HF 1 due today (right now)
HF 2 due Friday, $1 / 21$
1.3: 4, 48 ab, 58
2.3: $2^{\prime} 48^{\prime}$
$2.1: 8,12,26,28$
Reflection Quiz on Canvas due $1 / 21$
No Class Monday, 1/17 (MLKday)
Why multiply matrices?
An $n \times m$ matrix ${ }^{A}$ takes $\vec{v} \in \mathbb{R}^{m}$ and
sends it to $A \vec{v} \in \mathbb{R}^{n}$.
So, A acts as a function with domain \mathbb{R}^{m} and

$$
\mathbb{R}^{m} \xrightarrow{A} \mathbb{R}^{n} \quad \operatorname{target}(\text { codarcin }) \mathbb{R}^{n}
$$

If B is a pen matrix, it sends $\mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$
so, $B A$ as a composition

$$
\begin{aligned}
& \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n} \xrightarrow{B} \mathbb{R}^{p} \\
& \vec{v} \longmapsto A \vec{v} \longmapsto B A \vec{v}
\end{aligned}
$$

Linear Transformations
Def A function T from \mathbb{R}^{n} to \mathbb{R}^{n} is called a linear transformation
if there exists a matrix A such that

$$
T(\vec{x})=A \vec{x} \text { for all } \vec{x} \in \mathbb{R}^{m} \text {. }
$$

Eg a) $T\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{4}\end{array}\right)=\underbrace{\left(\begin{array}{l}x_{1}+2 x_{2}+x_{3}+x_{4} \\ x_{1}+2 x_{2}+2 x_{3}-x_{4} \\ 2 x_{1}+4 x_{2}+6 x_{4}\end{array}\right)}_{\mathbb{R}^{3}}=\underbrace{\left(\begin{array}{cccc}1 & 2 & 1 & 1 \\ 1 & 2 & 2 & -1 \\ 2 & 4 & 0 & 6\end{array}\right)}_{\substack{\text { coefficient Matrix } \\ \text { of s }}}\left(\begin{array}{l}\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)\end{array}\right.$
b) Let T take a vector in \mathbb{R}^{2} and rotate it $90^{\circ} \mathrm{ccw}$.

For example, $T\binom{3}{2}=\binom{-2}{3}$
Guess: $T\binom{x_{1}}{x_{2}}=\binom{-x_{1}}{x_{1}}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\binom{x_{1}}{x_{2}}$
\sim coefficient matrix
of $\left\{\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right)$

$$
\text { of }\left\{x_{1}-x_{2}\right.
$$

The A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is represented by the matrix

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right) & \cdots T\left(\vec{e}_{m}\right) \\
1 & 1 & 1
\end{array}\right) \quad \vec{e}_{i}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right) \in i^{H+} \text { component }
$$

Eg b^{\prime}) $T(\vec{e})=T\binom{1}{0}=\binom{0}{1} \quad$ so, by the theorem, T is represented

$$
T\left(\vec{e}_{2}\right)=T\binom{0}{1}=\binom{-1}{0} \quad \text { by } A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The A transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is linear if and only if
a) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all $\vec{u}, \vec{v} \in \mathbb{R}^{n}$
b) $T(k \vec{v})=k T(\vec{v})$ for all scalars k and $\vec{v} \in \mathbb{R}^{m}$,

$$
\rightarrow c) T(\overrightarrow{0})=\overrightarrow{0}
$$

Eg c) Is $T\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}x_{1}^{2} \\ x_{2}^{2} \\ x_{3}^{2}\end{array}\right)$ a linear transformation?

$$
T\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { but } T\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)=\left(\begin{array}{l}
4 \\
4 \\
4
\end{array}\right) \neq 2 T\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { so volutes bi }
$$

d) IS $T\binom{x_{1}}{x_{2}}=\binom{1+x_{2}}{x_{1}}$ a linear transformation?

$$
T\binom{0}{0}=\binom{1}{0} \text { so no! violates c) }
$$

upshot Linear transformations are special.
Note Look at Ch 2.1 Example 9 for application to Page Rank

use matrix to describe haw users transition between pages \sim "transition matrix"

The If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p}$ is a linear transformation
represented by $p \times m$ matrix A an α

$$
S: \mathbb{R}^{P} \longrightarrow \mathbb{R}^{n}
$$

then $S \circ T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is represented by $B A$, ie $S(T(\vec{x}))=B A \vec{x}$ for all $\vec{x} \in \mathbb{R}^{n}$.
Inverses

$$
\text { Eg }\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{x_{1}+2 x_{2}}{3 x_{1}+4 x_{2}}
$$

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{5}{10}=\binom{25}{55} \longrightarrow\binom{25}{55} \text { decode to get back }
$$

$$
\binom{5}{10} ?
$$

$$
\text { solve }\left\{\begin{array}{l}
x_{1}+2 x_{2}=25 \\
3 x_{1}+4 x_{2}=55
\end{array} ?\right.
$$

Lan eve find a matrix A such that

$$
A\binom{x_{1}+2 x_{2}}{3 x_{1}+4 x_{2}}=\binom{x_{1}}{x_{2}} ?
$$

say $\left\{\begin{array}{l}x_{1}+2 x_{2}=y_{1} \\ 3 x_{1}+4 x_{2}=y_{2}\end{array} \quad\right.$ how can we write x_{1}, x_{2} in terns of y_{1}, y_{2} ?

$$
\begin{aligned}
& \begin{array}{l}
\Rightarrow\left\{\begin{array}{l}
x_{1}+2 x_{2}=y_{1} \\
x_{2}=\frac{3}{2} y_{1}
\end{array}\right. \\
\longrightarrow A=\left(\begin{array}{ll}
-2 & 1 \\
\frac{3}{2}-\frac{1}{2}
\end{array}\right)
\end{array} \\
& \left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2}-\frac{1}{2}
\end{array}\right) \underbrace{\binom{x_{1}+2 x_{2}}{3 x_{1}+4 x_{2}}}=\binom{x_{1}}{x_{2}}
\end{aligned}
$$

50,

$$
\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right) \overparen{1} \begin{aligned}
& 1 \\
& 3
\end{aligned} 4^{\prime \prime} .\binom{x_{1}}{x_{2}}=\binom{x_{1}}{x_{2}} \Longrightarrow\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Identity transformation!
We say $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $\left(\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right)$ are inverses.

