Quiz on $1 / 28$ (15 min)
\longrightarrow Ch 1, 2.1, 2.3, 2.4
How 3 due 2/4
2.4: $2,6,34,40,42$
2.2: 20,32
2. $3: 30$

Scaling by a factor of $k \longrightarrow\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)$
Projection onto a line L :

Given

$$
\begin{aligned}
& \vec{x}=\operatorname{prop}_{L}(\vec{x})+\vec{x}^{\perp} \\
& 4 \\
& \operatorname{propic}(\vec{x}) \cdot \vec{x}^{\perp}=0
\end{aligned}
$$

1) Take a unit vector \vec{u} parallel to L, then $\operatorname{pr}^{\circ} j_{L}(\vec{x})=(\vec{x} \cdot \vec{u}) \vec{u}$
number

In general, $\begin{aligned} \vec{v} \cdot \vec{w} & =\|\vec{v}\| \cdot\|\vec{w}\| \cdot \cos \theta \\ & =v_{1} w_{1}+v_{2} \omega_{2}+\cdots\end{aligned}$

$$
\operatorname{lo}_{\theta \rightarrow \vec{v}}^{v}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}
$$

So, $\vec{x} \cdot \vec{u}=\|\vec{x}\| \overrightarrow{\vec{u}} \| \cos \theta$

$$
=\| \|^{\prime} \| \cos \theta
$$

2) $\operatorname{proj}_{L}(\vec{x})=\left(\begin{array}{ll}u_{1}^{2} & u_{1} u_{2} \\ u_{1} u_{2} & u^{2}\end{array}\right) \vec{x}$

Reflections
Given line L and a vector \vec{x}, reflect \vec{x} eros L

$$
\begin{aligned}
& \Longrightarrow \operatorname{ref}_{L}(\vec{x})=\operatorname{pr}_{L}(\vec{x})-\vec{x}^{\perp} \\
& \Rightarrow \vec{x}+\operatorname{ref}_{L}(\vec{x})=\operatorname{prq}_{L}(\vec{x})-\vec{x}^{\underline{L}}+\vec{x} \\
& \vec{x}=\operatorname{prog}_{L}(\vec{x})+\vec{x}^{\perp} \\
& =2 p r j_{L}(\vec{x}) \\
& \Rightarrow \operatorname{ref}_{L}(\vec{x})=2 \operatorname{prq} \dot{q}_{L}(\vec{x})-\vec{x}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \operatorname{ref}_{L}(\vec{x}) & =\left[\begin{array}{ll}
\left.2\left(\begin{array}{cc}
u_{1}^{2} & u_{u_{2}} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right] \vec{x} \\
& =\left(\begin{array}{cc}
2 u_{1}^{2}-1 & 2 u_{1} u_{2} \\
2 u_{1} u_{2} & 2 u_{2}^{2}-1
\end{array}\right) \vec{x}
\end{array}\right. \text {. }
\end{aligned}
$$

Sn, this is the matrix for ref_{L}

$$
\left.\left.\begin{array}{rl}
\operatorname{Let}\left(\begin{array}{cc}
2 u_{1}^{2}-1 & 2 u_{1} u_{2} \\
2 u_{1} u_{2} & 2 u_{2}^{2}-1
\end{array}\right)=\underbrace{4 u_{1}^{2} u_{2}^{2}-2 u_{1}^{2}-2 u_{2}^{2}+1} & \begin{array}{rl}
\left(2 u_{1}^{2}-1\right)\left(2 u_{2}^{2}-1\right)
\end{array}-4 u_{1}^{2} u_{2}^{2}
\end{array}=-2 u_{2}^{2}-2 u_{2}^{2}+1\right)=-2\left(u_{1}^{2}+u_{2}^{2}\right)^{2}+1\right)
$$

\Rightarrow reflections hive $\operatorname{det}=-1$

$$
u_{1}^{2}+u_{2}^{2}=1 \Rightarrow 2 u_{1}^{2}+2 u_{2}^{2}=2 \Rightarrow 2 u_{1}^{2}-1=1-2 u_{2}^{2}=-\left(2 u_{2}^{2}-1\right)
$$

Set $a=2 u_{1}^{2}-1, b=2 u_{1} u_{2} \Rightarrow$
reflection is of the form $\left(\begin{array}{cc}a & b \\ b & -a\end{array}\right)$ with $-a^{2}-b^{2}=-1$
Any matrix or this form is a reflection
Eg 1) $a=0, b=1 \quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ from $H W \rightarrow$ reflect over $y=x$
2) Reflect \vec{e}_{1} and \vec{e}_{2} over $L: 2 x-y=0 \quad \overrightarrow{u_{i}}=\frac{1}{-\lambda_{4+1}}\binom{2}{1}$

Two methods to ampule
1)

$$
\begin{aligned}
\operatorname{ref}_{L}\left(\vec{e}_{1}\right) & =2 \operatorname{projL}\left(\vec{e}_{1}\right)-\vec{e}_{1} \\
& =2\left(\vec{e}_{1} \cdot \vec{u}\right) \vec{u}-\vec{e}_{1}=2\left(\frac{2}{\sqrt{5}}\right)\binom{2 / \sqrt{5}}{1 / \sqrt{5}}-\binom{1}{0}=\binom{8 / 5}{4 / 5}-\binom{1}{0}
\end{aligned}
$$

$$
=\binom{3 / s}{4 / s}
$$

Similarly, $\operatorname{ref}_{L}\left(\vec{e}_{2}\right)=\binom{4 / s}{-3 / s}$
2) $\leadsto\left(\begin{array}{cc}3 / 5 & 4 / 5 \\ 4 / 5 & -3 / 5\end{array}\right)\binom{1}{0}=\binom{3 / 5}{4 / 5} \quad$ similarly for ()$\binom{0}{1}=\cdots$

Rok 3-dinensions (see p.65)

$$
\begin{aligned}
\vec{x} & =\operatorname{proj}_{L}(\vec{x})+p r j_{v}(\vec{x}) \\
j_{V}(\vec{x}) & =\vec{x}-\operatorname{proj}_{L}(\vec{x}) \\
& =\vec{x}-(\vec{x} \cdot \vec{u}) \vec{u}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \operatorname{ref}_{L}(\vec{x})=\operatorname{proj}_{L}(\vec{x})-\operatorname{proj}_{V}(\vec{x})=2(\vec{x} \cdot \vec{u}) \vec{u}-\vec{x} \\
& \operatorname{ref}_{V}(\vec{x})=\operatorname{proj}_{V}(\vec{x})-\operatorname{proj}_{L}(\vec{x})=\vec{x}-2(\vec{x} \cdot \vec{u}) . \vec{u} .
\end{aligned}
$$

T given by rotating $\vec{x} \in \mathbb{R}^{2}$ by θ ceN.

$$
\begin{array}{rlr}
A & =\left(\begin{array}{cc}
1 \\
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) & \xrightarrow{T} \vec{e}_{\vec{e}_{1}} \\
\operatorname{det} A & =\left(\vec{e}_{1}\right)=\binom{\cos \theta}{\sin \theta}
\end{array} \text { (unit circle/ trig) }
$$

Any matrix of the form $\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ with $a^{2}+b^{2}=1$ is a rotation. Eg $\left(\begin{array}{c}0 \\ 0 \\ 1 \\ 1\end{array}\right)$ is rot ecu by $\frac{b}{2}$ radians $(a=0, b=1)$

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \text { is }-1 \cdots \text { radians }(a=-1, b=0)
$$

Shears

Vertical Shear
 is given by

$$
\left(\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right)
$$

