

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA FACULTY OF MECHANICAL ENGINEERING

MagnetoShield: Prototype of a Low-Cost Magnetic Levitation Device for Control Education

Gergely Takács*, Jakub Mihalík, Erik Mikuláš and Martin Gulan

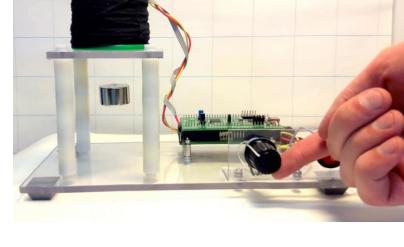


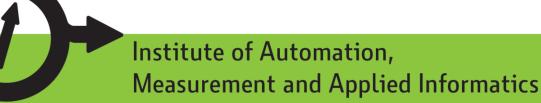
(TS-5D, paper no. 1672)

Motivation: Commercial laboratory devices

- Teaching control engineering and mechatronics requires laboratory tools "trainers" for hands-on experience.
- Commercial tools are expensive, large, complicated and cannot be taken home by students.
- Many require closed-source software (e.g. MATLAB, LabView), and accessories (amplifiers, control PC, etc.)
- Implementation on microcontroller units (MCU) is underrepresented

Motivation: Improvised laboratory devices

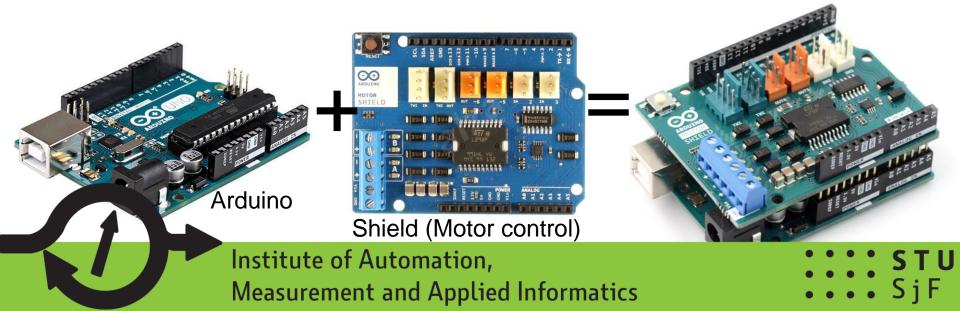

One of a kind improvised designs that are local to a laboratory or a small research team.


Pro:

• Cheap!

Contra:

- Fragile, sensitive setups
- Not very well documented
- Cannot create teaching materials across several universities as an open course



Motivation: Arduino, a universal platform to build on

- Cheap
- Open source
- Easy to buy
- Standardized

- Free integrated development environment (IDE)
- Great community and abundance of learning materials
- Easy hardware expansion through so- called Shields

Motivation: New tools for mechatronics education

AutomationShield

www.automationshield.com

Create novel tools for control engineering education, implementing a lab experiment on a single Arduino expansion Shield, essentially a tiny mechatronics laboratory in the palm

of your hand that is

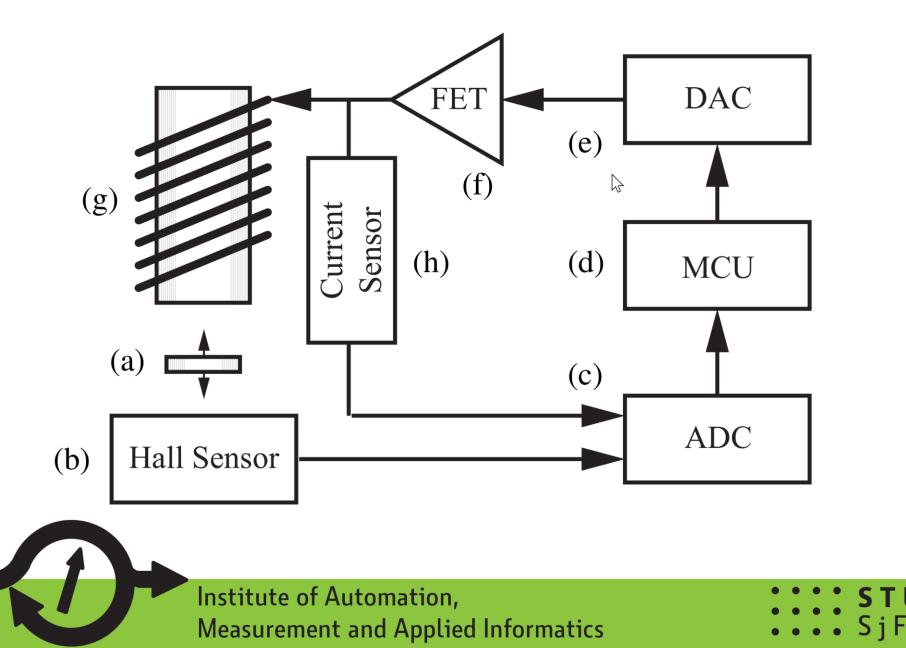
- Cheap
- Open source
- Possible to build at home even by beginners (DIY)
- Standardized
- Free software library compatible

with the Arduino IDE

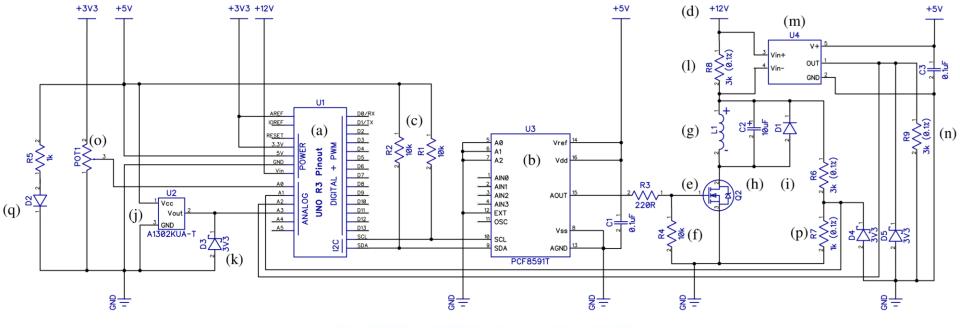
Motivation: Commercial magnetic levitation devices

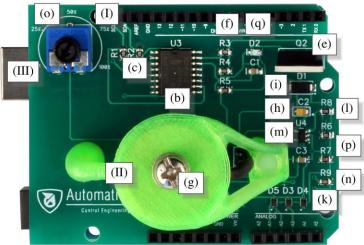
~25000 EUR

Motivation: Commercial MLD: large, expensive...

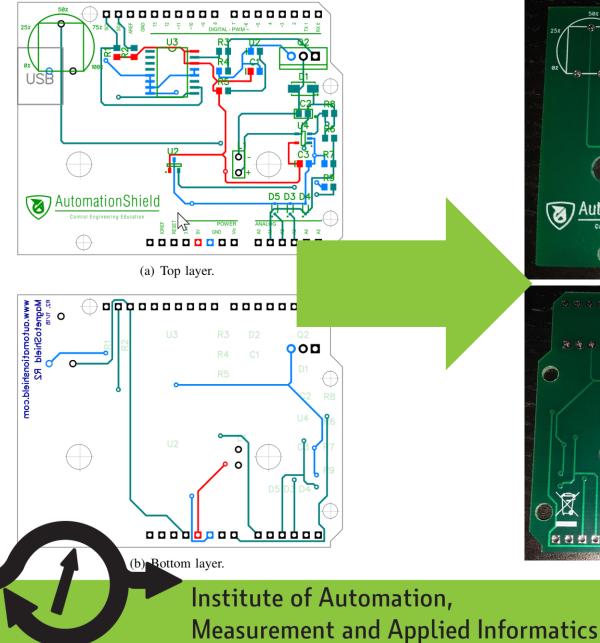


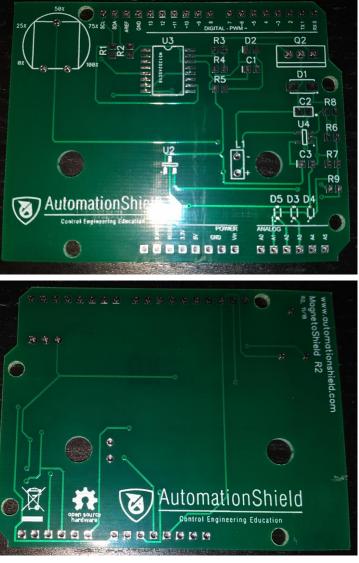
Introducing the MagnetoShield





MagnetoShield: Basic functionality


MagnetoShield: Electronics



MagnetoShield: Open-source hardware

MagnetoShield: Approximate price is <10 EUR!

Name	Part no., value.	Designator	Mark	Pcs.	Price	Total
3D print	5.7 g ϕ =1.75 mm PETG filament, bright green, at 240°C (90°C bed)	-	-	1	0.18	0.18
Capacitor	0805, ceramic, 0.1 μF (e.g. KEMET C0805C104K3RACTU, 25 V)	C1,C3	-	2	0.13	0.26
Capacitor	0805, tantalum, 10 µF (e.g. AVX TAJR106M010RNJ, 10 V)	C2	(h)	1	0.10	0.10
Enclosure top	clear acrylic; e.g. h=2 mm, stamped to the outer diameter of the tube	-	-	1	0.05	0.05
Current sensor	Texas Instruments INA169	U4	(m)	1	1.07	1.07
DAC	NXP Semiconductors PCF8591T	U3	(b)	1	0.79	0.79
Diode	DO214AC (e.g. Vishay Semiconductor BYG20J, 1.5 A, 600 V)	D1	(i)	1	0.15	0.15
Hall sensor	Allegro Microsystems A1302ELHLT-T	U2	(j)	1	0.71	0.71
Header	6x1, female, 2.54 mm pitch	-	-	1	0.07	0.07
Header	8x1, female, 2.54 mm pitch	-	-	2	0.10	0.20
Header	10x1, female, 2.54 mm pitch	-	-	1	0.10	0.10
LED	0805, red	D2	(q)	1	0.16	0.16
Magnet	NdFeB, disc, $\phi=8$ mm, h=2 mm, N38	-	-	1	0.09	0.09
MOSFET	IRF520	Q2	(e)	1	0.22	0.22
PCB	2 layer, FR4, 1.6 mm thick	-	-	1	0.23	0.23
Pot	10 k, 250 mW (e.g. ACP CA14NV12,5-10KA2020)	POT1	(0)	1	0.10	0.10
Resistor	10 kΩ, 0805	R1,R2,R4	(c),(f)	3	0.01	0.03
Resistor	3 kΩ, 0805, 0.1%, 0.125 W (e.g. Viking AR05BTCW3001)	R6, R9	(n),(p)	2	0.35	0.71
Resistor	1 kΩ, 0805, 0.1%, 0.125 W (e.g. Viking AR05BTCW1001)	R7	(p,q)	1	0.08	0.16
Resistor	220 Ω , 0805	R3	(f)	1	0.01	0.01
O-Ring	rubber, M12, h=1 mm, e.g. ϕ =18 mm (outer),	-	-	1	0.03	0.03
Screws	polyamid, M3x8	-	-	2	0.01	0.03
Shaft	ACP CA9MA9005			1	0.12	0.12
Shunt	10 Ω, 0805, 0.1%, 0.1 W (e.g. ROYAL OHM TC0525B0100T5)	R8	(1)	1	0.47	0.47
Solenoid	ELE-P20/15, φ=20 mm, h=15 mm, 12/24 V, 25 N	L1	(g)	1	2.67	2.67
Enclosure tube	clear, Plexiglas XT, h=8 mm, ϕ =10 mm (inner), ϕ =12 mm (outer)	-	-	1	0.03	0.03
Zener diode	3.3V, SOD323 (e.g. NEXPERIA BZX384-C3V3.115)	D3–D5	(k)	3	9.02	0.06
				- 1	Total:	\$8.79

Total: \$8.79

MagnetoShield: Programmer's interface

- All simplified and included within the "AutomationShield" library for the free Arduino IDE:
- Calibrate height reading
 MagnetoShield.calibration();
- Read object height to y y=MagnetoShield.sensorRead();
- Send a certain voltage u to solenoid MagnetoShield.actuatorWrite(u);
- Read current in solenoid to i
 i=MagnetoShield.auxReadCurrent();
- Read external reference r r=MagnetoShield.referenceRead();

MagnetoShield: Modeling

Symbol	Description	Unit
h(t)	Instantaneous distance from solenoid	m
m	Mass of the magnet	kg
i(t)	Instantaneous solenoid current	А
K	Magnetic force constant	Nm^2A^{-2}
L	Solenoid inductance	Н
R	Solenoid resistance	Ω
u(t)	Instantaneous solenoid voltage	V
F	Magnetic force	Ν
B(t)	Instantaneous magnetic flux density	G
N	Number of turns on the solenoid	-
A	Active cross sectional area of the solenoid	m^2
μ	Permeability of air	NA^{-2}
μ_0	Vacuum permeability	NA^{-2}
g	Gravitational acceleration	${ m ms^{-2}}$

Dynamics: $\frac{\mathrm{d}^2 h(t)}{\mathrm{d}t^2} = g - \frac{K}{m} \frac{i(t)^2}{h(t)^2},$ $\frac{\mathrm{d}i(t)}{\mathrm{d}t} = \frac{2K}{L} \frac{i(t)}{h(t)^2} \frac{\mathrm{d}h(t)}{\mathrm{d}t} - \frac{R}{L}i(t) + \frac{1}{L}u(t)$

$u_{\rm R}(t) = Ri(t)$ $\begin{array}{c} i(t) \\ \tilde{L}(h) \end{array} \left\{ \begin{array}{c} & \dot{x}_1(t) = x_2(t), \\ & u_{\mathrm{L}}(t) = \\ & \pm \frac{\mathrm{d}(\tilde{L}(h)i(t))}{\mathrm{d}t} \end{array} \right. \quad \dot{x}_2(t) = g - \frac{K}{m} \frac{x_3(t)^2}{r_1(t)^2}, \end{array}$ Rh(t)u(t)

(b) Electrical.

 $m \frac{\mathrm{d}^2 h(t)}{\mathrm{d}t^2}$

 \mathbf{v}_{mq} (a) Mechanical.

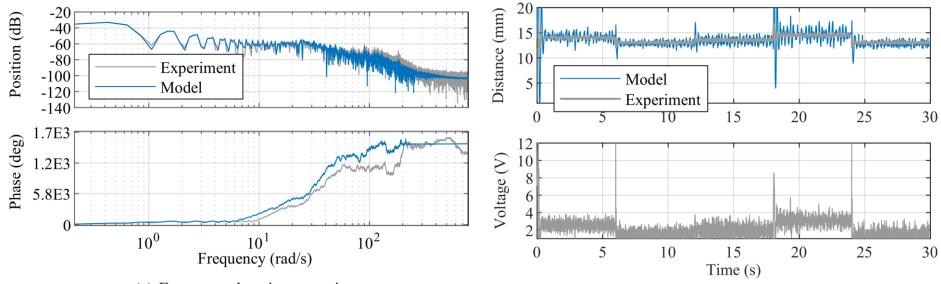
Transfer function:

$$G(s) = \frac{\Delta H(s)}{\Delta U(s)} = \frac{-\left(\frac{2Ki_0}{mLh_0^2}\right)}{\left(s^2 - \left(\frac{2Ki_0^2}{mh_0^3}\right)\right)\left(s + \frac{R}{L}\right) + \left(\frac{4K^2i_0^2}{mLh_0^4}\right)s}$$

State-space representation:

$$\dot{x}_3(t) = \frac{2K}{L} \frac{x_2(t)x_3(t)}{x_1(t)^2} - \frac{1}{L}Rx_3(t) + \frac{1}{L}u(t)$$

MagnetoShield: Examples for DAQ and identification


System identification experiment for data collection, and parameter estimation using the MATLAB System Identification

Toolbox.

90	<pre>step();</pre>	// Algorithm step	66	beta=2*(Km/m)*u0/y0^2;	% Linearized parameter guess
91	enable=false;	<pre>// Then disable until next interrupt</pre>	67	gamma=2*Km*mean(i)/(L*y0^2);	% Linearized parameter guess
92	}		68	delta=R/L;	% Parameter guess
93 94	}		69	epsilon=1/L;	% Parameter guess
95	<pre>void stepEnable(){</pre>	// This is the ISR	70		
96	if(enable){	<pre>// If step still running</pre>	71	%% Construct model	
97	realTimeViolation=true;	<pre>// RT has been violated</pre>			% Marrie industriant Circuit
98	<pre>while(1);</pre>	// Stop	72	<pre>if fixedInductance==1</pre>	% Magnet inductance L fixed
99	}	// Else	73	A=[0 1 0;	
100	enable=true;	// change flag and run step	74	alpha 0 -beta	
101	}		75	0 0 -delta];	
102			76		
103	// A single algoritm step		77	<pre>elseif fixedInductance==0</pre>	% Magnet inductance L(y) distance dependent
104	<pre>void step(){</pre>		78		-()/
105				A [0 1 0:	% Dubania matain initial avera
106	// Experiment control		79	A=[0 1 0;	% Dybamic matrix initial guess
107	<pre>if (i>sizeof(R)/sizeof(R[0])){</pre>	// If finished	80	alpha 0 -beta	
108	<pre>MagnetoShield.actuatorWrite(0);</pre>	// Turn off magnet	81	0 gamma -delta];	
109	<pre>while(1);</pre>	// and do nothing	82	end	
110	}		83		
111	else if (k % (T*i) == 0){	<pre>// else for each section // set reference</pre>	84	<pre>B=[0; 0; epsilon];</pre>	% Input matrix
112 113	r = R[i]; i++;	<pre>// set reference // increment section counter</pre>	85	C=[1 0 0;	% Output matrix
115	}	// Increment Section counter	86	0 0 1];	% Distance and current measured
115	1				
116	<pre>w=wBias-(float)random(0,wP)/100.0;</pre>	// [V] Input noise	87	D=[0; 0];	% No feed-through
117	<pre>y = MagnetoShield.sensorRead();</pre>	// [mm] Sensor Read	88	K = zeros(3,2);	% Disturbance
118	<pre>I = MagnetoShield.auxReadCurrent();</pre>	// [mA] Current read	89	x0=[h0; dh0; i0];	% Initial condition
119	u = (r-y),0.0,12.0,0.0,5		90	disp('Initial guess:')	
120	comationShin nstrainFloat(u,0,	12);	91	sys=idss(A,B,C,D,K,x0,0)	% Construct state-space representation
121	<pre>ietoShie' actuat te(u);</pre>	// Actuate	92		

MagnetoShield: Identification (TF) - Results

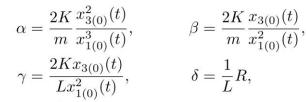
$$G(s) = \frac{\Delta H(s)}{\Delta U(s)} = \frac{-3033}{s^3 + 829.7s^2 + 1126s - 4.52\text{E5}}$$

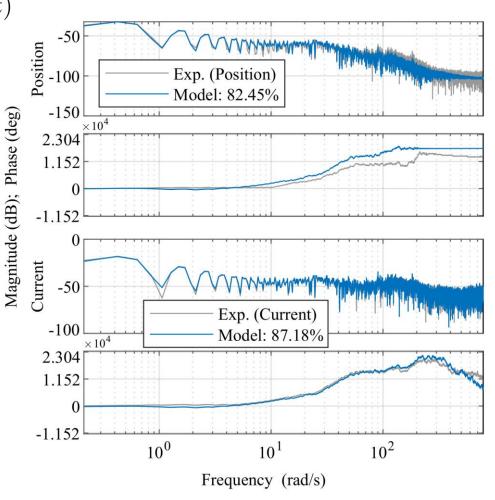
(a) Frequency domain comparison.

(b) Closed-loop simulation.

MagnetoShield: Identification (SS) - Results

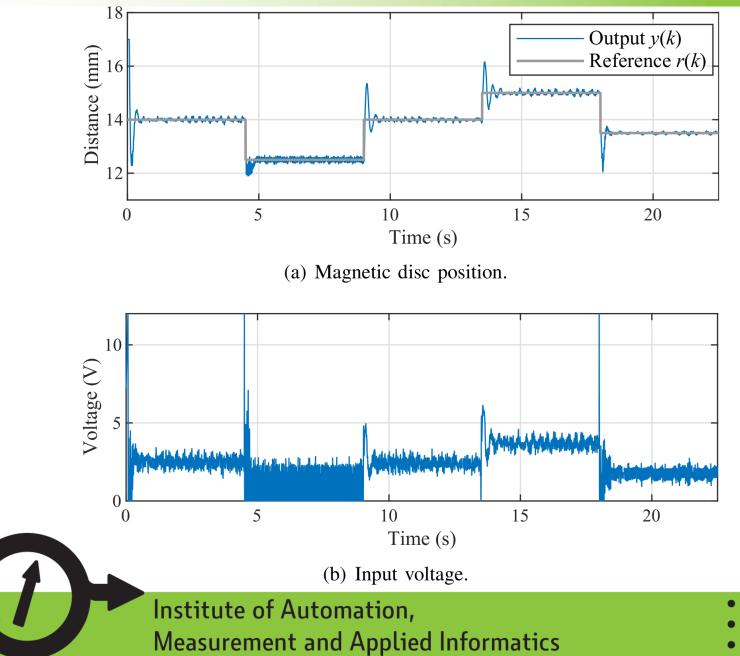
$$\Delta \mathbf{\dot{x}}(t) = \begin{bmatrix} 0 & 1 & 0 \\ \alpha & 0 & -\beta \\ 0 & \gamma & -\delta \end{bmatrix} \Delta \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ \epsilon \end{bmatrix} \Delta u(t)$$

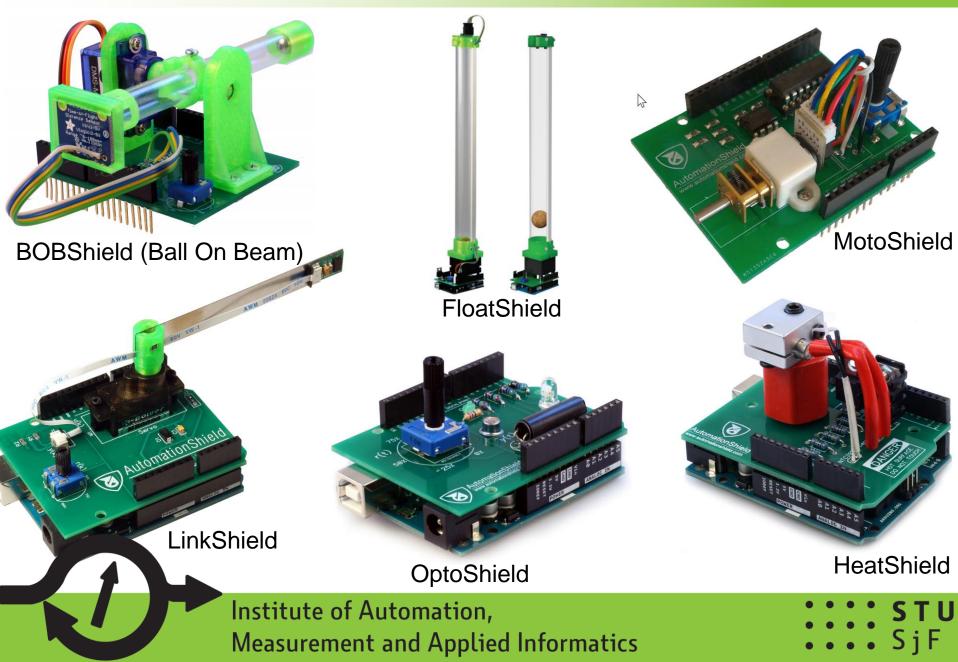

 TABLE III


 INITIAL GUESS AND ESTIMATE OF VARIOUS MODEL PARAMETERS

Symbol	Measured or initialized	Identified	Unit kg	
\overline{m}	7.60E-04	-		
K	2E-6, 5E-3	1.6E - 6, 4.9E - 5	Nm^2A^{-2}	
L	0.239	0.175	Н	
R	198	236	Ω	
α	6300	1853	Nm^{-2}	
β	46.4	365.1	NAm^{-1}	
γ	7.24 E - 04	2.537	$NA^{-1}H^{-1}$	
δ	829.7	1345	$\Omega \ \mathrm{H}^{-1}$	
η	4.184	5.71	H^{-1}	

where


 $\epsilon = \cdot$



SįF

MagnetoShield: Control example (PID) - Results

Other shields within our initiative

The current pandemic situation...

"Take-home" laboratories would be highly desirable for many institutions at this unusual times...

(Several of my students have the "AutomationShield" devices currently at home and thus are a lot less worried about their thesis projects.)

Thank you for your attention!

Visit www.automationshield.com for more details

and please feel free to contact me any time via:

- www: gergelytakacs.com
- e-mail: gergelytakacs@gergelytakacs.com

researchgate.net/profile/Gergely_Takacs

linkedin.com/in/gergelytakacs

