WW 2 due right now!
Reflection Quiz on Canvas due $\mid / 21$

$$
\text { Quiz on } 1 / 28(15 \mathrm{~min})^{(\text {tonight })}
$$

\longrightarrow Ch 1, 2.1, 2.3,2.4
How 3 due 2/4

$$
\text { 2.4: } 2,6,34,40,42
$$

Invertibility
Def A linear transformation is invertible (bijective) if it is both injective and surjective.
ie $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, for every $\vec{v} \in \mathbb{R}^{n}$, there is exactly one $\vec{u} \in \mathbb{R}^{\mu}$ such that $T(\vec{u})=\vec{v}$.
$\frac{E g}{} T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by rotating $\binom{x}{y}$ by $90^{\circ} \mathrm{cew}$. The An $n \times n$ matrix A gives an invertible linear transformation if and only if $\operatorname{rref}(A)=I_{n}$ if and only if $\operatorname{rank}(A)=n$.
Def A square nan matrix A is an invertible matrix if there exists a matrix B such that $A B=I_{n}=B A$.
In this case, we will say $B=A^{-1}$.

$$
\begin{aligned}
& \operatorname{Eg}\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \text { so }\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \text { in } \\
& \left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{-1}=\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)
\end{aligned}
$$

The An $n \times n$ matrix A gives an invertible $\operatorname{map} ~ T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ if and only if A is invertible. Furthermore, the inverse map $T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ corresponds to the matrix A^{-1}. Te $T^{-1}(\vec{v})=A^{-1} \vec{v}$.

Eg Rotate $\binom{x}{y}$ by 99° CCW has matrix $\left(\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right)$
Inverse $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
So, $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & -1 \\ 1 & 0\end{array}\right)^{-1} \begin{aligned} & \text { and rotates }\binom{x}{1} \text { by } \\ & 10^{\circ} \mathrm{CW} .\end{aligned}$
The a) Let A be an invertible non matrix
Then, the system $A \vec{x}=\vec{b}$ has unique sountion given by $\vec{x}=A^{-1} \vec{b}$.
Why? Invertible non matrix $A \Rightarrow \operatorname{rank}(A)=n$
(乡12)

$$
\begin{aligned}
& \Longrightarrow A \vec{x}=\vec{b} \text { has a } \\
& A \vec{x}=\vec{b} \leadsto A\left(A^{\prime} \vec{b}\right)=I_{n} \vec{b}=\vec{b} \text { so } A^{-1-\vec{b}} \text { unique solution. }
\end{aligned}
$$

a^{\prime}) A an invertible $n \times n$ matrix, then $\vec{A} \vec{x}=\overrightarrow{0}$ has unique solution $\vec{x}=\overrightarrow{0}$!,
6) A a non-invertible nun matrix. Then, the system $A \vec{x}=\vec{b}$ has infinitely many sautions or

Rephrase \$1.2.
b) A uon-invertible, then $A \vec{x}=\overrightarrow{0}$ has infinitely many solutions. (Since $\vec{x}=\overrightarrow{0}$ is a solution.)

$$
\begin{aligned}
& \text { Eg }\left\{\begin{array}{l}
x_{1}+2 x_{2}=4 \\
3 x_{1}+4 x_{2}=10
\end{array} \rightarrow\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{4}{10}\right. \\
& \underset{\text { Remember } \xrightarrow[\text { matrix }]{\text { How find the inert of }} \rightarrow\left(\begin{array}{ll}
-2 & 1 \\
\frac{2}{2} & -\frac{1}{2}
\end{array}\right)\binom{4}{10}=\binom{2}{1}=\binom{x_{1}}{x_{2}}}{(x)} \\
& \left\{\begin{array} { l }
{ x _ { 1 } + 2 x _ { 2 } = y _ { 1 } } \\
{ 3 x _ { 1 } + 4 x _ { 2 } = y _ { 2 } }
\end{array} \vec { E _ { 2 } + E - 3 E = \{ } \left\{\begin{array} { l }
{ x _ { 1 } + 2 x _ { 2 } = y _ { 1 } } \\
{ - 2 x _ { 2 } = - 3 y _ { 1 } + y _ { 2 } }
\end{array} \vec { E _ { 2 } - \frac { 1 } { 2 } E _ { 2 } } \left\{\begin{array}{l}
x_{1}+2 x_{2}=y_{1} \\
x_{2}=\frac{3}{2} y_{1}-\frac{1}{2} y_{2}
\end{array}\right.\right.\right. \\
& \downarrow E_{1} \leftarrow E_{1}-2 E_{2}
\end{aligned}
$$

Want to do algorithm to $n \times n$ rateix A
\longrightarrow sow reduce $\left(A_{i}^{\prime} I_{n}\right)$ to get $\left(I_{n}!A^{-1}\right)$
Eg $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$

The a) If $\operatorname{rref}\left(A: I_{n}\right)$ is of the form $\left(I_{n}: B\right)$, then A is invertible and $A^{-1}=B$.
6) If $\operatorname{rref}\left(A^{\prime} I_{n}\right)$ is of another form, then A is mot

$$
\begin{aligned}
& \text { Eg }\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 4 & 0 & 1
\end{array}\right) \xrightarrow[R_{2} E R_{2}-2 R_{1}]{ }\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
0 & 0 & -2 & 1
\end{array}\right) \xrightarrow[R_{2}--\frac{1}{2} R_{2}]{ }\left(\begin{array}{cccc}
1 & 2: 1 & 0 \\
0 & 0 & 1 & -\frac{1}{2}
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & -\frac{1}{2}
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{cc}
\mathrm{Net}^{1} & 2 \\
2 & 4
\end{array}\right) \text { is ut } \\
& \text { Some rules about inverses }
\end{aligned}
$$

Than If A and B are invertible onxn matrices, then $B A$ is invertible with inverse $(B A)^{-1}=A^{-1} B^{-1}$.
4 Careful because order matters!
Pf

$$
\begin{aligned}
& \text { f } \vec{y}=B A \vec{x} \\
& \Rightarrow \vec{B}^{-1} \vec{y}
\end{aligned}=B^{-1} B A \vec{x} .
$$

The If A, B are $n \times n$ matrices such that $A B=I_{n}$
Then a) A \& B are both invertible
b) $A^{-1}=B$ and $B^{-1}=A$
c) $B A=I_{n}$

Upshot Enough to check $A B=I_{n}$.
2×2 matrices

$$
\left(\begin{array}{ll}
a & b \\
c & j
\end{array}\right)^{-1} ?
$$

From HW 2, 2.3:\#8

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & \alpha
\end{array}\right)\left(\begin{array}{cc}
\alpha-b \\
-c & a
\end{array}\right) & =\left(\begin{array}{cc}
a d-k & 0 \\
0 & \alpha-k
\end{array}\right) \\
& =(a d-b c)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

So $\left(\begin{array}{ll}a & b \\ c & \alpha\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}\alpha & -b \\ -c & a\end{array}\right)$ assuming $a d-b c \neq 0$.
Def The determinant of $2 x^{2}$ matrix is given by

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & \alpha
\end{array}\right)=a \alpha-b c
$$

The $A=\left(\begin{array}{ll}a & b \\ c & \alpha\end{array}\right)$ is invertible with inverse $\frac{1}{\operatorname{tet}(A)}\left(\begin{array}{cc}\alpha & -b \\ -<a\end{array}\right)$
if and only if $\operatorname{det}(A) \neq 0$.
Eg a) $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ has $\operatorname{Let}(A)=1 \cdot 4-2 \cdot 3=-2$

$$
A^{-1}=-\frac{1}{2}\left(\begin{array}{cc}
4-2 \\
-3 & -1
\end{array}\right)=\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)
$$

6) $\operatorname{det}\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)=1.4-2.2=0$, so not invertible!
