Quiz on $1 / 28$ (15 min)
\longrightarrow Ch 1, 2.1, 2.3,2.4
How 3 due $2 / 4$

$$
2.4: 2,6,34,40,42
$$

Last time $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c \quad$ if $=0$, then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ not invertible $\neq 0$, then it is.

Georetric interpretation
Def For vector $\vec{u}=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right)$, define norm $\|\vec{u}\|=\sqrt{u_{1}^{2}+\cdots+u_{n}^{2}}$ (length of \vec{u})
2×2 affix $A=\left(\begin{array}{cc}l & t \\ \text { positive } \theta \\ 1 & 1\end{array}\right)$, $\operatorname{Let} A=\|\vec{u}\| \cdot\|\vec{v}\| \sin \theta$ for $-\pi<\theta \leq \pi$
Negative θ
Positive θ Negative θ

$\Rightarrow \quad \sin \theta>0$

$$
\Rightarrow \sin \theta<0
$$

$\Rightarrow \operatorname{Let} A>0$

$$
\Rightarrow \operatorname{let} A<0
$$

$\vec{u}=k \vec{v} \Rightarrow \theta=0$ or π radians $\Rightarrow \operatorname{det} A=0$
$|\operatorname{det} A|=$ area of parallelogram

Think of A as a linear transformation, then A sends "unit square"

Area 1 Square \longrightarrow area |Net| parallelogram

Linear transformations in geometry
Linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ tiransforns georetric shapes
Eg a) Rotate LCW by 90°

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

6) Reflect over line $y=x \quad\left(\begin{array}{lll}1+w & 2.1: 26\end{array}\right)$

c) Scale y-direction by z

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)^{(2.1: 28)}
$$

What other simple geocetric transformations can te describe using linear transformations?

1) Scaling
2) Orthogonal projections
3) ILefrections
4) Rotations
5) Shears

Scaling

$$
\left(\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right)\binom{\hat{x}}{y}=\binom{k x}{g}
$$

$E_{g} \quad k=2$

$$
\begin{array}{cc}
k>1 & \longrightarrow \text { dilation } \\
0<k<1 & \longrightarrow \text { Contraction }
\end{array} \quad \text { Nate } \operatorname{det}\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right)=k^{2}-0^{2}=k^{2}
$$

Orthogonal Projection
Fix line L and $\vec{x} \in \mathbb{R}^{2}$

Note $\vec{x}=\vec{x}^{\prime \prime}+\vec{x}^{\perp}$ and $\vec{x}^{\perp}+\dot{x}^{\prime \prime}$ are orthogonal

$$
\left(\text { so } \vec{x}^{1} \cdot \vec{x}^{\prime \prime}=0\right)
$$

Def For line L and $\vec{x} \in \mathbb{R}^{2}$, define $\operatorname{proj}_{L}(\vec{x})=\vec{x}^{\prime \prime}$
Computing pr oj ${ }_{L}(\bar{x})$
Take $\vec{\omega} \neq \overrightarrow{0}$ parallel to L. Then $p \operatorname{pog}_{L}(\vec{x})=\left(\frac{\vec{x} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}$

Pf

$\vec{x}^{\prime \prime}=k \vec{w}$ for sone $k \in \mathbb{R}$ bbc they are on the line L.
and $\vec{x}=\vec{x}^{\prime \prime}+\vec{x}^{\perp} \Longrightarrow \vec{x}^{\perp}=\vec{x}-\vec{x}^{\prime \prime}=\vec{x}-k \vec{w}$

$$
\begin{aligned}
\vec{x}^{\prime \prime} \cdot \vec{x}^{\prime}=0 \Rightarrow \vec{x}^{\prime \prime} \cdot(\vec{x}-k \vec{w})=0 & \Rightarrow \vec{x}^{\prime \prime} \cdot \vec{x}-\vec{x}^{\prime \prime} \cdot(k \vec{w})=0 \\
& \Rightarrow \vec{w} \cdot \vec{x}-\vec{w} \cdot(k \vec{w})=0 \\
& \Rightarrow k=\frac{\vec{w} \cdot \vec{x}}{\vec{w} \cdot \vec{w}}
\end{aligned}
$$

$$
\vec{x}^{\prime \prime}=\left(\frac{\vec{w} \cdot \vec{x}}{\vec{w} \cdot \vec{w}}\right) \vec{w}
$$

Tip Pick \vec{w} so $\vec{w} \cdot \vec{w}=1$ (length 1) rakes the formula easier
The prig: $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a line er transformation
Pf using formula
i)

$$
\begin{aligned}
& \operatorname{prq}_{L}(\vec{u}+\vec{v})=\left(\frac{\vec{w} \cdot(\vec{u}+\vec{v})}{\vec{w} \cdot \vec{w}}\right) \vec{w}=\left(\frac{\vec{\omega} \cdot \vec{u}}{\vec{w} \cdot \vec{w}}\right) \vec{w}+\left(\frac{\vec{w} \cdot \vec{v}}{\vec{w} \cdot \vec{w}}\right) \vec{w} \\
&=\operatorname{pr} \dot{j}_{L}(\vec{u})+\operatorname{proj} \\
& \text { Check }
\end{aligned}
$$

ii) $\operatorname{Proch}_{L}(k \vec{u})=k \operatorname{proj}_{L}(\vec{u})$

Matrix for pr oj $_{L}$?
Let $\vec{u}=\binom{v_{1}}{v_{2}}$ Le a unit vector $\Rightarrow($ length 1) parallel te L.
Then, $A=\left(\begin{array}{cc}\operatorname{prov}_{2}^{\prime}\left(\vec{e}_{1}\right) & \operatorname{prog}_{L}^{\prime}\left(\vec{e}_{2}\right) \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}\left(\vec{u} \cdot \vec{e}_{1}\right) \vec{u} & \left(\vec{u} \cdot \vec{e}_{2}\right. \\ 1 & 1\end{array}\right)$

$$
=\left(\begin{array}{cc}
u_{1}^{\prime} \vec{u} & u_{2}^{\prime} \vec{u} \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
u_{1}^{2} & u_{2} u_{1} \\
u_{1} u_{2} & v_{2}^{2}
\end{array}\right)
$$

Eg Find matrix of orthogonal projection onto $L: 3 x-4 y=0$. $\vec{\omega}=\binom{4}{3}$ is parallel to L.
Normalize to length $1: \vec{u}=\frac{1}{\|\vec{w}\|} \vec{w}=\frac{1}{\sqrt{4^{2}+3^{2}}}\binom{4}{3}$

$$
=\frac{1}{5}\binom{4}{3}=\binom{1 / 5}{3 / 5}
$$

Thus, $\left(\begin{array}{ll}(t / 5)^{2} & (4 / 5)\left(\frac{7}{5}\right) \\ (5 / 5)(3 / 5) & \left(\frac{3}{5}\right)^{2}\end{array}\right)=\left(\begin{array}{ll}16 / 25 & 12 / 25 \\ 12 / 5 & 9 / 25\end{array}\right) \begin{aligned} & \text { is the matrix of } \\ & \text { ortho projection ont o } L\end{aligned}$ $\operatorname{det}\left(\begin{array}{l}u_{1}^{2}, u_{1}, u_{2} \\ u_{1} u_{2}\end{array} u_{2}^{2}\right)=u_{1}^{2} u_{2}^{2}-u_{1} u_{2} u_{1} u_{2}=0 \Rightarrow$ Not invertible!

