Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
102 lines (69 sloc) 4 KB

The kernel_product helper

On top of the low-level operators, we also provide a kernel name parser that lets you quickly define and work with most of the kernel products used in shape analysis. This high-level interface is only compatible with the PyTorch backend and relies on two operators:

from pykeops.torch import Kernel, kernel_product

A quick example: here is how you can compute a fully differentiable Gaussian-RBF kernel product:

import torch
from pykeops.torch import Kernel, kernel_product

# Generate the data as pytorch tensors
x = torch.randn(1000,3, requires_grad=True)
y = torch.randn(2000,3, requires_grad=True)
b = torch.randn(2000,2, requires_grad=True)

# Pre-defined kernel: using custom expressions is also possible!
# Notice that the parameter sigma is a dim-1 vector, *not* a scalar:
sigma  = torch.tensor([.5], requires_grad=True)
params = {
    "id"      : Kernel("gaussian(x,y)"),
    "gamma"   : .5 / sigma**2,
}

# Depending on the inputs' types, 'a' is a CPU or a GPU variable.
# It can be differentiated wrt. x, y, b and sigma.
a = kernel_product(params, x, y, b)

Documentation

See the :doc:`API documentation<api/pytorch/KernelProduct>` for the syntax of the :class:`pykeops.torch.Kernel<pykeops.torch.Kernel>` parser and the :func:`pykeops.torch.kernel_product()<pykeops.torch.kernel_product>` routine.

An example

We now showcase the computation of a Cauchy-Binet varifold kernel on a product space of (point,orientation) pairs. Given:

  • a set (x_i) of target points in \mathbb{R}^3;
  • a set (u_i) of target orientations in \mathbb{S}^2, encoded as unit-norm vectors in \mathbb{R}^3;
  • a set (y_j) of source points in \mathbb{R}^3;
  • a set (v_j) of source orientations in \mathbb{S}^2, encoded as unit-norm vectors in \mathbb{R}^3;
  • a set (b_j) of source signal values in \mathbb{R}^4;

we will compute the target signal values

a_i ~=~  \sum_j K(\,x_i,u_i\,;\,y_j,v_j\,)\,\cdot\, b_j ~=~ \sum_j k(x_i,y_j)\cdot \langle u_i, v_j\rangle^2 \cdot b_j,

where k(x_i,y_j) = \exp(-\|x_i - y_j\|^2 / 2 \sigma^2).

import torch
import torch.nn.functional as F
from pykeops.torch import Kernel, kernel_product

M, N = 1000, 2000 # number of "i" and "j" indices
# Generate the data as pytorch tensors.

# First, the "i" variables:
x = torch.randn(M,3) # Positions,    in R^3
u = torch.randn(M,3) # Orientations, in R^3 (for example)

# Then, the "j" ones:
y = torch.randn(N,3) # Positions,    in R^3
v = torch.randn(N,3) # Orientations, in R^3

# The signal b_j, supported by the (y_j,v_j)'s
b = torch.randn(N,4)

# Pre-defined kernel: using custom expressions is also possible!
# Notice that the parameter sigma is a dim-1 vector, *not* a scalar:
sigma  = torch.tensor([.5])
params = {
    # The "id" is defined using a set of special function names
    "id"      : Kernel("gaussian(x,y) * (linear(u,v)**2) "),
    # gaussian(x,y) requires a standard deviation; linear(u,v) requires no parameter
    "gamma"   : ( .5 / sigma**2 , None ) ,
}

# Don't forget to normalize the orientations:
u = F.normalize(u, p=2, dim=1)
v = F.normalize(v, p=2, dim=1)

# We're good to go! Notice how we grouped together the "i" and "j" features:
a = kernel_product(params, (x,u), (y,v), b)
# a.shape == [1000, 4]
You can’t perform that action at this time.