Quiz on $1 / 28$ (15 min)
\longrightarrow Ch 1, 2.1, 2.3, 2.4
How 3 due $2 / 4$
2.4: $2,6,34,40,42$
2.2: 20,32
2.3: 30

Midterm 1, Wed 2/9
Teratively' Ch 1-3.3
AW 4 due Fri 2/11

$$
3.1: \quad 6,24,32,34,37,38
$$

We discussed 5 types of geometric linear transformations in \mathbb{R}^{2}, but e can combine them to get mare complex operations Via Composition of linear transformations \longleftrightarrow matrix multiplication
Eg Give a matrix that rotates CCW by $\frac{\pi}{4}$ rations and scales by a factor of 2

$$
\begin{aligned}
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
\cos \left(\frac{\pi}{4}\right) & -\sin \left(\frac{\pi}{4}\right) \\
\sin \left(\frac{\pi}{4}\right) & \cos \left(\frac{\pi}{4}\right)
\end{array}\right)= & \left(\begin{array}{cc}
\sqrt{2} & -\sqrt{2} \\
\sqrt{2} & \sqrt{2}
\end{array}\right) \\
& \left(\begin{array}{cc}
\sqrt{2} & -\sqrt{2} \\
\sqrt{2} & \sqrt{2}
\end{array}\right)\binom{x}{y}=\binom{\sqrt{2} x-\sqrt{2} y}{\sqrt{2} x+\sqrt{2} y}
\end{aligned}
$$

Subspaces
Recall a linear combination $\left\{\vec{V}_{1}, \ldots, \vec{V}_{m}\right\}$ is $C_{1} \vec{v}_{1}+C_{2} \vec{v}_{2}+\cdots+C_{m} \vec{v}_{m}$ for scalars c_{i}.
Eg $\left(\begin{array}{l}3 \\ 5 \\ 7\end{array}\right)$ is a linear Combination of $\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)\right\}$

$$
\left(\begin{array}{l}
3 \\
5 \\
7
\end{array}\right)=3\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)-\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)
$$

Def For $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$
$\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}=$ The set of ans linear combinations

$$
\begin{aligned}
& \text { of }\left\{\vec{u}_{1}, \ldots, \vec{v}_{m}\right\} \\
= & \left\{c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m} ; c_{1}, \cdots, c_{n} \text { acre scales }\right\}
\end{aligned}
$$

Eg a) $\left(\begin{array}{l}3 \\ 5 \\ 7\end{array}\right)$ is in $\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)\right\}$
b) Is $\binom{1}{2}$ in $\operatorname{span}\left\{\binom{1}{0},\binom{2}{1},\binom{0}{1}\right\}$? $\leftrightarrow \mathbb{I}^{2}\binom{1}{2}$ a lin comb of

$$
\text { Yes! Since }\binom{1}{2}=-\binom{1}{0}+\binom{2}{1}+\binom{0}{1}
$$

Not the only -ag to see:
Solve $c_{1}\binom{1}{0}+c_{2}\binom{2}{1}+c_{3}\binom{0}{1}=\binom{1}{2}$

$$
\begin{aligned}
& \text { 范 } \\
& \left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\binom{1}{2} \rightarrow\left(\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 1 & \vdots & 2
\end{array}\right) \xrightarrow{R_{1}-R_{1}-2 R_{2}}\left(\begin{array}{cccc}
1 & 0 & -2 i & -3 \\
0 & 1 & 1 & 2
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
-3+2 t \\
2-t \\
t
\end{array}\right)
\end{aligned}
$$

Recall $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \operatorname{im}(T)=\left\{\vec{v} \in \mathbb{R}^{n}:\right.$ there is aviator \vec{u} in $\left.\mathbb{R}^{n}\right\}$ satisfying $T(\vec{u})=\vec{v} \quad\}$
The The inge of a liner timsformation $T(\vec{x})=A \vec{x}$ is the span of the columns of A.

Eq $\operatorname{in}\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 1\end{array}\right)=\operatorname{span}\left\{\binom{1}{0}\binom{2}{1},\binom{0}{1}\right\}$.

$$
=\left\{c_{1}\binom{1}{0}+c_{2}\binom{2}{1}+c_{3}\binom{0}{1} ; \text { Scalars } c_{1} \ldots, c_{3}\right\}
$$

Properties of in (T)
$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a linear temsfornation

1) $\vec{D} \in \operatorname{in}(T)$

$$
T(\overrightarrow{0})=A \overrightarrow{0}=\overrightarrow{0}
$$

2) If $\vec{u}_{1}, \vec{u}_{2} \in \operatorname{im}(T)$, then $\vec{u}_{1}+\vec{u}_{2} \in \operatorname{im}(T)$

$$
\vec{u}_{1}=T\left(\vec{w}_{1}\right), \quad \vec{u}_{2}=T\left(\vec{w}_{2}\right) \Rightarrow \vec{u}_{1}+\vec{u}_{2}=T\left(\vec{v}_{1}\right)+T\left(\vec{w}_{2}\right)
$$

$$
=T\left(w_{1}+w_{2}\right)
$$

Also $\begin{aligned} & \vec{u}_{1}=c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n} \\ & \vec{u}_{2}-\alpha_{1} v_{1}+\cdots+j_{n} \vec{v}_{n}\end{aligned} \Rightarrow \vec{u}_{1}+\vec{u}_{2}=\left(c_{1}+\alpha_{1}\right) \vec{v}_{1}+\cdots\left(c_{1}+\alpha_{m}\right) \vec{v}_{n}$.
3) If $\vec{u} \in \operatorname{im}(T)$, then $k \vec{u} \in i-(T)$ for any scalar k.

$$
\vec{u}=T(\vec{w}) \Rightarrow k \vec{n}=k T(\vec{w})=T(k \vec{w})
$$

Upshot If $\vec{u}_{1}, \ldots, \vec{u}_{m} \in \operatorname{in}(T)$, then $c_{1} \vec{u}_{1}+\cdots+c_{m} \vec{u}_{m} \in \operatorname{in}(T)$ for any scalars C_{1}, \ldots, c_{m}.
Eg observe $\left(\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 2\end{array}\right)\binom{3}{1}=\left(\begin{array}{l}3 \\ 5 \\ 7\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 2\end{array}\right)\binom{1}{-1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
Then, $c_{1}\left(\begin{array}{l}3 \\ 5 \\ 7\end{array}\right)+c_{2}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) 6 \operatorname{im}\left(\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 2\end{array}\right)$ for any choice of sealers

$$
\left\{\begin{array} { l }
{ x _ { 1 } = 3 }
\end{array} \quad \text { and } \left\{\begin{array}{l}
x_{1}=1
\end{array}\right.\right.
$$

$\left\{\begin{array}{l}x_{1}=3 \\ 2 x_{1}+x_{2}=5 \\ 3 x_{1}+2 x_{2}=7\end{array}\right.$ and $\left\{\begin{array}{l}x_{1}=1 \\ 2 x_{1}+x_{2}=1 \\ 3 x_{1}+2 x_{2}=1\end{array} \quad\right.$ both have solutions,
then $\left\{\begin{array}{l}x_{1}=3 c_{1}+c_{2} \\ x_{1}, x_{2}=5 c_{1}+c_{2} \\ 3 x_{1}+2 x_{2}=7 c_{1}+c_{2}\end{array}\right.$ has a solution for any choice of

