HW due Friday, 1/14
1.1: $14,20,30$
1.2: 10, 44, 45 (use calculator for 45)

HW due Friday, $1 / 21$
1.3: 4, 48 ab, 58

Clarifications from $1 / 7$

1) $\left\{\begin{array}{ll}x_{1}+2 x_{2} & +3 x_{4}\end{array}=2\right.$.
x_{1} and x_{3} are leading variables
x_{2} and x_{4} are free Variables
So, if $x_{2}=t, x_{4}=r$, then $x_{1}=2-2 t-3 r$ and $x_{3}=5+2 r$

Represent as a vector

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
2-2 t-3 r \\
5 \\
t \\
+2 r \\
r
\end{array}\right) \Longrightarrow \quad \begin{aligned}
& \text { Infinitely many solutions! (A whale 2D plane) } \\
& \text { Eg } t=0, r=0 \Rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{9}
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
5 \\
0
\end{array}\right) \text { is a solution }
\end{aligned}
$$

but also $t=42, r=-1 \Rightarrow\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{c}-79 \\ 42 \\ \text { or any pair of numbers } \\ \text { for }(r, s) \text {. }\end{array}\right)$

Livre

Figure 2(a) Three planes having a line in common.
but in 4D with green intersection a plane instead of a line.
2) Def A matrix is in row-reduced echelon form (ref) if it satisfies ...
C) If a row contains a leading 1 , then each row above it contains a leading 1 further to the left.

Necessary to ak e mex Unique!
Def Inemsistent System of linear equations has no solutions
Consistent system -" has at least one solution

- Infinitely many solutions (when free variables are present)
- One solution (all variables are leading)

Def The rank of a matrix A is the number of leading I's in its ref, denoted $\operatorname{rank}(A)$.
The a) A linear system of n equations in n variables has a unique solution if and only if the rank of its coefficient matrix is n. $n=3 \quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ or $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
6) A linear system of n equations and m unknowns with $n<m$ has un solutions or infinitely many solutions

$$
\begin{aligned}
& \left(\begin{array}{llllll}
1 & 0 & * & 0 & * & 6 \\
0 & 1 & * & 0 & * & * \\
0 & 0 & 1 & * & *
\end{array}\right)\left(\begin{array}{llll}
Y & & & \vdots \\
0 & & & \vdots \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \underset{\text { Infinitely }}{\alpha} \text {-any }
\end{aligned}
$$

Matrix Operations
Denote $A=\left(a_{i j}\right)=\left(\begin{array}{ccc}a_{11} & \cdots a_{1 m} \\ \vdots & \cdots \\ a_{n \prime} & \cdots & a_{n m}\end{array}\right)$
Sums $\left(a_{i j}\right)+\left(b_{i j}\right)=\left(a_{i j}+b_{i j}\right) \quad\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)+\left(\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right)=\left(\begin{array}{lll}2 & 5 & 8 \\ 6 & 9 & 12\end{array}\right)$
scalar pertucts k-a number

$$
k\left(a_{i j}\right)=\left(k a_{i j}\right)_{\left(w_{i}\right)} \quad 2\left(\begin{array}{cc}
1 & -1 \\
-2 & 3 \\
\left(v_{i}\right)
\end{array}\right)=\left(\begin{array}{cc}
2 & -2 \\
-4 & 6
\end{array}\right)
$$

Dot product of vectors $\vec{u}=\left(\begin{array}{l}u_{1} \\ \vdots \\ u_{n}\end{array}\right) \vec{v}=\left(\begin{array}{l}v_{1} \\ 1 \\ v_{n}\end{array}\right)$

$$
\vec{u} \cdot \stackrel{\rightharpoonup}{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} \quad\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
5 \\
6 \\
6
\end{array}\right)=1+4+2 \cdot 5+3 \cdot 6
$$

Nate, wacks with row vectors or a mix between column $\&$ row vector Matrix - Vector Product
A- nxM matrix with row vectors $\vec{x} \in \mathbb{R}^{m}$

$$
A=\left(\begin{array}{l}
-\vec{w}_{1}- \\
-\frac{\vec{w}_{2}}{2} \\
-\frac{\vec{w}_{n}}{n}-
\end{array}\right)
$$

$$
A \vec{x}=\left(\begin{array}{c}
\overrightarrow{w_{0}} \cdot \vec{x} \\
\cdot \\
\vec{w}_{n} \cdot \vec{x}
\end{array}\right) \in \mathbb{R}^{n} \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{l}
\left(-w_{n}\right. \\
1 \cdot 1+2 \cdot-2+3 \cdot-1 \\
4 \cdot 1+5 \cdot 2+6 \cdot-1
\end{array}\right)=\binom{2}{8}
$$

Note We can use this to describe a system of linear eqs.

Waning Must have \# vols in $A=$ \# components in \vec{x}
Otherwise undefined

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\binom{7}{8} \text { is undefined! }
$$

Trick $(n \times m)(m \times 1)=(n \times 1)$
The If A nom matrix, \vec{x} and \vec{y} in \mathbb{R}^{m}, k a scalar, then
a) $A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}$
b) $A(k \vec{x})=k(A \vec{x})$ $i^{\text {th }}$ component on each side

$$
\begin{aligned}
& \text { LHS: }\left(\vec{w}_{i} \cdot(\vec{x}+\vec{y})\right)> \\
& \text { RUS }: \vec{w}_{i} \cdot \vec{x}+\vec{u}_{i} \cdot \vec{y}
\end{aligned}
$$

Column form for matrix-vector product

$$
A \vec{x}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\vec{v}_{1} & \vec{v}_{2} & \cdots \vec{v}_{m} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{m} \vec{v}_{m}
$$

$i^{\text {th }}$ component of $\vec{b}: x_{1} a_{i 1}+x_{2} a_{i 2}+\cdots+x_{m} a_{i m}=\vec{x} \cdot \vec{w}_{i}$

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=1 \cdot\binom{1}{4}+2 \cdot\binom{2}{5}-1\binom{3}{6}=\binom{2}{8}
$$

Linear Combinations
Def A vector \vec{b} is called a linear combination of vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in \mathbb{R}^{n} if there exist scalars x_{1}, \ldots, x_{m} such that $\vec{b}=x_{1} \vec{v}_{1}+\cdots+x_{m} \vec{v}_{m}$
Eg a) Is $\binom{2}{1}$ a linear combination of $\left\{\binom{1}{0}\binom{0}{1}\right\}$?

$$
\text { Yes. }\binom{2}{1}=2\binom{1}{0}+\binom{0}{1}
$$

6) Is $\binom{2}{1}$ a linear combination of $\left\{\binom{5}{1},\binom{1}{2}\right\}$? Yes!

Need $x_{1}\binom{5}{1}+x_{2}\binom{1}{2}=\binom{2}{1} \rightarrow\left\{\begin{array}{l}5 x_{1}+x_{2}=2 \\ x_{1}+2 x_{2}=1\end{array}\right.$
Use ref of augmented matrix!

So, $\binom{2}{1}=\frac{1}{3}\binom{5}{1}+\frac{1}{3}\binom{1}{2}$

$$
\begin{aligned}
& \qquad R_{1} \in R_{1}-\frac{1}{5} R_{2} \\
& \left(\begin{array}{cc:c}
1 & 0 & \frac{1}{3} \\
0 & 1 \frac{3}{3}
\end{array}\right) \\
& \frac{2}{5}-\frac{1}{3}=\frac{6}{15}-\frac{1}{15}
\end{aligned}
$$

c) Is $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ a linear combination of $\left\{\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$? No!

