institute of Automation,


Measurement and Applied Informatics



FloatShield: Schematic drawing

FloatShield: Open-source hardware

FloatShield: Component list and price

Symbol	Part	Description	Qty.	\mathbf{UP}	Price (€)
(b)	PCB	FR4, 2 layer, 1.6 mm thick	1	0.45	0.45
(c)	Fan	Axial, 12 V, 40×40 mm, 24.0 CFM; e.g. Sunon PMD1204PQB1	1	12.61	12.61
(d)	Tube clamp	3D printed, 16 g filament, print time 2:24 h.	1	0.30	0.30
(e)	Tube	Clear, \$\phi 35.5 mm, wall approx. 0.6 mm, 0.4 m; e.g. no. 113816	0.4	10.92	4.37
(f)	Ball	Cork, \$\phi 30 \text{ mm; e.g. no. } 108269	1	0.63	0.63
(g)	Tube flange	3D printed, 5.8 g filament, print time 57 min.	1	0.11	0.11
(h)	Sensor holder	3D printed, 4 g filament, print time 43 min.	1	0.08	0.08
(i)	Sensor	ST Microelectronics VL5310X TOF sensor on a breakout board	1	5.47	5.47
(j)	Wire	~ 0.5 m, 4 lead, 0.15 mm ² , multi-conductor ribbon; e.g. VFL 4×0.14	0.5	0.28	0.14
(k)	Cable shaft	U-shape, 8×330 mm, ASA polymer; e.g. 11796	1	1.55	1.55
(l),C1	MOSFET	IRF520, TO-220AB, e.g. IRF520NPBF	1	0.41	0.41
(m), R1	Resistor	$1~\mathrm{k}\Omega$, $2.5{\times}6.8~\mathrm{mm}$, THT	1	0.01	0.01
(n), R2	Resistor	$10~\mathrm{k}\Omega$, $2.5{ imes}6.8~\mathrm{mm}$ THT	1	0.01	0.01
(o), D1	Diode	1N4001, e.g 1N4001-DCO	1	0.03	0.03
(p)	Connector (fan)	2×1pin, 0.1" pitch; e.g. TE Connectivity 280358	1	0.04	0.04
(p), J2	Jumper (fan)	2×1 pin, 0.1" pitch; e.g. TE Connectivity 280370-2	1	0.16	0.16
(\mathbf{q})	Connector (sensor)	6×1pin, 0.1" pitch; e.g. TE Connectivity 280360	1	0.07	0.07
(q), J1	Jumper (sensor)	6×1 pin, 0.1" pitch; e.g. TE Connectivity 280372-2	1	0.36	0.36
$(\mathbf{q}),(\mathbf{p})$	Connector pins	e.g. TE Connectivity 182206-2	14	0.06	0.90
(r)	Turning knob	5×18.7mm; e.g. ACP 14187-NE	1	0.09	0.09
r), POT1	Potentiometer	$10~\mathrm{k}\Omega$	1	0.28	0.28
(\mathbf{s})	Header	10×1 pin, female, long / stackable, 0.1" pitch	1	0.06	0.06
(\mathbf{s})	Header	8×1 pin, female, long / stackable, 0.1" pitch	2	0.09	0.18
(\mathbf{s})	Header	6×1 pin, female, long / stackable, 0.1" pitch	1	0.09	0.09
	Bolts	DIN 912 M3×40	4	0.10	0.41
	Bolts	DIN 912 M3×16	2	0.04	0.08
	Nuts	DIN 934 M3	6	0.03	0.16
	Screws	DIN 7981F 2.9×9.5	2	0.03	0.05
-	Washers	DIN125 A $3.2 \times 7 \times 0.5$ Polyamide washers	$\overline{4}$	0.01	0.03
-	Standoffs	TFM-M3/10	4	0.12	0.46
				Total:	€ 29.58 ^{a,b}

FloatShield: Arduino API

Simplified application programming interface (API) in C/C++ ARDUIN included within the **AutomationShield library** for the free Arduino IDE:

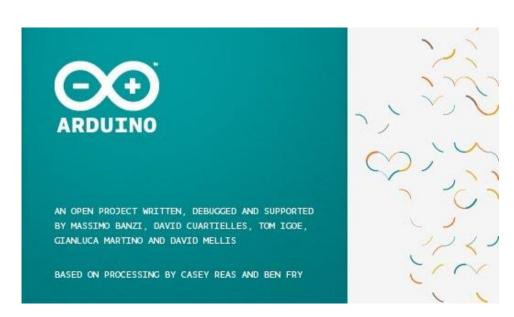
Initialize hardware

```
FloatShield.begin();
```

Calibrate height reading

```
FloatShield.calibrate();
```

Read object height to y


```
y = FloatShield.sensorRead();
```

Send a certain power u to fan

```
FloatShield.actuatorWrite(u);
```

Read external reference r

FloatShield: MATLAB API

API available for MATLAB as well, keeps consistent nomenclature and usage with the Arduino API:

- Initialize hardware
 - FloatShield.begin();
- Calibrate height reading

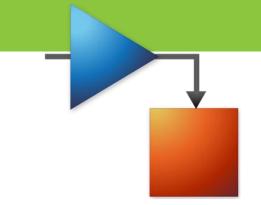
```
FloatShield.calibrate();
```

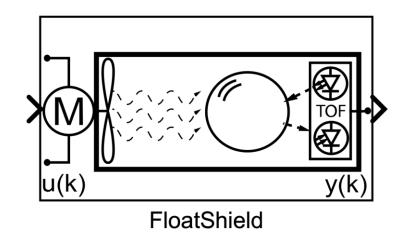
Read object height to y

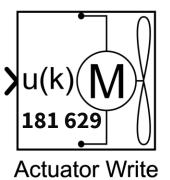
```
y = FloatShield.sensorRead();
```

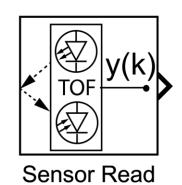
Send a certain power u to fan

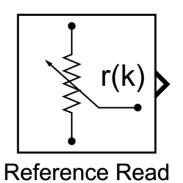
```
FloatShield.actuatorWrite(u);
```


Read external reference r


```
r = FloatShield.referenceRead();


Institute of Automation,
Measurement and Applied Informatics

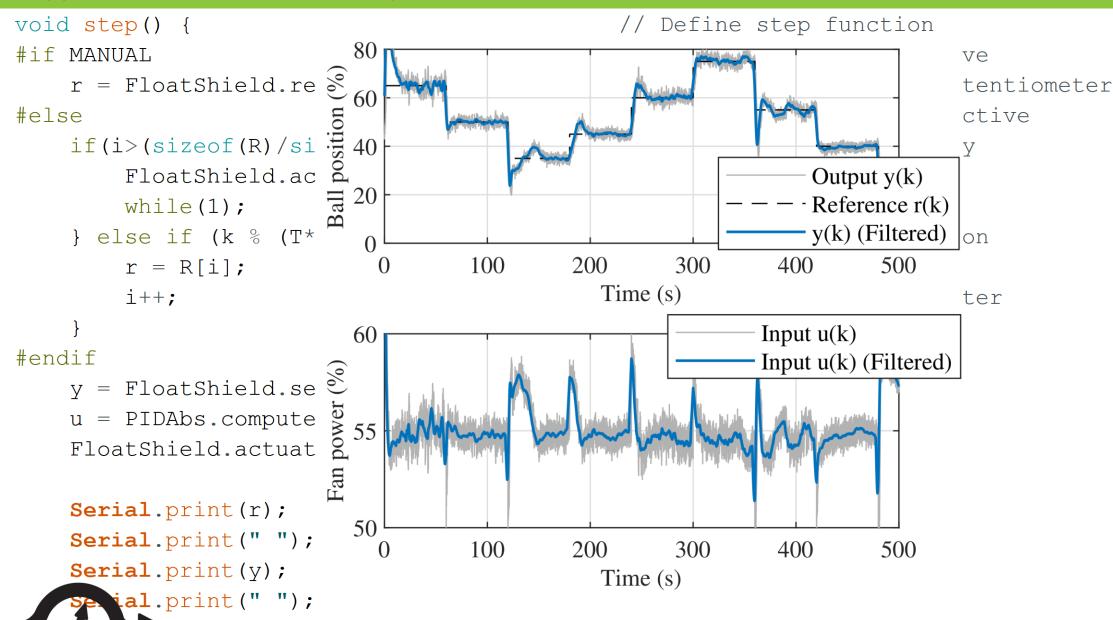

| STU | Sj F
```

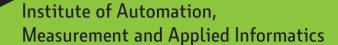

FloatShield: Simulink API

Typical classroom examples: System Identification

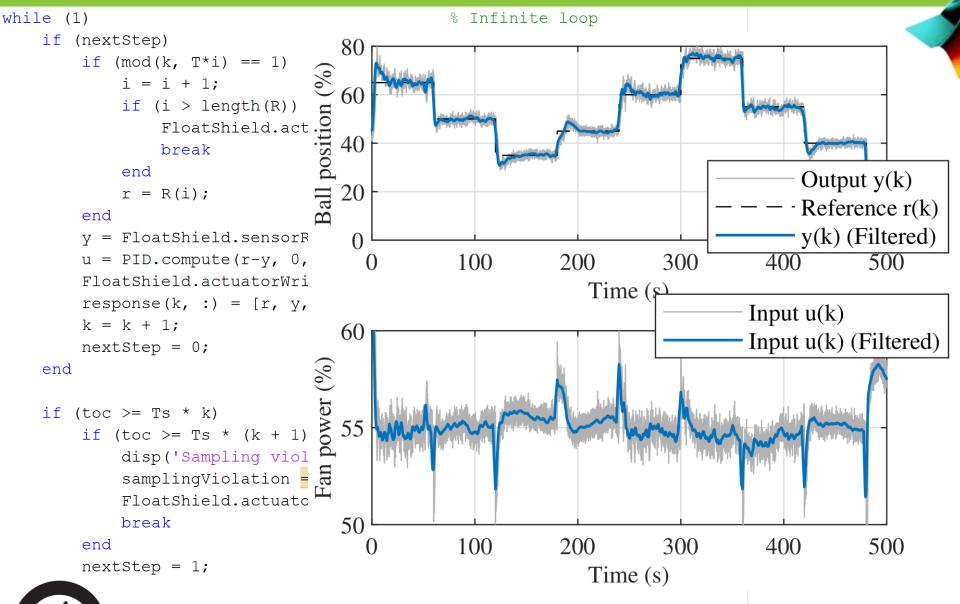
- Modeling
- Data acquisition
- Pre-processing
- Parameter estimation

$$\dot{x}_1(t) = x_2(t),
\dot{x}_2(t) = \frac{1}{2m} c_{\rm d} \rho A (x_3(t) - x_2(t)) |x_3(t) - x_2(t)| - g,
\dot{x}_3(t) = \frac{Ku(t) - x_3(t)}{\tau_1},$$


$$\delta \dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{1}{\tau_2} & \frac{1}{\tau_2} \\ 0 & 0 & -\frac{1}{\tau_1} \end{bmatrix} \delta x(t) + \begin{bmatrix} 0 \\ \frac{K}{\tau_1} \\ 0 \end{bmatrix} \delta u(t)$$


$$\frac{\delta H(s)}{\delta U(s)} = \frac{1}{s(\tau_1 s + 1)(\tau_2 s + 1)},$$

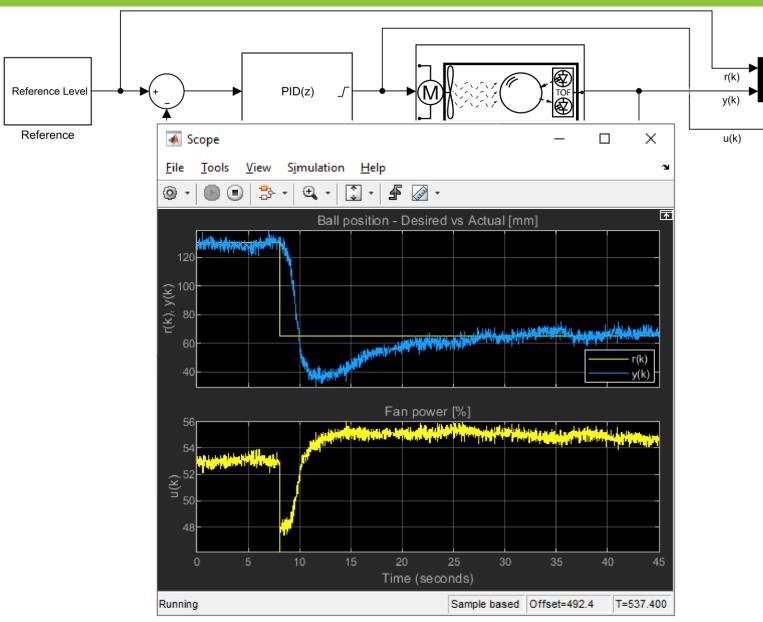
Typical classroom examples: PID control (Arduino IDE)



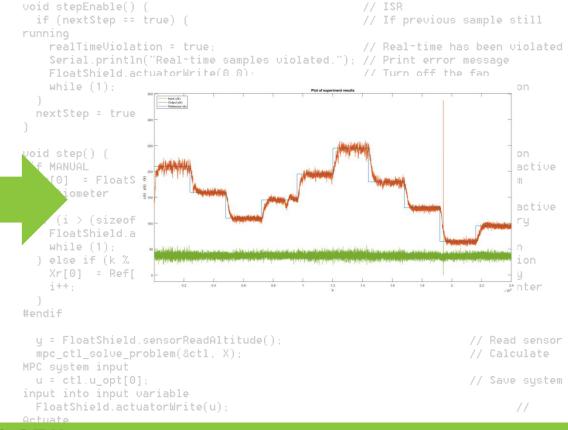


ARDUINO

Typical classroom examples: PID control (MATLAB)



Typical classroom examples: PID control (Simulink)



S T U S j F

Typical classroom examples: MPC

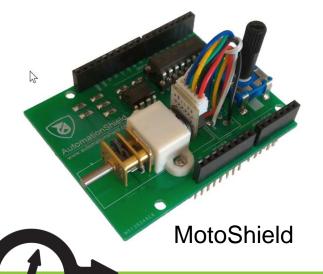
- Linear MPC running on a 8-bit processor solved by muAO-MPC (Zometa and Findeisen 2016)
- Linear MPC in pseudo real-time solved by "quadprog" (no toolboxes, own implementation in m-files)

```
 \begin{aligned} & \underset{u}{\text{minimize}} & \frac{1}{2} \sum_{j=0}^{N-1} ((x_{j} - x_{-}ref_{j})^{T} Q(x_{j} - x_{-}ref_{j}) + \\ & (u_{j} - u_{-}ref_{j})^{T} R(u_{j} - u_{-}ref_{j})) + \\ & \frac{1}{2} (x_{N} - x_{-}ref_{N})^{T} P(x_{N} - x_{-}ref_{N}) \\ & \text{subject to} & x_{j+1} = A_{d}x_{j} + B_{d}u_{j}, \quad j = 0, \cdots, N-1 \\ & u_{-}lb \leq u_{j} \leq u_{-}ub, \quad j = 0, \cdots, N-1 \\ & e_{-}lb \leq K_{x}x_{j} + K_{u}u_{j} \leq e_{-}ub, \quad j = 0, \cdots, N-1 \\ & f_{-}lb \leq Fx_{N} \leq f_{-}ub \\ & x_{0} = x \end{aligned}
```


Other shields within our initiative - visit www.automationshield.com

BOBShield (Ball On Beam)

MagnetoShield



OptoShield

HeatShield

Institute of Automation,
Measurement and Applied Informatics

The current pandemic situation...

"Take-home" laboratories would be highly desirable for many institutions at this unusual times...

(Several of my students have the "AutomationShield" devices currently at home and thus are a lot less worried about their thesis projects.)

Thank you for your attention!

Visit www.automationshield.com for more details

and please feel free to contact me any time via:

www: gergelytakacs.com

e-mail: gergelytakacs@gergelytakacs.com

researchgate.net/profile/Gergely_Takacs

linkedin.com/in/gergelytakacs

