HoW 3 due $2 / 4$
2.4: $2,6,34,40,42$
2.2: 20,32
2.3: 30

Midterm 1, wed $2 / 9$
Tentatively Ch 1-3.3
AW 4 due Fri 2111
3.1: 6, 24, 32,34, 37,38
$\begin{array}{ll}3,2: & 26,34 \\ 3.3 & 30 \quad 38\end{array}$
cool exercise fut not collected:
3.3:90

Def For a list of vectors $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$, we say \vec{v}_{i} is
redundant if it is a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{i-1}$.
Eg $\operatorname{For}\left\{\binom{1}{0},\binom{2}{1},\binom{0}{1}\right\}$ we have $\binom{0}{1}=\binom{2}{1}-2\binom{1}{0}$, so $\binom{0}{1}$ is redux ont.
Def $\vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{R}^{n}$ are linearly intepentent if none of then acre redundant.
—" linearly dependent if at least one of then is
$\operatorname{Eg}\left\{\binom{1}{0},\binom{2}{1},\binom{0}{1}\right\}$ are linearly dependent.
$\left\{\binom{1}{0},\binom{2}{1}\right\}$ is linearly independent.
As are $\left\{\binom{1}{0},\binom{0}{1}\right\} \backsim \backsim \alpha\left\{\binom{2}{1},\binom{0}{1}\right\}$.
How to check for linear independence?
Take $\vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{R}^{n}$ and we check for linear relations:
Solve $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{m} \vec{v}_{m}=\overrightarrow{0}$ for all possible c_{i} 's.

$$
c_{1}=c_{2}=\cdots=c_{m}=0 \text { is always a solution. }
$$

- That is the only solution $\Longleftrightarrow \vec{v}_{1}, \ldots, \vec{v}_{n}$ are limarily indep
- Other solutions $\Longleftrightarrow \vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly dependent.

Eg $\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)\right\} \rightarrow c_{1}\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+c_{2}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+c_{3}\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

$$
\left.\begin{array}{rl}
& \left(\begin{array}{lll:}
1 & 1 & 1
\end{array} 0\right. \\
2 & 1
\end{array}\right)
$$

$$
\mathcal{L}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

The For $A=\left(\begin{array}{cc}1 & \\ \vec{v}_{1} & \cdots \\ 1 & 1 \\ \vec{v}_{n} \\ 1\end{array}\right)$, the column vectors $\left\{\vec{v}_{1}, \ldots \vec{v}_{n}\right\}$ are linearly index
Why. $A \vec{x}=\overrightarrow{0} \Leftrightarrow x_{1} \vec{v}_{1}+\cdots+x_{m} \vec{v}_{m}=\overrightarrow{0}$
Consequence We can only find at most n linearly intepentent vectors
The Consider $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$ with $\vec{v}_{1} \neq \overrightarrow{0}$. If each \vec{v}_{i} for $i \geq z$ ha) non-zero entry in a component where all previous Vectors have a 0 , then $\vec{V}_{11} \ldots, \vec{V}_{m}$ are linearly independent.
Eg a) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\} \quad \begin{aligned} & \text { are linearly indepentent. } \\ & \left.\text { (works for }\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\} \text { in } \mathbb{R}^{n}\right)\end{aligned}$
b) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ are linearly indepentant.

Def $\vec{V}_{1}, \ldots, \vec{V}_{m} \in \mathbb{R}^{n}$ form a basis in a subspace V if

1) $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}=V$
2) $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly independent.

Think "non-redundant spanning set"

Eg a $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ is a basis of \mathbb{R}^{3}
b) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ is a basis of \mathbb{R}^{3}
c) $\left\{\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)\right\}$ is a basis of $\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): x+2 y+3 z=0\right\}$

Unique Representation
Tin $\vec{V}_{1}, \ldots, \vec{v}_{n}$ in subspace V of \mathbb{R}^{n} form a basis of V
\Leftrightarrow every vector $\vec{u} \in V$ can be expressed uniquely as a linear combination $\vec{u}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{m} \vec{v}_{m}$.

Think Coordinates.
Eq $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\} \quad \vec{u}=\left(\begin{array}{c}3 \\ -2 \\ 7\end{array}\right)$. then $\vec{u}=3\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)-2\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+7\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
busis of \mathbb{R}^{3} and there is no other way to write \vec{u}
as a linear combination of $\left\{\vec{e}_{1}, \ldots, \vec{e}_{3}\right\}$.
Thu All bises of a subspace V of \mathbb{R}^{n} consist of the same number
of vectors.
Def For subspace V of $\mathbb{R}^{n}, \operatorname{dim}(V)=\#$ vectors in a basis of V.

$$
\text { Eg a) } V=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): x+2 y+3 z=0\right\} \text { has basis }\left\{\begin{array}{c}
\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right) \\
\left.\left(\begin{array}{c}
3 \\
0 \\
0 \\
-1
\end{array}\right)\right\}
\end{array}\right.
$$

So $\operatorname{dim}(V)=2$. Any \vec{u} on our plane has \vec{v}_{1} minke \vec{v}_{2} decomposition
b) \mathbb{R}^{n} has a basis $\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ so $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.

Computing bases
Eg a) What is a las is for kerr $\underbrace{\left(\begin{array}{llll}1 & 2 & 2 & -3 \\ 1 & 1 & 2 & -1\end{array}\right)}_{A}$?

First, what $\dot{0}$ the herne? \Longrightarrow solve $A \vec{x}=\overrightarrow{0}$

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 2 & 2 & -3 ; 0 \\
1 & 1 & 2 & -1
\end{array} 0\right) \xrightarrow[R_{2}=R_{2}-R_{1}]{ }\left(\begin{array}{cccc}
1 & 2 & 2 & -3 \\
0 & -1 & 0 & 2 \\
0
\end{array}\right) \xrightarrow[R_{2} \in-R_{2}]{ }\left(\begin{array}{cccc}
1 & 2 & 2 & -3 \\
0 & 1 & 0 & 0
\end{array}\right) \xrightarrow{R_{1}-R_{1}-2 / 2} \\
& \left(\begin{array}{ccccc}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & 0 & -2 & 0
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-2 t-s \\
2 s \\
t \\
5
\end{array}\right)=t\left(\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right)+s\left(\begin{array}{c}
-1 \\
2 \\
0 \\
1
\end{array}\right) \\
& \Rightarrow\left\{\left(\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{c}
-1 \\
2 \\
0 \\
1
\end{array}\right)\right\} \text { is a basis for the keel. }
\end{aligned}
$$

Htso Look at Example 1 in $\$ 3.3$ has much bigger example.
6) What is a basis in $\left(\begin{array}{lll}1 & 2 & 2 \\ 1 & 1 & -3 \\ 1 & 2 & -1\end{array}\right)$?

Already know $\operatorname{span}\left\{\binom{1}{1},\binom{2}{1},\binom{2}{2},\binom{-3}{-1}\right\}=$ the inge
Just have to find and remove redundat colon vectors. $\operatorname{rref}\left(\begin{array}{cccc}1 & 2 & 2 & -3 \\ 1 & 1 & 2 & -1\end{array}\right)=\left(\begin{array}{cccc}1 & 0 & 2 & 1 \\ 0 & 1 & 0 & -2\end{array}\right) \quad$ Free variables \longleftrightarrow redundant colons So, in $\left(\begin{array}{llll}1 & 2 & 2 & -3 \\ 1 & 1 & 2 & -1\end{array}\right)$ has: a basis $\left\{\binom{1}{1},\binom{2}{1}\right\}$
Note, since $\binom{1}{-2}=2\binom{1}{0}-2\binom{0}{1}$ then $\binom{-3}{-1}=2\binom{1}{1}-2\binom{2}{1}$ col 1 of recce) ${ }^{\text {cor }}$ calif ${ }^{\text {col }}$

