Hu 2 ha 2/4
HW 3 Jue 2/4 2.4: 2,6,34,40,42 2.2: 20,32 2.3: 30
2 7 20 22
2.3: 30
Midterm 1, Wed 2/9
Midterm 1, Wed 2/9 Tentativery Ch 1-3.3
1 Y
HW 4 Lue Fri 2/11
3.1 6,24,32,34,37,38 3.2: 24,34 3.3: 30,38
3, 3 1 30 38
(ool exercise but not collected:
3,3:90
Def For a list of vectors $\vec{v}_1,,\vec{v}_n \in \mathbb{R}^n$, we say \vec{v}_i is
_
redundant if it is a linear combination of Vi,, Vi-,.
Fa. For S (1) (2) 10) 2 we have (0) - (2) 2(1) 50 (0) is reductions
Egy For $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ we have $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 2\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, so $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is reduction.
Def V,, Vn ER" are linearly independent if none of them are redundant.
- " linearly dependent if at least one of the is For (1) (2) (2) 2
Fa (1) (3) (2) 7 are linearly Leventent
$\frac{Eq}{2} \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$ are linearly Lepundent.
{ () (2) } is linearly independent.
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
As are $\left\{ \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right) \right\}$ and $\left\{ \left(\begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right) \right\}$.
How to check for linear independence?
Take V,, vn ER? und we check for linear relations:
Solve C, v, + C, v, + + Cm v, = 0 for all possible ci's.
C = C = C = C = C is all that $C = C = C + C = C$
$C_1 = C_2 = \cdots = C_m = 0$ is always a solution.
· That is the only solution => V, ,, V. are linearly indep
· Other solutions (=) vi,, vin are linearly dependent.

Eq. (1) (0) (0) (1) $\left\{\begin{array}{c} 0\\0\\0\\0\end{array}\right\}$ is a basis of \mathbb{R}^3	
$ \begin{array}{c} (1), (1), (1) \\ (2), (1), (1) \end{array} $ is a basis of \mathbb{R}^3	
$ \begin{array}{c} c) \left(\begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \right) \left\{ \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\} \begin{array}{c} 15 & 6 & 6 & 5 & 6 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 &$	
Unique Representation	
Ila VI,, Va in subspace V of Ra form a basis of V	
every vector $\vec{u} \in V$ can be expressed uniquely. as a linear combination $\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_m \vec{v}_m$.	
Think Last dinates,	
	9
basis of R3 and there is no other way to write in as a linear combination of {e,,,e,}	
Then All bases of a subspace V of TR Consist of the some of vectors.	nurber
Def For Subspace V of R^n , $dim(V) = \# Vectors in a basis of V.$	
$ \underbrace{Eg}_{q} a) V = \left\{ \begin{pmatrix} x \\ y \end{pmatrix}; x + 2y + 3z = 0 \right\} \text{ has a 6as is } \left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} \right\} $	
So dim (V) = 2. Any \vec{u} on our plane has unique decomposite $\vec{u} = c_1\vec{v}_1 + c_2\vec{v}_2$ b) \vec{R}^n has a basis $\{\vec{e}_1,,\vec{e}_n\}$ so dim $(\vec{R}^n) = n$.	ion -
b) R° has a bosis {\vec{e}_1,,\vec{e}_n\vec{z}} so dim(\vec{R}^n) = n.	GV2
Conputing bases	
Eg a) What is 9 605 is for ker (122-3)?	
<u></u>	