How 3 due $2 / 4$
2.4: $2,6,34,40,42$
2.2: 20,32
2.3: 30

Midterm 1, Wed $2 / 9$
Tentatively Ch 1-3.3
AW 4 due Fri 2/11

$$
\begin{aligned}
& 3.1: \quad 6,24,32,34,37,38 \\
& 3,2: \quad 26,34
\end{aligned}
$$

$T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$, we looked at $\operatorname{in}(T)$ in (T) is an example of a subspace.
Def A subset W of \mathbb{R}^{n} is called a subspace if
a) $\vec{b} \in W$,
b) $\vec{u} \in W$ ma $\dot{v} \in W \Rightarrow \vec{u}+\vec{v} \in W$, and
c) $\vec{u} \in W \Rightarrow k \vec{u} \in W$ for any scalar k.

Eg a) $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$, then $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$ is a subspace of \mathbb{R}^{n}
b) Is $S=\left\{\binom{x}{x^{2}}: x \in \mathbb{R}\right\}$ a subspace of \mathbb{R}^{2} ?

$$
\binom{1}{1} \text { Es but } 2\binom{1}{1} ? \quad 2\binom{1}{1}=\binom{2}{2} \neq\binom{ x}{x^{2}} \text { for eng } x
$$

so S violates property C and thus S is not a suchara!
c) Is the plane, ${ }^{P}, x+2 y+3 z=0$ a subspace of \mathbb{R}^{3} ?

$$
\text { i) }\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \in P \text { because } 0+2 \cdot 0+3 \cdot 0=0
$$

ii) $\vec{u} \in P$ and $\vec{v} \in P \Leftrightarrow$

$$
\begin{aligned}
& u_{1}+2 u_{2}+3 u_{3}=0 \\
& v_{1}+2 v_{2}+3 v_{3}=0 \Rightarrow\left(u_{1}+v_{1}\right)+2\left(u_{2}+v_{2}\right)+3\left(u_{1}+v_{3}\right) \\
& \Rightarrow \vec{u}+\vec{v} \in \bar{p}
\end{aligned}
$$

iii) $\vec{u} \in P$ so $k\left(u_{1}+2 u_{2}+3 u_{3}\right)=0 \Rightarrow k \vec{u} \in P$.

Yes! The plane P is a subspace of \mathbb{R}^{3}.
In fact, $P=\operatorname{span}\left\{\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)\right\}$ (Any choice of 2 non-paravilel $\left.\begin{array}{c}\text { vectors in } P \text { Lond Cork }\end{array}\right)$
Another subspace: Kernel.
Def The kernel of a linear frimsformation $T(\vec{x})=A \vec{x}$
is the set of all solutions to $T(\vec{x})=\overrightarrow{0} \Leftrightarrow A \vec{x}=\overrightarrow{0}$
Dennted per (T) or $\operatorname{ker}(A)$.
(Note, Somefines called "full space")

both her (T)

$$
\begin{aligned}
& \text { i } \lim (T) \\
& \text { are subspaces }
\end{aligned}
$$

The For $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
$\operatorname{ker}(T)$ is a subspace of $\mathbb{R}^{m} \leftarrow$ the domain
Note $\operatorname{in}(T)$ is a subspace of $\mathbb{R}^{n} \leftarrow$ the target

$$
\begin{aligned}
& \text { Eg } \operatorname{ker}\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) ? \Longleftrightarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{1} \\
x_{j}
\end{array}\right)=\binom{0}{0}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right)
\end{aligned}
$$

So per $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ is the line spanned by $\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)\right\}$

The If $A \vec{v}=\vec{b}$ and $\vec{w} \in k \operatorname{er} A$, then $A(\vec{v}+k \vec{w})=\vec{b}$ for any scalar k.
Eg $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\binom{6}{15} \quad \operatorname{and}\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right) \in \operatorname{Rer}\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$
$\Rightarrow\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)\left(\begin{array}{c}1+t \\ 1-2 t \\ 1+t\end{array}\right)=\binom{6}{15}$ for any choice of t.
Compare $\frac{d}{d x} f=x$ is satisfied by $f(x)=\frac{x^{2}}{2}$, but $\frac{d}{d x}(c)=0$ for any constant C, so $\frac{d}{d x} f=x$ is satisfied by $f(x)=\frac{x^{2}}{2}+C$ for my constant C. (Think: $g(x)=C$ is in
Aside "the kernel of $\frac{d}{d x} "$)
Subspaces of \mathbb{R}^{2} : 1) \mathbb{R}^{2} is a subspace of itself
2) Any line going through the origin is a subspace of $\mathbb{R}^{2} \Longleftrightarrow \operatorname{span}\left\{\binom{t}{k t}\right\}$ or $\operatorname{spen}\left\{\binom{k t}{t}\right\}$
3) $\{\overrightarrow{0}\}$ is a subspace of \mathbb{R}^{2}.
\int is not a scebspuce even though it is a subset of \mathbb{R}^{2}.
The $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is injective (one-to-one) if and ny if

$$
\operatorname{ker}(T)=\{\overrightarrow{0}\} .
$$

Why? $T(\vec{u})=T(\vec{v}) \Leftrightarrow T(\vec{u})-T(\vec{v})=\overrightarrow{0}$
$\Leftrightarrow T(\vec{u}-\vec{v})=\overrightarrow{0}$

$$
\Leftrightarrow \quad \vec{u}-\vec{v} \in \operatorname{ker}(T) .
$$

The For nom matrix A,
a) $\operatorname{ker}(A)=\{0\} \Leftrightarrow \operatorname{rank}(A)=m$
b) $\operatorname{ker}(A)=\{\vec{a}\} \Rightarrow m \leq n$
$\left.b^{\prime}\right) m>n \Rightarrow \operatorname{ker}(A)$ has non-zero vector elements
c) Square matrix ($m=n$) A Lasker $(A)=\{\overrightarrow{0}\} \Leftrightarrow A$ is invertible.

Bases and linear independence.
consider $\operatorname{span}\left\{\binom{1}{0}\binom{2}{1},\binom{0}{1}\right\}$. Can we describe this set as a span of fewer vectors?
Yes! $\mathbb{R}^{2}=\operatorname{span}\left\{\binom{1}{0},\binom{0}{1}\right\}=\operatorname{spman}\left\{\binom{1}{0}\binom{2}{1}\right\}=\operatorname{span}\left\{\binom{2}{1},\binom{0}{1}\right\}$ $\sin \angle C\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\operatorname{rref}\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)=\operatorname{rref}\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$
Def For a list of vectors $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$, we say \vec{v}_{i} is
redundant if it is a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{i-1}$.
Eg $\operatorname{For}\left\{\binom{1}{0},\binom{2}{1},\binom{0}{1}\right\}$ we have $\binom{0}{1}=\binom{2}{1}-2\binom{1}{0}$, so $\binom{0}{1}$ is redux dort.
Def $\vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{R}^{n}$ are linearly insepentent if none of then acre redundant. - \because linecrig dependent if ar least one of then is

Eg $\left\{\binom{1}{0},\binom{2}{1},\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$ are linearly sepentert.
$\left\{\binom{1}{0},\binom{2}{1}\right\}$ is linecrey independent.
As are $\left\{\binom{1}{0},\binom{0}{1}\right\} \operatorname{ad}\left\{\binom{2}{1},\binom{0}{1}\right\}$.
DeP $\vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{R}^{n}$ form a basis in a subspace V if
a) $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}=V$
b) $\vec{v}_{1}, \ldots, \vec{v}_{n}$ we linearly indepuret.

