Midterm 1, Wed 2/9
Ch 1-3.3

Some practice on Caves. more today!
If you are sick, email me!!
NW 4 due Fri $2 / 11$
3.1: $6,24,32,34,37,38$
3.2: $\quad 26,34$
cool exercise fut not collected:
3.3: 90

Post on Piazza
Last tine Un 3×3 matrix A have $\operatorname{im}(A)=\operatorname{ker}(A)$. (No!
Used Rank-Nullity.
Ho-ever, $2 \times 2 \quad A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ satisfies in $(A)=\operatorname{ker}(A)$ (Check this!)

1. For the following statements, circle True if the statement is always true, and circle False otherwise. Make sure it is completely clear which is your final answer. No explanations are required for this question, and no partial credit. Read the questions very carefully!
(a) (2 points) Let A and B be matrices of the same size. If $\operatorname{rref}(A)=\operatorname{rref}(B)$, then $A \vec{x}=\overrightarrow{0}$ and $B \vec{x}=\overrightarrow{0}$ have the same solutions.

Row-operations do art change Solution to system of equations.
(b) (2 points) Let A be a $n \times m$ matrix and suppose $A \vec{v}=\vec{b}$ for some $\vec{v} \in \mathbb{R}^{m}$ and $\vec{b} \in \mathbb{R}^{n}$. Then \vec{b} is a linear combination of the column vectors of A.

$$
\text { The }\left(\begin{array}{cc}
\frac{1}{u_{0}}, & \frac{1}{u_{m}} \\
l & l
\end{array}\right) \vec{v}=v_{1} \vec{u}_{1}+\cdots+v_{m} \vec{u}_{m}
$$

False
(c) (2 points) Let T be a linear transformation from \mathbb{R}^{4} to \mathbb{R}^{4}. If the kernel of T is $\{\overrightarrow{0}\}$, then $\rightarrow T$ is invertible.

This a theorem

Saity-Chech: Rank-Nulitity:

$\operatorname{dim}(\operatorname{ker}(\tau))=0$, then $\operatorname{dim}(\operatorname{iim}(T))=4$
(d) (2 points) Let T be a linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}. If the image of T is \mathbb{R}^{n}, then T is invertible.

(e) (2 points) If A is a 3×4 matrix, then $A \vec{x}=\vec{b}$ has infinitely many solutions for any vector $\vec{b} \in \mathbb{R}^{3}$.
$E g$
True

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
10 & 0 \\
0 & 0 \\
0 & 0 \\
0
\end{array}\right), \vec{b}=\binom{1}{3} \\
& \text { There is no } \vec{x} \\
& \text { "for } A \vec{x}=\vec{b} \\
& \\
& \text { "(} \left.\begin{array}{l}
x_{1} \\
x_{2} \\
x_{4}
\end{array}\right)
\end{aligned}
$$

2. (a) (5 points) Compute the inverse of $A=\left(\begin{array}{ccc}1 & 1 & 2 \\ -1 & 1 & 3 \\ 0 & 1 & 3\end{array}\right)$, if it is invertible. If it is not invertidle, explain why not.

$$
\begin{aligned}
& \left(\begin{array}{ccc:cc}
1 & 1 & 2 & 1 & \\
-1 & 1 & 3 & \vdots & 1 \\
0 & 1 & 3 & & \\
\hline
\end{array}\right) \xrightarrow{R_{2}=R_{2}+R_{1}}\left(\begin{array}{lll:ll}
1 & 1 & 2 & 1 & \\
0 & 2 & 5 & 1 & 1 \\
0 & 1 & 3 & 0 & 0
\end{array}\right) \xrightarrow{R_{2}=-\frac{1}{2} R_{2}}\left(\begin{array}{lllllll}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 5 / 2 & 1 & 1_{2} & 1 / 2 & 0 \\
0 & 1 & 3 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc:ccc}
1 & 0 & -1 / 2 & 1 / 2 & -1 / 2 & 0 \\
0 & 1 & \varepsilon / 2 & ; 1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & -1 / 2 & -1 / 2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & 0 & -1 / 2 & 1 / 2 & -1 / 2 & 0 \\
0 & 1 & 5 / 2 & 1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1 & -1 & -1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & & 0 & -1 \\
& 1 & 1 & 3 \\
& 3 & -5 \\
& 1 & -1 & -1 \\
& 2
\end{array}\right) \\
& \text { es, } A^{-1}=\left(\begin{array}{ccc}
0 & -1 & 1 \\
3 & 3 & -5 \\
-1 & -1 & 2
\end{array}\right)
\end{aligned}
$$

(b) (5 points) Find all \vec{x} satisfying $A \vec{x}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. (You may use your answer from part (a).) Justify why you have found all the solutions \vec{x}.

$$
A \vec{x}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \Rightarrow \underbrace{A^{-1} A \vec{x}}_{\vec{x}^{\prime \prime}}=A^{-1}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 1 \\
3 & 3 & -5 \\
-1 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

3. Let A be the 2×2 matrix representing rotation counterclockwise by angle $\frac{\pi}{6}$, and let B be the 2×2 matrix representing reflection about the line $7 x+11 y=0$. Compute the following:
(a) $\left(2\right.$ points) $A^{3}=A \cdot A \cdot A=$ rotation Ccw by $\frac{\pi}{2}$

$$
\left(\begin{array}{cc}
\cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\
\sin \frac{\pi}{2} & \cos \frac{\pi}{2}
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(b) (2 points) $B^{4}=B^{2} \cdot B^{2}=I \alpha \cdot I \alpha=I \alpha=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ $B^{2}=I \alpha$ since B is a reflection.
(c) (4 points) $\underbrace{B \cdot A^{18} \cdot B \cdot A^{6}}$

$$
\begin{gathered}
/ / \\
B \cdot(-I d) \cdot B \cdot(-I d) \\
(-1)^{2} B \cdot I d \cdot B \cdot I d \\
11 \\
B^{2}=I d=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

4. Define a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
11 x_{1}+10 x_{2}+12 x_{3} \\
5 x_{1}+4 x_{2}+6 x_{3} \\
2 x_{1}+x_{2}+3 x_{3}
\end{array}\right)
$$

(a) (1 point) Find the 3×3 matrix A representing this linear transformation.

$$
A=\left(\begin{array}{ccc}
11 & 10 & 12 \\
5 & 4 & 6 \\
2 & 1 & 3
\end{array}\right)
$$

(b) (6 points) What is the dimension of the kernel of A and the dimension of the image of A ? Find a basis for the kernel of A and a basis for the image of A.

$$
\begin{aligned}
\operatorname{rref}(A)= & \cdots\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \\
& i m(A) \text { has basis }\left\{\left(\begin{array}{c}
11 \\
5 \\
2
\end{array}\right),\left(\begin{array}{c}
10 \\
4 \\
1
\end{array}\right)\right\} \\
& \operatorname{span}\left\{\left(\begin{array}{c}
11 \\
5 \\
2
\end{array}\right),\left(\begin{array}{l}
10 \\
4 \\
1
\end{array}\right),\left(\begin{array}{l}
12 \\
3 \\
3
\end{array}\right)\right. \\
& \left.\operatorname{ker}(A)=\left\{\left(\begin{array}{c}
-2 t \\
t \\
t
\end{array}\right)\right\} \text { has basis }\left\{\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)\right\} \\
& A \vec{x}=0
\end{aligned}
$$

5. Find 2×2 matrices satisfying the stated properties, if one exists. Either verify the required property or explain why such a matrix does not exist.
(a) (3 points) Find A with rank $A=1$ and satisfying $A^{2}=A$.

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

(b) (3 points) Find B with rank $B=1$ and satisfying $B^{2}=0$.

$$
B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

(c) (3 points) Find C such that C is not invertible and all entries of C are distinct and nonzero; that is, if $C=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$, then a, b, c, d are all different nonzero numbers.

$$
C=\left(\begin{array}{ll}
2 & 3 \\
4 & 6
\end{array}\right) \quad \operatorname{det} C=12-12=0
$$

(d) (3 points) Find D such that $D^{2} \neq \mathrm{Id}_{2}$ but $D^{100}=\mathrm{Id}_{2}$, where Id_{2} denotes the 2×2 identity matrix.

$$
\begin{aligned}
& \text { Thin } 2 \quad \text { rotation } 6 y \quad \frac{2 \pi}{100}=\frac{\pi}{50} \\
& D=\left(\begin{array}{cc}
\cos \frac{\pi}{50} & -\sin \frac{\pi}{50} \\
\sin \frac{\pi}{50} & \cos \frac{\pi}{50}
\end{array}\right)
\end{aligned}
$$

