Hw due Friday, 1/1	14			
1.): 14, 20, 30 1.2: 10, 44, 45 (use ca)	culator for 45)			
HW Jue Friday, 1/2				
1.3: 4.48ab, 58				
Clarifications from	1/7			
1) $\begin{cases} x_1 + 2x_2 + 3 \\ x_3 - 2 \end{cases}$	X = Z $X = X = X = X = X = X = X = X = X = X$	2 - 25 - 3x	4	
3 7 73 2	x ₅ - 5 - 7 (x ₃ -	3 ' CA4		
V 1 V 5-0 201				
X, and X3 are lead in	Variables			
X2 and X4 are free	Variables			
		2 - 2t - 3r		
So, if $X_2 = t$, K_4	and $X_3 =$	5+2r		
Represent as a ve				14
$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 - 2t - 1 \\ t \\ 5 + 2t \\ 1 \end{pmatrix}$	30 I	nfinitely /	rany solutions!	[A whole 2D plane]
$\begin{pmatrix} 72 \\ x_3 \end{pmatrix} = 5 + 2$	er Fa	t=0,		2 K a Saution
4	r / 3		$r=0 \Rightarrow \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \end{cases}$	_ 0
			$\begin{pmatrix} X_3 \\ X_4 \end{pmatrix}$	0
			(19)	
	but	+4150 $t=42$	r = 1 = 1 = 1	(- 1 9)
	or	any pair of	numbers (X3) =	3
	- La	(r,5).	\x _e /	(-1)
Like	1			
<u> </u>		but in	4D with gree	en intersection
		a plan	ne instant of a	a line.
			ie jujitov of	. , , , , , , , , , , , , , , , , , , ,
	\			
	=> Many 50/w	tions		
Figure 2(a) Three pl	,			
common				

Matrix Operations

Denote
$$A = (a_{ij}) = \begin{pmatrix} a_{ij} - a_{mi} \\ a_{ij} - a_{mi} \end{pmatrix}$$

Sums $(a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})$

Scalar products $[a_{ij} - a_{mi}]$

Scalar products $[a_{ij} - a_{mi}]$

Det product of vectors $\vec{u} = \begin{bmatrix} u_{ij} \\ u_{ij} \end{bmatrix}$
 $\vec{v} = \begin{bmatrix} u_{ij} \\ u_{ij} \end{bmatrix} = \begin{bmatrix} u_{ij} \\ u_{ij} \end{bmatrix}$

Warning Must have # eols in A = # components in x I Othervise undefined (1 2 3) (7) is undefined! Column form for natrix-vector product $A\vec{X} = \begin{pmatrix} 1 & 1 & 1 \\ \vec{V_1} & \vec{V_2} & \cdots & \vec{V_m} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = x_1 \vec{V_1} + x_2 \vec{V_2} + \cdots + x_m \vec{V_m}$ ith corponent of i: X, a; + X, a; + ... + X, a; = \(\vec{x} \cdot \vec{w} \); $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{bmatrix} 1 & 4 \\ 4 \end{pmatrix} + \begin{bmatrix} 2 & 2 \\ 5 \\ 6 \end{pmatrix} = \begin{bmatrix} 3 \\ 6 \\ 8 \end{bmatrix}$ Linear Combinations Def A vector b is called a linear combination of vectors V, ,..., Vm in R" if there exist scalars x, ..., xm Such that \$= x, \$\vec{y} + \dots + \times x_n \vec{y}_n Eq a) Is $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ a linear combination of $\begin{cases} 1 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 9 \\ 1 \end{pmatrix}$?

Yes, $\begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 1) Is (2) a linear combination of (5) (1) } ? Yes!

| Need $x_1(\frac{5}{1}) + x_2(\frac{1}{2}) = \frac{2}{1}$ | $x_1(\frac{1}{2}) + x_2(\frac{$ C) Is (0) a linear combination of $\{0\}$ (1) $\{0\}$ No. $\{0\}$ (1)