diff --git a/tools/server/CMakeLists.txt b/tools/server/CMakeLists.txt index 7fbca320162..d8623621f3f 100644 --- a/tools/server/CMakeLists.txt +++ b/tools/server/CMakeLists.txt @@ -21,6 +21,8 @@ set(TARGET_SRCS server-queue.h server-common.cpp server-common.h + server-context.cpp + server-context.h ) set(PUBLIC_ASSETS index.html.gz diff --git a/tools/server/server-context.cpp b/tools/server/server-context.cpp new file mode 100644 index 00000000000..2bf3924df90 --- /dev/null +++ b/tools/server/server-context.cpp @@ -0,0 +1,3619 @@ +#include "server-context.h" +#include "server-common.h" +#include "server-http.h" +#include "server-task.h" +#include "server-queue.h" + +#include "arg.h" +#include "common.h" +#include "llama.h" +#include "log.h" +#include "sampling.h" +#include "speculative.h" +#include "mtmd.h" +#include "mtmd-helper.h" + +#include +#include +#include +#include + +// fix problem with std::min and std::max +#if defined(_WIN32) +#define WIN32_LEAN_AND_MEAN +#ifndef NOMINMAX +# define NOMINMAX +#endif +#include +#endif + +using json = nlohmann::ordered_json; + +constexpr int HTTP_POLLING_SECONDS = 1; + +// state diagram: https://github.com/ggml-org/llama.cpp/pull/9283 +enum slot_state { + SLOT_STATE_IDLE, + SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future + SLOT_STATE_PROCESSING_PROMPT, + SLOT_STATE_DONE_PROMPT, + SLOT_STATE_GENERATING, +}; + +enum server_state { + SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet + SERVER_STATE_READY, // Server is ready and model is loaded +}; + +static bool server_task_type_need_embd(server_task_type task_type) { + switch (task_type) { + case SERVER_TASK_TYPE_EMBEDDING: + case SERVER_TASK_TYPE_RERANK: + return true; + default: + return false; + } +} + +static bool server_task_type_need_logits(server_task_type task_type) { + switch (task_type) { + case SERVER_TASK_TYPE_COMPLETION: + case SERVER_TASK_TYPE_INFILL: + return true; + default: + return false; + } +} + +struct server_slot { + int id; + + llama_batch batch_spec = {}; + + // TODO: change to unique_ptrs for consistency: + llama_context * ctx = nullptr; + llama_context * ctx_dft = nullptr; + + // multimodal + mtmd_context * mctx = nullptr; + + common_speculative * spec = nullptr; + + std::unique_ptr task; + std::unique_ptr task_prev; // used for debugging + + // used to determine the slot that has been used the longest + int64_t t_last_used = -1; + + // generation props + int32_t n_ctx = 0; // context size per slot + int32_t n_keep = 0; + int32_t n_decoded = 0; + int32_t n_remaining = -1; + int32_t i_batch = -1; + + int32_t n_prompt_tokens_cache = 0; + int32_t n_prompt_tokens_processed = 0; + + size_t last_nl_pos = 0; + + std::string generated_text; + llama_tokens generated_tokens; + + common_chat_msg chat_msg; + + std::vector generated_token_probs; + + bool has_next_token = true; + bool has_new_line = false; + bool truncated = false; + + stop_type stop; + + std::string stopping_word; + + // state + slot_state state = SLOT_STATE_IDLE; + + server_prompt prompt; + + void prompt_save(server_prompt_cache & prompt_cache) const { + GGML_ASSERT(prompt.data.size() == 0); + + const size_t cur_size = llama_state_seq_get_size_ext(ctx, id, 0); + + SRV_WRN(" - saving prompt with length %d, total state size = %.3f MiB\n", + (int) prompt.tokens.size(), cur_size / (1024.0 * 1024.0)); + + auto * cur = prompt_cache.alloc(prompt, cur_size); + if (cur == nullptr) { + return; + } + + llama_state_seq_get_data_ext(ctx, cur->data.data(), cur_size, id, 0); + } + + bool prompt_load(server_prompt_cache & prompt_cache, const server_tokens & tokens) { + bool res = prompt_cache.load(prompt, tokens, ctx, id); + if (!res) { + SLT_WRN(*this, "%s", "failed to load prompt from cache\n"); + } + + return res; + } + + std::vector lora; + int32_t alora_invocation_start = -1; + + // sampling + json json_schema; + + struct common_sampler * smpl = nullptr; + + llama_token sampled; + + common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY; + std::vector generated_tool_call_ids; + + // stats + size_t n_sent_text = 0; // number of sent text character + + int64_t t_start_process_prompt; + int64_t t_start_generation; + + double t_prompt_processing; // ms + double t_token_generation; // ms + + std::function callback_on_release; + + // Speculative decoding stats + int32_t n_draft_total = 0; // Total draft tokens generated + int32_t n_draft_accepted = 0; // Draft tokens actually accepted + + void reset() { + SLT_DBG(*this, "%s", "\n"); + + n_prompt_tokens_cache = 0; + + last_nl_pos = 0; + generated_text = ""; + has_new_line = false; + truncated = false; + stop = STOP_TYPE_NONE; + stopping_word = ""; + n_sent_text = 0; + chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY; + + generated_tokens.clear(); + generated_token_probs.clear(); + chat_msg = {}; + json_schema = json(); + generated_tool_call_ids.clear(); + + // clear speculative decoding stats + n_draft_total = 0; + n_draft_accepted = 0; + + task.reset(); + task_prev.reset(); + + // clear alora start + alora_invocation_start = -1; + } + + bool need_embd() const { + GGML_ASSERT(task); + + return server_task_type_need_embd(task->type); + } + + bool need_logits() const { + GGML_ASSERT(task); + + return server_task_type_need_logits(task->type); + } + + // if the context does not have a memory module then all embeddings have to be computed within a single ubatch + // also we cannot split if the pooling would require any past tokens + bool can_split() const { + return + !need_embd() || + (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST); + } + + bool can_batch_with(server_slot & other_slot) const { + GGML_ASSERT(task); + + return task->type == other_slot.task->type && are_lora_equal(lora, other_slot.lora); + } + + bool has_budget(const common_params & global_params) { + GGML_ASSERT(task); + + if (task->params.n_predict == -1 && global_params.n_predict == -1) { + return true; // limitless + } + + n_remaining = -1; + + if (task->params.n_predict != -1) { + n_remaining = task->params.n_predict - n_decoded; + } else if (global_params.n_predict != -1) { + n_remaining = global_params.n_predict - n_decoded; + } + + return n_remaining > 0; // no budget + } + + bool is_processing() const { + return state != SLOT_STATE_IDLE; + } + + bool can_speculate() const { + return ctx_dft; + } + + void add_token(const completion_token_output & token) { + if (!is_processing()) { + SLT_WRN(*this, "%s", "slot is not processing\n"); + return; + } + generated_token_probs.push_back(token); + } + + void release() { + if (is_processing()) { + GGML_ASSERT(task); + + SLT_INF(*this, "stop processing: n_tokens = %d, truncated = %d\n", prompt.n_tokens(), truncated); + + t_last_used = ggml_time_us(); + t_token_generation = (ggml_time_us() - t_start_generation) / 1e3; + state = SLOT_STATE_IDLE; + + task_prev = std::move(task); + task.reset(); + + callback_on_release(id); + } + } + + result_timings get_timings() const { + result_timings timings; + timings.cache_n = n_prompt_tokens_cache; + + timings.prompt_n = n_prompt_tokens_processed; + timings.prompt_ms = t_prompt_processing; + timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed; + timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed; + + timings.predicted_n = n_decoded; + timings.predicted_ms = t_token_generation; + timings.predicted_per_token_ms = t_token_generation / n_decoded; + timings.predicted_per_second = 1e3 / t_token_generation * n_decoded; + + // Add speculative metrics + if (n_draft_total > 0) { + timings.draft_n = n_draft_total; + timings.draft_n_accepted = n_draft_accepted; + } + + return timings; + } + + const common_chat_msg & update_chat_msg(std::vector & diffs) { + GGML_ASSERT(task); + + auto previous_msg = chat_msg; + SRV_DBG("Parsing chat message: %s\n", generated_text.c_str()); + auto new_msg = common_chat_parse( + generated_text, + /* is_partial= */ stop != STOP_TYPE_EOS, + task->params.oaicompat_chat_syntax); + if (!new_msg.empty()) { + new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id); + chat_msg = new_msg; + diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg); + } + return chat_msg; + } + + size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) { + GGML_ASSERT(task); + + size_t stop_pos = std::string::npos; + + for (const std::string & word : task->params.antiprompt) { + size_t pos; + + if (is_full_stop) { + const size_t tmp = word.size() + last_token_size; + const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; + + pos = text.find(word, from_pos); + } else { + // otherwise, partial stop + pos = string_find_partial_stop(text, word); + } + + if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) { + if (is_full_stop) { + stop = STOP_TYPE_WORD; + stopping_word = word; + has_next_token = false; + } + stop_pos = pos; + } + } + + return stop_pos; + } + + void print_timings() const { + const double t_prompt = t_prompt_processing / n_prompt_tokens_processed; + const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed; + + const double t_gen = t_token_generation / n_decoded; + const double n_gen_second = 1e3 / t_token_generation * n_decoded; + + SLT_INF(*this, + "\n" + "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" + " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" + " total time = %10.2f ms / %5d tokens\n", + t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second, + t_token_generation, n_decoded, t_gen, n_gen_second, + t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded); + + if (n_draft_total > 0) { + const float draft_ratio = (float) n_draft_accepted / n_draft_total; + SLT_INF(*this, + "\n" + "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n", + draft_ratio, n_draft_accepted, n_draft_total + ); + } + } + + json to_json(bool only_metrics = false) const { + json res; + + res = { + {"id", id}, + {"n_ctx", n_ctx}, + {"speculative", can_speculate()}, + {"is_processing", is_processing()}, + }; + + const auto & ptask = task ? task : task_prev; + + if (ptask) { + res["id_task"] = ptask->id; + res["params"] = ptask->params.to_json(only_metrics); + res["next_token"] = { + { + {"has_next_token", has_next_token}, + {"has_new_line", has_new_line}, + {"n_remain", n_remaining}, + {"n_decoded", n_decoded}, + } + }; + + if (!only_metrics) { + res["prompt"] = ptask->tokens.detokenize(ctx, true); + res["generated"] = generated_text; + } + } + + return res; + } +}; + + + +// +// server_metrics +// + +struct server_metrics { + int64_t t_start = 0; + + uint64_t n_prompt_tokens_processed_total = 0; + uint64_t t_prompt_processing_total = 0; + uint64_t n_tokens_predicted_total = 0; + uint64_t t_tokens_generation_total = 0; + + uint64_t n_tokens_max = 0; + + uint64_t n_prompt_tokens_processed = 0; + uint64_t t_prompt_processing = 0; + + uint64_t n_tokens_predicted = 0; + uint64_t t_tokens_generation = 0; + + uint64_t n_decode_total = 0; + uint64_t n_busy_slots_total = 0; + + void init() { + t_start = ggml_time_us(); + } + + void on_prompt_eval(const server_slot & slot) { + n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed; + n_prompt_tokens_processed += slot.n_prompt_tokens_processed; + t_prompt_processing += slot.t_prompt_processing; + t_prompt_processing_total += slot.t_prompt_processing; + + n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens()); + } + + void on_prediction(const server_slot & slot) { + n_tokens_predicted_total += slot.n_decoded; + n_tokens_predicted += slot.n_decoded; + t_tokens_generation += slot.t_token_generation; + t_tokens_generation_total += slot.t_token_generation; + } + + void on_decoded(const std::vector & slots) { + n_decode_total++; + for (const auto & slot : slots) { + if (slot.is_processing()) { + n_busy_slots_total++; + } + n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens()); + } + } + + void reset_bucket() { + n_prompt_tokens_processed = 0; + t_prompt_processing = 0; + n_tokens_predicted = 0; + t_tokens_generation = 0; + } +}; + + +// +// server_context_impl (private implementation) +// + +struct server_context_impl { + common_params params_base; + + // note: keep these alive - they determine the lifetime of the model, context, etc. + common_init_result llama_init; + common_init_result llama_init_dft; + + llama_model * model = nullptr; + llama_context * ctx = nullptr; + + // multimodal + mtmd_context * mctx = nullptr; + + const llama_vocab * vocab = nullptr; + bool vocab_dft_compatible = true; + + llama_model * model_dft = nullptr; + + llama_context_params cparams_dft; + + llama_batch batch {}; + + bool add_bos_token = true; + + int32_t n_ctx; // total context for all clients / slots + + // slots / clients + std::vector slots; + + int slots_debug = 0; + + server_queue queue_tasks; + server_response queue_results; + + std::unique_ptr prompt_cache; + + server_metrics metrics; + + // Necessary similarity of prompt for slot selection + float slot_prompt_similarity = 0.0f; + + common_chat_templates_ptr chat_templates; + oaicompat_parser_options oai_parser_opt; + + ~server_context_impl() { + mtmd_free(mctx); + + // Clear any sampling context + for (server_slot & slot : slots) { + common_sampler_free(slot.smpl); + slot.smpl = nullptr; + + llama_free(slot.ctx_dft); + slot.ctx_dft = nullptr; + + common_speculative_free(slot.spec); + slot.spec = nullptr; + + llama_batch_free(slot.batch_spec); + } + + llama_batch_free(batch); + } + + // load the model and initialize llama_context + bool load_model(const common_params & params) { + SRV_INF("loading model '%s'\n", params.model.path.c_str()); + + params_base = params; + + llama_init = common_init_from_params(params_base); + + model = llama_init.model.get(); + ctx = llama_init.context.get(); + + if (model == nullptr) { + SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str()); + return false; + } + + vocab = llama_model_get_vocab(model); + + n_ctx = llama_n_ctx(ctx); + + add_bos_token = llama_vocab_get_add_bos(vocab); + + if (params_base.has_speculative()) { + SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str()); + + auto params_dft = params_base; + + params_dft.devices = params_base.speculative.devices; + params_dft.model = params_base.speculative.model; + params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? llama_n_ctx_seq(ctx) : params_base.speculative.n_ctx; + params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers; + params_dft.n_parallel = 1; + params_dft.cache_type_k = params_base.speculative.cache_type_k; + params_dft.cache_type_v = params_base.speculative.cache_type_v; + + params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads; + params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads; + params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides; + + llama_init_dft = common_init_from_params(params_dft); + + model_dft = llama_init_dft.model.get(); + + if (model_dft == nullptr) { + SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str()); + return false; + } + + vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get()); + if (!vocab_dft_compatible) { + SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str()); + } + + const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get()); + + cparams_dft = common_context_params_to_llama(params_dft); + cparams_dft.n_batch = n_ctx_dft; + + // the context is not needed - we will create one for each slot + llama_init_dft.context.reset(); + } + + chat_templates = common_chat_templates_init(model, params_base.chat_template); + try { + common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs); + } catch (const std::exception & e) { + SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what()); + SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__); + chat_templates = common_chat_templates_init(model, "chatml"); + } + + std::string & mmproj_path = params_base.mmproj.path; + if (!mmproj_path.empty()) { + mtmd_helper_log_set(common_log_default_callback, nullptr); + + mtmd_context_params mparams = mtmd_context_params_default(); + mparams.use_gpu = params_base.mmproj_use_gpu; + mparams.print_timings = false; + mparams.n_threads = params_base.cpuparams.n_threads; + mparams.flash_attn_type = params_base.flash_attn_type; + mparams.image_min_tokens = params_base.image_min_tokens; + mparams.image_max_tokens = params_base.image_max_tokens; + mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams); + if (mctx == nullptr) { + SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str()); + return false; + } + SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str()); + + if (params_base.ctx_shift) { + params_base.ctx_shift = false; + SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled"); + } + + if (params_base.n_cache_reuse) { + params_base.n_cache_reuse = 0; + SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled"); + } + + if (params_base.has_speculative()) { + SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal"); + return false; + } + } + + if (!llama_memory_can_shift(llama_get_memory(ctx))) { + if (params_base.ctx_shift) { + params_base.ctx_shift = false; + SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled"); + } + + if (params_base.n_cache_reuse) { + params_base.n_cache_reuse = 0; + SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled"); + } + } + + return true; + } + + // initialize slots and server-related data + void init() { + // wiring up server queues + queue_tasks.on_new_task([this](server_task && task) { + process_single_task(std::move(task)); + }); + queue_tasks.on_update_slots([this]() { + update_slots(); + }); + + // Necessary similarity of prompt for slot selection + slot_prompt_similarity = params_base.slot_prompt_similarity; + + // setup slots + SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel); + + const int n_ctx_train = llama_model_n_ctx_train(model); + + int n_ctx_slot = llama_n_ctx_seq(ctx); + if (n_ctx_slot > n_ctx_train) { + SRV_WRN("the slot context (%d) exceeds the training context of the model (%d) - capping\n", n_ctx_slot, n_ctx_train); + n_ctx_slot = n_ctx_train; + } + + for (int i = 0; i < params_base.n_parallel; i++) { + server_slot slot; + + slot.id = i; + slot.ctx = ctx; + slot.n_ctx = n_ctx_slot; + slot.mctx = mctx; + slot.prompt.tokens.has_mtmd = mctx != nullptr; + + if (model_dft) { + slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1); + + // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK] + slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft); + if (slot.ctx_dft == nullptr) { + SRV_ERR("%s", "failed to create draft context\n"); + return; + } + + slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft); + if (slot.spec == nullptr) { + SRV_ERR("%s", "failed to create speculator\n"); + return; + } + for (auto & pair : params_base.speculative.replacements) { + common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str()); + } + } + + SLT_INF(slot, "new slot, n_ctx = %d\n", slot.n_ctx); + + slot.callback_on_release = [this](int) { + queue_tasks.pop_deferred_task(); + }; + + slot.reset(); + + slots.push_back(std::move(slot)); + } + + { + const char * LLAMA_SERVER_SLOTS_DEBUG = getenv("LLAMA_SERVER_SLOTS_DEBUG"); + slots_debug = LLAMA_SERVER_SLOTS_DEBUG ? atoi(LLAMA_SERVER_SLOTS_DEBUG) : 0; + + if (slots_debug) { + SRV_WRN("slots debug = %d\n", slots_debug); + } + } + + // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens + // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used) + { + const int32_t n_batch = llama_n_batch(ctx); + batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1); + } + + metrics.init(); + + if (params_base.cache_ram_mib != 0) { + if (params_base.cache_ram_mib < 0) { + SRV_WRN("prompt cache is enabled, size limit: %s\n", "no limit"); + } else { + SRV_WRN("prompt cache is enabled, size limit: %d MiB\n", params_base.cache_ram_mib); + } + SRV_WRN("%s", "use `--cache-ram 0` to disable the prompt cache\n"); + + prompt_cache = std::make_unique(params_base.cache_ram_mib, n_ctx); + } else { + SRV_WRN("%s", "prompt cache is disabled - use `--cache-ram N` to enable it\n"); + } + SRV_WRN("%s", "for more info see https://github.com/ggml-org/llama.cpp/pull/16391\n"); + + // thinking is enabled if: + // 1. It's not explicitly disabled (reasoning_budget == 0) + // 2. The chat template supports it + const bool enable_thinking = params_base.use_jinja && params_base.reasoning_budget != 0 && common_chat_templates_support_enable_thinking(chat_templates.get()); + SRV_INF("thinking = %d\n", enable_thinking); + + oai_parser_opt = { + /* use_jinja */ params_base.use_jinja, + /* prefill_assistant */ params_base.prefill_assistant, + /* reasoning_format */ params_base.reasoning_format, + /* chat_template_kwargs */ params_base.default_template_kwargs, + /* common_chat_templates */ chat_templates.get(), + /* allow_image */ mctx ? mtmd_support_vision(mctx) : false, + /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false, + /* enable_thinking */ enable_thinking, + }; + + // print sample chat example to make it clear which template is used + LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__, + common_chat_templates_source(chat_templates.get()), + common_chat_format_example(chat_templates.get(), params_base.use_jinja, params_base.default_template_kwargs).c_str()); + } + + server_slot * get_slot_by_id(int id) { + for (server_slot & slot : slots) { + if (slot.id == id) { + return &slot; + } + } + + return nullptr; + } + + server_slot * get_available_slot(const server_task & task) { + server_slot * ret = nullptr; + + bool update_cache = false; + + // find the slot that has at least n% prompt similarity + if (ret == nullptr && slot_prompt_similarity != 0.0f) { + float sim_best = 0; + + for (server_slot & slot : slots) { + // skip the slot if it is not available + if (slot.is_processing()) { + continue; + } + + const auto & tokens = slot.prompt.tokens; + + // skip the slot if it does not contains cached tokens + if (tokens.empty()) { + continue; + } + + // fraction of the Longest Common Prefix length with respect to the input prompt length + const float sim_cur = float(tokens.get_common_prefix(task.tokens)) / task.tokens.size(); + + // select the current slot if the criteria match + if (sim_cur > sim_best && sim_cur > slot_prompt_similarity) { + sim_best = sim_cur; + + ret = &slot; + } + } + + if (ret != nullptr) { + const float f_keep = (sim_best*task.tokens.size()) / ret->prompt.tokens.size(); + + SLT_INF(*ret, "selected slot by LCP similarity, sim_best = %.3f (> %.3f thold), f_keep = %.3f\n", + sim_best, slot_prompt_similarity, f_keep); + + // if we are about to lose a large portion of the existing context - save it in the prompt cache + if (f_keep < 0.5f) { + update_cache = true; + } + } + } + + // find the slot that has been least recently used + if (ret == nullptr) { + int64_t t_last = -1; + + for (server_slot & slot : slots) { + // skip the slot if it is not available + if (slot.is_processing()) { + continue; + } + + // select the current slot if the criteria match + if (!ret || slot.t_last_used <= t_last) { + t_last = slot.t_last_used; + ret = &slot; + } + } + + if (ret != nullptr) { + SLT_INF(*ret, "selected slot by LRU, t_last = %" PRId64 "\n", t_last); + + update_cache = true; + } + } + + if (ret) { + const auto & tokens = ret->prompt.tokens; + + update_cache = update_cache && prompt_cache; + + // cache prompts only for completion tasks + update_cache = update_cache && task.type == SERVER_TASK_TYPE_COMPLETION; + + // don't update the cache if the slot's context is empty + update_cache = update_cache && tokens.size() > 0; + + // TODO: mtmd does not support prompt cache + update_cache = update_cache && (ret->mctx == nullptr); + + if (update_cache) { + SRV_WRN("%s", "updating prompt cache\n"); + + const int64_t t_start = ggml_time_us(); + + ret->prompt_save(*prompt_cache); + + if (!ret->prompt_load(*prompt_cache, task.tokens)) { + clear_slot(*ret); + } + + prompt_cache->update(); + + SRV_WRN("prompt cache update took %.2f ms\n", (ggml_time_us() - t_start) / 1000.0); + } + } + + return ret; + } + + void clear_slot(server_slot & slot) const { + GGML_ASSERT(!slot.is_processing()); + + SLT_WRN(slot, "clearing slot with %zu tokens\n", slot.prompt.tokens.size()); + + llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1); + slot.prompt.tokens.clear(); + } + + // return true if at least one slot has been cleared + // TODO: improve logic + // - smarter decision which slot to clear (LRU or longest prompt?) + // - move slot to level 2 cache instead of removing? + // - instead of purging, try to store and resume later? + bool try_clear_idle_slots() { + bool res = false; + + if (!params_base.kv_unified) { + return res; + } + + for (auto & slot : slots) { + if (slot.is_processing()) { + continue; + } + + if (slot.prompt.n_tokens() > 0) { + SRV_WRN("purging slot %d with %zu tokens\n", slot.id, slot.prompt.tokens.size()); + + clear_slot(slot); + + res = true; + + // clear slots one by one + break; + } + } + + return res; + } + + bool launch_slot_with_task(server_slot & slot, server_task && task) { + slot.reset(); + + if (!are_lora_equal(task.params.lora, slot.lora)) { + // if lora has changed, check to see if the cache should be cleared + if (lora_should_clear_cache(slot.lora, task.params.lora)) { + SLT_INF(slot, "clearing cache for lora change. %zu loras -> %zu loras\n", slot.lora.size(), task.params.lora.size()); + slot.prompt.tokens.clear(); + } else { + SLT_INF(slot, "keeping cache for alora. %zu target loras\n", task.params.lora.size()); + } + slot.lora = task.params.lora; + } + + // if using alora, make sure it's only a single one requested and active + size_t alora_invocation_start = task.tokens.size(); + if (lora_all_alora(slot.lora)) { + const auto & enabled_ids = lora_get_enabled_ids(slot.lora); + // TODO: This will error out if a user requests two aloras, but only + // provides the activation string for one. We could, instead search + // for all requested alora activation strings and then either keep + // only the last one, or reject if multiple are found. + if (enabled_ids.size() != 1) { + send_error(task, "Cannot run multiple aLoRAs in a single request", ERROR_TYPE_INVALID_REQUEST); + return false; + } + const auto & lora = slot.lora[enabled_ids[0]].ptr; + + // get the pointer and count for the invocation tokens + const uint64_t n_invocation_tokens = llama_adapter_get_alora_n_invocation_tokens(lora); + const llama_token * invocation_tokens = llama_adapter_get_alora_invocation_tokens (lora); + + // scan backwards through the prompt tokens to find the last + // occurrence of the invocation sequence + int match_idx = static_cast(n_invocation_tokens) - 1; + for (int i = task.tokens.size() - 1; i >= 0; --i) { + // the token in this position matches the next token to find in + // the invocation sequence + if (task.tokens[i] == invocation_tokens[match_idx]) { + // if it's a full match, we've found the start + if (match_idx == 0) { + alora_invocation_start = i; + break; + } + // otherwise, check the next token in the sequence + --match_idx; + } else { + // no match in this position, so start looking over again + match_idx = static_cast(n_invocation_tokens) - 1; + } + } + + // if the activation string is not found, disable the alora + if (alora_invocation_start == task.tokens.size()) { + SLT_DBG(slot, "alora %zu requested, but not found. deactivating\n", enabled_ids[0]); + slot.lora[enabled_ids[0]].scale = 0.0f; + } else { + SLT_DBG(slot, "alora %zu activated starting at %zu\n", enabled_ids[0], alora_invocation_start); + slot.alora_invocation_start = alora_invocation_start; + } + } + + if (!task.tokens.validate(ctx)) { + send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST); + return false; + } + + SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str()); + + // initialize samplers + { + if (slot.smpl != nullptr) { + common_sampler_free(slot.smpl); + } + + slot.smpl = common_sampler_init(model, task.params.sampling); + if (slot.smpl == nullptr) { + // for now, the only error that may happen here is invalid grammar + send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST); + return false; + } + + SLT_INF(slot, "sampler chain: %s\n", common_sampler_print(slot.smpl).c_str()); + } + + // initialize draft batch + // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK] + if (slot.ctx_dft) { + llama_batch_free(slot.batch_spec); + + slot.batch_spec = llama_batch_init(task.params.speculative.n_max + 1, 0, 1); + } + + slot.task = std::make_unique(std::move(task)); + + slot.state = SLOT_STATE_STARTED; + + SLT_INF(slot, "%s", "processing task\n"); + + return true; + } + + bool process_token(completion_token_output & result, server_slot & slot) { + // remember which tokens were sampled - used for repetition penalties during sampling + const std::string token_str = result.text_to_send; + slot.sampled = result.tok; + + slot.generated_text += token_str; + if (slot.task->params.return_tokens) { + slot.generated_tokens.push_back(result.tok); + } + slot.has_next_token = true; + + // check if there is incomplete UTF-8 character at the end + bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size(); + + // search stop word and delete it + if (!incomplete) { + size_t pos = std::min(slot.n_sent_text, slot.generated_text.size()); + + const std::string str_test = slot.generated_text.substr(pos); + bool send_text = true; + + size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true); + if (stop_pos != std::string::npos) { + slot.generated_text.erase( + slot.generated_text.begin() + pos + stop_pos, + slot.generated_text.end()); + pos = std::min(slot.n_sent_text, slot.generated_text.size()); + } else if (slot.has_next_token && !llama_vocab_is_eog(vocab, result.tok) ) { + stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false); + send_text = stop_pos == std::string::npos; + } + + // check if there is any token to predict + if (send_text) { + // no send the stop word in the response + result.text_to_send = slot.generated_text.substr(pos, std::string::npos); + slot.n_sent_text += result.text_to_send.size(); + // add the token to slot queue and cache + } else { + result.text_to_send = ""; + } + + slot.add_token(result); + if (slot.task->params.stream) { + send_partial_response(slot, result, false); + } + } + + if (incomplete) { + slot.has_next_token = true; + } + + // if context shifting is disabled, make sure that we don't run out of context + if (!params_base.ctx_shift && slot.prompt.n_tokens() + 1 >= slot.n_ctx) { + slot.truncated = true; + slot.stop = STOP_TYPE_LIMIT; + slot.has_next_token = false; + + SLT_DBG(slot, "stopped due to running out of context capacity, prompt.n_tokens() = %d, task.n_tokens = %d, n_decoded = %d, n_ctx = %d\n", + slot.prompt.n_tokens(), slot.task->n_tokens(), slot.n_decoded, slot.n_ctx); + } + + // check the limits + if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) { + slot.stop = STOP_TYPE_LIMIT; + slot.has_next_token = false; + + SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.task->params.n_predict); + } + + if (slot.has_new_line) { + // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent + if (slot.task->params.n_indent > 0) { + // check the current indentation + // TODO: improve by not doing it more than once for each new line + if (slot.last_nl_pos > 0) { + size_t pos = slot.last_nl_pos; + + int n_indent = 0; + while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) { + n_indent++; + pos++; + } + + if (pos < slot.generated_text.size() && n_indent < slot.task->params.n_indent) { + slot.stop = STOP_TYPE_LIMIT; + slot.has_next_token = false; + + // cut the last line + slot.generated_text.erase(pos, std::string::npos); + + SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent); + } + } + + // find the next new line + { + const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos); + + if (pos != std::string::npos) { + slot.last_nl_pos = pos + 1; + } + } + } + } + + // check if there is a new line in the generated text + if (result.text_to_send.find('\n') != std::string::npos) { + slot.has_new_line = true; + + // if we have seen a new line, we stop after a certain time limit, but only upon another new line + if (slot.task->params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.task->params.t_max_predict_ms)) { + slot.stop = STOP_TYPE_LIMIT; + slot.has_next_token = false; + + SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.task->params.t_max_predict_ms); + } + } + + if (llama_vocab_is_eog(vocab, result.tok)) { + slot.stop = STOP_TYPE_EOS; + slot.has_next_token = false; + + SLT_DBG(slot, "%s", "stopped by EOS\n"); + } + + SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str()); + + return slot.has_next_token; // continue + } + + void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const { + size_t n_probs = slot.task->params.sampling.n_probs; + size_t n_vocab = llama_vocab_n_tokens(vocab); + + if (post_sampling) { + const auto * cur_p = common_sampler_get_candidates(slot.smpl, true); + const size_t max_probs = cur_p->size; + + // set probability for sampled token + for (size_t i = 0; i < max_probs; i++) { + if (cur_p->data[i].id == result.tok) { + result.prob = cur_p->data[i].p; + break; + } + } + + // set probability for top n_probs tokens + result.probs.reserve(max_probs); + for (size_t i = 0; i < std::min(max_probs, n_probs); i++) { + result.probs.push_back({ + cur_p->data[i].id, + common_token_to_piece(ctx, cur_p->data[i].id, special), + cur_p->data[i].p + }); + } + } else { + // TODO: optimize this with min-p optimization + std::vector cur = get_token_probabilities(ctx, idx); + + // set probability for sampled token + for (size_t i = 0; i < n_vocab; i++) { + // set probability for sampled token + if (cur[i].id == result.tok) { + result.prob = cur[i].p; + break; + } + } + + // set probability for top n_probs tokens + result.probs.reserve(n_probs); + for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) { + result.probs.push_back({ + cur[i].id, + common_token_to_piece(ctx, cur[i].id, special), + cur[i].p + }); + } + } + } + + void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { + send_error(task.id, error, type); + } + + void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { + send_error(slot.task->id, error, type, slot.task->n_tokens(), slot.n_ctx); + } + + void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER, const int32_t n_prompt_tokens = 0, const int32_t n_ctx = 0) { + SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str()); + + if (type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) { + GGML_ASSERT(n_ctx > 0 && n_prompt_tokens > 0); + } + + auto res = std::make_unique(); + res->id = id_task; + res->err_type = type; + res->err_msg = error; + res->n_prompt_tokens = n_prompt_tokens; + res->n_ctx = n_ctx; + + queue_results.send(std::move(res)); + } + + // if multimodal is enabled, send an error and return false + bool check_no_mtmd(const int id_task) { + if (mctx) { + send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED); + return false; + } + return true; + } + + void send_partial_response(server_slot & slot, const completion_token_output & tkn, bool is_progress) { + auto res = std::make_unique(); + + res->id = slot.task->id; + res->index = slot.task->index; + + if (is_progress) { + res->is_progress = true; + res->progress.total = slot.task->n_tokens(); + res->progress.cache = slot.n_prompt_tokens_cache; + res->progress.processed = slot.prompt.tokens.size(); + res->progress.time_ms = (ggml_time_us() - slot.t_start_process_prompt) / 1000; + } else { + res->content = tkn.text_to_send; + res->tokens = { tkn.tok }; + + slot.update_chat_msg(res->oaicompat_msg_diffs); + } + + res->n_decoded = slot.n_decoded; + res->n_prompt_tokens = slot.task->n_tokens(); + res->post_sampling_probs = slot.task->params.post_sampling_probs; + + res->verbose = slot.task->params.verbose; + res->res_type = slot.task->params.res_type; + res->oaicompat_model = slot.task->params.oaicompat_model; + res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id; + + // populate res.probs_output + if (slot.task->params.sampling.n_probs > 0) { + res->prob_output = tkn; // copy the token probs + } + + // populate timings if this is final response or timings_per_token is enabled + if (slot.stop != STOP_TYPE_NONE || slot.task->params.timings_per_token) { + res->timings = slot.get_timings(); + } + + queue_results.send(std::move(res)); + } + + void send_final_response(server_slot & slot) { + auto res = std::make_unique(); + + res->id = slot.task->id; + res->id_slot = slot.id; + + res->index = slot.task->index; + res->content = slot.generated_text; + res->tokens = std::move(slot.generated_tokens); + res->timings = slot.get_timings(); + res->prompt = slot.task->tokens.detokenize(ctx, true); + res->response_fields = std::move(slot.task->params.response_fields); + + res->truncated = slot.truncated; + res->n_decoded = slot.n_decoded; + res->n_prompt_tokens = slot.task->n_tokens(); + res->n_tokens_cached = slot.prompt.n_tokens(); + res->has_new_line = slot.has_new_line; + res->stopping_word = slot.stopping_word; + res->stop = slot.stop; + res->post_sampling_probs = slot.task->params.post_sampling_probs; + + res->verbose = slot.task->params.verbose; + res->stream = slot.task->params.stream; + res->include_usage = slot.task->params.include_usage; + res->res_type = slot.task->params.res_type; + res->oaicompat_model = slot.task->params.oaicompat_model; + res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id; + res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs); + + // populate res.probs_output + if (slot.task->params.sampling.n_probs > 0) { + if (!slot.task->params.stream && slot.stop == STOP_TYPE_WORD) { + const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false); + + size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size()); + res->probs_output = std::vector( + slot.generated_token_probs.begin(), + slot.generated_token_probs.end() - safe_offset); + } else { + res->probs_output = std::vector( + slot.generated_token_probs.begin(), + slot.generated_token_probs.end()); + } + } + + res->generation_params = slot.task->params; // copy the parameters + + queue_results.send(std::move(res)); + } + + void send_embedding(const server_slot & slot, const llama_batch & batch) { + auto res = std::make_unique(); + res->id = slot.task->id; + res->index = slot.task->index; + res->n_tokens = slot.task->n_tokens(); + res->res_type = slot.task->params.res_type; + + const int n_embd = llama_model_n_embd(model); + + std::vector embd_res(n_embd, 0.0f); + + for (int i = 0; i < batch.n_tokens; ++i) { + if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) { + continue; + } + + const float * embd = nullptr; + if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) { + embd = llama_get_embeddings_ith(ctx, i); + } else { + embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); + } + + if (embd == nullptr) { + SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]); + + res->embedding.push_back(std::vector(n_embd, 0.0f)); + continue; + } + + // normalize only when there is pooling + if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) { + common_embd_normalize(embd, embd_res.data(), n_embd, slot.task->params.embd_normalize); + res->embedding.push_back(embd_res); + break; + } + + res->embedding.emplace_back(embd, embd + n_embd); + } + + SLT_DBG(slot, "%s", "sending embeddings\n"); + + queue_results.send(std::move(res)); + } + + void send_rerank(const server_slot & slot, const llama_batch & batch) { + auto res = std::make_unique(); + res->id = slot.task->id; + res->index = slot.task->index; + res->n_tokens = slot.task->n_tokens(); + + for (int i = 0; i < batch.n_tokens; ++i) { + if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) { + continue; + } + + const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); + if (embd == NULL) { + embd = llama_get_embeddings_ith(ctx, i); + } + + if (embd == NULL) { + SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]); + + res->score = -1e6; + continue; + } + + res->score = embd[0]; + } + + SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score); + + queue_results.send(std::move(res)); + } + + // + // Functions to process the task + // + + void process_single_task(server_task && task) { + switch (task.type) { + case SERVER_TASK_TYPE_COMPLETION: + case SERVER_TASK_TYPE_INFILL: + case SERVER_TASK_TYPE_EMBEDDING: + case SERVER_TASK_TYPE_RERANK: + { + const int id_slot = task.id_slot; + + server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task); + + if (slot == nullptr) { + // if no slot is available, we defer this task for processing later + SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id); + queue_tasks.defer(std::move(task)); + break; + } + + if (slot->is_processing()) { + // if requested slot is unavailable, we defer this task for processing later + SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); + queue_tasks.defer(std::move(task)); + break; + } + + if (!launch_slot_with_task(*slot, std::move(task))) { + SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id); + break; + } + } break; + case SERVER_TASK_TYPE_CANCEL: + { + // release slot linked with the task id + for (auto & slot : slots) { + if (slot.task && slot.task->id == task.id_target) { + slot.release(); + break; + } + } + } break; + case SERVER_TASK_TYPE_NEXT_RESPONSE: + { + // do nothing + } break; + case SERVER_TASK_TYPE_METRICS: + { + json slots_data = json::array(); + + int n_idle_slots = 0; + int n_processing_slots = 0; + + for (server_slot & slot : slots) { + json slot_data = slot.to_json(slots_debug == 0); + + if (slot.is_processing()) { + n_processing_slots++; + } else { + n_idle_slots++; + } + + slots_data.push_back(slot_data); + } + SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots); + + auto res = std::make_unique(); + res->id = task.id; + res->slots_data = std::move(slots_data); + res->n_idle_slots = n_idle_slots; + res->n_processing_slots = n_processing_slots; + res->n_tasks_deferred = queue_tasks.queue_tasks_deferred_size(); + res->t_start = metrics.t_start; + + res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total; + res->t_prompt_processing_total = metrics.t_prompt_processing_total; + res->n_tokens_predicted_total = metrics.n_tokens_predicted_total; + res->t_tokens_generation_total = metrics.t_tokens_generation_total; + + res->n_tokens_max = metrics.n_tokens_max; + + res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed; + res->t_prompt_processing = metrics.t_prompt_processing; + res->n_tokens_predicted = metrics.n_tokens_predicted; + res->t_tokens_generation = metrics.t_tokens_generation; + + res->n_decode_total = metrics.n_decode_total; + res->n_busy_slots_total = metrics.n_busy_slots_total; + + if (task.metrics_reset_bucket) { + metrics.reset_bucket(); + } + queue_results.send(std::move(res)); + } break; + case SERVER_TASK_TYPE_SLOT_SAVE: + { + if (!check_no_mtmd(task.id)) { + break; + } + + int id_slot = task.slot_action.slot_id; + server_slot * slot = get_slot_by_id(id_slot); + if (slot == nullptr) { + send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); + break; + } + if (slot->is_processing()) { + // if requested slot is unavailable, we defer this task for processing later + SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); + queue_tasks.defer(std::move(task)); + break; + } + + const size_t token_count = slot->prompt.tokens.size(); + const int64_t t_start = ggml_time_us(); + + std::string filename = task.slot_action.filename; + std::string filepath = task.slot_action.filepath; + + const llama_tokens & tokens = slot->prompt.tokens.get_text_tokens(); + const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count); + + const int64_t t_end = ggml_time_us(); + const double t_save_ms = (t_end - t_start) / 1000.0; + + auto res = std::make_unique(); + res->id = task.id; + res->id_slot = id_slot; + res->filename = filename; + res->is_save = true; + res->n_tokens = token_count; + res->n_bytes = nwrite; + res->t_ms = t_save_ms; + queue_results.send(std::move(res)); + } break; + case SERVER_TASK_TYPE_SLOT_RESTORE: + { + if (!check_no_mtmd(task.id)) break; + int id_slot = task.slot_action.slot_id; + server_slot * slot = get_slot_by_id(id_slot); + if (slot == nullptr) { + send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); + break; + } + if (slot->is_processing()) { + // if requested slot is unavailable, we defer this task for processing later + SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); + queue_tasks.defer(std::move(task)); + break; + } + + const int64_t t_start = ggml_time_us(); + + std::string filename = task.slot_action.filename; + std::string filepath = task.slot_action.filepath; + + llama_tokens tokens; + tokens.resize(slot->n_ctx); + size_t token_count = 0; + size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count); + if (nread == 0) { + slot->prompt.tokens.clear(); // KV may already been invalidated? + send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST); + break; + } + tokens.resize(token_count); + slot->prompt.tokens.clear(); + slot->prompt.tokens.insert(tokens); + + const int64_t t_end = ggml_time_us(); + const double t_restore_ms = (t_end - t_start) / 1000.0; + + auto res = std::make_unique(); + res->id = task.id; + res->id_slot = id_slot; + res->filename = filename; + res->is_save = false; + res->n_tokens = token_count; + res->n_bytes = nread; + res->t_ms = t_restore_ms; + queue_results.send(std::move(res)); + } break; + case SERVER_TASK_TYPE_SLOT_ERASE: + { + if (!check_no_mtmd(task.id)) { + break; + } + int id_slot = task.slot_action.slot_id; + server_slot * slot = get_slot_by_id(id_slot); + if (slot == nullptr) { + send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); + break; + } + if (slot->is_processing()) { + // if requested slot is unavailable, we defer this task for processing later + SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); + queue_tasks.defer(std::move(task)); + break; + } + + // Erase token cache + const size_t n_erased = slot->prompt.tokens.size(); + + clear_slot(*slot); + + auto res = std::make_unique(); + res->id = task.id; + res->id_slot = id_slot; + res->n_erased = n_erased; + queue_results.send(std::move(res)); + } break; + case SERVER_TASK_TYPE_SET_LORA: + { + params_base.lora_adapters = std::move(task.set_lora); + auto res = std::make_unique(); + res->id = task.id; + queue_results.send(std::move(res)); + } break; + + } + } + + void update_slots() { + // check if all slots are idle + { + bool all_idle = true; + + for (auto & slot : slots) { + if (slot.is_processing()) { + all_idle = false; + break; + } + } + + if (all_idle) { + SRV_INF("%s", "all slots are idle\n"); + + return; + } + } + + { + SRV_DBG("%s", "posting NEXT_RESPONSE\n"); + + server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE); + task.id = queue_tasks.get_new_id(); + queue_tasks.post(std::move(task)); + } + + // apply context-shift if needed + // TODO: simplify and improve + for (server_slot & slot : slots) { + if (slot.state == SLOT_STATE_GENERATING && slot.prompt.n_tokens() + 1 >= slot.n_ctx) { + if (!params_base.ctx_shift) { + // this check is redundant (for good) + // we should never get here, because generation should already stopped in process_token() + send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER); + slot.release(); + continue; + } + + if (mctx) { + // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded + // we don't support ctx_shift because an image chunk may contains multiple tokens + GGML_ABORT("not supported by multimodal"); + } + + // Shift context + int n_keep = slot.task->params.n_keep < 0 ? slot.task->n_tokens() : slot.task->params.n_keep; + + if (add_bos_token) { + n_keep += 1; + } + + n_keep = std::min(slot.n_ctx - 4, n_keep); + + const int n_left = slot.prompt.n_tokens() - n_keep; + const int n_discard = slot.task->params.n_discard ? slot.task->params.n_discard : (n_left / 2); + + SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard); + + llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard); + llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.prompt.n_tokens(), -n_discard); + + // add generated tokens to cache + // ref: https://github.com/ggml-org/llama.cpp/pull/16818#discussion_r2473269481 + { + GGML_ASSERT(!slot.prompt.tokens.has_mtmd); + + llama_tokens new_tokens = slot.prompt.tokens.get_text_tokens(); // copy + for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) { + new_tokens[i - n_discard] = new_tokens[i]; + } + + new_tokens.resize(slot.prompt.tokens.size() - n_discard); + + slot.prompt.tokens.clear(); + slot.prompt.tokens.insert(new_tokens); + } + + slot.truncated = true; + } + } + + // start populating the batch for this iteration + common_batch_clear(batch); + + // track if given slot can be batched with slots already in the batch + server_slot * slot_batched = nullptr; + + auto accept_special_token = [&](server_slot & slot, llama_token token) { + return params_base.special || + slot.task->params.sampling.preserved_tokens.find(token) != slot.task->params.sampling.preserved_tokens.end(); + }; + + // first, add sampled tokens from any ongoing sequences + for (auto & slot : slots) { + if (slot.state != SLOT_STATE_GENERATING) { + continue; + } + + // check if we can batch this slot with the previous one + if (!slot_batched) { + slot_batched = &slot; + } else if (!slot_batched->can_batch_with(slot)) { + continue; + } + + slot.i_batch = batch.n_tokens; + + common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true); + + slot.prompt.tokens.push_back(slot.sampled); + + SLT_DBG(slot, "slot decode token, n_ctx = %d, n_tokens = %d, truncated = %d\n", + slot.n_ctx, slot.prompt.n_tokens(), slot.truncated); + } + + // process in chunks of params.n_batch + int32_t n_batch = llama_n_batch(ctx); + int32_t n_ubatch = llama_n_ubatch(ctx); + + float alora_scale = -1.0f; + size_t alora_disabled_id = 0; + + // next, batch any pending prompts without exceeding n_batch + if (params_base.cont_batching || batch.n_tokens == 0) { + for (auto & slot : slots) { + if (!slot.is_processing()) { + continue; + } + + // check if we can batch this slot with the previous one + if (slot_batched && !slot_batched->can_batch_with(slot)) { + continue; + } + + // this slot still has a prompt to be processed + if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) { + const auto & input_tokens = slot.task->tokens; + + // TODO: maybe move branch to outside of this loop in the future + if (slot.state == SLOT_STATE_STARTED) { + slot.t_start_process_prompt = ggml_time_us(); + slot.t_start_generation = 0; + + slot.state = SLOT_STATE_PROCESSING_PROMPT; + + SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, task.n_tokens = %d\n", + slot.n_ctx, slot.task->params.n_keep, slot.task->n_tokens()); + + // print prompt tokens (for debugging) + /*if (1) { + // first 16 tokens (avoid flooding logs) + for (int i = 0; i < std::min(16, input_tokens.size()); i++) { + SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str()); + } + } else { + // all + for (int i = 0; i < (int) input_tokens.size(); i++) { + SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str()); + } + }*/ + + // keep track how many tokens we can reuse from the previous state + int n_past = 0; + + // empty prompt passed -> release the slot and send empty response + if (input_tokens.empty()) { + SLT_WRN(slot, "%s", "empty prompt - releasing slot\n"); + + slot.print_timings(); + send_final_response(slot); + slot.release(); + + continue; + } + + // TODO: support memory-less logits computation + if (slot.need_logits() && !llama_get_memory(ctx)) { + send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER); + slot.release(); + continue; + } + + if (!slot.can_split()) { + if (slot.task->n_tokens() > n_ubatch) { + send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER); + slot.release(); + continue; + } + + if (slot.task->n_tokens() > slot.n_ctx) { + send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_EXCEED_CONTEXT_SIZE); + slot.release(); + continue; + } + } else { + if (slot.task->n_tokens() >= slot.n_ctx) { + send_error(slot, "the request exceeds the available context size, try increasing it", ERROR_TYPE_EXCEED_CONTEXT_SIZE); + slot.release(); + continue; + } + + if (slot.task->params.cache_prompt) { + // reuse any previously computed tokens that are common with the new prompt + n_past = slot.prompt.tokens.get_common_prefix(input_tokens); + + // if there is an alora invoked, don't cache after the invocation start + if (slot.alora_invocation_start > 0) { + SLT_DBG(slot, "only caching to alora invocation start (n_past = %d, alora_invocation_start = %d)\n", n_past, slot.alora_invocation_start); + n_past = std::min(n_past, slot.alora_invocation_start - 1); + } + + // reuse chunks from the cached prompt by shifting their KV cache in the new position + if (params_base.n_cache_reuse > 0) { + GGML_ASSERT(!slot.prompt.tokens.has_mtmd); + + size_t head_c = n_past; // cache + size_t head_p = n_past; // current prompt + + if (mctx) { + // we should never reach this + GGML_ABORT("not supported by multimodal"); + } + + SLT_DBG(slot, "trying to reuse chunks with size > %d, n_past = %d\n", params_base.n_cache_reuse, n_past); + + while (head_c < slot.prompt.tokens.size() && + head_p < input_tokens.size()) { + + size_t n_match = 0; + while (head_c + n_match < slot.prompt.tokens.size() && + head_p + n_match < input_tokens.size() && + slot.prompt.tokens[head_c + n_match] == input_tokens[head_p + n_match]) { + + n_match++; + } + + if (n_match >= (size_t) params_base.n_cache_reuse) { + SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match); + //for (size_t i = head_p; i < head_p + n_match; i++) { + // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str()); + //} + + const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c; + + llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c); + llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift); + + for (size_t i = 0; i < n_match; i++) { + slot.prompt.tokens.set_token(head_p + i, slot.prompt.tokens[head_c + i]); + n_past++; + } + + head_c += n_match; + head_p += n_match; + } else { + head_c += 1; + } + } + + SLT_DBG(slot, "after context reuse, new n_past = %d\n", n_past); + } + } else { + // if we don't cache the prompt, we have to remove all previous tokens + n_past = 0; + } + + // note: when n_swa == 0, the model does not use SWA, which is equivalent to a window of 1 + const auto n_swa = std::max(1, llama_model_n_swa(model)); + + // the largest pos_min required for a checkpoint to be useful + const auto pos_min_thold = std::max(0, n_past - n_swa); + + // note: disallow with mtmd contexts for now + // https://github.com/ggml-org/llama.cpp/issues/17043 + if (!mctx && n_past > 0 && n_past < slot.prompt.n_tokens()) { + const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id); + if (pos_min == -1) { + SLT_ERR(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min); + GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237"); + } + + // when the prompt prefix does not match, print the tokens around the mismatch + // this is useful for debugging prompt caching + if (slots_debug) { + const int np0 = std::max(n_past - 4, 0); + const int np1 = std::min(n_past + 6, std::min(slot.prompt.tokens.size(), slot.task->tokens.size())); + + std::stringstream ss0; + std::stringstream ss1; + + std::stringstream st0; + std::stringstream st1; + + ss0 << "old: ... "; + ss1 << "new: ... "; + + for (int i = np0; i < np1; i++) { + if (i == n_past) { + ss0 << " | "; + ss1 << " | "; + } + + { + const auto token = slot.prompt.tokens[i]; + const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]"; + ss0 << piece; + st0 << std::setw(8) << token; + } + + { + const auto token = slot.task->tokens[i]; + const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]"; + ss1 << piece; + st1 << std::setw(8) << token; + } + } + + SLT_WRN(slot, "%s\n", ss0.str().c_str()); + SLT_WRN(slot, "%s\n", ss1.str().c_str()); + + SLT_WRN(slot, "%s\n", st0.str().c_str()); + SLT_WRN(slot, "%s\n", st1.str().c_str()); + } + + if (pos_min > pos_min_thold) { + // TODO: support can be added in the future when corresponding vision models get released + GGML_ASSERT(!slot.prompt.tokens.has_mtmd); + + SLT_WRN(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min, n_swa); + + // search for a context checkpoint + const auto it = std::find_if( + slot.prompt.checkpoints.rbegin(), + slot.prompt.checkpoints.rend(), + [&](const auto & cur) { + // guarantee that a checkpoint will result in at least one token being processed [TAG_PROMPT_LOGITS] + return cur.pos_min < pos_min_thold; + } + ); + + bool do_reset = it == slot.prompt.checkpoints.rend(); + + if (!do_reset) { + // restore the context checkpoint + const size_t checkpoint_size = it->data.size(); + const size_t n = llama_state_seq_set_data_ext(ctx, it->data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY); + + if (n != checkpoint_size) { + SLT_ERR(slot, "failed to restore context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024); + do_reset = true; + //printf("[DEBUG] `do_reset` was set to `true` after failing to restore a checkpoint"); + } else { + n_past = std::min(n_past, std::max(it->pos_min + 1, it->pos_max)); + SLT_WRN(slot, "restored context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024); + } + } + + if (do_reset) { + SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see %s)\n", + "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055"); + n_past = 0; + } + } + } + + { + // erase any checkpoints with pos_min > pos_min_thold + for (auto it = slot.prompt.checkpoints.begin(); it != slot.prompt.checkpoints.end();) { + const auto & cur = *it; + if (cur.pos_min > pos_min_thold) { + SLT_WRN(slot, "erased invalidated context checkpoint (pos_min = %d, pos_max = %d, n_swa = %d, size = %.3f MiB)\n", cur.pos_min, cur.pos_max, n_swa, (float) cur.data.size() / 1024 / 1024); + it = slot.prompt.checkpoints.erase(it); + } else { + ++it; + } + } + } + } + + // [TAG_PROMPT_LOGITS] + if (n_past == slot.task->n_tokens() && n_past > 0) { + SLT_WRN(slot, "need to evaluate at least 1 token for each active slot (n_past = %d, task.n_tokens() = %d)\n", n_past, slot.task->n_tokens()); + n_past--; + SLT_WRN(slot, "n_past was set to %d\n", n_past); + } + + slot.n_prompt_tokens_cache = n_past; + slot.n_prompt_tokens_processed = 0; + + slot.prompt.tokens.keep_first(n_past); + } + + if (!slot.can_split()) { + // cannot fit the prompt in the current batch - will try next iter + if (batch.n_tokens + slot.task->n_tokens() > n_batch) { + continue; + } + } + + // truncate any tokens that are beyond n_past for this slot + const llama_pos p0 = slot.prompt.tokens.pos_next(); + + SLT_INF(slot, "n_tokens = %d, memory_seq_rm [%d, end)\n", slot.prompt.n_tokens(), p0); + + if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, p0, -1)) { + SLT_WRN(slot, "failed to truncate tokens with position >= %d - clearing the memory\n", p0); + + clear_slot(slot); + + // there is no common part left + slot.n_prompt_tokens_cache = 0; + } + + // check if we should process the image + if (slot.prompt.n_tokens() < slot.task->n_tokens() && input_tokens[slot.prompt.n_tokens()] == LLAMA_TOKEN_NULL) { + // process the image + size_t n_tokens_out = 0; + int32_t res = input_tokens.process_chunk(ctx, mctx, slot.prompt.n_tokens(), slot.prompt.tokens.pos_next(), slot.id, n_tokens_out); + if (res != 0) { + SLT_ERR(slot, "failed to process image, res = %d\n", res); + send_error(slot, "failed to process image", ERROR_TYPE_SERVER); + slot.release(); + continue; + } + + slot.n_prompt_tokens_processed += n_tokens_out; + + // add the image chunk to cache + { + const auto & chunk = input_tokens.find_chunk(slot.prompt.n_tokens()); + slot.prompt.tokens.push_back(chunk.get()); // copy + } + } + + // If using an alora, there may be uncached tokens that come + // before the invocation sequence. When this happens, the + // tokens before the invocation sequence need to be + // processed without the adapter in a separate batch, then + // the adapter needs to be enabled for the remaining tokens. + if (lora_all_alora(slot.lora) && slot.alora_invocation_start - 1 > slot.prompt.n_tokens()) { + SLT_DBG(slot, "processing pre-alora tokens without the adapter (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start); + const auto & enabled_loras = lora_get_enabled_ids(slot.lora); + GGML_ASSERT(enabled_loras.size() == 1); + alora_scale = slot.lora[enabled_loras[0]].scale; + slot.lora[enabled_loras[0]].scale = 0.0f; + alora_disabled_id = enabled_loras[0]; + } + + bool do_checkpoint = params_base.n_ctx_checkpoints > 0; + + // make checkpoints only for completion tasks + do_checkpoint = do_checkpoint && slot.task->type == SERVER_TASK_TYPE_COMPLETION; + + // make a checkpoint of the parts of the memory that cannot be rolled back. + // checkpoints are created only if: + // - the model uses SWA and we are not using `swa_full` + // - the model architecture is marked as recurrent or hybrid + // + // TODO: try to make this conditional on the context or the memory module, instead of the model type + do_checkpoint = do_checkpoint && ( + llama_model_is_recurrent(model) || + llama_model_is_hybrid(model) || + (llama_model_n_swa(model) > 0 && !params_base.swa_full) + ); + + // add prompt tokens for processing in the current batch + while (slot.prompt.n_tokens() < slot.task->n_tokens() && batch.n_tokens < n_batch) { + // get next token to process + llama_token cur_tok = input_tokens[slot.prompt.n_tokens()]; + if (cur_tok == LLAMA_TOKEN_NULL) { + break; // end of text chunk + } + + // if this is an alora request with pre-invocation + // tokens that are not cached, we need to stop filling + // this batch at those pre-invocation tokens. + if (alora_scale > 0 && slot.prompt.n_tokens() == slot.alora_invocation_start - 1) { + SLT_DBG(slot, "stop prompt batch filling at (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start); + break; + } + + // embedding requires all tokens in the batch to be output + common_batch_add(batch, + cur_tok, + slot.prompt.tokens.pos_next(), + { slot.id }, + slot.need_embd()); + slot.prompt.tokens.push_back(cur_tok); + + slot.n_prompt_tokens_processed++; + + // process the last few tokens of the prompt separately in order to allow for a checkpoint to be created. + if (do_checkpoint && slot.task->n_tokens() - slot.prompt.n_tokens() == 64) { + break; + } + } + + // SLT_INF(slot, "new slot.prompt.tokens: %s\n", slot.slot.prompt.tokens.str().c_str()); + + SLT_INF(slot, "prompt processing progress, n_tokens = %d, batch.n_tokens = %d, progress = %f\n", slot.prompt.n_tokens(), batch.n_tokens, (float) slot.prompt.n_tokens() / slot.task->n_tokens()); + + // entire prompt has been processed + if (slot.prompt.n_tokens() == slot.task->n_tokens()) { + slot.state = SLOT_STATE_DONE_PROMPT; + + GGML_ASSERT(batch.n_tokens > 0); + + common_sampler_reset(slot.smpl); + + // Process all prompt tokens through sampler system + for (int i = 0; i < slot.task->n_tokens(); ++i) { + llama_token id = input_tokens[i]; + if (id != LLAMA_TOKEN_NULL) { + common_sampler_accept(slot.smpl, id, false); + } + } + + // extract the logits only for the last token + batch.logits[batch.n_tokens - 1] = true; + + slot.n_decoded = 0; + slot.i_batch = batch.n_tokens - 1; + + SLT_INF(slot, "prompt done, n_tokens = %d, batch.n_tokens = %d\n", slot.prompt.n_tokens(), batch.n_tokens); + + const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id); + const auto pos_max = llama_memory_seq_pos_max(llama_get_memory(ctx), slot.id); + + // no need for empty or small checkpoints + do_checkpoint = do_checkpoint && (pos_min >= 0 && pos_max >= 64); + + // no need to create checkpoints that are too close together + do_checkpoint = do_checkpoint && (slot.prompt.checkpoints.empty() || pos_max > slot.prompt.checkpoints.back().pos_max + 64); + + if (do_checkpoint) { + while (slot.prompt.checkpoints.size() >= (size_t) params_base.n_ctx_checkpoints) { + // make room for the new checkpoint, if needed + const auto & cur = slot.prompt.checkpoints.front(); + + SLT_WRN(slot, "erasing old context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", + cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024); + + slot.prompt.checkpoints.erase(slot.prompt.checkpoints.begin()); + } + + const size_t checkpoint_size = llama_state_seq_get_size_ext(ctx, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY); + + auto & cur = slot.prompt.checkpoints.emplace_back(server_prompt_checkpoint{ + /*.pos_min = */ pos_min, + /*.pos_max = */ pos_max, + /*.data = */ std::vector(checkpoint_size), + }); + + llama_state_seq_get_data_ext(ctx, cur.data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY); + + SLT_WRN(slot, "created context checkpoint %d of %d (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", + (int) slot.prompt.checkpoints.size(), params_base.n_ctx_checkpoints, cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024); + } + } + } + + if (!slot_batched) { + slot_batched = &slot; + } + + if (batch.n_tokens >= n_batch) { + break; + } + } + } + + if (batch.n_tokens == 0) { + SRV_WRN("%s", "no tokens to decode\n"); + return; + } + + SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens); + + if (slot_batched) { + // apply lora, only need to do it once per batch + common_set_adapter_lora(ctx, slot_batched->lora); + + // if the lora is temporarily disabled for an alora, re-enable it + // for next time + if (alora_scale > 0.0f) { + SRV_DBG("re-enabling alora with scale %f\n", alora_scale); + slot_batched->lora[alora_disabled_id].scale = alora_scale; + } + + llama_set_embeddings(ctx, slot_batched->need_embd()); + } + + int32_t i_next = 0; + + // process the created batch of tokens + for (int32_t i = 0; i < batch.n_tokens; i = i_next) { + const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i); + + llama_batch batch_view = { + n_tokens, + batch.token + i, + nullptr, + batch.pos + i, + batch.n_seq_id + i, + batch.seq_id + i, + batch.logits + i, + }; + + const int ret = llama_decode(ctx, batch_view); + + metrics.on_decoded(slots); + + if (ret != 0) { + { + std::string err; + + if (n_batch == 1 && ret == 1) { + // TODO: try to terminate only the largest active slot/sequence and continue with the rest + // need to remove the tokens from the current batch too + err = "Context size has been exceeded."; + } + + if (ret == -1) { + err = "Invalid input batch."; + } + + if (ret < -1) { + // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max() + err = "Compute error."; + } + + // TODO: handle ret == 2 (abort) when we start aborting + + if (!err.empty()) { + SRV_ERR("%s i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret); + + for (auto & slot : slots) { + if (slot.is_processing()) { + send_error(slot, err); + slot.release(); + + // note: it's complicated to keep track of how much of the current batch has been + // processed before the error occurred, so we simply clear the entire context + clear_slot(slot); + } + } + + break; + } + } + + // retry with half the batch size to try to find a free slot in the KV cache + if (!try_clear_idle_slots()) { + n_batch /= 2; + } + + SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret); + + continue; // continue loop of n_batch + } + + // move the head of the batch forward with the number of tokens we just processed + i_next = i + n_tokens; + + // on successful decode, restore the original batch size + n_batch = llama_n_batch(ctx); + + for (auto & slot : slots) { + // optionally send prompt processing progress + if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_DONE_PROMPT) { + if (slot.task->params.stream && slot.task->params.return_progress) { + send_partial_response(slot, {}, true); + } + } + + if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) { + continue; // continue loop of slots + } + + if (slot.state == SLOT_STATE_DONE_PROMPT) { + if (slot.task->type == SERVER_TASK_TYPE_EMBEDDING) { + // prompt evaluated for embedding + send_embedding(slot, batch_view); + slot.release(); + slot.i_batch = -1; + continue; // continue loop of slots + } + + if (slot.task->type == SERVER_TASK_TYPE_RERANK) { + send_rerank(slot, batch_view); + slot.release(); + slot.i_batch = -1; + continue; // continue loop of slots + } + + // prompt evaluated for next-token prediction + slot.state = SLOT_STATE_GENERATING; + } else if (slot.state != SLOT_STATE_GENERATING) { + continue; // continue loop of slots + } + + const int tok_idx = slot.i_batch - i; + + llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx); + + slot.i_batch = -1; + + common_sampler_accept(slot.smpl, id, true); + + slot.n_decoded += 1; + + const int64_t t_current = ggml_time_us(); + + if (slot.n_decoded == 1) { + slot.t_start_generation = t_current; + slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3; + metrics.on_prompt_eval(slot); + } + + slot.t_token_generation = std::max(1, t_current - slot.t_start_generation) / 1e3; + + completion_token_output result; + result.tok = id; + result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok)); + result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs + + if (slot.task->params.sampling.n_probs > 0) { + populate_token_probs(slot, result, slot.task->params.post_sampling_probs, params_base.special, tok_idx); + } + + if (!process_token(result, slot)) { + // release slot because of stop condition + slot.print_timings(); + send_final_response(slot); + metrics.on_prediction(slot); + slot.release(); + + continue; + } + } + + // do speculative decoding + // TODO: rework to have a single draft llama_context shared across all slots [TAG_SERVER_SPEC_REWORK] + // perform the speculative drafting for all sequences at the same time in a single batch + for (auto & slot : slots) { + if (!slot.is_processing() || !slot.can_speculate()) { + continue; + } + + if (slot.state != SLOT_STATE_GENERATING) { + continue; + } + + if (mctx) { + // we should never reach this, as speculative is automatically disabled if mmproj is loaded + GGML_ABORT("not supported by multimodal"); + } + + // determine the max draft that fits the current slot state + int n_draft_max = slot.task->params.speculative.n_max; + + // note: slot.prompt is not yet expanded with the `id` token sampled above + // also, need to leave space for 1 extra token to allow context shifts + n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.prompt.n_tokens() - 2); + + if (slot.n_remaining > 0) { + n_draft_max = std::min(n_draft_max, slot.n_remaining - 1); + } + + SLT_DBG(slot, "max possible draft: %d\n", n_draft_max); + + if (n_draft_max < slot.task->params.speculative.n_min) { + SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.task->params.speculative.n_min); + + continue; + } + + llama_token id = slot.sampled; + + struct common_speculative_params params_spec; + params_spec.n_draft = n_draft_max; + params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max; + params_spec.p_min = slot.task->params.speculative.p_min; + + const llama_tokens & cached_text_tokens = slot.prompt.tokens.get_text_tokens(); + llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id); + + // ignore small drafts + if (slot.task->params.speculative.n_min > (int) draft.size()) { + SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.task->params.speculative.n_min); + + continue; + } + + // keep track of total number of drafted tokens tested + slot.n_draft_total += draft.size(); + + // construct the speculation batch + common_batch_clear(slot.batch_spec); + common_batch_add (slot.batch_spec, id, slot.prompt.tokens.pos_next(), { slot.id }, true); + + for (size_t i = 0; i < draft.size(); ++i) { + common_batch_add(slot.batch_spec, draft[i], slot.prompt.tokens.pos_next() + 1 + i, { slot.id }, true); + } + + SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens); + + llama_decode(ctx, slot.batch_spec); + + // the accepted tokens from the speculation + const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft); + + slot.n_decoded += ids.size(); + + // update how many tokens out of those tested were accepted + slot.n_draft_accepted += ids.size() - 1; + + slot.prompt.tokens.push_back(id); + slot.prompt.tokens.insert({ids.begin(), ids.end() - 1}); + + llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.prompt.n_tokens(), -1); + + for (size_t i = 0; i < ids.size(); ++i) { + completion_token_output result; + + result.tok = ids[i]; + result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok)); + result.prob = 1.0f; // set later + + // TODO: set result.probs + + if (!process_token(result, slot)) { + slot.print_timings(); + send_final_response(slot); + metrics.on_prediction(slot); + slot.release(); + + break; + } + } + + SLT_DBG(slot, "accepted %d/%d draft tokens, new n_tokens = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.prompt.n_tokens()); + } + } + + SRV_DBG("%s", "run slots completed\n"); + } + + json model_meta() const { + return json { + {"vocab_type", llama_vocab_type (vocab)}, + {"n_vocab", llama_vocab_n_tokens (vocab)}, + {"n_ctx_train", llama_model_n_ctx_train(model)}, + {"n_embd", llama_model_n_embd (model)}, + {"n_params", llama_model_n_params (model)}, + {"size", llama_model_size (model)}, + }; + } + + int get_slot_n_ctx() { + return slots.back().n_ctx; + } +}; + +// +// server_context (public API) +// + +server_context::server_context() : impl(new server_context_impl()) {} +server_context::~server_context() = default; + +void server_context::init() { + impl->init(); +} + +bool server_context::load_model(const common_params & params) { + return impl->load_model(params); +} + +void server_context::start_loop() { + impl->queue_tasks.start_loop(); +} + +void server_context::terminate() { + impl->queue_tasks.terminate(); +} + +llama_context * server_context::get_llama_context() const { + return impl->ctx; +} + +std::pair server_context::get_queues() { + return { impl->queue_tasks, impl->queue_results }; +} + + + +// generator-like API for HTTP response generation +struct server_res_generator : server_http_res { + server_response_reader rd; + server_res_generator(server_context_impl & ctx_server) + : rd({ctx_server.queue_tasks, ctx_server.queue_results}, HTTP_POLLING_SECONDS) {} + void ok(const json & response_data) { + status = 200; + data = safe_json_to_str(response_data); + } + void error(const json & error_data) { + status = json_value(error_data, "code", 500); + data = safe_json_to_str({{ "error", error_data }}); + } +}; + + + +// +// server_routes +// + +static std::unique_ptr handle_completions_impl( + server_context_impl & ctx_server, + server_task_type type, + const json & data, + const std::vector & files, + const std::function & should_stop, + task_response_type res_type) { + GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL); + + auto res = std::make_unique(ctx_server); + auto completion_id = gen_chatcmplid(); + auto & rd = res->rd; + + try { + std::vector tasks; + + const auto & prompt = data.at("prompt"); + // TODO: this log can become very long, put it behind a flag or think about a more compact format + //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get().c_str() : prompt.dump(2).c_str()); + + // process prompt + std::vector inputs; + + if (res_type != TASK_RESPONSE_TYPE_NONE && ctx_server.mctx != nullptr) { + // This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below. + inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get(), files)); + } else { + // Everything else, including multimodal completions. + inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true); + } + tasks.reserve(inputs.size()); + for (size_t i = 0; i < inputs.size(); i++) { + server_task task = server_task(type); + + task.id = ctx_server.queue_tasks.get_new_id(); + task.index = i; + + task.tokens = std::move(inputs[i]); + task.params = server_task::params_from_json_cmpl( + ctx_server.ctx, + ctx_server.params_base, + data); + task.id_slot = json_value(data, "id_slot", -1); + + // OAI-compat + task.params.res_type = res_type; + task.params.oaicompat_cmpl_id = completion_id; + // oaicompat_model is already populated by params_from_json_cmpl + + tasks.push_back(std::move(task)); + } + + rd.post_tasks(std::move(tasks)); + } catch (const std::exception & e) { + res->error(format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST)); + return res; + } + + bool stream = json_value(data, "stream", false); + + if (!stream) { + // non-stream, wait for the results + auto all_results = rd.wait_for_all(should_stop); + if (all_results.is_terminated) { + return res; // connection is closed + } else if (all_results.error) { + res->error(all_results.error->to_json()); + return res; + } else { + json arr = json::array(); + for (auto & res : all_results.results) { + GGML_ASSERT(dynamic_cast(res.get()) != nullptr); + arr.push_back(res->to_json()); + } + // if single request, return single object instead of array + res->ok(arr.size() == 1 ? arr[0] : arr); + } + + } else { + // in streaming mode, the first error must be treated as non-stream response + // this is to match the OAI API behavior + // ref: https://github.com/ggml-org/llama.cpp/pull/16486#discussion_r2419657309 + server_task_result_ptr first_result = rd.next(should_stop); + if (first_result == nullptr) { + return res; // connection is closed + } else if (first_result->is_error()) { + res->error(first_result->to_json()); + return res; + } else { + GGML_ASSERT( + dynamic_cast(first_result.get()) != nullptr + || dynamic_cast(first_result.get()) != nullptr + ); + } + + // next responses are streamed + if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) { + res->data = format_anthropic_sse(first_result->to_json()); + } else { + res->data = format_oai_sse(first_result->to_json()); // to be sent immediately + } + res->status = 200; + res->content_type = "text/event-stream"; + res->next = [res_this = res.get(), res_type, &should_stop](std::string & output) -> bool { + if (should_stop()) { + SRV_DBG("%s", "stopping streaming due to should_stop condition\n"); + return false; // should_stop condition met + } + + if (!res_this->data.empty()) { + // flush the first chunk + output = std::move(res_this->data); + res_this->data.clear(); + return true; + } + + server_response_reader & rd = res_this->rd; + + // check if there is more data + if (!rd.has_next()) { + if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) { + // Anthropic doesn't send [DONE], message_stop was already sent + output = ""; + } else if (res_type != TASK_RESPONSE_TYPE_NONE) { + output = "data: [DONE]\n\n"; + } else { + output = ""; + } + SRV_DBG("%s", "all results received, terminating stream\n"); + return false; // no more data, terminate + } + + // receive subsequent results + auto result = rd.next(should_stop); + if (result == nullptr) { + SRV_DBG("%s", "stopping streaming due to should_stop condition\n"); + return false; // should_stop condition met + } + + // send the results + json res_json = result->to_json(); + if (result->is_error()) { + if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) { + output = format_anthropic_sse({ + {"event", "error"}, + {"data", res_json}, + }); + } else { + output = format_oai_sse(json {{ "error", res_json }}); + } + SRV_DBG("%s", "error received during streaming, terminating stream\n"); + return false; // terminate on error + } else { + GGML_ASSERT( + dynamic_cast(result.get()) != nullptr + || dynamic_cast(result.get()) != nullptr + ); + if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) { + output = format_anthropic_sse(res_json); + } else { + output = format_oai_sse(res_json); + } + } + + // has next data, continue + return true; + }; + } + + return res; +} + +void server_routes::init_routes() { + this->get_health = [this](const server_http_req &) { + // error and loading states are handled by middleware + auto res = std::make_unique(ctx_server); + res->ok({{"status", "ok"}}); + return res; + }; + + this->get_metrics = [this](const server_http_req &) { + auto res = std::make_unique(ctx_server); + if (!params.endpoint_metrics) { + res->error(format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED)); + return res; + } + + // request slots data using task queue + // TODO: use server_response_reader + int task_id = ctx_server.queue_tasks.get_new_id(); + { + server_task task(SERVER_TASK_TYPE_METRICS); + task.id = task_id; + ctx_server.queue_results.add_waiting_task_id(task_id); + ctx_server.queue_tasks.post(std::move(task), true); // high-priority task + } + + // get the result + server_task_result_ptr result = ctx_server.queue_results.recv(task_id); + ctx_server.queue_results.remove_waiting_task_id(task_id); + + if (result->is_error()) { + res->error(result->to_json()); + return res; + } + + // TODO: get rid of this dynamic_cast + auto res_task = dynamic_cast(result.get()); + GGML_ASSERT(res_task != nullptr); + + // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names + json all_metrics_def = json { + {"counter", {{ + {"name", "prompt_tokens_total"}, + {"help", "Number of prompt tokens processed."}, + {"value", (uint64_t) res_task->n_prompt_tokens_processed_total} + }, { + {"name", "prompt_seconds_total"}, + {"help", "Prompt process time"}, + {"value", (uint64_t) res_task->t_prompt_processing_total / 1.e3} + }, { + {"name", "tokens_predicted_total"}, + {"help", "Number of generation tokens processed."}, + {"value", (uint64_t) res_task->n_tokens_predicted_total} + }, { + {"name", "tokens_predicted_seconds_total"}, + {"help", "Predict process time"}, + {"value", (uint64_t) res_task->t_tokens_generation_total / 1.e3} + }, { + {"name", "n_decode_total"}, + {"help", "Total number of llama_decode() calls"}, + {"value", res_task->n_decode_total} + }, { + {"name", "n_tokens_max"}, + {"help", "Largest observed n_tokens."}, + {"value", res_task->n_tokens_max} + }, { + {"name", "n_busy_slots_per_decode"}, + {"help", "Average number of busy slots per llama_decode() call"}, + {"value", (float) res_task->n_busy_slots_total / std::max((float) res_task->n_decode_total, 1.f)} + }}}, + {"gauge", {{ + {"name", "prompt_tokens_seconds"}, + {"help", "Average prompt throughput in tokens/s."}, + {"value", res_task->n_prompt_tokens_processed ? 1.e3 / res_task->t_prompt_processing * res_task->n_prompt_tokens_processed : 0.} + },{ + {"name", "predicted_tokens_seconds"}, + {"help", "Average generation throughput in tokens/s."}, + {"value", res_task->n_tokens_predicted ? 1.e3 / res_task->t_tokens_generation * res_task->n_tokens_predicted : 0.} + },{ + {"name", "requests_processing"}, + {"help", "Number of requests processing."}, + {"value", (uint64_t) res_task->n_processing_slots} + },{ + {"name", "requests_deferred"}, + {"help", "Number of requests deferred."}, + {"value", (uint64_t) res_task->n_tasks_deferred} + }}} + }; + + std::stringstream prometheus; + + for (const auto & el : all_metrics_def.items()) { + const auto & type = el.key(); + const auto & metrics_def = el.value(); + + for (const auto & metric_def : metrics_def) { + const std::string name = metric_def.at("name"); + const std::string help = metric_def.at("help"); + + auto value = json_value(metric_def, "value", 0.); + prometheus << "# HELP llamacpp:" << name << " " << help << "\n" + << "# TYPE llamacpp:" << name << " " << type << "\n" + << "llamacpp:" << name << " " << value << "\n"; + } + } + + res->headers["Process-Start-Time-Unix"] = std::to_string(res_task->t_start); + res->content_type = "text/plain; version=0.0.4"; + res->status = 200; + res->data = prometheus.str(); + return res; + }; + + this->get_slots = [this](const server_http_req & req) { + auto res = std::make_unique(ctx_server); + if (!params.endpoint_slots) { + res->error(format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED)); + return res; + } + + // request slots data using task queue + int task_id = ctx_server.queue_tasks.get_new_id(); + { + server_task task(SERVER_TASK_TYPE_METRICS); + task.id = task_id; + ctx_server.queue_results.add_waiting_task_id(task_id); + ctx_server.queue_tasks.post(std::move(task), true); // high-priority task + } + + // get the result + server_task_result_ptr result = ctx_server.queue_results.recv(task_id); + ctx_server.queue_results.remove_waiting_task_id(task_id); + + if (result->is_error()) { + res->error(result->to_json()); + return res; + } + + // TODO: get rid of this dynamic_cast + auto res_task = dynamic_cast(result.get()); + GGML_ASSERT(res_task != nullptr); + + // optionally return "fail_on_no_slot" error + if (!req.get_param("fail_on_no_slot").empty()) { + if (res_task->n_idle_slots == 0) { + res->error(format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE)); + return res; + } + } + + res->ok(res_task->slots_data); + return res; + }; + + this->post_slots = [this](const server_http_req & req) { + auto res = std::make_unique(ctx_server); + if (params.slot_save_path.empty()) { + res->error(format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED)); + return res; + } + + std::string id_slot_str = req.get_param("id_slot"); + int id_slot; + + try { + id_slot = std::stoi(id_slot_str); + } catch (const std::exception &) { + res->error(format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + + std::string action = req.get_param("action"); + + if (action == "save") { + return handle_slots_save(req, id_slot); + } else if (action == "restore") { + return handle_slots_restore(req, id_slot); + } else if (action == "erase") { + return handle_slots_erase(req, id_slot); + } else { + res->error(format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + }; + + this->get_props = [this](const server_http_req &) { + auto res = std::make_unique(ctx_server); + json default_generation_settings_for_props; + + { + task_params params; + + params.sampling = ctx_server.params_base.sampling; + + default_generation_settings_for_props = json { + {"params", params.to_json(true)}, + {"n_ctx", ctx_server.get_slot_n_ctx()}, + }; + } + + // this endpoint is publicly available, please only return what is safe to be exposed + json data = { + { "default_generation_settings", default_generation_settings_for_props }, + { "total_slots", ctx_server.params_base.n_parallel }, + { "model_alias", ctx_server.params_base.model_alias }, + { "model_path", ctx_server.params_base.model.path }, + { "modalities", json { + {"vision", ctx_server.oai_parser_opt.allow_image}, + {"audio", ctx_server.oai_parser_opt.allow_audio}, + } }, + { "endpoint_slots", params.endpoint_slots }, + { "endpoint_props", params.endpoint_props }, + { "endpoint_metrics", params.endpoint_metrics }, + { "webui", params.webui }, + { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) }, + { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)}, + { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)}, + { "build_info", build_info }, + }; + if (ctx_server.params_base.use_jinja) { + if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) { + data["chat_template_tool_use"] = tool_use_src; + } + } + + res->ok(data); + return res; + }; + + this->post_props = [this](const server_http_req &) { + auto res = std::make_unique(ctx_server); + if (!params.endpoint_props) { + res->error(format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED)); + return res; + } + // update any props here + + res->ok({{ "success", true }}); + return res; + }; + + this->get_api_show = [this](const server_http_req &) { + auto res = std::make_unique(ctx_server); + bool has_mtmd = ctx_server.mctx != nullptr; + json data = { + { + "template", common_chat_templates_source(ctx_server.chat_templates.get()), + }, + { + "model_info", { + { "llama.context_length", ctx_server.get_slot_n_ctx() }, + } + }, + {"modelfile", ""}, + {"parameters", ""}, + {"template", common_chat_templates_source(ctx_server.chat_templates.get())}, + {"details", { + {"parent_model", ""}, + {"format", "gguf"}, + {"family", ""}, + {"families", {""}}, + {"parameter_size", ""}, + {"quantization_level", ""} + }}, + {"model_info", ""}, + {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})} + }; + + res->ok(data); + return res; + }; + + this->post_infill = [this](const server_http_req & req) { + auto res = std::make_unique(ctx_server); + // check model compatibility + std::string err; + if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) { + err += "prefix token is missing. "; + } + if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) { + err += "suffix token is missing. "; + } + if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) { + err += "middle token is missing. "; + } + if (!err.empty()) { + res->error(format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED)); + return res; + } + + // validate input + json data = json::parse(req.body); + if (data.contains("prompt") && !data.at("prompt").is_string()) { + // prompt is optional + res->error(format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST)); + } + + if (!data.contains("input_prefix")) { + res->error(format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST)); + } + + if (!data.contains("input_suffix")) { + res->error(format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST)); + } + + if (data.contains("input_extra") && !data.at("input_extra").is_array()) { + // input_extra is optional + res->error(format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + + json input_extra = json_value(data, "input_extra", json::array()); + for (const auto & chunk : input_extra) { + // { "text": string, "filename": string } + if (!chunk.contains("text") || !chunk.at("text").is_string()) { + res->error(format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + // filename is optional + if (chunk.contains("filename") && !chunk.at("filename").is_string()) { + res->error(format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + } + data["input_extra"] = input_extra; // default to empty array if it's not exist + + std::string prompt = json_value(data, "prompt", std::string()); + std::vector tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, false, true); + SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size()); + data["prompt"] = format_prompt_infill( + ctx_server.vocab, + data.at("input_prefix"), + data.at("input_suffix"), + data.at("input_extra"), + ctx_server.params_base.n_batch, + ctx_server.params_base.n_predict, + ctx_server.get_slot_n_ctx(), + ctx_server.params_base.spm_infill, + tokenized_prompts[0].get_text_tokens() // TODO: this could maybe be multimodal. + ); + + std::vector files; // dummy + return handle_completions_impl( + ctx_server, + SERVER_TASK_TYPE_INFILL, + data, + files, + req.should_stop, + TASK_RESPONSE_TYPE_NONE); // infill is not OAI compatible + }; + + this->post_completions = [this](const server_http_req & req) { + std::vector files; // dummy + const json body = json::parse(req.body); + return handle_completions_impl( + ctx_server, + SERVER_TASK_TYPE_COMPLETION, + body, + files, + req.should_stop, + TASK_RESPONSE_TYPE_NONE); + }; + + this->post_completions_oai = [this](const server_http_req & req) { + std::vector files; // dummy + const json body = json::parse(req.body); + return handle_completions_impl( + ctx_server, + SERVER_TASK_TYPE_COMPLETION, + body, + files, + req.should_stop, + TASK_RESPONSE_TYPE_OAI_CMPL); + }; + + this->post_chat_completions = [this](const server_http_req & req) { + std::vector files; + json body = json::parse(req.body); + json body_parsed = oaicompat_chat_params_parse( + body, + ctx_server.oai_parser_opt, + files); + return handle_completions_impl( + ctx_server, + SERVER_TASK_TYPE_COMPLETION, + body_parsed, + files, + req.should_stop, + TASK_RESPONSE_TYPE_OAI_CHAT); + }; + + this->post_anthropic_messages = [this](const server_http_req & req) { + std::vector files; + json body = convert_anthropic_to_oai(json::parse(req.body)); + json body_parsed = oaicompat_chat_params_parse( + body, + ctx_server.oai_parser_opt, + files); + return handle_completions_impl( + ctx_server, + SERVER_TASK_TYPE_COMPLETION, + body_parsed, + files, + req.should_stop, + TASK_RESPONSE_TYPE_ANTHROPIC); + }; + + this->post_anthropic_count_tokens = [this](const server_http_req & req) { + auto res = std::make_unique(ctx_server); + std::vector files; + json body = convert_anthropic_to_oai(json::parse(req.body)); + json body_parsed = oaicompat_chat_params_parse( + body, + ctx_server.oai_parser_opt, + files); + + json prompt = body_parsed.at("prompt"); + llama_tokens tokens = tokenize_mixed(ctx_server.vocab, prompt, true, true); + + res->ok({{"input_tokens", static_cast(tokens.size())}}); + return res; + }; + + // same with handle_chat_completions, but without inference part + this->post_apply_template = [this](const server_http_req & req) { + auto res = std::make_unique(ctx_server); + std::vector files; // dummy, unused + json body = json::parse(req.body); + json data = oaicompat_chat_params_parse( + body, + ctx_server.oai_parser_opt, + files); + res->ok({{ "prompt", std::move(data.at("prompt")) }}); + return res; + }; + + this->get_models = [this](const server_http_req &) { + auto res = std::make_unique(ctx_server); + json model_meta = nullptr; + if (is_ready()) { + model_meta = ctx_server.model_meta(); + } + bool has_mtmd = ctx_server.mctx != nullptr; + json models = { + {"models", { + { + {"name", params.model_alias.empty() ? params.model.path : params.model_alias}, + {"model", params.model_alias.empty() ? params.model.path : params.model_alias}, + {"modified_at", ""}, + {"size", ""}, + {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash + {"type", "model"}, + {"description", ""}, + {"tags", {""}}, + {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})}, + {"parameters", ""}, + {"details", { + {"parent_model", ""}, + {"format", "gguf"}, + {"family", ""}, + {"families", {""}}, + {"parameter_size", ""}, + {"quantization_level", ""} + }} + } + }}, + {"object", "list"}, + {"data", { + { + {"id", params.model_alias.empty() ? params.model.path : params.model_alias}, + {"object", "model"}, + {"created", std::time(0)}, + {"owned_by", "llamacpp"}, + {"meta", model_meta}, + }, + }} + }; + + res->ok(models); + return res; + }; + + this->post_tokenize = [this](const server_http_req & req) { + auto res = std::make_unique(ctx_server); + const json body = json::parse(req.body); + json tokens_response = json::array(); + if (body.count("content") != 0) { + const bool add_special = json_value(body, "add_special", false); + const bool parse_special = json_value(body, "parse_special", true); + const bool with_pieces = json_value(body, "with_pieces", false); + + llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special); + + if (with_pieces) { + for (const auto& token : tokens) { + std::string piece = common_token_to_piece(ctx_server.ctx, token); + json piece_json; + + // Check if the piece is valid UTF-8 + if (is_valid_utf8(piece)) { + piece_json = piece; + } else { + // If not valid UTF-8, store as array of byte values + piece_json = json::array(); + for (unsigned char c : piece) { + piece_json.push_back(static_cast(c)); + } + } + + tokens_response.push_back({ + {"id", token}, + {"piece", piece_json} + }); + } + } else { + tokens_response = tokens; + } + } + + res->ok(json{{"tokens", std::move(tokens_response)}}); + return res; + }; + + this->post_detokenize = [this](const server_http_req & req) { + auto res = std::make_unique(ctx_server); + const json body = json::parse(req.body); + + std::string content; + if (body.count("tokens") != 0) { + const llama_tokens tokens = body.at("tokens"); + content = tokens_to_str(ctx_server.ctx, tokens); + } + + res->ok(json{{"content", std::move(content)}}); + return res; + }; + + this->post_embeddings = [this](const server_http_req & req) { + return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_NONE); + }; + + this->post_embeddings_oai = [this](const server_http_req & req) { + return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_OAI_EMBD); + }; + + this->post_rerank = [this](const server_http_req & req) { + auto res = std::make_unique(ctx_server); + if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) { + res->error(format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED)); + return res; + } + + const json body = json::parse(req.body); + + // if true, use TEI API format, otherwise use Jina API format + // Jina: https://jina.ai/reranker/ + // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank + bool is_tei_format = body.contains("texts"); + + json query; + if (body.count("query") == 1) { + query = body.at("query"); + if (!query.is_string()) { + res->error(format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + } else { + res->error(format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + + std::vector documents = json_value(body, "documents", + json_value(body, "texts", std::vector())); + if (documents.empty()) { + res->error(format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + + int top_n = json_value(body, "top_n", (int)documents.size()); + + // create and queue the task + json responses = json::array(); + server_response_reader rd({ctx_server.queue_tasks, ctx_server.queue_results}, HTTP_POLLING_SECONDS); + { + std::vector tasks; + tasks.reserve(documents.size()); + for (size_t i = 0; i < documents.size(); i++) { + auto tmp = format_prompt_rerank(ctx_server.model, ctx_server.vocab, ctx_server.mctx, query, documents[i]); + server_task task = server_task(SERVER_TASK_TYPE_RERANK); + task.id = ctx_server.queue_tasks.get_new_id(); + task.index = i; + task.tokens = std::move(tmp); + tasks.push_back(std::move(task)); + } + rd.post_tasks(std::move(tasks)); + } + + // wait for the results + auto all_results = rd.wait_for_all(req.should_stop); + + // collect results + if (all_results.is_terminated) { + return res; // connection is closed + } else if (all_results.error) { + res->error(all_results.error->to_json()); + return res; + } else { + for (auto & res : all_results.results) { + GGML_ASSERT(dynamic_cast(res.get()) != nullptr); + responses.push_back(res->to_json()); + } + } + + // write JSON response + json root = format_response_rerank( + body, + responses, + is_tei_format, + documents, + top_n); + + res->ok(root); + return res; + }; + + this->get_lora_adapters = [this](const server_http_req &) { + auto res = std::make_unique(ctx_server); + json result = json::array(); + const auto & loras = ctx_server.params_base.lora_adapters; + for (size_t i = 0; i < loras.size(); ++i) { + auto & lora = loras[i]; + json entry = { + {"id", i}, + {"path", lora.path}, + {"scale", lora.scale}, + {"task_name", lora.task_name}, + {"prompt_prefix", lora.prompt_prefix}, + }; + std::string alora_invocation_string = ""; + const uint64_t n_alora_tokens = llama_adapter_get_alora_n_invocation_tokens(lora.ptr); + std::vector alora_invocation_tokens; + if (n_alora_tokens) { + const llama_token * alora_tokens = llama_adapter_get_alora_invocation_tokens(lora.ptr); + for (uint64_t i = 0; i < n_alora_tokens; ++i) { + alora_invocation_string += common_token_to_piece(ctx_server.ctx, alora_tokens[i]); + alora_invocation_tokens.push_back(alora_tokens[i]); + } + entry["alora_invocation_string"] = alora_invocation_string; + entry["alora_invocation_tokens"] = alora_invocation_tokens; + } + result.push_back(std::move(entry)); + } + res->ok(result); + return res; + }; + + this->post_lora_adapters = [this](const server_http_req & req) { + auto res = std::make_unique(ctx_server); + const json body = json::parse(req.body); + if (!body.is_array()) { + res->error(format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + + int task_id = ctx_server.queue_tasks.get_new_id(); + { + server_task task(SERVER_TASK_TYPE_SET_LORA); + task.id = task_id; + task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body); + ctx_server.queue_results.add_waiting_task_id(task_id); + ctx_server.queue_tasks.post(std::move(task)); + } + + // get the result + server_task_result_ptr result = ctx_server.queue_results.recv(task_id); + ctx_server.queue_results.remove_waiting_task_id(task_id); + + if (result->is_error()) { + res->error(result->to_json()); + return res; + } + + GGML_ASSERT(dynamic_cast(result.get()) != nullptr); + res->ok(result->to_json()); + return res; + }; +} + +std::unique_ptr server_routes::handle_slots_save(const server_http_req & req, int id_slot) { + auto res = std::make_unique(ctx_server); + const json request_data = json::parse(req.body); + std::string filename = request_data.at("filename"); + if (!fs_validate_filename(filename)) { + res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + std::string filepath = params.slot_save_path + filename; + + int task_id = ctx_server.queue_tasks.get_new_id(); + { + server_task task(SERVER_TASK_TYPE_SLOT_SAVE); + task.id = task_id; + task.slot_action.slot_id = id_slot; + task.slot_action.filename = filename; + task.slot_action.filepath = filepath; + + // TODO: use server_response_reader + ctx_server.queue_results.add_waiting_task_id(task_id); + ctx_server.queue_tasks.post(std::move(task)); + } + + server_task_result_ptr result = ctx_server.queue_results.recv(task_id); + ctx_server.queue_results.remove_waiting_task_id(task_id); + + if (result->is_error()) { + res->error(result->to_json()); + return res; + } + + res->ok(result->to_json()); + return res; +} + +std::unique_ptr server_routes::handle_slots_restore(const server_http_req & req, int id_slot) { + auto res = std::make_unique(ctx_server); + const json request_data = json::parse(req.body); + std::string filename = request_data.at("filename"); + if (!fs_validate_filename(filename)) { + res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + std::string filepath = params.slot_save_path + filename; + + int task_id = ctx_server.queue_tasks.get_new_id(); + { + server_task task(SERVER_TASK_TYPE_SLOT_RESTORE); + task.id = task_id; + task.slot_action.slot_id = id_slot; + task.slot_action.filename = filename; + task.slot_action.filepath = filepath; + + // TODO: use server_response_reader + ctx_server.queue_results.add_waiting_task_id(task_id); + ctx_server.queue_tasks.post(std::move(task)); + } + + server_task_result_ptr result = ctx_server.queue_results.recv(task_id); + ctx_server.queue_results.remove_waiting_task_id(task_id); + + if (result->is_error()) { + res->error(result->to_json()); + return res; + } + + GGML_ASSERT(dynamic_cast(result.get()) != nullptr); + res->ok(result->to_json()); + return res; +} + +std::unique_ptr server_routes::handle_slots_erase(const server_http_req &, int id_slot) { + auto res = std::make_unique(ctx_server); + int task_id = ctx_server.queue_tasks.get_new_id(); + { + server_task task(SERVER_TASK_TYPE_SLOT_ERASE); + task.id = task_id; + task.slot_action.slot_id = id_slot; + + // TODO: use server_response_reader + ctx_server.queue_results.add_waiting_task_id(task_id); + ctx_server.queue_tasks.post(std::move(task)); + } + + server_task_result_ptr result = ctx_server.queue_results.recv(task_id); + ctx_server.queue_results.remove_waiting_task_id(task_id); + + if (result->is_error()) { + res->error(result->to_json()); + return res; + } + + GGML_ASSERT(dynamic_cast(result.get()) != nullptr); + res->ok(result->to_json()); + return res; +} + +std::unique_ptr server_routes::handle_embeddings_impl(const server_http_req & req, task_response_type res_type) { + auto res = std::make_unique(ctx_server); + if (!ctx_server.params_base.embedding) { + res->error(format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); + return res; + } + + if (res_type != TASK_RESPONSE_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) { + res->error(format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + + const json body = json::parse(req.body); + + // for the shape of input/content, see tokenize_input_prompts() + json prompt; + if (body.count("input") != 0) { + prompt = body.at("input"); + } else if (body.contains("content")) { + res_type = TASK_RESPONSE_TYPE_NONE; // "content" field is not OAI compatible + prompt = body.at("content"); + } else { + res->error(format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + + bool use_base64 = false; + if (body.count("encoding_format") != 0) { + const std::string& format = body.at("encoding_format"); + if (format == "base64") { + use_base64 = true; + } else if (format != "float") { + res->error(format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + } + + auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true); + for (const auto & tokens : tokenized_prompts) { + // this check is necessary for models that do not add BOS token to the input + if (tokens.empty()) { + res->error(format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST)); + return res; + } + } + + int embd_normalize = 2; // default to Euclidean/L2 norm + if (body.count("embd_normalize") != 0) { + embd_normalize = body.at("embd_normalize"); + if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) { + SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx)); + } + } + + // create and queue the task + json responses = json::array(); + server_response_reader rd({ctx_server.queue_tasks, ctx_server.queue_results}, HTTP_POLLING_SECONDS); + { + std::vector tasks; + for (size_t i = 0; i < tokenized_prompts.size(); i++) { + server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING); + + task.id = ctx_server.queue_tasks.get_new_id(); + task.index = i; + task.tokens = std::move(tokenized_prompts[i]); + + // OAI-compat + task.params.res_type = res_type; + task.params.embd_normalize = embd_normalize; + + tasks.push_back(std::move(task)); + } + rd.post_tasks(std::move(tasks)); + } + + // wait for the results + auto all_results = rd.wait_for_all(req.should_stop); + + // collect results + if (all_results.is_terminated) { + return res; // connection is closed + } else if (all_results.error) { + res->error(all_results.error->to_json()); + return res; + } else { + for (auto & res : all_results.results) { + GGML_ASSERT(dynamic_cast(res.get()) != nullptr); + responses.push_back(res->to_json()); + } + } + + // write JSON response + json root = res_type == TASK_RESPONSE_TYPE_OAI_EMBD + ? format_embeddings_response_oaicompat(body, responses, use_base64) + : json(responses); + res->ok(root); + return res; +} diff --git a/tools/server/server-context.h b/tools/server/server-context.h new file mode 100644 index 00000000000..05b4afaeeb2 --- /dev/null +++ b/tools/server/server-context.h @@ -0,0 +1,83 @@ +#include "server-http.h" +#include "server-task.h" +#include "server-queue.h" + +#include + +#include +#include + +struct server_context_impl; // private implementation + +struct server_context { + std::unique_ptr impl; + + server_context(); + ~server_context(); + + // initialize slots and server-related data + void init(); + + // load the model and initialize llama_context + // returns true on success + bool load_model(const common_params & params); + + // this function will block main thread until termination + void start_loop(); + + // terminate main loop (will unblock start_loop) + void terminate(); + + // get the underlaying llama_context + llama_context * get_llama_context() const; + + // get the underlaying queue_tasks and queue_results + // used by CLI application + std::pair get_queues(); +}; + + +// forward declarations +struct server_res_generator; + +struct server_routes { + server_routes(const common_params & params, server_context & ctx_server, std::function is_ready = []() { return true; }) + : params(params), ctx_server(*ctx_server.impl), is_ready(is_ready) { + init_routes(); + } + + void init_routes(); + // handlers using lambda function, so that they can capture `this` without `std::bind` + server_http_context::handler_t get_health; + server_http_context::handler_t get_metrics; + server_http_context::handler_t get_slots; + server_http_context::handler_t post_slots; + server_http_context::handler_t get_props; + server_http_context::handler_t post_props; + server_http_context::handler_t get_api_show; + server_http_context::handler_t post_infill; + server_http_context::handler_t post_completions; + server_http_context::handler_t post_completions_oai; + server_http_context::handler_t post_chat_completions; + server_http_context::handler_t post_anthropic_messages; + server_http_context::handler_t post_anthropic_count_tokens; + server_http_context::handler_t post_apply_template; + server_http_context::handler_t get_models; + server_http_context::handler_t post_tokenize; + server_http_context::handler_t post_detokenize; + server_http_context::handler_t post_embeddings; + server_http_context::handler_t post_embeddings_oai; + server_http_context::handler_t post_rerank; + server_http_context::handler_t get_lora_adapters; + server_http_context::handler_t post_lora_adapters; +private: + // TODO: move these outside of server_routes? + std::unique_ptr handle_slots_save(const server_http_req & req, int id_slot); + std::unique_ptr handle_slots_restore(const server_http_req & req, int id_slot); + std::unique_ptr handle_slots_erase(const server_http_req &, int id_slot); + std::unique_ptr handle_embeddings_impl(const server_http_req & req, task_response_type res_type); + + const common_params & params; + server_context_impl & ctx_server; + std::function is_ready; +}; diff --git a/tools/server/server-queue.cpp b/tools/server/server-queue.cpp index 5a74fd76ac3..9f0d57ae843 100644 --- a/tools/server/server-queue.cpp +++ b/tools/server/server-queue.cpp @@ -266,3 +266,86 @@ void server_response::terminate() { running = false; condition_results.notify_all(); } + +// +// server_response_reader +// + +void server_response_reader::post_tasks(std::vector && tasks) { + id_tasks = server_task::get_list_id(tasks); + queue_results.add_waiting_tasks(tasks); + queue_tasks.post(std::move(tasks)); +} + +bool server_response_reader::has_next() const { + return !cancelled && received_count < id_tasks.size(); +} + +// return nullptr if should_stop() is true before receiving a result +// note: if one error is received, it will stop further processing and return error result +server_task_result_ptr server_response_reader::next(const std::function & should_stop) { + while (true) { + server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, polling_interval_seconds); + if (result == nullptr) { + // timeout, check stop condition + if (should_stop()) { + SRV_DBG("%s", "stopping wait for next result due to should_stop condition\n"); + return nullptr; + } + } else { + if (result->is_error()) { + stop(); // cancel remaining tasks + SRV_DBG("%s", "received error result, stopping further processing\n"); + return result; + } + if (result->is_stop()) { + received_count++; + } + return result; + } + } + + // should not reach here +} + +server_response_reader::batch_response server_response_reader::wait_for_all(const std::function & should_stop) { + batch_response batch_res; + batch_res.results.resize(id_tasks.size()); + while (has_next()) { + auto res = next(should_stop); + if (res == nullptr) { + batch_res.is_terminated = true; + return batch_res; + } + if (res->is_error()) { + batch_res.error = std::move(res); + return batch_res; + } + const size_t idx = res->get_index(); + GGML_ASSERT(idx < batch_res.results.size() && "index out of range"); + GGML_ASSERT(batch_res.results[idx] == nullptr && "duplicate result received"); + batch_res.results[idx] = std::move(res); + } + return batch_res; +} + +void server_response_reader::stop() { + queue_results.remove_waiting_task_ids(id_tasks); + if (has_next() && !cancelled) { + // if tasks is not finished yet, cancel them + cancelled = true; + std::vector cancel_tasks; + cancel_tasks.reserve(id_tasks.size()); + for (const auto & id_task : id_tasks) { + SRV_WRN("cancel task, id_task = %d\n", id_task); + server_task task(SERVER_TASK_TYPE_CANCEL); + task.id_target = id_task; + queue_results.remove_waiting_task_id(id_task); + cancel_tasks.push_back(std::move(task)); + } + // push to beginning of the queue, so it has highest priority + queue_tasks.post(std::move(cancel_tasks), true); + } else { + SRV_DBG("%s", "all tasks already finished, no need to cancel\n"); + } +} diff --git a/tools/server/server-queue.h b/tools/server/server-queue.h index 47ef58425ea..209d2017c7e 100644 --- a/tools/server/server-queue.h +++ b/tools/server/server-queue.h @@ -108,3 +108,39 @@ struct server_response { // terminate the waiting loop void terminate(); }; + +// utility class to make working with server_queue and server_response easier +// it provides a generator-like API for server responses +// support pooling connection state and aggregating multiple results +struct server_response_reader { + std::unordered_set id_tasks; + server_queue & queue_tasks; + server_response & queue_results; + size_t received_count = 0; + bool cancelled = false; + int polling_interval_seconds; + + // should_stop function will be called each polling_interval_seconds + server_response_reader(std::pair server_queues, int polling_interval_seconds) + : queue_tasks(server_queues.first), queue_results(server_queues.second), polling_interval_seconds(polling_interval_seconds) {} + ~server_response_reader() { + stop(); + } + + void post_tasks(std::vector && tasks); + bool has_next() const; + + // return nullptr if should_stop() is true before receiving a result + // note: if one error is received, it will stop further processing and return error result + server_task_result_ptr next(const std::function & should_stop); + + struct batch_response { + bool is_terminated = false; // if true, indicates that processing was stopped before all results were received + std::vector results; + server_task_result_ptr error; // nullptr if no error + }; + // aggregate multiple results + batch_response wait_for_all(const std::function & should_stop); + + void stop(); +}; diff --git a/tools/server/server.cpp b/tools/server/server.cpp index 96b2df27f7e..5256790db2f 100644 --- a/tools/server/server.cpp +++ b/tools/server/server.cpp @@ -1,3661 +1,18 @@ -#include "server-common.h" +#include "server-context.h" #include "server-http.h" -#include "server-task.h" -#include "server-queue.h" #include "arg.h" #include "common.h" #include "llama.h" #include "log.h" -#include "sampling.h" -#include "speculative.h" -#include "mtmd.h" -#include "mtmd-helper.h" #include -#include -#include -#include #include -#include -#include +#include // for std::thread::hardware_concurrency -// fix problem with std::min and std::max #if defined(_WIN32) -#define WIN32_LEAN_AND_MEAN -#ifndef NOMINMAX -# define NOMINMAX -#endif -#include -#endif - -using json = nlohmann::ordered_json; - -constexpr int HTTP_POLLING_SECONDS = 1; - -// state diagram: https://github.com/ggml-org/llama.cpp/pull/9283 -enum slot_state { - SLOT_STATE_IDLE, - SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future - SLOT_STATE_PROCESSING_PROMPT, - SLOT_STATE_DONE_PROMPT, - SLOT_STATE_GENERATING, -}; - -enum server_state { - SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet - SERVER_STATE_READY, // Server is ready and model is loaded -}; - -static bool server_task_type_need_embd(server_task_type task_type) { - switch (task_type) { - case SERVER_TASK_TYPE_EMBEDDING: - case SERVER_TASK_TYPE_RERANK: - return true; - default: - return false; - } -} - -static bool server_task_type_need_logits(server_task_type task_type) { - switch (task_type) { - case SERVER_TASK_TYPE_COMPLETION: - case SERVER_TASK_TYPE_INFILL: - return true; - default: - return false; - } -} - -struct server_slot { - int id; - - llama_batch batch_spec = {}; - - // TODO: change to unique_ptrs for consistency: - llama_context * ctx = nullptr; - llama_context * ctx_dft = nullptr; - - // multimodal - mtmd_context * mctx = nullptr; - - common_speculative * spec = nullptr; - - std::unique_ptr task; - std::unique_ptr task_prev; // used for debugging - - // used to determine the slot that has been used the longest - int64_t t_last_used = -1; - - // generation props - int32_t n_ctx = 0; // context size per slot - int32_t n_keep = 0; - int32_t n_decoded = 0; - int32_t n_remaining = -1; - int32_t i_batch = -1; - - int32_t n_prompt_tokens_cache = 0; - int32_t n_prompt_tokens_processed = 0; - - size_t last_nl_pos = 0; - - std::string generated_text; - llama_tokens generated_tokens; - - common_chat_msg chat_msg; - - std::vector generated_token_probs; - - bool has_next_token = true; - bool has_new_line = false; - bool truncated = false; - - stop_type stop; - - std::string stopping_word; - - // state - slot_state state = SLOT_STATE_IDLE; - - server_prompt prompt; - - void prompt_save(server_prompt_cache & prompt_cache) const { - GGML_ASSERT(prompt.data.size() == 0); - - const size_t cur_size = llama_state_seq_get_size_ext(ctx, id, 0); - - SRV_WRN(" - saving prompt with length %d, total state size = %.3f MiB\n", - (int) prompt.tokens.size(), cur_size / (1024.0 * 1024.0)); - - auto * cur = prompt_cache.alloc(prompt, cur_size); - if (cur == nullptr) { - return; - } - - llama_state_seq_get_data_ext(ctx, cur->data.data(), cur_size, id, 0); - } - - bool prompt_load(server_prompt_cache & prompt_cache, const server_tokens & tokens) { - bool res = prompt_cache.load(prompt, tokens, ctx, id); - if (!res) { - SLT_WRN(*this, "%s", "failed to load prompt from cache\n"); - } - - return res; - } - - std::vector lora; - int32_t alora_invocation_start = -1; - - // sampling - json json_schema; - - struct common_sampler * smpl = nullptr; - - llama_token sampled; - - common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY; - std::vector generated_tool_call_ids; - - // stats - size_t n_sent_text = 0; // number of sent text character - - int64_t t_start_process_prompt; - int64_t t_start_generation; - - double t_prompt_processing; // ms - double t_token_generation; // ms - - std::function callback_on_release; - - // Speculative decoding stats - int32_t n_draft_total = 0; // Total draft tokens generated - int32_t n_draft_accepted = 0; // Draft tokens actually accepted - - void reset() { - SLT_DBG(*this, "%s", "\n"); - - n_prompt_tokens_cache = 0; - - last_nl_pos = 0; - generated_text = ""; - has_new_line = false; - truncated = false; - stop = STOP_TYPE_NONE; - stopping_word = ""; - n_sent_text = 0; - chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY; - - generated_tokens.clear(); - generated_token_probs.clear(); - chat_msg = {}; - json_schema = json(); - generated_tool_call_ids.clear(); - - // clear speculative decoding stats - n_draft_total = 0; - n_draft_accepted = 0; - - task.reset(); - task_prev.reset(); - - // clear alora start - alora_invocation_start = -1; - } - - bool need_embd() const { - GGML_ASSERT(task); - - return server_task_type_need_embd(task->type); - } - - bool need_logits() const { - GGML_ASSERT(task); - - return server_task_type_need_logits(task->type); - } - - // if the context does not have a memory module then all embeddings have to be computed within a single ubatch - // also we cannot split if the pooling would require any past tokens - bool can_split() const { - return - !need_embd() || - (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST); - } - - bool can_batch_with(server_slot & other_slot) const { - GGML_ASSERT(task); - - return task->type == other_slot.task->type && are_lora_equal(lora, other_slot.lora); - } - - bool has_budget(const common_params & global_params) { - GGML_ASSERT(task); - - if (task->params.n_predict == -1 && global_params.n_predict == -1) { - return true; // limitless - } - - n_remaining = -1; - - if (task->params.n_predict != -1) { - n_remaining = task->params.n_predict - n_decoded; - } else if (global_params.n_predict != -1) { - n_remaining = global_params.n_predict - n_decoded; - } - - return n_remaining > 0; // no budget - } - - bool is_processing() const { - return state != SLOT_STATE_IDLE; - } - - bool can_speculate() const { - return ctx_dft; - } - - void add_token(const completion_token_output & token) { - if (!is_processing()) { - SLT_WRN(*this, "%s", "slot is not processing\n"); - return; - } - generated_token_probs.push_back(token); - } - - void release() { - if (is_processing()) { - GGML_ASSERT(task); - - SLT_INF(*this, "stop processing: n_tokens = %d, truncated = %d\n", prompt.n_tokens(), truncated); - - t_last_used = ggml_time_us(); - t_token_generation = (ggml_time_us() - t_start_generation) / 1e3; - state = SLOT_STATE_IDLE; - - task_prev = std::move(task); - task.reset(); - - callback_on_release(id); - } - } - - result_timings get_timings() const { - result_timings timings; - timings.cache_n = n_prompt_tokens_cache; - - timings.prompt_n = n_prompt_tokens_processed; - timings.prompt_ms = t_prompt_processing; - timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed; - timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed; - - timings.predicted_n = n_decoded; - timings.predicted_ms = t_token_generation; - timings.predicted_per_token_ms = t_token_generation / n_decoded; - timings.predicted_per_second = 1e3 / t_token_generation * n_decoded; - - // Add speculative metrics - if (n_draft_total > 0) { - timings.draft_n = n_draft_total; - timings.draft_n_accepted = n_draft_accepted; - } - - return timings; - } - - const common_chat_msg & update_chat_msg(std::vector & diffs) { - GGML_ASSERT(task); - - auto previous_msg = chat_msg; - SRV_DBG("Parsing chat message: %s\n", generated_text.c_str()); - auto new_msg = common_chat_parse( - generated_text, - /* is_partial= */ stop != STOP_TYPE_EOS, - task->params.oaicompat_chat_syntax); - if (!new_msg.empty()) { - new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id); - chat_msg = new_msg; - diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg); - } - return chat_msg; - } - - size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) { - GGML_ASSERT(task); - - size_t stop_pos = std::string::npos; - - for (const std::string & word : task->params.antiprompt) { - size_t pos; - - if (is_full_stop) { - const size_t tmp = word.size() + last_token_size; - const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; - - pos = text.find(word, from_pos); - } else { - // otherwise, partial stop - pos = string_find_partial_stop(text, word); - } - - if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) { - if (is_full_stop) { - stop = STOP_TYPE_WORD; - stopping_word = word; - has_next_token = false; - } - stop_pos = pos; - } - } - - return stop_pos; - } - - void print_timings() const { - const double t_prompt = t_prompt_processing / n_prompt_tokens_processed; - const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed; - - const double t_gen = t_token_generation / n_decoded; - const double n_gen_second = 1e3 / t_token_generation * n_decoded; - - SLT_INF(*this, - "\n" - "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" - " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" - " total time = %10.2f ms / %5d tokens\n", - t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second, - t_token_generation, n_decoded, t_gen, n_gen_second, - t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded); - - if (n_draft_total > 0) { - const float draft_ratio = (float) n_draft_accepted / n_draft_total; - SLT_INF(*this, - "\n" - "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n", - draft_ratio, n_draft_accepted, n_draft_total - ); - } - } - - json to_json(bool only_metrics = false) const { - json res; - - res = { - {"id", id}, - {"n_ctx", n_ctx}, - {"speculative", can_speculate()}, - {"is_processing", is_processing()}, - }; - - const auto & ptask = task ? task : task_prev; - - if (ptask) { - res["id_task"] = ptask->id; - res["params"] = ptask->params.to_json(only_metrics); - res["next_token"] = { - { - {"has_next_token", has_next_token}, - {"has_new_line", has_new_line}, - {"n_remain", n_remaining}, - {"n_decoded", n_decoded}, - } - }; - - if (!only_metrics) { - res["prompt"] = ptask->tokens.detokenize(ctx, true); - res["generated"] = generated_text; - } - } - - return res; - } -}; - -struct server_metrics { - int64_t t_start = 0; - - uint64_t n_prompt_tokens_processed_total = 0; - uint64_t t_prompt_processing_total = 0; - uint64_t n_tokens_predicted_total = 0; - uint64_t t_tokens_generation_total = 0; - - uint64_t n_tokens_max = 0; - - uint64_t n_prompt_tokens_processed = 0; - uint64_t t_prompt_processing = 0; - - uint64_t n_tokens_predicted = 0; - uint64_t t_tokens_generation = 0; - - uint64_t n_decode_total = 0; - uint64_t n_busy_slots_total = 0; - - void init() { - t_start = ggml_time_us(); - } - - void on_prompt_eval(const server_slot & slot) { - n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed; - n_prompt_tokens_processed += slot.n_prompt_tokens_processed; - t_prompt_processing += slot.t_prompt_processing; - t_prompt_processing_total += slot.t_prompt_processing; - - n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens()); - } - - void on_prediction(const server_slot & slot) { - n_tokens_predicted_total += slot.n_decoded; - n_tokens_predicted += slot.n_decoded; - t_tokens_generation += slot.t_token_generation; - t_tokens_generation_total += slot.t_token_generation; - } - - void on_decoded(const std::vector & slots) { - n_decode_total++; - for (const auto & slot : slots) { - if (slot.is_processing()) { - n_busy_slots_total++; - } - n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens()); - } - } - - void reset_bucket() { - n_prompt_tokens_processed = 0; - t_prompt_processing = 0; - n_tokens_predicted = 0; - t_tokens_generation = 0; - } -}; - -struct server_context { - common_params params_base; - - // note: keep these alive - they determine the lifetime of the model, context, etc. - common_init_result llama_init; - common_init_result llama_init_dft; - - llama_model * model = nullptr; - llama_context * ctx = nullptr; - - // multimodal - mtmd_context * mctx = nullptr; - - const llama_vocab * vocab = nullptr; - bool vocab_dft_compatible = true; - - llama_model * model_dft = nullptr; - - llama_context_params cparams_dft; - - llama_batch batch {}; - - bool add_bos_token = true; - - int32_t n_ctx; // total context for all clients / slots - - // slots / clients - std::vector slots; - - int slots_debug = 0; - - server_queue queue_tasks; - server_response queue_results; - - std::unique_ptr prompt_cache; - - server_metrics metrics; - - // Necessary similarity of prompt for slot selection - float slot_prompt_similarity = 0.0f; - - common_chat_templates_ptr chat_templates; - oaicompat_parser_options oai_parser_opt; - - ~server_context() { - mtmd_free(mctx); - - // Clear any sampling context - for (server_slot & slot : slots) { - common_sampler_free(slot.smpl); - slot.smpl = nullptr; - - llama_free(slot.ctx_dft); - slot.ctx_dft = nullptr; - - common_speculative_free(slot.spec); - slot.spec = nullptr; - - llama_batch_free(slot.batch_spec); - } - - llama_batch_free(batch); - } - - // load the model and initialize llama_context - bool load_model(const common_params & params) { - SRV_INF("loading model '%s'\n", params.model.path.c_str()); - - params_base = params; - - llama_init = common_init_from_params(params_base); - - model = llama_init.model.get(); - ctx = llama_init.context.get(); - - if (model == nullptr) { - SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str()); - return false; - } - - vocab = llama_model_get_vocab(model); - - n_ctx = llama_n_ctx(ctx); - - add_bos_token = llama_vocab_get_add_bos(vocab); - - if (params_base.has_speculative()) { - SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str()); - - auto params_dft = params_base; - - params_dft.devices = params_base.speculative.devices; - params_dft.model = params_base.speculative.model; - params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? llama_n_ctx_seq(ctx) : params_base.speculative.n_ctx; - params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers; - params_dft.n_parallel = 1; - params_dft.cache_type_k = params_base.speculative.cache_type_k; - params_dft.cache_type_v = params_base.speculative.cache_type_v; - - params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads; - params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads; - params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides; - - llama_init_dft = common_init_from_params(params_dft); - - model_dft = llama_init_dft.model.get(); - - if (model_dft == nullptr) { - SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str()); - return false; - } - - vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get()); - if (!vocab_dft_compatible) { - SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str()); - } - - const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get()); - - cparams_dft = common_context_params_to_llama(params_dft); - cparams_dft.n_batch = n_ctx_dft; - - // the context is not needed - we will create one for each slot - llama_init_dft.context.reset(); - } - - chat_templates = common_chat_templates_init(model, params_base.chat_template); - try { - common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs); - } catch (const std::exception & e) { - SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what()); - SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__); - chat_templates = common_chat_templates_init(model, "chatml"); - } - - std::string & mmproj_path = params_base.mmproj.path; - if (!mmproj_path.empty()) { - mtmd_helper_log_set(common_log_default_callback, nullptr); - - mtmd_context_params mparams = mtmd_context_params_default(); - mparams.use_gpu = params_base.mmproj_use_gpu; - mparams.print_timings = false; - mparams.n_threads = params_base.cpuparams.n_threads; - mparams.flash_attn_type = params_base.flash_attn_type; - mparams.image_min_tokens = params_base.image_min_tokens; - mparams.image_max_tokens = params_base.image_max_tokens; - mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams); - if (mctx == nullptr) { - SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str()); - return false; - } - SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str()); - - if (params_base.ctx_shift) { - params_base.ctx_shift = false; - SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled"); - } - - if (params_base.n_cache_reuse) { - params_base.n_cache_reuse = 0; - SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled"); - } - - if (params_base.has_speculative()) { - SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal"); - return false; - } - } - - if (!llama_memory_can_shift(llama_get_memory(ctx))) { - if (params_base.ctx_shift) { - params_base.ctx_shift = false; - SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled"); - } - - if (params_base.n_cache_reuse) { - params_base.n_cache_reuse = 0; - SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled"); - } - } - - return true; - } - - // initialize slots and server-related data - void init() { - SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel); - - const int n_ctx_train = llama_model_n_ctx_train(model); - - int n_ctx_slot = llama_n_ctx_seq(ctx); - if (n_ctx_slot > n_ctx_train) { - SRV_WRN("the slot context (%d) exceeds the training context of the model (%d) - capping\n", n_ctx_slot, n_ctx_train); - n_ctx_slot = n_ctx_train; - } - - for (int i = 0; i < params_base.n_parallel; i++) { - server_slot slot; - - slot.id = i; - slot.ctx = ctx; - slot.n_ctx = n_ctx_slot; - slot.mctx = mctx; - slot.prompt.tokens.has_mtmd = mctx != nullptr; - - if (model_dft) { - slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1); - - // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK] - slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft); - if (slot.ctx_dft == nullptr) { - SRV_ERR("%s", "failed to create draft context\n"); - return; - } - - slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft); - if (slot.spec == nullptr) { - SRV_ERR("%s", "failed to create speculator\n"); - return; - } - for (auto & pair : params_base.speculative.replacements) { - common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str()); - } - } - - SLT_INF(slot, "new slot, n_ctx = %d\n", slot.n_ctx); - - slot.callback_on_release = [this](int) { - queue_tasks.pop_deferred_task(); - }; - - slot.reset(); - - slots.push_back(std::move(slot)); - } - - { - const char * LLAMA_SERVER_SLOTS_DEBUG = getenv("LLAMA_SERVER_SLOTS_DEBUG"); - slots_debug = LLAMA_SERVER_SLOTS_DEBUG ? atoi(LLAMA_SERVER_SLOTS_DEBUG) : 0; - - if (slots_debug) { - SRV_WRN("slots debug = %d\n", slots_debug); - } - } - - // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens - // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used) - { - const int32_t n_batch = llama_n_batch(ctx); - batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1); - } - - metrics.init(); - - if (params_base.cache_ram_mib != 0) { - if (params_base.cache_ram_mib < 0) { - SRV_WRN("prompt cache is enabled, size limit: %s\n", "no limit"); - } else { - SRV_WRN("prompt cache is enabled, size limit: %d MiB\n", params_base.cache_ram_mib); - } - SRV_WRN("%s", "use `--cache-ram 0` to disable the prompt cache\n"); - - prompt_cache = std::make_unique(params_base.cache_ram_mib, n_ctx); - } else { - SRV_WRN("%s", "prompt cache is disabled - use `--cache-ram N` to enable it\n"); - } - SRV_WRN("%s", "for more info see https://github.com/ggml-org/llama.cpp/pull/16391\n"); - - // thinking is enabled if: - // 1. It's not explicitly disabled (reasoning_budget == 0) - // 2. The chat template supports it - const bool enable_thinking = params_base.use_jinja && params_base.reasoning_budget != 0 && common_chat_templates_support_enable_thinking(chat_templates.get()); - SRV_INF("thinking = %d\n", enable_thinking); - - oai_parser_opt = { - /* use_jinja */ params_base.use_jinja, - /* prefill_assistant */ params_base.prefill_assistant, - /* reasoning_format */ params_base.reasoning_format, - /* chat_template_kwargs */ params_base.default_template_kwargs, - /* common_chat_templates */ chat_templates.get(), - /* allow_image */ mctx ? mtmd_support_vision(mctx) : false, - /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false, - /* enable_thinking */ enable_thinking, - }; - - // print sample chat example to make it clear which template is used - LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__, - common_chat_templates_source(chat_templates.get()), - common_chat_format_example(chat_templates.get(), params_base.use_jinja, params_base.default_template_kwargs).c_str()); - } - - server_slot * get_slot_by_id(int id) { - for (server_slot & slot : slots) { - if (slot.id == id) { - return &slot; - } - } - - return nullptr; - } - - server_slot * get_available_slot(const server_task & task) { - server_slot * ret = nullptr; - - bool update_cache = false; - - // find the slot that has at least n% prompt similarity - if (ret == nullptr && slot_prompt_similarity != 0.0f) { - float sim_best = 0; - - for (server_slot & slot : slots) { - // skip the slot if it is not available - if (slot.is_processing()) { - continue; - } - - const auto & tokens = slot.prompt.tokens; - - // skip the slot if it does not contains cached tokens - if (tokens.empty()) { - continue; - } - - // fraction of the Longest Common Prefix length with respect to the input prompt length - const float sim_cur = float(tokens.get_common_prefix(task.tokens)) / task.tokens.size(); - - // select the current slot if the criteria match - if (sim_cur > sim_best && sim_cur > slot_prompt_similarity) { - sim_best = sim_cur; - - ret = &slot; - } - } - - if (ret != nullptr) { - const float f_keep = (sim_best*task.tokens.size()) / ret->prompt.tokens.size(); - - SLT_INF(*ret, "selected slot by LCP similarity, sim_best = %.3f (> %.3f thold), f_keep = %.3f\n", - sim_best, slot_prompt_similarity, f_keep); - - // if we are about to lose a large portion of the existing context - save it in the prompt cache - if (f_keep < 0.5f) { - update_cache = true; - } - } - } - - // find the slot that has been least recently used - if (ret == nullptr) { - int64_t t_last = -1; - - for (server_slot & slot : slots) { - // skip the slot if it is not available - if (slot.is_processing()) { - continue; - } - - // select the current slot if the criteria match - if (!ret || slot.t_last_used <= t_last) { - t_last = slot.t_last_used; - ret = &slot; - } - } - - if (ret != nullptr) { - SLT_INF(*ret, "selected slot by LRU, t_last = %" PRId64 "\n", t_last); - - update_cache = true; - } - } - - if (ret) { - const auto & tokens = ret->prompt.tokens; - - update_cache = update_cache && prompt_cache; - - // cache prompts only for completion tasks - update_cache = update_cache && task.type == SERVER_TASK_TYPE_COMPLETION; - - // don't update the cache if the slot's context is empty - update_cache = update_cache && tokens.size() > 0; - - // TODO: mtmd does not support prompt cache - update_cache = update_cache && (ret->mctx == nullptr); - - if (update_cache) { - SRV_WRN("%s", "updating prompt cache\n"); - - const int64_t t_start = ggml_time_us(); - - ret->prompt_save(*prompt_cache); - - if (!ret->prompt_load(*prompt_cache, task.tokens)) { - clear_slot(*ret); - } - - prompt_cache->update(); - - SRV_WRN("prompt cache update took %.2f ms\n", (ggml_time_us() - t_start) / 1000.0); - } - } - - return ret; - } - - void clear_slot(server_slot & slot) const { - GGML_ASSERT(!slot.is_processing()); - - SLT_WRN(slot, "clearing slot with %zu tokens\n", slot.prompt.tokens.size()); - - llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1); - slot.prompt.tokens.clear(); - } - - // return true if at least one slot has been cleared - // TODO: improve logic - // - smarter decision which slot to clear (LRU or longest prompt?) - // - move slot to level 2 cache instead of removing? - // - instead of purging, try to store and resume later? - bool try_clear_idle_slots() { - bool res = false; - - if (!params_base.kv_unified) { - return res; - } - - for (auto & slot : slots) { - if (slot.is_processing()) { - continue; - } - - if (slot.prompt.n_tokens() > 0) { - SRV_WRN("purging slot %d with %zu tokens\n", slot.id, slot.prompt.tokens.size()); - - clear_slot(slot); - - res = true; - - // clear slots one by one - break; - } - } - - return res; - } - - bool launch_slot_with_task(server_slot & slot, server_task && task) { - slot.reset(); - - if (!are_lora_equal(task.params.lora, slot.lora)) { - // if lora has changed, check to see if the cache should be cleared - if (lora_should_clear_cache(slot.lora, task.params.lora)) { - SLT_INF(slot, "clearing cache for lora change. %zu loras -> %zu loras\n", slot.lora.size(), task.params.lora.size()); - slot.prompt.tokens.clear(); - } else { - SLT_INF(slot, "keeping cache for alora. %zu target loras\n", task.params.lora.size()); - } - slot.lora = task.params.lora; - } - - // if using alora, make sure it's only a single one requested and active - size_t alora_invocation_start = task.tokens.size(); - if (lora_all_alora(slot.lora)) { - const auto & enabled_ids = lora_get_enabled_ids(slot.lora); - // TODO: This will error out if a user requests two aloras, but only - // provides the activation string for one. We could, instead search - // for all requested alora activation strings and then either keep - // only the last one, or reject if multiple are found. - if (enabled_ids.size() != 1) { - send_error(task, "Cannot run multiple aLoRAs in a single request", ERROR_TYPE_INVALID_REQUEST); - return false; - } - const auto & lora = slot.lora[enabled_ids[0]].ptr; - - // get the pointer and count for the invocation tokens - const uint64_t n_invocation_tokens = llama_adapter_get_alora_n_invocation_tokens(lora); - const llama_token * invocation_tokens = llama_adapter_get_alora_invocation_tokens (lora); - - // scan backwards through the prompt tokens to find the last - // occurrence of the invocation sequence - int match_idx = static_cast(n_invocation_tokens) - 1; - for (int i = task.tokens.size() - 1; i >= 0; --i) { - // the token in this position matches the next token to find in - // the invocation sequence - if (task.tokens[i] == invocation_tokens[match_idx]) { - // if it's a full match, we've found the start - if (match_idx == 0) { - alora_invocation_start = i; - break; - } - // otherwise, check the next token in the sequence - --match_idx; - } else { - // no match in this position, so start looking over again - match_idx = static_cast(n_invocation_tokens) - 1; - } - } - - // if the activation string is not found, disable the alora - if (alora_invocation_start == task.tokens.size()) { - SLT_DBG(slot, "alora %zu requested, but not found. deactivating\n", enabled_ids[0]); - slot.lora[enabled_ids[0]].scale = 0.0f; - } else { - SLT_DBG(slot, "alora %zu activated starting at %zu\n", enabled_ids[0], alora_invocation_start); - slot.alora_invocation_start = alora_invocation_start; - } - } - - if (!task.tokens.validate(ctx)) { - send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST); - return false; - } - - SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str()); - - // initialize samplers - { - if (slot.smpl != nullptr) { - common_sampler_free(slot.smpl); - } - - slot.smpl = common_sampler_init(model, task.params.sampling); - if (slot.smpl == nullptr) { - // for now, the only error that may happen here is invalid grammar - send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST); - return false; - } - - SLT_INF(slot, "sampler chain: %s\n", common_sampler_print(slot.smpl).c_str()); - } - - // initialize draft batch - // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK] - if (slot.ctx_dft) { - llama_batch_free(slot.batch_spec); - - slot.batch_spec = llama_batch_init(task.params.speculative.n_max + 1, 0, 1); - } - - slot.task = std::make_unique(std::move(task)); - - slot.state = SLOT_STATE_STARTED; - - SLT_INF(slot, "%s", "processing task\n"); - - return true; - } - - bool process_token(completion_token_output & result, server_slot & slot) { - // remember which tokens were sampled - used for repetition penalties during sampling - const std::string token_str = result.text_to_send; - slot.sampled = result.tok; - - slot.generated_text += token_str; - if (slot.task->params.return_tokens) { - slot.generated_tokens.push_back(result.tok); - } - slot.has_next_token = true; - - // check if there is incomplete UTF-8 character at the end - bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size(); - - // search stop word and delete it - if (!incomplete) { - size_t pos = std::min(slot.n_sent_text, slot.generated_text.size()); - - const std::string str_test = slot.generated_text.substr(pos); - bool send_text = true; - - size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true); - if (stop_pos != std::string::npos) { - slot.generated_text.erase( - slot.generated_text.begin() + pos + stop_pos, - slot.generated_text.end()); - pos = std::min(slot.n_sent_text, slot.generated_text.size()); - } else if (slot.has_next_token && !llama_vocab_is_eog(vocab, result.tok) ) { - stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false); - send_text = stop_pos == std::string::npos; - } - - // check if there is any token to predict - if (send_text) { - // no send the stop word in the response - result.text_to_send = slot.generated_text.substr(pos, std::string::npos); - slot.n_sent_text += result.text_to_send.size(); - // add the token to slot queue and cache - } else { - result.text_to_send = ""; - } - - slot.add_token(result); - if (slot.task->params.stream) { - send_partial_response(slot, result, false); - } - } - - if (incomplete) { - slot.has_next_token = true; - } - - // if context shifting is disabled, make sure that we don't run out of context - if (!params_base.ctx_shift && slot.prompt.n_tokens() + 1 >= slot.n_ctx) { - slot.truncated = true; - slot.stop = STOP_TYPE_LIMIT; - slot.has_next_token = false; - - SLT_DBG(slot, "stopped due to running out of context capacity, prompt.n_tokens() = %d, task.n_tokens = %d, n_decoded = %d, n_ctx = %d\n", - slot.prompt.n_tokens(), slot.task->n_tokens(), slot.n_decoded, slot.n_ctx); - } - - // check the limits - if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) { - slot.stop = STOP_TYPE_LIMIT; - slot.has_next_token = false; - - SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.task->params.n_predict); - } - - if (slot.has_new_line) { - // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent - if (slot.task->params.n_indent > 0) { - // check the current indentation - // TODO: improve by not doing it more than once for each new line - if (slot.last_nl_pos > 0) { - size_t pos = slot.last_nl_pos; - - int n_indent = 0; - while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) { - n_indent++; - pos++; - } - - if (pos < slot.generated_text.size() && n_indent < slot.task->params.n_indent) { - slot.stop = STOP_TYPE_LIMIT; - slot.has_next_token = false; - - // cut the last line - slot.generated_text.erase(pos, std::string::npos); - - SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent); - } - } - - // find the next new line - { - const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos); - - if (pos != std::string::npos) { - slot.last_nl_pos = pos + 1; - } - } - } - } - - // check if there is a new line in the generated text - if (result.text_to_send.find('\n') != std::string::npos) { - slot.has_new_line = true; - - // if we have seen a new line, we stop after a certain time limit, but only upon another new line - if (slot.task->params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.task->params.t_max_predict_ms)) { - slot.stop = STOP_TYPE_LIMIT; - slot.has_next_token = false; - - SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.task->params.t_max_predict_ms); - } - } - - if (llama_vocab_is_eog(vocab, result.tok)) { - slot.stop = STOP_TYPE_EOS; - slot.has_next_token = false; - - SLT_DBG(slot, "%s", "stopped by EOS\n"); - } - - SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str()); - - return slot.has_next_token; // continue - } - - void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const { - size_t n_probs = slot.task->params.sampling.n_probs; - size_t n_vocab = llama_vocab_n_tokens(vocab); - - if (post_sampling) { - const auto * cur_p = common_sampler_get_candidates(slot.smpl, true); - const size_t max_probs = cur_p->size; - - // set probability for sampled token - for (size_t i = 0; i < max_probs; i++) { - if (cur_p->data[i].id == result.tok) { - result.prob = cur_p->data[i].p; - break; - } - } - - // set probability for top n_probs tokens - result.probs.reserve(max_probs); - for (size_t i = 0; i < std::min(max_probs, n_probs); i++) { - result.probs.push_back({ - cur_p->data[i].id, - common_token_to_piece(ctx, cur_p->data[i].id, special), - cur_p->data[i].p - }); - } - } else { - // TODO: optimize this with min-p optimization - std::vector cur = get_token_probabilities(ctx, idx); - - // set probability for sampled token - for (size_t i = 0; i < n_vocab; i++) { - // set probability for sampled token - if (cur[i].id == result.tok) { - result.prob = cur[i].p; - break; - } - } - - // set probability for top n_probs tokens - result.probs.reserve(n_probs); - for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) { - result.probs.push_back({ - cur[i].id, - common_token_to_piece(ctx, cur[i].id, special), - cur[i].p - }); - } - } - } - - void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { - send_error(task.id, error, type); - } - - void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { - send_error(slot.task->id, error, type, slot.task->n_tokens(), slot.n_ctx); - } - - void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER, const int32_t n_prompt_tokens = 0, const int32_t n_ctx = 0) { - SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str()); - - if (type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) { - GGML_ASSERT(n_ctx > 0 && n_prompt_tokens > 0); - } - - auto res = std::make_unique(); - res->id = id_task; - res->err_type = type; - res->err_msg = error; - res->n_prompt_tokens = n_prompt_tokens; - res->n_ctx = n_ctx; - - queue_results.send(std::move(res)); - } - - // if multimodal is enabled, send an error and return false - bool check_no_mtmd(const int id_task) { - if (mctx) { - send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED); - return false; - } - return true; - } - - void send_partial_response(server_slot & slot, const completion_token_output & tkn, bool is_progress) { - auto res = std::make_unique(); - - res->id = slot.task->id; - res->index = slot.task->index; - - if (is_progress) { - res->is_progress = true; - res->progress.total = slot.task->n_tokens(); - res->progress.cache = slot.n_prompt_tokens_cache; - res->progress.processed = slot.prompt.tokens.size(); - res->progress.time_ms = (ggml_time_us() - slot.t_start_process_prompt) / 1000; - } else { - res->content = tkn.text_to_send; - res->tokens = { tkn.tok }; - - slot.update_chat_msg(res->oaicompat_msg_diffs); - } - - res->n_decoded = slot.n_decoded; - res->n_prompt_tokens = slot.task->n_tokens(); - res->post_sampling_probs = slot.task->params.post_sampling_probs; - - res->verbose = slot.task->params.verbose; - res->res_type = slot.task->params.res_type; - res->oaicompat_model = slot.task->params.oaicompat_model; - res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id; - - // populate res.probs_output - if (slot.task->params.sampling.n_probs > 0) { - res->prob_output = tkn; // copy the token probs - } - - // populate timings if this is final response or timings_per_token is enabled - if (slot.stop != STOP_TYPE_NONE || slot.task->params.timings_per_token) { - res->timings = slot.get_timings(); - } - - queue_results.send(std::move(res)); - } - - void send_final_response(server_slot & slot) { - auto res = std::make_unique(); - - res->id = slot.task->id; - res->id_slot = slot.id; - - res->index = slot.task->index; - res->content = slot.generated_text; - res->tokens = std::move(slot.generated_tokens); - res->timings = slot.get_timings(); - res->prompt = slot.task->tokens.detokenize(ctx, true); - res->response_fields = std::move(slot.task->params.response_fields); - - res->truncated = slot.truncated; - res->n_decoded = slot.n_decoded; - res->n_prompt_tokens = slot.task->n_tokens(); - res->n_tokens_cached = slot.prompt.n_tokens(); - res->has_new_line = slot.has_new_line; - res->stopping_word = slot.stopping_word; - res->stop = slot.stop; - res->post_sampling_probs = slot.task->params.post_sampling_probs; - - res->verbose = slot.task->params.verbose; - res->stream = slot.task->params.stream; - res->include_usage = slot.task->params.include_usage; - res->res_type = slot.task->params.res_type; - res->oaicompat_model = slot.task->params.oaicompat_model; - res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id; - res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs); - - // populate res.probs_output - if (slot.task->params.sampling.n_probs > 0) { - if (!slot.task->params.stream && slot.stop == STOP_TYPE_WORD) { - const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false); - - size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size()); - res->probs_output = std::vector( - slot.generated_token_probs.begin(), - slot.generated_token_probs.end() - safe_offset); - } else { - res->probs_output = std::vector( - slot.generated_token_probs.begin(), - slot.generated_token_probs.end()); - } - } - - res->generation_params = slot.task->params; // copy the parameters - - queue_results.send(std::move(res)); - } - - void send_embedding(const server_slot & slot, const llama_batch & batch) { - auto res = std::make_unique(); - res->id = slot.task->id; - res->index = slot.task->index; - res->n_tokens = slot.task->n_tokens(); - res->res_type = slot.task->params.res_type; - - const int n_embd = llama_model_n_embd(model); - - std::vector embd_res(n_embd, 0.0f); - - for (int i = 0; i < batch.n_tokens; ++i) { - if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) { - continue; - } - - const float * embd = nullptr; - if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) { - embd = llama_get_embeddings_ith(ctx, i); - } else { - embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); - } - - if (embd == nullptr) { - SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]); - - res->embedding.push_back(std::vector(n_embd, 0.0f)); - continue; - } - - // normalize only when there is pooling - if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) { - common_embd_normalize(embd, embd_res.data(), n_embd, slot.task->params.embd_normalize); - res->embedding.push_back(embd_res); - break; - } - - res->embedding.emplace_back(embd, embd + n_embd); - } - - SLT_DBG(slot, "%s", "sending embeddings\n"); - - queue_results.send(std::move(res)); - } - - void send_rerank(const server_slot & slot, const llama_batch & batch) { - auto res = std::make_unique(); - res->id = slot.task->id; - res->index = slot.task->index; - res->n_tokens = slot.task->n_tokens(); - - for (int i = 0; i < batch.n_tokens; ++i) { - if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) { - continue; - } - - const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); - if (embd == NULL) { - embd = llama_get_embeddings_ith(ctx, i); - } - - if (embd == NULL) { - SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]); - - res->score = -1e6; - continue; - } - - res->score = embd[0]; - } - - SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score); - - queue_results.send(std::move(res)); - } - - // - // Functions to process the task - // - - void process_single_task(server_task && task) { - switch (task.type) { - case SERVER_TASK_TYPE_COMPLETION: - case SERVER_TASK_TYPE_INFILL: - case SERVER_TASK_TYPE_EMBEDDING: - case SERVER_TASK_TYPE_RERANK: - { - const int id_slot = task.id_slot; - - server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task); - - if (slot == nullptr) { - // if no slot is available, we defer this task for processing later - SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id); - queue_tasks.defer(std::move(task)); - break; - } - - if (slot->is_processing()) { - // if requested slot is unavailable, we defer this task for processing later - SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); - queue_tasks.defer(std::move(task)); - break; - } - - if (!launch_slot_with_task(*slot, std::move(task))) { - SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id); - break; - } - } break; - case SERVER_TASK_TYPE_CANCEL: - { - // release slot linked with the task id - for (auto & slot : slots) { - if (slot.task && slot.task->id == task.id_target) { - slot.release(); - break; - } - } - } break; - case SERVER_TASK_TYPE_NEXT_RESPONSE: - { - // do nothing - } break; - case SERVER_TASK_TYPE_METRICS: - { - json slots_data = json::array(); - - int n_idle_slots = 0; - int n_processing_slots = 0; - - for (server_slot & slot : slots) { - json slot_data = slot.to_json(slots_debug == 0); - - if (slot.is_processing()) { - n_processing_slots++; - } else { - n_idle_slots++; - } - - slots_data.push_back(slot_data); - } - SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots); - - auto res = std::make_unique(); - res->id = task.id; - res->slots_data = std::move(slots_data); - res->n_idle_slots = n_idle_slots; - res->n_processing_slots = n_processing_slots; - res->n_tasks_deferred = queue_tasks.queue_tasks_deferred_size(); - res->t_start = metrics.t_start; - - res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total; - res->t_prompt_processing_total = metrics.t_prompt_processing_total; - res->n_tokens_predicted_total = metrics.n_tokens_predicted_total; - res->t_tokens_generation_total = metrics.t_tokens_generation_total; - - res->n_tokens_max = metrics.n_tokens_max; - - res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed; - res->t_prompt_processing = metrics.t_prompt_processing; - res->n_tokens_predicted = metrics.n_tokens_predicted; - res->t_tokens_generation = metrics.t_tokens_generation; - - res->n_decode_total = metrics.n_decode_total; - res->n_busy_slots_total = metrics.n_busy_slots_total; - - if (task.metrics_reset_bucket) { - metrics.reset_bucket(); - } - queue_results.send(std::move(res)); - } break; - case SERVER_TASK_TYPE_SLOT_SAVE: - { - if (!check_no_mtmd(task.id)) { - break; - } - - int id_slot = task.slot_action.slot_id; - server_slot * slot = get_slot_by_id(id_slot); - if (slot == nullptr) { - send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); - break; - } - if (slot->is_processing()) { - // if requested slot is unavailable, we defer this task for processing later - SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); - queue_tasks.defer(std::move(task)); - break; - } - - const size_t token_count = slot->prompt.tokens.size(); - const int64_t t_start = ggml_time_us(); - - std::string filename = task.slot_action.filename; - std::string filepath = task.slot_action.filepath; - - const llama_tokens & tokens = slot->prompt.tokens.get_text_tokens(); - const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count); - - const int64_t t_end = ggml_time_us(); - const double t_save_ms = (t_end - t_start) / 1000.0; - - auto res = std::make_unique(); - res->id = task.id; - res->id_slot = id_slot; - res->filename = filename; - res->is_save = true; - res->n_tokens = token_count; - res->n_bytes = nwrite; - res->t_ms = t_save_ms; - queue_results.send(std::move(res)); - } break; - case SERVER_TASK_TYPE_SLOT_RESTORE: - { - if (!check_no_mtmd(task.id)) break; - int id_slot = task.slot_action.slot_id; - server_slot * slot = get_slot_by_id(id_slot); - if (slot == nullptr) { - send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); - break; - } - if (slot->is_processing()) { - // if requested slot is unavailable, we defer this task for processing later - SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); - queue_tasks.defer(std::move(task)); - break; - } - - const int64_t t_start = ggml_time_us(); - - std::string filename = task.slot_action.filename; - std::string filepath = task.slot_action.filepath; - - llama_tokens tokens; - tokens.resize(slot->n_ctx); - size_t token_count = 0; - size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count); - if (nread == 0) { - slot->prompt.tokens.clear(); // KV may already been invalidated? - send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST); - break; - } - tokens.resize(token_count); - slot->prompt.tokens.clear(); - slot->prompt.tokens.insert(tokens); - - const int64_t t_end = ggml_time_us(); - const double t_restore_ms = (t_end - t_start) / 1000.0; - - auto res = std::make_unique(); - res->id = task.id; - res->id_slot = id_slot; - res->filename = filename; - res->is_save = false; - res->n_tokens = token_count; - res->n_bytes = nread; - res->t_ms = t_restore_ms; - queue_results.send(std::move(res)); - } break; - case SERVER_TASK_TYPE_SLOT_ERASE: - { - if (!check_no_mtmd(task.id)) { - break; - } - int id_slot = task.slot_action.slot_id; - server_slot * slot = get_slot_by_id(id_slot); - if (slot == nullptr) { - send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); - break; - } - if (slot->is_processing()) { - // if requested slot is unavailable, we defer this task for processing later - SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); - queue_tasks.defer(std::move(task)); - break; - } - - // Erase token cache - const size_t n_erased = slot->prompt.tokens.size(); - - clear_slot(*slot); - - auto res = std::make_unique(); - res->id = task.id; - res->id_slot = id_slot; - res->n_erased = n_erased; - queue_results.send(std::move(res)); - } break; - case SERVER_TASK_TYPE_SET_LORA: - { - params_base.lora_adapters = std::move(task.set_lora); - auto res = std::make_unique(); - res->id = task.id; - queue_results.send(std::move(res)); - } break; - - } - } - - void update_slots() { - // check if all slots are idle - { - bool all_idle = true; - - for (auto & slot : slots) { - if (slot.is_processing()) { - all_idle = false; - break; - } - } - - if (all_idle) { - SRV_INF("%s", "all slots are idle\n"); - - return; - } - } - - { - SRV_DBG("%s", "posting NEXT_RESPONSE\n"); - - server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE); - task.id = queue_tasks.get_new_id(); - queue_tasks.post(std::move(task)); - } - - // apply context-shift if needed - // TODO: simplify and improve - for (server_slot & slot : slots) { - if (slot.state == SLOT_STATE_GENERATING && slot.prompt.n_tokens() + 1 >= slot.n_ctx) { - if (!params_base.ctx_shift) { - // this check is redundant (for good) - // we should never get here, because generation should already stopped in process_token() - send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER); - slot.release(); - continue; - } - - if (mctx) { - // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded - // we don't support ctx_shift because an image chunk may contains multiple tokens - GGML_ABORT("not supported by multimodal"); - } - - // Shift context - int n_keep = slot.task->params.n_keep < 0 ? slot.task->n_tokens() : slot.task->params.n_keep; - - if (add_bos_token) { - n_keep += 1; - } - - n_keep = std::min(slot.n_ctx - 4, n_keep); - - const int n_left = slot.prompt.n_tokens() - n_keep; - const int n_discard = slot.task->params.n_discard ? slot.task->params.n_discard : (n_left / 2); - - SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard); - - llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard); - llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.prompt.n_tokens(), -n_discard); - - // add generated tokens to cache - // ref: https://github.com/ggml-org/llama.cpp/pull/16818#discussion_r2473269481 - { - GGML_ASSERT(!slot.prompt.tokens.has_mtmd); - - llama_tokens new_tokens = slot.prompt.tokens.get_text_tokens(); // copy - for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) { - new_tokens[i - n_discard] = new_tokens[i]; - } - - new_tokens.resize(slot.prompt.tokens.size() - n_discard); - - slot.prompt.tokens.clear(); - slot.prompt.tokens.insert(new_tokens); - } - - slot.truncated = true; - } - } - - // start populating the batch for this iteration - common_batch_clear(batch); - - // track if given slot can be batched with slots already in the batch - server_slot * slot_batched = nullptr; - - auto accept_special_token = [&](server_slot & slot, llama_token token) { - return params_base.special || - slot.task->params.sampling.preserved_tokens.find(token) != slot.task->params.sampling.preserved_tokens.end(); - }; - - // first, add sampled tokens from any ongoing sequences - for (auto & slot : slots) { - if (slot.state != SLOT_STATE_GENERATING) { - continue; - } - - // check if we can batch this slot with the previous one - if (!slot_batched) { - slot_batched = &slot; - } else if (!slot_batched->can_batch_with(slot)) { - continue; - } - - slot.i_batch = batch.n_tokens; - - common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true); - - slot.prompt.tokens.push_back(slot.sampled); - - SLT_DBG(slot, "slot decode token, n_ctx = %d, n_tokens = %d, truncated = %d\n", - slot.n_ctx, slot.prompt.n_tokens(), slot.truncated); - } - - // process in chunks of params.n_batch - int32_t n_batch = llama_n_batch(ctx); - int32_t n_ubatch = llama_n_ubatch(ctx); - - float alora_scale = -1.0f; - size_t alora_disabled_id = 0; - - // next, batch any pending prompts without exceeding n_batch - if (params_base.cont_batching || batch.n_tokens == 0) { - for (auto & slot : slots) { - if (!slot.is_processing()) { - continue; - } - - // check if we can batch this slot with the previous one - if (slot_batched && !slot_batched->can_batch_with(slot)) { - continue; - } - - // this slot still has a prompt to be processed - if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) { - const auto & input_tokens = slot.task->tokens; - - // TODO: maybe move branch to outside of this loop in the future - if (slot.state == SLOT_STATE_STARTED) { - slot.t_start_process_prompt = ggml_time_us(); - slot.t_start_generation = 0; - - slot.state = SLOT_STATE_PROCESSING_PROMPT; - - SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, task.n_tokens = %d\n", - slot.n_ctx, slot.task->params.n_keep, slot.task->n_tokens()); - - // print prompt tokens (for debugging) - /*if (1) { - // first 16 tokens (avoid flooding logs) - for (int i = 0; i < std::min(16, input_tokens.size()); i++) { - SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str()); - } - } else { - // all - for (int i = 0; i < (int) input_tokens.size(); i++) { - SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str()); - } - }*/ - - // keep track how many tokens we can reuse from the previous state - int n_past = 0; - - // empty prompt passed -> release the slot and send empty response - if (input_tokens.empty()) { - SLT_WRN(slot, "%s", "empty prompt - releasing slot\n"); - - slot.print_timings(); - send_final_response(slot); - slot.release(); - - continue; - } - - // TODO: support memory-less logits computation - if (slot.need_logits() && !llama_get_memory(ctx)) { - send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER); - slot.release(); - continue; - } - - if (!slot.can_split()) { - if (slot.task->n_tokens() > n_ubatch) { - send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER); - slot.release(); - continue; - } - - if (slot.task->n_tokens() > slot.n_ctx) { - send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_EXCEED_CONTEXT_SIZE); - slot.release(); - continue; - } - } else { - if (slot.task->n_tokens() >= slot.n_ctx) { - send_error(slot, "the request exceeds the available context size, try increasing it", ERROR_TYPE_EXCEED_CONTEXT_SIZE); - slot.release(); - continue; - } - - if (slot.task->params.cache_prompt) { - // reuse any previously computed tokens that are common with the new prompt - n_past = slot.prompt.tokens.get_common_prefix(input_tokens); - - // if there is an alora invoked, don't cache after the invocation start - if (slot.alora_invocation_start > 0) { - SLT_DBG(slot, "only caching to alora invocation start (n_past = %d, alora_invocation_start = %d)\n", n_past, slot.alora_invocation_start); - n_past = std::min(n_past, slot.alora_invocation_start - 1); - } - - // reuse chunks from the cached prompt by shifting their KV cache in the new position - if (params_base.n_cache_reuse > 0) { - GGML_ASSERT(!slot.prompt.tokens.has_mtmd); - - size_t head_c = n_past; // cache - size_t head_p = n_past; // current prompt - - if (mctx) { - // we should never reach this - GGML_ABORT("not supported by multimodal"); - } - - SLT_DBG(slot, "trying to reuse chunks with size > %d, n_past = %d\n", params_base.n_cache_reuse, n_past); - - while (head_c < slot.prompt.tokens.size() && - head_p < input_tokens.size()) { - - size_t n_match = 0; - while (head_c + n_match < slot.prompt.tokens.size() && - head_p + n_match < input_tokens.size() && - slot.prompt.tokens[head_c + n_match] == input_tokens[head_p + n_match]) { - - n_match++; - } - - if (n_match >= (size_t) params_base.n_cache_reuse) { - SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match); - //for (size_t i = head_p; i < head_p + n_match; i++) { - // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str()); - //} - - const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c; - - llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c); - llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift); - - for (size_t i = 0; i < n_match; i++) { - slot.prompt.tokens.set_token(head_p + i, slot.prompt.tokens[head_c + i]); - n_past++; - } - - head_c += n_match; - head_p += n_match; - } else { - head_c += 1; - } - } - - SLT_DBG(slot, "after context reuse, new n_past = %d\n", n_past); - } - } else { - // if we don't cache the prompt, we have to remove all previous tokens - n_past = 0; - } - - // note: when n_swa == 0, the model does not use SWA, which is equivalent to a window of 1 - const auto n_swa = std::max(1, llama_model_n_swa(model)); - - // the largest pos_min required for a checkpoint to be useful - const auto pos_min_thold = std::max(0, n_past - n_swa); - - // note: disallow with mtmd contexts for now - // https://github.com/ggml-org/llama.cpp/issues/17043 - if (!mctx && n_past > 0 && n_past < slot.prompt.n_tokens()) { - const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id); - if (pos_min == -1) { - SLT_ERR(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min); - GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237"); - } - - // when the prompt prefix does not match, print the tokens around the mismatch - // this is useful for debugging prompt caching - if (slots_debug) { - const int np0 = std::max(n_past - 4, 0); - const int np1 = std::min(n_past + 6, std::min(slot.prompt.tokens.size(), slot.task->tokens.size())); - - std::stringstream ss0; - std::stringstream ss1; - - std::stringstream st0; - std::stringstream st1; - - ss0 << "old: ... "; - ss1 << "new: ... "; - - for (int i = np0; i < np1; i++) { - if (i == n_past) { - ss0 << " | "; - ss1 << " | "; - } - - { - const auto token = slot.prompt.tokens[i]; - const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]"; - ss0 << piece; - st0 << std::setw(8) << token; - } - - { - const auto token = slot.task->tokens[i]; - const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]"; - ss1 << piece; - st1 << std::setw(8) << token; - } - } - - SLT_WRN(slot, "%s\n", ss0.str().c_str()); - SLT_WRN(slot, "%s\n", ss1.str().c_str()); - - SLT_WRN(slot, "%s\n", st0.str().c_str()); - SLT_WRN(slot, "%s\n", st1.str().c_str()); - } - - if (pos_min > pos_min_thold) { - // TODO: support can be added in the future when corresponding vision models get released - GGML_ASSERT(!slot.prompt.tokens.has_mtmd); - - SLT_WRN(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min, n_swa); - - // search for a context checkpoint - const auto it = std::find_if( - slot.prompt.checkpoints.rbegin(), - slot.prompt.checkpoints.rend(), - [&](const auto & cur) { - // guarantee that a checkpoint will result in at least one token being processed [TAG_PROMPT_LOGITS] - return cur.pos_min < pos_min_thold; - } - ); - - bool do_reset = it == slot.prompt.checkpoints.rend(); - - if (!do_reset) { - // restore the context checkpoint - const size_t checkpoint_size = it->data.size(); - const size_t n = llama_state_seq_set_data_ext(ctx, it->data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY); - - if (n != checkpoint_size) { - SLT_ERR(slot, "failed to restore context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024); - do_reset = true; - //printf("[DEBUG] `do_reset` was set to `true` after failing to restore a checkpoint"); - } else { - n_past = std::min(n_past, std::max(it->pos_min + 1, it->pos_max)); - SLT_WRN(slot, "restored context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024); - } - } - - if (do_reset) { - SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see %s)\n", - "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055"); - n_past = 0; - } - } - } - - { - // erase any checkpoints with pos_min > pos_min_thold - for (auto it = slot.prompt.checkpoints.begin(); it != slot.prompt.checkpoints.end();) { - const auto & cur = *it; - if (cur.pos_min > pos_min_thold) { - SLT_WRN(slot, "erased invalidated context checkpoint (pos_min = %d, pos_max = %d, n_swa = %d, size = %.3f MiB)\n", cur.pos_min, cur.pos_max, n_swa, (float) cur.data.size() / 1024 / 1024); - it = slot.prompt.checkpoints.erase(it); - } else { - ++it; - } - } - } - } - - // [TAG_PROMPT_LOGITS] - if (n_past == slot.task->n_tokens() && n_past > 0) { - SLT_WRN(slot, "need to evaluate at least 1 token for each active slot (n_past = %d, task.n_tokens() = %d)\n", n_past, slot.task->n_tokens()); - n_past--; - SLT_WRN(slot, "n_past was set to %d\n", n_past); - } - - slot.n_prompt_tokens_cache = n_past; - slot.n_prompt_tokens_processed = 0; - - slot.prompt.tokens.keep_first(n_past); - } - - if (!slot.can_split()) { - // cannot fit the prompt in the current batch - will try next iter - if (batch.n_tokens + slot.task->n_tokens() > n_batch) { - continue; - } - } - - // truncate any tokens that are beyond n_past for this slot - const llama_pos p0 = slot.prompt.tokens.pos_next(); - - SLT_INF(slot, "n_tokens = %d, memory_seq_rm [%d, end)\n", slot.prompt.n_tokens(), p0); - - if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, p0, -1)) { - SLT_WRN(slot, "failed to truncate tokens with position >= %d - clearing the memory\n", p0); - - clear_slot(slot); - - // there is no common part left - slot.n_prompt_tokens_cache = 0; - } - - // check if we should process the image - if (slot.prompt.n_tokens() < slot.task->n_tokens() && input_tokens[slot.prompt.n_tokens()] == LLAMA_TOKEN_NULL) { - // process the image - size_t n_tokens_out = 0; - int32_t res = input_tokens.process_chunk(ctx, mctx, slot.prompt.n_tokens(), slot.prompt.tokens.pos_next(), slot.id, n_tokens_out); - if (res != 0) { - SLT_ERR(slot, "failed to process image, res = %d\n", res); - send_error(slot, "failed to process image", ERROR_TYPE_SERVER); - slot.release(); - continue; - } - - slot.n_prompt_tokens_processed += n_tokens_out; - - // add the image chunk to cache - { - const auto & chunk = input_tokens.find_chunk(slot.prompt.n_tokens()); - slot.prompt.tokens.push_back(chunk.get()); // copy - } - } - - // If using an alora, there may be uncached tokens that come - // before the invocation sequence. When this happens, the - // tokens before the invocation sequence need to be - // processed without the adapter in a separate batch, then - // the adapter needs to be enabled for the remaining tokens. - if (lora_all_alora(slot.lora) && slot.alora_invocation_start - 1 > slot.prompt.n_tokens()) { - SLT_DBG(slot, "processing pre-alora tokens without the adapter (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start); - const auto & enabled_loras = lora_get_enabled_ids(slot.lora); - GGML_ASSERT(enabled_loras.size() == 1); - alora_scale = slot.lora[enabled_loras[0]].scale; - slot.lora[enabled_loras[0]].scale = 0.0f; - alora_disabled_id = enabled_loras[0]; - } - - bool do_checkpoint = params_base.n_ctx_checkpoints > 0; - - // make checkpoints only for completion tasks - do_checkpoint = do_checkpoint && slot.task->type == SERVER_TASK_TYPE_COMPLETION; - - // make a checkpoint of the parts of the memory that cannot be rolled back. - // checkpoints are created only if: - // - the model uses SWA and we are not using `swa_full` - // - the model architecture is marked as recurrent or hybrid - // - // TODO: try to make this conditional on the context or the memory module, instead of the model type - do_checkpoint = do_checkpoint && ( - llama_model_is_recurrent(model) || - llama_model_is_hybrid(model) || - (llama_model_n_swa(model) > 0 && !params_base.swa_full) - ); - - // add prompt tokens for processing in the current batch - while (slot.prompt.n_tokens() < slot.task->n_tokens() && batch.n_tokens < n_batch) { - // get next token to process - llama_token cur_tok = input_tokens[slot.prompt.n_tokens()]; - if (cur_tok == LLAMA_TOKEN_NULL) { - break; // end of text chunk - } - - // if this is an alora request with pre-invocation - // tokens that are not cached, we need to stop filling - // this batch at those pre-invocation tokens. - if (alora_scale > 0 && slot.prompt.n_tokens() == slot.alora_invocation_start - 1) { - SLT_DBG(slot, "stop prompt batch filling at (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start); - break; - } - - // embedding requires all tokens in the batch to be output - common_batch_add(batch, - cur_tok, - slot.prompt.tokens.pos_next(), - { slot.id }, - slot.need_embd()); - slot.prompt.tokens.push_back(cur_tok); - - slot.n_prompt_tokens_processed++; - - // process the last few tokens of the prompt separately in order to allow for a checkpoint to be created. - if (do_checkpoint && slot.task->n_tokens() - slot.prompt.n_tokens() == 64) { - break; - } - } - - // SLT_INF(slot, "new slot.prompt.tokens: %s\n", slot.slot.prompt.tokens.str().c_str()); - - SLT_INF(slot, "prompt processing progress, n_tokens = %d, batch.n_tokens = %d, progress = %f\n", slot.prompt.n_tokens(), batch.n_tokens, (float) slot.prompt.n_tokens() / slot.task->n_tokens()); - - // entire prompt has been processed - if (slot.prompt.n_tokens() == slot.task->n_tokens()) { - slot.state = SLOT_STATE_DONE_PROMPT; - - GGML_ASSERT(batch.n_tokens > 0); - - common_sampler_reset(slot.smpl); - - // Process all prompt tokens through sampler system - for (int i = 0; i < slot.task->n_tokens(); ++i) { - llama_token id = input_tokens[i]; - if (id != LLAMA_TOKEN_NULL) { - common_sampler_accept(slot.smpl, id, false); - } - } - - // extract the logits only for the last token - batch.logits[batch.n_tokens - 1] = true; - - slot.n_decoded = 0; - slot.i_batch = batch.n_tokens - 1; - - SLT_INF(slot, "prompt done, n_tokens = %d, batch.n_tokens = %d\n", slot.prompt.n_tokens(), batch.n_tokens); - - const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id); - const auto pos_max = llama_memory_seq_pos_max(llama_get_memory(ctx), slot.id); - - // no need for empty or small checkpoints - do_checkpoint = do_checkpoint && (pos_min >= 0 && pos_max >= 64); - - // no need to create checkpoints that are too close together - do_checkpoint = do_checkpoint && (slot.prompt.checkpoints.empty() || pos_max > slot.prompt.checkpoints.back().pos_max + 64); - - if (do_checkpoint) { - while (slot.prompt.checkpoints.size() >= (size_t) params_base.n_ctx_checkpoints) { - // make room for the new checkpoint, if needed - const auto & cur = slot.prompt.checkpoints.front(); - - SLT_WRN(slot, "erasing old context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", - cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024); - - slot.prompt.checkpoints.erase(slot.prompt.checkpoints.begin()); - } - - const size_t checkpoint_size = llama_state_seq_get_size_ext(ctx, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY); - - auto & cur = slot.prompt.checkpoints.emplace_back(server_prompt_checkpoint{ - /*.pos_min = */ pos_min, - /*.pos_max = */ pos_max, - /*.data = */ std::vector(checkpoint_size), - }); - - llama_state_seq_get_data_ext(ctx, cur.data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY); - - SLT_WRN(slot, "created context checkpoint %d of %d (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", - (int) slot.prompt.checkpoints.size(), params_base.n_ctx_checkpoints, cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024); - } - } - } - - if (!slot_batched) { - slot_batched = &slot; - } - - if (batch.n_tokens >= n_batch) { - break; - } - } - } - - if (batch.n_tokens == 0) { - SRV_WRN("%s", "no tokens to decode\n"); - return; - } - - SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens); - - if (slot_batched) { - // apply lora, only need to do it once per batch - common_set_adapter_lora(ctx, slot_batched->lora); - - // if the lora is temporarily disabled for an alora, re-enable it - // for next time - if (alora_scale > 0.0f) { - SRV_DBG("re-enabling alora with scale %f\n", alora_scale); - slot_batched->lora[alora_disabled_id].scale = alora_scale; - } - - llama_set_embeddings(ctx, slot_batched->need_embd()); - } - - int32_t i_next = 0; - - // process the created batch of tokens - for (int32_t i = 0; i < batch.n_tokens; i = i_next) { - const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i); - - llama_batch batch_view = { - n_tokens, - batch.token + i, - nullptr, - batch.pos + i, - batch.n_seq_id + i, - batch.seq_id + i, - batch.logits + i, - }; - - const int ret = llama_decode(ctx, batch_view); - - metrics.on_decoded(slots); - - if (ret != 0) { - { - std::string err; - - if (n_batch == 1 && ret == 1) { - // TODO: try to terminate only the largest active slot/sequence and continue with the rest - // need to remove the tokens from the current batch too - err = "Context size has been exceeded."; - } - - if (ret == -1) { - err = "Invalid input batch."; - } - - if (ret < -1) { - // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max() - err = "Compute error."; - } - - // TODO: handle ret == 2 (abort) when we start aborting - - if (!err.empty()) { - SRV_ERR("%s i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret); - - for (auto & slot : slots) { - if (slot.is_processing()) { - send_error(slot, err); - slot.release(); - - // note: it's complicated to keep track of how much of the current batch has been - // processed before the error occurred, so we simply clear the entire context - clear_slot(slot); - } - } - - break; - } - } - - // retry with half the batch size to try to find a free slot in the KV cache - if (!try_clear_idle_slots()) { - n_batch /= 2; - } - - SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret); - - continue; // continue loop of n_batch - } - - // move the head of the batch forward with the number of tokens we just processed - i_next = i + n_tokens; - - // on successful decode, restore the original batch size - n_batch = llama_n_batch(ctx); - - for (auto & slot : slots) { - // optionally send prompt processing progress - if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_DONE_PROMPT) { - if (slot.task->params.stream && slot.task->params.return_progress) { - send_partial_response(slot, {}, true); - } - } - - if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) { - continue; // continue loop of slots - } - - if (slot.state == SLOT_STATE_DONE_PROMPT) { - if (slot.task->type == SERVER_TASK_TYPE_EMBEDDING) { - // prompt evaluated for embedding - send_embedding(slot, batch_view); - slot.release(); - slot.i_batch = -1; - continue; // continue loop of slots - } - - if (slot.task->type == SERVER_TASK_TYPE_RERANK) { - send_rerank(slot, batch_view); - slot.release(); - slot.i_batch = -1; - continue; // continue loop of slots - } - - // prompt evaluated for next-token prediction - slot.state = SLOT_STATE_GENERATING; - } else if (slot.state != SLOT_STATE_GENERATING) { - continue; // continue loop of slots - } - - const int tok_idx = slot.i_batch - i; - - llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx); - - slot.i_batch = -1; - - common_sampler_accept(slot.smpl, id, true); - - slot.n_decoded += 1; - - const int64_t t_current = ggml_time_us(); - - if (slot.n_decoded == 1) { - slot.t_start_generation = t_current; - slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3; - metrics.on_prompt_eval(slot); - } - - slot.t_token_generation = std::max(1, t_current - slot.t_start_generation) / 1e3; - - completion_token_output result; - result.tok = id; - result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok)); - result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs - - if (slot.task->params.sampling.n_probs > 0) { - populate_token_probs(slot, result, slot.task->params.post_sampling_probs, params_base.special, tok_idx); - } - - if (!process_token(result, slot)) { - // release slot because of stop condition - slot.print_timings(); - send_final_response(slot); - metrics.on_prediction(slot); - slot.release(); - - continue; - } - } - - // do speculative decoding - // TODO: rework to have a single draft llama_context shared across all slots [TAG_SERVER_SPEC_REWORK] - // perform the speculative drafting for all sequences at the same time in a single batch - for (auto & slot : slots) { - if (!slot.is_processing() || !slot.can_speculate()) { - continue; - } - - if (slot.state != SLOT_STATE_GENERATING) { - continue; - } - - if (mctx) { - // we should never reach this, as speculative is automatically disabled if mmproj is loaded - GGML_ABORT("not supported by multimodal"); - } - - // determine the max draft that fits the current slot state - int n_draft_max = slot.task->params.speculative.n_max; - - // note: slot.prompt is not yet expanded with the `id` token sampled above - // also, need to leave space for 1 extra token to allow context shifts - n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.prompt.n_tokens() - 2); - - if (slot.n_remaining > 0) { - n_draft_max = std::min(n_draft_max, slot.n_remaining - 1); - } - - SLT_DBG(slot, "max possible draft: %d\n", n_draft_max); - - if (n_draft_max < slot.task->params.speculative.n_min) { - SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.task->params.speculative.n_min); - - continue; - } - - llama_token id = slot.sampled; - - struct common_speculative_params params_spec; - params_spec.n_draft = n_draft_max; - params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max; - params_spec.p_min = slot.task->params.speculative.p_min; - - const llama_tokens & cached_text_tokens = slot.prompt.tokens.get_text_tokens(); - llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id); - - // ignore small drafts - if (slot.task->params.speculative.n_min > (int) draft.size()) { - SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.task->params.speculative.n_min); - - continue; - } - - // keep track of total number of drafted tokens tested - slot.n_draft_total += draft.size(); - - // construct the speculation batch - common_batch_clear(slot.batch_spec); - common_batch_add (slot.batch_spec, id, slot.prompt.tokens.pos_next(), { slot.id }, true); - - for (size_t i = 0; i < draft.size(); ++i) { - common_batch_add(slot.batch_spec, draft[i], slot.prompt.tokens.pos_next() + 1 + i, { slot.id }, true); - } - - SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens); - - llama_decode(ctx, slot.batch_spec); - - // the accepted tokens from the speculation - const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft); - - slot.n_decoded += ids.size(); - - // update how many tokens out of those tested were accepted - slot.n_draft_accepted += ids.size() - 1; - - slot.prompt.tokens.push_back(id); - slot.prompt.tokens.insert({ids.begin(), ids.end() - 1}); - - llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.prompt.n_tokens(), -1); - - for (size_t i = 0; i < ids.size(); ++i) { - completion_token_output result; - - result.tok = ids[i]; - result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok)); - result.prob = 1.0f; // set later - - // TODO: set result.probs - - if (!process_token(result, slot)) { - slot.print_timings(); - send_final_response(slot); - metrics.on_prediction(slot); - slot.release(); - - break; - } - } - - SLT_DBG(slot, "accepted %d/%d draft tokens, new n_tokens = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.prompt.n_tokens()); - } - } - - SRV_DBG("%s", "run slots completed\n"); - } - - json model_meta() const { - return json { - {"vocab_type", llama_vocab_type (vocab)}, - {"n_vocab", llama_vocab_n_tokens (vocab)}, - {"n_ctx_train", llama_model_n_ctx_train(model)}, - {"n_embd", llama_model_n_embd (model)}, - {"n_params", llama_model_n_params (model)}, - {"size", llama_model_size (model)}, - }; - } -}; - - -// generator-like API for server responses, support pooling connection state and aggregating results -struct server_response_reader { - std::unordered_set id_tasks; - server_context & ctx_server; - size_t received_count = 0; - bool cancelled = false; - - server_response_reader(server_context & ctx_server) : ctx_server(ctx_server) {} - ~server_response_reader() { - stop(); - } - - void post_tasks(std::vector && tasks) { - id_tasks = server_task::get_list_id(tasks); - ctx_server.queue_results.add_waiting_tasks(tasks); - ctx_server.queue_tasks.post(std::move(tasks)); - } - - bool has_next() const { - return !cancelled && received_count < id_tasks.size(); - } - - // return nullptr if should_stop() is true before receiving a result - // note: if one error is received, it will stop further processing and return error result - server_task_result_ptr next(const std::function & should_stop) { - while (true) { - server_task_result_ptr result = ctx_server.queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS); - if (result == nullptr) { - // timeout, check stop condition - if (should_stop()) { - SRV_DBG("%s", "stopping wait for next result due to should_stop condition\n"); - return nullptr; - } - } else { - if (result->is_error()) { - stop(); // cancel remaining tasks - SRV_DBG("%s", "received error result, stopping further processing\n"); - return result; - } - if (result->is_stop()) { - received_count++; - } - return result; - } - } - - // should not reach here - } - - struct batch_response { - bool is_terminated = false; // if true, indicates that processing was stopped before all results were received - std::vector results; - server_task_result_ptr error; // nullptr if no error - }; - - batch_response wait_for_all(const std::function & should_stop) { - batch_response batch_res; - batch_res.results.resize(id_tasks.size()); - while (has_next()) { - auto res = next(should_stop); - if (res == nullptr) { - batch_res.is_terminated = true; - return batch_res; - } - if (res->is_error()) { - batch_res.error = std::move(res); - return batch_res; - } - const size_t idx = res->get_index(); - GGML_ASSERT(idx < batch_res.results.size() && "index out of range"); - GGML_ASSERT(batch_res.results[idx] == nullptr && "duplicate result received"); - batch_res.results[idx] = std::move(res); - } - return batch_res; - } - - void stop() { - ctx_server.queue_results.remove_waiting_task_ids(id_tasks); - if (has_next() && !cancelled) { - // if tasks is not finished yet, cancel them - cancelled = true; - std::vector cancel_tasks; - cancel_tasks.reserve(id_tasks.size()); - for (const auto & id_task : id_tasks) { - SRV_WRN("cancel task, id_task = %d\n", id_task); - server_task task(SERVER_TASK_TYPE_CANCEL); - task.id_target = id_task; - ctx_server.queue_results.remove_waiting_task_id(id_task); - cancel_tasks.push_back(std::move(task)); - } - // push to beginning of the queue, so it has highest priority - ctx_server.queue_tasks.post(std::move(cancel_tasks), true); - } else { - SRV_DBG("%s", "all tasks already finished, no need to cancel\n"); - } - } -}; - -// generator-like API for HTTP response generation -struct server_res_generator : server_http_res { - server_response_reader rd; - server_res_generator(server_context & ctx_server_) : rd(ctx_server_) {} - void ok(const json & response_data) { - status = 200; - data = safe_json_to_str(response_data); - } - void error(const json & error_data) { - status = json_value(error_data, "code", 500); - data = safe_json_to_str({{ "error", error_data }}); - } -}; - -struct server_routes { - const common_params & params; - server_context & ctx_server; - server_http_context & ctx_http; // for reading is_ready - server_routes(const common_params & params, server_context & ctx_server, server_http_context & ctx_http) - : params(params), ctx_server(ctx_server), ctx_http(ctx_http) {} - -public: - // handlers using lambda function, so that they can capture `this` without `std::bind` - - server_http_context::handler_t get_health = [this](const server_http_req &) { - // error and loading states are handled by middleware - auto res = std::make_unique(ctx_server); - res->ok({{"status", "ok"}}); - return res; - }; - - server_http_context::handler_t get_metrics = [this](const server_http_req &) { - auto res = std::make_unique(ctx_server); - if (!params.endpoint_metrics) { - res->error(format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED)); - return res; - } - - // request slots data using task queue - // TODO: use server_response_reader - int task_id = ctx_server.queue_tasks.get_new_id(); - { - server_task task(SERVER_TASK_TYPE_METRICS); - task.id = task_id; - ctx_server.queue_results.add_waiting_task_id(task_id); - ctx_server.queue_tasks.post(std::move(task), true); // high-priority task - } - - // get the result - server_task_result_ptr result = ctx_server.queue_results.recv(task_id); - ctx_server.queue_results.remove_waiting_task_id(task_id); - - if (result->is_error()) { - res->error(result->to_json()); - return res; - } - - // TODO: get rid of this dynamic_cast - auto res_task = dynamic_cast(result.get()); - GGML_ASSERT(res_task != nullptr); - - // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names - json all_metrics_def = json { - {"counter", {{ - {"name", "prompt_tokens_total"}, - {"help", "Number of prompt tokens processed."}, - {"value", (uint64_t) res_task->n_prompt_tokens_processed_total} - }, { - {"name", "prompt_seconds_total"}, - {"help", "Prompt process time"}, - {"value", (uint64_t) res_task->t_prompt_processing_total / 1.e3} - }, { - {"name", "tokens_predicted_total"}, - {"help", "Number of generation tokens processed."}, - {"value", (uint64_t) res_task->n_tokens_predicted_total} - }, { - {"name", "tokens_predicted_seconds_total"}, - {"help", "Predict process time"}, - {"value", (uint64_t) res_task->t_tokens_generation_total / 1.e3} - }, { - {"name", "n_decode_total"}, - {"help", "Total number of llama_decode() calls"}, - {"value", res_task->n_decode_total} - }, { - {"name", "n_tokens_max"}, - {"help", "Largest observed n_tokens."}, - {"value", res_task->n_tokens_max} - }, { - {"name", "n_busy_slots_per_decode"}, - {"help", "Average number of busy slots per llama_decode() call"}, - {"value", (float) res_task->n_busy_slots_total / std::max((float) res_task->n_decode_total, 1.f)} - }}}, - {"gauge", {{ - {"name", "prompt_tokens_seconds"}, - {"help", "Average prompt throughput in tokens/s."}, - {"value", res_task->n_prompt_tokens_processed ? 1.e3 / res_task->t_prompt_processing * res_task->n_prompt_tokens_processed : 0.} - },{ - {"name", "predicted_tokens_seconds"}, - {"help", "Average generation throughput in tokens/s."}, - {"value", res_task->n_tokens_predicted ? 1.e3 / res_task->t_tokens_generation * res_task->n_tokens_predicted : 0.} - },{ - {"name", "requests_processing"}, - {"help", "Number of requests processing."}, - {"value", (uint64_t) res_task->n_processing_slots} - },{ - {"name", "requests_deferred"}, - {"help", "Number of requests deferred."}, - {"value", (uint64_t) res_task->n_tasks_deferred} - }}} - }; - - std::stringstream prometheus; - - for (const auto & el : all_metrics_def.items()) { - const auto & type = el.key(); - const auto & metrics_def = el.value(); - - for (const auto & metric_def : metrics_def) { - const std::string name = metric_def.at("name"); - const std::string help = metric_def.at("help"); - - auto value = json_value(metric_def, "value", 0.); - prometheus << "# HELP llamacpp:" << name << " " << help << "\n" - << "# TYPE llamacpp:" << name << " " << type << "\n" - << "llamacpp:" << name << " " << value << "\n"; - } - } - - res->headers["Process-Start-Time-Unix"] = std::to_string(res_task->t_start); - res->content_type = "text/plain; version=0.0.4"; - res->status = 200; - res->data = prometheus.str(); - return res; - }; - - server_http_context::handler_t get_slots = [this](const server_http_req & req) { - auto res = std::make_unique(ctx_server); - if (!params.endpoint_slots) { - res->error(format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED)); - return res; - } - - // request slots data using task queue - int task_id = ctx_server.queue_tasks.get_new_id(); - { - server_task task(SERVER_TASK_TYPE_METRICS); - task.id = task_id; - ctx_server.queue_results.add_waiting_task_id(task_id); - ctx_server.queue_tasks.post(std::move(task), true); // high-priority task - } - - // get the result - server_task_result_ptr result = ctx_server.queue_results.recv(task_id); - ctx_server.queue_results.remove_waiting_task_id(task_id); - - if (result->is_error()) { - res->error(result->to_json()); - return res; - } - - // TODO: get rid of this dynamic_cast - auto res_task = dynamic_cast(result.get()); - GGML_ASSERT(res_task != nullptr); - - // optionally return "fail_on_no_slot" error - if (!req.get_param("fail_on_no_slot").empty()) { - if (res_task->n_idle_slots == 0) { - res->error(format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE)); - return res; - } - } - - res->ok(res_task->slots_data); - return res; - }; - - server_http_context::handler_t post_slots = [this](const server_http_req & req) { - auto res = std::make_unique(ctx_server); - if (params.slot_save_path.empty()) { - res->error(format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED)); - return res; - } - - std::string id_slot_str = req.get_param("id_slot"); - int id_slot; - - try { - id_slot = std::stoi(id_slot_str); - } catch (const std::exception &) { - res->error(format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - - std::string action = req.get_param("action"); - - if (action == "save") { - return handle_slots_save(req, id_slot); - } else if (action == "restore") { - return handle_slots_restore(req, id_slot); - } else if (action == "erase") { - return handle_slots_erase(req, id_slot); - } else { - res->error(format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - }; - - server_http_context::handler_t get_props = [this](const server_http_req &) { - auto res = std::make_unique(ctx_server); - json default_generation_settings_for_props; - - { - task_params params; - - params.sampling = ctx_server.params_base.sampling; - - default_generation_settings_for_props = json { - {"params", params.to_json(true)}, - {"n_ctx", ctx_server.slots[0].n_ctx}, - }; - } - - // this endpoint is publicly available, please only return what is safe to be exposed - json data = { - { "default_generation_settings", default_generation_settings_for_props }, - { "total_slots", ctx_server.params_base.n_parallel }, - { "model_alias", ctx_server.params_base.model_alias }, - { "model_path", ctx_server.params_base.model.path }, - { "modalities", json { - {"vision", ctx_server.oai_parser_opt.allow_image}, - {"audio", ctx_server.oai_parser_opt.allow_audio}, - } }, - { "endpoint_slots", params.endpoint_slots }, - { "endpoint_props", params.endpoint_props }, - { "endpoint_metrics", params.endpoint_metrics }, - { "webui", params.webui }, - { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) }, - { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)}, - { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)}, - { "build_info", build_info }, - }; - if (ctx_server.params_base.use_jinja) { - if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) { - data["chat_template_tool_use"] = tool_use_src; - } - } - - res->ok(data); - return res; - }; - - server_http_context::handler_t post_props = [this](const server_http_req &) { - auto res = std::make_unique(ctx_server); - if (!params.endpoint_props) { - res->error(format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED)); - return res; - } - // update any props here - - res->ok({{ "success", true }}); - return res; - }; - - server_http_context::handler_t get_api_show = [this](const server_http_req &) { - auto res = std::make_unique(ctx_server); - bool has_mtmd = ctx_server.mctx != nullptr; - json data = { - { - "template", common_chat_templates_source(ctx_server.chat_templates.get()), - }, - { - "model_info", { - { "llama.context_length", ctx_server.slots.back().n_ctx, }, - } - }, - {"modelfile", ""}, - {"parameters", ""}, - {"template", common_chat_templates_source(ctx_server.chat_templates.get())}, - {"details", { - {"parent_model", ""}, - {"format", "gguf"}, - {"family", ""}, - {"families", {""}}, - {"parameter_size", ""}, - {"quantization_level", ""} - }}, - {"model_info", ""}, - {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})} - }; - - res->ok(data); - return res; - }; - - server_http_context::handler_t post_infill = [this](const server_http_req & req) { - auto res = std::make_unique(ctx_server); - // check model compatibility - std::string err; - if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) { - err += "prefix token is missing. "; - } - if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) { - err += "suffix token is missing. "; - } - if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) { - err += "middle token is missing. "; - } - if (!err.empty()) { - res->error(format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED)); - return res; - } - - // validate input - json data = json::parse(req.body); - if (data.contains("prompt") && !data.at("prompt").is_string()) { - // prompt is optional - res->error(format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST)); - } - - if (!data.contains("input_prefix")) { - res->error(format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST)); - } - - if (!data.contains("input_suffix")) { - res->error(format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST)); - } - - if (data.contains("input_extra") && !data.at("input_extra").is_array()) { - // input_extra is optional - res->error(format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - - json input_extra = json_value(data, "input_extra", json::array()); - for (const auto & chunk : input_extra) { - // { "text": string, "filename": string } - if (!chunk.contains("text") || !chunk.at("text").is_string()) { - res->error(format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - // filename is optional - if (chunk.contains("filename") && !chunk.at("filename").is_string()) { - res->error(format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - } - data["input_extra"] = input_extra; // default to empty array if it's not exist - - std::string prompt = json_value(data, "prompt", std::string()); - std::vector tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, false, true); - SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size()); - data["prompt"] = format_prompt_infill( - ctx_server.vocab, - data.at("input_prefix"), - data.at("input_suffix"), - data.at("input_extra"), - ctx_server.params_base.n_batch, - ctx_server.params_base.n_predict, - ctx_server.slots[0].n_ctx, // TODO: there should be a better way - ctx_server.params_base.spm_infill, - tokenized_prompts[0].get_text_tokens() // TODO: this could maybe be multimodal. - ); - - std::vector files; // dummy - return handle_completions_impl( - SERVER_TASK_TYPE_INFILL, - data, - files, - req.should_stop, - TASK_RESPONSE_TYPE_NONE); // infill is not OAI compatible - }; - - server_http_context::handler_t post_completions = [this](const server_http_req & req) { - std::vector files; // dummy - const json body = json::parse(req.body); - return handle_completions_impl( - SERVER_TASK_TYPE_COMPLETION, - body, - files, - req.should_stop, - TASK_RESPONSE_TYPE_NONE); - }; - - server_http_context::handler_t post_completions_oai = [this](const server_http_req & req) { - std::vector files; // dummy - const json body = json::parse(req.body); - return handle_completions_impl( - SERVER_TASK_TYPE_COMPLETION, - body, - files, - req.should_stop, - TASK_RESPONSE_TYPE_OAI_CMPL); - }; - - server_http_context::handler_t post_chat_completions = [this](const server_http_req & req) { - std::vector files; - json body = json::parse(req.body); - json body_parsed = oaicompat_chat_params_parse( - body, - ctx_server.oai_parser_opt, - files); - return handle_completions_impl( - SERVER_TASK_TYPE_COMPLETION, - body_parsed, - files, - req.should_stop, - TASK_RESPONSE_TYPE_OAI_CHAT); - }; - - server_http_context::handler_t post_anthropic_messages = [this](const server_http_req & req) { - std::vector files; - json body = convert_anthropic_to_oai(json::parse(req.body)); - json body_parsed = oaicompat_chat_params_parse( - body, - ctx_server.oai_parser_opt, - files); - return handle_completions_impl( - SERVER_TASK_TYPE_COMPLETION, - body_parsed, - files, - req.should_stop, - TASK_RESPONSE_TYPE_ANTHROPIC); - }; - - server_http_context::handler_t post_anthropic_count_tokens = [this](const server_http_req & req) { - auto res = std::make_unique(ctx_server); - std::vector files; - json body = convert_anthropic_to_oai(json::parse(req.body)); - json body_parsed = oaicompat_chat_params_parse( - body, - ctx_server.oai_parser_opt, - files); - - json prompt = body_parsed.at("prompt"); - llama_tokens tokens = tokenize_mixed(ctx_server.vocab, prompt, true, true); - - res->ok({{"input_tokens", static_cast(tokens.size())}}); - return res; - }; - - // same with handle_chat_completions, but without inference part - server_http_context::handler_t post_apply_template = [this](const server_http_req & req) { - auto res = std::make_unique(ctx_server); - std::vector files; // dummy, unused - json body = json::parse(req.body); - json data = oaicompat_chat_params_parse( - body, - ctx_server.oai_parser_opt, - files); - res->ok({{ "prompt", std::move(data.at("prompt")) }}); - return res; - }; - - server_http_context::handler_t get_models = [this](const server_http_req &) { - auto res = std::make_unique(ctx_server); - bool is_model_ready = ctx_http.is_ready.load(); - json model_meta = nullptr; - if (is_model_ready) { - model_meta = ctx_server.model_meta(); - } - bool has_mtmd = ctx_server.mctx != nullptr; - json models = { - {"models", { - { - {"name", params.model_alias.empty() ? params.model.path : params.model_alias}, - {"model", params.model_alias.empty() ? params.model.path : params.model_alias}, - {"modified_at", ""}, - {"size", ""}, - {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash - {"type", "model"}, - {"description", ""}, - {"tags", {""}}, - {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})}, - {"parameters", ""}, - {"details", { - {"parent_model", ""}, - {"format", "gguf"}, - {"family", ""}, - {"families", {""}}, - {"parameter_size", ""}, - {"quantization_level", ""} - }} - } - }}, - {"object", "list"}, - {"data", { - { - {"id", params.model_alias.empty() ? params.model.path : params.model_alias}, - {"object", "model"}, - {"created", std::time(0)}, - {"owned_by", "llamacpp"}, - {"meta", model_meta}, - }, - }} - }; - - res->ok(models); - return res; - }; - - server_http_context::handler_t post_tokenize = [this](const server_http_req & req) { - auto res = std::make_unique(ctx_server); - const json body = json::parse(req.body); - json tokens_response = json::array(); - if (body.count("content") != 0) { - const bool add_special = json_value(body, "add_special", false); - const bool parse_special = json_value(body, "parse_special", true); - const bool with_pieces = json_value(body, "with_pieces", false); - - llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special); - - if (with_pieces) { - for (const auto& token : tokens) { - std::string piece = common_token_to_piece(ctx_server.ctx, token); - json piece_json; - - // Check if the piece is valid UTF-8 - if (is_valid_utf8(piece)) { - piece_json = piece; - } else { - // If not valid UTF-8, store as array of byte values - piece_json = json::array(); - for (unsigned char c : piece) { - piece_json.push_back(static_cast(c)); - } - } - - tokens_response.push_back({ - {"id", token}, - {"piece", piece_json} - }); - } - } else { - tokens_response = tokens; - } - } - - res->ok(json{{"tokens", std::move(tokens_response)}}); - return res; - }; - - server_http_context::handler_t post_detokenize = [this](const server_http_req & req) { - auto res = std::make_unique(ctx_server); - const json body = json::parse(req.body); - - std::string content; - if (body.count("tokens") != 0) { - const llama_tokens tokens = body.at("tokens"); - content = tokens_to_str(ctx_server.ctx, tokens); - } - - res->ok(json{{"content", std::move(content)}}); - return res; - }; - - server_http_context::handler_t post_embeddings = [this](const server_http_req & req) { - return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_NONE); - }; - - server_http_context::handler_t post_embeddings_oai = [this](const server_http_req & req) { - return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_OAI_EMBD); - }; - - server_http_context::handler_t post_rerank = [this](const server_http_req & req) { - auto res = std::make_unique(ctx_server); - if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) { - res->error(format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED)); - return res; - } - - const json body = json::parse(req.body); - - // if true, use TEI API format, otherwise use Jina API format - // Jina: https://jina.ai/reranker/ - // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank - bool is_tei_format = body.contains("texts"); - - json query; - if (body.count("query") == 1) { - query = body.at("query"); - if (!query.is_string()) { - res->error(format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - } else { - res->error(format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - - std::vector documents = json_value(body, "documents", - json_value(body, "texts", std::vector())); - if (documents.empty()) { - res->error(format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - - int top_n = json_value(body, "top_n", (int)documents.size()); - - // create and queue the task - json responses = json::array(); - server_response_reader rd(ctx_server); - { - std::vector tasks; - tasks.reserve(documents.size()); - for (size_t i = 0; i < documents.size(); i++) { - auto tmp = format_prompt_rerank(ctx_server.model, ctx_server.vocab, ctx_server.mctx, query, documents[i]); - server_task task = server_task(SERVER_TASK_TYPE_RERANK); - task.id = ctx_server.queue_tasks.get_new_id(); - task.index = i; - task.tokens = std::move(tmp); - tasks.push_back(std::move(task)); - } - rd.post_tasks(std::move(tasks)); - } - - // wait for the results - auto all_results = rd.wait_for_all(req.should_stop); - - // collect results - if (all_results.is_terminated) { - return res; // connection is closed - } else if (all_results.error) { - res->error(all_results.error->to_json()); - return res; - } else { - for (auto & res : all_results.results) { - GGML_ASSERT(dynamic_cast(res.get()) != nullptr); - responses.push_back(res->to_json()); - } - } - - // write JSON response - json root = format_response_rerank( - body, - responses, - is_tei_format, - documents, - top_n); - - res->ok(root); - return res; - }; - - server_http_context::handler_t get_lora_adapters = [this](const server_http_req &) { - auto res = std::make_unique(ctx_server); - json result = json::array(); - const auto & loras = ctx_server.params_base.lora_adapters; - for (size_t i = 0; i < loras.size(); ++i) { - auto & lora = loras[i]; - json entry = { - {"id", i}, - {"path", lora.path}, - {"scale", lora.scale}, - {"task_name", lora.task_name}, - {"prompt_prefix", lora.prompt_prefix}, - }; - std::string alora_invocation_string = ""; - const uint64_t n_alora_tokens = llama_adapter_get_alora_n_invocation_tokens(lora.ptr); - std::vector alora_invocation_tokens; - if (n_alora_tokens) { - const llama_token * alora_tokens = llama_adapter_get_alora_invocation_tokens(lora.ptr); - for (uint64_t i = 0; i < n_alora_tokens; ++i) { - alora_invocation_string += common_token_to_piece(ctx_server.ctx, alora_tokens[i]); - alora_invocation_tokens.push_back(alora_tokens[i]); - } - entry["alora_invocation_string"] = alora_invocation_string; - entry["alora_invocation_tokens"] = alora_invocation_tokens; - } - result.push_back(std::move(entry)); - } - res->ok(result); - return res; - }; - - server_http_context::handler_t post_lora_adapters = [this](const server_http_req & req) { - auto res = std::make_unique(ctx_server); - const json body = json::parse(req.body); - if (!body.is_array()) { - res->error(format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - - int task_id = ctx_server.queue_tasks.get_new_id(); - { - server_task task(SERVER_TASK_TYPE_SET_LORA); - task.id = task_id; - task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body); - ctx_server.queue_results.add_waiting_task_id(task_id); - ctx_server.queue_tasks.post(std::move(task)); - } - - // get the result - server_task_result_ptr result = ctx_server.queue_results.recv(task_id); - ctx_server.queue_results.remove_waiting_task_id(task_id); - - if (result->is_error()) { - res->error(result->to_json()); - return res; - } - - GGML_ASSERT(dynamic_cast(result.get()) != nullptr); - res->ok(result->to_json()); - return res; - }; - -private: - std::unique_ptr handle_completions_impl( - server_task_type type, - const json & data, - const std::vector & files, - const std::function & should_stop, - task_response_type res_type) { - GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL); - - auto res = std::make_unique(ctx_server); - auto completion_id = gen_chatcmplid(); - auto & rd = res->rd; - - try { - std::vector tasks; - - const auto & prompt = data.at("prompt"); - // TODO: this log can become very long, put it behind a flag or think about a more compact format - //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get().c_str() : prompt.dump(2).c_str()); - - // process prompt - std::vector inputs; - - if (res_type != TASK_RESPONSE_TYPE_NONE && ctx_server.mctx != nullptr) { - // This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below. - inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get(), files)); - } else { - // Everything else, including multimodal completions. - inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true); - } - tasks.reserve(inputs.size()); - for (size_t i = 0; i < inputs.size(); i++) { - server_task task = server_task(type); - - task.id = ctx_server.queue_tasks.get_new_id(); - task.index = i; - - task.tokens = std::move(inputs[i]); - task.params = server_task::params_from_json_cmpl( - ctx_server.ctx, - ctx_server.params_base, - data); - task.id_slot = json_value(data, "id_slot", -1); - - // OAI-compat - task.params.res_type = res_type; - task.params.oaicompat_cmpl_id = completion_id; - // oaicompat_model is already populated by params_from_json_cmpl - - tasks.push_back(std::move(task)); - } - - rd.post_tasks(std::move(tasks)); - } catch (const std::exception & e) { - res->error(format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST)); - return res; - } - - bool stream = json_value(data, "stream", false); - - if (!stream) { - // non-stream, wait for the results - auto all_results = rd.wait_for_all(should_stop); - if (all_results.is_terminated) { - return res; // connection is closed - } else if (all_results.error) { - res->error(all_results.error->to_json()); - return res; - } else { - json arr = json::array(); - for (auto & res : all_results.results) { - GGML_ASSERT(dynamic_cast(res.get()) != nullptr); - arr.push_back(res->to_json()); - } - // if single request, return single object instead of array - res->ok(arr.size() == 1 ? arr[0] : arr); - } - - } else { - // in streaming mode, the first error must be treated as non-stream response - // this is to match the OAI API behavior - // ref: https://github.com/ggml-org/llama.cpp/pull/16486#discussion_r2419657309 - server_task_result_ptr first_result = rd.next(should_stop); - if (first_result == nullptr) { - return res; // connection is closed - } else if (first_result->is_error()) { - res->error(first_result->to_json()); - return res; - } else { - GGML_ASSERT( - dynamic_cast(first_result.get()) != nullptr - || dynamic_cast(first_result.get()) != nullptr - ); - } - - // next responses are streamed - if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) { - res->data = format_anthropic_sse(first_result->to_json()); - } else { - res->data = format_oai_sse(first_result->to_json()); // to be sent immediately - } - res->status = 200; - res->content_type = "text/event-stream"; - res->next = [res_this = res.get(), res_type, &should_stop](std::string & output) -> bool { - if (should_stop()) { - SRV_DBG("%s", "stopping streaming due to should_stop condition\n"); - return false; // should_stop condition met - } - - if (!res_this->data.empty()) { - // flush the first chunk - output = std::move(res_this->data); - res_this->data.clear(); - return true; - } - - server_response_reader & rd = res_this->rd; - - // check if there is more data - if (!rd.has_next()) { - if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) { - // Anthropic doesn't send [DONE], message_stop was already sent - output = ""; - } else if (res_type != TASK_RESPONSE_TYPE_NONE) { - output = "data: [DONE]\n\n"; - } else { - output = ""; - } - SRV_DBG("%s", "all results received, terminating stream\n"); - return false; // no more data, terminate - } - - // receive subsequent results - auto result = rd.next(should_stop); - if (result == nullptr) { - SRV_DBG("%s", "stopping streaming due to should_stop condition\n"); - return false; // should_stop condition met - } - - // send the results - json res_json = result->to_json(); - if (result->is_error()) { - if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) { - output = format_anthropic_sse({ - {"event", "error"}, - {"data", res_json}, - }); - } else { - output = format_oai_sse(json {{ "error", res_json }}); - } - SRV_DBG("%s", "error received during streaming, terminating stream\n"); - return false; // terminate on error - } else { - GGML_ASSERT( - dynamic_cast(result.get()) != nullptr - || dynamic_cast(result.get()) != nullptr - ); - if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) { - output = format_anthropic_sse(res_json); - } else { - output = format_oai_sse(res_json); - } - } - - // has next data, continue - return true; - }; - } - - return res; - } - - std::unique_ptr handle_slots_save(const server_http_req & req, int id_slot) { - auto res = std::make_unique(ctx_server); - const json request_data = json::parse(req.body); - std::string filename = request_data.at("filename"); - if (!fs_validate_filename(filename)) { - res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - std::string filepath = params.slot_save_path + filename; - - int task_id = ctx_server.queue_tasks.get_new_id(); - { - server_task task(SERVER_TASK_TYPE_SLOT_SAVE); - task.id = task_id; - task.slot_action.slot_id = id_slot; - task.slot_action.filename = filename; - task.slot_action.filepath = filepath; - - // TODO: use server_response_reader - ctx_server.queue_results.add_waiting_task_id(task_id); - ctx_server.queue_tasks.post(std::move(task)); - } - - server_task_result_ptr result = ctx_server.queue_results.recv(task_id); - ctx_server.queue_results.remove_waiting_task_id(task_id); - - if (result->is_error()) { - res->error(result->to_json()); - return res; - } - - res->ok(result->to_json()); - return res; - } - - std::unique_ptr handle_slots_restore(const server_http_req & req, int id_slot) { - auto res = std::make_unique(ctx_server); - const json request_data = json::parse(req.body); - std::string filename = request_data.at("filename"); - if (!fs_validate_filename(filename)) { - res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - std::string filepath = params.slot_save_path + filename; - - int task_id = ctx_server.queue_tasks.get_new_id(); - { - server_task task(SERVER_TASK_TYPE_SLOT_RESTORE); - task.id = task_id; - task.slot_action.slot_id = id_slot; - task.slot_action.filename = filename; - task.slot_action.filepath = filepath; - - // TODO: use server_response_reader - ctx_server.queue_results.add_waiting_task_id(task_id); - ctx_server.queue_tasks.post(std::move(task)); - } - - server_task_result_ptr result = ctx_server.queue_results.recv(task_id); - ctx_server.queue_results.remove_waiting_task_id(task_id); - - if (result->is_error()) { - res->error(result->to_json()); - return res; - } - - GGML_ASSERT(dynamic_cast(result.get()) != nullptr); - res->ok(result->to_json()); - return res; - } - - std::unique_ptr handle_slots_erase(const server_http_req &, int id_slot) { - auto res = std::make_unique(ctx_server); - int task_id = ctx_server.queue_tasks.get_new_id(); - { - server_task task(SERVER_TASK_TYPE_SLOT_ERASE); - task.id = task_id; - task.slot_action.slot_id = id_slot; - - // TODO: use server_response_reader - ctx_server.queue_results.add_waiting_task_id(task_id); - ctx_server.queue_tasks.post(std::move(task)); - } - - server_task_result_ptr result = ctx_server.queue_results.recv(task_id); - ctx_server.queue_results.remove_waiting_task_id(task_id); - - if (result->is_error()) { - res->error(result->to_json()); - return res; - } - - GGML_ASSERT(dynamic_cast(result.get()) != nullptr); - res->ok(result->to_json()); - return res; - } - - std::unique_ptr handle_embeddings_impl(const server_http_req & req, task_response_type res_type) { - auto res = std::make_unique(ctx_server); - if (!ctx_server.params_base.embedding) { - res->error(format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); - return res; - } - - if (res_type != TASK_RESPONSE_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) { - res->error(format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - - const json body = json::parse(req.body); - - // for the shape of input/content, see tokenize_input_prompts() - json prompt; - if (body.count("input") != 0) { - prompt = body.at("input"); - } else if (body.contains("content")) { - res_type = TASK_RESPONSE_TYPE_NONE; // "content" field is not OAI compatible - prompt = body.at("content"); - } else { - res->error(format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - - bool use_base64 = false; - if (body.count("encoding_format") != 0) { - const std::string& format = body.at("encoding_format"); - if (format == "base64") { - use_base64 = true; - } else if (format != "float") { - res->error(format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - } - - auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true); - for (const auto & tokens : tokenized_prompts) { - // this check is necessary for models that do not add BOS token to the input - if (tokens.empty()) { - res->error(format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST)); - return res; - } - } - - int embd_normalize = 2; // default to Euclidean/L2 norm - if (body.count("embd_normalize") != 0) { - embd_normalize = body.at("embd_normalize"); - if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) { - SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx)); - } - } - - // create and queue the task - json responses = json::array(); - server_response_reader rd(ctx_server); - { - std::vector tasks; - for (size_t i = 0; i < tokenized_prompts.size(); i++) { - server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING); - - task.id = ctx_server.queue_tasks.get_new_id(); - task.index = i; - task.tokens = std::move(tokenized_prompts[i]); - - // OAI-compat - task.params.res_type = res_type; - task.params.embd_normalize = embd_normalize; - - tasks.push_back(std::move(task)); - } - rd.post_tasks(std::move(tasks)); - } - - // wait for the results - auto all_results = rd.wait_for_all(req.should_stop); - - // collect results - if (all_results.is_terminated) { - return res; // connection is closed - } else if (all_results.error) { - res->error(all_results.error->to_json()); - return res; - } else { - for (auto & res : all_results.results) { - GGML_ASSERT(dynamic_cast(res.get()) != nullptr); - responses.push_back(res->to_json()); - } - } - - // write JSON response - json root = res_type == TASK_RESPONSE_TYPE_OAI_EMBD - ? format_embeddings_response_oaicompat(body, responses, use_base64) - : json(responses); - res->ok(root); - return res; - } -}; +#include +#endif static std::function shutdown_handler; static std::atomic_flag is_terminating = ATOMIC_FLAG_INIT; @@ -3723,9 +80,6 @@ int main(int argc, char ** argv) { // struct that contains llama context and inference server_context ctx_server; - // Necessary similarity of prompt for slot selection - ctx_server.slot_prompt_similarity = params.slot_prompt_similarity; - llama_backend_init(); llama_numa_init(params.numa); @@ -3745,7 +99,7 @@ int main(int argc, char ** argv) { // // register API routes - server_routes routes(params, ctx_server, ctx_http); + server_routes routes(params, ctx_server, [&ctx_http]() { return ctx_http.is_ready.load(); }); ctx_http.get ("/health", ex_wrapper(routes.get_health)); // public endpoint (no API key check) ctx_http.get ("/v1/health", ex_wrapper(routes.get_health)); // public endpoint (no API key check) @@ -3790,7 +144,7 @@ int main(int argc, char ** argv) { auto clean_up = [&ctx_http, &ctx_server]() { SRV_INF("%s: cleaning up before exit...\n", __func__); ctx_http.stop(); - ctx_server.queue_results.terminate(); + ctx_server.terminate(); llama_backend_free(); }; @@ -3818,17 +172,9 @@ int main(int argc, char ** argv) { LOG_INF("%s: model loaded\n", __func__); - ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) { - ctx_server.process_single_task(std::move(task)); - }); - - ctx_server.queue_tasks.on_update_slots([&ctx_server]() { - ctx_server.update_slots(); - }); - shutdown_handler = [&](int) { // this will unblock start_loop() - ctx_server.queue_tasks.terminate(); + ctx_server.terminate(); }; // TODO: refactor in common/console @@ -3848,14 +194,14 @@ int main(int argc, char ** argv) { LOG_INF("%s: server is listening on %s\n", __func__, ctx_http.listening_address.c_str()); LOG_INF("%s: starting the main loop...\n", __func__); - // this call blocks the main thread until queue_tasks.terminate() is called - ctx_server.queue_tasks.start_loop(); + // this call blocks the main thread until ctx_server.terminate() is called + ctx_server.start_loop(); clean_up(); if (ctx_http.thread.joinable()) { ctx_http.thread.join(); } - llama_memory_breakdown_print(ctx_server.ctx); + llama_memory_breakdown_print(ctx_server.get_llama_context()); return 0; }