HW due Friday, 1/14

$$
\text { 1. } 1: 14,20,30
$$

$$
\text { 1.2: } 10,44,45 \text { (use calculator for 45) }
$$

Row Operations
System of Equations
Coefficient matrix

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+x_{3}+x_{4}=7 \\
x_{1}+2 x_{2}+2 x_{3}-x_{4}=12 \\
2 x_{1}+4 x_{2}+6 x_{4}=4
\end{array} \quad\left(\begin{array}{cccc}
1 & 2 & 1 & 1 \\
1 & 2 & 2 & -1 \\
2 & 4 & 0 & 6
\end{array}\right)\right.
$$

Augmented matrix

$$
\left(\begin{array}{cccc:c}
1 & 2 & 1 & 1 & 7 \\
1 & 2 & 2 & 12 \\
2 & 4 & 0 & 6 & 4
\end{array}\right)
$$

ILea Manipulate the augmented ratrix to Solve System of equations. Allowable Operations (Raw operations)
(1) Multiply/divide a Tow by a nonzero scar $\left(\begin{array}{lll:l}1 & 2 & 1 & 1: 7 \\ 1 & 2 & 2 & -1: 12 \\ 2 & 4 & 0 & 6\end{array}\right) \xrightarrow[R_{3} \leftarrow \frac{1}{2} * R_{3}]{\longrightarrow}\left(\begin{array}{llll}1 & 2 & 1 & 1 \\ 1 & 2 & 2 & -1 \\ i & 12 \\ \hline\end{array}\right)$
(2) Subtract a multiple of a row from another row
(3) Sump two rows

$$
\text { above }\left\{\begin{array} { l }
{ 0 } \\
{ i } \\
{ 0 }
\end{array} \quad (\begin{array} { c c c c : c }
{ 1 } & { 2 } & { 1 } & { 1 } & { 7 } \\
{ 1 } & { 2 } & { 2 } & { - 1 ; 1 2 } \\
{ 2 } & { 4 } & { 0 } & { 6 } & { 4 }
\end{array}) \xrightarrow { R _ { 1 } \leftrightarrow R _ { 2 } } \left(\begin{array}{lll:l}
1 & 2 & 2 & -1 \\
1 & 2 & 1 & 17 \\
2 & 4 & 0 & 6
\end{array} 4\right.\right.
$$

Want Each row to be $\begin{array}{rrrrr}0 & \cdots & 1 & 1 & \cdots \\ i & \vdots & \vdots & \cdots\end{array}$

$$
\rightarrow\left\{\begin{array} { l l }
{ x _ { 1 } + 2 x _ { 2 } } & { + 3 x _ { 4 } = 2 } \\
{ x _ { 3 } - 2 x _ { 4 } } & { = 5 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1}=2-2 x_{2}-3 x_{4} \\
x_{3}=5+2 x_{4}
\end{array}\right.\right.
$$

x_{1} and x_{3} are leading variables
x_{2} and x_{4} are free variables
So, if $x_{2}=t, x_{4}=r$, then $x_{1}=2-2 t-3 r$ and $x_{3}=5+2 r$
Represent as a vector

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
4
\end{array}\right)=\left(\begin{array}{cc}
2 & -2 t-3 r \\
5 & t \\
& \\
& r
\end{array}\right)
$$

Nice properties of desired matrix form for system of equations
(P1) The leading coefficient is 1 in each equation
(P2) Each leading variable appears in only one equation
(13) Leading variables are in increasing order.

To solve a system of equations, we want to get to this form!
Def A matrix is in row-reduced echelon form (ref) if it satisfies
a) If a row has nonzero entries, then I st nonzero entry is a 1 (leading 1 or pivot)

$$
0 \cdots O(1) * \cdots *
$$

b) If a column has a leading 1, then all other entries in that

$$
0 \cdots 0 \begin{gathered}
0 \\
0 \\
0 \\
\vdots \\
0
\end{gathered}
$$

c) If a row contains a leading 1, then each row above it contains a leading! further to the left.

$$
\begin{aligned}
& \frac{1}{0} 01 \\
& 001 \\
& 0.101
\end{aligned}
$$

Examples

1) $\left(\begin{array}{cccc:c}1 & 2 & 0 & 3 & 2 \\ 0 & 0 & -2 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$
2) $\left(\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & -0 \\ 0 & 0 & 0\end{array}\right)$
3) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & -2\end{array}\right)$

Non-examples

$$
\begin{aligned}
& \text { 1) }\left(\begin{array}{ccccc}
0 & 0 & 1 & -2 & 1 \\
1 & 2 & 2 & 3 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \text { 2) }\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \text { 3] }\left(\begin{array}{cccc}
1 & 0 & 0 & 6 \\
0 & 2 & 0 & -2 \\
0 & 0 & 1 & -2
\end{array}\right) \\
& \text { violates } \\
& \text { c) } \\
& \text { violates b) } \\
& \text { violates a) }
\end{aligned}
$$

How to put a matrix in ref
Proceed row by saw, top to bottom
At raw i
I) Take the leftmost non-zero entry and normalize it to 1. Call this column j.
II) Add/subtract multiples of row i from all the others so column j has zeros everywhere except sow i
III) Proceed to row it 1

At the end, suap four so leading I's are in increasing order.

$$
\left(\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 13 \\
0 & 0 & 10
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 10 \\
0 & 0 & 0
\end{array}\right)\right.
$$

So, $\left\{\begin{array}{l}2 x_{1}+x_{2}=5 \quad \text { has solution }\binom{x_{1}}{x_{2}}=\binom{1}{4} \rightleftarrows x_{1}=1, x_{2}=3 \\ x_{1}+2 x_{2}=7 \\ 3 x_{1}+6 x_{2}=21\end{array}\right.$
When done on equations, this is carrel Gauss-Jordan Elimination
Caveat A system of equations can be inconsistent
Eg

$$
\left\{\begin{aligned}
x_{1}+2 x_{2}=5 \\
2 x_{1}+4 x_{2}=11
\end{aligned} \longleftrightarrow\left(\begin{array}{ll}
1 & 2 ; 5 \\
2 & 4: 11
\end{array}\right) \xrightarrow{R_{2} \in R_{2}-2 R_{1}\left(\begin{array}{cc}
1 & 2 ; 5 \\
0 & 0 \\
\hline
\end{array}\right) \longleftrightarrow} \begin{array}{rl}
& \text { This row says } \\
& 0=1,
\end{array}\right.
$$

which is inconsistent!
\Rightarrow System has no Solutions
Def The rankle of a matrix A is the number of leading 1's in its reef.

