diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 55ec2cb5c848a..a3c024c8975f5 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -645,6 +645,7 @@ class MODEL_TENSOR(IntEnum): ], MODEL_ARCH.MINICPM: [ MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT, MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_NORM, diff --git a/llama.cpp b/llama.cpp index 40d2ec2c967f2..3861e4a688286 100644 --- a/llama.cpp +++ b/llama.cpp @@ -5129,12 +5129,10 @@ static bool llm_load_tensors( // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - if (model.arch != LLM_ARCH_MINICPM){ - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } } @@ -10217,7 +10215,7 @@ struct llm_build_context { cb(cur, "lmhead_scaling", -1); // lm_head - cur = ggml_mul_mat(ctx0, model.tok_embd, cur); + cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur);